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Abstract 
The chemical and fuels industry's reliance on fossil-based feedstocks necessitates a shift to 
low-emission renewables like agricultural residues, municipal solid wastes, and industrial off-
gases. Gas fermentation employs microbes to convert gaseous carbon-rich streams into 
renewable chemicals. The current state of commercial gas fermentation relies on anaerobic 
bacteria. However, aerobic bacteria offer the potential to target a broader range of products. 
Despite this, an inherent disadvantage of aerobic gas fermentation is its poor thermodynamic 
efficiency. Integrating aerobic gas fermentation with Supercritical Water Gasification (SCWG) 
addresses this challenge, creating a promising biochemical production platform. The 
integration utilises the low-temperature fermentation heat to pre-heat biomass for SCWG and 
reclaims the energy from depressurising the SCWG effluent using a turbo-expander. In 
addition, a key benefit of SCWG is its ability to exploit wet, low-value wastes. Such feedstocks 
are abundantly available and have limited resource competition as they are uneconomical to 
exploit via conventional gasification. Despite these benefits, the economic feasibility needs 
verifying which includes the selection of optimal feedstocks, feasible production capacities, 
and geographic considerations to identify promising biorefinery scenarios.  

Essential for assessing emerging technologies, Techno-Economic Analyses (TEAs) were 
conducted to rigorously model and assess two case studies for the proposed integrated 
technology. The first considered commodity chemicals as direct products from fermentation 
(co-produced isopropanol and acetone), achieving a cumulative Net Present Value (NPV) of 
$42 million. Results compared favourably to anaerobic fermentation, with a minimum fuel 
selling price of $2.87/GGE. The second case study considered hybrid processing, integrating 
bio- and chemo-catalytic upgrading to produce 1,3-butadiene. This process showed 
profitability, achieving an MSP of $1367/tn, a $2.8M NPV, and a 19% probability of positive 
NPV. Part of the success of these two case studies was due the use of low-cost black liquor 
as the feedstock. SCWG allows for the successful exploitation of this wet feedstock. As such, 
a final study was undertaken to identify promising biorefinery scenarios for hydrogen 
production via SCWG, considering different feedstock-capacity-location combinations. The 
Levelised Cost of Hydrogen (LCOH) ranged from 3.81 to 18.72 $/kgH2 across the considered 
scenarios. At capacities >50 m3/h, the LCOH’s (2.76–4.21 $/kgH2 for China, 3.41–5.07 $/kgH2 
for Brazil, 4.31–6.62 $/kgH2 for the UK) were competitive with MW-scale electrolysis costs 
(3.10–6.70 $/kgH2 for China, 3.70–5.90 $/kgH2 for Brazil, and 4.81–6.31 $/kgH2 for the UK). 
The range of results highlights the significance of feedstock-capacity-location considerations 
during technology evaluation. 

In evaluating the economic feasibility of bio-derived chemicals and fuels, it's crucial to conduct 
Life Cycle Assessment (LCA) to quantify environmental impact. This facilitates a comparison 
of the trade-offs between a process’ economic and environmental performance. For both 
commodity chemical case studies net negative emissions were achieved due to biogenic 
carbon sequestration. Isopropanol and acetone exhibited GHG emissions of -2.10 and -2.21 
kgCO2eq/kg compared to conventional production of 2.07 and 2.43 kgCO2eq/kg. For 1,3-
butadiene production emissions were -3.23 kgCO2eq/kg, contrasting with the conventional 1.2 
kgCO2eq/kg. Hydrogen production from the final case study also demonstrated low process 
emissions, averaging 0.46 kgCO2eq/GJH2 (China and Brazil), and 0.37 kgCO2eq/GJH2 (UK), 
compared to 8 kgCO2eq/GJH2 for steam methane reforming with carbon capture and storage 
(excluding natural gas leakage). These favourable emissions across all studies highlight the 
benefits of exploiting low-value, low-emission feedstocks.  

As part of a TEA product prices for 20-25 years into the future are required to assess potential 
profitability. A Machine Learning (ML) method for projecting future commodity prices was 
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developed to allow for unbiased price selection procedures to input into TEAs. Initially, a 
Radial Basis Function Neural Network (RBFNN) was trained using 10 historic prices, 
optimising weights and centre points. The model was run recursively, with predicted prices 
becoming inputs. Stochastic uncertainty was incorporated using a ±30/20% uniform 
distribution from the projected price. The method was later refined using 100 LSTM models, 
leveraging historic commodity data (2009-2021) and Energy Information Administration's 
(EIA) Brent crude oil price projection. Training and validation sets were based on a 30% 
historic data and 70% projection horizon ratio, ensuring optimal hyperparameter selection. 
Probabilistic projections provided nominal, range, and probability distributions to input into the 
economic, sensitivity, and uncertainty analysis. The resulting price distributions showed 
variability between commodities, emphasising the need for tailored TEA uncertainty 
considerations instead of relying on arbitrary percentages. Compared to the initial RBFNN 
method, the refined approach was found to alter the NPV distributions' 70% window from $35-
$95M to $45-$80M (isopropanol and acetone) and from -$45M-$65M to -$35M-$80M (1,3-
butadiene), highlighting the importance of price selection procedures on TEA outcomes. 

Conducting TEAs is time consuming and requires expert knowledge, hindering widespread 
application. To facilitate quick biorefinery scenario evaluations a ML method was developed. 
This was created for the TEA of hydrogen production via SCWG. An ML surrogate model was 
developed to predict the LCOH based on different feedstock-capacity-location combinations. 
The training data included 40 biomass compositions, five processing capacities (ranging from 
10 to 200 m3/hr), and three geographical locations (China, Brazil, UK). Three ML algorithms 
were compared for the ML surrogate model: Random Forests, Support Vector Regression, 
and an ensemble of Artificial Neural Networks (ANNs). The ANN ensemble was the most 
accurate during cross-validation and achieved an accuracy of Mean Absolute Percentage 
Error: <4.6%, Route Mean Squared Error: <0.39, and R2: >0.99 on the test set. The final model 
was published for users to evaluate their own feedstocks. Overall, the model enables the 
identification of promising biorefinery scenarios for valorisation to maximise the economic 
potential of the technology. 

There are two key contributing areas of this thesis, firstly, the rigorous techno-economic and 
environmental assessment of the technology and secondly, the development of TEA 
methods using ML to aid these evaluations. The techno-economic and environmental 
assessment demonstrates the economic and environmental viability of the proposed 
technology platform compared to both conventional and alternative renewable production 
routes. The development of TEA methods used ML to create an unbiased methodology to 
select product price and price distributions in TEAs and to produce a TEA surrogate model 
for early-stage screening of feedstock scenarios for SCWG. The methods developed 
demonstrate the potential of ML to enhance TEA practices.
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1. Introduction 
 

1.1 Background and motivation 
Transitioning from fossil-based resources to renewable resources such as agricultural 
residues, municipal solid wastes, and industrial off-gases is essential for the development of 
a sustainable chemical and fuels industry (Fackler et al., 2021). Gas fermentation, which 
utilises microbes for chemical production, shows promise in upgrading recalcitrant feedstocks 
to chemicals. Unlike cellulosic fermentation which cannot utilise the lignin fraction in 
feedstocks, gas fermentation is able to exploit the entire biomass compound (Liew et al., 
2016). In addition, in contrast to thermochemical technologies, gas fermentation operates at 
low temperatures and pressures, handles chaotic inputs, and tolerates contaminants in the 
gas stream (Fackler et al., 2021).  

Currently, the only operational commercial gas fermentation technology is LanzaTech's 
anaerobic gas fermentation process in Beijing, which uses steel mill off-gas (Fackler et al., 
2021). However, anaerobic fermentations are limited in their ability to produce Adenosine 
triphosphate (ATP)-intensive products due to their energetically limited CO2 fixation pathway 
(Dürre, 2017). In contrast, aerobic gas fermentation can target a broader product spectrum 
than anaerobic but suffers from poor thermodynamic efficiency due to the loss of H2 as water 
during respiration (Emerson & Stephanopoulos, 2019). Bommareddy et al. (2020) proposed a 
solution to this inefficiency by utilising the low-temperature heat produced during fermentation 
to pre-heat the biomass feed for Supercritical Water Gasification (SCWG). The benefit of 
SCWG is its ability to exploit wet, low-value wastes. Such feedstocks are abundantly available, 
typically low-cost, and have limited resource competition as they uneconomical to exploit via 
conventional gasification technologies (Lee et al., 2021). In addition, as per Bommareddy et 
al. (2020), the high pressure required for SCWG (>22.1 MPa) can be recovered as renewable 
electricity upon letting down the product syngas. This recovered energy comfortably meets 
the air compression requirement for the aerobic bioreactor. This process engineering synergy 
between the two technologies claims to overcome some of the limitations of aerobic gas 
fermentation and create an economically viable platform (Bommareddy et al., 2020). However, 
the economic feasibility of this platform, along with promising feedstock, location, and capacity 
considerations requires verification.  

To assess the economic feasibility of emerging technologies, a Techno-Economic Analysis 
(TEA) is required. TEAs play a critical role in identifying cost bottlenecks, evaluating research 
options, and guiding future research directions (Scown et al., 2021). These analyses involve 
full system design, virtual scale-up, and economic evaluation based on empirical data. 
Typically, TEAs begin at a Technical Readiness Level (TRL) of 3 (technical proof of concept) 
and are modified and updated up to TRL 7 (integrated pilot continuous operation) (Figure 1.1). 
Highlighting their importance, TEAs are undertaken across the ‘valley-of-death’ stages of 
technology development, which is often the hurdle to commercialisation (Köpke & Simpson, 
2020). Furthermore, bio-derived chemicals and fuels can offer a significant environmental 
advantage compared to their fossil fuel counterparts. However, this benefit needs to be 
quantified through Life Cycle Assessment (LCA). Therefore, simultaneous TEAs and LCAs 
need to be conducted to understand the trade-off between a process's economic and 
environmental performance (Mahmud et al., 2021).  
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Figure 1.1: Valley-of-death of emerging technologies. Technical readiness level definitions 
relate to the expanded levels developed for the bioeconomy (Humbird, 2018). 

TEAs are widely employed to evaluate bio-derived chemical and fuel production processes, 
with the National Renewable Energy Laboratory (NREL) studies serving as a benchmark 
(Scown et al., 2021). NREL’s analyses extensively report the costing models, assumptions, 
mass and energy balances, and publish the Aspen models used as the analysis basis (NREL, 
2023). This transparency allows for updates to be made to techno-economic models based 
on new data and facilitates comparisons between different studies and models. However, in 
the wider TEA literature there is currently no consensus on a TEA framework (Faber et al., 
2021), making comparisons between studies difficult.  

Current TEA methods face challenges such as assuming stability in product prices (Scown et 
al., 2021) and providing single-point estimates despite the high variability in TEA inputs and 
assumptions (Fu et al., 2022). Additionally, conducting these analyses demands significant 
time, engineering expertise, and specialized software (Huntington et al., 2023). Machine 
Learning (ML) is emerging as a valuable tool to tackle some of these challenges. For instance, 
ML is widely applied in price forecasting fields to predict future commodity and energy prices 
(Wu et al., 2019). ML surrogate models can also be used to effectively represent complex unit 
operations within process simulations, enabling robust uncertainty analyses that consider both 
economic and technical parameters (Scown et al., 2021). Surrogate models can also be 
applied to full economic analyses, providing a lightweight tool to compare different scenarios 
(Huntington et al., 2023).  

The aim of this thesis is to develop and apply techno-economic analysis tools to evaluate the 
integrated aerobic gas fermentation and supercritical water gasification process. 
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Objectives:  

1. Develop process simulations for the aerobic gas fermentation and supercritical 
water gasification process, incorporating heat integration and downstream 
processing. Two simulations were created for the case studies examined in this 
thesis, forming the foundation for economic and environmental assessments. An 
additional simulation, considering only SCWG was created for feedstock evaluation 
purposes. 

2. Determine an appropriate techno-economic framework and perform a 
comprehensive techno-economic analysis of the simulated process. Selecting a 
cost model framework ensures comparability across studies. The economic analysis 
provides metrics to assess the competitiveness of the technology with market prices.  

3. Quantify the greenhouse gas emissions associated with chemical and fuel 
production from the process and compare them with conventional production 
methods. This assessment allows for the evaluation of the environmental benefits or 
drawbacks of the renewable chemical platform compared to conventional approaches. 

4. Compare the economic and environmental competitiveness of the process with 
alternative renewable production methods. This analysis contextualises the 
technology’s economic potential relative to other technologies. 

5. Develop a methodology to project future prices, considering future price 
variability, for use in techno-economic, sensitivity, and uncertainty analyses. 
This approach eliminates practitioner bias in price selection and places the economic 
results in the context of projected prices, ensuring the economic competitiveness is 
easily interpreted.  

6. Create a machine learning surrogate model of a techno-economic analysis to 
rapidly evaluate the economic potential of feedstock-capacity-location 
combinations for supercritical water gasification. This model represents an 
advancement in techno-economic analysis methods, creating an ML surrogate 
representing an entire TEA. This enables the quick evaluation of biorefinery scenarios 
by non-experts and the identification of promising opportunities for their valorisation. 

 

1.2 Contributions and novelty 
There are two key contributing areas of this thesis. Firstly, it rigorously evaluates the 
technological, economic, and environmental aspects of the aerobic gas fermentation and 
SCWG process. Secondly, it develops TEA methodologies to facilitate these evaluations.  

This technology evaluations were undertaken through rigorously modelling and conducting 
economic and environmental assessments for two case studies: 

1) The assessment of commodity chemicals as direct products of fermentation (co-
production of isopropanol and acetone). 

2) The evaluation of hybrid processing by integrating fermentation and catalytic upgrading 
to produce a commodity chemical with a projected future shortage by fossil fuel-based 
production (1,3-butadiene). 

Methodological advancements were achieved through the application of ML and comprised: 

1) The development of a method to project future commodity chemical prices and price 
variability, which is then integrated into TEA procedures, removing user bias in price 
selection processes. 
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2) The creation of a method for predicting TEA outcomes based on various feedstock-
capacity-location combinations. This aids in the identification of promising biorefinery 
scenarios. 

The overall contributions of this thesis can be summarised as follows: 

Chapter 4: 
 Rigorous TEA of the proposed heat integrated aerobic gas fermentation platform. 

Existing gas fermentation TEAs are largely based on anaerobic gas fermentation. 
Existing studies investigating aerobic gas fermentation have focused on identifying 
process parameters (productivity and yield) to define future research targets (Khan et 
al., 2014), general assessments for renewable chemical production including higher 
value co-products Choi et al. (2010), and the potential to reduce energy consumption 
through using thermophilic bacteria (Levett et al., 2016). In contrast, the analysis in 
this thesis aimed to evaluate the economic potential by applying process engineering 
solutions to some inherent disadvantages of aerobic gas fermentation. 

 Comparison of different techno-economic costing models to evaluate the economic 
feasibility of the platform. Existing comparisons in capital costing methods exist. 
However, the comparisons are limited to equipment cost and capital cost estimation, 
excluding fixed operating cost considerations (e.g. van Amsterdam, 2018; Brown, 
2015). Furthermore, these comparisons were not undertaken within a TEA study. 

 Techno-economic and environmental comparison between aerobic and anaerobic gas 
fermentation. Existing technology comparisons have focused on comparisons between 
gas fermentation and hydrolysis-based fermentation (Piccolo & Bezzo, 2009; Choi et 
al., 2010; Christodoulou & Velasquez-Orta, 2016) or thermochemical conversion (Haro 
et al., 2013; Tan et al., 2016; Okoro & Faloye, 2020). 

Chapter 5: 
 Rigorous assessment of combining gas fermentation with catalytic upgrading (hybrid 

processing) for chemical production. Previous hybrid processing has been undertaken 
by Haro et al. (2013) for ethylene production and Tan et al. (2016) for distillate range 
fuels. In the study by Haro et al. (2013), only the catalytic upgrading was modelled, 
and cost estimates for different ethanol sources were taken from the literature, 
meaning results were reliant on the quality of ethanol price estimates. In this thesis the 
comparative routes were rigorously modelled. Tan et al. (2016) modelled the routes in 
their comparative study. However, the study investigated the production of distillate 
range fuels rather than commodity chemicals. 

 Comparing hybrid bio- and chemo-catalytic production with purely chemo-catalytic 
production of 1,3-butadiene. Existing studies for 1,3-butadiene production have 
investigated hybrid bio-catalytic and chemo-catalytic production by upgrading 
fermentation derived ethanol e.g. Moncada et al. (2018), or chemo-catalytic production 
via a renewable olefin intermediate e.g. Hanaoka et al. (2021). 

Chapter 6: 
 Using machine learning to produce commodity price projections for techno-economic 

analyses. Previous TEAs have employed stochastic modelling (e.g. Manca et al., 
2011), correlating prices to an existing projection for a different commodity (e.g. Brown 
and Wright, 2015), or employed traditional econometric tools (e.g. Nguyen and Tyner, 
2021). 

 Producing a probabilistic price projection methodology which exploits the underlying 
stochastic and/or deterministic trends within a commodity’s historic time series. The 
probabilistic projection provides the range and distribution for the sensitivity and 
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uncertainty analyses. Previous approaches have relied on historic variability (e.g. Diniz 
et al., 2018) or applying an arbitrary percentage (e.g. Moncada et al., 2018). 

Chapter 7: 
 Development of a published surrogate model of a TEA to evaluate the economic 

potential of different feedstock-capacity-location combinations for SCWG. This 
facilitates experimentalists and industrialists in identifying promising biorefinery 
scenarios for valorisation to inform targeted research and investment. To the best of 
the author’s knowledge, the only other study to produce a surrogate model for a full 
TEA was Huntington et al. (2023), who used hydrolysis-based ethanol production as a 
case study. 

 Creation of a reliability measure for the developed surrogate model to determine the 
confidence in the model’s predictions for unseen user inputs, preventing model 
misuse. The validity of predictions made by the surrogate model on unseen data was 
not discussed in the work by Huntington et al. (2023). The method developed in this 
thesis takes principles from anomaly detection using autoencoders where an anomaly 
threshold is set by the reconstruction error (Ndubuaku et al., 2019). However, in this 
thesis the threshold is set based on the error between the predictions by the ensemble 
of Artificial Neural Networks on a validation set. 

1.3 Thesis overview 
This thesis is constructed of journal publications. Chapter 2 consists of a literature review that 
complements these publications by providing contextual information about their position and 
contribution within the broader literature. The articles in this thesis all contribute towards the 
evaluation of the technology. However, the articles included in this thesis can be divided into 
two sections. The first section focuses on the Techno-economic analysis of the aerobic gas 
fermentation and SCWG platform undertaken through two case studies. The second section 
concentrates on Method development for TEAs where a method to project future commodity 
prices for inclusion in techno-economic and uncertainty analyses, and a surrogate model for 
feedstock evaluation are developed. The interactions between these sections and the transfer 
of methods and data from each chapter is depicted in Figure 1.2. 

 

Figure 1.2: Schematic of the articles included in this thesis and their interactions 
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Chapter 3 provides a detailed description and critical analysis of the methodology employed 
in this thesis, covering process modelling, techno-economic cost models, sensitivity analysis 
methodology, and methodological advancements. 
 
Chapter 4 presents a research article titled: “Reconciling the Sustainable Manufacturing of 
Commodity Chemicals with Feasible Technoeconomic Outcomes: Assessing the investment 
case for heat integrated aerobic gas fermentation”. The article was published in the Johnson 
Matthey Technology Review Journal in July 2021. This article focuses on the techno-economic 
and life cycle assessment of the novel aerobic gas fermentation platform, which integrates 
SCWG with aerobic gas fermentation to achieve positive economic outcomes. Furthermore, 
three different methods for calculating capital and fixed operating costs are compared. The 
main conclusion from this work was the cost competitive production of isopropanol and 
acetone using the platform and the achievement of net negative greenhouse gas emissions 
owing to the sequestration of biogenic carbon. In addition, the economic and environmental 
results were found to be comparable to a anaerobic gas fermentation process.  
 
Chapter 5 comprises a research article titled: “Renewable butadiene: A case for hybrid 
processing via bio- and chemo-catalysis”. The article was published in the Journal of Cleaner 
Production in June 2022. The novelty of this work is the evaluation of the same aerobic gas 
fermentation and SCWG platform presented in Chapter 4, but for 1,3-butadiene production, a 
chemical with projected future shortages via conventional fossil fuel-based production. The 
study explores hybrid processing, coupling of bio- and thermo-chemical technologies, to 
upgrade the fermentation product to produce a reduced commodity chemical. The aerobic gas 
fermentation platform is compared to two purely chemo-catalytic renewable technologies, all 
originating from biomass gasification. The main conclusion from this work was that the aerobic 
gas fermentation platform outperformed the two alternative chemo-catalytic l pathways to 1,3-
butadiene from both an economic and environmental perspective. 
 
Chapter 6 features a research article titled: “Probabilistic commodity price projections for 
unbiased techno-economic analyses”. The article was published in Engineering Applications 
of Artificial Intelligence in June 2023. This work introduces the use of machine learning to 
generate 20-25-year probabilistic commodity price projections for techno-economic, 
sensitivity, and uncertainty analyses. An ensemble of 100 LSTMs was utilised to leverage the 
determinism and/or stochastic variability within the commodity's historical time series. These 
price projections were then used in the techno-economic and uncertainty analyses from 
Chapters 4 and 5, highlighting the importance of price selection procedures in techno-
economic outcomes. The main conclusion from this work was the importance of commodity 
prices and price distributions during technology assessment, demonstrating the need for an 
unbiased selection method.  
 
Chapter 7 contains a research article titled: “A surrogate model for the economic evaluation 
of biomass feedstocks for renewable hydrogen production via supercritical water gasification”. 
The article was published in International Journal of Hydrogen Energy, currently in press. The 
novelty of this work lies in the creation of a publicly available ML surrogate model for the TEA 
of SCWG to predict the Levelised Cost of Hydrogen from various feedstock-capacity-location 
combinations. The surrogate model is developed based on the simulation and economic 
evaluation of 40 different biomass feedstock compositions across three geographic locations 
and five processing capacities (10 – 200 m3/hr). The main conclusion from this work was the 
impact of different feedstock-capacity-location combinations on the LCOH, evidencing the 
significance of biorefinery scenario selection during technology evaluation. This highlights the 
need for early-stage screening tools to inform targeted research and development into 
promising resource valorisation opportunities. 
 
Chapter 8 presents the major conclusions and limitations of the work undertaken in this thesis 
and discusses potential directions for future research.  
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2 Literature Review 
The chemical industry’s current reliance on fossil fuel feedstocks and linear value chain has 
adverse environmental impacts (Meng et al., 2023). Furthermore, growing pressures on fossil 
fuel reserves require the exploitation of alternative chemical feedstocks. As a renewable 
carbon source, biomass plays a key role in the transition away from fossil fuel use and towards 
the development of a renewable chemical industry (Queneau & Han., 2022). The use of 
biomass harnesses the CO2 captured from the air through photosynthesis during growth as a 
chemical feedstock, which is eventually released upon the end-of-life of the chemical product, 
resulting in net zero emissions (Gabrielli et al., 2023). Consequently, chemicals produced 
using biomass resources often have low associated emissions. 

Despite the proposed environmental benefit of biomass feedstocks, their higher water content 
and lower energy density make them less favourable compared to fossil fuel resources 
(Gabrielli et al., 2023). In addition, the abundance of cheap fossil fuels has historically led the 
chemical industry to favour the use of fossil fuels (Lopez et al., 2023). Therefore, processes 
utilising biomass are both more challenging and less established than petrochemical 
processes. Despite this, first-generation biomass is commercialised for bioethanol and 
biodiesel production. However, its use of edible biomass (i.e., starch and sugar) as a feedstock 
increases production costs, competes with food security, and requires significant amounts of 
land, water, and fertiliser for production (Alalwan et al., 2019). Second-generation 
technologies exploit inedible lignocellulosic biomass, representing more sustainable 
renewable feedstocks (Alalwan et al., 2019). Three second generation technologies capable 
of upgrading lignocellulosic biomasses exist: biochemical processing (lignocellulosic 
fermentation), thermochemical processing (chemo-catalytic technologies), and hybrid 
processing (gasification followed by gas fermentation). Table 2.1 summarises these three 
technologies, including their advantages and disadvantages.  

Table 2.1: Comparison of lignocellulosic biomass utilisation technologies. Details taken from 
(Daniell et al., 2012; De Buck et al., 2020). 

 Biochemical 
(lignocellulosic 
fermentation) 

Thermochemical 
(catalytic technologies) 

Hybrid 
(gas fermentation) 

Process 
description 

1. Biomass is 
delignified by a pre-
treatment step 

2. Hydrolysis of 
hemicellulose and 
cellulose to sugars 

3. Fermentation  
4. Product recovery 

1. Biomass drying and size 
reduction 

2. Gasification to produce 
syngas 

3. Syngas upgrading: 
 Particulate removal 
 Water gas shift 

4. Syngas upgrading over a 
metal catalyst 

5. Product separation  

1. Biomass drying and 
size reduction 

2. Gasification to produce 
syngas 

3. Gas is treated to 
remove impurities 

4. Gas fermentation 
5. Product separation  

Advantages  High selectivity  
 Mild operating 

conditions 

 Established technologies 
exist for fossil feedstocks 

 All carbon content 
converted to syngas 

 All carbon content 
converted to syngas  

 Mild operating 
conditions  

 High selectivity  
 Flexible CO:H2 ratios  

Disadvantages  Pre-treatment step 
is costly and 
complex 

 Hydrolysis inhibit 
enzyme activity 

 Cannot use lignin 
fraction for chemical 
production 

 Low selectivity 
 Low tolerance for 

inhibitors, complex 
(expensive) gas clean-up 
required 

 Higher temperatures and 
pressures 

 Hydrogen cyanide 
inhibits microbes  

 Mass transfer 
limitations between gas 
and liquid 
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 Requires specific CO:H2 
ratios 

Biochemical processing (lignocellulosic fermentation) has been extensively researched. 
However, expensive and complicated pre-treatment methods currently hinder 
commercialisation (Preethi et al., 2021). A further disadvantage of this technology is its inability 
to exploit the lignin fraction of a feedstock (Liew et al., 2016). Contrastingly, both 
thermochemical and hybrid technologies originate from biomass gasification, enabling the full 
exploitation of the feedstock. In addition, both these technologies can exploit waste gas 
streams as well as lignocellulosic feedstocks (Daniell et al., 2012). Whilst thermochemical 
technologies have the advantage of being established for fossil fuel feedstocks, the 
technology’s harsh operating conditions, low tolerance to inhibitors, and specific CO:H2 
requirements are inherent disadvantages (Daniell et al., 2012). Hybrid processing (gas 
fermentation) operates at low temperatures and pressures, can handle chaotic inputs, and 
tolerates contaminating products in the gas stream (Fackler et al., 2021). However, gas-liquid 
mass transfer limitations, low productivity, and high production costs remain current 
challenges. 

Successful process scale-up of microbial processes is highly dependent on the development 
of a conceptual process and Techno-Economic Analysis (TEA) prior to undertaking laboratory 
experiments (Crater & Lievense, 2018). These analyses provide technology targets to guide 
research and development efforts. The need for these analyses is emphasised in both the UK 
Chemical Sector’s Decarbonisation Roadmap (BEIS, 2017) and E4Tech’s evaluation of the 
UK’s Top Bio-based Chemical Opportunities (E4tech, 2017). Importantly, TEAs are often 
iterative processes whereby process changes are made upon determining the economic 
outcome and primary cost drivers, depicted in the flow diagram in Figure 2.1. However, there 
is no methodological standard for TEAs. Whilst most academic TEAs follow practices outlined 
in engineering textbooks, there is still room for choices and assumptions to be made 
(Zimmermann et al., 2020). Furthermore, the range of applications of TEAs means the 
assumptions, scenarios considered, and scope of analyses differ between studies.  

 

Figure 2.1: Flow diagram of overall TEA methodology 

The first section of this review covers TEA methods and recent advancements in this field. 
Since gas fermentation is the central technology evaluated in this thesis, a comprehensive 
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review of TEAs related to gas fermentation is provided. This detailed review offers insights 
into the diverse objectives of differing TEA studies, the various tools employed in these 
studies, and the differing outcomes that can be achieved. Lastly, the review includes an 
overview of TEAs applied to Supercritical Water Gasification (SCWG), providing information 
on the current status of the technology and assessments in this area. 

2.1 Techno-economic analyses methods and advancements 
This section reviews the literature on TEA methods, trends, and advancements to these 
methods within bioconversion processes. The review scope is depicted in Figure 2.2 and 
covers process modelling, cost models, product price considerations, performance metrics, 
sensitivity, scenario, and uncertainty analyses, and lightweight assessment tools. 

 

Figure 2.2: Scope of techno-economic analysis literature covered.  

2.1.1 Process modelling 
Techno-economic analyses conventionally originate from process design and simulation. 
These simulations typically use commercial software such as Aspen Plus or SuperPro 
Designer (Scown et al., 2021). Commercial simulators are used to develop rigorous process 
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models incorporating energy integration, recycle considerations, and complex separation 
sequences.  

Conventional process synthesis methods are time-consuming and require a certain level of 
expertise to develop realistic and representative process models. To overcome this challenge, 
there is an emerging trend in developing automated process synthesis methods using 
Machine Learning (ML). Investigated methods include evolutionary programming (Neveux, 
2018), reinforcement learning (Khan & Lapkin, 2022), and transformer-based language 
models (Vogel et al., 2023a). These methods aim to create, complete, and optimise process 
flowsheets. With autonomous process design as the ultimate goal, there are ongoing research 
efforts into creating databases of chemical process flowsheets under standard notation e.g. 
SFILES 2.0 (Simplified Flowsheet Input-Line Entry-System) (Vogel et al., 2023b), and the use 
of ontological representations of process (Seidenberg et al., 2023). A standard representation 
of flowsheets would allow ML algorithms to leverage existing fundamental process knowledge. 
These approaches require minimal user inputs but allow for the synthesis of detailed, 
optimised process flowsheets. While this research direction is still developing and has not yet 
been applied to TEAs, its evolution offers the opportunity for emerging technologies to be 
quickly and rigorously evaluated by non-experts. 

Surrogate modelling is also being adopted as a process modelling tool. Surrogate models are 
approximate models that map the input-output relationship of more complex models (Mcbride 
& Sundmacher, 2019). They can be used to model complex unit operations in process 
flowsheets. Replacing rigorous models with surrogates reduces the computational burden of 
optimisation problems and sensitivity analyses by providing predictions based on different 
technical parameter inputs without needing to converge a rigorous process simulation. Jiang 
et al. (2023) recently demonstrated the use of a surrogate model to represent packed bubble 
column contactors in the optimisation of their CO2 capture process (Jiang et al., 2023). The 
surrogate model was developed by firstly creating a physics-based mechanistic model using 
governing kinetic and mass transport equations. After model validation, the physics-based 
model was used generate data used to train the surrogate model, which comprised of an 
ensemble of polynomial response surface, Kriging, radial basis function, support vector 
regression (SVR), and moving least squares. The surrogate model was then used for the 
process optimisation, where various contactor design variables including the particle size 
diameter, bed height, and superficial gas velocity, were optimised. The optimal trade-off 
solution between CO2 capture and energy consumption was then used to conduct a TEA. In 
addition to optimisation, surrogate models are also useful in representing complex reactor 
units, removing the need to model detailed kinetics or equations. For example, Olafasakin et 
al. (2021) developed a Kriging-based Reduced Order Model (ROM) to represent the pyrolysis 
reactor in their economic and emission assessment of gasoline and diesel production from 
biomass (Olafasakin et al., 2021). The surrogate model was trained to predict the pyrolysis 
yields based on the biomass composition. The predicted yields were then fed into a process 
model in Aspen Plus to complete the TEA and Life Cycle Assessment (LCA). Similarly, Fózer 
et al. (2021) investigated methanol production considering microalgae as a feedstock. An 
Artificial Neural Network (ANN) was used to represent the SCWG reactor to account for 
biomass variations. Experimental yields from 55 experimetnal results were used to create the 
model and the predicted ANN yields were modelled in Aspen Plus using a yield reactor and 
the resulting simulation was used in the TEA (Fózer et al., 2021).  

2.1.2 Cost models 
Cost estimation methods vary based on the maturity of the project and available data (van 
Amsterdam, 2018). The Association for the Advancement of Cost Engineering (AACE) classify 
estimates from Class 5 to 1, with the purpose of Class 5 being to screen different options and 
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assess the initial feasibility, and Class 1 being used to check bidding and tender quotes (AACE 
International, 2020). Class 5 estimates can be undertaken using exponential relationships 
between plants of different capacities, i.e., the sixth-tenths rule (Sinnott & Towler, 2013). 
Contrastingly, estimates for Classes 1-3 are based on individually costed equipment from 
detailed mass and energy balances (AACE International, 2020). For emerging bioproduction 
pathways, individual equipment costs are common in TEAs, as exemplified by the National 
Renewable Energy Laboratory (NREL) reports (Scown et al., 2021). However, models for 
equipment costs and their translation to the Total Capital Investment (TCI) vary (Brown, 2015), 
leading to different outcomes for similar pathways. Several studies exist comparing different 
equipment cost and TCI estimation methods. 

Feng & Rangaiah (2011) compared five capital cost estimation programs: CapCost, 
EconExpert, AspenTech Process Economic Analyzer, Detailed Factorial Program, and Capital 
Cost Estimation Program (Feng & Rangaiah, 2011). They found variations of up to 200% in 
individual equipment costs and around 100% in TCI for seven case studies. Symister (2016) 
also compared equipment cost methods including Aspen Capital Cost Estimator (ACCE), 
module costing (Turton et al., 2013), and factorial costing (Sinnott & Towler, 2013). Note that 
the ACCE software is an advancement of AspenTech Process Economic Analyzer, analysed 
by Feng & Rangaiah (2011). The ACCE estimates were used as the benchmark for the 
comparison. However, on average, the ACCE method was found to produce the lowest 
equipment cost estimates of the three results. The ACCE database claims not to rely on 
capacity factor curves and uses a comprehensive design-based installation model 
(AspenTech, 2012). However, it’s black-box nature means the underlying calculation methods 
are unknown by the user. This is unlike cost correlations where the driving force (size factor) 
for the equipment is known, facilitating an understanding between design decisions and cost 
during process development.  

Common methods to translate collective equipment costs to the TCI include the Lang factor 
based, detailed factorial based, or module costing methods (Feng & Rangaiah 2011). The 
Lang factor and detailed factorial methods are both factorial-based methods. Lang factor 
methods, first introduced by Lang (Lang, 1947), apply a universal factor to the equipment cost 
to achieve the TCI. Detailed factorial methods were first developed by Hand (1958) and apply 
individual factors specific to the equipment type to determine the TCI. However, as these 
methods have evolved different factors have been proposed and adopted. A detailed review 
of the evolution from these original methods is provided in (van Amsterdam, 2018). 
Contrastingly to the latter two methods, module costing, introduced by Gurthie (Guthrie, 1969), 
uses costing data from vendor quotes and literature. Costs are then scaled using factors 
specific to the material of construction, operating pressure, and temperature (Symister, 2016). 
Brown (2015) compared TCI computation methods using different Lang factors for six biofuel 
production facilities and observed differences up to $320 million. van Amsterdam (2018) 
compared six different equipment cost and TCI models for twelve case studies. In all cases 
significant differences were observed between the estimation methods. Similarly to Feng & 
Rangaiah (2011), greater variability was observed between individual equipment types than 
between overall plant estimates. When comparing the results to the actual plant costs the 
average of the six estimation methods had a lower absolute error compared with the individual 
method’s absolute errors. van Amsterdam (2018) suggested that an analysis considering 
multiple factorial based methods to derive a range of total estimates would improve overall 
estimation accuracy. Using this approach, if estimates were found to vary significantly the 
practitioner is made aware that greater uncertainty exists around the estimated cost for the 
investigated project.  
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After computing the TCI, another cost factor impacting the investment analysis of a technology 
are fixed operating costs. Models to compute these costs are functions of both the TCI and 
estimated operating labour. Similarly to equipment costs and TCI, there are numerous 
reported factors to compute these costs. However, there is a lack of comparative studies 
evaluating these costs and their impact on techno-economic outcomes. 

Cost engineering’s progress is currently hampered by limited industry cost data (van 
Amsterdam, 2018). Costing correlations are largely based on historic data, for example the 
cost correlations by Seider et al. (2017) are based on the data in 13 publications between 
1949 and 2003 (Seider et al., 2017). In contrast, costing software programs can periodically 
update methods based on new data and vendor quotes. However, the data and methods 
behind these programs are proprietary, resulting in limited information available on the 
estimation models' underlying methods. Increased transparency in capital costs from 
commercial processes would improve costing methods specific to bioprocesses. The process 
block method for costing early-stage biorefineries developed by Tsagkari et al. (2020) is an 
example of exploiting recent costing data. The approach uses module costing where different 
unit operations or processing sections i.e. saccharification, anaerobic fermentation, distillation, 
and dehydration are costed based on a reference capacity price and updated using an 
appropriate exponent. To determine the reference costs and exponents, data was collected 
from two databases consisting of plant costs from press releases for 331 commercial scale 
biorefineries and 39 Information Handling Services (IHS) Markit reports. The data from the 
IHS reports was used as the reference capacities and costs for the analysis and the exponents 
were determined by minimising the error between the summed total cost of the process blocks 
and the reported total capital investment from the 331 collected commercial plant costs. The 
method was evaluated on a biodiesel plant and demonstrated on a pioneering 
Polyhydroxybuturate (PHB) plant (Tsagkari et al., 2020). However, a limitation of this method 
is that costs reported in press-releases may be unrepresentative of the final plant cost and/or 
different companies may include different cost representations in their publicly released costs. 
Another recent costing development for bioprocesses was study undertaken by Humbird et al. 
(2017), the study aimed to reduce uncertainty surrounding bioreactor capital cost estimates in 
TEAs (Humbird et al., 2017). An in-depth analysis of aeration costs in aerobic stirred-tank and 
bubble column bioreactors was undertaken in Aspen Plus. Simulations were developed based 
on oxygen mass transfer correlations as a function of aeration rate and power input and their 
cost estimates developed in ACCE were validated against vendor quotations.  

Equipment cost and cost model methods exhibit considerable variability, whilst some work has 
been undertaken to compare methods and develop correlations specifically for bioprocesses 
there is a lacking consensus on preferred models for project evaluation. This highlights the 
importance of detailing methods, assumptions, and factors in TEAs to enable comparisons. 
NREL’s benchmark studies adopt this approach, and their transparency is partially responsible 
for the success of their analyses (Scown et al., 2021). The reviewed literature comparing 
costing models consists of two master’s theses (van Amsterdam, 2018; Symister, 2016), one 
magazine article from The Chemical Engineer (Feng & Rangaiah, 2011), and one journal 
article on TEAs (Brown, 2015). This suggests that despite the observed variability in cost 
models, the impact of model selection and assumptions is seldom discussed or investigated 
in TEA literature. 

2.1.3 Product Prices 
The price used for the product being considered in a TEA significantly influences the economic 
outcome. Given that analyses are usually considered over a 20-25 year project life to calculate 
the project’s Net Present Value (NPV), product prices are subject to fluctuations, leading to 
considerable uncertainty. Long-term prices to input into these analyses are selected by the 
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TEA practitioner. Unfortunately, finding references to representative prices can be 
challenging, and there is often uncertainty regarding the reliability of the source, geographic 
location, and time frame for which the price is representative (Hubbard, 2018). Moreover, while 
the Minimum Selling Price (MSP) calculation avoids inputting prices into TEAs, contextualising 
the obtained MSP necessitates representative market prices. Various approaches used to 
select prices in existing TEAs include averaging prices from Alibaba (Moncada et al., 2018), 
using individual market values (Bastos et al., 2022), averaging prices across the previous year 
(Okoro et al., 2020), and referencing industry reports (de Medeiros et al., 2017). 

Although the non-stationary nature and uncertainty surrounding commodity prices is not 
commonly applied in TEA literature, several studies have considered it. For instance, Manca 
et al. (2011) proposed forecasting the price of a reference component (crude oil) and 
correlating the future costs of other commodities to this using an Autoregressive Distributed 
Lag model (Manca et al., 2011). They used a stochastic Markovian process to produce a price 
projection for the reference component and employed Monte Carlo methods to generate a 
distribution of prices (Manca, 2012). This was developed into a systematic framework to inform 
optimal plant designs under market uncertainty and has been applied to case studies such as 
styrene monomer manufacturing (Barzaghi et al., 2016), the cumene process (Sepiacci et al., 
2017), and a CO2 separation process (Gutierrez et al., 2019). However, a drawback of 
stochastic modelling is the inability to exploit deterministic trends within the historic time series. 

Another approach is the use of traditional stochastic/econometric modelling. In assessing 
bioethanol production, prices for feedstock, bioethanol, soya oilcake, electricity, and petroleum 
were stochastically modelled using a multi-variate empirical distribution based on 1999-2008 
historical fluctuations (Amigun et al., 2011). Yao et al. (2017) conducted statistical tests for 
each commodity, determining the best method to represent historical price trends and 
incorporated these models into their stochastic TEAs (Yao et al., 2017). Geometric Brownian 
motion and a PERT distribution were used to represent jet fuel price growth (McGarvey & 
Tyner, 2018). Ioannou et al. (2018) compared different econometric models to project 
electricity prices in an economic assessment of offshore wind energy production (Ioannou et 
al., 2018). Nguyen and Tyner (2021) employed @Risk software to project jet fuel and carinata 
oil prices. The two series were found to be non-stationary and follow random walk. However, 
a trend was observed between historic soybean oil and jet fuel. As such, the projected 
distribution was produced to ensure that each commodity’s historic probability distribution 
function and the trend between the commodities was maintained. Puig-Gamero et al. (2021) 
considered damped trend, local linear trend, and local linear trend with cycle. A gaussian 
distribution of the projected pricing errors based on the historic data was produced and used 
in the Monte Carlo simulation. These studies all utilise different approaches, indicating that no 
single econometric method is applicable to all commodities, necessitating statistical tests to 
prepare and analyse the data. Additionally, these methods often assume near-linear time 
series and may not capture complex long-running features.  

Some studies have made use of the Energy Information Administration's (EIA) price 
projections to account for future prices. Zhang et al. (2013) used the EIA’s petroleum 
prediction and correlated other commodity prices to it in their TEA (Zhang et al., 2013). The 
disadvantage of this approach is the EIA’s projections are point forecasts, neglecting 
probabilistic uncertainty (Kaack et al., 2017) required for use in an uncertainty analysis. 
However, Brown and Wright (2015) used the EIA’s projections to aid their simulated future 
commodity prices (Brown & Wright, 2015). The prices were projected using a random walk 
with drift. The random changes were based on the probability density function of historic prices 
and the drift ensured the mean of monthly price distributions matched the EIAs 2013-2032 
projections.  



Chapter 2 

17 
 

Notably, whilst future price considerations are not commonplace in TEA literature, those 
studies that have considered it have all adopted different approaches. A standard method to 
account for price and distribution variability across a plant’s life would facilitate its widespread 
consideration in future TEA studies. However, of the outlined methods only purely stochastic 
processes are applicable to any time series. A major disadvantage of this is its inability to 
exploit any underlying trends within the commodity’s price data. Despite not being currently 
adopted in TEAs ML methods are widely applied in price forecasting fields to predict future 
commodity and energy prices (Wu et al., 2019). These methods are able to accommodate 
non-linear, non-stationary, and complex sequences, making them applicable to any time 
series. In addition, contrastingly to stochastic methods, ML can exploit the underlying trends 
within a time series. ML therefore offers the opportunity to standardise price selection 
procedures in TEAs.  

2.1.4 Technical performance metrics 
Technical performance metrics are a key comparative indicator between technologies. 
Common metrics include energy and carbon efficiency. Energy efficiency is a measure of the 
amount of energy in the feedstock that ends up in the final product and is often reported in 
biofuel TEAs (Dimitriou et al., 2018). Similarly, carbon efficiency is the measure of carbon in 
the initial feedstock that is retained in the final product (Pandey et al. 2022). Reporting these 
metrics provides key process information that relates to resource usage and enables 
technology comparisons that aren’t solely based on economic metrics.  

2.1.5 Economic metrics 
Various economic metrics can be employed to quantify a process’ profitability. The payback 
period (equation 2.1) and return on investment (equation 2.2) are more commonly computed 
in industrial settings where private companies are evaluating potential investments (Scown et 
al., 2021). 

MSP, the most commonly reported metric in TEAs, is calculated based on the price required 
to obtain an NPV (equation 2.4) of zero at the end of plant life, using a specified discount rate. 
For biorefinery processes, the discount rate is often set as 10% to remain consistent with the 
Biofuels Techno-Economic Analyses database (Kinchin, 2020). However, for certain 
technologies governing bodies publish specific discount rates, for example anaerobic 
digestion (8.3%) and renewable electricity from biomass (7.9%) (BEIS, 2020). MSP has been 
argued to be a more interpretable metric than NPV, particularly when the NPV is negative, as 
is often the case with emerging technologies (Zhao et al., 2016). For example, NREL’s TEAs 
present MSP results along with a breakdown of the corresponding cost contributors. However, 
MSP is highly sensitive to co-product prices and yields, which can lead to potentially 
misleading results (Pereira et al., 2017). Moreover, assessing the profitability of the process 
according to the reader's personal views on future fossil fuel prices introduces subjective 
judgment, impacting the perceived market competitiveness (Zhao et al., 2016). 

Similar to MSP, levelised costs are a metric representing the average production cost of a 
product over the lifetime of the plant. A predefined discount rate is used to discount both the 
annual costs and production volume (equation 2.1). Levelised costs are commonly reported 
in the context of energy projects e.g., hydrogen production and renewable electricity 
production.  

𝐿𝑒𝑣𝑒𝑙𝑖𝑠𝑒𝑑 𝑐𝑜𝑠𝑡 =

ೌೌೠ ೞ ($)

(భశೞೠ ೝೌ)ೌೝೞ

ೌೠೌ ೝೠ (ೖ ೝ ೖೢ)

(భశೞೠ ೝೌ)ೌೝೞ

       (2.1) 

𝑃𝑎𝑦𝑏𝑎𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑦𝑟) =
் ௨ ௩௦௧௧ ($)

௨ ௩ ௧ ௦ ௪ ($/௬)
     (2.2) 
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𝑅𝑒𝑡𝑢𝑟𝑛 𝑜𝑛 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 (%) =
௨ ௧ ௧ ($)

்௧  ௩௦௧௧ ($)
     (2.3) 

𝑁𝑒𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 =
௧ ௦ ௪ ($)

(ଵାௗ௦௨௧ ௧)ೌೝೞ       (2.4) 

NPV rigorously assesses process profitability by considering the time value of money and 
requires a selling price to be input for all products, thereby eliminating co-product bias or 
subjective interpretation of the economic viability. One disadvantage of this approach is that it 
is heavily influenced by the scale of the initial investment. Therefore, when comparing 
technologies with different capital requirements, the NPV can vary significantly. 

Evidently, the computation of a single metric when analysing a process can be misleading. 
Calculating multiple metrics is recommended for a comprehensive analysis. The study into 
polybutylene succinate from food waste by Naveenkumar & Jeehoon (2023) is an example of 
the utility of computing multiple metrics. Naveenkumar & Jeehoon (2023) reported the MSP: 
$ 3.5/kg, NPV: $ 58.9 Million, return on investment: 15.79 %, payback period: 6.33 years, and 
Internal Rate of Return (IRR): 16.48 % (Naveenkumar & Jeehoon, 2023). Presenting these 
metrics together offers greater insight into the process's economic feasibility than individual 
metrics. For instance, a standalone MSP of $3.5/kg lacks interpretational context without 
market price information. However, combining this with an NPV of $58.9 million, evidences 
the profit-generating potential. Additionally, a payback period of 6.33 years indicates early 
profitability in the plant's lifespan. Furthermore, an internal rate of return of 16.48% 
demonstrates that the process exceeds the commonly adopted 10% discount rate, suggesting 
that it generates sufficient income to attract investment. 

2.1.6 Sensitivity, scenario, and uncertainty analyses 
The number of assumptions required to generate a process model, cost the proposed plant, 
and undertake an investment analysis leads to inherent uncertainty around TEA outcomes. 
To account for this, single-point sensitivity, scenario, and global uncertainty analyses are 
generally undertaken. These analyses highlight the most influential variables and frame the 
TEA within a band of uncertainty based on initial assumptions and calculations. Figure 2.3 
illustrates the differences between these analyses considering NPV as the objective function. 
During a sensitivity analysis, parameters are independently varied between two bounds to 
show the individual impact of each variable on the objective function. Scenario analysis 
involves the use of a combination of variables at once. These scenarios often represent either 
a pessimistic, base, and optimistic cases for a technology, or the current state of technology 
and different outlooks into the future. Uncertainty analyses (or Monte Carlo simulations) vary 
the chosen parameters simultaneously within a defined probability distribution. Uncertainty 
analyses are more extensive, providing a probabilistic distribution of the chosen objective 
function (Scown et al., 2021), commonly NPV or MSP.  
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Figure 2.3: Difference between sensitivity, scenario, and uncertainty analyses. NPV 
is used as the objective function for illustrative purposes. 

Single point sensitivity analyses are typically employed in NREL reports. In the Humbird et al. 
(2011) report for lignocellulosic ethanol, technical parameters and capital costs were varied 
within defined ranges to determine their impact on the MSP. Parameter ranges were based 
on anticipated deviations from pilot-scale demonstration runs, with 2012 performance targets 
as baselines. In TEA literature ranges for sensitivity analyses are often uniformly applied to 
parameters. For example, in the study into 1,3-butadiene and ε-caprolactam production from 
C6 sugars an arbitrary ±50% variation was used for the feedstock, utility, product prices and 
capital investment cost (Moncada et al., 2018). The base values for each parameter were 
taken from academic literature, textbooks, and price indices. A similar approach was taken in 
the TEA for combined oil and power production from biomass (Khan et al., 2023). The majority 
of cost and pricing parameters were varied ±30% with the exception of operating hours and 
capital costs which were varied ±10% and ±50%, respectively. Nonetheless, the uniform 
application of parameter ranges might yield unrepresentative results, especially when positive 
and negative deviations are not equally realistic, as demonstrated by capital cost overruns 
(Brown, 2015). 

A scenario analysis is similar to a sensitivity analysis in that it is deterministic. However, unlike 
a sensitivity analysis a set of parameters are changed simultaneously to represent a defined 
case. This analysis can be used to demonstrate the future potential of a technology based on 
achieving certain targets. For example, Fei et al. (2020) included a scenario analysis in their 
TEA for lactic acid production from natural gas (Fei et al., 2020). They considered four cases, 
ranging from the current technology state to long-term scenarios with ideal targets. The MSP 
ranged from $24.39 to 2.17/kg, showing both potential and necessary technological 
advancements for commercial viability. 

Uncertainty analyses (or Monte Carlo simulations) stochastically vary all considered 
parameters within defined ranges and distributions, resulting in a probability distribution of the 
objective function (commonly MSP or NPV). These analyses allow the uncertainty surrounding 
the TEA outcome to be quantified. For example, in the TEA by Campbell et al., (2018) into 
biofuel and biochar production from forest biomass the case presenting the highest likelihood 
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of profitability achieved a mean NPV of $45.1 million with 90% of outcomes between 
−$34ௗmillion and $139ௗmillion (Campbell et al., 2018). The case demonstrated a 20% likelihood 
of achieving a negative NPV. By framing the mean NPV with the 90% probability band the 
uncertainty and risk surrounding the nominal result is quantified. A challenge with these 
analyses is obtaining probability distributions for input parameters. Commonly, triangular and 
normal distributions are used in TEAs (Barahmand & Eikeland, 2022), requiring median, lower, 
and upper bounds. As discussed in Section 2.1.3 Product prices, some studies have 
undertaken statistical tests to obtain a probability distribution that represents the deviations 
observed in historic commodity pricing data (Amigun et al., 2011; McGarvey & Tyner, 2018; 
Yao et al., 2017). However, in the absence of estimated and actual cost data for commercial 
projects this cannot be quantified for other parameters such as fixed capital and operating 
costs.  

Combined sensitivity and uncertainty analyses are also often undertaken in TEAs, examples 
of these are both the assessment of different biomass to liquid routes by Dimitriou et al. (2018) 
and the cyanobacteria biorefinery assessment by Beattie et al. (2021). A sensitivity and 
uncertainty analysis was undertaken by Dimitriou et al. (2018). However, when comparing the 
analysis outcomes, it was found that the deterministic base case result was lower than the 
median value determined by the sensitivity analysis (Dimitriou et al., 2018). Beattie et al. 
(2021) firstly undertook a sensitivity analysis to determine the most influential parameters for 
use in the Monte Carlo uncertainty analysis (Beattie et al., 2021). Similarly to Dimitriou et al. 
(2018), they found a large discrepancy between the lower, median, and upper Monte Carlo 
results compared with the conservative, base, and optimistic scenario (determined from the 
sensitivity analysis). This suggests that deterministic scenario and sensitivity analysis can 
often lead to over- and under-estimation of the range of TEA outcomes. An alternative to 
undertaking these analyses separately is to extract the relative importance of each variable 
from the uncertainty analysis results. This has been undertaken in several studies (McGarvey 
& Tyner, 2018; Campbell et al., 2018) and removes the unrepresentative range potentially 
presented by a single-point sensitivity analysis.  

Some studies have considered technical parameters in addition to economic parameters in 
sensitivity and uncertainty analyses (Humbird et al., 2011; Beattie et al., 2021). However, 
flexible process models are required to compute the uncertainty associated with technical 
parameters such as feedstock variability, reactor performance, and process conditions. 
Several stochastic TEAs have been developed using rigorous simulation software. For 
example, Salman et al. (2020) undertook a TEA on a waste to biofuel facility which considered 
various feedstock compositions, pressure and temperature deviations, and economic 
parameters (Salman et al. 2020). The process model was created in Aspen Plus and 
deviations in feedstock composition and processing conditions were updated using the Aspen 
Simulation Workbook in Excel. The mass and energy balance results were then passed from 
the Aspen Simulation Workbook to MATLAB where the economic and uncertainty outcomes 
were computed. Similarly, Baral et al. (2019) undertook a stochastic TEA for bio-jet fuel 
production using SuperPro Designer (Baral et al. 2019). Feedstock, technical, and economic 
parameters were varied by connecting the simulation to Excel. The TEA was undertaken in 
Excel and the outcomes from the 5,000 simulations using different parameter combinations 
were used to generate the Monte Carlo distribution of the MSP. However, as Monte Carlo 
simulations require thousands of simulations to run these analyses are computationally 
expensive. ML surrogate models or ROMs representing rigorous simulations can be used to 
reduce the computational expense. Li et al. (2021) developed a general framework for techno-
economic uncertainty analysis based on the creation of a ROM in Excel to represent the 
rigorous process model in Aspen Plus. The framework was demonstrated for a Hydrothermal 
Liquefaction (HTL) facility producing biocrude (Li et al., 2021). The analysis considered the 
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impact of uncertainties in feedstock composition, HTL yield, aqueous-phase product 
treatment, utility consumption, and equipment sizing and costing on MSP. Use of the ROM to 
represent the process simulation reduced the computational time for the uncertainty analysis 
by 2,000 times, emphasising the potential benefits of implementing reduced models.  

2.1.7 Lightweight assessment tools 
Early-stage technology analyses promote economically driven research and development. 
However, undertaking TEAs is time consuming and requires engineering knowledge and 
economic modelling expertise (Huntington et al., 2023). This hinders technology assessment 
by non-experts i.e. experimentalists and industrialists. As such, there is a trend in developing 
simplified methods and tools to assess bioprocesses. 

Specifically for bioreactors, Dheskali et al. (2020) developed an equation-based model to 
estimate the capital cost and utility usage and costs of a typical biotransformation technology 
(Dheskali et al., 2020). Response surface methodology was used to determine the relationship 
between utility consumption and fixed capital investment. Experimentally obtained data for the 
fermentation time, final broth concentration, and the aeration rate were used to build the 
models. The proposed model consists of three equations requiring fermentation time, final 
broth concentration, and the aeration rate as inputs, outputting the estimated capital and utility 
costs. The model’s ease of use allows for the simple comparison of technologies and to 
quantify cost reductions attainable through process improvements facilitating targeted 
research and development. 

With regards to publicly available models, Viswanathan et al. (2020) developed ESTEA2 
(Early State Technoeconomic Analysis, version 2) which is a spreadsheet-based platform that 
computes a process’s MSP based on minimal user inputs. The model includes both 
fermentation and catalytic processes, as well as downstream processing. During tool 
development the model was validated against literature estimates, SuperPro Designer, and 
other third-party process models for ethanol and sorbic acid production (Viswanathan et al., 
2020). BioSTEAM is a python-based platform developed for early-stage technology 
comparison (Cortes-Peña et al., 2020). The tool incorporates uncertainty to demonstrate the 
relative importance of different parameters based on their impact on the process’s MSP. The 
tool was validated against SuperPro Designer results for biodiesel and ethanol production 
from lipid cane. Further work is being undertaken to add an LCA component to the platform 
and create a web-based interface to allow wider adoption of the tool. The Bioprocess TEA 
calculator is an online calculator for early-stage TEAs specifically tailored to aerobic 
bioprocesses, with plans to expand its application (Lynch, 2021). In contrast to other tools its 
primary purpose is to translate financial outcomes to technology targets. The tool identifies 
the most important variables limiting commercial success of a technology and proposes 
targets for these. The tools utility is demonstrated by reviewing the commercial targets for 
aerobic production of diethyl malonate. 

While lightweight TEA models offer quick estimations, comparisons, and suggest research 
targets, their usability may compromise accuracy (Scown et al., 2021). Furthermore, they lack 
flexibility to implement heat and mass integration, which could improve process economics. 
One approach to overcome this reduced accuracy is the use of ML methods. By mapping 
inputs to outputs ML can be used to represent rigorous process simulations. Huntington et al. 
(2023) demonstrated this with a surrogate model representing a TEA for lignocellulosic 
bioethanol production. Their model, based on SuperPro simulations, was developed using 
10,000 simulations with different operating and cost parameters. The operating parameters 
allowed adjustments to plant throughput, feedstock composition, conversion efficiencies, and 
cost considerations. Their method used the Tree-Based Pipeline Optimisation Tool 
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considering four ensemble regression models, Random Forests (RF), Stacking, Extra Trees, 
and Gradient Boosting. The surrogate model was trained to predict the MSP and mass and 
energy balance outputs. While this approach maintains rigorous economic assessment, it 
lacks the flexibility to be used to evaluate other processes. Furthermore, a significant number 
of simulations are required to produce a surrogate model that can predict over the desired 
parameter ranges. 

2.2 Gas fermentation techno-economic analyses and commercial status 
The following section provides a comprehensive review of the literature on existing TEAs of 
gas fermentation technologies for biofuel and biochemical production considering gaseous 
mixtures of CO, CO2, and H2 as a feedstock. Note that TEA studies solely investigating 
microbial electrosynthesis and photosynthetic bacteria considering the use of 
photobioreactors or open ponds for cultivation are excluded from this review. Table 2.2 
presents the gas fermentation TEA studies included. Greater detail on these studies, their 
purpose, key findings and TEA tools employed is discussed in the following sections. A brief 
summary of the current commercial status of gas fermentation is also included. A generic 
block flow diagram illustrating the major steps involved in gas fermentation is presented in 
Figure 2.4. 

 

Figure 2.4: Gas fermentation block flow diagram. 

To summarise the overall findings, out of the 24 studies analysed, 16 consider ethanol as the 
fermentation product. However, higher value products are likely to have a more favourable 
economic outlook. As suggested by Regis et al. (2023) biofuels can be used as starting points 
for higher-value chemicals, listing butanol and 1,3-butadiene as examples (Regis et al., 2023). 
Notably, two previous studies have explored the catalytic upgrading of ethanol to higher value 
products, one to ethylene (Haro et al., 2013), and the other to distillate range fuels (Tan et al., 
2016). In the studies evaluated, the most commonly computed performance metric is MSP. 
However, the reported MSP’s for the same products vary appreciably between studies (e.g. 
$0.31-$2.52/L for ethanol). This is likely due to variations in cost models, technology 
assumptions, feedstock, and location considerations between studies.  

While only five previous studies consider an LCA in conjunction with the TEA, eight studies 
comment on the technology’s CO2 reduction potential. The United States is the most 
commonly reported plant location, however several studies left this undisclosed. In addition, 
woody biomass and agricultural residues form the majority of the investigated feedstocks, with 
a few studies considering off-gas streams. Aspen Plus was the most commonly adopted 
modelling software. Considering sensitivity analyses, single point analyses was the most 
commonly employed. Most studies have considered solely financial parameters as part of the 
sensitivity analysis with only four studies including technical parameters, likely attributed to 
the complexity in modelling changes associated with technical parameters.
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Table 2.2: Summary of existing techno-economic analyses of gas fermentation 
 

Study Modelling Bacteria Feedstock Product Capacity Location Performance metrics Sensitivity analysis LCA 

(Piccolo & Bezzo, 
2009) 

Aspen plus 
Clostridium 
ljungdahlii 

Woody 
biomass 

Ethanol 
700,000 t/yr of 
dry biomass 

- 

NPV: -€48.9 M 
 Scenario analysis 
 Single point 


IRR: 7.7% 
ROI: 20.2 % 
Using €0.68/L ethanol price 

(Choi et al., 2010) Aspen plus 
Rhodospirillum 
rubrum 

Switchgrass PHA 
12 t/d PHA 
production 

US MSP: $1.65/kg  Single point 

(Haro et al., 2013) Aspen Plus Not specified Not specified Ethylene 
300 to 1000 
ML/year 

- Production cost:  € 0.535-0.563/kg  Plant capacity 

(Khan et al., 2014) Aspen Plus 

Cupriavidus 
necator CO2 from a 

power plant 
Botryococcene 5000 bbl/day - 

Production cost:  $127/bbl-fuel 
 None 

Rhodobacter 
Capsulatus 

Assuming electricity cost <2¢/kWh  

(Roy et al., 2015) Aspen Plus 
Clostridium 
ljungdahlii 

Miscanthus Ethanol 
158–171 t/day 
dry biomass 

Canada Production cost: $ 0.78- 0.9 /L  Single point 

(Levett et al., 
2016) 

Aspen plus Methanotroph Methane PHB 100,000 t/a PHB US MSP: $4.1–$6.8/kg  Single point 

(Christodoulou & 
Velasquez-Orta, 
2016) 

- Clostridium CO and H2O Acetic Acid 
100 t/yr acetic 
acid 

UK Production cost: £ 4.14/kg  None 

(Tan et al., 2016) Aspen plus Clostridia Wood chips 
gasoline, jet and 
diesel 
blendstocks 

2000 t/d dry 
biomasss 

US MFSP: 3.40-5.04 $/GGE  Co-product pricing 

(Benalcázar et al., 
2017) 

Note: production 
costs are 

approximated 
from graphical 

data 

Aspen plus 
Acetogenic 
bacteria 

Pine 

Ethanol, 2,3-
Butanediol, 
Hexanoic acid 

Equivalent 
syngas capacity 
to produce 
240000 m3 y−1 of 
ethanol 

Netherlands 

Production costs: 

 Single point 
 Technical 

parameters 


Ethanol: $ 1.15/kg, 
2,3-Butanediol: $ 1.4/kg 
Hexanoic acid: $ 1.6/kg 

Corn stover 

Production costs: 
Ethanol: $ 1.3/kg 
2,3-Butanediol: $ 1.5/kg  
Hexanoic acid: $ 1.8/kg 

Sugarcane 
bagasse 

Production costs: 
Ethanol: $ 1.25/kg 
2,3-Butanediol: $ 1.5/kg  
Hexanoic acid: $ 1.7/kg 

Eucalyptus 

Production costs: 
Ethanol: $ 1.25/kg 
2,3-Butanediol: $ 1.45/kg  
Hexanoic acid: $ 1.7/kg 

Sugarcane 
bagasse 

Brazil 
Production costs: 
Ethanol: $ 1.05/kg 
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Study Modelling Bacteria Feedstock Product Capacity Location Performance metrics Sensitivity analysis LCA 

2,3-Butanediol: $ 1.25/kg  
Hexanoic acid: $ 1.4/kg 

Eucalyptus 

Production costs: 
Ethanol: $ 1.1/kg 
2,3-Butanediol: $ 1.25/kg  
Hexanoic acid: $ 1.45/kg 

Pine 

US 

Production costs: 
Ethanol: $ 0.9/kg 
2,3-Butanediol: $ 1.1/kg  
Hexanoic acid: $ 1.3/kg 

Corn Stover 

Production costs: 
Ethanol: $ 1.05/kg 
2,3-Butanediol: $ 1.2/kg  
Hexanoic acid: $ 1.35/kg 

(de Medeiros et 
al., 2017) 

Aspen plus 
Clostridium 
ljungdahlii 

Bagasse  Ethanol 
624 t/d dry 
biomass 

Brazil MSP: $ 0.706 /L  Monte Carlo 
simulation 



(Redl et al., 2017) 

Aspen plus 
and 
SuperPro 
Designer 

Moorella 
thermoacetica 

basic oxygen 
furnace gas 

Acetone 30 kt/yr US 
Production cost: $ 389 /t 

 None 
Natural gas Production cost: $ 1724 /t 
Corn stover Production cost: $ 2878 /t 

(Michailos et al., 
2019a) 

Aspen plus 
Acetogenic 
bacteria 

Bagasse Ethanol 
100 t/hr dry 
biomass 

- 
NPV: $ 8.5 M  Single point 

 Monte Carlo 
Simulation 

ROI: 14.5 % 
MSP: $ 0.69 /L 

(Michailos et al., 
2019b) 

Aspen Plus 
Acetogenic 
bacteria 

Woody 
biomass 

Methane 
6.25 t/hr dry 
biomass 

UK MSP:  92.14£/MWh 

 Single point 
 Monte Carlo 

Simulation 
 Plant capacity 

 

 

(Ro et al., 2019) 

Gasification 
-  Proe 
Power 
Systems’  

Acetogenic 
bacteria 

wood 

Ethanol 

50 million 
gallons per year 
(MGY) ethanol 

US 

MSP (50 MGY): $ 2.24-2.36 /gal 

 None 

 

  MSP (1-2 MGY): $ 5.61-5.68 /gal  

wheat straw 

1–2 million 
gallons per year 
(MGY) ethanol 

MSP (50 MGY): $ 2.84-2.96 /gal  

  MSP (1-2 MGY): $ 7.03-7.09 /gal  

wheat straw 
and manure 

  MSP (50 MGY): $ 2.79-2.84 /gal  

  MSP (1-2 MGY): $ 7.31-7.39 /gal  

Oilseed rape 
meal 

  MSP (50 MGY): $ 5-5.13 /gal  

  MSP (1-2 MGY): $ 9.49-9.54 /gal  

corn stover   MSP (50 MGY): $ 2.54-2.63 /gal  
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Study Modelling Bacteria Feedstock Product Capacity Location Performance metrics Sensitivity analysis LCA 

  MSP (1-2 MGY): $ 6.68-6.79 /gal  

(Okoro & Faloye 
2020) 

Aspen plus 
Acetogenic 
bacteria  

Waste plastic Ethanol 1000 kg/h US 
IRR: 22.2 % 

 Single point 
 

MSP: $ 0.42 /kg  

(de Medeiros et 
al., 2020) 

Aspen plus 
Acetogenic 
bacteria 

Syngas Ethanol - Brazil MSP: $ 1.0–1.3 /L 

 Single point  
 Technical 

parameters (as 
part of 
optimisation) 



 



(Huang et al., 
2020) 

Aspen plus 
Acetogenic 
bacteria 

CO2 from corn 
mill ethanol 

Ethanol 
40 M gal/yr corn 
ethanol  

US MSP: $ 2.84 /gal 
 Single point 
 Technical 

parameters 


 



(Huang et al., 
2021) 

- 
Acetogenic 
bacteria 

CO2 

Acetic acid 

200 Million gal/yr 
bioethanol 

US 

Current: $ 0.95/kg 

 Single point 
 Technical 

parameters 


 
Future: $ 0.34 /kg  
Theoretical: $ 0.21/kg  

Methane 
Current: $ 2.22/kg  
Future: $ 1.04/kg  
Theoretical: $ 0.64/kg  

Ethanol 
Current: $ 1.27/kg  
Future: $ 0.64/kg  
Theoretical: $ 0.39/kg  

PHB 
Current: $ 1.36/kg   
Future: $0.64/kg  
Theoretical: $ 0.37/kg  

(Okolie et al., 
2021a) 

Aspen plus 
Acetogenic 
bacteria 

Glycerol Ethanol 
50,000 t/yr 
glycerol 

Canada 

MSP: $ 1.40 /L 

 Single point 

 
MSP (inc. CO2 capture): $ 1.31/L  
MSP (inc. CO2 capture and 
methane upgrading): $0.31/L 

 

(Petersen et al., 
2021) 

Aspen plus 
Acetogenic 
bacteria 

Invasive alien 
plant species 

Ethanol 
37.5 t/hr 

South Africa 
MSP: $ 0.91/L 

 Single point 

 

ferroalloy  off-
gas  

36,131 Nm3/hr MSP: $ 0.61/L  

(Ma et al., 2022) Aspen plus 
Clostridium 
ljungdahlii 

Woody 
biomass 

Ethanol 200,000 ton/yr - Production cost:  €430/t 

 Technical 
parameters (as 
part of 
optimisation) 

  

(Regis et al., 
2023) 

Aspen plus 
Clostridium 
ljungdahlii 

Switchgrass Ethanol 
750,000 t/yr dry 
bimoass 

US 
MSP (current): $ 1.07/L  

 Plant scale 
 

MSP (2050 H2) $ 0.71 /L  

(Giwa et al., 2023) Aspen plus 
Clostridium 
ljundhalii 

Spruce 
woodchips 

Ethanol 
2000 t/day dry 
biomass 

Canada 

IRR (ethanol from biochar and 
syngas): 11.93%  

 Single point 
 Monte Carlo 
 Simulation 

Scale 



 

IRR (ethanol from biochar, 
hydrogen from syngas): 13.01% 
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2.2.1 Comparative studies 
Comparative TEA studies are incredibly important in determining technology advantages, 
disadvantages, and benchmarking research targets for economic processes. It is difficult to 
make comparisons across different studies undertaken by different research groups as data 
assumptions, modelling procedures, and costing models are open to interpretation (Piccolo & 
Bezzo, 2009). Studies comparing gas fermentation to different biochemical and 
thermochemical routes are discussed in the following section.  

2.2.1.1 Biochemical 
The first TEA of gas fermentation compared the production of ethanol from lignocellulosic 
biomass using both enzymatic hydrolysis followed by fermentation, and gasification followed 
by gas fermentation (Piccolo & Bezzo, 2009). The analysis revealed that under the considered 
conditions, neither process was profitable using market prices for ethanol. However, a less 
negative NPV was achieved for the more mature hydrolysis process (-$22.1 million), 
compared to the gas fermentation process (-$48.9 million). High capital costs and energy costs 
to recover the fermentation product were identified as key cost drivers. The authors 
emphasised the need from improvement in mass transfer limitations and strain resistance to 
ethanol, as well as the importance of process systems engineering to enhance technologies 
beyond lab-scale, including modelling, design, and process optimisation. 

Choi et al. (2010) conducted the first TEA investigating Polyhydroxyalkanoate (PHA) 
production via gas fermentation. PHA has similar properties to propylene and can be used as 
a biodegradable plastic (Choi et al., 2010). In their study, the authors compared the gas 
fermentation process to their previous sugar-based fermentation TEA. Hydrogen was 
produced as a co-product from the gas fermentation process and, using a hydrogen selling 
price of $2/kg, the process achieved an MSP of $1.65/kg, much lower than the authors 
previously reported $4 - $6/kg for sugar-based fermentation. However, the low MSP was 
heavily influenced by the hydrogen sales which were produced at a rate of approximately four 
times that of PHA.  

Christodoulou & Velasquez-Orta (2016) compared the production of acetic acid via microbial 
electrosynthesis and anaerobic fermentation. Their study found neither process to be cost 
competitive, yielding production costs of £1.44/kg and £4.14/kg for microbial electrosynthesis 
and anaerobic fermentation, respectively (Christodoulou & Velasquez-Orta, 2016). The higher 
cost of anaerobic fermentation was attributed to the higher costs of the CO feedstock, £ 18.95 
/t (used by anaerobic fermentation) compared with £ 0/t for CO2 (used by microbial 
electrosynthesis). The authors then explored an integrated approach where the CO2 off-gas 
from anaerobic gas fermentation was utilised as a feedstock for microbial electrosynthesis, 
doubling the acetic acid production capacity. This configuration led to a cost-competitive 
process with a production cost of £0.24/kg, compared to the £0.48/kg market price of acetic 
acid. Notably, when scaling the integrated process up from 2 kt/yr to 200 kt/yr capacity the 
authors reported a >7 times increase in production cost. This led to the conclusion that the 
industrialisation of bioprocesses is better suited to small scale high-value chemicals.  

2.2.1.2 Thermochemical 
In addition to comparing alternative biochemical pathways, several studies have compared 
thermochemical pathways, including hybrid bio-chemical pathways where the gas 
fermentation product is upgraded using catalytic technologies. 

Haro et al. (2013) investigated the production of ethylene from various bioethanol sources. 
The bioethanol sources considered were commercial 1st generation ethanol, 2nd generation 
enzymatic hydrolysis ethanol, 2nd generation syngas fermentation ethanol, and 2nd generation 
thermochemically derived ethanol (Haro et al., 2013). Ethanol costs, which accounted for 85% 
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of production costs, were obtained from literature sources, and downstream catalytic 
upgrading was modelled. The study used a significantly lower price for syngas-derived ethanol 
($1/gal, referenced from Coskata) compared to higher values for other technologies (e.g., 
commercial 1st generation Brazilian ethanol priced at $1.93-$2.35/gal). Whilst the results for 
combining syngas fermentation with catalytic upgrading to ethylene looked promising, the 
heavy reliance on the ethanol prices and much higher costs for other ethanol production 
technologies suggest the ethanol price estimate for gas fermentation from Coskata may be 
unrealistic. This study therefore highlights the importance of obtaining accurate feedstock and 
chemical costs when undertaking TEAs.  

A comprehensive TEA comparing routes from syngas to distillate-range fuels was undertaken 
by Tan et al. (2016). Four pathways were compared, including two syngas fermentation 
pathways and two catalytic syngas technologies, with Fischer Tropsch (F-T) technology used 
as a benchmark (Tan et al., 2016). The syngas fermentation was based on an anaerobic 
Clostridia organism. Each pathway was modelled and costed in Aspen Plus considering a 
2,000 dry tn/day biorefinery. One of the syngas fermentation technologies demonstrated 
economic competitiveness with the F-T benchmark, achieving ±5% the Minimum Fuel Selling 
Price (MFSP). The other syngas fermentation technology performed less favourably with a 
41% higher MFSP, attributed to the inefficiency of the different catalytic technologies used for 
upgrading the fermentation product rather than the fermentation itself. Importantly, the capital 
expenditure for the syngas fermentation route ($478.9 MM) was significantly lower than the 
alternative high-pressure mixed alcohol synthesis technology ($735.8 MM), highlighting the 
lower capital of syngas fermentation attributed to the use of lower pressure and temperature 
conditions. Finally, the study highlighted syngas fermentation’s ability to co-produce higher 
value chemicals as a key advantage of the technology. For example, the co-production of 2,3-
butanediol demonstrated a ~37% reduction in the MFSP for both considered syngas 
fermentation routes.  

Okoro & Faloye (2020) compared HTL to gas fermentation from waste plastic. Their analysis 
found the HTL route to be economically favourable, producing an IRR of 51.3 % and 
production cost of $ 0.38/kg, compared to 22.2 % and $ 0.42/kg for syngas fermentation 
(Okoro & Faloye, 2020). The higher cost for fermentation was attributed to the higher capital 
cost due to its larger number of unit operations (gasifier, fermenter, and separation sequence) 
compared to HTL (HTL reactor and decanter).  

2.2.2 Feedstock comparison studies 
In addition to technology comparisons, studies comparing feedstock sceanarios are also 
commonplace. Feedstock costs are a dominating economic factor in bioproduction pathways. 
A key benefit of producing chemicals via gas fermentation is the ability to use low cost 
feedstocks. Despite this, feedstock costs are still a primary contributor to operating costs, and 
the choice of feedstocks vastly impacts the economics. Examples of gas fermentation studies 
comparing feedstocks are discussed below. 

Redl et al. (2017) conducted a TEA study into acetone production, revealing that using basic 
oxygen furnace process gas resulted in the lowest variable costs ($389/t), compared to natural 
gas ($1724/t) and corn stover ($2878/t) (Redl et al., 2017). Similarly, Ro et al. (2019) 
demonstrated that low-value agricultural residues (wheat straw, corn stover, and manure) 
could achieve ethanol MSP’s of $2.24–$2.96/gal, comparable to gasoline prices. 
Contrastingly, higher value feedstocks such as oilseed rape meal led to costs of $5-5.12/gal 
(Ro et al., 2019). In the comparative study for ethanol production in South Africa, Petersen et 
al. (2021) found the use of ferroalloy off-gas ($0.61/L) to be cheaper than the gasification of 
invasive alien plants ($0.91/L). 
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Considering supply chain configurations, Benalcázar et al. (2017) undertook an analysis into 
different options for the production of ethanol, 2,3-butanediol, and hexanoic acid via syngas 
fermentation. The different configurations considered were, Brazil (sugarcane bagasse and 
eucalyptus wood), the USA (forestry residues and corn stover), and the Netherlands (imported 
feedstocks) (Benalcázar et al., 2017). In the Netherlands, where biomass was imported, 
biomass production and supply costs represented the highest contribution to the cost of 
syngas production. Overall, using locally sourced biomass presented better economics than 
relying on imported biomass. These findings highlight the significance of transportation on the 
cost of feedstocks and the economic benefit of processing point source residues. 

2.2.3 Co-product considerations 
As demonstrated by Choi et al. (2010) and Tan et al. (2016), the inclusion of co-products has 
a significant impact on biorefinery economics. This has been further explored in the studies 
by Okolie et al. (2021a) and Giwa et al. (2023).  Okolie et al. (2021) used crude glycerol as a 
feedstock for bioethanol production via Supercritical Water Gasification (SCWG). The study 
explored the capture and utilisation of the bioreactor off-gas for methane production, with a 
water electrolysis unit providing hydrogen to the methanation unit. Through the sale of 
methane and oxygen (produced during water electrolysis) the MSP of ethanol was reduced 
from $1.32/L to $0.31/L (Okolie et al., 2021a). Giwa et al. (2023) explored the production of 
bio-oil, ethanol, and hydrogen from woodchips, finding the highest IRR (13.01%) by selling 
bio-oil, combusting biochar to produce ethanol, and using syngas to produce hydrogen. In 
contrast, using biochar and syngas to produce ethanol achieved an IRR of 11.93 %, whilst the 
sale of bio-oil alone achieved 7%.  

Whilst the inclusion of high value co-products demonstrates potential to vastly improve 
biorefinery economics, their inclusion also presents challenges. Firstly, the inclusion of co-
product pricing in the MSP calcaultion makes the final product price highly sensitive to these 
prices and yields, potentially misleading investors when comapred to fossil fuel-based 
products (Pereira et al., 2017). Secondly, high value co-products often have limited market 
sizes, and their co-production risks market saturation, making them unsustainable as co-
products for commodity chemical and fuel scale facilities (Wiatrowski et al., 2022). When 
including high value co-products, these factors need to be considered in addition to the 
economic viability of a process.  

2.2.4 Hydrogen 
A key benefit of gas fermentation is its ability to utilise low cost feedstocks. However, when 
using industrial off-gas as a feedstock the use of CO, CO2, and H2 containing gases are 
economically favourable to purely CO2 streams due to the inherent energy content of CO and 
H2. The economic viability of utilising CO2 rich streams is therefore heavily dependent on the 
cost of electricity used to activate the inert CO2 (Takors et al., 2018). For example, in the TEA 
by Khan et al. (2014) the aerobic production of botryococcene via both Cupriavidus necator 
and Rhodobacter Capsulatus was investigated. However, the platforms reliance on hydrogen 
via water electrolysis resulted in electricity costs contributing >90% of the fuel costs. An 
electricity price of <$0.02/kwh was required for economic feasibility. An approach to reducing 
electricity costs is the use of curtailed renewable electricity, but it poses challenges associated 
with electricity storage to maximise capital utilisation of the biochemical production facility 
(Prévoteau et al., 2020).  

The TEA study by Huang et al. (2020) considered the use of intermittent electricity to upgrade 
the CO2-rich bioreactor off-gas from a corn mill ethanol facility (Huang et al., 2020). A CO2 
electrolyser and water electrolyser for hydrogen generation were required to produce syngas 
for the gas fermenter. Upgrading the off-gas led to an increase in carbon efficiency from 46% 
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to 68%. However, the additional capital (84-91% increase) and operating costs (330% 
increase in electricity use) led to an increase in MSP from $1.78/gal to $2.84/gal. Notably, the 
use of intermittent electricity (40% capacity at $0.02/kwh) reduced the MSP by $0.36/gal. 
However, this was still higher than the base case without CO2 upgrading.  

The study by Regis et al. (2023) also demonstrated sensitivity to hydrogen pricing. They 
investigated supplementing the syngas produced from switchgrass gasification with hydrogen 
for ethanol production, leading to a 23% increase in carbon yield (Regis et al., 2023). A $1.07/L 
minimum selling price was achieved using a green hydrogen price of $6/kg. However, using 
the projected hydrogen price for 2050 ($1.50/kg) reduced the MSP to $0.77/L, demonstrating 
a 30% decrease and highlighting the strong influence of hydrogen pricing and the importance 
in including pricing ranges when uncertainty exists around future prices.  

2.2.5 Energy considerations  
Efficient energy use significantly impacts the economics and emissions of a process. 
Benalcázar et al. (2017) found that recovering the heat generated during gasification for 
internal steam generation reduced both the syngas production costs by 22 to 29% and the 
environmental impact by 19-31 % Global Warming Potential (Benalcázar et al., 2017). The 
choice of fuel sources is also an important consideration. In the different product scenarios 
considered by Giwa et al. (2023) the use of both biomass and natural gas were explored as 
an energy source. In all scenarios a lower operating cost was found for the use of natural gas 
owing to its lower price and higher heating value than biomass. However, the absence of an 
LCA in the analysis prevented any discussion around emissions trade-offs by using different 
energy sources. 

The importance of energy efficiency and integration has resulted in a few TEA studies making 
it a major consideration in their work. In the study by de Medeiros et al. (2017) an energetically 
self-sufficient plant was investigated for the production of hydrous ethanol from the gasification 
and subsequent gas fermentation of switchgrass. The study diverted syngas to energy and 
electricity generation and employed multiple-effect distillation to reduce the overall energy 
requirement. A 30% carbon conversion efficiency and MSP of $2.66/gal was achieved. The 
benefit of an energetically self-sufficient platform is the absence of additional fuel imports as 
either biomass or natural gas. However, this may not be the most cost-effective configuration, 
as it necessitates the diversion of syngas from chemical production. Petersen et al. (2021) 
addressed this trade-off in their comparative study for ethanol production. They considered 
two energetic scenarios: 1) energetic self-sufficiency, where the feedstock was used to satisfy 
the thermal and electrical demand of the plant, and 2) a maximum ethanol case, where the 
feedstock was diverted solely to ethanol production and additional renewable electricity was 
purchased (Petersen et al., 2021). The authors found that importing electricity led to the lowest 
MSPs. This was attributed to the 42% average reduction in ethanol yield when diverting 
syngas to electricity generation which resulted in a 42% and 73% increase in MSP for the off-
gas fermentation and syngas fermentation cases, respectively. While this comparison 
highlights the compromise in achieving an energetically self-sufficient platform, the lack of 
accompanying LCA neglected a discussion on the trade-off between economics and 
emissions. 

2.2.6 Optimisation 
Three studies have incorporated optimisation in their TEA of gas fermentation (Michailos et 
al., 2019a; de Medeiros et al., 2020; Ma et al., 2022). These studies all considered multi-
objective optimisation of both economics and energy, demonstrating the trade-offs between 
both parameters.  
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The multi-objective optimisation problem investigated by Michailos et al. (2019a) considered 
two decision variables, CO and H2 conversion to ethanol. The multi-objective function aimed 
to reduce the Total Annualised Cost (TAC) whilst increasing exergy efficiency (ratio of energy 
input into the process compared to the final ethanol product) (Michailos et al., 2019a). Using 
a genetic algorithm in MATLAB and Component Object Model technology to update the Aspen 
process model, a linear relationship was observed between exergy efficiency and TAC. 
However, a maximum exergy efficiency of 44-46% was reached, at which point the TAC 
increased but exergy plateaued. Two optimal solutions were determined, the first achieved an 
efficiency of 44.95 %, NPV of $44.37 M, and emissions of 14.1 gCO2MJ−1, and the second 
achieved an efficiency of 45.70 %, NPV of $44.94 M, and emissions of 14.9 gCO2MJ−1. The 
difference in these two solutions demonstrates a 1.3% reduction in NPV and a 5.4% reduction 
in emissions. This highlights the importance of multiple considerations during process 
optimisation and the balance between economics and emissions. However, as the emissions 
were not included in the multi-objective optimisation function, the optimisation procedure led 
to an increase in process emissions compared to the base case which achieved emissions of 
11.5 gCO2MJ−1. 

In the work by de Medeiros et al. (2020) for the optimisation of anhydrous ethanol production 
ANN surrogate models were developed for both the bubble column bioreactor and distillation 
columns. The kinetic bioreactor model and distillation sequence in Aspen Plus are both 
computationally expensive to optimise (de Medeiros et al., 2020). As such, reducing these 
models to ANN surrogates allows for the optimisation of decision variables that directly impact 
the mass and energy balance. Two multi-objective optimisation problems were defined, firstly 
the bioreactor was optimised for maximum ethanol production and minimum capital cost and 
secondly, the whole process was optimised by minimising capital cost and MSP while 
maximising thermodynamic efficiency. The analysis demonstrated smaller optimum decision 
variable ranges when optimising the whole process compared to the bioreactor in isolation. 
This suggests that the bioreactor productivity is not necessarily tied to the economic and 
thermodynamic efficiency of the overall process. This emphasises the importance in 
considering entire processes during technology assessment and determining performance 
targets for continued research and development efforts.  

Lastly, Ma et al. (2022) optimised the production of ethanol from wood chips using a 
gasification-solid oxide fuel cell system. The solid oxide fuel cell was used to generate steam 
and power for the process, increasing energy efficiency (Ma et al., 2022). Parametric analysis 
was first undertaken to determine the operating conditions of the gasifier and distillation 
sequence. The multi-objective optimisation was used to determine the optimum amount of 
syngas entering the solid oxide fuel cell system considering the energy efficiency, TAC, and 
total product price as the objective function. However, as demonstrated by de Medeiros et al. 
(2020), the inclusion of the entire process in the optimisation function has the potential to yield 
different optimal economic results.  

Notably, none of these existing studies included the process emissions as part of the objective 
function. In addition, only Michailos et al. (2019a) computed the associated emissions and 
discussed the trade-off in economic, energy, and emissions. This demonstrates a key 
limitation of the currently undertaken multi-objective optimisation studies for gas fermentation. 

2.2.7 Policy 
Two of the existing gas fermentation TEAs have incorporated policy implications into their 
analyses. Michailos et al. (2019b) undertook a rigorous TEA on methane production via 
syngas fermentation using Aspen Plus. Two cases were considered, one including Carbon 
Capture and Storage (CCS) and one without (Michailos et al., 2019b). The analysis included 
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the UK’s Renewable Heat Incentive policy scheme, considering a subsidy of £62/MWh. 
Including this policy, the case without CCS was able to achieve a positive economic return, 
producing a methane price lower than fossil natural gas. However, despite not being 
economically feasible the case considering CCS demonstrated a sequestration potential of 
2.88 tCO2/h. To break even, a carbon credit of £98-142/tCO2 was required. The authors 
highlighted a hurdle in current CCS policy as the absence of a price for biomass-based CO2 
storage. The inclusion of policy in this TEA therefore evidenced pitfalls in currently available 
policy frameworks, helping to inform future decisions by policymakers. 

In the economic study converting CO2 to fuels via various pathways, Huang et al. (2021) also 
included an analysis to help inform policy. The study considered direct (low-temperature 
electrolysis, high-temperature electrolysis, and microbial electrosynthesis) and indirect 
(electrolytic hydrogen through biological conversion and thermochemical conversion) 
pathways to chemicals with regard to their current, near term, and theoretical potential (Huang 
et al., 2021). Only gas fermentation for PHB production was found to meet market prices under 
the current state of technology. As an additional analysis, the impact of CO2 pricing was 
included to calculate CO2 credits necessary to achieve market prices for the other considered 
products. For the gas fermentation routes (biochemical conversion), CO2 credits of $470/t, 
$190/t, and $735/t were required for ethanol, acetic acid, and methane, respectively. These 
costs provide policymakers with benchmarking information on the cost-competitiveness of 
current technologies and their potential for carbon sequestration. 

2.2.8 Life cycle assessment  
The simultaneous conduction of TEAs and LCAs aids in understanding the trade-off between 
a process's economic and environmental performance (Mahmud et al., 2021). In addition, a 
rigorous TEA requires a mass and energy balance which provides the process information 
required for an LCA to be undertaken. Despite this, the simultaneous conduction of these 
studies is not ubiquitous. Furthermore, studies often comment on the evaluated technology’s 
potential for CO2 reduction yet don’t conduct an LCA to quantify this, e.g, Haro et al. (2013); 
Christodoulou et al. (2016); de Medeiros et al. (2020); Huang et al. (2020); Okolie et al. 
(2021a); Huang et al. (2021); Petersen et al. (2021); Regis et al. (2023). The studies that 
included an LCA as part of their TEA are discussed below.  

In the study into ethanol production from miscanthus, Roy et al. (2015) found an economic 
and emission benefit in using untreated feedstock. However, the use of chemical looping 
gasification demonstrated a reduction in emissions, but the increased cost of gasification led 
to higher production costs. This simultaneous computation of both metrics allowed for the 
identification of mutually beneficial process decisions and identification and quantification of 
the compromise between these decisions.  

Tan et al. (2016) used sustainability metrics as an additional performance parameter in their 
comparative technology study to distillate range fuels. Importantly, one of the most promising 
routes (non-gas fermentation) from an economic perspective demonstrated higher 
Greenhouse Gas (GHG) emissions than the F-T benchmark used for comparison. This was 
attributed to the import of natural gas within the process, absent in the comparative 
technologies.  

Benalcázar et al. (2017) included GHG emissions in their supply chain configuration study. 
Among the considered feedstocks, corn stover demonstrated the highest emissions for syngas 
production, and the Netherlands had the highest emissions among the evaluated locations. 
(Benalcázar et al., 2017). This was attributed to the international transport of biomass required 
for the Netherlands location. Comparing their results with other studies, they found that using 
lignocellulosic materials such as wood and maize straw could achieve up to a 45% reduction 



Chapter 2 

32 
 

in emissions compared to first-generation materials like wheat and sugarcane. This potential 
reduction demonstrates the benefit of gas fermentation over other biochemical production 
pathways that cannot efficiently utilise lignocellulosic biomass sources. 

In both Michailos et al. (2019a & b) an LCA was conducted in conjunction with the TEA. In the 
multi-objective optimisation study, a trade-off between emissions and economics was found 
between the two pareto optimal parameters, demonstrating that a 1.3% reduction in NPV led 
to a 5.4% reduction in emissions, discussed in section 2.2.6 Optimisation (Michailos et al., 
2019a). In their second study, investigating the production of bio-methane with and without 
CCS, an LCA was used to demonstrate the environmental benefit of CCS in contrast to the 
economic disbenefit (Michailos et al., 2019b). However, as discussed in section 2.2.7 Policy, 
this study demonstrates an additional benefit of calculating GHG emissions by also quantifying 
the impact of carbon pricing initiatives on the economic outcome. 

2.2.9 Bacteria 
Micro-organisms can grow either anaerobically or aerobically. Anaerobic bacteria grow in the 
absence of oxygen. Anaerobic acetogenic bacteria are the most commonly studied bacteria 
for gas fermentation and their use is industrialised for ethanol production (Fackler et al., 2021). 
Contrastingly to anaerobic gas fermentation, aerobic gas fermentation is still in its infancy. 
This is partially attributed to aerobic bacteria being less well characterised and having limited 
molecular toolboxes (Takors et al., 2018). Also, from a processing perspective, the handling 
of hydrogen in the presence of oxygen requires extensive safety precautions (Takors et al., 
2018). An additional challenge is the significant amount of heat produced owing to the loss of 
H2 as water during respiration (Emerson & Stephanopoulos, 2019). This requires sufficient 
cooling capacity to be installed to control the heat released, coming at a capital and operating 
expense. However, aerobic bacteria, e.g. Cupriavidus have higher Adenosine triphosphate 
(ATP) availability than anaerobes meaning they can target more ATP-intensive products (e.g. 
butanol and PHB) in comparison to simpler products such as ethanol (Köpke & Simpson, 
2020). More ATP-intensive products typically command higher market prices, potentially 
leading to economically favourable processes. 

The majority of the reviewed gas fermentation TEAs consider anaerobic acetogens as the 
microbial cell factory. Only three of the reviewed studies considered aerobic bacteria. Firstly, 
Choi et al. (2010) considered the use of Rhodospirillum rubrum. However, anaerobic 
conditions were considered within the study. Khan et al. (2014) compared Cupriavidus necator 
and Rhodobacter Capsulatus for botryococcene production, discussed section 2.2.24 
Hydrogen. Finally, Levett et al. (2016) considered a mixed methanotrophic culture for PHB 
production. Importantly, whilst Rhodobacter Capsulatus and Rhodospirillum rubrum are both 
photosynthetic, neither study employed a photobioreactor or open pond cultivation for the 
fermenter and were therefore included in this review. The thermodynamic inefficiency of 
aerobic gas fermentation was demonstrated in the TEA by Levett et al. (2016), where the heat 
removal costs contributed 28% of the operating costs. 

2.2.10 Commercial status 
LanzaTech is currently leading the way in commercialised gas fermentation with its operational 
46,000 t/yr ethanol facility using steel mill off-gas in China (Köpke & Simpson, 2020). 
LanzaTech also have a commercial facility processing steel mill off-gas in Ghent (LanzaTech, 
2023), a demonstration facility in Japan processing municipal solid waste (LanzaTech, 2022), 
and plans for a 10 million US gallon/year ethanol facility in Georgia (LanzaJet, 2022). The 
company’s technology is based on their proprietary acetogen, Clostridium autoethanogenum. 
Which, in addition to ethanol, has demonstrated its capability to produce acetone and 
isopropanol, 2,3-butanediol (Liew et al., 2022), and n-octanol (Sapp, 2021).  
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Evonik and Siemens are actively researching the commercialisation of gas fermentation and 
partnered on project Rheticus in 2018. The project aims to synthesise 1-butanol and 1-hexanol 
by electrolysing CO2 and H2O to syngas for fermentation using artificial photosynthesis (Haas 
et al., 2018). A pilot plant in Marl, Germany, was brought online in 2020 (Evonik, 2020).  

Other companies to previously operate or conduct research into gas fermentation include 
Synata Bio (formerly Coskata) who previously owned the Abengoa Kansas site which 
produced cellulosic ethanol. The site was adapted the plant for syngas fermentation but was 
sold in 2021 (Pacheco et al., 2023). INEOS bio previously operated the demonstration scale 
Vero Beach plant in Florida. The plant produced ethanol from municipal solid waste-derived 
syngas (Pacheco et al., 2023). However, the plant was closed in 2015 due to issues with 
hydrogen cyanide contamination (Lane, 2014).  The facility was later acquired by Jupeng bio, 
but is not currently operational (Jupeng Bio, 2017). 

Evidently, commercial gas fermentation has only been achieved and maintained by 
LanzaTech to date. While other companies such as Evonik and Siemens are still actively 
researching the field, others have faced challenges in remaining operational. As highlighted 
by Fackler et al. (2021), the development and commercialisation of gas fermentation 
technologies are arduous and lengthy processes, and many companies fail to cross the 
‘valley-of-death’ stages of development, which span from Technical Readiness Level (TRL) 3 
(proof of concept) to 7 (continuous operation of a pilot plant) (Fackler et al., 2021). Notably, 
TEAs are undertaken across these stages of technology development, making them of critical 
importance in identifying cost bottlenecks, performance targets, and prioritising resource 
allocation.  

2.3 Supercritical water gasification techno-economic analyses 
Gas fermentation can utilise a broad range of feedstocks, including various waste gases from 
industrial sources or syngas derived from municipal solid wastes, agricultural residues, or 
organic industrial wastes (Köpke & Simpson, 2020). Originating from biomass gasification 
offers the opportunity to exploit a range of abundant, low-cost wastes for chemical synthesis. 
Different mediums can be used as gasyfing agents and ultimately affect the product gas 
composition and energy balance of the system. Air, oxygen, steam, and supercritical water 
can all be used as gasifying agents. Table 2.3 presents the benefits and limitations of each of 
these mediums.  

Table 2.3: Comparison between gasifying agents, details taken from (Mishra & Upadhyay, 
2021; Moghaddam et al., 2021; Saxena et al., 2008)  

Gasifying Agent Benefits  Limitations 
Air   Low cost 

 Easily available   
 High tar production 
 Lower heating value due to 

presence of N2 

Oxygen  High quality syngas 
production 

 Creating pure O2 is costly and 
energy intensive 

 Safety concerns around pure 
O2 

Steam   Higher H2/CO ratio 
achieved 

 Corrosion and poisoning of 
catalysts 

 Tar formation 

Supercritical Water   Can be used for high 
moisture content 
feedstocks 

 Increased H2 formation 

 High energy requirement for 
the endothermic reactions 

 Plugging and fouling due to 
salts 
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Notably, a key benefit of using supercritical water is its ability to utilise high moisture content 
biomass. For biomass with moisture contents >30%, SCWG has a lower energy requirement 
than drying (Yoshida et al., 2003). As such, feedstocks suitable for SCWG have limited 
resource competition as they are uneconomical for conventional gasification. This makes 
SCWG a promising technology for low-cost, wet feedstock valorisation. Existing TEAs 
investigating SCWG have been undertaken into the production of syngas, hydrogen, 
methanol, and other fuels. An overview of existing TEAs for SCWG is provided in this section. 

Kumar et al. (2019) compared the production of hydrogen via thermal gasification and SCWG 
from microalgae. Due to the drying required for thermal gasification, the SCWG process 
demonstrated lower hydrogen product costs of $4.59/kg compared to $5.66/kg for thermal 
gasification (Kumar et al., 2019). Similar was found by Sanaye et al. (2022), who compared 
the valorisation of digested sewage sludge by gasification via conventional gasification and 
SCWG to produce syngas. Their economic assessment demonstrated SCWG had an 8% 
higher energetic efficiency and 19% lower syngas production cost ($82.5/GJ) than 
conventional gasification ($102/GJ) (Sanaye et al., 2022). Shi et al. (2023) considered SCWG 
for waste sludge treatment in comparison to both conventional incineration with chemical 
looping combustion and steam gasification with chemical looping combustion. While steam 
gasification with chemical looping combustion performed best from an economic perspective, 
SCWG had the highest energy efficiency (Shi et al., 2023). The higher cost of SCWG was 
primarily attributed to the capital cost of the high-pressure SCWG reactor. In addition, the 
steam gasification with chemical looping technology received additional income from CO2 
capture. In contrast to these studies, Ma et al. (2022) found steam gasification to be more 
energetically efficient and economically favourable in comparison to SCWG when considering 
poultry litter as a feedstock. Importantly, the SCWG process required large inputs of external 
thermal energy to heat the dilution water added to the poultry litter, whereas steam gasification 
used steam generated internally as the gasification medium (Ma et al., 2022). Whilst the first 
three studies demonstrated the energetic benefit of SCWG for wet feedstock processing 
(Kumar et al., 2019; Sanaye et al., 2022; Shi et al., 2023), the contrasting results by Ma et al. 
(2022), who used a dryer feedstock, illustrate the importance of matching feedstocks to the 
most suitable technology.  

Despite being more energetically efficient than drying, SCWG still requires a significant 
amount of energy to heat dilute feedstocks to supercritical conditions. Consequently, several 
studies have incorporated heat integration into their analyses to better utilise the process 
energy. For example, Okolie et al. (2021b) used heat integration to create an energetically 
self-sufficient platform for hydrogen production from soybean straw. Resultantly utility costs 
were minimal, resulting in a hydrogen production cost of $1.94/kg, comparing favourably to 
alternative hydrogen production processes, namely, gasification, steam reforming, solar 
thermochemical cycle, and water electrolysis (Okolie et al., 2021b). Considering black liquor 
as a feedstock, both Liang et al. (2023) and Özdenkçi et al. (2019) employed heat integration 
to recover the energy from the SCWG outlet. Revenue from hydrogen production, electricity 
generation, and captured CO2 were considered in the study by Liang et al. (2023), achieving 
a positive annual revenue for all temperatures investigated for SCWG. A positive economic 
outcome was also achieved by Özdenkçi et al. (2019) considering both combined heat and 
power and hydrogen production.  

Whilst heat integration can better utilise the process energy, external energy is still often 
required by SCWG. The source of this energy has a vast impact on the overall process 
economics. Solar assisted SCWG has been considered as an approach to prevent the import 
of external fossil-fuel sources and remain renewable. For example, Onigbajumo et al. (2021) 
compared the use of solar tower, solar parabolic trough, natural gas and electricity in a SCWG 
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plant producing syngas from microalgae. The study found that natural gas or solar parabolic 
trough with supplementary natural gas was the most economical, however, the MSP was still 
3-7 times higher than market prices (Onigbajumo et al., 2021). Later, the authors conducted 
a study considering solely solar-driven SCWG, three different heat exchanger configurations 
were compared (Onigbajumo et al., 2022). The most efficient process configuration, 
considering solar parabolic trough and two heat exchangers, led to greater utilisable energy 
which increased the exergy flow in the microalgae inlet stream compared to the alternative 
configurations. This processing route achieved an MSP of $34/GJ, compared to $50/GJ and 
$37/GJ from the alternative heat integration configurations. Rahbari et al. (2019, 2021a, 
2021b) also considered solar assisted SCWG using an algae feedstock. Both F-T fuels 
(Rahbari et al., 2019, 2021a) and methanol (Rahbari et al., 2021b) were considered as 
products. Whilst the solar-assisted production provides energy to the gasifier and reforming 
unit, the on-stream capacity and storage requirements increase the capital intensity of the 
process. Ultimately, the authors found methanol to be a better choice of downstream fuel 
synthesis owing to its faster ramping and increased output compared with F-T fuels (Rahbari 
et al., 2021b).  

Also considering fuel synthesis, Umenweke et al. (2023) investigated the production of 
sustainable aviation fuel from tall oil fatty acid. Two production routes were compared using 
catalytic deoxygenation, firstly a route using commercial hydrogen and secondly, a route using 
hydrogen produced via SCWG of crude glycerol from the biodiesel industry (Umenweke et al., 
2023). Both routes were found to be economical compared to petroleum derived jet fuel. 
However, the use of green hydrogen via SCWG led to a lower MSP of $0.39/L compared to 
$0.62/L using commercial hydrogen.  

As discussed in Section 2.1.1 Process Modelling, the TEA of methanol production from 
microalgae via SCWG by Fózer et al. (2021) employed an ANN to represent the SCWG in 
their process model. Water electrolysis was added to supplement the hydrogen feed into the 
process. Production costs ranged from $3.16/kg to $3.39/kg, in line with other biomass-to-
methanol studies.  

Overall, existing TEAs illustrate that SCWG is a promising technology to valorise low-value 
wet feedstocks. However, it is not the optimal gasification technology for all feedstocks. 
Therefore, these studies emphasise the importance in matching feedstocks to suitable 
technologies. The thermal requirements of SCWG are significant, meaning heat integration 
strategies are important in realising the potential of the technology. Solar assisted SCWG 
offers the potential to utilise renewable energy to support SCWG, however, on-stream capacity 
and the capital associated with solar cells can pose economic challenges. As such, 
investigations into alternative, low-cost, renewable thermal energy inputs would be beneficial 
to SCWG. Some studies have considered upgrading the gasifier product to fuels. However, 
there are limited assessments of SCWG for higher value products. Finally, to the best of the 
author’s knowledge, only Okolie et al. (2021a) considered SCWG as a gasification technology 
for gas fermentation (discussed in Section 2.2.3 Co-product considerations). 

2.4 Conclusions and research gaps 
The conclusions of the main findings from this literature review, identified gaps, and gaps 
addressed as part of this thesis are outlined in the following section. 

2.4.1 Techno-economic methods 
While most TEAs stem from comprehensive process models, the complexity of creating 
representative models can hinder early-stage assessments. Autonomous process synthesis 
is emerging as a trend and has promise to overcome this challenge. Furthermore, surrogate 



Chapter 2 

36 
 

modelling is being adopted as a tool to both represent complex unit operations and reduce the 
computational burden during process optimisation. 

There remains no consensus on the cost models that are best suited for biochemical 
processes. Additionally, whilst existing comparisons in capital costing methods exist, the 
comparisons are limited to equipment cost and capital cost estimation, excluding fixed 
operating cost considerations. Furthermore, these comparisons are not undertaken within 
TEA studies, but as standalone pieces of work. A comparison of TEA capital and fixed 
operating cost models within a TEA study is therefore a current gap in the literature. Progress 
in developing cost estimation methods are currently limited by the lack of transparency 
surrounding estimation and actual costs for commercialised bioprocesses.  

The computation of multiple performance metrics aids in TEA interpretability and provides 
sufficient information to determine the economic feasibility of the process by a broad range of 
audiences. This requires the product price to be input into the analysis and used to compare 
against the MSP. Currently, product prices are often selected as spot prices or averages from 
literature. Methods which consider non-stationary prices and the uncertainty around future 
prices exist. However, the only method applicable to all time series is stochastic modelling, 
which doesn’t account for trends in the data. While ML methods remain unused in price and 
variability projections for TEAs, these methods offer the opportunity to exploit existing trends 
and patters within the data without any prerequisites for the time series. 

The inclusion of sensitivity, scenario, and/or uncertainty analyses within TEAs is important to 
determine the most influential parameters and frame the economic outcome within a band of 
uncertainty. Most studies consider purely cost based parameters in these analyses owing to 
the complexity and computational burden associated with varying technical parameters. 
However, ML-based ROMs of process simulations or complex equipment have demonstrated 
their ability to reduce this computational burden.  

There is a trend in developing simplified TEA models and tools, aimed at enabling non-experts 
such as experimentalists and industrialists to undertake technology evaluations. These 
lightweight tools require minimal user inputs, providing preliminary techno-economic insights 
for various technical parameters and scenario considerations. Enabling non-experts to 
conduct these initial assessments facilitates focused research and development into areas 
with potential, whilst preventing the allocation of resources to less promising technologies or 
scenarios. However, the usability of these models comes at the expense of accuracy and 
mass and energy integration opportunities. There is an opportunity for ML to be used to 
represent rigorous process models and/or equipment providing for more accurate predictions. 
However, the flexibility of surrogate models depends on what they were trained to do. I.e. 
representing an entire process would limit its applicability to that technology, whereas 
representing individual unit operations would allow for building up process models. Whilst 
surrogate models of unit operations are being used for process modelling, there is limited 
application of creating surrogate models to predict economic outcomes based on different 
technical or scenario inputs.  

2.4.2 Gas fermentation techno-economic analyses 
Gas fermentation is a promising technology for renewable chemical production from 
recalcitrant feedstocks. A number of TEAs have assessed gas fermentation, demonstrating 
varying economic outcomes. In some cases, gas fermentation performs favourably whereas 
in others it has proved to be more capital intensive than alternative technologies. The 
difference in techno-economic outcomes highlights the need to evaluate feedstock-
technology-chemical combinations individually. Furthermore, for meaningful technology 
comparisons, it's essential to perform these evaluations within a single study, accounting for 
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varying scenarios, assumptions, and methodologies. Most current gas fermentation TEAs 
explore the production of ethanol, however the commercial viability of chemicals with higher 
market value remains underexplored. Notably, evaluating the cost-effectiveness of catalytic 
upgrading for commodity chemical production lacks rigorous investigation. 

Co-product pricing significantly influences overall economics, often enhancing outcomes in 
gas fermentation studies. However, integrating co-product pricing requires careful handling to 
prevent bias in the economic results. Energy considerations emerge as a crucial aspect 
affecting process economics, leading to various studies conducting multi-objective 
optimisations that factor in both economic and energetic objectives. However, an integrated 
LCA and TEA is necessary to fully quantify the trade-offs of processing choices involving heat 
integration and fossil fuel inputs. The inclusion of an LCA also allows for the incorporation of 
policy influences such as CO2 pricing, evidencing required initiatives for economically 
sustainable processes and identifying gaps in policy frameworks. Despite this potential, the 
combination of TEA and LCA studies for gas fermentation is lacking. 

In the reviewed TEA literature, the analysis of aerobic gas fermentation technologies remains 
limited. As such, the viability of aerobic gas fermentation for commodity chemical production 
remains unexplored. Moreover, while technology comparisons between gas fermentation and 
biochemical and thermochemical processes exist, there is currently no comparison between 
aerobic and anaerobic gas fermentation. 

2.4.3 Supercritical water gasification techno-economic analyses 
SCWG demonstrates a promising technology for low-value wet feedstock valorisation. 
However, it is not universally superior to alternative gasification technologies, i.e. when 
processing dry wastes alternative gasification technologies are more suited. The high thermal 
energy demand of SCWG highlights the importance of heat integration and the thermal energy 
sources used to achieve economically feasible processes. However, to the best of the author’s 
knowledge, no studies have investigated the use of low-grade process heat as a thermal 
source for SCWG. Furthermore, to the best of the author’s knowledge, only Okolie et al. 
(2021a) have used SCWG as a gasification technology for gas fermentation. The low-grade 
heat produced via aerobic gas fermentation represents an abundantly available thermal 
energy source that is conventionally removed at a cost to the process. The integration of these 
two technologies represents a promising opportunity that is yet to be explored.  

Additionally, there is a gap in evaluating a wide range of feedstocks suitable for SCWG. 
Existing studies have primarily focused on single biorefinery scenarios, examining specific 
biomass streams without considering different capacities and locations. Consequently, there 
remains a gap in the development of a feedstock-agnostic TEA suitable for evaluating various 
feedstocks using SCWG. 

2.4.4 Research gaps addressed in this thesis 
The research gaps addressed in this thesis and the chapter in which these are addressed are 
summarised in Table 2.4. 
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Table 2.4: Research gaps and the thesis section and chapter within which these gaps 
are addressed. 

Research gap Thesis section Chapter 
The evaluation of aerobic gas fermentation 
integrated with supercritical water gasification from 
a techno-economic and life cycle perspective. 

Evaluation 

Chapters 4 and 5 

The comparison of aerobic gas fermentation to 
anaerobic gas fermentation. 

Chapter 4 

The economic evaluation of aerobic gas 
fermentation coupled with catalytic upgrading for 
chemical production. 

Chapter 5 

The comparison of capital and fixed operating cost 
methods within a techno-economic analysis.  

Chapter 4 

The use of machine learning to project commodity 
prices for techno-economic analyses.  

Method 
development 

Chapter 6 

The creation of a probabilistic price projection to 
incorporate price variability into sensitivity and 
uncertainty analyses. 

Chapter 6 

The creation of a surrogate model representing a 
full techno-economic analysis allowing for the quick 
economic evaluation of different feedstocks. 

Chapter 7 
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 Methodology 
The following section outlines and critically evaluates the overall methodology developed and 
used throughout this thesis, which can be broadly categorised into the following areas: process 
modelling, techno-economic analysis, sensitivity analysis, life cycle assessment, commodity 
price projections, and surrogate modelling. The methodology employed in each of these 
categories is discussed in the respective subsections. Figure 3.1 illustrates the chapters in 
which each of these methods are implemented, and Table 3.1 summarises the contribution of 
each chapter. 

 

Figure 3.1: Summary of overall thesis methodology and chapter implementation. 
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Table 3.1: Summary of chapter contributions. 

Chapter Article Title Novelty Case 
Study 

4: Initial 
techno-
economic 
analysis of 
the 
integrated 
platform 

Reconciling the 
Sustainable 
Manufacturing of 
Commodity Chemicals 
with Feasible 
Technoeconomic 
Outcomes: Assessing 
the investment case for 
heat integrated aerobic 
gas fermentation 

First TEA and LCA of the proposed 
aerobic gas fermentation and 
SCWG platform. 
The novel platform consisted of 
SCWG heat integrated with aerobic 
gas fermentation.  
Three different methods of 
calculating the capital and fixed 
operating costs are assessed.   

Isopropanol 
and 
acetone 
production 

5: 
Comparative 
techno-
economic 
analysis of 
the 
integrated 
platform 

Renewable butadiene: A 
case for hybrid 
processing via bio- and 
chemo-catalysis 
 

Comparative TEA and LCA for the 
production of 1,3-butadiene. 
The aerobic gas fermentation and 
SCWG platform was followed by 
catalytic upgrading to produce the 
reduced 1,3-butadiene product.  
Two alternative purely chemo-
catalytic routes to 1,3-butadiene 
were modelled and compared to the 
aerobic gas fermentation route.  

1,3-
butadiene 
production 

6: Creating a 
robust, 
unbiased, 
price 
selection 
procedure for 
techno-
economic 
analyses 

Probabilistic commodity 
price projections for 
unbiased techno-
economic analyses 

ML was used to produce 20-25 year 
probabilistic commodity price 
projections for techno-economic, 
sensitivity, and uncertainty 
analyses.  
An ensemble of 100 LSTMs was 
used to exploit the underlying 
determinism and/or stochastic 
variability within the commodity’s 
historic time series. 

Isopropanol 
and 
acetone 
production 
 
1,3-
butadiene 
production 

7: Creation of 
a surrogate 
model for the 
economic 
evaluation of 
feedstocks 

A surrogate model for 
the economic evaluation 
of renewable hydrogen 
production from biomass 
feedstocks via 
supercritical water 
gasification 

An ML surrogate model of the TEA 
for hydrogen production via low 
temperature SCWG was created. 
The model predicts the LCOH 
based on user input feedstock-
capacity-location combinations and 
is made publicly available. 

Renewable 
hydrogen 
production  

 

3.1 Overview of the heat integrated platform 
This thesis examines the heat integrated SCWG and aerobic gas fermentation platform as 
presented by Bommareddy et al. (2020). Figure 3.2 depicts the thermal cycle between the two 
integrated technologies considering guaiacol as a renewable carbon source, reprinted from 
Bommareddy et al., (2020). The purple cycle highlights the cumulative energy recovery within 
the heat pump cycle. The blue arc represents the renewable carbon feedstock flow prior to 
fermentation. The pink arc illustrates the energy flow from the fermentation product. 
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Figure 3.2: Schematic of the heat integrated SCWG and aerobic gas fermentation process, 
taken from Bommareddy et al., (2020).  

The thermal cycle commences with the utilisation of heat generated from aerobic fermentation 
to vaporise the thermal fluid used in the process (4,004 kW/ton of guaiacol). Isopentane was 
chosen as the thermal fluid owing to its vaporisation temperature (~28°C) allowing it to utilise 
the low temperature heat produced from fermentation (~37°C). The vaporised isopentane then 
undergoes compression, further increasing the enthalpy of the stream by 175 kW/ton of 
guaiacol. To optimise energy recovery, a sequence of heat exchangers is employed, 
reclaiming heat from the SCWG effluent (5,565 kW/ton guaiacol) and within the isopentane 
loop after heating the renewable carbon feedstock. Additional heat contribution comes from 
the combustion chamber (3,952 kW/ton of guaiacol) which operates on a portion of the syngas 
produced from SCWG. This integration elevates the temperature of isopentane to a level 
suitable to convert the sub-critical renewable carbon feedstock to supercritical conditions prior 
to the SCWG reactor (3,660 kW/ton of guaiacol). The cycle concludes with the condensation 
of the isopentane vapor upon preheating the renewable carbon feedstock. This is followed by 
expansion of the isopentane to its starting pressure, preparing it for the next cycle. Notably, in 
addition to the heat integration, upon expanding the SCWG effluent using a turbo-expander 
566 kW/ton guaiacol of renewable electricity is generated (Turbine Power Generation). The 
technology integration links low-temperature, exothermic, gas fermentation with high 
temperature, endothermic, SCWG. 
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3.2 Process modelling  
Process models built in Aspen HYSYS formed the basis for the TEAs undertaken in this thesis. 
The accuracy and comprehensiveness of these process simulations greatly influences the 
evaluation of the technologies and the resulting conclusions. As emphasised by Scown et al. 
(2021) rigorous process models are required to capture process complexities, model utility 
and energy integration, incorporate co-generation of heat and power, and exploit recycling 
opportunities. Therefore, to thoroughly assess the techno-economic potential of the proposed 
heat integrated aerobic gas fermentation and SCWG platform, detailed process models were 
developed. A process simulation was created for Chapters 4, 5, and 7, based on the 
production of isopropanol and acetone, 1,3-butadiene, and hydrogen, respectively. 

The five stages of process synthesis and design, as outlined by Seider et al. (2017) were 
followed to develop each simulated process. These following steps, along with heuristics 
followed during each step, are: 

1. Eliminate differences in molecular types (Chemical reactions) 
 Identifying reactions pathways to target chemicals 

2. Distribute Chemicals (Mixing and recycles) 
 Purging inert species or inhibitory compounds 
 Recycling reactants to increase product yields 

3. Eliminate composition differences (Separation sequences) 
 Utilising flash drums to separate vapour-liquid mix streams before distillation or 

adsorption 
 Performing marginal vapour rate analysis to optimise distillation sequences 

4. Eliminate temperature pressure and phase differences (Energy adjustments) 
 Adjusting temperatures and pressures for reaction and separation sequences 
 Prioritising pumping liquids over compressing gases 

5. Task integration (Connecting unit operations, utility integration) 
 Minimising external material and energy use 

Where available, kinetic models from literature were prioritised to facilitate the development of 
these detailed models. Kinetic models allowed for the optimisation of reaction conditions, 
incorporation of recycling schemes, and served as the basis for reactor sizing. In cases where 
kinetic models were not available, conversion data from experimental literature, industrial 
patents, and internal experimental results were utilised. Table 3.2 provides an overview of the 
data sources used as the foundation for modelling each reaction. Additionally, when replicating 
industrialised processes, the reactor configurations, recycling schemes, and separation 
methods were also obtained from relevant literature.
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Table 3.2: Data sources for process modelling 

Process section Data source Chapter 
Aerobic gas 
fermentation 

Conditions and yields from internal 
experimental results 

Chapter 4 and 5 

Acetaldehyde 
hydrogenation to 
Ethanol 

Conditions and conversion data from industrial 
patents for butanal hydrogenation 
(Europe Patent No. 0073129, 1982) (Europe 
Patent No. 0008767A1, 1979) 

Chapter 5 
 

Ethanol to Butadiene Conditions and conversion data from 
experimental study 
(Dai et al., 2017) 

Mixed alcohol synthesis Yields from 2011 NREL report 
(Dutta et al., 2011) 

Biomass gasification Conditions and conversion data  
(Dutta et al., 2011) (Tan et al., 2015) 

Syngas to methanol Conditions and kinetics for the commercial 
Cu/ZnO/Al2O3 catalyst 
(Vanden Bussche & Froment, 1996) 

Methanol dehydration to 
DME 

Conditions and kinetics for the commercial 
γAl2O3 catalyst 
(Ng et al., 1999) 
(Diep & Wainwright, 1987) 

Methanol to Propene Conditions and kinetics for the commercial H-
ZSM-5 zeolite catalyst  
(Huang et al., 2016) 

Oxo-alcohols process 
Propene to Butanol 

Conditions and conversion data from Johnson 
Matthey patents 
Hydroformylation: 
US patent 4,593,127  
(Patent No. 4593127, 1986) 
Hydrogenation:  
European Patent 0,008,767 
(Europe Patent No. 0008767A1, 1979) 

Dehydration (Butanol to 
Butene) 

Process conditions and conversion data from 
industrial patents for a silane-modified γAl2O3 

catalyst  
(United States Patent No. 0238788 A1, 2012) 

Oxidative 
dehydrogenation 
(Butene to Butadiene) 

Conditions and conversion data for a multi-
component bismuth molybdate 
(Co9Fe3Bi1Mo12O51) catalyst 
(Jung et al., 2008) 

Steam methane 
reforming 

Conditions and kinetics for the commercial 
Ni/α-Al2O3 catalyst  
(Hou & Hughes, 2001) 

Chapter 7 
High temperature shift Conditions and kinetics for a commercial iron-

based catalyst 
(Hla et al., 2009) 

Low temperature shift Conditions and kinetics for the Sud-Chemie 
Cu/ZnO/Al2O3 catalyst  
(Choi & Stenger, 2003) 
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3.3 Techno-economic analysis 
The mass and energy balance obtained from the process simulations served as the basis for 
determining the major equipment cost, which, in turn, was used to calculate the total capital 
investment and fixed operating costs. The variable operating costs were directly derived from 
the mass and energy balance. These capital, fixed operating, and variable operating costs 
were subsequently employed in the investment analysis to evaluate the economic viability. 
Figure 3.3 provides a simplified flow diagram illustrating this methodology, further detail on 
each of these steps is provided in the subsequent sections.  

 

Figure 3.3: Simplified flow diagram of the techno-economic analysis methodology employed 

 Major equipment costs 
The estimation of major equipment costs was carried out using costing models from Seider et 
al. (2017) and adjusted to reflect the prices of 2019-2021 based on the Chemical Engineering 
Plant Cost Index (Chemengonline). While other methods such as those found in Chemical 
Engineering Design (Sinnott & Towler, 2013), Aspen Capital Cost Estimator software, or 
vendor quotes with scaling factors can be used for equipment cost correlations, the equipment 
cost models from Seider et al. (2017) were chosen due to their wide coverage of equipment 
types, detailed calculation methods for sizing factors, and consideration of pressure, material, 
and temperature factors. Furthermore, using equations rather than software estimates allows 
practitioners to comprehend the key factors influencing equipment costs, such as reactor 
residence times and heat transfer areas. Table 3.3 presents the bare module equipment cost 
correlations employed in the TEAs conducted in this thesis. It should be noted that material 
factors, pressure factors, and type factors are not presented as they vary depending on the 
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equipment type. Type factors may include the drive type for compressors, tube lengths for 
heat exchangers, or the number of stages in a pump. Further detail on these factors can be 
found in Seider et al. (2017), Chapter 16. 

Table 3.3: Equipment cost correlations. 

Equipment 
type 

Size factor (S) Cost correlation (Cb, bare module 
cost) 

Centrifugal 
pump (excluding 
motor) 

𝑆 = 𝑄 ∗ 𝐻.ହ 
Q = flowrate (gpm) 
H = Head of fluid (ft) 

𝐶𝑏 = 𝑒(ଵଶ.ଵହିଵ.ଵସସ଼(୪୬(ௌ))ା.଼ଶ(୪୬(ௌ))మ)  

Compressor S = Horsepower (Hp) 𝐶𝑏 = 𝑒(ଽ.ଵହହଶା.ଷ(୪୬(ௌ)))  

Distillation 
column, 
absorber, 
stripper (tower) 

S = weight of tower (lb) 
𝑆 =  𝜋(𝐷 + 𝑡𝑠)(𝐿 + 0.8 ∗ 𝐷) ∗ 𝑡𝑠 ∗ 𝜌  
 
D = diameter (in) 
L = tan-tan length (in) 
Ts = shell thickness (in) 
Ρ = material density (lb/in3) 

𝐶𝑏 = 𝐶𝑣 + 𝐶𝑝𝑙 + 𝑉𝑃𝐶𝑃𝐾 + 𝐶𝐷𝑅  
 
𝐶𝑣 =  𝑒(ଵ.ହସସଽି.ସଶ(୪୬(ௌ))ା.ହସ଼ଶ(୪୬(ௌ))మ)   
𝐶𝑝𝑙 = 341 ∗ 𝐷.ଷଷଵ ∗ 𝐿.଼ଵଵ  
𝑉𝑃𝐶𝑃𝐾 = 𝑉𝑃 ∗ 2825  
𝐶𝐷𝑅 = 140 ∗ 𝐶𝑆𝐴  
 
VP = volume of packing (ft3) 
CSA = cross sectional area of tower (ft2) 

Electric motor 
(for pumps) 

S = Pump horsepower (Hp) 
𝐶𝑏 = 𝑒

(ହ.ଽଷଷଶା.ଵ଼ଶଽ(୪୬(ௌ))ା.ଵଵହ(୪୬(ௌ))మା

.ଵସଵଷ(୪୬(௦))యି.ଷ଼଼(୪୬(௦))ర)   
Fired heaters S = duty (Btu/hr) 𝐶𝑏 = 0.416 ∗ 𝑆. (steam boiler) 

𝐶𝑏 = 0.974 ∗ 𝑆.଼ଵ (reformer) 
Flash drums,  
fermenters 
(vertical 
pressure vessel) 

S = weight of pressure vessel (lb) 
𝑆 =  𝜋(𝐷 + 𝑡𝑠)(𝐿 + 0.8 ∗ 𝐷) ∗ 𝑡𝑠 ∗ 𝜌  
 
D = diameter (in) 
L = tan-tan length (in) 
Ts = shell thickness (in) 
Ρ = material density (lb/in3) 

𝐶𝑏 = 𝐶𝑣 + 𝐶𝑝𝑙  
𝐶𝑣 =  𝑒(.ଵଷଽା.ଵ଼ଶହହ(୪୬(ௌ))ା.ଶଶଽ(୪୬(ௌ))మ)   
𝐶𝑝𝑙 = 410 ∗ 𝐷.ଷଽ ∗ 𝐿.଼ସ  

Heat exchanger S = Heat transfer area (m2) 𝐶𝑏 = 𝑒(ଵଵ.ସଵ଼ହି.ଽଶଶ଼(୪୬(ௌ))ା.ଽ଼ଵ(୪୬(ௌ))మ)  

High pressure 
gear pump 
(excluding 
motor) 

S = flowrate through pump (gpm) 𝐶𝑏 = 𝑒(.ଽସା.ଵଽ଼(୪୬(ௌ))ା.ଽଵ(୪୬(ௌ))మ)  

Reactors 
(horizontal 
pressure vessel) 

S = weight of pressure vessel (lb) 
𝑆 =  𝜋(𝐷 + 𝑡𝑠)(𝐿 + 0.8 ∗ 𝐷) ∗ 𝑡𝑠 ∗ 𝜌  
 
D = diameter (in) 
L = tan-tan length (in) 
Ts = shell thickness (in) 
Ρ = material density (lb/in3) 

𝐶𝑏 = 𝐶𝑣 + 𝐶𝑝𝑙  
𝐶𝑣 =  𝑒(ହ.ଷଷା.ସହଽଽ(୪୬(ௌ))ା.ହ଼ଶ(୪୬(ௌ))మ)   
𝐶𝑝𝑙 = 2275 ∗ 𝐷.ଶଽସ  

Turbine S = Horsepower (Hp)  𝐶𝑏 = 10660 ∗ 𝑆.ସଵ (steam, non-
condensing) 
𝐶𝑏 = 28350 ∗ 𝑆.ସହ (steam, condensing) 
𝐶𝑏 = 2835 ∗ 𝑆. (gas) 
 

Turbo-
expander1 

S = power (kW) 𝐶𝑏 = 126.9 ∗ 𝑆 + 661111  

1Turbo-expander correlation obtained from Rangaiah, (2009) 
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 Fixed cost models 
The estimation of Fixed Capital Investment (FCI) and fixed operating costs was based on the 
major equipment costs. Three different methods were compared for computing FCI, taking 
into account the various approaches found in TEA literature, as discussed in Chapter 2. The 
three methods used for FCI calculation were the: National Renewable Energy Laboratory 
(NREL) method outlined in the 2011 NREL report (Humbird et al., 2011), Towler and Sinnott 
(TS) method from Chemical Engineering Design (Sinnott & Towler, 2013) by Towler and 
Sinnott, and Hand method presented in Sustainable Design Through Process Integration (El-
Halwagi, 2017). The NREL method was selected owing to the 2011 report being seen as a 
the ‘gold-standard’ for TEA studies (Scown et al., 2021). The TS method uses universally 
applied Lang factors to translate equipment costs to installed costs whereas the Hand method 
is a detailed factorial method which individually applies factors depending on the equipment 
type. These three methods are summarised in Table 3.4. Similarly, the three fixed operating 
cost models used are presented in Table 3.5, named the NREL method (Humbird et al., 2011), 
the TS method (Sinnott & Towler, 2013), and the Coulson & Richardson method from Coulson 
& Richardson Volume 6 (Sinnott, 2005). As the Hand method used for FCI does not provide a 
corresponding fixed operating cost calculation, the third fixed operating cost method was taken 
from Coulson & Richardson Volume 6 and referred to as ‘Coulson & Richardson’. Labour costs 
were included in the fixed operating costs, and regional-specific salary estimates were 
obtained from SalaryExpert.com (Salary Expert, 2023), rather than relying on outdated 
estimates from engineering textbooks. 

In Chapter 4, the three costing models were compared, and the method yielding the median 
result was selected for the detailed analysis and used as the costing method in the subsequent 
TEAs (Chapters 5 and 7). Whilst the median result is not necessarily the most accurate, it is 
impossible to determine method accuracy without the costs of a commercialised facility for 
comparison. Noting that vendor quotes may be inaccurate compared with the built facility cost. 
Moreover, as discussed in Chapter 2, there is no consensus on the optimal method for 
economic evaluations. The commercialisation and commissioning of biorefinery projects and 
processes offers an opportunity to reach a consensus. However, this is reliant on greater 
transparency in primary cost estimations, final project costs, and cost breakdowns from 
commercialised projects. In the absence of this, maintaining the same cost models throughout 
this thesis ensures comparability of the assessments. Additionally, the cost models, factors, 
assumptions, and variable costs are extensively documented in the published papers and 
corresponding supplementary information, following a similar approach to the widely cited 
NREL reports.
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Table 3.4: Fixed capital cost models 

 NREL TS Hand 

Year basis (Chemical 
Engineering Plant Cost 
Index) 

2019 (607.5) 
2020 (596) 
2021 (739) 

Operating hours 8400 hours 

Installation Factor (Multiplied 
by equipment cost) – Inside 
Battery Limit (ISBL) 

 

NREL factor, 
specific to 

equipment type 

Universal 
installation 
factor, 3.3 

Hand factors, 
specific to 

equipment type 

Outside Battery Limit 
(OSBL) 

See Chapter 4 
for details 

30% of ISBL 25% of ISBL 

Contingency  10% of ISBL  

Commissioning Cost 5% of ISBL  5% of ISBL 

Design and Engineering 
Cost 

 10% of ISBL  

Fixed Capital Investment 
(FCI) 

ISBL + OSBL + 
Commissioning 

ISBL + OSBL + 
Contingency + 

Design and 
Engineering 

ISBL + OSBL + 
Commissioning 

Working Capital 10% of FCI 

Total Capital Investment 
(TCI) 

FCI + Working Capital 
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Table 3.5: Fixed operating cost models 

Parameters NREL TS 

 

Coulson & 
Richardson 

Operating 
Labour 

 (Salary 
estimates 

obtained from 
salaryexpert.co

m) 

Process operator, 
engineering and 

maintenance 

3 process operators 
per shift 

4 shift teams 

Process operator, 
engineering and 

maintenance 

Supervisory 
Labour 

25% of Operating 
Labour 

Direct Salary 
Overhead 

90% of Operating 
and Supervisory 

Labour 

50% of Operating 
and Supervisory 

Labour 

 

Maintenance 3% of ISBL 3% of ISBL 5% of ISBL + OSBL 

(conventionally 5% 
FCI) 

Property Taxes 
and Insurance 

0.7% of FCI 1% of ISBL 2% of ISBL +OSBL 

(conventionally 2-3% 
FCI) 

Rent of Land  1% of FCI  

General Plant 
Overhead 

 65% of Total Labour 
and Maintenance 

50% of Operating 

Labour 

Allocated 
Environmental 
Charges 

 1% of FCI  

 

 Variable operating costs 
Variable operating costs were estimated using the material and energy usage calculated from 
the process simulations. The costs for utilities were taken from Seider et al. (2017). Whilst 
these costs may vary between countries they constitute a relatively minor proportion of the 
overall operating costs. However, it is recognised that obtaining costs representative of the 
considered geographic location would have improved the analysis. Specialist chemical costs 
were taken as spot prices or from literature, catalyst costs were taken from data available in 
existing TEA studies or, in the absence of cost data, calculated based on the material 
composition. Where necessary prices were updated from their base year using the Chemicals 
and Allied Products Producer Price Index (FRED, 2023a). All variable operating costs were 
subjected to an annual inflation of 2% throughout the life of the project. 
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 Feedstock costs 
The feedstock cost for each case study was undertaken based on data availability and 
previous literature estimates. The approach undertaken for the feedstocks considered 
throughout the thesis is outlined below. 

3.3.4.1 Black liquor 
Black liquor was considered as a feedstock in both Chapters 4 and 5. As black liquor is used 
for energy recovery within the Kraft pulping process it has no economic value as a product. 
However, a cost is associated with its diversion from energy recovery. In both Chapters the 
cost was calculated based on its conventional use for renewable electricity generation, 
requiring capital investment in increased steam turbine capacity. The foregone NPV from this 
conventional use represents the feedstock’s utility value and is subtracted from the evaluated 
process’ NPV.  

3.3.4.2 Virgin pulpwood and residues 
In Chapter 5 pulpwood and wood residues in China were used as a feedstock. Pulpwood costs 
were estimated based on prices prepared in a report on the development of industrial wood 
demand in the district by the Guangxi Forestry Bureau (Cossalter & Barr, 2005). The average 
cost from three competitive production profiles and locations was calculated and updated to a 
2020 basis using the Lumber and Wood Products Producer Price Index (FRED, 2023b). The 
resulting cost ($102.62 tn-1) was similar to US pulpwood chip costs, $109.64 tn-1, as analysed 
by Idaho National Laboratory (Jacobson et al., 2014). Residue costs were estimated based 
on the ratio between the China and Idaho National Laboratory, resulting in a cost of $ 69.67 
tn-1. The obtained price was in line with the range reported by (Anttila et al., 2015), for forestry 
residues for energy production in northern China, and to the prices reported in Gosens 
database for Chinese biomass power projects (Gosens, 2015). Accordingly, using a blend of 
20% pulpwood and 80% forestry residues the delivered biomass cost was $76.26 tn-1. 

3.3.4.3 Biomass residues 
In Chapter 7 a feedstock agnostic process simulation and economic analysis for low value 
biomass wastes was created. As such, no specific feedstock cost was derived. Instead, a 
universal method based on the Higher Heating Value (HHV) of the biomass relative to natural 
gas was created. This cost therefore represents the feedstock’s utility value. The HHV of the 
biomass was calculated using a correlation based on the ultimate analysis of the compound, 
created specifically for biomass (Huang & Lo, 2020). An efficiency factor of 70% was applied 
to the HHV based on anaerobic digestion as a next best alternative waste utilisation method. 
Anaerobic digestion can only exploit the Biological Oxygen Demand of a feedstock, whereas 
Supercritical Water Gasification (SCWG) exploits the Chemical Oxygen Demand (COD). The 
70% efficiency factor reflects a high Biological Oxygen Demand to COD ratio (Kumar et al. 
2010). The feedstock’s price was then computed based on the adjusted HHV relative to the 
HHV of natural gas using the Energy Information Administration’s (EIA’s) natural gas prices 
(EIA, 2022). 

3.3.4.4 Transportation costs 
In Chapter 7 feedstocks were assumed to be processed at their point of origin, meaning no 
transportation costs were included. However, as the impact of capacity on processing costs 
was assessed, an investigation into of the impact of transporting localised waste streams to 
larger facilities was also included. The cost of transporting the feedstocks was taken as £ 
0.25 t/km based on costs for digestate transportation (WRAP, 2016) and updated using the 
ratio of UK diesel prices in 2022 to 2016. A nominal 30 km transport distance was selected. 
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 Investment analysis 
The investment analysis for each process was calculated using the aforementioned cost 
models (section 3.2.2. Fixed cost models). Different evaluation metrics can be computed for 
a TEA. Common metrics are the MSP and the cumulative NPV for a process. The cumulative 
NPV is a metric representing the final value of the investment at the end of the considered 
plant life, it is discounted across its plant life based on a selected discount rate and presented 
in millions of dollars. The MSP is the minimum selling price the product(s) can be sold at to 
achieve an NPV of zero at the end of the considered plant life, presented as dollars per unit 
of product. Zhao et al. (2016) argue that NPV is a less interpretable profitability indicator than 
MSP, particularly when the NPV is negative, as is often the case with emerging technologies 
(Zhao et al., 2016). However, caution is required when a process has multiple products, as 
the MSP is highly sensitive to co-product prices and yields, creating potentially misleading 
results (Pereira et al., 2017). Furthermore, as computing the MSP bypasses the need to utilise 
product prices within the analysis studies often either neglect to comment on the MSP in 
relation to market prices or select an arbitrary historic price for comparison. This leaves 
interpretation of future market competitiveness open to subjective judgement. In Chapter 4 the 
cumulative NPV was computed. However, to overcome the shortcomings of these methods 
individually, both the cumulative NPV and MSP were computed in Chapter 5. 

The discount rate used in the investment analysis was selected based on the perceived risk 
associated with a technology or process, i.e. the riskier a project the higher the required rate 
of return. In Chapters 4 and 5 a 10% discount rate was selected, to adhere to the discount 
rates used studies in the BETO Biofuels TEA Database (Kinchin, 2020). In Chapter 7 an 8% 
discount rate was used based on Europe’s hurdle rates for electricity generation costs from 
biomass sources (BEIS, 2020). 

Contrastingly to Chapters 4 and 5, in Chapter 7 the economic metric computed was the 
Levelised Cost. This metric represents the production costs of a technology, i.e. how much it 
costs to produce 1 kWh or kg of a product. The levelised cost is a commonly reported metric 
for energy production, it represents the lifetime cost of a production method and allows for fair 
comparison of technologies with different life spans, capacities, capital intensity, and risk 
(DOE, 2015). The investment analysis parameters used for Chapters 4, 5, and 7 are presented 
in Table 3.6.  

Table 3.6: Investment analysis parameters 

Parameters Value Comments 

Discounted Rate of 
Return 

10% 1  
 

8% 2 

1 In line with studies in the BETO Biofuels TEA 
Database (Kinchin, 2020). (Chapters 4 and 5) 

2 In line with Europe’s hurdle rates for electricity 
generation costs from biomass (BEIS, 2020) 
(Chapter 7) 

Corporation Tax 25% Corporation tax in China. Not used in LCOH 
calculation (Chapter 7). 

Annual Inflation 2%  

Plant Life  25 years  

Depreciation 10 years Straight line. 
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Plant Salvage Value No value  

Construction Period 2 years  

 

3.4 Commodity price projections 
Price projections were undertaken for the products produced in each TEA. To exploit any 
existing underlying pricing dynamics that may be present within the historic prices Machine 
Learning (ML) methods were used. These methods offer benefits over traditional statistical 
methods such as Autoregressive Integrated Moving Average models and Generalised 
Autoregressive Conditional Heteroscedasticity models, as they are able to exploit complex, 
non-stationary, and non-linear trends (Lago et al., 2018). 

 Radial Basis Function Neural Networks 
In Chapters 4 and 5 a Radial Basis Function Neural Network (RBFNN) containing eight 
neurons was used as the machine learning model. This approach ensured the TEA inputs and 
sensitivity analysis were unbiased, opposed to selecting a subjective time period to obtain an 
average price. The weights and centre points of the network were determined during model 
training whereby the network behaved as a one step ahead predictor by minimising the Mean 
Squared Error (MSE) of the difference between the actual and predicted prices. Once trained 
the network was initialised with ten real historic prices and then run recursively meaning the 
successive predictions became inputs to the model. The number of model inputs remained at 
ten. Therefore, after ten successive predictions, the model was predicting based solely on 
predicted prices as inputs. The projection procedure is presented in Figure 3.4. The 
confidence limits corresponding to the trained RBFNN were calculated as a reliability measure 
of the prediction (Leonard et al., 1992). To account for price variability in the uncertainty 
analysis a uniform distribution of ±30 % and ±20 % was applied to the predicted future prices 
for Chapters 4 and 5, respectively. 

 

Figure 3.4: The RBFNN price projection procedure. The model was trained to predict the next 
monthly price based on ten previous prices. The model was initiated using ten historic prices. 
After initialisation the model was recursive, whereby model predictions became inputs and 
were used in the prediction of the next monthly price.  

3.4.1.1 Method limitations 
The outlined method had a number of limitations. The use of an RBFNN as the algorithm, 
using eight neurons, and using ten historic time-steps as the model input was arbitrarily 
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selected, making it biased and unlikely to be optimal. Furthermore, when the model was 
trained the entire historic time series was used to minimise the MSE. This may have led to 
network overfitting and lead to limited predictive capability beyond the training data. Model 
initiation relied on ten real historic prices, excluding recent data from the price projection. 
Finally, price variability, required for a sensitivity and uncertainty analysis, was accounted for 
using a subjective percentage rather than accounting for observed price variability within the 
historic time series.  

 Long-Short Term Memory Neural Networks 
Owing to the outlined limitations of the previously adopted approach, in Chapter 6 an 
advancement to the price projection methodology was created. In the advanced method a grid 
search was undertaken to determine the optimal hyperparameters for each commodity time 
series. The entire time series was used as a model input, facilitating the exploitation of long-
running underlying trends that may exist within the time series. Finally, a validation set was 
used to assess the methods ability to predict beyond the training set.  

A Long-Short Term Memory (LSTM) neural network was used as the basis for the new price 
projection methodology, the parameters used, and their rationale are summarised in Table 
3.7, further clarity on the model criteria and methodology is provided in the following sections.  

Table 3.7: Summary of the model criteria selection for the advanced price projection method 

Parameter  Selection Rationale 
ML algorithm LSTM Suited to learning temporal patterns in time 

series data 
Allows the entire time series to be used as 
a model input. 

Number of models Ensemble of 100 To produce a distribution of future prices 
used to calculate the 5th, 25th, 50th, 75th and 
95th price percentiles. 

Model inputs Historic commodity 
prices time series 

Allows the model to exploit any 
deterministic trends and/or stochastic 
variability specific to the commodity. 

EIA crude oil prices and 
long-term projection 

Provides information on trends in world 
energy markets. 

Size of model 
inputs 

Entire data series up to 
the point of projection 

Allows the model the opportunity to learn 
long-running trends within the data.  

Strategy  Direct, recursive, joint Better-reported performance than single 
output methods (Taieb et al., 2012, 2010; 
Taieb and Atiya, 2016). 

Projection horizon 12 time-steps into the 
future 

Represents annual projections, the 
required frequency to input into a TEA. 

Data set split 30 % training and 70 % 
validation 

To obtain representative hyperparameters 
for the final task. Based on the 
relationship between historic data 
availability (12 years, 30%) and the 
required projection horizon (26 years, 
70%). 
A test set was excluded due to dataset 
size limitations. 

Hyperparameters 
optimised 

LSTM units Determines the model’s capability to 
capture patterns in the data. 

Epochs Prevents overfitting or/underfitting of the 
models. 
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Learning rate Important in ensuring the model 
converges effectively. 

 

An ensemble of 100 ML models was trained on the commodity’s historic dataset (2009-2021), 
producing a probabilistic projection of future prices based on deterministic trend and/or 
stochastic variability within the historic price data. The produced distribution was then used to 
calculate the 5th, 25th, 50th, 75th and 95th price percentiles for use in the techno-economic, 
sensitivity, and uncertainty analyses. The EIA’s historic prices and reference case projection 
of future Brent crude oil prices was used as an additional model input, providing information 
on future trends in world energy markets. 

LSTM neural networks were employed for the machine learning task. LSTMs are a type of 
recurrent neural network which use gate units to update their internal network state (Hochreiter 
& Schmidhuber, 1997). These gate units reduce the likelihood of exploding and vanishing 
gradients by enabling the LSTM cells to regulate the inward and outward flow of information. 
Ultimately, these units prevent the network from remembering information from only recent 
time-steps allowing the learning of temporal patterns.  

3.4.2.1 Projection strategy 
A hybrid direct, recursive, and joint strategy was employed for the price projection problem. 
The model was trained using the entire data set prior to the point being projected to predict 
monthly prices 12 time-steps into the future (joint). After model training the previously 
predicted 12 time-steps were added to the historic data (recursive) and a new model was 
trained (direct). As such, the input sequence to the LSTM increased by 12 time-steps after 
each model training. In addition to being the required frequency appropriate to input into a 
TEA, 12 time-steps were used as a compromise between accuracy and compounding errors. 
Longer horizons require projections further into the future, reducing accuracy. Whereas 
shorter horizons require more models to project the required horizon. This increases error 
propagation as more predicted data points are used in the model training. Whilst the optimal 
number of time-steps could be investigated as part of the validation procedure, this was not 
undertaken in this work. 

In contrast to the previous RBFNN method, model outputs were only used as inputs when 
historic prices were no longer available to leverage all the information in the commodity’s 
historic time series. Furthermore, the entire historic dataset was used as a model input, rather 
than the previous ten prices as in the RBFNN procedure. This allows the potential for the 
exploitation of long-running trends that span the entire time series to be used within the price 
projection. The projection strategy is presented in Figure 3.5.  
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Figure 3.5: The ensemble LSTM price projection procedure. Each of the 100 models was 
trained to reconstruct the historic time series and predict 12 time-steps into the future. The 
predicted time-steps were added to the historic dataset and used as inputs to train the next 
model. Therefore, the dataset increases by 12 time-steps after each model training.  

3.4.2.2 Machine Learning 
The commodity’s historic dataset (2009-2021) was split into a training and validation set based 
on the ratio between the historic data (12 years, 30%) and projection horizon (26 years, 70%) 
required for a TEA. Only 12 years of historic data were available for each commodity, 
translating to 30% of the final projection horizon. As such, a training and validation split of 30% 
and 70% was necessary to obtain representative hyperparameters for the final task. A test set 
was not employed due to the limitations in dataset size. As the true prices for the projection 
horizon (2021 to 2046) are unknown, the optimal model was selected based on its 
performance on the validation set. This is also how the method would be adopted when using 
it within in a TEA.  

The network architecture is presented in Figure 3.6 and consists of a fully connected layer and 
a LSTM layer. The fully connected layer contains two neurons, creating new feature 
combinations of the model inputs to feed into the LSTM layer. This layer facilitates the use of 
any interdependencies present between the crude oil and commodity price being projected by 
the network. The size of the LSTM layer was determined through the validation procedure and 
is specific to each commodity. 

During each model training, the networks were trained using the entire historic dataset. For 
the validation procedure the size of the input sequence ranged from 2 x 36 to 2 x 132 time-
steps, owing to the addition of 12 time-steps after each model training. Similarly, the final 
model’s input size ranged from 2 x 144 to 2 x 432 time-steps. To reduce concerns with 
exploding and vanishing gradients, the models were trained to produce an output at each time-
step and a gradient threshold of 1 was implemented (Brownlee, 2017). An ensemble of 100 
ML models was trained using a randomly assigned number of hidden units below a maximum 
selected during the grid search procedure. This LSTM ensemble of models, each trained to 
reproduce the entire historic time series, facilitates the exploitation of different underlying 
trends embedded within the historic time series, producing a distribution of potential futures.  
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Figure 3.6: Model structure for commodity price projections. The EIA’s historic and projected 
Brent Crude oil prices and the historic pricing data for the commodity being projected are used 
as model inputs. The prices are fed into a fully connected layer containing two neurons, 
followed by an LSTM layer. The number of LSTM hidden units was optimised as part of the 
validation procedure. The output layer consists of the price predictions for 12 time-steps into 
the future. 

Each of the models were trained to reduce the MSE between the training data and the model 
predictions using the Adam optimisation algorithm (Mathworks, 2018). A grid search of optimal 
hyperparameter combinations was undertaken to evaluate the model performance over the 
validation set. The learning rate, number of epochs, and maximum number of hidden units in 
the LSTM layer were optimised during the grid search. The Continuous Rank Probability Score 
(CRPS) (equation 3.1) was used to evaluate the model performance where: F is the forecast, 
y is the prediction, and x is the actual value (observation). 

𝐶𝑅𝑃𝑆(𝐹, 𝑥) =  ∫ ൫𝐹(𝑦) − 1(𝑦 − 𝑥)൯
ଶ

𝑑𝑦
ஶ

ିஶ
       (3.1) 

CRPS is a generalisation of the mean absolute error within probabilistic forecasting, 
encompassing both sharpness and calibration (Gneiting & Katzfuss, 2014). Sharpness refers 
to the forecast variance, i.e. the sharper the forecast the narrower the projected distribution. 
Calibration is the accuracy of the prediction, it reflects the consistency between the predictions 
and observations.   

3.4.2.3 Method limitations 
The LSTM ensemble method is an improvement on the previously applied RBFNN approach 
however, there are a number of remaining limitations. For example, whilst the number of LSTM 
units, epochs, and learning rate were optimised during training the number of layers, number 
of neurons in the fully connected layer, use of a fully connected layer, number of time-steps 
being predicted etc. were all arbitrarily selected. In future work further investigation into these 
parameters could be undertaken. However, the computational expense increases the more 
hyperparameter combinations are investigated. As the purpose of the method is to produce 
an unbiased probabilistic 25-year price projection where the true prices are unknown the 
computational expense vs. perceived accuracy is up to the discretion of the practitioner.  

Cross-validation was not considered as part of the validation procedure. Given that the input 
data is a time series, the conventional cross-validation method, which randomly assigns data 
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points to k-folds, cannot be applied. However, a suitable approach involves leveraging 
different time-series lengths for validation. For instance, in a 4-fold cross-validation procedure 
applied to a time series comprising 144 data points, the model's performance can be evaluated 
using varying time-series lengths e.g., 36, 72, 108, and 144 data points, while maintaining a 
consistent 30% training and 70% validation split. The optimal hyperparameters would then be 
determined based on the overall performance across all validation sets. This allows for an 
assessment of the model's performance across different stages of the time series.  

An additional limitation of the method lies in how historical commodity prices and EIA pricing 
projections were integrated into the model. To enhance prediction accuracy, a more effective 
approach would have involved staggering the inputs, whereby future crude oil price projections 
from the EIA served as inputs for the corresponding commodity price predictions. For instance, 
inputting ethanol prices from January 2009 to December 2020 alongside the EIA's crude oil 
prices for January 2010 to December 2021 would provide the model with insights into future 
price dynamics, rather than solely on the current time-step data. As such, the model would be 
trained to learn the relationship between future crude oil prices and the respective commodity 
price, potentially increasing prediction accuracy.  

3.5 Sensitivity analysis 
A Monte Carlo simulation sensitivity analyses were undertaken in Chapters 4, 5, 6, and 7 
whereby the defined cost parameters were varied within the predefined bounds to produce a 
probability distribution of the performance metric. The performance metric used for this 
analysis in Chapters 4, 5, and 6 was NPV and LCOH in Chapter 7. The cost parameters and 
ranges varied for each case study are presented in Table 3.8. The parameters varied were 
based on recommendations from Sinnott and Towler (2013). As the black liquor feedstock in 
Chapter 4 and 5 was costed based on the forgone NPV from conventional renewable 
electricity generation the parameters listed in Table 3.8 were also varied for the investment 
analysis undertaken for this alternate use. The resulting NPV distribution fed directly into the 
aerobic gas fermentation investment analysis. Conversely, the wood residue feedstock had 
an associated cost, and was therefore varied as part of the uncertainty analysis. In Chapter 4 
the upper limit for each variable was the same, with the exception of renewable electricity, 
which was set to 1, assuming current subsidy rates were the maximum. This was based on 
the decreasing trend in biomass subsidies (Reuters, 2019). Contrastingly, in Chapter 5 the 
ranges were updated to follow the recommendations in Sinnott and Towler (2013). This led to 
higher upper bounds for the ISBL capital, OSBL capital, and Labour cost compared with 
ranges used in Chapter 4. Furthermore, the lower range of the generated electricity price was 
reduced in Chapter 5. The lower bound was selected to include scenarios where grid parity 
prices were met.  

With the exception of the commodity price, the same ranges presented in Table 3.8 were used 
in Chapter 6 to produce the comparative Monte Carlo simulations to assess the impact of the 
different commodity price projection methods. The recently observed volatility in electricity 
prices (European Commission, 2022), meant the previously applied cap to renewable 
electricity prices was not maintained in the simulation for Chapter 7. In Chapter 7 the 
generated electricity price was varied based on the recommended range for the ‘fuel cost’ 
parameter presented in Sinnott and Towler (2013). Furthermore, the parameters varied in the 
Monte Carlo simulation differ to the preceding Chapters. The parameters were changed to 
simplify the Monte Carlo simulation procedure as the case study in Chapter 7 contained 600 
TEA models. Each of the TEA models represented a different feedstock-capacity-location 
combination. The TEA and variables required for the Monte Carlo simulation were contained 
within each of the 600 Aspen HYSYS simulations. Therefore, it was less computationally 
expensive to export the LCOH breakdown and vary the parameters within the breakdown than 
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to stochastically vary the parameters within each of the simulations. The parameters varied 
were selected to closely resemble the parameters varied within Chapters 4 and 5. With 
hindsight the variables used in Chapters 4 and 5 could have been made easily exploitable 
during the creating of the Aspen HYSYS simulations.  

For each study the Monte Carlo simulation was run 2,000 times, generating a stochastic 
parameter set for each scenario using a uniform distribution within the defined lower and upper 
limits for the parameters. Different probability distributions can be used for sensitivity 
parameters. For example, Dimitriou et al. (2018) used a normal distribution for all parameters 
in their TEA for biofuel production, with ranges obtained from literature and industry experts. 
This was justified as more data supported the base assumptions/estimations than the ranges 
(Dimitriou et al., 2018). However, there are a limited number of commercialised biorefineries, 
meaning probability distributions are often arbitrarily selected rather than based on observed 
data. Furthermore, it has been noted that cost overruns are more frequent and of a greater 
magnitude than underruns, suggesting that asymmetrical distributions would better fit capital 
cost estimation data (Brown, 2015). Asymmetrical distributions have been employed in 
uncertainty analyses e.g., Zhao et al. (2016). Despite this, symmetrical distributions such as 
triangular and normal are commonly applied in TEAs (Barahmand & Eikeland, 2022). In the 
absence of distribution data surrounding cost predictions vs. observations for second 
generation biochemical production, uniform distributions were used in this work. Uniform 
distributions are thought to provide the most information about a parameter when only the 
upper and lower bound are known (Mishra & Datta-Gupta, 2018). Using a uniform distribution 
means any value between the lower and upper limit has an equal probability occurring. This 
approach negates the need for an additional distribution assumption. The use of a uniform 
distribution gives rise to the broadest range for the cumulative NPV (within the defined 
parameter ranges), whilst the wider upper range applied (Table 3.8) skews the capital cost 
contribution to the upper end. 

The exception to the application of a uniform distribution is commodity prices. In Chapter 6, a 
methodology to determine the probability distribution for future prices was developed and 
incorporated into the Monte Carlo analysis. 

Table 3.8: Monte Carlo simulation parameters. The values presented are multiplied by the 
nominal value. All variables were assigned a uniform distribution between the ranges outlined. 

Monte Carlo Input 
parameter 

Chapter 4 Chapter 5  Chapter 7 
Chapter 6 

Lower Upper Lower Upper Lower Upper 
Product price 0.7 1.3 0.8 1.2   
Generated electricity 
price 

0.7 1 0.48 1 0.8 2 

Feedstock cost   0.7 1.3 0.9 1.3 
ISBL capital 0.8 1.3 0.8 1.5   
OSBL capital 0.8 1.3 0.8 1.5   
Labour cost 0.8 1.3 0.8 1.5   
Variable operating     0.8 2 
Fixed capital     0.8 1.5 

 

In Chapter 5 a single point sensitivity analysis using a tornado chart was conducted in 
conjunction with the Monte Carlo analysis. Here, each parameter was varied independently 
within the range presented in Table 3.8 to determine the relative importance of the different 
variables with respect to the product’s MSP. 
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3.6 Life cycle assessment 
In Chapters 4, 5, and 7 a cradle-to-gate LCA was undertaken following ISO Standards 14040 
(International Organization for Standardization, 2006a) and 14044 (International Organization 
for Standardization, 2006b). Greenhouse gas (GHG) emissions were calculated based on the 
most recent Integrated Pollution Prevention and Control 100-year Global Warming Potential 
factors, thereby quantifying GHG emissions in terms of CO2 equivalents (CO2eq) (Stocker et 
al. (2014).   

The functional units were defined as 1 kg or 1 kWh depending on the product, outlined in Table 
3.9. In Chapter 4, emissions were allocated between the products using both energy and 
economic allocation. However, the results were largely the same, indicating that the $/KJ value 
of the products was similar. In Chapters 5 and 7 energy allocation was utilised to allocate 
emissions between products.  

Table 3.9: Functional units used to quantify the cradle-to-gate life cycle emissions 

Product Functional 
Unit 

Chapter 

Isopropanol 1 kg 
Chapter 4 

Acetone 1 kg 
1,3-Butadiene 1 kg 

Chapter 5 
Renewable Electricity 1 kWh 
Higher alcohols 1 kg 
Butane-rich product 1 kg 
Hydrogen 1 kg Chapter 7 

 

No emissions were assigned to the black liquor feedstock, which is considered a by-product 
from pulp production. Consequently, the upstream forestry management and transportation of 
virgin pulp wood to the pulp mill are attributed to the pulp product and not to black liquor. In 
Chapter 5, emissions were assigned for the collection, chipping, loading, and transportation 
of wood residues and virgin wood. Similarly, in Chapter 7, waste biogenic feedstocks such as 
vinasse and distillery wastewater were considered by-products and were not assigned 
emissions. As no emissions were attributed to the carbon content of these biogenic 
feedstocks, any CO2 released during their combustion in processing was not accounted for. 
Additionally, owing to the cradle-to-gate framework used, negative emissions were assigned 
to products sequestering biogenic carbon. 

For wood residues, collection, chipping and loading emissions were taken from (McKechnie 
et al., 2011). Pulpwood emissions were taken from (Bernstad et al., 2017) (excluding land use 
change). Transport emissions for both feedstocks were updated to EURO 6 freight lorries 
using data from ecoinvent 3.7 and the transportation distance modified to reflect the Chinese 
production profiles used during the wood chip cost calculation (Cossalter & Barr, 2005). Raw 
material and utility emission factors were largely obtained from the ecoinvent 3.7 inventory 
database (Wernet et al., 2016). However, where materials were not available factors listed in 
existing TEA and LCA studies were used. For example, in Chapter 5 emission factors for 
catalysts were largely obtained from (Wang et al., 2022). Electricity grid emission factors were 
obtained for the country where the assessment was conducted.  

In all chapters, the calculated emissions of the products were compared to emissions from 
conventional production methods. While the framework considered in all chapters was cradle-
to-gate, the downstream use of the product would be the same regardless of its origin. 
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Therefore, the comparative emissions are valid beyond the cradle-to-gate framework 
considered. 

3.7 Surrogate modelling 
In Chapter 7 a feedstock agnostic process simulation was created for hydrogen production 
from low temperature SCWG (430°C) considering a feedstock concentration corresponding to 
a COD of 75 g/LCOD. The SCWG temperature was selected owing to the economic benefit of 
low-temperature SCWG which reduces the energetic burden required to preheat the feedstock 
(Lee et al., 2021). Furthermore, the concentration was selected as low solids concentrations 
lead to increased hydrogen production through enhancing steam methane reforming and 
water gas shift reactions (Lee et al., 2021). The simulation was conducted for 40 biomass 
feedstocks at five different processing capacities (10 to 200 m3/hr). The biomass compositions 
were collected from experimental literature investigating low-temperature SCWG (380 to 
500°C). The selected processing capacities allow for comparison to other low-carbon 
hydrogen technologies and represent realistic point source waste stream availability. From the 
resulting simulations a TEA was undertaken considering three geographic locations (China, 
Brazil, and the UK) for each feedstock-capacity combination, giving rise to 600 TEAs. The 
geographic locations were selected as case studies with abundant wet wastes suitable for 
SCWG, i.e., black liquor in China, vinasse in Brazil, and distillery wastewater in the UK and 
provide global coverage. 

A machine learning surrogate model of the 600 economic analyses was then created whereby 
the nominal LCOH and 70% probability band could be computed based on six user input 
variables, namely; the weight percentage of C, H, O, and N, processing capacity (in m3/hr), 
and geographic location. Three ML algorithms were investigated for the surrogate model, 
Random Forests (RF), Support Vector Regression (SVR), and Artificial Neural Networks 
(ANNs) as they have been previously considered for surrogate model representation of the 
SCWG gasifier to predict hydrogen production (Li et al., 2021a; Zhao et al., 2022). 

The 600 TEA combinations were split into a training set of 360, validation set of 120, and test 
set of 120 parameter combinations. As the purpose of the surrogate model was to predict a 
feedstock’s economic potential for hydrogen production via SCWG the biomass samples were 
distributed among these sets. Therefore, if a biomass composition was in the test set, the 
entire set of parameter combinations (facility size and location) for that feedstock was also 
included in the test set. Through splitting the biomass samples in this way, the model trained 
to generalise across the biomass composition. Distributing the biomass feedstocks among the 
sets resulted in 24 biomass samples in the training set, 8 in the validation set, and 8 in the test 
set. 

A grid search was undertaken using a 4-fold cross-validation procedure using GridSearchCV 
from scikit-learn was used to determine the best-performing hyperparameters on the validation 
set (Pedregosa et al., 2011). The Root Mean Squared Error (RMSE) was used as the 
performance metric for each algorithm and as the loss function in the ANN during the cross-
validation procedure. The hyperparameters that were optimised for each algorithm are 
presented in Table 3.10 along with the considered ranges. 

Table 3.10: Hyperparameters and ranges considered for each algorithm during the cross-
validation grid search procedure 

Random forests Support vector 
regression 

Artificial neural 
network 

Number of trees 
(10 – 500) 

L2 Regularisation 
penalty 

Number of layers 
(1 – 3) 
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 (0.1  – 1000) 
Maximum number of 
features for split 
(1 - 6) 
 

Kernel type 
(linear, polynomial, 
radial basis function, 
sigmoidal) 

Neurons in each layer 
(2-256) 

Maximum depth of the 
tree 
(10 - 500) 
 

Kernel coefficient 
(0.01 – 100)  

L2 Regularisation 
penalty 
(0.00001 – 0.1) 

Minimum number of 
samples before split 
(1 – 10) 
 

Degree (for polynomial 
kernel function only) 
(1 – 3) 

Learning rate 
(0.00001 – 0.1) 

Minimum data in a leaf 
(1 - 10) 

Epsilon 
(0.001 – 10) 

Epochs 
(1000 – 10,000) 
 

Bootstrap sampling  
(with or without 
replacement) 

 Batch size 
(2 – 256) 

 

The RF algorithm produces an ensemble of predictions, with the final output being the average 
of each decision tree's prediction. Ensemble methods typically have higher prediction 
accuracy because they reduce dispersion error and bias by averaging model predictions. 
Consequently, an ensemble approach was also applied to ANNs, which randomly initialise 
starting weights and biases. The average prediction from ten ANN models using the optimised 
hyperparameters was used to evaluate the algorithm performance. Unlike ANNs, SVR does 
not contain random elements during model training, so an ensemble of SVR using optimised 
hyperparameters was not implemented. 

After determining the optimal hyperparameters for each algorithm, it was evaluated on the test 
set to provide an indicative performance measure of the model's generalisability to unseen 
samples. Three performance metrics were used to assess the model's prediction accuracy: 
Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and the 
determination coefficient (R2). Each metric has its own advantages: RMSE measures the 
standard deviation of the prediction errors, penalising large errors and making it more sensitive 
to outliers; MAPE measures the absolute error between the true and predicted values and 
presents them as a percentage, being less sensitive to larger errors than RMSE; and R2 
represents the fitness of the model to the true values and provides an intuitive result, with a 
value of 1 representing a perfect fit. Equations 3.2-3.4 present these metrics, where N is the 
number of datums, yj is the true value, ŷt is the predicted value, and yM is the mean value. The 
surrogate model presented to the research community was trained on the entire dataset using 
the algorithm and hyperparameter set that produced the most accurate predictions during the 
cross-validation procedure. 
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 Feature importance 
The internal workings of ML models are not easily interpretable, resulting in a lack of 
understanding regarding the reasons behind the model's predictions. To address this 
interpretability challenge, feature importance methods are employed. One such method is 
SHapley Additive exPlanation (SHAP) Values which is based on cooperative game theory. 
SHAP values assign a contribution score to each feature, indicating its importance and impact 
on the model's output. By utilising SHAP values, users can gain a better understanding of the 
relationships between input features and model outputs (Sison et al., 2023). In this work, 
SHAP values are used to highlight the relative importance of the input features. The SHAP 
Values were obtained for the best-performing ML model using the SHAP library in Python. 
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 Initial techno-economic analysis of the integrated platform  
 

4.1 Preface 
This chapter contributes to the overall thesis aim of developing and applying Techno-
Economic Analysis (TEA) methods to evaluate the proposed aerobic gas fermentation and 
Supercritical Water Gasification (SCWG) process by developing the detailed process model 
for the novel aerobic gas fermentation platform, comparing and selecting the cost model to 
use in this and future case studies, producing the investment analysis for the initial case study, 
and undertaking the environmental assessment. It therefore contributes to the following thesis 
objectives:  

1. Develop process simulations for the aerobic gas fermentation and supercritical water 
gasification process, incorporating heat integration and downstream processing.  

2. Determine an appropriate techno-economic framework and perform a comprehensive 
techno-economic analysis of the simulated process.  

3. Quantify the greenhouse gas emissions associated with chemical and fuel production 
from the process and compare them with conventional production methods.  

4. Compare the economic and environmental competitiveness of the process with 
alternative renewable production methods.  

This initial piece of work served as the primary analysis of the technical and economic 
feasibility of the heat integrated aerobic gas fermentation platform. The proposed platform was 
previously suggested in the experimental paper by Bommareddy et al. (2020). This 
experimental paper first introduced the concept of heat integrating exothermic aerobic gas 
fermentation with endothermic SCWG to overcome the energetic inefficiency of the aerobic 
gas fermentation. The focus of the experimental paper was on the fermentation results and 
initial conceptual design of the heat integrated platform. However, without a thorough TEA the 
economic potential of the platform was unknown.  

To determine the techno-economic feasibility, a rigorous process model of the platform was 
built in Aspen HYSYS for the production of isopropanol and acetone. These were selected as 
the first case study as they represent commodity chemicals that are direct products from 
fermentation. A heat pump using isopentane as the working fluid was incorporated to utilise 
the abundant low temperature heat from the fermentation to support the SCWG reaction. 
Furthermore, the energy from the high pressure SCWG effluent was recovered using a turbo-
expander and used to supply air to the fermentation. The developed platform was energetically 
self-sufficient, including downstream processing. Owing to the high energy recovery from the 
turbo-expander additional renewable electricity was exported to the grid for sale, generating 
additional revenue. Importantly, the initial process simulation for this case study was 
undertaken by Alex Conradie. However, the TEA, Life Cycle Assessment (LCA), and journal 
writing were undertaken by the author of this thesis.  

The TEA was undertaken in the context of a China based paper and pulp mill, with black liquor 
used as the renewable carbon source. As a wet lignin-rich feedstock black liquor is particularly 
suited as a feedstock for SCWG. The study was conducted for a China location owing to it 
being the second largest virgin pulp manufacturer, representing an abundance of black liquor 
feedstock, and having lower capital and operating costs than other geographic locations. It 
was assumed that 25% of the mill’s black liquor production could be diverted from conventional 
energy recovery towards chemical production. This assumption was based on research into 
improved heat integration Kraft mills suggesting a 40% reduction in energy can be achieved 
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(Ahmetović & Grossmann, 2020), and that the Tomlinson Boiler (used for conventional energy 
recovery) is often the bottleneck of increased mill capacity (Berntsson et al., 2008).  

The mass and energy balances from the process model were used to undertake the TEA. 
Three capital expenditure and operating expenditure methods were used to evaluate the 
process, the method yielding the median results in both cases was used in the formal analysis 
of the platform. This provided a methodology basis to use in the subsequent TEAs undertaken 
in this thesis. Whilst the median result is not necessarily the most accurate, it is impossible to 
determine method accuracy without a commercialised facility.  

In addition, as black liquor has no economic value, this work developed a method to cost the 
waste black liquor feedstock. The feedstock was costed based on its utility value, calculated 
as foregone renewable electricity generation. A process model for conventional renewable 
electricity generation was created and costed. The Net Present Value (NPV) leveraged from 
this alternate use was subtracted from the aerobic gas fermentation’s initial NPV to obtain the 
final NPV delivered through the aerobic gas fermentation platform for chemical production.  

To remove bias from the product price selection procedure price projections for both 
isopropanol and acetone were produced using a Radial Basis Function Neural Network 
(RBFNN). The RBFNN was trained as one step ahead predictor based on 10 historic prices. 
The weights and centre points were optimised during training. Once optimised the RBFNN 
was initiated with 10 real data points and ran recursively where predicted prices were used as 
inputs to the model. Stochastic uncertainty was accounted for by employing a uniform 
distribution of ±30% from the forecast centre point.  

As highlighted in Chapter 2 the intrinsic uncertainty within early-stage feasibility studies 
necessitates an uncertainty analyses to band the results within a range of potential outcomes. 
This work incorporates this through conducting a Monte Carlo uncertainty analysis. The 
rigorous process modelling enabled the expansion of the economic analysis to include a 
cradle-to-gate LCA to quantify the process’ Greenhouse Gas (GHG) emissions. This was 
compared with conventional production methods and facilitated a thorough technology 
evaluation based on both economic and environmental results. 

To determine the potential of a technology it is important to compare it to feasible alternative 
production methods. As such, the TEA and LCA results were compared to a benchmark 
anaerobic gas fermentation process. As commercial gas fermentation is largely dominated by 
anaerobic bacteria this was used as the benchmark alternative. In addition to commercialising 
ethanol production via gas fermentation, LanzaTech have also investigated the production of 
acetone, a precursor to isopropanol. As such, LanzaTech’s investigation undertaken for the 
Department of Energy, in collaboration with Oak Ridge National Laboratory, was used as the 
anaerobic process for comparison (Simpson et al., 2019).  

The novelty of this work was the TEA of the proposed heat integrated aerobic gas fermentation 
and SCWG platform. Limited TEA studies have been conducted into aerobic gas fermentation. 
Existing studies have focused on identifying process parameters (productivity and yield) to 
define future research targets (Khan et al., 2014), general assessments for renewable 
chemical production including higher value co-products Choi et al. (2010), and the potential to 
reduce energy consumption through using thermophilic bacteria (Levett et al., 2016). In 
contrast, the analysis in this thesis aimed to evaluate the economic potential by applying 
process engineering solutions to some inherent disadvantages of aerobic gas fermentation. 
In addition, this study compares different techno-economic costing models to evaluate the 
economic feasibility of the platform. Existing comparisons in capital costing methods for TEAs 
exist; however, the comparisons are limited to equipment cost and capital cost estimation, 
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excluding fixed operating cost considerations (Brown, 2015; Symister, 2016; van Amsterdam, 
2018; Feng & Rangaiah, 2011). Furthermore, these studies did not undertake the comparison 
within a TEA. Finally, this study compares both the TEA and LCA results of the proposed 
aerobic gas fermentation and SCWG platform and a benchmark anaerobic gas fermentation 
process. Existing gas fermentation technology comparisons have focused on comparisons 
between gas fermentation and hydrolysis-based fermentation (Piccolo & Bezzo, 2009; Choi et 
al., 2010; Christodoulou & Velasquez-Orta, 2016) or thermochemical conversion pathways 
(Haro et al., 2013; Tan et al., 2016; Okoro & Faloye, 2020), detailed in Chapter 2.  

This study demonstrated the proposed technology achieved a cumulative NPV of $42 million 
using the nominal TEA inputs. The uncertainty analysis demonstrated a 70% NPV probability 
band of between $35 and $85 million with no negative outcomes. Therefore, under the 
considered scenario, the platform demonstrates it is able to cost-competitively produce the 
commodity chemicals isopropanol and acetone. Using a cradle-to-gate framework, net  
negative emissions were obtained owing to the sequestration of biogenic carbon (Isopropanol: 
-2.10 kgCO2eq/kg, Acetone: -2.21 kgCO2eq/kg). This is in comparison to 2.07 kgCO2eq/kg and 
2.43 kgCO2eq/kg via conventional production. When compared to the benchmark anaerobic 
process a comparable techno-economic outcome was achieved. LanzaTech’s anaerobic 
study claimed that by selling acetone at market prices ethanol could be sold at or below the 
US Department of Energy’s 2022 target of $ 3/Gasoline Gallon Equivalent (GGE). By 
marketing isopropanol and acetone produced from the aerobic platform as a biofuel mixture a 
sales price of $2.87/GGE was achieved, meeting the $3/ GGE target. Furthermore, the LCA 
results were also comparable with the anaerobic process. Achieving emissions of -2.04 
kgCO2eq/kg for the combined isopropanol and acetone product compared to -1.9 kgCO2eq/kg 
for a combined ethanol and acetone product in LanzaTech’s anaerobic gas fermentation 
study. This suggests that the intrinsic energetic efficiency of anaerobic gas fermentation can 
be attained by aerobic gas fermentation through process engineering. It also demonstrates 
the potential of heat integrated aerobic gas fermentation with SCWG as a renewable 
biochemical technology platform. 

A limitation of this study was neglecting to compare different equipment cost models. This has 
been previously investigated and is detailed in Chapter 2: Literature Review (Symister, 2016; 
van Amsterdam, 2018; Feng & Rangaiah, 2011) However, there is currently no consensus on 
the most accurate or appropriate cost model. As such, the potential to produce representative 
cost models based on recent commercialised projects is proposed as an area of further 
investigation, discussed further in Chapter 8. Furthermore, a single point sensitivity analysis 
was not undertaken in this study. This prevents the identification of the relative importance of 
each variable to the process’ economic outcome. To rectify this, a single point sensitivity 
analysis was conducted in Chapter 5. In addition, the upper limit used for the sensitivity 
analysis parameters were uniformly set in this analysis. However, the ranges recommended 
in Sinnott & Towler (2013) have higher upper bounds for the inside battery limit capital, outside 
battery limit capital, and labour cost. This is attributed to the fact that cost overruns are more 
common and acute than cost underruns (Brown, 2015). To rectify this, the recommended 
bounds from Sinnott and Towler (2013) were adopted in Chapters 5 and 7. To account for 
product price variability and uncertainty in the projected prices an arbitrary ±30% was used. 
Therefore, the product price uncertainty band used in the Monte Carlo simulation had no 
bearing on the actual variability within the historic commodity price data. This price projection 
method is modified in Chapter 6 and the Monte Carlo simulations are rerun and compared to 
evidence the importance of price distributions consideration to TEA outcomes. Another 
limitation was representing the SCWG of black liquor using kinetics for the gasification of 
guiacol. Whilst guiacol is commonly used as a model compound for lignin (Hu et al., 2020), it 
does not represent the actual composition of black liquor. This simplified approach is modified 
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in Chapter 7 to allow for the input of actual biomass compositions to the gasifier model. Finally, 
a remaining limitation of this study is the failure to model anaerobic gas fermentation for 
comparison, whilst a benchmark study was used for the analysis, the differences in the 
considered scenarios and TEA methodologies make accurate comparisons between studies 
difficult. As such, in the subsequent TEA in Chapter 5 the technologies compared are all 
rigorously modelled.  

This work was published in the Johnson Matthey Technology Review Journal in July 2021 
entitled “Reconciling the Sustainable Manufacturing of Commodity Chemicals with Feasible 
Technoeconomic Outcomes: Assessing the investment case for heat integrated aerobic gas 
fermentation” and is presented in this thesis as Chapter 4. The corresponding supplementary 
information as published alongside the manuscript is reprinted in Appendix A.1.  

Article Title: Reconciling the Sustainable Manufacturing of Commodity Chemicals with 
Feasible Technoeconomic Outcomes: Assessing the investment case for heat integrated 
aerobic gas fermentation 

Journal: Johnson Matthey Technology Review Journal 

Date: July 2021 

DOI: 10.1595/205651321X16137377305390 

Authors: Sarah Rodgers, Alex Conradie, Rebekah King, Stephen Poulston, Martin Hayes, 
Rajesh Reddy Bommareddy, Fanran Meng, Jon McKechnie 

Author Contributions: Sarah Rodgers: Methodology, Software, Formal analysis, 
Investigation, Writing - Original Draft, writing – Review & Editing, Visualisation. Alex Conradie: 
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Draft, Writing – Review & Editing, Visualisation, Supervision, Funding Acquisition. Rebekah 
King: Methodology, Software, Formal Analysis, Investigation, Writing – Review & Editing. 
Stephen Poulston: Writing – Review & Editing. Martin Hayes: Writing – Review & Editing. 
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The manufacturing industry must diverge from a 
‘take, make and waste’ linear production paradigm 
towards more circular economies. Truly sustainable, 

circular economies are intrinsically tied to renewable 
resource flows, where vast quantities need to 
be available at a central point of consumption. 
Abundant, renewable carbon feedstocks are often 
structurally complex and recalcitrant, requiring 
costly pretreatment to harness their potential fully. 
As such, the heat integration of supercritical water 
gasification (SCWG) and aerobic gas fermentation 
unlocks the promise of renewable feedstocks such 
as lignin. This study models the technoeconomics 
and life cycle assessment (LCA) for the sustainable 
production of the commodity chemicals, 
isopropanol and acetone, from gasified Kraft black 
liquor. The investment case is underpinned by 
rigorous process modelling informed by published 
continuous gas fermentation experimental data. 
Time series analyses support the price forecasts 
for the solvent products. Furthermore, a Monte 
Carlo simulation frames an uncertain boundary for 
the technoeconomic model. The technoeconomic 
assessment (TEA) demonstrates that production 
of commodity chemicals priced at ~US$1000 per 
tonne is within reach of aerobic gas fermentation. 
In addition, owing to the sequestration of biogenic 
carbon into the solvent products, negative 
greenhouse gas (GHG) emissions are achieved 
within a cradle-to-gate LCA framework. As such, 
the heat integrated aerobic gas fermentation 
platform has promise as a best-in-class technology 
for the production of a broad spectrum of renewable 
commodity chemicals.

1. Introduction

The development of a sustainable chemical 
industry requires a transition from the use 
of finite fossil reserves to renewable carbon 
feedstocks. Second generation biochemical 

Reconciling the Sustainable Manufacturing 
of Commodity Chemicals with Feasible 
Technoeconomic Outcomes
Assessing the investment case for heat integrated aerobic gas fermentation
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technologies utilise carbon feedstocks outside 
the food value chain. Such technologies allow 
agricultural, industrial and organic municipal solid 
wastes to be used for chemical production (1). 
These carbon sources are inexpensive, abundant 
and renewable, contributing towards the 
development of a sustainable, circular economy 
(2). Lignocellulosic biomass typically consists 
of cellulose, hemicellulose and lignin. However, 
owing to its recalcitrance, lignin cannot be utilised 
by conventional fermentation, which accounts for 
up to 40% of lignocellulosic biomass (3).
Black liquor is a coproduct from Kraft paper and 

pulp mills, consisting of the residual lignin after 
recovery of the cellulosic pulp product. In Kraft 
mills approximately 10 tonnes of weak black 
liquor is produced per air dried tonne of pulp (4). 
The combustion of this lignin-rich coproduct in 
Tomlinson boilers makes modern Kraft mills self-
sufficient in steam and electrical energy (4, 5). 
However, research into Kraft mill heat integration 
over the last two decades has highlighted the 
potential to reduce mill energy consumption 
by up to 40% (6, 7). Such projects would free 
up a portion of weak black liquor for alternative 
income generation. Additionally, in mills where the 
Tomlinson boiler is the bottleneck for the process, 
diverting a portion of black liquor away from the 
recovery boiler could allow mills to increase their 
capacity by 25% (8). Whilst the traditional use for 
the black liquor coproduct is renewable electricity 
generation, gasification of this carbon-rich 
feedstock creates opportunities for biochemical 
production, expanding the product range of a Kraft 
mill.
SCWG has emerged as a hydrothermal technology 

suited to the gasification of wet biomass feedstocks 
to produce synthesis gas (syngas). SCWG is 
particularly advantageous for processing feedstocks 
with moisture contents >30%, where it energetically 
outcompetes the inherent drying required by 
conventional gasification (9). It is therefore 
capable of utilising streams such as black liquor, 
food waste, sewage sludge and manure which are 
typically uneconomical as feedstocks for traditional 
gasification technologies (10). Furthermore, the 
dissolution of the carbon feedstock in water leads 
to low tar and coke production in comparison 
with conventional gasification (11), simplifying 
purification technologies. Upgrading syngas to 
fuels and chemicals using metal-based catalysts 
is an established technology for coal feedstocks. 
As such, these technologies have been applied 
to syngas derived from renewable feedstocks, 

where Johnson Matthey and bp recently licenced 
their Fischer-Tropsch technology to Fulcrum 
Bioenergy (12). However, such technologies 
experience high capital and operating costs due 
to the utilisation of high operating temperatures 
and pressures, the prerequisite for specific carbon 
monoxide to hydrogen ratios and potential catalyst 
poisoning from gas impurities (13). Moreover, low 
chemocatalytic selectivity remains a challenge for 
converting syngas to commodity chemicals. Gas 
fermentation, on the other hand, circumvents 
these intrinsic challenges, notably through high 
selectivity biocatalysis, and has emerged as an 
alternative technology for syngas upgrading (13). 
Gas fermentation exploits microbial cell factories 
able to utilise carbon dioxide and hydrogen as a 
sole carbon and energy source to produce target 
chemicals through metabolic engineering (14). 
The commercialisation of gas fermentation 

technology is dominated by anaerobic fermentation, 
where LanzaTech leads the way in the utilisation 
of carbon monoxide-rich steel mill off-gas to 
produce ethanol (15). Their Jintang plant has a 
46,000 tonne year–1 operating capacity and uses 
their proprietary anaerobic acetogen, Clostridium 
autoethanogenum, as a microbial cell factory. 
This microorganism employs the Wood-Ljungdahl 
pathway, which is a thermodynamically efficient 
carbon dioxide fixation pathway compared to other 
biological C1 fixation pathways (16). However, 
such anaerobic carbon dioxide fixation presents 
energetic limitations which limit the product scope 
(17). Also, low value byproducts are common, 
negatively impacting on the carbon efficiency of the 
desired product whilst complicating downstream 
processing (18). 
Aerobic cell factories on the other hand, are 

energetically advantaged compared to anaerobic 
cell factories (19). Therefore, the use of aerobic 
bacteria allows for the production of more complex 
chemicals via energy-intensive biochemical 
pathways (18), broadening the renewable chemical 
spectrum. However, a disadvantage of aerobic gas 
fermentation is its reliance on the Calvin-Benson-
Bassham cycle. Whilst this cycle achieves favourable 
kinetics by investing appreciable energy into C1 
fixation (20), it is consequently thermodynamically 
inefficient compared to the Wood-Ljungdahl 
pathway. Due to the greater heat generation, 
aerobic bioreactors require the installation of 
substantial cooling capacity, translating to both 
capital and operating cost burden (19). In addition, 
compressors are required to satisfy the oxygen 
demand and the presence of oxygen necessitates 
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the use of more expensive stainless steel reactors. 
Historically, aerobic fermentation has been used 
for high value, low volume products (21). However, 
for the production of higher volume commodity 
products, where utility costs dominate (22), 
aerobic fermentation has been hindered by process 
economics. This is a result of the aforementioned 
cooling requirements, associated air compression 
and reduced economies of scale compared with 
anaerobic fermentation (23). 
The difference between aerobic and anaerobic 

fermentation’s process economics is highlighted 
in recent work by Dheskali et al. who developed 
an estimation tool for the fixed capital investment 
(FCI) and utility consumption for large-scale 
biotransformation processes (24). Their model 
presented a ~20% increase in unitary FCI and 
a >1.5 times increase in energy requirement for 
aerobic fermentation over anaerobic, for a modest 
aeration rate. This was attributed to the capital and 
operating costs associated with the air compressors 
required for aerobic fermentation (24). Gunukula 
et al. also presented an almost 30% increase 
in the minimum selling price for commodity 
chemicals produced via aerobic compared to 
anaerobic fermentation (25). Similarly, in a 
series of technoeconomic studies for cellulosic 
ethanol production by the National Renewable 
Energy Laboratory (NREL), the fermentation area 
was found to be the primary cost for aerobic 
fermentation, with the fermentation compressors 
having the greatest power requirement (26). On 
the other hand, for anaerobic fermentation, the 
pretreatment section was found to be the largest 
cost driver with a less pronounced compressor 
duty (27). 
The potential of aerobic fermentation can only 

be effectively realised by reducing these costs, 
notably through improved engineering design. 
This work evaluates the integration of aerobic 
gas fermentation with SCWG as a solution to 
economically feasible commodity chemical 
production as proposed by Bommareddy et al. (28). 
The integration of gas fermentation with SCWG via 
a heat pump allows for the low temperature heat 
released by gas fermentation to be utilised by the 
high temperature, endothermic SCWG process. 
This both removes the cooling water burden 
required by the bioreactors and reduces the 
fraction of hydrogen that needs to be combusted 
to support the endothermic gasification process. 
Furthermore, the duty released by expanding the 
high-pressure gas product from SCWG is recovered 
using a turbo expander and subsequently used to 

power the air compression, negating the need for 
external power provision. This integration has the 
potential to overcome the barriers to cost effective, 
commercial scale, aerobic gas fermentation for 
commodity chemical production. 
Cupriavidus necator (formerly, Alcaligenes 

eutrophus and Ralstonia eutropha) is employed as 
the microbial cell factory in this work. Cupriavidus 
necator is a chemolithoautotrophic bacterium 
capable of aerobic, autotrophic growth using 
carbon dioxide as the sole carbon source, hydrogen 
as electron donor and oxygen as the electron 
acceptor (29). This cell factory benefits from the 
kinetic advantage of the Calvin-Benson-Bassham 
cycle and is strictly respiratory, which compared 
to anaerobic cell factories results in negligible 
synthesis of low value, fermentative byproducts. 
Bommareddy et al. (28) detail the continuous 
production of isopropanol and acetone using 
aerobic gas fermentation. This first generation 
Cupriavidus necator cell factory produces acetone 
as an overflow coproduct from the engineered 
biochemical pathway to isopropanol, which is 
subject to future optimisation of this carbon 
flux bottleneck. Further relevant to the process 
design, this cell factory has not been adapted 
to be tolerant to concentrations of isopropanol 
>15 g l–1, necessitating a dilution strategy through 
an engineering solution. Relying on the sustainable 
manufacturing paradigm in Bommareddy et al. 
(28), this work presents the TEA and LCA for a 
solvent plant, that exploits this first generation 
cell factory, producing isopropanol and acetone 
via aerobic gas fermentation and purifying the 
solvents via a heat and mass integrated separation 
train network. 

2. Materials and Methods

2.1 Conceptual Process 

The proposed solvent plant is co-located with a 
Kraft paper and pulp mill in China with throughput 
as defined in Table I. Figure 1 outlines the Kraft 
process, which conventionally directs weak black 
liquor to multi-effect evaporators, producing strong 
black liquor which is combusted in a Tomlinson 
boiler to produce steam (4). This steam makes the 
mill self-sufficient in steam and electrical energy. 
Importantly, the cooking chemicals (NaOH and 
Na2S) are recovered and recycled to the pulping 
process.
As previously mentioned, investments in heat 

integration have freed up a portion of the weak 
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black liquor coproduct for alternative uses. This 
study explores the opportunity of utilising this 
excess coproduct, taken as 25% of total production, 
for isopropanol and acetone production through 
aerobic fermentation in an integrated solvent plant 
as outlined in Figure 1. 
Given black liquor has no economic value as 

a product, it is costed at its utility value. This 

is calculated based on its conventional use for 
renewable electricity generation, requiring capital 
investment in increased steam turbine capacity. 
The foregone net present value (NPV) associated 
with this conventional use is used as the utility 
value for the black liquor feedstock.
In the proposed solvent plant (Figure 1), weak 

liquor undergoes SCWG to carbon dioxide and 

Table I Kraft Mill Plant Capacity
Parameter Value Unit Reference
Pulp mill capacity 130 Air dried tonne h–1 –

Total weak black liquor production 1300 tonne h–1 (4)

Black liquor solids content 17.5 % (w/w) (4)

Lignin content in solids 41.5 % (w/w) (30)

Lignin content in black liquor 7.3 % (w/w) –
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Kraft process and cooking chemicals are returned to the Tomlinson recovery boiler. LP = low pressure; MP = 
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hydrogen. A challenge, however, is the efficient 
recovery of the cooking chemicals from the SCWG 
reactor and their recycle to the pulp mill digestor. 
Loss of these salts would result in a significant cost 
to the pulp mill. Under supercritical conditions, the 
properties of water change from polar to apolar, 
where the solubility of inorganic salts is very low 
(31). Cao et al. described the precipitation of 
alkali sodium salts in SCWG, reporting a neutral 
pH for the reactor effluent, suggesting that under 
supercritical conditions the salts largely precipitate 
from the solution (32). However, this precipitation 
can cause issues with plugging and fouling within 
the reactor (33). In this study the salts are removed 
prior to entering the SCWG reactor, in a manner 
similar to supercritical water desalination (34, 35) 
and modelled for SCWG of black liquor (33). 

2.2 Process Intensification, Heat 
and Mass Integration

The solvent plant’s mass and energy balance was 
informed by experimental data from continuous 
gas fermentation (28), and rigorous process 
simulation using Aspen HYSYS v11. The lignin 
content in black liquor was modelled as guaiacol, 
a model compound for lignin (36), as principal 
feed to the solvent plant. The weak black liquor is 
further diluted prior to entering the SCWG reactor, 
as lower biomass concentrations promote superior 
thermal cracking and yields greater hydrogen 
and carbon dioxide owed to the increased water 
concentration favouring the forward water-gas 
shift reaction (37).
The simplified flow diagram (Figure 1) outlines 

the six plant sections of the solvent plant, whilst 
Figure 2 presents a detailed process flow 
diagram and operating conditions for upstream 
and downstream processing. The unit operations 
included in each of the six plant sections are 
summarised in Table II. Table III summarises the 
scale-up of the experimental gas fermentation data 
for the process simulation, which recognises the 
oxygen mass transfer limitations associated with 
the safety requirement to maintain non-flammable 
operating conditions. The heat integration between 
the low temperature exothermic gas fermentation 
and the high temperature endothermic SCWG is 
facilitated using a heat pump with isopentane as 
the working fluid (28).
Isopropanol and acetone are produced in both the 

aqueous and vapour phase of the bioreactors. The 
solvents in the vapour phase are recovered via gas 
absorption through mass integration using internal 

process streams, i.e. the isopropanol product was 
utilised to recover acetone, and water to recover 
isopropanol. For the isopropanol in the aqueous 
phase, azeotropic distillation is required due to the 
homogeneous minimum boiling point azeotrope 
formed between isopropanol and water (38). 
Conventionally, this azeotrope is broken using an 
entrainer, historically benzene (39). However, owed 
to its carcinogenic properties, alternative entrainers 
such as cyclohexane have been adopted (40). 
An alternative azeotropic separation technique is 
pressure swing distillation, taking advantage of 
the composition differences in the azeotrope at 
different pressures (41). In this work, pressure 
swing distillation was employed with the coproduct 
acetone acting as an unconventional entrainer. 
Further detail of the separation train is presented 
in Figure 2. 
A U-loop bioreactor, similar to the one used by 

Peterson et al., is used in this work (42). The 
benefit of a U-loop bioreactor is that high mass 
transfer coefficients can be achieved without 
the need for mechanical agitation, leading to 
greater oxygen transfer rate and a reduced power 
requirement compared to conventional stirred 
tank reactors (42). The oxygen mass transfer 
coefficient calculation associated with the solvent 
plant’s mass balance is presented in Table S1 in 
the Supplementary Information (available with the 
online version of this article), falling at the lower end 
of the range of mass transfer coefficients reported 
by Peterson et al. (42). Details of the experimental 
gas fermentation data is presented in Table III; 
a more detailed explanation of the experimental 
procedure can be found in Bommareddy et al. (28).
Significant heat integration makes the solvent 

plant self-sufficient in electricity and both low and 
medium pressure steam. Furthermore, process 
water recovered from distillation and the steam 
condensate is recycled to reduce the water make-
up burden.
The process flow diagram for conventional 

renewable electricity generation, used to value the 
black liquor, is presented in Figure 3. An additional 
steam turbine is required to produce the renewable 
electricity for sale, relying upon the existing multi-
effect evaporators, air compression and Tomlinson 
boiler. Superheated steam at 9000 KPa and 480ºC 
is used in the steam turbine (44). The medium 
pressure steam exiting the turbine is used in the 
multi-effect evaporators to concentrate the excess 
black liquor to 75% and to preheat the auxiliary 
air supplied to the Tomlinson boiler. Similarly, 
the associated electricity demand for the air 
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compressor and pump is provided by the electricity 
generated. Resultantly, through conventional 
renewable electricity generation, the excess black 
liquor produces 138 GWh year–1 for sale to the grid.

2.3 Costing Models

The mass and energy balance associated with 
the rigorous process simulation informs the 
capital cost, fixed operating cost and variable 

operating cost estimation. For the capital cost 
estimation, major equipment purchase costs 
were estimated using the models from Seider 
et al. (45), with the exception of the turbo-
expander (46). Three different methods are used 
to calculate the FCI, owed to differences in the 
estimation methods. These three methods are 
designated as: the NREL method outlined in the 
2011 NREL report (27), the Towler and Sinnott 
(TS) method taken from Chemical Engineering 

Table II Solvent Plant Section Unit Operations

Plant Section Unit Operations Thermodynamic 
model

Feedstock pre-treatment SCWG reactor, combustion chamber, combustion 
turbine, isopentane heat pump cycle Lee Kesler Plocker

Fermentation Seed and production bioreactors, pumps, 
centrifuge Lee Kesler Plocker

Product recovery Acetone stripper, water stripper, water removal 
columns UNIQUAC

Solvent recovery Acetone separation and purification columns UNIQUAC

Isopropanol pressure swing 
distillation Low- and high-pressure distillation columns PSRV

Steam and water management Mechanical vapour compressor, water and steam 
heat exchangers Lee Kesler Plocker

Table III  Summary of Scale-Up of Experimental Gas Fermentation Data for ASPEN HYSYS 
Process Simulation

Sources and sinks Unit Carbon dioxide and hydrogen as 
sole energy and carbon source

Bioreactors
 Oxygen transfer coefficient 1 h–1 415

 Oxygen concentration in off-gasa % (mol/mol) 3.35

 Vessel volume m3 500

 Number of bioreactor trains – 4

Gas uptake rates
 Oxygen mmol l–1 h–1 230

 Carbon dioxide mmol l–1 h–1 125

 Hydrogen mmol l–1 h–1 1006

Isopropanol
 Specific productivity kg m–3 h–1 1.46

 Broth concentrationb g l–1 12.4

Acetone
 Specific productivity kg m–3 h–1 0.38

 Broth concentration g l–1 1.7

Biomass
 Growth rate h–1 0.025

 Dry cell weight with cell retention g l–1 21.5
a Maintained to ensure oxygen concentration is below hydrogen’s limiting oxygen concentration of 4.6% (mol/mol) (43)
b Controlled via disc stack centrifugation, adding to the capital burden
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Fig. 3. Process flow 
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Design (47) and the Hand method detailed in 
Sustainable Design Through Process Integration 
(48). The calculation basis of the three methods 
is presented in Table IV.
For all three methods, the calculated equipment 

purchase costs are multiplied by an installation 
factor to obtain the inside battery limit (ISBL) 
installed costs. Both the NREL and Hand methods 
use installation factors dependant on the 
equipment type, whereas the TS method uses a 
universal multiplier. All installed equipment costs 
were adjusted to 2019 costs using the Chemical 
Engineering Plant Cost Index of 607.5 (49). A 

location factor of 0.51 was used for China (using 
indigenous materials), based on the 2003 location 
factor of 0.61 (47), updated to 2019 via the Chinese 
Yuan to US dollar exchange rate.
Three methods were used to calculate the fixed 

operating costs as summarised in Table V. As 
before, the NREL method (27) and the TS method 
(47) were employed. However, as the Hand method 
is solely for FCI, the third was the taken from 
Coulson and Richardson Volume 6 (50). Variable 
operating costs were estimated based on the costs 
detailed in Table VI, subject to annual inflation as 
outlined in Table VII. 

Table IV Fixed Capital Cost Models
NREL TS Hand

Year basis 2019

Production year 8110 ha

Installation factor (multiplied 
by equipment cost) – inside 
battery limit (ISBL)

Table S2 Table S4 Table S5

Outside battery limit (OSBL) Table S3 30% of ISBL 25% of ISBL

Contingency – 10% of ISBL –

Commissioning cost 5% of ISBL – 5% of ISBL

Design and engineering cost – 10% of ISBL –

Fixed capital investment 
(FCI)

ISBL + OSBL + 
commissioning

ISBL + OSBL + 
contingency + design and 
engineering

ISBL + OSBL + 
commissioning

Working capital 10% of FCI

Total capital investment (TCI) FCI + working capital
a Based on bioreactor cycle time
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Table V Fixed Operating Cost Models
Parameters NREL TS Coulson and Richardson

Operating labour
Salary estimates in 
China obtained from 
salaryexpert.com (process 
operator, engineering and 
maintenance)a

Salary estimates in China 
obtained from salaryexpert.
com
3 process operators per shift
4 shift teams

Salary estimates in 
China obtained from 
salaryexpert.com (process 
operator, engineering and 
maintenance)

Supervisory labour 25% of operating labour

Direct salary 
overhead

90% of operating and 
supervisory labour

50% of operating and 
supervisory labour –

Maintenance 3% of ISBL 3% of ISBL 5% of ISBL + OSBL
(conventionally 5% FCI)

Property taxes 
and insurance 0.7% of FCI 1% of ISBL 2% of ISBL +OSBL

(conventionally 2–3% FCI)

Rent of land – 1% of FCI –

Royalties – – 0% of FCI
(conventionally 1% FCI)

General plant 
overhead – 65% of total labour and 

maintenance
50% of operating
labour

Allocated 
environmental 
charges

– 1% of FCI –

a For a detailed breakdown of operating and supervisory labour for the NREL method see Supplementary Information (Table S6)

Table VI Variable Operating Cost

Raw material Cost Unit Reference Comments

Ammonia 250 US$ tonne–1 (51) Average price for 2019

Cooling water 0.753 US$ m–3 (52) –

Electricity 0.06 US$ kWh–1 (52) –

Nutrients 0.75 US$ m–3 media 
water – Mineral salt media, containing no 

complex media or vitamins

Process water 0.53 US$ m–3 (47) –

Table VII Investment Analysis Parameters
Parameters Value Comments
Discounted rate of return 10% In line with studies in the BETO Biofuels TEA Database (57)

Corporation tax 25% Corporation tax in China

Annual inflation 2% –

Plant life 25 years –

Depreciation 10 years Straight line

Plant salvage value No value –

Construction period 2 years –

2.4 Product Price Forecasting

Time series analysis was used to forecast the long-
term average price of isopropanol and acetone. 
Takens’ theorem was used as the basis for this 
analysis (53). Takens’ theorem states that for a 

deterministic system, the underlying state variables 
that created the time series are embedded within 
the data. Using this theorem a deterministic, 
dynamic system can be reconstructed based on the 
observed time series. Forecast models constructed 
using the embedded state variables assume that 
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the market drivers underpinning the trajectory of 
the state variables in phase space remain largely 
unchanged. An embedding dimension of 10 was 
used to reconstruct the isopropanol and acetone 
price models from monthly average price data 
obtained from the Intratec database (54). In 
this work, a radial basis function neural network 
(RBFNN) containing eight neurons was used as a 
model to predict the future commodity prices. The 
network was trained as a one step ahead predictor 
by minimising the mean square error of the 
difference between the actual and predicted prices. 
Once trained, the network was evaluated (tested) 
in free run mode, where successive predicted 
prices (outputs) become inputs to the RBFNN. The 
confidence limits corresponding to the trained 
RBFNN were calculated as a reliability measure 
of the prediction as per the work undertaken by 
Leonard, Kramer and Ungar (55). The benefit of 
using an RBFNN is that the resultant forecast price 
is an impartial product of the dataset’s underlying 
state variables.
The long-term average price for renewable 

electricity sales was taken as US$0.109 kWh–1 
as per the biomass subsidy in China (56). This is 
used to inform the renewable electricity project to 
value the black liquor and for the excess electricity 
generated by the solvent plant.

2.5 Investment Analyses

The cost models from Section 2.3 and the product 
price forecast models from Section 2.4 inform the 
investment analyses. The black liquor is costed at 
its utility value, calculated as the foregone NPV 
from generating renewable electricity. Resultantly, 
the NPV for the solvent plant is calculated by 
subtracting the NPV of renewable electricity 
generation. The investment analysis parameters 
used are detailed in Table VII.

2.6 Sensitivity Analysis

A sensitivity analysis was conducted using a Monte 
Carlo simulation based on the cost parameters in 
Table VIII, creating an uncertainty framework. 
The cost parameters were taken from (47), with the 
exception of renewable electricity sale price where 
the upper limit for the long-term average price was 
capped at the current biomass subsidy in China, 
US$0.109 kWh–1. This limit was applied due to the 
decreasing trend in renewable electricity subsidies 
(58). In contrast, the long-term average prices 
for isopropanol and acetone were varied ±30% 
from the forecast price. This provides a stochastic 
counter to the assumption used to determine the 
forecast prices: that the deterministic market 
drivers underpinning the trajectory of the state 
variables remain largely unchanged. However, 
given that market drivers are subject to change, 
the long-term average price may be banded with 
an equal likelihood of being higher or lower than 
the forecast price.
A uniform distribution for these parameters 

was used and varied for the solvent plant and 
conventional renewable electricity generation (used 
to value the black liquor). All the cost parameters 
in Table VIII, other than labour and electricity, 
were varied independently. 2000 simulations were 
run, stochastically varying the parameters within 
the defined lower and upper limits to produce a 
probability distribution of the solvent plant’s NPV. 

2.7 Life Cycle Assessment

A cradle-to-gate LCA model was developed using 
the ecoinvent 3.6 inventory database, following 
ISO Standards 14040 (59) and 14044 (60). GHG 
emissions were calculated based on the most 
recent Integrated Pollution Prevention and Control 
100-year global warming potential (GWP) factors 

Table VIII Uncertainty Framework for Monte Carlo Simulation Sensitivity Analysis
Monte Carlo input parameter Lower limit Upper limit
Product long term average pricing

 Isopropanol price 0.7 1.3

 Acetone price 0.7 1.3

 Renewable electricity price 0.7 1

Costing uncertainty factor

 ISBL capital cost 0.8 1.3

 OSBL capital cost 0.8 1.3

 Labour costs 0.8 1.3
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to quantify GHG emissions in terms of carbon 
dioxide equivalents (CO2eq) (61). Functional units 
were defined as 1 kg isopropanol, 1 kg acetone 
and 1 kWh of electricity. In line with the investment 
analysis, the LCA model considers the net electricity 
output of solvent plant by subtracting the foregone 
electricity from combustion of black liquor at the 
pulp mill. Life cycle environmental impacts are 
allocated between these three products using 
both economic and energy allocation. The GHG 
emission rate for the external process inputs: 
cooling water, process water and ammonia were 
taken from the ecoinvent 3.6 inventory database 
using the allocation at the point of substitution 
system model (62), whereas electricity was taken 
as the 2018 China electricity mix (63). The bio-
based solvents isopropanol and acetone sequester 
biogenic carbon dioxide and hence are credited 
with a negative GHG emission based on their 
carbon content. Downstream activities, including 
the use and end-of-life of isopropanol and acetone 
products are not considered. These activities are 
assumed to be identical to those of conventional 
isopropanol and acetone, given that they are 
chemically and functionally identical, and therefore 
have no influence on the relative GHG emissions of 
renewable and conventional solvent products.

3. Results and Discussion

The major equipment items were sized using the 
mass and energy balance from the rigorous HYSYS 

simulation. The capital cost estimation for the 
solvent plant using the three methods outlined 
in Table IV is summarised in Figure 4. The 
underlying capital cost estimation data is detailed 
in Tables S2–S5 in the Supplementary Information. 
Due to the close agreement of the NREL and 
Hand methods, US$64 million and US$65 million 
respectively (Figure 4), and the greater simplicity 
of the Hand method, this method was used as the 
capital cost estimation basis. Table S10 details 
the capital cost estimation for the conventional 
generation of renewable electricity.
Similarly, the three fixed operating cost methods 

(Table V) are summarised in Figure 5, where the 
underlying fixed operating cost data is detailed in 
Tables S6–S8. Though sharing the same author, the 
TS and Coulson and Richardson methods have a 
dissimilar calculation method. However, the results 
of these two methods are in close agreement, 
US$4.62 million and US$5.01 million respectively 
(Figure 5). The substantially lower estimate by 
the NREL method (US$2.48 million) was therefore 
set aside, and the TS method employed as the 
fixed operating cost basis. The fixed operating 
costs for the conventional generation of renewable 
electricity are detailed in Table S11.
Figure 6 compares the capital estimation, fixed 

and variable operating cost models for the solvent 
plant and conventional renewable electricity 
generation. The large difference between the capital 
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investment highlights the greater complexity of the 
proposed solvent plant as an alternate opportunity 
to conventional renewable electricity generation.
The free-run forecasts for both isopropanol 

(Figure 7) and acetone (Figure 8) are shown to 
track the historical data within the confidence limits 
of the RBFNN, before settling on a forecast for the 
long-term average price. For comparative purposes 
the moving average for the previous ten prices 
is also plotted in Figures 7 and 8. The difference 
in the moving average and predicted forecast 
suggests that the RBFNN has identified pricing 
dynamics other than the time weighted average, 
i.e. the underlying state variables within the time 
series. As such, using this forecast price to inform 
the investment analysis ensures the nominal TEA 
inputs and sensitivity analysis are unbiased and 
centred upon market dynamics, opposed to an 
artefact of average pricing.

3.1 Investment Analysis

The solvent plant (Figure 2) produces three 
products, summarised in Table IX. The 
contribution of each product to the plant’s income 

is also presented. Whilst isopropanol contributes to 
almost half the solvent plant income the renewable 
electricity fraction is the second highest contributor, 
highlighting the significant amount of renewable 
electricity generated by the solvent plant.
The investment analyses for the solvent plant 

and conventional renewable electricity generation 
are detailed in Tables S9 and S12, as per the 
investment analysis parameters presented in Table 
VII. The NPV for conventional renewable electricity 
generation represents the utility value of the black 
liquor, valued at US$73 million (Table S12). This 
is subtracted from the NPV of the solvent plant 
(US$115 million) to produce the cumulative NPV 
presented in Figure 9. For the nominal TEA model 
inputs, the solvent plant’s net cumulative NPV is 
US$42 million.
Given the conceptual stage of the TEA, a Monte 

Carlo simulation was undertaken as per the 
uncertainty framework outlined in Table VIII. The 
produced probability distribution in Figure 10 
avoids making an investment decision based solely 
on nominal TEA inputs. The cumulative probability 
curve presents a 70% probability that the solvent 
plant will achieve a net cumulative NPV between 
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Fig. 7. Isopropanol price 
forecast using a radial 
basis function time 
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in free-run mode. The 
free-run forecast tracks 
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limits for the original 
one step predictor 
model fit. The free run 
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a long-term average 
forecast for isopropanol. 
The moving average is 
plotted for comparative 
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copyright restrictions 
associated with the 
Intratec database
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Table IX Solvent Plant Production Summary

Product Production rates Product mass purity Contribution to 
plant income

Value Unit Value Unit %
Isopropanol 13.8 thousand tonnes year–1 99.8 % (w/w) 49

Acetone 2.8 thousand tonnes year–1 99.2 % (w/w) 6

Total renewable 
electricity 146 GWh year–1 – – 45
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US$35 million and US$85 million, noting that no 
negative outcomes are predicted. 

3.2 Life Cycle Assessment

Figure 11 summarises the outcome of the cradle-
to-gate LCA for the solvent plant, compared to 
the conventional fossil derived processes; using 
both economic and energy allocation for the 
isopropanol, acetone and renewable electricity 
products.
Both solvents achieve negative GHG emissions 

when produced via the solvent plant using economic 
and energy allocation. The GHG emission for the 
two allocation methods are comparable, indicating 
the price per unit energy (US$ MJ–1) is similar for 
all three products. The negative emissions are an 
intrinsic outcome of the cradle-to-gate framework, 
which excludes the end use for the products. As 
the total GHG emissions of the solvent plant are 
lower than the overall biogenic carbon sequestered, 
negative GHG emissions are achieved for the 
solvent products.
The negative GHG emissions compare favourably 

to the conventional isopropanol (hydration of 
propene) and acetone (oxidation of cumene) 
processes. Additionally, the GHG emissions 
associated with the excess renewable electricity 
from the solvent plant also compare favourably to 
the electricity mix in China (2018). Furthermore, 
as the end use for the solvents remains the same 
regardless of the production method, the relative 
GHG emissions are valid beyond the cradle-to-gate 
framework.

3.3 Comparison with Anaerobic 
Fermentation

As highlighted in the Introduction, the commercial 
implementation of gas fermentation is largely 
dominated by anaerobic fermentation. Therefore, 
it is important to compare the results to a best-
in-class technology. In addition to successfully 
commercialising ethanol production via gas 
fermentation, LanzaTech have also investigated 
gas fermentation to produce acetone, a precursor 
to isopropanol (64). As such, LanzaTech’s 
investigation undertaken for the US Department of 
Energy (US DOE), in collaboration with Oak Ridge 
National Laboratory, USA, is used as a benchmark 
anaerobic process (65).
As highlighted previously, the primary differences 

between anaerobic and aerobic fermentation 
technologies are inherent to the C1 fixation metabolic 
pathways. Strictly respiratory (aerobic) cell 
factories require air to be continuously fed into the 
bioreactor to facilitate carbon fixation. In addition, 
owed to the intrinsic thermodynamic inefficiency 
of the Calvin-Benson-Bassham cycle employed by 
aerobic bacteria, an excess of low temperature 
heat is produced. As such, a conventional process 
flowsheet for aerobic fermentation employs 
operationally costly compressors and chillers. In 
contrast, for anaerobic fermentation there is a 
reduced chiller requirement and the compressor 
duty is less pronounced. Moreover, owed to the 
presence of oxygen, aerobic fermentations require 
the use of more costly stainless steel reactors and 
more complex process control systems. Whilst 
the latter is an intrinsic requirement of aerobic 
fermentations, in this work we have reconciled the 
increased utility demand of aerobic fermentation 
through process integration (28). This integration 
employs a heat pump to utilise the low temperature 
heat generated by aerobic fermentation to heat the 
SCWG reactor feed, removing the cooling water 
burden required by the bioreactors. Additionally, 
the compressor duty is fully supplied through the 
electricity generated upon letting down the SCWG 
reactor’s high-pressure gas product. As a result, the 
economic and LCA outcomes for the solvent plant 
should be comparable to anaerobic fermentation 
technology.
LanzaTech’s anaerobic study achieved a combined 

selectivity of 94.7% for ethanol and acetone, 
of which 57.3% was acetone (65). LanzaTech 
disclosed that by selling acetone at market prices 
they are able to sell coproduced ethanol at or below 
the US DOE’s 2022 target of US$3 GGE–1 (GGE 
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= gallon of gasoline equivalent) (66). Therefore, 
in this study, the price per GGE was calculated 
for the solvent products as a biofuel mix, with 
renewable electricity sold at the current market 
price. A value of US$2.87 GGE–1 (Figure 12) was 
obtained, below the US DOE’s target, highlighting 

the competitiveness of the heat integrated aerobic 
solvent plant. Notably, neither isopropanol nor 
acetone are typically used for their fuel value, 
highlighted by their higher market prices. As such, 
the solvent plant is profitable as either a biofuel or 
commodity chemical facility.
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For LanzaTech’s anaerobic process, the 
cradle-to-gate LCA using energy allocation 
produced a calculated GHG emission of  
–1.9 kgCO2eq kg–1

acetone + ethanol for a heat 
integrated scenario (see Table S13 for calculation). 
In Figure 12, the LCA for the solvent plant is 
presented, indicating a net GHG emission of  
–2.04 kgCO2eq kg–1

isopropanol + acetone, which is in line 
with LanzaTech’s study (Figure 12). Resultantly, 
from both the TEA and LCA results, the greater 
thermodynamic efficiency of the anaerobic Wood-
Ljungdahl C1 fixation pathway over the aerobic 
Calvin-Benson-Bassham Cycle is not evident for 
the heat integrated solvent plant.

4. Conclusions

In exploiting the available excess black liquor, the 
solvent plant TEA presents a net cumulative NPV of 
US$42 million. The solvent plant demonstrates that 
the sustainable production of commodity chemicals 
priced near ~US$1000 per tonne is within reach of 
heat integrated aerobic gas fermentation, whilst 
achieving an appreciable reduction in GHG emissions 
compared to conventional production. Moreover, 
despite having a higher market value, a biofuel mix 
of the solvent product is able to meet the US DOE’s 
2022 target of US$3 GGE–1. The heat integration 
between aerobic gas fermentation and SCWG 
produces an LCA comparable to a anaerobic gas 

fermentation technology. The TEA and LCA studies 
suggest that the intrinsic thermodynamic efficiency 
of anaerobic fermentation can be attained by aerobic 
fermentation through process engineering, albeit at 
a capital expense. Given aerobic cell factories can 
target a wider product spectrum, the heat integrated 
aerobic gas fermentation has promise as a best-in-
class technology for renewable commodity chemical 
production.
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Glossary

Abbreviation Name
FCI fixed capital investment

GGE gallon of gasoline equivalent

GHG greenhouse gas

GWP global warming potential

ISBL inside battery limit

LCA life cycle assessment

NPV net present value

NREL National Renewable Energy 
Laboratory

OSBL outside battery limit

RBFNN radial basis function neural 
network

SCWG supercritical water gasification

TCI total capital investment

TEA technoeconomic assessment 

TS Towler and Sinnott

US DOE US Department of Energy
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 Comparative techno-economic analysis of the integrated 
process for hybrid processing   

 

5.1 Preface 
This chapter contributes to the overall thesis aim of developing and applying Techno-
Economic Analysis (TEA) methods to evaluate the proposed aerobic gas fermentation and 
Supercritical Water Gasification (SCWG) process by upgrading the heat integration in the 
platform’s process simulation, undertaking an economic and environmental assessment for 
the production of 1,3-butadiene, and comparing the results to conventional 1,3-butadiene 
production and alternative renewable production routes. It therefore contributes to the 
following thesis objectives:  

1. Develop process simulations for the aerobic gas fermentation and supercritical water 
gasification process, incorporating heat integration and downstream processing.  

2. Determine an appropriate techno-economic framework and perform a comprehensive 
techno-economic analysis of the simulated process.  

3. Quantify the greenhouse gas emissions associated with chemical and fuel production 
from the process and compare them with conventional production methods.  

4. Compare the economic and environmental competitiveness of the process with 
alternative renewable production methods.  

Chapter 4 concluded that the proposed heat integrated platform was economically feasible for 
commodity chemical production under the considered scenario. However, the chemicals 
produced were direct products from fermentation (isopropanol and acetone). Fermentation 
products are typically more oxygenated than fossil-based commodity chemicals. The 
reduction of these chemicals into fossil-based commodity chemicals leads to an intrinsic mass 
loss, reducing the product yield and negatively impacting the process economics. To assess 
the platforms capability beyond the niche range of fermentation products, a TEA for the 
production of an opportunistic platform chemical, 1,3-butadiene, was undertaken. 1,3-
Butadiene is seen as an opportunistic platform chemical as there is a projected shortfall in 
conventional production owing to both the shift to lighter feedstocks in steam crackers and the 
commercialisation of Methanol-to-Olefin technology in China (Pomalaza et al., 2020).  

This work uses the capital and operating expenditure, and price projection methodologies 
determined during Chapter 4. Similarly, to produce a thorough technology evaluation both an 
uncertainty analysis and Life Cycle Assessment (LCA) were undertaken.  

As suggested in Chapter 4, the rigorous evaluation of technologies necessitates comparison 
to alternative technologies. As such, in this work the platform was compared against two 
alternative purely chemo-catalytic renewable production methods. Process models of all three 
routes were produced using Aspen HYSYS and evaluated using the same techno-economic 
assumptions. The same biorefinery scenario, a China located paper and pulp mill, was 
considered as in Chapter 4. All three routes originate from gasification, producing renewable 
syngas. The benefit of starting from biomass gasification is maximising the recovery of 
biomass’ entire reducing power as syngas for chemical synthesis.  

The three comparative routes principally exploit aerobic gas fermentation, mixed alcohol 
synthesis to ethanol, and the Methanol-to-Propene technology. The mixed alcohol synthesis 
to ethanol route was conducted as a viable alternative to the bio-derived intermediate from 
aerobic gas fermentation. The route exploiting the Methanol-to-Propene technology was 
included as olefin based technologies have been previously investigated for the production of 
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renewable 1,3-butadiene. So as not to disadvantage any of the technologies each processing 
route was matched to the most suitable feedstocks within the context of a paper and pulp mill. 
As SCWG is suited to the use of wet feedstocks, black liquor was used for the gas fermentation 
route (as in Chapter 4). However, the two chemo-catalytic routes exploit conventional 
gasification and are therefore suited to dry feedstocks. These two routes therefore utilise 
woody biomass residues available within the pulp mills collection area as a feedstock. Whilst 
the feedstocks between these routes differ, they both represent waste streams from a pulp 
mill that could be valorised for chemical production and are scaled based on resource 
availability within the reference pulp mills supply chain. 

For the gas fermentation platform in Chapter 4, 32% of the gasifier effluent was diverted 
towards combustion to support platforms energy self-sufficiency. Between Chapter 4 and 5 
the platform’s heat integration was manually optimised. This improved heat integration 
enabled 100% of the gasification product to be diverted to the fermenter, whilst still maintaining 
the platform’s energy self-sufficiency. This process improvement increased the chemical 
production and enabled the export of a greater portion of renewable electricity for sale to the 
grid. 

As an advancement to the techno-economic methodology used in Chapter 4 the evaluated 
process’ Minimum Selling Price (MSP) was also computed alongside the Net Present Value 
(NPV). This facilitated the comparison of the three routes. In addition, as well as a global 
uncertainty analysis (Monte Carlo simulation) a single point sensitivity analysis on each 
process’s MSP was undertaken. This demonstrated the individual impact of the variables on 
the final economic outcome.  

The novelty of this work is the rigorous assessment of combining gas fermentation with 
catalytic upgrading (hybrid processing) for chemical production. Previous hybrid processing 
using gas fermentation has been undertaken by Haro et al. (2013) for ethylene production and 
Tan et al. (2016) for distillate range fuels. In the study by Haro et al. (2013), only the catalytic 
upgrading was modelled, and cost estimates for different ethanol sources were taken from 
literature. This meant results were reliant on the quality of ethanol price estimates which were 
taken from various sources. In the study by Tan et al. (2016), four different routes were 
modelled, two routes were via syngas fermentation and catalytic upgrading, and the other two 
were purely catalytic technologies. Their study employed anaerobic gas fermentation and 
targeted distillate range fuels. This is in contrast to the aerobic gas fermentation and 
opportunistic chemical targeted in this work. Additional novelty exists in the comparison of 
different routes to 1,3-butadiene. Existing TEA studies for renewable 1,3-butadiene production 
have investigated either bio-catalytic routes, upgrading fermentation derived ethanol (e.g. 
Moncada et al, 2018) or purely catalytic production via a renewable olefin intermediate (e.g. 
Hanaoka et al., 2021). Whereas in this work, a hybrid bio- and chemo-catalytic process is 
compared with two purely catalytic routes.  

This study concluded that the hybrid bio/chemo-catalytic route was the only route profitable 
using the nominal techno-economic inputs, producing an NPV of $2.8 million and MSP of 
$1,367 tn-1. In contrast, the two chemo-catalytic routes produced MSPs of $1,954 tn-1 (via 
catalytic ethanol) and $2,196 tn-1 (via a propene intermediate). The co-generation and sale of 
renewable electricity contributed to the aerobic gas fermentation’s success. However, using 
the new heat integration configuration which diverts all the syngas to the fermenter, the 
electricity generation does not come at the detriment of chemical production. Furthermore, the 
aerobic gas fermentation and SCWG platform still outperformed the alternative routes when 
using grid parity prices electricity (MSP using electricity grid parity: $1695/tn) instead of 
subsidised renewable electricity prices. Sensitivity analyses highlighted the equipment capital 
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as the main contributor to the MSP for all three processing routes. The aerobic gas 
fermentation route presented a 19% probability of achieving a positive NPV. Owed to the low 
process emissions and sequestration of biogenic carbon, all routes produced net negative 
emissions within a cradle-to-gate framework. The aerobic gas fermentation platform achieved 
-3.23 kgCO2eq/kg, compared to -2.90 kgCO2eq/kg, and -2.80 kgCO2eq/kg for the alternative 
routes, and 1.2 kgCO2eq/kg for conventional production. This demonstrates that renewable 
1,3-butadiene production has potential as a net carbon sink for pulp mill residues 
conventionally destined for energy recovery. 

Similarly to Chapter 4, the limitations of this study are the use of guiacol to represent the lignin 
content of the black liquor in the SCWG (updated in Chapter 7), and the arbitrary percentage 
used to incorporate future commodity price variability in the sensitivity and uncertainty analysis 
(upgraded in Chapter 6). In addition, the inclusion of policy implications such as carbon prices 
was not addressed. This has been addressed in other TEA studies i.e., Michailos et al. (2019) 
demonstrated that a carbon price of £98-142/tCO2 was required for their methane production 
process to break even (Michailos et al., 2019). Klein et al. (2019) illustrated that at a price of 
$142/tCO2 their integrated sugarcane microalgae biorefinery was economically feasible (Klein 
et al., 2019). Huang et al. (2021) demonstrated credits of $735/tCO2, $470/tCO2, and 
$190/tCO2 were required for methane, ethanol, and acetic acid production to meet market 
parity, with no credits required for polyhydroxybutyrate (Huang et al., 2021). Whilst these 
prices don’t represent future carbon pricing initiatives, their inclusion provides further context 
to both the TEA and LCA results and could have been included to demonstrate the incentives 
required to achieve a more promising economic outcome.  

This work was published in the Journal of Cleaner Production on 7th June 2022. The published 
paper is titled “Renewable butadiene: A case for hybrid processing via bio- and chemo-
catalysis” and is presented as Chapter 5. The corresponding supplementary information as 
published alongside the manuscript is reprinted in Appendix A.2. 

Article Title: Renewable butadiene: A case for hybrid processing via bio- and chemo-catalysis 

Journal: Journal of Cleaner Production 

Date: September 2022 

DOI: 10.1016/j.jclepro.2022.132614 

Authors: Sarah Rodgers, Fanran Meng, Stephen Poulston, Alex Conradie, Jon McKechnie 

Author Contributions: Sarah Rodgers: Conceptualization, Data curation, Formal analysis, 
Investigation, Software, Visualization, Writing – original draft, Writing – review & editing. 
Fanran Meng: Conceptualization, Methodology, Writing – review & editing. Alex Conradie: 
Conceptualization, Formal analysis, Funding acquisition, Resources, Project administration, 
Software, Supervision, Writing – review & editing. Jon McKechnie: Conceptualization, Funding 
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A B S T R A C T   

1,3-butadiene (butadiene) is a by-product produced during naphtha steam cracking, predominantly used in tyre 
manufacturing. Recently, steam crackers have converted to using more cost effective, lighter feedstocks such as 
shale gas, yielding less butadiene. The potential shortfall, coupled with concerns around increasing greenhouse 
gas emissions, provides a unique opportunity for renewable production. This study investigated the techno- 
economics and greenhouse gas emissions associated with renewable butadiene production routes within the 
context of a China located pulp mill. A hybrid bio-catalytic route, utilising black liquor, was compared against 
two chemo-catalytic routes using forestry residues and pulpwood. The hybrid bio-catalytic route uses a novel 
aerobic gas fermentation platform, employing heat integrated supercritical water gasification and aerobic gas 
fermentation to produce acetaldehyde, followed by chemo-catalytic upgrading (Acet-BD). The two chemo- 
catalytic routes catalytically upgrade biomass derived syngas; where one route (Eth-BD) passes through an 
ethanol intermediate, and the other (Syn-BD) utilises a series of commercialised catalytic technologies with 
propene as an intermediate. The hybrid bio/chemo-catalytic route, Acet-BD, was the only route profitable using 
the nominal techno-economic inputs, producing a Net Present Value of $2.8 million and Minimum Selling Price 
of $1367 tn− 1. In contrast, the two chemo-catalytic routes produced Minimum Selling Prices of $1954 tn− 1 (Eth- 
BD) and $2196 tn− 1 (Syn-BD), demonstrating the competitiveness of this novel platform. Sensitivity analyses 
highlighted the equipment capital as the main contributor to increased Minimum Selling Price for all cases, and 
the Acet-BD route presented a 19% probability of achieving a positive net present value. Moreover, owed to the 
low process emissions and sequestration of biogenic carbon, all routes produced net negative emissions within a 
cradle-to-gate framework. As such, renewable butadiene production has potential as a net carbon sink for pulp 
mill residues conventionally destined for energy recovery.   

1. Introduction 

Currently, the chemical industry is responsible for 7% of anthropo-
genic greenhouse gas (GHG) emissions and 30% of final industrial en-
ergy use (IEA, 2018). However, the carbon content of most chemicals 
inherently ties the industry to the use of carbon-based feedstocks, 
making decarbonisation challenging. One approach to reduce emissions 
is through the replacement of conventional fossil fuel feedstocks with 
renewable carbon sources. Such resources enable biogenic carbon to be 
utilised for chemical synthesis, with the potential of achieving negative 
GHG emissions. Despite the environmental benefit, these sustainable 
technologies need to be cost competitive with conventional fossil 

fuel-based processes. Successful implementation of sustainable tech-
nologies depends on the identification of opportunistic chemicals based 
on market trends and technological developments. 

Butadiene is an important platform chemical used in synthetic rub-
ber manufacturing, with a global production of 1.5 million tonnes in 
2013 (Levi and Cullen, 2018). Currently, 95% of butadiene is produced 
as a by-product from steam cracking of naphtha to produce ethene (Ren 
et al., 2006). However, in North America recent technological advances 
have made shale gas an economically favourable feedstock (Angelici 
et al., 2013). Consequently, steam crackers have converted operations to 
cracking this lighter feedstock, yielding less butadiene. Simultaneously, 
the Methanol To Olefin (MTO) technology is being commercialised in 
China, which synthesises ethene and propene from coal derived 
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methanol, yielding no butadiene (Tian et al., 2015). These synchronous 
transitions are projected to reduce global butadiene production 
(Pomalaza et al., 2020). As such, an on-purpose, selective production 
method would allow for stable market supply and demand. 

In addition to chemical selection, the development of a renewable 
chemical industry requires renewable resources to be readily available 
in large quantities. Paper and pulp mills represent an established 
biomass supply chain. In recent years, interest has grown in developing 
these facilities into bio-refineries. This increased interest is attributed to 
decreasing trends in pulp and paper prices and increased competition 
from low cost paper and pulp suppliers, coupled to the incentives sur-
rounding renewable energy prices and renewable chemical production 
(Berntsson et al., 2008). Development of existing mills expands the 
product range of a pulp mill and promotes the full utilisation of woody 
biomass, making use of residues that are unsuitable for pulp production 
(Huang et al., 2010). With the existing supply chain infrastructure for 
biomass delivery, the development of pulp mill bio-refineries can occur 
using either internal or external (imported) biomass. China is the 
world’s second largest virgin pulp manufacturer (Food and Agricultural 
Organization of the United Nations (FAO), 2021; Kong et al., 2013), as 
well as holding the greatest share of the butadiene market (Mordor In-
telligence, 2020). Therefore, China’s pulp mills hold a distinct market 
opportunity for renewable, on-purpose butadiene production. 

There has been increased global interest in renewable butadiene 
production in recent years. The most notable being production from 
ethanol. A recent, in depth, review of insights into the reaction pathway 
and the varying catalysts that have been considered for the reaction can 
be found in (Pomalaza et al., 2020). There are two different routes from 
ethanol, the one-step (Lebedev (1933) or two-step (Ostromisslensky) 
process (Toussaint et al., 1947). Both routes were used during WWII 
until the 1960s when the processes became economically uncompetitive 
with naphtha steam cracking (Shylesh et al., 2016). It is important to 
highlight a major challenge in producing butadiene from ethanol is the 
intrinsic mass loss owed to the removal of water and hydrogen mole-
cules. This was emphasised in a recent review by Grim et al. (2019) 
where they demonstrate the theoretical mass yield of butadiene from 
ethanol is only 60% in comparison to 80% when producing butanol. This 
unavoidable mass loss significantly reduces the profit margin between 
ethanol and butadiene. 

The primary focus of recent research into this route has been in 
catalyst development, but more recently, there have been several 
Techno-economic Analysis (TEA) and Life Cycle Assessment (LCA) 
studies. Despite this, no existing TEAs have investigated China as a po-
tential location. Notably, in the first LCA of an ethanol route, undertaken 
by Cespi et al. (2016), the location was dismissed owed to the high 
ethanol prices. The first LCA was undertaken by Cespi et al. (2016), 
comparing results of the two production methods for three different 

locations, the US, Brazil and Europe. Shylesh et al. (2016) later con-
ducted a cradle-to-grave LCA on the one step method using USA 
Midwest-grown corn grain, USA Midwest-grown corn stover, and Bra-
zilian sugarcane. Farzad et al. (2017) undertook the first TEA, they 
performed an integrated TEA and LCA on the Two Step process using 
bagasse derived ethanol. IEA, 2018, the first TEA to evaluate the One 
Step production method was undertaken by Moncada et al. (2018), who 
looked at the production of butadiene and ε-caprolactam from C6 
sugars. Very recently, the techno economics of the One Step production 
of butadiene using experimental data under industrial conditions was 
undertaken (Cabrera Cabrera Camacho et al., 2020). Finally, the most 
recent integrated TEA and LCA was undertaken by Dimian et al. (2021). 
The study evaluated the Two Step process using market ethanol as the 
feedstock for an undisclosed plant location. Notably, the LCA outcomes 
have proven to be highly dependent on the feedstock, with some first 
generation crops yielding poorer outcomes than conventional naphtha 
cracking (Cespi et al., 2016), highlighting the benefit of integrated 
studies. Despite the potential of on-purpose routes, and level of interest, 
no existing studies have demonstrated butadiene’s cost-effective pro-
duction at current market prices. It is thought that the exploitation of 
China’s large pulp industry, substantial share in butadiene market, and 
lower capital and operating costs may provide a lucrative opportunity to 
renewable butadiene production. 

Butadiene can also be produced through the catalytic dehydroge-
nation of butane or the oxidative dehydrogenation of butene, both of 
which are mature industrial technologies (Grub and Löser, 2011). 
However, these technologies rely on a petroleum derived C4 feedstock. 
Resultantly, some authors have looked at the renewable production of 
butene for butadiene production. Hanaoka et al. (2017, 2019, 2021) and 
Tripathi et al. (2019) evaluated the production of butadiene from lignin 
via an olefin intermediate. They evaluated three different olefin tech-
nologies; the direct production of light olefins, dimethyl ether to light 
olefins, and methanol to light olefins, all originating from gasification 
(Hanaoka et al., 2017, 2019, 2021; Tripathi et al., 2019). At present, 
these olefin technologies are optimised for the production of ethene and 
propene, meaning butene yields are typically low (Bender, 2014). As a 
result, these studies have all demonstrated comparatively low butadiene 
yields. 

In this study, three renewable butadiene production routes are 
compared using renewable resources available within the context of a 
Kraft paper and pulp mill located in China. The aim of this study is to 
determine the most promising process through matching an opportune 
renewable feedstock within the mill’s supply chain to a synergetic 
technology. The study innovatively integrates methods of rigorous 
process simulation, techno-economic analysis, life cycle assessment, 
sensitivity, and uncertainty analysis to comprehensively compare im-
pacts of three alternative routes on resources, society and the environ-
ment, each exploiting renewable syngas produced via gasification. The 
principal benefit of gasification is the ability to maximise the recovery of 
reducing power from the biogenic biomass as syngas for chemical syn-
thesis (Griffin and Schultz, 2012). Furthermore, gasification enables the 
valorisation of recalcitrant, low value carbon sources. However, to date, 
the only studies to consider syngas as a feedstock employed 
chemo-catalytic olefin-based technologies for butadiene production. A 
hybrid bio/chemo-catalysis route; Acetaldehyde to Butadiene 
(Acet-BD), is compared against two alternative chemo-catalytic tech-
nologies Ethanol to Butadiene (Eth-BD) and Syngas to Butadiene 
(Syn-BD). The Acet-BD and Eth-BD routes both explore ethanol pro-
duction methods hitherto investigated for butadiene production, namely 
heat integrated aerobic gas fermentation (Rodgers et al., 2021), and 
mixed alcohol synthesis (Dutta et al., 2011). Similarly, the Syn-BD route 
employs an alternative olefin technology, exploiting the high yield 
propene fraction obtained from the established Methanol-to-Propene 
(MTP) technology, as opposed to the low yield butene obtained from 
the Methanol-to-Olefins (MTO) process. The Syn-BD route therefore 
represents commercialised technologies that could be integrated to 

Abbreviations 

FCI Fixed Capital Investment 
GHG Greenhouse Gas 
ISBL Inside Battery Limits 
LCA Life Cycle Assessment 
MSP Minimum Selling Price 
MTO Methanol to Olefins 
MTP Methanol to Propene 
NPV Net Present Value 
OSBL Outside Battery Limits 
RBFNN Radial Basis Function Neural Network 
SCWG Supercritical Water Gasification 
TCI Total Capital Investment 
TEA Techno-economic Analysis  
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produce renewable butadiene. Overall, our study considers new pro-
cessing routes with the feedstocks, technologies, and bio-refinery sce-
nario differing from previous studies. 

2. Materials and methods 

This study explores three processing routes to butadiene from the 
renewable resources available within a Kraft paper and pulp mill. The 
three routes principally exploit aerobic gas fermentation (Acet-BD), 
mixed alcohol synthesis (Eth-BD) and the Methanol-to-Propene tech-
nology (Syn-BD). The hybrid bio-/chemo-catalytic route, Acet-BD, in-
vestigates the exploitation of a portion of the pulp mill’s black liquor co- 
product; whilst the two chemo-catalytic routes, Eth-BD and Syn-BD, 
utilise imported biomass consisting of 80% forestry residues and 20% 
pulpwood, to limit ash content (Hartley et al., 2020). A block flow di-
agram of the three conceptual processes is presented in Fig. 1. These 
three routes are rigorously modelled in Aspen HYSYS V11 using the best 
publicly available data and industrial insights. The conceptual processes 
are described in detail in the Supplementary Information: Section S1, 
Detailed Conceptual Process Design. The process models inform the TEA 
and LCA used to evaluate the economic performance and environmental 
impact of each route. Single point sensitivity analyses and a Monte Carlo 
simulation are also undertaken. 

The Acet-BD process utilises gasified black liquor as feedstock, fol-
lowed by gas fermentation to the 2-oxoacid pyruvate, which is decar-
boxylated to acetaldehyde in a subsequent enzyme plug flow reactor. 
Acetaldehyde was chosen as the platform intermediate given its high 
volatility (Eckert et al., 2006), allowing for its low energy intensity re-
covery from the aqueous media compared to ethanol. The black liquor 

feedstock is gasified using supercritical water gasification (SCWG), 
which is heat integrated with the aerobic gas fermentation process using 
a heat pump, as described by Bommareddy et al. (2020). The novel 
coupling of technologies provides a synergistic solution which benefits 
both the endothermic SCWG and exothermic aerobic gas fermentation 
process, further detail on this technology pairing can be found in Section 
S1.1, Acet-BD Process Description. This unique pairing also produces 
renewable electricity for sale to the grid, supplementing the routes in-
come. The acetaldehyde intermediate is hydrogenated to ethanol prior 
to catalytic upgrading to butadiene. As previously mentioned, two 
processes exist for butadiene production from ethanol, the one-step 
Lebedev and the two-step Ostromisslensky process. Currently, there is 
no consensus which process holds sway. However, it has been previously 
reported that the Ostromisslensky process has a higher conversion and 
yield (Corson et al., 1950), where the Lebedev process has been shown to 
outperform the Ostromisslensky process from an economic and envi-
ronmental perspective, as only one reactor and catalyst is required 
(Cespi et al., 2016). In this study, the Lebedev process was investigated 
due to the presumed economic benefit and the high productivity re-
ported in an experimental study by Dai et al. (2017) using a 
zeolite-confined bimetallic catalyst. 

In the Eth-BD route ethanol is produced via mixed alcohol synthesis 
of biomass derived syngas, as per the 2011 NREL report (Dutta et al., 
2011). The ethanol product is catalytically upgraded to butadiene using 
the same catalyst as detailed for the Acet-BD route. A detailed descrip-
tion of the process and data used to model the route is outlined in Sec-
tion S1.2, Eth-BD Process Description. 

The Syn-BD route exploits the Methanol-to-Propene process and uses 
the commercial oxidative dehydrogenation of n-butene to produce 

Fig. 1. Conceptual Block Flow Diagram of the three green butadiene production routes using renewable resources from a paper and pulp mill as feedstock. The 
hybrid gas fermentation route through an Acetaldehyde intermediate (Acet-BD) is compared against two chemo-catalysis technologies, Ethanol to Butadiene (Eth-BD) 
and Syngas to Butadiene (Syn-BD). 
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butadiene (White, 2007). Though, rather than using a fossil-derived C4 
feedstock, this is synthesised from indirect gasification of woody 
biomass. The produced syngas is upgraded using various industrialised 
catalytic steps, i.e. (1) syngas to methanol, (2) methanol to propene, (3) 
propene to butanol via the oxo-alcohols process, (4) dehydration of 
butanol to butene and (5) oxidative dehydrogenation to butadiene. The 
MTP process was selected over the MTO process given its enhanced 
propene selectivity, >70% (Rothaemel and Holtmann, 2002). A detailed 
description of the process and data used to model the route is outlined in 
Section S1.3, Syn-BD Process Description. 

2.1. Plant Capacity 

The reference pulp mill’s capacity, used as the basis for this study, is 
detailed in Table 1. The Acet-BD route exploits the use of 25% of the 
mill’s black liquor for chemical production (Rodgers et al., 2021). In 
contrast, the Eth-BD and Syn-BD routes utilise the forestry residues 
available within the pulp mills collection area, along with a modest 
collection increase required for the pulpwood fraction. The exploitation 
of the mill’s black liquor co-product or forestry residues within the mills 
collection area allows mills to generate additional revenue from 
biochemical production without expanding collection capacity. The 
capacity of the routes is outlined in Table 1. 

2.2. Feedstock costs 

Black liquor is a by-product from pulp production, conventionally 
exploited for its energy value (Naqvi et al., 2010; Suhr et al., 2015). New 
heat integration opportunities have highlighted the potential to reduce 
mill energy consumption (Ahmetovi and Grossmann, 2020; Keshtkar 
et al., 2015), freeing up some of this by-product for alternate uses. As 
black liquor currently has no market value, it is costed at its utility value. 

As per our previous work, Rodgers et al. (2021), this was calculated as 
the foregone Net Present Value (NPV) associated with its conventional 
use for renewable electricity generation. For conventional electricity 
generation, the weak black liquor with solids concentration 17.5% w/w 
is used. This is concentrated to 75% w/w in multi-effect evaporators 
prior to being combusted in the Tomlinson boiler to generate steam. This 
steam is then used to generate renewable electricity for sale to the grid. 
The NPV associated with this conventional renewable electricity gen-
eration translates to a cost of $4.19 tn− 1 of black liquor. 

Pulpwood costs were estimated using data from the report prepared 
for the Guangxi Forestry Bureau on the development of industrial wood 
demand in the district (Cossalter and Barr, 2005). The mill gate prices 
presented for labour intensive hill areas were used, as these represent 
the majority of southern China plantations (Cossalter and Barr, 2006). 
The average of the three competitive production profiles and locations 
was taken and updated to a 2020 basis using the Lumber and Wood 
Products Producer Price Index (U.S. Bureau of Labor Statistics, 2021a) 
resulting in a cost estimate of $102.62 tn− 1, similar to US pulpwood chip 
costs, $109.64 tn− 1, as analysed by Idaho National Laboratory (Jacob-
son et al., 2014). All costs are reported on a dry basis. Whilst there is 
limited data availability for forestry residue costs in China, detailed cost 
estimates have been undertaken by the Idaho National Laboratory for 
delivered forestry residues in the US. Owed to the closeness of the China 
and US values for pulpwood chips the ratio between these estimates was 
used to approximate the cost of forestry residues in China, resulting in a 
cost of $69.67 tn− 1. This price is in line with the range reported by 
Anttila et al. (2015), who undertook a study on availability of forestry 
residues for energy production in northern China, and to the prices re-
ported in Gosens (2015) database for Chinese biomass power projects. 
Anttila et al. (2015) estimated costs of €30-42 tn− 1 (wet basis), trans-
lating to $51-72 tn− 1, whilst the average for facilities using wood resi-
dues as part of their feedstock in the Gosens (2015) database was RMB 
297 tn− 1 (wet basis), equivalent to $65.09 tn− 1. Both prices were 
updated to a dry 2020 basis and assumed a 30% moisture content for 
delivered chips. Accordingly, using a blend of 20% pulpwood and 80% 
forestry residues the delivered biomass cost is $76.26 tn− 1. 

2.3. Costing models 

Each of the three butadiene process simulations comprise a rigorous 
mass and energy balance and associated equipment sizing, used to 
calculate the capital and operating costs. Free on board equipment costs 
were calculated from cost correlations in Seider et al. (2017) and 
updated to 2020 prices using the Chemical Engineering Plant Cost Index 
of 596.2 (Jenkins, 2021). 

The Fixed Capital Investment (FCI) was calculated using the Hand 
method, outlined in Sustainable Design Through Process Integration 
(El-Halwagi, 2017), where commissioning costs and working capital 
were calculated as per Table 2. 

The fixed operating costs were calculated using the methodology 

Table 1 
Reference pulp mill capacity and capacity of proposed routes.  

Parameter Value Unit Comment Reference 

Pulp mill capacity 130 Air dried 
tn.h− 1 

Capacity of a large 
pulp and paper 
mill in China 

Cossalter 
(2006) 

Black Liquor Feedstock 
Total weak black 

liquor 
production 

1300 tn.h− 1 10 times pulp 
production 

Naqvi et al. 
(2010) 

Black liquor solids 
content 

17.5 % (w/w)  

Lignin content in 
black liquor 

7.3 % (w/w) 41.5% lignin 
content in solids 
modelled as 
guaiacol 

Cardoso 
et al. (2009) 

Woody Biomass Feedstock 
Pulpwood removal 

rate 
12 m3. 

ha− 1yr− 1 
80% of 
productivity 

Barr and 
Cossalter 
(2004) Pulp mill 

collection area 
377,650 ha Based on 4.15 m3. 

(Air dried tn− 1) 
Pulpwood mass 

loss during 
debark and 
delimb 

10 %  Jacobson 
et al. (2014) 

Additional 
collection area 
required for 
chemical 
production 

10,154 ha   

Forestry residue 
removal rate 

1.89 m3. 
ha− 1yr− 1 

0.157 of pulpwood 
removal rate 

Cossalter 
and Barr 
(2005) 

Residue mass loss 
during clean-up 

40 %  Jacobson 
et al. (2014) 

Total wood chip 
production 

336,388 tn.yr− 1 1.63 m3.dry tn− 1 

of chips 
Cossalter 
and Barr 
(2005)  

Table 2 
Fixed capital cost model.  

Economic Parameters  

Free on board equipment purchase cost Seider et al. (2017) 
Installed capital cost Hand method 
Chemical Engineering Plant Cost Index in 2020 596.2 (Jenkins, 2021) 
Production Year 8,400a or 8,110b hours 
Installed Cost – Inside Battery Limit (ISBL) Factor Tables S4–S6 
Outside Battery Limit (OSBL) 25% of ISBL 
Commissioning Cost 5% of ISBL 
Fixed Capital Investment (FCI) ISBL + OSBL + Commissioning 
Working Capital 10% of ISBL + OSBL 
Total Capital Investment (TCI) FCI + Working Capital  

a Used for Eth-BD and Syn-BD route. 
b Used for Acet-BD route. Based on bioreactor cycle time. 
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proposed by Sinnott and Towler (2009) and Ulrich and Vasudevan 
(2004) and are outlined in Table 3. The number of plant operators is 
based on both the methods proposed by Wessel (1952) accounting for 
the number of processing steps, production capacity, and process 
complexity, and by Ulrich and Vasudevan (2004) accounting for process 
equipment. The Acet-BD and Eth-BD routes both have 4 operators. 
Owing to the greater number of unit operations in the Syn-BD process, 5 
operators are required. 

Variable operating costs were estimated using the respective mass 
and energy balance and the raw material costs detailed in Table S2. The 
costs for utilities were taken from Seider et al. (2017). Specialist 
chemical costs are taken as spot prices and catalyst costs were taken 
from data available in existing TEA studies or, in the absence of cost 
data, based on the material composition. Chemical and catalyst costs 
were updated from their base year using the Chemicals and Allied 
Products Producer Price Index (U.S. Bureau of Labor Statistics, 2021b). 
Variable operating costs were subjected to an annual inflation of 2% 
throughout the life of the project. 

2.4. Product prices 

Time series analysis was used to obtain a long-term average price 
prediction for butadiene based on Takens Theorem (Takens, 1981). An 
embedding dimension of ten was used to represent approximations for 
the underlying state variable trajectory, and a Radial Basis Function 
Neural Network (RBFNN) containing eight neurons was employed to 
reconstruct an unbiased, one step ahead predictor of the future buta-
diene price. The historic pricing data for the embedding were obtained 
from the Intratec database (Intratec, 2020). The confidence limits for the 
nonlinear RBFNN model were calculated to validate the free-run model 
prediction (Leonard et al., 1992). Given this predicted long-term price 
average, the butadiene price lies within an uncertainty framework 
spanning the project life of 25 years and is therefore subject to sensitivity 
analysis. 

In addition to butadiene, each route produces a co-product, namely; 
renewable electricity, higher alcohols and a butane rich co-product for 
the Acet-BD, Eth-BD and Syn-BD routes respectively. The prices used for 
these products are detailed in Table S3. For the Acet-BD route, China’s 
renewable electricity price for biomass, 0.109 $.kWh− 1 (Ming et al., 
2013), was used to value black liquor and the additional electricity sales. 
For the Eth-BD route, the higher alcohols co-product produced during 
mixed alcohol synthesis was valued at 90% of its energy value relative to 
gasoline, using the Energy Information Administration’s prediction for 
wholesale gasoline (EIA, 2021a) as per Dutta et al. (2011). For the 
Syn-BD route, the butane rich co-product was valued based on its energy 
content relative to butane. The long-term average price for butane was 
forecast using the RBFNN methodology, as outlined for butadiene, with 
historic pricing data taken from EIA (2021b). 

2.5. Investment analysis 

The aforementioned cost models informed the investment analysis. 
The NPV and Minimum Selling Price (MSP) was calculated for each 
project. The investment analysis parameters are detailed in Table 4. 

2.6. Sensitivity and uncertainty analysis 

A sensitivity analysis was conducted using a tornado chart to 
determine the relative importance of different variables. A Monte Carlo 
simulation was utilised to determine the probability of achieving a 
positive NPV. Both analyses were based on the parameters presented in 
Table 5. The Monte Carlo simulation was run 2000 times, generating a 
parameter set for each scenario stochastically using a uniform distri-
bution within the defined lower and upper limits for the parameters. 

The lower and upper limit distributions were taken from Sinnott and 
Towler (2009), with the exception of the renewable electricity price. 
This was capped at the current biomass subsidy owed to the decreasing 
trend in renewable electricity subsidies (Reuters, 2019). The lower limit 
was set to 0.48, translating to an electricity price of 0.052 $.kWh− 1. This 
allows for scenarios where grid parity is met, based on coal electricity 
prices for 2018 (Lee, 2019). 

2.7. Life cycle assessment 

A cradle-to-gate LCA model was developed following ISO Standards 
14040 (International Organization for Standardization, 2006a) and 
14044 (International Organization for Standardization, 2006b). Green-
house gas (GHG) emissions were calculated based on the most recent 
Integrated Pollution Prevention and Control 100-year Global Warming 
Potential factors, thereby quantifying GHG emissions in terms of CO2 
equivalents (CO2eq) (Stocker et al., 2014). 

The functional units were defined as 1 kg for butadiene and 1 kg/ 
kWh for the respective co-products. Life cycle environmental impacts 
were allocated between butadiene and the respective co-products using 
energy allocation. The co-products are; renewable electricity, higher 
alcohols, and a butane rich co-product for the Acet-BD, Eth-BD, and Syn- 
BD routes respectively. 

The black liquor feedstock used in the hybrid Acet-BD route is a 
waste stream from pulp production, moreover it is utilised prior to the 
conventional multi-effect evaporator process, as such no emissions were 
assigned to it. Conversely, the two chemo-catalytic routes utilising 
forestry residues and pulpwood feedstocks have associated emissions. As 
a by-product from pulpwood harvest, forestry residues constitute 80% of 
the feedstock and the emissions associated with collection, chipping and 
loading were taken from McKechnie et al. (2011). The estimated emis-
sions for pulpwood production, excluding land use change, were taken 
from Bernstad Saraiva et al. (2017) for the pulpwood fraction. For both 
the residues and pulpwood the transport emissions were updated to 

Table 3 
Fixed operating cost model.  

Parameters Acet-BD Eth-BD Syn-BD 

Operating Labour Salary estimates in China obtained from salaryexpert. 
com ($13,373 per year) employing 4 shift teams 
4 Operators per 
shift 

4 Operators per 
shift 

5 Operators per 
shift 

Supervisory Labour 25% of Operating Labour 
Direct Salary Overhead 50% of Operating and Supervisory Labour 
Maintenance 3% of ISBL 
Property Taxes and 

Insurance 
1% of ISBL 

Rent of Land 1% of FCI 
General Plant Overhead 65% of Total Labour and Maintenance 
Allocated Environmental 

Charges 
1% of FCI  

Table 4 
Investment analysis parameters.  

Parameters Value Comments 

Corporation Tax 25% Corporation tax in China 
Annual Inflation 2% Long-term average product prices forecast as 

above. All other costs are subject to annual 
inflation. 

Plant Life 
(Operational) 

25 
years  

Discounted rate of 
return 

10%  

Depreciation 10 
year 

Straight line 

Plant Salvage 
Value 

No 
value  

Construction 
Period 

2 years   

S. Rodgers et al.                                                                                                                                                                                                                                 



Journal of Cleaner Production 364 (2022) 132614

6

correspond to the latest ecoinvent data for EURO 6 freight lorries and a 
131 km transport distance, based on the average distance of the Chinese 
production profiles used for the wood chip cost estimation (Cossalter 
and Barr, 2005). 

The GHG emissions for the utilities used by each butadiene route 
were calculated using the ecoinvent 3.7 inventory database using the 
allocation at the point of substitution system model (Wernet et al., 
2016). The GHG emissions for grid electricity were taken as the 2018 
China electricity mix (Sun et al., 2019). The full life cycle inventory can 
be found in Table S9. 

Renewable butadiene is credited with negative GHG emissions owed 
to its sequestered biogenic carbon. As the downstream use of butadiene 
is independent of the production method, the calculated GHG emissions 
relative to conventional production are valid beyond the employed 
cradle-to-gate framework. 

3. Results and discussion 

The three routes, Acet-BD, utilising black liquor as a feedstock, and 
the Eth-BD, and Syn-BD routes, using forestry residues and pulpwood, 
each produce a co-product in addition to butadiene, detailed in Table 6. 
The energetic conversion efficiency (using lower heating value as the 
basis) for each route is also displayed. The energetic efficiency is lower 
for the Acet-BD route than the other two routes, attributed to the 
enthalpy lost in the supercritical water gasification effluent. The vast 
quantity of water in the gasification process and feedstock results in a 
loss in overall efficiency if any residual heat is left unexploited. Further 
heat integration opportunities could be found to improve the energy 
efficiency and increase the platforms renewable electricity generation. 
The carbon yield for butadiene is also lowest for the hybrid Acet-BD 
route, 6.3% compared to 19% for and 16% for the Eth-BD and Syn-BD 
routes, respectively. Whilst fermentation displays higher product 
selectivity with fewer by-products in comparison to catalytic trans-
formation, conversion efficiencies for gas fermentation are typically 
lower given mass transfer limitations with limited opportunity to cost- 
effectively recycle feed gases. 

The different production capacity between the Acet-BD and the Eth- 
BD and Syn-BD routes, presented in Table 6, is attributed to the avail-
ability of the feedstock as detailed in Section 2.1 Plant Capacity. The 
production capacity of the Syn-BD and Eth-BD routes are comparable, 
despite the greater number of catalytic steps involved in the Syn-BD 
route. This is attributable to the mass loss associated with the 

upgrading of ethanol and the greater efficiency of the commercial 
technologies utilised by the Syn-BD route. 

3.1. Total capital investment 

The capital cost estimations for each route are detailed in 
Tables S4–S6. A breakdown of these costs for the three plant sections; 
Gasification, Steam and Power Generation, Intermediate Production and 
Butadiene Production and Recovery are presented in Fig. 2. The in-
termediates for each route are; acetaldehyde, ethanol and propene for 
the Acet-BD, Eth-BD, and Syn-BD routes respectively. Owed to the heat 
pump used in the Acet-BD route the capital associated with steam and 
power generation is grouped with the gasification section for all three 
routes. 

The normalised capital cost breakdown on the basis of tonnes of 
butadiene produced in Fig. 2 highlights the greater capital intensity of 
the Acet-BD route. The major capital contribution is associated with the 
Gasification, Steam and Power Generation section, incorporating the 
SCWG reactor and heat pump cycle. This section contributes 51% of 
total capital, in contrast to the 35–40% contribution for the Eth-BD and 
Syn-BD routes, highlighting the capital expense required to heat inte-
grate the bioreactor and SCWG reactor. Conversely, the difference in 
capital between the routes Intermediate Production and Butadiene 
Synthesis and Purification plant sections is attributable to the greater 
economies of scale for the Eth-BD and Syn-BD routes. 

3.2. Operating costs 

A summary of the fixed and variable operating costs for all three 
butadiene production routes is presented in Tables S7 and S8. Fig. 3 
plots the free-run long-term average price for butadiene. For compara-
tive purposes the moving average for the previous 10 time steps is also 
plotted. The free-run forecast is shown to track the historic prices before 
settling on the long-term predicted price of $1421 tn− 1, which is used as 
the nominal value in the investment analysis. The free-run long-term 

Table 5 
Monte Carlo simulation parameters.  

Monte Carlo Input Parameter Lower Limit Upper Limit 

Feedstock and Product Pricing 
Butadiene Price 0.8 1.2 
Gasoline Price 0.8 1.2 
Butane Price 0.8 1.2 
Renewable Electricity Price 0.48 1 
Woody Biomass Cost 0.7 1.3 
Costing uncertainty Factor 
ISBL Capital Cost 0.8 1.5 
OSBL Capital Cost 0.8 1.5 
Labour Costs 0.8 1.5  

Table 6 
Production summary for the three butadiene production routes, Acet-BD, Eth-BD and Syn-BD routes.  

Route  Conversion Butadiene Co-Product  

Feedstock Energy efficiency 
% 

Production kt.yr− 1 Income contribution 
% 

Co-product Production Income contribution 
% 

Acet- 
BD 

Black liquor 20 9.2 39 Renewable electricity 192 Gwh.yr− 1 61 

Eth-BD Forestry residues and pulpwood 31 36 88 Higher alcohols 12 kt yr− 1 12 
Syn-BD 30 31 92 Butane-rich product 11 kt yr− 1 7.9  

Fig. 2. Normalised capital cost estimate for the three butadiene production 
routes. The intermediate for the three routes are; acetaldehyde, ethanol and 
propene for the Acet-BD, Eth-BD, and Syn-BD routes respectively. 
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average price forecast for n-butane predicts a nominal price of $376 tn− 1 

and is presented in Fig. S4. 

3.3. Minimum selling price 

The MSP and the contributing cost breakdown of each butadiene 
production route is presented in Fig. 4. A case considering the catalytic 
upgrading of market ethanol is also included. The long-term price pre-
diction for ethanol was obtained using the aforementioned RBFNN 
methodology, yielding a price of $542 tn− 1 (Fig. S5). Despite China 
being the 4th largest producer of fuel bioethanol, it is still heavily sub-
sidised (USDA Foreign Agricultural Service, 2019), meaning ethanol 
priced at $542 tn− 1 would likely be imported from either the US or 
Brazil. 

In all cases the largest MSP contributor is the feedstock cost. The Eth- 
BD, Syn-BD and market ethanol routes produce MSPs, 1.38, 1.55 and 
1.20 times the nominal forecast price respectively. Markedly, despite 
having a greater capital intensity, the hybrid Acet-BD route is the only 
route able to produce butadiene below its predicted price, producing a 
cumulative NPV of $2.8 million, see Fig. S6. This demonstrates how the 
high capital investment of the Acet-BD route preserves the profit margin 
by making the plant largely self-sufficient in its utility consumption. 

An additional case was considered for the two chemo-catalytic routes 
(Eth-BD and Syn-BD), whereby the capacity of the facilities was 
increased to 2000 tn. day− 1 as assumed in NREL’s U.S based studies 
(Dutta et al., 2011; Tan et al., 2015). The CAPEX was updated to reflect 
this capacity increase using a scaling factor of 0.6 (Sinnott and Towler, 
2009). A 60,555 ha increase in the reference mill’s collection area would 
be required to support the 2000 tn. day− 1 capacity. All of the pulpwood 
from the additional collection area would be directed towards chemical 
production, resulting in a new feedstock composition of 67% pulpwood 
and 33% residues, and commanding a higher feedstock cost of $91.73 
tn− 1. This increase in feedstock cost partially offsets the benefit achieved 
through economies of scale, emphasising the advantage of exploiting 
waste, low cost, resources. Using the scaled CAPEX, OPEX, and new 
feedstock costs the consequent MSP’s are $1907 for the Eth-BD route, 
and $2135 for the Syn-BD route. The increased capacity yields a lower 
MSP for both routes however, the Acet-BD route still produces the lowest 
nominal MSP. Moreover, the greater capacity necessitates expansion of 
the mills collection area and the use of a large portion of virgin wood. 

The success of the Acet-BD route is largely attributed to the income 
generated from the renewable electricity. However, as this renewable 
electricity is inherent to the heat integrated technology platform its 
generation facilitates butadiene’s cost-effective production. 

Additionally, mills may receive an additional benefit from utilising 
black liquor for chemical synthesis. By diverting this co-product away 
from the recovery boiler, pulp mills have the potential to expand pulp 
production by up to 25% (Berntsson et al., 2008). 

3.4. Sensitivity analysis 

Tornado plots for the MSP of the three butadiene production routes, 
using the uncertainty framework outlined in Table 5 are presented in 
Fig. 5. In all three cases, ISBL capital costs led to the greatest increase in 
MSP. Importantly, using the grid parity price for electricity sales, 0.052 
$.kWh− 1, the Acet-BD route produces an MSP of $1695 tn− 1, lower than 
the nominal MSP for the Eth-BD and Syn-BD routes, $1954 tn− 1, and 
$2196 tn− 1 respectively. Resultantly, even using a pessimistic electricity 
price, the Acet-BD route is the most promising renewable production 
route evaluated. However, the exclusion of renewable electricity sub-
sidies increases the MSP by $328 tn− 1. This price is no longer below 
butadiene’s long term forecast price, highlighting the importance of 
renewable electricity subsidies in facilitating the success of this tech-
nology platform. 

Monte Carlo simulations of all three routes were undertaken using all 
of the uncertainty parameters in Table 5. As the only route presenting a 
positive NPV using the nominal inputs, the outcome for the hybrid Acet- 
BD route is presented in Fig. 6, with the results from the Eth-BD, and 
Syn-BD routes presented in Figs. S7 and S8. The Acet-BD route demon-
strated a 19% likelihood of producing a positive NPV, presenting a 
higher probability of producing a negative NPV than positive. There is 
therefore a greater likelihood of this process losing money over its 
projected lifetime, making it unlikely to attract investment. However, 
this was the only route to demonstrate any probability of producing a 
positive NPV outcome, making it the most promising of the technologies 
evaluated. Furthermore, these results are based on a long-term forecast 
price for conventionally produced butadiene. There is potential to 
attract a higher market price, and thus a more favourable economic 
outcome, for renewably produced, low carbon butadiene. 

3.5. Life cycle analysis 

All three butadiene production routes produce net negative GHG 
emissions within a cradle to gate framework (Fig. 7). Outcomes are also 
presented for the use of market ethanol, imported from either the US or 
Brazil, with US ethanol being corn-based, and Brazil being sugar cane- 
based. Details of the emissions associated with both ethanol sources 
are presented in Table S10. 

Fig. 3. Butadiene long term average price forecast. The free-run radial basis 
function neural network prediction tracks the historical prices within the con-
fidence limits, before the unbiased, long-term price prediction emerges beyond 
the historical data. 

Fig. 4. Minimum butadiene selling price breakdown. The hybrid (Acet-BD) 
route is the only route capable of producing butadiene below the long-term 
average forecast price. The co-products for each route are; renewable elec-
tricity, higher alcohols (sold as gasoline) and a butane rich co-product for the 
Acet-BD, Eth-BD, and Syn-BD routes respectively. Market Ethanol represents a 
scenario considering the catalytic upgrading of ethanol purchased at market 
value using the Eth-BD route. 
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The slightly greater emissions for the Syn-BD route compared to the 
Eth-BD route are attributed to the energy self-sufficiency and the greater 
butadiene yield of the Eth-BD route. The Syn-BD route relies on the 
import of 4.3 GWh.yr− 1 of electricity, contributing 0.13 kgCO2eq kg− 1

bu-

tadiene. The greatest emission contributor for both chemo-catalytic routes 
is from the feedstock as demonstrated in Fig. 7. Despite this, the feed-
stock emissions are only marginal, 0.33–0.31 kgCO2eq kg− 1

butadiene. The 
Acet-BD route achieves the lowest emissions, owing to no emissions 
being attributed to the black liquor feedstock. In comparison to its 
conventional use, the platform produces a greater amount of renewable 

electricity to export to the grid, meaning no emissions are associated 
with the diversion of this feedstock. Furthermore, the energy self- 
sufficiency of the Acet-BD and Eth-BD routes highlights their efficient 
biomass utilisation. 

Conventionally, black liquor is burned for electricity generation 
(Naqvi et al., 2010), and forestry residues are seen as an promising 
feedstock for bio-energy production (Fu et al., 2020), technologies 
which both ultimately release CO2 into the atmosphere. The net negative 
emissions achieved through butadiene production demonstrate the 
carbon sequestration achievable by directing these resources to chemi-
cal synthesis. The emission reduction potential of sinking biogenic car-
bon into ethene was previously highlighted by Zhao et al. (2018) in the 
context of China’s chemical industry. The net negative emissions ach-
ieved by all three routes in this study reinforce this claim. However, for 
this carbon sink to be effective, it needs to be retained over long time-
scales. Further work is required considering the use of butadiene and the 
end-of-life management of these products. Nevertheless, the technolo-
gies highlight the contribution that Chinese paper and pulp mills can 
make in reaching China’s goal of net neutrality by 2060. 

3.6. Comparison to existing work 

Studies investigating butadiene production from ethanol and an 
olefin intermediate have been previously undertaken, but no study has 
compared these production routes in terms of technical, environmental 

Fig. 5. Tornado plots for the MSP of the three butadiene production routes. a) 
Acet-BD route b) Eth-BD route c) Syn-BD Route. 

Fig. 6. Monte Carlo simulation of the Acet-BD presenting a 19% likelihood of 
achieving a positive NPV. 

Fig. 7. Greenhouse gas emissions attributed to butadiene based on the three 
butadiene production routes and the Eth-BD route fed with market ethanol. 
Conventional represents butadiene production from naphtha as in the ecoin-
vent database. 
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and financial performances. In this study, the LCA and TEA results of the 
Acet-BD and Eth-BD routes are compared to existing ethanol studies, and 
the Syn-BD route is compared to studies evaluating routes via an olefin 
intermediate. 

3.6.1. Ethanol to butadiene 
The MSPs for previous TEA studies investigating butadiene produc-

tion from ethanol are presented in Table 7. Where necessary prices were 
converted to US $ using the € to $ exchange rate of 1.14 for 2020 
(Macrotrends, 2021). The lowest butadiene selling price, achieving a 
return on investment of 13.25%, was previously reported as $1523 tn− 1, 
using an ethanol price of $500 tn− 1 (Dimian et al., 2021). All previous 
studies produce MSPs greater than that achieved by the Acet-BD route in 
this work, including the much greater facility size considered by Cabrera 
Camacho et al. (2020). The favourable China location factor, reducing 
capital costs, likely plays a significant role in this outcome, highlighting 
the competitive position Chinese paper and pulp mills hold in the po-
tential for market penetration of renewable butadiene. 

All existing LCA outcomes are also detailed in Table 7. Notably, in 
the LCA undertaken by Cespi et al. (2016), emissions were reduced by 
over a quarter by swapping the wheat portion of the European feed for 
residual wood chip, thereby highlighting the environmental advantage 
of utilising lignocellulosic feedstocks. In the cradle-to-grave study by 
Shylesh et al. (2016), both sugar cane and corn stover achieved net 
negative emissions, whilst the GHG emissions from corn grain ethanol 
were too high to be offset by the achieved carbon sequestration. The 
study by Cabrera Camacho et al. (2020), investigating first generation 
feedstocks, i. e corn grain and a Europe-centric mix of sugar beet, rye, 
corn and wheat; also found production emissions were too high to be 
offset by carbon sequestration. Farzad et al. (2017) found the bio-based 

production of butadiene from bagasse-derived ethanol to be environ-
mentally advantaged compared to conventional production, further 
supporting the environmental benefit of utilising lignocellulosic feed-
stocks. Whilst GHG emissions between studies are not directly compa-
rable, the undivided conclusion of existing studies is the large impact 
that the ethanol source has on the overall process emissions. This is 
reinforced by the results of this study, whereby the use of 
first-generation market ethanol performed worse than the three 
modelled routes. The favourable emissions for renewable butadiene 
found in this study can therefore be attributed to the use of 
second-generation lignocellulosic feedstocks. 

3.6.2. Methanol to olefins 
A number of modelling studies have been undertaken producing 

butadiene via a renewable olefin intermediate (Hanaoka et al., 2017, 
2019, 2021; Tripathi et al., 2019). These studies investigated upgrading 
the minor C4 fraction, resulting in relatively low butadiene yields. Tri-
pathi et al. (2019) rationalised this low butadiene yield by stating that 
the production of butadiene through these olefin technologies necessi-
tates the co-production of lower value propene and ethene. Conversely, 
Hanaoka et al. (2021) recently undertook a study focused on improving 
the olefin reaction conditions to favour butene production. The pro-
duced results represent the highest butadiene yield, 7.0%, higher than 
the previously reported 3.9% by both (Hanaoka et al., 2017; Tripathi 
et al., 2019). These studies all use different model compounds for lignin. 
As such, to ensure the yields are comparable, they are reported based on 
carbon conversion. 

Despite this, the yield is lower than the 16% realised through a 
propene intermediate in this study, highlighting the inefficiency of C4 
production through current olefin technologies. However, even with this 

Table 7 
Published LCA and TEA studies producing butadiene investigating the route to butadiene via ethanol.  

Study Route Carbon Source Plant 
Location 

Butadiene 
Produced (kt. 
yr− 1) 

MSP ($. 
tn− 1) 

GHG emissions (kg 
CO2eq.kg− 1 butadiene) 

Comments 

Cespi et al. (2016) One 
Step 

Sugar Cane Brazil – – 1.04 Cradle to gate LCA 
Corn, Wheat, Rye, 
Sugar-beet 

Europe 2.04 

Corn, Residual Wood 
Chips, Rye, Sugar-beet 

Europe 1.49 

Corn US 2.30 
Two 
Step 

Sugar Cane Brazil – – 2.18 
Corn, Sugarcane, Rye, 
Sugar-beet 

Europe 3.62 

Corn US 4.00 
Shylesh et al. 

(2016) 
One 
Step 

Corn Grain US – – 1.81 Cradle to grave LCA 
Sugar Cane − 0.65 
Corn Stover − 0.52 

Farzad et al. 
(2017) 

Two 
Step 

Bagasse South Africa 37 2645 0.08 BD-b (Energy self-sufficient) 
2385 0.06 BD-c (Coal burning) 

Moncada et al. 
(2018) 

One 
Step 

C6 Sugars Netherlands 24 4981 – Case I (base case) 
3883 Case II (process with possible 

improvement) 
Cabrera Camacho 

et al. (2020) 
One 
Step 

Sugar Cane Brazil 200 2197 − 0.07 Median Values 
Scenario B1 
Cradle to grave LCA 

Sugar Beet, Rye, Corn 
and Wheat 

Europe 3.19 

Corn US 3.98 
Sugar Cane Brazil 1962 − 0.05 Median Values Scenario B2 

Cradle to grave LCA Sugar Beet, Rye, Corn 
and Wheat 

Europe 2.64 

Corn US 3.31 
Dimian et al. 

(2021) 
Two 
Step 

– – 91 1523 1.6 MSP achieves a return on investment of 
13.25% using ethanol prices at $500 
tn− 1 

GHG emissions are specific CO2 

emissions 
This Work One 

Step 
Black Liquor China 9 1367 − 3.23 Cradle to gate LCA 
Woody Biomass 36 1954 − 2.80 
Sugarcane (BR) 1690 − 1.60 
Corn (US) − 0.28  
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greater yield obtained through a propene intermediate, the MSP is still 
1.36 times the projected market price. In addition, the route relies on the 
integration of a vast number of technologies, making for complex 
commercial implementation. Therefore, our findings are aligned with 
previous studies and confirm that currently available olefin technologies 
are inefficient pathways for butadiene production. 

3.7. Challenges in developing the renewable chemical industry 

The production of drop-in, or direct replacement, chemicals presents 
the fewest barriers to introducing biomass-derived chemicals to market 
(Christensen et al., 2008; Straathof and Bampouli, 2017). Nevertheless, 
it is important to recognise the challenge in producing these chemicals. 
Naphtha, used to produce traditional commodity chemicals, has a very 
low oxygen content in comparison to biogenic feedstocks (Haveren 
et al., 2008). This higher oxygen content necessitates the use of catalytic 
technologies to efficiently remove the undesired oxygen. Common cat-
alytic technologies employed to remove oxygen include decarbon-
ylation, dehydration, and hydrodeoxygenation. This oxygen removal 
inherently lowers the overall mass yield, with butadiene as a leading 
example. Consequently, the ability to produce these chemicals at market 
prices is highly dependent on feedstock costs and availability, and 
technology efficiency. Fundamentally, feedstocks need to be priced at 
fuel value or below, e.g. utility value such as in the case of black liquor. 

Whilst butadiene holds a unique market position, it represents a 
challenging target chemical owed to its conjugated diene structure and 
lack of oxygen. Of the technologies evaluated, the hybrid biochemical 
Acet-BD route was the only economically viable route to butadiene using 
the nominal TEA inputs. Moreover, this route demonstrates the lowest 
GHG emissions, reinforcing the platforms efficient biomass utilisation. 
This builds on our previous work (Rodgers et al., 2021), by demon-
strating the novel platform’s economic advantage over traditional 
chemo-catalytic technologies within the context of a pulp mill bio-
refinery. Moreover, the unique coupling of SCWG with aerobic gas 
fermentation overcomes the energetic inefficiency of SCWG, one of the 
major barriers to commercialisation (Lee et al., 2021). This integration 
of technologies also generates a vast amount of renewable electricity, 
the income of which facilitates the platforms favourable economics. 
Whilst SCWG is yet to reach commercial scale, this study highlights heat 
integrated SCWG and aerobic gas fermentation as an efficient platform 
to valorise wet, recalcitrant feedstocks for biochemical production. 

Importantly, whilst this work investigated the use black liquor as a 
feedstock, SCWG can be used for a variety of wet feedstocks which are 
uneconomical for traditional gasification technologies (Kumar et al., 
2018). Potential feedstocks include; stillage, produced at a rate of 8–20 L 
per litre of fuel ethanol (Gebreeyessus et al., 2019), and wastewater 
residuals, animal and food waste, with an estimated combined avail-
ability of 77 million dry tons in the US alone (Bioenergy Technologies 
Office, 2017). The heat integrated SCWG and aerobic gas fermentation 
platform’s ability to valorise these waste resources demonstrates the 
technology’s importance in the transition to a renewable chemical in-
dustry towards carbon neutrality. 

4. Conclusion 

The hybrid gas fermentation route (Acet-BD) demonstrates marginal 
techno-economic feasibility of renewable, on-purpose butadiene in the 
context of Chinese paper and pulp mills. The technology produces a 
minimum selling price of $1367 tn− 1, outcompeting the $1954 tn− 1 and 
$2196 tn− 1 achieved by chemo-catalytic ethanol production (Eth-BD), 
and via an olefin intermediate (Syn-BD), respectively. Notably, the Acet- 
BD is the only route capable of producing butadiene below the forecast 
price, producing a cumulative NPV of $2.8 million using the nominal 
TEA inputs. Whilst the co-generation of renewable electricity contrib-
utes to the technology’s success, its generation does not come at the 
detriment of butadiene production. The results of the Monte Carlo 

simulation demonstrate a 19% probability of the Acet-BD route 
achieving a positive NPV, with a 70% probability of producing an NPV 
between -$50 million and $60 million. Whilst 19% probability is low, 
the cost-effective production of renewable butadiene has hitherto been 
demonstrated. Moreover, the analysis is based on a price for conven-
tionally produced butadiene. Renewable, low carbon chemical produc-
tion has the potential to attract a higher market price, realising a more 
favourable economic outcome. All three routes evaluated produce net 
negative GHG emissions within a cradle-to-gate framework, with the 
Acet-BD producing the lowest emissions overall (− 3.23 kgCO2eq kg− 1

bu-

tadiene versus 1.2 kgCO2eq kg− 1
butadiene for conventional production). 

Resultantly, the heat integrated SCWG and aerobic gas fermentation 
platform can facilitate the decarbonisation of the chemical sector by 
exploiting wet, previously uneconomical, waste feedstocks in support of 
developing circular economies. 
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Grub, J., Löser, E., 2011. Butadiene. In: Ullmann’s Encyclopedia of Industrial Chemistry. 
Wiley-VCH Verlag GmbH & Co. KGaA, pp. 381–396. https://doi.org/10.1002/ 
14356007.a04_431.pub2. 

Hanaoka, T., Fujimoto, S., Yoshida, M., 2017. Efficiency estimation and improvement of 
the 1,3-butadiene production process from lignin via syngas through process 
simulation. Energy Fuel. 31, 12965–12976. https://doi.org/10.1021/acs. 
energyfuels.7b02237. 

Hanaoka, T., Fujimoto, S., Kihara, H., 2019. Improvement of the 1,3-butadiene 
production process from lignin – a comparison with the gasification power 
generation process. Renew. Energy 135, 1303–1313. https://doi.org/10.1016/j. 
renene.2018.09.050. 

Hanaoka, T., Fujimoto, S., Kihara, H., 2021. Evaluation of n-butene synthesis from 
dimethyl ether in the production of 1,3-butadiene from lignin: a techno-economic 
analysis. Renew. Energy 163, 964–973. https://doi.org/10.1016/j. 
renene.2020.08.158. 

Hartley, D.S., Thompson, D.N., Cai, H., 2020. Woody Feedstocks 2019 State of 
Technology Report. https://doi.org/10.2172/1607741. United States.  

Haveren, J. van, Scott, E.L., Sanders, J., 2008. Bulk chemicals from biomass. Biofuels, 
Bioprod. Biorefining 2, 41–57. https://doi.org/10.1002/bbb.43. 

Huang, H.J., Ramaswamy, S., Al-Dajani, W.W., Tschirner, U., 2010. Process modeling 
and analysis of pulp mill-based integrated biorefinery with hemicellulose pre- 
extraction for ethanol production: a comparative study. Bioresour. Technol. 101, 
624–631. https://doi.org/10.1016/j.biortech.2009.07.092. 

IEA, 2018. The Future of Petrochemicals – Analysis. International Energy Agency, Paris.  
International Organization for Standardization, 2006a. ISO 14040:2006: Environmental 

Management - Life Cycle Assessment - Principles and Framework. London.  
International Organization for Standardization, 2006b. ISO 14044:2006 Environmental 

Management — Life Cycle Assessment — Requirements and Guidelines. London.  
Intratec, 2020. Petrochemical Prices [WWW Document]. URL. https://www.intratec. 

us/products/commodities-prices/petrochemicals-prices. 
Jacobson, J.J., Roni, M.S., Cafferty, K.G., Kenney, K., Searcy, E., Hansen, J., 2014. 

Biomass Feedstock and Conversion Supply System Design and Analysis. https://doi. 
org/10.2172/1173107. United States.  

Jenkins, S., 2021. 2020 ANNUAL CEPCI AVERAGE VALUE [WWW Document]. Chem. 
Eng. Online. URL. https://www.chemengonline.com/2020-annual-cepci-average-va 
lue/. 

Keshtkar, M., Ammara, R., Perrier, M., Paris, J., 2015. Thermal energy efficiency analysis 
and enhancement of three Canadian Kraft mills. J. Sci. Technol. For. Prod. Process. 5, 
24–60. 

Kong, L., Hasanbeigi, A., Price, L., Liu, H., 2013. Analysis of Energy-Efficiency 
Opportunities for the Pulp and Paper Industry in China. 

Kumar, M., Olajire Oyedun, A., Kumar, A., 2018. A review on the current status of 
various hydrothermal technologies on biomass feedstock. Renew. Sustain. Energy 
Rev. 81, 1742–1770. https://doi.org/10.1016/j.rser.2017.05.270. 

Lebedev, S.V., 1933. Preparation of bivinyl directly from alcohol .I. Zhurnal Obs. Khimii 
3, 698–717. 

Lee, H.M., 2019. China’s Electricity Price from Gas Drops, but Still over 30% Higher than 
Coal. NEA [WWW Document]. S&P Glob. Coal. URL. https://www.spglobal. 
com/platts/en/market-insights/latest-news/coal/110619-ch 
inas-electricity-price-from-gas-drops-but-still-over-30-higher-than-coal-nea#:~: 
text=The energy watchdog said the. 

Lee, C.S., Conradie, A.V., Lester, E., 2021. Review of supercritical water gasification with 
lignocellulosic real biomass as the feedstocks: process parameters, biomass 
composition, catalyst development, reactor design and its challenges. Chem. Eng. J. 
415, 128837 https://doi.org/10.1016/j.cej.2021.128837. 

Leonard, J.A., Kramer, M.A., Ungar, L.H., 1992. A neural network architecture that 
computes its OWN reliability. Comput. Chem. Eng. 16, 819–835. https://doi.org/ 
10.1016/0098-1354(92)80035-8. 

Levi, P.G., Cullen, J.M., 2018. Mapping global flows of chemicals: from fossil fuel 
feedstocks to chemical products. Environ. Sci. Technol. 52, 1725–1734. https://doi. 
org/10.1021/acs.est.7b04573. 

Macrotrends, 2021. Euro dollar exchange rate (EUR USD) - historical chart [WWW 
Document]. URL. https://www.macrotrends.net/2548/euro-dollar-exchange-rate-hi 
storical-chart. 

McKechnie, J., Colombo, S., Chen, J., Mabee, W., MacLean, H.L., 2011. Forest bioenergy 
or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based 
fuels. Environ. Sci. Technol. 45, 789–795. https://doi.org/10.1021/es1024004. 

Ming, Z., Ximei, L., Na, L., Song, X., 2013. Overall review of renewable energy tariff 
policy in China: evolution, implementation, problems and countermeasures. Renew. 
Sustain. Energy Rev. 25, 260–271. https://doi.org/10.1016/j.rser.2013.04.026. 

Moncada, J., Gursel, I.V., Worrell, E., Ramírez, A., 2018. Biofuels Bioprod. Biorefining 12 
(4). https://doi.org/10.1002/bbb.1876. 

Mordor Intelligence, 2020. BUTADIENE MARKET - GROWTH. TRENDS, AND 
FORECAST, 2021 - 2026.  

Naqvi, M., Yan, J., Dahlquist, E., 2010. Black liquor gasification integrated in pulp and 
paper mills: a critical review. Bioresour. Technol. 101, 8001–8015. https://doi.org/ 
10.1016/j.biortech.2010.05.013. 

Pomalaza, G., Arango Ponton, P., Capron, M., Dumeignil, F., 2020. Ethanol-to-butadiene: 
the reaction and its catalysts. Catal. Sci. Technol. 10, 4860–4911. https://doi.org/ 
10.1039/d0cy00784f. 

Ren, T., Patel, M., Blok, K., 2006. Olefins from conventional and heavy feedstocks: 
energy use in steam cracking and alternative processes. Energy 31, 425–451. https:// 
doi.org/10.1016/j.energy.2005.04.001. 

Reuters, 2019. China to Cut Subsidies for Renewable Power by 30 Per Cent to US$807 
Million in 2020. South China Morning Post.  

S. Rodgers et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.biombioe.2017.06.004
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref7
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref7
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref76
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref76
https://doi.org/10.1016/j.isci.2020.101218
https://doi.org/10.1021/acssuschemeng.0c02678
https://doi.org/10.1021/acssuschemeng.0c02678
https://doi.org/10.1016/j.fuel.2008.10.016
https://doi.org/10.1039/c5gc02148k
https://doi.org/10.1002/cssc.200700168
https://doi.org/10.1002/cssc.200700168
https://doi.org/10.1021/ie50482a039
https://theforestsdialogue.org/sites/default/files/cossalter_supply-demand_tfd_impf_china_406.pdf
https://theforestsdialogue.org/sites/default/files/cossalter_supply-demand_tfd_impf_china_406.pdf
https://www.cifor.org/publications/pdf_files/research/governance/foresttrade/Attachment8-WBReport-InsideCover_Content_Acknowledgement.pdf
https://www.cifor.org/publications/pdf_files/research/governance/foresttrade/Attachment8-WBReport-InsideCover_Content_Acknowledgement.pdf
https://www.cifor.org/publications/pdf_files/research/governance/foresttrade/Attachment8-WBReport-InsideCover_Content_Acknowledgement.pdf
https://landmatrix.org/media/uploads/cifororgpublicationspdf_filesresearchgovernanceforesttradeattachment19-cossalter-risi-0406pdf.pdf
https://landmatrix.org/media/uploads/cifororgpublicationspdf_filesresearchgovernanceforesttradeattachment19-cossalter-risi-0406pdf.pdf
https://landmatrix.org/media/uploads/cifororgpublicationspdf_filesresearchgovernanceforesttradeattachment19-cossalter-risi-0406pdf.pdf
https://doi.org/10.1021/acscatal.7b00433
https://doi.org/10.1021/acs.iecr.1c00958
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref19
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref19
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref19
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref19
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref19
https://doi.org/10.1002/14356007.a01_031.pub2
https://www.eia.gov/analysis/projection-data.php#annualproj
https://www.eia.gov/analysis/projection-data.php#annualproj
https://www.eia.gov/energyexplained/hydrocarbon-gas-liquids/prices-for-hydrocarbon-gas-liquids.php
https://www.eia.gov/energyexplained/hydrocarbon-gas-liquids/prices-for-hydrocarbon-gas-liquids.php
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref23
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref23
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref23
https://doi.org/10.1016/j.biortech.2017.04.130
http://www.fao.org/faostat/en/#data/FO
http://www.fao.org/faostat/en/#data/FO
https://doi.org/10.1016/j.resconrec.2020.104993
https://doi.org/10.1016/j.jclepro.2019.05.383
https://doi.org/10.1016/j.biombioe.2014.12.014
https://doi.org/10.1002/ep.11613
https://doi.org/10.1021/acscatal.8b03945
https://doi.org/10.1002/14356007.a04_431.pub2
https://doi.org/10.1002/14356007.a04_431.pub2
https://doi.org/10.1021/acs.energyfuels.7b02237
https://doi.org/10.1021/acs.energyfuels.7b02237
https://doi.org/10.1016/j.renene.2018.09.050
https://doi.org/10.1016/j.renene.2018.09.050
https://doi.org/10.1016/j.renene.2020.08.158
https://doi.org/10.1016/j.renene.2020.08.158
https://doi.org/10.2172/1607741
https://doi.org/10.1002/bbb.43
https://doi.org/10.1016/j.biortech.2009.07.092
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref38
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref39
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref39
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref40
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref40
https://www.intratec.us/products/commodities-prices/petrochemicals-prices
https://www.intratec.us/products/commodities-prices/petrochemicals-prices
https://doi.org/10.2172/1173107
https://doi.org/10.2172/1173107
https://www.chemengonline.com/2020-annual-cepci-average-value/
https://www.chemengonline.com/2020-annual-cepci-average-value/
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref45
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref45
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref45
https://doi.org/10.1016/j.rser.2017.05.270
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref48
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref48
https://www.spglobal.com/platts/en/market-insights/latest-news/coal/110619-chinas-electricity-price-from-gas-drops-but-still-over-30-higher-than-coal-nea#:%7E:text=The%20energy%20watchdog%20said%20the
https://www.spglobal.com/platts/en/market-insights/latest-news/coal/110619-chinas-electricity-price-from-gas-drops-but-still-over-30-higher-than-coal-nea#:%7E:text=The%20energy%20watchdog%20said%20the
https://www.spglobal.com/platts/en/market-insights/latest-news/coal/110619-chinas-electricity-price-from-gas-drops-but-still-over-30-higher-than-coal-nea#:%7E:text=The%20energy%20watchdog%20said%20the
https://www.spglobal.com/platts/en/market-insights/latest-news/coal/110619-chinas-electricity-price-from-gas-drops-but-still-over-30-higher-than-coal-nea#:%7E:text=The%20energy%20watchdog%20said%20the
https://doi.org/10.1016/j.cej.2021.128837
https://doi.org/10.1016/0098-1354(92)80035-8
https://doi.org/10.1016/0098-1354(92)80035-8
https://doi.org/10.1021/acs.est.7b04573
https://doi.org/10.1021/acs.est.7b04573
https://www.macrotrends.net/2548/euro-dollar-exchange-rate-historical-chart
https://www.macrotrends.net/2548/euro-dollar-exchange-rate-historical-chart
https://doi.org/10.1021/es1024004
https://doi.org/10.1016/j.rser.2013.04.026
https://doi.org/10.1002/bbb.1876
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref58
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref58
https://doi.org/10.1016/j.biortech.2010.05.013
https://doi.org/10.1016/j.biortech.2010.05.013
https://doi.org/10.1039/d0cy00784f
https://doi.org/10.1039/d0cy00784f
https://doi.org/10.1016/j.energy.2005.04.001
https://doi.org/10.1016/j.energy.2005.04.001
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref64
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref64


Journal of Cleaner Production 364 (2022) 132614

12

Rodgers, S., Conradie, A., King, R., Poulston, S., Hayes, M., Bommareddy, R.R., Meng, F., 
McKechnie, J., 2021. Reconciling the sustainable manufacturing of commodity 
chemicals with feasible technoeconomic outcomes. Johnson Matthey Technol. Rev. 
375–394. https://doi.org/10.1595/205651321x16137377305390. 

Rothaemel, M., Holtmann, H.-D., 2002. Methanol to propylene MTP - lurgi’s way. Erdol 
ErdGas Kohle 118, 234–237. 

Seider, W.D., Lewin, D.R., Seader, J.D., Widago, S., Gani, R., Ming Ng, K., 2017. Cost 
accounting and capital cost estimation. In: Product and Process Design Principles: 
Synthesis, Analysis and Evaluation. John Wiley & Sons Inc., New York, pp. 427–499, 
2017.  

Shylesh, S., Gokhale, A.A., Scown, C.D., Kim, D., Ho, C.R., Bell, A.T., 2016. From sugars 
to wheels: the conversion of ethanol to 1,3-butadiene over metal-promoted 
magnesia-silicate catalysts. ChemSusChem 9, 1462–1472. https://doi.org/10.1002/ 
cssc.201600195. 

Sinnott, R., Towler, G., 2009. Costing and project evaluation. In: Towler, G., Sinnott, R.B. 
(Eds.), Chemical Engineering Design. Butterworth-Heinemann, Oxford, pp. 291–388. 

Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., 
Xia, Y., Bex, V., Midgley, P.M., IPCC Working Group I, 2014. Climate Change 2013 – 
The Physical Science Basis: Working Group I Contribution to the Fifth Assessment 
Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel 
on Climate Change. Cambridge University Press. 

Straathof, A.J.J., Bampouli, A., 2017. Potential of commodity chemicals to become bio- 
based according to maximum yields and petrochemical prices. Biofuels, Bioprod. 
Biorefining 11, 798–810. https://doi.org/10.1002/bbb.1786. 

Suhr, M., Klein, G., Kourti, I., Rodrigo Gonzalo, M., Giner Santonja, G., Roudier, S., 
Delgado Sancho, L., 2015. Best Available Techniques (BAT) Reference Document for 
the Production of Pulp. https://doi.org/10.2791/370629. Paper and Board. 
Luxembourg.  

Sun, X., Meng, F., Liu, J., McKechnie, J., Yang, J., 2019. Life cycle energy use and 
greenhouse gas emission of lightweight vehicle – a body-in-white design. J. Clean. 
Prod. 220, 1–8. https://doi.org/10.1016/j.jclepro.2019.01.225. 

Takens, F., 1981. Detecting strange attractors in turbulence. Lect. Notes Math. 898 
https://doi.org/10.1007/bfb0091924. 

Tan, E.C., Talmadge, M., Dutta, A., Hensley, J., Schaidle, J., Biddy, M., Humbird, D., 
Snowden-Swan, L.J., Ross, J., Sexton, D., Yap, R., Lukas, J., 2015. Process Design and 
Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons via 
Indirect Liquefaction. 

Tian, P., Wei, Y., Ye, M., Liu, Z., 2015. Methanol to olefins (MTO): from fundamentals to 
commercialization. ACS Catal. 5, 1922–1938. https://doi.org/10.1021/ 
acscatal.5b00007. 

Toussaint, W.J., Dunn, J.T., Jackson, D., 1947. Production of butadiene from alcohol. 
Ind. Eng. Chem. 39, 120–125. https://doi.org/10.1021/ie50446a010. 

Tripathi, N., Palanki, S., Xu, Q., Nigam, K.D.P., 2019. Production of 1,3-butadiene and 
associated coproducts ethylene and propylene from lignin. Ind. Eng. Chem. Res. 58, 
16182–16189. https://doi.org/10.1021/acs.iecr.9b00664. 

Ulrich, G.D., Vasudevan, P.T., 2004. Manufacturing cost estimation. In: Chemical 
Engineering: Process Design and Economics A Practical Guide. Process Publishing, 
Durham, New Hampshire, pp. 409–438. 

U.S. Bureau of Labor Statistics, 2021a. Producer Price Index by Commodity: Lumber and 
Wood Products: Logs, Bolts, Timber, Pulpwood and Wood Chips. Reserv. Bank, St. 
Louis [WPU085] [WWW Document]. FRED, Fed.  

U.S. Bureau of Labor Statistics, 2021b. Producer Price Index by Commodity: Chemicals 
and Allied Products. Reserv. Bank, St. Louis [WPU06] [WWW Document]. FRED, 
Fed.  

USDA Foreign Agricultural Service, 2019. China - Peoples Republic of Biofuels Annual 
China Will Miss E10 by 2020 Goal by Wide Margin, GAIN Report. 

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., Weidema, B., 2016. 
The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life 
Cycle Assess. 21, 1218–1230. https://doi.org/10.1007/s11367-016-1087-8. 

Wessel, H., 1952. New graph correlates operating labor data for chemical processes. 
Chem. Eng. 59, 209–210. 

White, W.C., 2007. Butadiene production process overview. Chem. Biol. Interact. 166, 
10–14. https://doi.org/10.1016/j.cbi.2007.01.009. 

Zhao, Z., Chong, K., Jiang, J., Wilson, K., Zhang, X., Wang, F., 2018. Low-carbon 
roadmap of chemical production: a case study of ethylene in China. Renew. Sustain. 
Energy Rev. 97, 580–591. https://doi.org/10.1016/j.rser.2018.08.008. 

S. Rodgers et al.                                                                                                                                                                                                                                 

https://doi.org/10.1595/205651321x16137377305390
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref66
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref66
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref67
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref67
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref67
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref67
https://doi.org/10.1002/cssc.201600195
https://doi.org/10.1002/cssc.201600195
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref69
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref69
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref70
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref70
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref70
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref70
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref70
https://doi.org/10.1002/bbb.1786
https://doi.org/10.2791/370629
https://doi.org/10.1016/j.jclepro.2019.01.225
https://doi.org/10.1007/bfb0091924
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref75
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref75
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref75
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref75
https://doi.org/10.1021/acscatal.5b00007
https://doi.org/10.1021/acscatal.5b00007
https://doi.org/10.1021/ie50446a010
https://doi.org/10.1021/acs.iecr.9b00664
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref80
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref80
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref80
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref81
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref81
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref81
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref82
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref82
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref82
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref83
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref83
https://doi.org/10.1007/s11367-016-1087-8
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref85
http://refhub.elsevier.com/S0959-6526(22)02213-2/sref85
https://doi.org/10.1016/j.cbi.2007.01.009
https://doi.org/10.1016/j.rser.2018.08.008


Chapter 6 

86 
 

 Creation of an unbiased price selection procedure for 
techno-economic analyses 

 

6.1 Preface 
This chapter contributes to the overall thesis aim of developing and applying Techno-
Economic Analysis (TEA) methods to evaluate the proposed aerobic gas fermentation and 
Supercritical Water Gasification (SCWG) process by developing a machine learning (ML) 
methodology to produce 20-25 year probabilistic commodity price projections for techno-
economic, sensitivity, and uncertainty analyses. The proposed method was demonstrated by 
recalculating the techno-economic outcome for the case studies investigated in Chapters 4 
(isopropanol and acetone) and 5 (1,3-butadiene). It therefore contributes to the following thesis 
objective:  

5. Develop a methodology to project future prices, considering future price variability, 
for use in techno-economic, sensitivity, and uncertainty analyses.  

The selection of commodity chemical prices has a significant impact on the process 
economics, however, as outlined in Chapter 2 it is often an overlooked area in TEAs. In 
Chapters 4 and 5 a Radial Basis Function Neural Network (RBFNN) was used to select the 
long-term average price of the product for use in the investment analysis and stochastic 
uncertainty was accounted for using a uniform distribution of ±30/20% from the nominal 
projected price (Rodgers et al., 2021 & 2022). This method introduced an unbiased price 
projection method for TEAs but had various limitations. For example, the choice of an RBFNN 
with eight neurons and ten historic time-steps was arbitrary and may not be optimal; training 
the model on the entire historic time series may have led to overfitting; model initiation relied 
on ten real historic prices, excluding recent data; and price variability for sensitivity and 
uncertainty analyses were determined subjectively. 

Machine Learning (ML) methods offer benefits over traditional statistical price projection 
methods such as Autoregressive Integrated Moving Average models and Generalised 
Autoregressive Conditional Heteroscedasticity models, as they are able to exploit complex, 
non-stationary, and non-linear trends (Lago et al., 2018). This chapter develops the previously 
proposed ML approach (Chapters 4 and 5), but instead employing Long-Short Term Memory 
(LSTM) neural networks. LSTMs are able to learn long-term dependencies in time series data, 
making them well-suited and adopted in traditional price forecasting fields. The commodity’s 
historic pricing data (2009-2021) and the Energy Information Administration’s (EIA’s) 
reference case projection of future Brent crude oil prices were as model inputs. The historic 
commodity price allows for the exploitation of deterministic trends and/or stochastic variability 
specific to the commodity whilst the EIA’s projection acts as a proxy for future global energy 
market trends. An ensemble of 100 models was used to generate a probabilistic projection of 
the commodity’s future price. The ensemble of models, each trained to reproduce the entire 
historic time series, facilitates the exploitation of different underlying deterministic trends 
and/or stochastic variability within the historic time series producing a distribution of potential 
futures. From the probabilistic projection from the 100 LSTMs the 5th, 25th, 50th, 75th, and 95th 
price percentiles were calculated and used as the nominal price (50th), price range (5th and 
95th), and price distribution (5th, 25th, 50th, 75th, and 95th) in the corresponding economic, 
sensitivity, and uncertainty analyses. As such the methodology makes the need for using 
heuristic uncertainty bounds obsolete.  
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During model training the datasets were split into training and validation sets based on the 
ratio between the historic data (12 years, 30%) and projection horizon (26 years, 70%) 
required for the TEA. This ensured that the selection of optimal hyperparameters was carried 
out on a task representative of the final model projections. The projection horizon was 26 
years, thereby allowing direct comparison to the TEAs in Chapters 4 and 5. A test set was not 
employed due to the limitations in dataset size. Given the projection horizon of the final model, 
the use of a test set would necessitate a split of 30% for the training and validation set, and 
70% for the test set. The training set would then constitute 30% of the training and validation 
set, resulting in only 9% of the data being used for training, 21% for validation, and 70% for 
the test set. As no test set was used, the ability of the model to generalise was assessed 
based on the performance against the validation set. In addition, when using the methodology 
in a TEA, a test set would not be used, and the hyperparameters would be selected based on 
validation set accuracy. The learning rate, number of epochs, and maximum number of hidden 
units in the LSTM layer were optimised during the grid search procedure.  

This work presents and implements the method by projecting five commodity chemical prices 
26 years into the future. Furthermore, the nominal Net Present Value (NPV) and NPV range 
from the uncertainty analysis obtained from the previous two TEAs in Chapters 4 and 5 were 
compared to the new outcomes obtained from the developed price projection method. This 
was undertaken to highlight the importance in price selection procedures and their impact on 
economic outcomes.  

The novelty of this work is, to the best of the authors knowledge, the first application of 
machine learning to produce probabilistic commodity prices for TEAs. Previous price 
projection methods employed in TEAs are stochastic modelling (e.g.  Manca et al., 2011), 
correlating prices to an existing projection for a different commodity (e.g. Brown & Wright, 
2015), or employed traditional econometric tools (e.g. Nguyen and Tyner, 2021). In addition, 
the probabilistic price projection provides the ranges for the sensitivity and uncertainty 
analyses, rather than relying on heuristics. Previous approaches to account for price variability 
have relied on historic variability (e.g. Diniz et al., 2018), or applied an arbitrary percentage 
(e.g. Moncada et al., 2018). 
 
This study found the projected commodity price distributions demonstrated appreciable price 
variability. These results suggest that pricing uncertainty considerations in TEAs should be 
tailored to each commodity rather than dictated through heuristics. These results were put into 
the two previous TEAs. Comparing the previous RBFNN price projections to the developed 
LSTM method, the 70% probability window for the NPV distributions were changed from $35 
- $95 million to $45 - $80 million for Chapter 4, producing isopropanol and acetone, and from 
-$45 - $65 million to -$35 - $80 million for Chapter 5 for the 1,3-butadiene process.  A two-
tailed t-test verified a statistically significant difference between the NPV distributions. 

A limitation of this study was the number of hyperparameters considered during the validation 
procedure. In addition to the number of LSTM units, epochs, and learning rate the number of 
layers, number of neurons in the fully connected layer, use of a fully connected layer, number 
of time-steps being predicted etc. could have also been considered. However, as the 
increased number of hyperparameters being optimised vastly increases the computational 
expense there is a trade-off between these two factors. Cross-validation was also omitted from 
this analysis, relying only on a single validation set to select the hyperparameters. Additionally, 
the inclusion of the EIA’s projection was not effectively input into the model. An improved 
approach would have involved staggering inputs, using future crude oil price projections from 
the EIA for corresponding commodity predictions, thereby enabling the model to learn the 
relationship between future crude oil prices and commodity prices for improved predictions. A 
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further limitation was that no comparison between price projection methods was undertaken 
to compare accuracy. In traditional forecasting fields new methods are commonly compared 
against traditional econometric methods and various simpler ML methods e.g. Wu et al. (2019) 
and Lago et al. (2018). However, the specific requirements of the projection problem defined 
in this work, namely, a probabilistic projection, inclusion of the EIAs crude oil price projection, 
and applicability to any time series, meant econometric methods were unsuitable for the 
studied problem. Alternative ML methods could have been compared to assess the most 
appropriate model. This was omitted to keep the focus of the work on the application of the 
price projections within TEAs, rather than on comparing algorithms based on their accuracy. 
Furthermore, algorithm accuracy cannot be compared on the final predictions, as price 
projections are produced 20-25 years into the future, where real prices are unavailable. 
Despite this, future work has been suggested to explore decomposition-based methods such 
as variational mode decomposition and other wavelet decomposition methods along with the 
proposed ensemble approach. These methods aim to reduce the burden on the ML algorithm 
by first extracting features from the data. However, such methods were deemed excessive for 
the presented problem, adding unnecessary computational expense.  

This work comprises a published paper entitled “Probabilistic commodity price projections for 
unbiased techno-economic analyses” and was published in Engineering Applications of 
Artificial Intelligence in June 2023. The published paper is presented in this thesis as Chapter 
6. The corresponding supplementary information as published alongside the manuscript is 
reprinted in Appendix A.3. 

Article Title: Probabilistic commodity price projections for unbiased techno-economic 
analyses 

Journal: Engineering Applications of Artificial Intelligence 

Date: June 2023 

DOI: 10.1016/j.engappai.2023.106065  

Authors: Sarah Rodgers, Alexander Bowler, Fanran Meng, Stephen Poulston, Jon 
McKechnie, Alex Conradie 

Author Contributions: Sarah Rodgers: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Software, Visualization, Writing – original draft, Writing – review 
& editing. Alexander Bowler: Conceptualization, Data curation, Formal analysis, Methodology, 
Software, Writing – review & editing. Fanran Meng: Conceptualization, Methodology, 
Supervision, Writing – review & editing. Stephen Poulston: Supervision, Writing – review & 
editing. Jon McKechnie: Conceptualization, Funding acquisition, Methodology, Project 
administration, Resources, Supervision, Writing – review & editing. Alex Conradie: 
Conceptualization, Formal analysis, Funding acquisition, Methodology, Project administration, 
Resources, Software, Supervision, Writing – review & editing. 
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A B S T R A C T

Techno-economic analysis is a core methodology for assessing the feasibility of new technologies and processes.
The outcome of an analysis is largely dictated by the product’s price, as selected by the practitioner.
Representative future price distributions are required as inputs to investment, sensitivity, and uncertainty
analyses across the 20 to 25 year plant life. However, current price selection procedures are open to subjective
judgment, not adequately considered, or neglected by calculating a minimum selling price. This work presents
a machine learning methodology to produce unbiased projections of future price distributions for use in a
techno-economic analysis. The method uses an ensemble of 100 neural network models with Long Short-Term
Memory layers. The models are trained on the Energy Information Administration’s (EIA) long-term crude
oil projections and a commodity’s historic price data. The proposed method is demonstrated by projecting
the price of five commodity chemicals 26 years into the future using 12 years of historic data. Alongside
the economic outlook extracted from the EIA projections, the five commodity price distributions capture
stochastic and deterministic elements specific to each commodity. A statistically significant difference was
observed when using the price projections to revise the Net Present Value distributions for two previous
techno-economic analyses. This suggests that relying on heuristics when selecting price ranges and distributions
is unrepresentative of a commodity’s price uncertainty. The novelty of this work is the presentation of an
unbiased machine learning approach to project long-term probabilistic prices for techno-economic analyses,
emphasising the pitfalls of less rigorous approaches.
. Introduction

The development of a sustainable chemical industry requires novel
rocesses that are cost-competitive against current fossil-derived pro-
uction. A Techno-Economic Analysis (TEA) evaluates the economic
easibility of full-scale processes, allowing for the prioritisation of early-
tage research and development (Scown et al., 2021). Depending on the
echnology maturity and intended audience, TEA outcomes can be used
or a variety of purposes; e.g. determining cost drivers, ranking prospec-
ive technologies, producing targeted policy initiatives, and assessing
ptimal resource valorisation. Effectively interpreting TEA outcomes re-
uires analyses to be objective, comparable, and transparent (Langhorst
t al., 2022). Product prices significantly affect these outcomes, usually
onsidered over a 20 to 25 year project life to obtain the comulative
et Present Value (NPV). However, long-term prices are selected by the

∗ Corresponding author.
E-mail address: a.conradie@ucl.ac.uk (A. Conradie).

1 Present address: The Manufacturing Futures Laboratory, Department of Biochemical Engineering, University College London, Gower Street, London, WC1E
BT, UK.

practitioner and subjective heuristics are typically relied upon to select
the corresponding range and distribution for use in sensitivity and
uncertainty analyses. The robust, unbiased projection of representative,
long-term prices are thus essential as inputs to investment analyses,
thereby assessing the economic feasibility of new technologies and
processes.

At present, it is commonplace for TEAs to use spot prices either from
literature, market values and price indices, or to bypass selection by
calculating the Minimum Selling Price (MSP). Unfortunately, references
to representative prices can be difficult to come by, and uncertainty
often exists concerning the reliability of the source, the geographic
location, and the time frame for which the price is representative
(Hubbard, 2018). Furthermore, objective future price projections are
required to ultimately contextualise calculated MSPs. As part of a
TEA, sensitivity and uncertainty analyses provide for greater robustness
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Abbreviations

CNN Convolution Neural Network
CRPS Continuous Ranked Probability Score
EIA Energy Information Administration
EMD Empirical Mode Decomposition
LSTM Long Short-Term Memory
MIMO Multi Input Multi Output
ML Machine Learning
MMBTU Million British Thermal Units
MSP Minimum Selling Price
NPV Net Present Value
RBFNN Radial Basis Function Neural Network
RNN Recurrent Neural Network
TEA Techno-Economic Analysis
VMD Variational Mode Decomposition

given the underlying assumptions. These analyses frame the economic
outcome within a band of uncertainty based on the initial assump-
tions. Sensitivity analyses necessitate both a nominal price and range,
whilst uncertainty analyses require a nominal future price and the
corresponding distribution. However, lower and upper bounds are often
selected as an arbitrary percentage. Towler and Sinnott (2013) rec-
ommend varying prices by ±20% as a rule of thumb, though bounds
employed in literature vary considerably. For example, Moncada et al.
(2018) varied their product prices by ±50% with the nominal price
selected from Alibaba averages. Similarly, Zhang et al. (2021) used
a bio-methanol price from literature with an arbitrary ±$200 tn−1

range (∼18%) in their sensitivity analysis. Distribution data is often
taken from historic prices. However, there is no guarantee historic
variability will be representative of the future, and the use of historic
data necessitates the selection of a historic time period, introducing
subjectivity as historic time periods used in practice vary. Campbell
et al. (2018) used a triangular distribution for biofuel selling prices
with the minimum, maximum, and mean prices taken from historic
gasoline, diesel, and heating oil prices from 2005 to 2017. Cheali
et al. (2014) analysed historic gasoline, diesel, and ethanol prices for
2012 and selected a distribution to appropriately describe the historical
data. Diniz et al. (2018) used Pert distributions with the range based
on observed fluctuations in crude oil prices over the five preceding
years. The probabilistic projection of future prices would bypass the
use of heuristics for range and distribution selection, the assumption
that historic price variability is representative into the future, and the
subjective selection of historic time periods.

Several existing TEAs have considered the projection of future
prices as a solution to the volatile and uncertain nature of commodity
prices across a plant’s lifetime. The principal approaches adopted are,
(1) modelling the time series as a stochastic process where the data
follows a random walk (Manca et al., 2011; McGarvey and Tyner,
2018), (2) correlating prices to an existing projection for a different
commodity (Brown and Wright, 2015; Zhang et al., 2013), and (3)
the use of traditional econometric tools (Amigun et al., 2011; Ioannou
et al., 2018; Nguyen and Tyner, 2021; Puig-Gamero et al., 2021; Yao
et al., 2017). All three previously employed approaches have their
limitations. Modelling the time series as a purely stochastic process
prevents the exploitation of any deterministic trends within the historic
price data. Existing projections are often only single point, providing no
probabilistic uncertainty bound. Finally, whilst traditional econometric
tools exploit determinism within the historic data, the models are not
universally applicable and require practitioners to undertake statistical
tests to prepare and analyse the data. Moreover, these methods require
the time series to be near linear and are unable to extract complex
features (Lago et al., 2018).
2

Despite not being common practice in TEAs, price forecasting is a
well-developed field. Current research is primarily focused on machine
learning (ML) methods owing to their ability to accommodate non-
linear, non-stationary, and complex sequences compared to statistical
methods. Commonly adopted ML methods in forecasting include arti-
ficial neural networks, support vector machines, and random forests
(Herrera et al., 2019). LSTMs are of particular prominence owing
to their ability to learn long-term dependencies within time series
data (Wu et al., 2019). They are being increasingly applied to price
forecasting problems such as crude oil (Wu et al., 2019), electricity
(Lago et al., 2018), gold (Livieris et al., 2020), and the stock market (Li
and Bastos, 2020). However, traditional forecasting procedures differ
from the requirements for a TEA, which necessitate a probabilistic price
projection 20 to 25 years into the future to provide representative
prices for the investment, sensitivity and uncertainty analyses. This
20 to 25 year horizon is often longer than the historic pricing data
available for model training. Traditional forecasting problems typically
consider much shorter horizons and focus on pricing fluctuations rel-
ative to previous prices, aiming to minimise short-term investment
losses and risk. For example, time horizons of, days (Liang et al., 2020)
or months (Bukhari et al., 2020) are often considered for stock price
forecasting, a three month forecast horizon was utilised in a supply
chain procurement optimisation problem (Liu et al., 2022), and three
years is considered long-term for electricity price forecasting (Ziel and
Steinert, 2018). Furthermore, TEAs are undertaken based on a plant
being built at the outset of a long-term investment proposition. The
projected price distributions directly impact the TEA outcome and
could be decisive in whether a capital investment is sanctioned. As the
true future prices are unavailable, the long-term projection accuracy
cannot be evaluated. Therefore, the purpose of price projections is to
provide an unbiased nominal price and distribution to evaluate a tech-
nology without subjective judgement from either the TEA practitioner
or the intended audience. Importantly, an investment opportunity is
often weighed against a portfolio of other opportunities, making a
consistent approach to price projection paramount to fair comparisons.
This contrasts with traditional price forecasting problems, where model
performance is evaluated through the comparison of the forecast to
actual prices.

Leveraging LSTMs ability to learn long-term dependencies in time
series data, an ensemble of 100 ML models, containing a fully con-
nected layer and LSTM layer, is implemented to produce a probabilistic
projection of the commodity’s future price for use in TEAs. LSTMs allow
for the exploitation of features from the entire historic dataset. This
means the model is not limited by the feature horizon, which is key
to uncovering long-running historic trends. For this reason, no feature
extraction is used before the LSTM layers, enabling the models to learn
feature time-lengths relevant to the task and use interdependencies
between features of different frequencies. Resultantly, the number of
LSTM units is selected during model training to optimise the network
size for feature extraction and trajectory learning capabilities. The
projected distribution is used to calculate the 5th, 25th, 50th, 75th
and 95th price percentiles, removing bias from the nominal price,
range, and distribution selection procedures. The EIA’s reference case
projection of future Brent crude oil prices is used as an additional
model input. The EIA’s projection is based on assumptions that include
economic factors, resource availability, global energy markets, and
technological developments (EIA, 2019); which are unavailable to TEA
practitioners. As such, the use of this projection acts as a proxy for
future global energy market trends, whilst the historic commodity
price allows for the exploitation of deterministic trends and stochastic
variability specific to the commodity. This work aims to present and
implement a method to produce unbiased price distribution projections
for TEAs. The method is demonstrated by projecting five commod-
ity chemical prices 26 years into the future and using the pricing
projections in two existing TEAs. The novelty of this work lies in:
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1. The use of machine learning to produce 20 to 25 year probabilis-
tic commodity price projections for techno-economic, sensitivity,
and uncertainty analyses.

2. The use of an ensemble of LSTMs to exploit the underlying de-
terminism and/or stochastic variability within the commodity’s
historic price time series.

3. Using the price projections to draw attention to the inadequacy
of currently employed price, range, and distribution procedures
in TEAs.

4. Applying the produced projections to existing TEAs, thereby ev-
idencing the importance of price selection procedures to techno-
economic outcomes.

he remainder of the article is organised as follows. Section 2 provides
literature review of forecasting methods previously undertaken within
EAs and briefly covers the use of LSTMs within price forecasting fields.
ection 3 describes the methods used and developed in this work.
ection 4 presents the price projections and discusses their impact by
tilising them in two existing TEAs. Lastly, Section 5 summarises the
ey findings and proposes recommendations for future work.

. Relevant literature

Price projections are seldom undertaken for price selection proce-
ures in TEAs. Those studies that have considered it, are discussed
elow. Recent applications of LSTMs in traditional price forecasting
ields are also discussed, reflecting upon their relevance to TEA price
rojections.

.1. Techno-economic analyses

Manca et al. (2011), is a rare example highlighting the challenge
osed by commodity price variability across a chemical plant’s lifetime.
n their work, a forecast for a reference component is produced using

stochastic Markovian process and Monte Carlo methods were used
o produce a distribution of prices (Manca, 2012). Other commodities
ere correlated to this reference component using an Autoregressive
istributed Lag model (Manca et al., 2011). The proposed method

ed to the creation of a systematic method, named Predicted Con-
eptual Design, used to produce optimal plant designs under market
ncertainty. The authors have utilised their framework in several case
tudies, i.e. styrene monomer manufacturing (Barzaghi et al., 2016),
he cumene process (Sepiacci et al., 2017), and a CO2 separation
rocess (Gutierrez et al., 2019). Whilst this method is applicable to any
ommodity’s time series, a major drawback of stochastic modelling is
he inability to exploit any underlying deterministic trends within the
istoric time series.

Several econometric approaches have been considered within eco-
omic assessments. In a TEA for bioethanol production in South Africa,
rices were modelled stochastically using a multi-variate empirical dis-
ribution methodology based on historical fluctuations between 1999
nd 2008 (Amigun et al., 2011). Yao et al. (2017) undertook statistical
ests on the historic price data of each commodity in their stochastic
EA of alcohol to jet fuel. Different models were then selected to
epresent each commodity (Yao et al., 2017). In the price growth
cenario in the study by McGarvey and Tyner (2018), jet fuel price
rowth was represented by geometric Brownian motion using a 1%
rowth rate and a stochastic component with a PERT distribution,
here the first year commenced using a mean of historic prices (Mc-
arvey and Tyner, 2018). Ioannou et al. (2018) compared Geometric
rownian motion, Autoregressive Integrated Moving average, and a
odel combining Mean-Reversion and Jump–Diffusion models to fore-

ast electricity prices in an economic assessment of offshore wind
nergy production, finding the Autoregressive Integrated Moving aver-
ge model performed best over the validation set (Ioannou et al., 2018).
guyen and Tyner (2021) forecast jet fuel and carinata oil by analysing
he data using @Risk software (Nguyen and Tyner, 2021). The price

3

distributions were produced to ensure the observed probability dis-
tribution function and trend between commodities were maintained.
More recently, Puig-Gamero et al. (2021) considered three econometric
models, damped trend, local linear trend, and local linear trend with
cycle in their economic analysis of methanol produced from olive
waste (Puig-Gamero et al., 2021). A gaussian distribution of forecast
errors based on the historic data was produced and used in the Monte
Carlo simulation. Whilst these econometric models utilise information
within the historic dataset to make a projection, they all use different
approaches. As highlighted by Yao et al. (2017), the underlying price
movements are different for each commodity, meaning no econometric
method is applicable to all commodities. This requires the TEA practi-
tioner to undertake statistical tests to prepare and analyse the data. In
addition, these methods require the time series to be near-linear and
are unable to extract complex long-running features.

Some analyses have made use of the EIA’s price projections to pre-
dict future prices. Zhang et al. (2013) considered future prices by using
the EIA’s long-term price prediction for petroleum and correlating other
commodity prices to this for their TEA (Zhang et al., 2013). The dis-
advantage of this approach is the EIA’s projections are point forecasts,
neglecting probabilistic uncertainty, required for use in sensitivity and
uncertainty analyses (Kaack et al., 2017). Incorporating uncertainty
and the EIAs projections, Brown and Wright (2015) simulated future
commodity prices using a random walk with drift. The random changes
were based on the probability density function of historic prices, whilst
the drift ensured the mean of monthly price distributions matched the
EIAs 2013–2032 projections (Brown and Wright, 2015).

To the best of the authors’ knowledge, the only previous application
of ML for price selection procedures within TEAs was by Rodgers et al.
(2021, 2022). A Radial Basis Function Neural Network (RBFNN) was
used to produce long term average commodity price projections and
stochastic uncertainty was accounted for using a uniform distribution
of ±20% from the nominal projected price (Rodgers et al., 2021, 2022).
Whilst this method is applicable to any time series, the heuristic used
to account for stochastic uncertainty has no bearing on the observed
time series and was therefore unrepresentative of the commodity’s price
setting mechanism.

The only methods applicable to any time series are purely stochastic
processes and ML methods. A disadvantage of modelling as stochastic
process is the inability to exploit any underlying trends within the
commodity’s price data. Whilst ML methods overcome this challenge,
the previous application of ML relied on an arbitrary heuristic to
account for price uncertainty (Rodgers et al., 2021, 2022). Ideally,
a probabilistic price projection should be produced, providing a pro-
jection of the nominal price, range, and distribution for use in the
investment, sensitivity, and uncertainty analysis during a technology
evaluation.

2.2. Price forecasting

Both statistical and ML methodologies have been applied to price
forecasting fields. ML’s ability to accommodate complex, non-linear,
and non-stationary time series has led to its widespread application to
numerous forecasting problems with reported improved performance.
For example, Herrera et al. (2019) found superior performance of ANNs
and Random Forests compared to statistical methods for long-term
energy commodities (Herrera et al., 2019).

Among machine learning methods, LSTMs are of increasing impor-
tance owing to their ability to learn long-term dependencies within
time series data. LSTMs are a type of Recurrent Neural Network (RNN),
which are an artificial neural network containing at least one feedback
connection, allowing learning of temporal patterns. As an advancement
on standard RNNs, LSTMs use gate units to update their internal
network state (Hochreiter and Schmidhuber, 1997). These gate units
enable LSTM cells to regulate the inward and outward flow of informa-

tion, reducing the likelihood of exploding and vanishing gradients that
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hinder long-term time series analyses. Ultimately, these gates prevent
the network from only remembering information from recent time
steps. This makes them particularly suited to time series predictions and
has led to their increased implementation in price forecasting fields.
Notably, Li and Bastos (2020) found them to be the most commonly
applied deep learning algorithm to stock market forecasting (Li and
Bastos, 2020).

In this work, LSTMs ability to learn features from the entire dataset
was exploited. This allows for long-running trends spanning the entire
time series to be utilised in the price projections. Recent applications
of LSTMs in price forecasting fields have been focused on enhancing
model accuracy using feature extraction methodologies, such as com-
bining them with Convolution Neural Networks (CNNs), or the use
of decomposition methods. These feature extraction methods aim to
reduce the burden on the LSTM units to both extract features and learn
the feature trajectories.

In gold price forecasting, Livieris et al. (2020) incorporated CNN
layers prior to LSTM layers, to aid the LSTMs’ performance (Livieris
et al., 2020). The CNN was used to identify spatial information in
the time series and was found to enhance forecasting performance
compared with LSTMs in isolation. However, within the context of TEA
price projections, a disadvantage of this approach is that the models are
then limited to extracting features at the size of the kernel window used
by the CNN, which may not be as relevant for long-term forecasting
problems. The selection of the kernel window size incorporates user
bias and may prevent the exploitation of long-running trends within
the historic time series that are relevant across the required 20 to 25
year horizon for TEA price projections.

Decomposition-based models aim to reduce the burden on the LSTM
layers to learn features, by first extracting different frequency com-
ponents as independent inputs to the learning algorithm. These pre-
dictions are then recombined to produce the forecast. Decomposition
methods include, empirical mode decomposition (EMD), Fourier de-
composition, wavelet transforms, and variable mode decomposition
(VMD) (Liu et al., 2020). Improved accuracy has been observed through
these methods, for example, Wu et al. (2019) utilised an ensemble EMD
approach to decompose the time series of crude oil, with improved
performance over benchmark ML model’s and other decomposition
and ML algorithm pairings. More recently, improvements have been
observed using VMD. In the study by Niu et al. (2022), VMD was used
to decompose the carbon price series and extreme learning machine
models were used to forecast the prices, with results showing improved
performance over both statistical and other ML approaches. Similarly,
in metal price forecasting, Liu et al. (2020) found improved perfor-
mance by combining VMD with an LSTM network. A limitation of these
methods as a means of producing price projections for TEAs, is that all
frequencies are treated separately. This prevents the ML algorithm from
learning frequency interdependencies that could be attributed to global
market trends, which are of greater importance within the context of a
20 to 25 year price projection.

3. Methodology

The proposed methodology was implemented in MATLAB R2019a.
The code used to produce the price projections can be found in the
Supplemental Information, Section S2. A simplified block flow diagram
of the method is presented in Fig. 1. Each dataset was standardised by
subtracting the dataset’s mean and dividing by its standard deviation
during pre-processing. This procedure re-scales each time series to have
a mean of 0 and a standard deviation of 1, bringing the datasets to a
common scale. The time series was then split into training and vali-
dation sets. The training sets were used to train LSTM neural network
models using both the historic commodity price data and historic Brent
crude oil prices as inputs. An ensemble of 100 LSTM neural network
models were trained using a random number of hidden units below

a selected maximum, creating a distribution of price projections for

4

Fig. 1. Simplified block flow diagram of the proposed method. The selection and
evaluation of hyper-parameters is an iterative process, whereby the process is repeated
using different hyper-parameter combinations until no appreciable improvement in
model performance is attained. The section numbers correspond to the methodology
sections where more detail is provided.

Table 1
Data sources for the commodity prices used to demonstrate the price projection
method.

Commodity Country Unit Range used Source

Brent crude oil Europe $/MMBTU Jan09 - Dec46 EIA (2021, 2022)
Isopropanol China $/tonne Jan09 - Dec20 Intratec (2020)
Acetone China $/tonne Jan09 - Dec20 Intratec (2020)
Butadiene China $/tonne Jan09 - Dec20 Intratec (2020)
Ethanol US $/gal Jan09 - Dec20 Markets Insider (2021)
Butane US $/MMBTU Jan09 - Dec20 EIA (2021)

assessment against the validation set. Annual 5th, 25th, 50th, 75th and
95th price percentiles were calculated from the projected ensemble
across each year and used to select the optimal hyper-parameters for
each commodity. The optimised hyper-parameters were then used to
project prices across the 26-year horizon. Finally, the price projec-
tions were processed for use in the techno-economic, sensitivity, and
uncertainty analyses.

3.1. Data collection

The time series price datasets and sources used are presented in
Table 1. Historic Brent crude oil prices and commodity prices were used
as model inputs from 2009 to 2021, including the EIA’s Brent crude oil
price projections from 2021 to 2046. Long-term price projections were
generated for isopropanol, acetone, butadiene, ethanol, and butane; all
considered within previous TEA studies (Rodgers et al., 2021, 2022).
Pricing data for ethanol was sourced from a publicly available database
(Markets Insider, 2021). Butadiene, isopropanol, and acetone were
taken from the Intratec database (Intratec, 2020).

Fig. 2 presents the standardised historic price data for crude oil and
the commodities being projected. The EIA’s long-term crude oil price
projection from the most recent Annual Energy Outlook is also pre-
sented (EIA, 2021, 2022), to illustrate the crude oil prices used in the
20 to 25 year projections. The historic price data for all commodities
demonstrate the same underlying trend, indicating that crude oil has
aligned deterministic trends. Validating this, the Pearson correlation
coefficient between crude oil and each commodity was calculated and
is presented in Table 2. The Pearson correlation coefficient is a measure
of the strength of the association between two continuous variables, a
value of −1 or 1 shows a perfect negative or positive correlation. In
his case, all five commodity prices demonstrated a strong to moderate
ositive Pearson correlation.

The EIA’s crude oil projection acts as a proxy for future trends
n world energy markets and thereby commodity prices. Its inclusion
dds information to the price projections regarding economic factors,
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Fig. 2. Standardised historic price data for crude oil and commodity prices subject to projection. The historic commodity price data is for Jan09 - Dec20. The EIA’s crude oil
price projection is included for Jan21 - Dec46.
Table 2
Pearson correlation coefficients between crude oil and the commodity prices for the
time period Jan09 - Dec20. All commodities display a strong to moderate positive
Pearson correlation.

Commodity Pearson correlation coefficient (Jan09 - Dec20)

Isopropanol 0.74
Acetone 0.71
Butadiene 0.61
Ethanol 0.86
Butane 0.88

resource availability, global energy markets, and technological devel-
opments (EIA, 2019), which are not present in the historic commodity
prices. However, in some instances, e.g. hydrogen pricing, it may be
more appropriate to utilise the EIA’s long-term projection for natural
gas. The Pearson correlation coefficient can be calculated for both crude
oil and natural gas and the most appropriate reference component
selected. The inclusion of one of these projections is necessary to
account for expected global energy market trends in the resulting price
projection.

3.2. Forecasting approach

The prices were projected monthly as most commodity price data is
available at this frequency and greater granularity was not required for
the long-term distributions. Where historic data were more frequent,
the average across the month was used. To remove user selection of
the projection time step, different time steps could be trialled during
the validation procedure i.e. quarterly or annually.

Different strategies can be employed to project long-term prices.
These can be split broadly into three categories: the direct, recursive,
and joint strategies (Taieb and Atiya, 2016). The direct approach
trains independent models for each forecast horizon, whereas the re-
cursive strategy operates iteratively as a one-step-ahead predictor using
previously forecast values as inputs. The joint strategy produces one
multi-output model for the specified forecast horizon. All three ap-
proaches have their shortcomings. The direct strategy assumes no
statistical interdependencies between future predictions, whilst recur-
sive models are prone to error propagation (Taieb et al., 2012). In turn,
joint strategies constrain all horizons for use within one global model

(Taieb et al., 2009). A hybrid direct, recursive, and joint forecasting

5

strategy was implemented owing to better-reported performance than
single output methods (Taieb et al., 2012, 2010; Taieb and Atiya,
2016). The adopted approach trains on the entire historic dataset to
reconstruct the historic data and predict 12 time steps into the future
(joint). After model training, a new model is trained (direct) using the
historic data plus the previously predicted 12 time steps (recursive),
and so forth. The historic data therefore increases by 12 time steps
after each model training. The approach is illustrated in Fig. 3. The use
of 12 time steps was selected as a compromise between accuracy and
compounding errors. Longer horizons reduce accuracy, as each model
must project further into the future. Conversely, a shorter horizon
requires the training of more models to predict the required projection
horizon which exacerbates error propagation, given the greater number
of predicted data points used in each subsequent model training. In
addition, 12 time steps represents annual projections, the required
frequency appropriate as input to a TEA. If desired, the optimal number
of time steps could be investigated as part of the validation procedure.

3.3. Machine learning

The datasets were split into training and validation sets based on
the ratio between the historic data (12 years, 30%) and projection
horizon (26 years, 70%) required for the TEA. This ensured that the
performance of the model prediction during validation was represen-
tative of the performance during the final projections. The projection
horizon for this work was 26 years, thereby allowing direct comparison
to previous TEAs studies (Rodgers et al., 2021, 2022). Henceforth,
prediction is used to mean the model output over the validation period
(2012 to 2021) and projection is used to mean the model output for
the projection horizon (2021 to 2046). As only 12 years of historic
data were available for each commodity, translating to 30% of the final
projection horizon, a training and validation split of 30% and 70%
was necessary to obtain representative hyper-parameters. A test set was
not employed due to the limitations in dataset size. As no test set was
used, the ability of the model to generalise was assessed based on the
performance against the validation set. The accuracy of the final price
projections (2021 to 2046) cannot be assessed given true prices are not
available.

The network architecture is presented in Fig. 4 and consists of a fully

connected layer and a LSTM layer. The fully connected layer contains
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Fig. 3. The model forecasting approach. Each model is trained to reconstruct the historic time series and predict 12 time steps into the future. The predicted time steps are added
to the historic dataset and used as inputs to train the subsequent model. The dataset increases by 12 time steps after each model training. Note that actual crude oil prices and
the EIA’s projections are used as model inputs at each time step, i.e. it is only the commodity price being projected that uses predictions as model inputs.
Fig. 4. Model structure for commodity price projections. The input layer consisted of the historic and projected Brent crude oil prices from the EIA and the historic dataset for the
commodity being projected. The prices are fed into a fully connected layer containing two neurons, followed by an LSTM layer. The number of LSTM hidden units is optimised
as part of the validation procedure. The output layer consists of the future price predictions for 12 time steps into the future.
p

two neurons, creating new feature combinations to feed into the LSTM
layer. If desired, the optimal number of neurons in the fully connected
layer could be determined during the validation procedure. This layer
facilitates the use of any interdependencies present between the crude
oil and commodity price being projected by the network. The size of
the LSTM layer was determined through the validation procedure for
each commodity.

During each model training, the networks were trained using the
entire historic dataset allowing the learning of patterns across the
whole time series. Preventing concerns with exploding and vanishing
gradients, the models were trained to produce an output at each
time step and a gradient threshold of 1 was implemented (Brownlee,
2017). An ensemble of 100 ML models was trained using a randomly
assigned number of hidden units below a maximum selected during
the grid search. This ensemble of models, each trained to reproduce
the entire historic time series, facilitates the exploitation of different
underlying trends embedded within the historic time series, producing
a distribution of potential futures.
6

Each model was trained to reduce the mean squared error between
the training data and the model predictions using the Adam optimisa-
tion algorithm (Mathworks, 2018). As depicted in Fig. 3, the models
were trained recursively whereby, after each model was trained, the
newly projected prices were used as inputs to train the next model.
Therefore, the historic price dataset increased by 12 time steps after
each iteration of the model training.

A grid search of optimal hyper-parameter combinations was un-
dertaken to evaluate the probabilistic forecast performance over the
validation set. The Continuous Rank Probability Score (CRPS) (Eq. (1))
was used to evaluate the performance where; F is the forecast, 𝑦 is the
rediction, and 𝑥 is the actual value (observation).

𝐶𝑅𝑃𝑆 (𝐹 , 𝑥) = ∫

∞

−∞
(𝐹 (𝑦) − 1 (𝑦 − 𝑥))2 𝑑𝑦 (1)

CRPS is a generalisation of the mean absolute error for application in
probabilistic forecasting. It is a proper scoring rule that encompasses
both sharpness and calibration (Gneiting and Katzfuss, 2014). Sharp-
ness refers to the variance of the forecast, i.e. the sharper the forecast
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Table 3
Method to implement the projected price distribution in a techno-economic analysis.

TEA parameter Percentiles
required

Methodology

Nominal NPV 50th Use as price to calculate nominal
NPV.

Sensitivity analysis 5th and 95th Use to represent lower and upper
bounds for prices.

Uncertainty analysis 5th, 25th,
50th, 75th
and 95th

Run 25% of simulations between
each percentile, uniformly
distributing data within each
percentile.

Primary product MSP 5th, 25th,
50th, 75th
and 95th

Use to contextualise the MSP
calculated for the process.

the narrower the projected distribution. Calibration is the accuracy of
the estimates, it reflects the consistency between the predictions and
observations.

The learning rate, number of epochs, and maximum number of hid-
den units in the LSTM layer were optimised during the grid search. The
unique nature of each time series required different hyper-parameter
combinations for each commodity. Once the optimised hyper-
parameters were selected, the final models were trained on the com-
bined training and validation sets to project the prices for the 26-year
horizon.

3.4. Techno-economic analysis implementation

The annual 5th, 25th, 50th, 75th and 95th percentiles were cal-
culated from the 100 monthly ensemble projections (12 × 100). Ta-
ble 3 outlines how the calculated percentiles should be implemented
into techno-economic, sensitivity, and uncertainty analyses, noting that
more percentiles could be calculated from the projected distribution
if desired. NPV is selected as the profitability indicator to illustrate
this method. However, in cases where the discounted rate of return is
unknown, Internal Rate of Return could be calculated using the same
price projections. The only difference to the methodology presented in
Table 3 would be that the objective function is the Internal Rate of
Return rather than NPV.

When computing the process’ MSP, the price projection is used to
contextualise the economic outcome rather than being implemented
into the investment analysis. TEAs are read by a broad range of au-
diences including funding agencies, policy makers, and research and
development experts. These audiences will likely have varying knowl-
edge and awareness of future product prices. Without some way of
contextualising the MSP the result is less meaningful, allowing for easy
misinterpretation of future market competitiveness.

Importantly, price projection procedures should be applied to all
commodity chemicals consumed in a process (Manca, 2012). This is of
particular importance when a process is upgrading a commodity chem-
ical, where the variability in the feedstock price (i.e. the commodity
chemical being upgraded) will have as much impact as the product
selling price. Contrastingly, whilst other costs are also subject to vari-
ability over a plant’s lifetime, e.g. operating labour, maintenance, rent
of land etc., their impact is less pronounced, and these variables are
subjected to annual inflation within a TEA. Countries have their own
inflation targets, therefore the use of this uniformly applied inflation
rate is more appropriate than projecting how this might change over a
plant’s life.

4. Results and discussion

Table 4 presents the optimised hyper-parameters used for each
commodity price projection. These values can be used to inform other
practitioners of typical ranges to evaluate for similar commodity price
projections.
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Table 4
Optimised hyper-parameters obtained during the grid search. Hyper-parameters were
selected to reduce the CRPS on the validation set during model training.

Commodity Optimised hyper-parameters

LSTM units Epochs Learning rate

Isopropanol 1 500 0.1
Acetone 3 200 0.01
Butadiene 2 100 0.01
Ethanol 15 500 0.0001
Butane 3 100 0.00001

4.1. Model validation

As the true prices for the projection horizon (2021 to 2046) are
unknown, the accuracy of the model was confirmed through the per-
formance of the optimised model on the validation set. During the
validation procedure the models were trained on the commodity’s
historic data from 2009 to 2012 (30%) to produce predictions from
2012 to 2021 (70%). Historic crude oil prices were used as model
inputs for the entire time series. Fig. 5 presents the model predictions
overlaid onto the actual prices for the validation set. The percentiles
are annualised, representing the 12 × 100 ensemble predictions re-
quired to produce the distribution as inputs to a TEA. The CRPS for
each commodity was calculated using the non-standardised data. This
was standardised by dividing the CRPS by the standard deviation of
the commodity dataset to bring the errors to a relative scale. The
standardised CRPS is presented in the corresponding figure captions.

The predictions were able to effectively capture the observed trend
in market prices for all commodities, illustrating the method’s appli-
cability to any commodity’s price time series. The underlying price
trend was comparable for all commodities (Fig. 2), suggesting that
the model’s ability to track the observed trend during the validation
procedure was attributable to the inclusion of crude oil prices as a
model input.

The validation set for butadiene had the poorest performance, pro-
ducing the highest CRPS. This is unsurprising as butadiene produced
the lowest Pearson correlation coefficient with crude oil (Table 2).
Neither the decrease in prices observed after 2012 nor the spike around
2017 was captured by the prediction over the validation set. This
suggests that these events and the volatility within butadiene’s historic
pricing were due to external factors, outside of those captured either
historically or observed by crude oil. Butadiene has historically been
produced via steam cracking of naphtha, a derivative of crude oil.
Recent technological advances in shale gas extraction have shifted
crackers to the use of this lighter feedstock, leading to volatility in
butadiene supply and demand (Angelici et al., 2013). The volatility
observed here is likely an artefact of these changing market dynamics.

4.2. Commodity price projections

Fig. 6 presents the probabilistic price projections for the five com-
modities. The plotted annual percentiles are representative of the
12 × 100 projections from the 100 ML models. The upward trajectory
presented in all commodity projections is owed to the EIA’s price
projection for crude oil. The probability band is a product of the dif-
ferent model projections trained on the observed time series. Notably,
the price distributions vary appreciably between commodities. This
suggests that the commonly adopted heuristic of accounting for price
variability across the plant life using a uniformly applied percentage
is unsatisfactory. Currently adopted approaches are clearly unrepre-
sentative of a commodity’s actual price uncertainty, emphasising the
need for price projection methods that can exploit the underlying
determinism and stochastic variability to produce unbiased projections.
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Fig. 5. a–e: Probabilistic predictions over the validation period for the five commodity prices. The historic commodity and crude oil prices were used as model inputs. The models
were trained on the commodity’s historic data from 2009 to 2012 (30%) to produce predictions from 2012 to 2021 (70%). Historic crude oil prices were used as model inputs
over the entire training and validation set. Black lines represent the historic data for each commodity from the sources listed in Table 1. The red line represents the annualised
median projection percentile (50th percentile). The darker shaded region bounds the annualised 25th and 75th percentile as determined from the 100 ML models. The lighter
shaded region bounds the annualised 5th and 95th percentile as determined from the 100 ML models. Vertical dashed lines represent the end of the training dataset and the start
of the validation set. The 𝑦-axis shows the standardised price data.
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Fig. 6. a–e: Probabilistic projections using the EIA’s crude oil projection and historic prices as model inputs. Black lines represent the historic data for each commodity from the
sources listed in Table 1. The red line represents the annualised median projection percentile (50th percentile). The darker shaded region bounds the annualised 25th and 75th
percentiles and the lighter shaded region bounds the annualised 5th and 95th percentiles calculated from the 100 ML models. Vertical dashed lines represent the end of historic
dataset and the start of the projection time window. The 𝑦-axis shows the standardised price data.
.3. Impact of EIA projections for crude oil

The ability of the models to track the observed trend during the
alidation procedure and the upward trajectory predicted for the long-
erm projections is attributable to the inclusion of crude oil. Validating
9

this, isopropanol prices were projected based solely on historic prices.
This model had no fully connected layer as the network contained
only one model input. The new network architecture and model inputs
necessitated a different optimal hyper-parameter set. A grid search was
undertaken as outlined previously. The optimal hyper-parameters were,
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Fig. 7. a–b: Probabilistic prediction and projection for isopropanol using only historic prices as a model input, excluding crude oil. (a) the validation set prediction and (b) the
long-term projection. Black lines represent the historic data, the red line represents the annualised median price (50th percentile). The darker shaded region bounds the annualised
25th and 75th percentiles and the lighter shaded region bounds the annualised 5th and 95th percentiles calculated from the 100 ML models. Vertical dashed lines represent the
end of the validation set in (a) and historic data in (b). The 𝑦-axis shows the standardised price data.
5 LSTM units, 200 epochs, and a learning rate of 0.001. The resulting
model prediction for the validation set and projection for the long-term
projection horizon are presented in Fig. 7. Excluding crude oil, the
validation prediction and long-term price projection clearly illustrate
different results from those including crude oil (Figs. 5a and 6a).

Without crude oil as a model input, the validation prediction pro-
duced a higher CRPS (0.45 including crude oil vs 0.72 excluding crude
oil) and was unable to track the observed trend, suggesting that the
drivers behind this trend are external to isopropanol’s historic time
series (Fig. 7a). The long-term projection shows no upward trajectory,
indicating that this was also due to use of the EIA’s crude oil projection
(Fig. 7b). These disparate results reveal that using crude oil as a model
input provides additional information not embedded in the historic
commodity price data. Over the validation set, the EIA’s projection
provides real trends that were observed by crude oil during the historic
time period and for the long-term projection, it provides crude oil
pricing projections. Whilst the EIA’s long-term projection may not be
accurate into the future, it acts as a proxy for predicted trends in
global energy markets, important when considering emerging process
technologies and otherwise unavailable to TEA practitioners.

4.4. Projection comparisons and impact on economics

The proposed method produces different price distributions for each
year of the projection horizon. The different yearly predictions mean
the projections are not directly comparable to the author’s previous
RBFNN projections which produced only a long term average price for
the entire projection horizon. Nevertheless, the nominal price predicted
using the ensemble projections (50th percentile) was, on average,
higher than the RBFNN projections (Supplementary Information Tables
S.1–5). This is attributable to the inclusion of the crude oil projection
which gradually increases over the projection horizon. The ensemble
projections illustrate different percentage variability for the lower and
upper bounds between commodities. This suggests that the uniformly
applied ±20% heuristic in the RBFNN method, or arbitrary percentages
commonly applied in other TEAs, are unsatisfactory for representing a
commodity’s actual price variability. Furthermore, the ±20% heuristic
applied in the RBFNN method has a uniform distribution, whereas
the ensemble projections implicitly produce a dynamic distribution
informed by the input data.

The purpose of the produced projections is for use within TEAs to
assess a technology’s economic feasibility. To illustrate this, the results
10
Table 5
Comparative NPV results for the RBFNN (Rodgers et al., 2021, 2022) and the ensemble
projections. The RBFNN projection uses the previously projected price using RBFNNs
and a ±20% uniform distribution in the Monte Carlo simulation. The ensemble
projection uses the 50th percentile for each year as the nominal price and the 5th
and 95th percentiles as the lower and upper bounds, while distributing 25% of the
simulations uniformly between the 25th, 50th, and 75th ranges.

Study Nominal NPV
(millions)

NPV 70% probability window
(millions)

RBFNN Ensemble RBFNN Ensemble

Aerobic gas
fermentation producing
isopropanol and
acetone

$42 $54 $35–$95 $45–$80

Renewable butadiene
production via aerobic
fermentation and
catalytic upgrading

$2.8 $19 −$45–$65 −$35–$80

of two previously undertaken TEAs are recalculated using the new
price projections. Previously, the two TEAs used pricing projections
obtained from an RBFNN’s nominal prediction with a uniformly ap-
plied uncertainty distribution of ±20%. The two processes evaluated
were an aerobic gas fermentation process producing isopropanol and
acetone from gasified black liquor (Rodgers et al., 2021), and a hybrid
bio/chemo catalytic process catalytically upgrading an acetaldehyde
gas fermentation product to butadiene (Rodgers et al., 2022). The
newly projected median price (50th percentile) for each plant year from
the ensemble projection was used to calculate the nominal NPV. In
addition, the uncertainty analyses were re-run using 2000 simulations
for both the previous RBFNN and new ensemble price projections. The
results between the previously calculated and new techno-economic
outcomes are compared in Table 5, with the Monte Carlo simulation
uncertainty analyses illustrated in Fig. 8.

Owing to the higher nominal price and upward trajectory of the
ensemble projections (Tables S.1–5), higher nominal NPVs were pro-
duced for both TEAs. Notably, the 70% probability window for the
NPV for each process also changed (Table 5). For both processes, a
two-tailed t-test assuming equal variance was conducted for the NPV
Monte Carlo populations. A statistically significant difference (p value
≪ 0.05) was found between the two populations for the isopropanol
and acetone process using the RBFNN projections (mean = $43 million,
standard deviation = $18 million) and ensemble projections (mean=



S. Rodgers, A. Bowler, F. Meng et al. Engineering Applications of Artificial Intelligence 122 (2023) 106065
Fig. 8. a–b: Comparative Monte Carlo simulations. The left graphs were simulated using the RBFNN projection for the long-term average price and a ±20% uniform price
distribution. The right graphs correspond to distributing 25% of the simulations uniformly between the 5th, 25th, 50th, 75th and 95th percentiles from the ensemble projection.
$51 million, standard deviation = $10 million). Equally, the difference
in the two populations for the renewable butadiene process using the
previous RBFNN projections (mean = −$31 million, standard devia-
tion = $36 million) and ensemble projections (mean = −$13 million,
standard deviation = $35 million) was also statistically significant (p
value ≪ 0.05). Avoiding erroneous investment decision-making during
technology evaluations, these results highlight the significant impact
that price and distribution selection have on the outcome of early-
stage TEAs, reinforcing the requirement for unbiased probabilistic price
projection procedures.

4.5. Challenges with long-term projections

Non-linear long-term forecasts are able to use extracted determin-
istic trends and stochastic variability from historical data and predict
how the price may change into the future. However, models cannot
account for unexpected, abrupt changes to the status quo that in-
troduce novel determinism and stochastic variability as drivers of a
commodity’s future price. This is highlighted in the EIA’s projections,
whose Annual Energy Outlook is renewed annually (EIA, 2022). A
retrospective analysis is produced every two years, where the EIA’s
projections are compared to recent history. A study based on these
projections and retrospectives by Sherwin et al. (2018) demonstrated
that both the unpredictability and volatility of the US energy system
have increased markedly in the past decade compared to the two
preceding decades. This was partially attributed to the large increase
in domestic oil and gas production since 2007, the financial crisis
of 2008 and resulting recession, de-industrialisation, and increased
energy demand. Sherwin et al. (2018) highlight that the actual cause
11
is most likely several interlinked, unanticipated developments. More
recent examples of unexpected external factors are the impact of the
Covid-19 pandemic (Bourghelle et al., 2021), and sanctions on Russian
oil imports (Khan and Kelly, 2022). It is improbable to foresee these
unexpected external disturbances or to predict sudden technological
advances such as emerging renewable technologies. This remains a
major challenge with producing long-term projections in many areas.
Within the context of TEAs, a way to ensure a technology assessment’s
longevity and relevance in the context of future prices is to concurrently
compute the process’ MSP. Importantly, this result needs presenting
alongside today’s expectations of future market prices, thereby pro-
viding a contextualised result to funding agencies, policy makers, and
research and development experts.

5. Conclusions and future work

This work presents a methodology for producing long-term price
distribution projections for use in TEAs and their subsequent sensitivity
and uncertainty analyses. TEAs require probabilistic 20 to 25 year price
projections into the future, where true prices are unavailable. This
contrasts with traditional price forecasting problems where forecast
horizons are much shorter. Furthermore, the price projections for TEAs
are used in investment analyses to evaluate a technology based on a
capital investment sanctioned at the outset of the long-term projection.
The selected price and price distributions could therefore be the differ-
ence between the deployment or redirection of capital. Unbiased price
projection procedures are therefore pertinent to assess the economic
feasibility of new technologies and processes.
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The presented method negates the need for heuristics during price
election procedures in TEAs. The approach uses an ensemble of 100
eural networks with LSTM layers to produce a probability distribu-
ion of potential future prices. Both the commodity’s historic dataset
i.e., isopropanol, acetone, butadiene, ethanol, and butane) and the
IA’s long-term crude oil price projection are used as model inputs. This
imultaneously accounts for insights into future energy markets as well
s deterministic trends, or stochastic variability, within an individual
ommodity’s price data. The method was demonstrated by projecting
6 years into the future using 12 years of historic data, necessitating a
raining and validation split of 30% and 70% to obtain representative
yper-parameters. The approach objectively sets the nominal long-term
rice (50th percentile), determines the lower and upper bounds (5th
nd 95th percentiles), and the distribution to be applied between the
ower and upper bounds (25th and 75th percentiles). As such the
ethodology makes the need for using heuristic uncertainty bounds

bsolete.
The importance of price selection procedures in TEAs is evidenced

hrough both the commodity price projections, and their use in repro-
ucing two previous TEAs. The projected commodity price distributions
emonstrated appreciable price variability, suggesting that pricing un-
ertainty considerations in TEAs should be tailored to each commodity
ather than dictated through heuristics. Regarding techno-economic
utcomes, the 70% probability window for the NPV distributions were
hanged from $35 – $95 million to $45 – $80 million for an isopropanol
nd acetone process, and from −$45 – $65 million to −$35 – $80
illion for a hybrid bio/chemo catalytic butadiene process. A two-

ailed, equal variance t-test verified a statistically significant difference
etween the NPV distributions.

Future work should explore the use of emerging methods in tradi-
ional forecasting fields such as, VMD and EMD decomposition methods
long with the proposed ensemble LSTM approach. These methods aim
o reduce the burden on the LSTM by first extracting features from the
ata. Model accuracy would need to be compared over the validation
et, as data for the 20 to 25 year horizon is unavailable. Therefore, the
ethod achieving the lowest CRPS across the validation set should be

mployed for the TEA price projections. The inclusion of historic errors
rom the EIA’s previous long-term projections, where actual prices are
ow available, also represents an interesting area for further investiga-
ion. A study investigating the use of these errors to produce energy
ensity forecasts was undertaken by Kaack et al. (2017), where the
roduced distributions were found to be more accurate than the EIA’s
cenario projections (Kaack et al., 2017). Incorporating these historic
rrors would add additional projection uncertainty associated with the
ong-term projection of world energy markets, rather than the price
istribution being solely due to variability in the historic time series of
he commodity being projected. It is worth noting that the absolute av-
rage percentage difference between projected and observed crude oil
rices between 1994 and 2021 is 45.6%. Incorporating these errors may
herefore lead to excessively large distributions, meaning investigations
nto their inclusion should be assessed to ensure a sufficiently sharp
rojection is maintained. This should be evaluated using the CRPS as
he performance metric across the validation set. In addition, the TEAs
xplored in this work only applied product price projections, as other
ommodity chemicals were not used in the evaluated process. Future
EA studies should also incorporate price projections for the consumed
ommodity chemicals as well as product prices (Manca, 2012).
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 Creation of a surrogate model for the economic evaluation of 
feedstocks 

 

7.1 Preface 
This chapter contributes to the overall thesis aim of developing and applying Techno-
Economic Analysis (TEA) methods to evaluate the proposed aerobic gas fermentation and 
Supercritical Water Gasification (SCWG) process by providing an early-stage feedstock 
screening tool for SCWG. This enables the identification of promising feedstock scenarios for 
valorisation to maximise the economic potential of the technology. Furthermore, the simulation 
of SCWG is upgraded to allow for biomass feedstocks to be modelled based on their ultimate 
analysis. The new simulation is used to undertake an economic and environmental 
assessment for hydrogen production and a surrogate model of the techno-economic analysis 
is created. It therefore contributes to the following thesis objectives:  

1. Develop process simulations for the aerobic gas fermentation and supercritical water 
gasification process, incorporating heat integration and downstream processing.  

2. Determine an appropriate techno-economic framework and perform a comprehensive 
techno-economic analysis of the simulated process.  

3. Quantify the greenhouse gas emissions associated with chemical and fuel production 
from the process and compare them with conventional production methods.  

6. Create a machine learning surrogate model of a techno-economic analysis to rapidly 
evaluate the economic potential of feedstock-capacity-location combinations for 
supercritical water gasification.  

Detailed TEAs (such as those presented in Chapter 4 and 5) are time consuming and require 
engineering knowledge to produce realistic process designs (Scown et al., 2021). As 
evidenced in Chapter 2, there are increasing trends towards lightweight TEA tools. However, 
the usability of these methods comes at the expense of some accuracy (Scown et al., 2021). 
With emerging tools such as Machine Learning (ML) more complex processes can be 
represented by reduced order models, creating more accurate tools for user-friendly process 
and biorefinery scenario evaluation. This Chapter presents a ML surrogate model of a TEA for 
feedstock evaluation for hydrogen production via SCWG. This represents the upstream 
portion of the heat integrated aerobic gas fermentation platform, removing the bioreactor and 
downstream separation sections.  

A dataset consisting of the ultimate analysis of 40 biomass feedstocks was collected from 
experimental literature investigating low-temperature SCWG (380 - 500°C). A process 
simulation of the low-temperature SCWG and separation and purification to produce 
renewable hydrogen was created for each of the biomass compositions in Aspen HYSYS. The 
simulations were based on a fixed SCWG temperature at 430°C. This was selected owing to 
the economic benefit of low-temperature SCWG which reduces the energetic burden required 
to preheat the feedstock (Lee et al., 2021). A feedstock concentration corresponding to a 
Chemical Oxygen Demand (COD) of 75 g/LCOD was also selected. This concentration was 
selected as low solids concentrations lead to increased hydrogen production through 
enhancing Steam Methane Reforming (SMR) and water gas shift reactions (Lee et al., 2021). 
The TEA was undertaken considering five different processing scales (10 to 200 m3/hr) and 
three geographic locations (China, Brazil, and the UK), giving rise to 600 TEAs. The selected 
processing capacities allow for comparison to other low-carbon hydrogen technologies and 
represent realistic point source waste stream availability. The geographic locations were 
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selected as case studies with abundant wet wastes suitable for SCWG, i.e., black liquor in 
China, vinasse in Brazil, and distillery wastewater in the UK and provide global coverage. 

In Chapters 4 and 5 the SCWG reactor model was represented using a plug flow reactor with 
kinetics based on low temperature gasification of guiacol. However, in this Chapter a Gibbs 
reactor was used to model the gasifier, this enables the ultimate analysis of the biomass 
feedstocks to be directly input into the simulations. In contrast to the kinetic model, the 
predicted gas composition from the Gibbs reactor had a higher methane concentration. At 
lower temperatures a higher methane fraction is anticipated from a thermodynamic 
perspective as lower temperatures favour exothermic methanation reactions. However, to shift 
the SCWG effluent to a CO2 and H2 rich product a series of reactors namely; steam methane 
reformer, high temperature shift, and low temperature shift were employed. 

The TEA methodology was adopted from Chapters 4 and 5. However, owing to the range of 
feedstocks evaluated, a universal method of computing the feedstocks utility value was 
created based on the feedstocks higher heating value (HHV) relative to natural gas. An 
efficiency factor of 70% was applied to the HHV based on anaerobic digestion as a next best 
alternative waste utilisation method. Anaerobic digestion can only exploit the Biological 
Oxygen Demand of a feedstock, whereas SCWG exploits the entire COD. The 70% efficiency 
factor reflects a high Biological Oxygen Demand to COD ratio (Kumar et al. 2010). The 
feedstock’s price was then computed based on the adjusted HHV relative to the HHV of natural 
gas using the Energy Information Administration’s natural gas prices (EIA, 2022). 

Considering the ML surrogate model, the biomass’ ultimate analysis, processing capacity, and 
geographic location were the model inputs, and the model outputs were the nominal Levelised 
Cost of hydrogen (LCOH) and corresponding 70% probability band. The 70% probability band 
represents the upper 70% of economic outcomes obtained from the Monte Carlo simulation 
probability distribution, i.e., 100 % - 30 %. This therefore represents an optimistic range of 
potential economic outcomes. In retrospect, presenting the 95% probability around the mean, 
representing two standard deviations, would have provided a statistically robust range for 
comparison to alternative technologies. 

Three ML algorithms were compared for the surrogate model, Random Forests (RF), Support 
Vector Regression (SVR), and Artificial Neural Networks (ANNs), as they have been 
previously considered for predicting hydrogen production via SCWG (Li et al., 2021; Zhao et 
al., 2022). An ensemble of 10 ANNs was used for the ANN model owing to proposed improved 
performance from ensemble-based methods. The 600 TEA combinations were split into a 
training set of 360, a validation set of 120, and a test set of 120 parameter combinations. As 
the hydrogen yield varied between biomass feedstocks, the 40 biomass feedstocks were 
distributed among the sets to facilitate the generalisation across feedstock compositions. This 
resulted in 24 biomass feedstocks in the training set, 8 in the validation set, and 8 in the test 
set. The best-performing hyperparameters were selected based on cross-validation 
performance. A 4-fold cross-validation procedure was undertaken on the combined training 
and validation sets using a grid search to determine the optimal hyperparameters for each ML 
algorithm. SHapley Additive exPlanation Values were used to highlight the relative importance 
of the input features on the model’s output. 

The surrogate model’s utility was demonstrated by comparing the economic outcome of the 
40 different feedstocks at the different processing scales and locations. The LCOH computed 
was compared to other low carbon hydrogen production methods namely; electrolysis using 
renewable electricity and SMR with carbon capture and storage. Levelized costs for these 
comparisons were obtained from the International Energy Agency (IEA) for China (IEA, 2021a; 
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IEA, 2022) and Brazil (IEA, 2021b), and the UK Department for Business, Energy and 
Industrial Strategy (BEIS) for the UK (BEIS, 2021). 

The novelty of this work is the development of a published surrogate model representing a 
TEA of SCWG. This enables the quick economic evaluation of different feedstock-capacity-
location combinations. To the best of the authors’ knowledge, the only other study to produce 
a surrogate model for a full TEA was Huntington et al. (2023), who used hydrolysis-based 
ethanol production as a case study. Another novel contribution was the creation of the 
reliability measure to determine the confidence in the model’s predictions for unseen biomass 
samples input by the user. The validity of predictions made by the surrogate model on unseen 
data was not discussed in the work by Huntington et al. (2023). The reliability measure 
developed in this Chapter takes principles from anomaly detection using autoencoders where 
an anomaly threshold is set by the reconstruction error (Ndubuaku et al., 2019). However, in 
this application the threshold is based on the error between the predictions by the ensemble 
of ANNs using a 5-fold validation procedure on the entire dataset. 

In terms of techno-economic outcomes, this study found that at a SCWG capacity of 50 m3/hr, 
the LCOH (2.76 - 4.21 $/kgH2 for China, 3.41 - 5.07 $/kgH2 for Brazil, 4.31 - 6.62 $/kgH2 for the 
UK) was cost competitive with hydrogen production via MW-scale electrolysis using renewable 
electricity (3.10 - 6.70 $/kgH2 for China, 3.70 - 5.90 $/kgH2 for Brazil, and 4.81 - 6.31 $/kgH2 for 
the UK). With regards to the surrogate model, the ensemble of ANNs performed the best, 
achieving a test set accuracy of, Mean Absolute Percentage Error: <4.6%, Route Mean 
Squared Error: <0.39, and R2: >0.99. Processing capacity was found to be the most important 
feature followed by geographic location. However, appreciable LCOH differences were also 
observed between different biomass compositions. This highlights the need for early-stage 
screening tools to maximise the economic potential of a technology and inform targeted 
research and development into promising feedstock valorisation opportunities. 

The limitations of this study are the limited scenarios considered, i.e., constant dilution rate 
(75g/LCOD), 430°C gasification temperature, and limited geographic locations. Future work to 
incorporate variability in technical parameters would facilitate the use of the surrogate model 
for process optimisation in addition to feedstock evaluation. In addition, the SCWG was 
represented via a Gibbs reactor in Aspen HYSYS. This simplifies the gasification process by 
assuming complete conversion to gaseous products and attainment of thermodynamic 
equilibrium. Studies creating surrogate models of SCWG reactors based on experimental 
undertaken at various temperatures, pressures, and the inclusion of different catalysts have 
been previously undertaken (Gopirajan et al., 2021; Li et al., 2021; Zhao et al., 2022; 
Shenbagaraj et al., 2021; Khan et al., 2023; Fózer et al., 2021). The creation of a low 
temperature SCWG surrogate model using experimental data to input into the TEA model 
would represent the true state of technology, opposed to the economic potential. However, at 
present there is limited experimental data for complete, or almost complete, conversion of 
biomass feedstocks using low temperature SCWG. Furthermore, the use of experimental data 
has the potential to bias feedstocks that are obtained under varying conditions or different 
levels of experimental rigour. Finally, the study considered SCWG for hydrogen production 
rather than the integrated aerobic gas fermentation and SCWG technology. Whilst the results 
from this study will be indicative of the integrated technology, future work to create an ML 
surrogate of the entire platform to enable the economic evaluation of further biorefinery 
scenarios is proposed. 

The work presented in this chapter contributed to a paper entitled “A surrogate model for the 
economic evaluation of renewable hydrogen production from biomass feedstocks via 
supercritical water gasification” and was published in International Journal of Hydrogen 
Energy, currently in press. The published paper is presented in this thesis as Chapter 7. The 
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corresponding supplementary information as published alongside the manuscript is reprinted 
in Appendix A.4. 

Article Title: A surrogate model for the economic evaluation of renewable hydrogen 
production from biomass feedstocks via supercritical water gasification 

Journal: International Journal of Hydrogen Energy 

Date: Currently In Press 

DOI: https://doi.org/10.1016/j.ijhydene.2023.08.016  

Authors: Sarah Rodgers, Alexander Bowler, Jon McKechnie, Edward Lester, Chai Siah 
Lee, Fanran Meng, Laura Wells, Martin Hayes, Stephen Poulston, Alex Conradie 

Author Contributions: Sarah Rodgers: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Software, Visualization, Writing – original draft, Writing – review 
& editing. Alexander Bowler: Data curation, Formal analysis, Methodology, Software, Writing 
– review & editing. Jon McKechnie: Funding acquisition, Methodology, Project administration, 
Resources, Supervision, Writing – review & editing. Ed Lester: Supervision, Writing – review 
& editing. Chai Siah Lee: Conceptualization, Methodology, Writing - review & editing. Fanran 
Meng: Methodology, Supervision, Writing – review & editing. Laura Wells:  Methodology, 
Investigation, Writing – review & editing. Martin Hayes: Supervision, Writing – review & editing. 
Stephen Poulston: Supervision, Writing – review & editing. Alex Conradie: Conceptualization, 
Formal analysis, Funding acquisition, Methodology, Project administration, Resources, 
Supervision, Writing – review & editing. 
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facilitate early-stage economic analysis (doi.org/10.6084/m9.figshare.22811066). A process

simulation using the Gibbs reactor provided the training data using 40 biomass composi-

tions, five processing capacities (10e200 m3/h), and three geographic locations (China,

Brazil, UK). The levelised costs ranged between 3.81 and 18.72 $/kgH2 across the considered

parameter combinations. Heat and electricity integration resulted in low process emissions

averaging 0.46 kgCO2eq/GJH2 (China and Brazil), and 0.37 kgCO2eq/GJH2 (UK). Artificial

neural networks were most accurate when compared to random forests and support vector

regression for the surrogate model during cross-validation, achieving an accuracy of MAPE:

<4.6%, RMSE: <0.39, and R2: >0.99 on the test set.

© 2023 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications

LLC. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
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1. Introduction

Supercritical Water Gasification (SCWG) combines thermal

decomposition and reforming by using supercritical water as

the solvation and reaction medium, thereby converting

various biomass feedstocks to syngas (H2, CH4, CO2 and CO)

whilst minimising char formation. SCWG provides advan-

tages for processing wet feedstocks over other bioenergy

generation approaches (e.g. direct combustion and conven-

tional gasification) such as energy savings by avoiding the

need to pre-dry the feedstock, lower operating temperatures,

shorter reaction times and tuneable gas compositions [1].
The past decade has seen an increased focus on experi-

mental investigations of hydrogen production via SCWGusing

various types of plant-based biomass feedstocks, such as

sugarcane bagasse, stillage, and black liquor [2]. To under-

stand the economic potential of a feedstock it is necessary to

conduct a Techno-Economic Analysis (TEA). Several TEAs

have been undertaken using SCWG for renewable hydrogen

production from specific feedstocks including the valorisation

of digested sewage sludge [3], black liquor [4], and soybean

straw [5]. However, detailed TEAs are time consuming and

require engineering knowledge and economic modelling

expertise [6]. This hinders the creation of TEA models by non-

experts i.e. experimentalists and industrialists. Moreover, TEA

models are most often specific to a particular process, scale,

feedstock, and cost base, limiting the ability to generalise

effectively from existing models. Without understanding how

operating conditions, feedstock sources, and cost consider-

ations impact on the overall investment case, targeted

experimental research is impeded, which is detrimental to

subsequent commercialisation. Therefore, it is desirable for

TEA practitioners to create flexible TEAmodels that generalise

effectively to a wide range of opportunities and for these

models to be independent of specialised software tools.

Surrogate models map inputs to outputs of more complex

processes. Machine learning (ML) is often used to create these

correlations and is increasingly being used for modelling,

optimising, and monitoring thermal conversion processes [7].

However, surrogate modelling for SCWG has focused on pre-

dicting process outputs such as hydrogen or syngas yields

[8e10]. Several studies have used these to suggest optimal

processing parameters [8], screen catalysts [9], or create

interpretable models to better understand the relationship

between process parameters and biomass characteristics on

gas yields [10]. Feedstock-specific surrogate models have also

been developed to predict hydrogen yields for SCWG. For

example, Shengagaraj et al. (2021) used an Artificial Neural

Network (ANN) to predict the syngas yields from food waste

biomass [11]. Similarly, Khan et al. (2023) created a model for

the SCWG of sewage sludge, where they created a graphical

user interface of their ML model. The model predicts the H2

yield based on the proximate and ultimate analysis of the

sample, as well as the input of gasification conditions [12]. In

addition, F�ozer et al. (2021) created an ANN surrogatemodel of

http://creativecommons.org/licenses/by/4.0/
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a microalgae SCWG reactor and used it within their economic

and environmental analysis for methanol production [13].

In the broader context of hydrogen production and gener-

ation, ML has been widely applied to determine and develop

efficient processes [14]. For example, Yahya et al. (2021) used

an ANN coupled with a genetic algorithm and response sur-

face methodology to optimise the production of hydrogen via

steam reforming of toluene, finding the ANN to be a more

robust predictor than response surface methodology [15].

Kargbo et al. (2023) utilised a bootstrapped aggregated neural

network to represent waste wood gasification in their

hydrogen production optimisation study [16]. Regarding pre-

dicting hydrogen production rates, Sultana et al. (2023)

developed a Bayesian algorithm and Support Vector Regres-

sion (SVR) model to predict the hydrogen and methane yield

via dark fermentation [17]. Model inputs included the pre-

treatment duration, feedstock concentration, and pH. Sezer

et al. (2021) created an ANN model of an Aspen Plus simula-

tion, representing a bubbling fluidised bed gasifier for

hydrogen production [18]. The ANN was trained to predict the

exergy value of the produced syngas based on the biomass’

elemental composition, gasifier temperature, steam flowrate

and fuel flowrate.

Outside of hydrogen production,ML surrogatemodels have

been applied to a limited number of studies within TEA and

Life Cycle Assessments (LCAs). Liao et al. (2020) developed a

combined ML and kinetic-based process simulation to assess

the Greenhouse Gas (GHG) emissions, energy, and product

consumption of producing activated carbon from 73 different

woody biomasses under different operating conditions [19].

Olafasakin et al. (2021) investigated replacing first principles

modelling of pyrolysis kinetics with a Kriging-based reduced

order model for predicting the pyrolysis yields of 314 feed-

stocks, where the model outputs were used within a bio-

refinery processmodel to predict the correspondingMinimum

Selling Price (MSP) and GHG emissions [20]. Whilst Liao et al.

(2020) and Olafasakin et al. (2021) both used ML to create

surrogate process models for use within TEAs and LCAs,

additional detailed process modelling was still required to use

the surrogate model predictions. Therefore, the use of these

models still requires user expertise, making such models

ineffective for decision-making by most experimentalists and

industrialists. In contrast, Huntington et al. (2023) presented

an auto-ML approach for generating a process model surro-

gate of a fixed lignocellulosic bioethanol process flowsheet for

use within a TEA, where the surrogate model mapped 21 key

operating and cost parameters to the MSP [6]. Notably, these

operating parameters allowed adjustment of the plant

throughput, the feedstock composition, conversion effi-

ciencies, and cost considerations. Their method used the

Tree-Based Pipeline Optimisation Tool considering four

ensemble regression models, Random Forests (RF), Stacking,

Extra Trees, and Gradient Boosting. Their approach provided

direct TEA outputs, negating the need for modelling expertise

or further incorporation of the surrogate models within a

broader modelling framework.

This study uses ML to create a surrogate model for the TEA

of renewable hydrogen production from low-temperature

SCWG (380e500 �C). The Gibbs reactor in Aspen HYSYS is

used as the simulation basis. The carbon footprint of the
proposed process is verified alongside the TEA results for the

range of biomass feedstock compositions and processing ca-

pacities in three different geographic locations. The biomass'
ultimate analysis, processing capacity, and geographic loca-

tion for the facility are the surrogate model inputs and the

model outputs are the nominal and 70% probability band for

the Levelised Cost of hydrogen (LCOH). Three ML algorithms

were investigated for the surrogatemodel: RF, SVR, and ANNs,

as these algorithms have been previously investigated for

predicting hydrogen production via SCWG [9,10]. Additionally,

a reliability measure was developed to evaluate the confi-

dence in the surrogate model's predictions for new biomass

feedstocks inputted by a user. The novelty of this work lies in

the creation of anML surrogatemodel representing the TEA of

hydrogen production via SCWG. Whilst surrogate models

have been previously developed for SCWG for hydrogen pro-

duction [8e13], this is the first study to create a surrogate

model representing a TEA of the process. The best performing

surrogate model has been made publicly available (doi.org/

10.6084/m9.figshare.22811066). The purpose of the published

model is to provide indicative production costs, enabling re-

searchers and manufacturers to quickly determine the eco-

nomic potential of feedstocks and facilitate comparisons with

other hydrogen production technologies.
2. Methodology

A data-set of 40 biomass feedstocks was collected from

experimental literature investigating low-temperature SCWG

(380e500 �C). The ultimate analysis (carbon (C), hydrogen (H),

oxygen (O) and nitrogen (N)) of each of these feedstocks was

collated. A process simulation of the low-temperature SCWG

and purification to renewable hydrogenwas created for each of

the biomass compositions in Aspen HYSYS. The simulation

was based on a fixed SCWG temperature at 430 �C. This was

selected owing to the economic benefit of low-temperature

SCWG which reduces the energetic burden required to pre-

heat the feedstock [1], and the recent experimental study into

the SCWG of biomass wastewaters by Lee et al. (2023) which

was conducted at this temperature [2]. A conservative resi-

dence time of 5 min was assumed, thereby providing sufficient

residence time for the equilibrium as predicted by the Gibbs

reactor to be attained. This was selected to exceed the resi-

dence times used experimentally for continuous low-

temperature SCWG, where a 20s residence time achieved a

total organic carbon reduction efficiency of 53.9e55.7% [2] and

88.4%at 150s [21]. A feedstock concentration corresponding to a

Chemical OxygenDemand (COD) of 75 g/LCODwas also selected.

Two hundred process simulations were created for the

range of collected biomass compositions and five processing

capacities (10, 20, 50, 100, and 200 m3/h). These processing

capacities were selected to allow for comparison to other low-

carbon hydrogen technologies and represent realistic point

source waste stream availability. A TEA and LCA was under-

taken on each of the resulting simulations in three

geographical locations (China, Brazil, and the UK) producing

600 data points. These geographic locations were selected as

case studieswith abundantwet wastes suitable for SCWG, i.e.,

Black liquor in China, vinasse in Brazil, and distillery
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Table 1 e Descriptive statistics of the biomass
compositions collected from experimental literature for
the SCWG of real biomass compounds.

Descriptive Statistic Ultimate analysis (wt%)

C H N O

Mean 47.82 6.11 1.98 32.39

Standard Deviation 17.69 3.06 1.77 17.05

Minimum Value 18.94 0.75 0.00 0.20

25th Percentile 38.01 4.43 0.70 16.97

50th Percentile 43.52 5.98 1.26 36.51

75th Percentile 57.39 6.65 3.19 46.83

Maximum Value 84.74 14.90 6.27 55.80
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wastewater in the UK. Thesewaste streams are also later used

as case studies to compare the produced LCOH to alternative

low carbon hydrogen production technologies. Furthermore,

the selected three locations provide global coverage with

differing economic inputs.

The TEA results are presented as the nominal LCOH

($/kgH2) and the LCA results as the process' GHG emissions

(kgCO2eq/GJH2) for each combination of feedstock, process-

ing capacity, and geographic location. A Monte Carlo simu-

lation for each parameter combination was undertaken to

illustrate the relative uncertainty around the nominal LCOH.

The economic and environmental impact of transporting

wastes to a larger capacity facility was also investigated.

Finally, a ML surrogate model was created to predict the

nominal, lower (5th), and upper (75th) LCOH computed from

the TEA and Monte Carlo simulation using the feedstock's
ultimate analysis, capacity, and geographic location as

model inputs. Owing to the low utility usage of the SCWG

process, the variability in GHG emissions between feedstocks

was minimal. As such, the surrogate model was not trained

to predict process emissions.

2.1. Data collection and pre-processing

The ultimate analysis consisting of the weight percent of C, H,

O, and N was collected for each of the 40 biomass feedstocks

and converted onto a 100% C, H, O, N basis. The compositions

collected from literature are presented in the Supplementary

Information, Table S1. Descriptive statistics of the data-set are

presented in Table 1. The biomass feedstocks were selected to

obtain a range of compositions to produce a generalisable

surrogate model that can predict the LCOH for unseen, user

inputted, biomass feedstocks.

The biomass’ Ratio of Moles of Oxygen (RMO) to moles of

oxidisable compounds (mol/mol) was calculated to determine

the weight percent required for each feedstock to yield a COD

of 75 g/LCOD. The RMO is the required amount of oxygen to

fully oxidise a compound to CO2, H2O and NH3 as expressed in

Eq. 1. Eq. 2 defines the theoretical COD, where W (g/L) repre-

sents the solids concentration of oxidisable compound andMr

(g/mol) is the molecular mass of oxidisable compound.
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4
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�
O2 / nCO2 þ

�
a
2
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H2Oþ cNH3

(1)

COD¼ W
Mr

*

�
nþa

4
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2
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The COD was used as the model basis as it is a required

measurement of effluent streams and represents the stream's
reduction potential, i.e. reducing power. Effluent streamswith

the same COD possess the same theoretical potential to pro-

duce H2 regardless of composition, where more reduced

compounds require a lower solids concentration than more

oxidised compounds to attain the same COD. In contrast, the

solids concentration also includes inorganic matter which

does not contribute to the production of H2. By using the COD

as the model basis, the economic potential of the organic

biomass content is easily interpreted.
2.2. Process simulation

A temperature of 430 �C was used for the SCWG, owing to the

economic benefit of low-temperature SCWG [1]. The COD for

each biomass feedstock was fixed at 75 g/LCOD. For the

considered biomass feedstocks, this translates to 5 wt% solids

on average, though the actual content varies depending on the

reduction potential of the biomass. This concentration was

selected as low solids concentrations lead to increased

hydrogen production through enhancing steam methane

reforming and water gas shift reactions [1]. However, from an

economic standpoint the solids concentration directly affects

the energy balance, with more dilute feedstocks requiring

greater energy to heat to supercritical conditions. The con-

centration was selected as a trade-off between these two

factors. This consideration may require evaporation or dilu-

tion of the actual feedstock being evaluated but is not factored

into the TEA or LCA as different dilution and evaporation re-

quirements would vastly increase the model complexity.

Costs and emissions associated with evaporation or dilution

to the 75 g/LCOD necessitates external quantification by the

user.

A TEAwas undertaken on the process simulation using five

different processing capacities (10, 20, 50, 100, and 200 m3/h).

This led to 200 process simulations, considered over three

geographical locations (China, Brazil, and the UK), resulting in

600 economic analyses. The TEA results were presented as the

nominal LCOH.

The 50 and 100 m3/h capacities yield between 7.5-10 and

15e20 MW of hydrogen, respectively. These results are

directly comparable to green electrolysis LCOH prices pro-

duced by BEIS (10 MW) [22]. Furthermore, the range of capac-

ities investigated represent realistic effluent production rates

for the considered countries. For example, Brazil's Sebigas

plant processing vinasse has a capacity of 500 tnCOD/day,

corresponding to 277 m3/h of wastewater at 75 g O2/L COD

concentration [23]. In addition, a 200 m3/h throughput scale

corresponds to a modest-sized pulp mill with a processing

capacity of approximately 12,000 ADt/yr of pulp, based on 10 t

black liquor/tADt pulp [24]. By comparison, China's largest pulp

mill produces 1.2 million ADt/yr [25]. With regards to distillery

wastewater, pot ale and wet draff are produced at rates of

7.9 L/Lalcohol and 2.55 kg/Lalcohol [26]. Using both these waste

streams, the processing capacities explored in this study

correspond to a distillery capacity between 5 and 104 million
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litres/yr, noting that the largest operational Scottish Distillery

is 100 million litres [27]. Considering anaerobic digestate as a

feedstock, the 10 m3/h throughput scale corresponds to

approximately 500 kg/h of dry solids based on a 5 wt% solids

concentration and digestate production at 0.87 kg/kgfeedstock
[28]. This is equivalent to an anaerobic digestion (AD) facility

capacity of 100 kt/yr, where currently 20 facilities in the UK

operate at a capacity >96 kt/yrdigestate.

2.2.1. Gasification
The SCWG reaction was modelled in Aspen HYSYS using a

conversion reactor to decompose the unconventional biomass

compound into its base compounds (H2, O2, N2 and C). As such,

only the ultimate analysis was required to represent each

considered biomass compound. The stochiometric co-

efficients for the decomposition reaction in the conversion

reactor were modified for each biomass sample using a

MATLAB script. This was followed by a Gibbs reactor to predict

the gasifier effluent assuming full conversion to gaseous

products and the attainment of equilibrium at the specified

temperature and pressure. This is a common approach in

techno-economic studies of SCWG [29]. For example, this

method has been used previously for the valorisation of black

liquor [4], digested sewage sludge [3], and soybean straw [5].

The simulation considers the achievement of thermodynamic

equilibrium and complete biomass conversion to gaseous

products. It is recognised that equilibriummay not be reached

in industrial conditions and achieved gas yields may differ

from those predicted by the Gibbs reactor. Also, formation of

solid by-products, such as tar and char, may not be negligible.

However, in the absence of extensive complete conversion

data for low-temperature SCWG, the approach enables the

evaluation of different feedstocks on an equivalent basis. As

such, the results represent the economic potential for a

biomass feedstock. Moreover, the continuous SCWG reactor is

sized based on a relatively conservative residence time of

5 min, translating to an additional capital expense. This resi-

dence time was selected to exceed the reported experimental

results for continuous low-temperature SCWG where a 20s

residence time achieved a total organic carbon reduction ef-

ficiency of 53.9e55.7% [2] and 88.4% at 150s [21].

An additional reactor was used to convert 100% of the fuel

bound nitrogen to NH3, similarly to Ref. [3]. Most of the NH3 is

removed with the high-pressure water flash after the SCWG

reactor and it is assumed no further separation is required. The

formation of sulphur compounds and ashwere not considered.

In practicality sulphur would form H2S during gasification

whichwould be removedalongwith CO2 duringH2 purification.

The formation of ash would be removed with any char formed

during gasification and be subsequently combusted.

To satisfy the simulation's energy balance, the heats of

formation for the hypothetical biomass compounds were

estimated by subtracting the heat of combustion of the free

elements (carbon (�393.15 kJ/mol) and hydrogen (285.83 kJ/

mol)) from the biomass' Higher Heating Value (HHV) [30]. A

correlation was used to estimate the HHV for each biomass

based on its elemental composition. The correlation created

by Huang & Lo (2020) was used to estimate the feedstock's
HHV given the correlation was established using a large

number and range of biomass feedstocks [31].
2.2.2. Syngas upgrading
The Gibbs reactor model predicts a higher methane fraction in

the product gas at temperatures around 400 �C compared to

temperatures above 500 �C, as shown in Table S2 in the Sup-

plementary Information. At lower temperatures, the formation

of hydrogen through endothermic gasification reactions is

inhibited, while the exothermic reactions that form methane

are favoured [32,33]. The observed trend in increasedmethane

fractions at lower temperatures therefore aligns with ther-

modynamic principles. Whilst the focus of this study is

hydrogen production, higher reaction temperatures are

heavily disadvantaged from an economic perspective owing to

the higher energy burden required to heat the gasifier feed [1].

By shifting thismethane fraction to hydrogen post-gasification

using mature chemo-catalytic technology, the economic

benefit of low-temperature SCWG can be exploited whilst still

maximising hydrogen production.

To shift the reactor effluent towards hydrogen, the mature

Steam Methane Reforming (SMR), High-Temperature Shift

(HTS) and Low-Temperature Shift (LTS) technologies were

employed. A fraction of the SCWG effluent was directed to-

wards combustion to support the endothermic SMR reaction,

ensuring the process remained energetically self-sufficient.

The operating conditions and kinetics used to model the

SMR, HTS and LTS reactors are presented in Table 2. The

hydrogen produced was then recovered using a primary

amine stripper employing monoethanolamine (MEA) as a

mass separating agent to absorb the CO2.

A process flow diagram of the evaluated hydrogen pro-

duction process is presented in Fig. 1. After reducing the tem-

perature of the SCWG effluent to sub-critical conditions and

flash drum separation, a turbo-expander recovers the energy

from the vapour as electricity. In addition, electricity is

generated upon letting down the spent flue gas after it has

been used for steam generation. Most of the generated elec-

tricity is utilised within the process. However, the unused

fraction is exported for sale to the grid as renewable electricity.

2.2.3. Automation
The ActiveX function in MATLAB was used to automate the

input of the different biomass compounds. The biomass

properties were transferred from MS Excel to Aspen HYSYS

via a MATLAB script. To ensure each feedstock was evaluated

on the same basis, a set of constraints was defined to be

adhered to by all simulations. Owing to the different feedstock

compositions, each simulation required manual adjustments

to achieve these same constraints.

� Split between combustion and SMR adjusted to maintain

energetic self-sufficiency

� Steam to carbon ratio maintained at 5.5 mol/mol by

adjusting water flowrate to SMR

� MEA flowrate adjusted to achieve hydrogen purity >99.5%
v/v

� Temperatures adjusted to prevent temperature crosses in

heat exchangers

2.2.4. Techno-economic analysis
The LCOH was computed for each biomass composition,

processing capacity, and location combination. This was
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Table 2 e Operating conditions and modelling parameters used in the process simulation.

Parameter Value Comments

SMR temperature (�C) 1000 Kinetics based on a commercial Ni/a-Al2O3 catalyst [34].

SMR pressure (kPa) 1000

Steam/carbon ratio (mol/mol) 5.5 To avoid carbon formation on the catalyst.

HTS temperature (�C) 420 Power law kinetics) for a commercial iron-based catalyst [35].

LTS temperature (�C) 200 Power law kinetics for a commercial Sud-Chemie Cu/ZnO/Al2O3 catalyst

[36].
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calculated from the discounted cash flow analysis across the

considered 25-year plant life. The costing models and invest-

ment analysis parameters as used in the authors' previous
workwere used for the TEA, summarised in Tables S3e4 in the

Supplementary Information [24,37]. An 8% discount rate was

used in line with Europe's hurdle rates for electricity genera-

tion costs from biomass sources, e.g. 8.3% for AD and 7.9% for

dedicated biomass (5e100 MW) and energy from waste

(combined heat and power) [38]. The economic models were

created for three geographic locations (China, Brazil, and the

UK). As such, different location factors, operator salaries, and

renewable electricity prices were used between the techno-

economic models. These are summarised in Table 3.

2.2.5. Feedstock cost
A universal method for computing the utility value of the

feedstock was developed based on the HHV of the biomass

relative to natural gas. Methane production from AD is an

alternative treatment method for dilute biomass feedstocks.

However, AD can only exploit the Biological Oxygen Demand

of a feedstock, whereas SCWG exploits the COD. An efficiency

factor of 70% was thus applied to the calculated HHV,

reflecting a high Biological Oxygen Demand to COD ratio [44].

The feedstock's price was then computed based on the

adjusted HHV relative to the HHV of natural gas and using the

EIA's price projections [45].

2.2.6. Uncertainty analysis
An uncertainty analysis was undertaken on the LCOH for each

biomass composition, processing capacity, and location
Fig. 1 e Process flow diagram of the low-temperature SCWG o
considered. A Monte Carlo analysis was conducted

comprising 2,000 simulations where the fixed capital (80%e

150%), variable operating (80%e200%), feedstock cost (90%e

130%), and renewable electricity prices (80%e200%) were sto-

chastically varied using a uniform distribution of the outlined

ranges. This produced a probability distribution of the LCOH

for each parameter combination. The calculated 5th and 75th

percentiles from the Monte Carlo simulations were predicted

along with the nominal LCOH by the surrogate model. This

provided the 70% probability band of the LCOH for the inves-

tigated feedstock, capacity, and geographic location.

2.3. Life cycle assessment model

A cradle-to-gate LCA was undertaken for each biomass feed-

stock for the two products, hydrogen and renewable elec-

tricity. The considered functional units were 1 GJ of hydrogen

(GJH2) and 1MWhof renewable electricity. The emissions were

allocated between these two products using energy allocation.

As themodel was created for waste biomass feedstocks, no

feedstock emissions were allocated. Furthermore, the CO2

emitted is of biogenic origin and so does not contribute to the

overall GHG emissions. Carbon capture units were not

considered owing to the uncertainty around storage arrange-

ments for small production streams, such as those generated

in this study. The products were compared to other hydrogen

production methods and each country's respective electricity

grid emissions. The GHG emissions for MEA and water were

obtained from the ecoinvent 3.7 inventory [46]. Emissions for

transportation were considered using EURO 6 freight lorries of
f biomass feedstocks for renewable hydrogen production.
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Table 3 e Location factors, operator salaries, and renewable electricity selling price for the different global locations
considered for the TEA. For comparison, the values are converted to 2022 US$ and presented in brackets.

Geographic
Location

Location
Factor

Average Operator
Salary (yr) [39]

Renewable electricity
price (kWh)

Currency
conversion [43]

China 0.66 ¥ 172,172 ($ 24,104) ¥ 0.75 ($ 0.105) [40] 0.14

Brazil 1.06 R$ 81,840 ($ 15,550) R$ 0.315 ($ 0.059) [41] 0.19

UK 1.04 £ 33,776 ($ 41,207) £ 0.126 ($ 0.154) [42] 1.22
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16e32 tn capacity. A full life cycle inventory can be found in

Table S5 in the Supplementary Information. Whilst cooling

and process water were assigned emissions, the emissions

associated with dilution or evaporation of feedstocks to the

75 g/LCOD were not considered.

2.4. Transportation

In the TEA and LCA, each feedstockwas assessed at its point of

origin, meaning no transportation costs or emissions were

included. However, as the impact of capacity on processing

costs is assessed, an investigation into of the impact of

transporting localised waste streams to larger facilities is

warranted. This analysis was undertaken on distillery

wastewater in the context of the UK. The cost of transporting

the feedstocks was taken as £ 0.25 t/km based on costs for

digestate transportation [47] and updated using the ratio of UK

diesel prices in 2022 to 2016. The waste transportation ca-

pacity was selected based on the evaluated facility sizes (10,

20, 50, 100 and 200 m3/h). Thereby, a 100 m3/h facility could be

located at a facility producing a waste stream of either 100, 50,

20, or 10 m3/h, necessitating the additional waste to achieve

the 100m3/h capacity to be transported to it. A nominal 30 km

transport distance was selected.

2.5. Surrogate model

For each feedstock, six input variables were provided to each

model, including the weight percentage of C, H, O, and N

(descriptive statistics of the biomass compositions are pre-

sented in Table 1), processing capacity (10, 20, 50, 100 or

200 m3/h), and geographic location (China, Brazil, or the UK).

The geographic location was defined as 1 (China), 2 (Brazil), or

3 (the UK) to input into the model. The outputs of the model

were the nominal LCOH and corresponding 5th and 75th

percentiles, representing the 70% probability band. Due to

minimal variability in the process emissions across different

feedstocks and capacities, the surrogate model was not

trained to predict the process emissions. ThreeML algorithms,

RF, SVR, and ANNs, were investigated for the surrogatemodel,

as they have been previously considered for predicting

hydrogen production via SCWG [9,10].

2.5.1. Model optimisation and evaluation
The 600 TEA combinations were split into training, valida-

tion, and test sets. As the hydrogen yield varied between

biomass feedstocks, the feedstocks were distributed among

these sets. Thereby, if a biomass feedstock was placed in the

test set, the entire set of parameter combinations for that

feedstock, i.e. processing capacities and geographic location,

was also included in the test set. This approach ensured that
the model was trained to generalise across feedstock com-

positions rather than capacity and location and supports the

goal of developing a generalisable model to evaluate the

economic potential of hydrogen production from different

biomass feedstocks. The data-set was split into a training set

of 360, a validation set of 120, and a test set of 120 parameter

combinations. Distributing the biomass feedstocks among

the sets resulted in 24 biomass feedstocks in the training set,

8 in the validation set, and 8 in the test set. The best-

performing hyperparameters were selected based on cross-

validation performance, ensuring that the test set's perfor-

mance indicated the model's generalisation potential for

user input feedstocks. To optimise each ML algorithm a 4-

fold cross-validation procedure was undertaken on the

combined training and validation sets using an exhaustive

grid search. The hyperparameters that were optimised for

each algorithm are presented in Table 4. GridSearchCV from

scikit-learn was used to determine optimal hyperparameters

for each ML algorithm [48]. During the cross-validation pro-

cess, the Root Mean Squared Error (RMSE) was used as the

performance metric for each algorithm and as the loss

function in the ANN.

An ensemble of predictions is produced by the RF algo-

rithm, with the final output being the average of each decision

tree's prediction. Ensemble methods typically have higher

prediction accuracy because they reduce dispersion error and

bias by averaging model predictions. They have previously

shown improved prediction performance for hydrogen pro-

duction via SCWG [10]. Consequently, an ensemble approach

was also applied to ANNs, which randomly initialise starting

weights and biases. This diversity allows each model to cap-

ture different aspects of the data. The average prediction from

ten ANN models using the optimised hyperparameters was

used to evaluate the algorithm's performance. Unlike ANNs,

SVR does not contain random elements during model

training, so an ensemble of SVR using optimised hyper-

parameters was not implemented.

After determining the optimal hyperparameters for each

algorithm, it was evaluated on the test set to provide an

indicative performance measure of the model's general-

isability to unseen feedstocks. Three performance metrics

were used to assess the model's prediction accuracy: RMSE,

Mean Absolute Percentage Error (MAPE), and the determina-

tion coefficient (R2). Each metric has different advantages:

RMSE measures the standard deviation of the prediction er-

rors, penalising large errors and making it more sensitive to

outliers; MAPE measures the absolute error between the true

and predicted values and presents them as a percentage,

being less sensitive to larger errors than RMSE; and R2 repre-

sents the fitness of the model to the true values and provides

an intuitive result, with a value of 1 representing a perfect fit.
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Table 4 e Hyperparameters and ranges considered for each algorithm during the cross-validation grid search procedure.

Random forests Support vector regression Artificial neural network

Number of trees (10e500) L2 Regularisation penalty (1.1e1000) Number of layers (1e3)

Maximum number of features for split (1e6) Kernel type (linear, polynomial,

radial basis function, sigmoidal)

Neurons in each layer (2e256)

Maximum depth of the tree (10e500) Kernel coefficient (0.01e100) L2 Regularisation penalty (0.00001e0.1)

Minimum number of samples before split (1e10) Degree (for polynomial kernel

function only)

(1e3)

Learning rate (0.00001e0.1)

Minimum data in a leaf (1e10) Epsilon (0.001e10) Epochs (1000e10,000)

Bootstrap sampling (with or without replacement) Batch size (2e256)
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Eqs (3)e(5) present these metrics, where N is the number of

datums, yj is the true value, ŷt is the predicted value, and yM is

the mean value. The published surrogate model was trained

on the entire data-set using the algorithm and hyper-

parameter set that produced the most accurate predictions

during the cross-validation procedure.

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
t¼1

�
yj � byt

�2

vuut (3)

MAPE¼ 1
N

XN
t¼1

yj � byt

yj
(4)

R2 ¼
PN
t¼1

�
yj � yM

�2

PN
t¼1

�byt � yM

�2 (5)

2.5.2. Feature importance
ML models are often referred to as “black box” models due to

the complexity of their internal workings, which are not easily

interpretable. To address this interpretability challenge,

feature importance methods are employed. One such method

is SHapley Additive exPlanation (SHAP) values. These values

assign a contribution score to each feature, indicating its

importance in the model's output. By utilising SHAP values,

users can gain a better understanding of the relationships

between input features and model outputs [49]. In previous

studies, SHAP values have been applied to identify redundant

input data, thereby reducing the computational cost of ML

models [9]. However, in this work, SHAP values are used to

highlight the relative importance of the input features. The

SHAP values were obtained for the best-performing MLmodel

using the SHAP library in Python.
3. Results and discussion

The TEA and LCA results are presented for the 600 parameter

combinations (biomass composition, capacity, and

geographic location). The impact of feedstock transportation

is also presented and discussed. The production costs and

process emissions are compared to both MW-scale electrol-

ysis using renewable electricity and SMR with CCS (Carbon

Capture and Storage). The performance of the three ML algo-

rithms is also presented and compared.
3.1. Techno-economic analysis

The LCOH for the 600 techno-economic parameter combina-

tions were computed, achieving levelised costs of 1.66e11.89

$/kgH2 (China), 2.61e16.82 $/kgH2 (Brazil), and 2.46e18.73

$/kgH2 (UK). Different feedstock compositions and capacities

led to significant variations in the economic outcome.

3.1.1. Location
Fig. 2 presents the LCOH for the 600 techno-economic

parameter combinations. Fig. 2a presents the results for

China, 2b for Brazil, and 2c for the UK. The geographic location

produces a considerable difference in the LCOH. The UK pro-

duced the highest prices, followed by Brazil and then China.

The higher prices for both the UK and Brazil are attributed to

higher capital and operating costs (Table 3).

3.1.2. Processing capacity
The capacity of the SCWG facility is shown to have a sub-

stantial impact on the LCOH (Fig. 2aec). As the scale increases,

the LCOH decreases following an inverse power law relation-

ship. The observed power law relationship is likely because

most equipment cost correlations follow power law relation-

ships. Furthermore, in capital cost estimation the ‘six-tenths

rule’ can be applied to update the capital cost of a plant or

processing equipment based on the cost of the same item at a

different capacity by using a 0.6 exponent (average for the

chemical industry) [50]. Applying a power law to the average

LCOH for each geographic location gives rise to three different

correlations, each with an R2 > 0.93 and exponents ranging

between �0.48 and �0.58. However, these correlations repre-

sent the average LCOH and the correlation for each biomass

composition and corresponding location would be different

(Fig. 2aec). This prevents the use of a simple correlation to

predict the LCOH for different feedstocks and illustrates the

utility of a TEA surrogate model applicable to a wide range of

inputs.

3.1.3. Uncertainty analysis
A Monte Carlo simulation comprising 2,000 simulations was

undertaken on each of the 600 techno-economic scenarios by

varying the fixed capital, variable operating, feedstock, and

renewable electricity costs within the uncertainty ranges

summarised in Section 2.2.6 Uncertainty Analysis. All pa-

rameters were varied stochastically using a uniform distri-

bution between the defined ranges. The LCOH for each

stochastic parameter combination was computed and the 5th,
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Fig. 2 e aec: LCOH ($/kgH2) for different processing capacities (m3/hr). a) Presents the results for China, b) presents the results

for Brazil, and c) presents the results for the UK. Each location has 40 data points representing the biomass feedstocks and is

presented using the same y-axis.
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25th 50th, 75th, and 95th percentiles were calculated. The 5th

and 75th percentiles represent the 70% probability band for

the LCOH. On average, this probability band displayed a �13%

and þ28% deviation from the nominal value for all parameter

combinations. The deviations were similar for all cases,

ranging from �22% to þ32%. The greater positive variability

observed is attributed to the larger upward deviations

assigned to the uncertainty parameters.

3.1.4. Gate fee
Some feedstocks could command a gate fee to handle their

disposal, forming an additional source of revenue. For example,

the median gate fees in the UK for AD and energy from waste

disposal options are £30/t and £95/t, respectively [51]. Food

waste is a typical AD feedstock [47] and is used here to illustrate

the impact of including a gate fee for SCWG in the UK. Gate fees

of £10/t, £20/t, and £30/t ($12/t, $24/t, and $37/t), up to and

equalling that of AD, were selected (Fig. 3). Notably, the inclu-

sion of a gate fee significantly reduces the LCOH, creating
economically viable solutions at smaller capacities. At a ca-

pacity of 10m3/h, a gate fee of $37/t (equalling that of AD) leads

to an LCOH of $4.82/kg, comparable to MW-scale electrolysis

using renewable electricity, which ranges from $4.81/kg to

$6.31/kg [22]. However, at a capacity of 20 m3/h, a gate fee of

only $12/t is required to achieve a comparable LCOH, and a gate

fee of $37/t results in a negative LCOH. At capacities >50 m3/h,

the addition of a gate fee results in a low or even negative LCOH

(Fig. 3), demonstrating the technology's potential to outperform

AD as a waste treatment option and the economic potential of

valorising waste streams at these capacities.

3.2. Life cycle assessment

The range in cradle-to-gate GHG emissions of the evaluated

feedstocks in Brazil and China was 0.32e0.65 kgCO2eq/GJH2

(0.038e0.078 kgCO2eq/kgH2) with an average of 0.46 kgCO2eq/

GJH2 (0.055 kgCO2eq/kgH2). In the UK, the GHG emissions

ranged between 0.25 and 0.52 kgCO2eq/GJH2 (0.031 and 0.063
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Fig. 3 e Impact of the inclusion of a $12/t, $24/t and $37/t gate fee on the LCOH for food waste biomass.
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kgCO2eq/kgH2) with an average of 0.37 kgCO2eq/GJH2 (0.044

kgCO2eq/kgH2). The difference between countries is due to the

use of global emission factors for both Brazil and China and

European emission factors for the UK. The low overall emis-

sions are attributed to its energetic self-sufficiency of the

SCWG process, negating the need for external energy sources.

The only utilities used throughout the process are MEAmake-

up to account for losses during CO2 removal and deionised

water for both cooling and water make-up in the stripper. The

GHG emission ranges for all feedstocks considered comfort-

ablymeet the EuropeanUnion CertifHy scheme for low carbon

hydrogen (�36.4 kgCO2eq/GJH2) based on a 60% reduction in

emissions from SMR [52]. In contrast, SMR with CCS produces

8 kgCO2eq/GJH2, at 90% capture efficiency [53]. However,

including emissions associated with natural gas leakage in-

creases this estimate to 21 kgCO2eq/GJH2 [53], over an order of

magnitude higher than estimates for SCWG.

The emissions attributed to the exported renewable elec-

tricity were also minimal, with an average of 0.04 kgCO2eq/

MWh for Brazil and China and 0.03 kgCO2eq/MWh for the UK.

This is in comparison to the grid intensity of China, Brazil, and

the UK being 850 kgCO2eq/MWh [54], 292 kgCO2eq/MWh [54],

and 194 kgCO2eq/MWh [55], respectively.

3.3. Transportation impact

The impact of transporting wastes to a larger facility was

investigated for both the economics and process emissions

and is presented in Fig. 4a and b for distillery wastewater in

the UK. Due to the dilute nature of pot ale, only draff (solids

content 21.6 wt% [26]) was considered for transportation in

this analysis.

Transporting draff to a different distillery for processing

demonstrates a decrease in the LCOH compared to solely
processing point source distillery waste (Fig. 4a). For

example, a distillery producing 10m3/h of wastewater at 75g/

LCOD yields a LCOH of $15.37/kg by processing only point

source waste. However, transporting enough draff to operate

a SCWG facility of 50 m3/h (located at the same distillery

producing 10 m3/h) leads to a decrease in the LCOH to $8.26/

kg. This decreasing trend in LCOH is demonstrated for all

point source feedstock processing capacities between 10 and

50 m3/h. The observed decrease is due to the capital and

operating cost intensity decreasing more appreciably than

the added cost of transportation. Conversely, at a point

source of 100 m3/h of wastewater, the transportation of draff

to support a 200 m3/h SCWG plant increases the LCOH from

$3.51/kg to $3.78/kg.

Regarding process emissions (Fig. 4b), any transportation

of waste proves detrimental to the GHG emissions. In all

cases considering draff transportation the transport emis-

sions dominate the overall process emissions. However, the

emissions are still well below SMR with CCS, which are 8

kgCO2eq/GJH2 (excluding emissions associated with natural

gas leakage) [53].

It is important to note that the transportation of biomass is

logistically challenging. Studies considering large capacity

plants often explore decentralised supplies that enable satel-

lite pre-processing or combine multiple modes of trans-

portation, depending on the transportation distance [56]. The

assumptions made for this analysis do not consider these

complexities, and further investigation should be undertaken

for specific feedstocks, alongside the actual transport dis-

tances required. In addition, biomass compositions may be

more or less dilute than considered here. This would change

the associated transport costs, as evaporation would occur at

the point of origin, and dilution would occur at the point of

processing.
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Fig. 4 e aeb: Impact of transporting distributed waste streams to larger processing facilities on the LCOH ($/kgH2) (4a) and

process emissions (kgCO2eq/GJH2). (4b). Analysis results are for distillery wastewater in the UK.
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3.4. Comparison to alternative low carbon hydrogen
production

Hydrogen production costs are significantly impacted by

capital costs, technology efficiency, capacity factors, energy
costs, and the plant location [57]. Fig. 5 presents the 70%

probability band of the LCOH at the considered SCWG capac-

ities for black liquor in China, vinasse in Brazil, and distillery

wastewater in the UK. These biomass feedstocks were

selected as they represent feedstocks readily available in

https://doi.org/10.1016/j.ijhydene.2023.08.016
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Fig. 5 e Comparative LCOH for MW-scale electrolysis using renewable electricity, SMR with CCS, and SCWG for black liquor

in China, vinasse in Brazil, and distillery wastewater in the UK. The displayed results exclude transportation or gate fee

considerations.
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these countries. The resulting LCOH's are compared to each

country's cost estimates for alternative low carbon hydrogen

production methods, namely, hydrogen production via MW-

scale electrolysis using renewable electricity and SMR with

CCS. Estimates are obtained from the IEA for China [58,59] and

Brazil [60], and BEIS for the UK [22].

In all countries, at a SCWG capacity of 50 m3/h, the LCOH

(2.76e4.21 $/kgH2 for China, 3.41e5.07 $/kgH2 for Brazil,

4.31e6.62 $/kgH2 for the UK) is cost competitive with hydrogen

production via MW-scale electrolysis using renewable elec-

tricity (3.10e6.70 $/kgH2 for China, 3.70e5.90 $/kgH2 for Brazil,

and 4.81e6.31 $/kgH2 for the UK). This demonstrates the po-

tential for isolated feedstock valorisation using low-

temperature SCWG at capacities >50 m3/h. Additionally, in

China SCWG capacities >50 m3/h are comparable to SMR with

CCS (2.00e3.80 $/kgH2) and in the UK, the 200 m3/h SCWG

capacity achieves a similar LCOH (2.36e3.92 $/kgH2) to SMR

with CCS (1.74e3.40 $/kgH2). However, SMR with CCS is

notably cheaper than even the largest SCWG facility size in

Brazil. As SMR is the dominant commercial hydrogen pro-

duction technology globally, the lower production costs for

SMR with CCS are unsurprising.

Importantly, SCWG is ideally suited to wet feedstocks that

are uneconomical for use via conventional energy recovery

methods. Therefore, valorising these feedstocks via SCWGhas

limited resource competition and represents a renewable

hydrogen source from otherwise under-utilised resources. In

contrast, MW-scale electrolysis and SMR utilise renewable

electricity and natural gas, both of which have numerous

alternate uses and competition. As such, electrolysis and SMR

are subject to price fluctuations in world energy markets. This

means that changes in global energy markets directly affect

the predicted prices in Fig. 5. A timely example is natural gas
prices, which averaged $6.45/MMBTU in 2022, up from $2.03/

MMBTU in 2020 [61].

3.5. Surrogate model

The optimal hyperparameters obtained during the 4-fold

cross validation procedure are presented in Table 5. Table 6

illustrates the performance metrics for the ML models using

the optimal hyperparameters for the nominal LCOH on both

the validation and training sets. Overall, ANN's achieved the

highest model performance for both the validation and test

sets, achieving accuracy values of MAPE: <4.6%, RMSE: <0.39,
and R2: >0.99 on the test set. This is likely due to their ability to

combine inputs into new features and thus utilise the rela-

tionship between inputs. A parity plot of the ANN's perfor-

mance on the test set is presented in Fig. S1 in the

Supplementary Information. Owing to the comparison of

models, optimisation of hyperparameters, exhaustive grid

search, and 4-fold cross validation procedure the outcome

reflects the final accuracy of the ML task. Since the hyper-

parameters have been selected based on the validation set

and the training, validation, and test sets were segregated

based on biomass composition, the models' performance on

the test set is a robust indicator of generalisation to new,

unseen, biomass feedstocks. This is important as it represents

the model's accuracy when utilised by researchers assessing

their feedstock compositions.

The relative feature importance for the ensemble of ten

ANN models is presented using SHAP values in Fig. 6. Fig. 6a

presents the absolute significance of each feature, larger

values indicate a greater impact on the model output (LCOH).

Regarding the relative importance, the processing capacity

was the dominant feature for the ML models. This is
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Table 5 e Optimal hyperparameters determined during the 4-fold cross-validation grid search.

Random forests Support vector regression Artificial neural network

Number of trees: 100 L2 Regularisation penalty: 100 Number of layers: 1

Maximum number of features for the split: 2 Kernel type: radial basis functionþ Neurons in each layer: 64

Maximum depth of the tree: 100 Kernel coefficient: 4 L2 Regularisation penalty: 0.001

Minimum number of samples before split: 2 Degree (for polynomial kernel function only): N/A Learning rate: 0.001

Minimum data in a leaf:1 Epsilon: 0.5 Epochs: 5000

Bootstrap sampling: without replacement Batch size: 16
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unsurprising considering the substantial variability in LCOH

observed across different capacities, as shown in Fig. 2.

Geographic location was the second most important feature,

attributed to the different economic inputs (Table 3) producing

different LCOH's for the same biomass composition and pro-

cessing capacity combinations. Among the biomass compo-

sition features, the hydrogen content demonstrated the

greatest impact. Fig. 6b displays the impact of each feature

using a bee swarm plot, where negative values indicate a

negative impact on the model output (LCOH). The feature

value scale from pink (high) to blue (low) indicates the feature

input value. For example, a high processing capacity (coloured

in pink), has a negative impact on the model output, thereby

reducing the LCOH. It is also evident that higher H wt% leads

to a reduction in the LCOH. This is to be expected as biomass

with a higher hydrogen content yields more hydrogen,

thereby lowering the LCOH. Increases in the other composi-

tion features all had a positive impact on the model output,

indicating that higher C, N, and O wt% leads to an increase in

the LCOH. This can be attributed to a greater wt % of these

elements reducing the H wt%, subsequently decreasing the

hydrogen yield obtained from the biomass.

The published model uses an ensemble of ten ANNs

trained using the entire data-set of 600 TEAs using the

optimal hyperparameters determined during the cross-

validation procedure. The model inputs are the biomass' ul-
timate analysis, the processing capacity, and the geographic

location. The nominal, lower (5th), and upper (75th) LCOH are
Table 6 e Performance metrics for the ML algorithms. Metrics
best performing model for each metric is presented in bold.

Prediction Data-set Evaluation me

Nominal Validation RMSE

MAPE

R2

Testing RMSE

MAPE

R2

5th percentile Validation RMSE

MAPE

R2

Testing RMSE

MAPE

R2

75th percentile Validation RMSE

MAPE

R2

Testing RMSE

MAPE

R2
the model outputs. The surrogate model was trained using

data from five specific processing capacities (10, 20, 50, 100,

and 200 m3/h). However, the model is intended to predict the

LCOH for the range of capacities 10e200 m3/h. To demon-

strate the model's ability to interpolate between the capac-

ities used for training, Table S6 in the Supplementary

Information presents a comparison between the model pre-

dictions with simulated results for an unseen biomass

sample in Brazil. Processing capacities of 10, 15, 20, 35, 50, 75,

100, 150 and 200 m3/h were considered for the comparison.

All the model predictions achieved a percentage error less

than the MAPE of 4.42% obtained over the test set when

compared to the simulated results. This low percentage dif-

ference highlights the model's capability to accurately pre-

dict beyond the specific training capacities used during its

development, thus demonstrating its predictive ability.

Extrapolation beyond the scales considered during model

development (10e200 m3/h) is not permitted by the model

and is therefore not demonstrated.

3.5.1. Model uncertainty
The accuracy of a ML model's prediction on new, unseen in-

puts depends on this data's similarity to the model's training

data. A method to estimate model uncertainty can be used to

determine when this new data deviates significantly from the

training set. This can be used to estimate when the models

produce unreliable predictions. This is important for pre-

dictions made using new biomass samples inputted by the
are displayed for both the validation and testing sets. The

tric RF SVR ANN

0.414 1.321 0.197

3.39% 19.7% 1.56%

0.989 0.885 0.998

0.303 1.898 0.291

4.00% 39.3% 4.42%

0.994 0.761 0.994

0.332 1.170 0.166

3.16% 20.5% 1.47%

0.990 0.881 0.998

0.264 1.758 0.279

0.041 0.425 4.58%

0.994 0.731 0.993

0.532 1.664 0.236

3.45% 17.6% 1.63%

0.988 0.885 0.998

0.394 2.313 0.389

4.07% 35.4% 4.43%

0.994 0.777 0.994
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Fig. 6 e aeb: Feature importance of the model inputs on the LCOH Predictions using SHAP values. a) Absolute importance of

input features on model output. b) Impact of input features on the model output. High feature values (inputs) are displayed

in pink and low feature values are displayed in blue.
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end user. In the ensemble approach, each ANN has different

weights and biases owing to random initialisation. The di-

versity between each model will be greater in regions that

were less well represented in the training data. Therefore,

greater variance between themodel predictions is observed in

these regions. As such, the variance between the ensemble of

predictions gives an indication of the model's uncertainty,

with larger variations between predictions suggesting greater

model uncertainty [62]. By setting a threshold for the allow-

able variance between predictions, unreliable predictions can

be identified. This approach is similar to anomaly detection

using autoencoders where an anomaly threshold is set by a

reconstruction error [63].

For the published model, the permissible uncertainty

threshold was set as the maximum variance observed for the
nominal predictions during a 5-fold validation procedure on

the entire data-set (600 parameter combinations). I.e. the

ensemble models were trained on 80% of the data and 20% of

the data was held back from training (the validation set). This

was repeated five times for different folds in the data. The

maximum variance observed on the validation sets was used

as the uncertainty threshold. As an additional indication of

uncertainty, it is known that the lower, nominal, and upper

LCOH should be predicted in ascending order. In instances

where this is not upheld, the model inputs represent an area

poorly represented during model development.

To illustrate this principle, Table 7 presents the model

predictions for three fictitious biomass compositions at

different capacities and locations. The predictions are classi-

fied as anomalous if the prediction variance exceeds the
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Table 7 e Surrogate model predictions for fictitious biomass compositions at different processing scales and geographic
locations. The predictions are classified as anomalous if the prediction variance exceeds the variance threshold, and
implausible if the predicted lower, nominal, and upper LCOH are not in ascending order.

Fictitious biomass
composition

Scale
(m3/hr)

Location LCOH ($/kgH2) Anomalous
prediction

Implausible
prediction

C H N O Lower Nominal Upper

35 15 15 35 15 China 6.85 8.19 9.12 ✓ 7

35 3.57 4.16 3.18 ✓ ✓

150 2.46 2.54 2.02 ✓ ✓

40 15 5 40 5 Brazil 12.71 14.3 18.14 7 7

150 2.33 2.37 3.52 7 7

250 2.43 2.17 3.1 7 ✓

40 21 0 39 20 UK 6.06 6.23 8.35 7 7

80 2.24 2.09 2.67 ✓ ✓

110 1.81 1.63 2.62 ✓ ✓
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uncertainty threshold, and implausible if the lower, nominal,

and upper LCOH are not predicted in ascending order. All

predictions for the first composition trialled were deemed

anomalous. This is attributed to the unrealistic biomass

composition, as the high nitrogen and hydrogen content is

unlike the compositions used for training. Despite this, in two

out of three instances the model produced plausible pre-

dictions, i.e. the lower, nominal, and upper predictions were

in ascending order. Contrastingly, for the second biomass

composition, all predictions were below the uncertainty

threshold and not deemed anomalous. This composition was

representative of a realistic biomass composition, and there-

fore likely represented by the training set. However, at a scale

of 250 m3/h themodel prediction was implausible but was not

detected as an anomaly. This capacity exceeded the range

used during model training (10e200 m3/h). Therefore, the

implausible prediction is attributed to model extrapolation

beyond the region used during training. The final biomass

composition trialled also represents a realistic biomass com-

pound. However, the prediction was deemed anomalous and

implausible for two out of three predictions. This result

demonstrates the utility of the uncertainty threshold as

despite the input representing a reasonable biomass compo-

sition, the model demonstrates high variability which should

be brought to the user's attention when using the prediction.

Based on the results in Table 7, the published model con-

tains user warnings and restrictions to prevent its misuse.

Firstly, the range of capacities are limited to those used during

model training (10e200 m3/h), preventing model extrapola-

tion. Secondly, the user is warned if the prediction contains

high variability i.e. the variance threshold is exceeded.

Thirdly, if the variance is not exceeded, but the biomass

composition is outside of the range of compositions used

during training the user is warned. In both these instances the

prediction is provided alongside the warning. Finally, no pre-

diction is provided, and the user is warned if an implausible

prediction is produced.
4. Study limitations

The Gibbs model is a valuable tool for simulating gasification,

as it eliminates the need for defining complex equations. The
model ensures that the mass and energy balance of the sys-

tem is maintained, making it useful for initial process evalu-

ations [29]. In TEA studies, the Gibbs model is widely

employed to model SCWG [3e5]. One significant advantage of

using the Gibbs model in an economic analysis is its ability to

evaluate different feedstocks on an equivalent basis, avoiding

biases that may arise from using experimental data obtained

under varying conditions or levels of experimental rigour.

However, it is important to note that the Gibbs reactor as-

sumes the full conversion to gaseous products the attainment

of thermodynamic equilibrium, which may not always hold

true in an industrial setting. As a result, the gas composition

may deviate from the predictions of the Gibbs model.

The Gibbs reactor's ability to model thermodynamic equi-

librium in SCWG has been validated using high temperatures

(600e900 �C) [64e67]. At elevated temperatures, reactions

occur at faster rates, increasing the likelihood of attaining

thermodynamic equilibrium at low residence times. A com-

parison between experimentally reported gas compositions

and predictions from the Gibbs reactor for low-temperature

SCWG (380e500 �C) are presented in Fig. S2 in the Supple-

mentary Information. The experimental results of Louw et al.

(2016), Osada et al. (2012), Yamaguchi et al. (2019), and

G€okkaya Selvi et al. (2020) align reasonably well with the

predictions of the Gibbs reactor [68e71]. However, the most

notable deviation is observed betweenmethane and hydrogen

concentrations. This is most prominent in the results exper-

imental by Lu et al. (2019), where significantly higher con-

centrations ofmethane and lower concentrations of hydrogen

are predicted by the Gibbs model [72]. The discrepancy be-

tween hydrogen and methane concentrations has been re-

ported previously at lower SCWG temperatures [65,66]. Higher

methane formation is thermodynamically anticipated at

lower temperatures owing to methanation entailing

exothermic formation reactions [32,33]. As such, the differ-

ences between the Gibbs and experimental results suggest

that the experimentally obtained SCWG gas compositions

were not at equilibrium. To account for the assumption that

thermodynamic equilibrium is obtained in this TEA study, a

conservative 5-min residence time was considered for the

continuous SCWG. This residence time is greater than previ-

ously investigated for continuous SCWG [2,21], and translates

to an additional capital burden by oversizing the gasifier.
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Table 8 e Sensitivity of the LCOH to the residence time assumed for SCWG. Biomass sample: chicken manure [73].

Processing capacity (m3/hr) Levelised cost of hydrogen ($/kg)

5 min 10 min 15 min 20 min

10 14.60 (þ0%) 15.64 (þ7%) 16.57 (þ13%) 17.43 (þ19%)

20 8.21 (þ0%) 9.04 (þ6%) 9.80 (þ11%) 10.51 (þ16%)

50 4.67 (þ0%) 5.33 (þ5%) 5.94 (þ9%) 6.52 (þ13%)

100 3.55 (þ0%) 4.11 (þ4%) 4.65 (þ8%) 5.16 (þ11%)

200 3.05 (þ0%) 3.55 (þ3%) 4.03 (þ7%) 4.50 (þ10%)
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As full conversion and the attainment of thermodynamic

equilibrium using the assumed residence time is yet to be

confirmed, a sensitivity analysis around this parameter has

been conducted considering the impact of a 10, 15, and 20-min

residence time on the LCOH for chickenmanure [73] in the UK.

The results of this analysis are presented in Table 8. A fourfold

increase in residence time (20 min) led to a 10%e19% increase

in the LCOH, with the greatest impact observed at the smallest

processing capacity. This represents a relatively minor impact

on the overall process economics and falls within the 70%

probability band obtained from the Monte Carlo uncertainty

analysis (þ28%, on average). As such, the potential increased

capital requirement to attain full conversion and thermody-

namic equilibrium is comfortably captured within the consid-

ered probability band predicted by the ML surrogate model.

It is important to emphasise that the surrogate model

predictions represent the economic potential of a feedstock

considering full conversion to gaseous products and the

attainment of thermodynamic equilibrium using continuous

SCWG at 430 �C followed by SMR, HTS, and LTS. The predicted

costs should therefore serve as a guide for identifying prom-

ising feedstocks based on their composition, location, and

processing capacity. This allows for prioritisation of future

research and development. Notably, the identification of a

promising feedstock would still necessitate the optimisation

of experimental conditions, i.e. residence time, catalyst type,

and catalyst concentration as is undertaken in experimental

studies such as [2].
5. Conclusion

A machine learning surrogate model has been created to pre-

dict the LCOH from low-temperature SCWG using different

feedstock compositions, processing capacities, and geographic

locations. This type of early-stage economic analysis tool helps

to inform targeted research directions and investment de-

cisions. A data-set of 600 process simulations using the Gibbs

reactor provided the data to train the surrogate model. Three

algorithms were investigated: RF, SVR, and ANNs. The highest

prediction accuracy during cross-validation was by ANNs,

achieving a test set accuracy of<4.6% (MAPE), RMSE:<0.39, and
R2: >0.99. The published surrogate model is trained on the

entire dataset: doi.org/10.6084/m9.figshare.22811066.
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 Conclusions, Limitations, and Future work 
The aim of this thesis was to develop and apply Techno-Economic Analysis (TEA) methods 
to evaluate the proposed aerobic gas fermentation and Supercritical Water Gasification 
(SCWG) process. Table 8.1 summarises the individual contributions of each Chapter 
(published article) included in this thesis. The following section outlines the overall thesis 
conclusions, limitations addressed within the thesis, and the recommendations for future work 
based on remaining limitations.  

Table 8.1: A summary of the articles in each chapter of this thesis 

Chapter Article Title Novelty 
4: Initial techno-
economic 
analysis of the 
integrated 
platform 

Reconciling the Sustainable 
Manufacturing of 
Commodity Chemicals with 
Feasible Technoeconomic 
Outcomes: Assessing the 
investment case for heat 
integrated aerobic gas 
fermentation 

First TEA and LCA of the proposed 
aerobic gas fermentation and SCWG 
platform. 
The novel platform consisted of SCWG 
heat integrated with aerobic gas 
fermentation.  
Three different methods of calculating the 
capital and fixed operating costs are 
assessed.   

5: Comparative 
techno-economic 
analysis of the 
integrated 
platform 

Renewable butadiene: A 
case for hybrid processing 
via bio- and chemo-
catalysis 
 

Comparative TEA and LCA for the 
production of 1,3-butadiene. 
The aerobic gas fermentation and SCWG 
platform was followed by catalytic 
upgrading to produce the reduced 1,3-
butadiene product.  
Two alternative purely chemo-catalytic 
routes to 1,3-butadiene were modelled 
and compared to the aerobic gas 
fermentation route.  

6: Creating a 
robust, unbiased, 
price selection 
procedure for 
techno-economic 
analyses 

Probabilistic commodity 
price projections for 
unbiased techno-economic 
analyses 

ML was used to produce 20-25 year 
probabilistic commodity price projections 
for techno-economic, sensitivity, and 
uncertainty analyses.  
An ensemble of 100 LSTMs was used to 
exploit the underlying determinism and/or 
stochastic variability within the 
commodity’s historic time series. 

7: Creation of a 
surrogate model 
for the economic 
evaluation of 
feedstocks 

A surrogate model for the 
economic evaluation of 
renewable hydrogen 
production from biomass 
feedstocks via supercritical 
water gasification 

An ML surrogate model of the TEA for 
hydrogen production via low temperature 
SCWG was created. 
The model predicts the LCOH based on 
user input feedstock-capacity-location 
combinations and is made publicly 
available. 

 

8.1 Conclusions 
The specific objectives set to achieve the overall thesis aim and conclusions relevant to these 
objectives are discussed below. 

Objective 1: Develop process simulations for the aerobic gas fermentation and SCWG 
process, incorporating heat integration and downstream processing. 
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In Chapter 4, an initial process simulation of the heat integrated aerobic gas fermentation and 
SCWG platform was created in Aspen HYSYS for isopropanol and acetone production. A heat 
pump using isopentane as the working fluid was incorporated to utilise the abundant low 
temperature heat from the fermentation to support the SCWG reaction. Furthermore, a turbo-
expander was employed to recover energy from the high-pressure SCWG effluent, supplying 
air to the fermentation process. Owing to the significant energy recovery from the turbo-
expander, surplus renewable electricity was fed back into the grid as an additional source of 
revenue. However, the technology platform necessitated the diversion of 32 % of syngas to 
combustion to ensure energy self-sufficiency. In Chapter 5, the platform’s heat integration was 
updated, enabling the exploitation of 100% of the produced syngas for chemical production 
while maintaining energy self-sufficiency. This process improvement also enabled the export 
of a greater portion of renewable electricity for sale to the grid. Although not implemented on 
the aerobic gas fermentation platform flowsheet, Chapter 7 undertook an update to the 
representation of the SCWG reactor. This update allowed for the simulation of the gasification 
of any biomass compound using its ultimate analysis and replaced the previous SCWG 
representation that relied on kinetics of guiacol gasification, acting as a model compound for 
lignin. 

These incremental process enhancements and representations were pivotal in evaluating the 
potential of the proposed technology. Current commodity chemical production contains highly 
efficient production chains, making the commercialisation of early-stage technologies to 
compete with these processes challenging (IEA, 2019). As such, a conclusion from this thesis 
is the need for comprehensive and evolving TEAs to determine and create promising 
technology alternatives. 

Objective 2: Determine an appropriate techno-economic framework and perform a 
comprehensive techno-economic analysis of the simulated process. 

In Chapter 4, three methods for evaluating capital expenditure and operating expenditure were 
compared. The cost models yielding the median results in both cases was adopted for the 
formal technology analysis. These cost models were adopted in the TEAs conducted in 
Chapters 5 and 7, establishing a consistent methodology for the economic analyses in this 
thesis. In addition, a Monte Carlo uncertainty analysis was conducted to provide an expected 
probability range for the economic outcome. This approach was also applied in Chapter 5 and 
7. However, in Chapter 5 an additional single-point sensitivity analysis was performed to 
assess the impact of each variable on the technology's Minimum Selling Price (MSP), 
facilitating a comparison between the modelled routes in this chapter. 

In both Chapters 4 and 5 the TEA was conducted in the context of a China-based paper and 
pulp mill. The studies assumed 25% of the pulp mill’s black liquor production could be diverted 
from conventional energy recovery to chemical production. In Chapter 4, considering 
isopropanol and acetone production, the aerobic gas fermentation and SCWG technology 
achieved a cumulative NPV of $42 million using the nominal TEA inputs. The uncertainty 
analysis demonstrated a 70% NPV probability band ranging from $35 to $85 million, 
highlighting the technology's potential to produce cost-competitive commodity chemicals. 
Building upon the successful outcome of this analysis, Chapter 5 performed a second TEA for 
1,3-butadiene production, involving catalytic upgrading of the fermentation product, 
acetaldehyde, into the less oxygenated 1,3-butadiene. The catalytic transformation negatively 
impacts the economics due to the lower mass yield to produce the reduced 1,3-butadiene 
product compared with direct products from fermentation. Overall, the process demonstrated 
an NPV of $2.8 million, a 19% probability of achieving a positive NPV, and an MSP of $1,367 
tn-1. Despite being less economically viable than isopropanol and acetone production, the 
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platform still demonstrated economic potential using commodity prices. Furthermore, this 
analysis did not include carbon pricing incentives, which would likely improve the economic 
outlook. 

In Chapter 7, SCWG was evaluated for hydrogen production considering 40 biomass 
compositions, five processing capacities (10–200 m3/h), and three geographic locations 
(China, Brazil, and the UK) to produce a feedstock evaluation tool. As a commonly reported 
metric for low-carbon hydrogen production methods the Levelised Cost of Hydrogen (LCOH) 
was computed. The levelised costs ranged from 3.81 to 18.72 $/kgH2 for the considered 
feedstock-capacity-location combinations.  

The results from these case studies demonstrate the techno-economic potential of the 
proposed integrated aerobic gas fermentation and SCWG technology. The integrated gas 
fermentation and SCWG platform demonstrated its capability to achieve market prices for both 
fermentation products (isopropanol and acetone) and more reduced products (1,3-butadiene), 
necessitating the integration of bio- and chemo-catalytic technologies. The lower NPV of the 
1,3-butadiene route is attributed to the intrinsic mass loss required to produce this more 
reduced product. As most fossil-fuel based chemicals are less oxygenated that fermentation 
products this highlights a challenge with strategies to directly replace current commodity 
chemicals. The LCOH range presented for hydrogen production via SCWG emphasises the 
impact of feedstock-capacity-location considerations during technology evaluation and 
highlights the need for realistic biorefinery scenario modelling during technology evaluations.  

Objective 3: Quantify the greenhouse gas emissions associated with chemical and fuel 
production from the process and compare them with conventional production 
methods.  

An integrated TEA and Life Cycle Assessment (LCA) was undertaken in Chapters 4, 5, and 7. 
As the considered feedstocks were deemed by-product streams or wastes no emissions were 
attributed. As such, the sequestration of biogenic carbon in both Chapters 4 and 5 resulted in 
net negative emissions on a cradle-to-gate basis. For isopropanol and acetone production 
(Chapter 4), the platform’s Greenhouse Gas (GHG) emissions were -2.1 kgCO2eq/kg and -2.21 
kgCO2eq/kg, contrasting with 2.07 kgCO2eq/kg and 2.43 kgCO2eq/kg via conventional 
production. In the case of butadiene (Chapter 5) produced through the aerobic platform, GHG 
emissions were -3.23 kgCO2eq/kg, while conventional production emitted 1.2 kgCO2eq/kg. The 
negative emissions achieved for all three chemicals are attributed to the sequestration of 
biogenic carbon exceeding the process emissions. Negative emissions were not achieved for 
hydrogen production (Chapter 7) as no biogenic carbon was sequestered, however low 
process emissions were achieved, averaging 0.46 kgCO2eq/GJH2 (China and Brazil), and 0.37 
kgCO2eq/GJH2 (UK). These results compare favourably with the 8 kgCO2eq/GJH2 attributed to 
Steam Methane Reforming (SMR) with carbon capture and storage (excluding emissions for 
natural gas leakage). 

The low process emissions achieved for all case studies demonstrate the environmental 
benefit of renewable resource utilisation compared with conventional fossil-based production 
methods. Importantly, since the downstream use of each product remains independent of the 
production method, the comparative renewable and conventional production are valid beyond 
the considered cradle-to-gate framework.  

Objective 4: Compare the economic and environmental competitiveness of the process 
with alternative renewable production methods. 

As the only company to currently operate a commercial gas fermentation facility, the study by 
LanzaTech investigating the production of ethanol and acetone via anaerobic gas 
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fermentation was used as a benchmark to compare to the economic and environmental 
outcomes of Chapter 4, producing isopropanol and acetone using the aerobic gas 
fermentation and SCWG platform. LanzaTech’s findings revealed that by selling acetone at 
market prices, they could sell co-produced ethanol at or below the US Department of Energy’s 
2022 target of $ 3/ Gallon Gasoline Equivalent (GGE). Notably, the aerobic platform achieved 
the same target by selling isopropanol and acetone as a biofuel mix, resulting in a selling price 
of $2.87/GGE. In addition, the cradle-to-gate GHG emissions for LanzaTech’s combined 
ethanol and acetone product were -1.9 kgCO2eq/kg compared with -2.04 kgCO2eq/kg for the 
aerobic gas fermentation’s combined isopropanol and acetone product. The TEA and LCA 
results suggest that through the outlined process engineering solution aerobic gas 
fermentation demonstrates promise as a renewable biochemical technology platform. 

In Chapter 5, the production of 1,3-butadiene via the aerobic gas fermentation and SCWG 
platform followed by catalytic upgrading was compared to two chemo-catalytic routes involving 
catalytically upgrading biomass derived syngas. One route involved passing through an 
ethanol intermediate, while the other employed a sequence of commercialised catalytic 
technologies with propene as an intermediate. Among the three routes, the aerobic gas 
fermentation process was the only one profitable using the nominal techno-economic inputs. 
The MSPs for the three routes were $1367/tn, $1954/tn, and $2196/tn for the aerobic gas 
fermentation, ethanol, and propene intermediate routes, respectively. Moreover, sensitivity 
analysis revealed that although the co-sale of renewable electricity contributed to the success 
of the aerobic gas fermentation route, the platform still outperformed alternative routes even 
with grid parity prices for renewable electricity (MSP using electricity grid parity: $1695/tn). 
Overall, this demonstrates the competitiveness of this novel platform. All three renewable 
routes produced net negative emissions, comparing favourably to both conventional 
production and the upgrading of market ethanol in Brazil and the US. Minor differences were 
observed between the renewable routes, -3.23 kgCO2eq/kg, -2.90 kgCO2eq/kg, and -2.80 
kgCO2eq/kg for the aerobic gas fermentation, ethanol, and propene intermediate routes, 
respectively. The lower emissions for the aerobic gas fermentation route are attributed to 
absence of emissions associated with the black liquor feedstock.  

With regards to hydrogen production via SCWG in Chapter 7, at capacities >50 m3/h, the 
LCOH (2.76–4.21 $/kgH2 for China, 3.41–5.07 $/kgH2 for Brazil, 4.31–6.62 $/kgH2 for the UK) 
was cost competitive with hydrogen production via MW-scale electrolysis using renewable 
electricity (3.10–6.70 $/kgH2 for China, 3.70–5.90 $/kgH2 for Brazil, and 4.81–6.31 $/kgH2 for 
the UK). Low average emissions were achieved by SCWG 0.46 kgCO2eq/GJH2 (China and 
Brazil), and 0.37 kgCO2eq/GJH2 (UK), comfortably meeting the European Union CertifHy 
scheme for low carbon hydrogen (≤36.4 kgCO2eq/GJH2) based on a 60% reduction in emissions 
from Steam Methane Reforming (Abad & Dodds, 2020).  

The favourable prices and emissions achieved compared to alternative renewable/low carbon 
production methods are testament to the exploitation of low-value and low-emission 
feedstocks. This highlights a benefit of the use of SCWG as a gasification technology as it is 
ideally suited to these feedstocks. Furthermore, the low process emissions achieved by both 
aerobic gas fermentation routes (Chapters 4 and 5) were due to the technology’s energetic 
self-sufficiency, achieved through heat integration, highlighting the technology's efficient 
resource utilisation.  

Objective 5: Develop a methodology to project future prices, considering future price 
variability, for use in techno-economic, sensitivity, and uncertainty analyses.  

The RBFNN method used to project future commodity chemical prices employed in Chapters 
4 and 5 was updated in Chapter 6. The initial methodology had several limitations namely, the 
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arbitrary selection of, the algorithm, use of eight neurons, and use of ten historic time-steps 
as the model input; the model was trained on the entire historic time series; model initiation 
relied only on ten real historic prices; and price variability was accounted for using a subjective 
percentage. The updated methodology in Chapter 6 used a grid search to determine the 
optimal hyperparameters, used the entire time series as a model input, included a validation 
set to assess the methods ability to predict beyond the training set, and produced a 
probabilistic projection of the commodity’s future price. To develop this methodology, an 
ensemble of 100 LSTM models was employed. The commodity’s historic pricing data (2009-
2021) and the Energy Information Administration’s (EIA’s) reference case projection of future 
Brent crude oil prices were as model inputs. The historic commodity price allows for the 
exploitation of deterministic trends and/or stochastic variability specific to the commodity whilst 
the EIA’s projection acts as a proxy for future global energy market trends. From the 
probabilistic projection the 5th, 25th, 50th, 75th, and 95th price percentiles were calculated and 
used as the nominal price (50th), price range (5th and 95th), and price distribution (5th, 25th, 50th, 
75th, and 95th) in the corresponding economic, sensitivity, and uncertainty analyses. 
Comparing the previous RBFNN price projections to the developed LSTM method, the 70% 
probability window for the NPV distributions were changed from $35 - $95 million to $45 - $80 
million for the previous isopropanol and acetone TEA, and from -$45 - $65 million to -$35 - 
$80 million for the 1,3-butadiene process.  A two-tailed t-test verified a statistically significant 
difference between the NPV distributions. Furthermore, the projected commodity price 
distributions demonstrated appreciable price variability.  

The results from this study highlight the importance of price selection during technology 
evaluations. The variability observed between commodities suggest that pricing uncertainty 
considerations in TEAs should be tailored to each commodity rather than dictated through 
heuristics. Furthermore, ML demonstrates promise as a tool to develop unbiased price 
projection methods that are applicable to any time series. However, when employing ML 
careful consideration is required to ensure models are trained to effectively tackle the problem. 
For example, to project prices 26 years with only 12 years of historic data available a 30% 
training and 70% validation data split was selected to ensure the selection of optimal 
hyperparameters was carried out on a task representative of the final model projections. 
Notably, this deviates from conventional ML practices, which often adopt an 80% training and 
20% validation split. 

Objective 6: Create a machine learning surrogate model of a techno-economic analysis 
to rapidly evaluate the economic potential of feedstock-capacity-location combinations 
for supercritical water gasification. 

A ML surrogate model was created of a TEA of hydrogen production via low temperature 
SCWG to aid experimentalists and industrialists in identifying promising biorefinery scenarios 
to inform targeted research and investment. The biomass’ ultimate analysis, processing 
capacity, and geographic location were the surrogate model inputs and the nominal and 70% 
probability band for the LCOH were the model outputs. Three commonly employed ML 
algorithms were investigated for the surrogate model: Random Forests, Support Vector 
Regression, and an ensemble of Artificial Neural Networks (ANNs). The ANN ensemble was 
the most accurate during cross-validation and achieved an accuracy of Mean Absolute 
Percentage Error: <4.6%, Root Mean Squared Error: <0.39, and R2: >0.99 on the test set. 
Feature importance was determined using SHapley Additive exPlanation (SHAP) values to 
determine the importance of each input feature on the model’s output. SHAP values revealed 
processing capacity as the most prominent feature, followed by the geographic location. 
However, appreciable LCOH differences were also observed between different biomass 
compositions. A reliability measure was created to warn the user if the surrogate model’s 
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prediction contained high variability. User warnings were set based on the predetermined 
variance threshold set based on the maximum variance observed for the nominal predictions 
during a 5-fold validation procedure on the entire dataset.  

The creation of ML surrogate models representing TEA’s has the potential to facilitate the 
conduction of early-stage technology evaluations by non-experts. However, the accuracy of a 
model's prediction on new, unseen inputs depends on the input data's similarity to the model's 
training data. Predictions made on inputs poorly represented during model training may lead 
to unreliable results. As such, reliability measures such as those presented in this work should 
be developed to prevent model misuse by users.  

8.2 Wider implications and impact  
There is currently a lack of policy for the renewable chemical sector (Hallett & Sparks, 2023). 
The recent Biomass Strategy published by the UK Government emphasised the need for 
further work to understand the role of biomass in the chemical industry (DESNZ, 2023). This 
work contributes to this need by providing a comprehensive techno-economic and 
environmental assessment of a technology platform for commodity chemical production from 
underutilised biomass resources. The process demonstrates economic viability at market 
prices and the opportunity to deliver negative process emissions. As such, this research adds 
valuable information regarding the current state, economic, and environmental potential of 
renewable chemical technologies to the public domain. This research and its findings can 
therefore help to inform future policy decisions surrounding subsidies, technology investment, 
and future research directions.  

The integration of ML techniques impacts stakeholders across various domains. The ML price 
projection method offers a data-driven approach which enhances economic evaluations. The 
developed method provides policymakers with unbiased information around market 
competitiveness. This aids policymakers in determining future subsidies and incentives for 
emerging sustainable technologies. The ML-driven surrogate model, designed for accessibility 
by non-experts, facilitates the early-stage evaluation of technologies. This allows industrialists 
to assess the feasibility of exploiting their waste streams using SCWG. This offers the potential 
for underutilised resources to be efficiently exploited. Overall, the use of machine learning in 
this thesis makes sustainable technology assessments more accessible to a wider range of 
audiences. 

8.3 Addressed limitations 
Some of the limitations discussed in the chapters of this thesis were addressed in the 
subsequent chapters. These limitations and their resolutions are discussed under the 
objectives they correspond to.  

Objective 1: Develop process simulations for the aerobic gas fermentation and SCWG 
process, incorporating heat integration and downstream processing. 

In both Chapters 4 and 5 the SCWG of black liquor was modelled based on kinetics for guiacol 
gasification, a commonly used model compound to represent lignin. However, this approach 
prevented modelling a range of biomass feedstocks. This simplification was addressed as part 
of Chapter 7 where the representation of the SWCG reactor was updated to use a Gibbs 
reactor, allowing the biomass’ ultimate analysis to be used as the simulation basis. However, 
as the Gibbs reactor predicts the equilibrium composition of the produced syngas at the 
specified temperature and pressure, this amendment led to a greater quantity of methane 
being produced in the product gas. To shift this gas composition towards the desired H2 and 
CO2 product a SMR, High Temperature Shift (HTS), and Low Temperature Shift (LTS) reactor 
were used after the gasifier. As such, the simplified SCWG reactor using guiacol kinetics in 
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Chapters 4 and 5 was replaced by a SCWG (represented sing a Gibbs reactor) followed by 
SMR, HTS, and LTS reactors (represented using established reaction kinetics). 

Objective 2: Determine an appropriate techno-economic framework and perform a 
comprehensive techno-economic analysis of the simulated process. 

In Chapter 4 an uncertainty analysis was undertaken to represent the range of NPV outcomes. 
However, as a single point sensitivity analysis was not undertaken the specific impact of each 
variable on the final economic outcome wasn't quantified. This was rectified in Chapter 5 
where both uncertainty and single point sensitivity analyses were undertaken. Whilst Chapter 
4 computed the $/GGE for the biofuel mix of isopropanol and acetone to compare the results 
to LanzaTech’s study, the MSP for each product wasn't computed. As highlighted in Chapter 
2, the computation of multiple metrics is important to contextualise the techno-economic 
results. In Chapter 5 both the MSP and NPV were presented. 

In Chapter 4 the upper limit used for the sensitivity analysis parameters were uniformly set. 
However, the ranges recommended in Sinnott and Towler (2013) have higher upper bounds 
for the inside battery limit capital, outside battery limit capital, and labour cost, likely attributed 
the more common occurrence and severity of cost overruns compared to cost underruns 
(Brown, 2015). To rectify this, the higher recommended upper bounds were adopted in 
Chapters 5 and 7. 

Objective 4: Compare the economic and environmental competitiveness of the process 
with alternative renewable production methods. 

The technology comparison between the aerobic platform and existing anaerobic study by 
LanzaTech in Chapter 4 relied on an existing TEA study rather than modelling both 
technologies. As such, the studies used different biorefinery scenarios and cost model 
assumptions. To ensure a fairer comparison, the anaerobic gas fermentation route should be 
modelled and considered within the same biorefinery scenario as the evaluated aerobic 
platform. While this limitation remains for Chapter 4, the technology comparisons in Chapter 
5 were all modelled using the same biorefinery scenario and techno-economic framework. 

Objective 5: Develop a methodology to project future prices, considering future price 
variability, for use in techno-economic, sensitivity, and uncertainty analyses. 

To account for price variability and uncertainty of the projected product prices used in the 
TEAs an arbitrary ±30% was used in Chapter 4 and ±20% in Chapter 5. This percentage 
deviation was used as a rule of thumb and didn't reflect the commodity price uncertainty. To 
rectify this a probabilistic price projection methodology was developed in Chapter 6. This 
developed method produces a price distribution projection, supplying a sensitivity range, and 
uncertainty distribution tailored to the commodity for use in the economic, sensitivity, and 
uncertainty analyses.  

8.4 Remaining limitations and future work 
Despite the development of analysis methods throughout this thesis, there are remaining 
limitations which form areas for future work. These are outlined in the following section in 
relation to each of the thesis objectives.  

Objective 1: Develop process simulations for the aerobic gas fermentation and SCWG 
process, incorporating heat integration and downstream processing. 

Incorporating the updated SCWG, SMR, HTS, and LTS representation from Chapter 7 into 
the aerobic gas fermentation platform constitutes an important progression. Importantly, the 
updated reactor network configuration incorporates a greater number of heat exchangers, 
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creating further opportunities for heat integration. As such, to realise the best economic 
outcome it would be appropriate to optimise the internal heat exchanger network and steam 
generation system. Aspen Energy Analyser software can be used to propose potential heat 
integration scenarios. However, the software cannot account for additional constraints such 
as maintaining energy self-sufficiency and also maximising renewable electricity sales. As 
such, the initial heat integration scenarios proposed by Aspen Energy Analyser can be used 
as an initial population for a genetic algorithm to then optimise. An objective function 
incorporating energy self-sufficiency constraints and using NPV as the objective function can 
then be used to find the optimal heat integration configuration using the new SCWG 
representation.  

Objective 2: Determine an appropriate techno-economic framework and perform a 
comprehensive techno-economic analysis of the simulated process.  

In Chapter 4, a comparison of capital and fixed operating cost models was conducted, 
however, no assessment was made on individual equipment cost models, a practice observed 
in studies by Feng & Rangaiah (2011), Symister (2016), and van Amsterdam (2018). A 
comprehensive evaluation involving diverse cost correlations and software programs would 
have offered a more thorough analysis. However, due to the absence of true equipment costs, 
the accuracy of these methods cannot be validated. Similarly, the comparison of overall cost 
models in Chapter 4 was instrumental in establishing the techno-economic framework for the 
future case studies, yet it doesn't represent the most precise cost model. In order to quantify 
the accuracy of approaches vendor quotes and cost estimates from commissioned 
commercial scale projects would need to be broadly publicised. In the work by Tsagkari et al. 
(2020) a process block methodology that utilised data from press releases of commercial 
biorefineries to cost various blocks was introduced. Following on from this, an interesting 
avenue of future work would be to leverage data available in press releases and using ML to 
extract costs for process blocks or specific equipment. Using the extracted data, new 
exponents and constants for equipment cost equations such as those in Sinnot & Towler 
(2013) and Seider et al. (2017) could be defined. Alternatively, ML surrogate models could be 
created from the extracted data to represent equipment costs. 

Further investigation is warranted to evaluate the techno-economic performance of the aerobic 
gas fermentation platform with diverse feedstocks in varying biorefinery scenarios, e.g., 
vinasse in Brazil and distillery wastewater in the UK. While these feedstocks were considered 
in the case studies of Chapter 7 for comparison with alternative renewable hydrogen 
technologies, it would be valuable to also determine their competitiveness for commodity 
chemical production through the integrated aerobic gas fermentation process. 

TEAs are based on a set of assumptions and thereby uncertainty. Whilst the use of a sensitivity 
and uncertainty analysis can provide a range of outcomes to represent this uncertainty, 
ultimately the simulations, costs, and designs need revisiting and refining throughout the 
evolution of a technology or process. The studies undertaken in this thesis represent 
theoretical designs based on early-stage technologies. The economic outcomes are therefore 
an indication of whether the technology demonstrates promise. The economic outcome is not 
a true representation of the technology’s performance once commercialised. Further work 
through scale-up and improved cost estimates is therefore required to verify and refine the 
assumptions made and reassess technologies.  

Objective 3: Quantify the greenhouse gas emissions associated with chemical and fuel 
production from the process and compare them with conventional production 
methods.  
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In Chapters 4 and 5, while calculating the GHG emissions during the technology assessments, 
no quantifiable policy incentives were incorporated into either study. Such incentives would 
have been particularly valuable in Chapter 5, where only a 19% probability of achieving a 
positive NPV was attained. Reference is made to the fact that a higher market price could be 
demanded for low-carbon products. As such, quantifying the CO2 price required to shift the 
probability of achieving a positive NPV to 100%, in a manner similar to Michailos et al. (2019) 
and Huang et al. (2021), forms an interesting area for future work. Notably, this would 
necessitate the LCA framework to be expanded to cradle-to-grave to incorporate end of life 
considerations for the products. The CO2 pricing analysis would be useful for policymakers as 
it provides insights into the necessary incentives required to mitigate risk in commercialising 
biochemical technology. Furthermore, the required CO2 price could be contextualised through 
comparison to current and projected CO2 pricing. 

Objective 4: Compare the economic and environmental competitiveness of the process 
with alternative renewable production methods. 

As emphasised within this thesis, the aerobic and anaerobic comparison in Chapter 4 weren't 
directly comparable due to them being conducted in separate studies with distinct biorefinery 
scenarios and different TEA frameworks. Thus, modelling a direct comparison between 
aerobic and anaerobic gas fermentation utilising the same biorefinery scenario and techno-
economic framework would provide greater clarity on the proposed platform’s competitiveness 
in comparison to anaerobic gas fermentation. Moreover, further comparisons between the 
proposed platform and conventional biomass gasification, or CO2 utilisation and electrolysed 
H2 would make for interesting future assessments. 

Objective 5: Develop a methodology to project future prices, considering future price 
variability, for use in techno-economic, sensitivity, and uncertainty analyses. 

Future work should be undertaken considering the impact of including further 
hyperparameters in the grid search procedure i.e., number of neurons in the fully connected 
layer, use of a fully connected layer, number of time-steps being predicted. However, their 
inclusion should be considered alongside their added computational expense. Additionally, 
the use of a cross-validation procedure to assess the model's performance across different 
stages of the historic time series should be undertaken. A suitable approach involves 
leveraging different time series lengths for validation. For instance, using a 4-fold cross-
validation procedure applied to a time series comprising 144 data points, the model's 
performance can be evaluated using varying time-series lengths: 36, 72, 108, and 144 data 
points, while maintaining a consistent 30% training and 70% validation split. The optimal 
hyperparameters could then be determined based on the overall performance across all 
validation sets. Finally, the impact of incorporating the EIA’s projection in a staggered manor 
should be considered, e.g., inputting ethanol prices from January 2009 to December 2020 
alongside the EIA's crude oil prices for January 2010 to December 2021. In theory this should 
provide the model with insights into future price dynamics, rather than solely based on the 
current time-step data, potentially increasing prediction accuracy.  

Only one method was evaluated to produce the price projections in Chapter 6. In traditional 
forecasting fields new methods are commonly compared against econometric methods and 
various simpler ML methods, such as seen in the works by Wu et al. (2019) and Lago et al. 
(2018). However, the specific requirements of the projection problem defined in this work, 
namely, a probabilistic projection, inclusion of the EIAs crude oil price projection, and 
applicability to any time series, meant econometric methods were unsuitable for this problem. 
Nevertheless, alternative ML methods could have been compared to assess the most 
appropriate model. Future work could be undertaken concerning the use of emerging methods 
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in traditional forecasting fields such as, variational mode decomposition and other wavelet 
decomposition methods along with the proposed ensemble approach. Such methods aim to 
reduce the burden on the ML algorithm by first extracting features from the data.  

The inclusion of the historic errors in the EIA’s projections into the probabilistic price 
projections also offers an interesting avenue for potential future work. This would introduce 
projection uncertainty linked to historical inaccuracies in EIA's scenario projections for world 
energy markets, rather than solely based on the commodity's historic time series. However, 
the inclusion of these errors may lead to the production of excessively broad distributions. To 
ensure that projection sharpness is maintained when incorporating these errors the 
Continuous Rank Probability Score should be used as the performance metric across the 
validation set. 

Objective 6: Create a machine learning surrogate model of a techno-economic analysis 
to rapidly evaluate the economic potential of feedstock-capacity-location combinations 
for SCWG.  

The updated SCWG reactor model used in Chapter 7 relies on the Gibbs reactor in Aspen 
HYSYS. The Gibbs model is a valuable tool for simulating gasification, as it eliminates the 
need for defining complex equations. The model ensures that the mass and energy balance 
of the system is maintained, making it useful for initial process evaluations (Okolie et al., 
2021a). Although widely used in TEA studies for SCWG (Sanaye et al., 2022; Liang et al., 
2023; Okolie et al., 2021b), the Gibbs reactor assumes complete conversion to gaseous 
products and thermodynamic equilibrium. These assumptions may not universally hold true in 
industrial settings. As a result, the gas composition may deviate from the predictions of the 
Gibbs model. Whilst the simulation considered a conservative 5-minute residence time for the 
continuous SCWG, a more accurate representation would be to model the gasifier as a 
surrogate model based on experimental data. Surrogate models have been developed for 
SCWG to suggest optimal processing parameters (Gopirajan et al., 2021), screen catalysts 
(Li et al., 2021), or create interpretable models to better understand the relationship between 
process parameters and biomass characteristics on gas yields (Zhao et al., 2022). However, 
at present there is limited data available for SCWG near full conversion at low temperatures 
(380-500°C). Subsequently, greater experimental research into achieving near full conversion 
is imperative for this to be undertaken.  

The ML surrogate model developed in Chapter 7 was developed for hydrogen production. To 
determine the techno-economic performance of various biorefinery scenarios for the aerobic 
gas fermentation a surrogate model of the heat integrated platform could also be developed.  

Additionally, the created surrogate model was limited to a constant dilution rate (75g/LCOD), 
430°C gasification temperature, assumed total conversion, and limited geographic locations. 
These parameters could be expanded to include a broader range of processing parameters, 
yields, and biorefinery scenarios (locations and transportation considerations). By 
incorporating these parameters, the surrogate model could be used for both flowsheet and 
supply chain optimisation. In addition, the inclusion of technical parameters would allow for 
processing parameters to be varied as part of the Monte Carlo uncertainty analysis. The 
benefit of using a surrogate model in place of a process simulation for both optimisation and 
uncertainty analyses is the reduced computational burden and bypassing of convergence 
issues associated with large changes in processing conditions. However, using a surrogate 
model in this way would require the incorporation of an uncertainty threshold, as developed in 
Chapter 7, in order to identify areas with high model uncertainty and prevent predictions and 
solutions being proposed on areas of data poorly represented during model development.  
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Appendices 
The following section presents the reprinted supplementary information from  each chapter 
as published alongside the manuscript: 

 Appendix 1: Supplementary information for Chapter 4: Reconciling the Sustainable 
Manufacturing of Commodity Chemicals with Feasible Technoeconomic Outcomes: 
Assessing the investment case for heat integrated aerobic gas fermentation 

 Appendix 2: Supplementary information for Chapter 5: Renewable butadiene: A case 
for hybrid processing via bio- and chemo-catalysis 

 Appendix 3: Supplementary information for Chapter 6: Probabilistic commodity price 
projections for unbiased techno-economic analyses 

 Appendix 4: Supplementary information for Chapter 7: A surrogate model for the 
economic evaluation of renewable hydrogen production from biomass feedstocks via 
supercritical water gasification
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A.1 Supplementary information for Chapter 4: Reconciling the Sustainable 

Manufacturing of Commodity Chemicals with Feasible Technoeconomic 

Outcomes: Assessing the investment case for heat integrated aerobic gas 

fermentation 

 

Table S.I: Typical calculation for calculation of required oxygen mass 

transfer coefficient (kLA) based on Aspen HYSYS mass and energy balance. 

Parameter Value Unit Comments 

Bioreactor Outlet oxygen concentration, Cg,off-gas  3.35  % (mol/mol)   
Design oxygen uptake rate, OUR  230  mmol O2 l-1h-1   
Bioreactor headspace back-pressure, Pb  4  bara   
Loop reactor downcomer hydrostatic pressure, Ph 

 

2.02 
 

bar 
 

Assumes a working volume of 80% 
(v/v) and a gas hold-up of 25% (v/v).  

Inlet oxygen concentration, Cg,air  21  % (mol/mol) 
 

Inlet oxygen saturation in aqueous phase, CL,air  1.00  
 

mmol O2 l-1  
Estimated using the Lee Kesler 
Plocker equation of state.  

Outlet oxygen concentration, Cg,off-gas 3.35 
 

% (mol/mol) 
 

Outlet oxygen saturation in aqueous phase, CL,off-gas 

 
0.26 

 

mmol O2 l-1 
 

Estimated using the Lee Kesler 
Plocker equation of state. 
 

Broth dissolved oxygen concentration, DO 0 
 

 
mmol O2 l-1 

 
Micro-aerobic conditions. 
 

Log mean concentration difference, LMCD 
0.552 

 
mmol O2 l-1 

 

൫𝐶, − 𝐷𝑂൯ − ൫𝐶,ି௦ − 𝐷𝑂൯

𝑙𝑛
൫𝐶, − 𝐷𝑂൯

൫𝐶,ି௦ − 𝐷𝑂൯

 

 

Required oxygen mass transfer coefficient, kLA 
415 

 
h-1 

 

 
𝑂𝑈𝑅

𝐿𝑀𝐶𝐷
 

 

Total ungassed broth volume, V 
 

298 
 

 
m3 
  

Air Volumetric Flow Rate, Q 2927 
 

m3 h-1 

 
Actual temperature and pressure. 
 

Air superficial gas velocity, ug 
0.075 

 
m s-1 

  

Power input to achieve required, kLA (1) 
450 

 
kW 

 
൬

𝑉

1000
൰ ቆ

𝑘
103 · 𝑢

.଼ଶସ
ቇ

ଵ
.ସ଼ଶ

 

 

8.6  
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Table S.II: Capital cost estimation for the solvent plant using the NREL 

method. 

Plant section Major ISBL equipment item Quantity Purchase 
cost US$ 

ISBL 
installed 

Cost                      
Cran factor 

Installed 
cost 

(2006)          
US$ 

CE cost index 
adjustment 
to 2019 US$ 

Location 
factor 

Total 
installed 
cost US$ 

Total plant 
section 

US$ 

Feedstock pre-
treatment  

SCWG thermal cycle 

21,548,182 

     High pressure pump 1 86,721 2.30 199,459 242,342 

0.51 

123,369 
     Heat pump condenser 1 618,283 2.20 1,360,223 1,652,671 841,325 
     Heat pump compressor 1 1,566,961 1.60 2,507,138 3,046,173 1,550,715 
     SCWG recovery HE 1 602,795 2.20 1,326,148 1,611,270 820,249 
     SCWG plug flow reactor 1 417,687 1.50 626,531 761,235 387,522 
     Vapour heater 1 235,313 2.20 517,689 628,993 320,201 
     Heat pump recovery HE 1 272,464 2.20 599,420 728,296 370,754 
     Combustion heater 1 33,243 2.20 73,135 88,859 45,235 
     Supercritical heater 1 75,606 2.20 166,334 202,096 102,881 
     Turbo-expander 1 3,717,523 1.80 6,691,541 7,737,174 3,938,764 
     Air compression after cooler 1 7,281 2.20 16,018 19,462 9,908 
     H2 bioreactor cooler 1 241,164 2.20 530,561 644,631 328,163 

Combustion 
     H2 combustion feed heater 1 26,928 2.20 59,242 71,979 

0.51 

36,643 
     Bioreactor off-gas combustion feed heater 1 22,629 2.20 49,783 60,487 30,792 
     Combustion chamber 1 2,072,893 1.80 3,731,208 4,533,418 2,307,827 
     Combustion turbine 1 9,281,863 1.80 16,707,353 20,299,434 10,333,834 

Fermentation  

Seed fermenters 

6,109,348 

     Seed fermenters 1 186,818 2.00 373,637 453,969 
0.51 

231,102 
     Seed fermenter recirculation pumps 1 24,809 2.30 57,060 69,328 35,293 
     Seed fermenter HE 1 26,767 2.20 58,887 71,548 36,423 

Production fermenters 
     Production fermenters 4 2,578,892 2.00 5,157,784 6,266,707 

0.51 

3,190,193 
     Production fermenter recirculation pumps 4 516,321 2.30 1,187,539 1,442,860 734,517 
     Production fermenter HE 4 788,587 2.20 1,734,891 2,107,892 1,073,065 
     Centrifuge 4 817,228 1.60 1,307,565 1,588,692 808,755 

Product 
recovery from 
bioreactor 
aqueous and 
vapour  

Absorption 

1,853,509 

     Acetone stripper tower 1 125,436 2.40 301,047 365,772 
0.51 

186,204 
     Water stripper tower 1 106,657 2.40 255,977 311,012 158,327 

Isopropanol pre-flash distillation tower 
     Pre-flash bottoms recovery heater 1 58,797 2.20 129,354 157,166 

0.51 

80,008 
     Pre-flash condensate recovery heater 1 8,196 2.20 18,031 21,908 11,153 
     Tower 1 206,398 2.40 495,355 601,857 306,387 
     Reboiler 1 12,468 2.20 27,429 33,326 16,965 
     Condenser 1 8,196 2.20 18,031 21,908 11,153 

Isopropanol and acetone concentration distillation 
     Column feed heater  1 11,033 2.20 24,273 29,492 

0.51 

15,013 
     Tower 1 700,026 2.40 1,680,062 2,041,275 1,039,152 
     Reboiler 1 9,476 2.20 20,848 25,330 12,895 
     Condenser 1 11,413 2.20 24,866 30,213 15,530 

Solvent 
recovery  

Acetone product distillation 

685,795 

     Tower 1 180,458 2.40 433,099 526,216 
0.51 

267,881 
     Reboiler 1 9,772 2.20 21,498 26,120 13,297 
     Condenser 1 7,177 2.20 15,790 19,185 9,767 

Solvent distillation 
     Pre-heater 1 7,180 2.20 15,797 19,193 

0.51 

9,771 
     Tower 1 245,120 2.40 588,287 714,769 363,868 
     Reboiler 1 7,225 2.20 15,895 19,313 9,832 
     Condenser 1 8,364 2.20 18,400 22,356 11,381 

Isopropanol 
pressure 
swing 
distillation  

Low pressure swing distillation 

1,539,261 

     Feed condenser 1 7,901 2.20 17,383 21,120 

0.51 

10,752 
     Tower 1 539,856 2.40 1,295,655 1,574,221 801,389 
     Reboiler 1 7,179 2.20 15,794 19,190 9,769 
     Condenser 1 11,597 2.20 25,513 30,998 15,780 

High pressure swing distillation 
     First pre-heater 1 7,917 2.20 17,417 21,162 

0.51 

10,773 
     Second pre-heater 1 7,400 2.20 16,280 19,780 10,070 
     Tower 1 447,603 2.40 1,074,247 1,305,211 664,444 
     Reboiler 1 11,968 2.20 26,329 31,990 16,285 

Steam and water management 785,217 
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Plant section Major ISBL equipment item Quantity Purchase 
cost US$ 

ISBL 
installed 

Cost                      
Cran factor 

Installed 
cost 

(2006)          
US$ 

CE cost index 
adjustment 
to 2019 US$ 

Location 
factor 

Total 
installed 
cost US$ 

Total plant 
section 

US$ 

Steam and 
water 
management 

     CO2 flash drum steam heater 1 33,438 2.20 73,564 89,380 

0.51 

45,501 
     Steam mechanical vapour compressors 1 706,707 1.60 1,130,732 1,373,839 699,380 
     Water recycle to fermentation cooler 1 11,040 2.20 24,287 29,509 15,022 
     Water recycle to SCWG gasification 1 11,227 2.20 24,700 30,011 15,278 
     IPA cooler to absorber 1 7,376 2.20 16,227 19,716 10,037 

Table S.III: Additional capital cost for the solvent plant associated with the 

NREL method. 
Additional costs for determining Total Capital Investment (TCI) 

Item Description Unit (basis) Annual cost 
US$ year-1 Comments 

Additional direct costs 

Warehouse 4 
% of installed cost of 

ISBL equipment 
1,300,852 

On-site storage of equipment and supplies.  

Site 
development 9 

% of installed cost of 
ISBL equipment 

2,926,918 Includes fencing, curbing, parking lot, roads, well 
drainage, rail system, soil borings, and general 
paving. This factor allows for minimum site 
development assuming a clear site with no unusual 
problems such as right-of-way, difficult land 
clearing, or unusual environmental problems.  

Additional 
piping 5 

% of installed cost of 
ISBL equipment 

1,463,459 To connect ISBL equipment to storage and utilities 
outside the battery limits.  

Indirect costs 
Pro-rateable 
costs 10 % of TDC 3,821,254 

This includes fringe benefits, burdens, and insurance 
of the construction contractor.  

Field expenses 10 % of TDC 3,821,254 

Consumables, small tool and equipment rental, field 
services, temporary construction facilities, and field 
construction supervision.   

Home office 
and 
construction 20 % of TDC 7,642,508 

Engineering plus incidentals, purchasing, and 
construction.  

Project 
contingency 10 % of TDC 3,821,254 

Extra cash on hand for unforeseen issues during 
construction.  

Other costs 10 % of TDC 3,821,254 

Start-up and commissioning costs. Land, rights-of-
way, permits, surveys, and fees. Piling, soil 
compaction/dewatering, unusual foundations. Sales, 
use, and other taxes. Freight, insurance in transit, 
and import duties on equipment, piping, steel, 
instrumentation, etc. Overtime pay during 
construction. Field insurance. Project team. 
Transportation equipment, bulk shipping containers, 
plant vehicles, etc.   

TOTAL ADDITIONAL COSTS 28,618,754   
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Table S.IV: Capital cost estimation for the solvent plant using the TS 

method.  

Plant section Major ISBL equipment item Quantity 
Purchase 
cost US$ 

ISBL 
installed 

cost                      
lang factor 

Installed 
cost 

(2006) 
US$ 

CE cost index 
adjustment 

to 2019  US$ 

Location 
factor 

Total 
installed 
cost US$ 

Total plant 
section 

US$ 

Feedstock pre-
treatment  

SCWG thermal cycle 

38,484,617 

     High pressure pump 1 86,721 

3.3 

286,180 347,709 

0.51 

177,008 
     Heat pump condenser 1 618,283 2,040,334 2,479,006 1,261,988 
     Heat pump compressor 1 1,566,961 5,170,973 6,282,732 3,198,351 
     SCWG recovery HE 1 602,795 1,989,222 2,416,905 1,230,374 
     SCWG plug flow reactor 1 417,687 1,378,368 1,674,717 852,548 
     Vapour heater 1 235,313 776,534 943,489 480,302 
     Heat pump recovery HE 1 272,464 899,131 1,092,444 556,130 
     Combustion heater 1 33,243 109,703 133,289 67,853 
     Supercritical heater 1 75,606 249,501 303,144 154,321 
     Turbo-expander 1 3,717,523 12,267,826 14,184,819 7,221,067 
     Air compression after cooler 1 7,281 24,027 29,193 14,861 
     H2 bioreactor cooler 1 241,164 795,841 966,947 492,244 

Combustion 
     H2 combustion feed heater 1 26,928 

3.3 

88,863 107,969 

0.51 

54,964 
     Bioreactor off-gas combustion feed heater 1 22,629 74,675 90,730 46,188 
     Combustion chamber 1 2,072,893 6,840,548 7,329,158 3,731,055 
     Combustion turbine 1 9,281,863 30,630,148 37,215,629 18,945,362 

Fermentation  

Seed fermenters 

10,081,936 

     Seed fermenters 1 186,818 
3.3 

616,501 749,048 
0.51 

381,318 
     Seed fermenter recirculation pumps 1 24,809 81,869 99,471 50,638 
     Seed fermenter HE 1 26,767 88,331 107,322 54,635 

Production fermenters 
     Production fermenters 4 2,578,892 

3.3 

8,510,344 10,340,067 

0.51 

5,263,819 
     Production fermenter recirculation pumps 4 516,321 1,703,860 2,070,190 1,053,872 
     Production fermenter HE 4 788,587 2,602,336 3,161,838 1,609,597 
     Centrifuge 4 817,228 2,696,853 3,276,677 1,668,058 

Product recovery 
from bioreactor 
aqueous and 
vapour  

Absorption 

2,568,914 

     Acetone stripper tower 1 125,909 
3.3 

415,498 504,830 
0.51 

256,994 
     Water stripper tower 1 106,671 352,014 427,697 217,728 

Isopropanol pre-flash distillation tower 
     Pre-flash bottoms recovery heater 1 58,797 

3.3 

194,032 235,748 

0.51 

120,012 
     Pre-flash condensate recovery heater 1 8,196 27,047 32,862 16,729 
     Tower 1 206,398 681,113 827,553 421,282 
     Reboiler 1 12,468 41,144 49,990 25,448 
     Condenser 1 8,196 27,047 32,862 16,729 

Isopropanol and acetone concentration distillation 
     Column feed heater  1 11,033 

3.3 

36,409 44,237 

0.51 

22,520 
     Tower 1 700,026 2,310,085 2,806,753 1,428,834 
     Reboiler 1 9,476 31,272 37,995 19,342 
     Condenser 1 11,413 37,663 45,760 23,295 

Solvent recovery  

Acetone product distillation 

949,723 

     Tower 1 180,458 
3.3 

595,512 723,546 
0.51 

368,336 
     Reboiler 1 9,772 32,247 39,180 19,945 
     Condenser 1 7,177 23,686 28,778 14,650 

Solvent distillation 
     Pre-heater 1 7,180 

3.3 

23,695 28,789 

0.51 

14,656 
     Tower 1 245,120 808,895 982,807 500,318 
     Reboiler 1 7,225 23,843 28,969 14,747 
     Condenser 1 8,364 27,600 33,534 17,071 

Isopropanol 
pressure swing 
distillation  

Low pressure swing distillation 
     Feed condenser 1 7,901 

3.3 

26,074 31,680 

0.51 

16,127 

2,125,662 

     Tower 1 539,856 1,781,526 2,164,554 1,101,910 
     Reboiler 1 7,179 23,691 28,785 14,654 
     Condenser 1 11,597 38,269 46,497 23,670 

High pressure swing distillation 
     First pre-heater 1 7,917 

3.3 

26,126 31,743 

0.51 

16,159 
     Second pre-heater 1 7,400 24,420 29,671 15,104 
     Tower 1 447,603 1,477,090 1,794,665 913,610 
     Reboiler 1 11,968 39,494 47,985 24,428 

Steam and water 
management 

Steam and water management 

1,571,228 

     CO2 flash drum steam heater 1 33,438 

3.3 

110,346 134,070 

0.51 

68,251 
     Steam mechanical vapour compressors 1 706,707 2,332,134 2,833,543 1,442,472 
     Water recycle to fermentation cooler 1 11,040 36,430 44,263 22,533 
     Water recycle to SCWG gasification 1 11,227 37,051 45,016 22,916 
     IPA cooler to absorber 1 7,376 24,341 29,574 15,055 
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Table S.V: Capital cost estimation for the solvent plant using the Hand 

method. 

Plant section Major ISBL equipment item Quantity 
Purchase 
cost US$ 

ISBL 
installed cost                      
Hand factor 

Installed 
cost 

(2006) 
US$ 

CE cost 
index 

adjustment 
to 2019  

US$ 

Location 
factor 

Total 
installed 
cost US$ 

Total plant 
section 

US$ 

Feedstock pre-
treatment  

SCWG thermal cycle 

30,378,659  

     High pressure pump 1 86,721 4.00 346,885 421,465 

0.51 

214,555 
     Heat pump condenser 1 618,283 3.50 2,163,991 2,629,249 1,338,472 
     Heat pump compressor 1 1,566,961 2.50 3,917,404 4,759,645 2,422,993 
     SCWG recovery HE 1 602,795 3.50 2,109,781 2,563,384 1,304,942 
     SCWG plug flow reactor 1 417,687 4.00 1,670,749 2,029,961 1,033,392 
     Vapour heater 1 235,313 3.50 823,597 1,000,670 509,411 
     Heat pump recovery HE 1 272,464 3.50 953,623 1,158,653 589,835 
     Combustion heater 1 33,243 3.50 116,351 141,367 71,966 
     Supercritical heater 1 75,606 3.50 264,622 321,516 163,674 
     Turbo-expander 1 3,717,523 2.50 9,293,807 10,746,075 5,470,505 
     Air compression after cooler 1 7,281 3.50 25,484 30,962 15,762 
     H2 bioreactor cooler 1 241,164 3.50 844,074 1,025,550 522,077 

Combustion 
     H2 combustion feed heater 1 26,928 3.50 94,249 114,513 

0.51 

58,295 
     Bioreactor off-gas combustion feed heater 1 22,629 3.50 79,201 96,229 48,987 
     Combustion chamber 1 2,072,893 2.00 4,145,786 4,441,914 2,261,245 
     Combustion turbine 1 9,281,863 2.50 23,204,657 28,193,659 14,352,547 

Fermentation  

Seed fermenters 

11,210,164  

     Seed fermenters 1 186,818 4.00 747,274 907,937 
0.51 

462,204 
     Seed fermenter recirculation pumps 1 24,809 4.00 99,236 120,571 61,379 
     Seed fermenter HE 1 26,767 3.50 93,684 113,827 57,946 

Production fermenters 
     Production fermenters 4 644,723 4.00 10,315,568 12,533,415 

0.51 

6,380,386 
     Production fermenter recirculation pumps 4 129,080 4.00 2,065,285 2,509,321 1,277,420 
     Production fermenter HE 4 197,147 3.50 2,760,053 3,353,465 1,707,148 
     Centrifuge 4 204,307 2.50 2,043,071 2,482,331 1,263,680 

Product 
recovery from 
bioreactor 
aqueous and 
vapour  

Absorption 

3,076,854  

     Acetone stripper tower 1 125,909 4.00 503,634 611,916 
0.51 

311,508 
     Water stripper tower 1 106,671 4.00 426,684 518,421 263,913 

Isopropanol pre-flash distillation tower 
     Pre-flash bottoms recovery heater 1 58,797 3.50 205,791 250,036 

0.51 

127,286 
     Pre-flash condensate recovery heater 1 8,196 3.50 28,686 34,854 17,743 
     Tower 1 206,398 4.00 825,592 1,003,094 510,645 
     Reboiler 1 12,468 3.50 43,637 53,019 26,991 
     Condenser 1 8,196 3.50 28,686 34,854 17,743 

Isopropanol and acetone concentration distillation 
     Column feed heater  1 11,033 3.50 38,616 46,918 

0.51 

23,885 
     Tower 1 700,026 4.00 2,800,103 3,402,125 1,731,920 
     Reboiler 1 9,476 3.50 33,167 40,298 20,514 
     Condenser 1 11,413 3.50 39,946 48,534 24,707 

Solvent 
recovery  

Acetone product distillation 

1,138,897  

     Tower 1 180,458 4.00 721,832 877,026 
0.51 

446,468 
     Reboiler 1 9,772 3.50 34,201 41,555 21,154 
     Condenser 1 7,177 3.50 25,121 30,522 15,538 

Solvent distillation 
     Pre-heater 1 7,180 3.50 25,131 30,534 

0.51 

15,544 
     Tower 1 245,120 4.00 980,479 1,191,282 606,446 
     Reboiler 1 7,225 3.50 25,288 30,725 15,641 
     Condenser 1 8,364 3.50 29,272 35,566 18,106 

Isopropanol 
pressure swing 
distillation  

Low pressure swing distillation 

2,559,872  

     Feed condenser 1 7,901 3.50 27,655 33,600 

0.51 

17,105 
     Tower 1 539,856 4.00 2,159,425 2,623,702 1,335,648 
     Reboiler 1 7,179 3.50 25,127 30,530 15,542 
     Condenser 1 11,597 3.50 40,589 49,315 25,105 

High pressure swing distillation 
     First pre-heater 1 7,917 3.50 27,709 33,666 

0.51 

17,139 
     Second pre-heater 1 7,400 3.50 25,900 31,469 16,020 
     Tower 1 447,603 4.00 1,790,412 2,175,351 1,107,406 
     Reboiler 1 11,968 3.50 41,887 50,893 25,908 

Steam and 
water 
management 

Steam and water management 

1,229,341 

     CO2 flash drum steam heater 1 33,438 3.50 117,033 142,195 

0.51 

72,387 
     Steam mechanical vapour compressors 1 706,707 2.50 1,766,768 2,146,623 1,092,782 
     Water recycle to fermentation cooler 1 11,040 3.50 38,638 46,946 23,899 
     Water recycle to SCWG gasification 1 11,227 3.50 39,296 47,745 24,305 
     IPA cooler to absorber 1 7,376 3.50 25,816 31,367 15,968 
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Table S.VI: Fixed operating cost for the solvent plant using the NREL 

method.  

Labour and supervision 
Salary US$ 

(2020) Number of personnel 
Annual cost  
US$ year-1 

Plant manager 29,591 1 29,591 
Plant engineer 29,977 1 29,977 
Maintenance supervisor 20,406 1 20,406 
Maintenance technician 14,968 3 44,903 
Lab manager 21,569 1 21,569 
Lab technician 14,619 1 14,619 
Shift supervisor 15,267 4 61,067 
Shift operators 13,373 12 160,470 
Yard employees 6,184 4 24,735 
Clerks and secretaries 11,488 3 34,464 

TOTAL SALARIES  441,800 
Labour burden 90% of total salaries 397,620 

TOTAL LABOUR COST 839,421 
  

Other overhead 
Annual cost  
US$ year-1 

Maintenance 3% of ISBL 975,639 
Property insurance 0.7% of FCI 427,980 

TOTAL FIXED OPERATING COST  2,243,040 

 

Table S.VII: Fixed operating cost for the solvent plant using the TS method. 
FIXED OPERATING COST 

Fixed operational 
consideration 

Assessment basis Unit (basis) Annual cost  
US$ year-1 

Operating labour 
Wage and salary cost for 
shift team members 
(excl. supervision) 

13,373 US$ operator-1, 4 shift 
teams with 3 operators each 

160,470 

Supervisory labour 25 % of operating labour 40,118 
Direct salary overhead 50 % of operating + supervisory 100,294 
Maintenance 3 % of ISBL 1,673,462 
Property taxes and insurance 1 % of ISBL 557,821 
Rent of land/buildings 1 % of FCI 725,167 

General plant overhead 65 
% of total labour + 
maintenance 1,218,132 

Allocated environmental charges 1 % of FCI 725,167 
Interest charges (capital) 0 % of total capital investment 0 

TOTAL FIXED OPERATING COST 5,200,631 
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Table S.VIII: Fixed operating cost for the solvent plant using the Coulson and 

Richardson method. 

Labour and supervision 
Salary US$ 

(2020) Number of personnel 
Annual cost  
US$ year-1 

Plant manager 29,591 1 29,591 
Plant engineer 29,977 1 29,977 
Maintenance supervisor 20,406 1 20,406 
Maintenance technician 14,968 3 44,903 
Lab manager 21,569 1 21,569 
Lab technician 14,619 1 14,619 
Shift supervisor 15,267 4 61,067 
Shift operators 13,373 12 160,470 
Yard employees 6,184 4 24,735 
Clerks and secretaries 11,488 3 34,464 

TOTAL OPERATING AND SUPERVISORY LABOUR COSTS 441,800 
  

FIXED COSTS 
Fixed operational 

consideration 
Assessment 

basis Unit (basis) 
Annual cost  
US$ year-1 

Maintenance 5 % of FCI 3,099,612 
Operating labour    274,703 
Laboratory costs 20 % operating labour 54,941 
Supervisory labour 20 % operating labour 167,097 
Plant overhead 50 % operating labour 137,352 
Capital charges 10 % of FCI 0 
Insurance 1 % of FCI 619,922 
Local taxes 1 % of FCI 619,922 
Royalties 1 % of FCI 0 

FIXED COSTS 4,973,549  
Sales expense 

20 % of direct production costs 34,464 General overheads 
Research and development 

TOTAL FIXED OPERATING COSTS 5,008,013 
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Table S.IX: Investment analysis for the solvent plant using the Hand method for capital estimation and the TS 

method for fixed operating cost estimation. 

Year 
Project 

life 
Detailed 
design 

Fixed 
capital 

investment 

Working 
capital 

Fixed 
OPEX 

Variable 
OPEX 

Plant 
income 

Depreciation 
Corporation 

tax 
Total cash 

flow 
NPV 

Cumulative 
NPV 

Comments 

  US$ US$ US$ US$ US$ US$ US$ US$ US$ US$ US$  

2019 0 -250,000 0 0 0 0 0 0 0 -250,000 -250,000 -250,000  

2020 1 0 -44,262,454 0 0 0 0 0 0 -44,262,454 -40,238,595 -40,488,595 Plant construction and 
commissioning. 2021 2 0 -22,573,852 0 0 0 0 0 0 -22,573,852 -18,656,076 -59,144,670 

2022 3 0 0 6,578,665 -4,904,838 -798,965 35,292,066 -6,683,631 -5,726,158 30,440,770 22,870,601 -36,274,069 Year 0 for plant operation. 

2023 4 0 0 0 -5,002,935 -814,945 35,292,066 -6,683,631 -5,697,639 23,776,548 16,239,702 -20,034,367  

2024 5 0 0 0 -5,102,993 -831,243 35,292,066 -6,683,631 -5,668,550 23,689,280 14,709,179 -5,325,188  

2025 6 0 0 0 -5,205,053 -847,868 35,292,066 -6,683,631 -5,638,879 23,600,266 13,321,735 7,996,547  

2026 7 0 0 0 -5,309,154 -864,826 35,292,066 -6,683,631 -5,608,614 23,509,472 12,064,077 20,060,624  

2027 8 0 0 0 -5,415,337 -882,122 35,292,066 -6,683,631 -5,577,744 23,416,863 10,924,139 30,984,763  

2028 9 0 0 0 -5,523,644 -899,765 35,292,066 -6,683,631 -5,546,257 23,322,401 9,890,975 40,875,738  

2029 10 0 0 0 -5,634,117 -917,760 35,292,066 -6,683,631 -5,514,140 23,226,050 8,954,648 49,830,385  

2030 11 0 0 0 -5,746,799 -936,115 35,292,066 -6,683,631 -5,481,380 23,127,771 8,106,143 57,936,528  

2031 12 0 0 0 -5,861,735 -954,837 35,292,066 -6,683,631 -5,447,966 23,027,528 7,337,280 65,273,808  

2032 13 0 0 0 -5,978,970 -973,934 35,292,066 0 -7,084,791 21,254,372 6,156,634 71,430,442  

2033 14 0 0 0 -6,098,549 -993,413 35,292,066 0 -7,050,026 21,150,078 5,569,477 76,999,919  

2034 15 0 0 0 -6,220,520 -1,013,281 35,292,066 0 -7,014,566 21,043,699 5,037,694 82,037,613  

2035 16 0 0 0 -6,344,931 -1,033,547 35,292,066 0 -6,978,397 20,935,192 4,556,108 86,593,721  

2036 17 0 0 0 -6,471,829 -1,054,218 35,292,066 0 -6,941,505 20,824,514 4,120,019 90,713,740  

2037 18 0 0 0 -6,601,266 -1,075,302 35,292,066 0 -6,903,875 20,711,624 3,725,168 94,438,907  

2038 19 0 0 0 -6,733,291 -1,096,808 35,292,066 0 -6,865,492 20,596,475 3,367,688 97,806,596  

2039 20 0 0 0 -6,867,957 -1,118,744 35,292,066 0 -6,826,341 20,479,024 3,044,076 100,850,672  

2040 21 0 0 0 -7,005,316 -1,141,119 35,292,066 0 -6,786,408 20,359,223 2,751,153 103,601,825  

2041 22 0 0 0 -7,145,422 -1,163,942 35,292,066 0 -6,745,676 20,237,027 2,486,037 106,087,863  

2042 23 0 0 0 -7,288,331 -1,187,220 35,292,066 0 -6,704,129 20,112,386 2,246,114 108,333,977  

2043 24 0 0 0 -7,434,097 -1,210,965 35,292,066 0 -6,661,751 19,985,253 2,029,015 110,362,992  

2044 25 0 0 0 -7,582,779 -1,235,184 35,292,066 0 -6,618,526 19,855,577 1,832,590 112,195,582  

2045 26 0 0 0 -7,734,435 -1,259,888 35,292,066 0 -6,574,436 19,723,307 1,654,893 113,850,475  

2046 27 0 0 -6,578,665 -7,889,124 -1,285,086 35,292,066 0 -6,529,464 13,009,727 992,352 114,842,827  
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Table S.X: Capital cost estimation for conventional renewable electricity 

generation using the Hand method. 

Plant section Major ISBL 
equipment item 

Quantity Purchase 
cost US$ 

ISBL 
Installed cost                      
Hand factor 

Installed 
cost (2006) 

US$ 

CE cost index 
adjustment to 

2019 US$ 

Location 
factor 

Total 
installed 
cost US$ 

Total 
plant 

section 
US$ 

Electricity generation Steam turbine 3 2,791,955 2.50 6,979,888 7,478,452 0.51 3,807,056 3,807,056 

 

Table S.XI: Fixed operating cost estimation for conventional renewable 

electricity generation using the TS method. 
FIXED OPERATING COST 

Fixed operational 
consideration Assessment basis Unit (basis) 

Annual cost 
US$ year-1 

Operating labour 

Wage and salary cost 
for shift team 
members (excl. 
supervision) 

13,373 US$ operator-1, 4 shift 
teams with 3 operators each 13,373 

Supervisory labour 25 % of operating labour 3,343 
Direct salary overhead 50 % of operating + supervisory 8,358 
Maintenance 3 % of ISBL 114,212 
Property taxes and insurance 1 % of ISBL 38,071 
Rent of land/buildings 1 % of FCI 47,588 

General plant overhead 
65 

% of total labour + 
maintenance 

85,103 

Allocated environmental 
charges 1 

% of FCI 47,588 

Interest charges (capital) 0 % of total capital investment 0 
TOTAL FIXED OPERATING COST 357,636 
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Table S.XII: Investment analysis for conventional renewable electricity generation using the Hand method for 

capital estimation and the TS method for fixed operating cost estimation. 

Year Project 
life 

Detailed 
design 

Fixed 
capital 

Working 
capital 

Fixed 
OPEX 

Variable 
OPEX 

Plant 
income 

Depreciation Corporation 
tax 

Total cash 
flow 

NPV Cumulative 
NPV 

Comments 

  US$ US$ US$ US$ US$ US$ US$ US$ US$ US$ US$  

2019 0 -25,000 0 0 0 0 0 0 0 -25,000 -25,000 -25,000  

2020 1 0 -3,397,797 0 0 0 0 0 0 -3,397,797 -3,088,907 -3,113,907 Plant construction and 
commissioning. 2021 2 0 -1,732,877 0 0 0 0 0 0 -1,732,877 -1,432,129 -4,546,036 

2022 3 0 0 505,010 -379,526 -864,501 14,972,100 -513,067 -3,303,751 10,929,331 8,211,368 3,665,332 Year 0 for plant operation. 

2023 4 0 0 0 -387,117 -881,791 14,972,100 -513,067 -3,297,531 10,405,661 7,107,206 10,772,538  

2024 5 0 0 0 -394,859 -899,427 14,972,100 -513,067 -3,291,187 10,386,627 6,449,278 17,221,817  

2025 6 0 0 0 -402,756 -917,415 14,972,100 -513,067 -3,284,715 10,367,213 5,852,021 23,073,838  

2026 7 0 0 0 -410,812 -935,763 14,972,100 -513,067 -3,278,114 10,347,410 5,309,858 28,383,696  

2027 8 0 0 0 -419,028 -954,479 14,972,100 -513,067 -3,271,381 10,327,212 4,817,720 33,201,416  

2028 9 0 0 0 -427,408 -973,568 14,972,100 -513,067 -3,264,514 10,306,609 4,371,008 37,572,425  

2029 10 0 0 0 -435,956 -993,040 14,972,100 -513,067 -3,257,509 10,285,594 3,965,542 41,537,967  

2030 11 0 0 0 -444,676 -1,012,900 14,972,100 -513,067 -3,250,364 10,264,160 3,597,525 45,135,492  

2031 12 0 0 0 -453,569 -1,033,158 14,972,100 -513,067 -3,243,076 10,242,296 3,263,511 48,399,003  

2032 13 0 0 0 -462,640 -1,053,822 14,972,100 0 -3,363,909 10,091,728 2,923,214 51,322,217  

2033 14 0 0 0 -471,893 -1,074,898 14,972,100 0 -3,356,327 10,068,981 2,651,477 53,973,695  

2034 15 0 0 0 -481,331 -1,096,396 14,972,100 0 -3,348,593 10,045,779 2,404,880 56,378,574  

2035 16 0 0 0 -490,958 -1,118,324 14,972,100 0 -3,340,704 10,022,113 2,181,104 58,559,678  

2036 17 0 0 0 -500,777 -1,140,690 14,972,100 0 -3,332,658 9,997,974 1,978,046 60,537,724  

2037 18 0 0 0 -510,792 -1,163,504 14,972,100 0 -3,324,451 9,973,352 1,793,795 62,331,519  

2038 19 0 0 0 -521,008 -1,186,774 14,972,100 0 -3,316,079 9,948,238 1,626,616 63,958,135  

2039 20 0 0 0 -531,428 -1,210,510 14,972,100 0 -3,307,540 9,922,621 1,474,934 65,433,070  

2040 21 0 0 0 -542,057 -1,234,720 14,972,100 0 -3,298,831 9,896,492 1,337,319 66,770,388  

2041 22 0 0 0 -552,898 -1,259,414 14,972,100 0 -3,289,947 9,869,840 1,212,470 67,982,859  

2042 23 0 0 0 -563,956 -1,284,603 14,972,100 0 -3,280,885 9,842,656 1,099,210 69,082,068  

2043 24 0 0 0 -575,235 -1,310,295 14,972,100 0 -3,271,642 9,814,927 996,466 70,078,535  

2044 25 0 0 0 -586,740 -1,336,501 14,972,100 0 -3,262,215 9,786,644 903,268 70,981,803  

2045 26 0 0 0 -598,475 -1,363,231 14,972,100 0 -3,252,599 9,757,796 818,732 71,800,535  

2046 27 0 0 -505,010 -610,444 -1,390,495 14,972,100 0 -3,242,790 9,223,360 703,537 72,504,072  
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Table S.XIII: Calculation of greenhouse gas emissions on cradle-to-gate basis 
for LanzaTech’s anaerobic gas fermentation technology, producing acetone and 
ethanol. 

Parameter Value Unit Comment 

Lower heating value for ethanol 26.70 MJ kg-1
ethanol  Lower Heating Value (LHV). 

Reported ethanol greenhouse gas 
(GHG) emissions 8.10 gCO2eq MJ-1

ethanol Cradle-to-grave emissions. 

Cradle-to-grave ethanol GHG 
emissions  0.22 kgCO2eq kg-1

ethanol   
Cradle-to-gate ethanol GHG 
emissions  -1.69 kgCO2eq kg-1

ethanol 
Stoichiometry of ethanol combustion in 
excess O2, forming two moles of CO2. 

Reported acetone GHG emissions -2.07 kgCO2eq kg-1
acetone Case A. 

Cradle-to-gate GHG emissions for 
reported solvent mix. 

-1.91 kgCO2eq kg-1 acetone + ethanol
 Reported solvent mix, i.e. 57.3% acetone 

with balance ethanol on a mass basis. 
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A.2 Supplementary information for Chapter 5: Renewable butadiene: A case 
for hybrid processing via bio- and chemo-catalysis  
Abbreviations: 

DEPG Dimethyl Ether of Polyethylene Guiacol 
DME Dimethylether 
MTP Methanol to Propene 
NMP N-Methyl-2-Pyrrolidone 
RBFNN Radial Basis Function Neural Network 
SCWG Supercritical Water Gasification 
WGS Water Gas Shift 
WHSV Weight Hourly Space Velocity  

 

Section S1: Detailed Conceptual Process Design 

The process description and literature used to model each route is detailed below.  

S1.1 Acet-BD Process Description 

The Acet-BD route uses a black liquor as a feedstock, gasifying the black liquor to renewable 
CO2 and H2 using supercritical water gasification (SCWG). The conceptual process flow 
diagram is detail in Figure S1. To mitigate plugging the weak black liquor is diluted prior to 
gasification. This also promotes greater hydrogen yields, as the forward water-gas shift 
reaction favours increased water concentrations (Okolie et al., 2019). Furthermore, the salts 
are precipitated out of the SCWG solution prior to entering the reactor. This prevents plugging 
and fouling and ensures efficient recovery of the pulping chemicals. This process is similar to 
supercritical water desalination (Odu et al., 2015; van Wyk et al., 2020) and has been modelled 
for SCWG of black liquor in (Magdeldin and Järvinen, 2020). Furthermore, Hastelloy is used 
as the material of construction for the SCWG reactor, necessitated by the need to prevent 
excessive corrosion.  

The production of acetaldehyde relies on two unit operations, i.e. a gas fermenter and a 
thermophilic decarboxlation enzyme reactor. The first uses the chemolithoautotrophic 
bacteria, Cupriavidus necator (formerly, Alcaligenes eutrophus and Ralstonia eutropha) to 
produce the 2-oxoacid, pyruvic acid. This is then decarboxylated at elevated temperature to 
acetaldehyde in an enzyme reactor using a thermophilic decarboxylase. The SCWG reactor 
and bioreactor are integrated as outlined in Bommareddy et al. (2020). The heat pump 
recovers the low temperature heat of reaction from the bioreactor, removing the need for costly 
to operate chillers and supporting the endothermic SCWG reaction, reducing the external 
energy demand. The energy in the high-pressure SCWG effluent is recovered using a turbo-
expander, which in turn supplies the air to the bioreactor and produces additional renewable 
electricity for sale to the grid. 

A water removal column is used after the enzyme reactor prior to hydrogenation. The 
dewatered acetaldehyde is then recovered from the permanent gases in a second distillation 
column using NMP as an extractive solvent. NMP is used owed to its utilisation for the 
recovery of butadiene from the crude C4 stream.  

Acetaldehyde is readily hydrogenated to ethanol and is a commercial process (Eckert et al., 
2006). The process is modelled using the same conditions as outlined for butanal 
hydrogenation, with ethyl acetate as the primary by-product (Bradley et al., 1982; Pai, 1979).  

The catalytic upgrading to butadiene is modelled using the high productivity zeolite-confined 
bimetallic catalyst reported in the experimental study by Dai et al. (2017). The 2%Zn-8%Y/beta 
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catalyst displays a productivity of 2.33 gBD.g-1
cath-1 at 673K and WHSV=7.9 h-1, exceeding the 

minimum recommended productivity for commercialisation, 0.15 gBD.g-1
cath-1 (Makshina et al., 

2012).  The catalyst displays a 63% selectivity and 52% conversion (Dai et al., 2017). The by-
products are outlined in Table S1. In the reported by-product breakdown, 13% (mole) of by-
products are unaccounted for. As such, this study assumes that 7% is propene, owed to the 
7% propene selectivity observed in the same study at a lower WHSV, and the remaining 6% 
a mixture of butenes. Butenes are a commonly reported by-product of the ethanol to butadiene 
process, requiring operationally complex extractive distillation of 1-butene and the energy 
intensive separation of 2-butenes (Buell and Boatright, 1947). The co-produced impurities 
have a large impact on the economic acceptability of this process (Dastillung et al., 2018). 
Therefore, ignoring the potential butene production would have a significant impact on the 
process economics. The ratio of 1-butene, trans-butene and cis-butene was modelled as 
1:1.3:0.8, based on the Zn catalyst used in the study by Hayashi et al. (Hayashi et al., 2016).  

Table S1: Reported 2%Zn-8%Y/beta catalyst selectivity (Dai et al., 2017). 

 

 

 

 

 

After the ethanol reactor the crude C4 product is recovered by the implementation of a 
heavies and ethanol removal column. The crude ethanol produced by the second column is 
sent to an ethanol recycle column which recovers unreacted acetaldehyde and ethanol to be 
recycled to the reactor. The generated recycle stream contains <10% water. The produced 
crude C4 stream is subject to extractive distillation using NMP as a physical solvent to 
recover butadiene from the 2-butenes by-product. This butadiene rich stream is finally 
purified to 99% in the product column.  

Product Selectivity (mol 
%) 

Acetaldehyde 7 
Crotonaldehyde 3 
Butadiene 63 
Ethene 12 
Diethyl ether 2 
Total 87 
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Figure S1: Process flow diagram for the Acet-BD route. The three plant sections are highlighted as outlined in the main text; 1 
gasification, steam and power generation (red), intermediate production (green) and butadiene synthesis and purification (blue). 2 
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S1.2 Eth-BD Process Description 3 

In the chemo-catalytic Eth-BD route, ethanol is produced as per the 2011 NREL report (Dutta 60 
et al., 2011). The chemo-catalytic conversion pathway uses biomass as a feedstock, gasifying 61 
the biomass to syngas followed by gas clean-up and tar reforming. The clean syngas is 62 
catalytically upgraded to mixed alcohols over a Molybdenum disulphide catalyst. The capital 63 
and operating expenditure in the 2011 study were brought to a 2020 basis. The ethanol 64 
product is catalytically upgraded to butadiene using the same catalyst and separation 65 
sequence as detailed in the Acet-BD route. The conceptual process flow diagram for the 66 
downstream processing, butadiene synthesis and purification, is detailed in Figure S2.67 
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 68 

Figure S2: Process flow diagram for the Eth-BD route. Only the Butadiene Synthesis and purification step is shown as the upstream 69 
process is taken from the 2011 NREL report (Dutta et al., 2011) for chemo-catalytic ethanol production.70 
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S1.3 Syn-BD Process Description 

The Syn-BD route involves a series of commercial catalytic processes using gasified woody 
biomass as a feedstock. The conceptual process flow diagram is detailed in Figure S3. The 
feed and handling plant section is based on the 2011 NREL report for thermochemical ethanol 
production as used previously (Dutta et al., 2011). The delivered wood chips are dried to a 10 
wt % moisture content in a rotary drier using process flue gases prior to gasification. An indirect 
gasifier operating at 868°C is implemented with synthetic olivine and magnesium oxide as the 
heating medium between the combustor and gasifier (Dutta et al., 2011). The syngas 
composition leaving the gasifier is the same as that used in the 2011 NREL report for 
thermochemical ethanol production (Dutta et al., 2011). 

The tar reformer implemented in both the aforementioned 2011 study and the more recent 
2015 NREL study is used with reported yields taken from the 2015 study (Tan et al., 2015). 
The reformer operates at 2 bara and 870°C inlet and 910°C outlet temperature. The gasifier 
outlet is fed directly into the tar reformer along with steam at a molar steam to carbon ratio of 
4.4:1. The tar reformer is indirectly heated using both the energy created from the catalyst 
regeneration and supplemental combustion gases. The resulting high temperature syngas is 
used throughout the process, finally cooled to 60°C before being fed to a direct-contact quench 
tower.  

Despite the tar reformer having significant water shift activity (Tan et al., 2015), a water gas 
shift (WGS) reactor is implemented to produce the required  (H2-CO2)/(CO+CO2) molar ratio 
of 2, optimal for methanol synthesis (Lange, 2001). The equilibrium constant proposed by 
Smith, Loganathan and Shantha, (2010) is used to model the WGS activity in both the tar 
reformer and WGS reactor. A molar steam to CO ratio of 1:1 is used in the shift reactor 
producing a H2:CO ratio of 6.36 and a CO2 mole percentage of 24% (Phillips et al., 2011). The 
acid gases (H2S, COS and CO2) are removed from the shifted syngas using Methyl 
diethanolamine (MDEA) as a chemical solvent. The process is based on the design 
parameters reported by Tan et al. (2015). A sulphur guard bed is implemented to ensure the 
H2S content is below 0.1ppmv, required by the methanol catalyst (Phillips et al., 2011). 

The cleaned syngas is converted to methanol over a commercial Cu/ZnO/Al2O3 catalyst. The 
reaction is modelled using the kinetics presented by Vanden Bussche and Froment (Vanden 
Bussche and Froment, 1996). The reactor operates at 50 bara, with an inlet temperature of 
300°C and outlet of 320°C. The reaction heat is used to generate steam utilised throughout 
the process. The reactor effluent is flashed at 40°C to recover the methanol and water product. 
Most of the unreacted gases, 95%, are recycled to the reactor inlet. The 5% that is not recycled 
to the reactor inlet is let down to atmospheric pressure to producing a cold stream, required to 
recover hydrogen later in the process. A portion of the purge gas is combusted to prevent the 
build-up of inert gases whilst the remaining gas, 80%, is returned to the tar reformer.  

A separate methanol dehydration unit is implemented to produce dimethylether (DME) prior 
to the MTP reactor. A separate reactor is required owed to the negative effect of increased 
water generation during methanol dehydration and the cryogenic separation required when 
separating the DME from the recycled gases (Koempel et al., 2005). The DME reactor is 
modelled using a Al2O3 catalyst with an inlet temperature of 250C (Hihman et al., 1998). The 
kinetics used are taken from Ng, Chadwick and Toseland, (1999), with the equilibrium constant 
taken from work conducted by Diep and Wainwright, (1987). 

The outlet from the DME reactor is co-fed into the MTP reactor with steam (0.5:1 kg of 
methanol equivalent) (Rothaemel and Holtmann, 2002). The MTP reactor consists of three 
fixed bed reactors each containing 6 beds of the commercial H-ZSM-5 zeolite catalyst. During 
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operation two of the three reactors operate in parallel with the other in regeneration mode 
(Koempel and Liebner, 2007). The reactors operate at 1.5 bara and are modelled using 
kinetics derived by Huang et al. (2016), found to closely approximate the industrial MTP 
product distribution. The olefin recycle stream, steam, and a portion of the DME reactor outlet 
are fed into the first reactor at 460C. The DME reactor outlet is divided between the 6 beds 
to limit the temperature rise to 50C, as specified by Hack et al. (Hack et al., 2006). 

The MTP product is dewatered using a flash drum prior to compression to 32 bara for the 
separation sequence. The product then undergoes a series of separation steps to; recover the 
propylene and butane rich products, recycle the long and short chain olefins to the MTP 
reactor, and facilitate the removal of paraffins. The separation sequence is detailed in Figure 
S3.  

After separation, the propene rich stream it is fed into a hydroformylation reactor where it is 
upgraded to butanal. This process follows the principles behind Johnson Matthey’s LP Oxo 
SELECTORSM10 technology (Johnson Matthey, n.d.). This process uses a homogenous 
rhodium-triphenylphosphine (TPP) catalyst producing a normal:iso ratio of 10:1 (Tudor and 
Ashley, 2007a) and operates at <20 bara and 80-120C (Bahrmann et al., 2013). The rhodium 
catalyst is supplied as hydridocarbonyltris-(TPP) rhodium at a concentration of 275ppm, as 
practiced in US patents 4,247,486 and 4,593,127 (Brewster and Pruett, 1981; Bunning and 
Blessing, 1986). Excess TPP ligand is present in the reactor, at a concentration between 10-
12 wt %, critical in determining the normal:iso aldehyde ratio. Two liquid recycle continuous 
stirred tank reactors are employed in series to ensure a high degree of conversion (Billig and 
Byrant, 2000). The aldehyde and heavy products are removed from the liquid product at the 
rate of formation and the catalyst solution is recycled back to the reactor (Tudor and Ashley, 
2007a). The separation sequence is modelled after the sequence in US Patent 10,407,372, 
also based on two continuous stirred tank reactors in series (Simpson and Smith, 2019). 
Though kinetic studies have been undertaken on the hydroformylation of propene over a 
Rh/TPP catalyst (Bernas et al., 2008; Murzin et al., 2010), these use operating conditions 
outside of typical industrial practice (Tuţǎ and Bozga, 2011). Therefore, in this study 
conversion data was utilised as detailed for the primary liquid recycle reactor in US patent 
4,593,127 (Bunning and Blessing, 1986). 

The purified butanal is hydrogenated to butanol according to Johnson Matthey’s 
Hydrogenation Technology whereby, vaporous hydrogen and butanal react over a 
heterogeneous catalyst (Johnson Matthey, n.d.). Excess hydrogen is fed into the bed as a 
thermal sink for the heat of reaction. This excess hydrogen is recovered from the gaseous 
product exiting the hydroformylation reactor. The catalyst consists of a reduced mixture of 
CuO and ZnO, claimed to produce negligible by-products and have high aldehyde conversion 
and alcohol yield, >99 mol % (Pai, 1979). The yields are taken from European Patent 
0,008,767, operating at 4 bara and inlet temperature of 113C (Pai, 1979). The reactor design 
is based on European Patent 0,073,129 (Bradley et al., 1982), utilising the catalyst in the 
aforementioned patent. The reactor consists of two adiabatic beds each fed with fresh, 
vaporised, aldehyde.  

Whilst butanol dehydration is not currently practiced at industrial scale, it is analogous to 
ethanol dehydration (Mascal, 2012). Process conditions and conversion data were taken from 
US Patent 0238788, using a silane-modified Al2O3 catalyst (Wright, 2012). The dehydration 
reaction occurs at 380°C, 2 bara, and WHSV=0.1h-1 and achieves an overall butene yield of 
98 mol % with a 1-butene selectivity of 95 mol % (Wang et al., 2016).  
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Dehydrogenation of C4’s to butadiene is a mature technology practiced at industrial scale. 
Oxidative dehydrogenation is exothermic and occurs at temperatures of 300-550C, less than 
non-oxidative dehydrogenation. Similarly, to the methanol reactor, the reaction heat is used to 
generate steam. Experimental data from Jung et al. (2008) is used to model the reactor, 
employing a multi-component bismuth molybdate (Co9Fe3Bi1Mo12O51) catalyst. The reaction 
occurs at atmospheric pressure, 420°C and a molar butene:O2:steam ratio of 1:0.75:15 (Jung 
et al., 2008).  

The butadiene product is then recovered using extractive distillation, employing NMP as a 
physical solvent, much the same as for the Acet-BD and Syn-BD processes. After extractive 
distillation butadiene is purified to 99% in the product column.  
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Figure S3: Process flow diagram for the Syn-BD route. The three plant sections are highlighted as outlined in the main text; 1 
gasification, steam and power generation (red), intermediate production (green) and butadiene synthesis and purification (blue). 2 
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Section S2: Investment Analysis Parameters 

Table S2: Raw material costs 

Raw Material Cost Unit Reference Comments 
Ammonia 250 $.tn-1 (ICIS, 2020) Average price for 2019. 

Cooling water 0.753 $.m-1 (Foo et al., 2017)   
Electricity 0.08 $.kWh-1 (Zhang, 2019)  
Nutrients 0.75 $.m-3

media water - Mineral salt media, 
containing no complex 
media or vitamins. 

Process water 0.53 $.m-3 (Towler and 
Sinnott, 2013) 

  

Natural gas 301.77 $.US ton-1 (Dutta et al., 
2011) 

2007 price. 

Diesel fuel 805.89 $.US ton-1 (Dutta et al., 
2011) 

2009 price. 

Wood chips 76.26  $.tn-1  Detailed in section 2.2 
Feedstock Costs. 

NMP 2000 $.US ton-1 (Future Market 
Insights, 2021) 

 

MDEA make-Up 16.94 $.million lb-

1
acid gas removed

 
(Tan et al., 2015) 2010 price. 

DEPG make-Up 267.02  (Dutta et al., 
2011) 

2007 price. 

LO-Cat chemicals 1,601.5  (Dutta et al., 
2011) 

2007 price.  

WGS catalyst 8 $.lb-1 (Swanson et al., 
2010) 

2007 price. Replaced every 
3 years. GHSV 1,000 h-1. 

Methanol catalyst 9.69 $.lb-1 (Tan et al., 2015) 2011 Price. Replace every 
4 years. 

DME catalyst 10.30 $.lb-1 (Tan et al., 2015) 2011 Price. Replace every 
4 years. 

MTP catalyst 30.80 $.lb-1 (Tan et al., 2015) Replace every 1 year. 
Hydroformylation 
catalyst 

3.50 $.tn-1
butanal 

produced 
(Tudor and 

Ashley, 2007b) 
2007 price. 

Hydrogenation 
catalyst 

10.00 $.lb-1 - Assumed. Replace every 3 
years. 

Dehydration 
catalyst 

10.30 $.lb-1 (Tan et al., 2017) 2011 price. Replace every 
3 years. 

Oxidative 
dehydrogenation 
catalyst 

25 $.lb-1 - Assumed. Replace every 3 
years. 

Gasifier bed 
material: olivine 

172.9 $.US ton-1 (Tan et al., 2015) 2004 price. Replace 7.2 
wt% per day. 

Gasifier bed 
material: MgO 

365 $.US ton-1 (Tan et al., 2015) 2004 price. Replace 7.2 
wt% per day. 

Tar reformer 
catalyst 

17.64 $.lb-1 (Tan et al., 2015) 2007 price. Replace 0.15 
wt% per day. GHSV 2,476 
h-1. 

Alcohol synthesis 
catalyst 

29.70 $.lb-1 (Dutta et al., 
2011) 

2007 price. Replace every 
2 years. 
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Butadiene catalyst 275.70 $.kg-1 - Assumed. Replace 4 times 
per year. 

 

 

Table S3: Co-product prices used in analysis 

Route Co-Product Price Comments Reference 
Acet-
BD 

Electricity 0.109 $.kwh-1 China biomass subsidy. (Ming et al., 
2013) 

Eth-BD Higher alcohols 519-743 $.tn-1 Costed at 90% of its 
energy value relative to 
gasoline. EIA yearly 
forecast up to 2050 
used for gasoline price. 

(EIA, 2021a) 

Syn-BD Butane rich co-
product 

348 $.tn-1 Costed at energy value 
relative to butane. 
RBFNN forecasting 
methodology used for 
butane price. 

(EIA, 2021b) 
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Table S4: Capital cost estimation for the Acet-BD route. The plant subsections are 
highlighted corresponding to the three major plant sections as outlined in the main 
text; gasification, steam and power generation (red), intermediate production (green) 
and butadiene synthesis and purification (blue). 

Plant 
subsection 

Equipment Quantity Purchase 
cost ($) 

Hand 
factor 

Installed 
cost (base 
year) ($) 

Installed 
cost (2020) 

($) 

Total 
installed 
cost ($) 

Total plant 
section ($) 

SCWG thermal 
cycle 

High pressure pump 1  83,054  4  332,214   349,323   177,928  

17,302,597.70 
 

Condenser 1  494,774  3.5  1,731,709   1,820,890   927,475  
Mechanical vapour 
recompression 

1  2,310,581  2.5  5,776,453   6,073,935   3,093,773  

Supercritical water reactor 1  686,173  4  2,744,691   2,886,040   1,470,011  
Vapour heater 1  1,041,657  3.5  3,645,798   3,833,553   1,952,629  
Heat pump recovery heat 
exchanger 

1  20,989  3.5  73,463   77,246   39,346  

Turbo-expander 1  4,799,936  2.5  11,999,840   12,617,822   6,426,916  
Air compressor 1  12,769  3.5  44,693   46,994   23,937  
H2 Bioreactor Cooler 1  562,265  3.5  1,967,928   2,069,275   1,053,990  
H2 Cooler 1  194,688  4  778,751   818,856   417,086  
Pre condenser recovery heat 
exchanger 

1  71,644  3.5  250,752   263,666   134,299  

H2 flash drum 1  614,805  4  2,459,219   2,585,867   1,317,117  
CO2 flash drum 1  125,139  4  500,557   526,335   268,090  

Combustion 

Bioreactor off-gas combustion 
feed heater 

1  39,647  3.5  138,765   145,912   74,320  
17,036,597 

 Combustion chamber 1  1,300,373  2  2,600,745   2,734,682   1,392,916  
Turbine power generation 1  11,627,961  2.5  29,069,903   30,566,977   15,569,360  

Fermentation 

Seed fermenters 2  204,443  4  1,635,543   1,719,772   875,970  

23,006,996 
 

Seed fermenter recirculation 
pumps 

2  38,475  4  307,802   323,654   164,854  

Seed fermenter heat 
exchangers 

2  35,951  3.5  251,655   264,615   134,782  

Production fermenters 8  731,061  4  23,393,939   24,598,706   12,529,407  
Production fermenter 
recirculation pumps 

8  402,182  4  12,869,823   13,532,608   6,892,865  

Evaporator 8  122,057  3.5  3,417,594   3,593,598   1,830,407  
Bioreactor pre-heater 1  41,541  3.5  145,393   152,881   77,870  
Thermophilic decarboxylation 
enzyme reactor 

1  233,783  4  935,132   983,291   500,841  

Acetaldehyde 
recovery 

Water Removal Column 1  110,010  4  440,042   462,703   235,679  

1,166,222 
 

Acet Flash Cooler 1  30,486  3.5  106,702   112,197   57,148  
Acetaldehyde recovery column  1  103,525  4  414,098   435,424   221,784  
Acetaldehyde pump 1  4,956  4  19,824   20,845   10,618  
Water flash drum 1  30,362  4  121,447   127,701   65,045  
NMP recovery column 1  234,784  4  939,135   987,499   502,985  
NMP cooler 1  38,923  3.5  136,232   143,248   72,964  

Hydrogenation 

H2 int cooler 1  10,527  3.5  36,845   38,742   19,734  

1,805,116 
 

Hydrogen recovery flash 2 1  53,030  4  212,120   223,044   113,608  
Hydrogenation preheat 1  10,527  3.5  36,845   38,742   19,734  
Vaporiser 1 1  41,989  4  167,956   176,605   89,954  
Hydrogenation preheater 1 1  10,527  3.5  36,845   38,742   19,734  
Hydrogenation reactor 1 1  19,749  4  78,997   83,066   42,310  
Vaporiser 2 1  41,989  4  167,956   176,605   89,954  
Hydrogenation preheater 2 1  29,271  3.5  102,449   107,725   54,870  
Hydrogenation reactor 2 1  19,899  4  79,597   83,697   42,631  
Ethanol flash cooler 1  29,271  3.5  102,449   107,725   54,870  
Ethanol recovery flash 1  41,812  4  167,249   175,862   89,576  
Hydrogen recovery compressor 1  546,778  2.5  1,366,945   1,437,341   732,113  
Ethanol cooling water heat 
exchanger 

1  29,271  3.5  102,449   107,725   54,870  

Ethanol refrigeration heat 
exchanger 

1  39,253  3.5  137,387   144,462   73,582  

Hydrogen recovery flash 1  30,362  4  121,447   127,701   65,045  
Hydrogen recovery turbine 1  181,134  2.5  452,835   476,156   242,531  
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Nitrogen 
generation 

Pressure swing absorption 
Columns 

1  14,531  4  58,122   61,115   31,129  
558,150 

 Air compressor 1  352,625  2.5  881,562   926,962   472,150  
Air cooler 1  29,271  3.5  102,449   107,725   54,870  

Reaction 

Reactor 2  43,173  4  345,386   363,173   184,983  

334,058 
 

Feed heater 1 1  29,310  3.5  102,586   107,869   54,944  
Feed heater 2 1  29,310  3.5  102,586   107,869   54,944  
Feed heater 3 1  10,453  3.5  36,584   38,468   19,594  
Feed heater 4 1  10,453  3.5  36,584   38,468   19,594  

Reactant 
recovery 

Pre-distillation cooler 1  29,310  3.5  102,586   107,869   54,944  

2,747,645 
 

Heavies removal column 1  97,204  4  388,815   408,839   208,243  
Ethanol removal column 1  242,972  4  971,888   1,021,939   520,527  
Ethanol recycle column 1  642,128  4  2,568,511   2,700,787   1,375,652  
Pre-ethanol column cooler 1  29,271  3.5  102,449   107,725   54,870  
Flash compressor 1  398,376  2.5  995,940   1,047,230   533,409  

Extractive 
distillation 

NMP recovery column 1  248,518  4  994,072   1,045,266   532,408  
1,712,830 

 
C4 separation column 1  511,414  4  2,045,656   2,151,005   1,095,619  
NMP recycle heat exchanger 1  38,923  3.5  136,232   143,248   72,964  
NMP pump 1  5,526  4  22,103   23,241   11,838  

Product 
Recovery 

Butadiene product column 1  1,343,012  4  5,372,046   5,648,702   2,877,179  2,916,019 
 Lights flash 1  18,130  4  72,518   76,253   38,840  

Steam and 
water 
management 

CO2 flash drum steam heater 1  133,301  3.5  466,555   490,582   249,879  

1,692,343 

SCWG recovery cooler 1  48,165  3.5  168,579   177,260   90,288  
Turbo-expander cooler 1  127,894  3.5  447,629   470,682   239,743  
35 Bar pump 1  5,654  4  22,615   23,780   12,112  
Fuel cooler 1  38,923  3.5  136,232   143,248   72,964  
Fuel pump 1  8,018  4  32,072   33,723   17,177  
SCWG water recycle cooler 1  53,932  3.5  188,764   198,485   101,099  
SCWG recycle flash 1  49,820  4  199,278   209,541   106,730  
SCWG recovery flash 1  176,120  4  704,480   740,761   377,308  
SCWG heat exchanger 1  38,923  3.5  136,232   143,248   72,964  
35 bar condensate heat 
exchanger 

1  44,790  3.5  156,766   164,840   83,961  

35 bar steam heat exchanger 1  10,527  3.5  36,845   38,742   19,734  
Flash outlet cooler 1  90,261  3.5  315,913   332,182   169,198  
1.9 Bar steam heat exchanger 1  42,243  3.5  147,851   155,465   79,187  
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Table S5: Capital cost estimation for the Eth-BD route. The plant subsections are 
highlighted corresponding to the three major plant sections as outlined in the main 
text; gasification, steam and power generation (red), intermediate production (green) 
and butadiene synthesis and purification (blue). 

Plant 
subsection 

Equipment Quantit
y 

Purchase 
cost ($) 

Hand/NR
EL factor* 

Installed 
cost (base 
year) ($) 

Installed 
Cost 

(2020) ($) 

Total 
installed 
cost ($) 

Total plant 
section ($) 

Gasification  Gasifier 1 
 9,571,110  2.31  22,109,264   

23,931,63
3  

 12,189,632  
12,189,632 

Gas clean-
up 

Steam blowdown/unreacted syngas HE 1  40,470  3.78  152,977   173,591   88,419  

8,057,804 
 

Syngas inlet/make up HE 1  109,314  1.89  206,603   234,444   119,415  
Syngas quench/Mol sieve HE 1  22,273  3.73  83,078   94,274   48,018  
Alcohol synth/Combustion air HE 1  20,099  5.19  104,316   118,373   60,293  
Syngas quench in/Comb air HE 1  26,372  5.55  146,365   166,088   84,597  
Syngas quench in/Comb air HE 1  51,898  4.07  211,223   239,686   122,085  
Tar reformer/Comb air HE 1  16,249  4.62  75,069   85,185   43,389  
Tar Reformer/Comb air HE 1  37,241  3.24  120,659   136,919   69,740  
Catalyst regen/Tar reformer steam HE 1  223,402  1.83  408,826   463,918   236,298  
Tar reformer eff/Unreacted syn HE 1  29,602  3.80  112,486   127,644   65,016  
Comb air blower  1  1,533,860  1.13  1,733,261   1,966,826   1,001,807  
Quench water recirc pump 1  10,041  4.12  41,369   46,944   23,911  
Tar reformer 1  4,785,554  2.31  11,054,630   

11,965,81
5  

 6,094,815  

Alcohol 
Synthesis 

Alcohol syn/Eff HE 1  1,461,470  1.99  2,908,326   3,300,236   1,680,983  

51,175,478 
 

Alcohol syn/Eff HE 1  1,336,837  1.91  2,553,358   2,897,434   1,475,815  
Comp interstage/Deaerator HE 1  279,924  2.47  691,413   784,584   399,630  
Comp interstage/Deaerator HE 1  241,028  2.28  549,544   623,598   317,631  
Comp interstage/Deaerator HE 1  170,371  2.45  417,408   473,656   241,258  
Comp interstage/Mol Sieve HE 1  82,118  2.13  174,912   198,482   101,097  
Comp interstage/Mol Sieve HE 1  42,085  2.51  105,633   119,867   61,055  
Comp interstage/Mol Sieve HE 1  42,706  3.35  143,065   162,343   82,690  
Alcohol eff/Lo-CAT HE 1  14,015  3.37  47,230   53,594   27,298  
1st Stage air intercooler 1  157,091  1.20  188,510   204,048   103,932  
2nd Stage air intercooler 1  50,287  1.20  60,344   65,318   33,270  
3rd Stage air intercooler 1  63,426  1.23  78,014   84,445   43,012  
4th Stage air intercooler 1  45,382  1.30  58,997   63,859   32,527  
5th Stage air intercooler 1  47,428  1.36  64,502   69,818   35,562  
1st Stage water intercooler 1  64,201  2.21  141,884   161,003   82,007  
2nd Stage water intercooler 1  33,238  2.78  92,401   104,853   53,407  
3rd Stage water intercooler 1  30,469  3.18  96,892   109,949   56,003  
4th Stage water intercooler 1  27,859  3.79  105,585   119,813   61,027  
5th Stage water intercooler 1  30,996  4.90  151,883   172,349   87,787  
Syngas air cooler 1  152,010  3.01  457,551   519,209   264,460  
Syngas cooling water exchange 1  120,299  3.24  389,769   442,292   225,283  
Alcohol synth effluent/Syngas re HE 1  160,377  2.67  428,206   485,909   247,499  
Alcohol synth effluent/CO2 rich HE 1  17,721  3.89  68,936   78,225   39,844  
Alcohol synth effluent/Mol sieve HE 1  29,912  2.96  88,540   100,471   51,175  
Alcohol synth effluent/Expander inlet 
HE 

1  49,413  3.64  179,865   204,102   103,960  

Tar reformer eff/Expander inlet HE 1  20,048  6.99  140,134   159,018   80,996  
Tar reformer eff/Expander inlet HE 1  54,692  5.15  281,666   319,621   162,800  
Alcohol synth effluent/Expander inlet 
HE 

1  18,236  5.64  102,852   116,712   59,447  

Tar reformer eff/Expander inlet HE 1  23,639  4.00  94,557   107,300   54,653  
Tar Reformer Eff/Expander Inlet HE 1  35,998  3.49  125,635   142,564   72,616  
Alcohol synth effluent/CO2 rich HE 1  22,335  6.36  142,052   161,194   82,104  
Char combustor flue gas/CO2 rich HE 1  17,626  3.97  69,974   79,403   40,444  
Tar reformer eff/CO2 rich HE 1  25,813  4.21  108,673   123,317   62,812  
Catalyst regen/Alcohol synth HE 1  69,287  5.79  401,173   455,233   231,874  
Syngas compressor 1  18,175,172  1.80  32,715,310   

35,411,88
8  

 18,037,126  

Purge expander stage 1 1  1,269,572  1.80  2,285,230   2,593,175   1,320,839  
Purge expander stage 2 1  4,272,681  1.80  7,690,825   8,727,199   4,445,219  
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DEPG acid gas removal 1  4,049,473  2.53  10,245,166   
11,625,74

7  

 5,921,601  

Ammonia absorption refrig 1  1,953,613  1.15  2,246,655   2,431,836   1,238,661  
Amine acid gas 1  757,635  2.80  2,121,379   2,407,244   1,226,135  
Methanol/H2S 1  285,132  2.00  570,264   647,109   329,607  
LO-CAT sulphur recovery 1  875,412  1.35  1,181,806   1,350,053   687,653  
Alcohol synthesis reactor 1  7,918,049  2.47  19,557,582   

21,169,62
7  

 10,782,798  

1st interstage KO drum 1  39,366  3.63  142,900   162,157   82,595  
2nd interstage KO drum 1  27,777  3.21  89,166   101,181   51,537  
3rd interstage KO drum 1  25,984  2.87  74,574   84,623   43,103  
4th interstage KO drum 1  45,140  2.45  110,593   125,495   63,921  
5th interstage KO drum 1  59,045  2.00  118,091   134,004   68,255  
Pre compressor KO drum 1  78,653  2.65  208,430   236,517   120,470  

Alcohol 
separation 

Crude alcohol distillation 1  1,196,829  1.25  1,496,037   1,697,634   864,694  

7,509,130 
 

Methanol column 1  2,309,979  1.19  2,748,875   3,119,298   1,588,821  
Ethanol product/mol sieve HE 1  18,795  3.39  63,715   72,301   36,827  
Higher alcohols product/Mol sieve HE 1  10,362  3.94  40,825   46,327   23,597  
Syngas quench inlet/water meth HE 1  151,968  1.87  284,179   322,474   164,253  
Crude alcohol condenser 1  227,092  1.29  292,948   332,424   169,321  
Crude alcohol reboiler 1  86,769  1.84  159,655   181,169   92,279  
Methanol col condenser 1  567,521  1.20  681,025   772,796   393,625  
Methanol col reboiler 1  176,730  1.63  288,071   326,889   166,502  
Syngas quench inlet /Mol sieve HE 1  65,853  2.14  140,926   159,917   81,454  
Alcohol syn/Mol sieve HE 1  14,955  6.59  98,554   111,835   56,963  
Alcohol syn/Mol sieve HE 1  12,968  5.52  71,582   81,228   41,374  
Cat regen/Water meth HE 1  15,754  3.57  56,241   63,820   32,507  
Tar reformer edd/Water meth HE 1  15,485  4.35  67,362   76,439   38,934  
Mol sieve flash cooler 1  -    1.29  -     -     -    
Methanol condenser 1  186,088  1.29  240,053   272,402   138,748  
Higher alcohols finishing cooler 1  14,051  3.16  44,403   50,386   25,664  
Ethanol product cooler 1  10,708  4.32  46,260   52,494   26,738  
Crude alcohol column pump 1  8,513  5.10  43,419   49,270   25,096  
Methanol column reflux pump 1  14,806  4.68  69,290   78,627   40,049  
Condensed methanol pump 1  637,107  1.24  790,012   896,470   456,619  
Crude alcohol column bottoms pump 1  13,463  4.55  61,255   69,510   35,405  
Methanol bottoms pump 1  19,361  4.27  82,670   93,810   47,782  
Mixed alcohol knock out 1  83,539  2.02  168,748   191,488   97,535  
Mol sieve pre flash 1  37,754  3.84  144,976   164,512   83,795  
Molecular sieve separator 1  2,486,990  1.80  4,476,582   5,113,888   2,604,771  
Condensed methanol flash drum 1  12,262  4.89  59,962   68,042   34,657  
Crude alcohol column overhead 1  18,098  6.16  111,485   126,509   64,437  
Methanol column overhead 1  26,694  4.97  132,671   150,549   76,682  

Steam and 
power 
generation 

Steam turbine condenser 1  3,123,607  1.40  4,373,050   4,733,501   2,411,020  

13,779,055 
 

Steam exhaust/Syngas recycle HE 1  19,540  3.45  67,414   76,499   38,965  
Blowdown cooler 1  12,001  4.32  51,843   58,829   29,965  
Steam turbine exhaust/Mol sieve HE 1  18,733  3.53  66,128   75,038   38,221  
Syngas quench inlet/Makeup HE 1  16,808  3.83  64,374   73,048   37,207  
Syngas quench inlet/BFW HE 1  66,971  2.12  141,979   161,111   82,062  
Alcohol synthesis/BFW HE 1  102,172  1.95  199,236   226,084   115,156  
Tar reformer eff/BFW HE 1  451,085  2.53  1,141,244   1,295,032   659,627  
Catalyst regenerator/BFW HE 1  128,599  3.56  457,812   519,505   264,611  
Char combustor flue gas/BFW HE 1  212,113  3.23  685,126   777,450   395,996  
Catalyst regen flue gas steam gen 1  55,686  5.07  282,328   320,373   163,183  
Char combustor flue gas Superheater 1  321,917  3.00  965,752   1,095,891   558,195  
Tar reformer eff steam superheater 1  196,214  2.00  392,429   445,310   226,820  
BFW reverse osmosis 1  1,543,471  1.15  1,774,992   1,921,296   -    
BFW electrodeionisation 1  -    1.15  -     -     -    
Hot condensate polishing unit 1  -    1.15  -     -     -    
Extraction steam turbine stage 1 1  3,129,847  1.80  5,633,725   6,098,088   3,106,075  
Extraction steam turbine stage 2 1  5,181,066  1.80  9,325,918   

10,094,61
2  

 5,141,714  

Start-up boiler 1  183,035  2.47  452,096   681,344   -    
Brine recovery RO unit 1  -    1.15  -     -     -    
Make-up pump 1  11,247  4.72  53,088   60,242   30,684  
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Condensate pump 1  19,182  4.61  88,431   100,347   51,112  
EDI pump 1  19,182  4.61  88,431   100,347   51,112  
BFW pump 1  483,579  1.35  652,831   740,803   377,330  
Blowdown flash drum 1  28,626  3.41  97,614   110,768   -    
Condensate collection tank 1  17,156  6.83  117,172   132,962   -    
Condensate surge tank 1  16,674  6.51  108,545   123,172   -    
Deaerator 1  32,321  5.07  163,868   185,950   -    
Deaerator packed column 1  11,161  5.18  57,814   65,605   -    
Steam drum 1  63,128  2.28  143,931   163,326   -    

Nitrogen 
generation 

Pressure swing absorption columns 4  111,621  4.00  1,785,938   1,877,912   956,519  
2,046,099 

 
Air compressor 1  799,137  2.50  1,997,844   2,100,731   1,070,012  
Air cooler 1  10,439  3.50  36,535   38,417   19,568  

Reaction 

Reactor 2  45,173  4.00  361,388   379,999   193,553  
291,398 

 
Feed heater 1 1  31,309  3.50  109,580   115,224   58,689  
Feed heater 2 1  10,444  3.50  36,554   38,436   19,578  
Feed heater 3 1  10,444  3.50  36,554   38,436   19,578  

Reactant 
recovery 

Flash cooler 1  10,978  3.50  38,424   40,403   20,579  

6,146,987 
 

Heavies removal column 1  151,191  4.00  604,764   635,909   323,902  
Ethanol removal column 1  355,344  4.00  1,421,375   1,494,574   761,265  
Ethanol recycle column 1  690,995  4.00  2,763,982   2,906,325   1,480,343  
Flash compressor 1  2,659,453  2.50  6,648,632   6,991,031   3,560,898  

Extractive 
distillation 

NMP recovery column 1  168,913  4.00  675,651   710,446   361,867  
1,918,368 

 
Extractive distillation column 1  676,024  4.00  2,704,095   2,843,353   1,448,268  
NMP recycle HE 1  42,397  3.50  148,390   156,032   79,475  
NMP pump 1  13,423  4.00  53,692   56,457   28,756  

Product 
recovery 

Butadiene product column 1  917,743  4.00  3,670,972   3,860,024   1,966,112  2,018,227 
  Recycle flash drum  1  24,326  4.00  97,305   102,316   52,115  

Steam and 
water 
managemen
t 

Combustion chamber 1  516,709  2.00  1,033,417   1,086,637   553,481  

4,794,992 

Combustion compressor 1  1,063,781  2.50  2,659,453   2,796,412   1,424,359  
Steam generation HE 1  10,444  3.50  36,554   38,436   19,578  
35 bar preheat 2 1  41,941  3.50  146,795   154,354   78,621  
6 bar preheat 1  39,489  3.50  138,210   145,328   74,023  
35 bar preheat 1 1  29,261  3.50  102,415   107,689   54,852  
Fuel preheat HE 1  38,943  3.50  136,302   143,321   73,001  
35 bar pump 1  11,771  4.00  47,085   49,510   25,218  
6 bar pump 1  5,521  4.00  22,084   23,222   11,828  
Steam turbine 1  247,047  3.50  864,664   909,194   463,100  
Electricity turbine 1  1,075,960  3.50  3,765,860   3,959,798   2,016,932  

*The costs of equipment shaded in light blue are taken directly from the 2011 NREL report (Dutta et al., 2011), 
along with their corresponding installation factors and updated to a 2020 basis. 
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Table S6: Capital cost estimation for the Syn-BD route. The plant subsections are 
highlighted corresponding to the three major plant sections as outlined in the main 
text; gasification, steam and power generation (red), intermediate production (green) 
and butadiene synthesis and purification (blue). 

Plant subsection Equipment Quantity Purchase 
cost ($) 

Hand/NREL 
factor* 

Installed 
cost (base 
year) ($) 

Installed 
Cost 

(2020) ($) 

Total 
installed 
cost ($) 

Total 
plant 

section ($) 
Feedstock 
handling 

Biomass cross flow dryer 1 56,462 2 112,925 114,890 58,594 58,594 

Gasification 

Gasifier steam Pump 1  9,157  4  36,629   38,516   19,618  

18,031,447 
 

Gasifier steam generation HE 4 1  10,438  3.5  36,534   38,415   19,567  
Gasifier air compressor 1  4,057,733  2.5 10,144,334   10,666758   5,433,138  
Gasifier air preheat HE 1 1  29,357  3.5  102,749   108,041   55,031  
Gasifier steam generation HE 1 1  29,347  3.5  102,715   108,004   55,012  
Gasifier steam generation HE 2 1  36,672  3.5  128,353   134,963   68,744  
Gasifier steam generation HE 3 1  61,914  3.5  216,700   227,860   116,061  
Gasifier air preheat HE 2 1  10,469  3.5  36,642   38,529   19,625  
Gasifier air preheat HE 3 1  29,351  3.5  102,729   108,019   55,020  
Indirectly heated gasifier and char 
combustor 

1  9,571,110  2.31  2,109,264   3,931,633   
12,189,632  

Gas clean-up 

Tar reformer and catalyst 
regenerator 

1  4,785,554  2.31  11,04,630  11,965,815   6,094,815  

12,858,639 
 

Tar reformer steam preheat HE 2 1  42,882  3.5  150,087   157,817   80,384  
Tar reformer steam preheat HE 3 1  10,463  3.5  36,621   38,507   19,614  
Tar reformer steam pump 1  9,124  4  36,494   38,374   19,546  
Tar reformer air compressor 1  3,355,790  2.5  8,389,476   8,821,527   4,493,265  
Tar reformer cooling water HE 1  50,667  3.5  177,334   186,467   94,977  
Syngas scrubber 1  1,509,795  2.47  3,729,193   4,036,574   2,056,038  

Syngas 
compression and 
water gas shift 

Water quench 1  42,387  3.5  148,354   155,994   79,456  

28,687,806 
 

Low temperature shift steam pump 1  26,113  4  104,451   109,830   55,942  
Syngas compressor 1 1  3,122,210  2.5  7,805,526   8,207,504   4,180,511  
Syngas cooler 1 1  32,922  3.5  115,227   121,161   61,714  
Syngas flash 1 1  232,948  4  931,793   979,780   499,053  
Syngas compressor 2 1  2,639,678  2.5  6,599,195   6,939,047   3,534,420  
Syngas cooler 2 1  29,515  3.5  103,303   108,623   55,327  
Syngas flash 2 1  331,150  4  1,324,600   1,392,816   709,434  
Syngas compressor 3 1  3,305,913  2.5  8,264,781   8,690,410   4,426,480  
Syngas cooler 3 1  29,798  3.5  104,295   109,666   55,858  
Syngas flash 3 1  280,345  4  1,121,381   1,179,131   600,593  
Syngas compressor 4 1  2,984,596  2.5  7,461,489   7,845,749   3,996,250  
Syngas cooler 4 1  29,271  3.5  102,449   107,725   54,870  
Syngas flash 4 1  439,722  4  1,758,888   1,849,469   942,031  
Syngas compressor 5 1  3,407,756  2.5  8,519,391   8,958,132   4,562,845  
Low temperature shift reactor 1  22,965  4  91,861   96,592   49,199  
Syngas cooler 5 1  32,720  3.5  114,521   120,419   61,336  
Syngas flash 5 1  157,127  4  628,510   660,878   336,620  
Syngas compressor 6 1  3,305,453  2.5  8,263,633   8,689,203   4,425,866  

Acid gas removal 
and methanol 
synthesis 

Syngas cooler 6 1  30,768  3.5  107,689   113,235   57,677  

10,250,089 
 

Syngas flash 6 1  2,112,062  4  8,448,250   8,883,327   4,524,743  
MDEA stripper 1  146,488  4  585,951   616,127   313,826  
Water removal flash 1  138,800  4  555,198   583,791   297,355  
MDEA recovery HE 1  115,639  3.5  404,735   425,579   216,770  
E-165 1  40,260  3.5  140,909   148,165   75,468  
 MDEA recovery HE 1  203,919  4  815,676   857,682   436,862  
NMP/MDEA recovery HE 1  38,923  3.5  136,232   143,248   72,964  
CO2 recovery HE 1  29,271  3.5  102,449   107,725   54,870  
CO2 removal flash 1  41,812  4  167,249   175,862   89,576  
MDEA make up pump 1  80,483  4  321,932   338,511   172,421  
MDEA recycle pump 1  534,315  4  2,137,261   2,247,328   1,144,682  
LO-CAT sulphur recovery system 1  931,524  1.35  1,257,557   1,436,588   731,730  
Sulphur guard bed 1  37,810  2.47  93,390   140,604   71,617  
Methanol preheat 1 1  10,466  3.5  36,630   38,516   19,618  
35 bar steam preheat 1 1  29,347  3.5  102,715   108,004   19,618  
Methanol preheat 3 1  10,438  3.5  36,534   38,415   19,567  
Methanol preheat 2 1  13,027  3.5  45,594   47,942   24,419  
Methanol synthesis reactor 2  145,884  4  1,167,076   1,227,179   625,067  
Methanol cooler 1  58,395  3.5  204,383   214,909   109,464  
Methanol recovery flash 1  158,930  4  635,718   668,457   340,480  
Methanol purge expander 1  620,852  2.5  1,552,130   1,632,063   831,295  
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Methanol to 
propene 

Dimethyl ether preheat 1 1  35,834  3.5  125,419   131,878   67,172  

13,280,248 
 

Dimethyl ether preheat 2 1  10,453  3.5  36,584   38,468   19,594  
Dimethyl ether reactor 1  99,012  4  396,048   416,444   212,117  
Methanol to propene reactor 3 340,182 4 4,082,179 4,292,408 2,186,348 
Refrigeration cooler 1  41,867  3.5  146,536   154,082   78,482  
Refrigeration compressor 1  2,241,481  2.5  5,603,703   5,892,289   3,001,251  
Bed 1 cooler 1  10,453  3.5  36,584   38,468   19,594  
Bed 2 cooler 1  10,453  3.5  36,584   38,468   19,594  
Bed 3 cooler 1  10,453  3.5  36,584   38,468   19,594  
Bed 4 cooler 1  29,310  3.5  102,586   107,869   54,944  
Bed 5 cooler 1  10,453  3.5  36,584   38,468   19,594  
Bed 6 cooler 1  10,453  3.5  36,584   38,468   19,594  
Bed 6 cooler 2 1  29,310  3.5  102,586   107,869   54,944  
Bed 6 cooler 3 1  31,060  3.5  108,710   114,309   58,224  
Bed 6 cooler 4 1  103,803  3.5  363,309   382,019   194,582  
Olefin recycle preheat 1  10,453  3.5  36,584   38,468   19,594  
Water removal flash MTP 1  71,912  4  287,649   302,463   154,060  
Pre separation compressor 1  2,234,858  2.5  5,587,146   5,874,879   2,992,383  
Dethaniser column 1  435,971  4  1,743,884   1,833,692   933,995  
Depropaniser column 1  151,443  4  605,773   636,970   324,442  
Propene recovery column 1  297,996  4  1,191,984   1,253,370   638,407  
Debutaniser column 1  113,469  4  453,874   477,248   243,088  
Butene recovery column 1  214,389  4  857,555   901,718   459,292  
C5 removal column 1  131,408  4  525,633   552,702   281,520  
C5 split column 1  250,274  4  1,001,097   1,052,653   536,171  
C6/heavies column 1  313,522  4  1,254,089   1,318,674   671,669  

Hydroformylation 

Hydroformylation reactor 1 1  248,085  4  992,338   1,043,443   531,480  

 
5,153,584 

 

Hydroformylation reactor 2 1  199,061  4  796,243   837,248   426,454  
Catalyst recycle pump 1  15,454  4  61,816   64,999   33,107  
Catalyst recovery flash 1  24,980  4  99,921   105,067   53,516  
Hydrogen recovery compressor 1  672,942  2.5  1,682,355   1,768,995   901,041  
Hydrogen recovery HE 1  29,271  3.5  102,449   107,725   54,870  
Hydrogen recovery stripper 1  44,034  4  176,136   185,207   94,335  
Hydrogen recovery cooler 1 1  11,074  3.5  38,759   40,755   20,759  
Stripping aldehyde recovery flash 1  84,632  4  338,527   355,961   181,310  
Hydrogen recovery cooler 2 1  43,193  3.5  151,176   158,961   80,967  
Hydrogen recovery cooler 3 1  39,030  3.5  136,604   143,639   73,163  
Hydrogen recovery flash 1  12,648  4  50,592   53,197   27,096  
Catalyst recycle HE 1  29,351  3.5  102,729   108,019   55,020  
Aldehyde byproduct cooler 2 1  38,923  3.5  136,232   143,248   72,964  
Aldehyde byproduct cooler 1 1  29,607  3.5  103,624   108,960   55,499  
Hydroformylation product flash 1  30,885  4  123,542   129,904   66,167  
Aldehyde stripper pump 1 1  21,967  4  87,870   92,395   47,062  
Aldehyde stripper pump 2 1  23,927  4  95,708   100,637   51,260  
Aldehyde stripper 1  105,355  4  421,418   443,121   225,705  
Unreacted syngas cooler 1  11,074  3.5  38,759   40,755   20,759  
Propene recovery flash 1  27,508  4  110,031   115,698   58,931  
Syngas stripper  1  168,722  4  674,886   709,642   361,458  
Propene recovery column 1  235,608  4  942,430   990,965   504,750  
Aldehyde product column  1  539,557  4  2,158,226   2,269,373   1,155,910  

Hydrogenation 

Hydrogen preheat 1  10,527  3.5  36,845   38,742   19,734  

 
1,179,403 

 

Aldehyde vaporiser 1 1  53,452  4  213,810   224,821   114,513  
Hydrogenation recovery HE 1  1  10,527  3.5  36,845   38,742   19,734  
Hydrogenation reactor 1 1  27,688  4  110,751   116,455   59,317  
Aldehyde vaporiser 2 1  57,632  4  230,526   242,398   123,466  
Hydrogenation recovery HE 2 1  10,527  3.5  36,845   38,742   19,734  
Hydrogenation preheat 1  29,519  3.5  103,318   108,639   55,335  
Hydrogenation reactor 2 1  27,845  4  111,381   117,117   59,654  
Hydrogenation cooler 1  44,328  3.5  155,147   163,137   83,094  
Hydrogen recycle compressor  1  392,620  2.5  981,549   1,032,098   525,702  
Hydrogenation hydrogen recovery 
flash 

1  46,268  4  185,072   194,603   99,122  

Dehydration 

Dehydration preheat 1 1  39,030  3.5  136,604   143,639   73,163  

 
492,787 

 

Dehydration preheat 2 1  29,271  3.5  102,449   107,725   54,870  
Dehydration preheat 3 1  10,467  3.5  36,635   38,522   19,621  
Dehydration steam generation 
preheat 

1  29,347  3.5  102,715   108,004   55,012  

Dehydration reactor 1  71,003  4  284,011   298,638   152,112  
Butene product cooler 1  38,923  3.5  136,232   143,248   72,964  
Water removal flash 1  30,362  4  121,447   127,701   65,045  

Dehydrogenation 
Oxidative dehydrogenation air 
compressor 

1  118,743  2.5  296,858   312,146   158,992   
886,205 
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Dehydrogenation preheat 1 1  84,917  3.5  297,209   312,515   159,180   
Dehydrogenation preheat 2 1  39,622  3.5  138,678   145,820   74,274  
Dehydrogenation preheat 3 1  38,923  3.5  136,232   143,248   72,964  
Dehydrogenation preheat 4 1  29,271  3.5  102,449   107,725   54,870  
Butadiene cooler 1  85,569  3.5  299,492   314,916   160,403  
Oxidative dehydrogenation reactor 1  95,934  4  383,735   403,497   205,522  

Product 
purification 

Dehydrogenation water removal 
flash 

1  97,589  4  390,355   410,458   209,068  

 
4,429,812 

 

C4 compression for separation 1  1,792,988  2.5  4,482,470   4,713,313   2,400,737  
C4 cooler 1  39,370  3.5  137,794   144,890   73,800  
C4 cooling Water Cooler 1  38,923  3.5  136,232   143,248   72,964  
Heavies removal Flash 1  46,268  4  185,072   194,603   99,122  
NMP Pump 1  4,601  4  18,404   19,352   9,857  
NMP Cooling Water Cooler 1  42,282  3.5  147,985   155,607   79,259  
C4 separation column  1  257,923  4  1,031,692   1,084,823   552,557  
NMP recovery column  1  257,900  4  1,031,598   1,084,725   552,507  
Butadiene product column 1  177,350  4  709,399   745,932   379,942  

Steam and water 
management 

Low pressure steam expander 1  585,525  2.5  1,463,812   1,539,197   783,993  

14,575,979 

Flue gas expander 1  7,824,836  2.5 19,562,090  20,569,521   
10,477,133  

Medium pressure steam expander 1  646,386  4  2,585,543   2,718,696   1,384,774  
Low temperature shift effluent LP 
steam HE 

1  14,060  3.5  49,210   51,744   26,356  

Flue gas MP bar steam generation 
HE 

1  32,832  3.5  114,913   120,831   61,546  

MTP effluent LP steam HE 1  1,361  3.5  4,762   5,007   2,550  
Tar reformer preheat steam HE 1  29,347  3.5  102,715   108,004   55,012  
35 bar steam pump  1  36,254  4  145,017   152,485   77,669  
High pressure steam expander 1  586,259  4  2,345,037   2,465,804   1,255,963  
Dehydrogenation effluent LP steam 
HE 

1  43,586  3.5  152,552   160,408   81,704  

Fuel streams preheat HE 1  10,466  3.5  36,630   38,516   19,618  
Tar reformer air Preheat HE 1  10,464  3.5  36,625   38,511   19,616  
MDEA CO2 LP steam HE 1  96,378  3.5  337,323   354,695   180,665  
Flue gas HP steam generation HE 1  31,353  3.5  109,734   115,385   58,772  
Tar reformer LP steam HE 1  37,148  3.5  130,017   136,713   69,635  
Tar reformer MP steam generation 
HE 

1  11,188  3.5  39,159   41,176   20,973  

*The costs of equipment shaded in light blue are taken directly from the 2011 NREL report (Dutta et al., 2011), 
along with corresponding installation factors and updated to a 2020 basis. 

 

Figure S4: Butane long term average forecast price. The long-term average price is 
forecast as $376 tn-1. 
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Figure S5: Ethanol long term average forecast price. The long-term average price is 
forecast as $542tn-1. 

 

Figure S6: Cumulative Net Present Value (NPV) for Acet-BD route. The cumulative 
NPV is $2.8 million with a payback period of 22 years. 
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Figure S7: Monte Carlo simulation of the Eth-BD presenting a <1% likelihood of 
achieving a positive NPV, with a 70% probability of achieving between -$230 million 
and $30 million.  

 

 

Figure S8: Monte Carlo simulation of the Syn-BD presenting a 0% likelihood of 
achieving a positive NPV, with a 70% probability of achieving between -$260 million 
and $0 million. 
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Table S7: Fixed operating cost summary 

 

Table S8: Variable operating cost summary 

Route Variable operating costs 
($.yr-1) 

Comments 

Acet-BD 736,700 Excludes feedstock cost 

Eth-BD 
29,530,614 

Differences between years 
attributed to frequency of 

catalyst replacement 

41,070,770 

Syn-BD 

30,210,964 
30,210,964 
31,367,931 
30,776,213 

 

  

Parameter 
Assessment 

basis 
Unit 

Annual cost ($.yr-1) 
Acet-BD Eth-BD Syn-BD 

Operating 
labour 

Wage & salary cost 
for shift team 

members (excl. 
supervision) 

($.yr-1) 213,960 213,968 267,450 

Supervisory 
labour 25 % of operating labour 

53,490 53,492 66,863 

Direct salary 
overhead 50 

% of operating + 
supervisory 

133,725 133,730 167,156 

Maintenance 3 
% of inside battery 

limit 
2,117,977 3,298,813 3,340,494 

Property 
taxes & 

insurance 1 
% of inside battery 

limit 
705,992 1,099,604 1,113,498 

Rent of 
land/buildings 1 

% of fixed capital 
investment 

882,490 1,429,486 1,447,547 

General plant 
overhead 65 

% of total labour + 
maintenance 

1,550,527 2,318,078 2,388,624 

Allocated 
environmental 

charges 1 
% of fixed capital 

investment  
882,490 1,429,486 1,447,547 

Interest 
charges 
(capital) 0 

% of total capital 
investment 

0 0 0 

Total fixed operating cost 6,540,652 9,976,657 10,239,180 
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Section S3: Life Cycle Analysis Parameters 

Table S9: Life Cycle Analysis inventory data and sources. 

Raw material Emissions  
(kgCO2eq.kg-1) 

Comments Reference 

Black liquor 0 Waste stream from 
pulp production. 

 

Eucalyptus residue 0.04 Emissions attributed for 
collection, chipping, 
loading and transport. 

(McKechnie et al., 2011; 
Wernet et al., 2016) 
 

Eucalyptus chips 0.07  (Bernstad Saraiva et al., 
2017; Wernet et al., 
2016)  

Deionised water 3.73 x 10-4 RER 

(Wernet et al., 2016) 

Ammonia 2.34 RER 
Natural gas 0.41 RoW 
Diesel fuel 0.48 Row 
NMP 6.60 GLO 
Butadiene 1.20 RoW 
Electricity 0.91 China grid mix 2018 (Sun et al., 2019) 
Olivine 0.41  

(Argonne National 
Laboratory, 2020) 
 

MgO 0.61  
DEPG 2.50  
LO-CAT chemicals 6.78  
Tar reformer catalyst 5.93  
Methanol catalyst 4.01  
DME catalyst 3.76 Gamma Alumina 

catalyst 
MTP catalyst 6.78 ZSM-5 catalyst 
Dehydration catalyst 3.76 Gamma Alumina 

catalyst 
Alcohol Synthesis 
catalyst 

4.01  

MDEA 2.91  (Badr, 2016) 
 

Table S10: Market ethanol emissions used in analysis. 

Parameter Brazil US 

Transportation 
assumptions 

Road: 1,000 km  
(total, to and from port) 
Shipping: 23,009 km  

(Santos to Shenzhen) 

Road: 1,000 km  
(total, to and from 

port) 
Shipping: 27,915 km  

(Houston to 
Shenzhen) 

 kgCO2eq kg-1
ethanol 

Ethanol production 0.39 0.86 
Road transport 0.09 0.09 
Shipping transport 0.17 0.21 
Total 0.64 1.16 
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A.3 Supplementary information for Chapter 6: Probabilistic commodity price 
projections for unbiased techno-economic analyses 
 

Abbreviations: 
CRPS Continuous Ranked Probability Score 
E Epochs 
HU Hidden Units 
LR Learning Rate 
LSTM Long Short Term Memory 
ML Machine Learning 
MSE Mean Squared Error 
RBFNN Radial Basis Function Neural Network 
TEA Techno-Economic Analysis 

 

Section S1: Comparative price projections 

Tables S1-S5 present the comparative price projections between the previously employed 
RBFNN methodology and LSTM ensemble method for isopropanol, acetone, butadiene, 
ethanol, and butane. The previous projections use RBFNNs to predict the nominal price and 
a ±20% for the lower and upper bounds, as per Towler and Sinnott (2013). The ensemble 
projections use the monthly projections from the ensemble of 100 ML models to calculate the 
annual 5th, 25th, 50th, 75th and 95th price percentiles. Notably, the RBFNN methodology 
produces a single long-term average price for the entire projection horizon, whereas the 
ensemble methodology produces a price for each year.
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Table S1: Comparative price projections for the previous RBFNN methodology 
(Rodgers et al., 2021 & 2022) and the ensemble method for isopropanol. On average, 
the nominal price is higher and the range between the lower and upper limit is narrower 
for the new ensemble projections. 

Year 

Isopropanol ($/tonne) 
RBFNN projection Ensemble projection 

Lower Nominal Upper 
5th  

25th  
50th 

75th  
95th  

(lower)  
(nominal) (upper) 

2020 

1002 1252 1503 

1108 1238 1390 1506 1606 
2021 1235 1277 1309 1336 1369 
2022 1298 1336 1359 1382 1417 
2023 1313 1341 1358 1373 1400 
2024 1274 1298 1322 1341 1360 
2025 1286 1309 1329 1347 1363 
2026 1292 1318 1337 1354 1370 
2027 1304 1329 1346 1362 1377 
2028 1314 1339 1355 1369 1383 
2029 1329 1352 1367 1379 1391 
2030 1339 1357 1371 1383 1398 
2031 1350 1370 1382 1392 1406 
2032 1356 1382 1394 1403 1414 
2033 1368 1390 1400 1410 1425 
2034 1367 1397 1408 1417 1428 
2035 1381 1404 1414 1423 1434 
2036 1389 1409 1418 1429 1449 
2037 1401 1416 1426 1435 1450 
2038 1408 1425 1433 1443 1466 
2039 1415 1431 1443 1455 1474 
2040 1418 1434 1444 1454 1476 
2041 1426 1444 1456 1467 1492 
2042 1438 1450 1461 1473 1493 
2043 1437 1451 1463 1476 1495 
2044 1445 1459 1471 1486 1508 
2045 1451 1468 1481 1498 1520 
2046 1454 1471 1485 1500 1522 
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Table S2: Comparative price projections for the previous RBFNN methodology 
(Rodgers et al., 2021 & 2022) and the ensemble method for acetone. On average, the 
nominal price is higher and the range between the lower and upper limit is wider for the 
new ensemble projections. 

Year 

Acetone ($/tonne) 
RBFNN projection Ensemble projection 

Lower Nominal Upper 
5th  

25th  
50th 

75th  
95th  

(lower)  
(nominal) (upper) 

2020 

621 776 932 

584 854 988 1111 1454 
2021 824 876 906 936 983 
2022 565 631 673 727 854 
2023 629 760 932 1119 1338 
2024 696 789 854 917 991 
2025 629 681 722 772 910 
2026 631 688 736 850 1012 
2027 667 733 816 959 1201 
2028 670 747 846 954 1150 
2029 627 743 866 1019 1284 
2030 672 803 933 1077 1297 
2031 650 814 940 1119 1285 
2032 624 778 930 1087 1267 
2033 690 828 1020 1219 1356 
2034 671 792 965 1177 1308 
2035 659 819 1040 1228 1324 
2036 671 821 1042 1210 1336 
2037 682 849 1082 1244 1344 
2038 655 795 1072 1238 1348 
2039 662 824 1135 1258 1362 
2040 649 793 1086 1248 1358 
2041 648 815 1134 1260 1361 
2042 650 796 1135 1283 1376 
2043 670 827 1168 1276 1372 
2044 640 820 1177 1280 1373 
2045 664 858 1193 1296 1379 
2046 612 840 1178 1290 1386 
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Table S3: Comparative price projections for the previous RBFNN methodology 
(Rodgers et al., 2021 & 2022) and the ensemble method for butadiene. On average, the 
nominal price is higher and the range between the lower and upper limit is wider for the 
new ensemble projections. 

Year 

Butadiene ($/tonne) 
RBFNN projection Ensemble projection 

Lower Nominal Upper 
5th  

25th  
50th 

75th  
95th  

(lower)  
(nominal) (upper) 

2020 

1137 1421 1705 

560 700 904 1234 1506 
2021 1389 1480 1537 1597 1711 
2022 1326 1426 1566 1731 1941 
2023 1263 1417 1597 1944 2463 
2024 1291 1433 1554 1921 2370 
2025 1284 1401 1544 2016 2549 
2026 1307 1409 1534 2003 2419 
2027 1272 1407 1560 2072 2561 
2028 1260 1390 1592 2121 2520 
2029 1251 1376 1553 2151 2505 
2030 1264 1390 1592 2189 2542 
2031 1260 1381 1680 2187 2548 
2032 1229 1400 1921 2271 2562 
2033 1257 1384 1993 2327 2614 
2034 1242 1399 2070 2355 2636 
2035 1240 1371 2088 2373 2610 
2036 1240 1370 2056 2370 2615 
2037 1215 1364 2037 2401 2632 
2038 1232 1374 2050 2387 2618 
2039 1248 1363 2082 2415 2623 
2040 1233 1357 2079 2401 2615 
2041 1231 1358 2088 2402 2637 
2042 1227 1353 2115 2412 2628 
2043 1218 1353 2108 2434 2623 
2044 1237 1355 2103 2429 2647 
2045 1246 1355 2089 2422 2615 
2046 1223 1361 2079 2411 2598 
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Table S4: Comparative price projections for the previous RBFNN methodology 
(Rodgers et al., 2021 & 2022) and the ensemble method for ethanol. On average, the 
nominal price is higher and the range between the lower and upper limit is narrower for 
the new ensemble projections. 

Year 

Ethanol ($/gal) 
RBFNN projection Ensemble projection 

Lower Nominal Upper 
5th  

25th  
50th 

75th  
95th  

(lower)  
(nominal) (upper) 

2020 

1.28 1.61 1.93 

0.92 1.16 1.29 1.34 1.45 
2021 1.47 1.60 1.70 1.79 1.88 
2022 1.61 1.72 1.76 1.79 1.82 
2023 1.71 1.76 1.78 1.79 1.82 
2024 1.68 1.74 1.77 1.79 1.83 
2025 1.67 1.73 1.76 1.78 1.82 
2026 1.70 1.74 1.76 1.78 1.81 
2027 1.73 1.76 1.77 1.79 1.81 
2028 1.74 1.76 1.78 1.79 1.82 
2029 1.75 1.77 1.79 1.80 1.84 
2030 1.75 1.78 1.79 1.81 1.85 
2031 1.74 1.77 1.79 1.82 1.86 
2032 1.74 1.78 1.80 1.83 1.88 
2033 1.74 1.78 1.80 1.84 1.90 
2034 1.73 1.78 1.81 1.85 1.91 
2035 1.74 1.78 1.81 1.85 1.90 
2036 1.74 1.78 1.81 1.85 1.91 
2037 1.74 1.79 1.82 1.86 1.91 
2038 1.74 1.78 1.82 1.85 1.91 
2039 1.74 1.79 1.82 1.87 1.93 
2040 1.74 1.78 1.82 1.86 1.92 
2041 1.73 1.79 1.82 1.87 1.93 
2042 1.73 1.79 1.83 1.87 1.93 
2043 1.72 1.79 1.83 1.87 1.93 
2044 1.73 1.79 1.83 1.88 1.94 
2045 1.74 1.79 1.83 1.88 1.95 
2046 1.73 1.79 1.83 1.89 1.96 
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Table S5: Comparative price projections for the previous RBFNN methodology 
(Rodgers et al., 2021 & 2022) and the ensemble method for butane. On average, the 
nominal price is higher and the range between the lower and upper limit is narrower for 
the new ensemble projections. 

Year 

Butane ($/MMBTU) 
RBFNN projection Ensemble projection 

Lower Nominal Upper 
5th  

25th  
50th 

75th  
95th  

(lower)  
(nominal) (upper) 

2020 

6.46 8.07 9.68 

3.34 4.59 5.78 6.58 8.51 
2021 8.95 9.99 10.52 11.07 12.00 
2022 10.28 10.49 10.56 10.62 10.86 
2023 10.40 10.51 10.55 10.59 10.70 
2024 9.85 10.32 10.56 10.82 11.26 
2025 9.81 10.30 10.56 10.82 11.25 
2026 9.89 10.35 10.55 10.74 11.15 
2027 10.13 10.44 10.56 10.70 11.01 
2028 10.28 10.48 10.56 10.64 10.85 
2029 10.47 10.54 10.56 10.57 10.63 
2030 10.50 10.54 10.56 10.57 10.61 
2031 10.39 10.50 10.56 10.62 10.75 
2032 10.20 10.44 10.56 10.67 10.91 
2033 10.11 10.39 10.55 10.69 11.03 
2034 10.07 10.39 10.55 10.70 11.13 
2035 9.92 10.38 10.56 10.75 11.12 
2036 9.85 10.34 10.56 10.78 11.23 
2037 9.84 10.34 10.56 10.77 11.28 
2038 9.69 10.33 10.57 10.82 11.45 
2039 9.68 10.26 10.57 10.88 11.50 
2040 9.58 10.23 10.53 10.85 11.57 
2041 9.58 10.25 10.57 10.89 11.52 
2042 9.49 10.16 10.53 10.83 11.57 
2043 9.45 10.18 10.57 10.96 11.68 
2044 9.38 10.12 10.53 10.96 11.69 
2045 9.54 10.23 10.55 10.87 11.51 
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Section S2: Code used for the LSTM ensemble price projections  

The code comprises three sections, 1) the grid search for optimal hyper-parameters, 2) the 
use of the optimal parameters on the validation set, and 3) running the models for the 
projection horizon. All three sections read data from the same Excel sheet which should be 
organised as follows: 

 Column A contains the date corresponding to the start of the historic dataset to the 
end of the desired projection horizon (e.g., 01/01/2009 to 01/12/2046). 

 Column B contains the standardised price data for the commodity being projected 
(e.g., 01/01/2009-01/12/2020). The remaining cells, where the data is to be projected 
are empty.  

 Column C contains the standardised historic and EIA’s projected crude oil prices for 
the desired projection horizon. 

 Cell F3 contains the mean of the historic data for the commodity price data.  
 Cell F3 contains the standard deviation of the original historic data for the commodity 

price data. 

The below script codes for processing the historical data contained within the Excel sheet: 

% Processing historic data 
clc; 
clear all; 
  
% Select file containing historic data 
filename = 'Butane'; 
A = readtable('Butane.xlsx'); 
  
% Set x = column containing standardised data 
x = xlsread(filename,'B:B'); 
  
% Set z = column containing dates of historic data and projection horizon 
% (i.e 01/01/2008-01/01/2042) 
z = table2array(A(:,1)); 
  
% Set xplot = column containing standardised data 
xplot = table2array(A(:,2)); 
crude = table2array(A(:,3)); 
  
% Set std_com = cell containing the commodity's standard deviation 
% Set mean_com = cell containing the commodity's mean 
std_com = xlsread(filename,'F3:F3'); 
mean_com = xlsread(filename,'E3:E3'); 
  
X2 = x; 
Y2 = []; 
  
for a = 1:size(X2,1)-12 
    Y2(a,:) = cat(1,x(a+1),x(a+2),x(a+3),x(a+4),x(a+5),x(a+6),x(a+7),... 
        x(a+8),x(a+9),x(a+10),x(a+11),x(a+12)); 
end 
  
X2 = X2(1:(size(Y2,1))); 
  
% Assign training and validation sets based on horizon length and data 
availability 
free_run = (size(z,1)-size(X2,1))/size(z,1); 
val = round(free_run*size(X2,1))+2; 
train = round(size(X2,1)-val); 
  
X2_train = cat(2,X2(1:train),crude(1:train)); 
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X2_val = cat(2,X2(train+1:val+train),crude(train+1:val+train)); 
  
Y2_train = Y2(1:train,:); 
Y2_val = Y2(train+1:val+train,:); 
 
 

S2.1: Model training - grid search for optimal hyper-parameters 

The below script codes the grid search for optimal hyper-parameters. Three hyper-
parameters, i.e. number of hidden units (HU), number of epochs (E), and initial learning rate 
(LR), are optimised. The models are trained to minimise the mean squared error (MSE) 
between the projections and training data. 
 
Each combination of hyper-parameters is assessed based on the ensemble’s performance 
against the validation set. The ensemble is evaluated based on the Continuous Rank 
Probability Score (CRPS) between the predicted and historical prices within the validation set. 
This is calculated using the ‘CRPS’ function for ensemble projections from the MATLAB file 
exchange (Shrestha, 2014). 
 
Three 3x3 matrices of the CRPS are produced per run. This code should be run until no 
appreciable decrease in CRPS is observed. The combination of hyper-parameters giving rise 
to the lowest CRPS should be used in the following subsections. 
 
The initial values for HU, E, and LR in the subsequent code are based on the results from 
executing this script for the five projected commodities. A wider range for these hyper-
parameters can be explored as required, noting that the unique nature of a time series may 
require different parameter combinations.  
 
% % Model training - grid search for optimal hyper-parameters       
  
% Grid search: Hidden units (HU), epochs (E) and initial learn rate (LR) 
% The initial values are based on results from the previously projected commodities 
HU = [1,2,3];                       %1-500 
E = [200,300,500];                  %100-1000 
LR = [0.1,0.01,0.001];              %0.1-0.0000001   
             
% Setting up network            
for i = 1:size(HU,2) 
    for j = 1:size(E,2) 
        for k = 1:size(LR,2) 
  
            Ypreds = []; 
            for p=1:100 
  
                h = randperm(HU(i)); 
                h = h(1); 
  
                Ypred2 = []; 
                Ypred3 = []; 
  
                X2_train_LSTM{1} = []; 
                Y2_train_LSTM{1} = []; 
                X2_train_LSTM{1} = X2_train'; 
                Y2_train_LSTM{1} = Y2_train'; 
                numResponses = 12; 
                m = round(val/12); 
                c = 1; 
                for n = 1:m 
                    net = []; 
                    layers = [ ... 
                        sequenceInputLayer(2) 
                        fullyConnectedLayer(2) 
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                        lstmLayer((h),'OutputMode','sequence') 
                        fullyConnectedLayer(numResponses) 
                        regressionLayer]; 
                    options = trainingOptions('adam', ... 
                        'GradientThreshold',1, ... 
                        'MaxEpochs',E(j), ... 
                        'MiniBatchSize',1, ... 
                        'InitialLearnRate',LR(k), ... 
                        'Shuffle','every-epoch'); 
                    net = trainNetwork(X2_train_LSTM,Y2_train_LSTM,layers,options); 
 
% Initialise real values 
% Xpred = values to be predicted by the network 
% The model operates recursively, i.e. previously projected values become inputs to 
the model 
                     Xpred{1} = cat(2,X2_train_LSTM{1},... 

cat(1,Y2_train_LSTM{1}(:,end)',... 
(crude(train+c:train+c+11))')); 

  
% Ypred = network projection based on Xpred                              
                     Ypred = predict(net,Xpred); 
                     X2_train_LSTM{1} = cat(2,X2_train_LSTM{1},... 

cat(1,Xpred{1}(1,end-11:end),... 
(crude(train+c:train+c+11))'));                              

                     Y2_train_LSTM{1} = cat(2,Y2_train_LSTM{1},... 
Ypred{1}(:,end-11:end)); 

  
                     c = c + 12; 
                end 
  
% Ypred2 = projections on the validation set 
% Ypred3 = projections up to the end of the projection horizon 
                 Ypred2 = X2_train_LSTM{1}(1,train+1:train+val); 
                 Ypred3 = X2_train_LSTM{1}(1,:); 
  
                 Ypreds = cat(1,Ypreds,Ypred2); 
            end 
  
            obs = ((X2_val(:,1)')*std_com)+mean_com; 
            fcst = (Ypreds*std_com)+mean_com; 
            [meanCRPS] = crps(fcst,obs); 
 
% Calculating yearly percentiles of the ensemble projections for the entire data 
series 
             y_q =[]; 
             for q = 1:((size(Ypreds,2))/12) 
                 q = q*12; 
                 Y = cat(1,Ypreds(:,q-11),Ypreds(:,q-10),Ypreds(:,q-9),... 

Ypreds(:,q-8),Ypreds(:,q-7),Ypreds(:,q-6),... 
Ypreds(:,q-5),Ypreds(:,q-4),Ypreds(:,q-3),... 

                      Ypreds(:,q-2),Ypreds(:,q-1),Ypreds(:,q)); 
                 YQ = quantile(Y,[0.05 0.25 0.50 0.75 0.95]); 
                 YQ_12=repmat(YQ,12,1); 
                 y_q = cat(1,y_q,YQ_12); 
             end 
  
% Positions i,j,k reflect the HU,L2,LR parameters used in the grid search, 
respectively 
            err_c_t = meanCRPS;                     
            err_val_c(i,j,k) = err_c_t; 
        end 
    end 
end 

 

S2.2: Model training – validation set using optimal hyper-parameters 
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The optimal hyper-parameters, determined during the grid search, inform the HU, E and LR 
values utilised in the below script. Running the following script will give rise to the CRPS 
between the real and predicted values based on the unseen validation set, producing a plot 
representing the predictions overlaid onto the historic data. The ‘shade’ function from the 
MATLAB file exchange is used to generate the shaded plots (Tordera, 2018). 

% Running validation set - use of optimal hyper-parameters 
  
% HU, L2, LR selected from grid search 
HU = [1];                    
EP = [500];    
LR = [0.1]; 
  
Ypreds = []; 
Ypreds3 = []; 
  
% Setting up network            
for p=1:100 
     
    h = randperm(HU); 
    h = h(1); 
     
    Ypred2 = []; 
    Ypred3 = []; 
  
    X2_train_LSTM{1} = []; 
    Y2_train_LSTM{1} = []; 
    X2_train_LSTM{1} = cat(2,X2_train'); 
    Y2_train_LSTM{1} = cat(2,Y2_train'); 
    numResponses = 12; 
    m = round(val/12)+1; 
    c = 1; 
    for n = 1:m 
        net = []; 
        layers = [ ... 
            sequenceInputLayer(2) 
            fullyConnectedLayer(2) 
            lstmLayer(h,'OutputMode','sequence') 
            fullyConnectedLayer(numResponses) 
            regressionLayer]; 
        options = trainingOptions('adam', ... 
            'GradientThreshold',1, ... 
            'MaxEpochs',EP, ... 
            'MiniBatchSize',1, ... 
            'InitialLearnRate',LR, ... 
            'Shuffle','every-epoch'); 
        net = trainNetwork(X2_train_LSTM,Y2_train_LSTM,layers,options); 
 
% Initialise real values 
% Xpred = values to be predicted by the network 
% The model operates recursively, i.e. previously projected values become inputs to 
the model 
                     Xpred{1} = cat(2,X2_train_LSTM{1},... 
                                cat(1,Y2_train_LSTM{1}(:,end)',... 

     (crude(train+c:train+c+11))')); 
  
% Ypred = network projection based on Xpred                              
                     Ypred = predict(net,Xpred); 
                     X2_train_LSTM{1} = cat(2,X2_train_LSTM{1},... 

cat(1,Xpred{1}(1,end-11:end),... 
(crude(train+c:train+c+11))'));                             

                     Y2_train_LSTM{1} = cat(2,Y2_train_LSTM{1},... 
Ypred{1}(:,end-11:end)); 

  
                     c = c + 12; 
                end 
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% Ypred2 = projections on the validation set 
% Ypred3 = projections up to the end of the projection horizon 
     Ypred2 = X2_train_LSTM{1}(1,train+1:train+val); 
     Ypred3 = X2_train_LSTM{1}(1,:); 
  
     Ypreds = cat(1,Ypreds,Ypred2); 
     Ypreds3 = cat(1,Ypreds3,Ypred3); 
end 
  
obs = ((X2_val(:,1)')*std_com)+mean_com; 
fcst = (Ypreds*std_com)+mean_com; 
[meanCRPS] = crps(fcst,obs); 
   
% Calculating yearly percentiles of the ensemble projections for the validation set 
             y_q =[]; 
             for q = 1:((size(Ypreds,2))/12) 
                 q = q*12; 
                 Y = cat(1,Ypreds(:,q-11),Ypreds(:,q-10),Ypreds(:,q-9),... 
                     Ypreds(:,q-8),Ypreds(:,q-7),Ypreds(:,q-6),... 
                     Ypreds(:,q-5),Ypreds(:,q-4),Ypreds(:,q-3),... 
                     Ypreds(:,q-2),Ypreds(:,q-1),Ypreds(:,q)); 
                 YQ = quantile(Y,[0.05 0.25 0.50 0.75 0.95]); 
                 YQ_12=repmat(YQ,12,1); 
                 y_q = cat(1,y_q,YQ_12); 
             end 
 
% Calculating yearly percentiles of the ensemble projections for the entire 
data series 
 t_q =[]; 
 for q = 1:((size(Ypreds3,2))/12) 
     q = q*12; 
     T = cat(1,Ypreds3(:,q-11),Ypreds3(:,q-10),Ypreds3(:,q-9),... 
         Ypreds3(:,q-8),Ypreds3(:,q-7),Ypreds3(:,q-6),... 
         Ypreds3(:,q-5),Ypreds3(:,q-4),Ypreds3(:,q-3),... 
         Ypreds3(:,q-2),Ypreds3(:,q-1),Ypreds3(:,q)); 
     TQ = quantile(T,[0.05 0.25 0.50 0.75 0.95]); 
     TQ_12=repmat(TQ,12,1); 
     t_q = cat(1,t_q,TQ_12); 
 end 
  
 
% Assign q1, q2, q3, q4, and q5 to predicted percentiles 
q1 = double(t_q(:,1)); 
q2 = double(t_q(:,2)); 
q3 = double(t_q(:,3)); 
q4 = double(t_q(:,4)); 
q5 = double(t_q(:,5)); 
  
  
% Plot historic data 
zplot = z(1:size(q1,1)); 
xplot = xplot(1:size(q1,1)); 
plot(zplot,xplot,'k'); 
hold on; 
  
% Plotting projections 
shade(zplot,q1,zplot,q3,'linestyle','none','FillType',[2 1;1 2],'FillColor', [1 0 
0;1 0 0],'Color',[1 1 1]); 
shade(zplot,q5,zplot,q3,'linestyle','none','FillType',[2 1;1 2],'FillColor', [1 0 
0;1 0 0],'Color',[1 1 1]); 
shade(zplot,q2,zplot,q3,'linestyle','none','FillType',[2 1;1 2],'FillColor', [1 0 
0;1 0 0],'Color',[1 0 0]); 
shade(zplot,q3,zplot,q4,'linestyle','none','FillType',[2 1;1 2],'FillColor', [1 0 
0;1 0 0],'Color',[1 0 0]); 
Coloralpha = 0.1; 
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plot(zplot,q3,'r','linewidth',1); 
plot(zplot,xplot,'k'); 
  
% Graph formatting 
  
% Create dashed line to signify end of historic data 
TrainX = [z(train),z(train)]; 
TrainY = [-10,10]; 
plot(TrainX,TrainY,'--','Color',[0.5 0.5 0.5],'linewidth',1); 
  
% Label historic and projected sections of plot 
Train = z(round(train/4)); 
Val = z(round(val/2)+(train)); 
txt2 = {'Training','Validation'}; 
text([Train Val],[2.7 2.7],txt2); 
 
alpha = 0.25; 
ylim([-3,3]); 
xlabel('Year'); 
ylabel('Standardised price ($)');  
legend({'Historic data'},'Location','south') 
  

S2.3: Model training – using the model for the projection horizon 

Finally, the model for the desired projection horizon should be executed, again utilising the 
optimal hyper-parameters determined during the grid search. The below code runs the final 
model, producing a plot of the projected percentiles, stores the ensemble of projections in the 
table ‘Ensemble’, and the annual 5th, 25th, 50th, 75th and 95th price percentiles in the table 
‘Percentiles’. These percentiles should be saved externally and used in the techno-
economic, sensitivity and uncertainty analyses. As before, the ‘shade’ function from the 
MATLAB file exchange is used to generate the shaded plots (Tordera, 2018). 

% Running validation set - use of optimal hyper-parameters 
  
% HU, L2, LR selected from grid search 
HU = [1];                    
EP = [500];    
LR = [0.1]; 
  
Ypreds = []; 
Ypreds3 = []; 
  
% Setting up network            
for p=1:100 
     
    h = randperm(HU); 
    h = h(1); 
  
    Ypred2 = []; 
    Ypred3 = []; 
  
    X2_train_LSTM{1} = []; 
    Y2_train_LSTM{1} = []; 
    X2_train_LSTM{1} = cat(2,X2_train',X2_val'); 
    Y2_train_LSTM{1} = cat(2,Y2_train',Y2_val'); 
    numResponses = 12; 
    m = round((size(z,1)-a)/12); 
    c = 1; 
    for n = 1:m 
        net = []; 
        layers = [ ... 
            sequenceInputLayer(2) 
            fullyConnectedLayer(2) 
            lstmLayer(h,'OutputMode','sequence') 
            fullyConnectedLayer(numResponses) 
            regressionLayer]; 
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        options = trainingOptions('adam', ... 
            'GradientThreshold',1, ... 
            'MaxEpochs',EP, ... 
            'MiniBatchSize',1, ... 
            'InitialLearnRate',LR, ... 
            'Shuffle','every-epoch'); 
        net = trainNetwork(X2_train_LSTM,Y2_train_LSTM,layers,options); 
 
% Initialise real values 
% Xpred = values to be predicted by the network 
% The model operates recursively, i.e previously projected values become inputs to 
the model 
         Xpred{1} = cat(2,X2_train_LSTM{1},cat(1,Y2_train_LSTM{1}(:,end)',... 

(crude(train+val+c:train+val+c+11))')); 
  
% Ypred = network projection based on Xpred                              
         Ypred = predict(net,Xpred); 
         X2_train_LSTM{1} = cat(2,X2_train_LSTM{1},... 

 cat(1,Xpred{1}(1,end-11:end),... 
 (crude(train+val+c:train+val+c+11))'));                              

         Y2_train_LSTM{1} = cat(2,Y2_train_LSTM{1},Ypred{1}(:,end-11:end)); 
          
         c = c + 12; 
    end 
  
% Ypred2 = projections on the validation set 
% Ypred3 = projections up to the end of the projection horizon 
     Ypred2 = X2_train_LSTM{1}(1,train+1:train+val); 
     Ypred3 = X2_train_LSTM{1}(1,:); 
  
     Ypreds = cat(1,Ypreds,Ypred2); 
     Ypreds3 = cat(1,Ypreds3,Ypred3); 
end 
 
% Calculating yearly percentiles of the ensemble projections for the entire data 
series 
 t_q = []; 
 for q = 1:((size(Ypreds3,2))/12) 
     q = q*12; 
     T = cat(1,Ypreds3(:,q-11),Ypreds3(:,q-10),Ypreds3(:,q-9),Ypreds3(:,q-8),... 
         Ypreds3(:,q-7),Ypreds3(:,q-6),Ypreds3(:,q-5),Ypreds3(:,q-4),... 

  Ypreds3(:,q-3),Ypreds3(:,q-2),Ypreds3(:,q-1),Ypreds3(:,q)); 
     TQ = quantile(T,[0.05 0.25 0.50 0.75 0.95]); 
     TQ_12=repmat(TQ,12,1); 
     t_q = cat(1,t_q,TQ_12); 
 end 
  
% Assign q1, q2, q3, q4, and q5 to predicted percentiles 
q1 = double(t_q(:,1)); 
q2 = double(t_q(:,2)); 
q3 = double(t_q(:,3)); 
q4 = double(t_q(:,4)); 
q5 = double(t_q(:,5)); 
 
Percentiles = array2table(((t_q*std_com)+mean_com),'VariableNames',... 
    {'5th','25th','50th','75th','95th'}); 
Ensemble_Projections = (Ypreds3'*std_com)+mean_com; 
Date = z; 
Ensemble = table(Date,Ensemble_Projections); 
  
% Plot historic data 
z_p = z(1:q); 
x_p = xplot(1:q); 
plot(z_p,x_p,'k'); 
hold on; 
  
% Plotting projections 
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shade(z_p,q1,z_p,q3,'linestyle','none','FillType',[2 1;1 2],'FillColor', [1 0 0;1 0 
0],'Color',[1 1 1]); 
shade(z_p,q5,z_p,q3,'linestyle','none','FillType',[2 1;1 2],'FillColor', [1 0 0;1 0 
0],'Color',[1 1 1]); 
shade(z_p,q2,z_p,q3,'linestyle','none','FillType',[2 1;1 2],'FillColor', [1 0 0;1 0 
0],'Color',[1 0 0]); 
shade(z_p,q3,z_p,q4,'linestyle','none','FillType',[2 1;1 2],'FillColor', [1 0 0;1 0 
0],'Color',[1 0 0]); 
Coloralpha = 0.1; 
plot(z_p,q3,'r','linewidth',1); 
plot(z_p,x_p,'k'); 
  
% Graph formatting 
  
% Create dashed line to signify end of historic data 
TrainX = [z_p(a+12),z_p(a+12)]; 
TrainY = [-10,10]; 
plot(TrainX,TrainY,'--','Color',[0.5 0.5 0.5],'linewidth',1); 
  
% Label historic and projected sections of plot 
Hist = z_p(round((train+val)/2)-36); 
Proj = z_p(((size(z,1)-(train+val))/2)+(train+val)-36); 
txt2 = {'Historic','Projected'}; 
text([Hist Proj],[2.7 2.7],txt2); 
  
alpha = 0.25; 
ylim([-3,3]); 
xlabel('Year'); 
ylabel('Standardised price ($)');  
legend({'Historic data'},'Location','south') 
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A.4 Supplementary information for Chapter 7: A surrogate model for the 
economic evaluation of renewable hydrogen production from biomass 
feedstocks via supercritical water gasification 
 

Section S.1: Experimental data collection 

Table S1: Ultimate analysis of biomass compounds used in this study. A broad range of different biomass 
compositions was selected. The purpose was to create a generalisable feedstock evaluation tool for evaluation of 
future compositions rather than evaluating each of the feedstocks the compositions represent. 

Feedstock C H N O Reference 
 (wt%)  

Paper waste sludge 49.21 5.90 0.08 44.81 (Louw, et al., 2016) 
Sewage sludge 51.43 6.00 7.85 34.73 (Hantoko, et al., 2019) 
Diesel 84.79 13.67 0.14 1.40 (Kou, et al., 2018)  
Distillery wastewater 35.29 4.99 4.89 54.82 (Seif, et al., 2016) 
Sugarcane bagasse 58.21 6.46 0.69 34.64 (Rashidi & Tavasoli, 2015) 
Fruit pulp 48.24 6.05 0.47 45.24 (Elif & Nezhie, 2016) 
Cattle manure 60.08 5.61 2.37 31.95 (Tavasoli, et al., 2018) 
Pinewood 48.86 7.35 0.10 43.69 (Nanda, et al., 2016a) 
Food waste 49.10 7.16 3.81 39.93 (Yan, et al., 2019) 
Spent lees 39.72 6.32 0.70 53.26 (Lee, et al., 2023) 
Olive wastewater 37.65 6.43 1.20 54.72 (Lee, et al., 2023) 
Stillage 42.05 7.24 3.22 47.48 (Lee, et al., 2023) 
Wheat straw 44.13 6.85 0.52 48.49 (Lu, et al., 2019) 
Walnut shell 50.53 5.71 0.85 42.92 (Safari, et al., 2016) 
Waste cooking oil 76.44 14.13 1.19 8.24 (Sonil, et al., 2019) 
Heavy gas oil 84.72 13.20 1.87 0.21 (Rana, et al., 2020) 
Light gas oil 81.89 15.33 1.13 1.65 (Rana, et al., 2020) 
Soybean straw 44.21 5.32 0.48 49.98 (Okolie, et al., 2020) 
Sugarcane bagasse 41.93 5.73 0.20 52.14 (Kumar & Reddy, 2019) 
Mosambi peel 38.18 6.26 1.32 54.24 (Kumar & Reddy, 2019) 
Timothy grass 49.38 7.08 1.46 42.08 (Nanda, et al., 2016b) 
Hongliulin coal 83.25 5.26 1.12 10.38 (Hui, et al., 2017) 
Hongliulin bituminous coal 78.66 4.48 1.12 15.74 (Sun, et al., 2021) 
Chicken manure 46.51 7.62 5.73 40.14 (Babaei, et al., 2021) 
Dairy wastewater (whey) 34.29 5.64 5.33 54.73 (Khorasani, et al., 2021) 
Concentrated vinasse 25.60 8.90 4.18 61.32 (Loppinet-Serani, et al., 

2013) 
Black liquor  38.16 4.51 0.85 56.48 (Karimi, et al., 2022) 
Black liquor (wheat straw)  48.25 4.00 0.33 47.42 (Cao, et al., 2011) 
Landfill leachate 75.18 1.36 7.47 16.00 (Gong, et al., 2018) 
Waste tires 72.39 7.04 2.03 18.55 (Nanda, et al., 2019) 
petroleum coke 81.74 4.80 1.78 11.68 (Rana, et al., 2019) 
Sewage sludge 58.63 1.54 10.55 29.28 (Yan, et al., 2021) 
Sewage sludge 54.92 8.54 8.32 28.23 (He, et al., 2015) 
Sewage sludge 54.55 4.86 6.67 33.92 (Chen, et al., 2013) 
Dewatered sewage sludge 43.50 8.25 7.09 41.16 (Wang, et al., 2017) 
Dewatered sludge 44.45 6.71 3.52 45.32 (Xu, et al., 2012) 
Horse manure 51.57 7.19 1.12 40.11 (Nanda, et al., 2016c) 
Hemicellulose poplar 43.12 5.62 0.00 51.26 (Gökkaya Selvi, et al., 

2020) 
Pinecone 52.20 6.47 1.05 40.28 (Nanda, et al., 2017) 
Peanut shell 51.93 5.83 1.80 40.43 (Jin, et al., 2014) 
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Section S.2 Process and cost models 

Table S2: Gibbs model gas composition predictions at different temperatures. P = 24 MPa, biomass 
concentration = 75 g/L COD, biomass composition (wt%) C: 46.51, H: 7.62, N: 5.73, O: 40.14. 

T (°C) Gas composition (wt%) 
H2 CH4 CO2 CO 

400 9.82 46.44 0.03 43.71 
500 29.40 30.90 0.16 39.54 
600 45.83 17.81 0.46 35.91 
700 57.20 8.67 0.96 33.17 

 

Table S3: Economic parameters used in the investment analysis. 

Economic Parameters Values 
Fixed capital cost parameters 
 

 

Free on board equipment 
purchase cost 
 

Seider et al. (2017) 

Installed capital cost Hand method 
 

Chemical Engineering Plant Cost 
Index in 2021 

739 
 

Production Year 8,400 
 

Installed Cost – Inside Battery 
Limit (ISBL) Factor 

Hand factors, specific 
to equipment type. 

 
Outside Battery Limit (OSBL) 25% of ISBL 

 
Commissioning Cost 5% of ISBL 

 
Fixed Capital Investment (FCI) ISBL + OSBL + 

Commissioning 
 

Working Capital 10% of ISBL + OSBL 
 

Total Capital Investment (TCI) FCI + Working Capital 
  
Fixed operating cost model 
 

 

Operating labour Salary estimates 
obtained from 
salaryexpert.com (4 
shifts with 2 members 
each) 

 
Supervisory labour 25% of operating 

labour 
 

Direct salary overhead  50% of operating and 
supervisory labour  
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Maintenance 3% of ISBL 
 

Property taxes and insurance 1% of ISBL 
 

Rent of land 1% of FCI 
 

General plant overhead 65% of total labour 
and maintenance 
 

Allocated environmental charges 1% of FCI 
Investment Analysis Parameters 
 

 

Discounted rate of return 8% 1 

 
Annual inflation 2% 

 
Plant life 25 years 

 
Plant salvage value No value 

 
Construction period 2 years 
  

1 In line with Europe’s hurdle rates for electricity generation costs from biomass sources, e.g. 8.3% for 
anaerobic digestion and 7.9% for both dedicated biomass (5-100 MW) and energy from waste 
(combined heat and power)  (BEIS, 2020) 

 

Table S4: Variable operating costs. 

Material Cost Source 
Cooling water ($/m3) 0.753 (Towler, 2013) 

 
Process water ($/m3) 0.530 (Foo, et al., 2017) 

 
MEA solvent ($/kg) 1.5 Assumed solvent losses: 1.6 kg/tn 

CO2 removed (Raksajati, et al., 
2013) 
 

Grid electricity prices 
($/kwh) 

0.089 China  
0.155 Brazil 
0.259 UK 

 
(Global Petrol Prices, 2022) 
 
 

Steam methane reforming 
catalyst ($/kg) 

8 

Replaced every 4.5 years 
High and low temperature 
shift catalyst ($/kg) 

10 

 
Table S5: Life cycle inventory  

Material Emission 
factor 

Comment 

Water (kg CO2eq./m3):   
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China and Brazil 3.17 x 10-4 Global allocation at the point of substitution 
(Wernet, et al., 2016) 

UK 2.95 x 10-4 Europe allocation at the point of substitution 
(Wernet, et al., 2016) 

MEA solvent (kg CO2eq./kg):   
China and Brazil 3.420 Global allocation at the point of substitution 

(Wernet, et al., 2016) 
UK 2.641 Europe allocation at the point of substitution 

(Wernet, et al., 2016) 
Grid electricity (kg CO2eq./kwh):   
China 0.85 Average combined (IGES, 2022) 
Brazil 0.292 Average combined (IGES, 2022) 
UK 0.136 (BEIS, 2022) 
Transport (kg CO2eq./tn.km): 0.163 EURO 6, 16-32 tn capacity (Wernet, et al., 

2016) 
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Section S.3: Machine learning models 

a) Nominal LCOH b) Lower bound (5th percentile) LCOH 

 

c) Upper bound (75th percentile) LCOH 

Figure S1 a-c: Parity plots of observed and predicted LCOH ($/kgH2) using ANNs. Figures a, b, and c represent 
the model performance on the test set (withheld from training) for the nominal, lower (5th) and upper (75th) 
bounds. The blue datapoints represent the training data and the red the testing set. 

 

 

 

Table S6: Final model performance on an unseen biomass sample at processing capacities used during model 
training and interpolated results between the considered capacities. Biomass sample, orange peel, composition 
(wt%) C: 42.34, H: 6.47, N: 0.72, O: 50.46  (Nanda et a., 2016d). 
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Processing 
capacity 
(m3/hr) 

LCOH ($/kg) Percentage 
error 
(%) 

Simulated Nominal predicted 

10 13.17 13.07 0.76% 
15 9.63 9.62 0.09% 
20 7.09 7.09 0.02% 
35 5.21 5.38 3.12% 
50 4.34 4.38 0.88% 
75 3.69 3.81 3.08% 

100 3.45 3.40 1.51% 
150 3.12 3.14 0.59% 
200 3.00 3.05 1.73% 
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Section S.4: Study limitations 

 
a) Comparison between experimental hydrogen wt% and the Gibbs reactor prediction 

 
b) Comparison between experimental methane wt% and the Gibbs reactor prediction 
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c) Comparison between experimental carbon monoxide wt% and the Gibbs reactor prediction 

 
d) Comparison between experimental carbon dioxide wt% and the Gibbs reactor prediction 

 
Figure S2a-d: Comparison between experimentally reported gas compositions and thermodynamic equilibrium 
predicted by the Gibbs reactor. Louw et al., (2016) is for paper waste sludge at 450 °C, 60 min residence time, Ni 
Catalyst. Osada et al., (2012) is for sugarcane bagasse at 400 °C, 15 min residence time, Ru/TiO2  catalyst. 
Yamaguchi et al., (2019) is for Japanese cedar waste at 400 °C, 60 minute residence time, Ru/C catalyst. Gökkaya 
Selvi et al., (2020) is for Hemicellulose poplar at 500 °C, 60 minute residence time, K2CO3 catalyst. Lu et al., (2019) 
is for wheat straw at 450°C, 20 min residence time, Ni/MgO catalyst. 
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