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ABSTRACT 
 

 Battery Energy Storage System (ESS) is a very important component in most of 

the off-grid standalone photovoltaic (PV) system as battery ESS can store excess unused 

solar energy harvested via solar panels for later use. However, normal household 

electronic appliances often cause irregular load demand, pushing the battery ESS to 

experience deep power discharge cycles. The intermittent nature of solar irradiance has 

also contributed to irregular charging patterns of battery ESS. Therefore, battery-

supercapacitor Hybrid Energy Storage System (HESS) is introduced as the most promising 

solution to reduce the harms to the battery. Most of the control strategies in the literature 

focus on the optimisation of the system operations. For instance, the control strategy is 

usually implemented to optimally manage HESS based on real-time operating conditions. 

Though there are applications of intelligent energy control system in the past literature, 

there are still limited studies on how solar irradiance prediction is being embedded into 

the energy management system (EMS). Furthermore, many solar irradiance forecasting 

solutions provided in the literature are based upon deep learning algorithms which require 

a lot of computational resources, impeding these forecasting solutions to be implemented 

in off-grid applications. Also, the EMS implemented in the literature are based upon 

Artificial Intelligence-based optimization algorithms which use iterative computations to 

reach to optimal decisions making. As a result, an incremental unsupervised learning-

based EMS is developed to perform solar irradiance forecasting as well as to manage and 

control the system operations in an off-grid standalone PV Renewable Energy Power 

System (REPS). The objectives of this research study are to develop a computational 

efficient hourly incremental unsupervised learning solar irradiance forecasting model using 

basic features as well as to develop and to implement an incremental unsupervised 

learning EMS in an actual standalone PV system with battery-supercapacitor HESS. 

 The novelties of the incremental unsupervised learning solar irradiance forecasting 

model includes less computational demanding compared to deep learning models. 

Moreover, the proposed model takes historical solar irradiance measurements and 
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timestamps as its sole input. As a mean to improve the forecasting performance of the 

proposed model, the data is decomposed into low frequency and high frequency 

components to reduce the influence of noisy variation of solar irradiance on the learning 

of the model. The incremental nature of the model also allows the proposed model to learn 

from new data once a gradual change in the data trend is found. The proposed model 

outperforms Artificial Neural Networks (ANN) by 19% in terms of Root Mean Squared 

Errors (RMSE) and 34% in Mean Absolute Scaled Error (MASE). 

 On the other hand, the proposed EMS model implemented does not require any 

predefined mathematical representation of the entire REPS due to its incremental feature. 

Then, its lightweight advantage outperforms many controllers in the past literature in 

terms of computational time, training time and specifications requirement on embedded 

computational platform. The proposed model introduces significant less battery power 

oscillations in the REPS, especially at higher battery power amplitudes that are very 

damaging to the battery while assists the REPS with HESS to harvest extra 26.6% of solar 

energy compared to a battery only REPS . 
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Chapter 1 Introduction 

1.1 Research Overview  

Petroleum, after its discovery, its applications have been explored vastly to be 

crowned as the lifeblood of the global economy after Industry Revolutions. Petroleum is 

vital to the economical aspect in human civilisation as the main energy source to power 

any industry, domestic homes as well as transportation. Following the introduction of 

smart digital age, the demand for energy is increasing exponentially ever since. The non-

renewable nature of fossil fuels such as petroleum forms bottleneck to existing 

technological development progress, limiting the pace of our digital age. As so, many 

researchers have turned to exploring various renewable energy (RE) sources as possible 

alternative. Unlike fossil fuels and coals, these renewable energy resources are naturally 

replenished on human timescale and will never run out. Non-renewable energies are 

usually associated as major pollutants to the environment whereas renewable energies 

are generally more environmental-friendly. 

However, renewable energies naturally suffer due to intermittent energy production. 

For instance, solar energy is not available at night and wind energy is only available during 

windy occasions. The existing renewable energy harvesting technologies are yet to achieve 

high efficiency, leading to high electricity generation cost. As a result, renewable energy 

technology largely remains at its infancy phase. Solar energy, due to its wide availability, 

is usually harvested via photovoltaic (PV) systems and then become the most popular and 

promising alternative to fossil fuel. Photovoltaic energy generation system is subsequently 

widely commercialized as the most mature renewable energy technology.  

In remote areas that are beyond the reach of main power grid, standalone 

renewable energy generation is one of the better solutions with the benefit of reduced 

maintenance and running costs [1]. Commonly, energy generation solely from renewable 

sources is unable to meet the entire load demand all the time due to the random nature 

of renewable power sources and load demand. Eventually, renewable energy power 

systems (REPS) rely heavily on energy storage systems (ESS) to ensure a continuous 
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power supply. Lately, battery storage system is used dominantly in the market due to its 

large energy capacity for real life large energy density applications. Also, their easy 

implementation and geographical independence have crowned the battery as the most 

basic and popular ESS [2]. However, the expensive price tag of batteries has almost offset 

the benefits of ESS [3]. 

The conventional ESS in stand-alone REPS suffers in short lifespan due to irregular 

renewable energy generation as well as unpredictable stress level and intermittent peak 

power demand. Loads such as air-conditioner and motor require high starting 

instantaneous current. It is very costly to match the battery size to this high current 

demand [1]. The frequent deep cycles and irregular charging/discharging patterns also 

shorten the lifecycle of ESS, incurring high maintenance and replacement costs of REPS. 

These drawbacks have indeed impeded the adoption of solar-based REPS in household 

applications, not to mention being less favourable to be developed as reliable alternative 

to conventional grid power networks.  

The advanced battery technology now allows extraordinary energy densities but 

often insufficient power densities to meet demands for applications where the load draws 

very large power impulses over a very short interval of time. The general practice is to 

parallel more batteries to share the dynamic stress but such design always incurs very 

high cost. Therefore, there are suggestions to add supercapacitor in parallel to the battery. 

Supercapacitor is an example of high-power storage devices which could be used to deal 

with the high-power density demands [4]. The benefits of having batteries working in 

parallel with supercapacitors include extending the operation life of battery, reducing the 

design and manufacture cost as well as increasing the capability of the hybrid energy 

storage system in handling varying power demands [5], [6]. 

Many researchers have employed the model of hybrid energy storage system 

(HESS) as one of the ways to tackle the erratic nature of the power demand. Such measure 

could combine the advantages of both technologies to complement one another and 

therefore being more suitable to serve large-scale renewable energy systems [5], [4]. The 
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HESS is devised upon the ideal thoughts of having high-energy storage (ESS-E) which 

deals with average long-term energy demand working alongside a high-power storage 

(ESS-P) that is able to deliver or absorb peak transient power. HESS is thus used to 

maintain the constant DC grid voltage due to mismatch between generation and demand 

[5]. Thus, the power balance equation is 

𝑃𝑅𝐸 + 𝑃𝐸𝑆𝑆 =  𝑃𝐿𝑂𝐴𝐷     (1.1) 

where 𝑃𝑅𝐸 refers to generated power of renewable energy sources, 𝑃𝐸𝑆𝑆 is the power flow 

of ESS with 𝑃𝐿𝑂𝐴𝐷 is the power demand of load. In other words, HESS simply stores excess 

energy generated as well as delivers the stored energy to meet the demand of load when 

the energy generation of RE sources is too low or unavailable. However, the main challenge 

in the HESS technology lies in the power sharing between different technologies [4] as 

well as the power flow to and from power sources, HESS and loads [7] for better system 

efficiency. 

Accordingly, an energy management strategy (EMS) or control strategy is 

formulated as the brain of the system. A control strategy is aimed to optimize the energy 

utilization and sustainability of REPS. The usage of renewable energy technology requires 

a comprehensive energy management strategy which could achieve optimal fuel economy 

while having a minimum impact on life cycle of a hybrid power system [8] or hybrid energy 

storage system in REPS. Chong et al have reviewed many literatures and categorised the 

control strategies available into two types, namely the classical and intelligent control 

strategies [9]. Classical control strategies include Rule-based controller (RBC) and Filter-

based controller (FBC). These strategies require a pre-defined threshold and an exact 

mathematical model of the system and are prone to errors when parameters vary 

significantly. On the other hand, the performance of AI-based controllers is investigated 

in Ref. [9] and it is pointed out that AI-based controllers promise a good potential in 

improving the efficiency of HESS. Intelligent control strategies consist of Artificial 

Intelligence controllers such as Artificial Neural Network (ANN), Fuzzy Logic controller (FLC) 

and Neuro-Fuzzy controller (NFC). In general, intelligent control strategies can handle 
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more complex design requirements of EMS as REPS are getting more complicated 

nowadays.  

 In this research, an AI-based control strategy is proposed to power solar-based 

REPS. The strategy is given the name of RE-SOINN EMS since it is based upon RE-SOINN 

model. The RE-SOINN EMS, unlike some of the AI-based EMS in the literature, embeds a 

traditional control strategy into its operation, the FBC to smoothen the system power. With 

the ability to produce an hourly prediction of solar energy generation and power demand, 

then the RE-SOINN EMS manages the system power by calculating appropriate system 

parameters on one-minute interval basis. There are two instances of RE-SOINN in this 

EMS:  

(i) the first RE-SOINN tackles the hourly prediction of solar irradiance and load 

demand using historical trends and timestamps  

(ii) the second RE-SOINN manages the flow of power within the system between 

solar panels, HESS and loads. 

The RE-SOINN EMS developed in the study is compared to conventional system 

and other popular EMS adopted in both simulations and experiments. 

1.2 Problem Statement 

This research is aimed to take on the following issues: 

• Solar irradiance forecasting has been a very trending research topic. Many 

literatures from the past have performed weather and solar irradiance forecasting 

using different AI models with complicated input features such as cloud cover, air 

humidity, temperature, wind speed and satellite image for better forecast accuracy. 

The high number of inputs requires the REPS to be equipped with numerous costly 

sensing instruments, not to mention increasing the system complexity indirectly. 

On the other hand, insufficient or low number of inputs to the forecasting model 

would result in a poorer prediction accuracy, affecting the performance of proposed 

RE-SOINN EMS. 
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• Erratic load demand together with random local weather pose complicated energy 

management problem. Conventional EMSs require exact mathematical 

representation of the entire system under the influence of the multiple stochastic 

factors. Consequently, user needs to be able to define the REPS mathematically for 

optimised performance of the REPS, especially in a standalone setting.  

• Most of the EMS developed in the past literature are rigid in the sense that they 

are incapable of performing as the working condition changes. Operational 

environment can be inconsistent due to a sudden change in consumer / user 

behaviour, a slow transitional change of climate or even aging of REPS components. 

Traditional EMS such as RBC and FBC are not flexible as they are predefined using 

exact mathematical equations describing the states of the REPS prior to 

deployment stage. AI-based EMS models also suffer plasticity in the sense that 

once these models are fully trained, new varying data which are collected after 

training stage will be discarded from training dataset. As a result, these AI models 

fail to adapt to gradual change in working environment too. 

• AI-based EMS models work better than conventional EMS at the expense of much 

higher computational complexity. The mismatch between EMS computational 

complexity and REPS computational hardware capability will lead to long training 

time of the AI models, rendering the system to fail working in real time applications. 

Eventually, the REPS would require powerful computational hardware for good 

performance of AI-based EMS models. 

1.3 Research Aim and Objectives 

This research work is focused to fulfil the aim of developing an embedded energy 

management and control system for off-grid applications such as solar powered rural 

households, electric vehicles and battery powered devices to improve the system lifespan. 

This study embarks on the following objectives to fulfil the aim of the research work: 

1) To analyse the features and variations in solar irradiance for solar irradiance 

prediction. 
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2) Based on the identified features and strategies, to develop an online learning energy 

management strategy to perform real-time prediction and control. 

3) To validate the developed algorithms against a wide range of load profiles for various 

weather conditions. 

4) To develop a prototype embedded system with supercapacitors for the 

implementation in a solar cabin. 

1.4 Significance of Research 

Throughout the entire research journey, several significant contributions are introduced 

via this research work: 

1) Up to date, there is lack of research in short-term solar irradiance forecast using 

Unsupervised Learning Artificial Intelligence algorithm. Most of the recent studies 

utilise more complicated but powerful Deep Learning AI models of Supervised 

Learning to perform solar irradiance prediction. Despite good prediction accuracy 

by these Deep Learning AI models, they are very computational expensive, turning 

the forecasting model into a power-consuming beast in an off-grid REPS. The 

impractically long training time due to the complex Deep Learning AI model 

architecture is another blow to off-grid REPS. Thus, a less computational expensive 

solar irradiance forecasting model is developed based on Unsupervised Learning AI 

model, namely Regression Enhanced Self-Organising Incremental Neural Network. 

This new forecast model can work like a black box without any interference from 

users, adaptive to gradual change in weather, incurs much lower computational 

complexity and uses historical solar irradiance trend together with timestamps as 

forecast model inputs. 

2) Many conventional EMS models such as RBC and FBC require predefined 

mathematical representation of the entire REPS under the influence of regular 

inputs in normal conditions. Though this could ensure accurate response of the 

REPS, the conventional EMS begins to fail when the working conditions start to 

change. The proposed RE-SOINN-based EMS is able to adjust its knowledge base 
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according to newly learnt data via Incremental Learning. Thus, the proposed EMS 

can produce relevant outputs in long run even though situational circumstances 

may no longer remain the same. 

3) Compared to PSO-optimized based EMS such as PSO-optimised FLC [10] and SOM-

PSO model [11], the novel proposed EMS using RE-SOINN is able to output optimal 

responses using much significantly less time in each round of computation upon 

reaching maturity after training. The training of SOM takes much longer time than 

RE-SOINN for the same training data. Thus, the proposed EMS model outperforms 

controllers in [13-14] in computational time as well as training time. 

4) The proposed EMS model is lightweight that it can be implemented in simple 

embedded system such as Raspberry Pi without significant compromise to EMS 

performance. As a result, the EMS can run on low-powered devices owing to its low 

power consumption requirement. 

1.5 Scope of Research 

This research work places emphasis on prolonging the lifetime of battery in HESS of 

standalone PV system with battery-supercapacitor HESS with implementation of Artificial 

Intelligence-based EMS in rural household applications where grid power is inaccessible. 

The scope of this research work includes improving battery operation lifespan, prediction 

model to forecast hourly solar irradiance as well as implementation of Unsupervised 

Learning AI model as prediction and EMS models.  

1.6 Thesis Outline 

This thesis consists of 7 chapters. In Chapter 1, the overview, problem statements, 

research aims and objectives, significance as well as scope of the research are presented. 

 Chapter 2 discusses the background study of the research, including conventional 

REPS with ESS, present REPS architecture with HESS and the problems arising from erratic 

power supply and demand. Novel control strategies or EMS from the past literature as well 

as solar harvesting improvement techniques, short term forecasting of solar irradiance 

and load demand are critically reviewed in this chapter too. 
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 Chapter 3 depicts the algorithmic structure of E-SOINN as well as the modification 

from E-SOINN to RE-SOINN. The rationales of the modification and the advantages of RE-

SOINN over E-SOINN are also discussed. The tuning operation of hyperparameters in RE-

SOINN are briefly studied. 

 Chapter 4 illustrates the AI model developed for short-term forecasting of solar 

irradiance and user load demand using AI model with Unsupervised Learning, the 

Regression Enhanced Self-Organising Incremental Neural Network (RE-SOINN). This novel 

forecast model is compared with conventional forecast models. 

 Chapter 5 describes the novel AI-based EMS developed in this study to manage the 

power flow within the REPS – HESS system. The backbone of the novel EMS is derived 

from RE-SOINN as well. The ideal and the practical performance of the novel RE-SOINN 

based EMS are presented. 

 Chapter 6 concludes the research work. Recommendation of future works to 

enhance the research is laid out here too. Chapter 7 contains the appendices depicting the 

integration of the subsystems in the Solar Cabin for the implementation of proposed novel 

forecasting model as well as proposed novel EMS.  
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Chapter 2 Literature Review 

The literature review chapter details the background information of conventional REPS 

with ESS as well as HESS. Subsequently, the conventional as well as state-of-the-art 

energy management strategies (EMS) for REPS with HESS are discussed. EMS that are 

critically reviewed include traditional control strategies as well as intelligent control 

strategies consisting of Artificial Intelligence (AI) of different learning topology and 

structure. Reviews of AI-based Optimisation Control Strategies or EMS in relation to 

solution quality and satisfying multiple constraints are also presented. The advantages of 

Incremental Learning in further improving EMS of REPS are also studied. In addition, this 

chapter also presents the short-term solar irradiance forecasting studies from the past 

literature, with a focus on basic input features. Embedded systems commonly adopted in 

AI-based REPS are briefly discussed to provide an understanding on common embedded 

system in powering the AI-based EMS.  

2.1 Standalone Renewable Energy Power System (REPS) with Energy Storage 

System (ESS) and Hybrid Energy Storage System (HESS) 

In remote areas that are out of reach of by main electric grid, standalone renewable 

energy generation can offer the benefit of reduced maintenance and running costs [12], 

[13]. Commonly, a renewable energy generation is unable to supply the entire load 

demand the entire time due to the variable nature of renewable power sources and load 

demand. Tariq et al. propose the use of hybrid REPS by combining two or more renewable 

energy sources together for more reliable energy productions [14]. Despite the benefits 

of hybrid REPS, the cost to integrate multiple renewable energies increases due to: 

• Increased requirement for ancillary service 

• Increased curtailment costs for both renewable and traditional power plant 

• Higher operating and maintenance costs for traditional power plant due to 

increased cycling and ramping due to intermittent nature of REPS 

Therefore, REPS alternatively rely heavily on ESS to ensure a continuous power 

supply to the load. Lately, Battery Storage System is used dominantly in the market as it 
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could handle issues of load demand and power generation fluctuations in real life 

applications. Also, their easy implementation and geographical independence make them 

the most basic and popular ESS [15].  

Battery, though it is an example of high-energy storage, suffers in high power 

demand applications. The advanced battery technology now allows extraordinary energy 

densities but often insufficient power densities for applications where the load draws large 

power impulses. The general practice is to parallel more batteries to share the dynamic 

stress but such design always incurs very high cost. Therefore, a supercapacitor is added 

in parallel to the battery to improve the situation. Supercapacitor is an example of high-

power storage devices which is capable of matching high-power density demands [16]. 

The benefits of battery-supercapacitor design include extending the operation life of 

battery, reducing the design and manufacture cost as well as increasing the capability of 

the hybrid energy storage system in handling varying power demands [13], [17]. Dougal 

et al. have investigated the performance of battery-supercapacitor HESS with respect to 

energy efficiency, power capabilities as well as cost effectiveness [18]. The peak stresses 

on the battery could be relieved in the presence of supercapacitor. Many research focus 

on the use of lead acid and lithium-ion batteries whereas some researchers do look into 

the usage of other chemical batteries such as Vanadium Redox Battery (VRB) [16]. 

An ideal power source should have high energy storage, capable of delivering high 

power over a short duration of time [13] (short burst of power), high charge and discharge 

efficiency, long duration of working life as well as low in cost [19]. However, in real 

application, due to cost constraints, a battery is generally used as the primary source at 

the expense of shorter lifespan. Researchers from Illinois Institute of Technology introduce 

an energy source model where a battery and a supercapacitor work in parallel [20] in 

electric vehicle. Supercapacitor can supply a huge burst of current but suffers in storage 

issue. Therefore, the storage and peak current characteristic can be achieved. The 

implementation of battery and ultracapacitor in parallel has reduced the number of spikes 
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in the current from the battery as seen from Figure 2-1. Table 2-1 also shows the 

performance comparison between battery and supercapacitor. 

 

Figure 2-1 - Comparison of Current Profiles of Battery only and Battery in parallel with Ultracapacitor [13] 

Table 2-1 - Battery vs Ultracapacitor Performance [13] 

Performance Battery Supercapacitor 

Specific Energy (storage) 10 – 100 Wh/kg 5 – 10 Wh/kg 

Specific Power (delivery) < 1000 W/kg < 10000 W/kg 

Charge/discharge efficiency 50 – 85% 85 – 98% 

Life expectancy 3 years 10 years 

 

 Gee et al. have performed an analysis of battery lifetime extension in a small-scale 

wind energy system using supercapacitors [21]. The potential improvement in the battery 

lifetime could be achieved by allowing the supercapacitor to handle the short-term charge 

and discharge cycles of power. In many cases, battery itself constitutes a huge part of the 

total cost of REPS but fails easily in high-current cycling events. Therefore, the main goal 

is always to extend the lifetime of battery. The simulation results have shown that the 

HESS undergoes significantly fewer polarity reversals and thus fewer charge and discharge 

cycles. The battery lifetime could be improved by 19%. Also, the low-pass filter used in 

the system further reduces the battery cyclic wear and current maxima. All these benefits 

could be reaped at the expense of slightly lower efficiency compared to battery-only 

system after taking efficiency of the supercapacitor into the consideration. 

 While most of the research focus on battery-supercapacitor HESS to meet the 

power demand of the load to prevent unnecessary deep-discharge cycles, Sioe et al. seek 

how this HESS could improve the charging efficiency of photovoltaic battery [22]. The PV 
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source delivers erratic recharge current and sometimes this current is less than the 

recommended C/2 value. As a result, a longer recharging time is expected and recharging 

sequence is often interrupted. Also, quick recharging events elevate system temperature 

which decreases battery capacity and battery life. Therefore, the supercapacitor acts as 

buffer to reduce battery charge current to control the battery temperature during 

recharging phase.   

 A research team from Sweden has sought the possibility of using PV or hybrid PV 

battery systems to provide self-sufficient energy to meet the user demand in a residential 

building in Sweden [23]. Three different kinds of batteries, lead acid, NaNiCl (Sodium-

Nickel-Chloride) and Lithium ion are studied, and it is found that Lithium-ion battery 

performs the best since it achieves the highest Self-Sufficiency Ratio (SSR) with the same 

Life Cycle Cost (LCC) among the three batteries. However, to achieve efficient long term 

energy storage (storing energy surplus from summer for usage in winter), high capacity 

of battery required incurs high LCC. Hydrogen fuel cells are thus recommended instead.  

 German researchers utilise the idea of smart integration and control of short and 

long-term storage technologies to improve self-consumption rate, conversion efficiency 

and storage lifetime in PV systems [24]. The hybrid PV system consists of lithium-ion 

battery, hydrogen and heat storage path. The uncommon heat storage intrigues the 

researchers due to its low specific investment costs. Researchers from Morocco have 

explored the usage of supercapacitor to reduce the stresses on batteries to improve the 

life cycle [25]. Ma, Yang et al. have proposed a new type of HESS to perform fast dynamic 

power regulation for remote areas [26]. An inductor is added into the passive HESS system 

in series to the battery branch as an upgraded connection. The battery output is stabilised 

and smoothened by the filtering effect of inductor. 

As a summary to Subsection 2.1, HESS is proven to be able to improve performance 

of REPS by combining the high specific power and high energy devices. The benefits 

include peak power demand shaving, reduction of battery power oscillation as well as 

extension of battery lifespan. 
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2.2 Control Strategy 

While the battery technologies are getting more advanced and complex, power 

circuits are more efficient, there exists a huge room of improvement for EMS. EMS is the 

brain of the entire REPS-HESS system as it coordinates the power distribution between 

the sources, ESS and loads to optimize the energy utilization and system sustainability. 

The usage of renewable energy technology requires a comprehensive energy management 

strategy to achieve optimal fuel economy while having a minimum impact on life cycle of 

a hybrid power system [27] or hybrid energy storage system in REPS. In short, successful 

EMS ensures REPS system stability and protects the components from overloading damage 

[18]. Its main responsibility is to [29] 

• Prevent deep discharge of battery 

• Reduce dynamic stress level of ESS-E, peak power demand, charge-discharge cycle 

• Reduce the operational cost of the system 

• Maintain stable DC voltage 

• Improve overall system efficiency  

 

While both off-grid and grid-connected renewable energy power systems share 

common goals of optimizing energy use and minimizing environmental impact, their 

control strategies are tailored to their specific operational requirements and the 

surrounding infrastructure. Off-grid systems prioritize autonomy and energy storage, while 

grid-connected systems focus on grid stability, adherence to regulations, and participation 

in energy markets [30], [31]. The control strategies in off-grid REPS are to match energy 

generation to the varying load demand of the off-grid system. In ensuring continuous 

power supply, off-grid REPS could employ hybrid REPS combining multiple renewable 

sources. In grid-connected system, however, the control strategies place huge emphasis 

on maintaining grid stability despite the fluctuations in renewable energy generation, 

allowing for bidirectional energy flow. Moreover, frequency regulation and demand 

response are an integral part of control strategies in grid-tied REPS. The economic 

considerations do not only cover the cost of implementation of a REPS, but also the 
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participation in energy markets, selling excess energy back to the grid depending on the 

market conditions. 

Traditionally, to achieve system control for an off-grid REPS, the first step is to 

model the entire system mathematically so that a mathematical model of the system can 

be used to simulate the response for any given inputs in design and verification stage. 

However, such measure is only recommended if the overall system is not too complicated 

and the operating conditions do not change significantly over time. Control strategies using 

mathematical model also lacks the ability to adapt to environment. 

Chong et al. have reviewed many literatures and categorised the control strategies 

available into two types, namely the classical and intelligent control strategies [32]. 

Classical control strategies include RBC and Filter-based controller (FBC). These strategies 

require a pre-defined threshold and an exact mathematical model of the system. They are 

prone to errors when parameters vary significantly. RBC concurrently considers the power 

demand and evaluates reference power based on pre-set rules whereas FBC decomposes 

the power demand into high-frequency and low-frequency components using low-pass 

filter (LPF), moving average filter (MAF) and wavelet transformation.  

2.3 Intelligent Control Strategy 

In the dynamic landscape of Renewable Energy Power Systems (REPS) and Energy 

Management Systems (EMS) control, Intelligent Control Strategy such as Artificial 

Intelligence (AI) emerges as a pivotal force driving innovation. This overview of Intelligent 

Control Strategies explores the transformative impact of AI-based controllers, including 

technologies such as Artificial Neural Networks (ANN), Fuzzy Logic Controllers (FLC), and 

Neuro-Fuzzy Controllers (NFC), in optimizing Hybrid Energy Storage Systems (HESS). The 

applications of these controllers span a spectrum of critical functions within REPS, from 

predicting solar radiation and wind speed to forecasting load demand and facilitating 

seamless grid network integration. As the complexities of REPS evolve, AI's adaptability 

becomes increasingly evident, reducing the dependence on prior system knowledge. This 

overview sets the stage for an in-depth examination of AI's role in EMS control, 
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categorizing algorithms based on learning schemes and applications, providing a 

comprehensive understanding of their contributions to the dynamic field of REPS. 

Intelligent control strategies consist of Artificial Intelligence controllers like ANN, 

FLC and NFC. Chong et al. point out that AI-based controllers promise a good potential in 

improving the efficiency of HESS [32] and Ref [21] states AI can create significant 

electricity value chain. AI models are usually applied in REPS, especially in prediction of 

solar radiation and wind speed, forecast of load demand, modeling and sizing of a 

component in REPS [34] as well as predictive maintenance and reduction of REPS and grid 

network integration [21]. Researchers in [35] propose the use of AI models to forecast 

the outcome of analyses due to a planned outage in electricity transmission system to 

identify optimal period for scheduling grid maintenance. Rising trend in renewable energies 

would inevitably further complicate the scheduled maintenance of national power system. 

There are three main functionalities of AI in energy management field, namely 

system modeling, knowledge learning and reasoning [24]. Learning is the continuous 

adaptation of AI models using past experience, either historical relationship or statistical 

trends so that decisions made will get more and more favourable towards users [26]. 

Ramos et al. prove that trained models produce very consistent predictions with relatively 

high forecasting accuracy [38]. Its design is independent of system parameters but it 

needs an enormous amount of past historical data (labelled data) for learning and tuning 

process in order to get accurate.  

ANN-based controller is popular as EMS because it could handle nonlinear and 

adaptive structure [25]. On the other hand, FLC is easy to be designed and is less sensitive 

to inconsistent parameters. It uses entirely rule basis and membership functions. FLC 

suffers in defining suitable membership functions due to its trial-and-error nature. The 

process is time-consuming for an optimized performance. NFC combines the inference 

ability deriving from fuzzy logic as well as learning and parallel data processing abilities 

from ANN. It could identify and tune the membership function of the FLC, highly improving 

the accuracy of a fuzzy model without long development time. 
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In general, intelligent control strategies can handle more complex design 

requirements of EMS as REPS are getting more complicated nowadays. As a result, less 

prior knowledge of the system nor the mathematical model of the system is needed in 

designing an intelligent control strategy. Classical control strategies always fail in cases 

where adaptability is deeply required as these classical strategies only work under specific 

operating conditions that are being taken into design considerations. Also, certain 

intelligent control strategies are very intuitive to human reasoning, making them to be 

very suitable as EMS in highly complex REPS systems.  

There is a new trend of using predictive model to input predicted information into 

control strategies to achieve optimal performance. It allows planning of power distribution 

prior to an actual power deficit based on predicted future value of load and power output 

of RE sources. Compared to a classical control strategy, it is easier to incorporate the 

prediction module into AI-based control strategy. Subsequently, AI-based control strategy 

is able to fully utilize the predicted information in many ways such as planning the system 

operation ahead of time. There is no doubt that the learning capability of AI allows 

historical data to be useful as the model can be tuned for better performance by looking 

for useful information within the historical data. 

Looking at past literature, some researchers integrated both predictive control 

strategy and optimisation-based controller for better performance [38–40]. For recent 

studies, Artificial Intelligence (AI) is usually implemented as the backbone of these EMS. 

Thus, at most of the stages of research, past literature on how different AI is applied in 

EMS is reviewed. Applications of AI in EMS can be discussed thoroughly from algorithms, 

adaptations and practical implementations. This review has categorized the AI algorithms 

into a few categories: Machine Learning algorithms such as Supervised Learning, 

Unsupervised Learning, AI-based Optimisation and Incremental Learning as well as 

Computational Intelligence such as Fuzzy Logic and ANFIS based on learning schemes of 

the AI models as well as fields of applications.   
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2.3.1  Machine Learning  

In general, supervised learning can be understood as “learning with a teacher” 

[40]. In this learning process, the environment is unknown to an AI model. A “teacher” 

who has the knowledge of the environment serves as a benchmark or a standard by 

providing the AI model with desired responses for each input in the training phase. The 

parameters of the AI model are then adjusted based on the combined influence of error 

signal and training vector [40]. In the context of EMS, a “teacher” is usually desired output 

such as desired operating voltages. An important way to perform supervised learning is 

the error-correction learning where the entire supervised learning process is equivalent to 

a closed-loop feedback system. The discrepancy between the reference or the desired 

output and the actual output is used to correct or update the parameters of the applied AI 

model. At the end of the training phase, the AI model is expected to produce outputs 

similar to the desired outputs. 

 There are two types of supervised learning AI models which are frequently applied 

as EMS due to their simplicity and good ability to approximate an unknown input-output 

mapping. The first is the ANN which mimic the way human brains work and the second 

being Support Vector Machines (SVM), a fast and effective classification algorithm that 

performs remarkably well with limited amount of data. In general, supervised learning AI 

are applied in prediction and simple decision-making cases. Some researchers have shown 

that embedding a prediction module into EMS could improve power dispatch planning [41]. 

For instance, accurate prediction of solar irradiance values allows the planning of operation 

of solar power plants to be more accurate as planning can be made beforehand. 

Unlike supervised learning which requires the presence of a “teacher” to explicitly 

specify the desired outputs, in unsupervised learning, there are no labelled examples to 

be learned by the AI model [40]. Instead, the AI model needs a task-independent measure 

of the quality of representation of data [40]. Subsequently, the free parameters of the 

model are optimized based on the measure. The AI model is tuned based on the statistical 

information of the input data by forming internal representations for encoding features of 
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the input and thereby creating new clusters [40]. In Ref. [36], only 8.3% of the AI 

techniques applied in the monitoring component of EMS is Unsupervised Learning, less 

than 1% of Unsupervised Learning AI is commissioned in both analytical and control 

components [24]. 

 A common practice in unsupervised learning is the implementation of competitive-

learning rule. For instance, in Self-Organizing Map (SOM), the competitive-learning rule 

dictates that the neurons compete among each other for the opportunity to respond to 

features contained in the input data such as winner-takes-all strategy [40]. In this 

strategy, the neuron with the biggest total input “wins” the competition and is thus turned 

on whereas all other neurons are switched off. The application of unsupervised learning in 

EMS is usually to perform data clustering and classification so that distinctive cases can 

be differentiated more evidently, leading to more specific responses towards certain 

triggering events. In certain cases where the EMS is not too complicated, output of EMS 

can be obtained from clusters by Unsupervised Learning. In Ref. [33], the researchers 

have compared a number of machine learning classification algorithms such as Random 

Forest, Decision Trees, Gaussian Naïve Bayes and K-Nearest Neighbours (kNN) in 

predicting the scheduling of energy sources. These Unsupervised Learning models can 

produce good forecast according to this study. Decision Trees model performs the best 

while kNN scores the worst. The subsequent proposed data normalization extra step can 

improve kNN model to average performance. 

2.3.2 Computational Intelligence 

Machine Learning reflects the overarching principles of AI models in learning from 

data. On the other hand, Computational Intelligence is a broader category that emphasizes 

the use of intelligent algorithms to handle uncertainty and imprecision in data. 

2.3.2.1 Fuzzy Logic 

Fuzzy Logic, an idea conceived by Lofti Zadeh is aimed at allowing computers to 

process ambiguous events resembling human reasoning. The nature of human reasoning 

is fuzzy as human tends to use the vague terms in describing the quality of a feature of 
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an event or an object. These imprecise terms have increased the difficulty of computers 

to handle subjective data since computers excel at traditional logics which are binary in 

nature. Thus, Fuzzy Logic is created to work on range of possibilities of inputs to produce 

definite output. 

 A Fuzzy Logic system can be defined as the nonlinear mapping of an input data set 

to a definite and scalar output [43-45]. In general, there are four main components in 

Fuzzy Logic system, namely the fuzzifier, knowledge base or rules, inference engine and 

defuzzifier. Thus, FL control process is made up of an input stage, a processing stage and 

an output stage [42] based on the four main components as shown in Figure 2-2. 

 
Figure 2-2 - Architecture of a FL system [42] 

FL is simple to be implemented in almost all kinds of control problems due to its 

robustness on non-linear control systems by adopting linguistic descriptions for global 

behaviour [43] of a controller for a specific application. FL controller does not require any 

mathematical model of the plant [44]. On fine-tuning, it gives better performance in terms 

of accuracy compared to traditional controllers. It can also introduce multiple input 

variables in the controller structure without increasing the complexity [45]. Thus, FL is 

suitable to be implemented as EMS of REPS provided the Membership Functions (MFs) and 

the parameters are tuned well. Figure 2-3 shows how FL is applied as EMS controller. 
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Figure 2-3 - An example block diagrams of a system with FL being implemented as controller 

 

Figure 2-4 - Architecture of multi-input-output FL smart controller [46] 

 Derrouazin et al. have proposed a multi-input-output Fuzzy Logic smart controller 

to exploit simultaneously the renewable energy produced and to ensure savings of electric 

grid energy [46]. The controller consists of four inputs, namely the load demand, solar 

and wind energies, the four energy fluxes of the system and the storage battery system 

as demonstrated in Figure 2-4. The four inputs are mapped to three levels (High, Medium 

and Low) using triangular membership function. The nine outputs of the controller are the 

electronic switch command signals (electronic switches duty cycle levels) to supply the 

load demand, the batteries and the electrolyser system. The output membership function 

adopts the Max-Min method and crisp result is obtained by using centre of gravity 

defuzzification. The MATLAB simulation results have shown that control signals of the 

electronic switches produced are able to track successfully, leading to energy saving of 
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77.87% compared to a house without Hybrid Energy System with Fuzzy Logic smart 

controller.  

 In the operation of asynchronous motor powered by PV-battery ESS, a Fuzzy 

Sliding Mode Control (SMC) is presented by Lekhchine et al. to curb the chattering issue 

introduced by regular SMC due to rapid switching [47]. Kamal et al. design a two-level 

centralized FL supervisor controller to produce power references for each decentralized 

robust FL controller as EMS in standalone Hybrid Power System consisting of a PV panel 

and Wind Turbine (WT) [48]. The centralized controller is designed based on Mamdani 

method to manage power production by generating the reference power for PV and WT. 

Decentralized controller, on the other hand, takes Sugeno method to stabilise each PV 

panel and WT under disturbances and parametric uncertainties and to ensure the reference 

provided by centralized controller is reached. Figure 2-5 shows the block diagrams of the 

system.    

 

Figure 2-5  – Block diagrams of FLC as EMS in standalone HREPS [48] 

 In Ref. [44], FL is applied in autonomous control of PV-Solid Oxide-Fuel Cell-Battery 

micro grid to control the grid voltage and frequency effectively and to smoothen power 

flow between generation and consumption. Abadlia et al. devise a FL-based controller to 

achieve energy continuity and maximise the production of hydrogen in REPS consisting of 

PV, hydrogen fuel cell and battery [49]. Application of FL controller has made the design 

process relatively easier as no prior mathematical model is required for the system to 

function smoothly. Garcia et al. have combined an optimisation strategy together with FL 
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strategy as EMS in hybrid REPS [50] as a supervisor system that only takes charge of the 

EMS when the SoC and hydrogen level are out of the range for higher control flexibility.  

 Zhang et al. propose a FL energy management supervision strategy to reduce 

electricity bill, emission of carbon dioxide as well as to ensure energy availability can be 

met [51]. The objectives of the supervision strategy are subjected to different electricity 

pricing periods and thus, the controller must adapt to each pricing period. This is easily 

done in FL where rules are defined accordingly. FL EMS is also applied in cases where 

smooth transition between two operating modes in PV-fuel cell hybrid system is vital [52]. 

For a study in [53], FL EMS which consists of various operating processes of the Hybrid 

REPS is implemented based on weather conditions to switch between PV, WT and diesel 

generator. A traditional PI controller is added alongside of FL EMS in Ref. [54] to control 

continuous power supply to the load by maintaining the SoC of supercapacitors and 

batteries at safe levels to prevent damage on these storage devices. 

 Cano et al. have included a single-level prediction of the DC net power and its 

uncertainty from Hybrid REPS into the design of FL EMS and thus allowing a suitable 

decision that improves the lifetime of the fuel cell-electrolyser [55]. The robustness of this 

EMS can survive through a stochastic Monte Carlo analysis. To study the difference in 

performance of ANN and FL as EMS in Hybrid REPS, Tabanjat et al. design two EMS based 

on ANN and FL respectively with the objective of minimizing the energy production cost 

and increase the role of hydrogen storage system as buffer [56]. Over a 24h load variation, 

FL shows a more superior performance than ANN as ANN would require more training 

samples to achieve the same performance. In output tracking, ANN EMS needs more 

sensors than FL EMS. 

 Some researchers resort to optimisation algorithms to fine-tune the MFs so that 

the performance of the FL controller can be improved significantly. In Ref. [57], Mean-

Variance Optimisation (MVO) is implemented to produce an optimal FL controller. MVO is 

suitable for real-time optimisation as it only computes one fitness evaluation per iteration. 

This adaptive controller is proven experimentally to work much better than naïve FL 
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controller. Particle Swarm Optimisation (PSO) is also utilised to tune the membership 

functions of FL controller. In Ref. [58], the optimisation of FLC results in reduced 

fluctuations in SoC of batteries as well as less working hours for fuel cell. Chong et al. 

have also approached the control issue of a standalone PV system with battery and 

supercapacitor HESS the similar manner [59]. The FL controller constantly minimizes the 

battery peak current demand while monitoring the SoC of the supercapacitor. To further 

improve the optimality of battery peak current reduction, the MFs are optimized by PSO. 

In comparison to traditional approaches such as RBC and FBC, FL-PSO controller reduces 

the battery peak current by further 16% and the average absolute of change of power is 

even lowered by 96%. Supercapacitor utilization has also reached 80% under the proposed 

controller. 

Santis et al. have proposed a hybrid technique consisting of Genetic Algorithm (GA) 

to work alongside of Fuzzy Logic controller [60] to maximise the accounting profit in 

energy trading with the main grid. The role of the GA is to tune the knowledge base of the 

Fuzzy Logic controller so that minimal fuzzy rules can be set as the core inference engine 

of the controller. In experimental validation, it is shown that the Fuzzy-GA outperforms 

the classic FL by using only 47% of rules within the knowledge base. Berrazouane et al. 

have adopted the Cuckoo Search (CS) optimisation algorithm in tuning the membership 

functions of the FL controller [43]. It is found that the CS-optimised FL controller could 

minimise LPSP, excess energy and levelized energy cost (LEC) better than PSO-optimized 

FL controller could. Shuffled Frog Leap (SFL) optimisation algorithm is applied to tune a 

FL controller in [45] for minimizing the operational cost of Hybrid REPS based on weekly 

and daily prediction of data for grid electricity price, electrical load and environmental 

parameters. The weekly and daily optimized FL controller is proven to reduce the working 

hours for fuel cell and electrolyser as well as less fluctuations in SoC of battery slack.  

 Abedi et al. have incorporated EMS with sizing procedure of a Hybrid REPS to 

determine optimal EMS for entire system including various generators and energy storage 

devices [61]. In the study, Differential Evolution Algorithm (DEA) together with FL is used 
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to deal with mixed-integer nonlinear multi-objective optimisation problem. The EMS is 

trained to adapt to climate changes by determine the parameters for EMS monthly as well 

as to calculate the optimum monthly tilt angles of PV panels and the optimal tower height 

for wind turbines for efficient power exploitation from REPS. 

2.3.2.2 Adaptive Network-based Fuzzy Inference System (ANFIS) 

A neuro-fuzzy system is a fuzzy system which employs learning algorithm from 

Neural Network to determine its parameters [62] by adopting framework of adaptive 

networks [63]. ANFIS adopts the Sugeno type Fuzzy Inference Method where the premise 

part is fuzzified and the consequence is a crisp function such as a polynomial function. 

ANFIS can automatically determine suitable parameters for the MFs using stipulated input-

output data pairs. It maps 

• Input characteristics to input MFs 

• Input MFs to rules 

• Rules to output characteristics 

• Output characteristics to output MFs 

• Output MFs to a single-valued output or a decision associated with the output. 

Mahmud et al. propose a cooperative performance of a new Proportional-Integral 

Derivative (PID) control scheme based on ANFIS for PV interfacing inverter and an ANFIS-

based supervisory storage EMS to regulate the voltage of three-phase grid-connected solar 

PV system under any nonlinear and fluctuating operating conditions [64]. ANFIS-PID can 

adapt the nonlinear states of distribution system voltage profile to tune the PID gain 

parameters automatically to inject or absorb appropriate reactive power to regulate the 

voltage at common coupling point. On the other hand, ANFIS-based EMS charges and 

discharges the ESS whenever there is voltage deviation to cooperate with ANFIS-PID in 

voltage regulation. The cooperation of the two control schemes can minimize the voltage 

deviations at common coupling point and reduces reactive power injection/absorption load 

on the PV inverter. 

Garcia et al. design an ANFIS-based EMS for a grid-connected hybrid REPS 

comprising of WT and PV as primary energy sources with hydrogen-based ESS and battery 
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as the HESS [65]. Similar to Ref. [64], ANFIS is preferred in this study because ANFIS 

performs faster in terms of convergence. In the performance evaluation stage, this control 

scheme works better than the combined action of state-based supervisory control and PI 

inverter controller. In Ref. [66], an ANFIS-based EMS is presented to control HREPS 

connected with AC load. ANFIS works better in this application to improve the power 

transfer capability between the source side and the load side and to lower system 

complexity. The said EMS produces appropriate control signals at the testing time to match 

the source power and load power according to the load variation. 

2.4 Supervised Learning-based AI Control Strategy 

2.4.1 Artificial Neural Networks (ANN) 

Inspired by the operation as well as the architecture of a human brain, ANN consists 

of a group of neurons. An artificial neuron is an information processing unit that is 

fundamental to the operation of a neural network [40]. It consists of three basic elements 

as depicted in Figure 2-6: 

• Synapses are represented by weights vectors, w to specify the strength of a signal 

to a neuron. 

• An adder (linear combiner) to sum up the input signals weighted by respective 

synapse strengths [40] 

• An activation function to limit the amplitude of the output of a neuron to a finite 

range of values. A typical activation function is threshold function or sigmoid 

function. 

 

 Figure 2-6 - Nonlinear model of a neuron [40] 

 A neuron, said with a label k, can be represented with two mathematical terms 

𝑢𝑘 = ∑ 𝑤𝑘𝑗𝑥𝑗
𝑚
𝑗=1      (2-1) 
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 𝑣𝑘 =  𝑢𝑘 + 𝑏𝑘      (2-2)  

 𝑦𝑘 =  𝜑(𝑢𝑘 + 𝑏𝑘)        (2-3)  

when a group of neurons are organized in layers where an input layer of source nodes 

projects directly onto an output layer of neurons [40], this is known as a feedforward ANN 

of single layer. In the presence of additional layers between the input layer and output 

layer, a multilayer feedforward network is thus formed. These internal layers are known 

as hidden layers. The role of hidden layer is to extract higher-order statistics from its input 

[40]. A multilayer perceptron (MLP) is a feedforward neural network with one or more 

hidden layers as shown in Figure 2-7.  

 

Figure 2-7 - A fully connected feedforward network with one hidden layer and one output layer [40] 

ANN, being modelled as a black box regularly, can simplify complicated systems 

into simpler systems consisting of inputs, outputs and functions defining the relationships 

without the need to understand the operations in between. As the load demands and power 

requirements are getting more complicated, the design of REPS would be getting more 

complex as a response to fulfilling such requirements. As a result, the design of EMS will 

be a complicated task. ANN, as a universal mapping solution, is therefore a popular 

solution among the researchers. ANN is also applied as prediction engine to assist in the 

working of EMS to improve the performance. The learning algorithm of ANN is generally 

able to construct the relationship between inputs and outputs given inputs are historical 

data and outputs are data in future time span. 

In Ref. [67], an ANN controller approach is chosen due to ANN’s faster response 

compared to optimisation-based methods. Its ability to learn from examples and to 

produce rapid responses to new data has allowed ANN to be applied widely in this field. 
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Piazza at al present a novel two-stage EMS for small scale grid-connected electrical 

systems consisting of REPS and ESS [68]. In the proposed EMS, solar irradiance and load 

demand are forecasted using historical data and two ANNs respectively. The proposed EMS 

shows its robustness towards prediction errors with lower normalised Root Mean Squared 

Error (nRMSE) and normalised Mean Absolute Error (NMAE) scores compared to the 

reference EMS focusing on improving the user’s cash flow. 

In a study to determine an optimized smart appliance schedule, Yuce et al. combine 

ANN with Genetic Algorithm (ANN-GA) to reduce energy demand in busy periods, 

maximizing the exploitation of renewable sources while relying the least on grid energy 

[69]. The role of the ANN is to learn the complex pattern in EMS based on environmental 

occupancy factors and to forecast energy consumption and renewable energy generation. 

The total grid energy usage for a month was 816kWh before implementation of proposed 

model and after the implementation, the total energy consumption is 734kWh, 612kWh 

and 490kWh depending on the level of reduction intended. In Ref [70], an EMS is designed 

to address the intermittent solar energy generation by including an operation to predict 

solar energy and power generated from the hybrid REPS. The solar energy forecasting 

model consists of ANN and wavelet transform. The average percentage Mean Absolute 

Error (MAE) for the prediction is 3.5%.  

Taiwanese researcher Huang modifies neural network for dynamic control and 

operation of a HREPS consisting of PV and wind power with a backup diesel generator [71]. 

The controller consists of a Radial Basis Function Network (RBFN) which in turns to control 

the MPPT. A modified Elman Neural Network (ENN) is used to govern the pitch angle of 

WT. Feedback is added to ENN for better learning efficiency so that the neurons are 

sensitive to the historical data. The context layer serves as the temporary memory of the 

hidden layer outputs where the signal recurrence is recognized as a one-step time delay 

[72]. Usage of ENN increases average output power of WT by 6.2% whereas RBFN 

increases the output of PV by 14.89%. 
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 Capizzi et al. have acknowledged that fluctuations in the energy production of REPS 

have urged the need of an EMS capable of dealing with possibility of inadequate energy 

production without jeopardizing user demands [73]. The behavioural profiles of each 

production plant and consumption devices are first modelled by several ANNs so that 

energy allocation can be determined thereafter. The predictions of ANN are performed 

ahead of 48 hours. The ANN model applied is Wiener Recurrent Neural Network (WRNN) 

to include new data and adapt to the changes over time. The proposed model excels in 

needing less training data, adapting to temporary phenomena and being able to model the 

small and large-scale characteristics of the signal, compared to traditional approaches. In 

another research by the same team [74], they propose the use of cloud technology to 

enable fast and distributed computation of WRNN while making the data sources and 

authorised clients to be independent of each other while accessing to the results.  

 In a microgrid consisting of PV, WT and microturbine, the hybrid control technique 

consists of a Bacterial Foraging Optimisation Algorithm (BFOA) and ANN to properly control 

the power flows between the energy sources and the grid [75]. The role of ANN 

(Feedforward Backpropagation) is to predict the PV, WT, microturbine and battery 

demands for 24 hours. These predicted values are then given as the input of BFOA so that 

the optimal outputs for the microgrid can be determined. A reduction of 25% in total 

generation cost is achieved in a real-time experimentation.   

2.4.2 Support Vector Machine (SVM) in EMS 

 In 1995, Vapnik et al. have developed Support Vector Machines (SVM) by 

employing Structural Risk Minimization (SRM) principle which is considered as more 

superior to traditional Empirical Risk Minimization (ERM) adopted in ANN [76]. SRM sets 

an upper limit on the expected risk whereas ERM tries to reduce the error on the training 

data. Generally, SVM is applied on classification problems where a function (a hyperplane) 

is produced to separate the two classes without a loss of generality. This is achieved by 

maximizing the margin or the distance between this hyperplane and the nearest data 

points of each class. This hyperplane is thus coined as optimal separating hyperplane [76]. 
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The goal of SVM is to produce a model based on training data which predicts the target 

values of the test data given only the test data attributes [77]. SVM is also known as 

“kernel” method where the complicated computations within SVM can be simplified using 

a kernel function. Figure 2-8 shows a dotted red line acting as an optimal separating 

hyperplane where the distance between this hyperplane and the nearest data point of each 

class is maximized. 

Founded on the concepts of SRM and Statistical Learning Theory (SLT), SVM so far 

has been widely used in numerous of applications ranging from classification, regression 

and non-linear function approximation. SVM is used in many REPS applications as a mean 

to forecast energy consumption with high accuracy due to its ability to solve non-linear 

problems [78]. One important advantage of SVM is that it is easy to be scaled to deal with 

high-dimensional data. However, choosing the right kernel function largely depends on 

designer’s experience. Also, the size of ANN can be fixed via number of features but size 

of SVM is hard to be fixed as each support vector corresponds to a unique feature where 

the number of unique features can’t be known beforehand. In cases of multiple outputs, 

ANN is usually preferred if the outputs may be interrelated. 

 

Figure 2-8 - Optimal Separating Hyperplane [77] 

 Prasanna Vadana et al. develop a dynamic EMS controller to make decisions based 

on status of grid-connected smart microgrid with REPS with SVM and ANN respectively to 

balance power generation and load demand [79]. The experimental results have indicated 

that SVM performs better than ANN in this application as training of ANN is tedious as the 
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system becomes more complex. Rambabu et al. have designed an EMS of which the goal 

is to meet the load demand totally while complying to scheme constraints [80]. The 

proposed model is based on SVM calculation where the output is predicted based on 

training set produced from projected scheme constraints. Firstly, SVR predicts the load 

profile and then SVM is trained to classify the actual load profile and to output the control 

signal to converter for monitoring the power flow. It is reported that SVM outperforms FLC 

and ANN in this application.  

Chia et al. propose a load predictive EMS based on SVM to manage the energy flow 

between a solar energy source, a supercapacitor-battery HESS and load [81]. In the first 

stage of EMS, a RBF kernel - SVR model is implemented in K-step ahead prediction for 

load profiles. Subsequently, another SVM performs load profile identification to decide the 

switching of energy sources such as supercapacitors by using classification method. The 

experimental results have shown that under the SVM EMS, supercapacitor is able to be 

turned on much faster to meet the peak load demand whereas the conventional method 

is 200ms slower, indicating that the battery meets the load first, causing a deep discharge 

which harms the batteries.   

 Huang et al. use Least-Square SVM (LS-SVM) to predict the output of PV power 

influenced in designing an EMS for a grid-connected PV microgrid [82]. Then, Modified 

Artificial Fish School algorithm (MAFSA) is applied to improve the global optimisation ability 

and the convergence accuracy using cost of electricity as objective function. The LS-SVM 

model can predict the output PV power very closely to the actual ones. Paudel et al. 

emphasize the importance of prediction of energy consumption in a residential building in 

formulating an optimal operating strategy [83]. The prediction model is based on SVM-

SVR and the relevant days of training data are selected based on Dynamic Time Warping 

(DTW). Based on the study, usage of DTW with SVR can improve the accuracy of the 

prediction significantly and reduces the training time significantly from 115 hours to 8 mins 

on weekdays and from 30h to 7 mins on weekends. 
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2.5 Unsupervised Learning-based AI Control Strategy 

2.5.1 Self-Organizing Map (SOM) 

 Self-organizing map, as proposed by Teuvo Kohonen, is a mapping tool of a high-

dimensional distribution data onto a regular low-dimensional grid in orderly manner [84]. 

SOM can classify complex and nonlinear statistical relationships found in higher 

dimensional data items into simpler geometric relationships on lower dimensional display 

in an unsupervised way. This preserves the topological properties of the patterns in the 

input space [85]. These neurons are usually arranged over a plane or a line in either 

rectangular or hexagonal shape with a defined neighbourhood function. The important 

features, patterns, correlations within the input data are extracted and are incorporated 

in the internal structure of links and connections of SOM. Thus, the neurons are self-

organized based on the inputs.  

 A three-stage AI-based short term load forecasting is proposed by Hernandez et 

al. as a mean to allow energy production of a microgrid to adapt to the load demand [86]. 

Firstly, SOM is applied to classify electricity consumption based on days and similarities 

found in different load patterns and thus forming different classes or clusters. Each cluster 

is represented by one prototype pattern in the feature space. Then, MLP is used to 

generate prediction values. This model has reduced the errors generated by prediction 

compared to a general MLP. 

 On the other hand, Llanos et al. have implemented SOM as a household classifier 

to study the load patterns by using the socio-economic characteristics of the community 

[85]. This SOM is essential to improve the efficiency of energy supply for uninterrupted 

load for 24 hours. A heuristic method is used as a search module to find the closest class 

for real-time inputs based on similarity. In Ref. [87], SOM is applied in a similar way as 

[85] and is compared to k-mean clustering method. SOM is easier to be applied because 

the cluster number does not have to be defined beforehand while achieving similar 

performance. 
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2.5.2 k-Means Clustering 

 Clustering is a technique to divide data objects into groups based on information 

or feature values found in data that differentiates one group from another without labels. 

Stuart Lloyd first introduced the k-means algorithm in 1957 but it was until 1967 that 

James MacQueen coined the term “k-means”. This algorithm is a partition-based clustering 

method where all clusters are determined at once and data are being classified into each 

non-overlapping cluster based on certain feature information. The idea of k-means 

clustering begins with initializing k objects as initial cluster centres [88]. Then, each object 

is clustered into the nearest cluster based on shortest Euclidean distance. Subsequently, 

the averages of all clusters are updated. The entire process is repeated in a loop until the 

stopping criterion is met. 

 A three-stage AI-based short term load forecasting is proposed by Hernandez et 

al. as a mean to allow energy production of a microgrid to adapt to the load demand [86]. 

In the first stage, SOM is applied to cluster the patterns of different days. Then, k-mean 

clustering is applied in cascade. The classification in cascade could perform better than 

either individual SOM or k-mean clustering. Since SOM does not provide information on 

similarity of these clusters to one another, the proposed method relies on k-mean 

clustering to identify the similarities in different clusters and then group the proximal 

clusters together. In experimental verification, k-mean clustering can reduce the number 

of clusters from SOM into three optimal clusters.  

2.6 Optimisation in Control Strategy 

 In some cases of EMS, the goal of the EMS is not to make operation decisions based 

on triggering events but to make a balanced decision in the presence of two or more 

conflicting criteria. The supervised and unsupervised learnings-based AI perform well in 

outputting a reasonable decision based on inputs which usually represent changes in the 

environment. The goal is usually to supply enough of power to satisfy load demands and 

to store excess power. In such cases, the operation decisions are usually deduced based 

on solar irradiance, SoC of each component in HESS and load demands. On the other 
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hand, operation decisions of an EMS could be made to achieve certain goals such as 

meeting load demands at low solar irradiance while trying to prolong the lifetime of each 

component in HESS. These goals-driven problems are usually solved using optimisation 

methods.  

In the branch of AI-based optimisation, there are two main categories, namely the 

Swarm Intelligence (SI) and evolutionary computations (EC). SI builds and studies 

efficient computational problem-solving methods based on social behaviour of real swarms 

and insect colonies to find optimal solutions to complex optimisation problem. Coordination 

using decentralized control and self-organisation is the key to SI [89]. Examples to SI are 

PSO and CS. On the other hand, based on the idea of survival of the fittest, EC model 

some natural phenomena such as genetic inheritance as well as Darwinian strife for 

survival [90]. Evolutionary computation in solving optimisation problems uses loop 

iterative progress where growth and development of a population is emphasized. The 

growth and development in evolutionary computations is done via mutation and crossover 

phases, similar to that of an organism. DE and GA are popular instances of evolutionary 

computations. 

2.6.1 Genetic Algorithm (GA) In EMS 

 Being one of the most popular algorithms, GA is mainly used to find optimal 

solutions for a computational problem that involves maximizing or minimizing a particular 

function (or cost function) [91]. It is classified as an evolutionary algorithm as GA is built 

upon the biological processes of reproduction and natural selection to determine the best 

solution. Originally motivated by Darwinian principle of evolution through genetic (or 

selection) [92], the popularity of GA can be mainly accredited to its ability to allow the 

user to control the level of randomization without any prior knowledge of given problem 

[91].  

 In GA, each chromosome refers to a possible solution to a problem. Most of the 

applications employ haploid individuals [93], in contrast to diploid individuals in an actual 

organism. The solution is often being encoded in a bit string. Each of the parameter forms 
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a gene on the chromosomes. Due to the use of bit string, an allele can only be either 0 

or 1. If other encoding method is used instead, an allele may have more possible options. 

Crossover is an operation of exchanging information between two parental chromosomes. 

Mutation is done by flipping a bit at a random position on the chromosome. The goal of 

GA is to optimize the fitness function where this function is mainly used to test and describe 

quantitatively how good each solution is. The simplest form of GA should consist of three 

operators, namely selection, crossover and mutation [93]. 

In applications as EMS, GA is usually one of the top choices in solving contradicting 

design objectives when traditional optimisation techniques breakdown due to irregularity 

in search space (lack of gradient information) or the search has become computationally 

intractable. Another huge advantage of GA is that it allows multi-objective optimisation 

which is a complicated procedure for traditional optimisation methods. The downside of 

GA as EMS is that GA only performs well when the parameters are well-tuned and the 

tuning process can be very lengthy occasionally. 

 Gholami et al. present a modified GA to provide an efficient switching schedule of 

the capacitors [94] to reduce energy and losses due to peak power, while maintaining the 

voltage level of the system. The EMS does not only achieve its objectives but also reduction 

in investment cost of the capacitors. British researchers apply GA to improve ESS 

schedules initially generated by simple combinatorial optimisation heuristics [95]. The role 

of GA is to evolve a brand-new schedule not presented in the first heuristic stage. The 

combinatorial optimisation heuristics are the next-fit, first-fit, best-fit and worst fit which 

are the efficient solutions to bin-packing problems. It is shown that peak demand reduction 

is up to 7.7% before GA and it is further cut by another 8% after GA. 

 Hong et al. adopt and modify GA to deal with short-term (24h) energy management 

and load demand in a factory power system consisting of uncertain photovoltaic power 

generation [96]. In the novel method, instead of recording down the hourly on-off state 

using 24 bits, chromosome records the consecutive periods of on or off. Thus, less bits are 

required. This novelty has allowed the impact of different parameters on optimal solutions 
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to be studied. Elsied et al. design a real-time EMS for microgrid systems using GA to lower 

energy cost and carbon dioxide emission while trying to maximize renewable power 

generation [97].  

 Safdar et al. implement an EMS for dealing with occupants’ comfort index of a 

residential building, energy saving and energy prediction using GA [98]. The fitness 

function consists of indoor occupants’ comfort index and corresponding energy 

consumption to reach the least energy consumption. The difference between optimal and 

real environmental parameters serves as input to the fuzzy controller which in turns 

adjusts the input power of the building based on available power, required power and user 

comfort index. The study indicates that this approach improves the comfort index as well 

as consumes less power compared to PSO-based model. Yuce et al. combine ANN and GA 

in scheduling for an optimized domestic EMS to cut energy demand during peak periods 

and reliance on grid power while maximizing the use of renewable sources such as PV 

power [69]. ANN learns the pattern of appliance operation and estimates its energy 

consumption as well as renewable energy generation. GA is tasked to schedule for desired 

level of energy reduction whereas ANN acts as the prediction engine to GA so that GA can 

evaluate the fitness of the solution. The simulation result shows that this model reduces 

energy demand during peak periods and reliance on grid energy. 

 Iranian researchers propose a hybrid optimisation algorithm to find an optimal 

operating point to minimize the fuel consumption cost, voltage stability index and total 

voltage variation of an autonomous microgrid [99]. The hybrid optimisation algorithm 

consists of Harmony Search (HS) and GA. The mutation and crossover components of GA 

are added into HS to improve the exploration and exploitation performance of HS. The 

combination of HS and GA works better than either HS or GA in finding global minimum 

as the hybrid method can explore different solutions effectively. Santis et al. adopt 

Hierarchical GA to tune the Rule Base of a FLC to achieve minimal fuzzy rules [60]. HGA 

emphasizes on an encoding scheme based on control genes and parametric genes. The 

control genes govern the activation of parametric genes by simply activating or 
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deactivating MFs composing a given fuzzy Rule Base via control genes. HGA manages to 

reduce the size of rules in the Rule Base by 53%. 

2.6.2 Particle Swarm Optimisation (PSO) In EMS 

 Birds in flocks and fish in schools prove that coordinated behaviour requires no 

central control [100]. The idea of mimicking social behaviour of birds was conceived to 

produce computational intelligence by employing social interaction rather than individual 

cognitive abilities [101]. PSO studies how several simple entities interact and influence 

each other to move to region of interest such as food in an actual phenomenon. These 

simple entities are known as particles in the algorithm [101]. They are placed in the search 

space of problems and each computes its optimality based on objective function at its 

current location. Each particle then determines its movement via the search space by 

combining historical information on its current and best (best-fitness) positions with those 

of the members of the swarm with random perturbations.   

 In comparison with GA as EMS, PSO tends to more computationally efficient than 

GA [89] because in evolutionary algorithms, population size is required to be bigger for 

better performance. PSO also converges to the best solution much faster than GA [89] 

because PSO shares global best values with all particles in the swarm whereas 

chromosomes in GA only share information with each other during crossover stage. 

However, PSO could be trapped in local minimum whereas the mutation feature in GA has 

reduced the possibility of GA being trapped in local minimum. 

 Garcia-Trivino et al. design an optimized EMS to solve multi-objective problem for 

a grid-tied HREPS [102]. There are three objective functions, namely operating costs, 

efficiency and devices lifetime. Weight aggregation method is applied where the set of 

weights are selected corresponding to minimum value of the multi-objective function. 

Comparing to EMS based on individually optimized objective function and EMS based on 

optimisation of multi-objective function with equal weights, the proposed EMS achieves 

the best performance among the three. In Ref. [103], Multi-Objectives PSO (MOPSO) is 

applied to simultaneously optimize sizing as well as operation strategies of a HREPS with 
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minimal Net Present Cost Energy Not Served. Binary PSO is applied in Ref. [104] to 

minimize the energy cost and carbon emission while maximizing the power of the available 

renewable energy resources. The optimal energy mixing rate between grid power and 

renewable power is determined by PSO to minimize the daily energy cost of a renewable 

microgrid in Ref. [105]. In these papers, PSO is proven to have the capability to solve 

multi-objective problems. 

 Taiwanese researchers have proposed a PSO-based EMS of a HREPS consisting of 

PV arrays, wind turbine, microturbine, battery banks and utility grid [106]. Unbalanced 

power is redistributed to more superior element via roulette wheel redistribution 

mechanism to preserve the searching diversity of PSO. The proportion of an element in 

the roulette wheel is decided by its cost as lower cost is more competitive and more 

preferred. A penalty mechanism is also introduced to reduce deep discharges of battery 

bank. Simulation results have shown that the proposed PSO method improves the 

performance by 0.82% and 1.76% respectively compared to PSO based Grid-Priority 

method and PSO based random method. In Ref. [107], Ju et al. design a three-stage 

hybrid algorithm based on PSO, entropy weight method and fuzzy satisfaction theory to 

perform multi-objective stochastic scheduling of a virtual power plant. Entropy weight 

method is used to determine the weight of output of each objective function. Fuzzy 

satisfaction theory is used to construct model decision-making method for calculation of 

combined optimisation results. As a result, system operation cost and abandoned energy 

cost could be minimized while virtual power plant operation income reaches maximum. 

 Guaranteed Convergence PSO with Gaussian Mutation is developed by Abedini et 

al. as an optimal EMS for PV-WT-Diesel independent hybrid REPS microgrids [108]. The 

objective is to minimize the capital investment and fuel costs of the system. The position 

of each swarm is mutated after the update of velocity and positional values randomly if 

rand(0,1) < Pn where Pn is the mutation probability. Both mutation as well as guaranteed 

convergence help to find more accurate results with less computational time.  
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 In Ref. [109], Baziar et al. propose a self-adaptive optimisation algorithm based on 

θ-PSO to explore the search space globally as the EMS of microgrids. θ-PSO takes 

advantage on the phase angle vectors to update the velocity and position of each particle 

to facilitate faster and more stable convergence. The proposed self-adaptive modification 

method consists of three sub-modifications which allow the particles to choose their 

updating operations depending on their current situation. Bigdeli et al. compare several 

different optimisation algorithms, including PSO and its variant, Quantum-behaved PSO 

(QPSO) in managing load sharing of a hybrid REPS to achieve optimal performance [110]. 

The optimisation takes the forecasting of solar power and air temperature together with 

required load as the inputs and the power supplied from each source and the storage of 

battery in each hour as the outputs. It is found that QPSO can outperform Imperialist 

Competitive Algorithm (ICA), Ant Colony Optimisation (ACO), PSO and CS with faster 

convergence rate. In Ref. [111], three EMS responsible of deciding the energy dispatch 

among the ESS devices are constructed based on PSO and are compared. The study is 

determined to find the suitable goal which will benefit the entire REPS in long run. The 

first is aimed to reduce the ESS utilization costs, the second EMS to improve the ESS 

efficiency with the third to optimize the lifetime of ESS. The study reveals that the third 

EMS performs the best as it needs smaller ESS with lowest acquisition cost of entire system 

over a span of 25 years. 

 As an optimisation algorithm, PSO is also used to tune MFs of FLC, the main 

controller in EMS of many REPS. For instance, in Ref. [58] where the FLC inputs are net 

power flow and batteries SoC while scheduling of hydrogen production and consumption 

being the output of the controller, the role of PSO is to tune the MFs. The optimisation 

procedure considers the weekly operation and management (O&M) costs and LPSP. As a 

result, the optimisation improves the system performance by reducing fluctuation in 

batteries SoC (longer lifetime), increasing average SoC by 6.18% and less working hours 

for fuel cell. In comparison to an unoptimized FLC, the optimized FLC could reduce the 

O&M costs and LPSP by 57% and 33% respectively. Chong et al. have shown that 
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optimisation of MFs in FLC using PSO allows the REPS to operate the supercapacitor within 

the recommended SoC range and utilize the limited energy of supercapacitor effectively 

[10]. 

2.6.3 Ant Colony Optimisation (ACO) 

 Ant Colony Optimisation (ACO) is a metaheuristic method for solving combinatorial 

optimisation problems. ACO is inspired by how ants find the shortest paths from their nest 

to food sources [100]. The aim is to let the artificial ants find paths through a decision 

graph which corresponds to good solutions. In common practice, an ant constructs a 

solution via a sequence of probabilistic decisions where each decision extends a partial 

solution by adding a new solution component until a complete solution is reached.  

Artificial pheromone is left to mark the edge of the corresponding graph in the 

decision graph if the temporary solution is good. This artificial pheromone will then act as 

a guide to the ants from following iteration to search near the path for good solutions. The 

amount of pheromone deposited relies on the quality of the solution found [112]. Some 

percentage of pheromone from older iterations will be evaporated to reduce the influence 

on newer iterations [112]. In summary, ACO is an iterative process where these 

pheromones are transferred from one iteration to the next. 

 ACO seeks applications in discrete optimisation problems (combinational 

optimisation) where the variables are usually not continuous in nature. This is similar to 

the paths selected by ants in searching for food where these paths are discrete: they are 

either chosen or not chosen. Thus, ACO is very useful as a tool to solve scheduling 

problems in EMS. This is done via probabilistic calculations such as binomial distribution. 

Comparing to GA, it is less affected by poor initial solution as its calculation involves 

random combination of random path selection and colony memory. However, it is slightly 

more computational expensive as it must retain memory of entire colony, unlike GA which 

requires to remember the previous generation only. One major disadvantage of ACO is 

that the probability calculation is complicated as its distribution may change by iterations. 
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Compared to PSO, due to randomness of probability involved in ACO, it is less prone to 

getting stuck at local minimum. 

Collaboration research among British, Iranian and Spanish researchers have led to 

an EMS based on multilayer ACO (MACO) which is aimed to determine an optimized energy 

schedule for operation of a microgrid [113]. The number of layers is equal to the number 

of design variables and the number of nodes in each layer is equal to the number of 

allowable values corresponding to each variable. The ants will randomly choose the 

allowable values and in each time interval this process will be repeated from 00:00 to 

23:30. The probability of choosing each path in the first iteration is equalised by placing 

same amount of pheromone over them. At time 23:30, cost function is calculated for each 

ant and the least cost is chosen by increasing the pheromone of least expense route. 

Comparison against conventional EMS and PSO-based EMS has indicated that MACO-based 

EMS further improves system performance by 20% and further reduces energy cost by 

5%. Bigdeli has compared 5 optimisation algorithms, namely PSO, QPSO, ACO, ICA and 

CS in the context of optimal energy management of HREPS [110]. In the study, the goal 

of EMS is to minimize the fuel consumption by maximizing the renewable energy use and 

to improve performance of the battery. It is found that ACO performs better than CS and 

PSO in terms of ratio of hydrogen production to hydrogen consumption by more than 0.4%. 

2.6.4 Bacterial Foraging Optimisation Algorithm (BFOA) 

 Bacterial Foraging Optimisation (BFOA) is a global optimisation algorithm well-

suited for optimisation and control problems. The logic behind the idea is that animals are 

more likely to survive longer if they are able to obtain enough of food to sustain themselves, 

allowing them to reproduce easily with higher success rate [114]. Therefore, this has led 

to an evolutionary principle which seems fit to be applied into optimisation problems.  

 It is assumed that bacteria obtain nutrients in a way that maximizes their energy 

intake E per unit time T spent foraging. In computational intelligence sense, the goal is to 

maximize a function like E/T or to optimize an objective function of E/T. Individual 

bacterium also communicate with others by sending signals [115]. These two factors affect 
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how a bacterium makes a foraging decision. Passino has developed the BFOA to mimic the 

chemotactic movement of virtual bacteria in problem search place [115].  

 Ref. [116] has shown an interesting result that BFOA performs better than PSO and 

GA when the problem gets higher dimensional. The adjustable run length has allowed 

BFOA to move towards the minimum easily. Also, PSO relies on a single particle with global 

best value where the entire process of decision-making bases on. The second-best particle 

is however ignored. In the reproduction stage of BFOA, half of the population influences 

the following generation, increasing the accuracy of the result. As a result, BFOA is applied 

in EMS module when the operating condition is constrained by several contradicting 

variables where PSO fails to produce satisfying results. BFOA, however, suffers in higher 

number of parameters involved, making it less simple to be adopted compared to PSO. 

Roy et al. have designed a hybrid BFOA and Artificial Neural Networks (ANN) based 

EMS which is aimed at energy production cost reduction and better usage of renewable 

energy resources by hourly ahead for a microgrid [75]. Firstly, the PV, WT, micro turbines 

and battery demands are predicted using ANN. Then, the predicted values are given as 

the input of BFOA so that the optimal outputs for the microgrid system are produced. 

Comparison with GA and Artificial Bee Colony (ABC) has clearly shown that generation 

cost reduction by 25% is achieved by hybrid BFOA and ANN EMS with an additional benefit 

of less computational time. 

2.6.5 Cuckoo Search Algorithm (CS) 

 Cuckoo birds are brood parasites as they do not build their own nests but rather 

lay their eggs in the nest of another species of birds. The care for the young is left to the 

host. In the optimisation context, each egg in the nest represents a solution while a 

cuckoo’s egg represents a new solution [117]. The goal of the algorithm is to serve the 

new and potentially better solutions to replace the less fit solutions in the nest. The 

algorithm also combines with Lévy Flight to describe the random-walk of animals because 

the next move is based on both current state (location) and the transition probability to 
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the next location [118]. A Lévy Flight is a random-walk in which the step-lengths are 

calculated based on heavy-tailed probability distribution.  

CS has fewer control parameters compared to other search techniques [117]. CS 

starts with an initial population of n host nests. These initial host nests will be randomly 

attracted by the cuckoos with eggs via random Lévy Flight. Then, the nest quality will be 

measured and compared with another random host nest. If the host nest is better, then it 

will replace the old host nest. This new solution now has the egg laid by a cuckoo. Under 

the probability Pα, if the host discovers the egg, it will either throw out the egg or abandon 

the existing nest and build a new one. In computational intelligence wise, this is done by 

replacing the abundant solutions with the new random solutions [117].  

 [119] has shown that CS is superior to many metaheuristic algorithms in solving 

for multimodal objective functions. Simulation results have indicated that the convergence 

rate is insensitive to the probability Pα and thus tuning is not needed for a specific problem. 

In short, CS efficiently strikes a balance between the local nearby exploitation and global-

wide exploration in the search space of the problem [117]. In the context of EMS, CS has 

great potential to be a popular option given the fact that it has less control parameters to 

be tuned. CS, however, loses the flexibility to be tweaked to achieve higher accuracy and 

shorter convergence time, causing CS to be trapped in local optimal value rather easily. 

 Berrazouane et al. develop an optimized fuzzy logic controller (FLC) for operation 

of a standalone hybrid power system via cuckoo search algorithm [43]. CS is fed with 

weekly solar irradiation data, ambient temperature data and load profile to tune the MFs 

of the FLC within the underlying capacity and operational constraints. As a result, the 

optimized FLC can minimize the LPSP, excess energy (EE) and LEC. In comparison with 

FLC-PSO, FLC-CS manages to keep LPSP under 10% and to keep SoC at higher level. In 

[110], PSO, QPSO, ACO, ICA and CS are compared in the context of optimal energy 

management of HREPS. In the study, the goal of EMS is to minimize the fuel consumption 

by maximizing the renewable energy use and increasing performance of the battery. In 
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the study, it is found that CS could perform slightly better than PSO in terms of ratio of 

hydrogen production to hydrogen consumption by 0.6%. 

2.6.6 Differential Evolution (DE) 

 Evolutionary computation uses iterative progress where growth and development 

of a population are emphasized. DE emerges as a very competitive form of evolutionary 

computation. Unlike other evolutionary algorithms, DE uses difference of the parameter 

vectors to explore the objective function landscape [120]. Also, there are fewer control 

parameters in DE, making the implementation of DE to be relatively easier compared to 

many evolutionary algorithms.  

 The general problem formulation for a Differential Evolution is to find  𝑥∗ ∈

𝑋 such 𝑡ℎ𝑎𝑡 𝑓(𝑥∗) ≤ 𝑓(𝑥), ∀ 𝑥 ∈ 𝑋. A typical evolutionary algorithm consists of two main steps: 

initialization and an iterative transformation of a population of candidate solutions 

belonging to the search space 𝐷 ⊂ ℝ𝑛 [121]. The elements in each iteration are constructed 

by mutation and crossover to be included in the next generation. Each element xi from the 

current population is created by a mutant element denoted by yi and a trial element 

denoted as zi is produced via crossover from xi as well as yi. In almost all DE variants, the 

selection operators work by comparing the trial element to current element and 

transferring the best of them in the new population.  

 Crossover aims to improve the potential diversity by allowing the donor vector to 

exchange its components with the target vector to form trial vector [120]. Selection is 

carried out next to determine whether the target or trial vector survives to the next 

generation to maintain the population size over subsequent generations. DE is a favourable 

option as core of EMS since it has fewer control parameters compared to GA. In certain 

cases, if the number of populations is reduced significantly, DE suffers in lower 

convergence rate compared to GA [122]. 

 Abedi et al. propose the use of DE to determine the optimal EMS of hybrid energy 

systems including various generators and storage units (battery, electrolyser and 

hydrogen tanks) [61]. The aim is to minimize the overall cost of the system, unmet load 
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and fuel emission simultaneously by taking uncertainties associated with REPS into 

considerations. Compared to GA and PSO, DE performs the best by scoring lowest cost 

and minimal fuel consumption. 

 A hybrid HS with DE algorithm is developed by Zhang et al. [123] to solve a day-

ahead scheduling problem of a microgrid consisting of PV cells, WT, diesel generators and 

battery storage system. HS is not efficient in generating new elements and thus the hybrid 

takes advantage on ability of DE to produce new individual through difference between 

any two individuals in the population. Spanish researchers have resorted to the use of a 

novel two-step EA to tackle the joint-optimisation of microgrid structure and operation 

[124]. The first EA operates to obtain the optimal values for parameters of components in 

the microgrid while the second EA plans the operational part of the microgrid. The 

operational part of the microgrid consists of peak-shaving, switching of ESS and main grid 

to supply power to the load.  

Another team of Spanish researchers use nested EA to approach similar issue [125]. 

The process starts with an initial solution for ESS scheduling using deterministic approach 

where its initial structure part is taken from first evolution. When this part is set, a different 

EA is applied in turn to find an optimized ESS scheduling. Subsequently, a different EA is 

used for structure part. The entire scheme is applied over a sequential pattern until a 

stopping criterion is met. The nested EA is proven to work better than traditional EA with 

a similar number of function evaluation.  

In dealing with realistic cases where predicted values deviate away from actual 

values significantly, Ikeda et al. have proposed a framework using Epsilon differential 

evolution (ϵDE) [126]. The goal of the EMS is to minimize the cost while maximizing the 

energy production. Therefore, a two-time steps recalculation strategy with ϵDE is designed 

to obtain a quasi-optimal solution under lower computational time. Mallol-Poyato et al. 

devise an optimal discharge scheduling of ESS in microgrids using an evolutionary 

algorithm (EA) so that consumption from utility grid can be minimized [127]. A total of 26 

low-level heuristics to represent different percentage of discharge are defined and encoded 
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before undergoing optimisation by EA. It is found that a reduction of 5% of energy 

consumption from utility can be achieved.   

2.7 Incremental Learning in Control Strategy 

 In law of nature, a species which fails to adapt to the changing environment will 

not survive long but go extinct. This survival skill has since then added into the learning 

scheme of AI models. In AI context, incremental learning is the ability of a model to adjust 

itself in a flexible manner to new environmental conditions through self-correction over 

time as new events or operational conditions happen or new input data is available [128]. 

 A learning system is said to possess incremental learning ability [128] when it has: 

• Ability to perform on-line and lifelong learning 

• No need to remember individual historical data points in subsequent stages 

• No prior knowledge about the topological structure of the neural network  

• Ability to tune network’s structure incrementally 

• No requirement on prototype initialization. 

Both supervised and unsupervised learnings can be incorporated with incremental 

learning feature once these learnings have attained said features. In many real-world 

applications, it is impossible to obtain all relevant data during the training stages. With 

incremental learning, a useful mechanism to learn new knowledge without having to go 

through ‘catastrophic forgetting’ can be devised to refine existing knowledge, to 

accommodate new data in an incremental way while keeping system under use [128].  

In this research, incremental learning is very important to the EMS because the 

EMS needs adaptability to handle unseen data. For instance, the EMS could be benefitted 

if it can predict the load demand which in turn is resulted by a change of user’s behaviour. 

As living habits change progressively in nature, incremental learning allows the prediction 

module in the EMS to learn and adjust itself over time. Considering the global climate 

change and intermittent nature of renewable energy production, REPS power profile may 

not be stabilized and settled down to similar level every day, limiting the relevance of 

training datasets as time passes. Thus, a solution that can adapt to varying conditions 

swiftly as well as to detect these variations is becoming vital [37]. Trainings of AI models 
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are usually pre-optimized and not entirely continuous due to a fixed training dataset. Thus, 

model training must be performed regularly or on demand basis to remain context 

relevance [26]. Without incremental learning, many AI models could lead to a dilemma 

known as Stability-Plasticity which describes the failure of a network to learn while 

retaining the previously learned knowledge. This dilemma could lead to a serious issue in 

real world applications where new classes of data could rise anytime. Also, learning process 

could be made more efficient when training data can be inputted in batches under 

incremental learning. Models are thus able to learn anytime while working to produce a 

decision as EMS. As a result, incremental-learning-enabled EMS can learn anytime, 

allowing the system to be able to operate from zero initial knowledge. 

In real life, data either come in labelled or unlabelled. Labelled data are usually 

useful for performance improvement but difficult to be prepared. Thus, labelled data are 

scarce and expensive in terms of resources. On the other hand, unlabelled data are 

abundant but disorganised. Efforts are therefore required to be put in to prepare and 

process the unlabelled data. As described in Subsection 2.5, Unsupervised Learning 

enables the networks to learn using unlabelled data. Thus, no prior knowledge is required 

on the data [40], [129]. The learning strategy required in this research could be either 

self-organizing learning or statistical learning. Since the data available in this research is 

incomplete at initial stage, it is nearly computational impossible to analyse the topological 

structure for labelling, unless labels could be produced for every known class beforehand. 

Thus, unsupervised learning can be adopted in this project to approximate and learn the 

topology of the data distribution. 

A suitable AI model for this research is hence Unsupervised Incremental type. An 

example of such model is the Self-Organizing Incremental Neural Network (SOINN). 

Following the introduction of SOINN by Hasegawa Laboratory, SOINN which is built and 

developed based on SOM possesses the capability of associating, reasoning, knowledge-

transferring and forecasting except learning [130]. In view of the common Neural Network 

architecture, most of the ANN require certain information regarding the input data space 
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to be known beforehand [130]. This information could be the statistical distribution of data 

such as covariance or simply the learning environment of the networks which in turn 

affects the parameters of creation of the said networks. Despite the shortcomings of other 

networks, SOINN, resembling SOM, does not need any information on the input data space 

for efficient performance. 

The major advantages of using SOINN are [130]: 

• There is no need to pre-define the mathematical model required for learning, unlike 

Multilayers Perceptron Neurons which require mathematical model for each layer 

of neurons present (hyperbolic tangent, radial basis function and other suitable 

models). 

• Noise – eliminating capabilities for better pattern recognition. 

• SOINN works with any existing programming language and any hardware available. 

As far as the review process goes, there is no reported research which uses 

Incremental Learning AI models as EMS in any power system. Thus, usage of Incremental 

Unsupervised Learning is a major novelty in the research. Also, there is only a handful of 

research which use Unsupervised Learning models as EMS as depicted in Section 2.5. In 

Ref. [11], SOM is first used to cluster the data into classes to reduce the number of labels 

required to be calculated based on assumption that similar data should share similar labels. 

Then PSO is used to find optimal label for each data. Sections 2.3 and 2.5 have indicated 

that Unsupervised Learning could improve the prediction accuracy where prediction 

module is a significant part of proposed EMS in this research for better system 

performance. 

2.8 Short-term Solar Irradiation Forecasting 

  Among the RE sources, solar-based RE garners majority of the attention due to its 

region-wide availability and more matured technology. The intermittent nature of solar 

energy, however, disfavours its eligibility as primary energy source for many applications. 

Therefore, EMS is essential to solar-based renewable energy management [132]. Having 

a predictive control to plan ahead before disruption occurs helps EMS to achieve better 

management of solar-based energy [133] and to plan, run and preserve the stability of 
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national power grid in cases of grid-tied REPS [134] and [131]. Thus, accurate prediction 

of solar irradiance trend could be decisive in successful deployment of solar-powered 

systems [139-140]. As RE is highly dependent on occurrence of natural phenomena such 

as climate and weather, combining the fact of highly fluctuating user demand, forecasting 

techniques such as AI models help to make predictive control strategy possible to achieve 

better performance and robustness [134]. Good performance solar forecasting improves 

the integration of solar power generation into the grid when solar intermittencies could be 

expected in time [135]. It will also reduce the usage of storage battery, helping to prolong 

the battery lifespan [137]. 

 Solar irradiance forecasting also helps in predicting output of solar power generated 

since the intensity of solar irradiance contributes to the amount of solar power generated 

by solar panels. Most of the literatures show that solar irradiance forecasting requires 

atmospheric information as well as satellite data [138], depending on the time horizon of 

forecast [144-145]. Prediction of solar irradiance can be classified based on prediction 

horizon, the long-term (more than a day) and short-term (less than one day). The 

selection of solar irradiance forecasting model depends on forecast time horizon, time 

resolution and climate type specific to the region under studied [146-147]. In general, the 

common models applied include clear sky model, clear sky and clearness indices model, 

persistence model, regressive methods, Artificial Intelligence model, Remote Sensing 

model and Numerical Weather Prediction model [139]. Image recognition techniques are 

also applied in [140] for prediction time horizon from 30 minutes to 2 hours. Researchers 

in [141] combined the use of sky-imaging techniques together with real-time irradiance 

measurements to produce a hybrid method to tackle highly variable solar irradiance cases. 

 Empirical models can be considered as mathematical equations combining the input 

variables with numerical coefficients [131]. Accuracy of empirical models such as Angtröm-

Prescott (A-P) model depends on the coefficients and mathematical functions describing 

the solar irradiance conditions. In Ref. [142], an AI model, ABC is applied to calculate the 
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optimal coefficient of empirical regression model of solar irradiance forecasting. The 

statistical errors are then improved by 40%. 

 In short-term solar irradiance forecasting, Blaga et al. conclude that Machine 

Learning models and hybrid models (Machine Learning models with classical statistics) 

perform very well regardless of climate type [143]. The most common AI models applied 

in solar irradiance forecasting are none other than ANN and SVM [131], [134], [144]. 

Paulescu et al. study 5 different statistical models and compare their novel model to 

Random Walk, Moving Average, Exponential Smoothing, Autoregressive Integrated 

Moving Average for performance evaluation of short-term forecasting of solar irradiance 

[145]. The developed model consists of an experimental clear-sky solar irradiance 

estimator and a statistical estimator determining whether the sun shines or not. It is 

worthy to point that there is no best model in the study. In daily horizon, Khosravi et al. 

study how AI models such as Group Method of Data Handling (GMDH) Neural Network, 

Multilayer Feedforward Neural Network (MLFNN), ANFIS, ANFIS with PSO, ANFIS with GA 

and ANFIS with ACO perform in forecasting [146]. With inputs such as month, day, 

average air temperature, air pressure and other variables recorded in different locations 

in Iran, GMDH Neural Network model outperforms the rest with RMSE of 0.2466 

kWh/m2/day. A wide variety of inputs helps to uncover the hidden patterns and 

relationship in complicated solar irradiance trend, further improving the forecasting 

performance of these AI models [146]. 

 Indian researchers compare a few weather forecasting models built upon Data 

Mining techniques, Regression approaches such as Multiple Linear Regression (MLR), 

Autoregressive Integrated Moving Average (ARIMA) and ANN [147]. It is noted that 

weather prediction is accurate with large training dataset consisting of years of data. It is 

also acknowledged that combining the outputs of the models would improve the 

forecasting results. Since each model learns differently, knowledge from one model could 

complement and supplement one another. Combining multiple AI models simultaneously 

or sequentially can benefit from individual predictive power and complement one another 
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[151], [149]. Ref. [144] describes these methods as Ensemble Methods. It works on the 

idea that by combining the knowledge bases together, Ensemble Method is able to produce 

better overall generalizability. Ref. [150] use regression and clustering models to model 

REPS components and forecast of active power. In Ref. [151], ensemble forecasting 

methods are shown to outperform non-ensemble methods. Several researches have 

proven that hybrid approach consisting of clustering model as well as a predictor model 

could perform better than ANN and SVR individually [135], [34], [39]. Combination of 

several predictor models such as SVR, Gradient Boosted Regression (GBR) and Random 

Forest Regression (RFR) could perform better than single AI model, as proven in Ref. [152]. 

Jiang et al. propose a SVR with Gray Wolf Algorithm (GWA) EMS model to accurately 

estimate the total load demand of hybrid electrical vehicles so that the operating cost can 

be optimized in 24-hour time frame [153]. 

French researchers investigate 11 statistical and machine learning algorithms for 

solar irradiance forecasting with 1 to 6 hours of time horizon [154]. It is interesting to find 

that MLP and Autoregressive Moving Average (ARMA) work very well in poor variability 

cases, ARMA and Bagged-Regression Trees dominate in the medium variability cases 

whereas RFR and Bagged-Regression Trees ace in complex variability situations. Benali et 

al. decompose the solar irradiance into three components, namely normal beam, 

horizontal diffuse and global components [155]. Then, three methods, Smart Persistence, 

ANN and RFR are applied for prediction for time horizons from next hour to next 6 hours. 

RFR is found to be the best predictor with increasing forecasting horizon due to its 

ensemble feature. 

Akarslan et al. propose a prediction strategy for short-term application using 

historical data [156]. The strategy is based data similarity. Prediction of future solar 

irradiance (next hour) data is made using data of a day statistically similar to the prediction 

day. Advanced AI models fail to produce good forecasting performance using only hourly 

solar irradiance values as sole input. Akarslan and his team also improve A-P method by 

including empirically parameters [157]. These empirical parameters could be historical 
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solar irradiance, extra-terrestrial irradiance and clearness index. These studies prove that 

data similarity could improve the forecasting performance. 

Grantham et al. suggest the use of interpolation to produce five-minute solar 

irradiance values (global horizontal and direct normal irradiance) from the hourly mean 

values recorded [158]. Extreme Learning Machine (ELM) is used in [159] together with 

mutual information to form WMIM for short-term forecast horizon between 5-minute and 

3-hour ahead. The research concludes that ELM is more computationally efficient than 

ANN. Khosravi et al., on the other hand, develop two forecasting models using machine 

learning algorithms based on types of input data [160]. The first type of input data consists 

of atmospheric parameters whereas the second type includes additional historical solar 

irradiance data. With the second type of input, ANFIS, SVR and MLFNN could produce 

correlation coefficient score higher than 0.95. Some researchers also try k-mean together 

with SVR to cluster the data depending on the seasonality, greatly improving the forecast 

results [161]. In Ref. [162], SVR with RBF scores nRMSE of 12.41% with combination of 

temperature, humidity and sunshine duration.  Marzouq et al. explore the usage of AI 

model in automatic selection of suitable inputs to General ANN to save computational 

resources while estimating daily global solar irradiance [163]. Evolutionary ANN (EANN) is 

proven to be able to carry out these two tasks simultaneously.  

 Bright et al. use a chain of Markov chains to determine future weather conditions 

such as pressure, wind speed and cloud height for calculation of atmospheric transmission 

of solar irradiance. Then, the one-minute interval irradiance could be forecasted accurately 

[164]. Alfadda et al. consider the measurement of aerosol into forecasting MLP model to 

explain fluctuating solar irradiance trends in desert areas [165]. In Ref. [166], ground 

measurements of meteorological variables and Global Horizontal Irradiance are proven to 

be essential for Moroccan weather forecasting. 

 Lotfi et al. forecast solar power using historical input data available publicly with a 

novel ensemble algorithm based on kernel density estimation [167]. In this study, the 

most similar cases from historical dataset to the input are used to calculate ensemble 
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prediction. In Ref. [168], the team uses Symbolic Aggregate Approximation method to 

explore time-series data in other feature dimensions to increase calculation speed as well 

as dimension reduction. Reikard et al. approach short-term solar irradiance prediction 

problem using frequency domain models in [133]. When the forecast horizon is between 

1-3 hours, frequency domain model has comparable results compared to ARIMA. 

Researchers in [169] present a work to estimate photovoltaic generation using historical 

data such as generated power and past temperature forecasts without solar irradiance 

data. With the aid of theoretical clear-sky irradiance model, the work could produce good 

forecast despite lacking irradiance data. Mpfumali et al. prove that statistical-based 

forecasting method could outperform general machine learning algorithms (Stochastic 

Gradient Boosting and SVR) in day-ahead hourly global horizontal solar irradiance 

forecasting [170]. Methods which emphasize on solar irradiance trend such as Triple 

Exponential Smoothing [171] is applied in a study in Singapore for forecast horizon of 15 

minutes. Huang et al. demonstrate that Boosted Regression Trees could achieve good 

forecasting performance with nRMSE of 24.3% for forecasting horizon of one hour [172]. 

Many AI algorithms adopted in the literature such as Deep Learning (in Refs [173], 

[174] and [175]), ANN, SVR and their variants are Supervised Learning models. This is 

because labelled data are very important in the learning stage of these AI models before 

they are readily deployed to perform real-time weather forecasting. Labelled data serve 

as the teacher in the learning phase so that feedbacks can be fed immediately to the model 

itself to correct its parameters. Weather forecasting such as solar irradiance forecasting is 

a regression problem with continuous data in nature. As a result, it is very instinctive to 

approach the problem via Supervised Learning AI models. However, it is irrefutable that 

the trends of the weather conditions do play a very important role in forecasting future 

weather conditions. Wang et al. find that Unsupervised Learning AI models greatly 

improves general AI forecasting performance by reducing the possibility of irrelevant data 

interfering [176]. Chinese researchers such as Wang et al. use Unsupervised Learning 

model (SOM) to label clustered high-resolution solar irradiance data with prediction label 
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prior to application of Deep Learning networks to establish classified forecasting model 

[177]. Rego et al. have also developed k-Nearest Neighbours algorithm to forecast solar 

irradiance conditions in Lisbon for performance comparison with ANN [178]. It is noted in 

the research, K-Nearest Neighbours method outperforms ANN. Ghayekhloo et al. propose 

a short-term hybrid solar radiation forecasting using clustering approach, game theoretic 

self-organizing map (GTSOM). The role of GTSOM is to determine the appropriate cluster 

of the input data such that the cluster information serves as the input to the predictor 

model, the Bayesian Neural Networks (BNN) [135]. 

Zhou et al. review 232 research papers related to solar radiation prediction by 

comparing three main input parameters as well as feature selection methods [39] as 

shown in Figure 2-9. AI models reviewed are categorized based on model structure and 

model destinations.  

 

Figure 2-9 – Flowchart of Solar Irradiance Forecast summarised by [39] 

  Even though some Supervised Learning models do consider statistical trends of 

the input data, models such as Deep Learning require complicated networks and huge 

number of neurons to achieve this. Models such as SVR and ANN fit the input data with 

complex polynomials equations to achieve generalization.  
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Other than the Supervised Learning, Incremental Learning, which enables 

adaptation to new data through real-time learning is extensively studied [128]. In many 

real-world applications, it is impossible to collect all relevant data during the training 

stages. With Incremental Learning, a useful mechanism to learn new knowledge without 

having to go through ‘catastrophic forgetting’ can be devised to refine existing knowledge, 

to learn new data in an incremental way while keeping system running as usual [128].  

In solar irradiance prediction, Incremental Learning improves AI models by learning 

new weather data which are unseen previously. Brazilian researchers proposed an 

ensemble of models of Typicality-and-Eccentricity Method for Data Analysis (TEDA) as well 

as fuzzy model to forecast mean monthly temperature using historical values of monthly 

temperature data, cloudiness and humidity [179]. TEDA is a supervised incremental model 

that operates on data density and data cloud scattering without any prior knowledge. TEDA 

helped improving the forecast model significantly. In short, Incremental Learning allows a 

system to learn and work from zero knowledge simultaneously. 

2.9 Embedded Systems 

 Artificial Intelligence models, though are adaptive and much smarter than classical 

EMS, are generally more computationally complex than classical EMS. Despite the adaptive 

and intelligent nature of AI models, their inherent computational complexity poses a 

significant obstacle, particularly when considering real-time applications. As a result, most 

of the EMS implemented using AI in past research are either simulated in MATLAB (via a 

PC) or using PC as an interface between systems using Python, C or Java environments. 

Such situation has heavily reduced the popularity of AI-based REPS due to bulky and costly 

system physical size. 

 Addressing these limitations, the current trend suggests the exploration of cloud 

technology as an alternative to PCs for implementing AI-based REPS. Cloud platforms offer 

substantial computing power and data storage at a reduced cost. The drawbacks are lack 

of agility, responsiveness, privacy and personalization [180]. Cloud technology also relies 
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heavily on internet connection. Since this REPS system is a standalone system which seeks 

applications in rural areas, internet connection is not a guarantee but also a luxury. 

Amidst these considerations, embedded systems emerge as a pragmatic solution. 

An embedded system is an electronic system which is tasked to perform a specific function 

within a larger system [181]. Embedded system is usually used in a real-time system 

where there exists a guaranteed worst-case response time to any critical event as well as 

acceptable response time to general events. Embedded systems are generally smaller in 

size and boot faster. They are usually cheaper because they use less computational 

resources. 

Although embedded systems could be the alternative to PCs, come with 

computational limitations compared to PCs. In regular PCs, cooperation of both Computing 

Processing Units (CPU) and Graphic Processing Units (GPU) could accelerate the training 

of AI models. The compute-intensive portions of the application can be loaded onto GPU 

whereas CPU runs the remaining codes [182]. CPUs, in fact, are designed to have a few 

cores optimized for sequential serial processing whereas GPU has massive parallel 

processors consisting of thousands of smaller cores which are best at handling multiple 

tasks simultaneously [182]. On the other hand, for AI to be able to run in embedded 

systems, the AI models must be simplified so that they do not need many resources. 

Therefore, in Ref. [183], optimisation techniques are introduced so that machine learning 

operations can be run freely on embedded platforms. So, the AI model chosen in this 

research should involve minimal computational expensive steps as possible so that it can 

be successfully implemented in embedded systems for real-time applications. 

 An example of embedded platform is Raspberry Pi. Given the specification of 

Raspberry Pi 3 B+, many machine learning algorithms need to be optimized so that the 

complex mathematical operations in these algorithms can be performed within the 

computational capabilities of Raspberry Pi. Based on the reviews that follow, 

microcontroller such as Raspberry Pi does possess the minimal capability of running 

Artificial Intelligence models. A group of British researchers uses Convolutional Neural 
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Networks (CNN) to enable angular readjustment of a projector within a fringe projection 

system in real-time without having to recalibrate the system [184]. The CNN is 

implemented on Movidius USB stick so that common hardware such as Raspberry Pi can 

be used in real time. Thus, reliance on computational resources is greatly reduced. 

 Oniga et al. have designed a highly-developed assistive system for elderly and sick 

persons using ANN [185]. Health data such as heart rate, temperature and arm posture 

recognition as well as daily routines recognition are training data to the ANN. To reduce 

the complexity of the recognition system without compromising the recognition rate 

significantly, a simpler neural network with 20 neurons in hidden layer is adopted. The 

recognition system is also implemented in Raspberry Pi in real time successfully. 

 In collaborative research that develops a face recognition framework to assist law-

enforcement services, the research team has proposed a Raspberry Pi and cloud assisted 

face recognition framework using a small-sized portable camera and Raspberry Pi [186]. 

Due to limited resources in Raspberry Pi, the face recognition model, Ensemble SVM 

(ESVM) is trained in the cloud before being migrated to the Pi. Murad proposes a cost-

effective and real-time autonomous pavement condition assessment using deep learning, 

Unmanned Aerial Vehicle (UAV) with Raspberry Pi [187]. Similar effort to that of [186], 

the object detection module SSD with MobileNet feature extractor is trained externally 

before being deployed in Pi. Preliminary results show that accuracy of 60% is achieved.  

 An Artificial Intelligence based Smart Building Automation Controller is designed by 

a group of Sri Lankan researchers to allow building services to adapt to user preferences 

based on user comfort, safety and energy performance [188]. The controller is 

implemented in Raspberry Pi to take advantage on its ultra-low power consumption and 

extensive communication capabilities. The AI model implemented in the controller is Fuzzy 

Logics. In the experiment, the controller can set an optimal temperature setting for 

Heating, Ventilating and Air-Conditioning (HVAC) system, smart switching on and off of 

artificial lighting source to acquire additional illumination. These instances showcase the 
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adaptability of AI in real-time scenarios, even within the resource constraints of embedded 

systems. 

The choice of Raspberry Pi as the embedded system for this project is justified by 

its compact size, cost-effectiveness, and versatility. Raspberry Pi aligns well with the 

project's requirements, offering a balance between computational capabilities and power 

efficiency. Its affordability makes it accessible for a diverse range of applications, while its 

small form factor enables seamless integration into space-constrained projects.   

Additionally, the extensive community support, accessibility, and a broad ecosystem of 

peripherals contribute to its suitability for implementing AI models in real-time 

applications. In conclusion, Raspberry Pi emerges as a robust and practical choice, allowing 

for the efficient integration of AI into the envisaged REPS without compromising on 

computational efficiency. 

2.10 Summary 

This chapter presents literature review about standalone REPS with HESS, control 

strategies including both traditional methods as well as modern methods associated with 

Artificial Intelligence, common AI and optimisation models in EMS, Incremental Learning 

in AI models in REPS field, short-term solar irradiance forecasting as well as suitable 

embedded system for standalone REPS. A review on past literature has commended on 

the REPS-HESS configuration to extend battery operation lifetime and to reduce system 

maintenance and service costs. AI-based EMS or control strategy performs better than 

traditional methods in many researches with faster response time, more adaptive as well 

as higher flexibility in handling cases with contradicting working conditions. To date, there 

is a lack of research using Unsupervised Learning AI models in EMS compared to 

Supervised Learning AI models although it is proven in a few research that Unsupervised 

Learning AI models could readily improve the overall system performance. With the aid of 

AI-based optimisation models, Unsupervised Learning models can then work as a black 

box with zero initial knowledge on the system without data labels. Similar conclusion can 

also be drawn on short-term solar irradiance forecasting where Unsupervised Learning 
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models can produce results on par with Supervised Learning models using only basic input 

data such as historical solar irradiance trend. Thus, in both EMS and short-term forecasting 

cases, E-SOINN emerges as the potential Unsupervised Learning model.  

The E-SOINN distinguishes itself from other AI models implemented in the 

discussed context through its unique learning approach. E-SOINN is specifically designed 

for unsupervised learning, allowing it to adapt and evolve iteratively based on incoming 

data without the need for labelled information. This characteristic makes E-SOINN 

particularly well-suited for scenarios where the system's structure and patterns may 

change over time, as it can continuously learn and update its knowledge without explicit 

supervision. 

Unlike some AI models that may require extensive preprocessing or labelled 

datasets, E-SOINN minimizes the need for data cleaning and pre-processing, making it 

more efficient in handling raw sensor data. Its ability to dynamically adjust the number of 

nodes in response to the complexity of the input data contributes to its adaptability in 

capturing intricate patterns, especially in the context of solar irradiance forecasting. 

Moreover, E-SOINN's application in the discussed framework, particularly in the 

clustering and forecasting of solar irradiance trends, showcases its capability to provide 

meaningful insights without relying on predefined network architectures. Its incremental 

learning feature ensures that the model can adapt to new datasets without forgetting prior 

knowledge, facilitating continuous improvement in forecasting performance. 

In summary, E-SOINN stands out by offering an unsupervised learning approach, 

adaptability to changing patterns, efficiency in handling raw data, and the ability to 

dynamically adjust its structure, making it a valuable addition to the suite of AI models 

employed in the discussed energy management and solar irradiance forecasting context. 

Lastly, this review discusses the common embedded platform adopted for small-

powered energy harvesting or management system in different fields. 
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Chapter 3 Regression Enhanced Self-Organizing Incremental Neural 

Network (RE-SOINN) 

 In view of this research, Artificial Intelligence is applied in two parts of the projects, 

namely the solar irradiance forecasting module as well as energy management strategy in 

the REPS. Implementing AI in solar irradiance forecasting is crucial for enhancing the 

efficiency and reliability of REPS. Solar irradiance, a key factor in solar power generation, 

is inherently variable and influenced by dynamic environmental conditions. AI models offer 

the ability to learn and adapt to these intricate patterns, providing more accurate and 

timely predictions. AI can be implemented through sophisticated algorithms that analyze 

historical solar data, weather patterns, and other relevant factors. These AI models 

consider various parameters, including time of day, seasonal changes, and local weather 

conditions, to forecast solar energy production. The implementation involves training the 

AI models with historical data, fine-tuning their parameters, and continuously updating 

them with new information. This precision is essential for optimal energy management in 

REPS, allowing for better anticipation of fluctuations in solar energy production. AI-driven 

forecasting enables utilities, systems and grid operators to make informed decisions, 

optimize energy distribution and mitigate the impact of intermittency in solar power 

generation. As the civilization progresses towards a more sustainable energy future, the 

integration of AI in solar irradiance forecasting serves as a fundamental strategy to 

maximize the effectiveness of renewable energy sources and contribute to a reliable and 

resilient power infrastructure. 

3.1 Self-Organizing Incremental Neural Network (SOINN) and Enhanced Self-

Organising Incremental Neural Network (E-SOINN) 

A Self-Organizing Incremental Neural Network (SOINN) is an example of 

Unsupervised Incremental Learning Artificial Intelligence models. Similar to SOM, SOINN 

possesses the capability of associating, reasoning, knowledge-transferring and forecasting 

except learning [130]. In contrast to the popular AI models such as Neural Networks of 

Supervised Learning, SOINN does not need any prior information regarding the input data 

space to be known beforehand [130] for efficient performance. To these Supervised 
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Learning models, information such as statistical distribution of data such as covariance or 

simply the learning environment of the networks affects the hyperparameters of creation 

of these AI models.  

The major advantages of using SOINN are [130]: 

• There is no need to pre-define the mathematical model required for learning, unlike 

Multilayers Perceptron Neurons which require mathematical model for each layer 

of neurons present (hyperbolic tangent, radial basis function and other suitable 

models). 

• Noise – eliminating capabilities for better pattern recognition. 

• SOINN works with any existing programming language and any hardware available. 

 

The principal SOINN variant adopted for this research is the Enhanced SOINN (E-

SOINN). Compared to the original SOINN, E-SOINN is capable to perform all functions of 

SOINN as well as to separate high-density overlapped classes in the input data space 

[131]. Overlapped classes have always been a shortcoming in SOINN as separation of 

overlapped data requires supervised learning for better accuracy. E-SOINN uses fewer 

parameters compared to SOINN as it uses between class-insertion to realise incremental 

training. 

The algorithm of E-SOINN of SOINN variant is given as follow [131]: 

1. Initialise two nodes randomly with weight vectors, Wa using data from input 

pattern, X, as A. Connection set, C is initialised as empty set. Similarity 

threshold, Ta is also initialised as the distance between the two nodes. 

2. New pattern 𝑥 ∈  𝑅𝑛 is sent to the network.  

3. The nearest node, a1 and the second nearest node, a2 are computed as follow: 

𝑎1 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑎∈𝐴 || 𝑥 − 𝑊𝑎 ||       

𝑎2 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑎∈𝐴[𝑎1] || 𝑥 −  𝑊𝑎  ||          

The input data becomes a new node when similarity threshold, Ta is smaller 

than the distance. Add this new node to A and process subsequent data using 

Step 2.  

(3-1) 

(3-2) 
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4. The age of all edges of winning node, a1 is increased by 1. 

5. Connect the two nodes with an edge  

I. If the winner or the second winner is a new node, or 

II. If the winner and second winner are both belonged to the same subclass, 

or 

III. If two different subclasses are involved, combine the two nodes instead 

if min(ℎ𝑤𝑖𝑛𝑛𝑒𝑟  , ℎ𝑠𝑒𝑐𝑜𝑛𝑑 𝑤𝑖𝑛𝑛𝑒𝑟) >  𝛼𝐾 𝐾𝑚𝑎𝑥  𝑜𝑟 𝛼𝐿 𝐿𝑚𝑎𝑥  where h is the density of 

node and α as a parameter determined by a threshold function.  

6. The density of the winner is updated using 

ℎ𝑖 =  
1

𝑁
𝑆𝑖 =  

1

𝑁
∑  𝑛

𝑗=1 (∑ 𝑃𝑖
𝜆
𝑚=1 ),     

where S is the sum of points for node i and P being “point” of the node. 

7. Adapt the winner weight vectors and its direct topological neighbours using a 

fraction ∈1 (𝑡) and ∈2 (𝑡) of the total distance to the input signal, 

∆𝑊𝑎1 =  ∈1 (𝑀𝑎1)(𝜉 −  𝑊𝑎1)             

∆𝑊𝑖 =  ∈2 (𝑀𝑎1)(𝜉 −  𝑊𝑖)            

8. Find the edge whose ages are greater than a predefined parameter agemax, then 

remove such edges. 

9. If the number of input signals generated so far is an integer multiple of 

parameter λ,  

I. Update the subclass label of every node. 

II. Delete noisy nodes as follow: 

i. For all nodes in A, if node a has two neighbours, and ℎ𝑎 <

 𝑐1  ∑
ℎ𝑗

𝑁𝐴
,   then remove the node a. 𝑁𝐴 is the number of nodes

𝑁𝐴
𝑗=1  in node 

set A. 

ii. For all nodes in A, if node a has one neighbour and ℎ𝑎 <

 𝑐2  ∑
ℎ𝑗

𝑁𝐴
,   

𝑁𝐴
𝑗=1 then remove the node a. 

iii. For all nodes in A, if node a has no neighbour, then remove node 

a. 

10.  Go to Step (2) to continue unsupervised online learning if the learning is not 

finished. 

 

There are three main hyperparameters in E-SOINN as compared to SOINN, making 

E-SOINN to be more superior than SOINN in noise elimination. These hyperparameters 

(3-3) 

(3-4) 

(3-5) 
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are lambda (denoising iteration control), denoising threshold and maximum age. The 

optimal performance of E-SOINN depends on how these three hyperparameters work 

together. The nature of the case application also plays an important role in determining 

the aggressiveness of E-SOINN in identifying and eliminating the noises.  

 

Figure 3-1 – Illustration of nodes, input data in the E-SOINN knowledge space 

With reference to the step 8 in the outlined algorithm and Figure 3-1, when an 

input instance is classified into a particular node due to closest proximity, a connection is 

formed between this node and the neighbouring node of second closest proximity. This 

connection is defined as connection age. Every time a connection is formed between these 

two specific nodes, the age of the connection gets refreshed to 1. So, when the age of a 

connection gets too old (or large), this means that there is no new input instance 

supporting the connection between these two nodes since its establishment. The 

hyperparameter of maximum age limit, 𝑎𝑔𝑒𝑚𝑎𝑥 defines the maximum age a connection can 

grow into to ensure the specific nodes remain relevant after a long period of time. A noise 

or noisy node can be loosely interpreted as a singular instance which is unable to form any 

meaningful relationship or connection with its neighbouring nodes or data over a long 

period of time. 

Denoising threshold, 𝑐 , defines the density threshold where a node would be 

recognised as a noisy node. When a node is significantly less dense, it means that the 
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node only consists of a small number of instances. In the presence of large data instances, 

a very less dense node can be recognised as a noise. Lambda, 𝜆, refers to denoising 

iteration control. For every 𝜆 new input instance being clustered successfully, denoising 

operation is conducted to check every single node formed in the knowledge base for nodal 

density. Any node with nodal density less than denoising control, 𝑐, at each 𝜆 interval is to 

be labelled as noise and to be erased. 

3.2 Challenges of Implementation of E-SOINN in Forecasting and Optimisation 

Problems 

 E-SOINN excels in clustering problems where the nature of the problem is in 

discrete form. This is because Unsupervised Learning-based AI models are developed for 

clustering and pattern recognition problems. E-SOINN adapts and learns the structure of 

data without the need for explicit labels. For applications requiring outputs in continuous 

form such as measurements from sensor networks, then the accuracy of the E-SOINN or 

any other Unsupervised Learning AI models suffer. This is because the output of the 

Unsupervised Learning AI models is limited to the number of predefined discrete nodes, 

thus the accuracy can be defined as a function of granularity of the clusters.  It requires 

mapping operation of continuous values to discrete clusters. It appears that the only way 

to improve the accuracy significantly would be increasing the number of discrete nodes 

significantly so that the number of nodes covers the entire range of the possible output 

values. However, a major drawback of this mitigation is the accuracy is achieved at the 

expense of unnecessarily high computational requirements. 

 Forecasting a continuous variable in a time-series problem is a challenging task to 

Unsupervised Learning models like E-SOINN. The Incremental Learning nature of E-SOINN 

is also a valuable prerequisite to many real-world problems. One key advantage lies in its 

adaptability to gradual changes in the environment. In numerous applications, such as 

weather forecasting, financial analysis, or industrial processes, data patterns may evolve 

over time. Moreover, in situations where data arrives incrementally or in streaming fashion, 

E-SOINN's Incremental Learning becomes indispensable. E-SOINN's Incremental Learning 

feature allows the model to seamlessly integrate new information while retaining insights 
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gained from historical data. This adaptability ensures that the model remains relevant and 

effective in capturing shifting trends, a critical aspect for real-world applications. 

Intuitively, a time-series input is clustered into a node depending on its Euclidean 

distance to the nearest node. Subsequently, the output to the said input is returned using 

the information stored in the nearest node.  For E-SOINN to produce a more accurate 

forecast output, it is intuitive that a higher number of E-SOINN nodes will lead to better 

forecast as the resolution of data learnt by E-SOINN is higher. Ideally, if E-SOINN could 

cluster all possible variants of data into a complete distinctive number of nodes, E-SOINN 

model would be able to produce a forecast output that is possibly very close to the actual 

value. In practice, it is impossible to train E-SOINN model with all possible variants of 

knowledge base. 

 In optimisation applications, the challenges of E-SOINN can be associated with 

striking a balance between solution accuracy and computational efficiency. When applying 

E-SOINN for optimization tasks, especially in those involving discrete decision spaces, E-

SOINN’s ability to adapt and self-organize can facilitate the exploration of complex solution 

spaces. E-SOINN's ability to incrementally learn and adapt reduces the need for frequent 

retraining on the entire dataset. This not only conserves computational resources but also 

facilitates real-time decision-making. However, in continuous problems, due to the 

necessary mapping of continuous parameters to discrete nodes, the granularity of such 

discretization can directly impact the precision of the optimisation process, not to mention 

the computational resources required. 

 Essentially, it is evident that balancing precision with computational efficiency is a 

critical consideration, especially for an off-grid application where the electrical power 

available is limited. In the domain of forecasting, the choice between employing complex 

models that capture intricate patterns and simplifying models to reduce computational 

costs hinges on the specific application and available resources. Similarly, for optimization 

problems, the pursuit of optimal solutions necessitates a judicious trade-off between the 

level of accuracy and the computational demands, guiding the selection of suitable 
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methodologies. Ultimately, the success of both forecasting and optimization endeavours 

depends on an astute understanding of the problem's characteristics, an adept choice of 

algorithms and techniques, and a pragmatic assessment of the computational constraints, 

ensuring that the solutions obtained are both practical and effective. 

3.3 Regression Enhanced Self-Organizing Incremental Neural Network (RE-SOINN) 

The two areas where Artificial Intelligence are applied in include solar irradiance 

forecasting and optimisation in the energy management system. The expert model used 

in this research is the proposed RE-SOINN. The RE-SOINN is based on the E-SOINN [131]. 

It is chosen because of its Incremental Learning ability and unlike other incremental 

supervised learning models, it requires very minimum model customization. The E-SOINN 

has been used in classification and produces discrete outputs via clustering of data, data 

with similar trends could be grouped together. As weather conditions fluctuate significantly 

from one moment to the next, it is almost impossible to produce forecast with little to no 

error. However, the forecasting error can be reduced by using the average of all data 

trends that are clustered into the same group (or node). The RE-SOINN incorporates the 

regression method into the E-SOINN to produce continuous output which yields better 

approximation to time-series solar irradiance data. 

The most important contribution of E-SOINN in this forecasting operation is the 

clustering of data trends into nodes. Despite the advantages, there exists a drawback of 

using Unsupervised Learning in forecasting cases. Solar irradiance values are continuous 

in nature whereas the output of E-SOINN is discrete in nature. Ideally, if E-SOINN could 

cluster all possible variants of solar irradiance profiles into a complete distinctive number 

of nodes, E-SOINN model would be able to produce a highly accurate forecast output that 

is possibly very close to the actual value. In practice, it is impossible to train E-SOINN 

model with all possible variants of solar irradiance profiles and thus, some modifications 

are made to improve E-SOINN without the need of being trained by a complete training 

dataset. 
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 To produce continuous outputs, E-SOINN is modified and further extended so that 

discrete outputs can be interpolated into continuous values. Together with the 

interpolation, Regression Enhanced Self-Organising Incremental Neural Networks (RE-

SOINN) is proposed. Say there are n features in every input training data where the nth 

feature is the solar irradiance value after 60 minutes. Hence, the Euclidean distances 

between these input data and nodes are computed based on the first (n-1) features. The 

actual value of nth feature of the input data, based on statistical assumptions, is within 

the neighbourhood of the nth features of the nearest nodes to the input data. To estimate 

the value of the nth feature of the input data, a conclusion is to be drawn from m closest 

nodes to the input data. Then, the nth feature of the input data is interpolated using the 

relation as follow: 

      𝑓(𝑡 + 𝜖) =  
∑ (

𝑦𝑖

𝑑𝑖
𝑝)𝑚

𝑖=1

∑ (
1

𝑑𝑖
𝑝)𝑚

𝑖=1

          

where ϵ refers to forecasting horizon (60 minutes in this research), p is the power, d is the 

distance between input vector to a neighbouring node and y is nth feature of all 

neighbouring nodes. 

 The output can then be understood as the weighted average of neighbouring data 

based on Euclidean distances. Two hyperparameters in Equation (3-6) are required to be 

tuned to produce the estimate. p determines the strength of the influence of neighbouring 

distance information and m is the number of closest nodes to be considered in the 

interpolation. Figure 3-2 depicts the simulated operations on how close neighbours are 

being considered to produce a weighted average output for any input. 

(3-6) 
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Figure 3-2 - Visualisation of Input (red circle) surrounded by neighbours (green circles) 

3.4 The Advantages of RE-SOINN 

  RE-SOINN has several notable features which demonstrate its versatility and 

suitability for various applications despite being an Unsupervised Learning model. 

1. Statistical Information Translation: RE-SOINN excels in uncovering meaningful 

trends by translating statistical information within data into Euclidean distances, 

allowing for effective pattern recognition and clustering. Such operation also allows 

RE-SOINN to summarise multi-dimensional data into lower dimensional nodes, 

easing the computational procedures in the later stage. 

2. k-Nearest Neighbour Inverse Distance Weighting (kNN-IDW): The kNN-

IDW technique employed by RE-SOINN enhances its ability to make informed 

decisions about data points, contributing to robust clustering and data analysis. By 

combining information from neighbouring nodes, the output of RE-SOINN can be 

estimated rather than requiring full range and variants of data in the input space. 

3. Data Density-Based Denoising: RE-SOINN incorporates data density-based 

denoising techniques to effectively eliminate noise, ensuring that the model can 

focus on relevant and significant data patterns. Any node with density less than a 

predefined threshold is regarded as a noise if the node is an isolated from any 

neighbourhood. 
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4. Adaptive Network Architecture: Unlike many other AI models, RE-SOINN does 

not require a predefined network architecture, which simplifies model development 

and makes it adaptable to varying data structures and complexities. 

5. Minimal Data Cleaning and Pre-processing: One of the strengths of RE-SOINN 

is its ability to work with raw sensor data, reducing the need for extensive data 

cleaning and preprocessing. This feature streamlines the data analysis pipeline and 

saves time and effort. 

6. No Labelling Required: A standout advantage of RE-SOINN is its capacity for 

unsupervised learning. It does not rely on labelled data, making it readily 

deployable for applications where obtaining labelled training data may be 

challenging or costly. 

3.5 Tuning Hyperparameters of RE-SOINN 

 Prior to the application of RE-SOINN, it is of vital importance to ensure the RE-

SOINN is working under the influence of optimised hyperparameters so that any 

computational procedure in RE-SOINN can be operated in a more efficient manner, yielding 

superior performance without compromising the entire system of application. There are a 

total of six parameters, namely: 

• Denoising Density Threshold 

• Denoising Iteration Control 

• Maximum Age Limit 

• Number of Neighbours 

• Radius of Neighbourhood 

• Influence Strength of neighbouring information  

In this research, a Grid Search methodology is employed to determine the optimal 

hyperparameters for RE-SOINN. Based on the experience, certain hyperparameters can 

be limited to a rather narrow range of suitable values. The key of optimising the 
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hyperparameters is to ensure the RE-SOINN can have an extensive knowledge base, to 

include as many patterns or trends as possible. The reasonable ranges of hyperparameters 

are established differently, depending on problem characteristics as follows in Table 3-1: 

Table 3-1 - RE-SOINN Hyperparameters and the Ranges of Hyperparameter Values 

Hyperparameters Ranges of Values 

Denoising Density Threshold [0.0001, 1] 

Denoising Iteration Control [100, 10000] 

Maximum Age Limit [10, 10000] 

Number of Neighbours [1, 10] 

Radius of Neighbourhood [10, 1000] 

Influence Strength [1, 3] 

 

Grid Search works by generating a grid of hyperparameter combinations by taking 

all possible combinations within the specified ranges. Once a set of hyperparameter 

combination is generated, RE-SOINN model is trained using this generated set of 

hyperparameters. Metrics to evaluate the quality of the RE-SOINN model trained is 

designed to reward the set of hyperparameters producing the highest number of nodes in 

RE-SOINN knowledge base. The hyperparameter set which produces the highest number 

of nodes in RE-SOINN knowledge base is then recorded to serve as the optimal 

hyperparameter sets of subsequent training of RE-SOINN. 

It is to be acknowledged that Grid Search is limited by the size of the 

hyperparameters set as well as the range of values to be tested on the hyperparameters, 

resulting in a very computationally expensive method. Alternative methods such as 

Random Search or Bayesian Optimisation can be applied on this problem as well. However, 

hyperparameters in RE-SOINN possess a relatively narrow range of suitable 

hyperparameter values not to mention that RE-SOINN has relatively short computational 

time. The nature of the problem makes Grid Search feasible and efficient without incurring 

excessive computational costs. The choice of applying Grid Search to pre-determine the 
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hyperparameters of the RE-SOINN model is rooted in its systematic and thorough 

exploration of the hyperparameter space. Grid Search ensures a comprehensive 

examination of all possible hyperparameter combinations, providing a thorough 

understanding of the model’s behaviour and performance.  

Consequently, the meticulous exploration in the parameter space via Grid Search 

can greatly assist to identify the hyperparameter configuration that optimises RE-SOINN’s 

performance in terms of denoising and clustering accuracy.  
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Chapter 4 Solar Irradiance Forecasting with RE-SOINN 

This chapter presents the implementation of a new artificial intelligent algorithm 

namely the Regression Enhanced Incremental Self-Organizing Neural Network (RE-SOINN) 

for accurate (even for highly fluctuating profile) and adaptive solar irradiance forecasting. 

The general outline of the proposed solar irradiance forecasting method is described and 

its performance in solar irradiance forecasting is critically evaluated. On a brief note, a 

summary consisting of key points of the chapter is presented. 

 EMS is important in managing solar-based renewable energy source [132] and 

having the ability to plan ahead of time before any disruptions could achieve better 

management of solar-based energy [133], [139-140]. Solar irradiance forecasting also 

helps in predicting output of solar power generated since intensity of solar irradiance is 

directly related to the generation of solar power in such a way that the higher the intensity 

of solar irradiance, the higher the amount of solar power generated by solar panels.  

Many AI algorithms adopted in the literature such as Deep Learning [181-182], 

ANN, SVR and their variants are Supervised Learning models. This is because labelled data 

are very important in the learning stage to serve as the teacher in the learning phase so 

that feedback can be fed immediately to the model itself to correct its parameters. Other 

than the Supervised Learning, Incremental Learning, which enables adaptation to new 

data through real-time learning is extensively studied [128]. In many real-world 

applications, it is impossible to collect all relevant data during the training stages. With 

Incremental Learning, a useful mechanism to learn new knowledge without having to go 

through ‘catastrophic forgetting’ can be devised to refine existing knowledge, to learn new 

data in an incremental way while keeping system running as usual [128].  

In solar irradiance prediction, Incremental Learning improves AI models by learning 

new weather data which are unseen previously. Instead of using supervised learning model, 

this research proposes usage of Unsupervised Incremental Learning AI model in solar 

irradiance forecasting with historical solar irradiance data and timestamp as sole input. 
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The advantage of using Unsupervised Learning is that no pre-defined network architecture 

is needed as in the Supervised Learning. The model to be based upon is E-SOINN.  

4.1 Solar Irradiance Profiles in Malaysia 

 The data used in this research is actual solar irradiance recorded from April 2018 

to June 2018. The solar irradiance values were recorded by Texas Electronics SP-LITE 

Solar Radiation Sensor installed in a solar cabin located at The University of Nottingham 

Malaysia in Semenyih, Malaysia (2.9474° N, 101.8451° E). The dataset is made up of two 

measured variables, namely the timestamp (dd-mm-yyyy hh:mm) and solar irradiance 

(W/m2).  

 

Figure 4-1 - Location of Semenyih in Malaysia (research site of this section)  

 Being a tropical country, solar irradiance in Malaysia is erratic due its humid and 

hot climate as depicted in Figure 4-1. Such climate is mainly resulted by its proximity to 

the Equator line. Cloud formation is very common during the day and as a result, these 

Semenyih 
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clouds could block the sunlight occasionally at any time, causing unpredicted variations in 

solar irradiance measurements, as seen in Figure 4-2. 

 

Figure 4-2 - Actual Solar Irradiance Profile in Section Site 

From literature review there is no standard on size requirement of the dataset 

required in forecasting of solar irradiance. Also, the resolution of the dataset is not uniform 

across the literature. The three month-worth of data is divided into training, validation and 

testing datasets in ratio of 14:3:3 or 70%:15%:15%.  

The dataset consists of 21476 hourly solar irradiance trends of 1-minute interval 

coupled with a timestamp. The solar irradiance value is sampled every minute, producing 

60 data points in each hour. The formats of the data are illustrated in Table 4-1 and Table 

4-2: 

Table 4-1 - Format of Training and Validation Dataset 

Feature 1 Feature 2 Feature 3 … Feature 61 Feature 62 

Timestamp 𝑓(𝑡 − 59) 𝑓(𝑡 − 58) … 𝑓(𝑡) 𝑓(𝑡 + 60) 

 

Table 4-2 - Format of Test Dataset 

Feature 1 Feature 2 Feature 3 … Feature 61 

Timestamp 𝑓(𝑡 − 59) 𝑓(𝑡 − 58) … 𝑓(𝑡) 
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 Feature 61 refers to the solar irradiance value recorded for timestamp stated as 

Feature 1. Features 2 to 60 are the historical one-minute interval solar irradiance values 

with respect to Feature 61. Feature 62 is the solar irradiance value recorded 60 minutes 

after Feature 61. Feature 62 is only present in both training and validation datasets but it 

is omitted from the test dataset because this feature is to be forecasted. Thus, the length 

of each instance in the test dataset is one unit less compared to those in training and 

validation dataset. 

4.2 Solar Irradiance Data Decomposition 

 In general, any trend could be categorised into two trending components, namely 

the hard trend and the soft trend. The process of decomposing data into low and high 

frequency components is often associated with time series and signal processing 

techniques. A trend is ‘hard’ when its occurrence could be determined easily due to highly 

probable nature. Such event is usually the consequence of a well-known fact such as 

estimating the peak traffic hour solely based on the general working hours. A soft trend is 

those events of which their probabilities cannot be easily defined such as traffic accidents. 

Forecasting works very well with hard trend and performs poorly in soft trend. 

From Figure 4-2, the general trend of daily solar irradiance in tropical regions such 

as Malaysia loosely resembles to the shape of a normal distribution probability density 

function where the mid of the day (location of where peak solar irradiance occurs) is the 

mean of a normal distribution probability density function. In tropical regions, solar 

irradiance readings are usually at the peak during the middle of the days and close to zero 

during the nights because these regions receive intense sunlight throughout the year, 

keeping the climate temperature relatively constant. Such repetitive hard trend, as shown 

in Figure 4-3, can be assumed as the low frequency component of solar irradiance trend 

and works as the backbone of hourly predicted solar irradiance profile.   

From Figure 4-4, the main variation in daily or hourly solar irradiance measurement 

is significantly resulted by cloud movements which block the sunlight momentarily, causing 
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varying solar irradiance readings between one moment and the subsequent moment. For 

instance, it is highly probable that the solar irradiance values between 12.00pm and 

12.05pm do not remain the same at all. The range of variation within these 5 minutes 

could be as large as 75% of the peak solar irradiance recorded on that day. This main 

variation can be approximated as the high frequency component of solar irradiance trend. 

Such soft trend is no less than a noise as the pattern is not apparent (softer) or totally 

erratic as clearly seen in Figure 4-5 which depicts the noisy high soft trend between 

11.30am and 1.30pm.  

It is intuitive to have the solar irradiance values be decomposed into two 

components (long-term and short-term) because the forecasting model applied here is 

Unsupervised Learning. Unlike Supervised Learning, there is no apparent way of altering 

the architecture of an Unsupervised Learning model such as adding additional layers to 

extract useful information from training data like Artificial Neural Networks. Also, the main 

information which Unsupervised Learning models extract is usually statistical and 

geometrical ones. Combination of both low frequency and high frequency components in 

training data will result in noisy complex statistical information. It is also worth mentioning 

that both soft and hard trend components are statistically different from one another. As 

a result, Unsupervised Learning models are unable to perform well with noisy data as the 

presence of high frequency and low frequency components together may have disrupted 

the learning process. 
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Figure 4-3 - Low frequency component of solar irradiance 

 

Figure 4-4 - High frequency component of solar irradiance 

It is to be noted that the weather sensor used in this research could record the 

data at an interval of 0.1s or 10Hz. For every minute of solar irradiance values, the values 

belonging to the same minute frame are averaged and the output mean value represents 

the solar irradiance value for the minute. Missing values and Not-a-Number (NaN) values 

found in the dataset are removed. 

Since the solar irradiance forecasting model is derived from Unsupervised Learning 

AI model, the important features to be studied include the timestamp as well as the hourly 
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1-minute solar irradiance trends as shown in Table 4-1. To search for ‘hard trend’ in the 

trends, the hourly 1-minute solar irradiance trends undergo the operation of a MAF. This 

MAF considers 24 historical points together with current point to evaluate the average. 

The arbitrary period of 24 is set using iterative method, starting with the assumption of 

dominating seasonality of hourly weather to be around 15 minutes to 30 minutes. This 

smoothened trend now shows the ‘hard trend’ or the low frequency component of the 

pattern. The ‘soft trend’ or the high frequency component, on the other hand, can be 

determined from the following  𝑦𝐻𝐹 = 𝑦𝑜𝑟𝑖𝑔 − 𝑦𝐿𝐹      Equation 

4-1: 

      𝑦𝐻𝐹 = 𝑦𝑜𝑟𝑖𝑔 − 𝑦𝐿𝐹      Equation 4-1 

Where 𝑦𝐿𝐹 is the filtered solar irradiance value (low frequency component, as shown in 

Figure 4-3), 𝑦𝐻𝐹 is high frequency component of solar irradiance (as depicted in Figure 4-4) 

and 𝑦𝑜𝑟𝑖𝑔 is the original solar irradiance value recorded by sensor. 

 

Figure 4-5 - Short-term variations during mid of the day 

 Thus, the proposed solar irradiance forecasting framework would need to consist 

of two smaller models, one model is responsible for forecasting low frequency component 

of solar irradiance trend whereas another is tasked to predict the high frequency 

component of the trend. The input to the low frequency forecasting model is 
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straightforward in the sense that there are 62 points in each input (timestamp, 60 points 

of historical solar irradiance values from f(t-59) to f(t) and solar irradiance value in the 

next 60 minutes or f(t+60)). The ‘hard trend’ of low frequency component of solar 

irradiance trends depicts the long-term shape of solar irradiance values, making sense of 

using the entire input trends in the dataset. 

Since the soft trend affects the readings in a short-term duration, the soft trend 

component of solar irradiance profiles does not possess significant long-term statistical 

properties, rendering the longer horizon of historical high frequency data less significant. 

Thus, the historical input can be greatly shortened from one hour to 5 minutes based on 

a series of grid search analyses. The forecasting performance on high frequency data does 

not differ much as the data horizon is reduced from 60 minutes to 5 minutes. Table 4-3 

illustrates the format of the training data for high frequency components of solar irradiance 

profiles. 

Table 4-3 - Format of Training Data for high frequency components 

Feature 1 Feature 2 Feature 3 … Feature 6 Feature 7 

Timestamp 𝑓(𝑡 − 4) 𝑓(𝑡 − 3) … 𝑓(𝑡) 𝑓(𝑡 + 60) 

 

4.3 Outline of Proposed Model 

 The proposed hourly solar irradiance trend forecasting framework is depicted in 

Figure 4-6. The process starts with reading solar irradiance values from Texas Electronics 

SP-LITE Solar Radiation Sensor. Solar irradiance data are very noisy in nature (Figure 4-2). 

To forecast hourly solar irradiance values using historical profiles, these noisy profiles will 

be inevitably used as the inputs to the prediction model. The complex statistical 

information present within the noisy solar irradiance profile would prove to be a difficult 

challenge for Unsupervised AI model to learn. This is because AI models are trained to 

approximate the trend of the input and disregard randomness such as the noise in the 

solar irradiance data. Thus, in this subsection, solar irradiance profiles will be first 

decomposed into average daily solar irradiance trend (low frequency component) and 
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noisy component (high frequency component). Then two Unsupervised Learning models 

will be trained with each component of solar irradiance profiles respectively. By doing so, 

an expert model is dedicated to approximate not only the low frequency data but also the 

noisy high frequency data which is valuable for solar irradiance fluctuation prediction. 

Each RE-SOINN model extracts valuable statistical information from respective 

component and make predictions based on these pieces of information. From Figure 4-2, 

Figure 4-4 and Figure 4-7, it can be observed that the variations mainly occur at the mid 

of a day (between 11am to 4pm). The variations observed in each day is different from 

one another. As noise is erratic in nature, this means that the high frequency component 

of solar irradiance values could be high in this instant and low in the next. While the low 

frequency component of solar irradiance values could be similar at similar timestamp on 

different days, this case is not valid for high frequency component. Thus, the high 

frequency component could be further improved in the following way,  

1. Find the mean of last elements of training vectors clustered in the same nodes 

of HF RE-SOINN model based on timestamps. 

2. Add the mean value to the forecast output from HF RE-SOINN model based on 

the forecasting timestamp. 

By adding the average value of high-frequency component into the high frequency 

solar irradiance forecast based on the same timestamp, it could help to ensure the forecast 

of the high-frequency components is well-kept close to the mean amplitude of high-

frequency component of historical readings. As more and more data are added to train 

RE-SOINN, the mean amplitudes are more significant, keeping the forecast in an 

acceptable range in long run without scoring huge errors. A benefit is that the variation 

added to the prediction is the average of all historical variations, although the forecast 

output could not be exact value, it is still within the ‘vicinity’ range of the noise. Thus, it 

could be applied regardless of randomness of noise. 
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 Forecast outputs from both models are then combined to produce actual forecast. 

Figure 4-6 shows the system block diagrams of the proposed framework using RE-SOINN 

model. 

 

Figure 4-6 - Block diagrams of proposed hourly solar irradiance forecast framework. 

 

 

Figure 4-7 - Plot of 5 consecutive days of solar irradiance profiles, showing the varying noises present. 

 

4.4 Forecast Evaluation and Benchmark Models 

Performance metrics are deployed to evaluate the performance of RE-SOINN model 

in forecasting hourly solar irradiance trend. The performance metrics consist of Mean 

Absolute Scaled Error (MASE) and RMSE. The following equations define the performance 

metrics: 
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 MASE is proposed by Hyndman and Koehler [189] to compare two series with 

different units. MASE is scale-free, making it very suitable to compare forecast accuracy. 

MASE can be loosely defined as the ratio of MAE of chosen model over the MAE of naïve 

model. In case of seasonality, a Naïve Model assumes that the trend or pattern is repeated 

for every periodic cycle. Thus, the value is assumed to be the same to those of the previous 

cycles. 

 The performance of model according to MASE is explained as follows: When MASE 

is equal to 1, MAE of the chosen model is only as good as the Naïve Model. If MASE score 

is 0.5, MAE of the chosen model is twice as good compared to the Naïve Model. 

4.4.1 Persistence Model 

In many literatures, persistence model is the standard of comparison by being a 

trivial reference to determine if a forecasting model could perform better than it. This 

trivial reference model assumes that the solar irradiance at current instant is the same as 

previous instant assuming that there is no significant change in weather conditions and 

the time horizon is not too long. Equation 4-4 shows the assumption made by Persistent 

Model. 

𝑓(𝑡 + 1) = 𝑓(𝑡)     Equation 4-4 

4.4.2 Exponential Smoothing 

Exponential Smoothing uses weighted averages of past values with weights 

decaying exponentially as the values get older. The more recent an observation, the more 

significant influence it has on the forecast. The equation is as follow: 

𝑦𝑡+60 = 𝛼𝑦𝑡 + 𝛼(1 − 𝛼)𝑦𝑡−1 + 𝛼(1 − 𝛼)2𝑦𝑡−2 + ⋯   Equation 4-5 
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Where 𝑦𝑡 is current value, 𝑦𝑡−𝑛 is historical value after n intervals, 𝑦𝑡+60 is forecast value 

after an hour and α is a constant. When α is equal to 1, Exponential Smoothing becomes 

Persistence Model. 

After a series of experimentation, a fifth order Exponential Smoothing model is 

found to produce better forecasting performance [190]. Thus, a fifth order model is 

developed as comparison model. 

4.4.3 Artificial Neural Networks 

Artificial Neural Network(s) (ANN) is considered the most versatile AI model as it 

works similarly to those in a mammal’s brain. In ANN, the neurons are usually arranged 

in the input layer, hidden layer and output layer. The neurons in the layers are connected 

to each other via synaptic weights. Given the desired output, the synaptic weights of the 

neurons are adjusted based on the errors so that the ANN could output a value close to 

the desired output.  

 A feedforward neural network with backpropagation method is adopted to forecast 

the hourly solar irradiance values. The input is the 1-minute interval of hourly solar 

irradiance trend. The optimal number of the neurons in the hidden layer is taken as 55 

after several trials and errors using validation dataset. 

4.5 Performance of Forecast Model 

4.5.1 Effect of Incremental Learning  

 From Grid Search, SOM produces better performance when SOM consists of 25 

neurons whereas denoising control of 0.1, lambda of 50 and maximum age of 2000 lead 

to an optimised ESOINN model.  After the suitable hyperparameters are set for each SOM 

and E-SOINN, the training dataset is split into 5 equal-size groups to determine the effect 

of Incremental Learning on solar irradiance forecasting. The data used in this subsection 

is the original undecomposed dataset. Both SOM and E-SOINN models are trained with the 

first group of data and their performances are evaluated against actual solar irradiance 

values. As SOM does not possess incremental learning capability, it is retrained with 
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previous training data with addition of new data. E-SOINN which possesses incremental 

learning capability, does not need old data to be added into new training data, allowing 

batch training to be performed for each new dataset. Table 4-4 and Table 4-5 summarise 

the results obtained. 

Table 4-4 - Performance of SOM with new batches of training data 

Batch Training MASE RMSE (Wm-2) Training Time (s) 

1 6.261886 413.5812 63.677 

2 5.046964 333.3111 159.75 

3 7.824766 509.2435 373.57154 

4 4.724261 315.4872 594.31714 

5 7.824766 509.2435 1019.1958 

Table 4-5 - Performance of E-SOINN with new batches of training data 

Batch Training MASE RMSE (Wm-2) Training Time (s) 

1 0.88992 110.966 14.36598 

2 0.83061 106.1829 71.53866 

3 0.846988 107.5342 167.6246 

4 0.839077 105.9463 272.6899 

5 0.835421 104.8017 427.8516 

 

 From both error measures, performance of SOM in solar irradiance forecasting is 

not consistent. While the error measures may improve with the addition of more training 

data, they also deteriorate as more data accumulates within the neurons. This 

inconsistency suggests that, despite optimizing the number of neurons, the presence of 

noisy solar irradiance data may disrupt the effective learning of SOM in extracting both 

statistical and geometrical information essential for understanding the solar irradiance 

trend. 

 On the other hand, the E-SOINN is showing an overall improvement in forecasting 

60-minute ahead solar irradiance value on both MASE and RMSE measures. The inherent 

noise-removal capability of E-SOINN minimizes disruptions during the learning stage. The 

increasing training time of E-SOINN also indicates that, as more data populate the nodal 

space of E-SOINN, a greater number of constraints, connections, and comparisons are 

made throughout the incremental learning stage. This adaptability and noise-filtering 
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attribute contribute to the E-SOINN's effectiveness in solar irradiance forecasting, 

particularly when faced with varying levels of data noise. 

4.5.2 Performance Comparison of RE-SOINN and E-SOINN  

 In this subsection, the solar irradiance forecasting performance of RE-SOINN and 

E-SOINN is investigated. Both models are fed with the same training data using 

hyperparameters found via Grid Search previously and their performances in producing an 

accurate hourly ahead solar irradiance value are recorded in Table 4-6. The 

hyperparameters set are the same set used by E-SOINN model in Subchapter 4.5.1. RE-

SOINN has additional hyperparameters of power (p=2.5) and number of neighbours of 5. 

Table 4-6 - Performance of E-SOINN vs RE-SOINN in solar irradiance forecasting 

Models MASE  RMSE (Wm-2) 

E-SOINN 0.8162 102.3504 

RE-SOINN 0.6782 82.7869 

 

 The effectiveness of E-SOINN in forecasting hourly solar irradiance values becomes 

apparent, particularly when equipped with the capability to generate continuous outputs.  

As MASE approaches 0.5, RE-SOINN almost outperforms Naïve model by a factor of two. 

The improvement in the Root Mean Squared Error (RMSE) measure by 20% further 

solidifies the conclusion that RE-SOINN excels over E-SOINN in forecasting applications 

involving continuous data. Notably, the results suggest that RE-SOINN can achieve a more 

accurate forecast even in scenarios where the resolution of training data is not particularly 

high. Comparing to Nearest Neighbour mechanism adopted by E-SOINN, weighted average 

of neighbours allows the model to consider the trends of neighbouring nodes. This 

approach is grounded in the rationale that similar trends should yield similar solar 

irradiance values in the next hour. As the resolution of nodes increases, accuracy of E-

SOINN as well as RE-SOINN will get improved as both models produce the forecast results 

based on the nodal information. This insight underscores the significance of considering 
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neighbouring trends for accurate solar irradiance forecasting, and it positions RE-SOINN 

as a robust model for such applications. 

 The performance of RE-SOINN after being trained incrementally is demonstrated 

in Table 4-7. 

Table 4-7 - Performance Comparison of E-SOINN and RE-SOINN in Incremental Learning 

Batch 
Training 

RE-SOINN 

MASE RMSE (Wm-2) 

1 0.7690 92.9153 

2 0.7131 86.9235 

3 0.7231 87.2185 

4 0.6919 83.9259 

5 0.6831 82.6209 
 

 In general, the performance of models improves as they are trained incrementally 

and the forecasting performance of RE-SOINN is better than E-SOINN. RE-SOINN has 

successfully transformed discrete outputs into continuous forecasts, allowing the forecast 

outputs to be any value in between discrete clusters. As a result, unlike E-SOINN, RE-

SOINN does not heavily rely on the number of nodes in the model to produce forecast 

outputs of better accuracy. 

4.5.3 Performance with Decomposed Data  

After solar irradiance data are decomposed into low and high frequency 

components, two RE-SOINN models are created where each model is dedicated for low 

and high frequency components respectively. With the optimal values found via Grid 

Search method previously, both Low Frequency and High Frequency models are trained 

with the respective training sets and their performances against entire test dataset are 

obtained and recorded in Table 4-8. It is noted that the training vector of low frequency 

RE-SOINN model (LF RE-SOINN) consists of 62 elements (historical trend with time 

horizon of 60 minutes) whereas the training vector of high frequency RE-SOINN model 

(HF RE-SOINN) is made up of 7 elements (historical trend with time horizon of 5 minutes). 

Table 4-8 - Suitable Hyperparameters for both LF RE-SOINN and HF RE-SOINN 
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Models 
Denoising 

Control 
Lambda 

Maximum 

Age 
Power 

Number of 

Neighbours 

LF RE-SOINN 0.001 1000 1000 1 3 

HF RE-SOINN 0.001 1000 1000 1 3 

 

 

Figure 4-8 - Plot of actual low frequency solar irradiation component vs predicted trend 

The plot in Figure 4-8 above shows the visual performance of LF RE-SOINN model 

in forecasting the low frequency component of one-day solar irradiation trend. It can be 

clearly seen that the predicted trend is able to follow the general trend of the actual solar 

irradiation. The proposed model could forecast majority of the peaks and produce similar 

amplitudes. Our proposed model has in fact shown that Unsupervised Learning model can 

produce satisfactory results in forecasting applications. The proposed model has produced 

6678 nodes of distinctive trends. These nodes are important factor in governing the 

performance of the proposed model as there are more references to act as closest 

neighbours. 
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Figure 4-9 - Plot of actual low frequency solar irradiation component vs predicted trend across 5 days 

 Figure 4-9 shows how the proposed model performs in forecasting low frequency 

component of solar irradiation for 5 consecutive days. This plot further depicts the ability 

of the proposed model in tracking the actual trend. On a macroscopic view, the deviation 

between actual trend and predictive trend mainly occurs at highly oscillating part found in 

the solar irradiation. This performance is showing good outlook that RE-SOINN could also 

produce good forecasting results purely with historical solar irradiation trend. 

 Even though the improvement in MASE is small compared to E-SOINN in Table 4-6, 

there is a significant improvement in RMSE by 42.3% based on Table 4-9. Both measures 

suggest that decomposition method has allowed Unsupervised Learning models to produce 

good performance in forecasting solar irradiance with less and small number of variations. 

Table 4-9 - Performance metrics of LF RE-SOINN and HF RE-SOINN models 

Components MASE  RMSE (Wm-2)  

Low Frequency 0.7969 60.6870 

High Frequency 0.70975 47.992 

 

Figure 4-10 shows how RE-SOINN performs in forecasting the 1-day worth of high-

frequency component of solar irradiation values. Forecast from RE-SOINN manages to 
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capture the trend of the high-frequency component although it encounters challenges in 

accurately replicating the magnitudes of the amplitudes. From the actual high-frequency 

component of solar irradiation in Figure 4-5, it is observed that the noisy trend significantly 

varies no matter in terms of frequency and amplitude. RE-SOINN being one of the 

Unsupervised Learning models, places more emphasis on the statistical information within 

the dataset. As a result, the forecast output of RE-SOINN is aligned with the general trend.  

On the other hand, the amplitudes of the dataset are averaged in the nodes. Unless 

the amplitudes of each trend occurring at similar timestamp are very similar, in the view 

of Unsupervised Learning, the differing amplitudes will be either averaged to produce a 

mean amplitude representing a particular cluster or be removed if the dispersion is too 

large (may be regarded as noise). Due to the noisy nature of high-frequency component 

of solar irradiation, the amplitudes vary significantly even though it happens at the same 

hour and minute daily. As a result, the model struggles to accurately forecast these 

amplitudes. One potential avenue for improving prediction accuracy is to increase the 

number of nodes in the RE-SOINN model. This approach allows for the creation of more 

distinctive nodes, potentially enhancing the model's ability to capture and forecast the 

varied amplitudes of the noisy high-frequency components. 

 

Figure 4-10 - Plot of actual high frequency solar irradiation component vs predicted trend 



89 
 

 Both measures show that RE-SOINN performs better in high frequency data 

compared to low frequency data regardless the fact that LF RE-SOINN model produces 

better performance in the plot. This contradicting result can be explained when the 

amplitudes of low frequency and high frequency data components are considered. The 

mean of low frequency component of the data is 114.03Wm-2 whereas the mean of high 

frequency component of the data is 0.05Wm-2. The normalised RMSE (nRMSE) for low 

frequency component is approximately 0.53 and the nRMSE for high frequency component 

is 959.84. nRMSE has shown that the high frequency component of solar irradiance data 

is highly random and unpredictable. There is hardly any solid geometrical pattern found in 

the high frequency components of the data. 

Table 4-10 - Comparison of overall results of forecasting with decomposed data and original data by RE-SOINN 

Models MASE RMSE (Wm-2) 

Combined Model (LF + HF) 0.6675 79.785 

RE-SOINN with Original data 0.6782 82.7869 

 

 As outputs from both LF RE-SOINN and HF RE-SOINN models are combined 

together, the combined outputs from both models are slightly more accurate than RE-

SOINN running on original data, as shown in Table 4-10. The decomposition of data has 

allowed each model to learn slightly more on the statistical and geometrical information 

available in the training data it is fed with, producing a more accurate forecast eventually 

when they are combined. 

4.5.4 Further Accuracy Improvement  

As concluded in Subsection 4.5.3, RE-SOINN model exhibits superior performance 

when the training data are decomposed into low and high frequency components. As noisy 

high frequency components data becomes the limiting factor, any improvement made to 

this aspect could improve the overall forecasting accuracy. Using the proposed 

improvement method detailed in Subsection 4.3, Table 4-11 shows the improvement in 

performance by addition of averaged high frequency component based on timestamp. This 
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improvement reinforces the significance of addressing and refining the high-frequency 

components to elevate the forecasting accuracy of the RE-SOINN model. 

Table 4-11 - Performance comparison between models developed in Subsection 4.3 and combined models based on 
proposed framework 

Models MASE RMSE (Wm-2) 

Previous Model (LF + HF) 0.6675 79.785 

Combined New Model (LF + 

HF + Mean of HF) 
0.65755 73.945 

 

 

Figure 4-11 - Plot of actual high frequency solar irradiation component vs predicted trend across 5 days 

 Both MASE and RMSE measure have indicated that inclusion of mean high 

frequency component to the high frequency forecast output of RE-SOINN has produced 

better performance. Over the course of the 5 days depicting actual soft trend in solar 

irradiation trend (shown in Figure 4-11), it is evident that the high-frequency component 

of solar irradiation differs significantly. The performance of the RE-SOINN forecast aligns 

with previous descriptions; although exact amplitude replication may not be achieved, the 

forecast successfully captures the overall shape of the trend and generates means of the 

noisy amplitudes based on historical data. Table 4-11 further confirms the improvement 

in forecasting accuracy based on reduction in both MASE and RMSE measures. This 
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corroborates the effectiveness of incorporating the mean high-frequency component to 

refine the RE-SOINN forecast output. 

4.5.5 Comparison with Other Models 

Figure 4-12 and Figure 4-13 show the one-day solar irradiation profiles of test data. 

Notably, both figures illustrate that the solar irradiation in the test data is significantly 

influenced by short-term variations, particularly during peak daylight hours. The difference 

between the profiles in Figure 4-11 and Figure 4-12 is that the profile in Figure 4-11 is 

less noisy. Persistence Model, Exponential Smoothing and Artificial Neural Networks (ANN) 

are trained with the same batch of train data. Subsequently, the test data is fed into each 

of these models and their performances are reported in Table 4-12. It is noted that the 

single-day RMSE and MASE are calculated based on test data from Figure 4-13 given its 

higher noise levels in comparison to other profiles. This distinction allows for a more 

focused evaluation of the models' performance under conditions of increased noise in the 

solar irradiation profile. 

 

Figure 4-12 - Plot of actual solar irradiation #1 – Less Noisy Profile 
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Figure 4-13 - Plot of actual solar irradiation #2 – Noisy Profile 

Table 4-12 - Performance metrics of other models vs proposed framework and models 

Model MASE  RMSE (Wm-2) 

Proposed Model 0.65755 73.945 

Persistence Model 1.2074 103.9485 

Exponential Smoothing 0.86862 91.465 

ANN 1.0045 90.559 

 

 Figure 4-14 to Figure 4-17 show the performance of each model on forecasting the 

solar irradiation profile recorded in Figure 4-12 whereas Figure 4-18 to Figure 4-21 plot 

the forecast of each model based on test day from Figure 4-13.  
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Figure 4-14 - Plot of actual solar irradiation vs predicted trend by Persistence Model on less noisy profile (shown in Figure 
4-12)

 

Figure 4-15 - Plot of actual solar irradiation vs predicted trend by Exponential Smoothing on less noisy profile (shown in 
Figure 4-12) 
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Figure 4-16 - Plot of actual solar irradiation vs predicted trend by ANN on less noisy profile (shown in Figure 4-12) 

 

Figure 4-17 - Plot of actual solar irradiation vs predicted trend by Proposed Framework with RE-SOINN on less noisy profile 
(shown in Figure 4-12) 
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Figure 4-18 - Plot of actual solar irradiation vs predicted trend by Persistence Model on noisier profile (shown in Figure 4-13) 

 

Figure 4-19 - Plot of actual solar irradiation vs predicted trend by Exponential Smoothing on noisier profile (shown in Figure 
4-13) 
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Figure 4-20 - Plot of actual solar irradiation vs predicted trend by ANN on noisier profile (shown in Figure 4-13) 

 

Figure 4-21 - Plot of actual solar irradiation vs predicted trend by Proposed Framework with RE-SOINN on noisier profile 
(shown in Figure 4-13) 

The visual analysis of the plots reveals that both the Persistence Model and 

Exponential Smoothing models exhibit trends that closely resemble the actual trend, albeit 

with a lag equal to the forecast horizon. This lag, indicative of the delay in predicting future 

values, is a characteristic shared by both models. These methods prove particularly 

effective in regions with less irregular and cloudy solar irradiation profiles, where the 

likelihood of the next instant's solar irradiation value resembling the most recent 

observation is higher. However, challenges arise in tropical regions near the Equator, 

where cloud formations and frequent rainfall are common. The dynamic movement of 

clouds in the sky intermittently obstructs sunlight, resulting in sudden drops in solar 
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irradiation readings. In such instances, the Persistence and Exponential Smoothing models 

face limitations in accurately forecasting solar irradiation values, making them less suitable 

for these regions influenced by tropical climate conditions. 

 ANN as well as our proposed framework featuring RE-SOINN model show superior 

performance comparing to Persistence Model and Exponential Smoothing models. 

According to Table 4-12, RE-SOINN model exhibits a better average performance than the 

ANN, as evidenced by lower values of both RMSE and MASE. Notably, MASE is a measure 

of comparison between Naïve model and a specific forecasting model. In this measure, our 

RE-SOINN model excels in tracking the profile of the actual data in forecasting, producing 

fewer anomalous amplitudes. In terms of RMSE, the RE-SOINN model demonstrates fewer 

oscillating amplitudes as compared to ANN. The ability of any forecasting method to follow 

and produce similar oscillating amplitudes for one set of test data is important because 

short-term variation is random in nature. Thus, instead of learning the randomness of 

training data and force RE-SOINN model to find any correlation within, the mean of the 

short-term variation for each timestamp is used as the baseline of randomness in our 

forecast. This strategy contributes to the RE-SOINN model's effectiveness in capturing and 

reproducing similar oscillating amplitudes in the forecasted data. 

 By adopting to this approach, the forecast values outputted by RE-SOINN model 

will be consistently in the ballpark range of actual values, allowing our RE-SOINN model 

to produce a generalised estimation on the randomness found in the solar irradiation 

profile. Therefore, our RE-SOINN model can produce more superior performance than ANN 

in the long run since the mean of variation is applicable for any other day as long as there 

is no significant change in climate over the said region. Also, by leveraging the Incremental 

Learning feature of ESOINN, our model can learn over time and adapt to the evolving 

weather patterns, improving the overall forecasting performance that surpasses the 

plasticity limitations of ANN. With more nodes being created by the RE-SOINN, the higher 

the forecast resolution since it has seen more distinctive solar irradiation trends, allowing 

it to produce forecast which can account for higher degree of randomness. This adaptability 
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and increased forecast resolution make our RE-SOINN model well-suited for dynamic 

weather conditions and contribute to its efficacy in long-term forecasting scenarios. 

 To further explore the viability of this proposed method across different periods of 

the year, a random day from December is taken. Figure 4-22 shows the performance of 

the proposed model on solar irradiance profile taken from a particular day in December 

2018. Upon close examination of Figure 4-22 and Figure 4-2, a notable similarity emerges 

in the short-term trend of the solar irradiance profiles. Both exhibit a common distribution 

shape, resembling a normal distribution, with peaks occurring around midday. The MASE 

score is 0.81089 and the RMSE is 72.658 Wm-2. These results affirm the effectiveness of 

the proposed method in capturing and forecasting solar irradiance profiles for other periods 

of the year beyond the original dataset. The commonality in short-term trends indicates 

that the proposed method holds promise for broader applications, demonstrating its 

adaptability and robustness across various temporal contexts. 

 

Figure 4-22 - Plot of Actual Solar Irradiance Profile vs Forecast Profile for a Random Day in December 2018 

4.6 Summary 

 An Unsupervised Learning algorithm, RE-SOINN is introduced and complemented 

by a framework to produce a comparable forecast performance compared to Supervised 

Learning such as ANN, presents a promising avenue for applications reliant on historical 
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solar irradiance trends. This framework enables RE-SOINN to generate continuous 

forecasts based on learned solar irradiance patterns, positioning it as a viable alternative 

in scenarios where Supervised Learning models are conventionally employed. The 

framework designed can ensure the model to operate within allowable range of forecast 

accuracy, promising a good forecast performance in long run. Together with its 

Incremental Learning feature, the model could adapt and learn from new datasets without 

forgetting previously acquired knowledge, allowing it to adapt to gradual change in the 

environment.   

 However, a primary limitation lies in the challenge of optimizing hyperparameters 

specific to the climate trends observed in solar irradiance profiles. Given the unsupervised 

learning nature of RE-SOINN, the identification of an optimized set of hyperparameters 

becomes crucial for its forecasting performance. In this section, Grid Search method is 

applied to deal with this optimisation issue. It is noted that Grid Search procedure could 

take a lot more time and computational resources compared to actual application of 

optimised RE-SOINN model to predict hourly solar irradiance. In future work, AI-based 

optimisation algorithms such as Particle Swarm Optimisation (PSO) can be applied to make 

the proposed model to start running with the least human interference possible. PSO is 

recognized for its efficiency in reducing unnecessary computational steps, offering a 

potential avenue for enhancing the optimization process beyond the resource-intensive 

Grid Search method. 
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Chapter 5 RE-SOINN Model Energy Management Strategy 

This chapter proposes a novel optimization and control strategy method for any 

standalone PV-based REPS with battery-supercapacitor HESS. The proposed EMS adopted 

in this project is optimised every minute based on solar irradiance and load demand 

profiles. The originalities are as follow: 

Unsupervised Learning Artificial Intelligence model is adopted in the EMS controller. 

This model, together with 𝑇𝑐 and 𝑇𝑑 (charging and discharging thresholds) [11] as data 

labels offer a flexible operation to the REPS with battery-supercapacitor HESS. The model 

behaves smartly by studying hourly historical data trend and makes deduction using its 

knowledge base.  

The incremental feature of RE-SOINN allows the AI model to learn new data to 

adapt to new changes gradually. By having PSO as a teacher at its early learning stage, 

EMS could work as a black box and learn on its own with the least interference from human. 

5.1 System Structure and Modelling 

 The overall structure of the proposed system is demonstrated in Figure 5-1 as 

shown below. The proposed system consists of four main components, namely the PV 

system, supercapacitor, battery and bidirectional DC-DC converter, forming standalone PV 

system in the study. The proposed system adopts semi-active Supercapacitor-Battery 

HESS architecture where only supercapacitor is controlled directly by EMS whereas battery 

responds passively to the system demand. Therefore, the dynamic power equation 

representing the proposed system can be summarised as Equation (5-1): 

𝑃𝑃𝑉 − 𝑃𝑏𝑎𝑡𝑡 − 𝑃𝑠𝑐 − 𝑃𝑙𝑜𝑎𝑑 = 0  [10]      

where 𝑃𝑃𝑉 , 𝑃𝑏𝑎𝑡𝑡 , 𝑃𝑠𝑐  and 𝑃𝑙𝑜𝑎𝑑  are the PV output power, battery power, supercapacitor 

power and load power demand respectively.  

 A small note to be taken is that since semi-active HESS topography is used in this 

study, supercapacitor power must go through additional route via DC-DC converter before 

it reaches DC bus. Assuming the DC-DC converter has an efficiency of η, 𝑃𝑠𝑐_𝑎𝑐𝑡𝑢𝑎𝑙 reaching 

(5-1) 
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the DC bus is now η𝑃𝑠𝑐. In this segment, DC-DC converter is assumed to be ideal with its 

efficiency η = 100%, making 𝑃𝑠𝑐_𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑃𝑠𝑐. 

Taking inspiration from [10], the dynamic power equation of the proposed system 

is rearranged to simplify the power distribution problem. A term, 𝑑𝑃 is created to consider 

the generated PV power and load demand, denoting the power surplus between power 

generation side and load demand side, producing Equation (5-2). 

𝑑𝑃 =  𝑃𝑃𝑉 − 𝑃𝑙𝑜𝑎𝑑 = 𝑃𝑏𝑎𝑡𝑡 + 𝑃𝑠𝑐         

If 𝑑𝑃 is positive, it indicates a power surplus and the extra power can be stored in both 

battery and supercapacitor. If 𝑑𝑃 is negative, power deficit occurs and stored power in 

battery and supercapacitor should be used to satisfy the power mismatch. 

 Table 5-1 lists down the component specification of the proposed system. 

Table 5-1 - Specifications of components present in the system under study 

Components Specification 

PV Power 2kW 

Battery 

Voltage 48V 

Capacity 250Ah 

Supercapacitor 

Voltage 60V 

Capacitance 200F 

(5-2) 
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Figure 5-1 - System block diagram for system developed in this study 

5.2 Proposed Control Strategy 

REPS with HESS usually operates with higher energy density storage device (SLA 

battery) as the primary ESS and higher power density storage device (supercapacitor) as 

the secondary ESS. Primary ESS is responsible to meet a significant part of load demands 

or to store larger amount of harvested solar energy whereas the role of secondary ESS is 

to supply any energy deficit or to absorb energy surplus leftover by primary HESS. 

Batteries, especially sealed lead-acid based batteries (SLA), are commonly used as 

primary ESS. The cheaper price tag of SLA batteries, however, comes with a few 

drawbacks that could cause REPS a low return and less favourable investment [132]. The 

common issues that could damage SLA batteries are  

• Peak battery power demand 

• Oscillations of battery power between charging and discharging operations, 

or excessive battery charge-discharge cycles 

• Huge battery charge/discharge rate 

The goals of the EMS applied in this research are therefore 
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• to extend the battery lifetime which in turn prolongs the system service life and 

reduces system maintenance cost, as well as 

• to assist the REPS to improve solar energy harvesting 

Table 5-2 shows how these issues are addressed by the proposed EMS. 

Table 5-2 - Issues experienced by Lead Acid battery and measures offered by proposed EMS 

Factors affecting battery life cycles How proposed EMS helps 

Peak battery power demand 

Battery is coupled with supercapacitor 

and EMS should be able to schedule 

supercapacitor charging and discharging 

operations more frequently. 

Excessive battery charge-discharge cycles 

Filtration is added to the EMS so that the 

oscillating component in the load demand 

or 𝑑𝑃 can be filtered out for 

supercapacitor operations. 

Huge battery charge / discharge rate 

EMS should be able to schedule longer 

operation of supercapacitor so that the 

battery charging or the discharging power 

amplitudes are reduced by sharing a 

portions to the supercapacitor. 

In common applications, pre-defined rules (Rule-Based Controllers) are used to 

control the operation of secondary ESS for power distribution between primary and 

secondary ESS. However, this strategy restricts the efficiency of EMS due to the rigidity of 

pre-defined rules. 

 In Ref. [11], a flexible power distribution strategy is proposed so that the secondary 

HESS in the REPS can be charged and discharged in any condition as the EMS sees fits. 

There are two thresholds (𝑇𝑐 and 𝑇𝑑) where each of the thresholds can be adjusted freely 

to control the amount of shared power by supercapacitor. 𝑇𝑐 and 𝑇𝑑 control the charging 

as well as discharging operation of the supercapacitor respectively. Therefore, the 

proposed EMS outputs optimal 𝑇𝑐 and 𝑇𝑑 for each varying condition of 𝑑𝑃 and 𝑆𝑜𝐶𝑠𝑐. 

The proposed EMS consists of 4 modules or components where each of the modules 

is tasked to respond to each of the issues in Table 5-2 effectively. The system handles the 

load demand in a sequential manner via these modules, resulting a smoothened load 



104 
 

demand power draw for the battery. Thus, the final output of proposed EMS can be viewed 

as a sequential summation or response of each module output. 

Figure 5-2 shows the system block diagram of the proposed EMS applied in this 

study. There are a total of 4 major components in the EMS of the system, namely: 

i. Moving Average Filtration 

ii. RE-SOINN Input Data Clustering and Decision Output  

iii. Power Distribution Strategy 

iv. Circuit Voltage and Current Protection 

 

Figure 5-2 - System block diagram of proposed EMS 

 In Figure 5-2, 𝑑𝑃 is first evaluated based on power difference between load power 

demand and renewable power generation. Then, 𝑑𝑃 is decomposed into its low frequency 

component (long-term trend) 𝑑𝑃𝐿𝐹 and high frequency component (short-term trend) 𝑑𝑃𝐻𝐹. 

Subsequently, 𝑑𝑃𝐿𝐹 is inputted to RE-SOINN Input Data Clustering and Decision Output 

Model. At initial stage, Particle Swarm Optimisation training model is initiated to train RE-

SOINN model with optimal labels to 𝑑𝑃𝐿𝐹 and 𝑆𝑜𝐶𝑠𝑐. Immediately after RE-SOINN model is 

fully trained, 𝑑𝑃𝐿𝐹 and 𝑆𝑜𝐶𝑠𝑐 are inputted to RE-SOINN model directly, bypassing the PSO 
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training model. The RE-SOINN model then produces optimal supercapacitor charging and 

discharging thresholds, the 𝑇𝑐 and 𝑇𝑑. The power distribution strategy module interprets 

the 𝑇𝑐 and 𝑇𝑑 to determine the amount of absorbed or supplied power to be shared by 

supercapacitor. Finally, the circuit voltage and current protection module ensures the 

supercapacitor works within its operating range without any overcharging and over-

discharging event. 

5.3 Moving Average Filtration (MAF) 

 The main purpose of moving average filtration in the EMS is to minimise the 

dynamic stress of high energy density ESS such as lead-acid battery. Early research such 

as [29], [59], [132] have shown that filtration method or any Filtration-based Controller 

(FBC) is able to improve the battery lifespan by lowering battery stress level and oscillation 

cycles. MAF decomposes the 𝑑𝑃 into its fast transient (high-frequency) as well as its steady 

slow (low-frequency) components. It is the fast transient component in the 𝑑𝑃 that causes 

ESS to experience oscillating power profiles, resulting in damaging battery current cycles 

which hurt the battery lifetime. The moving average component of 𝑑𝑃 is determined using 

the mathematical equation as follows:  

     𝑑𝑃𝐿𝐹 =
1

𝑇
∫ 𝑑𝑃 𝑑𝑡

𝑡−𝑇

𝑡
                

where T refers to the moving sampling time window and t is the sample to be considered 

at the time of computation. Once 𝑑𝑃𝐿𝐹 (low frequency component) is determined, the high 

frequency component of dP can be found using the relationship as follows: 

   𝑑𝑃𝐻𝐹 = 𝑑𝑃 − 𝑑𝑃𝐿𝐹                   

 Moving average filtration model itself is not particularly useful to work alone as sole 

component of EMS. It can work well in reducing battery power oscillation by allowing 

supercapacitor to deal with 𝑑𝑃 𝐻𝐹. However, filtration-based EMS is unable to alleviate the 

battery current deep discharge problem effectively, leaving a relatively huge room of 

(5-3) 

(5-4) 
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improvement for EMS. Thus, other modules are added into the system sequentially to 

further improve the system performance. In this application, the period is set as 25s. 

5.4 RE-SOINN Input Data Clustering and Decision Output Model 

𝑇𝑐 and 𝑇𝑑 are the two thresholds that are being adjusted continuously so that active 

control of supercapacitor (charging and discharging) can be possible. Eventually, power 

distribution between the power generation, load demand as well as HESS can be managed 

via active control of supercapacitor. In this subsection, the proposed control strategy 

adopts an Unsupervised Learning Artificial Intelligence model, Regression Enhanced Self-

Organizing Incremental Neural Networks (RE-SOINN) to summarise as well as to learn 

from the input data. The EMS operation is to identify the similarities between input data 

and historical data stored in the database of RE-SOINN to produce optimal 𝑇𝑐 and 𝑇𝑑 based 

on data similarity. The model is run at one-minute interval so that the power in the system 

can be managed in one-minute interval manner. As a result, data clustering from RE-

SOINN could reduce the computational complexity in producing an optimal 𝑇𝑐  and 𝑇𝑑 

values, leading to minimal overall computational time.  

 As an unsupervised learning model, RE-SOINN is unable to label the data it has not 

seen. In this application, the labels for the data are the optimised 𝑇𝑐 and 𝑇𝑑 values which 

are to be computed separately. Thus, an optimization model is added to compute the 

optimal 𝑇𝑐 and 𝑇𝑑 at early stage of untrained RE-SOINN. This optimization model, PSO, 

serves as the teacher to the RE-SOINN model so that RE-SOINN could start to label the 

subsequent data with optimal 𝑇𝑐 and 𝑇𝑑 after learning stage. Thus, RE-SOINN would have 

to go through a single learning stage to expand its knowledge base.  

i. LEARNING STAGE - When RE-SOINN starts operating from scratch or zero 

knowledge, PSO will serve to assist RE-SOINN in labelling the inputs. Then the 

inputs together with optimal labels are to be stored in the knowledge base as nodes. 

ii. AFTER LEARNING – After RE-SOINN is fully trained with variety of inputs for a said 

duration, PSO can then be suspended where the labels of new inputs are 
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determined solely using RE-SOINN. At this stage, the computation of optimal 𝑇𝑐 

and 𝑇𝑑 can be done without complexity due to calculation iteration in PSO. 

5.4.1 Particle Swarm Optimisation (PSO) Model 

Bird flocking and fish schooling are proofs that coordinated behaviour emerges 

without central control [100]. PSO studies how several simple entities (particles) interact 

and influence each other to move to region of interest [101]. The particles are placed in 

the search place of problems and each evaluates the objective function at its current 

location. Each particle then determines its movement by combining historical information 

on its current and best-fitness locations with those of one or more members of the swarm 

with some random perturbations.  

Figure 5-3 denotes the flowchart involving PSO in the computation of optimal 𝑇𝑐 

and 𝑇𝑑 as labels to the 𝑑𝑃𝐿𝐹 trend coupled with SoC of supercapacitor. During initialisation, 

the particles consist of random 𝑇𝑐  and 𝑇𝑑  where PSO would determine the best and 

optimised particle to maximise solar energy harvesting as well as to minimise battery peak 

demand due to real time 𝑑𝑃𝐿𝐹 and 𝑆𝑜𝐶𝑠𝑐. A fitness function is embedded into the PSO to 

evaluate the performance of each particle (or each set of 𝑇𝑐  and 𝑇𝑑) in each case as 

described by its input vector. 

5.4.2 Fitness Function of PSO 

 As PSO uses iteration method to find better 𝑇𝑐 and 𝑇𝑑 to suit conditions described 

by input vectors, fitness function is the key to determine the suitability of each  

𝑇𝑐  and 𝑇𝑑  represented by particles. Fitness functions are usually in the form of 

mathematical model of a system to simulate the effects of varying variables represented 

by the PSO particles onto the system. In this study, the inputs to the PSO are historical 

𝑇𝑐, historical 𝑇𝑑, 𝑑𝑃𝐿𝐹 and 𝑆𝑜𝐶𝑠𝑐 where battery and supercapacitor power profiles are the 

outputs. Thus, during each PSO computational iteration, each set of 𝑇𝑐 and 𝑇𝑑 from the 

PSO particles is inputted into the fitness function so that the best performing particles can 

be determined based on the power profiles. 
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Figure 5-3 - Algorithmic flowchart of PSO application in the EMS 

 Unlike [11] which aims to reduce the peak battery power (either during charging 

stage or supplying load demand) by utilising supercapacitor, the EMS in this study also 

considers maximising the solar energy harvesting by prioritising the usage of 

supercapacitor to store harvested energy during low solar irradiance conditions. 

Furthermore, as 𝑑𝑃𝐿𝐹  could span between positive and negative values, the ideal 

performance for battery could be very different under differing conditions. Thus, 

specialised fitness functions are introduced to satisfy the constraints of different cases. 

An important aspect for consideration while devising the EMS based on this study 

is that supercapacitor only operates when the 𝑑𝑃𝐿𝐹 is higher than 𝑇𝑐 or 𝑑𝑃𝐿𝐹 is lower than 

𝑇𝑑 as depicted in Figure 5-4. The possible cases based on 𝑑𝑃𝐿𝐹 are described as follow: 

I. When the hourly 𝑑𝑃𝐿𝐹  trend is entirely positive, battery undergoes charging 

operation only since load demand is successfully satisfied. To reduce the battery 

power oscillation between charging and discharging cycles, 𝑇𝑑 is set to 0 so that 
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supercapacitor only discharges to meet unexpected load demand. 𝑇𝑐 is set based 

on 𝑆𝑜𝐶𝑠𝑐. Lower 𝑆𝑜𝐶𝑠𝑐 would yield a smaller 𝑇𝑐 so that more solar energy harvested 

can be allocated to supercapacitor. Thus, in this case, the fitness function is to 

reward 𝑇𝑐 and 𝑇𝑑 values that maximise solar energy harvesting as well as reduce 

instantaneous battery peak charging power. 

II. When the hourly 𝑑𝑃𝐿𝐹 trend is entirely in the negative region, the load demand is 

greater than renewable energy generation. Thus, HESS discharges to match the 

power deficit. If 𝑆𝑜𝐶𝑠𝑐 is too high, 𝑇𝑐 is set at 0W (or any other positive value) so 

that supercapacitor will be ready to be activated for charging. As so, battery will 

be less likely to undergo damaging short charging-discharging cycles. On the other 

hand, 𝑇𝑑 is set to be 0W as well so that supercapacitor can be readily discharged 

to meet load demand. If the 𝑆𝑜𝐶𝑠𝑐 is extremely low, 𝑇𝑐 will be set lower than 0W so 

that a small amount of power is drawn from battery to prevent supercapacitor from 

discharged completely. 𝑇𝑑 is also lowered. The fitness function mainly aims to bring 

battery power profile close to 0W. Activation of 𝑇𝑐 can be determined by comparing 

the simulated system performance in the absence of 𝑇𝑐 values since discharging 

operation dominates. 

III. If the hourly 𝑑𝑃𝐿𝐹 trend consists of positive and negative values, then the EMS will 

need to go through two optimisation processes. The first optimisation uses the 

fitness function from case 2 to reduce battery peak discharging power. Then both 

𝑇𝑐 and 𝑇𝑑 will be tested to further evaluate the optimisation performance of 𝑇𝑐. This 

is because fitness function in case 2 does not place huge emphasis on optimising 

𝑇𝑐. 𝑇𝑐 will be further optimised with the same 𝑇𝑑 if the difference in performance for 

cases with optimised 𝑇𝑐 and absence of 𝑇𝑐 is significant. The fitness function of the 

second stage optimisation is similar to that of case 1 where solar energy harvesting 

is maximised and instantaneous battery peak charging power is reduced. 

 
Figure 5-4 - Plot of power distribution based on 𝑇𝑐 and 𝑇𝑑 values 
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Table 5-3 – Table of fitness functions in each of the cases described in Subsection 5.4.2. 

 𝒅𝑷𝑳𝑭_𝑴𝑨𝑿 𝒅𝑷𝑳𝑭_𝑴𝑰𝑵 
Optimisation 

Goals 
Fitness Function 

CASE 1 

 

Positive 

 

Positive 

 

Maximising Energy 
Harvesting and 

minimising battery 

peak charging 
power 

𝑓1(𝑥)

= min (
𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥

𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝐺𝑟𝑎𝑝ℎ
) 

 

 

Figure 5-5 - Plot of power distribution based on 𝑇𝑐 and 𝑇𝑑 
values when dP is entirely positive 

CASE 2 

 

Negative 

 

Negative 

 

Maximising battery 
peak discharging 
power without 
going through 

multiple charge-
discharge cycles 

𝑓2(𝑥) = max(𝑃𝑏𝑎𝑡𝑡_𝑚𝑖𝑛) 

 

 

 

Figure 5-6 - Plot of power distribution based on 𝑇𝑐 and 𝑇𝑑 
values when dP is entirely negative  

CASE 3 

 

Positive 

 

Negative 

 

Step 1: similar to  
Case 2 

 

Step 2: similar to 

Case 1 

1. 𝑓2(𝑥) = max(𝑃𝑏𝑎𝑡𝑡_𝑚𝑖𝑛) 

 

2. 𝑓1(𝑥) =

min (
𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥

𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝐺𝑟𝑎𝑝ℎ
)   

 

  

 

Figure 5-7 - Plot of power distribution based on 𝑇𝑐 and 𝑇𝑑 
values when dP are both negative and positive. 

(5-5) 

(5-6) 

(5-8) 

(5-7) 
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5.4.3 Data Clustering using RE-SOINN 

The RE-SOINN [190] adopted is based on the E-SOINN [131]. Its Incremental 

Learning ability is important for this application so that the model can work from scratch 

without the need of accurate mathematical framework with minimal model customization. 

Based on explicit statistical features found in the input data, homogenous and distinctive 

data can be grouped together or partitioned to form new classes or nodes. Therefore, the 

clustering feature could store important information from historical data without the 

expense of oversized database due to increasing accumulated historical data. It also 

facilitates data comparison between input and stored data via lower dimensional 

complexity. The E-SOINN has thus been used in classification applications extensively for 

cases requiring discrete outputs [130].  

The RE-SOINN in [190] incorporates the regression method into the E-SOINN to 

produce continuous output to ensure that the output is adjusted accordingly based on 

degree of data similarity instead of taking the information from the nearest node as output. 

Also, it reduces the resolution of nodes required by EMS for an optimised 𝑇𝑐 and 𝑇𝑑 output. 

Thus, RE-SOINN could estimate optimal 𝑇𝑐  and 𝑇𝑑  threshold without needing an exact 

identical data in the knowledge base of RE-SOINN. The clustering feature of RE-SOINN 

manages to group all similar data trends into a single class and thus greatly reduces the 

computational time. 

 The data stored in the knowledge base of RE-SOINN consist of vectors of 63 

elements. The first 60 elements are made of the historical hourly 𝑑𝑃𝐿𝐹 trends, the 61st 

element is the SoC of supercapacitor with 62nd and 63rd elements representing the labels 

or the 𝑇𝑐 and 𝑇𝑑 pair optimised by PSO for the case. The number of nodes or neurons in 

RE-SOINN is determined dynamically by the model itself during the stage of clustering. A 

new node is created when Euclidean distance between input vector and nodes available in 

RE-SOINN is greater than the similarity threshold. The parameters of RE-SOINN such as 
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denoising control, denoising iteration, maximum nodal age, number of neighbours and 

power for significance adjustment are determined using Grid Search method. 

 Upon maturity, the input to RE-SOINN model is an hourly 𝑑𝑃𝐿𝐹 trend sampled at 1 

minute interval coupled with current state-of-charge (𝑆𝑜𝐶𝑠𝑐) of supercapacitor. Thus, the 

input vector has total elements of 61, corresponding to 60 one-minute interval data points 

and one SoC value. As input vector is fed into the RE-SOINN model, all 61 elements in the 

input vector will be compared with first 61 elements of all nodes to determine its closest 

neighbours. Then, the 𝑇𝑐 and 𝑇𝑑 values for the input vector are interpolated from the 62nd 

and 63rd elements from its neighbouring nodes respectively. 

As the EMS runs from zero initial knowledge, when the first input arrives, PSO 

assists RE-SOINN by providing the optimal labels to the input. Then, the input together 

with its optimal labels is recorded temporarily. This process is repeated for every minute 

of the day until one day worth of dataset (one-minute interval inputs with their respective 

labels) is obtained. Subsequently, RE-SOINN is trained with these new data to form its 

knowledge base. The training is usually conducted in the middle of the night such as 3am 

during the regular resting hours of human activities where there should be minimal 𝑑𝑃 

variations. The entire procedure is repeated for at least ten days so that RE-SOINN reaches 

maturity. 

5.5 Integration with RE-SOINN Forecast Model 

The importance of allowing the EMS to be able to plan ahead of time has been 

indicated in refs [133], [139-140]. This is an important advantage to the EMS due to the 

following points as follows: 

• The dynamic characteristics of solar energy generation as well as load demands 

resulting from user’s erratic behaviours require dynamic response from HESS. 

• In the events where supercapacitor has fully utilised its charges completely, 

being able to anticipate any incoming power disturbance requiring the operation 

of supercapacitor will allow EMS to arrange the charging of supercapacitor to 

regain charges prior to the power disturbances. 
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• Due to restrictions from computational resources available for the system, the 

charging and discharging operations of supercapacitor cannot be controlled at 

a very high time resolution (such as 1 second) but at a one-minute interval 

manner. This indicates that during the one-minute duration between each 

computational step, supercapacitor is to be charged and discharged the same 

regardless of the change in 𝑑𝑃 trend. Thus, the system performance should 

perform better if the semi-active control of supercapacitor can consider longer 

time horizon into the future so that the HESS is ready to tackle the future 𝑑𝑃. 

• The system can be avoided from operating blindly and it is more intuitive in 

looking for optimal time for Incremental Learning of the EMS. 

• The system can also avoid a huge power mismatch from one computational 

step to another when there is a sudden huge change in incoming 𝑑𝑃 trend. 

The prediction is carried in time horizon of one hour or 60 minutes since the 

forecasting model developed in Chapter 4 works well on hourly time horizon. As the input 

to the EMS are 𝑑𝑃𝐿𝐹 and current 𝑆𝑜𝐶𝑠𝑐, 𝑑𝑃𝐿𝐹 is replaced with a forecasted 60-minute ahead 

𝑑𝑃𝐿𝐹_𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 . The 𝑑𝑃𝐿𝐹_𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡  can be evaluated from  𝑑𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡  using Equation (5-9) via 

forecasted PV output power, 𝑃𝑃𝑉_𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 and forecasted load demand, 𝑃𝑙𝑜𝑎𝑑_𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡.  

   𝑑𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 =  𝑃𝑃𝑉_𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 −  𝑃𝑙𝑜𝑎𝑑_𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡              

 The PV output power forecast can be determined mathematically via output of solar 

irradiance forecasting model from Chapter 4 [191]. A mathematical equation to formulate 

PV output power has been suggested as follows [191]: 

𝑃𝑃𝑉 = 𝑃𝑃𝑉_𝑆𝑇𝐶 ×
𝐺𝑇

1000
× [1 − 𝛾 × (𝑇𝑗 − 25)] × 𝑁𝑃𝑉_𝑆 × 𝑁𝑃𝑉_𝑃     

where 𝑃𝑃𝑉_𝑆𝑇𝐶 refers to rated PV power at MPP and standard test conditions (STC), 𝐺𝑇 refers 

to solar irradiance level, 𝛾 refers to power temperature coefficient at MPP, 𝑇𝑗 is the PV cell 

temperature with 𝑁𝑃𝑉_𝑆 , 𝑁𝑃𝑉_𝑃 being number of modules in series and in parallel respectively. 

𝑇𝑗 can be further expressed as 

𝑇𝑗 = 𝑇𝑎𝑚𝑏 +
𝐺𝑇

800
× (𝑁𝑂𝐶𝑇 − 20)       

where 𝑇𝑎𝑚𝑏  is ambient temperature, NOCT is the nominal operating cell temperature 

(𝑇𝑎𝑚𝑏_𝑁𝑂𝐶𝑇 = 20℃ , 𝐺𝑇_𝑁𝑂𝐶𝑇 =1000Wm-2, and wind speed of 1ms-1. Table 5-4 shows the 

(5-9) 

(5-10) 

(5-11) 
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parameters specifications for Equations (5-10) and (5-11) based on solar panels 

specifications used in this research.  

With the aids from Equations (5-10) and (5-11), PV output power forecast of 60-

minute ahead can be evaluated by taking the output of solar irradiance prediction model 

from Chapter 4 into 𝐺𝑇 term in Equation (5-10). The same forecast model from Chapter 4 

is applied on load power demand prediction. Via Equation (5-9), 𝑑𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 can be computed 

using forecast values of PV output power and load power demand. The average MASE and 

RMSE of hourly 𝑑𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 with respect to the actual 𝑑𝑃 is 0.758 and 82.543Wm-2. MASE of 

0.758 indicates that the forecast values are performing 50% better than Naïve Prediction 

model. The prediction accuracy of 𝑑𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡  is slightly lower compared to Table 4-11 

because the highly erratic components from both 𝑃𝑃𝑉_𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 and 𝑃𝑙𝑜𝑎𝑑_𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡  have 

contributed to the prediction errors. 

Table 5-4 – Table of Parameters specifications for Equations (5-10) and (5-11) 

𝑃𝑃𝑉_𝑆𝑇𝐶 100W 

𝛾 0.00127 

𝑁𝑃𝑉_𝑆 2 

𝑁𝑃𝑉_𝑃 10 

NOCT 45℃ 

To allow the EMS to plan ahead of time, the input to the RE-SOINN EMS is now 

replaced with hourly forecasted 𝑑𝑃𝐿𝐹_𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 instead of 𝑑𝑃𝐿𝐹 . 𝑑𝑃𝐿𝐹_𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 is obtained from 

𝑑𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 undergoing filtration process described in Subsection 5.3. Thus, the new input 

consists of instantaneous 𝑑𝑃𝐿𝐹 and 59 one-minute interval forecasted 𝑑𝑃𝐿𝐹_𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 values to 

form hourly ahead 𝑑𝑃𝐿𝐹  input data trend together with instantaneous 𝑆𝑜𝐶𝑠𝑐  of 

supercapacitor. 
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5.6 Power Distribution Strategy 

Since charging and discharging operations cannot be carried out simultaneously, 

only either 𝑇𝑐 or 𝑇𝑑 can be effective at one time. 𝑇𝑐 should be numerically larger than 𝑇𝑑 as 

supercapacitor should only be charged at positive surplus due to larger 𝑑𝑃𝐿𝐹 and only be 

discharged at negative surplus due to lower 𝑑𝑃𝐿𝐹. 

From Figure 5-2, power distribution strategy outputs the ideal power 𝑃𝑆𝐶_𝑃𝐷 

according to EMS output of 𝑇𝑐 and 𝑇𝑑. As a rule of thumb, HESS operates only when 𝑑𝑃𝐿𝐹 > 

0 or 𝑑𝑃𝐿𝐹 < 0. In the former case, HESS is charged with the excess energy whereas in the 

latter, HESS supplies to energy deficit to avoid power disruption. Three working conditions 

of the power distribution strategy are as follows: 

i. 𝑑𝑃𝐿𝐹 > 𝑇𝑐 

ii. 𝑑𝑃𝐿𝐹 < 𝑇𝑑 

iii. 𝑇𝑐  ≥ 𝑑𝑃𝐿𝐹 ≥ 𝑇𝑑  

The first case occurs when the harvested energy is greater than load demand or 

when supercapacitor is required to be charged. 𝑇𝑐 is set to be lower than 𝑑𝑃𝐿𝐹 so that 

supercapacitor is allowed to absorb the excess energy as described in Equation (5-12)  

𝑃𝑆𝐶_𝑃𝐷 =  𝑑𝑃𝐿𝐹 − 𝑇𝑐  ,              𝑖𝑓 𝑑𝑃𝐿𝐹 > 𝑇𝑐           

When 𝑑𝑃𝐿𝐹 is less than 𝑇𝑑, the supercapacitor is activated to discharge energy to 

meet the load demand as expressed in Equation (5-13). This case usually occurs when 

supercapacitor is needed to deal with the fast transient component in the load demand. 

𝑃𝑆𝐶_𝑃𝐷 =  𝑑𝑃𝐿𝐹 − 𝑇𝑑  ,              𝑖𝑓 𝑑𝑃𝐿𝐹 < 𝑇𝑑         

In cases where supercapacitor can remain idle during the operation and battery is 

sufficient to solely satisfy 𝑑𝑃𝐿𝐹, then both 𝑇𝑐 and 𝑇𝑑 shall be higher and lower than 𝑑𝑃𝐿𝐹 

respectively. Thus,  

𝑃𝑆𝐶_𝑃𝐷 =  0 ,               𝑖𝑓 𝑇𝑑 < 𝑑𝑃𝐿𝐹 < 𝑇𝑐             

(5-12) 

(5-13) 

(5-14) 
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In summary, supercapacitor only operates when the 𝑇𝑐  and 𝑇𝑑  thresholds are 

placed within 𝑑𝑃𝐿𝐹 and the supercapacitor power is constrained by the difference between 

respective threshold and 𝑑𝑃𝐿𝐹 . As for 𝑑𝑃𝐻𝐹 , it is tackled by the supercapacitor as well. 

Therefore, the distribution of supercapacitor power between 𝑑𝑃𝐿𝐹 and 𝑑𝑃𝐻𝐹 is required to 

be managed well. In this paper, 50% of the supercapacitor capacity is reserved for 𝑑𝑃𝐿𝐹 

operation with 𝑇𝑐 and 𝑇𝑑 thresholds, 25% of the capacity is meant for tackling 𝑑𝑃𝐻𝐹 and 

unforeseen errors that are unaccounted for during EMS computation. The remaining 25% 

is kept unused to keep the supercapacitor at minimal voltage required to prevent huge 

voltage mismatch between DC bus, DC – DC converters and supercapacitors since 

supercapacitor voltage is proportional to its 𝑆𝑜𝐶𝑠𝑐.  

5.7 Circuit Voltage and Current Protection 

After 𝑃𝑆𝐶_𝑃𝐷  is obtained, 𝑃𝑆𝐶_𝑟𝑒𝑓  is calculated by Power Distribution module with 

consideration of 𝑃𝑆𝐶_𝑃𝐷 and 𝑑𝑃𝐻𝐹 where the polarity of 𝑃𝑆𝐶_𝑟𝑒𝑓 denotes the intended flow of 

power to and fro of the supercapacitor. 𝑃𝑆𝐶_𝑟𝑒𝑓  refers to the theoretical power to be 

absorbed or supplied by the supercapacitor as the resultant outputs of the EMS. As 

mentioned in Subsection 5.6, supercapacitor working range is limited between 25% and 

100% of its 𝑆𝑜𝐶𝑠𝑐. The remaining 25% of SoC is meant to keep the supercapacitor to be 

within the ballpark voltage range of DC bus.  

A multiplier, 𝜇, is added to implement the SoC regulation of supercapacitor. Thus, 

the power safety regulation of the supercapacitor can be summarised as follow: 

         𝜇 =  {

0,   𝑖𝑓 𝑃𝑆𝐶_𝑟𝑒𝑓 > 0 𝑎𝑛𝑑 𝑆𝑜𝐶𝑠𝑐  ≥ 100% 

1,   𝑖𝑓 25 % ≤  𝑆𝑜𝐶𝑠𝑐  ≤ 100%               

0,   𝑖𝑓 𝑃𝑆𝐶_𝑟𝑒𝑓 < 0 𝑎𝑛𝑑 𝑆𝑜𝐶𝑠𝑐  ≤ 25%   
            

Thus, given that 𝑃𝑆𝐶𝑟𝑒𝑓

′  is the actual supercapacitor power after the SoC regulation 

procedure, 𝑃𝑆𝐶𝑟𝑒𝑓

′  can be explained as follow:  

𝑃𝑆𝐶𝑟𝑒𝑓

′ =  𝜇 ∙ 𝑃𝑆𝐶_𝑟𝑒𝑓           

(5-15) 

(5-16) 
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5.8 Performance Metrics and Benchmark Models 

The performance of proposed REPS is evaluated based on the criteria listed below: 

• Average energy charged by supercapacitor during positive 𝑑𝑃, 𝐸𝑠𝑐_𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 

• Battery peak discharging / charging power, 𝑃𝑏𝑎𝑡𝑡_𝑝𝑒𝑎𝑘 

• Oscillations in battery power profile and amplitudes of the oscillations, ∆𝑃𝑏𝑎𝑡𝑡 

Average energy charged by supercapacitor during positive 𝑑𝑃, 𝐸𝑠𝑐_𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 helps to 

determine if more solar energy is harvested successfully. This effect is very significant 

when small energy harvested falls easy prey to heat loss during battery charging. 

Subsequently, excessively high battery peak discharging and charging power, 𝑃𝑏𝑎𝑡𝑡_𝑝𝑒𝑎𝑘 

could cause a huge power draw or sudden huge charging power in the battery, causing 

irreversible damage in the batteries. Furthermore, oscillations in battery power profile as 

well as their respective amplitudes, ∆𝑃𝑏𝑎𝑡𝑡 could help to identify the number of charge-

discharge cycle the battery has gone through. The greater the number, the closer the 

battery to its end of service life.  

Several external models are taken from the past literature to compare the 

performance with the proposed model on existing application. The external models chosen 

for this experimental comparison are Moving Average Filter (MAF) based Filtration Based 

Controller (FBC), Fuzzy Logic Controller (FLC) and PSO-based EMS that are widely applied 

in recent research. 

MAF-based FBC filters the low frequency and high frequency components from one 

another in  𝑑𝑃. As mentioned previously in Subsection 5.3, it uses a list of values from a 

moving window of a period T to calculate for a moving average value. This value thus 

forms the more significant trending component in 𝑑𝑃. The complementing high frequency 

component is then evaluated using Equation (5-4) [11]. This model can also help to assess 

the significance of optimization procedure as well as RE-SOINN operation in improving 

system performance. 

Fuzzy Logic control strategy (FLC) is widely applied in the past literature as EMS to 

REPS, not limited to solar-based REPS only. FLC implemented in this study uses PSO-
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optimized membership functions to achieve precision control of supercapacitor. PSO-based 

control strategy is another popular EMS widely adopted in many REPS applications as well 

as in the past literature. Based on the literature, one of the common goals for PSO-based 

control strategy is to control the amplitude of battery discharging or charging power to 

reduce the peak battery power draw or absorption that could lead to permanent change 

of battery electrolyte. In this study, the PSO EMS developed for comparison purpose uses 

a fitness function that is aimed to lower battery peak charging and discharging power 

where 𝑓(𝑥) = max(𝑃𝑏𝑎𝑡𝑡_𝑚𝑖𝑛) 𝑜𝑟 min(𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥), depending on polarity of 𝑑𝑃. 

5.9 Experimental Setup 

The research experiments are conducted in a facility in the University of Nottingham 

Malaysia located at Semenyih, state of Selangor, Malaysia. This facility or the laboratory 

is given the name of Solar Cabin and all mentions of Solar Cabin in the following texts 

refer to this facility. Figure 5-8 shows the exterior of Solar Cabin whereas Figure 5-9 shows 

the block diagram of the entire system setup. The Solar Cabin consists of a 2kW-rated 

standalone PV panels, SLA batteries, supercapacitors, DC-DC converters, programmable 

loads and inverters. Table 5-5 details the models, technical specifications as well as rating 

of the equipment in Solar Cabin. 

 

Figure 5-8 - Exterior look of solar cabin. The roof of the solar cabin is the 2kW solar panels. 
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Figure 5-9 – System block diagram of the Standalone PV System with battery-supercapacitor HESS implemented in Solar Cabin 
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Table 5-5 - List of components in Solar Cabin with their respective models, specifications, quantities and configurations 

Components 
Model & Technical 

Specification 

Quantity & 

Configuration 
Rating 

PV panel 

Kaneka UEA100 

• Cell Type: Thin-film 

• Nominal Power: 100 W 

• Open Circuit Voltage: 

71 V 

• Short Circuit Current: 

2.25 A 

• Module Efficiency: 8.2% 

20 

(2s10p: 10 strings of 2 

PV panels in series are 

connected in parallel) 

Max. Power: 2000W 

Max. Voltage: 142V 

Max. Current:  22.5A 

Battery 

Powerbatt AGM Lead Acid 

Battery 

• Nominal Voltage: 12V 

• Rated Capacity: 250Ah  

4 

 (4 are connected in 

series)  

Voltage: 48V 

Capacity: 250Ah 

Supercapacitor 

Nippon-Chemi-Con DLCAP 

module 

• Rated Voltage: 15 V 

• Capacitance: 400 F 

8 

(2s4p: 4 strings of 2 in 

series are connected in 

parallel) 

Maximum Voltage: 30 

V 

Capacitance: 800 F 

MPPT 

Supercapacitor 

Charger DC-DC 

Converter 

Self-made in Laboratory 

• Supercapacitor Voltage 

Working Range: 7-48 

Vdc 

• Rated Power: 2.4kW 

• PV array Operating 

Voltage:150V 

• Maximum Charge 

Current: 70A 

• Maximum Output 

Power: 3.5 kW 

• Typical operation 

rating: 60V, 40A 

• Efficiency, ηMPPT: ≈ 92% 

(low load of 500W), 

             ≈ 86% (high load of 

2kW) 

1 

Maximum Operating 

Voltage: 0 - 150V 

Maximum Charge 

Current: 0 - 60A 

Maximum Output 

Power: 3.5kW 

Load Demand 

DC-DC Converter 

Self-made in Laboratory 

• Rated Power: 2.4kW 

• Input & Output Voltage 

range: 0-100 V 

1 

Rated Power: 2.4kW 

Input & Output 

Voltage range: 0 - 

100 V 
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• Input & Output 

Maximum Current: 

100A 

• Typical operation 

rating: 60V, 40A 

• Efficiency, ηDCDC: ≈ 95% 

(low load of 500W), 

 ≈ 83% (high load of 2kW) 

Input & Output 

Maximum Current: 

100A 

Inverter 

Sontime 4830N 

• Battery Voltage Range: 

12/24/48 V 

• Output Voltage Range 

AC: 230 V ± 5 % 

• Output Frequency: 60 

Hz ± 0.5% 

• Power Rating: 2730W 

• Efficiency, ηDCAC: >91 % 

1 

Output Voltage Range 

AC: 230V ± 5% 

Output Frequency: 60 

Hz ± 0.5% 

Power Rating: 2730W 

 

5.10 Load Profile  

 Malaysian National Electrical Power Supplier, Tenaga Nasional Berhad Malaysia 

(TNB) has recorded the maximum power demand of rural household, inclusive of low-cost 

flats, single-story terrace as well as studio apartment, to an approximate of 1.5kW [192]. 

The main power consumption from a typical rural household in Malaysia, especially in East 

Malaysia consisting of Sabah and Sarawak states, is resulted from a series of electrical 

appliances such as fluorescent lights, TV and fans [193]. 

 Since off-grid rural household which serves the main scope of the research is not 

within the service coverage of TNB, there is no official record of any off-grid rural 

household load demand data. As a result, 31 days’ worth of load demand data is collected 

from a grid-tied household from a low-cost flat whose load demand characteristics match 

the general characteristics of rural household as described in both Refs [192], [193]. It is 

noted that the load demand data collected is sampled at 100Hz so that these load demand 

can be reproduced by laboratory equipment such as programmable load during 

experimentation stages. 
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 The chosen household for load demand collection consists of two occupants 

where one leaves the house for work at 8am and only returns at 6pm whereas the other 

occupant stays at the house most of the time and only leaves the house for grocery 

shopping in the morning. Table 5-6 shows the electrical appliances found in the chosen 

household. These appliances can be regarded as simple appliances in [193]. The analysis 

of the 31-day load demand has found that this chosen household records a maximum daily 

energy consumption of 4.89kWh/day and maximum power demand of 0.762kW. A 

programmable load (EL 9080-170B) is used to emulate the load profile in the experiments. 

Table 5-6 - Electrical appliances found in the chosen household 

Appliance Model Rated Power Quantity Usage 

Toaster 
MAG 2 slide 

Toaster MF-008 
600W-700W 1 1.5 mins/day 

Washing 

Machine 
Media MFW-701S 

Spin Power: 160W 

Wash Power: 340W 
1 40mins/week 

Fridge 
Midea Refrigerator 

MS-196 
130W 1 

On time= 24 

hours/day, 

Compressor Running 

time = 12 hours/day 

Ceiling Fan 

DEKA Kronos F5P 

5-Blade Ceiling 

Fan 

50 W 2 18 hours/day 

Table Fan 
Sharp 16” Table 

Fan PJT405 
50W 1 10hours/day 

Laptop 
Asus ZenBook 

UX330UA 
45W 1 16 hours/day 

Television 

Sony 32-inch LED 

TV SNY-

KDL32R300E 

39W (in operation) 

0.4W (standby) 
1 4 hours/day 

Light 

Philips E27 cap, 

Cool daylight LED 

bulb 

18W 6 6 hours/day 
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5.11 Result and Discussion 

This subsection consists of three parts. The general improvement made by the 

proposed EMS in managing power flow in standalone REPS with battery-supercapacitor 

HESS is evaluated in the first subsection. The experimental comparison of working 

performance of different EMS such as FBC, FLC, PSO and proposed EMS on standalone 

REPS with battery-supercapacitor HESS is discussed in the second part of the subsection. 

In the final part of the subsection, the performance of proposed EMS in dealing with 

scenarios of different weather and load demand profiles is evaluated. 

5.11.1 RE-SOINN EMS Model  

This subsection discusses the performance of RE-SOINN model as EMS of REPS. As 

instantaneous 𝑑𝑃 is obtained based on the power mismatch between renewable power 

generation and load demand, together with hourly ahead forecasted 59 one-minute 

interval 𝑑𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 values and 𝑆𝑜𝐶𝑠𝑐, these 𝑑𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 values form an input to the proposed 

EMS. The 𝑑𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡  input trend first undergoes filtration decomposition as depicted in 

Subsection 5.3. Figure 5-10 shows the typical 𝑑𝑃 profile of a day. 𝑑𝑃 profile can be very 

noisy due to tropical climate, irregular load demand such as occasional peak power draws 

and supplies from loads. The Moving Average Filtration operates with a period of 25 

samples so that the decomposed 𝑑𝑃 trends do not lag too far behind of time. Figure 5-11 

and Figure 5-12 show the decomposed plots of the 𝑑𝑃 profile based on low and high 

frequency components.  
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Figure 5-10 – Plot of a typical dP profile where positive peaks are shown in the mid of the day and negative trend spans over 
the rest of the time due to unavailability of solar irradiance 

 

Figure 5-11 - Plot of low frequency component of dP profile shown in Figure 5-10 

The low frequency component, 𝑑𝑃𝐿𝐹 is very much smoothened compared to the 

original 𝑑𝑃 profile. With noisy small oscillations being removed, 𝑑𝑃𝐿𝐹 is now suitable to be 

operated by SLA batteries. On the other hand, the highly erratic high frequency component, 

𝑑𝑃𝐻𝐹 is reserved for supercapacitor operations. Figure 5-13 shows the 𝑑𝑃 profile together 

with its low and high frequency components. The decomposition has successfully reduced 

the instantaneous peaks in 𝑑𝑃𝐿𝐹 and thus, lesser harms are done to the battery. 
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There is a single learning stage for RE-SOINN EMS model. In this learning stage, 

PSO is the teacher to help RE-SOINN with labelling the 𝑑𝑃𝐿𝐹 trends with respective 𝑇𝑐 and 

𝑇𝑑 based on 𝑆𝑜𝐶𝑠𝑐. RE-SOINN is trained with PSO for the first ten days of the operation. 

The performance of RE-SOINN model during learning stage is not emphasized because the 

optimisation carried out does not differ from a conventional PSO EMS model.  

 

Figure 5-12 - Plot of high frequency component of dP profile shown in Figure 5-10 

 

Figure 5-13 - Plot of original dP profile and its low and high frequency components 
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EMS statistical operational data using RESOINN in the system operating on 𝑑𝑃 

profile shown in Figure 5-10 are recorded in Table 5-7. RE-SOINN based EMS are run for 

10 times for benchmarking purposes. It is found that RE-SOINN takes an average 

computational time of 2.87s for one computation of optimal 𝑇𝑐 and 𝑇𝑑. One full day of 

optimal 𝑇𝑐 and 𝑇𝑑 computation uses an average of 3957.8s or approximately 65 minutes. 

Among the 10 runs, the maximum time taken for one computation during a full day 

operation is recorded to be 19.9s, within the computational interval of one minute. 

Table 5-7 – Statistical operational performance of RE-SOINN as proposed EMS on dP profile shown in Figure 5-19 

Run 

Average One 
Iteration 

Computational 
Time (s) 

Total 
Computational 

Time for One Day 
Operation (s) 

Maximum Time 

Taken for One 
Iteration (s) 

RE-SOINN 

Training 
Time (s) 

1st Run 2.7563 3803.7 15.4631 5.28 

2nd Run 2.7549 3801.8 18.2529 4.98 

3rd Run 2.8433 3923.7 15.3876 5.05 

4th Run 2.9637 4090 19.7637 4.94 

5th Run 2.9519 4073.6 18.2052 5.01 

6th Run 2.8656 3954.6 18.0384 5.01 

7th Run 2.8794 3973.6 19.9497 4.99 

8th Run 2.9813 4114.2 18.1788 5.11 

9th Run 2.8217 3893.9 18.3898 4.96 

10th Run 2.8616 3949 18.1578 5.05 

As an Unsupervised Learning AI model, RE-SOINN requires to be trained with data 

and labels regularly during deployment for better working performance. The adaptive 

feature of the RE-SOINN is also dependent on training events of RE-SOINN model with 

new weather and load demand data featuring gradual changes in statistical properties.  

Thus, it is important to keep the training time of RE-SOINN to be as minimal as possible. 

In Table 5-7, the average RE-SOINN training time is 5.04s. The short training time of Re-

SOINN shows a good prospect of RE-SOINN as adaptive intelligence EMS.  
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Table 5-8 – Performance Comparison between PSO, SOM-PSO and RE-SOINN 

 PSO SOM-PSO E-SOINN-PSO RE-SOINN 

Training Time (s) - 1168.9 2.81 5.04 

No. of neurons - 400 118 10965 

Average time for 

one computational 

step (s) 

7.8 4.5 3.91 2.87 

Table 5-8 summarises the operational comparison of PSO, SOM-PSO [11], E-SOINN 

-PSO and proposed RE-SOINN models. All the PSO models in Table 5-8 have population 

size of 50, maximum iteration of 100 and stopping criteria tolerance of 1W. Since PSO is 

the labelling teacher to RE-SOINN, the performance of RE-SOINN EMS is similar to PSO 

EMS with the same fitness function. SOM–PSO from Ref [11] uses Self Organising Maps to 

effectively reduce the search space of PSO so that PSO can reach convergence faster. 

Therefore, SOM-PSO EMS model uses PSO to label each 𝑑𝑃𝐿𝐹 trend as well. E-SOINN – PSO 

model is modelled after SOM-PSO model in Ref [11] to compare the clustering effect of 

SOM and E-SOINN models. Table 5-8 indicates that SOM-PSO method reduces the average 

optimisation time for one iteration by 43% whereas E-SOINN – PSO reduces the time by 

50% compared to conventional PSO method. Proposed RE-SOINN model can further 

shorten the computational time for each iteration with a total of 64% of reduction 

compared to PSO model. PSO relatively takes much longer time owing to its iterative 

mechanism. Both SOM-PSO and E-SOINN - PSO reduce the search space of the PSO and 

thus less iteration is needed to reach convergence. RE-SOINN, however, evaluates based 

on neighbouring nodal information without involving iterative steps. 

On the other hand, RE-SOINN has much lower training time (5.04s) compared to 

SOM model (19.5 mins or 1168.9s) in SOM-PSO due to algorithmic simplicity of RE-SOINN. 

E-SOINN – PSO model has the shortest training time due to smaller nodal size. E-SOINN 

in E-SOINN PSO model is only responsible of reducing the search space of PSO where PSO 

handles majority of the computation while RE-SOINN requires bigger nodal size for more 

precise computational resolution so that the computational result of RE-SOINN leads to 

better and optimal performance of EMS. 
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 The qualitative performance of RE-SOINN is shown in the subsequent subsection. 

5.11.2 Performance Comparison of Control Strategies for standalone PV system with Battery 

– Supercapacitor HESS 

 In this subsection, experimental results from several control strategies from the 

literature implemented in the proposed standalone PV system with Battery and 

Supercapacitor HESS are presented. One of the inputs to this performance comparison 

experiment, 𝑑𝑃 profile used is shown in Figure 5-10. The PV output power is taken from a 

cloudy day where fluctuating PV output power is recorded between 12pm and 3pm. Due 

to erratic cloud cover events, PV output power is usually inconsistent. The load profile used 

in this study is recorded from a simple household with sampling rate of 100Hz. Regular 

household electronic appliances such as washing machine and refrigerator have introduced 

spikes and oscillations to the load profile. 𝑑𝑃 profile is then obtained from these two data 

using Equation (5-2) and is visualised in Figure 5-10. Smoothened 𝑑𝑃 profile consisting of 

low frequency component, 𝑑𝑃𝐿𝐹 as well as highly oscillating high frequency component, 

𝑑𝑃𝐻𝐹 are obtained after the decomposition of MAF. For all comparison models except the 

proposed model, 𝑑𝑃𝐿𝐹 is used in the input. In RE-SOINN EMS, 𝑑𝑃𝐿𝐹 undergoes prediction 

module developed in Chapter 4 to produce hourly forecast, 𝑑𝑃𝐿𝐹_𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡. Hourly forecast 

𝑑𝑃𝐿𝐹_𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 trend subsequently pairs with 𝑆𝑜𝐶𝑠𝑐 to produce input to the RE-SOINN EMS.  

 Table 5-9 compares the peak charging and discharging battery currents, daily and 

average iteratively computational times, daily energy stored by supercapacitor as well as 

daily total energy harvested by REPS due to different control strategies. The oscillations 

with respective amplitudes of battery power profiles due to these control strategies are 

discussed thereafter. Model 1 is a battery-only REPS without supercapacitor and any EMS. 

This model exists as a benchmark for following control strategies to verify if their 

performances are better than raw REPS. Model 2 is a MAF-based FBC with sampling period 

of 25s. Model 3 sees the application of Fuzzy Logic controller, a widely chosen choice of 

EMS as the backbone of the brain of REPS in this study. Model 4 is the popular PSO-based 
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control strategy with a fitness function of reducing peak battery power. Model 5 is the 

proposed RE-SOINN EMS. 

Table 5-9 - Performance comparison of Proposed EMS RE-SOINN model against other models 

Models 

Peak 
Charging 
Battery 

Current (A) 

Peak 
Discharging 

Battery 

Current (A) 

Daily 
Computations 
Runtime (s) 

Average 
Computation 

Time (s) 

Daily 
Energy 

Stored by 

SC (J) 

Daily Total 
Energy 

Harvested 

(J) 

1 
 Battery 

only 
295.46 -510.21 - - - 3.04x10

6
 

2 FBC 290.08 -490.14 106.1 0.07 1.98x10
5
 3.23x10

6
 

3 FLC 272.11 -533.00 315.0 0.14 2.98x10
5
 3.31x10

6
 

4 PSO 332.44 -438.79 28155.4 20.37 9.52x10
5
 3.77x10

6
 

5 
RE-

SOINN 
284.17 -460.01 11152.4 8.05 1.06x10

6
 3.85x10

6
 

Figure 5-14 shows the number of oscillations in battery current profile by each 

model with respect to the amplitudes of the oscillations. Since most of the oscillations 

occur at lower amplitude range, the plot in Figure 5-14 is zoomed at lower amplitude range 

to produce Figure 5-15. Performance of Model 2 (FBC) is not shown in Figure 5-14 largely 

owing to being similar to Model 3 (FLC) as well as to reduce the complexity of plots 

displayed. In Figure 5-16 and Figure 5-17, both Models 2 and 3 produce similar number 

of the oscillations for a wide range of amplitudes. Thus, Model 2 is omitted to simplify the 

displayed content of the comparison plot in Figure 5-14 and Figure 5-15. 
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Figure 5-14 – Comparison of battery current oscillations resulted by different EMS 

 

Figure 5-15 - Comparison of battery current oscillations resulted by different EMS (zoomed at lower current amplitude 
range) 
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Figure 5-16 – Comparison of battery current oscillations between FLC (Model 3) and FBC (Model 2) 

Model 1, being a battery-only REPS without any secondary ESS refers to the most 

basic REPS system readily available in the market. EMS is not needed in such a system as 

power harvested by solar panel is transferred to its sole ESS (battery) after meeting load 

demand. As a result, load demand is mainly satisfied by battery power in absence of solar 

irradiance. Figure 5-18 shows the performance plot produced by Model 1. The battery 

power profile of Model 1 is almost identical to 𝑑𝑃 profile due to prerequisite condition of 

power balance and absence of other ESS. Battery in Model 1 suffers from experiencing 

highly fluctuating cyclic 𝑑𝑃 profile as well as sudden peak 𝑑𝑃 power surge as shown in 

Figure 5-14.  At low amplitude range (less than 5A), the oscillations made are close to ten 

times more than the other models in comparison, reaching 10000 oscillations. As battery 

lifetime significantly depends on the charge-discharge cycle, raw 𝑑𝑃 input would seriously 

harm the battery lifespan during the system operation. When the 𝑑𝑃 is in negative region, 

the battery power is drawn deeper whereas battery charging power is always less than the 

positive 𝑑𝑃 trend. This observation can be explained with the non-ideal efficiency of Lead 

Acid battery of approximately 85%. The non-ideal efficiency of the battery is also 

demonstrated in the following experiments. 
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Figure 5-17 – Comparison of battery current oscillations between FLC (Model 3) and FBC (Model 2) (zoomed at lower 
current amplitude range) 

 

Figure 5-18 – Plot of battery power profile and dP profile in battery-only system 
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Figure 5-19 - Plot of battery and supercapacitor power profiles vs dP profile resulted by FBC model 

 Model 2 studies the effect of Filtration-based controller (FBC) as EMS on the REPS 

developed in the study. As mentioned previously, Model 2 serves as a significant 

intermediate model since the subsequent models including the proposed EMS model are 

built upon FBC. FBC decomposes the 𝑑𝑃 profile into two components, the low frequency 

component (𝑑𝑃𝐿𝐹) and high frequency component (𝑑𝑃𝐻𝐹). Supercapacitor deals with 𝑑𝑃𝐻𝐹 

whereas 𝑑𝑃𝐿𝐹 is reserved for battery operations. As a result, from Figure 5-19, battery 

power profile is similar to 𝑑𝑃𝐿𝐹  trend whereas supercapacitor power profile is almost 

identical to 𝑑𝑃𝐻𝐹 profile. Compared to Model 1, Model 2 has successfully reduced small 

oscillations in battery power profile which harms battery health, resulting in a smoothened 

battery power profile. This can clearly be seen in Figure 5-16 and Figure 5-17 where 

battery power profile in Model 2 produces similar number of oscillations compared to Model 

3 where Model 3 shows its oscillations at low amplitude range are successfully reduced by 

half comparing to Model 1 in Figure 5-14. The peaks in the 𝑑𝑃 are shaved by 1.8% and 4% 

respectively by Model 2 for battery charging and discharging current so that battery 

experiences lower power demand and charging surges than in Model 1 although the 

reduction is not significant. Between the time range of 7 × 104 s to 8 × 104 s (between 

7.30pm to 10.10pm), FBC EMS fails to alleviate the pressure of peak load demand because 
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FBC is only effective in handling frequency aspect of power profile. When 𝑑𝑃𝐿𝐹  is in 

negative region for too long, supercapacitor discharges completely. Model 2 has no direct 

control over the recharging of supercapacitor because FBC EMS does not consider SoC of 

supercapacitor in its operation.  

 

Figure 5-20 - Plot of battery and supercapacitor power profiles vs dP profile resulted by FLC model 

Comparing Model 3 and Model 2, the battery power profiles resulted from both 

profiles are very similar. One main reason is that the Fuzzy Logic Controller model is 

trained using 𝑑𝑃𝐿𝐹 . This indicates that input data in Model 3 first undergo filtration 

decomposition, the same operation conducted in Model 2. Based on the rules of FLC, 

supercapacitor is generally discharged to deal with a portion of 𝑑𝑃𝐿𝐹 . Thus, the main 

difference between Model 2 and 3 is that supercapacitor is allowed to deal with a portion 

of 𝑑𝑃𝐿𝐹  in Model 3 whereas supercapacitor in Model 2 tackles 𝑑𝑃𝐻𝐹  only. Due to low 

capacity of supercapacitor, the 𝑑𝑃𝐿𝐹 portion shared by supercapacitor cannot be too high 

or else supercapacitor would be completely discharged. Model 2 performs better than 

Model 3 when the 𝑑𝑃 trend is in negative region for a long period of time followed by a 

sudden peak power spike. It can be observed from Figure 5-19 and Figure 5-20 around 

𝑡 = 8 × 104s (around 10pm) as well as Table 5-9 that battery power profile measures a 

deeper power spike in Model 3 compared to Model 2 (-533W against –490.14W). This is 
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mainly because in Model 3, supercapacitor does not only deal with 𝑑𝑃𝐻𝐹 but also a portion 

of 𝑑𝑃𝐿𝐹. As a result, supercapacitor depletes much faster in Model 3 than in Model 2, 

causing battery discharge more and adding extra 4% peak battery power amplitudes in 

Model 3 instead of a reduction of 4% in Model 2.  During the noon of the day where the 

solar irradiance profile recorded is the maximum, the peaks on the battery power profile 

during this period are shaved by 8% compared to 1.8% in Model 2. The shaving effect is 

resulted by a portion of 𝑑𝑃𝐿𝐹 is being dealt by supercapacitor. Another weakness of Model 

3 is that the output membership function in FLC lacks the flexibilities to adjust the 𝑑𝑃𝐿𝐹 

portion shared by supercapacitor in a timely manner as the membership functions are not 

adjusted after deployed. Figure 5-19 and Figure 5-20 indicate that the battery power 

profiles are very similar but Model 3 shows a slightly worse plot to indicate the participation 

of supercapacitor in dealing with 𝑑𝑃𝐿𝐹 where battery power is drawn occasionally to charge 

the supercapacitor. 

 

Figure 5-21 - Plot of battery and supercapacitor power profiles vs dP profile resulted by PSO model 

In Model 4, the amplitudes of overall battery power profile are lower than those in 

Model 2 and 3, as observed from Figure 5-21, confirmed quantitatively in Table 5-9. When 

the 𝑑𝑃 trend is relatively stable, experiencing less oscillations and lower peaks, Models 2, 

3 and 4 perform similarly. The main variation comes from how different models of EMS 
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approach the highly oscillating and higher peak amplitudes of 𝑑𝑃 trend. Though Model 4 

works better in shaving peaks in battery power profile by 14% or 10% improvement to 

Model 2 peak shaving performance, it also introduces oscillations to battery power profile, 

especially between the time range of 7 × 104s to 8 × 104s (between 7.30pm and 10.10pm). 

The rationale behind the finding is that the limited capacity of supercapacitor becomes the 

limiting factor. In Model 2, supercapacitor power is preserved the best among the other 

models because supercapacitor in Model 2 only deals with 𝑑𝑃𝐻𝐹 whereas a portion of 𝑑𝑃𝐿𝐹 

is dealt by supercapacitors in the other models. Thus, supercapacitor power depletes much 

faster than in Model 3 and 4 compared to Model 2. As supercapacitor is required to 

discharge to deal with transient part while 𝑑𝑃𝐿𝐹 has been in negative region for long period 

of time, battery is forced to discharge to recharge the supercapacitor. Similar observation 

is seen on the charging state of HESS between 𝑡 = 4 × 104s to 5 × 104s, corresponds to 

11am to 2pm. A battery power peak with amplitude 12% larger than that of in Model 1 is 

detected. Since Model 4 allows supercapacitor to participate in tackling 𝑑𝑃𝐿𝐹 more actively 

compared to Model 3 with rigid rules, supercapacitor gets fully charged very fast, leading 

to occasional discharges to battery, adding extra peaks to battery charging power. Figure 

5-14 shows that the battery power oscillations have been reduced significantly compared 

to Model 1, 2 and 3 with significantly lesser oscillations at lower and mid amplitude range, 

even minimal oscillations at higher amplitude range. 

In Model 5, the amplitudes of battery charging power profile are shaved much lower 

than those in Model 4 (reduction of 4% against extra 12%). At the same timeframe, the 

battery power peaks in Model 5 are shaved without the expense of increasing significant 

power fluctuations. This can be observed from Figure 5-22 because the RE-SOINN model 

(Model 5) prioritises the usage of supercapacitor in harvesting solar power and the 

planning is done ahead of time. As a result, the supercapacitor gets replenished faster, 

being able to shave the battery power peaks without causing unnecessary power 

oscillations. At 𝑡 = 7.6 × 104𝑠 (or 9.15pm), comparing both Model 4 and 5, the battery is 

drawn more power in Model 5 (10% with respect to Model 1, 4% less than Model 4) than 
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in Model 4 but the oscillating condition in Model 5 is greatly improved whereas Model 4 

suffers heavy oscillations with significant amplitudes. In Figure 5-22, Model 5 introduces 

very significantly less oscillations in the mid to high amplitude ranges compared to Model 

4. As oscillations are forecasted to happen, supercapacitor is managed to focus more on 

tackling power oscillation. Thus, RE-SOINN EMS can produce more regulated battery 

power profile. 

 

Figure 5-22 - Plot of battery and supercapacitor power profiles vs dP profile resulted by proposed RE-SOINN model 

  In terms of peak battery current, FLC model shaves charging battery power the 

most (reduction by 8% as compared to battery-only model, Model 1) whereas PSO model 

performs the best in reducing peak discharging battery current (improvement by 14% with 

respect to Model 1). Though FLC model performs the best in charging event but its 

discharging performance is the poorest (4% deeper than Model 1). Proposed model of RE-

SOINN, on the other hand, shaves 4% of peak in Model 1 in charging operation with a 10% 

peak reduction in discharging operation. PSO, being a close competitor to RE-SOINN model, 

causes an extra 12.5% surge of peak in Model 1 in charging event as well as 14% of peak 

reduction in discharging event. Thus, RE-SOINN (Model 5) has overall better and balanced 

performance. 
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 In terms of computational time, FBC and FLC use the least time due to their simple 

algorithmic structure. For instance, FBC is a moving average filter where the mathematical 

operations involved are fundamental to all other models. RE-SOINN being a more 

complicated artificial intelligence model, takes more computational time due to the 

extensive number of nodes (approximately 10965 distinctive classes) in RE-SOINN. PSO 

takes the longest computational time due to the iterative method employed in the 

computational process. Thus, with the restriction of one-minute interval operation of the 

EMS, RE-SOINN can produce satisfactory performance with lower computational time 

compared to the popular PSO. 

 Since the RE-SOINN is trained to optimise the use of supercapacitor to improve 

solar energy harvesting via supercapacitor energy storing efficiency, Model 5 records the 

highest amount of energy harvested by supercapacitor (5.35 times compared to Model 2 

of FBC). The daily total harvested energy by Model 5 is thus increased by 27% with 

reference to Model 1 battery-only system. PSO improves the supercapacitor harvesting by 

4.8 times compared to Model 2, resulting a 24% improvement for daily total harvested 

energy with respect to Model 1. FLC improves supercapacitor harvesting by 50%, leading 

to an extra 8.9% energy being harvested daily. FBC model is only capable of extract 

additional 6.3% of solar energy daily compared to Model 1. Consequently, RE-SOINN 

clearly outperforms the other models in managing the storage of harvested solar energy, 

improving the overall energy harvesting. 

5.11.3 Case Studies with Different dP Scenarios 

 In this subsection, the proposed RE-SOINN EMS is tested against other weather 

profiles and load demand profiles to identify the versatility and efficiency of the RE-SOINN 

EMS in highly erratic profiles. This is important in the sense that Malaysian solar irradiance 

conditions are irregular in nature. Together with stochastic load demands resulted by 

random user’s behaviours, EMS of REPS developed will be expected to work on different 

varieties of 𝑑𝑃 profiles. 
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Figure 5-23 - Plot of battery and supercapacitor power profiles vs dP profile resulted by proposed RE-SOINN model on a 
rainy day 

In Figure 5-23, there is a short period of rain in the middle of the day between t = 

4 × 104𝑠 and t = 4.4 × 104𝑠 (11am to 12.10pm). During the day, the solar irradiance profile 

becomes very noisy due to the rain and cloudy nature. As a result, supercapacitor reacts 

by dealing with the highly fluctuating 𝑑𝑃𝐻𝐹  so that battery can be spared from the 

damaging power oscillations. As the load demand gets huge closing to the end of the day, 

only HESS supplies energy to the system in the absence of solar irradiance. The limited 

capacity of supercapacitor is temporarily met using the energy stored by battery. This can 

be examined in the plot where t = 7 × 104𝑠. Supercapacitor can shave the deep power draw 

from 𝑑𝑃 until it fully depletes. After the event of supercapacitor energy depletion, battery 

experiences slightly deeper discharging to recharge the supercapacitor as well as to 

compensate the loss due to high current discharge. As a result, around t = 8 × 104𝑠, 

supercapacitor has enough stored energy to discharge to reduce another sudden deep 

power draw in the battery power profile. In overall, with the ability to plan ahead of time, 

the EMS has managed to deploy supercapacitor to reduce battery power oscillations as 

well as sudden deep battery power draw resulted by this 𝑑𝑃 profile. 

In Figure 5-24, the solar irradiance profile shows a very sunny condition in the mid 

of the day, followed by cloudy hours between t = 5 × 104𝑠 and t = 6 × 104𝑠 (1.52pm to 
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4.40pm). Disparity is observed during battery recharging period during the mid of the day 

due to energy loss resulted by 85% efficiency of Lead Acid battery. As the solar irradiance 

gets erratic around t = 5 × 104𝑠, supercapacitor gets into the operation of charging and 

discharging to shave the sudden power peaks. Compared to Figure 5-23, the load demand 

in the late evening in Figure 5-24 is slightly lower with less oscillations. Despite the 

recharging of supercapacitor and loss from the non-ideality of Lead Acid battery have led 

to slightly deeper battery power draw, the fluctuating conditions on the power demand, 

however, is improved by supercapacitor operations, especially between t = 7 × 104𝑠 and t 

= 8 × 104𝑠  (7.26pm to 10.13pm) where battery power oscillates less than 𝑑𝑃 . As a 

summary, supercapacitor takes over the highly fluctuating peak component of the 𝑑𝑃 

profile, allowing the battery to experience smoother operation. 

 

Figure 5-24 - Plot of battery and supercapacitor power profiles vs dP profile resulted by proposed RE-SOINN model on a 
sunny day 

5.12 Conclusion 

 A novel Unsupervised Learning Artificial Intelligence EMS is introduced to reduce 

peak power demand as well as dynamic power stress of battery while improve solar energy 

harvesting especially in low solar irradiance conditions in a standalone PV system with 

battery-supercapacitor HESS. The EMS operation is run at one-minute interval as a balance 

between unnecessary power distribution oscillations as well as optimal battery-
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supercapacitor HESS performance. RE-SOINN based EMS first learns via a PSO teacher for 

first ten days through its incremental learning nature. Once matured, RE-SOINN based 

EMS starts working on its own to compute optimal 𝑇𝑐 and 𝑇𝑑 based on hourly dP trend. 

Subsequently, RE-SOINN EMS is compared to popular control strategies in the literature. 

The results have shown that RE-SOINN EMS is able to assist in harvesting more solar 

energy even in low solar irradiance conditions while reduces peak battery power demand 

and battery power dynamic stress. The significant reduction in battery power oscillations, 

especially in higher cyclic amplitude range, can eventually extend battery lifespan. The 

short computational time as well as training time of RE-SOINN EMS indicates good outlook 

for this Unsupervised Learning EMS model to be implemented in platforms with lower 

computational resources, leading to much lower internal system power consumption. 
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Chapter 6 Conclusion 

 In remote areas that are far beyond the reach of the national power grid network, 

a standalone power generation system is needed to provide essential electrical energy to 

the residents of the said area. An example of sustainable power generation system is 

Renewable Energy Power System (REPS) that utilises renewable energy sources such as 

solar energy to generate the much-needed electricity. An advantage of REPS is that 

renewable energy does not get depleted as time passes, unlike the carbon-based energy 

sources which does not get replenished in years. However, the main hurdle of popularising 

REPS lies in the fact that many renewable energy sources are intermittent in nature, 

generating inconsistent energy output as a reliable alternative to hydrocarbon-based fuels.  

 Furthermore, in solar energy, much of the generated energy is lost when the solar 

irradiance is very low during sunset and sunrise, limiting the window of solar energy 

generation duration. At very low solar irradiance, negligible solar energy is generated and 

lost due to inefficiency of energy transfer within the system. The widely adopted energy 

storage system, batteries, especially the SLAs, are potentially the most expensive 

component in the entire REPS system. However, batteries could easily fall prey into highly 

erratic solar energy generation as unnecessary high amplitude oscillations and power 

spikes severely harm the batteries. Consequently, the ROI of a solar-based REPS 

disappoints many interested parties. 

 In this research work, two main novelties are proposed to fulfil the research aims. 

Firstly, an hourly solar irradiance trend forecasting model is introduced so that the system 

can learn the solar irradiance condition beforehand. The forecasting model is also 

introduced to perform forecast of other system parameters. Secondly, a novel EMS based 

upon an Unsupervised Incremental Learning Artificial Intelligence model is devised to 

control the HESS operation indirectly while prolonging the system lifetime. 

 In the novel hourly solar irradiance trend forecasting model, an Unsupervised 

Learning algorithm, RE-SOINN is introduced into a forecasting framework to produce a 

forecast performance comparable to Supervised Learning such as ANN using solely 
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historical solar irradiance trend. Using only solar irradiance trends learnt, the model shows 

a good outlook to be deployed in many applications requiring Supervised Learning models. 

The framework designed can ensure the model to operate within allowable range of 

forecast accuracy even in cases affected by noise, promising a good forecast performance 

in long run. Its Incremental Learning feature allows the proposed model to adapt and learn 

from new datasets continuously, allowing it to adapt to gradual change in the environment. 

The proposed forecasting model scores 0.658 in MASE and 73.945Wm-2 in RMSE whereas 

competing models such as ANN scores 1 in MASE and 90.56 Wm-2 in RMSE. 

A novel Unsupervised Learning Artificial Intelligence EMS is introduced to reduce 

peak power demand as well as dynamic power stress of battery while improve solar energy 

harvesting in a standalone PV system with battery-supercapacitor HESS. The RE-SOINN 

model is used as the EMS model in this research due to its capability to reduce 

computational complexity of operating the system. Upon comparing with other popular 

control strategies in the literature, RE-SOINN has shown many advantages. The results 

have shown that RE-SOINN EMS is able to assist in harvesting more solar energy while 

reduces peak battery power demand and battery power dynamic stress. The significant 

reduction in battery power oscillations, especially in higher cyclic amplitude range, can 

eventually extend battery lifespan, prolonging system lifetime. The short computational 

time as well as training time of RE-SOINN EMS indicates good outlook for this Unsupervised 

Learning EMS model to be implemented in platforms with lower computational resources, 

leading to much lower internal system power consumption. The experimental results have 

shown that the novel EMS model is able to shave the battery peak power draw by 10%, 

harvests 26.6% more solar energy and lower battery power oscillations in higher cyclic 

amplitude range comparing to battery-only system. The findings of this thesis also confirm 

that the research aim and objectives are achieved. 

6.1 Future Works 

 Though the proposed system and its EMS have shown its capability in managing 

the system operations, improving solar energy harvesting as well as prolonging battery 
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lifetime in a standalone PV system with battery-supercapacitor HESS, there are further 

enhancements that could be done to improve the system performance or to reduce the 

overall system complexities. 

 As the solar panels used in the research are installed many years ago and have a 

maximum efficiency of less than 10% whereas the average efficiency of solar panels in 

current market has reached 30%, replacing the old solar panels in the Solar Cabin would 

improve the system performance, especially in solar energy harvesting.  

 The forecast performance of Unsupervised Learning RE-SOINN forecasting module 

can be further improved by increasing the resolution of nodes in RE-SOINN knowledge 

base. However, extensive size of RE-SOINN knowledge base increases the computational 

complexity, leading to requiring a powerful computational platform. In this research, 

Raspberry Pi is chosen due to its low-cost benefit. When performance is given higher 

priority than system cost, Raspberry Pi can be replaced with commercial grade professional 

computing boards that can be custom designed. 

 Grid Search method is applied to pre-determine the hyperparameters of the RE-

SOINN EMS model. This has complicated the possibility of the EMS model to be applied 

from scratch easily. AI-based optimisation algorithms such as Particle Swarm Optimisation 

(PSO) can be applied to make the proposed EMS model to start running with the least 

human interference possible. This is because PSO can effectively reduce unnecessary 

computational steps made by Grid Search. 
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Chapter 7 Appendices - Standalone PV System and Equipment Setup 

This research work sees its application in a rural region with a focused aim on 

household usage. Thus, this appendix chapter discusses the structural details of proposed 

standalone PV system with battery-supercapacitor HESS developed for rural household 

applications. Secondly, the specifications and load demand profiles meeting the general 

characteristics of a rural household scenario are depicted. Subsequently, the proposed 

system is constructed in the Solar Cabin of The University of Nottingham Malaysia after 

the system components are sized accordingly to meet the general load demands in a rural 

household setting.  

7.1 Structure of Standalone PV System 

The overall structures of a traditional standalone PV system with Battery as its ESS 

as well as proposed standalone PV system with battery-supercapacitor HESS are provided 

in this segment. 

7.1.1 Conventional Standalone PV system with Battery Energy Storage System (ESS) 

A typical block diagram for conventional standalone PV system with Battery ESS is 

depicted in Figure 7-1. In general, the four main components in a conventional standalone 

PV system include the PV solar panel system, battery ESS, load as well as a charge 

controller. In most of the cases, MPPT serves as the charge controller in these standalone 

PV systems. In rural applications, an inverter is added in between the DC bus as well as 

the load as most of the electronic appliances are powered by AC instead of DC. Embedded 

controller and sensors may or may not be present in a typical standalone PV system 

depending on the type of control being implemented in the system. Commonly, embedded 

controller is omitted from the design due to straightforward design of conventional systems. 

The conventional standalone PV system can be described mathematically as follow. 

Assuming the power conversion efficiency of MPPT is 𝜂𝑀𝑃𝑃𝑇 and 𝜂𝐼𝑉𝑇 represents the working 

efficiency of inverter in cases where inverter is required, both the resulting PV power, 𝑃𝑃𝑉
′  

as well as the actual load power demand, 𝑃𝑙𝑜𝑎𝑑
′  can be expressed respectively as Equations 

(7-1) and (7-2) where 𝑃𝑃𝑉  refers to output power from PV solar panel and 𝑃𝑙𝑜𝑎𝑑 is the 
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reference load power demand including the power conversion loss due to inverter 

inefficiency. 

𝑃𝑃𝑉
′ =  𝜂𝑀𝑃𝑃𝑇  ×  𝑃𝑃𝑉         (7-1) 

𝑃𝑙𝑜𝑎𝑑
′ =  𝜂𝐼𝑉𝑇  ×  𝑃𝑙𝑜𝑎𝑑       (7-2) 

Thus, the overall power equation of the entire conventional standalone PV system can be 

described as follow at Equation (7-3), 

𝑃𝑃𝑉
′  −  𝑃𝑙𝑜𝑎𝑑

′ = 𝑃𝑏𝑎𝑡𝑡 = 𝑑𝑃     (7-3) 

where battery power flow is denoted as 𝑃𝑏𝑎𝑡𝑡. The power mismatch between the generated 

PV power and the load power demand is simplified by Equation (7-3) as difference in power, 

dP where it is to be fully compensated by the only storage device present in the system, 

the battery ESS. 

 

Figure 7-1 – System block diagram of conventional standalone PV system with Battery ESS 
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7.1.2 Standalone PV System with Battery-Supercapacitor Hybrid Energy Storage System 

(HESS) 

This research work suggests that the system will be more advantageous if 

supercapacitor is added into the ESS to form HESS for rural household applications. Due 

to poor recharging rate of battery under low current due to low solar irradiance, these 

energies are lost instead of being stored accumulatively for future use. Thus, a standalone 

PV system with battery-supercapacitor HESS is more preferred. The configuration that is 

adopted in this work is a semi-active one. Figure 7-2 shows the overall structure of a 

standalone PV system with battery-supercapacitor HESS of semi-active control 

configuration. 

An important component in any HESS design is to include a subsystem which could 

manage and distribute the power flow between each of the HESS devices. In the absence 

of such power regulating and managing subsystem, the charging and discharging of both 

battery as well as supercapacitor will not be controlled actively and directly. The power 

distribution between the two devices will then be managed by the power mismatch 

between load demand and power generation as well as natural circuit characteristics of 

these ESS devices. Thus, in Figure 7-2, a bidirectional DC-DC converter is added as an 

interface between supercapacitor and the DC bus to decouple the supercapacitor from PV 

system as well as DC bus. It is noted that such design is designated as semi-active control 

configuration as only supercapacitor is controlled actively whereas the battery reacts 

passively to satisfy the power balance of the entire system. 

Equation (7-3) can be rewritten to include supercapacitor power to produce 

Equation (7-4) as follow: 

𝑃𝑃𝑉
′  −  𝑃𝑙𝑜𝑎𝑑

′ = 𝑃𝑏𝑎𝑡𝑡 +  𝑃𝑠𝑐
′ = 𝑑𝑃     (7-4) 

where 𝑃sc
′  represents supercapacitor power after going through the bidirectional DC-DC 

converter. Let 𝜂𝐷𝐶𝐷𝐶 be the efficiency governing the operation of the bidirectional DC-DC 

converter, Equation (7-5) describing 𝑃sc as supercapacitor power before bidirectional DC-

DC converter is derived as 
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𝑃𝑠𝑐
′ =  𝜂𝐷𝐶𝐷𝐶  ×  𝑃𝑠𝑐       (7-5) 

 

Figure 7-2 – System block diagram of conventional standalone PV system with battery-supercapacitor HESS 

Since 𝑑𝑃 is dealt by both battery and supercapacitor, a system control strategy or EMS is 

required to distribute 𝑑𝑃 properly between battery and supercapacitor. EMS produces a 

reference supercapacitor power, 𝑃sc_ref to be outputted by supercapacitor based on relevant 

operating conditions. Since DC-DC converter in the system adopts input current control, 

𝑃sc_ref  is further expanded to Equation (7-6). 

𝐼𝑠𝑐_𝑟𝑒𝑓 =  
𝑃𝑠𝑐_𝑟𝑒𝑓

𝑉𝐷𝐶
      (7-6) 

where VDC is DC bus voltage. As battery is directly coupled to DC bus, VDC is equal to 

battery voltage. As a result, the calculated Isc_ref  is sent to the controller of DC-DC 

converter so that the actual supercapacitor current can be regulated to Isc_ref before any 

charging or discharging operations occur. 
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7.2 Solar Cabin Setup 

 This subsection contains the actual photos for the experimental setup for this 

project. 

 

Figure 7-3 - Actual experimental setup showing the DC bus, inverter and MPPT Supercapacitor Charger DC-DC converter 

 

 

Figure 7-4 – DC Bus 
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Figure 7-5 – Operation of MPPT Supercapacitor Charger DC-DC Converter 

 

 

Figure 7-6 – Operation of Load Demand DC-DC Converter
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7.3 Sizing of Standalone PV System with Battery-Supercapacitor HESS 

 The load demand in Subsection 5.10 has presented a need for the standalone PV 

system implemented in this research to be sized accordingly so that the standalone PV 

system with battery-supercapacitor HESS is able to operate throughout the entire duration 

of a day operation without any interruption while being able to achieve system building 

economy. The Department of Natural Resources (DNR) of State of Louisiana has issued a 

simple guideline on sizing procedure of any standalone PV system. It is important to point 

out that the guideline produced considers the working efficiencies of battery and inverter 

present in the system so that unexpected events such as loss of power supply possibility 

can be minimized significantly. Table 7-1 shows the design considerations during the sizing 

procedure of a standalone PV system whereas Table 7-2 illustrates the sizing procedural 

worksheet prepared by the DNR agency. 

Table 7-1 – PV system sizing design consideration factors 

Day of energy storage required 2 

Maximum battery depth-of-discharged limit 0.8 

Battery average round trip efficiency 0.85 

Inverter round trip efficiency 0.91 

Average peak sun hours per day 4 

Ambient temperature multiplier (DF) 0.9 

 

 Based on Table 5-6, combining the power specifications as well as the usage time 

of each electrical appliance on the list produces the total energy demand per day for the 

household under study. The adjusted power consumption of each appliance in A6 considers 

the inefficiency of inverter to adjust their respective rated power accordingly. The PV 

system is set to have its factor B1 of “Days of storage desired” as 2 so that the system 

stores enough of energy to power the entire household for 2 consecutive days in the 

absence of generated PV power. Ref. [197] defines any discharge over 80% of rated 

capacity of a battery as a deep discharge and thus the “Allowable depth of discharge limit” 
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in B2 is taken as 0.8. The “Total battery amp-hour capacity” in B8 is determined to be 

slightly less than the required battery capacity due to economic decision that 250Ah is 

about 10% lower than required battery capacity but 500Ah is excessively larger than the 

requirement. Also, not all electrical appliances in Table 5-6 are turned on on daily basis. 

The mismatch between required battery capacity and chosen battery capacity can easily 

be met with an hour of PV system if solar energy is available.   Therefore, the determined 

battery capacity is able to support the household power demand with close to 2 days of 

operation. The 0.75 factor in “Average daily depth of discharge” in B10 is used to assume 

that PV system is only able to supply the load for 25% of a day duration. 

Table 7-2 - PV system sizing procedural worksheet 
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A1 91 %

A2 48 V

A3 240 V

A4 A5 A6 A7 A8

Rated Wattage

 (W)

Adjustment Factor

(1.0 for DC system, 

A1 for AC system)

Adjusted Wattage 

(W)

(A4/A5)

Hours per 

Day used

Energy per Day 

(Wh/day)

Ceiling Fan 

(2 units of 50W)
100.00 0.91 109.89 18.00 1978.02

Table Fan 50.00 0.91 54.95 1.00 54.95

Light

(6 units of 18W)
108.00 0.91 118.68 6.00 712.09

Fridge 130.00 0.91 142.86 12.00 1714.29

Washing Machine 300.00 0.91 329.67 0.01 3.30

Laptop 45.00 0.91 49.45 16.00 791.21

TV 39.00 0.91 42.86 4.00 171.43

Toaster 650.00 0.91 714.29 0.01 7.14

A9 5432.42 Wh

A10 113.18 Ah

A11 1422.00 W

A12 1562.64 W

B1 2.00 days

B2 0.80

B3 282.94 Ah

B4 250.00 Ah

B5 1 unit(s)

B6 4 units

B7 4 units

B8 250.00 Ah

B9 12.00 kWh

B10 0.34

C1 5432.42 Wh

C2 0.85

C3 6391.08 Wh

C4 45.48 V

C5 100.00 Wh

C6 4.00 hours

C7 400.00 Wh

C8 360.00 Wh

C9 20 modules

C10 2 modules

C11 10 modules

C12 20 modules

C13 100.00 W

C14 2000.00 W

Number of modules required per string (A2/C4) rounded to 

the next higher integer

Number of strings in parallel (C9/C10) rounded to

 the next higher integer

Number of modules to be purchased (C10 x C11)

Nominal rated PV module output

Nominal rated array output (C13 x C12)

Total energy demand per day (A9)

Battery round trip efficiency (0.70 - 0.85)

Required array output per day (C1/C2)

Selected PV module max power voltage at STC (x0.85)

Selected PV module guaranteed power output at STC

Peak sun hours at design tilt for design month

Energy output per module per day (C5 x C6)

Module energy output at operating temperature (DF x C7)

DF = 0.8 for hot climates and critical applications              

DF = 0.9 for moderate climates and non-critical applications

Number of modules required to meet energy 

requirements (C3/C8)

Number of batteries in series (A2/selected battery voltage)

Total number of batteries (B5 x B6)

Total battery amp-hour capacity (B5 x B4)

Total battery kilowatt-hour capacity [(B8 x A2) / 1000)

Average daily depth of discharge (0.75 x A10/B8)

C. PV ARRAY SIZING

Total amp-hour demand per day (A9/A2)

Maximum AC power requirement (Sum of A4)

Maximum DC power requirement (Sum of A6)

B. BATTERY SIZING

Days of storage desired / required

Allowable depth-of-discharge limit

Required battery capacity [(A10 x B1) / B2]

Amp-Hour capacity of selected battery

Number of batteries in parallel (B3/B4)

A. LOADS

Inverter Efficiency

Battery Bus Voltage

Inverter AC Voltage

Appliance

Total energy demand per day (Sum of A8)
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 Based on Table 7-2, the optimal design of the proposed standalone PV system with 

battery-supercapacitor HESS can be partially given as follow: 

• PV Array : 2000W (20 modules of Kaneka UEA-100 solar panels of 100W each) 

• Battery : 48V, 250Ah (4 units of Powerbatt AGM Lead Acid batteries of 12V, 

250Ah) 

These design considerations have led to additional design criteria to be met by other 

components present in the system such as 

• The DC-DC converters must be able to handle power up to 2000W from PV arrays 

• PV array operating voltage must be higher than 142V so that DC-DC converters are 

not harmed during the operations 

• Able to charge or compatible with 48V Lead-Acid AGM battery bank 

• Components connected to the load side should be able to deal with requirement 

set in A12 “Maximum DC Power Requirement” of 1562W 

• The standard AC voltage and frequency adopted in Malaysia is 230V and 50Hz 

 From these design requirements, the DC-DC converter built to harvest solar power 

from PV array is designed with criteria listed in Table 5-5 under “MPPT Supercapacitor 

Charger DC-DC Converter”. The MPPT algorithm adopted is InC method so that the array 

operating voltage can be adjusted continuously to produce maximum power at any instant. 

As for the DC-DC converter interfacing the HESS to load, it is designed to have rated power 

at 2.4kW, maximum input and output voltage and current at 100V and 100A respectively 

so that high power transfer is possible between HESS and the load. Sontime 4830N 

inverter is chosen as it satisfies the requirements resulted from the design considerations 

with power rating of 2730W, output frequency of 50-60Hz, output voltage range of 230V. 

 As supercapacitor does not possess high energy capacity like SLA batteries, it is 

usually common to size the supercapacitor suitable to the standalone PV system via cost-

matching method. Thus, eight units of Nippon-Chemi-Con DLCAP supercapacitors are 
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added into the HESS to produce 30V, 800F supercapacitor bank, matching the cost of 4 

units of Powerbatt AGM Lead Acid Batteries of 12V, 250Ah. Consequently, the proposed 

EMS can be operated efficiently and effectively without oversized supercapacitor of 

uneconomical building cost as well as without undersized supercapacitor banks that lead 

to restricted supercapacitor action in the EMS. 

7.4 DC-DC Converters 

 Based on the requirements of proposed Standalone PV System with battery-

supercapacitor HESS listed in Table 5-5 and Table 7-2, the DC-DC converters should be 

designed to be able to handle 2.4kW with an absolute maximum rating at 100V/100A. The 

typical load operations listed in Table 5-6 have suggested a typical operation rating of DC-

DC converter to be set at 60V/40A. 

 

Figure 7-7 – Schematic diagram of MPPT Supercapacitor Charger DC-DC Converter 

 Figure 7-7 shows the schematic diagram MPPT Supercapacitor Charger DC-DC 

Converter. Since the PV panels could reach to 142V while the DC bus is set to be 48V, 

MPPT Supercapacitor Charger DC-DC Converter should adopt the configuration of a buck 

converter. Synchronous buck converter configuration is chosen for better operating 

efficiency. A RC snubber circuit is added to the High Side (HS) and Low Side (LS) of 

MOSFET to minimize voltage spikes resulted from switching operations. A 100V Zener 

diode is essential to the circuit so that the Drain-Source voltage of MOSFET during the 

operation does not exceed its maximum rating of 150V whereas a 18V Zener diode 

prevents the Gate-Source voltage of MOSFET exceeds its maximum rating of 20V. To 
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prevent events of overcurrent, an electronic load switch is inserted to the ground between 

the DC-DC converter output and load so that the current can be cut off anytime. 

 

Figure 7-8 – Schematic Diagram of Load Demand DC-DC Converter 

 Figure 7-8 shows the schematic diagram of Load Demand DC-DC Converter. Based 

on the operations of supercapacitor in the proposed Standalone PV System with battery-

supercapacitor HESS, the voltage of supercapacitor is usually lower than the DC bus of 

48V since supercapacitor voltage is proportional to its SoC. Thus, the discharging of 

supercapacitor requires a boost converter. Subsequently, supercapacitor is required to be 

charged from the DC bus when supercapacitor SoC gets too low. Therefore, bidirectional 

current flow is important in Load Demand DC-DC Converter. Comparing to MPPT 

Supercapacitor DC-DC Converter, current-blocking diode MOSFET is absent in Load 

Demand DC-DC Converter so that the DC-DC converter can operate in forward boost mode 

for discharging and in reverse-buck mode during charging. A load MOSFET switch is 

essential to the boost converter so that the converter can be turned off without interruption 

from always forward-biased antiparallel diode of HS MOSFET. 

 The working operation of MPPT Supercapacitor Charger DC-DC Converter is as 

follows in Figure 7-9. The operation is controlled by Arduino Uno microcontroller. Current 

regulation is added to prevent overcurrent events especially when supercapacitor is in very 

low SoC during very high solar irradiance conditions (higher PV generation, resulting in 
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way higher buck ratio to produce high output current). The regulation is done by not 

allowing the PV energy generation to operate at MPP and the threshold is set at 70A. 

 

Figure 7-9 – Algorithmic flowchart for MPPT Supercapacitor Charger 

 As for the supercapacitor discharging operation of Load Demand DC-DC Converter, 

its working operation is shown in Figure 7-10. Average current control is achieved by 

implementing a proportional controller with a proportional gain of 𝐾𝑃. To prevent excessive 

oscillating current in the converter, an adaptive setpoint is needed for this proportional 

controller. Every time the supercapacitor enters discharging mode, the initial duty cycle 

can be calculated using Equation (7-7) to reduce settling time because long settling time 

slows down the discharging of supercapacitor. 

𝑉𝑜𝑢𝑡 =
1

1−𝐷
𝑉𝑖𝑛      (7-7) 
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Figure 7-10 – Algorithmic flowchart of supercapacitor discharging operation of Load Demand DC-DC Converter 

 The supercapacitor charging operation of Load Demand DC-DC Converter works as 

described in the flowcharts in Figure 7-11. The charging of supercapacitor is done by 

adjusting the duty cycle with a step size of 0.01 for longer rising and settling time to 

minimize the overshoot of charging current and to achieve smooth charging operation. 
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Figure 7-11 – Algorithmic flowchart of supercapacitor charging operation of Load Demand DC-DC Converter 

7.5 Sensors and Instruments 

 An efficient and effective working of EMS is highly dependent on the states of the 

system, or the feedback of each component during the operation. The feedbacks are 

usually fed back to EMS via sensors. Table 3-5 lists the types of sensors and instruments 

installed in the standalone PV system with battery-supercapacitor HESS in Solar Cabin. 

Their respective interfaces and measurement ranges are recorded in Table 7-3. Table 7-4 

shows how system state measurements are calculated or obtained directly from these 

instruments and sensors. 

Table 7-3 - Interface and measurement range of sensors and instruments installed for proposed standalone PV system 

Sensors/ Instruments Interface Measurement Range 

Sensor 

DC Voltage 

Transducer 

CR6310-100 

Analog DC Voltage (0V-100V) 

DC Current 

Transducer 

CR5210-60 

Analog DC Current (0A-60A) 

True RMS AC 

voltage Transducer 

CR4510-250 

Analog RMS Voltage (0V -250V) 
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Loop Powered AC 

current Transducer 

CR4220-15 

Analog RMSE Current (0A -15A) 

Texas Electronics 

SP-LITE Solar 

Radiation Sensor 

Analog Solar Irradiance (0-1400 W/m2) 

Texas Instrument 

LM35 
Analog Temperature (−55°C to 150°C) 

Instrument 

 

Schneider Electric 

Battery Monitoring 

System 

RS485 
State of Charge of Battery (0 % 

- 100 %) 

Vaisala Weather 

Transmitter 

WXT520 

RS485 

Wind speed (0 m/s– 60 m/s) 

Wind Direction (0° - 360°) 

Precipitation (mm) 

Atmospheric pressure (600 hPa 

- 1100 hPa) 

Air Temperature (-52 °C – 

60 °C) 

Relative humidity (0% RH -

100% RH) 

Table 7-4 - Methods of obtaining parameters from instruments and sensors installed 

Component Parameter 
Instruments/Sensors/ 

Calculation 

PV 

Voltage VPV 
DC Voltage Transducer CR6310-

100 

Current IPV DC Current Transducer CR5210-60 

Power PPV VPV × IPV 

Temperature TPV Texas Instrument LM35 

Battery 

Voltage Vbatt 
DC Voltage Transducer CR6310-

100 

Current Ibatt DC Current Transducer CR5210-60 

Power Pbatt Vbatt × Ibatt 

State-of-charge SoCbatt 
Schneider Electric Battery 

Monitoring System 

Supercapacitor 

Voltage VSC 
DC Voltage Transducer CR6310-

100 

Current ISC DC Current Transducer CR5210-60 
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Power PSC VSC × ISC 

State-of-charge SoCSC 
VSC

2 / (rated supercapacitor 

voltage)2 × 100% 

DC-DC Converter 

Input Voltage VDC 
DC Voltage Transducer CR6310-

100 

Input Current ISC DC Current Transducer CR5210-60 

Input Power PSC VDC × ISC 

Output Voltage VSC’ 
DC Voltage Transducer CR6310-

100 

Output Current ISC’ DC Current Transducer CR5210-60 

Output Power PSC’ VSC’ × ISC’ 

Inverter 

Input Voltage Vdc 
DC Voltage Transducer CR6310-

100 

Input Current Iload DC Current Transducer CR5210-60 

Input Power Pload Vload × Iload 

Output Voltage Vload’ 
True RMS AC voltage Transducer 

CR4510-250 

Output Current Iload’ 
Loop Powered AC current 

Transducer CR4220-15 

Output Power Pload’ Vload’ × Iload’ 

Charge controller 

Input Voltage VPV 
DC Voltage Transducer CR6310-

100 

Input Current IPV DC Current Transducer CR5210-60 

Input Power PPV VPV × IPV 

Output Voltage VPV’ 
DC Voltage Transducer CR6310-

100 

Output Current IPV’ DC Current Transducer CR5210-60 

Output Power PPV’ VPV’ × IPV’ 

Meteorological 

Data 

Solar Irradiance Irr 
Texas Electronics SP-Lite Solar 

Radiation Sensor 

Air Temperature Tair 
Vaisala Weather Transmitter 

WXT520 
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Relative Humidity RH 
Vaisala Weather Transmitter 

WXT520 

Air Pressure AP 
Vaisala Weather Transmitter 

WXT520 

Wind Speed WS 
Vaisala Weather Transmitter 

WXT520 

 

7.6 Interfacing Sensors and EMS Embedded Platform 

 Table 7-3 lists down the sensors made available in the proposed standalone PV 

system with battery-supercapacitor HESS system setup in Solar Cabin. In this subsection, 

the integration of sensors with embedded platform used to run the system EMS is 

presented in Figure 7-12. 

 

Figure 7-12 – Structure of interface between sensors, EMS embedded controller and DC-DC converters 

 Based on Figure 7-12, two Raspberry Pis are deployed into the system where one 

acts as the data acquisition module with the other one being implemented as EMS 

embedded controller. Raspberry Pi is chosen for this application because Raspberry Pi is a 

very common electronic device in any IoT project and thus there are plenty of supports, 

resources as well as hardware accessories compatible with Raspberry Pi. Secondly, 

Raspberry Pi runs on Linux operating system which is very efficient on single-board 

computers (SBC) or embedded system, resulting in much lower consumption in computing 
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and storage resources. Its lower power consumption is an added benefit to a standalone 

system where the energy available in the system is very limited. Subsequently, Raspberry 

Pi excels in connectivity since it has built-in Wi-Fi and Bluetooth modules in addition to 4 

USB ports and an Ethernet port. One of its close competitors, the Arduino-based 

microcontrollers are less favourable due to lacking non-volatile memory to store certain 

EMS parameters essential to continuous operation of the entire system.  

Before the first Raspberry Pi (data acquisition module), sensors such as Weather 

Station, Pyranometer, voltage and current sensors placed throughout the system are first 

connected to the DT80 DateTaker unit via RS-485 and simple analogue signals. The stored 

data are then transmitted and saved in a server if DT80 unit is connected to the internet 

via Ethernet cable. The need of passing the sensor measurements to DT80 unit is because 

Raspberry Pi does not have analogue GPIOs whereas most of the sensor measurements 

are naturally analogue outputs. Thus, an external ADC circuits or external data logger 

system becomes essential to complete the data transmission between the sensors and 

Raspberry Pi. Usage of external ADC circuit is not scalable when Raspberry Pi has only 26 

usable GPIOs. This limitation would then restrict the number of working sensors in this 

research project if external ADC circuit method were to be adopted. Also, not all sensors 

employ the same communication methods. For instance, some sensors use RS-232 while 

some go with simple analogue outputs. DT80 DataTaker supports a total of 28 analogue 

inputs, 8 digital inputs, 8 low speed counters, 4 high speed counters. DT80 DataTaker also 

supports a wide range of communication channels, ranging from RS-232, RS-485, RS-422, 

Modbus, FTP, HTTP, XML, SMTP, NTP, SDI-12, USB and Ethernet. 

DT80 unit is connected to the Raspberry Pi via USB-Modbus method. Raspberry Pi 

then stores these data into a csv file. If the internet is present, Pi could be programmed 

to upload the stored data into online server via services such as Google Firebase. The data 

storage and management programs are written in Python language instead of C because 

complex algorithms are easier to be developed in Python using Python optimization and 

developed mathematical libraries. The application of Raspberry Pi as intermediate station 
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of data acquisition module has enabled easier data communication with EMS module in 

later stage. For instance, the RS-232 protocol can easily be modified to TX and Rx serial 

communication. 

The communication between the Raspberry Pi data acquisition module and 

Raspberry Pi EMS module is made wireless to avoid long table connection between the two 

modules. It is noted that the data acquisition unit should be placed in a location closer to 

the sensors (close to external environment) whereas the EMS module can be placed closer 

to the HESS of the standalone PV system. An ad-hoc network is used to perform wireless 

data transfer between the two modules. A wireless ad-hoc network is an Independent 

Basic Service (IBSS) which consists of local wireless devices (nodes) discovering each 

other and forming a network so that each can forward data to other nodes. Access point 

such as router is not required at all to manage the communication. 

A great advantage of this method is that there is no need for internet service since 

internet service may not be available in certain rural areas. Therefore, the chance of the 

proposed system setup to be adopted in an area beyond the reach of internet connectivity 

is greatly improved. Should any troubleshooting be required during the maintenance of 

the system, the process is greatly simplified as any computer can gain access to the ad-

hoc network with approved credential without the need of physical disassembling the data 

acquisition module beforehand. Via this ad-hoc network, these Raspberry Pi can exchange 

data via SSH connection anytime. Thus, the Raspberry Pi EMS module can perform a 

regular routine to read the csv file stored in the Raspberry Pi data acquisition module. 

Both DC-DC converters in Figure 7-12 are connected to the Raspberry Pis via simple 

USB TX and Rx serial communication. The main microcontrollers in both DC-DC converters 

are Arduino Uno boards. As so, the DC-DC converters can receive instructions or data from 

Raspberry Pis that they are connected to in real time. 
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