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Abstract

The manufacturing sector is undergoing rapid transformations driven by global

economic factors, technological advancements, and fluctuating market demands.

These dynamics necessitate continuous innovation and adaptability in manufac-

turing systems to maintain competitiveness.

Therefore, this research addresses the manufacturing systems configuration (MSC)

problem, aiming to develop a methodology to make manufacturing systems re-

silient and adaptable that balances resource management, production efficiency,

and costs.

Despite the critical nature of the MSC problem, existing solutions are fragmented

and suffer from significant limitations, including underutilisation of data models,

software integration issues, and the inadequacy of traditional optimisation and

decision-making methods in dealing with uncertainties and multiple objectives.

Therefore, this research formulates the problem as “developing a holistic solution

for addressing the MSC problem for adapting manufacturing systems to rapidly

changing manufacturing requirements” to address these gaps. In this context,

a holistic solution synergistically combines data modelling, software integration,

adaptive optimisation and decision-making algorithms.

The research objectives include the development of adaptable data models that

encapsulate the complexities of manufacturing systems, plug-and-produce manu-
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facturing software solutions that address system scalability and adaptability, and

adaptive optimisation algorithms capable of navigating complex solution spaces.

The research employs a multi-staged validation approach, initially testing the

proposed methodologies in two distinct manufacturing processes with unique chal-

lenges: sorting cylinders and bin-picking parts of industrial pipe couplers. These

processes serve as a comprehensive testing ground for the proposed solutions.

Three research hypotheses were sequentially assessed, focusing on the adaptabil-

ity of object-oriented data models, the effectiveness of manufacturing apps in

achieving interoperability, and the efficiency of optimisation and decision-making

algorithms in managing multiple objectives and uncertainties. Each hypothesis

was successfully validated, confirming the research contributions.

Subsequently, empirical validation was extended to real-world industrial settings,

focusing on aerospace and custom product manufacturing sectors. In the aerospace

sector, the task was to find optimal manufacturing system configurations for chang-

ing and multiple conflicting manufacturing costs for assembling a generic hinged

product. In the custom product manufacturing sector, the task involved planning

a machining process that required balancing multiple manufacturing costs. These

validations substantiate the research hypotheses and demonstrate the proposed

methodology’s generalisability and adaptability.

By developing a holistic approach, this research contributes significantly to the

field. It addresses the limitations of existing fragmented solutions and provides

a robust, adaptable, and holistic framework for manufacturing systems. The re-

search has practical implications for manufacturing entities aiming to be agile

and responsive to market changes, fulfilling the main aim of developing a holistic

solution to the MSC problem.
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Chapter 1

Introduction
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1.1. BACKGROUND AND MOTIVATION

1.1 Background and motivation

Global economic factors, technological progress, and market trends influence mod-

ern manufacturing systems by constantly changing the operational landscape [1].

Changes in product design, production capacity, and operational efficiency stan-

dards are some examples of factors driving these changes. Given this dynamic

environment, manufacturing systems must constantly innovate and improve their

practices. They must fine-tune their operations to meet changing manufacturing

needs, maintain high quality, and stay competitive [2].

This persistent need for adaptability often manifests in notable disruptions within

the sector. For instance, if not efficiently addressed, a surge in product demand

could trigger a production bottleneck, adversely impacting potential sales and

overall consumer satisfaction levels. Severe instances of this cause-effect scenario

could push an organisation out of the market competition. Furthermore, mat-

ters escalate when inefficient optimisation of critical operational parameters, like

energy consumption, escalates production costs and breaches environmental stan-

dards.

Addressing these disruptions requires systematic configuration, re-configuration,

and enhancement of manufacturing systems through strategic planning, detailed

data analytics, comprehensive system modelling, focused algorithmic optimisation

and decision-making. This problem is referred as manufacturing systems config-

uration (MSC) problem in this thesis, which aims to nurture a resilient system

capable of swiftly adapting to pervasive manufacturing changes whilst maintaining

a balance of resource management, production efficiency, and expense overheads.

However, the current approaches to tackle the MSC problem are fragmented and

characterised by significant limitations, most of which originate from the existing

knowledge gaps identified in the literature:
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1. Underutilisation of data models. Data models play a crucial role in

representing the complexities of manufacturing systems and facilitating op-

timisation efforts. However, in the context of the MSC problem, there is a

concerning shortfall in harnessing the full potential of suitable data models.

Manufacturing systems are intricate ecosystems with multifaceted interac-

tions between various components such as machines, processes, materials,

and human operators. These interactions lead to dynamic behaviours, un-

certainties, and variations that shape the operational landscape [3].

Despite the critical role of data models in system representation, existing

approaches often overlook their application in addressing the MSC problem.

This oversight hampers optimisation efforts by hindering the accurate cap-

ture of the intricacies and variability of manufacturing systems. For instance,

intricate interdependencies between production processes and resource utili-

sation are challenging to model accurately without appropriate data models

[4–6].

2. Software integration and interoperability. In an era of digital transfor-

mation, manufacturing systems increasingly depend on digital platforms for

efficient operations. However, the issue of software integration and interop-

erability poses a significant challenge. Manufacturing systems often rely on

a mix of software applications, such as enterprise resource planning (ERP),

manufacturing execution system (MES), and supervisory control and data

acquisition (SCADA) systems, to manage various aspects of operations [7, 8].

Despite this reliance on digital platforms, seamless software integration so-

lutions remain elusive. Incompatibility between different software systems

results in data silos, limited communication, and challenges in data ex-

change. This lack of integration hampers system efficiency and adaptability

in a rapidly changing manufacturing environment. For instance, disrup-

tions caused by sudden market changes may require rapid adjustments in

production schedules, which become difficult when software systems cannot
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communicate seamlessly [9, 10].

3. Limitations of traditional optimisation and decision-making meth-

ods. Traditional optimisation methods have been extensively applied in

various manufacturing contexts. However, these methods exhibit significant

limitations when addressing the complexities of the MSC problem. Manufac-

turing systems are subject to uncertainties in demand, evolving operational

objectives, and the need for sequential decision-making [11, 12]. Traditional

optimisation techniques, such as linear programming or heuristic algorithms,

struggle to handle these complexities effectively.

For instance, evolving market demands require manufacturing systems to

adapt rapidly to production volume and product mix changes. Traditional

methods may not be equipped to handle dynamic objectives or real-time

adjustments in resource allocation. Furthermore, uncertainties in supply

chain disruptions or raw material availability can significantly impact pro-

duction schedules and resource utilisation, necessitating adaptive optimisa-

tion strategies [13, 14].

The outlined limitations in the current solutions for the MSC problem paint a clear

picture of a fragmented landscape [1, 2]. While efforts are being made in various

areas, these endeavours are not cohesive and lack the interconnectedness necessary

to address the problem holistically. For instance, improving data models alone will

not suffice if the software systems they operate lack integration or the optimisation

methods employed are not dynamic enough to adjust to evolving manufacturing

scenarios [3, 7]. Current solutions resemble pieces of a jigsaw puzzle that, while

essential, do not quite fit together perfectly to reveal the full picture [15].

Such fragmentation impedes fostering resilient and adaptable manufacturing sys-

tems [2]. For example, an optimally designed data model, which captures all nu-

ances of the manufacturing process, loses its efficacy if integrated into a software
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system that fails to communicate seamlessly with other mission-critical systems

[7, 8]. The consequential data silos undermine the model’s potential and introduce

inefficiencies into the system, defeating the primary objective. Similarly, even if

we achieve software interoperability but employ outdated optimisation methods,

the result will be sub-optimal decision-making that may not account for rapidly

changing demand patterns or supply chain disruptions [11, 12].

By its very nature, manufacturing is a system of interconnected components [1].

The same interdependence observed in the manufacturing process must be mir-

rored in the solutions crafted to address its challenges. Though they might offer

improvements in isolated areas, fragmented solutions can introduce unforeseen

complications when implemented in tandem [15]. For instance, enhancing one

area without considering the full system dynamics might inadvertently stress an-

other, leading to unforeseen bottlenecks or inefficiencies [3].

Moreover, in the modern manufacturing landscape, marked by Industry 4.0 and

the rise of the internet of things (IoT), the need for holistic solutions becomes

even more pressing [16]. As manufacturing entities increasingly rely on inter-

connected devices and real-time data flows, the margin for error shrinks [9]. A

disjointed approach in such an environment can lead to inefficiencies and potential

vulnerabilities, as a minor change in one area can cascade across the system [10].

Thus, only a unified approach that considers the manufacturing system’s entirety

and addresses its challenges cohesively can ensure robustness, adaptability, and

longevity in the face of evolving global demands and technological advances.

For manufacturing systems to be agile and responsive to market changes, every

piece of the solution – from data models and software systems to optimisation

methodologies – must work in harmony, emphasising the dire need for a more

holistic approach.
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1.2 Aims and objectives

Considering the current state of fragmented solutions to the MSC problem, the

primary aim of this research is to develop a holistic methodology that

combines data models, software, and optimisation algorithms for ad-

dressing the MSC problem.

The aim is to be achieved by addressing the below objectives:

1. Development of comprehensive and adaptable data models: The

initial objective involves the development of data models that encapsulate

the complexities inherent in manufacturing systems. These models should

serve as a fundament for data that facilitates the analysis and interpretation.

Importantly, the models should be adaptable, allowing for modifications to

accommodate shifts in demand, design specifications, or changes in over-

arching objectives. This adaptability ensures that the data models remain

relevant and useful throughout the lifecycle of the manufacturing system,

thereby providing a solid foundation for subsequent research activities.

2. Development of plug-and-produce manufacturing software solu-

tions: The second objective focuses on creating software solutions that

utilise plug-and-produce technology. This specific technology is crucial for

rapidly integrating various manufacturing equipment into a unified system.

The software aims to streamline both the initial setup and any subsequent

re-configurations, effectively addressing system scalability and adaptability

challenges. By facilitating easier integration and disconnection of various

components, the software aims to enhance its overall flexibility, allowing it

to adapt to changing operational requirements without requiring extensive

modifications.

3. Development of adaptive optimisation and decision-making algo-
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rithms: The final objective concerns formulating algorithms capable of nav-

igating the complex solution space defined by the data models. These algo-

rithms should be designed to identify optimal configurations for the manu-

facturing system under various conditions and constraints. The optimisation

process should be adaptive and capable of handling multiple, often conflict-

ing, objectives. By building upon the comprehensive data models, these

algorithms should aim to provide actionable insights that can be directly

implemented in the manufacturing system.

A rigorous validation process will be conducted to ensure the robustness and appli-

cability of the proposed holistic solution. The validation process will sequentially

assess the adaptability and robustness of the developed data models, the effec-

tiveness of the plug-and-produce manufacturing software, and the efficiency of the

adaptive optimisation and decision-making algorithms. Two distinct manufac-

turing processes with unique challenges and mechanisms will be the experimen-

tal backdrop for these validations. This approach offers a comprehensive testing

ground for the proposed methodologies.

Following the initial validation, empirical substantiation will be done in real-world

industrial settings. The aim is to extend the validation to complex manufacturing

environments known for stringent quality requirements and high variability. These

case studies will corroborate the initial findings and provide actionable insights

into how the proposed solutions can be tailored to meet the unique challenges

of different manufacturing environments. This multi-layered validation approach

will significantly enhance the credibility and practical relevance of the research

contributions, thereby fulfilling the main aim of developing a holistic solution to

the manufacturing systems configuration (MSC) problem.
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1.3 Thesis outline

The rest of the thesis focused on addressing the MSC problem holistically and

organised as in the below structure:

Chapter 1 - Introduction: This chapter sets the stage by offering a com-

prehensive background and motivation for the research. It aims to address the

MSC problem holistically, contrasting with the fragmented approaches in exist-

ing literature. The chapter outlines a holistic approach combining data models,

manufacturing software, optimisation, and machine learning algorithms to adapt

to changing manufacturing requirements.

Chapter 2 - Literature review: This chapter thoroughly reviews existing liter-

ature on the MSC problem, covering manufacturing paradigms, reconfigurability,

and enabling technologies. It identifies three critical knowledge gaps and sets the

foundation for the research by discussing these gaps and potential strategies to

address them.

Chapter 3 - Research methodology: This chapter defines the research problem

and its associated challenges, introducing relevant terminology and mathematical

notations for precise problem formulation. It outlines the research questions and

hypotheses and proposes a validation methodology that combines qualitative and

quantitative analysis. The chapter aims to develop a research methodology for

developing a holistic approach that enhances the responsiveness and resilience of

manufacturing systems.

Chapter 4 - Data model for MSC problem: This chapter introduces an

object-oriented data model tailored for the MSC problem. It defines key classes

and associations that capture the complexities of modern manufacturing systems.

The proposed object-oriented data model is a modular and flexible foundation for

addressing the MSC problem.
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Chapter 5 - Manufacturing apps for MSC problem: This chapter tackles

the issue of software interoperability in manufacturing by introducing the concept

of “manufacturing apps.” It establishes a theoretical and practical foundation for

developing modular software solutions and proposes a methodology for develop-

ing a manufacturing app development kit. The chapter contributes to creating

an adaptable and flexible manufacturing environment which enables plug-and-

produce functionality.

Chapter 6 - Optimisation and decision-making algorithms for MSC

problem: This chapter focuses on optimisation and decision-making modules

building on top of the proposed data model. It introduces three modules: changes

identification, optimisation, and decision-making modules. These modules employ

various algorithms and methods to address uncertainty and multiple objectives in

selecting optimal manufacturing configurations.

Chapter 7 - Validation of the research contributions: This chapter validates

the research contributions through experiments in two distinct manufacturing pro-

cesses. It sequentially assesses the data model’s adaptability, the manufacturing

apps’ effectiveness, and the ability of optimisation and decision-making algorithms

to deal with given requirements. The chapter confirms the research hypotheses

and presents a holistic solution to modern manufacturing challenges.

Chapter 8 - Industrial validations: This chapter extends the validation to

real-world industrial settings, focusing on aerospace and custom product manu-

facturing. It demonstrates the generalisability and adaptability of the proposed

methodology, confirming its practical relevance and credibility.

Chapter 9 - Conclusions: This chapter synthesises the research contributions

and highlights the remaining knowledge gaps. It critically evaluates what was

achieved and what is remaining. It outlines future work that can further advance

the field, thereby wrapping up the thesis in a comprehensive manner.
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Literature review
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2.1 Introduction

The manufacturing industry is undergoing rapid transformations due to changing

market dynamics, technological advancements, and evolving customer demands.

In this dynamic environment, manufacturing systems must adapt quickly to new

products, production requirements, and supply chain configurations. This liter-

ature review chapter reviews academic works on making manufacturing systems

adaptable to rapidly changing requirements.

The chapter begins by exploring different manufacturing systems paradigms and

their characteristics, comparing dedicated, flexible and reconfigurable manufac-

turing systems.

It then dives into the concept of reconfigurability and existing research on the MSC

problem. Enabling technologies like data models, interoperability approaches, and

optimisation algorithms are also reviewed in detail.

This chapter identifies critical knowledge gaps in current research by thoroughly

analysing the literature. Primarily, the limitations stem from insufficient represen-

tation of system complexity, lack of software integration and interoperability, and

underutilisation of advanced algorithms like reinforcement learning based meth-

ods. These gaps motivate the need for a holistic approach to the MSC problem.

The literature review lays a strong foundation for the overall research by highlight-

ing important concepts, analysing existing methodologies, and revealing avenues

for improvement.

The identified knowledge gaps shape the direction for developing a robust frame-

work to address the MSC problem holistically.
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2.2 Manufacturing systems paradigms

It is important to understand the types of manufacturing systems and their suit-

ability for adapting to rapid changes. Hence, this section explores different man-

ufacturing systems paradigms and their characteristics.

Manufacturing systems have evolved significantly due to changing market de-

mands and technological advancements. Historically, these systems transitioned

from dedicated to flexible and, most recently, to reconfigurable models, each shift

representing the manufacturing industry’s response to specific challenges and op-

portunities.

Though numerous manufacturing systems paradigms exist, such as holonic [17–

19], evolvable [20–22], fractal [23–25], bionic [26–28], cellular [29–31], and matrix-

structured [32–34] manufacturing systems, among others, the three most widely

recognised and foundational paradigms are dedicated, flexible, and reconfigurable

manufacturing systems.

2.2.1 Dedicated manufacturing systems

Dedicated manufacturing systems (DMS), the traditional approach to production,

are designed for high volume manufacturing with low product variety [35, 36].

These systems are particularly suitable for mass production, where there is a need

to minimise unit cost and the product complexity is low. DMS’s importance

becomes evident in industries like automobile and electronic component manu-

facturing, where they provide significant efficiency in an economy of scale due to

their highly specialised design and operation [35].

The rapid transformation of manufacturing has identified limitations of DMS, with

the increasing focus on mass customisation, product variety, and frequent design

changes [36]. While DMS are efficient in industries where the product life cycle
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is long and stable, and demand is predictable, the inflexibility of these systems

can lead to costly and time-consuming processes when there is a need to redesign

or retool for new products and requirements. Their main drawback lies in their

rigidity and limited adaptability to changes in product design or market demand

[37].

These limitations of DMS, coupled with the changing manufacturing landscape,

necessitated a shift towards more flexible systems. Therefore, the next section

discusses the emergence of flexible manufacturing systems and their added adapt-

ability in manufacturing processes.

2.2.2 Flexible manufacturing systems

Flexible manufacturing systems (FMS) symbolise an industry adaptation to the

increasing demand for product variety and customisation, enabling the produc-

tion of different types of products without significant downtime for changeovers.

These systems retain the efficiency of DMS while providing enhanced flexibility to

cater to design changes and variety. The infrastructure typically comprises several

automated machine tools connected by an automatic material handling system,

overseen by a central computer control system [38, 39].

According to Koren [36], the inherent versatility of FMS offers a balanced ap-

proach to productivity and flexibility, which suits industries with medium-volume

production and frequent design changes. The reduced turnover time from prod-

uct design to production marks a leap in manufacturing agility, offering a swift

response to market changes [39, 40].

However, as noted by Zhang et al. [41], while FMS offer considerable advantages,

their adoption comes with challenges. For instance, the initial cost of implemen-

tation can be high. Despite the increased flexibility over dedicated systems, they

are still constrained by the hardware specifications of the installed machines, po-
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tentially inhibiting rapid adaptation to extensive design changes.

Therefore, the next section explores reconfigurable manufacturing systems build-

ing upon the flexibility of FMS. They are considered the next generation of man-

ufacturing systems that enhance flexibility with rapid reconfigurability.

2.2.3 Reconfigurable manufacturing systems

Reconfigurable manufacturing systems (RMS) stand at the forefront of modern

manufacturing paradigms, characterised by high flexibility, speed, scalability, and

rapid reconfiguration. These systems can adapt to shifts in market dynamics, new

product introductions, and fluctuating product requirements [42–44].

RMS distinguish themselves from FMS by their inherent capacity to swiftly adjust

production capability and capacity. This unique attribute amplifies the compet-

itiveness of manufacturing firms and significantly reduces their reaction time to

market changes [45, 46].

Stemming from these unique capabilities, RMS are fundamentally designed to fa-

cilitate modifications to their structure, hardware, and software components. This

property of RMS allows them to maintain increased responsiveness to unforeseen

shifts in product demand, thereby aligning the system with the evolving mar-

ket conditions and customer requirements [47–50]. In essence, RMS harness the

strengths of both DMS and FMS, designed to adjust production capability and

capacity precisely when needed [47, 51, 52].

As detailed by Koren et al. [42], RMS are underpinned by the following core

characteristics:

• Scalability (design for capacity changes): The ability to modify pro-

duction capacity by adding or removing resources or altering system com-
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ponents.

• Convertibility (design for functionality changes): The potential to

transform the functionality of existing systems and machines to meet new

production requirements.

• Diagnosability (design for easy diagnostics): The capability for real-

time monitoring of product quality and rapid root-cause analysis of product

defects.

• Customisation (flexibility limited to part family): The system or ma-

chine flexibility designed around a part family, yielding customised flexibility

within the part family.

• Modularity (modular components): The division of operational func-

tions into independent units or modules that can be rearranged between

alternative production schemes.

• Integrability (interfaces for rapid integration): The capability for

swift and precise integration of modules via hardware and software inter-

faces.

The above core characteristics make RMS well equipped to adapt to rapidly chang-

ing manufacturing requirements. The concept of reconfigurability, at its core,

enables a customised flexibility on-demand within a condensed time frame, em-

powering companies to adapt to a constantly evolving marketplace [35].

However, despite RMS being theoretically suited to adapting to changing manu-

facturing requirements, the practical implementation of the core characteristics is

still challenging. Therefore, the next section transitions to the literature review

on selecting the optimal manufacturing configurations based on the characteristics

of RMS, emphasising the concept, measurement, and implementation challenges.
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2.3 Manufacturing systems configuration (MSC)

problem

The manufacturing systems configuration (MSC) problem requires determining

the best manufacturing configuration and resource allocation to optimise perfor-

mance indicators such as production capacity and capability, system availability,

and operational efficiency while minimising costs. Effectively solving this prob-

lem is important for customised flexibility and responsiveness to market changes.

However, to tackle this problem, it is necessary first to comprehend the concept

of reconfigurability and understand how to measure its degree and effectiveness.

2.3.1 Concept of reconfigurability

The concept of reconfigurability in manufacturing has been widely studied in the

literature, and RMS and RMS-based manufacturing systems have been recognised

as the future of manufacturing for adapting to rapidly changing manufacturing

requirements [53, 54]. Therefore, understanding the concept of reconfigurability

is important for addressing the MSC problem.

Reconfigurability refers to the ability of the system to change its capability and

capacity cost-effectively and rapidly to meet changing market conditions [48]. The

ability to reconfigure the system elements over time allows for producing a diverse

set of individualised products in small quantities and with short delivery lead

times [55]. Furthermore, two main aspects of reconfigurability are discussed in

the literature: physical and logical.

Physical reconfigurability involves changing the manufacturing system’s physical

components, such as the layout, machines, and material handling devices [56]. It

allows for modifying the system’s physical structure to adapt to new manufac-
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turing requirements [57]. Examples of physical reconfiguration activities include

adding or removing modules and machines from the production process to achieve

new functionalities [57], changing the layout of the system [56], and modifying

material handling devices [56]. Physical reconfigurability enables the system to be

adjusted to accommodate different product families and production volumes [58].

On the other hand, logical reconfigurability involves changing the system’s soft-

ware, control and information flow [59]. It allows modifying the system’s logical

structure to adapt to new manufacturing requirements [60]. Examples of logical

reconfiguration activities include reprogramming machines to perform different

tasks [59], re-planning the production schedule [59], and re-routing the flow of

materials [59]. Logical reconfigurability enables the system to adapt to changes in

product mix, production volume, and production sequence.

Both physical and logical reconfigurability are essential for achieving the flexibil-

ity and adaptability required in modern manufacturing systems. By combining

both aspects of reconfigurability, manufacturing systems can effectively respond

to changing market conditions, achieve cost-effective production, and provide cus-

tomised flexibility on demand.

After understanding the concept of reconfigurability, the next step in solving the

MSC problem is measuring reconfigurability, as it provides a quantifiable and

objective basis for making decisions and implementing optimisation algorithms.

Quantifying reconfigurability helps assess a manufacturing system’s capability to

adapt to changes and compare different manufacturing systems for their adapt-

ability. This quantification forms the basis for deploying optimisation algorithms

to find the best manufacturing configurations under given conditions. Therefore,

the next section delves into measuring reconfigurability, a necessary step towards

selecting optimal manufacturing configurations for adapting to new manufacturing

requirements.
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2.3.2 Measuring reconfigurability

Research on the MSC problem has stimulated the development of multiple configu-

ration and reconfiguration selection methodologies using different reconfigurability

metrics. These methodologies aim to define the costs and objectives required for

assessing reconfigurability.

Youssef and ElMaraghy [61] presented a metric for evaluating reconfiguration

smoothness across market, system, and machine levels. However, this method

confronts challenges related to the association of costs and specific data require-

ments. On the other hand, Goyal et al. [62] developed metrics to assess machine

reconfigurability and operational capability but faced similar limitations.

Benderbal et al. [63] offered a novel approach using the non-dominated sorting

genetic algorithm 2 (NSGA-II)-guided design methodology and robustness index

to improve adaptability of manufacturing systems. However, this methodology

focuses too narrowly on single-machine unavailability, neglecting other essential

aspects of the system.

Efforts towards measuring reconfigurability were also pursued by Huang et al.

[64] and Prasad and Jayswal [65], who suggested a similarity coefficient and a

layout based on RMS principles, respectively. Despite their contributions, these

methodologies have limitations as they predominantly rely on heuristics, hindering

the development of fully optimised solutions.

Ameer and Dahane [66] brought forth a process-level metric called reconfiguration

index for measuring the reconfigurability of manufacturing systems. Although

innovative, this approach did not fully address the diverse types of effort required

in the reconfiguration process.

This review of reconfigurability metrics illustrates the multifaceted nature of defin-

ing a cost-optimal manufacturing configuration selection problem. The choice of
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metrics significantly influences the performance and suitability of optimisation

algorithms. Therefore, understanding these nuances is essential for selecting ap-

propriate metrics and algorithms.

After reviewing the metrics for measuring and quantifying reconfigurability, the

next section focuses on the current literature addressing the MSC problem, analysing

the strengths and weaknesses of the existing approaches. The ultimate goal is to

understand the factors that limit addressing the MSC problem and implementing

the solutions practically.

2.3.3 Current approaches to the MSC problem

The MSC is a complex problem in making manufacturing systems adaptable to

rapidly changing manufacturing requirements. Hence, many researchers looked at

this problem from different angles.

Huang et al. [67] presents a design framework for optimising supply chain sys-

tems by incorporating the generic bills of materials concept to model supply chain

structure. The framework applies genetic algorithms (GA) to solve the proposed

mathematical model. Limitations include the single focus on total supply chain

cost, the assumption of unlimited capacity at each stage and the lack of consider-

ation for uncertainties or non-stationary demand.

Youssef and ElMaraghy [53] introduces optimal configurations selection approach,

combining constraint satisfaction procedures with meta-heuristics to optimise cap-

ital cost and system availability. However, the methodology does not consider

material handling systems and layout design, consults only two performance crite-

ria and does not account for unexpected future demand changes that could affect

configuration requirements.
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Dou et al. [68] proposes a GA-based approach for optimising multi-part flow-line

configurations. However, it focuses only on minimising capital cost, neglecting

other key performance indicators, and unrealistically assumes 100% machine avail-

ability, allowing unrestricted operations assignment to any stage.

Goyal et al. [69] presents an approach that measures a reconfigurable machine

tool’s reconfigurability and operational capability, considering these measures and

costs for the optimal machine assignment. It assigns fixed weights to the per-

formance measures, neglects the impact of machine interactions, and assumes all

machines are fully reliable and available.

Bensmaine et al. [70] addresses optimal manufacturing configurations selection

problem by selecting machines optimised for product specifications and reconfig-

urable machine capabilities using an NSGA-II algorithm. However, the method-

ology only considers a single product and does not consider machine reliability or

additional costs associated with system reconfiguration.

Hasan et al. [71] discusses an optimal configuration sequence of multiple part

families in the RMS considering the total benefit. The limitation of this work

includes no consideration for sequence-dependent setup times, machine reliability,

or key RMS performance indicators beyond economic factors.

Mittal et al. [72] proposes optimal configuration selection based on minimum loss

for various part families. However, the model fails to consider the stochastic

nature of orders arrival, assumes reconfiguration cost is directly proportional to

reconfiguration effort, and assumes a fixed sequence of part families.

Koren et al. [51] formulates design and operational principles for RMS, highlight-

ing the challenges in maintaining product precision in RMS. Nevertheless, it lacks

a systematic design framework, does not specify the RMS type considered and

neglects the influence of recent intelligent manufacturing technologies and envi-

ronmental impact considerations.
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Moghaddam et al. [73] proposes a two-phased method for configurations design

and reconfigurations adapting to demand rate changes. The work, however, falls

short as it considers a single-part family for production in the RMS, overlooks

operating and maintenance costs and does not consider system design constraints

such as maximum space or cost.

Ashraf and Hasan [74] introduces a simulation-based multi-objective optimisation

approach for configuring multi-part flow lines. The study does not, however, con-

sider cost, quality, sustainability, and other crucial factors, neglects the dynamics

in ramp-up and ramp-down of production volumes, and provides limited model

validation.

Diaz et al. [75] introduces a simulation-based multi-objective optimisation ap-

proach for optimal configurations selection. It, however, only considers through-

put and total buffer capacity as optimisation objectives, neglects the dynamics in

ramp-up and ramp-down, and lacks comprehensive model validation and inclusion

of more sources of uncertainty.

Although the existing body of research on the MSC provides considerable insights

into the problem, it also presents numerous limitations that must be addressed in

future works for them to be implementable in a holistic and integrated way.

A significant limitation lies in the insufficient representation of the complexity and

variability in manufacturing systems, leading to oversimplification of the assump-

tions about manufacturing systems. This problem can be addressed using data

models for modelling manufacturing systems. Without data models, it is challeng-

ing to accurately represent the interaction of different system elements and their

impact on system performance.

Practical implementation of the proposed methodologies is also limited due to

issues related to software integration and interoperability. This lack of integration

may prevent the effective operation and control of various system components and
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hamper the ability to respond to system or operating environment changes.

Finally, current works predominantly use traditional optimisation methods and do

not address optimisation and decisions over time. Although traditional algorithms

such as genetic algorithms (GA) and mixed-integer linear programming (MILP)

are the baseline choice for multi-objective optimisation in manufacturing, they

cannot efficiently handle uncertainties and struggle when sequential optimisation

and decision-making are necessary. Advanced methods such as machine learning

or reinforcement learning (RL), which can model and predict system behaviour

under uncertainty and sequentially, are largely absent in the existing works on

the MSC problem. Therefore, there is a need for developing robust algorithms in

combination with classical optimisation and machine learning algorithms.

The limitations in the existing literature motivate to explore the key enabling

technologies such as data modelling techniques, software and interoperability, op-

timisation and machine learning algorithms. Therefore, the next section reviews

these key enabling technologies focusing on manufacturing.

2.4 Review of enabling technologies

The existing literature on the MSC problem showed that the key enabling technolo-

gies such as data models, software and interoperability approaches, and advanced

machine learning algorithms are absent in the current solution considerations.

However, these technologies have been extensively used in other parts of manu-

facturing. Therefore, the goal of this section is to explore the usage of these key

technologies in manufacturing in general and to understand how these technolo-

gies can be applied in addressing the MSC problem. The integration of these

key enabling technologies is important to develop a framework that addresses the

problem in a holistic way.
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2.4.1 Data modelling in manufacturing

Data modelling plays an important role in the design and implementation of man-

ufacturing systems. It aids in visualising data flow, reducing redundancy, and

improving data consistency, thereby making the data management process more

efficient.

Data modelling acts as a medium for understanding business needs, and through

this understanding, improvements in manufacturing processes can be made, in-

cluding streamlining production, improving accuracy and reducing costs. It also

provides a structural representation of data that assists in defining business work-

flows, ensuring seamless communication among different functional units and set-

ting the stage for continuous process improvement.

Data modelling techniques can be divided into relational, entity-relationship, hi-

erarchical, network, object-oriented, and semantic data modelling techniques.

2.4.1.1 Relational data modelling

Relational data modelling is a method where data is organised in a series of tables

or relations. These tables are interlinked based on shared attributes or keys, allow-

ing for high data manipulation and retrieval flexibility. It provides a clear and intu-

itive structure for representing complex data relationships. It is particularly useful

in manufacturing contexts where multiple entities must be cross-referenced, such

as inventory management, supply chain management, and production scheduling.

Relational data modelling techniques have effectively harmonised manufacturing

data from various sources, aiding production decisions and concurrent data access

across devices.

Drstvensek et al. [76] employed a database management system (DBMS), cou-
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pled with genetic algorithms (GA), to store and analyse historical data to inform

production decisions.

Corallo et al. [77] leveraged PostgreSQL to develop a data integration system that

aggregates data from disparate platforms, enabling efficient data handling and

concurrent data access across manufacturing equipment.

2.4.1.2 Entity-relationship data modelling

Entity-relationship (E-R) data modelling is a technique for system design that

represents the entities involved in a system and the relationships between them.

This approach is instrumental in identifying and structuring the various compo-

nents of a manufacturing system, such as resources, operations, and dependencies.

It provides a strong foundation for designing databases and helps ensure data is

accurately represented and properly linked.

The E-R data modelling technique has proved effective in providing unique rep-

resentations of manufacturing flexibilities and creating adaptable and modular

manufacturing execution system (MES) software.

Zhou et al. [6] applied the extended E-R model to develop a generic and adapt-

able data model for MES, leveraging the model’s ability to represent complex

relationships among entities, which served as a fundamental framework for creat-

ing adaptable and modular MES software.

Chowdary et al. [78] utilised the E-R model to capture manufacturing flexibili-

ties, enabling the unique representation and evaluation of flexibility options, with

an algorithm to derive flexibility paths from these models, which demonstrated

effectiveness in dealing with decision context changes and operational risks.
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2.4.1.3 Hierarchical data modelling

Hierarchical data modelling represents data in a tree-like structure, with each piece

having a single parent and zero or more children. This top-down approach benefits

manufacturing contexts with clear hierarchical relationships, such as assembly line

organisation, material ordering, or production sequence planning. It allows for

efficient data retrieval along predefined paths.

The broad utility of hierarchical data modelling in manufacturing is seen in its ap-

plications for mapping energy and material flows, assessing the geometric accuracy

of parts, and structuring manufacturing processes to optimise machine utilisation.

Alvandi et al. [79] used this technique to construct a simulation-based model that

maps energy and material flows within manufacturing systems. This hierarchical

model was key in identifying efficiency hotspots and evaluating the effectiveness

of retrofits through simulated scenarios.

Yang et al. [80] developed a hybrid hierarchical modelling approach to assess the

geometric accuracy of parts in additive manufacturing. The hierarchical model

allowed for capturing variability at the part-to-part and feature levels, facilitating

manufacturing scalability.

Gaiardelli et al. [81] used hierarchical modelling to structure manufacturing pro-

cesses into tasks and sequences of actions, enabling a runtime scheduling algorithm

to optimise machine utilisation and minimise makespan.

2.4.1.4 Network data modelling

Network data modelling is a flexible approach that allows for many-to-many rela-

tionships between entities. Unlike the hierarchical model, each entity in a network

model can have multiple parent and child entities. Network data modelling is ben-
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eficial in complex manufacturing systems with multiple interdependencies, such as

in multi-stage production processes or when handling intertwined supply chains.

Network data modelling, given its flexibility, has been employed to tackle intricate

scheduling problems and to study the correlation between system structure and

performance in large-scale manufacturing.

Lin et al. [82] used this modelling technique to represent intricate scheduling prob-

lems in manufacturing, combining it with evolutionary algorithms (EA) for auto-

scheduling. It was deemed efficient in capturing the complexity and interdepen-

dencies inherent in scheduling.

Becker et al. [83] employed a network model backed by complex network theory

to study the link between system structure and performance in large-scale manu-

facturing. The model provided a universal, low-effort approach to assess systems,

revealing unique, non-random network characteristics and a non-linear correlation

between topological and performance measures.

2.4.1.5 Object-oriented data modelling

Object-oriented data modelling treats data and the operations that can be per-

formed on it as a single unit called an “object”. Each object in the system has

a type, and different types can inherit characteristics from other types. Object-

oriented data modelling is helpful in representing complex relationships in man-

ufacturing systems, where the same types of operations may apply to different

parts of the system, such as various types of machinery or different stages of a

production process.

The object-oriented data modelling technique has found extensive use in enhancing

plan generation, improving software development efficiency, capturing complex

equipment interaction, and increasing interoperability in manufacturing systems.

26



2.4. REVIEW OF ENABLING TECHNOLOGIES

Sormaz and Khoshnevis [4] used it to represent knowledge in computer aided pro-

cess planning, reducing search space and enhancing plan generation. Zhang et al.

[84] improved computer aided process planning’s adaptability by using object-

oriented manufacturing resources modelling, which encapsulates system knowl-

edge.

Chengying et al. [85] used the object-oriented method for developing a gener-

alised manufacturing resource model to facilitate information sharing throughout

the product development process. Law and Woo [86] applied an object-oriented

approach to manufacturing information systems, increasing data abstraction and

reusability. Ehm et al. [87] proposed an object-oriented model to capture complex

supply chains in high-tech manufacturing.

Pullan et al. [88] and Hedman et al. [89] used it for collaborative design and man-

ufacturing and human resource modelling to increase interoperability and provide

comprehensive representation.

Young et al. [90] created a model for manufacturing control systems using unified

modelling language (UML) to adapt to changes swiftly. Similarly, Anglani et al.

[91] used UML for creating flexible manufacturing system simulation models, im-

proving software development efficiency.

2.4.1.6 Semantic data modelling

Semantic data modelling focuses on the meaning of data within a specific context.

This approach is particularly useful in manufacturing systems that need to capture

intricate business rules or complicated relationships between entities. It offers a

high level of abstraction and is advantageous when a clear understanding and

representation of business concepts and their relationships are required, like in

regulatory compliance or quality assurance.
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Semantic data modelling techniques are effectively used to automate decision-

making processes, facilitate knowledge integration, promote information exchange

and interoperability, and optimise unused industrial capacity within the manufac-

turing ecosystem.

Garcia-Crespo et al. [92] leveraged ontology-based implementation to automate

industrial manufacturing decision-making. Similarly, Negri et al. [93] examined

semantic languages’ application in manufacturing systems control through the

semantic annotation of web service-based architectures.

Zhang et al. [94] employed a semantic-predictive model supported by ontology

representations to facilitate knowledge integration and reuse. Hildebrandt et al.

[95] developed semantic metamodels to promote information exchange and inter-

operability in Industrie 4.0. Wan et al. [96] introduced an ontology-based resource

reconfiguration method to manage resources in complex manufacturing systems

efficiently.

Landolfi et al. [97] designed a semantic data model to optimise unused industrial

capacity by mapping complex relationships and flows within the manufacturing

ecosystem. Köcher et al. [98] detailed a formal ontology-based model to repre-

sent machine capabilities, enabling adaptability and integration in response to

environmental pressures.

The literature review on data models shows that they play a vital role in man-

ufacturing. Moreover, they act as a backbone for developing interoperable and

plug-and-produce solutions and are necessary for software solutions. Therefore,

the next section is about how interoperable manufacturing solutions are developed

on top of data models.
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2.4.2 Interoperable manufacturing solutions

The current body of the literature on the MSC problem lacks research on inte-

grating developed MSC algorithms with manufacturing systems. This problem is

mainly due to the focus of the existing literature solely on the optimisation part

and the omission of the integration part. However, integration has challenges,

such as dealing with different manufacturing equipment, which necessitates in-

teroperable manufacturing solutions. Therefore, this section aims to understand

how interoperability, plug-and-produce functionality, and software development

methodologies are addressed in manufacturing in general.

2.4.2.1 Interoperability

Interoperability in manufacturing refers to the ability of different systems, pro-

cesses, and stakeholders to exchange and use information, data, and resources

seamlessly. It plays a crucial role in ensuring a smooth flow of information and

coordination between various stages of the manufacturing process, from design to

production.

One of the key challenges in achieving interoperability in manufacturing is the lack

of integration between different information systems and equipment from original

equipment manufacturers (OEMs).

Elheni-Daldoul et al. [99] highlight the lack of interoperability between product

management (PDM) systems, manufacturing process management (MPM), and

enterprise resource planning (ERP) systems as a major obstacle to ensuring a

continuous and bidirectional flow of information from design to manufacturing

and assembly.

Ahmed and Han [100] emphasize efficient communication and exchange of prod-

uct and manufacturing information between computer-aided design (CAD) and
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computer-aided manufacturing and analysis systems to avoid information loss and

errors in design and fabrication.

Another challenge is the heterogeneity of data formats and standards used in

different systems.

Sanchez-Londono et al. [101] point out that the lack of common standards for

device interoperability is a major challenge in smart manufacturing. This ar-

gument is supported by Nassehi et al. [102], who state that interoperability is

achieved when manufacturing process plans can be executed by various resources

with minimal human involvement. The use of neutral formats such as standard

for the exchange of product data (STEP) and initial graphics exchange specifica-

tions (IGES) are proposed as a solution to facilitate integration between different

systems by Ahmed and Han [100].

Researchers have proposed various approaches and solutions to address the inter-

operability challenges in manufacturing. One approach is using data models and

ontologies for knowledge representation and management.

Wicaksono et al. [103] discuss the application of ontologies in energy management

systems in manufacturing, which helps address interoperability issues among dif-

ferent stakeholders and entities. The ontologies and data models provide a formal

knowledge representation that enables a common understanding between stake-

holders with different background knowledge.

Another approach is integrating different software tools and systems through in-

teroperable interfaces. Gürdür and Gradin [104] discuss integrating software tools

in cyber-physical system (CPS) manufacturing, emphasizing the importance of

including sustainability aspects in the interoperability strategies. They propose

an approach that integrates sustainability metrics into interoperable toolchains to

improve sustainability in CPS manufacturing.
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The use of standards and reference architectures is also highlighted as a solution

to achieve interoperability in manufacturing.

Georgios et al. [105] mention the importance of open standards, open source soft-

ware, and multilateral solutions in ensuring interoperability in the context of

Industry 4.0. They emphasize the need for common standards to ensure high

accuracy and efficiency in manufacturing processes.

Similarly, Da Rocha et al. [106] discuss the syntactic interoperability between

the IEEE 1451 and IEC 61499 standards in an industrial environment, which

enables information exchange between smart transducers and supports Industry

4.0 requirements.

2.4.2.2 Plug-and-produce concept

Another aspect currently overlooked in the current research related to optimal

manufacturing configurations selection is the “plug-and-produce” concept. The

plug-and-produce concept, originally put forth by Arai et al. [107], offers a promis-

ing avenue for enhancing the adaptability and scalability of manufacturing sys-

tems.

Plug-and-produce is a key element in manufacturing systems to integrate new

devices and configure machines with minimum reconfiguration effort [108]. It aims

to enhance the interoperability and reusability of modules, reducing integration

times and enabling rapid system configuration and reconfiguration [108].

The plug-and-produce paradigm represents the idea of a quick and seamless con-

nection of production equipment with minimal or no setup needed [109]. It is based

on the idea of simply integrating new devices into the manufacturing ecosystem,

including simplified data exchange mechanisms [110]. The concept involves three

main stages: physical attachment of a device to the ecosystem, communication
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establishment to the device or the representative entity, and device integration on

a logical level [110].

The plug-and-produce concept is closely related to other paradigms and technolo-

gies in manufacturing. It is often associated with modularity, agent technology,

and evolvable assembly systems (EAS) [111]. Evolvable assembly systems (EAS)

propose an agile solution by considering a plug-and-produce environment, where

assembly capabilities are allocated to process requirements [111].

The concept of plug-and-produce is also aligned with the key features found in

RMS, such as modularity, integrability, customisation, convertibility, and diago-

nalisability [112]. The agility introduced in the adaptability and reconfigurability

of the software and hardware layer is crucial to fulfilling the requirements of mod-

ern manufacturing systems [112].

Multi-agent technology is often utilised to implement the plug-and-produce con-

cept. Multi-agent systems provide autonomy, openness, and communication fea-

tures, extending the plug-and-produce concept to deal with workflow changes

and automatic task assignment [108]. Using multi-agent technology in plug-and-

produce systems allows for the integration of resources using standardised hard-

ware connectors and automatic inclusion in the manufacturing process [113].

The plug-and-produce concept is also closely related to the broader context of

Industry 4.0 and the need for flexible production facilities. In the era of Industry

4.0, manufacturing systems must be equipped with adaptable fabrication facilities

and flexible production patterns to acquire plug-and-produce capabilities for future

production lines [114]. The concept of plug-and-produce is frequently used in

Industry 4.0 to describe the need for flexible production facilities where devices

can be added quickly and configured automatically [115].
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2.4.2.3 Software development methodologies

In the pursuit of enhanced interoperability and a more seamless plug-and-produce

environment, there has been a shift in software development methodologies within

the manufacturing sector.

The conventional monolithic architecture, characterised by rigidity and lack of

adaptability, has been increasingly scrutinised for its inefficiencies, necessitating a

transition towards more flexible systems [116, 117].

Embracing a more modular approach, such as microservices architecture, is poised

to bring higher adaptability and efficiency in manufacturing software solutions.

The rise of microservices and containerisation techniques signifies an important

step in the manufacturing software landscape, providing crucial enhancements in

flexibility, interoperability, independence, and scalability [118, 119].

Microservices architecture, acclaimed for its potential to streamline the complex-

ities often associated with monolithic systems, paves the way to better flexibility

and some level of interoperability [118]. A number of studies, including those by

Ibarra-Junquera et al. [120], Goldschmidt et al. [121], González-Nalda et al. [9],

and Thramboulidis et al. [122], have employed this architecture with promising

outcomes. However, these studies primarily address internal system interoperabil-

ity, focusing less on interoperability across diverse communication protocols. This

underscores the need for a more comprehensive and robust approach to integrating

various modules within manufacturing systems.

Containerisation, another critical technology in manufacturing software develop-

ment, offers benefits in terms of compatibility and scalability [123]. Despite its

broad adoption, as shown by studies from Senington et al. [124], Nikolakis et al.

[125], and Rufino et al. [10], containerisation, like microservices, still faces chal-

lenges in managing diverse technologies and ensuring complete interoperability.
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This implies that there is still room for improvement in leveraging containerisa-

tion technologies to simplify manufacturing processes and control structures.

Recent trends indicate a shift towards an app-based strategy in manufacturing

software development, borrowing from successes in the personal device industry.

This shift promises benefits such as centralised data storage and simpler user setup

[126]. However, works by Chen et al. [127], Singh et al. [128], Gröger et al. [126],

and Goerzig et al. [7], while informative, have not sufficiently delved into the

development of manufacturing apps that empower users to control manufacturing

equipment, thereby limiting their potential active usage.

After reviewing enablers for interoperability for the MSC problem, such as plug-

and-produce and interoperable software development methodologies, one final

piece that remains to review is the review of traditional optimisation algorithms

and machine learning algorithms for the optimal manufacturing configurations

selection problem.

2.4.3 Optimisation and machine learning algorithms

Optimisation algorithms for ensuring optimality of the chosen solutions are the

main elements in solving the MSC problem. Therefore, researchers have proposed

several methods for optimisation. However, the most commonly used optimisation

algorithms in the MSC research directions are mixed-integer linear programming

(MILP) and genetic algorithms (GA).

Machine learning algorithms that can deal with uncertainties and generate opti-

mal policies, such as RL algorithms, have not been directly utilised for the MSC

problem. However, RL approaches have been extensively used in other parts of

manufacturing optimisation.

The goal of this section is to explore and understand how the above optimisa-
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tion and machine learning algorithms can be combined and utilised for the MSC

problem.

2.4.3.1 Mixed-integer linear programming

Mixed-integer linear programming (MILP) is a branch of optimisation that deals

with linear equations and inequalities subject to discrete or integer constraints.

This approach can model various industrial scenarios in manufacturing with math-

ematical precision, enabling highly detailed decision-making. For instance, MILP

can represent decisions regarding the number of machines, their configurations,

and the assignment of parts to machines [129], allowing it to formulate complex

and versatile solutions.

Numerous studies have proposed using MILP to optimise RMS, highlighting the

method’s capability for handling dynamic and complex scenarios.

Hees et al. [130] developed a novel production planning method using MILP to de-

termine feasible configurations for RMS in dynamic environments. The approach

supported capacity scalability and functionality changes, contributing significantly

to optimising production planning processes.

Similarly, Liu et al. [131] addressed the multi-module RMS optimisation problem

for multi-product manufacturing using MILP model. The research notably aimed

at minimising total cost and cycle time, combining an ε-constraint method and a

multi-objective simulated annealing algorithm for small and large problem sizes.

More advanced models were proposed by Wikarek et al. [132] and Dou et al. [129],

integrating constraints and multiple decision factors for better decision support in

the configuration and reconfiguration of manufacturing systems. The flexibility of

these models is particularly significant, allowing for the concurrent optimisation

of configuration design and scheduling in RMS.
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Moghaddam et al. [52] developed two different approaches for configuration design

using MILP and integer linear programming formulations, showcasing the utility

of this method in the context of scalable RMS.

2.4.3.2 Genetic Algorithms

Genetic algorithms (GA) are a class of adaptive heuristic search algorithms based

on natural selection and genetics principles. GA are used in manufacturing due to

their inherent capacity to handle multi-objective problems. The non-dominated

sorting genetic algorithm and its variants, as used by Goyal et al. [69] and Khettabi

et al. [133], are particularly useful for their ability to generate a set of optimal

solutions (a Pareto front), providing manufacturers with an assortment of trade-

off options to choose from. For instance, Goyal et al. [69] proposed using NSGA-II

and a multiple attribute decision-making approach for optimal machine assignment

based on module interactions and machine capability.

Subsequent studies expanded upon this approach to consider multiple objectives.

Khettabi et al. [133] tackled the problem of environmentally conscious multi-

objective process planning in RMS, employing modified versions of the non-dominated

sorting genetic algorithm and a decision-making technique called TOPSIS.

Houimli et al. [134] introduced a hybrid approach combining GA and high-level

Petri nets to select configurations in RMS optimally, prioritising resource optimi-

sation and preservation of the best properties.

The viability of GA was further demonstrated by Chaube et al. [135] and Bens-

maine et al. [136], who used adapted versions of NSGA-II for dynamic process

planning and process plan generation, respectively, aiming to reduce manufactur-

ing cost and time in a reconfigurable manufacturing context.

36



2.4. REVIEW OF ENABLING TECHNOLOGIES

2.4.3.3 Reinforcement Learning (RL)

Reinforcement learning (RL) is a type of machine learning where an agent learns

to make decisions by taking actions in an environment to achieve a goal. Deep RL,

an extension of RL, utilises deep learning architectures for decision-making. RL

can handle real-time dynamic situations in manufacturing, making it particularly

useful for dynamically reconfigurable flow shops and smart manufacturing systems

[137, 138].

Recent studies have begun exploring the application of reinforcement learning

for optimisation problems in manufacturing systems. Tang and Salonitis [139]

proposed the use of deep RL to make autonomous decisions in RMS to complete

assigned order lists while minimising reconfiguration actions.

Epureanu et al. [138] and Yang et al. [137] furthered this trend, investigating how

deep RL and its variants, like the deep Q-network (DQN) and its improved version

expected DQN (EDQN), can facilitate decision-making in smart manufacturing

systems, and optimise scheduling and reconfiguration in real-time respectively.

Viharos and Jakab [140] introduced RL for statistical process control in produc-

tion, utilising the Q-table method and several novel RL extensions to optimise

production cost while maintaining high-quality outputs.

Zimmerling et al. [141] and Li et al. [142] explored the use of RL for estimating

optimal process parameters in variable component geometries and for assembly line

design, respectively, demonstrating the technique’s adaptability across different

application domains.

The optimisation of manufacturing configurations continues to be an active field of

research. While considerable advances have been made using MILP, GA, and RL,

the dynamic nature of reconfigurable manufacturing systems and the increasing

complexity of production environments underline the need for ongoing exploration
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of these and potentially other computational techniques.

In the context of the MSC problem, it is important to realise that a single algorithm

is not a ’one size fits all’ solution due to the multifaceted nature of manufacturing

environments. Every manufacturing situation has different constraints, multiple

objectives, varying degrees of complexity, and uncertainties.

MILP has proven capable of formulating complex solutions and can precisely han-

dle discrete or integer constraints but might not optimally manage dynamic, non-

linear scenarios or uncertainties. GA, though adept at multi-objective problems,

may suffer from premature convergence and might not always guarantee the global

optimum solution. RL, despite its potential to handle real-time dynamic situa-

tions, is subject to substantial computational costs and can sometimes struggle

with stability and convergence issues.

Given this diversity, the most effective approach to the MSC problem may involve

not relying on a single algorithm but combining and coordinating these algorithms

depending on the specific requirements of each scenario. One could consider adopt-

ing a hybrid approach, where the strength of one algorithm compensates for the

weaknesses of another, or a multi-algorithm ensemble approach, where different

algorithms are applied in parallel and their outputs are aggregated.

For instance, GA can be used to explore the solution space broadly and quickly,

followed by MILP to fine-tune solutions within the promising regions identified

by GA precisely. RL can handle dynamic changes and uncertainties in the pro-

duction environment. Ultimately, the combination should be adaptive, dynamic,

and flexible to suit the ever-evolving needs of the manufacturing configurations

problem. This integrated approach could potentially lead to robust, efficient, and

optimal decision-making in diverse manufacturing environments.
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2.5 Knowledge gaps

A thorough exploration of existing literature on the MSC problem reveals several

key knowledge gaps:

1. The first knowledge gap lies in the underutilisation of data models ca-

pable of capturing the complexity and variability in manufacturing systems.

While data models have been used extensively for different problems in man-

ufacturing, their application in the context of the MSC problem remains

largely under-explored. This gap is important to address because data mod-

els can accurately represent system dynamics essential for making decisions

that optimise system performance. Specifically for the MSC problem, incor-

porating these data models can help determine the best structural configu-

ration and resource allocation, optimising key performance indicators.

2. The second knowledge gap concerns software integration and interoper-

ability. Despite some suggested solutions in the literature, a modular and

plug-and-produce solution has yet to be found. This gap becomes increas-

ingly important as manufacturing systems depend more heavily on digital

platforms. Achieving seamless software integration is important for the MSC

problem as it can significantly improve system efficiency and responsiveness,

both key aspects for rapidly adjusting to changes in the manufacturing en-

vironment and market.

3. The third knowledge gap is associated with the optimisation algorithms

and their capability to handle evolving, uncertain, and multiple objectives.

The current body of research primarily relies on traditional optimisation

methods. While these methods can be effective in certain scenarios, they

often fail when addressing uncertainties, sequential optimisation, and dy-

namically changing objectives. By its nature, the MSC problem requires

handling uncertainties and sequential decision-making while simultaneously
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adapting to changing, and at times conflicting, objectives. Therefore, it is

important to develop methodologies that combine traditional optimisation

methods with more robust techniques, such as machine learning and rein-

forcement learning.

These individual gaps, taken collectively, point to the main knowledge gap — a

lack of a holistic approach to tackle the MSC problem. Each gap presents

its challenge, but when combined, they highlight the importance of bringing to-

gether robust data modelling, interoperable software integration, and applying

adaptable algorithms to adapt to changing manufacturing requirements.

2.6 Chapter summary

This chapter extensively explored existing literature surrounding the MSC prob-

lem. It started by identifying the most relevant manufacturing systems paradigms,

providing an essential foundation for the literature review.

The review then transitioned to an in-depth discussion on reconfigurability and

analysing existing works focusing on optimal configuration selections. It high-

lighted both the value and limitations of the existing works, offering valuable

insights into the current state of research on the MSC problem.

This understanding paved the way to investigate enabling technologies that could

address the limitations identified in the existing works. A significant portion of the

chapter was dedicated to an intensive review of these technologies. Specifically, the

discussion centred around data models, the interoperability and plug-and-produce

concept, software development methodologies, and optimisation algorithms.

By scrutinising the literature in this manner, three critical knowledge gaps were

identified in relation to solving the MSC problem, which led to an elaborate dis-
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cussion on these gaps, examining the nature and implications of these gaps and

the possible strategies to address them.

This chapter, thus, serves as a basis for the entire research work. The concepts

and ideas discussed in this chapter are explored in detail in the technical chapters

of this dissertation. The next chapter presents a research methodology for the

MSC problem building upon the literature review presented in this chapter.
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3.1 Introduction

Three main knowledge gaps for holistically approaching the MSC problem were

identified in Chapter 2. These three gaps led to the main knowledge gap: the

fragmented approach to dealing with the MSC problem. Therefore, this chapter

aims to develop a research methodology to address the main knowledge gap for

the MSC problem and have a holistic approach instead. To this end, the compre-

hensive research and validation methodology is presented in this chapter.

The chapter starts with research problem formulation. It is done by providing

terminology, definitions, and mathematical notations. Then, the cross-cutting

research challenges are discussed concerning the above three knowledge gaps. The

research question and hypotheses are formulated after identifying challenges with

each research gap. Formulating research questions and the corresponding research

hypotheses helps tackle the problem in a structured way.

After the research problem formulation, a methodology is established to validate

the hypotheses. The validation methodology is established in two stages.

Initially, the research contributions provided in the technical chapters are validated

in a controlled robotics environment where the manufacturing processes and use

cases are designed from scratch. In particular, two representative manufacturing

processes are proposed as use cases: sorting industrial products and bin-picking

industrial items.

After validating the research contributions in the lab environment, the proposed

methodologies are applied to real industrial use cases. In particular, one of the

industrial validations is carried out for the aerospace manufacturing sector, and

the other industrial validation is carried out for the custom product machining

sector.
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3.2 Research problem formulation

Exploring existing literature on the MSC problem has unveiled critical knowledge

gaps, as detailed in Chapter 2. These gaps are the underutilisation of intricate data

models, software integration and interoperability challenges, and the limitations

of current optimisation algorithms in handling evolving and uncertain objectives.

Moreover, these challenges must be addressed holistically because of the intercon-

nected nature of the manufacturing systems. Consequently, this chapter defines

the research problem as follows:

“Developing a holistic methodology for addressing the manufacturing

systems configuration (MSC) problem for adapting manufacturing sys-

tems to rapidly changing manufacturing requirements”.

In the context of the above-defined research problem, a “holistic solution” means

an approach that combines data modelling, software integration, and adaptive

optimisation and decision-making algorithms.

Rather than addressing each knowledge gap in isolation, a holistic solution syn-

ergistically merges these domains, ensuring that data models are compatible with

the software solutions and that the optimisation and decision-making methods can

effectively utilise both. This cohesive approach aims to offer a holistic solution, en-

suring efficiency and adaptability, by leveraging the strengths of each component

to address the challenges of rapidly changing manufacturing requirements.

To tackle the above research problem, defining the key terms and notations is

necessary. Also, as the MSC problem involves optimisation and relies on the util-

isation of optimisation and decision-making algorithms, it is important to model

the problem mathematically. Therefore, the next section lays down and formalises

the above research problem by defining the critical terms and mathematical nota-

tions.
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3.2.1 Definitions and mathematical notations

The terms defined in this section are referenced and used in technical chapters to

develop a data model, interoperable software solutions, optimisation and decision-

making algorithms. Although the definitions of terms and mathematical notations

are abstract, they provide the foundational framework for the holistic solution.

These definitions ensure clarity, consistency, and precision in communication and

interpretation across various manufacturing system components.

3.2.1.1 Definitions

The key definitions of the terms used throughout the thesis are defined below:

• Manufacturing asset: A tangible or intangible valuable resource that plays

a significant role in manufacturing, contributing directly to producing goods

or services (e.g., manufacturing equipment, manufacturing software, staff).

• Manufacturing configuration: A manufacturing configuration is a con-

stituent of a manufacturing system representing a specific manufacturing

process setup. It systematically combines assets to form capabilities with

given capacities and costs to facilitate adaptive optimisation in response to

changing manufacturing requirements (e.g., a setup involving a CNC ma-

chine, an industrial robot, control software, and a human operator).

• Manufacturing capability: A specific skill or ability of a manufacturing

asset or manufacturing configuration resulting from combination of manu-

facturing assets enabling the production of a specific product or component

(e.g., drilling, assembling, welding capabilities).

• Manufacturing capacity: The maximum level of value-added activity a

manufacturing asset or manufacturing configuration can achieve in a desig-
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nated period under standard operating conditions for a specific capability

(e.g., the capacity to perform ten drilling operations per hour).

• Operational parameter: This term denotes any run-time parameter of

a manufacturing asset or manufacturing configuration that can affect its

effectiveness measured by key performance indicator (e.g., parameters of the

manufacturing equipment that affect the energy consumption).

• Changes in manufacturing requirements: This term defines the dy-

namic adjustments or alterations in manufacturing capabilities, capacities,

and operational parameters to accommodate rapidly changing requirements

(e.g., a surge in production volume, alterations in product design, or a new

requirement to operate in a carbon-neutral manner).

3.2.1.2 Mathematical notations

The mathematical notations and functions provided below enable the mathemat-

ical formulation of the MSC problem for utilisation of optimisation algorithms:

• The set of available assets:

A = {A1, . . . , ANA} (3.1)

where Ai is i-th manufacturing asset, and NA is the total number of assets.

For example:

A = {Industrial robot, . . . ,Gripping end-effector}

• The set of manufacturing configurations:

F = {F1, . . . , FNF} (3.2)

where Fi = {Ai,1, . . . , Ai,NFi
} is i-th manufacturing configuration, Ai,j is the
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j-th asset of i-th manufacturing configuration, and NF is the total number

of manufacturing configurations.

• A configuration-to-assets matching function that matches a manufacturing

configuration to a set of assets:

g : F → 2A (3.3)

where 2A is a power set of assets (that is, the set of all subsets of A). For

example: g(F1) = {A2, A4, A7}

• The set of available capabilities:

B = {B1, . . . , BNB}. (3.4)

where NB is the total number of capabilities.

For example: B = {drilling, . . . ,welding}

• A capability-to-configurations matching function that matches a capability

to a set of manufacturing configurations:

f : B → 2F (3.5)

For example: f(drilling) = {F2, F5} returns all manufacturing configurations

that have a drilling capability.

• A capacity function that matches a manufacturing configuration and a ca-

pability to a capacity per unit time:

h : B × F → Z+ (3.6)

For example: h(drilling, F3) = 50 operations per unit time, that is, the

manufacturing configuration F3 has a drilling capability with a capacity of
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50 operations per unit time.

• A manufacturing requirement in the requirement period t with the sequence

of required capability and capacity pairs:

Dt = [(Bt,1, Pt,1), . . . , (Bt,Nt , Pt,Nt)] (3.7)

where Pt,i ∈ Z+ is the required capacity for a capability Bt,i ∈ B in the

demand period t, and Nt is the total number of required capabilities in the

demand period t.

• Requirement periods with a sequence of requirements and requirement pe-

riod lengths:

R = [(D1, L1), . . . , (DT , LT )] (3.8)

where Lt ∈ Z+ is the duration of the requirement period Dt, and T is the

total number of requirement periods.

3.2.1.3 Costs

Once definitions and notations are established, defining clear costs for optimisation

problems is crucial. In this case, three types of costs have been defined as functions

on the number of manufacturing configurations xt ∈ Z+ used at given requirement

period t. Each of these costs can be broken down into individual components:

• Investment cost for requirement period t: I(xt). Investment costs are in-

curred only once to set up manufacturing configurations. Investment costs

can be decomposed into the cost of purchasing new assets, the required

space, and other one-time costs.

• Recurring cost for requirement period t: R(xt). Recurring costs reoccur for a

unit time of the utilisation of manufacturing configurations. Recurring costs
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can be decomposed into the cost of energy consumption, staff salaries, and

other costs that recur during the duration of the demand period.

• Transition cost from requirement period t to period t+1: Q(xt, xt+1). Transi-

tion costs are costs for transitioning from one requirement period to another

by changing existing manufacturing configurations. Transition costs depend

on previous and current manufacturing configurations. The cost is zero if

there is no transition to another requirement period.

3.2.1.4 Manufacturing requirements satisfaction problem

After defining the necessary components, the MSC problem for changing manu-

facturing requirements is mathematically formulated as below:

Given requirement periods:

R = [(D1, L1), . . . , (DT , LT )] (3.9)

Solve:

min
x

(
T∑
t=1

I(xt),
T∑
t=1

LtR(xt),
T−1∑
t=1

Q(xt, xt+1)

)
(3.10)

such that
NF∑
j=1

h(Bt,i, Fj) · xt,i,j ≥ Pt,i (3.11)

and

xt,i,j ∈ Z+ (3.12)

∀t ∈ [1, . . . , T ], ∀i ∈ [1, . . . , Nt] and ∀j ∈ [1, . . . , NF ].

Equation 3.11 is a capacity-satisfaction constraint, and Equation 3.12 is an inte-

grality constraint.
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3.2.2 Cross-cutting research challenges

Upon defining the research problem, terminology, and notations, three primary

challenges emerge in developing a holistic solution for the MSC problem:

• Challenge 1: Data modelling in complex manufacturing systems.

Manufacturing systems comprise intricate components and processes. The

challenge lies in effectively capturing these complexities to address the MSC

problem. The solution demands data models that integrate system compo-

nents and account for dynamic operational conditions and potential fluctu-

ations.

• Challenge 2: Software integration in diverse equipment. Manufac-

turing systems often comprise heterogeneous equipment with varied capa-

bilities, interfaces, and communication protocols. This diversity complicates

unified software solutions. The key is to develop modular software that can

integrate different equipment types, enhancing overall system efficiency and

adaptability.

• Challenge 3: Optimisation and decision-making involving multiple

and uncertain objectives. Manufacturing objectives and costs constantly

shift, and traditional optimisation methods struggle with these dynamics.

Addressing this challenge requires adaptive optimisation techniques that

merge traditional methods with advanced strategies like machine learning

and reinforcement learning. Integrating adaptive optimisation and machine

learning methods will ensure adaptability to evolving manufacturing objec-

tives.
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3.2.3 Research questions and hypotheses

The research problem and the challenges in developing the holistic solution for the

MSC problem are divided into separate research questions. Each research question

is addressed using a research hypothesis that builds upon the literature review on

enabling technologies.

3.2.3.1 Research question 1

The first research question is formulated as follows to tackle the first research

challenge:

What type of data models can accurately represent the complexities

and dynamic nature of manufacturing systems while also suitable for

software application integration?

In pursuit of an answer to this research question, a comprehensive scrutiny of

existing data modelling techniques, their relevance to manufacturing systems, and

their compatibility with software integration is essential.

Given manufacturing systems’ intricate and dynamic nature, the ideal data models

must encompass various system components, such as machinery, processes, work-

flows, and human involvement. They should also account for the interrelationships

and dependencies among these factors and exhibit flexibility towards operational

or system changes.

The sought data models need to accurately represent the extensive network of

operations within the manufacturing system while maintaining adaptability for

future modifications.

51



3.2. RESEARCH PROBLEM FORMULATION

3.2.3.2 Research hypothesis 1

In response to the first research question, the first research hypothesis is postulated

as follows:

Object-oriented data modelling can effectively capture the complexities

and dynamism integral to manufacturing systems while being suitable

for integrating with software applications.

This first research hypothesis is based on the concept that the inherent qualities

of object-oriented data models - encapsulation, inheritance, and polymorphism -

make them particularly suited for illustrating the varied components of a manu-

facturing system, their interconnections, and compatibility with software applica-

tions.

3.2.3.3 Research question 2

The second research question to address the second research challenge states as

follows:

What software development approaches can reduce the interoperabil-

ity challenges posed by utilising diverse equipment in manufacturing

systems while enhancing plug-and-produce capabilities?

This research question delves into the software development approaches that can

mitigate the interoperability challenges associated with incorporating various man-

ufacturing equipment types within manufacturing systems. These software devel-

opment strategies should be built on top of data models and ease the integration

of diverse equipment, leading to enhanced plug-and-play capabilities. Here, plug-

and-produce indicates the ease with which new machinery or system components

can be incorporated into manufacturing with minimal configuration efforts.
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3.2.3.4 Research hypothesis 2

In response to the second research question, the second research hypothesis is

defined as follows:

Developing manufacturing software as modular manufacturing apps,

incorporating a modular approach to integrate various equipment and

communication protocols, can enhance a manufacturing system’s in-

teroperability and plug-and-produce capabilities.

The modular app methodology breaks down a complex system into smaller, man-

ageable units or apps, each designed to handle a specific function or process within

the manufacturing system. This approach enhances the system’s scalability, adapt-

ability, and maintainability.

Such an approach could offer a scalable and flexible solution to enhance interop-

erability. Different equipment types and communication protocols can be more

efficiently managed by designing software modules or apps that employ a unified

integration strategy.

3.2.3.5 Research question 3

The third research question to address the third research challenge states as fol-

lows:

What types of algorithms can effectively manage uncertainties and fa-

cilitate sequential decision-making in the dynamic and evolving multi-

objective environment of manufacturing processes?

This research question investigates the algorithms that could effectively handle un-

certainties and support sequential decision-making in manufacturing optimisation

and decision-making processes.
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Given manufacturing systems’ dynamic and multi-objective nature, the research

explores algorithmic methodologies capable of handling uncertainties and man-

aging sequential decision-making while adapting to evolving manufacturing ob-

jectives. The key factors under consideration include the algorithms’ capacity

to adapt to changes in manufacturing requirements, reconcile conflicting objec-

tives, mitigate uncertainties, and manage sequential decision-making to enhance

the overall performance of the manufacturing system.

3.2.3.6 Research hypothesis 3

In response to the third research question, the third research hypothesis is defined

as follows:

An optimisation and decision-making framework that integrates tra-

ditional optimisation and machine learning algorithms can effectively

manage uncertainties and facilitate sequential decision-making in dy-

namic, multi-objective manufacturing environments.

Integrating traditional optimisation algorithms with machine learning algorithms

could provide an optimal balance between performance and adaptability while

effectively managing uncertainties and facilitating efficient sequential decision-

making. Traditional optimisation methodologies offer a reliable base, while ma-

chine learning algorithms, such as Bayesian optimisation and reinforcement learn-

ing, can continually refine the solutions based on real-time feedback. Consequently,

this approach could potentially handle the challenges associated with fluctuating

manufacturing objectives and conditions, leading to a more resilient and efficient

manufacturing system.
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3.3 Validation methodology

The validation methodology of the proposed research hypotheses consists of the-

oretical and practical works. Initially, theoretical works are established. After

establishing theoretical works, they are experimentally validated in a controlled

lab environment and extended into real industrial manufacturing use cases.

3.3.1 Theoretical knowledge contributions

Initially, for each of the research hypotheses, theoretical knowledge contributions

are provided. These theoretical works form the basis for practical validations.

Consequently, the next three chapters provide theoretical works addressing the

research hypotheses.

Chapter 4 provides theoretical work on the object-oriented data model for rep-

resenting manufacturing systems’ complexities and dynamic nature. The object-

oriented data model is developed by dissecting the manufacturing system into

individual components.

Chapter 5 provides theoretical work on developing modular manufacturing soft-

ware, introduces the concept of manufacturing apps and describes the components

necessary to develop a manufacturing app. This chapter also presents insights into

developing a modular architecture for deploying manufacturing apps.

Chapter 6 provides theoretical work on optimisation and decision-making algo-

rithms for the MSC problem. New algorithms and decision-making environments

are proposed to tackle manufacturing processes’ multiple objectives and uncer-

tainties.
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3.3.2 Validation tasks and objectives

After developing theoretical contributions for each of the hypotheses, the practi-

cal validation of each of them is done using the below validation process in the

following steps:

1. Selection of two manufacturing processes that exhibit similarities but neces-

sitate distinct manufacturing assets and capabilities.

2. Identification of the required manufacturing assets for the aforementioned

processes.

3. Introduction of new manufacturing requirements to evaluate the adaptability

and resilience of the proposed solutions:

• Capability change requirement.

• Capacity change requirement.

• Operational parameters change requirements.

4. Assessment of the success rate, both qualitatively and quantitatively.

For each research hypothesis, the following objectives and success metrics are

defined:

1. Data model validation

• Objective: Develop an object-oriented data model for the manufactur-

ing processes to test the hypothesis on object-oriented data modelling

using the theoretical contributions in Chapter 4.

• Success metric:

– The object-oriented data model can adapt to changes in require-

ments without extensive modifications.
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– The model can represent both the static and dynamic aspects of

the manufacturing process.

2. Manufacturing apps validation

• Objective: Develop modular manufacturing apps, using theoretical

contributions provided in Chapter 5, that incorporate a modular ap-

proach to integrating various equipment and communication protocols,

ensuring seamless interoperability across diverse manufacturing equip-

ment.

• Success metric:

– The apps can be easily integrated with different manufacturing

equipment without extensive customisation.

– Enhanced plug-and-produce capabilities are evident, allowing for

quick setup and deployment in diverse manufacturing environments.

3. Optimisation and decision-making validation

• Objective: Integrate and develop apps for optimisation and decision-

making algorithms developed in Chapter 6 that combine traditional

optimisation techniques with machine learning algorithms tailored for

dynamic, multi-objective manufacturing environments.

• Success metric:

– The algorithms can effectively manage uncertainties in the manu-

facturing process, adapting to changes in real-time.

– Optimisation and decision-making algorithms can be integrated

with the developed data models and apps.

Measure of success for the holistic approach: The proposed holistic solution

will be deemed successful if each outlined criteria is effectively validated, building

on the previous step.
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3.3.3 Validation scenarios

The validation of research contributions is critical in ensuring the applicability

and effectiveness of proposed methodologies. In this research, the experimental

validations are conducted in two distinct stages, each offering unique insights into

the adaptability and efficiency of the proposed solutions in different environments.

3.3.3.1 First stage: controlled robotics environment

The experimental validations in the first stage are performed in a controlled

robotics environment using two distinct manufacturing processes: sorting cylinders

based on attributes like diameter, height, and colour and bin-picking of industrial

pipe coupler parts. The former is a static classification task, focusing on the accu-

rate differentiation of cylinders with closely related specifications. The cylinders

are typically presented in a consistent orientation for sorting. Conversely, bin

picking is dynamic, where parts are randomly oriented within a container. The

bin-picking process necessitates advanced spatial recognition algorithms to iden-

tify the correct part, discern its orientation, and plan a collision-free path for the

robotic arm, making it a more intricate task for robotic manipulation.

Several new manufacturing requirements are introduced in the validation process,

as depicted in Figure 3.1. These requirements include transitioning from sorting

to a bin-picking process (capability change), increasing the number of bin-picking

operations per time unit (capacity change), and reducing energy consumption

without compromising cycle time (operational parameters change). Introducing

these requirements during the validation steps offers a comprehensive insight into

the adaptability of the proposed solutions to real-world manufacturing constraints

and variations.
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Model initial 
manufacturing process

Introduce capability 
change requirement

Introduce capacity change &
operational parameters change

Figure 3.1: The first validation stage.

3.3.3.2 Second stage: industrial validations

In the next stage, the experiments extend the validation of the proposed research

hypotheses by examining them in real-world industrial settings, as illustrated in

Figure 3.2 and Figure 3.3. Each of these projects presents distinct manufacturing

environments with complexities, requirements, and challenges.

Figure 3.2: Validation process at the
Omnifactory facility, University of Not-
tingham, UK. This focuses on opti-
mal manufacturing configurations for
aerospace manufacturing use cases.

Machine-0Machine-0 Machine-1Machine-1 Machine-2Machine-2

Machine-3Machine-3Machine-4Machine-4

Figure 3.3: Validation process at
the University of Mondragon, Basque
Country, Spain. This emphasizes op-
timal manufacturing configurations for
machining process planning use cases.

The efficacy of the proposed solutions is assessed in these varied contexts using

a mix of quantitative and qualitative performance indicators. These encompass

efficiency metrics, resource allocation, adaptability to alterations, and stakeholder

satisfaction in multi-criteria decision-making.
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3.4 Chapter summary

This chapter laid the groundwork for the research by clearly defining the prob-

lem statement and associated challenges. It introduced relevant terminology and

mathematical notations to enable precise problem formulation.

The research problem was broken down into three key challenges, leading to the

development of corresponding research questions. Each research question was

paired with a research hypothesis grounded in technical literature.

A rigorous validation methodology was proposed, combining qualitative and quan-

titative analysis. This approach will comprehensively assess the research hypothe-

ses through theoretical analysis and real-world case studies.

The aim is to develop a holistic solution to the defined research problem. This solu-

tion encompasses novel data modelling techniques, modular software applications,

adaptive optimisation and decision-making algorithms. The goal of synergistically

integrating these elements is to enhance manufacturing systems’ responsiveness

and resilience to evolving requirements.

With the problem context established, subsequent chapters will provide an in-

depth investigation into each research hypothesis. The next chapter, Chapter 4,

explores object-oriented data modelling methodologies for manufacturing systems.

Chapter 5 introduces the concept of modular manufacturing apps to interoperable

and plug-and-produce software integration.

Finally, Chapter 6 delves into adaptive optimisation algorithms tailored for dy-

namic manufacturing environments.

The experimental validations are done in Chapter 7 and in Chapter 8.
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4.1 Introduction

One of the key challenges in holistically addressing the MSC problem lies in the

complexity of components and processes in modern manufacturing systems. This

thesis proposes a data model specifically designed to capture the intricate details

of these systems to address this challenge. This unified modelling methodology

enables effective management of various manufacturing equipment, software, costs,

and objectives.

Chapter 2 reviewed the literature to identify research gaps in creating a data model

tailored to the MSC problem. Although numerous data models exist, none cater

specifically to the MSC problem. This shortcoming hinders the development of

interoperable software solutions and the integration of optimisation and machine

learning algorithms. Therefore, this chapter focuses on developing a data model

suited to the challenges posed by the MSC problem.

Following the research methodology detailed in Chapter 3, the aim is to address

the following research question and hypothesis:

• Research question 1: What type of data models can accurately represent

the complexities and dynamic nature of manufacturing systems while also

suitable for software application integration?

• Research hypothesis 1: Object-oriented data modelling can effectively

capture the complexities and dynamism integral to manufacturing systems

while being suitable for integrating with software applications.

The central research contribution of this chapter is an object-oriented data model

designed specifically for the MSC problem. An object-oriented data modelling

technique is used to create the entire model, representing each element as a class,

depicted using UML class diagrams. This approach provides an inclusive view of
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the structure and relationships within the data model.

It is important to note that manufacturing systems vary considerably based on

industry, scale, and other factors. While the proposed data model captures many

critical elements of manufacturing systems, it may not cover all components. Nev-

ertheless, it offers valuable insights for decision-makers aiming to optimise their

manufacturing operations to meet changing requirements.

The contributions provided in this chapter are peer-reviewed and disseminated in

the following venues:

• Torayev et al. [143] “Optimal Selection of Manufacturing Configurations us-

ing Object-Oriented and Mathematical Data Models”, 10th International

Conference on Industrial Engineering and Applications. 4-6 April 2023,

Phuket, Thailand.

• Torayev et al. [144] “Multi-Criteria Decision-Making for Optimal Manufac-

turing Configuration Selection Using an Object-oriented Data Model and

Mathematical Formalization”, ASME International Manufacturing Science

and Engineering Conference (MSEC 2023), 12-16 June 2023, New Brunswick,

New Jersey, USA.

The next section of this chapter starts by explaining the key components and prin-

ciples of an object-oriented data modelling technique. It introduces UML concepts

for the visual presentation of the proposed data model. The further sections detail

modelling different manufacturing components for the MSC problem.
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4.2 Object-oriented data modelling (OODM) in

manufacturing

Object-oriented data modelling (OODM) is a data modelling technique that in-

corporates the principles of object-oriented programming based on the concept of

“object”. It facilitates the definition of data structures in a way that represents

real-world entities, enabling efficient manipulation and interpretation of data.

This thesis proposes using OODM for modelling manufacturing systems in address-

ing the data modelling challenges in the MSC problem. This modelling approach

can represent manufacturing components, their attributes, methods, and interac-

tions as objects within classes. Consequently, manufacturers can explore various

configurations and choose the most efficient one that meets the specified criteria.

Furthermore, the OODM enables interoperable software integration.

It is helpful to consider a simple manufacturing process involving a pick-and-place

operation using an industrial robotic arm to provide a clearer understanding of the

concepts and principles of OODM. This process also incorporates a vision camera

for positioning and a part that needs to be picked up and placed at a specified

location.

4.2.1 Components of OODM

OODM comprises four primary components: objects, classes, attributes, and

methods:

• Objects are fundamental entities in an object-oriented model. They repre-

sent real-world elements and encapsulate data and methods associated with

these elements. For instance, in the pick-and-place manufacturing example,

an object can be a “FanucRobot” with attributes like “speed” or “reacha-
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bility” and methods like “pick” or “place”.

• Classes act as a blueprint or template for creating objects. It defines the

common characteristics shared by all instances of this class. In the manufac-

turing scenario, one could define a class “IndustrialRobot”, and all specific

industrial robots in the manufacturing system will be objects of this class.

• Attributes refer to the properties or characteristics that define an object.

They store information about the state of an object. For example, a “Fanu-

cRobot” object may have attributes such as “payload”, “number of axes”,

or “precision” in the above example.

• Methods signify a behaviour or operation that an object can perform.

Methods define what an object can do and what can be done to it by chang-

ing its attributes. For instance, the “FanucRobot” object can have a method

“moveTo”, which instructs the robotic arm to move to a certain location.

4.2.2 Principles of OODM

The four fundamental principles that govern OODM are abstraction, encapsula-

tion, inheritance, and polymorphism:

• Abstraction is the process of simplifying complex systems by modelling

classes appropriate to the problem and working at the most suitable level of

inheritance for a given aspect of the problem. For instance, the “Industri-

alRobot” abstraction could hide complex details like motor movements and

present simple methods such as “pick” and “place” instead.

• Encapsulation refers to the bundling of related properties and behaviours

into individual objects, with access to these properties restricted to the same

object’s methods. In the case of the “FanucRobot”, details like kinematic
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parameters could be encapsulated within the object, restricting direct ma-

nipulation of these attributes.

• Inheritance is a mechanism where a new class can be derived from an

existing class, inheriting all its attributes and methods. For instance, an

“IndustrialRobot” class can be a subclass inheriting from the “Manufac-

turingEquipment” superclass, possessing additional specific attributes like

“width”, “height”, or “weight”.

• Polymorphism allows objects of different types to be treated as objects of

a parent type, enabling different behaviours to be executed depending on the

specific object type. For instance, the “pick” method of the “FanucRobot”

may behave differently when picking different industrial parts based on their

attributes.

4.2.3 Unified modelling language (UML)

Transitioning from OODM’s principles and components, this subsection introduces

a valuable tool for OODM – the unified modelling language (UML). UML serves

as a standardised language offering a platform-independent set of diagrams to

visually express the structure and behaviour of systems, thereby enhancing their

understandability and maintainability. It embodies a rich collection of symbols and

notations, making it a powerful tool for describing various aspects of an object-

oriented system.

With a broad range of diagrams under its umbrella, this thesis primarily utilises

class and object diagrams of UML due to their high relevance in expressing the

static structure of a system and the instances of classes at a specific point in time.
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4.2.3.1 UML class diagram

Class diagrams, one of the diagrams of UML, present a visual depiction of the

static structure of an object-oriented system. They illustrate the system’s classes,

their attributes and methods, and, crucially, the relationships among these classes.

As a result, they serve as a tool for visualising a system’s blueprint.

The relationships between classes in class diagrams are primarily expressed through

three types:

• Association: This relationship signifies a link between two classes indicat-

ing that they are connected or interact with each other. In the context of

the pick-and-place example, an association might exist between the “Fanu-

cRobot” class and the “IndustrialPart” class, suggesting that a robot inter-

acts with industrial parts during the manufacturing process.

• Aggregation: This term describes a “whole-part” relationship where a class

(the whole) comprises other classes (parts) but does not exclusively own

them. For instance, the “ManufacturingProcess” class could aggregate the

“IndustrialRobot” and “IndustrialPart” classes, as these components con-

stitute part of the manufacturing process.

• Composition: This relationship is a stronger form of aggregation where

the “whole” class owns the “part” class, and the parts cannot exist without

the whole. In the above example, a “FanucRobot” object might comprise

several “Motor” objects. If the “FanucRobot” ceases to exist, the associated

“Motor” objects would also cease to exist, as they are integral parts of the

robot.

67



4.2. OBJECT-ORIENTED DATA MODELLING (OODM) IN
MANUFACTURING

4.2.3.2 UML object diagram

Object diagrams, in contrast to class diagrams, depict a snapshot of the instances

within a system and their interrelations at a specific moment. Essentially, they

materialise a class diagram’s structure at a given time, detailing the relationships

between instances and their present state.

For instance, an object diagram might portray several instances of the “Industri-

labRobot” class interacting with various instances of the “IndustrialPart” class,

revealing the intricacies of their interaction and the state of each object during a

certain phase of the manufacturing process.

4.2.3.3 OODM for the MSC problem

Employing OODM and UML concepts, Figure 4.1 provides a comprehensive UML

class diagram for the proposed object-oriented data model for the MSC problem,

illustrating class relationships.

The UML class diagram in Figure 4.1 consists of 12 key classes. The relationships

between these classes are shown with specified arrows. An association line is a solid

line connecting two classes, sometimes with an arrowhead to indicate direction if

the association is not bidirectional. The aggregation relationship is depicted as

a hollow diamond on the side of the “whole” class pointing towards the “part”

class. The composition relationship is depicted as a filled diamond on the side of

the “whole” class, pointing towards the “part” class. The inheritance relationship

is depicted by a hollow arrow pointing from the child class (the more specific

class) to the parent class (the more general class). A dashed line often represents

a dependency relationship, known as a “using” relationship which occurs when one

class uses the methods of another class but does not necessarily need to maintain

a reference to it.
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The next sections of this chapter detail relationships, attributes and methods of

each class shown in Figure 4.1.

Figure 4.1: UML class diagram for object-oriented data model for the MSC prob-
lem for changing manufacturing requirements. Details about attributes and meth-
ods are omitted for a detailed discussion in the following sections.

4.3 Modelling manufacturing requirements

Manufacturing operations often face disruptions due to various factors, such as an

increase in product volume, changes in product design, or a need to reduce energy

consumption. These disruptions, rooted in the dynamic nature of manufacturing

requirements, often result in inefficiencies and challenges in the ongoing production

system.

As a solution to these challenges, this section aims to classify these various man-

ufacturing requirements into broad categories, thus formalising them into a struc-

tured data model.
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4.3.1 Changes in manufacturing requirements

Generally, manufacturing requirements in the MSC problem can be classified into

three primary categories:

• Capability change requirements: This category of manufacturing re-

quirement represents the need to modify manufacturing capabilities that

encompass specific skills, technologies, or processes that enable a manufac-

turing system to produce a particular product or component. Factors such

as product design updates, new product introductions, or technological ad-

vancements may require changes in capability requirements.

• Capacity change requirements: This category of manufacturing require-

ment signifies the need for adjustments in manufacturing capacity, referring

to the maximum production output that a manufacturing system can achieve

within a specific time. Capacity changes may be necessary to accommodate

fluctuations in production volumes, seasonal variations, or market trends.

• Operational parameters change requirements: This category of man-

ufacturing requirement refers to the need to adjust manufacturing operation

parameters, such as the run-time operational parameters of manufacturing

equipment. These changes are often necessary to optimise manufacturing

performance, maintain product quality, reduce costs, or address environ-

mental concerns.

4.3.2 Representation of manufacturing requirements

Building upon the understanding of the types of manufacturing requirements in the

MSC problem, it is essential to represent this concept in a structured and coherent

way. This facilitates a comprehensive view of manufacturing requirements and

their impact on manufacturing systems.
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Figure 4.2 shows the UML class diagram for the ManufacturingRequirement class,

illustrating its relationships with the Capability, Capacity, and ManufacturingOp-

eration classes within the context of the MSC problem.

Figure 4.2: UML class diagram of ManufacturingRequirement class.

The ManufacturingRequirement class encapsulates the requirements, including

capabilities, capacities, and operational parameters, needed to fulfill production

needs. The class has the following attributes and methods:

• ID : A unique string identifier assigned to each ManufacturingRequirement

instance.

• capabilities : A list of Capability objects representing the manufacturing ca-

pabilities required for this specific requirement.

• capacities : A list of Capacity objects signifying the necessary manufacturing

capacities to accommodate this requirement.

• operations : A list of ManufacturingOperation objects representing the re-

quired changes in operational parameters for this requirement.

• isSatisfied(): A method that returns a Boolean value indicating whether

the current requirement has been met based on the available capabilities,

capacities, and operational parameters within the manufacturing system.
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The ManufacturingRequirement class interacts with the Capability, Capacity, and

ManufacturingOperation classes through “requiresChangeIn” associations, which

represent the dependencies between these classes:

• “requiresChangeIn” relationship with Capability : This association indicates

that a ManufacturingRequirement instance depends on one or more Ca-

pability instances to satisfy its specific manufacturing requirements. Each

Capability object embodies a particular skill, technology, or process essential

for producing a product or component.

• “requiresChangeIn” relationship with Capacity : This association denotes

that a ManufacturingRequirement instance relies on one or more Capacity

instances to fulfil its production needs. Each Capacity object corresponds

to the maximum production output attainable.

• “requiresChangeIn” relationship with ManufacturingOperation: This asso-

ciation signifies that a ManufacturingRequirement instance is dependent on

one or more ManufacturingOperation instances to address the necessary ad-

justments in operational parameters. Each ManufacturingOperation object

represents a specific aspect of the manufacturing process.

The proposed way of defining and modelling manufacturing requirements in the

MSC problem allows a detailed, structured, and comprehensive representation of

the evolving needs in manufacturing systems. By categorising manufacturing re-

quirements into capability changes, capacity changes, and operational parameter

changes, it offers an explicit understanding of the different types of adjustments

that may be required. This classification is beneficial for precisely capturing the

adaptation needs of the manufacturing system and efficiently planning and imple-

menting suitable responses.

Maintaining Capability, Capacity, and ManufacturingOperation as separate classes
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provides modularity by encapsulating distinct aspects of manufacturing require-

ments in their entities. This separation ensures the flexibility to modify or extend

one aspect independently of others, enhancing system maintainability and adapt-

ability to changing requirements.

4.4 Modelling manufacturing components

Following the modelling of manufacturing requirements, the next stage in address-

ing the MSC problem involves developing a representative data model for various

manufacturing system components, presented in Chapter 3.2.1 when describing

mathematical notations and definitions.

The top-down design strategy is employed for modelling the components of man-

ufacturing systems. It starts with defining broad concepts and gradually refining

these into detailed, specific components. This approach is beneficial in the given

context, facilitating a comprehensive understanding of the manufacturing config-

uration and its key elements before exploring detailed configuration selections.

This strategy ensures the alignment of all components with the manufacturing

requirements.

4.4.1 Manufacturing configuration

Figure 4.3 shows a UML class diagram for the ManufacturingConfiguration class.

The ManufacturingConfiguration class has associations with several other classes,

as described below:

• Aggregation association with the ManufacturingAsset class: This indicates

that instances of the ManufacturingAsset class are combined within a single

ManufacturingConfiguration instance. ManufacturingAsset instances can
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Figure 4.3: UML class of ManufacturingConfiguration class. The diagram shows
the associations between ManufacturingConfiguration class and other classes nec-
essary for the MSC problem.

function independently of the ManufacturingConfiguration class but are

grouped to execute a manufacturing process.

• Aggregation association with the Capability class: This association signifies

that Capability class instances are independent from the Manufacturing-

Configuration class. Nevertheless, they are grouped based on the Manufac-

turingAsset class assigned to the ManufacturingConfiguration instance.

• Aggregation association with the ManufacturingConfigurationGroup class:

This relationship facilitates the grouping of related manufacturing config-

urations, which helps to organise and manage the manufacturing process.

The ManufacturingConfigurationGroup class groups ManufacturingConfigu-

ration instances when a single instance cannot meet the requirements. The

primary purpose of the ManufacturingConfigurationGroup class is to enable

efficient organisation of optimisation algorithms.
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• Composition association with the Cost class: This connection represents a

relationship where each Cost class instance depends on the corresponding

ManufacturingConfiguration class instance. As a result, Cost class instances

are terminated when the related ManufacturingConfiguration class instance

is destroyed.

The proposed UML class, ManufacturingConfiguration, encompasses the below

methods:

• The allocateAsset() method accepts a string parameter called assetID and

returns a boolean value. It assigns a manufacturing asset, identified by

the given ID, to the manufacturing configuration instance. The returned

Boolean value signifies the success or failure of the allocation process.

• The deallocateAsset() method, taking a string parameter named assetID,

also returns a boolean value. It removes a manufacturing asset, identified

by the specified ID, from the manufacturing configuration instance. The

returned Boolean value indicates the success or failure of the deallocation

process.

• The matchAssets() method produces a list of ManufacturingAsset objects.

This method identifies a set of manufacturing assets compatible with the

given manufacturing configuration by searching for assets that correspond to

the defined capabilities and costs. The ManufacturingAsset objects returned

by this method represent suitable assets for manufacturing.

• The matchCapabilities() method implements a function that matches a given

capability to manufacturing configurations. It accepts a Capability object

as a parameter and returns a set of ManufacturingConfiguration instances.

This method aligns a given capability to all manufacturing configurations

that possess this capability.
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• The matchCapacities() method represents a capacity function. It accepts

a Capability object and a ManufacturingConfiguration instance as parame-

ters and produces an integer, representing the capacity per unit of time. The

function matches a manufacturing configuration and a capability to a capac-

ity, showing how many operations involving the capability can be performed

per unit of time in the given manufacturing configuration.

These methods allow access by any object that has an instance of the Manufac-

turingConfiguration class.

The ManufacturingConfiguration class effectively embodies the elements and rela-

tionships necessary for the MSC problem. Its class diagram and associations with

ManufacturingAsset, Capability, ManufacturingConfigurationGroup, and manu-

facturing Cost classes enable a thorough comprehension of the manufacturing

process and its components.

The aggregation and composition associations guarantee the configuration’s mod-

ular and interdependent nature. Simultaneously, the allocateAsset(), deallocate-

Asset(), and matchAssets() methods offer vital functionalities for managing and

adjusting the manufacturing configuration in response to fluctuating production

requirements. These methods ensure adaptability and interaction with other com-

ponents of the system.

Subsequent subsections delve into the ManufacturingAsset, Capability, and Cost

classes in detail. A brief description of the ManufacturingConfigurationGroup is

provided, as it serves only for the organisation of manufacturing configurations

and its use by optimisation algorithms.
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4.4.2 Manufacturing asset

Within manufacturing systems, tangible assets include objects such as machinery,

tools, and equipment that require physical infrastructure for storage and utilisa-

tion. On the contrary, intangible assets constitute software, data, and intellectual

property, all of which are in digital formats and accessible through digital devices.

An accurate data modelling of these assets is fundamental to the MSC problem.

As such, this subsection gives attention to object-oriented modelling of manufac-

turing assets, providing precise class definitions through the use of UML class

diagrams structured comprehensively and logically.

4.4.2.1 Modelling a manufacturing asset

The UML class diagram in Figure 4.4 illustrates the hierarchy of the class of

manufacturing assets, including physical and digital assets, and their relationships.

Using this diagram makes it possible to see how different manufacturing assets

relate to each other and the unique attributes of each asset type.

In Figure 4.4, the enumeration class AssetType defines two types of assets within

a manufacturing system: physical assets, such as robots and digital assets, such

as software. An enumeration class is a data type that consists of a fixed set of

named values.

In Figure 4.4, the ManufacturingAsset is an abstract class, serving as a blueprint

for creating other classes. It is the parent class for all manufacturing assets,

providing a common set of attributes and methods that all manufacturing assets

inherit from the parent class.

Establishing the ManufacturingAsset class as an abstract class offers several ad-

vantages in the context of a manufacturing system. First, it ensures that the

ManufacturingAsset class is a blueprint for creating specialised subclasses that
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Figure 4.4: UML class of ManufacturingAsset. The diagram depicts classes for
different types of assets.

represent specific manufacturing assets with distinct characteristics or functional-

ities. This promotes a consistent structure, enabling modularity and scalability as

new manufacturing assets are added to the system.

Secondly, providing a common set of attributes and methods in the abstract Man-

ufacturingAsset class enables code reusability and maintainability. All manufac-

turing assets inherit these attributes and methods from the parent class, reducing

code duplication and making it easier to manage changes or updates to the shared

properties of manufacturing assets.

Lastly, the abstract nature of the ManufacturingAsset class prevents the direct

instantiation of generic manufacturing assets, which may lack the specialised at-

tributes and methods required for effective system operation. This enforces the

78



4.4. MODELLING MANUFACTURING COMPONENTS

creation of more specific subclasses that meet the unique requirements of manu-

facturing assets, ultimately leading to a more robust and efficient manufacturing

system.

The attributes and methods, common to all manufacturing assets, defined in Man-

ufacturingAsset are:

• ID is typically a unique identifier for the asset, differentiating it from other

system assets;

• assetName is a human-readable name for the asset, often used for display

and reference purposes;

• assetType specifies the type of asset, as defined in the AssetType enumeration

class;

• investmentCost is used to record the cost of investing in an asset.

• inUtilisation() method of ManufacturingAsset class shows whether an asset

is currently utilised or not.

4.4.2.2 Types of manufacturing assets

Subclasses derived from the parent class ManufacturingAsset inherit the attributes

and methods and can extend the parent class by defining additional attributes and

methods. By defining common attributes and methods in the parent class, this

modelling approach facilitates the development process and ensures uniformity

among diverse types of manufacturing assets. The UML class diagram in Figure

4.4 includes the following inherited subclasses:

• ManufacturingEquipment

• IndustrialRobot
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• Operator

• ManufacturingSoftware

ManufacturingEquipment is a subclass that extends ManufacturingAsset and has

an attribute, space, representing the physical space required by the equipment.

IndustrialRobot is another subclass that extends ManufacturingEquipment. It has

six extra attributes: robotBrand, robotModel, robotAxes, robotPayload, robotReach,

and robotRepeatability. The move() method is used to control the robot’s move-

ment, while pathPlanning() is a private method that handles the robot’s path

planning.

In the given diagram, the Operator class also extends the ManufacturingAsset

class, which means that it inherits the common attributes of ManufacturingAsset

and can also define its unique attributes and methods. In the context of the

Operator class, investment cost could refer to the cost associated with the hiring,

training, and management of operators within the manufacturing system. The

Operator class has additional three attributes: ID, name, and experience. The ID

attribute is inherited from ManufacturingAsset and serves as a unique identifier

for the operator. The name attribute is a human-readable name for the operator,

which can be used for display purposes or to identify the operator in reports

or other documentation. The experience attribute tracks the operator’s level of

experience or skill, which can be important in determining the appropriate tasks

or responsibilities for the operator within the manufacturing system.

ManufacturingSoftware is another subclass that extends ManufacturingAsset, and

it has two attributes: ID and LicenseNumber. As a digital asset, manufacturing

software can be used to manage and monitor the operation of physical assets

within the manufacturing system.

A combination of inheritance, abstract classes, and inherited classes allows easy
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extension of the data model with additional classes not presented in Figure 4.4.

For example, adding computer numerical control (CNC) machines or end-effectors

to the data model can be accomplished by defining the respective classes and

inheriting attributes and methods of the ManufacturingAsset class.

4.4.3 Manufacturing capability

The assignment of capabilities to a manufacturing configuration rather than an

individual manufacturing asset enables for comprehensive functionality. Although

individual assets may possess inherent capabilities, they can often be relatively

basic or atomic. However, when these assets are combined methodically within a

manufacturing configuration, they generate enhanced manufacturing capabilities,

facilitating the production of complex goods or services.

Based on the definition of manufacturing capability, it is essential to model this

concept in relation to the ManufacturingConfiguration class and its connection to

other relevant classes. This modelling will provide a clearer understanding of how

capabilities interact within manufacturing configurations.

The UML class diagram in Figure 4.5 shows the CapabilityType enumeration class

and Capability class, representing a capability that a class ManufacturingConfig-

uration can possess. The UML class diagram also shows the relationship between

Capability and ManufacturingOperation.

4.4.3.1 Atomic and combined capabilities

The enumeration class CapabilityType in Figure 4.5 defines two types of capabili-

ties:

• Atomic capability
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Figure 4.5: UML class diagram representing a manufacturing capability and the
related classes.

• Combined capability

An Atomic capability is a basic capability that cannot be broken down further.

Examples of the Atomic capabilities include moving robotic arms, drilling and

gripping, as shown in Figure 4.6 (left). These capabilities cannot be broken down

further and are fundamental to manufacturing processes.

In contrast, a Combined capability is a complex capability made up of multi-

ple Atomic capabilities. Examples of the Combined capabilities include pick and

place, sorting, and assembly, as shown in Figure 4.6 (right). These capabili-

ties comprise multiple Atomic capabilities and require the coordination of several

manufacturing assets combined into a manufacturing configuration to perform the

desired manufacturing process.

Based on the types of the capabilities, the Capability class has the following prop-
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Figure 4.6: The demonstration of combining manufacturing assets and atomic
capabilities into manufacturing configuration with a combined capability

erties:

• The ID property is of type String and is used to identify a capability

uniquely.

• The capabilityName property is also of type String and describes the capa-

bility in more detail.

• The capabilityType property is of type the CapabilityType, an enumeration

that defines two values: Atomic and Combined.

The Capability class has one method called capabilityToConfigurations(), which

returns a list of ManufacturingConfiguration objects. This method is used to

find manufacturing configurations that possess the capability represented by the

Capability object. For example, if a Capability object represents the capability

to drill holes, then the capabilityToConfigurations() method would return a list of

ManufacturingConfiguration objects that can drill holes.
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4.4.3.2 Manufacturing operation

After building a manufacturing configuration from a group of physical and digital

manufacturing assets, the manufacturing configuration possesses one or multiple

capabilities. While capability is general, an operation refers to specific actions that

a manufacturing configuration performs with a given capability. Thus, manufac-

turing capability requires manufacturing operations to perform actual production.

For example, the atomic capability “move robot arm” must perform operations

such as “linear movement” and “circular movements”.

Each ManufacturingOperation, such as a “linear movement” or a “circular move-

ment” in the provided example, has a unique identity (ID) and operationName,

indicating the type of operation performed within the manufacturing process. To

further refine and optimise these operations, the ManufacturingOperationParam-

eter class is defined. These parameters represent the adjustable aspects of a

ManufacturingOperation, allowing for fine-tuning and optimisation of individual

operations.

For example, in the atomic capability “move robot arm”, the ManufacturingOp-

eration “linear movement” can have parameters such as ManufacturingOpera-

tionParameter objects such as speed, acceleration, and path curvature. By ad-

justing these parameters, it is possible to optimise the robot arm’s movement to

meet specific production requirements or constraints, ultimately improving overall

performance and resource utilisation.

4.4.3.3 Capacity

Understanding the concept of capacity is vital when discussing manufacturing ca-

pabilities. Each manufacturing configuration has an inherent capacity constraint,

which can limit its ability to meet fluctuating production demands. Various fac-
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tors, such as equipment availability, workforce skills, or production schedule, can

influence these constraints. Accurate capacity assessment is essential for efficient

resource allocation, production planning, and overall process optimisation.

To address this limitation, the concept of a manufacturing configuration group

has been introduced. This approach assembles various distinct or similar man-

ufacturing configurations to collectively fulfil the requirements. By pooling the

capacities of multiple configurations, the manufacturing configuration group can

effectively respond to changes in production demands, enhance resource utilisa-

tion, and maintain the flexibility needed to adapt to changing manufacturing re-

quirements. Moreover, this grouping strategy enables a more efficient allocation of

resources and promotes the continuous improvement of manufacturing processes.

4.4.4 Manufacturing costs

After modelling manufacturing assets, capabilities and operations, it is crucial to

model manufacturing costs for optimisation and decision-making purposes. Man-

ufacturing costs provide a quantitative basis for evaluating and comparing manu-

facturing configurations, assets, capabilities, and operations.

Cost modelling in this context refers to the representation of costs within an

object-oriented data model, which offers the potential for nuanced insights and

effective cost management strategies. Although the comprehensive modelling of

costs, along with all its inherent complexities, surpasses the scope of this thesis,

the aim here is to construct a flexible and modular data model that can readily

incorporate varying cost data. This approach facilitates the seamless integration

of evolving cost data and provides an efficient platform for handling the dynamic

nature of manufacturing costs.

Manufacturing costs include all expenses associated with producing a product,

including labour, materials, and equipment usage. The provided UML diagram in

85



4.4. MODELLING MANUFACTURING COMPONENTS

Figure 4.7 presents a class called Cost, representing various costs associated with

the manufacturing configurations.

Figure 4.7: UML class diagram for representing manufacturing costs.

The Cost class has two properties:

• ID is of type String and is used to uniquely identify a cost;

• costType is of type CostType, an enumeration that defines three cost types:

InvestmentCost, RecurringCost, and TransitionCost. The attribute costType

specifies the cost associated with the Cost object.

The Cost class also has three methods used to calculate the cost associated with

a manufacturing configuration:

• The calcInvestCost() method accepts a configuration ID parameter of type

String and returns a Float value. This method computes the investment

cost associated with a manufacturing configuration identified by the config-

uration ID. The investment cost represents the expenses of purchasing and

establishing the assets required for a manufacturing process.

• The calcRecurCost() method accepts a configuration ID parameter of type

String and returns a Float value. This method computes the recurring cost

associated with a manufacturing configuration identified by the configuration

ID. Recurring costs include costs incurred during manufacturing, such as

energy consumption and labour costs.
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• The calcTransCost() method accepts two configuration ID parameters of the

type String and returns a Float value. This method computes the transi-

tion cost associated with changing from one manufacturing configuration

identified by configID1 to another manufacturing configuration identified

by configID2. Transition costs include expenses associated with adjusting

a manufacturing configuration when requirements change and the current

configuration cannot meet demand.

The costs defined in the UML diagram, including investment, recurring, and tran-

sition costs, can sometimes conflict. For example, a manufacturing configura-

tion optimised for low recurring costs might require a high investment cost up-

front. Conversely, a manufacturing configuration optimised for low investment

costs could have higher recurring costs.

Moreover, when manufacturing requirements change, reconfiguring the existing

configuration to meet new demands can result in high transition costs. The de-

cision to incur these costs can conflict with the goal of keeping recurring costs

low.

4.5 Chapter summary

This chapter presented an object-oriented data model specifically designed for the

manufacturing systems configuration (MSC) problem. The model comprises key

classes representing manufacturing requirements, assets, capabilities, operations,

and costs. Associations between these classes capture the relationships and de-

pendencies in manufacturing systems.

The manufacturing requirement class categorises requirements into changes in

capabilities, capacities, and operational parameters. This classification provides

a structured representation of evolving production needs. Separate classes for
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capability, capacity, and operations enable modularity in the data model.

The manufacturing configuration class and associations integrate assets, capabil-

ities, costs, and configuration groups. Critically, the model incorporates tangible

assets like equipment and intangible assets like software, recognising the role of

both in modern manufacturing. The manufacturing asset class employs inheri-

tance and abstract classes to define common attributes and methods for various

asset types.

Notably, the model associates capabilities with configurations rather than indi-

vidual assets. This composition of atomic capabilities from assets into combined

capabilities for configurations reflects real-world manufacturing more accurately.

The manufacturing operation and cost classes add further granularity. Different

cost types provide a quantitative basis for evaluating configurations. However,

manufacturing costs involve greater intricacies than those captured in the model.

The object-oriented data model offers a flexible, modular foundation tailored to

the MSC problem. It enables the assimilation of diverse manufacturing compo-

nents and relationships into an interoperable structure. Nevertheless, real-world

manufacturing systems have added complexities. The model may benefit from val-

idating classes against specific manufacturing use cases, which is done in Chapter

7.3.

Building on top of the data model presented in this chapter, the next chapter,

Chapter 5, addresses the challenges of integrating manufacturing software solu-

tions by introducing the concept of “manufacturing apps”.
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5.1 Introduction

Chapter 4 introduced a data model tailored to address the MSC problem. Despite

theoretical contributions, the challenge of rapidly adapting to changing manufac-

turing requirements persists. Although the proposed data model offers a theoret-

ical methodology, the practical implementation of these solutions still remains a

challenge.

One of the primary reasons for this challenge is the lack of interoperability among

manufacturing equipment in modern manufacturing systems. Interoperability is-

sues impede rapid adaptation of systems by hindering the development of inter-

operable manufacturing software solutions.

Therefore, this chapter adheres to the research methodology outlined in Chapter

3, with the aim of addressing the following research question and hypothesis:

• Research question 2: What software development approaches can reduce

the interoperability challenges posed by utilising diverse equipment in man-

ufacturing systems while enhancing plug-and-produce capabilities?

• Research hypothesis 2: Developing manufacturing software as modular

manufacturing apps, incorporating a modular approach to integrate vari-

ous equipment and communication protocols, can enhance a manufacturing

system’s interoperability and plug-and-produce capabilities.

Interoperability in manufacturing systems is a critical concern as it speaks directly

to the ability of various pieces of equipment and software to work cohesively. The

reasons for the lack of interoperability are multifaceted, one of which is the di-

versity of manufacturing equipment used in modern manufacturing environments.

Each piece of equipment may come from a different manufacturer, each with its

unique set of protocols, standards, and data formats, which makes seamless inte-
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gration a daunting task.

In an era where manufacturing requirements change rapidly, the ability to quickly

adapt systems can be a significant competitive advantage. However, a lack of inter-

operability slows this process considerably, as changes must be made on a system-

by-system or machine-by-machine basis. This can result in increased downtime,

decreased productivity, and ultimately loss of profitability.

Given the challenges mentioned above, this chapter seeks to address the obstacle

of interoperability by developing a novel concept: ManufacturingApp. Using the

principles of modularity and standardisation, the goal is to streamline the software

development process and enhance the interoperability of manufacturing systems.

The proposed approach of using ManufacturingApp to address the challenges of

interoperability in manufacturing systems takes a fundamentally different route

from most of the existing literature. While traditional approaches often focus on

creating customised solutions for each unique manufacturing system, the Manu-

facturingApp approach aims at designing modular and standardised applications

that can interface with a wide range of systems. This modular and generalised

approach significantly reduces the time, resources, and complexity typically asso-

ciated with customised software solutions.

Most of the previous work has focused on attempting to align various existing

technologies or redesigning systems to a unified standard. This process can be

time-consuming and resource-intensive. In contrast, the ManufacturingApp ap-

proach is designed to be flexible and adaptable, integrating with different proto-

cols, standards and data formats, thus accommodating the diversity of manufac-

turing equipment.

In order to realise this concept, the current chapter offers an in-depth exploration

of the ManufacturingApp class, initially proposed in Chapter 4. The emphasis is

on laying the solid theoretical and practical foundation for creating these modular
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software applications designed specifically for manufacturing environments. The

key contributions of this chapter can be summarised as follows:

• The introduction and clear definition of the “manufacturing apps” concept

sets the stage for a standardised approach towards software development in

manufacturing systems.

• The development of a manufacturing apps development kit (MAPPDK)

serves as a set of tools to design and create these manufacturing apps.

• Lastly, the proposition of a modular reference architecture to deploy these

manufacturing apps facilitates the deployment of the apps, enhancing the

system’s adaptability and interoperability.

The contributions presented in this chapter were subject to peer review and were

disseminated through the following venues:

• Torayev et al. [145], “Towards Modular and Plug-and-Produce Manufactur-

ing Apps”, 55th CIRP Manufacturing Systems Conference. October 29 -

July 1, 2022, Lugano, Switzerland.

• “fanucpy - Python Interface for FANUC robots” software package and library

distributed under Apache-2.0 licence and hosted on the GitHub platform1.

The subsequent sections of this chapter will provide a comprehensive discussion of

the contributions mentioned above. Notably, this chapter mostly focuses on the

concepts of the manufacturing apps and the modular architecture for the apps,

and the actual manufacturing apps are developed in Chapter 7.4.

1https://github.com/torayeff/fanucpy
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5.2 Manufacturing apps

Breaking down complex software applications into smaller, task-specific modules,

known as “appification”, has transformed how industries function by enabling

them to take advantage of various software applications to improve their opera-

tional efficiency and adaptability to emerging trends.

Due to the potential benefits offered by appification in the manufacturing domain,

it is important to explore its practical applications and underlying principles.

Therefore, this section delves into the appification of manufacturing processes,

the definition of a manufacturing app, and the abstract elements that constitute

such an app.

5.2.1 Appification of manufacturing processes

In a manufacturing process, such as assembling parts to produce a final product,

the whole process can be divided into smaller operations. Each operation in this

process involves manufacturing equipment that relies on a software solution for

control. With the connectivity of Industry 4.0, the standalone control code is

no longer sufficient to control equipment. Instead, the software solution includes

control code and access to other data sources to coordinate production. Therefore,

in the context of the MSC, the following definition is given to the “appification”

of the manufacturing process:

The appification of the manufacturing process refers to separating digital and phys-

ical implementations of the manufacturing system to make implementations mod-

ular and reusable for similar manufacturing processes.

This definition assumes that each physical and digital component of the manu-

facturing system can be modularised to enable the development of apps for each

system module. In this definition, “digital implementation” refers to the soft-
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ware component, while “physical implementation” refers to the hardware in the

manufacturing system.

Appification facilitates the reusability of developed solutions. For example, con-

sider a bin-picking manufacturing process that consists of an industrial robot arm,

an end-effector, and a vision system, as shown in Figure 5.1.

Vision system

Robotic armEnd-effector

Parts with variable 
shapes and sizes

Figure 5.1: FANUC ER-4iA industrial robotic arm performing a bin-picking pro-
cess using a vision system and a gripping end-effector.

The bin-picking process presents several challenges, as it often involves parts that

can change or require a different pose for the robotic arm to pick them effec-

tively. It requires constant adaptations to the vision system, robotic arm, and

end-effector to accommodate these variations. Traditionally, these adjustments

are made monolithically, which can be time-consuming and inflexible.

Appification provides a more efficient and adaptable solution to these challenges

by modularising these three components. If there is a need to replace the vision

system, robotic arm, or end-effector, the change can be made without impacting

the other two modules. Furthermore, additional capabilities, such as pose esti-

94



5.2. MANUFACTURING APPS

mation, can be integrated through specific apps without disrupting the system.

This approach creates a more versatile, time-efficient, and easily maintainable

bin-picking process.

Another example is a drilling process that involves a robotic arm, a CNC controller,

a drilling end effector, and a workpiece holding fixture, as shown in Figure 5.2.

Workpiece 
holding fixture

Drilling 
end-effector

Robotic 
arm

Figure 5.2: FANUC M800iA industrial robotic arm performing a drilling process
operation. The robot controller controls the robotic arm and the CNC machine
controls the drilling end-effector.

In the drilling process example, each component can be effectively modularised

to ensure seamless adaptability and efficiency. When manufacturing apps are

employed, this process can be broken down into specific tasks that are easily

manageable and can be upgraded or replaced when needed without causing major

disruptions to the overall process.

The CNC machine, for instance, can use an app that controls its motion, while

the drilling end-effector can have an app that monitors its wear. This modular

approach ensures that each component can function independently and effectively,

resulting in a more efficient drilling process.

When switching from drilling to milling, the drilling end-effector module can be
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replaced with a milling cutter without affecting the other two modules. This

simplifies the transition and saves time and resources as the change is limited

to a specific module. The appification of the drilling process enhances its overall

flexibility and adaptability, making it easier to integrate with other manufacturing

processes and to accommodate diverse production requirements.

5.2.2 Definition of a manufacturing app

The appification of manufacturing processes paves the way for a more efficient and

adaptable approach to meet changing manufacturing requirements. By breaking

down complex tasks into modular, reusable components, it becomes easier to in-

tegrate new capabilities and replace existing ones without causing disruptions to

the entire system. This leads to the concept of “manufacturing apps”. In the

context of manufacturing and specifically the MSC problem, a manufacturing app

is defined as:

A manufacturing app is a software solution that implements control of the manu-

facturing process or equipment in a modular and reusable way that allows replace-

ment or addition of capabilities without affecting the other parts of the system.

A manufacturing app has three main properties:

1. Modularity: Manufacturing apps are designed to enable modular manu-

facturing processes. For example, a manufacturing process can be divided

into smaller independent processes, and apps should be developed for smaller

processes, not for the whole process.

2. Reusability: Manufacturing apps are designed to be reusable, which means

that they can be used in multiple manufacturing processes and scenarios,

reducing development time and cost. This property allows manufacturers to

quickly and easily adapt to new production processes and equipment.
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3. Plug-and-produce: Manufacturing apps are designed to be “plug-and-

produce”, meaning they can be easily integrated into existing manufacturing

systems and processes with minimal configuration and setup required. This

property allows for quick and efficient deployment of new equipment and

production processes, reducing downtime, and increasing productivity.

The concept of manufacturing apps and the fundamental properties of manufac-

turing apps—modularity, reusability, and plug-and-produce—are illustrated in the

context of manufacturing using industrial robots in Figure 5.3.

Manufacturing apps

Vision app + 
Moving app + 
Pick-and-place app

Figure 5.3: Manufacturing process which involves a vision system (red circles) a
robotic arm (green circles), and an end-effector (blue circles). Appification facili-
tates the reusability of developed manufacturing software solutions by developing
modular manufacturing apps

The image presents a central hub representing the core manufacturing process

and equipment, surrounded by various modules depicted as puzzle pieces, each

symbolising a manufacturing app.

Different puzzle pieces highlight the modularity aspect of manufacturing apps,

demonstrating that manufacturing processes can be divided into smaller, inde-

pendent components and manufacturing apps can be reused and recombined in
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different ways to enable the modularity of manufacturing processes. The colour-

coding or labelling of these puzzle pieces emphasises the reusability of the apps

across multiple manufacturing processes and scenarios.

Furthermore, connectors linking the apps to one another signify the standardised

interfaces that enable seamless communication between the apps. This element

showcases the plug-and-produce property, underscoring the ease with which these

apps can be integrated into existing manufacturing systems and processes, requir-

ing minimal configuration and setup.

This representation of the properties of manufacturing apps effectively conveys the

potential advantages of adopting appification strategies in the manufacturing in-

dustry, highlighting the enhanced flexibility, rapid reconfiguration, and adaptation

to new environments and requirements that these apps can provide.

5.2.3 Abstract elements of a manufacturing app

In Chapter 4, a detailed description of a ManufacturingConfiguration class was

discussed. In contrast, the description of one class that is part of the Manufac-

turingConfiguration, ManufacturingApp class has been omitted until this section.

Therefore, based on the definitions of “appification” of manufacturing processes

and “manufacturing app”, this section discusses in detail the elements of a Man-

ufacturingApp class.

As a modular and reusable software solution, a manufacturing app comprises

several abstract elements that define its structure and functionality within the

manufacturing process, as shown in Figure 5.4. These elements facilitate seam-

less integration and interoperability within various production environments. The

following subsections detail the key abstract elements of a manufacturing app.
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Figure 5.4: ManufacturingApp class and its elements.

5.2.3.1 Functional interface

An important element of a manufacturing app is its functional interface, which

defines the inputs, outputs, and operations that it exposes to the rest of the

manufacturing system. The functional interface serves as the primary means of

communication between the app and other components of the production process.

Manufacturing software developers can ensure that different apps interact seam-

lessly by establishing a standardised functional interface for each manufacturing

app, facilitating modularity and reusability.

5.2.3.2 Control logic

Control logic represents the core functionality of a manufacturing app. It includes

algorithms, decision-making processes, and control strategies that govern how the

app interacts with manufacturing equipment and other apps. The control logic

enables the app to perform specific tasks or functions within the manufacturing

process, such as controlling a machine’s movement or monitoring the status of a

production line. Manufacturing software developers can easily update, replace, or

modify the logic as needed by encapsulating the control logic within a modular
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app without affecting other system parts.

5.2.3.3 Configuration parameters

Configuration parameters allow manufacturers to customise the behaviour and

functionality of a manufacturing app according to specific production require-

ments. These parameters may include settings related to machine speeds, tol-

erances, or process variables. A manufacturing app can be adapted to various

production environments and scenarios by providing a set of configurable param-

eters, enhancing its reusability and flexibility.

5.2.3.4 Data management

Data management is an essential aspect of a manufacturing app, as it deals with

collecting, storing, and processing data generated during manufacturing. These

data can include sensor readings, machine status information, or production statis-

tics. A manufacturing app should provide mechanisms for handling data in a struc-

tured and efficient manner, enabling real-time decision-making and performance

monitoring. Furthermore, effective data management within the app allows for

better integration with other software systems, such as manufacturing execution

system (MES) or enterprise resource planning (ERP) solutions.

5.2.3.5 Error handling

A manufacturing app must include robust error handling and recovery mechanisms

to ensure the smooth operation of the manufacturing process. By anticipating

and addressing potential failures, such as equipment malfunctions, software bugs,

or communication errors, the app can maintain high reliability and resilience.

Error handling and recovery mechanisms can include fault detection algorithms,

100



5.3. MANUFACTURING APPS DEVELOPMENT KIT

fallback strategies, or automated recovery procedures, allowing the app to respond

appropriately to unexpected events and minimise the impact on the production

process.

5.3 Manufacturing apps development kit

After defining the necessary elements for the development of modular manufac-

turing applications, the current challenge that hinders the development of manu-

facturing apps is the lack of a software development kit (SDK) specially designed

for this purpose. An SDK is a collection of tools that facilitate the creation of

applications for a given environment.

Every original equipment manufacturer (OEM) has an SDK suitable only for that

hardware. For example, FANUC has the FANUC PCDK, ABB has the RobotStu-

dio SDK, and KUKA has its software collection for developing robotic applications.

It is extremely difficult to make them work together due to different vendor-specific

standards. Therefore, this section proposes a methodology for developing a man-

ufacturing apps development kit based on the definitions and class elements of the

previous sections.

5.3.1 Requirements for a development kit

A manufacturing apps development kit is a comprehensive set of tools and re-

sources that streamline the design, creation, and deployment of manufacturing

applications within various production systems. To ensure successful develop-

ment and integration of these apps, the development kit must address three key

requirements:

1. Standardised framework: The development kit should provide a stan-
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dardised framework for app creation, ensuring interoperability and seamless

communication between different apps. This can be achieved by establishing

uniform data structures, communication protocols, and application program-

ming interface (API) that promote compatibility across diverse manufactur-

ing environments. A standardised framework simplifies the development

process and fosters consistency in software development practises, making it

easier for developers to create and maintain apps on different systems.

2. Extensive support for manufacturing environments: The develop-

ment kit must support various manufacturing environments, equipment, and

processes. This involves providing libraries, APIs, and tools compatible with

different hardware components, control architectures, and communication

protocols. By offering extensive support for a wide range of manufacturing

technologies, the development kit ensures that developed apps can be effec-

tively integrated into existing systems and easily adapt to new technologies

and processes as they emerge.

3. Modular architecture: The development kit should promote a modu-

lar architecture, encouraging the development of reusable and adaptable

apps. This approach allows developers to create individual app components

that can be easily assembled and customised to meet specific manufactur-

ing needs. A modular architecture enhances the flexibility and scalability of

developed applications and reduces development time and cost.

By addressing these technical requirements, a manufacturing apps development kit

can enable the seamless integration of various hardware and software solutions,

significantly improving the overall efficiency and adaptability of the manufacturing

industry.
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5.3.2 Data model for manufacturing apps development kit

To meet the requirements outlined in section 5.3.1, a comprehensive data model is

essential. While a foundational data model has been discussed in Chapter 4, the

specific requirements of a manufacturing app development kit require the extension

of this base model with new relevant elements.

Figure 5.5 illustrates the data model for a kit for developing manufacturing apps.

The diagram effectively demonstrates the use of object-oriented data modelling

techniques, highlighting how they can facilitate the logical structure of manufac-

turing entities and their relationships.

For example, IndustrialRobotApp is shown to be associated with the Industrial-

Robot class, reflecting the role of the app in the interaction with industrial robots.

When associated with the IndustrialRobot class, it can leverage the properties of

the associated manufacturing equipment. Additionally, the IndustrialRobotApp

class, being a subclass of ManufacturingApp, inherits properties such as Function-

alInterface, ControlLogic, ConfigurationParameters, DataManagement, and Er-

rorHandling.

Figure 5.5: Data model for Manufacturing Apps Development Kit
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The IndustrialRobotApp class is then further specialised into subclasses for specific

brands of industrial robots, such as FANUC, ABB and KUKA. This breakdown

is critical because each manufacturer uses unique conventions, such as different

Euler angle representations and proprietary motion control methods. Segregating

each app into its respective vendor-specific apps enhances modularity, allowing for

easy adjustments when changes occur in the production setup, as only the relevant

app needs to be updated.

Another important aspect of the model is the separate VisionApp and PickAnd-

Place apps. These apps are different from equipment-specific apps, reinforcing

that the control logic for each piece of equipment is independent of that of others,

thus promoting flexibility and modularity.

5.3.3 Industrial robot apps

This section demonstrates how these ideas can be applied to developing a manufac-

turing apps development kit tailored specifically for industrial robots that draws

on the concepts and discussions of previous sections.

5.3.3.1 Robotic app challenges

Industrial robot apps pose unique challenges in manufacturing due to the diversity

of robots, the number of axes, different types of robots, mathematical represen-

tations and other factors. Addressing these challenges is crucial to seamlessly

integrate industrial robots within the manufacturing domain and create robust

and adaptable manufacturing apps. These challenges are:

• Diversity of robots: Industrial robots come in various sizes, shapes, and

designs, each tailored for specific tasks and applications. Robots from differ-

ent manufacturers often have proprietary control systems and programming
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languages, making interoperability a significant challenge. A manufacturing

apps development kit for industrial robots must support a wide range of

robots from different manufacturers and facilitate seamless integration into

existing production systems.

• Types of robots: There are numerous types of industrial robots, such as

articulated robots, SCARA robots, delta robots, and gantry robots, each

with unique kinematics and motion control requirements. A robust manu-

facturing apps development kit must support various robot types, enabling

developers to create customised apps that cater to the specific needs of each

robot and its intended application.

• Mathematical representations: Different manufacturers may use differ-

ent mathematical notations or conventions, which can affect understanding,

calculation and application. For instance, varying Euler angle represen-

tations for orientation in robotics can complicate robot programming and

control. The development kit should support various mathematical repre-

sentations, including different Euler angle conventions, providing a unified

platform for developing industrial robot apps.

• Vendor-specific conventions: Industrial robot vendors may have their

proprietary conventions and methods for motion control, programming, and

other aspects of robot operation. The development kit should provide a

way to encapsulate and manage these vendor-specific features, allowing for

the creation of modular and adaptable apps that can easily accommodate

changes in the production setup or the introduction of new robot models

and brands.

A manufacturing apps development kit designed for industrial robots can help

simplify the integration of various robots into the manufacturing domain by ad-

dressing these challenges.
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5.3.3.2 Elements of robotic apps

The diagram depicted in Figure 5.6 represents an extension of the manufacturing

apps development kit specifically designed for industrial robotics. It demonstrates

the various functionalities and components required to develop industrial robot

applications. It addresses challenges such as the diversity of robots, robot types,

different numbers of axes, Euler angle representations, and vendor-specific con-

ventions.

Figure 5.6: Details of IndustrialRobotApp class diagram

Here is a detailed description of the classes and their relationships in the diagram:

1. ManufacturingApp: This is an abstract class representing the general con-

cept of a manufacturing application. It contains two abstract methods, con-

figure() and run(), intended to be implemented by subclasses to define

application-specific configurations and execution behaviour.

2. IndustrialRobotApp: This class is a subclass of ManufacturingApp, special-
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ising in industrial robot applications. It introduces several new attributes

and methods specific to industrial robots:

• supportedRobotManufacturers : A list of supported robot manufactur-

ers.

• robot : A reference to the IndustrialRobot object being controlled by the

app.

• configureRobot(): A method to configure the robot according to the

requirements of the application.

• executeMotion(): A method to execute robot motion commands.

• motionPlanning(): A method to plan the robot’s motion.

• inverseKinematics(): A method to compute the inverse kinematics of

the robot.

• forwardKinematics(): A method to compute the forward kinematics of

the robot.

• DHParameters(): A method to obtain or set the Denavit-Hartenberg

(DH) parameters of the robot.

3. FANUCRobotApp, ABBRobotApp, and KUKARobotApp: These subclasses

of IndustrialRobotApp are tailored for specific robot manufacturers (FANUC,

ABB and KUKA). Each class contains a vendor-specific method and meth-

ods for motion planning, inverse kinematics, forward kinematics, and DH

parameters tailored to the respective manufacturer’s conventions and re-

quirements.

By incorporating various robot-specific functions into the IndustrialRobotApp class

and its subclasses, the manufacturing apps development kit is now better suited

for developing apps for industrial robots. This modular design enables developers

to create customised apps for different types and manufacturers of robots while

maintaining a common interface for configuration and execution.
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5.4 Architecture for manufacturing apps

After defining the “appification”, “manufacturing apps”, “manufacturing apps

development kit” and developing a data model for manufacturing apps, the last

step is to develop an architecture necessary for deploying manufacturing apps.

This architecture is vital to solve the optimal manufacturing configuration selec-

tion problem. Therefore, this section starts by defining requirements for such an

architecture and presents a conceptual model for building it.

5.4.1 Requirements for a modular architecture

There is a need for an architecture that meets certain requirements to deploy man-

ufacturing apps; in particular, a conceptual architecture must have the following

inherent characteristics:

1. An architecture must enable modular physical implementations, i.e., physi-

cal components must be independent. This facilitates the easy integration

and replacement of manufacturing equipment, sensors, and other hardware

elements, while minimising the impact on the overall system.

2. An architecture must enable modular digital implementations, i.e., software

components must be independent. This allows for the flexible addition, mod-

ification, and removal of software modules, such as manufacturing apps and

their associated control algorithms, without disrupting the system’s opera-

tion.

3. An architecture must enable plug-and-produce properties; that is, physical

and digital components must be replaceable and reusable with the minimum

necessary configuration. This simplifies the deployment and reconfiguration

of manufacturing systems, as components can be quickly swapped in or out

depending on production requirements.
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4. An architecture must enable the distribution of developed solutions by pub-

lishing to the central hub to enable the reusability of developed solutions

in similar scenarios. This promotes the sharing and reuse of manufactur-

ing apps, configurations, and best practises between different manufacturing

sites, improving overall productivity and reducing development efforts.

The above requirements lay the foundation for a modular architecture that sup-

ports the development and deployment of manufacturing apps.

5.4.2 Elements of a conceptual architecture

Several key concepts must be introduced and understood to define a modular ar-

chitecture that enables plug-and-produce capabilities. These concepts contribute

to a flexible and adaptable architecture, allowing manufacturing systems to accom-

modate various requirements, devices, and processes. The main terms necessary

for such an architecture are:

• Atomic device. An atomic device is a single physical device designed to

perform one specific operation, such as gripping with a gripper, capturing

an image with a camera, or measuring force with a force sensor. When

every physical device in the manufacturing system is divided into atomic

devices with one specific goal, the physical modularity of the architecture is

enabled. The concept of an atomic device is consistent with the definition of

a manufacturing asset and its subclass, manufacturing equipment, as defined

in Chapter 4.

• Physical node. A physical node consists of one or more atomic devices

that work together to perform a manufacturing process. For example, an

industrial robot arm, camera, and gripper may form one physical node to

sort products. The definition of a physical node is necessary for managing
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atomic devices grouped for a single manufacturing process. A physical node

corresponds to the definition of a manufacturing configuration, as defined in

Chapter 4.

• Computational node. A computational node is a device, such as a Rasp-

berry Pi, that can control the physical nodes or atomic devices within the

physical nodes. A computational node must be able to host variable software

solutions using appification and containerisation technologies. The definition

of computational nodes addresses the interoperability bottleneck in existing

manufacturing systems by enabling communication and digital implementa-

tions. Computational nodes enable the digital modularity of manufacturing

systems.

• Manufacturing process cluster. A manufacturing process cluster is a

group of physical and computational nodes with one specific goal: sort-

ing, bin-picking, palletising, welding, or drilling. The manufacturing process

cluster helps to organise physical and computational nodes for efficient man-

agement. The concept of a manufacturing process cluster corresponds to the

manufacturing configuration group defined in Chapter 4.

• Architecture manager. The architecture manager is responsible for sev-

eral functions, such as installing, updating, or removing apps and assigning

and reassigning computational and physical nodes to manufacturing process

clusters. The architecture manager enables the plug-and-produce property

of manufacturing systems by providing manufacturing engineers with high-

level management tools and an interface for developers to create software

solutions without considering management-related issues.

• Global applications repository. The global application repository is a

central hub for publishing and delivering manufacturing apps. The global

applications repository enables the reusability of developed solutions for sim-

ilar processes.
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The terms atomic device, physical node, and manufacturing process cluster cor-

respond to the concepts defined in Chapter 4. However, maintaining separate

terminology for the architecture ensures its independence from the underlying

data model. If the data model or architecture changes, they will not be affected

by each other.

New components, such as computational node, architecture manager, and global

applications repository, are defined. These concepts are inherent only to the pro-

vided architecture and do not have meaning if no architecture exists.

5.4.2.1 Computational node

A computational node is a combination of hardware and software components

engineered to deliver local computing and processing capabilities at the edge of a

manufacturing system. Its primary purpose is to execute manufacturing apps on

site, ensuring faster processing times and minimising latency. The computational

node is designed to facilitate seamless integration into existing manufacturing

systems, necessitating minimal configuration and setup efforts. The schematic

representation of a computational node is shown in Figure 5.7.

Linux OS

Docker

Weld.
App

Drill.
App

Pick.
App

Raspberry PI,
Siemens

Figure 5.7: Schematic diagram of a computational node. A computational node
hosts manufacturing apps in a containerised way.
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5.4.2.2 Architecture manager

The architecture manager is a comprehensive software application that serves as

a centralised management system for computational nodes within the manufac-

turing environment. Its primary purpose is to facilitate seamless oversight and

administration of the manufacturing apps installed on these computational nodes.

The architecture manager empowers manufacturers to monitor and manage the

deployment of manufacturing apps, allowing them to configure and tailor these ap-

plications according to their specific production requirements. Additionally, the

architecture manager simplifies the maintenance process by enabling app develop-

ers to efficiently manage, update and troubleshoot their apps, ensuring continuous

and reliable operation.

Additionally, the architecture manager incorporates advanced analytics and re-

porting tools that help manufacturers optimise their manufacturing processes.

Manufacturers can make data-driven decisions to improve overall efficiency and

productivity by providing actionable information. The schematic representation

of the interaction of the architecture manager with computational nodes can be

found in Figure 5.8.
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Figure 5.8: Schematic diagram of an architecture manager.
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5.4.2.3 Global applications repository

The global applications repository serves as a digital marketplace that enables

manufacturers to browse, evaluate, and download manufacturing apps tailored to

address various manufacturing challenges. This repository is crucial to connecting

app developers with manufacturers, fostering innovation, and driving the adoption

of the latest manufacturing technologies.

Manufacturing apps available in the global applications repository are designed

with modularity and reusability. This allows manufacturers to seamlessly integrate

them into their existing production systems and customise the apps to meet their

unique requirements, ultimately enhancing productivity and efficiency.

By providing a platform for app developers to showcase their cutting-edge solu-

tions, the global applications repository broadens its reach, giving them access to

a wider audience and the opportunity to contribute to the ongoing advancements

in the manufacturing industry.

A schematic representation illustrating the interaction of the global application

repository with manufacaturing apps is shown in Figure 5.9.

Drilling 
App

Pick and Place
App

Welding
App

Analytics
App

Figure 5.9: Global applications repository.
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5.4.3 Conceptual architecture

After defining the requirements and essential components of a conceptual archi-

tecture, a schematic representation of the architecture to deploy manufacturing

apps is illustrated in Figure 5.10.
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between computational 

nodes: HTTPS

Control communication: 
Socket, MODBUS, etc.

Figure 5.10: Conceptual architecture for deploying manufacturing apps.

Implementing manufacturing capabilities via the proposed architecture and man-

ufacturing apps involves the following steps:

1. The computational node sends a request to the architecture manager for a

specific manufacturing app.

2. The architecture manager searches the global applications repository for the

requested manufacturing app.

3. The appropriate manufacturing app is retrieved from the repository and

delivered to the computational node.

4. The computational node deploys the manufacturing app, enabling the re-

quested capability on the corresponding manufacturing equipment.
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For example, consider a bin-picking operation in which an industrial robot iden-

tifies and picks parts from a bin. The process using the above architecture would

be as follows:

1. The computational node detects a change in the part to be picked and re-

quests a new pose-detection app from the architecture manager.

2. The architecture manager searches the global applications repository for a

suitable pose-detection app tailored for the new part.

3. The selected pose detection app is delivered to the computational node.

4. The computational node deploys the new app, allowing the industrial robot

to detect and pick up the new part efficiently.

This example demonstrates the flexibility and adaptability of the proposed archi-

tecture, allowing for the seamless integration of new apps and updates to optimise

manufacturing processes in response to changing requirements.

5.5 Chapter summary

This chapter addressed the practical implementation challenges of the MSC prob-

lem. The primary identified issue was the lack of interoperability between man-

ufacturing equipment, which hinders the development of adaptable software so-

lutions. The ManufacturingApp class was presented to overcome this challenge,

based on the data model discussed in earlier chapters.

The concept of “manufacturing apps” was introduced and defined, and a the-

oretical and practical foundation was established for creating modular software

solutions. The appification of manufacturing processes, the definition of a manu-

facturing app, and the abstract elements that make up such an app were explored,
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enabling a comprehensive understanding of their design, implementation, and in-

tegration in various production environments.

A methodology for developing a manufacturing apps development kit was pro-

posed, as current SDKs are vendor-specific and do not facilitate interoperability.

The requirements for a development kit, the data model for the manufacturing

apps development kit, and the industrial robot apps were outlined.

Lastly, a modular reference architecture was presented for deploying manufac-

turing apps. The requirements for a modular architecture, the elements of a

conceptual architecture, and the conceptual architecture itself were defined.

The proposed object-oriented data model and the concept of “appification” of

manufacturing processes have established a solid foundation to address the first

two challenges of the MSC problem. An adaptable and flexible environment that

can accommodate rapid changes in manufacturing requirements was created by

transforming manufacturing operations into modular, manageable applications.

Building on this foundation, the next challenge to overcome is effectively inte-

grating an optimisation and decision-making framework. This is the third and

remaining challenge in developing a holistic solution to the MSC problem. The

contributions provided in Chapter 4 and this chapter have made strides toward

a modular implementation of optimisation and decision-making methods. This

challenge will be addressed in depth in the following chapter, rounding out a

comprehensive approach to tackling the complexities of the MSC problem.
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6.1 Introduction

This chapter addresses the third challenge of developing a holistic, integrated opti-

misation and decision-making solution for rapidly changing manufacturing require-

ments. The remaining challenge is that the manufacturing costs and objectives

constantly change with the change in requirements, which makes it difficult to

adapt to new requirements cost-effectively. Solving this challenge requires devel-

oping robust and modular algorithms that can exploit the underlying data model

and respond to changes as they occur.

Therefore, following the research methodology of Chapter 3 and building on top

of the research contributions provided in Chapter 4 and Chapter 5, this chapter

aims to address the following research question and research hypothesis:

• Research question 3: What types of algorithms can effectively manage

uncertainties and facilitate sequential decision-making in the dynamic and

evolving multi-objective environment of manufacturing processes?

• Research hypothesis 3: An optimisation and decision-making framework

that integrates traditional optimisation and machine learning algorithms can

effectively manage uncertainties and facilitate sequential decision-making in

dynamic, multi-objective manufacturing environments.

This chapter proposes three important modules to address the above research

question and hypothesis. Consequently, in this chapter three main research con-

tributions are made, which are discussed in detail in the following sections.

The first contribution of this chapter is the development of a module that uses the

data model presented in Chapter 4 to identify changes in the manufacturing en-

vironment. The changes identification algorithm (CIDENA) is introduced and its

functioning is detailed and demonstrated, showcasing its effectiveness in detecting
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changes.

The second contribution is the introduction of an optimisation module that em-

ploys an optimisation matrix to determine the necessary type of optimisation,

methods, and algorithms. The initial step in optimisation is to optimise the man-

ufacturing equipment for a specific objective. Therefore, a novel meta-algorithm

called online optimisation of operational parameters (O3PARAMS) is presented

to optimise the operational parameters of the manufacturing equipment. Subse-

quently, the optimisation for capability and capacities is discussed.

Given the stochastic nature of the manufacturing environment and the constant

need for adaptation, the third contribution is a reinforcement learning (RL)-based

decision-making module that utilises optimised equipment and manufacturing con-

figurations. A novel manufacturing RL-based decision-making environment is pre-

sented, designed to effectively meet changing manufacturing demands.

The contributions provided in this chapter are peer-reviewed and disseminated in

the following venues:

1. Torayev et al. [146] “Online and Modular Energy Consumption Optimiza-

tion of Industrial Robots”. Journal publication in IEEE Transactions on

Industrial Informatics.

2. Torayev et al. [147] “Optimal Manufacturing Configuration Selection: Se-

quential Decision Making and Optimization using Reinforcement Learning”,

56th CIRP Manufacturing Systems Conference. October 24-26, 2023, Cape

Town, South Africa.

3. “MFG-RL Manufacturing Reinforcement Learning Environment”1 software

package and library distributed under Apache-2.0 licence and hosted on

GitHub platform.

1https://github.com/torayeff/mfgrl
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The general interaction between the proposed modules and how they build on top

of the object-oriented data model is illustrated in Figure 6.1.

New 
manufacturing 
requirements

Data Model

Changes 
Identification 

Module

Optimisation
Module

Decision-making 
Module

Step 2

Step 1

Step 3

Step 4

Figure 6.1: Interaction between changes identification, optimisation, and decision-
making modules.

The process begins with inputting the existing data model and the new manufac-

turing requirements into the changes identification module. This module identifies

the necessary changes and updates the data model accordingly. Next, the output

from the changes identification module is fed into the optimisation module, which

selects the appropriate algorithms and performs the optimisation. Finally, the

output from the optimisation module is provided to the decision-making module,

which effectively addresses stochastic and uncertain factors in the manufacturing

environment.

These modules are designed to be robust in a dynamic manufacturing environment

with stochastic fluctuations and rapidly evolving requirements. An important as-

pect of the proposed modules is that they are appified as was proposed in Chapter

5. This appification process is especially necessary for utilising optimisation al-

gorithms on the fly. The next sections of this chapter go into the details of the

above contributions.
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6.2 Changes identification module

Changes Identification 
Module

Changes Identification Algorithm

ΔB ΔP ΔO

Figure 6.2: Changes Identification Module

The initial step in optimising manufacturing configurations to adapt to changing

requirements involves identifying the necessary changes. Depending on the ex-

isting or empty manufacturing setup, the optimisation process must identify the

required modifications to meet the new manufacturing requirements.

As discussed in Chapter 4, changes in manufacturing requirements can be system-

atically classified into three primary categories:

• Requirement for capability change: ∆B

• Requirement for capacity change: ∆P

• Requirement for operational parameter change: ∆O

The changes identification module, depicted in Figure 6.2, aims to autonomously

determine which of the above requirements must be addressed. The implementa-

tion of this module relies on the data model and its mathematical formalisation

presented in Chapter 4.
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6.2.1 Changes identification algorithm

A core component of the changes identification module is the changes identifica-

tion algorithm (CIDENA), presented in Algorithm 1. It is designed to compare

two consecutive requirement periods, t and t + 1, and to pinpoint the necessary

modifications in manufacturing configurations.

Algorithm 1 changes identification algorithm (CIDENA)

Require: Requirement periods Dt, Dt+1

Ensure: ∆Bt,∆P,∆O
1: for each (Bt+1,i, Pt+1,i) in Dt+1 do
2: if Bt+1,i in Dt then
3: (Bt,j, Pt,j)← Dt,j

4: if Pt,j ≥ Pt+1,i then
5: Pt,j ← Pt,j − Pt+1,i

6: Pt+1,i ← 0
7: else
8: Pt+1,i ← Pt+1,i − Pt,j

9: Pt,j ← 0
10: end if
11: end if
12: end for
13: Filter out nonzero capacity values:
14: ∆Bt,∆Pt ← [(Bt,i, Pt,i) for i in length(Dt) if Pt,i > 0]
15: ∆Bt+1,∆Pt+1 ← [(Bt+1,i, Pt+1,i) for i in length(Dt+1) if Pt+1,i > 0]
16: Assign to ∆B and ∆P :
17: ∆B ← [∆Bt,∆Bt+1]
18: ∆P ← [∆Pt,∆Pt+1]
19: ∆O ← False
20: if length(∆Bt) = 0 and length(∆Bt+1) = 0 then
21: “The new requirement period can be satisfied without any change.”
22: else
23: ∆O ← True
24: if length(∆Bt) ̸= 0 then
25: “Some configurations can be removed: ∆Bt,∆Pt”
26: end if
27: if length(∆Bt+1) ̸= 0 then
28: “New configurations are needed: ∆Bt+1,∆Pt+1”
29: end if
30: end if
31: return ∆B,∆P,∆O

The algorithm takes two requirement periods, Dt and Dt+1, as input and outputs

the changes in capabilities (∆B), capacities (∆P ), and operational parameters
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(∆O). It iteratively processes each capability-capacity pair in the requirement

period Dt+1 (Line 1). If the capability is present in the requirement period Dt

(Line 2), the algorithm checks if the capacity in Dt is greater than or equal to the

capacity in Dt+1 (Line 4). If true, the capacity in Dt is reduced by the capacity

in Dt+1 (Line 5), and the capacity in Dt+1 is set to 0 (Line 6). Otherwise, the

capacity in Dt+1 is reduced by the capacity in Dt (Line 8), and the capacity in Dt

is set to 0 (Line 9).

After processing each pair, the algorithm filters out non-zero capacity values for

both Dt and Dt+1 (Lines 13-15). It then initialises ∆B, ∆P , and ∆O (Lines 16-

19). ∆B is assigned to the filtered non-zero capability values for Dt and Dt+1,

while ∆P is assigned to the corresponding filtered non-zero capacity values. ∆O

is initialised as False.

The algorithm then checks various conditions based on the lengths of ∆Bt and

∆Bt+1 to determine if any changes are needed (Line 20). If both lengths are 0, the

new requirement period can be satisfied without any change. Otherwise, ∆O is

set to True (Line 23). If the length of ∆Bt is non-zero, it indicates that some con-

figurations can be removed, and the algorithm outputs the specific configurations

and capacities to be removed (Lines 24-26). If the length of ∆Bt+1 is non-zero,

new configurations are needed (Lines 27-29).

The algorithm returns the values of ∆B, ∆P , and ∆O (Line 31), representing

the identified changes in the capabilities, capacities, and operational parameters

between the two consecutive requirement periods.

The CIDENA algorithm can be considered a tool to identify changes in the context

of the MSC problem. As discussed in Chapter 5, the CIDENA algorithm can be

appified and integrated into a modular architecture.
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6.2.2 Demonstration of changes identification algorithm

In order to see the CIDENA algorithm in action, it is helpful to consider a simple

demonstrative example.

Let there be two consecutive requirement periods Dt and Dt+1 with different man-

ufacturing requirements according to the data model in Figure 4.2 and Equation

3.7. The capabilities and capacities required for the requirement period Dt are

given as:

Dt = [(Bt,1 = Pick&Place, Pt,1 = 20),

(Bt,2 = Drilling, Pt,2 = 10)]

(6.1)

Required capabilities and capacities for the requirement period Dt+1 are given as:

Dt+1 = [(Bt+1,1 = Pick&Place, Pt+1,1 = 15),

Bt+1,2 = Drilling, Pt+1,2 = 5),

(Bt+1,3 = Welding, Pt+1,3 = 10)]

(6.2)

The CIDENA algorithm processes these two requirement periods as follows:

1. Iterate through each pair in Dt+1:

(a) For (Bt+1,1, 15), Bt,1 is in Dt. Since Pt,1 = 20 ≥ 15, update the capaci-

ties as follows: Pt,1 = 20− 15 = 5 and Pt+1,1 = 0.

(b) For (Bt+1,2, 5), B2 is in Dt. Since Pt,2 = 10 ≥ 5, update the capacities

as follows: Pt,2 = 10− 5 = 5 and Pt+1,2 = 0.

(c) Bt+1,3 is not in Dt, so do not make any changes.

2. Filter out non-zero values:

(a) ∆Bt = [Bt,1, Bt,2], ∆Pt = [5, 5]
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(b) ∆Bt+1 = [Bt+1,3], ∆Pt+1 = [10]

3. Assign to ∆B and ∆P :

(a) ∆B = [∆Bt,∆Bt+1]

(b) ∆P = [∆Pt,∆Pt+1]

4. Initialize ∆O = False.

5. Check the conditions based on the lengths of ∆Bt and ∆Bt+1:

(a) Both lengths are non-zero, so the algorithm suggests removing config-

urations in ∆Bt for efficiency: (Bt,1, 5) and (Bt,2, 5).

(b) The algorithm also suggests adding the configurations in ∆Bt+1 to meet

demand: (Bt+1,3, 10).

(c) Set ∆O = True

The CIDENA algorithm returns ∆B = [[Bt,1, Bt,2], [Bt+1,3]], ∆P = [[5, 5], [10]] and

∆O = True for the above example. It means that the manufacturing setup needs

changes in capabilities, capacities, and operational parameters to accommodate

the new requirement period. It also requires decreasing the capacity of Bt,1 and

Bt,2 and introducing a new manufacturing capability Bt+1,3 with a capacity of 10.

Consequently, these changes require updating the data model by adding or remov-

ing the necessary manufacturing assets and modifying the relationships between

assets, manufacturing configurations, and manufacturing configuration groups in

Figure 4.1.

Once the necessary changes in capabilities, capacities and operational parameters

are identified using the CIDENA algorithm, these are passed to the optimisation

module, as discussed in the next section.
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6.3 Optimisation module

After identifying the necessary changes using the CIDENA algorithm, the op-

timisation and decision-making process goes to the optimisation module. The

optimisation module selects the appropriate algorithms to address the identified

changes in the capabilities, capacities, and operational parameters. Then, it gen-

erates solutions for the decision-making module as shown in Figure 6.3.

ΔB ΔP ΔO

Optimisation matrix

Select optimisation type

Multi-
objective

Single-
objective

MILP/
DFO EA/GA

Figure 6.3: Schematic of Optimisation Module

The optimisation module consists of different parts, such as the optimisation ma-

trix, the selection of the optimisation type, and the manufacturing-specific algo-

rithms, as shown in Figure 6.3.

The next subsections of this section present a detailed description of each element

of the optimisation module, starting from the optimisation matrix.
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6.3.1 Optimisation matrix for changing manufacturing re-

quirements

The CIDENA algorithm, although highly effective in recognising the necessary

modifications in capabilities, capacities, and operational parameters, does not in-

herently provide a structured plan for the execution of these changes.

Here the optimisation matrix comes in. It acts as a decision-making guide, cate-

gorising the outputs of the CIDENA algorithm into four distinct scenarios based

on the presence or absence of capability changes at different times, thus facilitating

the selection of the most appropriate optimisation strategies. Each of these cases

represents a unique situation that requires a specific response, from no changes

needed to complete reconfiguration of the current manufacturing system.

It should be noted that the matrix focuses on changes in capabilities as shifts

in capacities and operational parameters inherently imply changes in capabilities.

Hence, the optimisation matrix streamlines the adaption to new manufacturing

requirements by enabling systematic decision-making based on the identified need

for change.

These four possible cases are shown in Table 6.1 and described below:

∆Bt+1 = Null ∆Bt+1 ̸= Null

∆Bt = Null
Case 1.

No changes
are needed.

Case 3.
New capabilities are required

with ∆Pt+1 capacities and
∆O operational parameters.

∆Bt ̸= Null

Case 2.
Some configurations
can be removed for

reducing recurring costs.

Case 4.
Complete reconfiguration of
the current manufacturing

system is required.

Table 6.1: Optimisation matrix for changing manufacturing requirements. This
matrix guides the optimisation module for making the necessary changes and
selecting optimisation algorithms.
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1. Case 1 is the most trivial case. In this case, the current manufacturing

configurations do not require any changes or optimisation. For example, if

an aerospace manufacturing company produces 10 aircraft per month and

the demand remains constant, there is no need for adjustments in the man-

ufacturing process. This case does not necessitate any optimisation.

2. Case 2 occurs when current manufacturing configurations can meet the new

requirements, i.e., the necessary capabilities and capacities already exist.

However, some assets might be underutilised and therefore can be removed

for efficiency or allocated to other manufacturing operations. For example,

suppose that an aerospace manufacturing company produces 10 aircraft per

month and the demand decreases to 8. In that case, they can remove or

reallocate some machinery, workforce, or production lines to reduce costs

and increase efficiency. This case typically requires manual removal of the

necessary assets and might necessitate optimisation for utilisation.

3. Case 3 occurs when current manufacturing configurations cannot meet the

new requirements, but some of the necessary capabilities and capacities al-

ready exist. However, additional capabilities and capacities are required. It

can also be the case that the demand for production increases. For example,

an aerospace manufacturing company produces commercial aircraft and faces

a new demand for freight aircraft with specific technology. Alternatively, it

might be the case that the demand for commercial aircraft increases. They

already have the equipment to manufacture the other components but need

to add new machinery and facilities to produce the new specifications or

meet the increased demand. This case also includes optimising operational

parameters.

4. Case 4 happens when the current manufacturing configurations completely

differ from the new manufacturing requirements. This can occur when the

demand for a new product is entirely distinct. For example, an aerospace
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manufacturing company specialising in producing commercial aircraft faces

a surge in demand for satellites or unmanned aerial vehicles (UAVs). This

change in demand would require a complete reconfiguration of the manu-

facturing system to accommodate satellite or UAV production, including

new machinery, workforce training, and potentially different suppliers. This

case requires a complete reconfiguration and the selection of new optimal

manufacturing configurations.

It is crucial to note that while the optimisation matrix can be appified as a subse-

quent step of the CIDENA algorithm, it is fundamentally designed with a human

decision-maker in mind. This design consideration stems from the fact that the

identified changes often require a physical reconfiguration, a process that typically

requires human oversight, expertise, and discretion. In essence, the optimisation

matrix bridges automated analysis and human-centric decision-making, merging

both strengths to achieve efficient and effective adaptation in the manufacturing

setup.

6.3.2 Algorithms selection for manufacturing optimisation

Once the optimisation cases are identified using an optimisation matrix, different

optimisation approaches might be needed depending on the specific requirements

of each case. The necessary optimisation approaches can be broadly classified

into two categories. For each category, this work recommends algorithms based

on their effectiveness and suitability in the manufacturing context, as shown in

Figure 6.3 and described below.
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6.3.2.1 Single-objective optimisation

This approach focuses on optimising one objective function, such as minimising

cost or maximising efficiency. It is suitable for cases with only one primary goal

or when multiple objectives can be combined into a single function.

For single-objective optimisation, a mixed-integer linear programming (MILP)

and derivative-free optimisation (DFO) algorithms are recommended. MILP is

particularly useful when dealing with problems that involve discrete variables and

linear constraints, while DFO is suitable for problems where gradient information

is unavailable or unreliable.

For example, in Case 2, a manufacturing company might want to minimise the re-

curring costs associated with underutilised assets, such as machinery or workforce.

This could involve optimising the layout of the factory to minimise transportation

costs or adjusting the production schedule to maximise the utilisation of available

resources. In this scenario, a single-objective optimisation algorithm like MILP or

DFO could be used to find the optimal solution.

6.3.2.2 Multi-objective optimisation

In this approach, multiple objective functions are considered simultaneously to

find solutions that provide an optimal trade-off between the conflicting objectives.

This is particularly useful when addressing problems with multiple conflicting

goals, such as investments costs, recurring costs, and transition costs as discussed

in Chapter 3.2.1.3.

For multi-objective optimisation problems, evolutionary algorithms (EA) and ge-

netic algorithms (GA) are recommended. These algorithms are well-suited for

handling complex problems with multiple conflicting objectives, as they can effec-

tively explore the solution space and identify trade-offs between the objectives.
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In Case 3, for example, a manufacturing company might need to add new ma-

chinery and facilities to produce a new product or meet increased demand. This

would require the company to find a balance between the costs of acquiring and

installing new equipment, the potential increase in recurring costs due to addi-

tional resources, and the benefits of satisfying the new demand. In this situation,

a multi-objective optimisation algorithm like EA or GA could be used to identify

the optimal trade-offs between these conflicting objectives.

Similarly, in Case 4, a complete reconfiguration of the manufacturing system might

be necessary to accommodate a shift in demand. This could involve significant

investments in new machinery, workforce training, and changes in the supply chain.

The company would need to weigh these costs against the potential benefits of

capturing the new market. Again, a multi-objective optimisation algorithm such as

EA or GA could be applied to find the best compromise between these conflicting

objectives.

The proposed methodology for selecting optimisation algorithms remains grounded

in empirical validation but provides flexibility for incorporating any optimisation

algorithm in theory. The recommended algorithms, as shown in Figure 6.3, are

preferred based on proven efficacy in addressing similar problems within the man-

ufacturing industry based on experimental work carried out in this research.

Following a clear definition of the methodology for choosing optimisation algo-

rithms, the process advances to actual optimisation for optimal manufacturing

configurations selection.

Optimisation generally divides into two primary requirements: first, the selec-

tion of manufacturing configurations to meet requested capabilities, and second,

those to fulfil requested capacities. However, the first step in understanding which

configurations to select involves finding the optimal operational parameters of

manufacturing equipment or configuration, which is the goal of the next section.
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6.3.3 Optimisation of operational parameters of manufac-

turing equipment

In a dynamic manufacturing environment, it is crucial to adapt manufacturing con-

figurations to accommodate changing requirements in capabilities and capacities.

A comprehensive understanding of the maximum limit and optimal parameters

of individual manufacturing equipment is essential to achieve this optimisation

because equipment performance directly influences the overall manufacturing pro-

cess’s efficiency and cost-effectiveness.

Consequently, optimising operational parameters becomes a prerequisite for effec-

tively optimising capabilities and capacities within a manufacturing configuration

group. However, several optimisation challenges persist in the manufacturing do-

main, which must be addressed to ensure the effective implementation of optimi-

sation techniques:

• Exact modelling of manufacturing equipment is difficult: The man-

ufacturing process typically involves numerous complex machines, tools, and

materials. Accurately modelling the interactions and dependencies between

these components is challenging due to the vast number of variables, non-

linearities, and changing conditions involved in the manufacturing process.

• Noisy measurements and uncertainties: Manufacturing processes often

involve uncertainties related to material properties, tool wear, and environ-

mental factors. Furthermore, measurement systems may introduce noise

to the data, which can negatively impact the accuracy of optimisation al-

gorithms. Addressing the mentioned problems requires developing robust

optimisation techniques to handle noisy and uncertain data.

• Data efficiency is required: Collecting large volumes of data from man-

ufacturing processes can be time-consuming and costly. Therefore, it is
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essential to develop data-efficient optimisation algorithms that can identify

optimal operational parameters using limited data.

Considering the above challenges, this chapter proposes a meta-algorithm online

optimisation of operational parameters (O3PARAMS), shown in Algorithm 2, de-

signed to iteratively optimise the operational parameters of manufacturing equip-

ment, taking into account the challenges specific to the manufacturing domain

and tailored to optimise the operational parameters of manufacturing equipment.

A meta-algorithm is an algorithm that can accept other algorithms as input, ef-

fectively extending or enhancing the capabilities of the input algorithms. In the

case of O3PARAMS, it accepts an optimisation algorithm, denoted as Φ, as input.

Algorithm 2 Meta algorithm for online optimisation of operational parameters
(O3PARAMS)

Require: An initial guess of operational parameters x0, the lower bound l, the
upper bound u, the total number of iterations n, the exploration parameter
α, an optimisation algorithm Φ, a data-structure for storing dataset D

1: y0 ← O(x0) ▷ Measurements: energy consumption, cycle-time, etc.
2: ybest ← y0 ▷ Best values so far
3: xbest ← x0

4: D ← (x0, y0) ▷ Set the initial dataset
5: i← 1
6: while i < n do
7: Sample p from uniform distribution U(0, 1)
8: if p ≤ α then
9: i← i + 1
10: xi ← Φ(i, l,u,D) ▷ Call the optimisation step
11: yi ← O(xi)
12: D ← D ∪ (xi, yi) ▷ Extend the dataset
13: if yi < ybest then
14: xbest ← xi

15: ybest ← yi
16: end if
17: end if
18: end while
19: return xbest, ybest,D

The O3PARAMS works as follows:

1. Initialisation: The algorithm begins by taking an initial guess of opera-
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tional parameters (x0), lower (l) and upper (u) bounds, the total number of

iterations (n), an exploration parameter (α), an optimisation algorithm (Φ),

and a data structure for storing dataset (D).

2. First measurement: It then measures the objective function (O(x0)) (Line

1) with the initial guess, which can include factors such as energy consump-

tion, cycle time, etc.

3. Iterative optimisation: The algorithm runs through a loop for a prede-

fined number of iterations (n) (Line 6). Each iteration samples a probability

(p) (Line 7) from a uniform distribution and compares it with the exploration

parameter (α). If the probability is less than or equal to the exploration pa-

rameter (Line 8), it calls the chosen optimisation algorithm (Φ) to find a

new set of operational parameters (xi) (Line 10).

4. Evaluation and update: The algorithm evaluates the new operational

parameters by calculating their objective function (yi = O(xi)) (Line 11)

and updates the dataset with the new data point. If the new objective

function value is better than the current best value, the best operational

parameters and their associated objective function value are updated (Line

13-16).

5. Completion: Once the algorithm has reached the specified number of itera-

tions, it returns (Line 19) the best operational parameters, the best objective

function value, and the dataset collected during the optimisation process.

The O3PARAMS algorithm brings the flexibility to optimise individual manufac-

turing equipment and a combination thereof, thanks to the black-box modelling

methodology. The singular prerequisite of this algorithm is the measurability of

the key performance indicator (KPI) to be optimised.

Upon optimising manufacturing configurations for maximum KPI, these configu-

rations qualify as potential candidates for subsequent optimisation stages. These
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include meeting required capabilities and capacities, which are further discussed

in the following section.

6.3.4 Optimisation for capability and capacity

After fine-tuning the manufacturing equipment for optimal operational parame-

ters, the next step is to optimise for capability, capacity, or both based on the

requirements and identified changes.

Optimising capability and capacity involves multiple conflicting objectives, such as

investment, recurring, and transition costs. Each cost can be further decomposed

into separate dimensions as shown and modelled in Chapter 4. As a result, this

process requires multi-objective optimisation to balance the competing objectives

effectively.

Essentially, optimising for capabilities and capacities requires solving the problem

defined in Equation 3.10 in section 3.2.1.4. There are two general methods for

solving optimisation problems in this context:

• Weighted sum scalarisation

• Pareto front optimisation.

6.3.4.1 Weighted sum scalarisation optimisation

Weighted sum scalarisation is a method for solving multi-objective optimisation

problems by converting them into single-objective problems. It does this by as-

signing a weight to each objective and then combining them into a single objec-

tive function. This method can be applied to the manufacturing requirements

satisfaction problem described above. The steps for implementing weighted sum

scalarisation are as follows:
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1. Assign weights to the objectives: Assign a weight wi to each of the objectives

of the problem, that is, investment cost, cost of the requirement period and

cost of reconfiguration. These weights must be non-negative and sum to 1,

that is,
∑3

i=1wi = 1.

2. Combine the objectives: Form a single objective function by combining the

weighted objectives as follows:

Z(x) =
T∑
t=1

(w1I(xt) + w2LtR(xt) + w3Q(xt, xt+1)) (6.3)

3. Solve the single-objective problem: Minimise the combined objective func-

tion Z(x) subject to the capacity-satisfaction constraint (Equation (3.11))

and the integrality constraint (Equation (3.12)). This can be done using

traditional single-objective optimisation techniques, such as linear program-

ming or mixed-integer programming, depending on the nature of the decision

variables.

6.3.4.2 Pareto front optimisation

Pareto front optimisation is another method for solving multi-objective optimisa-

tion problems. Unlike weighted sum scalarisation, this method does not require

the assignment of weights to objectives. Instead, it seeks to find a set of non-

dominated solutions that represent trade-offs between the multiple objectives. A

solution is considered non-dominated if it is not worse in all objectives compared

to any other solution. The steps for implementing Pareto front optimisation are

as follows:

1. Generate an initial set of solutions: Start with an initial set of feasible

solutions which can be obtained using heuristics, random sampling, or other

methods.
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2. Evaluate the solutions: Calculate the objective values for each solution in

the initial set using the investment cost, recurring cost, and transition cost

functions.

3. Identify non-dominated solutions: For each solution in the initial set, com-

pare it with all other solutions. A solution is considered non-dominated if

there is no other solution that is better in all objectives.

4. Generate new solutions: Create new solutions by applying search and op-

timisation techniques, such as genetic algorithms, simulated annealing, or

local search. These techniques typically involve modifying existing solutions

to generate new ones that are then added to the set of solutions.

5. Update the Pareto front: Re-evaluate the new solutions and update the

Pareto front by adding any new non-dominated solutions and removing any

solutions that are now dominated.

6. Iterate: Repeat steps 4 and 5 until a stopping criterion is met, such as a

maximum number of iterations or a convergence threshold.

The final Pareto front represents a set of trade-offs between the multiple objectives,

allowing decision-makers to choose a solution based on their preferences.

The output from the weighted sum scalarisation or Pareto front optimisation is

used as input to a decision-making module to further improve the adaptability and

efficiency of the manufacturing system, especially in the face of stochastic events

and rapidly changing manufacturing requirements.

The decision-making module learns and adapts to changes in the manufacturing

environment and requirements dynamically, enabling the system to cope with

uncertainties and fluctuations in demand. Therefore, the next section looks at the

final module, the decision-making module.
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6.4 Decision-making module

The optimisation module generates optimal manufacturing configurations based

on varying capabilities, capacities, and operational parameters. However, the

optimal solutions derived might require an additional decision-making step facili-

tated by a human expert or automated processes. This is predominantly the case

when employing multi-objective optimisation techniques, as single-objective opti-

misation algorithms typically produce outright optimal solutions that do not need

further evaluation.

Therefore, to present the decision-making process coherently, first, existing MCDM

methods are discussed that were put into empirical use in this research, verifying

their efficiency. Following this, a RL-based framework is proposed, which presents

a novel approach to decision-making in optimisation for optimal selection of man-

ufacturing configurations. The overall decision-making module, which consists of

both MCDM and RL-based decision-making, is shown in Figure 6.4.

Discrete event simulation 
environment

Multiple-criteria 
decision-making

TOPSIS ASF Pseudo
weights

Reinforcement learning based 
decision-making

Figure 6.4: Decision-making module
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6.4.1 Multiple-criteria decision-making methods

The decisions in the context of the MSC problem often involve considering mul-

tiple criteria, requiring robust decision-making methods. Three approaches that

have proven effective in this context are technique for order of preference by simi-

larity to ideal solution (TOPSIS), achievement scalarisation function (ASF), and

pseudo-weights (PW). Although many multiple-criteria decision-making (MCDM)

methods exist, TOPSIS, ASF, and PW were specifically chosen due to their ability

to minimise subjectivity and provide robust, quantitative decision-making frame-

works suited for complex engineering tasks such as manufacturing configuration

selection.

6.4.1.1 TOPSIS

The TOPSIS method involves determining the ideal and negative-ideal solutions,

calculating the Euclidean distance of each alternative to these solutions, and com-

puting the relative closeness to the ideal solution. The alternative with the highest

relative closeness is considered the best.

d+i =

√√√√ n∑
j=1

(rij − r+j )2 (6.4)

d−i =

√√√√ n∑
j=1

(rij − r−j )2 (6.5)

CCi =
d−i

d+i + d−i
(6.6)

where d+i and d−i are the distances of the alternative i from the positive ideal

solution and the negative ideal solution, respectively. rij denotes the normalized
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value of criterion j for alternative i. r+j and r−j denote the ideal and negative-ideal

solutions of criterion j, respectively. CCi is the relative closeness of alternative i

to the ideal solution.

6.4.1.2 ASF

The ASF method converts a multi-objective optimisation problem into a single-

objective one. The ASF for an alternative x is given by:

max
j∈J

(
fj(x)− z∗j

λj

)
(6.7)

where fj(x) is the value of objective function j for alternative x, z∗j is the ideal

solution for objective function j, and λj is the weight of objective function j. The

decision-maker seeks to minimize this function to find the best solution.

6.4.1.3 Pseudo-Weights

PW offer a compromise solution for multi-objective optimisation problems. PW

measure the relative importance of each objective and assist in generating a de-

sirable trade-off surface.

ω∗
j =

fj(x
∗)− fw

j

f ∗
j − fw

j

(6.8)

where fj(x
∗) is the value of objective function j for the optimal solution x∗, fw

j

is the worst possible value of objective function j, and ω∗
j is the pseudo-weight of

objective function j.
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6.4.2 RL-based decision-making

The final step in decision-making for optimal manufacturing configuration selec-

tions is validating the robustness of the chosen solutions by MCDM methods. For

this purpose, this thesis proposes using RL-based decision-making. The inherent

capability of RL to handle complex environments characterised by stochasticity,

uncertain events, and long-term planning under uncertainty makes it a suitable

tool for verifying the efficacy and resilience of MCDM-based selections in real-

world manufacturing scenarios.

6.4.2.1 Components of RL

RL-based decision-making consists of several inherent components. The interac-

tion between these components is shown in Figure 6.5 and described below:

Agent

Experience

Algorithm

Environment

EpisodesEpisodesEpisodes

Policy

Action,
Observation,

Reward

Action Observation,
Reward

Optimize 
policy

Generate
episodes

Repeat simulation

Input

Figure 6.5: Interaction of components in RL.

• Agent. The agent is the decision-maker in the RL framework. It interacts

with the environment, takes actions based on its current state, and learns

from the feedback (rewards or penalties) received.

• Environment. The environment is the context in which the agent operates.

It responds to the agent’s actions by presenting a new state and a reward
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or penalty. In manufacturing, the environment could be a production line,

a warehouse, or any other system in which decisions need to be made.

• Experience. Experience refers to the sequence of states, actions, and re-

wards that an agent encounters over time. Through experience, the agent

learns which actions yield the highest rewards in various states.

• Algorithm. The algorithm is the method by which the agent learns from

its experience. There are numerous RL algorithms, each with its own ap-

proach to learning from experiences and updating the agent’s policy, such

as Q-Learning[148], Deep Q-Network (DQN)[149], and Proximal Policy Op-

timization (PPO)[150].

• Policy. The policy defines the behavior of the agent. It is a mapping from

states to actions, directing the agent’s actions at each state. The goal of

the RL process is to find the optimal policy that maximises the expected

cumulative reward.

• Episodes. Episodes represent a complete sequence of the agent interacting

with the environment, from an initial state to a terminal state. Each episode

provides a batch of experiences from which the agent can learn and improve

its policy.

6.4.3 Manufacturing RL decision-making environment

Upon defining the components of RL, a novel manufacturing reinforcement learn-

ing environment (MFGRL) was developed. The primary objective of this environ-

ment is to provide a discrete-simulation environment for assessing the robustness

of the selected solutions by replicating real decision-making scenarios as accurately

as possible. The user interface of the MFGRL environment is displayed in Figure

6.6.
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Meta data 
for 
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per cfg.
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Figure 6.6: MFGRL Environment

The MFGRL environment comprises the following elements:

• Production status: This represents crucial details about the manufactur-

ing process, such as:

– Remaining demand : Indicates the remaining quantity of products re-

quired.

– Remaining demand time: Denotes the remaining time to fulfil the de-

mand.

• Meta data for algorithms: This provides information to evaluate the

performance of the RL algorithm, such as:

– Step reward : Indicates the reward received at the current step.

– Total reward : Accumulates the rewards received over all steps.

• Market data: This depicts the manufacturing configurations and equip-

ment available in the market. It provides various cost factors and production

rates, all subject to stochastic changes or tied to real data.

– Incurring costs : Also known as investment costs, these represent the
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costs involved in purchasing new manufacturing configurations or equip-

ment.

– Recurring costs : Ongoing costs, like energy expenditures, associated

with operating the manufacturing configurations.

– Production rates : Denote the manufacturing capacities of the available

configurations.

– Setup times : Reflect the delivery times of purchased manufacturing

configurations or equipment, subject to changes based on supply chain

dynamics.

• Status of current manufacturing facility: This presents an overview of

the current state of the manufacturing operations. It includes the operational

status, production output, and various costs associated with the purchased

manufacturing configurations or equipment.

– Status of currently running manufacturing configurations : Provides

real-time operational status—whether the manufacturing configuration

is running, being prepared, or has failed.

– Products produced : Displays the quantity of products manufactured by

each configuration.

– Incurred costs : Represents the total investment made for the purchased

configurations or equipment.

– Recurring costs : Depicts the operational expenses incurred for the pur-

chased configurations or equipment.

– Production rates : Shows the production capacities of the purchased

configurations or equipment.

– Setup time: Indicates the delivery time of the purchased configurations

or equipment.
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The state space in RL formally represents all the information needed for the

agent to decide at any given moment. In the context of the MFGRL environment,

the state includes all information available from the production data, metadata for

algorithms, market data, and the status of the current manufacturing facility. It

encompasses details such as remaining demand, remaining time, rewards, available

manufacturing configurations in the market, their respective costs and production

rates, along with the current manufacturing facility’s status, production output,

and cost details. These states serve as the inputs for the RL agent, enabling it to

understand the current condition of the manufacturing environment.

Therefore, the state space of the proposed MFGRL environment is defined as

an (2 + 6S + 4M)-dimensional vector. Here, S represents the space size, which

essentially is the number of elements in the state space related to the current man-

ufacturing setup. M denotes the number of different manufacturing configurations

available in the market. To elaborate:

• The term 2 in the expression 2 + 6S + 4M accounts for the two universal

parameters:

1. Remaining demand: Dr ∈ Z+, initialized as Dr = D.

2. Remaining demand time: Tr ∈ Z+, initialized as Tr = TD.

• The term 6S accounts for six types of information for each element in the

space size S. Specifically, for each S, the six types of information are:

1. Investment costs of manufacturing configurations: I ∈ RS
>0.

2. Recurring costs of purchased manufacturing configurations: R ∈ RS
>0.

3. Production rates of purchased manufacturing configurations: P ∈ RS
>0.

4. Setup times: U ∈ RS
>0.

5. Current statuses of purchased manufacturing configurations: C ∈ RS
≥0,≤1.

6. Outputs, or the number of products produced: O ∈ RS
≥0.
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• The term 4M accounts for four types of market-related information for each

of the M manufacturing configurations:

1. Market investment costs: I ∈ RM
>0.

2. Market recurring costs: R ∈ RM
>0.

3. Market production rates: P ∈ RM
>0.

4. Market setup times: U ∈ RM
>0.

In summary, the state space is a high-dimensional vector that encapsulates a

comprehensive set of variables. These variables pertain to both the current manu-

facturing setup and the market conditions, thereby enabling the RL agent to make

well-informed decisions.

The action space in RL represents the set of all possible actions that the agent

can take at a given state. In this manufacturing context, actions could include:

• purchasing new manufacturing configurations or equipment from the market,

• starting or stopping a manufacturing process,

• changing the operating parameters of a running process, and so forth.

The RL agent determines the choice of action based on its current policy to max-

imise the cumulative reward over time. The action space must be well-defined to

ensure the agent can interact effectively with the environment.

The proposed RL environment complements MCDM methods in decision-making

for optimal manufacturing configurations. While MCDM methods provide a ro-

bust framework for making decisions based on multiple criteria, the RL environ-

ment, specifically the MFGRL, provides a testing ground to validate these deci-

sions. It creates a discrete-simulation environment that replicates real decision-

making scenarios. This environment’s ability to handle stochasticity, uncertainty,

and long-term planning under these scenarios makes it particularly useful.
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RL adds an extra layer of robustness to the decisions derived from MCDM meth-

ods, providing an additional validation step. The RL environment also opens the

door for real-time learning and dynamic decision-making, allowing the system to

continually learn and improve its policy in response to the changing environment.

Thus, integrating MCDM with the RL environment leads to more resilient and

efficient decision-making in manufacturing configuration selection.

6.5 Chapter summary

This chapter addressed the optimisation and decision-making challenges concern-

ing selecting optimal manufacturing configurations due to multiple and fluctuating

manufacturing costs with uncertainties. To this end, three modules were devel-

oped, all of which reside on top of the proposed data model:

1. Changes identification module: Employing the CIDENA algorithm, this

module analysed input data models to pinpoint alterations in capabilities,

capacities, and operational parameters across successive manufacturing re-

quirement periods. CIDENA ingested two requirement periods and out-

putted the changes in capabilities (∆B), capacities (∆P ), and operational

parameters (∆O). The algorithm processed each capability-capacity pair,

updated capacities based on availability, filtered non-zero values, and evalu-

ated conditions to recommend configuration modifications.

2. Optimisation Module: This module employed an optimisation matrix to

categorise the identified changes into four distinct scenarios, thereby guid-

ing the selection of suitable optimisation algorithms. For the optimisation

of operational parameters, the O3PARAMS meta-algorithm was introduced,

which is tailored to address manufacturing-specific challenges such as uncer-

tainty and noisy data. Multi-objective evolutionary or genetic algorithms
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were recommended for capability and capacity optimisation to balance con-

flicting objectives. The module supported single and multi-objective optimi-

sation, suggesting weighted sum scalarisation or Pareto front optimisation

for multi-objective scenarios.

3. Decision-Making Module: This module validated the optimisation out-

comes using multiple criteria decision-making (MCDM) methods, such as

TOPSIS, ASF, and Pseudo-Weights. Additionally, reinforcement learning

(RL) was proposed for sequential decision-making under uncertainty, facili-

tated by a novel manufacturing RL environment named MFGRL. The MF-

GRL environment was a simulation testbed for evaluating decision robust-

ness, incorporating elements like production status, market data, current

facility status, actions, and rewards.

This chapter concludes the technical contributions provided in this thesis. The

following chapter will systematically validate all the technical contributions from

all three technical chapters. This validation will be performed using a controlled

robotic demonstrator and applying the research contributions in broader manu-

facturing contexts.
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7.1 Introduction

The goal of this chapter is to experimentally validate the research contributions

provided in technical chapters 4, 5, and 6 following the validation methodology

presented in Chapter 3.3.

Specifically, experiments in this chapter are done in a controlled robotics lab en-

vironment where use cases were developed from scratch, and the complexity of

manufacturing scenarios was increased incrementally.

The validation of the research hypotheses is done sequentially in the following

way:

1. Develop an object-oriented data model for given manufacturing processes

that can cover disturbances such as capability change, capacity change, and

operational parameter change requirements.

2. Develop manufacturing apps for each manufacturing requirement scenario

to demonstrate a modular and interoperable software integration approach

building on the previous step’s data model.

3. Integrate developed optimisation and decision-making algorithms that use

the data model and the manufacturing apps to deal with multiple objectives

and uncertainties.

A holistic solution to the MSC problem is considered successful if all the above

criteria are met, where each stage depends on the previous step’s success.

With the above steps defined, the next section describes the experimental setup, in-

cluding the selected representative manufacturing processes and the utilised man-

ufacturing assets.
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7.2 Experimental setup

7.2.1 Representative manufacturing processes

The experiments in this chapter focus on two representative manufacturing pro-

cesses: sorting cylinders of various dimensions, as shown in Figure 7.1, and bin-

picking of three different parts of industrial pipe couplers, as shown in Figure

7.2. While both sorting cylinders and bin-picking of industrial pipe couplers are

similar manufacturing processes, their underlying mechanisms and challenges are

different.

Sorting cylinders primarily involves a classification task. The objective is to distin-

guish between cylinders based on specific attributes such as diameter, height, and

colour. The challenge in this task lies in the accurate differentiation of cylinders

that have closely related but distinct specifications. The focus is on attribute-

based categorisation, and the task is generally static, meaning the cylinders are

usually presented in a uniform orientation for sorting.

Figure 7.1: Manufacturing setup for the sorting task. The left figure shows the
post-image capture state, detailing workspace and object identification. The right
image depicts the robot executing the sorting procedure.

In contrast, bin-picking of industrial pipe coupler parts is a more dynamic task

that involves robotic recognition and selection. The parts are often randomly
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oriented within a container, necessitating advanced spatial recognition algorithms.

The challenge here is identifying the correct part, determining its orientation, and

planning a collision-free path for the robotic arm. This task is more complex

regarding robotic manipulation and requires real-time processing to adapt to the

random orientations of the parts.

Figure 7.2: Manufacturing setup for the bin-picking process with three distinct
components. The goal is to allocate them accurately to matching containers.

7.2.2 Employed manufacturing assets

The validation process employs the subsequent manufacturing equipment from the

Advanced Robotics Lab at the University of Nottingham, as shown in Figure 7.3:

• FANUC ER-4iA industrial robot: An industrial robot designed for tasks

requiring precision and reliability.

• R-30iB Mate Plus Controller: A FANUC robot controller that ensures

operation and manoeuvring of the FANUC industrial robots.

• Dual-arm ABB YuMi - IRB 14000 collaborative robot: A cobot
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which comes with intrinsic safety measures for tasks demanding collabora-

tion between humans and robots.

• ABB IRC5 - Industrial Robot Controller: ABB robot controller which

ensures operation and manoeuvring of the ABB robots.

• Schunk parallel grippers: Tools to provide precise and firm grasping of

objects.

• FANUC iRVision camera with black and white 2D vision: FANUC

camera for image capturing, object detection, and spatial orientation.

• Intel RealSense LiDAR L515: LiDAR camera for high-resolution 3D

images with depth perception.

• Raspberry PI 4 Edge device with 8GB RAM and 32GB HDD (x2):

Computational devices for hosting and deploying manufacturing software.

Figure 7.3: Manufacturing assets utilised in the validation process.
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7.2.3 Introduced manufacturing requirements

Several new manufacturing requirements, as shown in Figure 7.4, are introduced

during the validation steps to assess the effectiveness of the proposed research

contributions:

• Capability change requirement: transitioning from a sorting process to

a bin-picking process.

• Capacity change requirement: increasing the number of bin-picking op-

erations per time unit.

• Operational parameters change requirement: reducing energy con-

sumption without compromising cycle time.

Model initial 
manufacturing process

Introduce capability 
change requirement

Introduce capacity change &
operational parameters change

Figure 7.4: The figure shows the introduction of new manufacturing requirements
as disturbances during the validation steps to assess the effectiveness of the pro-
posed solutions.

This approach of systematically altering the manufacturing requirements during

the validation steps provides a comprehensive understanding of how effectively the

solutions can adapt to real-world manufacturing constraints and variations.

With the experimental setup presented, the next section begins with validating

the proposed object-oriented data model, which forms the foundational basis for

validating subsequent technical contributions such as manufacturing apps, opti-

misation, and decision-making algorithms.
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7.3 Validation of the object-oriented data model

The goal of this section is to experimentally show that the technical contributions

presented in Chapter 4 address

Research question 1: What type of data models can accurately represent the

complexities and dynamic nature of manufacturing systems while also suitable for

software application integration?

and validate

Research hypothesis 1: Object-oriented data modelling can effectively capture

the complexities and dynamism integral to manufacturing systems while being suit-

able for integrating with software applications.

Data models form the foundation when designing complex systems such as manu-

facturing systems. Consequently, the first step in validating the holistic solution is

to develop a data model for the underlying manufacturing process. The validation

process of the data modelling is structured as follows:

1. Develop initial data model for the manufacturing process of sorting cylinders

building on top of the technical contributions provided in Chapter 4.

2. Update the initial data model simulating the capability change requirement,

i.e., the capability changes from sorting to bin-picking.

3. Update the data model in the previous step simulating the capacity change

requirement, i.e., the number of bin-picking operations increases.

The subsequent sections delve deeper into the above steps and demonstrate the

updates applied to the initial object-oriented data model sequentially.
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7.3.1 Data model for the initial manufacturing process

The sorting of the cylinders is selected as an initial manufacturing process, which

progresses further with different manufacturing requirements. Therefore, the ini-

tial data model for the sorting process is modelled as shown in Figure 7.5.

Figure 7.5: Foundational data model for the sorting process. UML object diagrams
provide a visual representation of instances based on the UML class diagrams.

Figure 7.5 uses UML object diagrams to illustrate instances originating from the

UML class diagrams. The objects are detailed as follows:

1. Manufacturing configuration: At the heart of the data model is the Man-

ufacturingConfiguration1 object. This object is central in coordinating the

various elements of the sorting process. It establishes multiple associations

with assets such as Robot1, Camera1, Gripper1, and EdgeDevice1. Addi-

tionally, the configuration is linked to the SortingCapability, highlighting its
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sorting capability. The ManufacturingConfiguration1 object incorporates

several methods to underscore its multifunctional role in this data model.

2. Manufacturing requirement: The ManufacturingRequirement1 object

represents a need for the sorting capability with a specified capacity of five

operations per unit of time. It establishes a directed association with the

object SortingCapability, indicating its reliance on it.

3. Capabilities: The data model’s design differentiates between individual

capabilities and a combined capability:

• Capability1, Capability2, and Capability3 are individual capabilities,

representing Vision, Motion, and Grip capabilities. Each capability

embodies a distinct function vital to the sorting process.

• SortingCapability is represented as a combined capability. It represents

a fusion of the atomic capabilities, demonstrating the integration of

multiple functions.

4. Manufacturing assets: Each asset has distinct attributes and contributes

uniquely to the manufacturing process:

• Robot1 : A robotic asset from the FANUC brand, model ER-4iA, fea-

turing six axes, a reach of 550 mm, and a repeatability of 0.010 mm.

• Camera1 : A FANUC’s iRVision 2D BW model, serving as the visual

component of the sorting operation.

• Gripper1 : A parallel gripper by Schunk, essential for picking cylinders.

• EdgeDevice1 : An edge computing device, Raspberry PI, equipped with

8 GB RAM, vital for local processing and data management.

5. Manufacturing apps: These software components, hosted on EdgeDe-

vice1, are tailored for specific tasks:
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• ImageCapturingApp: Designed for visual data collection, with features

like cropping and workspace detection.

• ObjectDetectionApp: Specialised in cylinder detection, it utilises the

RANSAC algorithm for advanced pose detection.

• SortingApp: As implied, it sorts objects, primarily by colour.

• PickAndPlaceApp: This app facilitates the pick-and-place operations,

bridging the software and hardware components.

The detailed structure of this data model encapsulates the complexity of the manu-

facturing system and the sorting process. Each object, relationship, and attribute

is designed to provide a comprehensive representation, ensuring seamless opera-

tion.

Modelling the manufacturing process in an object-oriented way helps to encapsu-

late the complexities and provides modularity. Therefore, the next section demon-

strates how the data model is minimally affected when there is a capability change

requirement.

7.3.2 Modelling capability change requirement

In this setup, the data model earlier designed for the sorting process is adjusted

for the bin-picking of three distinct parts of pipe couplers. The primary objective

of this section is to demonstrate how few changes to the initial data model are

needed to introduce a new capability. The alterations made to the initial data

model from the previous section are presented in Figure 7.6.

Several changes are indispensable to transition from sorting cylinders to bin-

picking of pipe couplers. Firstly, the capability requirements differ; bin-picking

demands enhanced 3D vision to navigate densely packed environments, necessi-

tating introducing a “3D Vision” capability. The camera hardware must also be
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Figure 7.6: Modelling capability change requirement. Capability changes from
sorting to bin-picking process. That data model presented in Figure 7.5 is changed
with new coloured elements.

updated to support this, leading to the shift from a 2D camera to a more ad-

vanced LiDAR-based camera. The software components also need to be changed

to accommodate new software capabilities.

The changes, highlighted using different colours, provide a clear visual represen-

tation of the modifications. The cyan elements represent digital changes, the

lime elements indicate physical changes, and the orange elements signify software

adjustments. Key modifications include the introduction of Capability4 for “3D

Vision”, transitioning from Camera1 to Camera2, and software updates like the

ObjectDetectionApp and the new BinPickingApp.

Despite these alterations, a significant portion of the original data model remained
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the same, showcasing the model’s inherent flexibility. Elements such as Robot1,

Gripper1, and EdgeDevice1 were retained, indicating the model’s versatility across

different manufacturing processes. The capability structure was particularly mod-

ular, allowing a seamless transition from SortingCapability to BinPickingCapabil-

ity, integrating existing atomic capabilities and introducing only one new capabil-

ity.

On the hardware side, the singular change from Camera1 to Camera2 underscores

the model’s adaptability with minimal physical alterations. Similarly, software

changes were direct and process-specific without affecting the broader software ar-

chitecture. These focused updates in hardware and software highlight the model’s

ability to evolve with precision.

As the volume or scale of operations expands, it becomes important to integrate

additional manufacturing equipment to adapt to changes in the capacities of man-

ufacturing operations. Therefore, the next section will demonstrate how the data

model adapts to the capacity change requirements requiring new manufacturing

equipment.

7.3.3 Modelling capacity change requirement

In this section, the focus is on addressing the increased demand in the capacity

of bin-picking operations. The revised capacity, set at ten bin-picking operations

per minute, surpasses the capabilities of the current robot, necessitating the inte-

gration of an additional robotic arm. This is a significant jump from the previous

capacity of five operations per minute.

The data model from the previous section undergoes very few modifications to

accommodate this change, as illustrated in Figure 7.7.

A new robotic arm, Robot2, from the ABB brand with the model YuMi IRB
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Figure 7.7: Modelling capacity change requirement. The capacity has been ad-
justed from 5 bin-picking operations to 10 bin-picking operations per minute. The
data model, as presented in Figure 7.6, has been updated with new coloured ele-
ments to reflect these changes.

14000, has been introduced to address the increased capacity requirements. With

its seven axes, a payload of 0.5 kg, a reach of 559 mm, and a repeatability of 0.020

mm, this robot complements the existing Robot1 to ensure the system can handle

the increased operations.

Additionally, another camera, Camera3, identical to Camera2, has been added

to support the new robot’s vision needs. To manage the computational demands

of the additional equipment, an extra edge device, EdgeDevice2, mirroring the

specifications of EdgeDevice1, has been integrated. This device runs the necessary

applications, such as ImageCapturingApp, ObjectDetectionApp, BinPickingApp,

and PickAnPlaceApp, ensuring seamless operations.

The adjustments to accommodate the increased bin-picking capacity highlight the
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changes’ essential yet minimal nature. This minimalism underscores the robust-

ness and adaptability of the original data model. Rather than a comprehensive

overhaul, the model can seamlessly integrate an additional robotic arm and asso-

ciated equipment. The foundational structure of the data model remains largely

consistent, with the introduction of Robot2, Camera3, and EdgeDevice2 adhering

to the same framework and associations as their predecessors.

Furthermore, integrating the new robotic arm and the additional camera does

not require redefinition or adjustment of the existing capabilities or applications.

This reuse of software applications for the new edge device exemplifies the model’s

versatility. Emphasising its modular design, the data model effortlessly facilitates

the addition of new equipment. Each new component, be it the robotic arm,

camera, or edge device, is incorporated as a distinct entity, ensuring no disruption

to the existing components.

In addition to capability and capacity change, operational parameters in manu-

facturing systems often require adjustments due to factors like evolving product

specifications or technological advancements. These operational parameters can

be various, such as changing the speed of the conveyor belt or adjusting the ve-

locity and acceleration parameters of robotic arms. Therefore, the next section

illustrates how the data model adapts when there is a need for optimising the

parameters of the manufacturing equipment.

7.3.4 Modelling operational parameters change require-

ment

In this section, the focus is on a pressing issue in sustainable manufacturing:

reducing the energy consumption of robotic systems without compromising their

operational efficiency.
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The FANUC ER-4iA robot is the exemplar for this validation step, chosen for

its widespread use and representative features. However, it is worth noting that

the approach delineated here is modular and can be seamlessly applied to other

robotic systems, such as those manufactured by ABB.

The imperative for energy optimisation stems from both environmental consid-

erations and the drive to improve cost-efficiency. As energy costs escalate and

sustainability becomes a corporate priority, understanding how the data model

adapts to these energy-saving requirements gains paramount importance. There-

fore, the modifications to the previous data model are illustrated in Figure 7.8.

Only the affected objects are showcased, avoiding unnecessary clutter.

Figure 7.8: Modelling operational parameter change requirement. The new re-
quirement is to reduce the energy consumption of the FANUC ER-4iA industrial
robot.

The data model introduces new digital changes, primarily focusing on the opera-

tions and parameters associated with the robot’s motion. The Operation1 object,
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labelled JointMotion, represents the specific operation that the robot performs and

will be the optimisation target. This operation has associated parameters, Param-

eter1 (acceleration) and Parameter2 (velocity), which are crucial determinants of

the robot’s energy consumption and cycle time.

The OptimisationModule object, employing a Bayesian optimisation algorithm, is

introduced to fine-tune these parameters. This module interacts directly with the

Operation1 object, indicating its role in optimising the robot’s joint motion. An

associated OptimisationApp is also introduced, suggesting that there might be a

software interface or application layer where the optimisation can be monitored

or controlled.

The associations between the robot, its capabilities, and its operations remain

consistent. The robot performs the JointMotion operation, which requires the

Motion capability. The optimisation module’s direct link to the operation signi-

fies its pivotal role in ensuring the robot’s energy-efficient performance without

compromising its operational speed or accuracy.

The object-oriented nature of the data model is especially beneficial in addressing

dynamic manufacturing requirements, such as the one at hand. Each component

of the manufacturing process, be it the robot, its operations, or the optimisation

module, is encapsulated as an individual object. This encapsulation ensures that

each object can be modified, optimised, or replaced without disrupting the system.

Furthermore, the relationships and associations between objects provide an intu-

itive understanding of how different components interact. In this scenario, the

direct association between the OptimisationModule and Operation1 indicates the

module’s role in fine-tuning the robot’s motion. This clarity not only aids in com-

prehending the system’s functioning but also simplifies implementing changes.
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7.3.5 Analysis

In Chapter 3.3.2, the following success metrics were established for the validation

of the proposed object-oriented data model:

1. Adaptability without extensive modifications. Throughout the val-

idation process, the data model showcased its adaptability by responding

efficiently to various changes in requirements. For instance, when the need

arose from sorting to bin-picking, the model was adjusted by introducing

a new capability and some software and hardware updates. Furthermore,

when there was an increase in bin-picking operations capacity, the model

could incorporate an additional robotic arm and its associated equipment

without undergoing a major change.

2. Representation of static and dynamic aspects. The data model can

capture the manufacturing process’s static and dynamic elements. On the

static side, components such as manufacturing assets (robots, cameras, grip-

pers, and edge devices) are well-defined with their respective attributes and

associations. The model effectively represents operations, capabilities, and

associated parameters on the dynamic front. A notable instance of this dy-

namic representation is when the model was adjusted to optimise the robot’s

energy consumption, which was achieved by introducing new objects related

to operations and parameters, further emphasised by adding the Optimisa-

tionModule, which directly interacts with the robot’s operation.

In light of the above arguments, the first research hypothesis is successfully vali-

dated, affirming the robustness and versatility of the object-oriented data model

in the context of manufacturing systems.
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7.4 Validation of the manufacturing apps

The goal of this section is to experimentally show that the technical contributions

presented in Chapter 5 address

Research question 2: What software development approaches can reduce the

interoperability challenges posed by utilising diverse equipment in manufacturing

systems while enhancing plug-and-produce capabilities?

and validate

Research hypothesis 2: Developing manufacturing software as modular man-

ufacturing apps, incorporating a modular approach to integrate various equipment

and communication protocols, can enhance a manufacturing system’s interoper-

ability and plug-and-produce capabilities.

Building upon the foundational data model and its subsequent modifications dis-

cussed in the previous section 7.3, this section delves into the validation of the

manufacturing apps. The validation process is structured as follows:

1. The development of manufacturing apps development kit (MAPPDK), as

described in Chapter 5.3.

2. The development of manufacturing apps for each identified scenario, lever-

aging the capabilities of the MAPPDK.

3. The development of a modular architecture that aids in deploying and or-

chestrating the manufacturing apps, as detailed in Chapter 5.4.

The subsequent sections delve deeper into each of these steps, detailing the intrica-

cies of the MAPPDK, the nuances of the manufacturing apps developed using this

kit, and the details of the modular architecture that serves these apps, ensuring

an interoperable and plug-and-produce manufacturing system.

166



7.4. VALIDATION OF THE MANUFACTURING APPS

7.4.1 Manufacturing apps development kit

The MAPPDK was developed through a structured process, combining theoretical

insights and practical requirements. This process is detailed as follows:

1. Requirement analysis: The requirements from Chapter 5.3.1 were re-

viewed to ensure the MAPPDK addressed the main challenges in the man-

ufacturing sector.

2. Development environment choice: Python programming language was

selected due to its focus on object-oriented data modelling, rich libraries,

and strong community backing.

3. Framework design: The base framework was made modular and adapt-

able, allowing for the addition of new functions or modules specific to equip-

ment without major changes.

4. Incorporation of vendor SDKs: Modules for FANUC and ABB were

developed to tackle the diversity of robots and vendor-specific standards

and to combine into a standard MAPPDK interface.

5. Core functionality development: Equipment-related methods were de-

veloped and thoroughly tested in virtual settings before real-world applica-

tion.

6. Documentation: Detailed documentation was produced, explaining the

features, usage instructions, and best practices for the MAPPDK.1

7. Iterative refinement: The MAPPDK was refined over time. User feed-

back, technological advancements in manufacturing, and emerging industry

challenges led to regular updates and improvements.2

1MAPPDK source code: https://github.com/torayeff/mappdk
2User feedback and documentation: https://github.com/torayeff/fanucpy
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One of the challenges in developing MAPPDK was developing a robot-specific

driver and communication protocol.

Therefore, a proof-of-concept communication protocol was developed between the

MAPPDK and the robot controller to validate the proposed idea, utilising socket

communication. The design of this protocol is depicted in Figure 7.9.

Figure 7.9: MAPPDK communication protocol with robot controllers using socket
communication over TCP/IP.

The communication protocol serves as a structured method for interaction between

MAPPDK and a robot controller. Initiated by the software, a request is sent to the

hardware to establish communication. Once acknowledged, a series of commands

can be relayed from the software to the hardware, which executes these commands

and provides feedback. The protocol is designed to handle standard operations

and errors, ensuring that the system responds with an error message if an invalid

command is sent.
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7.4.2 Developed manufacturing apps

Building upon the methodology proposed in Chapter 5.2.3, several manufacturing

apps were developed using the MAPPDK. Each of these apps, as illustrated in

Figure 7.10, is structured around the following components:

1. Functional interface

2. Control logic

3. Configuration parameters

4. Data management

5. Error handling

The object-oriented data modelling’s inheritance property was leveraged to inherit

these properties from the abstract ManufacturingApp class, as defined in Chapter

5.2.3 and depicted in Figure 5.4.

Figure 7.10: Developed manufacturing apps for the validation.
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The developed apps, their functionalities, and their components are detailed as

follows:

1. VisionApp:

• FunctionalInterface: Interfaces with camera hardware, such as FANUC

iRVision 2D BW model or the LiDAR-based camera.

• ControlLogic: Contains image processing and analysis algorithms.

• ConfigParams : Parameters related to image resolution, focus, zoom.

• DataManagement : Manages the storage and retrieval of captured im-

ages.

• ErrorHandling : Addresses camera malfunction or image corruption is-

sues.

2. PickAndPlaceApp:

• FunctionalInterface: Interfaces with the robotic arm and gripper.

• ControlLogic: Contains algorithms for determining pick-and-place lo-

cations.

• ConfigParams : Parameters related to robot speed and gripper.

• DataManagement : Manages the storage and retrieval of pick-and-place

sequences.

• ErrorHandling : Addresses issues like robot movement or object drop.

3. ImageCapturingApp:

• FunctionalInterface: Interfaces with the camera hardware.

• ControlLogic: Contains algorithms for capturing and cropping images.

• ConfigParams : Parameters related to image capture settings.

• DataManagement : Manages the storage and retrieval of captured im-

ages.
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• ErrorHandling : Addresses camera malfunction or storage issues.

4. ObjectDetectionApp:

• FunctionalInterface: Interfaces with captured images.

• ControlLogic: Contains algorithms for detecting objects in images, us-

ing the RANSAC and deep learnings algorithms.

• ConfigParams : Parameters related to detection sensitivity and object

size.

• DataManagement : Manages the storage and retrieval of detection re-

sults.

• ErrorHandling : Addresses issues like false detections or missed detec-

tions.

5. IndustrialRobotApp:

• FunctionalInterface: Interfaces with the robotic arm hardware.

• ControlLogic: Contains algorithms for robot movement and operation.

• ConfigParams : Parameters related to robot speed and movement se-

quences.

• DataManagement : Manages the storage and retrieval of robot opera-

tion logs.

• ErrorHandling : Addresses robot malfunction or movement issues.

6. SortingApp:

• FunctionalInterface: Interfaces with the robotic arm and vision system.

• ControlLogic: Contains algorithms for sorting objects based on criteria

like colour.

• ConfigParams : Parameters related to sorting criteria and bin locations.

• DataManagement : Manages the storage and retrieval of sorting results.
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• ErrorHandling : Addresses issues like mis-sorting or object drop.

7. FANUCRobotApp and ABBRobotApp:

• FunctionalInterface: Specific interfaces for FANUC and ABB robotic

arms.

• ControlLogic: Contains brand-specific algorithms for robot movement

and operation.

• ConfigParams : Brand-specific parameters related to robot speed and

movement sequences.

• DataManagement : Manages the storage and retrieval of brand-specific

robot operation logs.

• ErrorHandling : Addresses brand-specific robot malfunction or move-

ment issues.

These apps, developed using the MAPPDK, demonstrate the potential of the

proposed methodology in addressing interoperability challenges in manufacturing

systems. The modular and object-oriented approach ensures that each app can

be developed, deployed, and maintained independently, enhancing the plug-and-

produce capabilities of the system.

While the MAPPDK and the developed manufacturing apps enhance plug-and-

produce capabilities, ensuring seamless integration and interoperability of diverse

equipment in manufacturing systems, they alone are not sufficient for a holis-

tic solution. For effective deployment and synchronised operations, a modular

architecture is essential. This architecture not only supports dynamic app modi-

fications without system disruptions but also ensures optimal resource utilisation

and real-time responses. Therefore the next section delves into the details of this

modular architecture.
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7.4.3 Modular architecture

The modular architecture, as introduced in section 5.4, facilitates holistic com-

munication and deployment between manufacturing apps and equipment. The

realised architecture is illustrated in Figure 7.11.

Global 
Applications 
Repository

Architecture
Manager

Computational
Node-2

Computational
Node-1

Sorting/Bin-picking cluster

HTTPS

HTPPS

COMM
Protocol

Physical
Node-1

Physical
Node-2

Apps

Figure 7.11: Schematic of the modular architecture tailored for sorting and bin-
picking processes.

7.4.3.1 Elements of a modular architecture

Building upon the definitions from Chapter 5.4, the alignment between the phys-

ical and digital components in this validation setup is detailed below:

• Atomic devices: The system integrates the following atomic devices:
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– FANUC ER-4iA industrial robot

– Dual-arm ABB YuMi - IRB 14000 collaborative robot

– Schunk gripper

– FANUC iRVision camera

– Intel RealSense LiDAR L515

• Physical nodes: Two nodes are present:

– Physical node-1: Combines FANUC ER-4iA robot, R-30iB Mate Plus

Controller, Schunk gripper, and Intel RealSense LiDAR L515.

– Physical node-2: Combines Dual-arm ABB YuMi robot, ABB IRC5

Controller, Schunk gripper, and Intel RealSense LiDAR L515.

• Computational nodes: The system has two computational nodes:

– Computational node-1 operates with Raspberry PI 4 Edge device for

Physical node-1.

– Computational node-2 utilises Raspberry PI 4 Edge device for Physical

node-2.

• Manufacturing process cluster: The final system architecture consists

of the sorting and bin-picking process clusters.

7.4.3.2 Architecture manager

The architecture manager is an important component designed to streamline the

deployment and management of manufacturing apps. The architecture manager

ensures that each manufacturing app operates in an isolated environment by lever-

aging Docker, a platform that packages an application and its dependencies to-

gether in a container. This isolation is crucial to prevent conflicts arising from

differing software dependencies or versions.
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Kubernetes, a powerful container orchestration tool, is integrated to manage these

Docker containers. It not only automates the deployment of containers but also

handles tasks like scaling and failover for the applications. This significantly en-

hances system reliability and resilience, as Kubernetes can automatically replace

or reschedule containers when necessary.

Furthermore, the architecture manager incorporates Node.js for its backend pro-

cesses. Node.js, known for its non-blocking, event-driven architecture, is par-

ticularly suitable for real-time applications. This makes it a suitable choice for

managing real-time data flows and communication in the manufacturing setup.

Moreover, its vast library ecosystem accelerates the development of network ap-

plications, making the system more adaptable and extensible.

7.4.3.3 Global applications repository

The global applications repository is the centralised storage and management sys-

tem for all manufacturing apps. Built on Ubuntu Linux, a widely-recognised and

robust operating system, it ensures a stable and secure foundation for the reposi-

tory. Ubuntu’s consistent updates and vast community support make it a reliable

choice for such critical infrastructure.

Data within the repository is managed using an SQL-based database. This rela-

tional database system offers structured storage, essential for coherently organis-

ing vast amounts of data. Its querying capabilities ensure efficient data retrieval,

making it easier for users to access and manipulate the stored information.

A dedicated router is employed to ensure that all system components can com-

municate effectively. This router provides a stable connection and ensures the

integrity of the data being transferred. Its capability to support wireless data

transfer is crucial, allowing for flexibility in the placement of components and

ensuring seamless data flow between them.
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7.4.4 Analysis

In Chapter 3.3.2, the following success metrics were established for the validation

of the manufacturing apps:

1. Ease of integration with diverse equipment. The manufacturing apps,

developed using the MAPPDK, demonstrated their adaptability by seam-

lessly interfacing with a range of equipment, such as FANUC and ABB

robotic arms, Schunk grippers, and various camera models. The modular

design of the MAPPDK and the object-oriented approach ensured that each

app could be tailored to specific equipment needs without extensive customi-

sation. This was particularly evident in the development of brand-specific

apps like FANUCRobotApp and ABBRobotApp, which catered to the unique

requirements of each robot brand while maintaining a consistent interface

for the broader system.

2. Enabling plug-and-produce capabilities. The modular architecture,

combined with the architecture manager’s use of Docker and Kubernetes,

played an important role in enhancing the plug-and-produce capabilities of

the manufacturing apps. This setup allowed for the rapid deployment and

scaling of apps in response to changing manufacturing needs. Furthermore,

the global applications repository, ensured that apps could be easily accessed,

modified, and redeployed, facilitating quick setup in diverse manufacturing

environments. The real-time capabilities of Node.js in the architecture man-

ager further streamlined the deployment process, ensuring that apps could

respond promptly to real-time manufacturing events.

Given the above arguments, the second research hypothesis is successfully vali-

dated, highlighting the effectiveness of the manufacturing apps in addressing in-

teroperability challenges and enhancing plug-and-produce capabilities in manu-

facturing systems.
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7.5 Validation of the optimisation and decision-

making algorithms

The goal of this section is to experimentally show that the technical contributions

presented in Chapter 6 address

Research question 3: What types of algorithms can effectively manage un-

certainties and facilitate sequential decision-making in the dynamic and evolving

multi-objective environment of manufacturing processes?

and validate

Research hypothesis 3: An optimisation and decision-making framework that

integrates traditional optimisation and machine learning algorithms can effectively

manage uncertainties and facilitate sequential decision-making in dynamic, multi-

objective manufacturing environments.

The validation of the third research hypothesis relies on the data model introduced

in section 7.3, the requirements and data model illustrated in Figure 7.8, and the

MAPPDK developed in the previous section 7.4. The structure of the validation

process is as follows:

1. Development of energy monitoring app and modelling of the energy con-

sumption.

2. Optimisation of pick-and-place operation and development of an optimisa-

tion app.

3. Optimisation of the whole bin-picking process using the developed apps.

The following sections delve into the details of each of the above steps.
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7.5.1 Monitoring and modelling energy consumption

The FANUC ER-4iA industrial robot was chosen to optimise the operational pa-

rameters to minimise the energy consumption of the bin-picking process. The

FANUC robot was chosen primarily because of its constrained software and data

collection features, especially compared to ABB robots. Thus, a secondary aim is

to show that MAPPDK can compensate for these shortcomings, acting as an in-

terface between manufacturing hardware and optimisation algorithms. An energy

monitoring app was developed, and the robot’s energy consumption was modelled,

as elaborated in the subsequent sections.

7.5.1.1 Monitoring energy consumption

Energy optimisation of operational parameters of any manufacturing equipment

requires monitoring the energy data. Therefore, the first task was to monitor the

energy consumption of the FANUC ER-4iA during a bin-picking manufacturing

process. Unlike ABB robots, which allow energy data export to CSV files, FANUC

controllers restrict this information to the user interface of the teach pendant.

A comprehensive analysis of the FANUC robot controller was done to understand

how the energy data was stored in the FANUC robot controllers. It was identi-

fied that the specific system variable is responsible for storing energy data. This

system variable was integrated into the MAPPDK, which allowed monitoring and

collecting energy data using Python programming language.

The sampling rate is another important aspect when collecting the energy data

and using the data for optimisation and decision-making. High sampling rates

are essential for capturing the motion profiles of industrial robots. However, they

can be cumbersome for real-time data preprocessing, especially in low-resource

computing edge devices such as Raspberry PI. Conversely, low sampling rates risk
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omitting crucial information like the start and end of operation cycles, which is

necessary for the accuracy of the optimisation process.

In this validation experiment, the sampling rate was capped at 50 millisecond

intervals due to controller limitations and network latency, the maximum rate

supported by the FANUC controller. Post-acquisition, the data underwent resam-

pling to align timestamps and was stored in a time-series database, InfluxDB.

As shown in Figure 7.12, the energy monitoring and visualisation app was devel-

oped to be robot-agnostic, fitting into a modular architecture developed in 7.4.3.

Figure 7.12: Energy visualisation app developed using MAPPDK, InfluxDB, and
Grafana. This app was showcased at the opening of the Omnifactory facility at
the University of Nottingham. User interface credits to Karol Niewiadomski.

After developing a robot-agnostic energy monitoring and visualisation app, the

next step is to model the energy consumption for subsequent optimisation and

decision-making. The energy monitoring and visualisation facilitated an under-

standing of the key parameters affecting the energy consumption in the bin-picking

process. The key parameters’ optimisation is discussed in detail in the next sec-

tion.
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7.5.1.2 Modelling the energy consumption

Following monitoring, visualising and collecting the energy data, the next step

involves modelling the energy consumption of the industrial robot during the bin-

picking process.

A black-box modelling approach was used on a real robot instead of explicitly

modelling the industrial robot with all its intrinsic details, such as kinematics

and dynamics, or using simulation-based methods. The advantage of black-box

modelling is that it allows treating the whole system without knowing its inter-

nal workings and transferring it to different robots and manufacturing processes.

Therefore, a black-box model was developed, integrating an industrial robot with

a bin-picking manufacturing process. The black-box model can be represented as

below function:

f : Rd → R (7.1)

The above black-box function f receives a d-dimensional vector of parameter values

x ∈ Rd. The input vector x to the black-box function f is constrained using the

lower and upper bound parameter values vectors l ∈ Rd, and u ∈ Rd respectively.

In this experimental scenario, x is the vector of adjustable operating parameters

such as velocity and acceleration of the robot’s arm. The lower and upper values,

l and u, are the minimum and maximum values of the parameters allowed.

Robotic manufacturing systems are complex, and different factors can affect the

energy consumption of an industrial robot. Also, energy consumption measure-

ments can be noisy depending on energy monitoring solutions. Thus, the method-

ology developed should be robust to such noisy outputs. To deal with the mea-

surement noise directly inside the optimisation loop, the output of the black-box

model with a noise value and the observed energy consumption of a black-box
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model f(x) were measured as below:

E(x) = f(x) + ϵ (7.2)

where the noise parameter ϵ is normally distributed:

ϵ ∼ N (0, σ2) (7.3)

Considering the above model, the energy consumption optimisation of this bin-

picking manufacturing process is formulated as below:

min
x∈P

E(x) (7.4)

where

P = {x ∈ Rd | li ≤ xi ≤ ui ∀i = 1..d} (7.5)

is the feasible set of solutions.

The optimisation problem can be further broken down into smaller optimisations,

which makes the method scalable concerning the length of the robot program.

The black-box optimisation reasoning can be applied to the bin-picking process by

considering each pick-and-place of each type of part separately and independently

optimising energy consumption.

The modelled optimisation problem becomes as below:

min
x1∈P1

E(x1) + . . . + min
xN∈PN

E(xN) (7.6)

where N is the number of separable and independent operations.
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7.5.2 Pick-and-place optimisation

Before optimising the entire bin-picking process, the effect of an industrial robot’s

operational parameters on individual pick-and-place operations that comprise the

whole bin-picking process was optimised and analysed. A single pick-and-place

operation was optimised for energy efficiency by fine-tuning an industrial robot’s

operational parameters, such as velocity and acceleration.

7.5.2.1 Constraints for pick-and-place

Each pick-and-place operation in the bin-picking process was divided into the

following operations to analyse the effect of run time operational parameters:

• M1. Move to the “pick approach” pose.

• G1. Open the gripper.

• M2. Move to the “pick” pose.

• G3. Close the gripper.

• M3. Move to the “pick retract” pose.

• M4. Move to the “place approach” pose.

• M5. Move to the “place” pose.

• G3. Open the gripper.

• M6. Move to the “place retract” pose.

• M7. Move to the “home” pose.

The labels M and G refer to different types of actions, and there are 7 motions

labelled as M and 3 gripping actions labelled as G. The motion parameters can

be adjusted to affect energy consumption.
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In the optimisation process for setting the operating parameters of each motion se-

quence, the dual objectives are to minimise energy consumption while maintaining

a cycle time that does not exceed a specified threshold. The latter is particularly

crucial, as manufacturing operations’ cycle time is a key performance indicator.

In this experiment, a human operator established a maximum allowable cycle time

of 6 seconds for a single pick-and-place operation, aligning with the throughput

requirement of 10 sorting operations per minute in the capacity adaptation sce-

nario.

In a real manufacturing scenario, there are some challenging situations where the

energy consumption is demanding, and the robot performing tasks requires a given

velocity and acceleration. Therefore, each parameter was separately constrained

in addition to a maximum execution time constraint to meet such requirements

as shown in Table 7.1.

Motion type Velocity range Acceleration range Configs #

Motion 1 [50, 100] [50, 100] 50 ∗ 50 = 2500
Motion 2 [5, 40] [5, 40] 35 ∗ 35 = 1225
Motion 3 [5, 40] [5, 40] 35 ∗ 35 = 1225
Motion 4 [50, 100] [50, 100] 50 ∗ 50 = 2500
Motion 5 [5, 40] [5, 40] 35 ∗ 35 = 1225
Motion 6 [50, 100] [50, 100] 50 ∗ 50 = 2500
Motion 7 [50, 100] [50, 100] 50 ∗ 50 = 2500

Table 7.1: Minimum and maximum allowed velocity and acceleration values for
motions M1-M7.

Table 7.1 also shows the number of possible configurations for each type of motion.

These values are fixed for this specific manufacturing process, and the parameter

values are displayed in percentages of the robot’s maximum possible velocity and

acceleration.
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7.5.2.2 Optimisation using O3PARAMS algorithm

Pick-and-place operation was optimised using the O3PARAMS algorithm in the

following way:

1. Initially, energy data was collected via an energy monitoring app.

2. The energy data was then resampled to align with the timestamps and to

create regular time intervals.

3. Data were stored in the database to calculate total power consumption,

which was then incorporated into the model.

4. Subsequently, the optimisation loop continuously fine-tuned the operational

parameters of an industrial robot.

5. Lastly, the algorithm recommended new parameters for the robot, and the

robot parameters were updated accordingly.

Robot energy consumption was measured with minimum and maximum allowed

parameter configurations for the described pick-and-place operation. For clarity,

these configurations are referred to as Bmin and Bmax respectively. The same pick-

and-place operation was repeated ten times for each configuration, considering the

noisy nature of energy consumption measurements.

A key feature of the O3PARAMS algorithm is its modularity and capability for

online optimisation. Therefore, the modularity of the O3PARAMS algorithm and

its suitability for an industrial environment were tested using three different well-

known algorithms: Random Search (RS)[151], Generalised Simulated Annealing

(SA)[152], and Bayesian Optimisation (BO)[153]. The selection of these algo-

rithms was dependent on the task.

Various algorithms can be found in the literature, yet not all are appropriate

for solving black-box optimisation problems. In this context, the selection of
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optimisation algorithms was restricted to derivative-free optimisation algorithms

due to the absence of derivative information.

Random Search, Simulated Annealing, and Bayesian Optimisation are nondeter-

ministic algorithms, which means the output differs in every run, even with the

same input parameters. Therefore, each algorithm was run 100 iterations ten

times to ensure a fair comparison.

7.5.2.3 Analysis of optimisation results

The box plots and related statistics of the optimisation results can be seen in

Figure 7.13 and Table 7.2, respectively.

B_min B_max RS SA BO
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

kW
h

Algorithms comparison (100 iterations)

Figure 7.13: Comparing algorithms and baselines for the energy consumption
optimisation using O3PARAMS algorithm.

Figure 7.13 indicates that the maximum allowed parameters configuration results

in less energy consumption than the minimum allowed parameters configuration.

However, generally, the relationship is non-linear, and the maximum allowed pa-

rameters configuration does not always yield optimal energy consumption. Various

authors have demonstrated this [154–157] and is supported by the results obtained
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in this experiment.

Method Min. Max. Median Mean Std.

Bmin 0.736 0.754 0.741 0.743 0.006
Bmax 0.486 0.495 0.493 0.491 0.003

Simulated Annealing 0.507 0.606 0.575 0.559 0.033
Random Search 0.526 0.637 0.580 0.579 0.033

Bayesian Optimisation 0.415 0.486 0.450 0.446 0.020

Table 7.2: Experiment statistics. Values are in kWh.

From Figure 7.13 and Table 7.2, it can be seen that all optimisation algorithms

outperform the Bmin baseline. However, only Bayesian optimisation outperforms

Bmax. Bayesian optimisation outperforms Bmax on average by 9%, and the worst

case of Bayesian optimisation is similar to the best case of Bmax, which proves

that the fastest possible option is not the most energy optimal motion.

O3PARAMS algorithm was run with three previously chosen optimisation algo-

rithms starting from the same initial parameters configuration for 200 more it-

erations to check the possibility of further improvement. Figure 7.14 shows the

energy savings achieved by the optimisation algorithms compared to the baseline

results.

It can be observed from Figure 7.14 that the benchmarked algorithms Random

Search, Simulated Annealing, and Bayesian Optimisation outperform the Bmin by

28.38%, 29.73%, and 44.59%, respectively. However, Random Search and Simu-

lated Annealing methods do not outperform the Bmax because usually, Random

Search and Simulated Annealing methods require thousands of iterations to find

the optimal solution. Bayesian optimisation outperforms Bmax by 16.32% in as

few as 40 iterations.

The parameter values found by three optimisation algorithms are shown in Table

7.3, and the discovered velocity and acceleration values are not the fastest or slow-

est motion values. These results are consistent with the literature’s related work

and show the non-linear relationship between operating parameters and energy
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Figure 7.14: The energy consumption optimisation results for pick-and-place op-
eration.

consumption.

RS SA BO
Motion type v. a. v a. v. a.

Motion 1 100 52 96 50 98 64
Motion 2 13 30 19 31 19 40
Motion 3 6 32 29 30 19 39
Motion 4 46 68 88 92 50 100
Motion 5 26 34 13 31 12 40
Motion 6 57 91 96 88 75 85
Motion 7 95 63 66 63 71 72

Table 7.3: Optimised velocity and acceleration values. This table shows velocity
(v.) and acceleration (a.) values found by three optimisation algorithms: Random
Search (RS), Simulated Annealing (SA), Bayesian Optimisation (BO).

Figure 7.15 displays the cumulative minimum curves for each optimisation algo-

rithm for 200 iterations. Cumulative minimum curves are useful to visualise the

speed of finding solutions. As shown in Figure 7.15, the Simulated Annealing

algorithm finds its solution in 21 iterations. However, the algorithm does not im-

prove any more after that. The Random Search algorithm finds its best solution

in 166 iterations. However, the solution found is not better than the solution

187



7.5. VALIDATION OF THE OPTIMISATION AND DECISION-MAKING
ALGORITHMS

25 50 75 100 125 150 175 200
Iteration

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

kW
h

i=166
0.53 kWh

i=21
0.52 kWh

i=190
0.41 kWh

Cumulative minimums

Random
Search
Simulated
Annealing
Bayesian
Optimization

Figure 7.15: The cumulative minimum values for three different optimisation re-
sults.

found by the Simulated Annealing algorithm. The Bayesian optimisation finds

its best solution in 190 iterations. However, after 30 iterations, it outperforms

the Simulated Annealing algorithm, and after 40 iterations, it outperforms all

the baselines. Consequently, it can be concluded that Bayesian optimisation is a

relatively data-efficient algorithm.

Figure 7.16 shows the outcome of energy consumption as a function of the velocity

and acceleration parameters. The figure on the left shows the energy consumption

when all parameters are fixed except the velocity parameter of motion M7. It

can be observed that the relationship between velocity and energy consumption is

non-linear, i.e., the minimum energy consumption is achieved when the velocity

is around 70%. Similarly, the right sub-figure shows the energy consumption as

a function of the acceleration parameter of motion M7. The non-linearity prop-

erty also holds for this parameter. Figure 7.17 shows the contour plot of energy

consumption as a function of the velocity and acceleration parameters together.

This plot also reveals how the optimisation algorithm reaches the optimal point.

Initially, the parameters are sampled from different regions. However, as the opti-
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Figure 7.16: Slice plot for motion 7. (Left) Velocity varies; other parameters are
fixed. (Right) Acceleration varies; others are fixed.

Figure 7.17: Contour plot for motion M7 as a function of velocity and acceleration.
Other parameters are fixed.

misation progresses, more and more parameters are sampled in the neighbourhood

of the optimal parameters.
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7.5.3 Optimisation of bin-picking process

After optimising and analysing the pick-and-place operation, the optimisation app

was created and integrated into the global applications repository. Then the goal

shifted towards optimising the whole bin-picking process by reusing the results

and optimisation apps.

In the process of picking and placing each of the 3 parts of the pipe coupler,

7 distinct motions are involved. However, the parameters associated with these

movements differ for each of the 3 parts, referred to as Part-1, Part-2, and Part-3,

with distinct lower and upper bounds.

The optimisation applications previously developed were adapted for each part

according to their specific lower and upper bounds. In this experimental setup,

the optimisation was carried out over 200 iterations, a number that is the same

as the number of iterations employed in optimising pick-and-place operation. The

outcomes of each optimisation scenario were benchmarked against Bmin and Bmax

baselines, as shown in Figure 7.18.

The results from the optimisation procedure applied in this experimental setup are

shown in Figure 7.18. Optimisation of each part facilitated by the optimisation

app achieved a marked improvement in parameter values compared to the Bmax

baseline. The optimisation process may be discontinued upon the determination

of satisfactory motion parameters. The optimised parameter values discovered can

then be leveraged in subsequent iterations. This particular optimisation approach

yielded an average energy savings of 25%.

Optimisation apps developed for optimising the energy consumption of a single

pick-and-place operation proved effective in optimising the whole bin-picking pro-

cess.
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Figure 7.18: The plot shows the optimisation results of bin-picking for three dif-
ferent parts separately.
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7.5.4 Analysis

In Chapter 3.3.2, the following success metrics were established for the validation

of optimisation and decision-making algorithms:

1. Effective management of uncertainties and multiple objectives: The

optimisation algorithms were efficient at managing uncertainties and con-

flicting objectives. For example, O3PARAMS algorithm minimises energy

consumption while adhering to a maximum allowable cycle time of 6 seconds.

This optimisation was achieved through real-time adaptation to manufac-

turing environment changes, meeting the criteria for effective uncertainty

management.

2. Integration with the developed data models and apps: The optimi-

sation algorithms were fully integrated with the object-oriented data model

and the manufacturing apps. The energy monitoring app, for instance, pro-

vided real-time energy data that the optimisation algorithm used to fine-tune

operational parameters. This seamless integration validates the algorithms’

capability to work with the developed data models and apps.

In summary, the optimisation and decision-making algorithms successfully met the

established criteria. The O3PARAMS algorithm was notably effective in real-time

parameter tuning, contributing to the system’s adaptability to dynamic condi-

tions. These algorithms managed uncertainties and multiple objectives effectively

and integrated seamlessly into the developed data models, utilising the modu-

lar architecture of the manufacturing apps for real-time adjustments. Therefore,

the algorithms effectively address the challenges posed by dynamic and uncertain

manufacturing environments, thereby validating the research contributions made

in Chapter 6.
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7.6 Chapter Summary

This chapter aimed to experimentally validate the research contributions delin-

eated in the preceding technical chapters, specifically those related to object-

oriented data models, manufacturing apps, and optimisation and decision-making

algorithms.

The validation methodology adhered to the framework outlined in Chapter 3.3.

Two manufacturing processes served as the experimental backdrop: sorting cylin-

ders and bin-picking parts of industrial pipe couplers. These processes were chosen

for their distinct challenges and mechanisms, thereby providing a comprehensive

testing ground for the proposed solutions.

The validation process was structured to sequentially assess three research hy-

potheses:

1. The object-oriented data model’s adaptability and robustness in handling

changes in manufacturing requirements.

2. The manufacturing apps’ effectiveness in achieving interoperability and plug-

and-produce capabilities.

3. The optimisation and decision-making algorithms’ efficiency in managing

uncertainties and multiple objectives while integrating with the developed

data models and apps.

For the first hypothesis, the object-oriented data model demonstrated its adapt-

ability by efficiently responding to changes in manufacturing requirements, such

as transitioning from sorting to bin-picking and scaling the number of operations.

The model also effectively represented both static and dynamic aspects of the

manufacturing process, thereby validating its robustness and versatility.

The second hypothesis focused on the manufacturing apps developed using the
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MAPPDK. These apps showcased seamless integration with diverse equipment and

facilitated rapid deployment and scaling, thereby confirming their effectiveness in

enhancing interoperability and plug-and-produce capabilities.

Lastly, the optimisation and decision-making algorithms proved adept at managing

uncertainties and multiple objectives. They integrated seamlessly with the object-

oriented data models and manufacturing apps, demonstrating their capability to

adapt in real-time to dynamic manufacturing conditions.

Each research hypothesis was successfully validated, and a holistic solution to

the MSC problem was achieved. This holistic solution met all the predefined

criteria, confirming that each stage of the research was dependent on the successful

validation of the preceding stage. Therefore, the chapter successfully validates the

research contributions and presents a comprehensive solution to the challenges

posed by modern manufacturing systems.

While the validation process conducted in this chapter provides strong evidence

for the efficacy of the proposed solutions, it is imperative to extend this vali-

dation to real-world industrial settings. Therefore, the subsequent chapter aims

to bridge this gap by presenting case studies where the validated object-oriented

data models, manufacturing apps, and optimisation algorithms are deployed in

real industrial use-cases.

These case studies will not only confirm the findings of this chapter but also pro-

vide actionable insights into how the proposed solutions can be tailored to meet

the unique challenges of different manufacturing environments. The industrial val-

idations will substantiate the research contributions further and provide a robust

framework for their practical implementation.
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Industrial validations
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8.1 Introduction

In the preceding chapter, the focus was primarily on the experimental validation

of the research contributions, specifically in object-oriented data models, manufac-

turing apps, and optimisation and decision-making algorithms. The experiments

were carried out in a controlled environment, targeting two specific manufactur-

ing processes: sorting cylinders and bin-picking parts of industrial pipe couplers.

While the results are promising and substantiate the research hypotheses, the

question which remains is how these findings translate to real-world, complex in-

dustrial settings.

Therefore, this chapter addresses the above question by extending the validation

process to more intricate and diverse manufacturing environments. The objective

is to assess the generalisability and adaptability of the proposed methodology,

thereby providing a more robust validation of its efficacy. Therefore, two industrial

validations of the proposed research contributions were carried out.

The first industrial validation, conducted at the Centre for Aerospace Manufac-

turing at the University of Nottingham, delves into the aerospace sector. This

industry is characterised by stringent quality requirements and complex assembly

processes, making it an ideal setting for evaluating the proposed research contri-

butions for the MSC problem.

The second industrial validation was conducted at Mondragon University, Spain,

as part of the DiManD project. This validation aims to demonstrate the applica-

bility of the research contributions in custom product manufacturing, particularly

focusing on machining process planning. Custom manufacturing often involves

high variability and requires flexible planning and optimisation strategies.

The next sections delve deeper into the details of the above industrial validations.
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8.2 Hinged product assembly in aerospace man-

ufacturing

8.2.1 Experimental setup

The experiments in this section were conducted at the Centre for Aerospace Man-

ufacturing at the University of Nottingham. The validation involves assembling

the “generic hinged product”, which represents the family of small-box hinged

products, such as rudders and elevators. These components share similar dimen-

sions and construction principles, allowing them to be assembled using shared

capabilities.

Employing a flexible assembly system makes it possible to adapt to different sizes

and specific requirements of various aircraft and product types. The task is to

find optimal manufacturing configurations for changing and multiple conflicting

manufacturing costs.

The experimental setup of the assembly process used in this experiment is shown

in Figure 8.1, and Table 8.1 summarises the process as having 19 sequential oper-

ations classified into 4 distinct capabilities: (a) Empty jig frame (b) Upper beam,

lower beam and two skin locations are loaded, with hingeline, ribs and spars as-

sembled and measured (Op 1-5), (c) Upper skin assembled with three profile board

supports (Op 6-10), (d) Back view of (c) and lower beam to be removed (Op 11),

(e) Lower skin assembled, three profile boards and two skin locations are to be

removed (Op 12-18), (f) Final inspection (Op 19).

In contrast to earlier experiments that used UML object diagrams to depict the

object-oriented data model, this experiment opted for a tabular presentation of

data to avoid excessive clutter that stems from many connections between manu-

facturing assets, capabilities, and requirements.
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Figure 8.1: Hinged product assembly sequence.

Operation Capability ID Capability name
1-4 B1 Pick and place accurate
5 B3 Inspection
6 B2 Pick and place compliant
7 B4 Drilling

8-11 B1 Pick and place accurate
12 B2 Pick and place compliant
13 B4 Drilling

14-18 B1 Pick and place accurate
19 B3 Inspection

Table 8.1: Assembly process description and required capabilities

Detailed information about the available manufacturing assets can be found in

Table 8.2. In total, there are seven base assets and eight auxiliary assets.

Table 8.3 presents information on the available manufacturing configurations.

Each row of the table represents the capability and capacity of a specific man-

ufacturing configuration, as indicated by the corresponding column. Furthermore,

Table 8.3 also shows the normalised unitless recurring costs associated with each

manufacturing configuration and the assets involved.

Using Tables 8.1, 8.2, and 8.3, it can be observed that the production of a single

product requires 13 operations with B1 capability, 2 operations with B2 capability,

2 operations with B3 capability and 2 operations with B4 capability.
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Asseet
ID

Asset
name

Asset
type

A1 ABB IRC6700 base
A2 FANUC M900 base
A3 KUKA KR270 base
A4 FANUC M800iA base
A5 KUKA Titan base
A6 Drilling end effector auxiliary

A7
Pick and place

end effector
auxiliary

A8
Photogrammetry

inspection end effector
auxiliary

A9
Skin pick and

place end effector
auxiliary

A10 AGV base
A11 VSTARS cameras auxiliary
A12 Reconfigurable floor base
A13 Tool changer set 3200Nm auxiliary
A14 Tool changer set 5000Nm auxiliary
A15 End effector tool storage auxiliary

Table 8.2: Available manufacturing assets

M1 M2 M3 M4 M5
B1 15 20 16 - 21
B2 15 20 16 - 21
B3 20 20 20 - 20
B4 14 20 14 12 22
B5 12 18 13 10 20
B6 6 6 6 - 6
B7 30 30 30 - 30
B8 10 15 10 - 10
B9 1 1 1 2 1

Recurr.
costs

89.0 88.0 87.0 29.0 90.0

Assets
A1,

A6 - A13,
A15

A2,
A6 - A13,

A15

A3,
A6 - A13,

A15

A4,
A7, A12

A5 - A13,
A15

Table 8.3: Available manufacturing configurations

The manufacturing requirements based on the data modelling presented in Chap-

ter 4.3 are given as follows.

In the first manufacturing requirement scenario, the demand is to produce 10 parts
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per hour for 1000 hours, i.e., based on Equation 3.7:

D1 = [(B1,1 = “B1”, 140), (B1,2 = “B2”, 20),

(B1,3 = “B1”, 20), (B1,4 = “B4”, 20)]

(8.1)

In the second manufacturing requirement period, the capacity requirement is dou-

bled, i.e., the requirement is to produce 20 parts per hour for 1000 hours, Equation

3.7 becomes:

D2 = [(B2,1 = “B1”, 280), (B2,2 = “B2”, 40),

(B2,3 = “B1”, 40), (B2,4 = “B4”, 40)]

(8.2)

Then manufacturing requirement periods with a sequence of demands and demand

period lengths are represented as below according to the Equation 3.8:

R = [(D1, 1000), (D2, 1000)] (8.3)

The overall aim is to discover the optimal manufacturing configurations, taking

into account investment, recurring, and transition costs as outlined in Chapter

3.2.1.3, allowing smooth transitions between manufacturing setups or shifts in

capacities.

Traditional methods would simply duplicate the optimal initial manufacturing

setup once the capacity increases twofold. However, this experiment suggests that

a more intelligent approach is feasible.

8.2.2 Optimisation and decision-making for capabilities and

capacities

According to the mathematical formalisation of the manufacturing systems con-

figuration (MSC) problem defined in Chapter 3.2.1.4, this problem has three con-
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flicting objectives: investment, recurring, and transition costs, and there are two

types of constraints in this problem: demand-satisfaction constraints, Equation

3.11, and integrality constraints, Equation 3.12.

This experiment used NSGA-II: Non-dominated Sorting Genetic Algorithm[158]

to find Pareto efficient solutions. The pymoo[159] library implementation of the

NSGA-II algorithm was used, which resulted in 1000 non-dominated Pareto ef-

ficient solutions, depicted in Figure 8.2. Since objectives have different scales,

solutions were normalised by approximate ideal and nadir points.

Non-dominated solution
ASF
Pseudo-Weights

Figure 8.2: Normalised Pareto efficient solutions consisting of 1000 non-dominated
solutions.

Achievement scalarisation function (ASF)[160] decomposition and pseudo-weights

(PW)[161] were analysed to select a solution from the Pareto front in this ex-

periment. ASF and PW require subjective weights for each objective cost. The

weights represent the importance given to each objective cost and must sum to

1. In this scenario, the results for the importance of investment, recurring and
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transition costs are weighted as [1/3, 1/3, 1/3].

Table 8.4: Selected solutions by the ASF decomposition and PW methods

Dt,i ASF PW

D1,1
M2 (x6)
M5 (x1)

M2 (x6)
M5 (x2)

D1,2
M2 (x2)
M3 (x1)

M2 (x1)

D1,3 M2 (x1)
M2 (x1)
M5 (x1)

D1,4
M2 (x2)
M4 (x4)

M2 (x1)
M3 (x1)
M4 (x4)

D2,1

M2 (x9)
M3 (x1)
M5 (x4)

M2 (x9)
M3 (x1)
M5 (x4)

D2,2
M2 (x1)
M5 (x1)

M2 (x1)
M5 (x1)

D2,3
M2 (x1)
M5 (x1)

M2 (x1)
M5 (x1)

D2,4 M4 (x4) M4 (x4)

The final solutions selected by the ASF decomposition and PW are shown in

Table 8.4. As seen in Figure 8.2 and Table 8.4, the solutions selected by ASF

and PW are very close. In particular, the selected configurations only change for

the first demand period, although the number of configurations is the same for

both solutions. Closeness in solutions can be explained by having the same weight

vector for ASF and PW.

Figure 8.2 and Table 8.4 show how a decision-maker can benefit from the output of

the optimisation and decision-making algorithms by having variability in possible

manufacturing configurations while distilling 1000 solutions into 2 by choosing

preference vectors.
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8.2.3 Optimisation of operational parameters

Following the determination of optimal manufacturing configurations that satisfy

the required capabilities and capacities with respect to costs, the subsequent ob-

jective was to optimise the operational parameters of one of the manufacturing

assets involved, thus ensuring the validity of the whole optimisation methodology.

Within the context of this aerospace manufacturing experiment, a FANUC M800iA

industrial robot and a drilling end effector, controlled by a CNC machine, were

used to optimise energy-efficient drilling of holes through layers of 6mm thick

aluminium and 6mm thick cast acrylic.

The primary objective of this experiment was to determine the optimal spindle

speed and feed rate parameters to minimise energy consumption during the drilling

process.

The setup for this experiment is depicted in Figure 8.3.

Figure 8.3: Optimisation of drilling. The aim is to energy efficiently drill holes
through 6mm thick aluminium and 6mm thick cast acrylic layers.

The approach and retract positions of the robotic arm were kept constant and the

total drilling time was kept within a 20-second constraint. The maximum spindle

speed was allowed to fluctuate between 1500 and 2500 rpm, while the feed rate

was set to vary from 150 to 180 mm/min, as detailed in Table 8.5.
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Parameter Range

Spindle speed 1500 - 2500 rpm
Feed rate 150 - 180 mm/min

Table 8.5: Parameter ranges for the drilling experiment

During this experiment, optimisation apps developed in previous experiments were

re-used with minimal modifications to the drilling experiment. In particular, the

O3PARAMS algorithm was used to optimise the drilling process using a black-

box model approach. Bayesian optimisation was used in real time on the actual

equipment to achieve this goal.

Total energy consumption, including spindle and servo motors, was measured

and subsequently fed into the O3PARAMS algorithm. This algorithm suggested

new parameter values, and the optimisation loop continued until convergence was

reached. The convergence was determined when no further improvements were

made, that is, the process was stopped when the algorithm repeatedly suggested

the same parameters.

After only 25 iterations of the optimisation process, energy consumption savings

of 17.64% were achieved. The cumulative minimum graph for the Bayesian opti-

misation results is shown in Figure 8.4.

2 4 6 8 10 12 14 16
Iterations

1.45

1.50

1.55

1.60

1.65

1.70

kW
h

Drilling optimization

Bayesian Optimization

Figure 8.4: The cumulative minimum values for drilling optimisation results.
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Figure 8.5 presents the slice graphs of energy consumption in relation to the spindle

speed and feed rate parameters.
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Figure 8.5: Slice plot for drilling. (Left) Spindle speed varies, and the feed rate is
fixed. (Right) The feed rate varies, the spindle speed is fixed.

The slice plots in Figure 8.5 show the non-linear relationship between spindle

speed and feed rate for the optimal energy consumption in the drilling operation.

These results are consistent with previous experiments, demonstrating the non-

linear relationship between process parameters and energy consumption and high-

lighting the importance of optimisation for energy-efficient manufacturing pro-

cesses.

This experiment of optimisation of operational parameters of FANUC M800iA

robot for energy efficiency demonstrates the applicability of the O3PARAMS al-

gorithm developed in Chapter 6.3.3 to a more advanced industrial setting than

bin-picking process and how the same optimisation app can be re-used.
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8.2.4 Analysis

The results of the experiments conducted at the Centre for Aerospace Manu-

facturing at the University of Nottingham offer evidence supporting the research

objectives and hypotheses outlined in this thesis. The validation process was com-

prehensive, covering the optimisation of manufacturing configurations and opera-

tional parameters.

All the manufacturing assets were successfully modelled using the proposed object-

oriented data model presented in Chapter 4 and integrated into manufacturing

configurations, which shows how object-oriented data modelling can model the

manufacturing process in industrial scenarios.

The developed object-oriented data model was used to optimally select manu-

facturing configurations using the NSGA-II algorithm. The results indicate that

these algorithms are not only effective but also versatile. They allow for a nu-

anced approach to manufacturing configuration. Applying ASF and PW methods

for decision-making further refined these choices, providing actionable insights for

manufacturing setups.

Regarding operational parameters, the experiment optimised the drilling process,

achieving a significant 17.64% reduction in energy consumption using O3PARAMS

algorithm. The results validate the overall optimisation methodology, confirming

its applicability to real-world manufacturing scenarios.

Also, the optimisation apps from the previous experiments were re-used, further

providing evidence for the holistic approach: combining object-oriented data mod-

els, manufacturing apps, optimisation and decision-making algorithms.
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8.3 Decision-making for machining process plan-

ning

8.3.1 Experimental setup

The validation detailed in this section was carried out at Mondragon University,

Spain, as part of a secondment programme of the DiManD project. The validation

necessitated the planning of a machining process that included the balance of both

investment and recurring costs. The data for this validation were provided by the

Software and Systems Engineering and High-Performance Machining groups at

Mondragon University.

Figure 8.6 depicts the target design of the product. Accomplishing this design

involves a three-stage process:

1. Machining phase 1: Right-side turning operation

2. Machining phase 2: Left-side turning operation

3. Machining phase 3: Centre-side milling operation

12

3

Figure 8.6: Desired shape of the product.

The first phase requires a turning lathe capable of drilling, boring, turning, facing,

and slotting operations. First, the centre hole is drilled, bored, and finished.
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Second, slotting and rough and finish-facing operations are performed, followed

by drilling the 9 front holes. At the end of the phase, rough turning is performed

from the border to the centre of the workpiece.

The second phase is performed similarly on the turning lathe. The phase starts

with slotting and rough and finish-facing operations, then drilling the other 9

front holes. After that, rough turning, external finish profiling, and threading

operations are executed.

Finally, the third phase requires a milling centre capable of performing face and

slot milling, drilling, and threading. First, the cylindrical part is face-milled and

the six holes are drilled. Then, the 6 holes are threaded and the last slot milling

operation is performed.

Manufacturing requirements are provided as below:

• Capability requirements

– Turning

– Milling

• Capacity requirements, D: 2000 products

• Constraints:

– Time constraint, TD: 100 hours

– Space constraint, S: 10 manufacturing configurations (combinations of

manufacturing assets)

The available manufacturing assets are provided as:

• Asset A0: a CNC lathe,

• Asset A1: a CNC milling centre,
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• Asset A2: a multitask CNC lathe,

• Asset A3: a dual-spindle CNC turning centre,

• Asset A4: a twin-spindle twin-turret turning centre.

The capabilities of the provided assets, along with their normalised manufacturing

specifications, are detailed in Table 8.6.

Manufacturing
asset

Turning
lathe

Milling
centre

Investment
cost

Recurring
cost

Setup
time

A0 X 300 12 2
A1 X 700 8 3
A2 X X 2000 20 9
A3 X 1700 5 3
A4 X X 5000 65 10

Table 8.6: Normalised manufacturing data of the assets. The investment and
recurring costs are normalised to make the costs unitless. Setup times represent
the number of hours that a manufacturing asset requires to set up.

Given the target design, manufacturing requirement, and manufacturing assets,

the problem is to find the optimal combination of assets, that is, optimal man-

ufacturing configurations that meet the required demand of D = 1000 products

over TD = 100 hours.

8.3.2 Data modelling for machining process planning

The experimental data supplied had to first be converted into an object-oriented

data model, following the guidelines outlined in Chapter 4 and visualised in Figure

8.7. This object-oriented data model enhances the reusability of previous research

contributions, and in particular, it facilitates the usage of optimisation apps.

The specifications of the target design dictate that the minimal requirements for

fulfilling demand D would involve the use of a turning lathe, a milling centre, or

a combination of the two. However, in the context of the time frame demanded
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Figure 8.7: Data model for machining process planning experiment. Details of the
manufacturing configurations and manufacturing assets are provided in Table 8.6,
Table 8.7, and Figure 8.8

TD, a single manufacturing asset could be insufficient. Consequently, multiple

machines have been merged into manufacturing configurations, as prescribed in

Chapter 4.4.1, to meet the criteria TD adequately.

Five machine configurations have been identified from the available assets as capa-

ble of satisfying D. These configurations consist of one or more assets, and their

respective sequential operational production routes are depicted in Figure 8.8.

Cfg. Incur. cost Recur. cost Prod. rate Setup time
MFG0 1000.0 20.0 1.0 5
MFG1 1300.0 32.0 1.5 7
MFG2 2000.0 20.0 2.0 9
MFG3 2400.0 13.0 0.75 6
MFG4 5000.0 65.0 3.0 10

Table 8.7: Normalised manufacturing data of the machine configurations.

8.3.3 RL-based problem formulation

The problem of planning the machining process requires a formulation such as

MSC problem. This formulation follows the principles of RL, facilitating the ap-
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Machining
phase 3

Machining
phase 2

Machining
phase 1Config.

A1A0MFG0

A1A0A0MFG1

A2MFG2

A1A3MFG3

A4MFG4

Figure 8.8: Manufacturing configurations capable to produce the desired product.

plication of RL-based sequential optimisation and decision-making. It is essential

to transform manufacturing scenarios into RL states, map strategies for satisfy-

ing requirements to RL actions, and design a reward system that promotes the

most efficient configurations to meet manufacturing requirements. Consequently,

the following problem formulation is given which adheres to the methodologies

detailed in Chapter 4 and Chapter 6:

Given:

• Demand, D: Number of products required.

• Demand time, TD: Maximum time allowed to produce the requested prod-

ucts.

• Set of manufacturing configurations, M: The total number of unique

manufacturing configurations is M = |M|. Each element of the set M is

represented as MFG has the following attributes:

– Investment cost: Cost of purchasing MFG.

– Recurring cost: Cost of running a MFG for 1 unit of time.
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– Production rate: Number of products produced by the MFG per 1

unit of time.

– Setup time: Time required to set up MFG.

• Space size, S: Maximum number of allowed manufacturing configurations

to purchase.

Problem: Find the multiset of manufacturing configurations that can meet the

given demand in the given demand time with minimum cost, where the cost is the

sum of the incurred and recurred costs.

Since investment and recurring costs conflict in this problem, they were scalarized

using the strategies discussed in Chapter 6.3.4.1.

The manufacturing RL environment and the state space for this problem were

defined using the methodology and notations proposed in Chapter 6.4.2. The

action space in the environment is represented as an integer between 0 and M

inclusive, that is, a ∈ [0,M ] and is formally defined as

Step(a) =


“buy configuration a”, if 0 ≤ a < M

“continue production”, otherwise

(8.4)

where Step(a) makes an episode step in the environment.

Selected actions by an agent affect the dynamics of the environment as follows:

• Action “buy configuration a” adds a configuration a into the production

space. It also pauses the remaining demand time, Tr, in the environment.

Counter-intuitively, stopping the remaining demand time resembles a decision-

making process in the real world where purchasing decisions can be made

while production is still running.

• Action “continue production” decreases the remaining demand time and
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updates the produced products.

• An agent can make purchase decisions until the space is full. As soon as the

space is full, an agent exceeds all its action choices, and the environment

advances independently until the termination criteria are reached.

• The environment terminates when the condition “Dr ≤ 0 OR Tr ≤ 0” is

met.

Two main learning principles were defined for agents:

• P1: Demand must be met at any cost.

• P2: Total cost must be minimised.

Learning principle P1 gives a high penalty if D is not met within TD. The

penalty is defined as a function of the remaining demand and a K penalty coeffi-

cient as

J(Dr) =


−DrK, if Dr > 0

0, otherwise

(8.5)

where K = Rmax + 1 is a penalty coefficient, and

Rmax =
S∑

i=1

( max
1≤j≤M

Ij + TD max
1≤j≤M

Rj) (8.6)

The equation (8.5) is derived from inequality DK > Rmax + (D − 1)K.

Learning principle P2 gives two negative rewards, i.e. the rewards are multi-

plied by a negative one. The action “buy configuration a” rewards with investment

cost Ia of MFG a. The action “continue production” rewards the sum of the re-

curring costs of running manufacturing configurations
∑

aRa.
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8.3.4 Analysis

The data in Table 8.7 are provided to the RL environment for manufacturing, and

optimisation is performed using the Proximal Policy Optimisation[150] algorithm.

Although the data in Table 8.7 are fixed, the RL environment is stochastic, that

is, the investment cost, the recurring cost, the production rate, and the setup

times change by +/ − 10% at every simulation step, resembling real industrial

fluctuations. Moreover, the environment provides the possibility of defining and

experimenting with different fluctuations.

Six experiments have been defined to validate the robustness of the methodology

to changing demands. The demand D and the demand time TD defined for each

experiment are presented in Table 8.8, as well as the results obtained.

On the one hand, experiments E1 and E3 have enough TD for accomplishing D

(D is at least 10 times TD). On the other hand, experiments E2, E4, and E5

have few TD for accomplishing D (D is at least 16 times TD). Experiment E6

represents a scenario where TD is greater than D (D is almost one fourth of TD).

All experiments are capable of satisfying D, using the full space size S except E6

which uses only one, with remaining time Tr and usually with excess production

Dr. Additionally for E1 to E5, the unit cost (Mean reward/D) has a decreasing

behavior as demand rises, due to economies of scale. E6 has a particular cost

behavior, as only one configuration is needed and the agent does not need to

purchase more than one configuration.

Exp. D TD Cost Dr Tr Purchased MFGs Cost per part
E1 2000 150 46432 -4 44 9 23.17
E2 2000 80 93806 -25 3 10 46.32
E3 1000 100 28573 0 7 10 28.57
E4 1000 48 63545 -5 3 10 63.22
E5 400 24 55438 -7 1 10 136.21
E6 24 100 2589 -1 79 1 103.56

Table 8.8: Experiments performed to validate the RL-based methodology.
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Given the stochastic nature of the proposed environment, the decision-making

procedure for E3, using RL, is shown in Figure 8.9. E3 is chosen as it shows

purchasing decisions throughout TD. As seen from the figure, the decisions to buy

manufacturing configurations are not done at once. The trained agent learns to

buy the necessary manufacturing configurations only when it decides that demand

will not be satisfied with current options demonstrating that sequential decision-

making algorithms are necessary for robust MSC problem.
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Figure 8.9: The sequential decision making process by trained agent for D = 1000
and TD = 100

In summary, the validation experiments present a comprehensive methodology for

optimising machining process planning using RL.

The methodology is validated through a series of experiments that consider various

demands and time constraints. The results demonstrate the approach’s efficacy in

selecting optimal manufacturing configurations that meet demand within a given

time frame while minimising costs.

Overall, this industrial validation contributes a valuable computational tool that

can significantly aid in the complex task of machining process planning.
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8.4 Chapter Summary

This chapter aimed to extend the validation of the research contributions to com-

plex, real-world industrial settings. Two distinct manufacturing environments

were chosen: aerospace manufacturing at the Centre for Aerospace Manufacturing

at the University of Nottingham and custom product manufacturing at Mondragon

University, Spain.

The first validation focused on the aerospace sector, known for its stringent qual-

ity requirements and complex assembly processes. The experiments successfully

demonstrated the applicability of the proposed object-oriented data models and

optimisation algorithms in solving the MSC problem. Notably, a significant reduc-

tion in energy consumption was achieved, validating the efficacy of the proposed

methodology in real-world scenarios.

The second validation was conducted in custom product manufacturing, particu-

larly in machining process planning. The validation demonstrated the methodol-

ogy’s robustness in handling high variability and complex cost structures. Proxi-

mal Policy Optimisation in a stochastic RL environment proved effective in opti-

mising manufacturing configurations under various demand and time constraints.

Both validations substantiate the research hypotheses and demonstrate the pro-

posed methodology’s generalisability and adaptability. The results indicate that

the research contributions are not merely theoretical constructs but are applica-

ble and beneficial in tackling real-world manufacturing challenges. Therefore, this

chapter validates the research contributions, significantly enhancing their credi-

bility and practical relevance.
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9.1 Introduction

This thesis aimed to tackle the manufacturing systems configuration (MSC) prob-

lem, a problem that has become increasingly relevant due to the dynamic nature of

the manufacturing sector. This research identified three core knowledge gaps from

existing literature: the underutilisation of data models, software integration and

interoperability challenges, and the inadequacy of traditional optimisation and

decision-making methods in managing multiple uncertain objectives for the MSC

problem. Importantly, the study posited that these limitations are interconnected

and should be addressed holistically. To this end, the research employed a holistic

approach that integrated data models, software development methodologies, and

advanced optimisation and decision-making algorithms to develop a methodology

for addressing the MSC problem.

The research objectives were clearly defined to guide the development of a holistic

methodology for the MSC problem:

1. Development of comprehensive and adaptable data models: The

research successfully developed an object-oriented data model that encapsu-

lates the complexities inherent in manufacturing systems. This data model

presented in Chapter 4 effectively represents tangible and intangible manu-

facturing assets, manufacturing configuration and other manufacturing re-

sources capturing the complexities of the manufacturing processes.

2. Development of plug-and-produce manufacturing software solu-

tions: Chapter 5 introduced the concept of “manufacturing apps”, pro-

viding a theoretical and practical foundation for modular software solutions

specifically tailored for the manufacturing domain. The development of man-

ufacturing apps and a modular reference architecture advanced the state of

software integration and interoperability in manufacturing systems.
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3. Development of adaptive optimisation algorithms and decision-

making algorithms: Chapter 6 tackled the optimisation and decision-

making aspects of the MSC problem. Three modules were developed: changes

identification, optimisation, and decision-making. These modules were built

on top of the proposed data model and used the concept of manufactur-

ing apps for deployment. Novel algorithms were developed, such as changes

identification algorithm (CIDENA), online optimisation of operational pa-

rameters (O3PARAMS), and reinforcement learning-based optimisation and

decision-making methodology to address multiple, conflicting, and uncertain

manufacturing costs.

Each objective was validated through rigorous experimental setups presented in

Chapter 7 and Chapter 8. The validation process confirmed the data models’

adaptability and ability to capture the complexities of manufacturing processes,

the manufacturing apps’ effectiveness in achieving plug-and-produce functionality,

and the efficiency of the optimisation and decision-making algorithms in managing

uncertainties and multiple manufacturing objectives.

9.2 Research dissemination

The knowledge contributions in this research have resulted in several distinct and

noteworthy contributions to digital manufacturing. These contributions were dis-

seminated through eight peer-reviewed journal articles and conference publica-

tions. Furthermore, five work packages were completed as part of the European

Union (EU) deliverables, and two software packages were developed. These schol-

arly and technical outputs are directly relevant to the thesis’s various technical

chapters. For ease of reference, these outputs have been comprehensively cata-

logued in Table 9.1 (peer-reviewed journal and conference publications), Table 9.2

(WPs), and Table 9.3 (software libraries).
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Table 9.1: Journal and conference publications

# Title
Research
output

Contrib.
level

Chapter
relevance

1

Online and modular energy
consumption optimization

of industrial robots
[146]

Journal
publication

First
author

6

2

Towards modular and
plug-and-produce

manufacturing apps
[145]

Conference
publication

First
author

5

3

Optimal manufacturing
configuration selection:

sequential decision making
and optimization using
reinforcement learning

[147]

Conference
publication

First
author

6

4

Optimal selection
of manufacturing

configurations using
object-oriented and

mathematical data models
[143]

Conference
publication

First
author

4

5

Multi-criteria decision-
making for optimal

manufacturing
configuration selection

using an object-oriented
data model and

mathematical formalization
[144]

Conference
publication

First
author

4

6

Integration of cutting-edge
interoperability approaches

in cyber-physical production
systems and Industry 4.0

[118]

Book
chapter

Co-author 5

7
Big data life cycle in shop

floor – trends and challenges
[162]

Journal
publication

Co-author 6

8

A maturity model for the
autonomy of manufacturing

systems
[163]

Journal
publication

Co-author 6
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Table 9.2: DiManD WPs

# Title
Research
output

Contrib.
level

Chapter
relevance

1

Definition of industrial
barriers and challenges

to context-aware
autonomous systems

with respect to
current practice

EU
deliverable

Main
contributor

6

2
Development of a

data model for proactive
intelligent products

EU
deliverable

Main
contributor

4

3

Development of
adaption strategies for

context-aware
autonomous systems

EU
deliverable

Main
contributor

6

4

State-of-the-art on
integration of cutting
edge interoperability

approaches in manufacturing
and cyber-safety and security

requirements

EU
deliverable

Contributor 5

5
Using big data in

shop-floor –
challenges and approaches

EU
deliverable

Contributor 6

Table 9.3: Software libraries

# Title
Research
output

Contrib.
level

Chapter
relevance

1
fanucpy: Python package for

FANUC industrial robots
Software
library

Main
developer

5

2
Manufacturing reinforcement

learning environment
Software
library

Main
developer

6
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9.3 Future work

While significant progress was made in holistically addressing the MSC problem,

several challenges still exist for future works.

9.3.1 Data models

In this research, object-oriented data modelling proved to be highly effective in

addressing the complexities of manufacturing processes for addressing the MSC

problem. The model demonstrated adaptability, easily accommodating new re-

quirements and scaling with additional hardware components. Furthermore, it

provided a comprehensive representation of static and dynamic elements, from

manufacturing assets like grippers to operational capabilities, confirming its ver-

satility and applicability in diverse manufacturing scenarios.

However, one significant limitation lies in its inability to perform complex reason-

ing, a capability where semantic data models have an edge. Semantic models can

capture intricate relationships and dependencies, allowing for nuanced queries and

inferences. This reasoning functionality is particularly important in environments

where understanding causal relationships or predicting future states based on ex-

isting data is crucial. Object-oriented models, while flexible and descriptive, may

not offer the same depth of reasoning, making them less suitable for applications

requiring complex logical inferences.

A hybrid approach could be highly beneficial to mitigate this limitation. By inte-

grating elements of semantic data modelling into the object-oriented framework,

the model could gain advanced reasoning capabilities without sacrificing its inher-

ent adaptability and representational strengths. This hybrid model offers a more

comprehensive solution capable of handling a broader range of tasks, from simple

data representation to complex logical reasoning.
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9.3.2 Manufacturing apps

The concept of “manufacturing apps” introduced in this research offers a promis-

ing pathway for enhancing software integration and interoperability in today’s

manufacturing systems. These apps are designed as modular solutions, allowing

for quick deployment, scalability, and adaptability to meet the ever-changing de-

mands of modern manufacturing. However, the modular architecture was tested

in a controlled lab environment with modern equipment, and the manufactur-

ing apps developed for validation experiments were limited to robotic apps and

for the digital aspects of manufacturing processes. This limitation points to the

need for further research to extend the modular architecture and app framework

to other types of manufacturing equipment and scenarios. While the architecture

has proven effective in a lab setting, its scalability, adaptability, and cyber-security

in real-world, multi-equipment manufacturing environments remain unexplored.

One significant obstacle to the widespread adoption of manufacturing apps is the

presence of legacy equipment in many industrial settings. These older systems fre-

quently lack the necessary connectivity and computational capabilities for seam-

less integration with contemporary software solutions. The technical and economic

challenge lies in retrofitting legacy equipment for compatibility with manufactur-

ing apps, which can be complex and costly. Future research could focus on creat-

ing cost-effective solutions, such as specialised adapters or middleware, to bridge

the technological divide between these legacy systems and modern manufacturing

apps.

Another challenge that remains untested but crucial for manufacturing operations

across multiple sites or countries is scaling the developed modular architecture

for hosting manufacturing apps in different locations. Future work could focus

on developing strategies for geographical scaling, possibly through cloud-based

solutions or distributed computing frameworks, to ensure that the modular archi-

223



9.3. FUTURE WORK

tecture retains its effectiveness in a more expansive setting. By addressing these

challenges, the applicability and impact of manufacturing apps could be signifi-

cantly broadened, making them a more viable solution for diverse manufacturing

environments.

9.3.3 Optimisation and decision-making algorithms

Optimisation and machine learning algorithms, particularly black-box optimisa-

tion methods such as Bayesian optimisation and sequential decision-making al-

gorithms like reinforcement learning (RL), have shown great promise in tackling

the MSC problem. Despite their proven effectiveness, their successful deployment

on edge devices poses a significant challenge due to their required computational

resources. These resource-intensive algorithms, especially RL, are limited to high-

power devices with GPUs.

For example, the RL environment developed in Chapter 6.4 and validated in 8.3

was performed using high computational resources which might not be available

for the real-time decision-making using edge devices.

A possible avenue for future research can be developing “lightweight” versions of

these algorithms that maintain the core functionality but are stripped of extrane-

ous computational elements. This streamlined version would be more suitable for

deployment on edge devices with lower computational power. These lightweight

algorithms must be carefully designed to balance their resource requirements with

their predictive performance.

Furthermore, deploying advanced machine learning algorithms on edge devices

may benefit from future research into distributed computing and federated learn-

ing techniques. These techniques allow multiple devices to train a model, effec-

tively pooling their computational resources collaboratively. This approach should

be particularly beneficial for large-scale manufacturing systems with multiple edge
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devices, allowing them to solve the MSC problem jointly. This would, however,

require further research into effective methods for distributed data processing and

model synchronisation and also raise new questions around data privacy and se-

curity that would need to be addressed.

9.4 Chapter summary

In summary, this research aimed to develop a holistic approach to the manufac-

turing systems configuration (MSC) problem by integrating data models, software

solutions, and optimisation and decision-making algorithms in contrast to the ex-

isting literature, where it is done in a fragmented way.

The empirical validation of this holistic approach, as elaborated in Chapter 7 and

8, was conducted within the confines of a controlled laboratory settings. While

the results are promising, it is important to acknowledge that the holistic solution

presented has limitations, as discussed above. Addressing these limitations is

essential for fully realising the holistic approach’s potential and applicability in

diverse manufacturing environments. Future research endeavours should focus on

these areas to enhance the robustness and versatility of the proposed solution.
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