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Abstract

Spin-casting solutions of colloidal nanoparticles onto solid substrates pro-
duces a diverse array of self-organised nanostructured patterns. Such pat-
terns are regarded as far-from-equilibrium, relying on the complex dynam-
ics of the solvent as the thin liquid film rapidly retracts from the surface.
The observed ordering allows for varied statistical analysis upon atomic
force microscopy images of the resulting patterns. An analytical toolbox
utilising various statistical approaches is discussed and applied, supported
by numerical simulations of the experiment, carried out using modified
versions of the model developed by Rabani et al.1.

A systematic study of the effects of both gold nanoparticle concentration
in solution and introduced surface heterogeneities was carried out, scan-
ning resulting patterned morphologies with atomic force microscopy and
evaluating with relevant statistical analysis. Co-deposited fullerenes and
atomic force microscopy probe-induced oxidation aimed to disrupt and
mediate the typical dewetting process of the thin solvent film on a highly
local level, enhancing our understanding of the dynamic properties of the
solvent. A pathway from synthesis to ambient surface characterisation of
nanostructured photoactive dyads was additionally studied.

A series of synchrotron x-ray experiments on fullerene-encapsulating molec-
ules addressed the extent to which encapsulated molecules are electro-
statically screened and decoupled from their external environment when
deposited on a metal substrate. In the observed absence of temperature
dependence of molecule height above the substrate surface, experimental
NIXSW data across the temperature range is used to assess the mobility
of caged molecules, as well as reconcile results within a two-adsorption
site framework.

A case for being critical at the point of data entry is demonstrated by the
data-mining and re-utilisation of historic dewetting pattern images previ-
ously produced within the group, to form data sets to confidently evaluate
new statistical analysis software. This is presented with documented devel-
opment of transparent automated mass image processing software, highly
sensitive to images of multi-layered nanostructures and the inherent noise
in scanning probe microscopy, by means of a statistical approach utilising
modern data science methods.
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1 INTRODUCTION

1 Introduction

1.1 A different perspective

As the quantity and complexity of nanoscience data dramatically increases, our ability
to analyse, visualise and interrogate the relationships between observed structure and
physics needs to keep pace. Integrating data-driven methods that address structural
diversity among samples is essential for broader adaptation, particularly when investi-
gating structurally complex self-organised structures. Data science provides a variety
of robust statistical methods, ideal for describing real nanoscale materials and con-
veying new sample properties numerically. Furthermore, automation and information
technology in the field of data science aid in curating large-volume data sets.

Comprehensive applications of data science have high potential in the field of nanoscien-
ce. Modern material probing techniques for imaging nanoscale samples that facilitate
high throughput experimentation, such as scanning probe microscopy (SPM)2,3 and
x-ray photoelectron spectroscopy (XPS)4, are becoming increasingly widespread. Nu-
merical models that attempt to simulate interactions at the nanoscale, such as molec-
ular dynamics and Monte Carlo simulations (see Chapter 3 for an example of the
latter), are constantly growing in popularity and act to provide data supplementary to
experiments.

Recent work and collaborations within the Nottingham Nanoscience Group have fo-
cused on a data-driven approach, aiming to expand the nanoscientist’s toolbox5–8.
This commonly amounted to the collection, processing and evaluation of images pro-
duced by microscopes and simulations. Automation of scanning probe microscopy
(SPM), by means of identifying what constitutes a “good” topograph, or surface
image, on a scan-by-scan basis, then correcting scanning parameters in the SPM soft-
ware until it produces a stable image, is an exciting concept explored by Gordon et
al.5–7. Automated image classification and segmentation8 were combined with image
pre-processing tailored to high-precision images of nanostructures to produce an auto-
mated nanoscale far-from-equilibrium pattern categorisation model.9

Confidence in these applications comes from large data sets that fully explore the ex-
perimental and statistical parameter space. Consistent automated image processing
facilitates the analysis of large data sets of images. Algorithmic image re-processing
of raw image data also circumvents user biases at the time they were processed. Iden-
tification of the necessary processing steps with regard to the equipment’s operation,
common instrument noise signatures, and shortfalls of each processing technique with
respect to the explored parameter space is essential. The application of more com-
prehensive data science methods to scanning probe image data of structurally similar
systems of self-organising nanostructures, recently highlighted within the Group, is
presented within this thesis.
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1.2 Self-organising nanostructures

1.2 Self-organising nanostructures

Traditionally, fabrication of nanostructures comes primarily in the form of “top-down”
manufacture. Here, lithography is used to etch a larger piece of material, be it with
chemicals, a probe, or a focused ion beam for example, much like carving a sculpture.
The assembly and longevity of nanodevices constructed from etched components are
met with challenges unique to the nanoscale. A “bottom-up” approach is a highly
appealing alternative to the fabrication of nanoscale structures via lithographic and
etching methods. Instead of a brute force removal of material, bottom-up methods
– also known as self-assembly – harness and tune interatomic, intermolecular, and
inter-nanoparticle interactions to form ordered lattices. The interactions, in this case,
can arise from various sources: London dispersion forces, electrostatic forces, hydrogen
bonding, coordination chemistry, and the Pauli exclusion principle. A self-assembled
structure seeks to reach and maintain an ordered configuration that minimises the
free energy in a stable or metastable state of equilibrium. Some scientists distinguish
self-assembly and what is known as self-organisation, where the latter involves a far-
from-equilibrium transfer of energy and matter not present for the former, which is a
much closer-to-equilibrium phenomenon.

A “bottom-up” process of particular relevance to this thesis is the self-assembly (and
self-organisation) of thiol-passivated gold nanoparticles deposited from a volatile sol-
vent onto a solid substrate (typically native oxide-terminated silicon). This produces
a vast variety of self-organised patterns10,11, as discussed in Chapter 3. An extensive
AFM data set (spanning tens of thousands of images of gold nanoparticle assemblies),
acquired by the Nottingham Nanoscience Group over roughly a decade, was used as
the foundation for the development of the automated analysis and classification pro-
tocols/algorithms described in Chapters 3, 4 and 6.

1.3 Thesis outline

A variety of self-assembled and self-organised nanostructured systems – spanning
(endo)fullerenes, gold nanoparticles, and molecular dyads – form the focus of this
thesis. An overarching theme throughout is the analysis and interpretation of the
characteristic length-scales arising from the various assembly processes, from spin-
odal dewetting of nanoparticle suspensions in an ambient environment to the growth
of a highly ordered endohedral fullerene monolayer under ultra-high vacuum condi-
tions. Although scanning probe microscopy has been the primary experimental tool,
synchrotron-based techniques, including photoelectron spectroscopy and x-ray stand-
ing wave analysis, have been used for the analysis of a nanostructured system for
which SPM provides highly limited information, namely thin films and 2D overlayers
of endofullerenes on metal substrates.
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1 INTRODUCTION

In parallel, several protocols have been developed for the automated analysis of scan-
ning probe data, with a particular focus on pattern classification and the identification
of spatial correlations. This thesis research component was carried out during the
COVID-19 lockdown periods when access to experimental research instrumentation
and facilities was, at best, severely limited.

Chapter 2 broadly introduces the materials, tools and techniques used in the exper-
imental side of the presented work. This includes a discussion of various forms of
scanning probe microscopy and the theory behind their operation, as well as steps for
sample preparation in ambient and ultra-high vacuum conditions.

Chapter 3 introduces the concept of self-organisation, starting with the modes of
far-from-equilibrium pattern formation mediating the dewetting of thin films. Stan-
dard techniques for producing self-organisation in thin films and typical parameterisa-
tion during systematic study are discussed. Monte Carlo modelling is also discussed
within the context of dewetting, preceding the application of statistical analysis to
well-understood dewetting patterns produced experimentally. The chapter concludes
with the introduction of comparative statistical metrics to evaluate SPM of deposited
self-organised nanostructures, and real-time simulations of dewetting produced by im-
plementing a Monte Carlo simulation.

Chapter 4 is the first of four experimental chapters. This covers deposition studies
using atomic force microscopy of functionalised gold nanoparticles, and co-deposition
of nanoparticles and buckminsterfullerene upon silicon. This starts with a discussion
of new applications of statistical analysis to real and simulated nanostructure AFM im-
ages, including Minkowski morphometry, Fourier-based evaluation of roughness, and
simulated dewetting pattern coarsening. Types of gold nanoparticle dewetting patterns
produced, control over the patterns exerted by selective tip oxidation methods, and
co-deposition of buckminsterfullerene are demonstrated.

Chapter 5 describes synchrotron-based experiments on buckminsterfullerenes encap-
sulating H2O and HF. Soft and hard x-rays, produced by the synchrotron at Dia-
mond Light Source in Oxford, are utilised to address the extent to which encapsulated
molecules are electrostatically screened and decoupled from their external environment.
In particular, normal-incidence x-ray standing wave (NIXSW) measurements are per-
formed on filled fullerenes adsorbed on a metal surface. NIXSW results quantify the
displacement of the encapsulated molecules from their otherwise central position due
to modification of the electrostatic potential within the C60 cage. X-ray photoemission
spectroscopy (XPS) characterises the deposits and points towards substantial screen-
ing of the encapsulated molecules by the cage.

Chapter 6 describes the development of new protocols for the automated analysis of
large SPM data sets using an extensive set of AFM images of self-organised nanopar-
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1.3 Thesis outline

ticle patterns. Particular attention is paid to intelligent automated segmentation and
thresholding of SPM images, a perennially troublesome aspect of the analysis of probe
microscope data.

This is followed by Chapter 7, covering a synthesis to surface probing pathway for a
photoactive molecular dyad. Naphthalene diimide phenyl-phenothiazine (NDP), syn-
thesised from naphthalene monoimide (NMI) and 4-aminophenyl-phenothiazine (Ph-
PTZ), is deposited from toluene onto silicon using different deposition methods at
a series of concentrations. The resulting far-from-equilibrium morphologies of NDP
nanocrystals are evaluated using AFM. Ambient sample preparation techniques and
AFM employed throughout the thesis are incipiently applied and calibrated in this
chapter.
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2 EXPERIMENTAL TECHNIQUES AND MATERIALS

2 Experimental Techniques and Materials

2.1 Scanning probe microscopy

2.1.1 High precision surface imaging

It is hard to imagine the modern landscape of atomic-scale surface study without
scanning probe microscopy (SPM). With the invention of the scanning tunnelling mi-
croscope in 19822 and the atomic force microscope a few years later3, SPM since has
revolutionised the acquisition of surface information for nanoscientists. The technique
provides an unprecedented level of precision, with modern SPM under optimal condi-
tions achieving sub-angstrom spatial resolution.

A scanning probe microscope operates on the design principle of a sharp probe raster-
ing over a surface. The apex of the probe is held in close proximity (typically <1 nm)
to the sample surface and scans over a predetermined region of surface, measuring
physical parameters from the interaction at all possible positions. Each parameter
measured at each position is incorporated into an image, built pixel by pixel, of that
scanned area. The result is a map of the scanned region of the surface, describing
features of the region, from topography to local work function.

The core SPM techniques used throughout this thesis are atomic force microscopy
(AFM) and scanning tunnelling microscopy (STM). Other SPM techniques, such as
kelvin probe force microscopy (KPFM), briefly discussed in Section 2.2, play a role,
but a basic understanding of all SPM techniques can stem from an understanding of
AFM and STM. While they often have the common goal of routine high-resolution
imaging approaching atomic resolution using a sharp probe, the type of interaction
between the probe and surface is specific to the type of SPM used. STM measures
a tunnel current, while AFM directly measures a force response (or force gradient for
NC-AFM). The theory behind measuring these interactions is explored in Sections 2.3
and 2.2.

While removing the inherent limits on resolving power placed by diffraction for optical
microscopy, and by aberration and the need for sample coating for electron microscopy,
SPM comes with its unique limitations. These include the state of the imaged sur-
face and terminating point of the probe, the inherent sampling rate imposed by the
minimum step width in digitally controlled systems, and the theoretical limits imposed
by the technique. All SPM systems are designed to minimise sources of experimental
noise or provide additional tools to do so. This can range from software for probe
controls, to a cryostat surrounding the probe and surface.

The probe of the SPM instrument is attached to a piezoelectric transducer. The dis-
tortion of the piezoelectric materials, induced by appropriate voltages applied by the
instrument’s controller, allows for nanoscopic actuation of the transducer-mounted
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2.1 Scanning probe microscopy

probe, providing fine motion capabilities for the tip in 3D space. This is not only
useful for xy scanning small selective regions and sensitive z responses to surface
features, but in tandem with wider range transducers, this precision can be main-
tained with larger scan sizes and during the approach phase. This approach phase
involves advancing the probe to bring the tip-surface separation to that of the inter-
action range. The precise transducers distort from the minimum to the maximum of
their range before returning to their minimum while the larger transducer advances the
same distance as that range. Once the larger transducer’s maximum range is reached,
both the small and large transducers retract and a stepper motor advances the whole
assembly, repeating until a surface response is measured. This coordinated process
allows for a safe and effective approach, with fine-tuned centring of the precise piezo
range over the surface. The scanner in turn is attached to a series of servo motors or
manual screws, allowing for coarse positioning of the probe, which would be held at a
safe distance from the surface during coarse xy movement to avoid crashes, by using
coarse z movement to retract. Using a mounted camera, the operator can coarsely
approach the surface with the probe before the slow approach phase, avoiding observ-
ably damaged or contaminated surface regions, or relocate scanned regions of interest
on the surface, often macroscopically-marked to be detected with the camera feed.

The described approach method was based on the atomic force microscopes used,
specifically the Asylum Research Cypher and MFP-3D systems, and is highly com-
mon among AFM systems. STM systems similarly utilise a coarse approach followed
by a highly sensitive walk-in method, monitoring for when the tip-sample separation
reaches tunnelling range. However, a slipstick motor manages the coarse approach
from a tip-sample separation on the order of millimetres into range. A voltage is
applied to a piezoelectric plate, to which a piezoelectric scan-tube is mounted, in a
sawtooth waveform. The linear increase in voltage causes a shear movement in the
plate, the subsequent rapid decrease causes the plate to return to its original shape at
the new position, progressing the assembly.12,13

Ideally, only the interaction with a single atom on the end of the probe and typical
background interactions are measured. Probes are often initially manufactured with
a microscopically sharp tip with low radii of curvature and are further sharpened with
chemical etching and other techniques. While this can prepare a very sharp tip apex,
atomic-scale asperities and protrusions local to the apex can introduce unwanted scan
artefacts, such as double-tips. Further modification assures a surface response, like
tunnel current during STM, is due to a single atom at the apex of the tip. The tip
properties are inevitably altered during SPM sessions, with many in situ ways to mod-
ify the tip’s shape actively. Unlike ex situ 14,15 methods of tip sharpening, such as ion
beam lithography, in situ methods in STM are far more primitive. The operator is
generally limited to controlled crashes of the STM tip and applying sudden voltage
pulses to the tip. Terminating with an individual atom, or a highly conical tip, though
optimal, is not necessary due to the short interaction range and the exponential re-
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2 EXPERIMENTAL TECHNIQUES AND MATERIALS

lationship with separation, unique for each SPM approach as discussed in Sections
2.2 and 2.3, a single atom protruding from the tip dominates any interactions over
neighbouring atoms above it. Blunt tips with a large tip radius of curvature can, how-
ever, introduce convolution effects due to interactions between the surface and the
micron-scale bulk of the tip. These long-range forces are detrimental to the spatial
resolution. Though a blunt tip may be enough to resolve the nanostructures being in-
vestigated, a consistently sharp tip is preferable to maintain consistency across images.

As the signal measured at the probe dynamically affects data acquisition, via the
feedback system, great care is taken in eliminating noise produced by the SPM instru-
ment, while isolating it to reduce the effect of external noise sources. For example,
a pre-amplifier in series with the tip-surface junction boosts the signal-to-noise ra-
tio attainable. Vibrations place a hard limit on SPM resolution to the degree that
even sub-angstrom amplitude vibrations must be avoided. SPM systems often have a
specially-designed damping apparatus to attenuate mechanical vibrations. This often
includes a series of low tension springs to suspend the platform that holds the tip
and surface and the whole instrument resting on air legs. Electrical noise is limited
with efficient electronics, often with low noise ratings, high-quality grounding, and
cable shielding. Choice of location also matters, seeking a vibration-free environment
outside the boundaries of the instrument often leads to placing them on lower floors
of buildings to minimise the effects of structural vibrations. Even after relocating the
SPM instrument to the basement, some inherent noise still is not tackled. Non-linearity
of the piezoelectric material behind the probe and the curved trajectory of the scanner
introduce inherent distortion to images that must be removed via image processing
software. Subsection 6.1.4 discusses this further.

Scans at the atomic scale are susceptible to thermal drift, predominantly caused by
the material’s response to variations in local temperature. The scan is exposed to
uncontrolled time-dependent distortions, by which the tip moves relative to the surface,
horizontally or vertically, by gradients in local temperature. When the thermal drift
velocity and scan time are of similar magnitude to the scan size, it can introduce
uncharacteristic skewing to the resulting image. Thermal drift is a common threat to
high-resolution imaging, especially prohibiting long-lasting data acquisition over small
regions of interest, and hence, solutions are well-explored. Cooling the instrument
with liquid helium or nitrogen on low-temperature systems with a cryostat to stabilise
the temperature significantly reduces the impact of thermal drift. Drift compensation
employing atom tracking and thermal analysis, modelling drift velocity with respect
to temperature, to estimate drift behaviour on the software side aims to mitigate the
effects of thermal drift.
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2.1.2 Working in UHV conditions

SPM and preparation of materials for SPM took place in either ambient or ultra-high
vacuum (UHV) conditions (< 10−9 mbar though optimally held below 10−10 mbar).
Achieving and maintaining UHV in a sealed stainless steel vacuum chamber keeps the
sample and tip free from contaminants in air and fully isolates an experiment from the
environment. This makes the system highly appealing for atomic resolution imaging
and atomic manipulation experiments. These conditions are prerequisites for thermal
sublimation and other in situ techniques used or considered throughout.

Maintenance of UHV conditions within the system is often a heavily involved process.
Minority gases under atmospheric pressure can chemically react with the sample during
sensitive processes like high-temperature annealing, while metallic surfaces, deposited
materials and sensitive components within the chamber may oxidise. Maintaining low
levels of impurities within the UHV chamber is hence crucial. At the minimal pressure
within the UHV chamber, the major gas load present is hydrogen, a much more inert
gas than oxygen and water vapour.

A series of pumps act to remove gas from the chambers of the two UHV systems used,
the Scienta Omicron variable temperature scanning tunnelling microscope (VT-STM)
and low-temperature scanning tunnelling microscope (LT-STM). Different pumps have
different standard operating pressure ranges. Therefore, a variety of pumps are con-
nected to the UHV chamber to take the system’s pressure down from atmospheric to
UHV levels. A roughing pump, such as a scroll pump, removes the gas from the cham-
ber to bring the chamber to rough vacuum levels (> 10−3 mbar). A combination of the
roughing pump and a turbomolecular pump, as well as a bake-out process described
later, reduce the pressure to the upper boundary of high vacuum levels (> 10−8 mbar).
The turbomolecular pump further reduces the pressure to UHV (< 10−9 mbar). Two
further pumps are operated at this pressure, the ion getter pump and the titanium
sublimation pump (TSP). The ion getter pump works by applying a strong electric
field across two plates, ionising the gas atoms and molecules between them, causing
the ions to accelerate towards a cathode. Cathode materials sputtered by incoming
high energy gas ions are deposited onto the anode or pump walls, and the resulting film
acts as a getter to further evacuate gas by chemisorption and physisorption16. The
pump material is often titanium due to its effectiveness at pumping hydrogen thanks
to hydrogen’s solubility and diffusion rate within titanium, hydrogen being the major
gas load at low pressures17. The TSP is a titanium alloy filament that is electrically
heated until titanium sublimates from the filament’s surface into the UHV chamber.
The sublimed titanium coats the surfaces and chemically captures any active gases
within the chamber.16

Active user measures to maintain UHV include the use of a secondary sealed chamber,
the load lock, to transfer samples from outside the chamber; a system bake-out,
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2 EXPERIMENTAL TECHNIQUES AND MATERIALS

enclosing the system in a tent and regulating to 100-150 ◦C for approximately 12
hours to desorb gases from system surfaces, to reduce the minimum chamber pressure;
applying mechanical seals between fixtures, often in the form of copper gaskets, which
are scored by the cutting edge between the flanges of connected fixtures.
UHV conditions are a powerful and unique tool for studying new surfaces unsuitable
for preparation or probing under ambient conditions. Chapter 5 features the study
of C60 on Ag(111) under UHV conditions, using deposition and probing techniques
discussed in Sections 2.4 and 2.6 respectively.

2.1.3 Controlling SPM systems

For the time being5,6, SPM instruments are controlled in real-time by a user, usually
within the proprietary software of the instrument’s manufacturer. These communicate
with the control box of the instrument via their own coding language, manipulating pa-
rameters for image capture through a user interface (UI) of control panels. All atomic
force microscopes used were controlled with Asylum Research 13, while all scanning
tunnelling microscopes were controlled with MATRIX 4.3.5. These two programs, and
most SPM-associated software, share some terminology for their user-definable scan
parameters, in particular, their primary feedback parameters. One of the most im-
portant of these is setpoint, corresponding to a returned physical attribute generated
by the interaction between probe and sample, such as tunnel current or deflection.
The microscope will aim to keep this value constant during a scan with the degree of
correction, generated by a feedback loop, which is reflected in the pixel value at that
position in the scan. SPM instruments use a control loop feedback system purposely
designed to maintain the defined setpoint value. This is slightly more complex, and
generally smoother, than a simple negative feedback loop where, in the case of a z
motion correction, the tip goes down when the strength is too low and goes up when
it is too high.

A proportional-integral-derivative (PID) controller is the most commonly used feedback
system. A PID controller for SPM makes adjustments to the tip-sample separation
with respect to equation 2.1

δh(t) = KpE(t) +Ki

∫ t

0

E(τ)dτ +Kd
d

dt
E(t) {2.1}

where δh(t) is the time-dependent controller output, in this case, the correction to
separation at time t, E is the difference between the defined setpoint and measured
setpoint, the error term, and τ is a dummy integration variable. Kp, Ki and Kd are
the proportional, integral and derivative system gains respectively. The user sets these
gain parameters, each requiring systematic adjustment to reach a stable and damped
configuration for the scanned surface. Incorrect setting of these parameters leads to
imaging uncharacteristic of the surface and other undesirable effects.18
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2.2 The atomic force microscope

Increasing the proportional gain increases the direct corrective response to deviation
from the setpoint. Still, it is liable to cause overshooting, which, when further rapidly
re-corrected for, appears as high frequency oscillations in the scan. The integral gain
acts upon the history of the error term, this stabilises the feedback response and
hence reduces steady-state errors, by which the probe corrects to an offset from the
setpoint while correcting for the dynamic signal, often caused by sample drift in the
z direction or scanning sloped samples19. This term can still, however, lead to low
frequency oscillations by overshooting. The derivative gain acts to reduce overshooting
and is proportional to the rate of change of the error term. The derivative term’s
amplification of rapidly-oscillating noise renders it unsuitable for the majority of SPM
systems, excluding those with high signal-to-noise ratios. It is hence common to see
SPM feedback controllers referred to as PI controllers, which is effectively the same
as a PID controller with Kd = 0.19

2.2 The atomic force microscope

AFM extends the principles of SPM to insulating substrates. A tunnel current cannot
be used as a measure of the tip-sample interaction for an insulating sample, and thus
STM is not possible. This is circumvented by measuring the force upon a cantilever
instead of a tunnel current. This is conducted with a cantilever of known stiffness,
quantified by its spring constant, held in close proximity to a surface. In a static mode,
the cantilever will deflect from the surface towards a local minimum, in the potential
well commonly defined by either the Lennard-Jones or Morse potential in equations
2.2 and 2.3 respectively, at an equilibrium position σ, bonding energy Ebond and char-
acteristic inverse decay length κ in the Morse potential case. The tip, located at the
apex of the cantilever, at displacement z > σ, is attracted by long-range London
dispersion/van der Waals (vdW) forces, instantaneously-formed and induced dipoles.
At z < σ, a repulsive tip-sample interaction arises from the Pauli exclusion principle,
which states that fermions cannot occupy the same quantum state. Such forces are
ubiquitous among atoms of any and all materials. Hence AFM places no limitations
on the electronic nature of surfaces it can study.

Different modes exploit different sections of the typical force-distance profile shown in
Figure 2.2.1, with contact modes occupying the repulsive regime, non-contact (NC)
modes in the attractive regime (with some exceptions20), and intermittent contact
utilising a combination of the two.

VLJ = −Ebond(2
σ6

z6
− σ12

z12
) {2.2}

VMorse = −Ebond(2e
−κ(z−σ) − e−2κ(z−σ)) {2.3}

Dynamic modes of AFM utilise a vibrating cantilever. Instead of a force measurement
based on the deflection and effective spring constant of the cantilever, a force gradient
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2 EXPERIMENTAL TECHNIQUES AND MATERIALS

Figure 2.2.1: Appearance of the interaction potential in AFM, typically defined by the Lennard-Jones or Morse
potential, with the regimes for dominant short-range repulsive (chemical) and dominant long-range attractive (vdW)
forces labelled. σ represents an equilibrium position.

measurement is used to regulate the probe. It is at this point more properties of the
cantilever matter. For one, a quality factor, Q, quantifies the decay in the amplitude of
oscillations as frequency deviates from the resonance peak. Operation in air, liquid or
vacuum will modify this factor accordingly. All dynamic modes deployed were resonant
modes. Resonant modes operate at or near the resonant frequency of the cantilever.
This is typically with the cantilever externally driven at its resonant frequency, or within
±5% of it, with a piezo-actuator fed an alternating voltage, sometimes referred to as
a shaker piezo. In all cases, the driven cantilever was oscillated near resonance with
the tuning panel in software, most commonly set to oscillate the cantilever at -5% of
the found resonant frequency. Occupying one side of the resonance curve during a
scan guarantees a near-linear relationship between amplitude and frequency at little to
no cost to resolution.

A high resonant frequency minimises the effects of vibrational noise. This, combined
with the demand for a low stiffness, meant that a general-purpose silicon cantilever
with a spring constant of 2 Nm-1 and a resonant frequency of 70 kHz was used
throughout. The same cantilever with a 40 nm platinum coating was used for conduc-
tive measurements. Higher frequency driving oscillations, beyond the first harmonic,
can render the AFM image more sensitive to the surface composition by introducing
multiple degrees of freedom (eigenmodes) for excitation and detection of individual
material properties.21

Modern AFM most often utilises a laser beam deflection configuration to detect the
force-driven deflection, shown in Figure 2.2.2. The cantilever deflection is measured by
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2.2 The atomic force microscope

a laser focused on the tip-end of the probe, enabled by a reflective coating, which re-
flects into a photodiode. During operation, the position of the reflected laser changes
and is detected by the position-sensitive photodiode as a signal.

XY Piezo-Scanner

Photodiode

Cantilever

Laser

Surface

Control Unit
Software Input

Output Data

Shaker Piezo

Z-Piezos

Figure 2.2.2: The conventional setup of an AFM instrument using a laser beam deflection configuration.

There are several modes in which one can operate an atomic force microscope. Those
discussed below are conventional modes available with most software and instruments
utilised for material characterisation throughout the thesis research.

Contact mode is the simplest implementation of AFM. This static mode involves
the undriven cantilever being effectively dragged over the surface, with deflection di-
rectly measured. In this case, the setpoint governs the degree to which the cantilever
pushes into the surface. Contact mode boasts rapid scan speeds at greater resolutions
than most other imaging modes, as the gradient of the repulsive regime the cantilever
is pushed into is relatively steep, which provides a highly contrasting image as the
probe directly traces the surface topography. The high interaction strength and probe
proximity of the mode come at the cost of damage to the probe and surface. The
invasive nature means contact mode can damage weakly bound molecular layers, with
the lateral forces often causing rapid blunting of the tip and any material interacting
weakly with the surface to be swept away during scans. While this can be a useful
feature for characterising structures and their surface adhesion, contact mode is only
typically used for high-resolution scans of bare substrate or small scans upon nanos-
tructures to limit damage to a small vicinity. Though contact mode is the definitive
use of static mode AFM, the mode is not limited to measuring surface topography
and other material properties. A static mode was utilised for additive nanolithography
on silicon over square regions using parameterisation in the software’s contact mode,
discussed further in Subsection 4.3.2.
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2 EXPERIMENTAL TECHNIQUES AND MATERIALS

The first dynamic modes to discuss are those operated in the non-contact regime.
Non-contact atomic force microscopy (NC-AFM), as the name suggests, is operated
with no contact between the surface and tip within the attractive regime of Figure
2.2.1. During NC-AFM, the amplitude of oscillations of the vibrated cantilever is
controlled such that the energy of the cantilever at the closest point of approach to
the surface is sufficient to avoid a “jump to contact” within the repulsive regime of
tip-surface interaction. Short-range forces can be probed without risk of permanent
deformation of the tip and surface without coming into full contact with the surface.

The tip-sample interaction modifies the cantilever’s effective spring constant, modify-
ing its resonant frequency. Considering the resonance curve in Figure 2.2.3 by which
a force gradient experienced by the probe translates the curve along the horizontal
axis. Operating on the attractive side of the potential minimum results in negative
frequency shifts with a reduction in amplitude and the appropriate phase difference.

Two NC-AFM modes were deployed for surface scanning. Amplitude Modulation
mode (AM) AFM is analogous to that in the original AFM design by Binnig et al.3,
while Frequency Modulation mode (FM) AFM was later developed by Albrecht
et al.22. AM mode measures the change in amplitude of the cantilever oscillation
and adjusts the tip-sample separation using the PID controller to maintain a fixed
amplitude value. FM mode utilises a phase-locked loop and PID controller to track
the shift in resonant frequency induced by the tip-surface interaction, ∆f, relative to
that of the cantilever oscillated at a suitable distance from the surface23.

Figure 2.2.3: Resonance curve shift induced during NC-AFM. ∆f and ∆A are tracked in frequency modulation AFM
and amplitude modulation AFM respectively to build an image.

When AFM was implemented under UHV conditions24, standard silicon or silicon ni-
tride cantilevers exhibited very high Q. The fast response times of the instrument
scaled proportional to Q, this often renders AM-AFM and tapping mode AFM too
sluggish in UHV conditions. This makes FM-AFM preferable, as response times of the
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instrument in FM mode do not scale with Q25.

Tapping mode provides an alternative height imaging approach and acts as the
primary probing method for the work presented in this thesis. This dynamic mode is
referred to as intermittent contact mode, as the probe is positioned such that the tip
taps the probed surface at the bottom of each swing of the oscillating cantilever. The
cantilever’s amplitude is dampened due to intermittent tip-sample contact during a
scan.
The feedback loop maintains the tapping regime at the probe setpoint amplitude with
respect to the topography of the surface, modifying z accordingly. The adjustments to
z required to maintain the constant amplitude of the probe during a scan are presented
in the height image26. Short-term contact with the surface maintains the high lateral
resolution of contact mode, without the invasive nature.

Phase contrast imaging is another common AFM imaging option, deployed simultane-
ously with tapping mode with no drawback. The change in probe amplitude near its
resonant frequency, which is used for feedback in tapping mode, does not fully define
the tip-sample force interactions. Monitoring the probe’s phase lag between the signal
that drives the cantilever oscillation and its output signal, performed alongside am-
plitude control, provides a deeper understanding of the tip-sample interaction. Such
shifts are recorded in a phase image, relative to the driving signal. Excited cantilever
oscillations exhibit a phase shift ∆ϕ between the drive and response. At resonance,
∆ϕ is 90◦ compared to the phase well below resonance. During a dynamic mode
scan, a phase lag between the driving signal and recorded signal will be detected due
to a change between the tip-surface interaction. This lag is correlated to the energy
dissipated while tapping the tip on the surface. This can differentiate areas on the
sample of differing properties, beyond differences in height. A problem emerges in the
measurement often being a convolution of multiple material properties, most often
the adhesion, stiffness and viscoelasticity. Isolating such properties is best explored
with single-point AFM force spectroscopy. While not useful at pinpointing the ex-
act material source of the contrast, phase contrast mode provides a source of image
contrast in cases of a lack of visible features in the height image. This feature was
exploited to help identify or relocate nanostructures or nanolithography patterns over
large, topographically flat regions.26

Kelvin probe force microscopy (KPFM) is an NC electrical characterisation method
available with the atomic force microscope grounding platform and software. KPFM
provides another source of contrast in surfaces, this time by measuring the contact
potential or work function, defined as the energy required to remove an electron from
the Fermi level in a solid into vacuum at 0 K, of the probed surface using a conductive
probe. A dual-pass setup is used, by which the cantilever passes over the same row
of scanned region twice, recording surface topography using AM-AFM on the first
pass, and then KPFM on the second. During this pass, voltage dithering is applied
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to the scanning cantilever, typically at a high harmonic of the cantilever. Shifts in
resonant frequency by electrostatic forces from the surface are monitored, and a po-
tential feedback system supplies a suitable DC voltage offset to minimise the shift.
The voltage value is recorded for all positions as the interaction parameter, similar to
that of all forms of SPM. Though this dual recording method has a long acquisition
time, based upon the combined scan rate of the AM and KPFM measurements, the
ability to strongly correlate topography to electrical properties is exceedingly useful.
Though the work function was uncalibrated in the use cases presented in Appendix
D, and often calibrated by use of a control surface such as silver, a clear understand-
ing of the tip-surface electrostatic interaction allows for relative quantitative KPFM
measurements of variations in the sample’s local work function27,28. Additionally, the
constructed “Kelvin” image maps spatially inhomogeneous surfaces (for example, due
to areas of different materials, orientations, or due to surface defects) where the force
profile between the tip and surface is liable to vary across different regions of the
image. Hence, a constant force gradient profile from such a surface may not generally
be the same as a purely topographic profile29,30.

2.3 Scanning tunnelling microscopy

Scanning tunnelling microscopy (STM) was the secondary SPM technique used. The
principles remain consistent with those discussed for SPM in general, a sharp probe
is brought into close proximity to a surface to measure the magnitude of the specific
interaction. This time however, the tip-sample separation, z, is within the order of a
few angstrom. At this distance, the phenomenon of quantum tunnelling takes place,
such that the interaction measured is the transmission of electrons between the tip and
sample. Notably, an image produced by STM, though capable of atomic resolution,
does not directly return atomic positions. Instead, the local density of electronic states
(LDOS) is measured. The two modes of operation are constant height and constant
current mode. The former measures the tunnel current by rastering the tip over the
surface at a constant height, while the latter uses a PI(D) feedback response to main-
tain the tunnel current. In constant height mode, the current between the tip held
at the same z displacement and surface is recorded as a function of xy tip position
to build an image. In constant current mode, the tip height necessary to maintain a
setpoint current is recorded as a function of xy tip position to build an image.

Due to the quantum mechanical basis of STM, the essential physics for operation is
captured by the simple problem of tunnelling through a 1D barrier31. The rectangular
barrier of height V0 and width zt represents a metallic tip separated in vacuum from
the sample by a distance zt, an electronic wavefunction of energy E would need to
overcome an apparent barrier height of (V0-E). This is shown visually in Figure 2.3.1.
The resulting wavefunction, ψ, at the barrier can be described at each region by
equation 2.4
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Figure 2.3.1: Demonstration of quantum tunnelling through a 1D potential barrier.

ψ(z) =


Aeikz +Be−ikz z < 0

Ceµz +De−µz 0 < z < zt

Feikz z > zt

{2.4}

where k is the wave number, k =
√

2mE
ℏ2 , µ is the inverse decay length of the electron

at the surface, µ =
√

2m
ℏ2 (V0 − E), while A, B, and F are constants that govern

transmission, and C and D the reflection.

Relating 1D tunnelling to measurements during an STM scan is accomplished through
a transmission coefficient, T (E). This defines the ratio between the probability flux of
the transmitted wave after the barrier and the incident wave as it arrives at the barrier.
By ensuring continuity of the wavefunction and its first derivatives at the boundaries,
z = 0 and z = zt in equation 2.4,

T (E) ∝ I ∝ e−2µzt {2.5}
The derived exponential dependence of current upon tip-sample separation results in
STM’s sub-atomic resolution. Even a single angstrom shift in separation, and hence
barrier width, can vary I by nearly an order of magnitude.32,33

2.3.1 Tersoff-Hamann approach

Interpretation of STM images requires a more complex theoretical description than
that of just the 1D tunnelling model. Though the 1D approach captures the essential
physics of the problem, a more realistic model was proposed by Tersoff and Hamann in
198531. At large tip-sample distances, the tip-sample interaction can be modelled as
a small perturbation34. The tunnel current, I, as such can be represented by equation
2.6

I =
2πe

ℏ
∑
t,s

f(Et)[1− f(Es + eV )]|Mts|2δ(Et − Es). {2.6}
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The equation sums over all tip (t) and sample (s) states. The f(Et) and (1 −
f(Es + eV )) terms ensure tunnelling is between filled and empty states by giving the
probability for an electron to occupy a filled energy level in the tip, where f(E) is
the Fermi function, the probability of occupying an available energy level. The δ term
ensures the conservation of energy for elastic tunnelling. The matrix element, Mts, is
the tunnelling matrix between the tip and sample, and is given by equation 2.7

Mts =
ℏ2

2m

∫
S

(ψ∗
s∇ψt − ψt∇ψ∗

s)dS {2.7}

ψs and ψt are the wavefunctions of the sample surface and tip respectively, while also
serving as eigenfunctions of the isolated system to be solved independently.

∫
S
dS

represents an integral over any surface S, lying entirely within the tunnelling gap into
respective tip and sample regions. Overall, the tunnelling matrix evaluates the prob-
ability of the tip and sample wavefunctions overlapping, which is necessary for any
tunnelling to occur.

The tunnelling matrix can be fully evaluated by knowledge of the precise structure
of the tip and, hence its wavefunction. Tersoff and Hamann suggested a simplified
spherical STM tip model. The apex approximated a sphere with a radius of curvature
R and centre of the globe, r0, illustrated in Figure 2.3.2.

Figure 2.3.2: Schematic of the Tersoff-Hamann s-wave tip model.

The idealised tip wavefunction is given by equation 2.8

ψt = Ω
−1/2
t ctκRe

κRe−κ|r−r0|(κ|r − r0|)−1, {2.8}

where Ωt is the volume of the tip, ct is a normalisation term, and κ = ℏ−1(2mϕ)1/2,
the minimum inverse decay length for the wavefunctions in vacuum, where ϕ is the
work function of the surface. The tunnelling matrix is hence given by equation 2.9

Mts =
4πℏ2

2mκ
Ω

−1/2
t κReκRψs(r0). {2.9}
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In the limit of zero temperature, such that the Fermi functions can be approximated
by a unit step function, V is small, and the tip and sample are only weakly coupled,
equation 2.6 simplifies to equation 2.10

I =
2πe2V

ℏ
∑
t,s

|Mts|2δ(Et − EF )δ(Es − EF ). {2.10}

Implementing the s-wave state for the tip wavefunction31 from equation 2.8 into equa-
tion 2.10 further simplifies it to equation 2.11

I ∝
∑
s

|ψs(r0)|2δ(Et − EF ). {2.11}

|ψs(r0)|2 is the probability density of the surface wavefunction at the position of the tip.
Given equation 2.11, I is directly proportional to the surface’s local density of states
(LDOS). However, this only reasonably holds for metallic surfaces. In actual exper-
iments, the electronic and chemical interaction between the tip and sample is much
stronger, and the voltage can be significantly higher than assumed in the Tersoff-
Hamann model.

For semiconducting samples and molecular adsorbates, given that only electron states
between EF and EF + eV contribute to tunnelling, equation 2.11 can be modified to
equation 2.12 for finite voltages

I ∝
∫ EF+eV

EF

|ψs(r0)|2δ(E − EF )TdE, {2.12}

where T (E) is the aforementioned transmission coefficient.

The Tersoff-Hamann model, as presented, does not provide a full picture. The s-wave
approximation is much too simple to describe the apex of a tip during experiments.
Previous works expand the model to different tip shapes by deriving their respective
tunnelling matrix element35,36, or conduct expansive analytical modelling of tip shape
and its effect on surface interaction37. Regardless, beyond thermal fluctuations at
the Fermi level, applying a voltage bias between the tip and surface is required to
measure a tunnel current, during which all electron states between EF and EF + eV
are assessed. Varying the bias allows for direct measurement of the LDOS.

2.3.2 Voltage bias

Transmittance is not just reliant on the distance between the probe and the surface;
there is also dependence on the density of empty states that electrons can tunnel
into, and the density of filled states that electrons can tunnel from. Tip bias when
probing semiconducting materials of often complex band structure plays a key role in
the observed LDOS in STM images. It would be beneficial to first consider a purely
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metallic tunnel junction, depicted in Figure 2.3.3. In an ideal case, E will be close to
the Fermi energy, hence V0 − E = ϕ, where ϕ is the work function of the material.
Figure 2.3.3(a) shows an unconnected tunnel junction, just two metals separated by
a vacuum. The Fermi levels of each material, EF1 and EF2, are defined by a displace-
ment of ϕ1 and ϕ2 from the common vacuum level, Evac, respectively. Once electrically
connected, in the case of Figure 2.3.3(b) where ϕ1 < ϕ2, a transfer of charge from
the first to the second material occurs, aligning the Fermi levels at EF. There is no
net flow of electrons in either direction; hence no tunnel current is measured. When a
negative bias V is applied, a shift in Fermi level by eV results in a tunnel current from
the second to the first metal, depicted in Figure 2.3.3(c).

EFEF

ϕ1
ϕ2

EF2
EF1

ϕ1

ϕ2

eV

Evac

EF2

EF1

ϕ1 ϕ2

(b) (c)(a)

Figure 2.3.3: Energy level diagrams at a purely metallic tip-sample junction for STM. (a) The tip and sample are
electrically isolated, the common reference is Evac, the vacuum level. (b) The tip and sample are electrically connected
with zero bias, the Fermi levels align and no net tunnelling is observed. (c) A negative bias V is applied across the
connection (right to left), shifting the energy level by eV, the transmission of electrons from occupied states on the
right into empty states on the left.

When considering a semiconducting material, the relative positions of the Fermi levels
driven by the bias affect whether electrons tunnel from the valence band or into the
conduction band, shown in Figure 2.3.4. The tunnel current is hence described by
equation 2.12, proportional to the convolution of the density of states of the tip and
sample within the energy window defined by the sample bias.

This does not, however, describe the entire picture while probing a semiconducting
material, as the tip is not necessarily terminated by metal atoms. More often, the
apex is coated in the surface materials during the scan, including possible deposited
adsorbates, contaminants, or substrate.

STM was used for early material characterisation of silicon and HOPG, as well as test
deposition methods under UHV conditions. However, changes in the project’s scope
caused the technique to be underutilised. The work presented primarily focuses on
AFM, particularly the analysis of images returned by tapping mode.
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Figure 2.3.4: Energy level diagrams at a tip-sample junction with a semiconducting adsorbate for STM. (a) A negative
tip bias is applied, causing electrons to tunnel from the tip to the sample’s conduction band (CB). (b) A positive tip
bias is applied, causing electrons to tunnel from the valence band (VB) to empty states in the tip.

2.4 Vacuum deposition techniques

2.4.1 Thermal sublimation

Thermal sublimation via a sublimation cell was the primary deposition approach for
x-ray experiments on surface-bound molecules. The cell allows for deposition directly
into the UHV chamber, assuming the solid angle projected has a line of sight with
the sample, by a molecule flux diffusing into the chamber. The cell’s internal design
follows that of M. Schunack38, presented in Figure 2.4.1. The heating wire acts as a
filament that heats the glass crucible containing the molecules through resistive heat-
ing using a power supply attached to external wires outside the chamber. A K-type
thermocouple embedded in the base of the crucible monitors the temperature using a
multimeter attached to the external wires.

Figure 2.4.1: Photo of the end of the sublimation cell mounted into the UHV chamber of the LT-STM.

Cross-contamination when changing the contents of the crucible was avoided by a
thorough clean, the glass crucible and other loose components were submerged in
acetone then left for a 20 minute cycle in an ultrasonic bath, then resubmerged in
isopropyl alcohol for a second 20 minute cycle. The inserted material is thoroughly
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degassed in UHV at high temperatures - for several hours at 400 ◦C for a crucible
containing C60 - before sublimation. Endofullerenes were prepared for deposition via
this standardised method. Endofullerenes are discussed further as a material and
experimentally in Chapter 5.

2.5 Materials

This section describes the key materials used throughout the thesis research, namely
graphite, silicon, hexagonal boron nitride and fullerenes. SPM is carried out to examine
these materials during preparation, and their chemical interactions with molecules
deposited upon them, as a substrate. Graphite, silicon and silicon modified in and ex
situ with dopants, passivations, or a deposited different substrate are reviewed below,
as well the C60 fullerene molecule. Gold nanoparticles are central to their own chapters.
They are discussed as materials later on in context, in Subsection 3.1.2.

2.5.1 HOPG

Graphite is a crystalline form of the element carbon, consisting of hexagonally arranged
layers of carbon atoms, stacked parallel to provide a three-dimensional crystal of long-
range order. Carbon atoms in each sheet, effectively a graphene layer, are covalently
bonded with sp2 hybridisation with a C-C distance of 141.7pm. Weak van der Waals
forces hold the layers together39. Pyrolytic graphite is described as highly oriented
when the mosaic spread is sufficiently low. The mosaic spread is typically given as
an angle, defined as 0◦ when all layers of graphite sheets in the material are parallel.
A mosaic spread angle below 1◦ is achieved with high temperature and stress treatment.

Highly oriented pyrolytic graphite’s (HOPG) well-understood surface morphology makes
it a useful calibration standard for atomic resolution imaging. The step edges create
a consistent step height of 3.4 Å, the effective spacing between two layers of carbon
atom sheets measured when a profile is taken in SPM, scanning an incomplete layer
atop another. The layered nature allows for robust substrate modelling due to the
relatively low complexity of the delocalised π orbitals. The material is also easily re-
newable under ambient conditions. Cleaving with tape removes an unclean layer off
the HOPG, providing an atomically flat polycrystalline surface with minimal residue.
HOPG was used in Appendix D as a substrate for in situ vapour deposition for sub-
monolayer coverage of C60, and as a manner of calibrating an STM operating under
ambient conditions, discussed below.

Surface level defects significantly affect the observed superlattice when probing with
STM. Bulk HOPG exhibits Bernal stacking, ABAB, to form a crystal, with the offset
between A and B planes being one atomic spacing. There are two atomic sites: α-
sites, where carbon atoms in adjacent layers are directly above and below each other,
and β-sites, where carbon atoms in adjacent layers are directly above or below hole
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sites. This leads to a primitive unit cell consisting of four carbon atoms, 2 α and 2 β,
of unit cell length 2.46 Å. STM upon HOPG theoretically returns a trigonal pattern
of bright spots with the same spacing, observed experimentally in Figure 2.5.1(a), but
this is not always the case. The second image’s appearance is potentially due to a
misalignment, 2.5.1(b), a local deformation of graphite due to a very short tip-sample
distance, attractive forces decouple the top layer of graphite from the surface40. This
returns an image of the hexagonal lattice, effectively the standard atomic resolution
of HOPG, using only α-sites occurring at the surface.

Figure 2.5.1: STM images of HOPG taken under ambient conditions using a hand-cut Pt-Ir wire as a probe. (a)
Trigonal pattern with ∼2.4 Å spacing; (b) hexagonal pattern with side length ∼1.4 Å. The differences in appearance
are accredited to different tunnelling and tip conditions, or a misalignment in the outermost layer of graphite.

2.5.2 Silicon

Silicon is a mainstay of the semiconductor industry, with silicon components present in
a staggering number of electronic devices. The material is similarly a mainstay of sur-
face study, being one of the most widely studied surfaces in the field. Silicon here acts
as a benchmark substrate for SPM. Mono-crystalline silicon cut at two specific atomic
planes, Si(100) and Si(111), were used. Illustrated in Figure 2.5.2, the Miller indices
are indicative of the angle of cleaving of the bulk crystal. Cleaving the diamond-lattice
structure exposes the 3s2 3p2 valence electrons, forming covalent tetrahedral bonds
with four neighbouring silicon atoms in a process called surface reconstruction.

Uncontaminated Si(111) reconstructs into a complex 7 x 7 surface, formed by dangling
bonds among the outermost three layers, shown in Figure 2.5.3. Si(100) reconstructs
to form dimers, which buckle to reduce the free energy. Depending on the relative
orientation of buckling of adjacent dimers, various surface reconstructions form, ideally
p(2 x 1) symmetric, p(2 x 1) asymmetric, p(2 x 2), and c(4 x 2), shown in Figure
2.5.4.41,42

The silicon wafer used was thermally oxidised and polished commercially, but scored
and cut into rectangular wafers of suitable size for SPM with a diamond scribe. Ther-
mal oxidation grows a uniform oxide layer 10 - 100s of nanometres thick, often within
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Figure 2.5.2: Atomic structure of the ideal bulk-terminated Si(100) and Si(111) crystal planes. Reconstruction in each
case leads to dramatic repositioning of the surface, and near-surface, atoms.

Figure 2.5.3: Top view and side view of a Si(111) 7 x 7 reconstruction. From Gomoyunova et al., Technical Physics
49(10):1249-1279, 2004 43
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Figure 2.5.4: Si(100) reconstruction and phases of dimer rows. (a) Top view and side view of the polished unrecon-
structed 1 x 1 surface, surface atoms have 2 dangling bonds. (b) The p(2 x 1) symmetric reconstruction of paired
dimers, surface atoms have a single dangling bond. (Bottom row) Lower energy configurations with asymmetric
dimers; (c) p(2 x 1) asymmetric, (d) p(2 x 2), and (e) c(4 x 2),
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a 10% boundary of error, providing a sufficiently flat surface for numerous AFM de-
position studies with NDP, C60 and thiol-passivated gold nanoparticles from solvent.
Silicon with this grown oxide layer (often amorphous with crystalline defects44,45) is
denoted as SiO2/Si.

Cleaning silicon ex situ for SPM uses a simple, well-established procedure. The cut
pieces of a wafer are solvent cleaned, pieces are submerged in acetone, then left for
a 20 minute cycle in an ultrasonic bath, and then resubmerged in isopropyl alcohol
for a second 20 minute cycle. Excess solvent is removed by a nitrogen gas stream.
This process removed oil and organic residue for deposition and dewetting studies, and
sample entry into the UHV chamber.

Preparation of silicon for atomic resolution UHV STM requires an even higher stan-
dard of cleanliness. Even short-term exposure of the surface to atmosphere oxidises
the surface and picks up multiple contaminants such as airborne carbon. The silicon
is typically cleaned ex situ with solvents as before, alongside the disassembled sample
holder components. Upon entry to UHV, the surface is degassed. The sample and
holder are heated to 650 ◦C for several hours in the UHV chamber’s manipulator arm
via resistive heating, with temperature measured by a pyrometer aimed at the hottest
part of the surface through a viewing window. Chamber pressure and temperature are
highly monitored, with spikes in pressure and changes in surface resistivity indicative
of desorption events, and long-term reductions in pressure indicative of the majority of
contaminants being removed from the sample and holder, such as water and residual
solvent from cleaning. Degassing was also conducted for HOPG after cleaving and
then entry to UHV, at a similar temperature of 600 ◦C.

Degassing is subsequently followed by flash annealing. The flash annealing process
aims to rapidly increase the temperature to 1200 ◦C for short periods to remove the
native oxide layer, drive residual carbon contaminants into the bulk, and expose the
bare silicon underneath. The manual temperature ramping is termed “flashing”. Mon-
itored using a pyrometer, the surface is returned to the degassing temperature, flashed
to the flashing temperature, then returned to the degassing temperature, and then
repeated. A series of flashes is conducted to remove further contaminants exposed
during the removal of the native oxide layer. Instead of returning to the intermediate
degassing temperature, the final flash is followed by a short anneal at a secondary in-
termediate temperature of 800 ◦C. This cooling temperature allows the silicon surface
to reconstruct, during which surface atoms rearrange to minimise the free energy. The
surfaces of Si(111) and Si(100) would reconstruct in UHV in the previously discussed
ideal manner, a 7 x 7 reconstruction or a c(4 x 2) (low temperature)/(2 x 1) (room
temperature) reconstruction, respectively.

More specialised preparations of silicon are discussed in their respective chapters. This
includes wet chemical etching and selective re-oxidation of silicon in Chapter 4, and

25



2.5 Materials

Figure 2.5.5: Structural comparison of highly oriented pyrolytic graphite (HOPG) to hexagonal boron nitride (hBN).

considerations of modelled silicon substrate via Monte Carlo simulations between Chap-
ters 3 and 6.

2.5.3 Hexagonal boron nitride

Thermally-oxidised silicon wafers were chosen for the deposition of layers of a sec-
ond substrate. Hexagonal boron nitride (hBN) sees persistent usage as a well-defined
atomically flat dielectric substrate for the growth of organic thin films, with ease
of preparation ex situ to return a flat appearance for AFM. Graphene and hBN are
isostructural, shown in Figure 2.5.5, forming a honeycomb network. Compared to
graphene’s unit cell of length 2.46 Å, hBN sheets form a unit cell of two boron and
two nitrogen atoms of unit cell length 2.51 Å. There is similarly a lack of dangling
bonds, limiting interactions with functional groups of molecular adsorbates. The di-
electric properties of the material arise from a 6.0 eV bandgap46, rendering the material
weakly interactive during thin film depositions for AFM and spectroscopy. For these
reasons, the substrate was deployed in a photoactive dyad-substrate systematic study
in Chapter 7.

Growing an expansive, flat, organic thin film first requires a flat, uncontaminated hBN
film, for which the group has a consistent standard operating procedure. The hBN sub-
strate is prepared by mechanically exfoliating flakes from single crystals using ScotchTM

tape. Repeatedly adhering and peeling away the tape to and from the hBN crystallites
causes mechanical cleavage, returning a thin layer of hBN upon the tape. The tape is
then applied to a series of silicon wafers upon their polished face, and slowly peeled
away, with the resulting substrate checked under an optical microscope. Low hBN
coverage could be fixed by plasma and heat treatment of the silicon substrate before
transfer.
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Figure 2.5.6: 3D rendering of buckminsterfullerene (C60) made in JSmol.

Using tape returns a significant amount of polymer residue, beginning a long and
rigorous cleaning process, involving flame-annealing and subsequent furnace-cleaning.
Normally one of these methods is used and enough to remove all residue, but both
were deployed due to persistent nucleation in the deposited organic thin films. The
cleaning process began with a minimum 12 hour toluene submersion, with excess sol-
vent removed by a nitrogen gas stream. Subsequent flame-annealing involved exposure
to a butane gas torch upon the non-polished side of the wafers. This was followed by
furnace cleaning, the samples were heated in a tube furnace at 350 - 400 ◦C for 8 hours
in an atmosphere of 5% hydrogen 95% argon. The cleanliness and roughness of the
resulting substrate are checked with AFM. The resulting cleaned and exfoliated hBN
flakes have typical lateral dimensions of 20 - 100 µm and thicknesses 25-75 nm.47,48

2.5.4 Buckminsterfullerene

Fullerenes are a well-known group of carbon allotropes, with the most renowned mem-
ber being C60, buckminsterfullerene. The C60 molecule takes the appearance of a
quasi-spherical net of carbon atoms, made of twenty hexagons and twelve pentagons
with a carbon atom at each vertex, shown in Figure 2.5.6. Since its discovery in
198549, the study of the molecule deposited onto solid surfaces has remained a consis-
tent and fruitful field of research, stimulating and underpinning advances in numerous
sub-fields of condensed matter physics and surface science. Aspects of fullerenes, and
functionalised fullerenes, have been interpreted by a broad range of techniques, from
SPM to synchrotron-based methods.

All of the presented fullerene studies were conducted in the context of recent work
with endofullerenes, fullerenes encapsulating molecules, discussed in Chapter 5. AFM
studies on unfilled fullerenes, co-deposited from solution onto silicon or via thermal
sublimation onto HOPG, are covered in Subsection 4.3.1 and Appendix D.
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2.6 X-ray techniques

2.6.1 X-ray photoelectron spectroscopy

X-ray photoelectron spectroscopy (XPS) is a non-destructive surface analysis tech-
nique used to determine a material’s elemental and chemical composition, using the
photoelectric effect. In the XPS technique, a sample surface is irradiated with x-rays,
typically from a monochromatic light source of energy hv. This excites core-level
electrons of atoms in the sample, which meet the condition hv > Eb + ϕ, where Eb

is the binding energy and ϕ is the spectrometer’s work function. These electrons are
then ejected from the parent atoms as photoelectrons. The energy and number of
the ejected electrons are detected and used to determine the elemental and chemical
composition of the surface. Ejected electrons at shallow enough depths, determined
by Beer’s law50, can escape and be detected by an electron energy analyser, returning
the distribution of kinetic energies. Consequently, XPS can determine how the com-
position varies in the topmost surface layers, as well as the nature of adsorbates.

XPS can provide information on the valence state of elements and the presence of
impurities or contaminants on the surface of a material. XPS analysis focuses on the
spectrum of the intensity of the photoemission against the binding energy, over either
the typical binding energy range of an element or over the full binding energy range,
a survey. A range of kinetic energies of photoelectrons observed experimentally cor-
respond to a series of binding energy peaks. For a constant energy monochromatic
source, the kinetic energy of the photoelectron increases as the binding energy de-
creases. Each element has a unique set of core electron levels, acting as a fingerprint
to identify them in the spectrum. The intensity of the photoemission is proportional
to the intensity of the irradiating photons.

Changes to the chemical environment induce a chemical shift, a change in binding en-
ergy for a given core-level peak. Bonding, for example, can cause core-level electrons
to be held more strongly to the atom, consequently making electrons more difficult
to remove and, hence, have a greater binding energy. A series of core-level peaks
in spectra, associated with atoms in different chemical bonds or states, can overlap,
requiring additional interpretation during XPS analysis. Fitting, typically with software
or bespoke code, using known peak position data is used to estimate the presence and
relative abundance of elements in each chemical environment.

High-resolution XPS analysis, centred on the O 1s and F 1s core levels, is used to
characterise H2O and HF, respectively, incarcerated in deposited C60 in Chapter 5. This
is paired with photoemission spectroscopy of the valence band and normal-incidence
x-ray standing wave (NIXSW) analysis. The following section describes the NIXSW
technique.
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Figure 2.6.1: Production of an x-ray standing wave (XSW). An x-ray beam source directed into the bulk of a surface
causes the incident and reflected waves with a constant phase difference to produce a stationary wave, with position-
dependent intensity characteristic of the surface.

2.6.2 Standing wave production

Normal-incidence x-ray standing wave analysis (NIXSW, often simplified to XSW4)
provides a primary source of quantitative structural data for the positions of adsorbed
atoms and molecules, primarily on metal surfaces51. The method induces an interfer-
ence pattern with x-ray photons between incident photons and those reflected from
the crystal structure, depicted in Figure 2.6.1. The method exploits the x-ray stand-
ing wavefield that is created above the surface (and in the bulk) of a sample due to
the interference of incident and Bragg-reflected photons; the photon energy is tuned
to match the Bragg diffraction condition for the particular crystal planes of interest
(see Figure 2.6.1). The resulting emission of photoelectrons allows one to identify the
position of adsorbates on the surfaces with respect to the spacing of crystal planes,
absorbing x-rays strongly when positioned at the anti-nodes and weakly when posi-
tioned at the nodes, with repetition at multiple planes ultimately triangulating their
position in 3D space.

The desired XSW effect is realised experimentally by first aligning a crystal in a partic-
ular crystallographic direction, then directing an x-ray beam from a synchrotron source
at the surface. The energy of the incident x-ray beam, E0, is tuned to meet the Bragg
condition, shown in equation 2.13, of the x-ray scatterer plane of the bulk material.

nλ = 2dhklsin(θ) {2.13}
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where n is the diffraction order, λ is the x-ray wavelength, dhkl is the layer spacing
of the x-ray scatterer planes in the crystal with Miller indices hkl and an angle θ
between the plane and x-ray beam52. By aligning the crystal such that the incoming
beam is at normal incidence to the scatterer planes, θ = 90◦, both the incident
and back-scattered beam are normal to the plane. Hence, due to a constant phase
difference, ϕ, the incident and reflected wave interfere, producing a standing wave. At
the perpendicular distance from the atomic scattering planes z, the intensity of the
standing wave, I, is given by equation 2.14.

I =
∣∣∣1 + Ehkl

E0

exp
(−2πiz

dhkl

)∣∣∣2 {2.14}

Ehkl/E0 is a ratio between the energy of the incident and reflected beam.52–54

X-ray adsorption leads to the ejection of photoelectrons, Auger electrons, x-ray flu-
orescence photons, and other inelastic scattering events53,55,56, by the photoelectric
effect. Emission also depends on position with respect to the intensity maxima of
the x-ray standing wavefield. Atoms centred at anti-nodes in the standing wave will
radiate strongly. Conversely, atoms at nodes will not radiate and will be “invisible”
experimentally56. As the incident x-ray is scattered multiple times, much like ϕ, the
reflectivity of the crystal, R, is a function of E0. This dependency, much like diffrac-
tion from defects or non-parallel planes, in crystals returns a flat-topped reflectivity
curve (otherwise known as the Darwin or rocking curve53,55,56).

Measuring the reflectivity curve experimentally returns a very low reflectivity curve
width, ∆θ. This places a significant limit on experimental sensitivity, and strict re-
quirements on crystal quality and angular spread of the x-ray source. By consideration
of equation 2.15,

∆θ =
ΓF0

sin(2θ)
{2.15}

normal incidence (θ = 90◦) results in sin(2θ) → 0, and thus ∆θ → ∞, rendering
the reflectivity curve much wider. Γ is a constant dependent on the x-ray wavelength
and volume of the unit cell, while F0 is the structure factor for forward scattering53.
Varying E while maintaining a fixed Bragg angle of normal incidence to the crystal’s
scatterer plane is typical in modern XSW experiments.

2.6.3 Characterisation with NIXSW

Detecting the emission of photoelectrons is integral to XSW measurements. Photo-
electrons are amplified by a microchannel plate, with an integrated high pass filter,
and detected using a digital camera-like CCD. Monitoring the intensity and position of
photons hitting the CCD over a distinct timeframe enables photoemission (and Auger)
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,

Figure 2.6.2: Example graph of XSW intensity against the Bragg energy for water-encapsulating C60 (H2O@C60)
deposited on a Ag(111) substrate for the O 1s peak. The fit to the graph (red), combined with the reflectivity curve
fit, returns a coherent position Pc = 0.28± 0.01 and coherent fraction Fc = 0.46± 0.02.

spectra to be acquired.

Taking the relationship,

Ehkl

E0

=
√
Reiϕ {2.16}

and substituting into equation 2.14 yields the following relationship

I = 1 +R + 2
√
R cos

(
ϕ− 2πz

dhkl

)
{2.17}

Distance z is best treated as distribution dz over a periodic range dhkl, due to thermal
fluctuations and disorder at the crystal surface53,55,56. Hence equation 2.17 becomes
equation 2.18.

I = 1 +R + 2Fc

√
R cos

(
ϕ− 2πPc

dhkl

)
{2.18}

The new parameters here are the coherent position, Pc and the coherent fraction, Fc.
Mathematically, these are the phase and amplitude of the first Fourier component of
the real-space structures respectively51. The coherent position relates to the average
height of absorber atoms above the Bragg planes, while the coherent fraction tracks
the order of absorbing sites with respect to the plane51. Fc = 1 in a perfectly ordered
system. All sites are in the same position relative to the projection of the bulk crys-
tallographic planes.
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Determination of the position of an adsorbate relative to the crystallographic plane
normal to the beam requires a plot of I against E0. An example XSW spectrum of
water-encapsulating C60 (H2O@C60) deposited on Ag(111) for the O 1s peak is shown
in Figure 2.6.2. A fitting algorithm57 is deployed to determine the coherent position
and fraction.

NIXSW lends spatial resolution to x-ray spectroscopy techniques, identifying the posi-
tion of adsorbates on a surface relative to the extended crystallographic planes of the
bulk crystal. In Section 5.3, NIXSW is used to track the sensitivity of C60-encapsulated
molecules to surface adsorption58, utilising soft and hard x-rays produced by the syn-
chrotron at Diamond Light Source in Oxford.
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3 Far-From-Equilibrium Pattern Formation

3.1 Self-organisation

3.1.1 Dewetting thin films

A thin film is defined as a layer of material with thickness ranging from a few mi-
crons down to fractions of a nanometre. Thin liquid films on solid substrates appear
everywhere in everyday life, from lubricant films on the cornea of our eyes or pistons
in car motors, to decorative or protective coatings on our belongings. Unlike thick
simple films, the stability and dynamics of thin films are complex due to the coupling
of the many processes involved at these scales, including wettability, capillarity, diffu-
sion, adsorption and excess intermolecular energy. Understanding the unique physics of
thin films is essential for understanding the properties of materials of these thicknesses.

Dewetting is the term given to the spatial retraction of liquid from a non-wettable
solid boundary over time. The simplest interpretation of the process is that of liquid
adapting to the closest local equilibrium. The creation of an interface between ma-
terials has an associated energetic cost. A free-falling raindrop will try to minimise
its surface area, and thus free energy, by forming a sphere. A droplet deposited on
a solid surface balances three interfacial energies, between the solid-liquid, solid-gas
and liquid-gas interfaces. The relationship between the three determines the macro-
scopic contact angle, and hence whether the liquid wets the surface or “beads up” and
dewets59. While desirable for your raincoat to not become sodden during the rain, the
oil lubricating a piston in the combustion engine of your car dewetting is suboptimal,
to say the least.

Expansion of this concept to thin film brings numerous complications. The micro and
nanoscale behaviour of liquid on a surface depends on long-range van der Waals forces
and short-range polar and electronic interaction60. Dewetting in an unstable thin film
proceeds by the rupturing of the thin film, and the formation of holes that expose
the underlying surface, which then grow and coalesce, until the remaining threads of
liquid break up by Rayleigh instabilities into individual droplets much like the raindrop
example61,62. Rayleigh instabilities, however, do not fully describe the initial often
nanoscale portion of the dewetting process. The complexities of the rupture event are
described by a combination of nucleation, spinodal and hydrodynamic processes that
mediate transition states in the film.

The physics of dewetting thin films is best characterised by a series of potentials coin-
ciding with three different energetic states of the film: stable, unstable and metastable.
These potentials are known as interface potentials, ϕ(hz), functions which describe
the free energy per unit area of two surfaces at a separation hz. In this case, hz
represents the distance between the solid-liquid interface and liquid-air interface, the
effective thickness of the film. The shape of the interface potential for each film state,
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with generalised shapes shown in Figure 3.1.1, determines the stability of the film.

Figure 3.1.1: The shape of the effective interface potential ϕ(hz) as a function of film thickness hz for (1) stable, (2)
unstable and (3) metastable films 63.

Curve (1) displays a monotonic relationship between the potential and film thickness.
The film is considered to be in a stable state, as the thinning of the film always has an
associated energy cost at any film thickness, and is hence not energetically favourable.
Curve (2) represents an unstable state except at the minimum in the potential at hz.
The unstable film seeks to reduce its energy by thinning and spontaneously dewetting.
Curve (3) is similarly unstable for small thicknesses where ϕ′′(hz) < 0, whereas for
larger film thicknesses, the film is stable. This describes a metastable state, charac-
terised by a potential barrier the system must overcome to reduce its potential energy.
A nucleation event by thermal activation in the film or at a local defect or impurity
causes holes to nucleate, driving the system towards becoming unstable and dewetting,
given the energy required for nucleation, represented by the local maximum in (3).63

The interface potential provides the surface excess free energy associated with the
growth of a fluid film from a surface. By extension, there is a force the fluid exerts
on the surface at a given film thickness, ϕ′(hz), referred to as the disjoining pressure,
Π. The disjoining pressure can conveniently be expressed in terms of aforementioned
forces, a linear combination of three structural components, shown in equation 3.1,

Π = Πw +Πe +Πs {3.1}

where Πw arises from van der Waals forces between the film and substrate, Πe accounts
for short-range polar or electronic interactions, and Πs accounts for variations in the
structure of molecules in the thin film and the bulk liquid60. Modelling is an integral
part of understanding interactions in a thinning film. Simulating forces exerted by

34



3 FAR-FROM-EQUILIBRIUM PATTERN FORMATION

the fluid at a series of film thicknesses in kinetic Monte Carlo64 and dynamic density
functional theory simulations65 provide an interesting means to construct the effective
interface potential of a thin film.

3.1.2 The role of gold nanoparticles

Nanoparticles are crystalline pieces of matter with dimensions below 100 nm. A gold
nanoparticle has vastly different physical properties from its bulk material counterpart,
from minimised capacitance to quantum effects due to their size. Their usage as a
dye predates the field of nanoscience by thousands of years66,67, the origin of their
red colour being that of blueshifted plasmon resonance in metallic nanoparticles of
dimensions in the common nanoparticle range68,69. The synthesis of colloidal gold -
gold sub-micron particles suspended in fluid - has grown easier and more consistent
over the last few decades, cultivating interest from contrasting fields of scientific study.

Gold nanoparticles are initially stabilised to prevent aggregation and precipitation from
the solution. Covalently or ionically bonding molecules, known as ligands, are com-
monly used to stabilise nanoparticles. Ligands passivate the gold core to lower the
surface free energy of the nanoparticle as well as introduce a steric hindrance to
nanoparticle coalescence. One of the more popular ligands for gold nanoparticles is
thiol due to the strong affinity of the sulphur atom to gold, as initially observed with
bulk gold surfaces70,71. This results in a highly chemically stable thiol-functionalised
nanoparticle both in and out of solution, while still soluble in a wide array of organic
solvents. Additionally, alkane chain lengths of the thiols can be modified at this syn-
thesis stage to vary the resulting nanoparticle radii. Unlike charge-stabilisation72,73,
which has been shown to affect the packing of structures deposited on the surface due
to repulsion of like-charged nanoparticles74, ligand-stabilised nanoparticles are charge
neutral.

Thiol-passivated gold nanoparticles, see Figure 3.1.2, particularly octanethiol (C8H17S)-
passivated gold nanoparticles, were the primary solute for studies of self-organising
nanostructures described in Chapter 4. Gold nanoparticles benefit dewetting experi-
ments threefold: as a tracker and mediator of the solvent dewetting process, and as a
potential means of electron transport75–79. Non-volatile nanoparticles suspended in a
volatile organic, or inorganic, solvent, sometimes referred to as a nanofluid, cast on an
ideally flat, smooth and homogeneous solid surface is a perfect system for the study
of pattern formation under non-equilibrium conditions80–83. A static surface-bound
nanofluid droplet of finite contact angle with a pinned contact line leaves behind a
solute drying line around its perimeter as the solvent evaporates. The nanoparticles
accumulated at the contact line self-pin the droplet by adhering to and modifying the
surface at the perimeter, after the solute was deposited there via a compensating flow
from the droplet centre during evaporation84,85, as shown in Figure 3.1.3. The result-
ing “stain” acts as a history of solvent dewetting before complete solvent evaporation.
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Figure 3.1.2: (a) The schematic structure of a thiol-passivated gold nanoparticle; (b) dilute solutions of octanethiol
(C8H17S)-passivated gold nanoparticles of particle sizes 2-4 nm suspended in toluene, taking on a dark violet appearance
in solution.

This concept naturally extends to a thin film, but with much more visually stunning
results.

In thin films, nano and microscale patterning induced by dewetting colloidal gold so-
lutions from the substrate results in a fascinating and diverse array of self-organised
patterns11. Interactions at the interface and between constituents of the nanofluid lead
to the formation of different aggregated structures. The non-equilibrium structures ob-
served after dewetting are the result of drying-mediated self-organisation. Nanoparticle
patterns broadly do not evolve in the absence of the solvent because the nanoparti-
cles are kinetically trapped far away from their equilibrium state; the structure formed
following evaporation is “frozen” in place10. Contrary to equilibrium structures, in-
duced by the timescales necessary for self-assembly, far-from-equilibrium patterns are
inherently indeterministic in their formation, and lead to interesting patterning and
emergent properties, ripe for adaptive statistical analysis. Equilibrium structures ex-
hibit limited adaptability, while non-equilibrium structures track the intricacies of the
entire film breakdown process by a combination of real time87–89 and real space90,91

measurements. Stannard provides an excellent review of these patterns11, including
their extensive simulation with Monte Carlo methods, which will be covered later in
Subsection 3.3.2.

Tables 3.1.1 and 3.1.2 provide examples of the foundational morphologies observed
in colloidal nanoparticle assemblies formed in a far-from-equilibrium regime via rapid
solvent evaporation, as observed by tapping mode AFM. Alkylthiol-passivated gold
nanoparticles of diameter between 2 and 6 nm self-organise as the volatile solvent
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Figure 3.1.3: Schematic illustration of self-organisation in nanofluid droplets on a surface. (a) In an unpinned system,
the contact line at point A withdraws to point B as the droplet evaporates, resulting in uniform evaporation. (b) In a
self-pinned system, (i) nanoparticles accumulate at the perimeter of the droplet, preventing the retreat of the contact
line from A to B. (ii) An advective current acts to replenish the lost fluid at the boundary, resulting in a ring-like “stain”
on the surface as the solvent fully evaporates. 85. (c) A 10 µL droplet of dodecanethiol-passivated gold nanoparticle
solution left to evaporate in open air 86.

dewets from the flat surface, in this case, the native oxide layer (SiO2) of a Si(111)
substrate. The wide range of patterns arises due to variations in nanoparticle concen-
tration, solvent, and deposition method. This, however, only explores a small portion
of the available parameter space, with further parameterisation discussed in Subsec-
tion 3.3.1. Other nanoparticles, such as CdSe92 and PbSe1, similarly produce a wide
variety of complex patterns upon a substrate.

The nanoparticle patterns observed in the literature typically fall into several broad
classes including isolated islands1,92,93, worm-like domains1,92, spinodal and labryinthine
structures1,92,94,95, interconnected cellular networks95–99, branching and viscous fingering-
like fractal structures95,100–102, rings, stripes and concentric circles98,101,103–106. These
different structures have been found to co-exist on the scales of AFM scans at dif-
ferent nanoscopic length-scales, providing unique and striking multi-level patterns10.
Automated classification of the most common morphologies into a broad number of
categories is one of the core aspects of the machine learning protocols developed by
the Nottingham Nanoscience Group5–7 and described later in this thesis.

The strong spatial ordering of patterning and reproducibility of morphologies are owed
to the dewetting mechanisms governing the solvent. The mechanisms and their ca-
pacity to create long-range ordering are evaluated in the next section.
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3.1 Self-organisation

Pattern
type

Example AFM images Distinguishing features

Islands
• Isolated mostly-circular is-
lands

• Typically uniformly dis-
tributed across the surface

Worm-like
• Longer islands with a wide
distribution of lengths

• Appears like an intermediary
phase between islands and
spinodal/labyrinthine

Spinodal
• Intertwined snake-like struc-
tures of modal thickness

• Resembles that of patterns
observed in spinodal decom-
position

Table 3.1.1: Diverse patterns observed in colloidal nanoparticle assemblies formed in a far-from-equilibrium regime.
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Pattern
type

Example AFM images Distinguishing features

Cellular
• Interconnected web-like ar-
rays

• Continuous walls between
cells

• Modal or bimodal cell sizes

Holes
• A much denser cellular pat-
tern with thick walls

• Majority-circular holes in the
nanoparticle film

• Foam-like appearance

Fingering
• Branching fractal-like pattern

• Spanning microns in size

• Non-periodic structure

Table 3.1.2: Further diverse patterns observed in colloidal nanoparticle assemblies.

39



3.2 Non-equilibrium pattern formation

3.2 Non-equilibrium pattern formation

3.2.1 Dewetting modes

We now turn to the prominent dynamics governing the drying and mixtures of liquids.
This includes how they initiate and moderate the dewetting of the thin film upon a
substrate, and their current understanding regarding how they are characterised in
non-equilibrium pattern formation, both visually and statistically. Assessment and
identification in both real experiments and simulations is essential for evaluating the
capacity of a given parameter space. Spinodal dewetting, heterogeneous and homo-
geneous nucleation, and Marangoni convection account for many of our observations.
However, these processes are by no means entirely distinct, processes coexist on length-
scales observable by SPM, and often converge or diverge throughout the dewetting
process. Each mechanism’s reliance on different factors, such as film thickness and
solvent stability, can mean conditions met by domination or nucleation of different
processes that can initialise or diminish another, evidenced by multi-level dewetting
patterns. Each mode’s unique impact on the solvent and nanoparticle distribution is
addressed here.

3.2.2 Spinodal dewetting

Similar pattern formations are apparent across wildly different natural systems, and are
typically governed by local and simple interactions between components. For example,
the morphogenesis that leads to complex patterns in mammal hides is of great evolu-
tionary importance for communication, concealment or even thermoregulation107, yet
genetically coding the formation of such patterns runs against the economic nature of
evolution. Evolution, however, stumbled upon reaction-diffusion systems, a means to
let physics form patterns for it. Such a system would only require a few genes to set
the gestational conditions for pattern formation.

Some of the most famous morphologies in reaction-diffusion systems are Turing pat-
terns, named after Alan Turing. The activator-inhibitor principle, introduced in his
1952 paper, describes how dynamically-maintained yet stationary patterns emerged
from a chemical reaction108. In a reaction with two products, one that catalyses the
reaction and one that inhibits the rate of reaction, the products will spatially sepa-
rate. This assumes both products are allowed to diffuse freely, and both products are
removed from the system to maintain the concentration that stabilises the resulting
pattern. Two potential Turing patterns, spots and labyrinthine, are shown in Figure
3.2.1. Figure 3.2.1 also depicts functionalised gold nanoparticles in toluene dewetting
patterns imaged in AFM reminiscent of the presented Turing patterns. Though similar,
the systems are driven by different self-organisation mechanisms, with the dewetting
pattern predominantly driven by a process similar to “demixing” binary fluids.

Spinodal decomposition is the general label for spontaneous phase-separating processes
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Figure 3.2.1: (Top row) Two different morphologies, spots and labyrinthine, in a simulated reaction-diffusion system
based upon the activator-inhibitor principle, known as “Turing patterns”; (bottom row) comparable instances of island
and labyrinthine gold nanoparticles in toluene dewetting patterns, primarily formed by spinodal decomposition between
the solvent and substrate.

in mixtures of two materials, such as metals or polymers, initiated by amplifying lo-
cal fluctuations in material density or composition. The conditions for this form of
“demixing” phenomenon are met when it is more energetically favourable for a system
to decompose into two phases. This is best described as a result of the shape of the
free energy curve (or phase diagram) of a given system. The free energy curve, more
specifically a plot of the free energy as a function of composition, ϕ, represents a
quantifiable measure of the proportion of a material in the system, such as density or
concentration. When completely concave, it represents a stable mixture at any value
of ϕ, as there is an energetic cost to separation. However, in the case of a convex
region being present in the free energy curve, like in Figure 3.2.2(a), the free energy
of mixing in this region (F0, ϕ1) is higher than the free energy of a separation into
two phases ϕ2 and ϕ3, F

′
0. The mixture at this local maximum is hence unstable,

sensitive to small local fluctuations, and liable to spontaneously decompose into these
two phases.

The phase diagram for such a system is shown in Figure 3.2.2(b). Below the spin-
odal line, the system spontaneously separates, while above the coexistence curve, also
known as the binodal line, the mixture is stable. Between these lines is a metastable
state, a phase transition will occur if an activation energy is received. Quenching down
from a temperature above critical temperature Tc through the critical point where the
two lines meet, at composition ϕc, induces spinodal decomposition.
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Figure 3.2.2: Graphs of mixtures of two materials in the case of demixing by spinodal decomposition. (a) The
shape of a hypothetical free energy curve as a function of the composition; (b) a schematic phase diagram showing
the interception of the coexistence curve and spinodal line, with spontaneous phase separation occurring below the
spinodal line.

Spinodal dewetting is the equivalent of spinodal decomposition in unstable and metastable
films, and is highly cited as a reason for patterns observed in a wide variety of dewetting
thin film systems, from metals109 to polymers110. The wetting transition, by which a
stable film wetting a surface becomes unstable and dewets from the surface, shares
many characteristics with phase separation in liquid-liquid systems. The first stud-
ies of extremely thin films (≤10 nm) led to reproducible spinodal dewetting patterns
coexisting with nucleated growth111, with further studies suggesting a crossover film
thickness for which both processes occurred before diverging to one or the other110.
Spinodal dewetting is a far faster process than heterogeneous nucleation. This is due
to the exponential growth of the fluctuations in the early stages of spinodal dewetting,
combined with the film rupture event occurring when the amplitude of the undulation
has a similar magnitude to the film thickness.

A defining feature of spinodal dewetting, like spinodal decomposition, is the resulting
morphologies exhibiting a preferred length-scale. Fluctuations in an unstable film are
a convolution of a large spectrum of wavelengths. These do not all grow at the same
rate, short wavelengths have a prohibitively high energetic cost due to surface ten-
sion from the large surface area they create, while long wavelengths necessitate the
transport of large amounts of matter, slowing the growth process significantly. Wave-
lengths that balance the consequent limitations lead to a local maximised growth rate
and hence a preferred length-scale associated with a wavelength112. The perturbation
of this wavelength leads to a process analogous to spinodal decomposition, with fea-
tures in the phase separation correlated in size and shape to the wavelength as the
film ruptures homogeneously in space and time. Preferred scales, however, are not
exclusive to spinodal dewetting, previously noted convergences and divergences from
nucleation-induced dewetting are expanded upon below. This characteristic preferred
feature length is later used and extracted using Fourier analysis.
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3.2.3 Nucleation events and growth

Nucleated dewetting places dependencies on the thickness of the thin film by means of
an energy barrier. An unstable film dewets due to spontaneous amplification of a range
of perturbation wavelengths - this is spinodal dewetting. Meanwhile, a metastable film
will remain stable above a critical film thickness, hence, a nucleation event needs to
occur that locally drops the film thickness below that threshold, rendering that area
of film unstable and initiating dewetting. Once the nucleation event has occurred,
this dewetted area will grow laterally in size and, assuming a local isotropic interface
energy, symmetrically in all directions, as shown in Figure 3.2.3.

Figure 3.2.3: The evolution of a nucleated dewetting event in thin film. (1) A fluctuation in film thickness to below
the critical thickness destabilises a small area of the film, causing it to dewet. (2) The (circled) contact region between
the film and dewetted area of the substrate is similarly unstable, and hence dewets, forcing isotropic outward growth
of the dewetted area. (3) The dewetting front continues to retract, and fluid accumulates at the ridge 113.

For systems with a low energy barrier for nucleation, such as when the thickness is
close to the local maximum of the interface potential curve, or when the temperature
is sufficiently high, the amplification of random thermal fluctuations in the surface of
the thin film is enough the alter the film stability and induce the nucleation of a hole.
This is referred to as thermal nucleation. The characteristic visual element of thermal
nucleation is the nucleation event occurs randomly in space and time, with minimal
correlation in location or size.

While the driving forces behind both nucleated and spinodal dewetting are the same,
the true difference between these processes is how dewetting initiates. Spinodal dewet-
ting begins spontaneously when the excess in intermolecular interaction energy per
surface area of the film displays a positive curvature with respect to thickness. This
results in fluid flow from thinner to thicker regions, eventually leading to film rupture.
Much like thermal nucleation, the process can occur on chemically homogeneous sub-
strates. However, in the case of a spinodally stable system in all areas of the surface,
with insufficient thermal energy to surpass the local energy barrier, another source
of rupture is required. Heterogeneous nucleation commonly fills this gap caused by
defects or impurities on or in the surface, such as dust or cavities. A chemically hetero-
geneous substrate exhibits a contrast in wettability between chemically heterogeneous
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areas of the substrate. The wettability gradient creates a fluid flow from less wettable
to more wettable regions, which can induce rupture of the film along boundaries be-
tween the regions. Rupture at these boundaries induces characteristic “castle-moat”
morphologies106 around heterogenous patches on the surface.

On a region of homogeneous surface, the dewetting front will grow outwards isotropi-
cally from the site of the nucleation event. The rapid forced movement of fluid at the
dewetting front can result in the accumulation of fluid, and hence nanoparticles, in a
raised rim, with thickness dependent on fluid viscosity. Circular holes with a raised
rim are a common signature of the involvement of nucleated dewetting processes.109,114

In real experiments, it is highly challenging to separate dewetting patterns into those
caused solely by spinodal or nucleated processes by AFM imaging alone. Countless
different factors affect the divergence and convergence of these two processes in a
dewetting film, such as the evaporation rate and density of defects and surfactants.
Plus, the transition from a stable to a metastable state commonly may be obfuscated
by a low energy barrier for nucleation. A combination of the two processes is used to
describe observations for the experiments described in this thesis.

3.2.4 Marangoni effect

The third candidate for pattern formation is a convective process. A thin film of
volatile solvent on a solid surface produces an effective temperature gradient across
the surface as it evaporates. A small disparity between the temperature of the surface
of the substrate and the surface of the liquid will be dependent on film thickness,
hence small fluctuations in the thickness of the film create hot and cool regions across
the liquid surface. This results in a gradient in interfacial tension γ, which is depen-
dent upon temperature, between these two types of region, with colder regions of the
film surface having a higher interfacial tension. This, in turn, causes the movement
of liquid from hot to cool regions to maintain the surface energy minimum. Surface
tension acts to maintain the thickness of the film during this flow, hence, a convective
flow is established. This self-stabilisation process for tackling instabilities in the liquid
flow is called the Marangoni effect.98,115

The Marangoni effect has been shown to form a hexagonal pattern parallel to the
film’s surface, as observed by Bénard in 1900116 and described theoretically in the
1950s117,118. The hexagons, sometimes referred to as Bénard cells, exhibit a fluid
flow up from the cell centres and back down, tracing the liquid surface and the cell
boundary as shown in Figure 3.2.4.

The physical parameters controlling the Marangoni effect in a system undergoing the
described perturbations can be consolidated into an equation, equation 3.2, returning
a quantitative parameter known as the Marangoni number Ma.
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Figure 3.2.4: Schematic of Marangoni convection in thin fluid films.

Ma =
BhδT

ρνκ
{3.2}

B represents variation in interfacial tension with respect to temperature (−dγ/dT ),
h is the film thickness, ρ is the liquid density, ν is the liquid dynamic viscosity, and κ
the liquid thermal diffusivity, placing multiple strong dependencies on the properties
of the solvent.

A critical value of the Marangoni number, below which a convective flow does not
occur was found to be Mc = 80 for thermally-induced convection118. Hence, the
characteristic wavelength of the instability λ is given by equation 3.3115

λ = 4πh

√
2

M
. {3.3}

A combination of equations 3.2 and 3.3 asserts that increasing the density and vis-
cosity decreases the Marangoni number, which in turn increases the characteristic
length-scale of convection cells. Density and viscosity depend primarily on the phys-
ical properties of the solvent and the concentration of nanoparticles within the solvent.

The experimental manifestation of the Marangoni effect in nanoparticle dewetting
patterns is a characteristic polygonal pattern. Early evidence in the formation of
nanoparticle nanostructured networks reported polygonal patterns with convincing links
to Bénard-Marangoni convection92 with reinforcement of findings of dependence upon
temperature and nanoparticle concentration shortly after99. Nanoparticles were carried
by the convective flow, the rings in Figure 3.2.4(a), self-organising primarily at the
boundaries of the convection cells. While fairly promising as a descriptor of cellular
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patterns, the equations describing the Marangoni effect cannot quantifiably describe
all observed correlation lengths at that scale. Large scale structure with previously-
observed dependence on this surface tension-driven effect is observed in the early
stages of thiol-passivated gold nanoparticle experiments, using the above equations to
aid characterisation, are discussed in Section 4.2.

3.3 Analysis methods

While it is useful to visually categorise and scrutinise the myriad of patterns generated
by thin film experiments, the ever-growing assortment of historic data, simulated data
and new experimental data of growing complexity demands a substantially more rigor-
ous, quantitative approach. Fourier transforms, Voronoi tessellations, and Minkowski
morphometry are three key analytic methods for feature extraction from images con-
taining nanostructures. In this thesis, these methods saw new exploration in Python, R
and Matlab to develop new tools for extracting statistics from real or simulated AFM
images containing semi-ordered nanostructures. Application of the right tools to the
right system is critical. While Voronoi tessellations provide insight into the physics of
island and cellular gold nanoparticle dewetting patterns, their use in their current form
does not expand to other pattern types. Similarly, current Fourier analysis tools do not
respond positively to nanostructure ordering beyond two configurations in the same
image, such as images containing premeditated heterogeneities. Developing new or
adapted versions of tools, or even data treatments to images such that they work with
older tools, is essential for the perception of these far-from-equilibrium processes. Sub-
tle variations in surface patterning that are impossible to interpolate with the naked
eye provide important clues as to the roles of different mechanisms at play during
self-organisation.

3.3.1 Systematic experimentation

Observations before, during, and after the evaporation of colloidal solutions of nanopar-
ticles from solid surfaces continue to be a mainstay of the field after more than twenty-
five years119. The ease of synthesis of near mono-disperse metal nanoparticles func-
tionalised by diverse ligands, and the availability of modern microscopy and analysis
techniques, leads to a highly tailorable experiment. The core dewetting experiment
of preparing a suspension of non-volatile nanoparticles in a volatile solvent, prepar-
ing a flat substrate, depositing the solution onto the substrate, and then probing the
resulting surface has been systematically explored, probed and modified at all stages
throughout the literature.

Pre-Deposition

A volatile solvent such as toluene, dichloromethane, hexane or chloroform is preferred
for far-from-equilibrium conditions, while less volatile fluids are preferable for droplet
contact angle study. Solution additives such as salts120 and excess ligands121 could
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also be used to modify the solution without alterations to the synthesis of the func-
tionalised nanoparticles or choice of solvent. Toluene was the primary solvent in this
thesis, as it was known to take on nearly all morphologies of dewetting patterns identi-
fied and categorised in modelling, exclusively by systematic adjustment of nanoparticle
concentration. The molecular dyad deposition experiments also used toluene, as they
required a non-polar solvent to prevent the dyad from precipitating out of the solution.
All performed experiments here involving gold nanoparticles used octanethiol (C8H17S)-
passivated gold nanoparticles of particle sizes 2-4 nm suspended in toluene purchased
from Sigma-Aldrich, diluted in further HPLC-grade toluene. Similar solution additives
were not explored, but co-deposition with suspended buckminsterfullerene was studied
in Subsection 4.3.1.

The choice of ideally homogeneous, flat and smooth surface being coated is of crit-
ical importance to dewetting, particularly in the form of the aforementioned inter-
face potential. Choice of substrate and its preparation dictate surface roughness, the
hydrophilic/phobic qualities of the substrate, and the density of defects or hetero-
geneous sites, all of which cause significant changes in pattern formation and the
contact angle of deposited droplets or retracting fluid63,120,122. Experiments using
non-equilibrium conditions for evaporation often use substances such as native ox-
ide terminated silicon100,123, highly-oriented pyrolytic graphite92, silicon nitride124, or
carbonaceous film125 as a substrate. Substrates chosen for presented dewetting exper-
iments are covered in Section 2.5.

While the wetting properties of free surfaces and laterally homogeneous substrates
remain a significant area of study, recent work has focused on patterned substrates.
Previous modelling has suggested the involvement of heterogeneous sites, such as dust,
microcavities, chemical contaminants, variations in oxide layer thickness in silicon sur-
faces, variable chain adsorption, etc., generate local patches of surface properties dif-
ferent from the surrounding substrate126. The interplay between the preferred length-
scales of dewetting patterns and these local variations in surface properties became an
area of intensive study127. Patterned substrates have more apparent heterogeneities
designed to act as a mediator of dewetting, induced by a variety of methods through-
out literature.

5 mm internal diameter teflon rings placed on a prepared surface, then a droplet of
solution placed at the centre, causes a dewetting process similar to droplet deposi-
tion but with liquid thinning starting at the centre. This meniscus-mediated deposi-
tion allowed for simultaneous far-from and close-to equilibrium structure formation,
which would appear in the resulting dewetting pattern dependent on radius within the
ring86. A breath figure approach, by which water droplets condensed on the surface
at oxidation-induced adsorption sites act as a template, produced nanoparticle ring
perimeters around a denuded area focused on these sites106. Electron beam pattern-
ing128,129, and deposited chemical quantum dots130 and nanorods131 similarly act as
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distinct sites of sizes similar to the length-scales of dewetting patterns to disrupt reg-
ular dewetting. Localised oxidation has been shown to create microscale regions of
heterogeneous surface, which support dewetting patterns on top that are quantifiably
different to that of the surrounding surface, with high precision using an AFM tip132.
New surface properties and the effects upon dewetting by the tip-induced oxidation
approach are further explored in Subsection 4.3.3.

Deposition

The method of nanoparticle deposition of a solution onto a prepared substrate is equally
critical in determining the key self-organisation processes and final morphology. Once
deposited, the evaporation process begins immediately for a volatile solvent, with rem-
nant nanoparticles spontaneously forming assemblies by self-organisation. Two popular
methods for solution deposition are discussed below.

Droplet deposition is a common approach to enable slow localised solvent evapora-
tion. A droplet of solution is left to evaporate from the surface in the open air. The
appearance of the droplet is dictated by the contact angle, determined by the solvent-
substrate, substrate-air and solvent-air interface potentials. A non-finite contact angle
means the droplet has no structural integrity on the surface, and the solution wets the
surface. The solute accumulates at the edge of the droplet, giving a thick drying line
of particles. As the droplet evaporates, a series of pinning events, where the radius
of the droplet has competing shear forces from liquid surface tension and retraction
of liquid from a hydrophilic to hydrophobic region of the surface, result in concentric
rings of solute. Such formation is often compared to coffee stains104,133,134. While
a slow and controlled evaporation approach provides a diversity of macro and micro
scale patterns, often with multiple layers, long-range ordering similar to that found in
thin film is difficult to emulate. While solution additives can modify the contact angle
to a point where such ordering is present124,135, the dewetting pattern is incomparable
to those produced by the dewetting of a true thin film.

Spin-casting, or spin-coating, is the most widely-used technique for the deposition of
solution onto solid substrates, and the primary deposition method for performed ex-
periments. The technique is particularly popular in the electronic device fabrication
industry, primarily for coating photo and electron resist layers prior to lithography.
Here, thin film is achieved during the deposition stage, prompting forced evaporation
resulting in the desired far-from-equilibrium morphologies. The substrate, typically a
1 x 1 cm2 sample, is held by a vacuum chuck in a shielded chamber, and then tens
of microlitres of solution are pipetted onto the sample, such to make a meniscus over
the entire substrate. The sample is sealed in the chamber and made to rapidly spin up
to a target speed, typically a few thousand revolutions per minute (rpm) at a target
acceleration, held at the target speed for a few seconds, and then returned to a stand-
still. While speeds and durations significantly affect the final film thickness, beyond
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a trivially met threshold spin speed and duration, they are largely irrelevant136. The
process is split into stages outlined in Figure 3.3.1, providing a consistent process to
produce thin films.

Figure 3.3.1: The different stages in the spin-casting process. (a) Nanoparticle solution is pipetted onto the substrate;
(b) the substrate spins up to the target spin speed, during which the majority of solution is thrown off due to acceleration
forces; (c) at a steady angular velocity, fluid thinning is dominated by a viscous outward flow; (d) as the coating further
thins, solvent evaporation dominates the thinning process 113.

Observation during deposition, and short and long-term thereafter, provide unique in-
sights. The spin-casting process has previously been monitored using an optospinome-
ter, by which laser light is reflected from a spinning sample137,138. Observation of
the reflected rays, in conjunction with the known refractive index of the solvent and
wavelength of the laser, extracts a time dependence on film thickness. Such apparatus
has previously identified a dependence on the chain length of passivating thiols, with
solutions of suspended octanethiol-functionalised gold nanoparticles taking approxi-
mately 0.74 ms for the last nanometre of solvent to evaporate fully. Identifying this
time frame is significant in evaluating a relative time frame in modelled dewetting.

Post-Deposition

AFM and electron microscopy remain popular tools to probe the resulting surface,
with tapping mode AFM used almost exclusively as the probing tool in performed
experiments. The typical scan size limits for both are adequate for fully evaluating
known pattern morphologies. Experimental image data produced by these tools are
processed in external processing and analysis software, such as Gwyddion139, WSxM140

and ImageJ141, or via bespoke code. Charge transfer properties evaluated with I(V )
curves76 and small-angle x-ray scattering to evaluate aggregate sizes serve as further
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post-deposition analysis techniques93. While temperature and humidity strongly influ-
ence pattern formation during deposition, they can also assess post-deposition pattern
stability. Further stability tests include annealing, exposure to solvent, and AFM probes
in tapping mode.91,93

Systematic experimentation with controllable characteristics provides room for count-
less matched pairs experiments, even with AFM upon the final surface as the exclusive
probing method. External pattern manipulation has proven to be a substantial field,
providing physicists with fabrication routes without modifying the underlying solution
or substrate chemistry. Quantification of the AFM images converts the visual data
into comparable statistics, with key methods for doing such for dewetting patterns
discussed later in this section.

3.3.2 Modelled dewetting

Modern simulation physics can highly accurately reproduce the appearance of AFM
images, including those of self-organised nanoparticle assemblies11,95. By the time a
single experiment based upon the previous section was finished, including AFM image
processing with segmentation to give a binary image of nanoparticles and surface, a
model has produced over 105 simulated images exhibiting similar dewetting patterns.
Such simulations replicate all the structures in Tables 3.1.1 and 3.1.2 across multiple
length-scales. The sheer volume of images produced renders it a potent medium to
test current analysis techniques or develop new ones, such as powerful new machine
learning-based categorisation tools, all of which can then be applied to real data with
higher confidence. Such simulation work continues to develop within the Group, and
acts as a substantial backdrop for performed experiments in Chapter 4, and software
developed in Chapter 6. Below the underlying principles for such work are laid out,
starting with the basic model and then moving to the relevant surface science appli-
cation.

The Monte Carlo model is a foundation of simulation methods in modern physics, with
applications in any system with a probabilistic interpretation142. Surface science par-
ticularly utilises an adapted 2D solution to the Ising model using Monte Carlo methods
to investigate time-dependent dynamics upon a surface. The 1925 formalisation of the
model describes a ferromagnetic system consisting of discrete variables that represent
magnetic dipole moments of atomic spins142. On a square lattice of size L x L, each
site, i, has spin σ = ±1, “up” or “down”. The total energy of a lattice configuration
is given by the summation of all interaction energies between the ith and the adjacent
jth sites, giving the Hamiltonian shown;

E = −J
2

∑
i,j

σiσj, {3.4}

where J represents the energetic favourability of the interaction between the sites, with
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the same units as energy. The spin-aligned case (σi = σj) is energetically favourable,
energy −J , while the opposed-spin case (σi = −σj) has an associated energy cost of
+J . Such a system is affected by an effective temperature, T , meaning the Maxwell-
Boltzmann probability distribution defines energy at each site. The energetic cost
for a spin state to switch at each site is given by an energy barrier, ∆E, hence, the
probability of of any lattice configuration of spins at equilibrium is given by equation
3.5

P =
e−∆E/kBT∑
σ e

−∆E/kBT
, {3.5}

where kB is the Boltzmann constant.

The lattice configuration will not entirely evolve in perpetuity. The system will generally
tend to a steady equilibrium state based upon T , with the lattice dominated primarily by
one of the two spin states. An unstable yet equal presence of both states in the lattice
is met at a critical temperature TC , representing a discrete phase boundary. While
a highly complex analytical solution exists143, the spatially unstable yet statistically
stable nature of the system lends itself to a simple solution using the Monte Carlo
model. The evolution to reach the equilibrium state is dictated by the Metropolis-
Hastings algorithm, developed in 1953 and generalised in 1970144. The algorithm is
portrayed in Figure 3.3.2, at each lattice site, the opposite state to the current state
is trialled in turn, determining whenever it is energetically favourable to switch.
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Algorithm: Metropolis-Hastings Acceptance

Result: System in equilibrium

Generate initial lattice grid with random σ;

while not in equilibrium do
Select random grid site;
Invert J0 → J1;
∆E = E1 − E0;
if ∆E < 0 then

Accept J1;
else

Generate random number, η;
if η < exp(−∆E/kBT ) then

Accept J1;
else

Reject J1 and restore J0;
end

end

end

Figure 3.3.2: The Metropolis-Hastings Accept/Reject algorithm, in terms of the Ising model 145.

Equilibrium states from the Metropolis-Hastings algorithm of the 2D Ising model are
shown in Figure 3.3.3. The algorithm’s limited complexity as a series of logic state-
ments applied to individual sites renders it highly suitable for parallel computing. The
thermal energy component means this naturally expands to thin films evaporating.

Figure 3.3.3: Three different Ising model simulations in their equilibrium states. (a) T << TC ; (b) T ≈ TC ; (c)
T >> TC .

A computational approach proposed by Ge and Brus in 200092, and developed by Ra-
bani et al. in 20031, generated real-time dewetting models using Monte Carlo methods,
with moderate success93,95,97. While the Ising model’s titular purpose was to describe
the spin in 2D ferromagnetic systems, the Rabani et al. model expanded the possible
cell states from “up” and “down”, to “liquid”, “nanoparticle” and “substrate”. The
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spin system effectively illustrates the “evaporation” of a liquid state. A controlled frac-
tion parameter, C, dictates the initial coverage of nanoparticles in a circular boundary
condition 2D grid, deposited from a thin film solvent, a liquid state on the grid liable
to dewet from a site due to spatial-correlations and thermal energy, leaving behind a
bare substrate state. Interaction between grid sites can be represented by the modified
Hamiltonian in equation 3.6,146

E = −ϵl
∑
i,j

lilj − ϵn
∑
i,j

ninj − ϵnl
∑
i,j

nilj − µ
∑
i

li {3.6}

where µ is the chemical potential responsible for determining the mean density of
solvent at equilibrium, and ϵn, ϵl and ϵnl are the interaction energies between nanopar-
ticles, liquid, and nanoparticles and liquid at neighbouring sites i and j respectively.

The liquid states operate on a similar principle to the aforementioned Ising model
example. Each liquid state evaluates the state of surrounding sites in an attempt to
convert the solvent phase from liquid to vapour via the Metropolis-Hastings accep-
tance algorithm. Nanoparticle states exhibit a random walk, moving up, down, left or
right, provided the new position is surrounded by liquid states (a “wet” site). This is
analogous to the diffusion of nanoparticles suspended in the solvent, where they have
little agency otherwise. Diffusing nanoparticle states displace liquid states to be posi-
tioned in the wake of the nanoparticle, such to preserve solvent density95. Much like
the dewetting of the liquid state, this walk is governed by an independent Metropolis-
Hastings acceptance algorithm. Each Monte Carlo step, as in each full loop in the
Metropolis-Hastings algorithm ran upon each liquid state, represents MR steps of the
loop governing the nanoparticle random walk, whereMR is a user-set ’mobility ratio’.
The progression from the initial grid to an ordered structure, in this case labyrinthine,
is shown in Figure 3.3.4.

Figure 3.3.4: The evolution of a single Rabani et al. Monte Carlo simulation as it progresses from an initial grid of
states; substrate (black), liquid (white) and nanoparticles (orange). The starting parameters are given as kBT = 0.35,
µ = 3, MR = 1, C = 0.4, ϵnl = 1.5, ϵn = 2 & L = 128. (a) 0 steps; (b) 25 steps; (c) 50 steps; (d) 75 steps; (e)
100 steps. From Gordon et al., Nano Letters 20(10), 2020 9

The evolving system often settles into the pattern morphologies observed experimen-
tally, with the liquid state dissipating from the grid. By tuning a handful of factors in
the software, commonly µ and kBT

95, the model returns a continuum of these mor-
phologies indistinguishable from real data, shown in Figure 3.3.5. Such simulated data
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is exploited throughout as a means to test a handful of analysis tools newly adapted to
nanostructures, as discussed in Subsections 3.3.3 to 3.3.5 below and applied in Section
4.1.

Cells Labyrinth Par�cles Holes Liquid

S
im

u
la
te
d

R
e
a
l

Figure 3.3.5: Examples of the distinct structures attainable from simulation as compared to observed AFM images of
dewetting patterns. The colour scheme for states in simulated data (top row), substrate (black), liquid (white) and
nanoparticles (orange) are applied to the real data (bottom row) using segmentation, producing binary images that
integrate seamlessly into analysis and categorisation software tested upon simulated images. As such, the columns
represent automated categorisation of the real images, using manual labelling of the simulated images as training data
for a convolutional neural network (CNN) designed for this purpose. From Gordon et al., Nano Letters 20(10), 2020 9

3.3.3 Voronoi tessellation

A problem-solver across countless scientific fields, Voronoi diagrams provide a concise
way to generalise polygonal systems, and hence quantify both cellular and isolated
island patterns. A 2D Voronoi diagram takes the appearance of a series of tessellating
irregular convex polygons, often coined Voronoi tessellations, generated by a series
of seeding sites from which a perpendicular bisector is drawn between their nearest
neighbours. These polygons, or cells, hence define regions that are closest to their
encapsulating site than any other site147. The simple premise and construction of
Voronoi diagrams allow for mapping of them to a multitude of systems in neighbour-
ing fields, such as the Wigner-Seitz unit cell, with similarly uncomplicated acquisition
of useful statistical information.

The Voronoi tessellation, and associated graphs, were plotted for viable systems con-
taining island, hole or cellular morphologies, using protocols developed within the
Group96,97. Island and hole patterns were mapped by treating the centre of each is-
land or hole as a seeding site, while cellular patterns were mapped with the centroid of
each cell, such that the cell edges line up both physically and in the resulting Voronoi
diagram. The results for each case are shown in Figure 3.3.6.
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Figure 3.3.6: (a) 30 x 30 µm2 tapping mode AFM image of spin-cast dendrimer-functionalised gold nanoparticles
from toluene onto a native oxide-terminated Si(111) substrate exhibiting an island pattern; (b) A Voronoi tessellation
constructed using islands as seeding sites; (c) Histogram of the probability, p(n), of finding an n-sided cell in (b),
giving n̄ = 6.01, µ2 = 0.92 and S = 1.37. (d) 1.5 x 1.5 µm2 tapping mode AFM image of spin-cast functionalised
gold nanoparticles from toluene onto a native oxide-terminated Si(111) substrate exhibiting a cellular pattern; (e) The
Voronoi tesselation of (d), returning n̄ = 5.94, µ2 = 1.19 and S = 1.48; (f) The Voronoi tesselation generated with a
completely random (Poisson) set of points 10,11.

While a skeleton-like format of existing images may be partially useful for the visuali-
sation and length measurements of the morphology, they can also be used to measure
order or disorder in structure. Previous reports of deviation from Poisson statistics by
Voronoi diagram mapping over nanoparticle assemblies were interpreted as indicative
of spatial order96,97. Voronoi tessellations generated with a completely random (Pois-
son) set of points, p(n), the probability distribution for finding a cell of n sides, will
empirically take on an asymmetric shape. p(n) here peaks at the mean sidedness, n̄,
with variance µ2, which is followed by a tail into greater values of n. The orderliness
of the distribution of points is measured with the so-called Voronoi entropy. Entropy,
S, here is defined by equation 3.7.

S = −
∑

p(n) ln p(n) {3.7}

Elucidation of the degree of spatial correlation in nanoparticle assemblies is by com-
parison of their tessellation’s µ2 and entropy, S, to those of the Poisson-generated
tessellation. S = 1.71 and µ2 = 1.78 for the Poisson-generated tessellation148. As
the archetypal disordered system, these values act as the lower boundary, and hence,
values lower than these for Voronoi diagrams based on experimental data suggest an
underlying source of correlation.
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3.3.4 Minkowski morphometry

Mecke demonstrated the effectiveness of morphological measures in systems driven
far from equilibrium undergoing spinodal decomposition in the aforementioned Turing
patterns149,150. The measure in question was Minkowski functionals, which provide
a small range of easily extracted parameters to characterise irregular structures. The
Minkowski functionals in a 2D domain are the area, A, perimeter, P , and Euler char-
acteristic, χ. The latter is the most prominent member of this family, defining the
connectivity of spatial patterns.

All three measures are calculated through a simple algorithm151. Conveniently, images
produced by simulations are quantised, and the two potential states, “nanoparticle”
and “substrate”, are assembled on a grid, so the algorithm effectively counts pixels.
A is the number of pixels containing particles, P is the number of pixel edges shared
by particles and particle-free substrate, while χ identifies and counts all connected and
disconnected regions pixels in the particle state, and subtracts the frequencies of holes
in those regions, containing the substrate state. Real images must be binarised first,
defining each pixel in the image as either the particle-free substrate or as containing
nanostructures by a process called segmentation. Techniques for segmentation of im-
ages viable for Minkowski measurements are discussed in Chapter 6.

Comparative measures highlighted the necessity of a scale-invariant version of these
measures, essential for subsampled images, comparing real to simulated images, and
comparing AFM images of different scan sizes. These scale-invariant measures are
given in equations 3.8

Ã =
A

L2
P̃ =

P

2N
√
πĀp

χ̃ =
N0 +N1

2N0

{3.8}

where L is the physical length of the image, N is the larger number between the num-
ber of particles or holes, Āp is the average particle area, N0 and N1 are the number of
particles and holes present respectively. The equation for P̃ assumes the particles are
circular. The denominator can be replaced with LN1/2 in the case of square particles,
a common alteration in modelled data to prevent distortions with scaling. The modi-
fication to the Euler characteristic is to calculate a ratio between particles and holes.

The intersection of the three parameters for binary images of nanostructures provides
a unique means of distinguishing and labelling pattern morphologies in a purely sta-
tistical manner152. Minkowski morphometry in the form modified for scale-invariant
metrics aimed to enhance this purpose, demonstrated using principal component anal-
ysis (PCA) in Subsection 4.1.1 and explained in Subsection 3.3.6. New numeric classi-
fication of data-mined and simulated images of gold nanoparticle dewetting patterns,
namely convolutional neural networks (CNNs)9, aimed to replace Minkowski metrics
as a labelling system. This was prompted by instabilities first observed by Stannard
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et al.95, by which the manual labelling of a continuum of morphologies in simulated
nanoparticle dewetting data did not match that of scaling of the scale-invariant Euler
characteristic. Data mining for that CNN, as well as for preceding machine learning-
based segmentation, is covered in Chapter 6.

3.3.5 2D Fourier transforms

The correlation length is a universal parameter gleaned from various surface features.
The distance between features within a nanoparticle dewetting pattern AFM image
can correspond to the spacing of islands of deposits, distances between worm-like do-
mains, the width of the labyrinthine pattern, or the density of holes or pores in the
nanoparticle film, rendering it a transferable measurement across all morphologies.
These distances, in turn, correspond to a convolution of spatial frequencies, these spa-
tial frequencies can be presented in a reciprocal space in the form of a discrete Fourier
transform. This could be obtained directly from processed AFM images within Python
using a two-dimensional fast Fourier transform (2DFFT).

Periodic structures upon a surface, be it evenly-distributed islands, cells of similar
radii, or a preferred length-scale of spinodal patterns, can be envisioned as a bell-curve
distribution of spatial frequencies, with a peak or dominant wavelength and hence
frequency. This distribution appears as a ring in the 2DFFT, with a radius to the
peak at wave vector q. This typically corresponds to a modal distance in the pattern
in real space (2π/q). The shape of the 2DFFT also provides useful information. An
inversely proportional relationship means a wider radius coincides with the shortening
of distances between surface features.
The most convenient representation of the 2DFFT inspecting this shape is the radially-
averaged 2DFFT, one such is shown in Figure 3.3.7. Plotting the average intensity
against the radius from the centre of the 2DFFT was highly effective for identifying the
dominant wavelength, or correlation length, the presence of multimodal lengths, and
the approximate standard deviation of each within AFM images of periodic surface
patterns. The peak in the spectrum, and as such a bright ring in the 2DFFT, has
been shown to correspond to primary (and secondary) surface patterning, often cited
as evidence for long-range ordering.110,153–156

The Python process for calculating the radially-averaged 2DFFT of an AFM image
is shown in Figure 3.3.8. (a) shows an AFM image with a typical cellular pattern
of long-range ordering, the displayed image was previously processed using software
developed in Chapter 6. This PNG file is converted to a single-channel grayscale array
before being forwarded to a three-step process using the Python library fftpack. The
2DFFT of the array is computed, the quadrants of the returned 2D array are shifted
such that the low spatial frequencies are in the centre of the transform, and then the
power spectrum is calculated from the square modulus of the result. The resulting
array is displayed as an image in (b), using logarithmic scaling to display all features.
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(c)

12.6 m
-1

20 m

(a) (b)

Figure 3.3.7: Example application of a 2DFFT to a tapping mode AFM image of spin-cast gold nanoparticles from
toluene onto native oxide-terminated Si(111). (a) 20 x 20 µm2 tapping mode AFM image of spin-cast gold nanoparticles
from toluene onto a native oxide-terminated Si(111) substrate; (b) 2DFFT of (a). (c) The radially-averaged 2DFFT
of (a), which is calculated by taking radial bins from the centre of (b) and plotting the mean value of intensity on a
semilogarithmic plot against radius. The central bright spot and surrounding dark ring in (b), and hence the peak at
0 and subsequent trough in (c), are an example of spectral leakage caused by the discontinuous nature of scanning a
finite region, rendering edges of nanostructures an effective square wave.

The physical size of the 2DFFT is determined by the sampling rate, defined by the
Nyquist-Shannon sampling theorem157. The maximum visible frequency is that sam-
pled between two neighbouring pixels in the image. The image in (a) is 5 x 5 µm2

with 512 x 512 pixels, hence the size of (b) is 102.4 x 102.4 µm-2. Plot (c) is obtained
from a binned radial sum of the (b), a radial profile of the 2DFFT. The final few radial
bins, highlighted in (c), correspond to bins beyond the centre-to-edge radius of the
2DFFT. Due to contributions from radii between this radius and the centre-to-vertex
radius, there is no clean cut-off index, so it is cropped out for the final presentation
of the radially-averaged (d). Notably, the returned radially-averaged 2DFFT is a form
of power spectral density (PSD), the capacity of which to derive surface properties is
assessed in Subsection 4.1.2.
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(a)
5 m

51.2 m
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(b)

(c) (d)
Figure 3.3.8: The process for calculating the radially-averaged 2DFFT of an AFM image. (a) 5 x 5 µm2 tapping
mode AFM image of spin-cast gold nanoparticles from toluene onto a native oxide-terminated Si(111) substrate with a
spinodal pattern exhibiting spatial ordering. (b) 2DFFT of (a), the image radius by definition is the number of pixels,
512, divided by the real scan size. (c) The radial average of (b) taken using radial bins from the centre. (d) The
radially-averaged 2DFFT of (a), (c) but with the highlighted degenerate data in (c) corresponding to data between
the radius between the centre and vertex and that drawn to the corner removed.

Spectral leakage was a liability from the edges of the real images, and real segmented
and simulated binary images, potentially suppressing the prominence of frequency
peaks or even shifting the peak indices in the PSD. Windowing158,159 is commonly
used to improve the appearance, by convolving the image with a 2D sinusoidal func-
tion before application of the FFT algorithm. Figure 3.3.9 shows the results of the
application of eight of the most common windowing functions to the stable cellular
pattern image result from a simulation in (a), with 1D versions of the rotationally-
symmetric 2D windowing functions applied shown in (c). The appearance of the win-
dowed radially-averaged 2DFFTs in (b) was common, the same ordering was present
with minor changes to the shape of the peak. In the few cases with bimodal peaks of
close peak wave vector, windowing helped distinguish this visually in the spectrum.
New tools discussed and applied in Chapter 4 were tested with a modified rendition
of the Rabani et al. model. The original form does not feature coexisting patterns
that could occur in real experiments due to film thickness-dependent disjoining pres-
sure111,114. Reproduction of coexisting patterns was achieved with a dynamic chemical
potential value, by coupling an initial chemical potential100,132, µ0, with a sigmoidal
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(a) (b)

(c)
Figure 3.3.9: Demonstration of the application of 2D windowing functions to simulated data. (a) Equilibrium state
from the modified Rabani et al. model, using C = 0.55, kBT = 375, MR = 1, ∆µf = 0.15, µ0 = 3.05, νs = 0.75,
ϵnl = 1.5, ϵn = 2, L = 1024 & σ = 0.1. (b) Radially-averaged 2DFFT of (a) with four of the most common
windowing functions applied. (c) The 1D appearance of eight of the most common windowing functions 139.

function, shown in equation 3.9

µ(ν) = µ0(1 +
∆µf

1 + e−(ν−νs)/σ
) {3.9}

where∆µf is the fractional increase in chemical potential past a critical vapour fraction
νs with sharpness σ. The vapour fraction, ν, is defined as the ratio between the sum of
the sites in the “liquid” and “nanoparticle” states and the total available states, L2, in
the current Monte Carlo step95. 3.3.9(a) implements this modification, though much
like real experiments, coexistence does not occur under most experimental conditions
or, in this case, user parameters.

3.3.6 Principal component analysis

The core of principal component analysis (PCA) is best understood graphically. This
starts with the standardisation of the initial variables, such that each of them con-
tributes equally to the analysis. This is done mathematically by subtracting the mean
and dividing it by the standard deviation for each value of each variable. Consider
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a data set of N observations and K variables, fitted into a matrix of N rows and K
columns. For example, the initial variables in Subsection 4.1.1 were N segmented im-
ages, each with K Minkowski numbers. Identifying the correlations in this set requires
the computation of a K x K covariance matrix. For K=3, the covariance matrix is:Cov(x, x) Cov(x, y) Cov(x, z)
Cov(y, x) Cov(y, y) Cov(y, z)
Cov(z, x) Cov(z, y) Cov(z, z)


As covariance of a variable with itself is its variance (Cov(a, a)=V ar(a)), and covari-
ance is commutative (Cov(a, b)=Cov(b, a)), each matrix entry is symmetric along the
diagonal. A positive covariance indicates that the two variables are correlated, while
a negative covariance means those variables are inversely correlated.160

The geometric approach to PCA finds lines, planes and hyper-planes in the K-dimensional
space that approximate the data set as effectively as possible using a least squares
method161. The least squares method fits a line, plane and hyper-plane, which min-
imises the sum of the square of the residuals of all data points from the fit. A line
that provides the least squares approximation for a set of data points maximises the
variance of the coordinates on the line or plane. The line accounting for the largest
possible variance through the standardised data points is the first principal component
(PC1). The second best, which is also orthogonal to the first, is the second principal
component (PC2). Figure 3.3.10 demonstrates PCA for K=3. Here, the first two
principal components express the orientation of a plane, with which all data points are
now projected onto.162

The eigenvectors of the covariance matrix define the vectors of all principal com-
ponents. The eigenvectors and eigenvalues of the covariance matrix are computed
by eigendecomposition. Despite there being K principal components, the information
among each principal component is weighted towards a single component, often named
the first principal component (PC1), followed by the new highest weighting, the sec-
ond principal component (PC2). The eigenvalues, the coefficients of the eigenvectors,
give the amount of variance carried in each principal component. The percentage of
variance (information) accounted for in each component by dividing each eigenvalue
by the sum of all eigenvalues.

A feature vector is a matrix that has, as columns, a limited select number of eigenvec-
tors. The construction of the feature vector from the most meaningful components
is the step in PCA that reduces the dimensionality of the data set. PC1 and PC2
typically explain over two-thirds of the variance in the data set163. The N projected
scores, effectively reorienting the data from the original data from their original axes
to that of the principal components, make up a final data set (of size N x the number
of selected principal components).160
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Figure 3.3.10: Visual approach to PCA in the case of 3-dimensional variable space. A set of data points for a group of
observations (red dots), with variables x1,x2 and x3, are standardised to centralise the mean (blue dot) and divided by
the standard deviation, and plotted on a 3D graph. The vector that both minimises residual variance but maximises the
variance in the data is calculated, this is the first principal component (PC1). A second vector orthogonal to the first,
and similarly minimises residual variance but maximises the variance in the data, is calculated, the second principal
component (PC2). The first two principal components define a plane, of which each observation may be projected
onto the low-dimensional sub-space (orange dot). Plotting the projected coordinates (t1,t2) in this configuration is
known as a score plot. The resulting score plot is a 2D plot of observables with three variables. 161

Interpreting a 2D score plot produced by principal component analysis was highly
appealing as a way to address more than two variables per image when evaluating the
relationships between extracted image statistics. Clustering of labelled data in such
a score plot could provide a means of categorisation of unlabelled dewetting pattern
images, using the proximity of the score of new images from the clusters associated
with pattern types as a metric of confidence. PCA is deployed on Minkowski metrics
of a multi-class data set of real and simulated images in Subsection 4.1.1, as well as
on frequency space peak information on a different simulated data set in Subsection
4.1.2.
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4 AFM Investigations of Self-Organised Nanostruc-
tures

This chapter focuses primarily on new systematic studies of passivated gold nanoparti-
cles deposited from a solvent thin film, evaluating the resulting patterned surfaces with
atomic force microscopy (AFM) and statistical methods. The use of images produced
by Rabani et al.’s model alongside real AFM data aims to enhance the development of
statistical tools and their application to similar nanostructured systems imaged with
SPM. Beyond systematic study into the influence of nanoparticle concentration on
the formation of nano- and microstructured patterns, the extent to which dewetting
can be influenced via mediators – specifically buckminsterfullerene and lithographically
patterned silicon oxide – is explored in some detail.

4.1 Applied statistical analysis using nanostructure image data

4.1.1 Automating nanostructure analysis via principal component analysis

Comparative evaluation of the performance of the AFM image feature extraction meth-
ods deployed in this thesis, namely Fourier analysis, Minkowski morphometry, and
Voronoi tessellation, is limited throughout the literature. The multivariate data sets
produced by these methods can be difficult to present compellingly and to detect and
compare underlying trends between observations and variables. Principal component
analysis (as discussed in Subsection 3.3.6) is a well-known statistical procedure for
accomplishing this, yet is rarely applied to the analysis of AFM data. The application
of PCA to self-organised gold nanoparticle assemblies is supported by both the Rabani
et al. model and the rapid automated image processing routines written in Chapter 6.

Chowdhury et al.164 explores automated recognition of dendrital microstructures, formed
during alloy solidification, in scanning electron microscope (SEM) images. The clas-
sification accuracies of machine learning and statistical methods of feature extraction
were tested with feature selection algorithms, including PCA. PCA was uniquely placed
among the dimensionality reduction approaches. PCA functions in the absence of prior
classification by only looking at the variability between data in the provided matrix,
and then later evaluated by cross-validation with previous classifications. The tech-
nique maintained the ability to extract information for the classification of images with
high accuracy. This would prove useful for investigating clustering among extracted
nanostructure features attributed to dewetting modes of unknown origin or unassigned
dewetting pattern type. Chowdhury et al.164 only considers binary-class classifications,
identifying the presence of dendrites and their orientation (transverse or longitudinal).
There were also no further categories of images to help evaluate the robustness and
generalisation of the feature extraction and selection methods. New research below
expands this for a multi-class problem.
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Pierpaoli et al.165 conducts relationship mining through multivariate analysis with PCA.
Minkowski morphometry is used as a method of feature extraction from segmented
SEM images of self-assembling graphene nanostructures, particularly Euler’s charac-
teristic166,167. These are then related to the chemical vapour deposition parameters to
identify which factors maximised dissimilarity among the data sets for sample morphol-
ogy and electrochemical behaviour. Similar PCA-based relationship mining is carried
out by Farkas et al.168. A 9-variable (K=9) data set of technological and geomet-
ric parameters describing droplet-epitaxially grown point-like GaAs nanostructures was
collected. The geometric parameters are direct measurements from AFM images, such
as structure depth, height, and diameter. The results of PCA are a score plot between
the first two principal components, exhibiting clustering into the pre-defined cate-
gories of quantum dots, single and double quantum rings, and nano-holes. The use of
score plot clustering to reinforce morphological categorisation of nanostructures was
compelling, and could be generalised for segmented images of nanoparticle assemblies
using Minkowski functionals165. Classification of images of nanoparticle assemblies
spanning the probed surface using solely the clustering observed in a score plot of the
first two principal components was a promising concept, especially when supplemented
with model data from accurate Monte Carlo simulations.

PCA was used to evaluate Minkowski morphometry-based labelling of both real exper-
imental data and simulated data of gold nanoparticle dewetting patterns. The degree
of clustering in a score plot between real and simulated data manually labelled with
the same pattern type was of greatest interest. A small data set was prepared. 255
images from Monte Carlo modelling of solvent dewetting and 60 AFM images from
dewetting experiments were manually labelled as either cellular, labyrinthine, porous/-
holes, islands, fingering or worm-like. The experimental images were processed using
the code discussed in Chapter 6, and segmented into binary images of nanoparticles
and bare substrate, then denoised by morphological processes9. This made the images
have the same appearance as the simulated images and viable for Minkowski mea-
surements. The scale-invariant area, Ã, perimeter, P̃ , and Euler characteristic, χ̃ (as
defined in Subsection 3.3.4) were calculated for every binary image in the data set.
The scale-invariant Minkowski metrics were prepared for PCA using the method from
Subsection 3.3.6, returning the first two principal components, PC1 and PC2. The
resulting score plot of PC1 against PC2 is shown in Figure 4.1.1(b).

Although the Minkowski numbers (i.e. area, perimeter, and Euler characteristic) for
the experimental and simulated nanoparticle patterns occupy similar regions of the
PCA plot, all pattern types exhibit a high degree of clustering among simulated data.
The adjacency of score clusters for each pattern type is in agreement with the physical
observations of continuity between those patterns. The porous/holes and islands clus-
ters being opposite each other on the PC1 axis similarly agree with the pattern types’
physical contrast. Simulated data labelled as labyrinthine exhibited high variance along
a different axis to the rest of the data set, being the only pattern to significantly stray
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Figure 4.1.1: Principal component analysis of a set of simulated images (filled triangles) and experimental AFM images
(filled circles) of gold nanoparticle assemblies labelled manually, using Minkowski functionals as the metric. (a) A plot
of the first two principal components of the area, perimeter and Euler characteristic; (b) A plot of the first two principal
components of the scale-invariant area, perimeter and Euler characteristic.

from the PC2 axis. Inspecting the dataframe reveals this is due to high variance in χ̃
among labyrinthine pattern images.

PCA using both the scale-variant and scale-invariant Minkowski metrics was imple-
mented to evaluate the effect of scale-invariance on labelling. Figure 4.1.1 shows this
change having the most effect upon images produced by the Rabani et al. model (as
described in Subsection 3.3.2). Simulated cellular and labyrinthine pattern populations
no longer intersect, and elliptical clustering is far more prominent. A significant im-
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provement in the appearance and clustering of populations is shown in the PCA once
scale-invariance was implemented.

AFM data was further categorised into worm-like and fingering pattern types before
PCA. The two regimes were not identified in simulations, as fingering did not occur in
the current Rabani et al. model, and worm-like patterns were not highly distinguished
from other patterns. The scores for images labelled as fingering are highly dispersed,
Minkowski morphometry is less useful for quantifying fingering patterns, due to the di-
versity in fingering pattern sizes, frequency and degree of branching. A highly-branched
hole in a fingering pattern has the same Euler characteristic as a single circular hole or
cell, making them difficult to distinguish by Minkowski metrics alone. The overlapping
of clusters among the labelled AFM data means purely Minkowski morphometry-based
labelling routine would exhibit a misclassification rate when provided real unlabelled
data, particularly for highly similar pattern types.

Observed clustering in the score plot shows Minkowski morphometry is a promising
feature extraction method for the purpose of categorising images produced by the
Rabani et al. model. More confident classification of unlabelled images of nanoparticle
assemblies could come from addressing the observed minor discrepancy between the
clustering of experimental and modelled data. Scale-variance may be poorly accounted
for by equations 3.8, which could be tested by a wider range of grid sizes in the model,
or by suitable image compression or scaling of existing images to observe the effects
on score plot clustering. The Rabani et al. model-generated portion of the data set
may not provide a full representation of final states observed in experiments, possibly
fixed by an expansion of the generative parameter space. Images in the data set were
labelled manually, and hence susceptible to being mislabelled or objectively labelled.
PCA upon Minkowski metrics also assumes a consistent and accurate segmentation
algorithm for the real data, as well as the denoising by morphological processes and
the proposed autoencoder.9

4.1.2 Fourier analysis of real and simulated AFM data

Roughness estimation

Radially-averaged 2D Fourier transforms in principle provide another mechanism whereby
different image classes may be distinguished. Calculating the roughness of a relocat-
able region of the particle-free surface enables insights into the impact of substrate
roughness on the self-assembly and self-organisation processes giving rise to nanopar-
ticle patterns. Ideally, the surface topography is given as a continuous map of heights
h(x, y) along a xy plane, with a mean of zero. Surface roughness is given by root
mean square height, hrms, calculated by taking the square root of the average of the
squared heights of the surface profile. In this ideal case, hrms could be computed di-
rectly from the real-space topography. However, we can only experimentally measure
heights at discrete points, in this case, limited by the finite resolution of the AFM,
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defined by the tip radius of curvature. 2DFFTs enable a quantitative prediction of the
surface roughness in AFM images.169

The roughness of the un-patterned surface was characterised by the root mean square
height, hrms. The area underneath the PSD is proportional to h2rms

169, so taking the
2DFFT of an AFM image provides a direct route to estimating the roughness parameter
of the scanned region. Experimentally, the PSD is computed from a single and hence
incomplete measurement of the surface, a measurement highly prone to surface and
scanning artefacts of finite size. As previously discussed, the AFM has fundamental
resolution limits placed by tip shape and sampling rate. While the limit is insignificant
when detecting nanoparticle patterns, probing to measure surface roughness is limited
by an inability to detect sub-pixel roughness, translating to a cut-off wave vector in the
PSD utilising the Nyquist-Shannon sampling theorem. AFM on un-coated surfaces,
followed by a roughness calculation, could shed light on dewetting’s dependencies of
contact area and adhesion at the smallest observable scales of roughness63,122,170. Ja-
cobs’ thorough review also shows other directions to take to improve the roughness
results as derived from the FFT.169

Subsampling by sectioning off and calculating the 2DFFT of portions of an image,
or across same-sized images from the same scanning session, provided a pathway to
calculating spatial changes in roughness. A percentage change, ∆%hrms, could be
quoted between images by taking the roughness of sections while avoiding sections
containing artefacts. This was particularly useful for comparing the roughness of
induced surface-spanning heterogeneities to that of the rest of the surface. When
combined with the shift in reciprocal correlation length, ∆q, between those two regions
when patterned, a purely quantitative dependence of the density of patterns upon the
underlying surface parameters could be derived entirely by Fourier analysis, as realised
in Subsection 4.3.4.

Modelled dewetting analysis

A few open-source tools for enhancing measurements of q and hrms, provided in Ap-
pendices A and B, were developed171 and integrated into new readings. The automated
indexing and segmentation tools were adapted from Chapter 6 to be applied to pro-
cessed real AFM data or simulated data.

Automated extraction of the wave vector peak q’s height, variance and position was
conducted with more tools extrapolated from Chapter 6. The spike in intensity at 0
is suppressed and a smoothed version of the PSD is acquired by a moving average
function. The find peaks function returns the index of q along the x-axis, as well as
any other peaks in the PSD, which can, in turn, be used to calculate its height and
variance. Figure 4.1.2 depicts the automated process upon simulated data.
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Figure 4.1.2: Final spinodal-like Monte Carlo state on a 1024 x 1024 grid alongside its windowed radially-averaged
2DFFT annotated with moving average over 15 data points in the spectrum.

A simple UI for selecting multiple square portions of images to calculate a local 2DFFT,
that would plot the spectra upon the same axis, was also developed. Assuming these
boundaries are the same size, a comparative value for hrms is returned, otherwise q
is returned. The foundational version of this code is presented in Appendix B, while
realised as an analysis tool in Subsection 4.3.4. Two animation tools, applications of
which are presented below and in Subsection 4.3.1, are also available. The first was a
sweeping subsampling window to replace the portion selection UI, which was useful for
larger images of shifting nanostructure patterns upon coated surfaces, often caused by
convective processes or local wettability gradients. The second was designed specifi-
cally for simulated data, showing the temporal evolution of the radially-averaged 2D
FFT with each step in the Monte Carlo process. For both cases, all frames are saved
as images, as well as a final video file.

Two applications of the new Fourier-based tools utilising simulated data were pro-
posed. The first was to use 2DFFTs upon a data set of simulated images from the
Rabani et al. model, to assess for a relationship between the model parameters and the
appearance of the PSD. A set of 1629 unlabelled images, with a range of C, kBT and
µ0 values and fixed ∆µf , νs and σ values with over 1000 Monte Carlo steps modelled
in each, were collected into a data set. The 2D FFT software extracted the wave
vector peak’s height, variance and position from the PSD of each image. Scatter plots
of model starting parameters against statistics of the peak in the radially-averaged 2D
FFT of the final images and a score plot are presented in Figure 4.1.3. Little direct
correlation between the individual simulation parameters for the Rabani et al. model
and PSD peak intensity and prominence is observed in the explored parameter space
through scatter plots. Studies relating pattern morphology to the same Rabani et al.
model parameters have previously shown certain combinations of simulation parame-
ters promote faster evaporation times and pattern coarsening95. Sufficiently low values
of C, kBT and µ0 would cause simulations to remain metastable after 1000 Monte

68



4 AFM INVESTIGATIONS OF SELF-ORGANISED NANOSTRUCTURES

Carlo steps, “liquid” states would still be present until upwards of 4000 steps. This is
attributed to a phase boundary in the system. Experimentally, the solvent thin would
rupture due to external nucleating factors, but the isolated simulation instead remains
‘wetted’. Different growth modes and nucleation dominate over the full range of C,
kBT and µ0 values, evidenced by potential bifurcation in Figure 4.1.3.

PCA exhibited stronger clustering with Minkowski morphometry than with Fourier
analysis. Cross-validation with the same image data set categorised by dewetting pat-
tern type, either manually or by a CNN6, could help identify underlying trends in the
FFT score plot. Beyond comparison with PCA is the capacity of a feature extraction
method to extract information that best fits predictive models of properties or gen-
erative models of materials. Fourier analysis as a means to track the morphological
evolution in the Rabani et al. model is explored below.

Coarsening

The second application of Fourier analysis was an attempt to observe the onset
of coarsening in simulated data purely from frequency space1,93. After reaching a
metastable yet dewetted state, exhibiting a known dewetting morphology (as defined
in Tables 3.1.1 and 3.1.2), further Monte Carlo steps have shown that smaller nanopar-
ticle structures begin to coalesce to form larger structures, while maintaining the same
assigned pattern type. This decay of smaller features to larger features, known as
coarsening, would theoretically be detectable at very low magnitudes by calculation
of the PSD at each iteration of the model. Every 20 steps of simulations were col-
lected into videos that simultaneously tracked the model and the PSD for numerous
simulations of each morphology. The adapted version of the animation code for data
processing is presented in Appendix A.

Some key frames of three of the videos were adapted into Figure 4.1.4. In each case,
the PSD starts by resembling a logarithmic function, as it is a semi-logarithmic plot.
The broad peak encompassing the whole PSD, peaking at the right side of the graph,
represents the wave vector of single nanoparticle states spaced apart by single surface
states, single mobile nanoparticles moving between “wet” sites. The random walk
of these particles rapidly becomes limited by the decaying of liquid states to surface
states, limiting the occurrence of periodic pixel spacing and dropping the intensity of
this broad peak. By this point, the thin film has ruptured, and liquid is retracting
from these ruptures, carrying “nanoparticle” states – as defined by the Rabani et al.
model discussed in Subsection 3.3.2 – with them. This causes a small initial peak in
the left of the PSD, associated with the spacing of these initial ruptures, as shown in
4.1.4(a)’s PSD in (e). The initial peak grows into a broader primary peak, as more
rupture events occur that more closely adhere to the inherent modal feature length of
the evolving nanostructures. At this point in the first of the three simulations, (b), the
simulation more closely resembled a labyrinthine pattern and this is reflected in the
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Figure 4.1.3: Scatter plots and a PCA score plot of a range of starting parameters for Monte Carlo models of gold
nanoparticle dewetting against various statistics for the peak in the radially-averaged 2D FFT of the final model state.

broader PSD. This is to be expected at this point, as the liquid states form capillary
bridges between the island domains. The morphology rapidly shifts to an island phase,
which is reflected by a significant change in the shape of the PSD between (b) and
(c). Between (c) and (d) there is little significant difference between the PSDs The
peak has increased in intensity, shifted left and partially narrowed over the 420 steps.
Physically this represents a wider and more uniform spacing between isolated regions
of nanoparticle states as the system evolves.

A stronger case for coarsening is shown in the second of the three examples. 4.1.4(f-i)

70



4 AFM INVESTIGATIONS OF SELF-ORGANISED NANOSTRUCTURES

displays a labyrinthine dewetting pattern in a metastable state. (f) shows the end of a
relatively short evaporation phase, followed by a long coarsening process into (i). The
process takes a large number of iterations and is difficult to track with the naked eye,
but the PSD in (j) displays a trend of the primary peak increasing in intensity, narrow-
ing and shifting to the left, with the background data to the right of the peak reducing
in intensity. The peak shift is indicative of the growing population of structures with
larger spacing, with the drop in background intensity and narrowing indicative of a
diminishing population of mobile nanoparticles and periodic smaller structures.

Running the simulation further, the peak wave vector tends towards a maximum at a
rate inversely proportional to the peak’s displacement from the maximum peak coor-
dinate. This is in agreement with similar analysis on simulations with island domain
coarsening, where the diffusion of nanoparticles at this stage is inversely proportional
to cluster size172. Diffusion resulting in net transfer from smaller to larger structures
is referred to as Ostwald ripening173. The time evolution of coarsening of these struc-
tures is described by a dynamical power law, L(t) ∼ tγ, where L(t) is an increasing
characteristic length-scale of the nanoparticle domains, and γ is the coarsening expo-
nent. L(t) here was defined as the wave vector at the primary peak of the PSD of the
simulation at a given Monte Carlo step. The scaling of this metric is considered highly
sensitive to the simulation parameters, and often related to the average island sizes.
Fitting Monte Carlo steps against peak wave vector, using automated peak-finding
code, returned γ = 0.25 for 4.1.4(a-e) and γ = 0.30 for 4.1.4(f-j). Rabani et al.,
when measuring coarsening in island deposits from PbSe in octane nanoparticle solu-
tions on HOPG, and models, attributed values of γ in this range to thermally-driven
coarsening1. Blunt expanded these observations with mechanically-induced coarsen-
ing93 with tapping mode AFM upon colloidal gold on silicon substrates, which similarly
utilised FFTs for analysis, returning γ = 0.25 for labyrinthine and γ = 0.49 for island
morphologies. The rapid decay of liquid states and behaviours in the PSD suggest a
degree of coarsening via Ostwald ripening, and provides evidence of the sensitivity of
Fourier analysis for observation of coarsening.

4.1.4(o) is the only case shown that exhibits broadening of the primary peak in the
PSD in the final state, after 5500 steps. This broadening feature is indicative of the
secondary cellular pattern formation towards the end of the simulation in (n), with the
liquid states in (m) (white) withdrawing from the region by Metropolis-Hasting ac-
ceptance. This agrees with the conclusion of only cases of rapid evaporation resulting
in pattern coarsening. All videos show the PSD closely tracks the first film rupture
events, and secondary pattern formation if present.
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Figure 4.1.4: Fourier analysis as a tool to monitor coarsening in the dual-scale modified Rabani et al. model. Three
different simulations of formation are displayed, with the power spectral density, the radially-averaged 2DFFT, upon
the nanoparticles and substrate states in the grid for the four stages plotted. The step count for each image (going
across the top row, then across the bottom row) is displayed in the graph legends with colour-coding.
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4.2 Effects of concentration on gold nanoparticle dewetting
patterns

The deposition method for planned directed dewetting experiments was taken as an
opportunity to perform a short matched pairs study upon the appearance of dewetting
patterns on SiO2 with respect to the gold nanoparticle concentration in the toluene
solution. 2-4 nm average diameter octanethiol-functionalised gold nanoparticles sus-
pended in toluene were purchased from Sigma-Aldrich and diluted in HPLC-grade
toluene to concentrations ranging from 0.1 to 2.25 g/l. Previous studies on the same
nanoparticles explored a range of 0.025 to 1.0 g/l in order to produce submonolayer
coverages10,91,96,132. 1 x 1 cm2 SiO2/Si(111) tiles were prepared from a large wafer us-
ing a diamond scribe to cut into squares suitable for the spin-coater and AFM chamber,
then thoroughly cleaned in a series of solvent washes and exposure to oxygen/argon
plasma, detailed in Section 7.2. Each tile had 75 µl of each nanoparticle solution pipet-
ted then spin-cast onto them. Over 11 seconds, the rotary spin-caster accelerates up
to 4000 rpm at 1000 rpm/s, stays at 4000 rpm for 3 seconds, and then returns to a
stationary position. All newly spin-cast samples were probed with two atomic force
microscopes, the MFP-3D and Cypher systems, within a week of deposition.

Figure 4.2.1 shows a selection of tapping mode AFM images from samples between
0.1 g/l and 1.75 g/l. Every concentration tested exhibited a sub-monolayer coverage
of a fully connected network morphology with a consistent height of 3.0±0.4 nm, as
shown in (f). Lack of multi-layer networks is typical in systems with a lack of rela-
tively strong interparticle forces compared to particle-substrate forces, such as those
for nanoparticles with shorter functionalising alkyl chains10,174, solutions with solvents
with a higher dielectric constant175, or complex near-planar molecules similar to NDP.
A purely spinodal dewetting mechanism would similarly entail multi-layer pattern for-
mation, this is hence supplemented with a viscoelastic phase separation model176, by
which the final steps of dewetting takes into consideration an effective increase in sol-
vent viscosity, or by a contribution from a subsequent heterogeneous nucleation route
in the dewetting process177.

Spatial information was quantified with a radially-averaged 2DFFT upon all images
presented in Figure 4.2.1, in (e). The peak in all spectra suggests a preferred cor-
relation length in the system110,178, included in Table 4.2.1. The wave vector of the
peak, q, is within error of the mean physical distances between cellular pattern cell
centres, the Voronoi site distances as defined by Voronoi tessellation mapping onto
4.2.1(a-d), in all cases. The FFT identifies and effectively quantifies the periodicity of
the cellular structures in each AFM image. The high variation in cell spacing in single
images results in a significant overlap in correlation length between concentrations of
0.1, 0.75 and 1.25 g/l. This makes it difficult to distinguish the concentration of gold
nanoparticle solution solely by calculating the correlation length.
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Despite the common association, there are however cases where the connection of
spinodal processes to preferred correlation lengths does not hold. Small scale cellular
holes may coalesce with larger holes, in the same way large islands of material may
capture smaller islands within a specific distance179, giving the illusion of a higher
degree of order. Coalescence and hence its generated non-Poisson ordering of feature
sizes is not unique to the spinodal dewetting regime. This emphasises the requirements
for dynamic simulation, and particularly the analysis of later steps. On the other end,
ordering of larger scale than the scan sizes can play a role, hence large scan sizes were
also explored.

Figure 4.2.1: Tapping mode AFM images of spin-cast gold nanoparticle assemblies from toluene onto 1 x 1 cm2 wafers
of plasma- and solvent-cleaned SiO2/Si(111). (a) 5 x 5 µm2 0.1 g/l; (b) 2 x 2 µm2 0.75 g/l; (c) 5 x 5 µm2 1.25 g/l;
(d) 5 x 5 µm2 1.75 g/l. (e) Radially-averaged 2DFFT of Hann-windowed binary images of (a-d); (f) line profile across
(d).

Concentration (g/l)
Analysis Type 0.10 0.75 1.25 1.75

λ (nm)
Voronoi 169 ± 30 133 ± 20 187 ± 30 334 ± 40
Fourier 170 ± 50 133 ± 30 202 ± 30 319 ± 30

Table 4.2.1: Gold nanoparticle dewetting pattern correlation length, λ, against gold nanoparticle concentration in
solution. The Voronoi correlation lengths are derived from the average Voronoi site distances, as mapped onto the
AFM images in Figure 4.2.1. The Fourier correlation lengths are derived from the peak indices, q, in 4.2.1(e), using
λ = 2π/q.

Despite the heavy emphasis on discrete categorisation, it is important to note each
category is not entirely distinct, but instead lies along a continuum. Categorisation,
be it via a CNN, PCA, or manual labelling with criteria established by Tables 3.1.1 and
3.1.2, of the images in Figure 4.2.1 as exhibiting cellular patterns ignores that visually
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(a) appears more closely related to spinodal patterns than the rest of the displayed
images, while (d) is closer to pore-like patterns. This is in line with common obser-
vations of a transition from spinodal to cellular to pore-like patterns as nanoparticle
concentration increases. It is important for analysis software to confidently recognise
the truest cellular patterning presented in real data, such as that in 4.2.1(c).

Large scale AFM images produced by the same spin-casting method reveal unusual
patterns left by the gold nanoparticles. The Asylum Research MFP-3D system allowed
for stable scans at up to 90 x 90 µm2 scan sizes, returning clear visualisation of these
previously unobserved patterns in tapping mode AFM in Figure 4.2.2. While an un-
derlying cellular network of correlation lengths of nanometre scale is present, a much
larger cellular network is present. The much more distinctive white rings at some of
these nodes suggest a rapid nucleation event109,114. Additionally, the larger network’s
height is seemingly tied to nanoparticle concentration, ranging from 1 - 2 µm high in
the 0.75 - 2.25 g/l cases.

Figure 4.2.2: Large scale tapping mode AFM images of spin-cast gold nanoparticle assemblies from toluene onto 1 x
1 cm2 wafers of plasma- and solvent-cleaned SiO2/Si(111) taken with the MFP-3D system. (a) 80 x 80 µm2 1.75 g/l;
(b) 80 x 80 µm2 2.25g/l; (c) 30 x 30 µm2 0.75 g/l; (d) zoom upon (c) to 9 x 9 µm2.

The correlation wavelength, λ, for all large scale structures was quantified with a

75



4.2 Effects of concentration on gold nanoparticle dewetting patterns

radially-averaged 2DFFT and by mapping to a Voronoi tesselation. Figure 4.2.3 shows
that analysis for Figure 4.2.2(a). The Voronoi diagram, 4.2.3(a), is mapped such that
the white rings were at the Voronoi cell vertices. Two measurements were extracted
from the diagram, the distribution of polygon sidedness, 4.2.3(b), and the separation
of Voronoi sites for cells sharing an edge, an approximation of λ. A bimodal λ was
identified, 3.67±0.10 µm and 5.70±0.10 µm.

The radially-averaged 2D FFT for 4.2.2(a) is shown in Figure 4.2.3(c). The highlighted
major peak at wave vector 0.21 µm-1 does not coincide with the dewetting pattern
length-scales, but instead coincides with an identified periodic feature across the im-
age. Taking a line profile across the entire image shows the feature is image curvature
with a periodicity of 30 µm. While in numerical agreement with the location of the
peak, 2π/0.21=30 µm, the sensitivity of the FFT to surface curvature was confirmed
by performing Fourier filtering. Removing the ring in the 2DFFT responsible for the
peak at 0.21 µm-1 inverse Fourier transforming the result returns Figure 4.2.3(d). The
image is fully detrended. The two highlighted auxiliary peaks in 4.2.3(c) at 1.12 and
1.66 µm-1 agree upon the two correlation lengths returned by the Voronoi approach,
2π/1.66=3.79 µm and 2π/1.12=5.61 µm. The Fourier and Voronoi analyses are co-
herent.

Multiple pieces of evidence suggest the long-range pattern being a manifestation of
the Marangoni effect. The first piece of evidence stems from the Voronoi diagram,
4.2.3(b) shows the preferable formation of hexagonal cells across all concentrations,
in a non-Poisson distribution. This is in agreement with the most commonly observed
hexagonal patterns of Bénard cells. Large-scale cellular assemblies formed at nanopar-
ticle concentrations at or below 0.75 g/l, become less pronounced. For the pattern
in 4.2.3(c), it is more difficult to define convex polygons for a Voronoi tessellation
approach as the line edges are no longer straight. Further below this concentration,
the height begins to match that of the rest of the first layer of nanoparticles, while
disrupting the local nanometre scale cellular pattern correlation length less and less.

Previous studies have shown the Marangoni number for nanoparticle solutions scaling
inversely with the nanoparticle concentration c99. Combined with equations 3.2 and
3.3, this suggests λ ∝

√
c. The graph in Figure 4.2.4 does not support this for the

entire studied concentration range. However, there is a critical value of Marangoni
number for Marangoni dewetting to occur, given by equation 3.2. The proportional re-
lationship hypothesised for Marangoni-induced long wavelength instabilities of λ ∝

√
c

holds in the case of the critical value being met between concentrations of 0.75 and
1 g/l. This relationship however does not hold true for the patterns present in Figure
4.2.1, implying two distinct combinations of dewetting mechanisms for large-scale and
small-scale pattern formation.

It is possible that the Marangoni effect plays a role in film rupture by the creation of
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Figure 4.2.3: Image analysis upon Figure 4.2.2(a). (a) Voronoi diagram of 4.2.2(a) constructed by defining the white
rings as vertices (b) Histogram of polygon side distribution of Voronoi diagram shown in (a). (c) Radially-averaged
2DFFT of 4.2.2(a). 3 points are highlighted along the spectrum; the first (0.21 µm-1) corresponds to a perceived
surface curvature (30 µm), while the second and third points are similar to the found bimodal distances between
Voronoi centres sharing an edge in the Voronoi diagram in (a), 3.67 µm and 5.70 µm. The alignment of the two
minor peaks in the spectrum with these points (at 1.12 and 1.66 µm-1) show the Voronoi and Fourier analyses are in
agreement. (d) Fourier-filtered version of 4.2.2(a) that effectively removes the first highlighted major peak in (c) then
inverse transforms the result.

nucleation sites, as thin films exhibiting the effect will have a thickness of the order of
the amplitude of the convective waves, atop Figure 3.2.4(a). This is evidenced by the
common occurrence of a nucleation site centred in every single polygon, located much
like sites in a Voronoi diagram. Though not highly visible in Figure 4.2.2, Asylum
Research Cypher AFM images of a second deposition using the 1.75 g/l solution at
higher resolution Figure 4.2.5 makes this clearer. The centre is where one would expect
the liquid film to be the most thin and hence most susceptible to initiating rupturing,
rendering the Marangoni-induced nucleation centres similar to that of Voronoi seeding
sites. These sites have a spacing of 4.8±1.0 µm, which maintains consistent with the
correlation length approximated for the same concentration toluene-based nanoparticle
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Figure 4.2.4: Plot of the observed square correlation lengths, extracted from the most prominent peak wave vector
position q in the radially-averaged 2DFFT of large scale dewetting patterns in AFM images using λ = 2π/q, against
the concentration of the deposited and spin-cast gold nanoparticles in toluene solution.

Figure 4.2.5: Tapping mode AFM images of spin-cast gold nanoparticle assemblies from toluene at a concentration of
1.75 g/l onto 1 x 1 cm2 wafers of plasma- and solvent-cleaned SiO2/Si(111) taken with the Asylum Research Cypher
system. (a) 30 x 30 µm2; (b) 10 x 10 µm2 (c) 1 x 1 µm2 zoom upon (b), highlighting appearance inside a nucleation
site; (d) 1D line profile of (c) from the top-left to bottom-right.
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solution.

The Marangoni effect’s role in rupturing the thin film speaks to the stability of these
thin films on the manufacturer-prepared thermally oxidised surface prepared in this
manner and the effectiveness of the spin-casting technique, as an internal convective
flow drives the initial phase instead of defects, or other thermal processes. AFM scans
taken at the maximum scale allowed by the MFP-3D system identify an alternative
route to nucleation in metastable thin films. Both Fourier and Voronoi analysis can be
applied effectively at the larger scales at which Marangoni convection and subsequent
nucleation conceivably occurs. The effects of a convective dewetting mechanism upon
all levels of the resulting dewetting pattern are profound, introducing periodicity at
correlation lengths of 4-15 µm.

4.3 Nanoscale directed dewetting

4.3.1 Fullerene co-deposition

While disruption of dewetting upon homogeneous substrates with tip-grown topo-
graphical structures is conducted in Subsection 4.3.3, mixed C60-AuNP films formed
by co-deposition from a single solution provides a simple, single-step method to create
chemical and topographical heterogeneities for mediating dewetting patterns. While
co-deposition of polymer films is common, deliberate simultaneous deposition from
solutions of C60 and metallic nanoparticles is only previously explored in the context
of thick nanocomposite films.180

The co-deposition experiment uses the same parameters and systematic approach as
Section 4.2. Toluene-based solutions of a combination of octanethiol-functionalised
gold nanoparticles and C60 (from powder) of varying concentrations were spin-cast,
using the parameters from Section 4.2, H:Si(111), produced in Subsection 4.3.2, from
a 75 µl pipetted meniscus. 12 different combinations of concentrations of nanopar-
ticles and fullerenes were tested, with nanoparticle concentrations in the range 0.1 -
2.25 g/l, and buckminsterfullerene concentrations of 4 - 28 g/l. Resulting patterns
were probed with the MFP-3D system within two weeks of deposition.

All cases in Figure 4.3.1 show a phase separation. Complex dewetting patterns con-
tinue to form, but are sensitive to their proximity to deposited aggregates. The full
continuum of nanoparticle dewetting patterns, islands to pores, can be observed across
the same scanned region, with islands forming closer to aggregates and pores forming
at the furthest distance from aggregates. The aggregates appear as flat white features
with dark halos around them in the AFM images, the former is due to the necessary
masking of the relatively high aggregates in order to observe the dewetting patterns.
The dark halos are uncharacteristic of the surface, caused by a flattening artefact in-
duced by the substantial height difference between the silicon surface and aggregate
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Figure 4.3.1: Tapping mode AFM images of spin-cast gold nanoparticle assemblies and buckminsterfullerene (C60)
co-deposited from toluene at various concentrations of both onto 1 x 1 cm2 wafers of H:Si(111) taken with the Asylum
Research MFP-3D system. Concentrations of gold nanoparticles (cAuNP) and concentrations of buckminsterfullerene
(cC60

) in toluene solution used are listed next to the appropriate image(s).

islands.

The aggregate phase in all images demonstrates two phases of aggregation, a “frac-
tal” phase spanning up to 2.2 µm parallel to the surface, and a quasispherical cluster
phase of up to 90 nm in diameter. This agrees with previous high-resolution TEM
observations of C60 in toluene181, during which the cluster phase is a close-packed
monomolecular dispersion. The larger “fractal” aggregate phase meanwhile is char-
acterised as an unstable, porous phase with a ≈ 3 nm spatial gap between structural
units of the “fractal”, observed in solutions prepared under non-equilibrium conditions.
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It was unclear whether the aggregate and pattern phases were the result of the phase
separation of the fullerenes and gold nanoparticles in solution. Analysis of the relative
interaction strengths between particles in the solvent were be used to make predic-
tions about the phase behaviour of the composite nanofluid59,182. For the octanethiol-
functionalised gold nanoparticles, the Hamaker constant, A, in toluene for the AuNP-
AuNP interaction was approximated as 1.1 eV183,184. The C60-C60 interaction was ap-
proximated using A=0.1 eV185, while the gold nanoparticle-fullerene interaction can be
approximated using A12 ≈

√
A1A2

59. Computing an estimate interaction potential182

returns relative interaction strengths of 10:18:1 for AuNP-AuNP:C60-C60:Au-NP-C60.

Scaling of the coverage of the “fractal” aggregates shown in Figure 4.3.2 agrees with
the observed high abundance of the pattern when the solution is prepared under non-
equilibrium conditions. While the ratio between average “fractal” diameter and height
remains consistent for all concentrations and sizes, experiments could not identify a
linear relationship between concentration and size of “fractal” aggregates, also shown
in Figure 4.3.2. This is due to “fractal” aggregates rapidly decaying in solution, as
their size overwhelmingly exceeds that of stable aggregates186. Both phases have
drastically different effects and influences during dewetting in the thin film regime.
Gold nanoparticle concentration in the same toluene solutions had little effect on
the size and stability of the aggregate phase observed during AFM. Deposition of
fullerene in toluene without nanoparticles present yielded similar results, suggesting
nanoparticles were not binding to either phase.

Figure 4.3.2: Graphs showing scaling of observables from AFM of the aggregate “fractal” phase with concentration
in toluene solution when deposited onto H:Si(111).

The relationships between correlation lengths and concentration that previously pro-
vided evidence of the Marangoni effect initialising dewetting do not hold for all cases
in Figure 4.3.1.

Though the AFM images presented appear highly disordered, 2DFFTs sampled from
portions of the image suggest local ordering by means of dominant correlation lengths
among different pattern types, a case for a combination of spinodal dewetting and
strong coalescence phenomena induced by a significant wettability gradient, this is
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particularly clear in (b), (f) and (k). (b) has a pore-like region on the left, radially
tracking the aggregate on the right of the scan, with a strict correlation length. In the
case of (k), where the nanoparticle concentration is relatively high, the cellular pattern
outside of transitional regions around the aggregates similarly maintains a correlation
length. The transitional boundaries between pattern types are highly abrupt and main-
tain a critical length for each, all while maintaining dependence on the locations of
deposited large “fractal” aggregates.

These observations were quantified by adaptation of the aforementioned sweeping
subsampling window tool from Subsection 4.1.2. The chosen side length of the sub-
sampling window was a compromise between being small enough to provide a suitable
resolution to the FFT maps, particularly when subsampling in close proximity to the
aggregate phase, but large enough to detect a prominent peak in the PSD from the
pattern phase. A window size of 128 x 128 pixels was used throughout, which would
span between 0.3 and 1.25 µm. The window sweeps over all possible positions on each
AFM image, performing the 2D FFT of the enclosed region at each position, fitting
a curve to the radially-averaged 2D FFT, then calculating the underlying correlation
length of the gold nanoparticle dewetting pattern λ from the peak wave vector q using
λ = 2π/q 187. This builds a series of maps that track the pattern spacing chang-
ing across the image, shown in Figure 4.3.3. The maps shown make the transitional
boundaries and tracking of dewetting patterns with respect to deposited aggregates
far more apparent, particularly in the leftmost images associated with 4.3.1(b).

The tallest “fractal” phase aggregate seemingly nucleates the dewetting process, with
clear dewetting fronts originating from them, in some cases, such as (d), creating a
pronounced rim of transitioning nanoparticle patterns. The rim is not as pronounced
as the “castle moat”-like appearance seen in breath figure experiments using oxide
nanorings106, potentially due to disruption by the smaller aggregates, including the
cluster phase. All aggregates should act like quasi-1D defects that spur heterogeneous
nucleation. Previous simulations of mixed heterogeneities126,188 suggest a series of rup-
ture events could be caused by different heterogeneities. The low width of aggregates
would mean these events happen near simultaneously, quoted in previous simulations
as 0.021 s apart188. This however only holds for heterogeneities of the same height
and width, with early instability induced by local changes in the critical thickness in
the metastable film comes different dewetting mechanisms and rates, resulting in film
variation similar to that of altering external factors like ambient humidity on a very
local level114. The timescale often exceeds that of spinodal dewetting, resulting in
non-standard pattern formation, (h) displays a multi-layer nanoparticle pattern cen-
tred on an aggregate, attributed purely to a flow of material as fluid retreats from
thinner areas of film to thicker areas.

The rapidly retracting front around that of the tallest “fractal” aggregate also drags
the other aggregates on the surface. (b) even displays a cluster size dependence on
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Figure 4.3.3: Quantification of observed shifts in dewetting pattern type and correlation length with respect to co-
deposited C60 by use of a sweeping subsampling window using Fourier analysis. (Top row) Images (b), (f) and (k) from
Figure 4.3.1 annotated with the chosen size of the scanning window; from left to right: cAuNP=0.25 g/l, cC60

=4.0
g/l, cAuNP=1.25 g/l, cC60

=7.0 g/l, cAuNP=2.25 g/l, cC60
=11.0 g/l. (Bottom row) Map of correlation lengths of

the underlying dewetting patterns obtained from the peak wave vector q from a radially-averaged 2D FFT of the
region enclosed by the local subsampling window centred on each position on the image directly above. The scale bar
represents the local correlation length from λ = 2π/q for all maps.

distance from the tall aggregates. Some of these aggregates, relocated or not, have
little to no influence on the dewetting patterns on the gold nanoparticles, (i) and
(l) illustrate this well. This is also observed in simulations188 and experiments111 in
terms of late-onset from the instance of dewetting in mixed morphologies, in this
case, multiple different surface defects of varying wettabilities. Figure 4.3.4 shows the
process by which structures form around the central heterogeneity, separated by a rim,
the rim becomes more circular and binding to the heterogeneity, until any evidence of
dewetting from the later onset is eliminated. This tight rim is observed in 4.3.1(g),
where smaller and lower height aggregates in proximity to the larger aggregate at the
bottom of the image.

Figure 4.3.4: Morphological evolution of a 40 nm thin film on a 500 x 500 µm2 heterogeneous substrate dewetting
from a smaller and less wettable 25 x 25 µm2 heterogeneity over time T; from top left to bottom right T=0.43, 19,
25.5, 28.8, 33.7, 52.4, 94.8 and 365.7. From Sharma et al., Physica A 1-2, 2003 188
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In summary, buckminsterfullerene and octanethiol-functionalised gold nanoparticles co-
deposited from toluene at a series of concentrations onto a H:Si(111) surface produce
an aggregate phase and dewetting pattern phase. Aggregates create strong wettabil-
ity gradients across a H:Si(111) surface by providing both topographical and chemical
heterogeneities, causing an effective shift in the local interface potential Φ(h, x, y).
The resulting shift in observed correlation lengths of the patterning phase is quantified
effectively by Fourier analysis, which locally maps the AFM image.

While aggregates provide a point-like microscale dewetting mediator, the disordered na-
ture of the resulting AFM images provides little room for statistical applications beyond
the presented Fourier analysis. Revisiting C60-AuNP co-deposition would necessitate
strong modification of the experimental method. A mechanical mixing process181, de-
posited grids131, or the teflon ring and breath figure approaches described in Subsection
3.3.1 could be used to improve the aggregate phase’s size uniformity, and induce more
uniform spacing of the phase on the surface. Monte Carlo method-based simulations
with tall circular aggregates with seeded locations and local chemical potential126,188

could happen in conjunction with experiments. Though supported theoretically by
Hamaker analysis, it would be necessary to experimentally establish whether the ag-
gregate and patterning phases consist of a single molecule in order to assert phase
separation of the co-deposits.

Nanoscale directed dewetting by means of a co-adsorbate demonstrated the effec-
tiveness of gold nanoparticles as a far-from-equilibrium tracer for mediated shifts in
the local interface potential. Subsection 4.3.3 continues the exploration of mediated
dewetting with highly localised modification of the underlying surface. Lithographi-
cally patterning the silicon oxide substrate could direct the self-organisation of gold
nanoparticles by controlling nanoparticle adsorption and dewetting pattern formation.

4.3.2 AFM-induced local oxidation

Scanning probe techniques go beyond imaging, providing readily available routes to
modify the surface upon similar length-scales to deposited nanostructures. This in-
cludes exerting a physical force from the tip, such to scribe patterns on the surface be-
low189, or a “dip-pen” method, by which the tip is coated from a reservoir of molecules
prior to scanning, such to precisely deposit them onto the surface190. Another estab-
lished technique is highly-localised induced oxidation of hydrogen-terminated silicon
using an electrically biased probe191, exploited below as a means to direct dewetting
on top and around oxidised regions.

The selective oxidation process begins with a hydrogen-terminated silicon surface. Re-
placement of the oxide layer on a silicon surface with terminating hydrogen atoms,
known as hydrogen passivation, can be prepared with atomic-level cleanliness in UHV,
via deposition onto highly reactive bare silicon from a hydrogen source, a thermal gas
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cracker. The resulting surface is preferable to an oxide layer in many cases, providing
an inert, low-defect density substrate with differing electronic properties.192

An alternative for preparation under ambient conditions is deployed here. The silicon’s
oxide layer was chemically etched with a combination of hydrofluoric acid (HF) and
ammonium fluoride (NH4F)

193. The etch both removes the oxide layer and provides the
hydrogen passivation of the surface, returning an atomically-flat hydrogen-terminated
surface194,195. The presence of HF submersion in the method meant a highly con-
trolled workflow was planned and tested before each etch. The workflow that returned
the cleanest and most homogeneous surface, when inspected with optical microscopy
and tapping mode AFM, was a sequential 15 minute submersion of a Si(111) wafer
in HF, followed by a 15 minute submersion in HF buffered with ammonium fluoride in
a 1:7 ratio. The etched Si(111) wafer was cut into 1 x 1 cm2 square chips, ready for
insertion onto the conductive platform in the atomic force microscope.

The immediate exposure to ambient conditions causes the chemically-etched silicon
to partially re-oxidise196–198. After removal from the buffered HF solution, the silicon
surface is near-saturated with H-Si bonds, with a few Si-F defects. Fluorine atoms
are quickly substituted by OH- ions from water in the atmosphere, while hydrogen is
also substituted in a similar manner at a much slower rate. The Si-OH- bond rapidly
polarises due to the highly electronegative OH- group, this in turn polarises the Si-Si
bonds in the sub-surface layer, exposing them to atmospheric water, resulting in an
initial oxide layer. The oxide layer continues to grow by a diffusive process. Electrons
from the Si conduction band may tunnel through the oxide layer into surface-adsorbed
species, inducing ionic oxygen species. Diffusion of oxygen ions across the growing
film is promoted by an electronegativity gradient between Si and SiOx that results in
an interfacial charge double layer. This oxidation process is self-limiting, the increasing
tunnelling and diffusion barrier of the growing oxide layer limits the thickness to around
0.7 nm under ambient conditions.198

The diffusive stage of the oxidation process is further encouraged with an electrically-
biased probe. Electrons from the probe supplement the ionisation of surface species
and the enhanced electric field in proximity to the probe promotes the mobility of
oxygen ions on the surface. Reports showed an exposure to an AFM probe held at -10
V increased the local oxide height up to 4 nm132. The rapid decay of the electric field
strength away from the tip-substrate cavity causes the process to locally self-terminate
beyond the critical strength, resulting in the technique’s localised nature.199

The original process191 utilised an STM probe and was later expanded to conductive
AFM probes in non-contact mode. The process was deemed to place high emphasis
on surface-adsorbed water, with a water bridge forming between the probe and sur-
face200, shown in Figure 4.3.5, providing a source of O- and OH- for oxidation. The
water bridge sets a resolution limit for structures grown by this process. The signifi-
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cant difference between the dielectric constant of the water compared to air, 81 to 1,
renders it an effective “lens” for the electric field between the apex of the tip and the
substrate. The area enclosing the neck of the water bridge confines the field and hence
the oxidation process, and hence controls the resolution of the process200. Control of
the tip-sample distance and volume of adsorbed water meant structures as small as 10
nm have been achieved.132

Figure 4.3.5: AFM tip-induced oxidation of H-terminated silicon.

The lithography was performed upon etched 1 x 1 cm2 Si(111) chips using a standard-
ised method that produced oxide layers of consistent desired characteristics. Localised
oxidation was carried out using a silicon tip held at a bias of -10 V and moving at a
speed of 0.75 µm/s. This yields the majority of oxidised surface as square blocks, of 4
- 36 µm2 (from 1 x 4 µm2 to 6 x 6 µm2) surface areas with a consistent height across
the entire oxidised region.

The microscale blocks shown in Figure 4.3.6 of one of the three oxidised wafers re-
mained stable during spin-coating and solvent cleaning. There were no significant signs
of erosion during the nine month period of systematic study under ambient conditions,
with the method causing minimal disruption to the surrounding H:Si(111) substrate.
Oxide layer thicknesses ranged from 1.4 to 3.1 nm in vertical height relative to the
surrounding HF-etched surface. FFT measurements showed roughness was not neces-
sarily correlated to final height. The new oxide layer had the capacity to either increase
or reduce hrms by up to 50% compared to the local un-patterned silicon. Qualities
of the tip-induced oxide layer were determined by a combination of the scan speed,
the quantity of water adsorbed on the surface (essentially the humidity within the
atmosphere around the microscope), the true tip apex-substrate separation, tip sharp-
ness and the underlying etched silicon quality201. While most of these factors were
controlled during experiments, a wide range of height and roughness were observed.
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Figure 4.3.6: AFM image of SiO2:Si(111) with tip-induced heterogeneities. Thick AFM tip-grown oxidised regions on
a Si(111) substrate that has been etched in hydrofluoric acid and ammonium fluoride then exposed to air to induce a
thin oxide layer growth upon the resulting surface. Neighbouring grown regions of sizes 2 x 2, 4 x 4 and 6 x 6 µm2 are
shown, including horizontal line profiles of each tip-grown region and surrounding un-patterned area.

4.3.3 Locally mediated dewetting

Octanethiol (C8H17S)-passivated gold nanoparticles of particle sizes 2-4 nm were pre-
pared in toluene and diluted to nanoparticle concentrations between 0.1 and 17.5 g/l.
75 µL of each nanoparticle solution was spin-coated, using the parameters from Sec-
tion 4.2, onto the selectively-oxidised 1 x 1 cm2 square Si(111) chips. Tapping mode
AFM for the purpose of imaging was carried out using the Asylum Research MFP-3D
and Cypher. Prior to further spin-coating, wafers were submerged in toluene for 4
hours to remove the previous gold nanoparticle coating.

Figure 4.3.7 shows the variety of patterns formed for changes in concentration across
the oxide regions shown in Figure 4.3.6. Nanoparticle patterns in 4.3.7(a-c) show
dewetting at low nanoparticle coverage, 1.75 g/l of gold nanoparticles in toluene. The
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Figure 4.3.7: AFM images of gold nanoparticles spun from toluene onto Si(111) chips acid-etched to remove the native
oxide layer in hydrofluoric acid and ammonium fluoride to encourage H:Si(111) growth, exposed to air to re-oxidise
a thin layer on the surface, then subsequently selectively re-oxidised with thick AFM tip-grown SiO2:Si(111) square
regions. (first row) 1.75 g/l concentration; (second row) 5 g/l concentration; (third row) 17.5 g/l; (first column)
2 x 2 µm2 region of oxide; (second columnn) 4 x 4 µm2; (third column) 6 x 6 µm2. As nanoparticle concentration
increases, down the figure, a transition in type of dewetting pattern morphology is observed from cellular networks
(a-c), pore-like holes (d-f), to surface-independent self-organisation(g-i).

cellular pattern continues nearly seamlessly between the tip-oxidised region and sur-
rounding area.

No sharp transition in the type or types of dewetting pattern was observed between the
tip-oxidised and surrounding regions in the tested range of concentrations with AFM.
Previously, both experimentally and computationally, lower concentrations of thin film
provide a striking contrast of labyrinthine on the surrounding thin oxide region and
cellular on the thick square oxide region, similar to that in Figure 4.3.8. Simulations
suggest high coverage affects the mobility of the nanoparticles, and reduces the sol-
vent evaporation rate from thin film59,202. Labyrinthine patterns form during faster
evaporation rates than those of cellular patterns, this suggests at the concentrations
explored that the shift in surface properties between the two regions was not significant
enough to induce a transition in pattern type.

Dewetting nucleated by defects in the surface proved to have a key role in the be-
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haviour of the solvent. Substantial point-like imperfections act as persistent nucleation
sites across all concentrations. This is particularly visible in 4.3.7(f) and (i), showing
the same white dot between concentrations for the same tip-oxidised layer, showing
significant nucleation at the same location between multiple different concentrations.
Cavities that appear as black spots in AFM images, particularly visible in Figure
4.3.7(a) and (d), are crater defects caused by the HF reacting with defects in the silicon
wafer during etching. Cavities consistently create a small nanoparticle-free perimeter
on the tip-oxidised region of radius similar to the nanoparticle feature length, even at
higher concentration spin coats. Feature length is shown to play a fundamental role in
dewetting, as it is shown to be unfavourable to form patterns of lower length around
these cavities. This lends itself to a confinement effect mediated by the surface, with-
out the need for further chemical modifications.

The Si(111) substrate patterned with spin-casted gold nanoparticle solutions with
concentrations between 2.5 and 7.5 g/l exhibited larger micron length-scale dewetting
patterns that induced shifts in the height of the nanoparticle monolayer of up to 2
nm high. These were similar to the cellular patterns observed in Section 4.2. Micron
length-scale patterns have previously been tentatively accredited to secondary dewet-
ting processes acting within the thin film, Marangoni convection being a probable
source10.

Multi-layer dewetting patterns were found to be prominent at the higher concentration
ranges studied. Discounting island-like patterns, only 4.3.7(d) exhibits complex multi-
layer patterns. This effect is promoted by a reduction in nanoparticle mobility caused
by the volume of nanoparticles in the nanoparticle-solvent film. This becomes a less
likely occurrence in the presence of surface imperfections, which causes heterogeneous
nucleation to become the dominant dewetting mechanism. At a critical concentration,
the immobility caused by the sheer volume of nanoparticles in the film causes them
to not establish a coherent surface to self-assemble onto, resulting in the appearances
of Figure 4.3.7(g-i), where nucleation independent of surface and its defects dominate.

4.3.4 Quantification with Fourier analysis

Initial modelled studies previously conducted in the Group suggested the shifts in
pattern properties were due to a shift in interaction strength between the solvent and
surface. This was tested by adding spatial dependence to Rabani et al. model’s Hamil-
tonian, by spatially varying the value of the chemical potential term, µ, in equation 3.6.
Figure 4.3.8 shows how even slightly (6%) lowering the term inside the square causes
a striking difference in pattern type between the square and surrounding area. This
was enough to cause a transition from cellular networks “on” the square, to worm-like
domains “off” the square. The physical interpretation is a greater wettability upon
the tip-oxidised square region.132
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Figure 4.3.8: Previous result for a Rabani et al. model simulation modified to include a spatially-dependent variable,
the central square in given a chemical potential term, µ, that is 6% lower than that of the surrounding area. From
Martin et al. Phys. Rev. Lett. 99, 116103, 2007 132

Investigation of the underlying source of the wettability shift by systematic experi-
ment is of interest. At a chemical level, the Hamaker constants for H:Si(111) and
SiO2:Si(111)

59 as estimates for the solely etched and tip-oxidised regions respectively
could explain the distinction between the two regions. However, previous experiments
show an expected contact angle difference from this hypothesis is not observed132.
A more appropriate system would be that of SiO-Si against SiO-Si, which explains
the near-identical contact angle but discounts changes at the chemical level as a sole
driver of the shift in wettability63.

The origin of the transition in solvent-surface interaction was also loosely traced to
roughness, with the hypothesis of increased surface roughness acting to slow the evap-
oration of the solvent. This operates in tandem with the hypothesis of solvent evapo-
ration rate being responsible for differences in pattern morphology132. The existence
of oxidation that smooths the surface allows for an extension of this hypothesis for
a reduction in roughness. This is explored using Fourier analysis, using the meth-
ods discussed in Subsection 4.1.2, as a means to track both RMS roughness on the
tip-oxidised region and surrounding surface before depositions, and feature length post-
deposition.169

A series of AFM surface images that had both a consistent RMS roughness and ex-
hibited cellular patterns across both regions of their images were collected for Fourier
analysis using code in Appendix B. Figure 4.3.9 shows a portion of the process of
Fourier analysis to determine a relationship between roughness and cellular pattern
assembly. (a) and (c) show the extremities of shifts in feature length between the tip-
oxidised silicon and etched silicon solely exposed to air (and hence primarily H:Si(111)).
Visually the cellular pattern on the tip-oxidised silicon in (a) appears less dense than
that on the surrounding silicon, and vice versa for (c). This is backed up statistically
by the FFT, by which the peak wave vectors diverge in different directions returning
negative and positive ∆q for (a) and (c) respectively.
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(i) suggests the shift in feature length between tip-oxidised and surrounding silicon for
all observed cellular patterns track a loose trend with the detectable oxidation-induced
roughness. (e) and (g) notably deviate from this trend. (e-f) displaying a significant
shift in feature length both visually and statistically, despite very little difference in
roughness between the two regions. (g-h) exhibits limited shift in feature length, de-
spite the FFT upon the pre-deposition 2 x 2 µm2 square and surrounding surface in
Figure 4.3.6 returning a ∆%hrms of +35%. This is potentially due to higher order
heterogeneous nucleation, evidenced by the large stalagmite-like aggregate upon the
oxide region in (e) and multiple circular aggregates in the H:Si(111) region and de-
nuded areas around defects in the tip-oxidised region in (g). This may be driving rapid
dewetting in those regions independently of surface roughness.

Previous modelling, as well as the C60 co-depositions experiments, suggests a rup-
ture event that initialises heterogeneous dewetting induced by a larger local defect
will reduce the impact of smaller defects on the resulting nanoparticle pattern, and
by extension the roughness of the tip-induced oxide layer126,188. There are other
potentially significant factors outside of detected roughness impacting cellular pattern
feature lengths, with more emphasis being placed on larger defects or nanoscale rough-
ness/porosity of the grown layer below the size of pixels captured by the microscope.
Additionally, the height difference between the two surface regions may become sig-
nificant during dewetting. Taller regions are likely to be the first to reach critical
thickness for the disjoining pressure to cause the nucleation of a hole in the film. The
correlation between the shift in percentage RMS and wave vector, both calculated by
Fourier analysis, plotted in Figure 4.3.9(i) is not significant enough to propose the total
surface roughness observed by AFM, or is an unsuitable metric for evaluating surface
roughness induced by the charged tip, as the underlying source of the wettability shift.

4.4 Final remarks

Self-organisation and self-assembly play a substantial role in nature all the way down to
the nanoscale. Identifying dynamic behaviour at this scale has the capacity to expand
to similar or even higher scale analogues. Far-from-equilibrium nanoparticle assem-
blies demonstrate the striking and diverse appearance of self-organisation phenomena
throughout nature. Near mono-diperse metal nanoparticles functionalised by diverse
ligands see continued interest for applications in nanoelectric devices, as a unique form
of bottom-up assembly via spontaneous pattern formation in a thin solvent film.

Convective, nucleated and spinodal dewetting were all observed inseparably by means
of AFM upon gold nanoparticles kinetically “trapped” on a silicon surface, long af-
ter the volatile solvent they were suspended in had rapidly retracted and evaporated
from the surface. Suspended gold nanoparticles proved to be an effective history of
the volatile solvent as it dewets from a surface. Their unique far-from-equilibrium
pattern formation was readily observed by AFM, and quantified with specialised appli-
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Figure 4.3.9: Fourier analysis of AFM images of a silicon wafer containing cellular-type nanoparticle patterns from
Figure 4.3.7 and other surfaces. (a) 3 x 3 µm2 @ 2.25 g/l; (c) 6 x 6µm2 @ 1.75 g/l from 4.3.7(c) expanded; (e) 1 x 4
µm2 @ 2.25 g/l; (g) 2 x 2 µm2 from 4.3.7(a) expanded. (b,d,f,h) Semi-logarithmic plot of the radially-averaged 2DFFT
of the raised tip-oxidised region compared to the HF-etched silicon, that is solely exposed to air, of their respective
AFM images, with the 2D FFTs of each region inset; (i) plot of the percentage change in root mean square roughness
against the change in effective feature length between the pre-deposition tip-oxidised and air-exposed regions among
cellular-type nanoparticle pattern AFM images. The roughness of the tip-oxidised region is shown to either increase (a)
or decrease (c) the cellular pattern’s feature length, or maintain the feature length in the face of dewetting-nucleating
surface defects on (e) or off (g) the region.

cations of common statistical methods. The system benefits from rich literature, and
a large range of tunable laboratory conditions, from the alterations to the synthesis of
nanoparticles to AFM-induced pattern coarsening. Such an expansive parameter space
will continue to be explored, aided by modern computational tools.

High-accuracy numerical simulations of the self-assembly of nanoparticle superlattices
based on modified versions of the Rabani et al. model support experimental obser-
vations. High volume data sets of simulated image tested analytical software using
Fourier and principal component analysis. Pattern recognition and automated labelling
based on modified Minkowski metrics were evaluated by using a manually-labelled Ra-
bani data set and real AFM data with PCA. Clustering in the score plots for real and
simulated images among identified dewetting pattern morphologies was highly promis-
ing for automating classification of images of nanoparticle assemblies. Rabani et al.
model images were utilised in Fourier-based feature extraction software at all stages,
first in testing wave vector peak fitting to attain the correlation length. PCA upon Ra-
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bani et al. model generative parameters and reciprocal space feature metrics gathered
from the radially-averaged 2D FFTs of final states of the model for a large data set re-
turned weaker clustering than Minkowski morphometry. Relationship mining between
the generative parameters and the shape of the PSD returned a little direct correlation
between individual parameters across the whole range, attributed to a phase boundary
in the system. However, the strength of Fourier analysis came from tracking the evolv-
ing Monte Carlo model in reciprocal space for numerous resulting dewetting pattern
types, aiding the observation of nanostructure coarsening in simulation. A comparable
coarsening exponent in simulated coarsening island and worm-like domains suggested
thermally-driven Ostwald ripening as the primary cause of coarsening in both real and
simulated data.

While set parameters in a simulated space produce consistent pattern types, repro-
ducibility of patterns in experiments, as well as mapping of simulated onto experi-
mental parameters, remains a challenge. Consistent workflows for silicon cleaning,
hydrogen-passivation, tip-induced oxidation and spin-coating were recorded in great
detail. Studies of nanoparticle concentration beyond that of common concentration
ranges utilised in literature, combined with high scan stability at wide scan sizes in
AFM, led to uncommon observations of secondary long-range microscopic ordering.
Evidence is presented, particularly Voronoi cell mapping and a characteristic relation-
ship between concentration and correlation length acquired from Fourier analysis, for
the involvement of Marangoni convection in its formation. The physical lengths ob-
served in AFM images of cellular patterning, specifically the effective Voronoi site
distances, corresponded to correlation lengths calculated from the peak wave vectors
using Fourier analysis.

Control over far-from-equilibrium pattern formation by means of direct surface mod-
ification before deposition was quantified by Fourier analysis. A sharp AFM probe
boasts the capacity to create stable microscale oxidised patches on a chemically-etched
Si(111) surface. Much like the untreated substrate, the tip-oxidised squares support
far-from-equilibrium pattern formation, assuming lateral dimensions are greater than
the characteristic feature lengths of nanoparticle patterns produced in the experimental
parameter space, dictated by concentration, interface potential and further conditions
during deposition. Below this limit, be it by smaller tip patterns, defects like cavities,
or other surface heterogeneities, it was more energetically favourable for nanoparti-
cles to form a denuded perimeter and maintain the local pattern feature length. Tip
oxidation had the capacity to roughen or smoothen a continuous region of substrate,
compared to the local hydrofluoric acid-etched regions, in terms of the RMS roughness
measured in reciprocal space. In the absence of larger aggregation sites, roughness
was a potential primary driver of feature length in cellular patterns in self-organising
deposits, displaying a limited positive trend between the percentage change in RMS
roughness and the percentage change in peak wave vector. In real space, this trans-
lates to the density of cellular patterns increasing with underlying surface roughness.
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Future work that explored pattern development upon a wider range of tip-oxidised
layers of differing RMS roughness, and aims to generate non-transient values of RMS
roughness via Fourier analysis, could be explored. The methodology, observations, and
quantification with Fourier analysis form the in-preparation paper.

Far below the aforementioned denuding limit was observed during co-deposition, during
which an aggregate phase created a local wettability gradient, from rapid evaporation
times to slower evaporation times, originating from the centres of the larger fractal-like
clusters. This gradient was marked by the presence of transitioning nanoparticle pat-
tern morphologies, from islands to holes. Coalescence phenomena along this gradient
resulted in sharp transitions between observed morphologies, quantified with the appli-
cation of unique Fourier analysis code to segment images. Final AFM images produced
by co-deposition were highly complex, larger aggregates impacted the arrangement of
smaller aggregates upon the surface. A manner of limiting aggregate sizes, or spatially
guiding the deposition of aggregates that do not compromise pattern formation in
the co-deposited patterning phase could reduce image complexity to enable rigorous
statistical image analysis.

Key directors of the dynamic behaviour of thin films of solvent have been identi-
fied. The self-organisation of nanostructures in a series of new and modified solvent
deposition experiments in a far-from-equilibrium regime is explored. Open-source sta-
tistical analysis tools, tested on simulated data using a modified form of the Rabani
et al. model, and then real experimental data, are devised to be applicable to similar
nanostructured systems and beyond. Chapter 6 explores further image-focused tools
for experimental nanoscientists, to convert large data sets of raw scanning probe mi-
croscopy images into statistically-robust images for analysis explored in this chapter
and beyond.
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5 Locating Caged Molecules with NIXSW

Author Contribution Statement

Some of the data discussed in this chapter is published in Jarvis et al., Communications
Chemistry 4(1), 202158. This chapter also describes additional data analysis that is
not included in the Communications Chemistry paper cited above and which is entirely
JH’s own work.

5.1 Endofullerenes

Endohedral fullerenes, often abbreviated to endofullerenes, represent a complex form
of functionalisation of the molecule by the addition of specific groups inside the carbon
cage. The established nomenclature for a fullerene of Y carbon atoms encapsulating
a group X is X@CY. Water confined by buckminsterfullerene, H2O@C60, and HF con-
fined by buckminsterfullerene, HF@C60, are central to this chapter.

Endofullerenes encapsulating a wide variety of species have been synthesised in the
past, though the concept of “molecular surgery”203 provided new opportunities in the
form of a wider array of containable species. Carbon cages of different sizes have
been synthesised to include lanthanides, group 1, 2, 3 and 5 elements, and noble
gases, as well as poly-encapsulations of up to 4 groups204–209. The processes for these
often involve physical methods under harsh conditions, such as arc discharge of metal-
doped carbon rods, ion implantation or high pressure/temperature treatment with rare
gases210. Such processes were unsuitable for producing a high yield of endofullerenes
encapsulating molecules. The surgical approach is a short synthetic route that creates
a wide opening in the fullerene for guest molecules, followed by a chemical “suturing”
technique to reform the cage.211,212

The encapsulation of molecules within the C60 cage provides a unique opportunity to
study their properties unperturbed by interactions with the environment. High yields of
H2O@C60 and HF@C60 allowed for physical and spectroscopic study of the near-isolated
molecule and new system as a whole, free from the complications of dimerisation and
hydrogen bonding. Weak interactions with the cage meant nuclear spin isomerism and
ortho-para conversion has been observed from confined H2O

213, as well as quantisation
of translational and rotational degrees of freedom of both confined HF and H2O.

214,215

SPM of fullerenes deposited on metallic217,218, semiconducting219–221, and semicon-
ductor substrates222 has remained a powerful tool to study the resultant morphology.
STM/NC-AFM investigations of sub-monolayer and multilayer coverage of H2O@C60

revealed filled and empty cages had a very similar appearance, shown in Figure 5.1.1.
Characterisation using imaging methods aiming to evaluate the short-range response
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5.2 Endofullerene deposition on Ag(111) for NIXSW

Figure 5.1.1: Scanning probe and photoemission data as evidence for substantial screening of encapsulated molecules.
(a) Ball-and-stick models of water encapsulated in C60 (H2O@C60) and hydrogen fluoride encapsulated in C60 (HF@C60).
(b) STM image of a mixed (70:30) H2O@C60:C60 sub-monolayer film on Cu(111) deposited at room temperature, light
and dark molecules are the result of a 200 pm height difference caused solely by the Cu(111) surface reconstruction.
Taken at 5K, 1.5 V voltage bias and 10 pA setpoint. (c) Constant height NC-AFM image of a single mixed composition
island atop a reconstructed Cu(111) surface. Taken at 5K, -2.1 mV setpoint and 300 pm oscillation amplitude. (d)
Valence band photoemission (synchrotron-based with hv=110 eV) of a thick film of 95% pure sample of H2O@C60

(blue), alongside reference data 216 for empty C60 (black). From Jarvis et al., Communications Chemistry 4(1), 2021 58

of a single fullerene to a probe was another consideration. The force response of
a molecule-molecule or molecule-substrate system involving fullerenes takes a similar
form to the Lennard-Jones potential, exhibiting a global minimum. The mathematical
form of this potential has been widely discussed through modelling223–226. Analytical
work often compares experimental measurements to the Girifalco potential227. The
Girifalco potential is a pair potential which computes the interaction between two C60

molecules. The molecules are treated as spherical surfaces of uniformly distributed
carbon atoms224,228. The Girifalco potential has a stiffer repulsive part, and its at-
tractive well is much shorter-ranged and deeper, when compared to the Lennard-Jones
interaction.

5.2 Endofullerene deposition on Ag(111) for NIXSW

Figure 5.1.1 suggests the electrostatic shielding of encapsulated molecules prevents
the traditional probing with STM, AFM and valence band photoemission spectroscopy.
Each method fails to distinguish between filled and unfilled C60 molecules, despite, for
example, STM’s exceptional capacity to detect changes in electronic structure. New
research turned to the normal-incidence x-ray standing wave (NIXSW) technique, per-
formed on adsorbed endofullerenes. Positions of encapsulated molecules, relative to
the x-ray scatterer plane of the substrate’s bulk material towards the surface, could
shed light on the extent to which they interact with their C60 cage. Encapsulated H2O
could be probed via the O 1s core-level photoelectron peak, excited at the Ag(111)
Bragg energy, while HF could be located via F 1s emission. Silver was prepared as the
substrate, chosen to exploit the (2

√
3 x 2

√
3)R30◦ molecular superlattice formed on

the Ag(111) surface.229,230
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95% pure samples of endofullerenes encapsulating either water or HF molecules,
H2O/HF@C60, were deposited onto Ag(111) via thermal sublimation in UHV con-
ditions, covered in Subsection 2.4.1. Following a sputter-anneal cycle of the Ag(111)
sample, endofullerenes were sublimed at 370 ◦C for 15 minutes, with the Ag(111)
sample directly facing the endofullerene source.

A combination of LEED and XPS characterised each sample and confirmed (sub)monolayer
coverage prior to NIXSW measurements. X-ray photoelectron spectroscopy (XPS) us-
ing the aforementioned core-level photoelectron peaks on the deposited endofullerenes
is shown in Figure 5.2.1. The relatively intense peak in the C 1s region reflects the
presence of C60 sp3 single carbon bonds and sp2 carbon double bonds, and match
across the H2O@C60 and HF@C60 samples231. The fitted peaks at 3 and 6 eV higher
binding energies relative to the intense peak are attributed to electron shake-up, when
an ejected photoelectron promotes a valence band electron to an unoccupied level at
the expense of kinetic energy. The kinetic energy loss of the photoelectron appears as
a chemical shift in the XPS spectrum232,233. The O 1s and F 1s peaks were interpreted
as indicative of the presence of H2O and HF inside deposited fullerenes.

LEED patterns, shown in Figure 5.2.2, confirmed the (2
√
3 x 2

√
3)R30◦ ordering typ-

ically formed on silver surfaces.229,235

Charge redistribution of C60 adsorbed to the Ag(111) was predicted to displace en-
capsulated H2O and HF from their approximate central position238,239. Photoelectron
spectra taken at the relevant core-level energy range can be used to support this ex-
perimentally. 5.2.3(c) compares the O 1s peak associated with the encapsulated water
molecule for the monolayer to that in a bulk film. Using the fitted Gaussians, the
full width at half maximum increases by 0.3 eV and the peak position shifts by 0.2
eV for monolayer coverage of H2O@C60. The 0.2 eV shift, given the lack of chemical
interaction between the encapsulated molecule and the C60 cage, could be explained
by a difference in screening of the photogenerated core-hole due to a modification
of the intra-cage electrostatic environment58. DFT calculations, by which an O 1s
core level shift is approximately calculated as the energy required to excite a caged
H2O’s O 1s core electron, find a similar binding energy shift and peak broadening58,217.
The calculations overestimate the shift, by over double, and underestimate the peak
broadening, by a third, but agree on the direction of the shift and broadening of the
core-level peak for a chemisorbed monolayer of endofullerenes. XPS combined with
previous calculations qualitatively support the presence and influence of the intra-cage
electric field on encapsulated molecules. NIXSW measurements in Section 5.3 aim to
provide a direct experimental measurement of the position of the caged molecules.

Further x-ray photoemission spectroscopy recorded at the Diamond beamline, before
taking NIXSW, shown in Figure 5.2.4, points towards substantial screening of the en-
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5.2 Endofullerene deposition on Ag(111) for NIXSW

Figure 5.2.1: XPS survey spectra of the silver surface post-deposition of endofullerenes via thermal sublimation, with
peak-fitting referenced to the Ag 3d core level binding energy. (a) Spectrum after sputter-annealing off the H2O@C60,
and deposition of HF@C60, photon energy hv=900 eV. (Embedded) Peak-fitting of XPS spectra at the F 1s and C
1s regions, using a linear background and binding energy data from NIST 234. (b) Spectrum after the initial sputter-
annealing cycles of Ag(111), and deposition of H2O@C60, photon energy hv=700 eV. (Embedded) Peak-fitting of
XPS spectra at the O 1s and C 1s regions, using a linear background and binding energy data from NIST. 234
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5 LOCATING CAGED MOLECULES WITH NIXSW

Figure 5.2.2: LEED for endofullerenes prepared as a single layer (2
√
3 x 2

√
3)R30◦ molecular superlattice on Ag(111).

(a) Pattern for clean Ag(111) annealed at 450 ◦C (E = 119.2 eV); (b) pattern for the same surface after HF@C60

deposition (E = 111.8 eV). (c) Pattern for H2O@C60 (E = 46.5 eV); (d) pattern for HF@C60 (E = 50.5 eV). (e)
Top-down view of the modelled (2

√
3 x 2

√
3)R30◦ molecular superlattice for H2O@C60 on Ag(111) (adapted from

Gatica et al., Phys. Rev. B 77, 045414 (2008) 235) alongside a side view of Ag(111) (f) (adapted from Huo et al., J
Mol Model 27, 38 (2021) 236).

Figure 5.2.3: XPS spectra for deposited H2O@C60 and HF@C60 on Ag(111). (a) O 1s core-level photoemission
spectrum acquired with photon energy hv=700 eV for a H2O@C60 monolayer at 200K. (b) F 1s core-level photoemission
spectrum for photon energy hv=900 eV for a HF@C60 monolayer at 200K. (c) Detrended and normalised O 1s core-
level photoemission spectra acquired with photon energy hv=700 eV for a H2O@C60 monolayer (blue) and a bulk
endofullerene film (purple). Inset is the O 1s spectrum for free H2O, hv=600 eV, from Fransson et al., Chem Rev.
13;116(13), 2016 237. The relevant H2O peaks are annotated with the full-width-at-half-maximum value of the fitted
Gaussian curve.
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5.2 Endofullerene deposition on Ag(111) for NIXSW

Figure 5.2.4: (Top) Valence band photoemission spectroscopy results. (a) Valence band spectra of H2O@C60:Ag(111)
and HF@C60:Ag(111) taken at the same photon energy (110 eV), calibrated to the Fermi level (b). (Middle) 3D
intensity plots of resonant valence band photoemission spectra for H2O@C60:Ag(111). (c) oxygen K-absorption edge
map; (d) carbon K-absorption edge map. (Bottom) 2D intensity plots of resonant valence band photoemission spectra
for H2O@C60:Ag(111). (e) oxygen K-absorption edge map; (f) carbon K-absorption edge map.

100
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capsulated molecules by the C60 cage. The peak position and relative heights in the
valence band spectra, in 5.2.4(a), is in agreement with monolayer coverage on unfilled
C60 on Ag(111)217. The H2O@C60:Ag(111) and HF@C60:Ag(111) spectra taken at the
same energy are identical, up to and including the Fermi edge, 5.2.4(b).

Resonant photoemission spectroscopy (RPES) was attempted for H2O@C60:Ag(111),
by which the photon energy was swept through the O 1s and C 1s binding energies. The
carbon map, 5.2.4(d), shows a variation in intensity when sweeping the K-absorption
edge. The diagonal feature, particularly visible in the bottom right corner of 5.2.4(f),
arises from the second-order excitation of the C 1s core level217. No change in intensity
is observed in the oxygen map, 5.2.4(c), confirming the lack of oxygen contribution to
the HOMO and neighbouring occupied orbitals.

5.3 NIXSW results

Normal-incidence x-ray standing wave (NIXSW)52,53,55 measurements aimed to assess
the sensitivity of encapsulated molecules to surface adsorption by locating their posi-
tions within their fullerene cage, by tuning the x-ray energy to the Bragg condition of
the silver crystal structure58. The technique is discussed in detail in Subsection 2.6.3.

The intensity against energy relationships in Figures 5.3.2(a) and 5.3.3 were fitted
using a Matlab script, originally provided by David Duncan, Senior Beamline Scientist
(BL I09), Diamond Light Source51. The algorithm is illustrated in Figure 5.3.1. The
core script functions by first fitting and normalising the relevant element peak (O 1s
and F 1s) of XPS spectra along the rocking curve, yz in the figure. The XPS spectrum
at each energy was typically an average over multiple scans. The fitting program uses
a convolution of a Gaussian and a Doniach-Sunjic with a step function, to fit each
peak. While the program can fit up to six peaks to a given profile, the intensity of
the prevalent central peak was used as an estimate intensity of the relevant molecular
peak. The peak intensities are plotted against energy, xy, then fitted by equation 2.18
for coherent position and coherent fraction, with an associated fitting error.

Beam damage was a significant concern. Damage was limited and managed by several
means. The incident beam’s undulator was detuned to reduce x-ray intensity. XPS
spectra were collected between XSW measurements to monitor for changes in the sam-
ple, similar to those shown in Figure 5.2.3, with the x-ray spot regularly moved across
the crystal. The sample temperature range was kept low, and periodically warmed to
180K to desorb any extrinsic water. Water is a typical contaminant in these conditions.
Water adsorbed on the silver surface was given by its O 1s photoemission peak. In
the case of the HF@C60 sample, the O 1s peak was used to detect the contamina-
tion signal during preparation. Exposing the H2O@C60 sample to full beam conditions
would cause significant damage to the encapsulated water, resulting in the broad H2O

(ad) peak in 5.2.1(b). XPS measurements of the H2O@C60-Ag(111) sample showed
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5.3 NIXSW results

Figure 5.3.1: From raw XPS data to encapsulated molecule position. (Top) 3D graph showing the relationship between
the normalised intensity of the fitted XPS spectra, averaged over readings from H2O@C60:Ag(111) at 50±4K, at the
O 1s region (yz), and the XSW spectrum (xy). (Bottom) Resultant XSW spectrum for H2O@C60 on Ag(111) at 50K,
XSW intensity vs energy (red) and fits to reflectivity (blue). The fit is based on the Ag(111) Bragg energy (2631 eV),
coherent position Pc = 0.367 ± 0.070 and coherent fraction Fc = 0.517 ± 0.100. The position of the oxygen atom
relative to the silver surface for these values is z111(O)=5.59±0.40 Å.

the ratio between the intensities of the C 1s and O 1s photoemission peaks remained
constant throughout.

Figure 5.3.2(a) shows the NIXSW data for H2O@C60:Ag(111) collected at 200K. The
fit is weighted towards the sharp peak, returning a coherent position Pc = 0.378±0.060
and coherent fraction Fc = 0.645± 0.100. The error is derived from confidence of the
fit of the XSW curves in Matlab, given by the local gradient of the contour map in
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5.3.2(a). The coherent position and coherent fraction, as defined in Subsection 2.6.3,
provide an approximate position of the oxygen atom relative to the silver surface using

z111 = (n+ Pc)d111(Ag). {5.1}

d111(Ag) is the Ag(111) layer spacing, 2.361 Å, while n is the diffraction order. The
coherent position, Pc, represents the adsorbate distance between the nth and n+1th
Bragg planes above the crystal’s surface, in the units of the spacing between the Bragg
planes. n = 2 is used in line with observed adsorption heights of C60 on Ag(111) with
STM, and with DFT calculations. The uncertainty on z111, δz111, is typically cal-
culated as the upper limit from repeat measurements across the temperature range
and between sample preparations. This returns z111(O)=5.61±0.30 Å as calculated in
Figure 5.3.2(b).51,240

Sample temperature was varied throughout the experiment, between 20 and 200K for
the HF@C60 sample, and between 20 K and room temperature for the H2O@C60 sam-
ple. For Figure 5.3.3, temperatures were categorised into 20K, 50K, 100K, 200K and
room temperature, with allowed thermal drift up to 7K. No appreciable shifts in Bragg
energy were observed within the selected bounds. Figures 5.3.3 and 5.3.4 show, within
error, no evidence of temperature dependence on the fitted spectra. Intensity for both
the O 1s and F 1s peaks, in Figure 5.2.3, remained relatively constant, indicative of
results presented not being due to the sample damage caused by the x-ray beam in
both cases.

Due to little observed change in coherent position and coherent fraction as a func-
tion of temperature, as shown in Figure 5.3.3, the height of encapsulated molecules
above the surface is calculated as an average over the temperature range. The
H2O@C60 data over the temperature range (20K - room temperature) across mul-
tiple sample preparations, returns coherent position and fraction Pc = 0.36 ± 0.05
and Fc = 0.72 ± 0.10. These translate to a z displacement above the (111) plane53

for the oxygen, z111(O)=5.57±0.30 Å. In comparison, the HF@C60 depositions re-
turned Pc = 0.40 ± 0.07 and Fc = 0.62 ± 0.10, with a fluorine atom height of
z111(F)=5.67±0.30 Å.

The NIXSW data shows the mobility of encapsulated molecules. Molecular dynamics
simulations of intra-cage H2O (T=180K) suggest that the height varied within the
range of 4.6 and 5.7 Å, with a mean of 5.2 Å and a standard deviation of 0.2 Å58.
The coherent position values obtained from each individual NIXSW measurement pro-
vide limits on z111 of 5.28 and 5.68 Å for H2O, with a mean of 5.46 Å and a standard
deviation of 0.10 Å, and between 5.41 and 5.74 Å for HF, with a mean of 5.41 Å
and a standard deviation of 0.12 Å. While both are less than half of the molecular
dynamics simulation’s predicted height range and change, Figure 5.3.4 addresses the
individual NIXSW data further, using the fitted coherent fraction values. The calcu-
lated uncertainty on z111 for each reading, provided by the XSW curve fitting error,
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5.3 NIXSW results

Figure 5.3.2: Locating water in a cage; (a) XSW spectrum for H2O@C60 on Ag(111) at 200K, XSW intensity vs
energy (red) and fits to reflectivity (blue). The fit is based on the Ag(111) Bragg energy (2631 eV), coherent position
Pc = 0.378± 0.060 and coherent fraction Fc = 0.645± 0.100. The inset shows a contour map of the sum of squared
residuals from the fit, versus the coherent position and coherent fraction, with a yellow star indicating the best fit.
(b) Diagram of the NIXSW technique on H2O@C60:Ag(111) 58. The position of the oxygen atom relative to the silver
surface is given by z111(O)=(n+Pc)d111(Ag)=5.61±0.30 Å. (c) Top-down view of modelled H2O@C60:Ag(111) in (i)
a vacancy and (ii) atom-top adsorption sites.
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Figure 5.3.3: (Left side) Coherent position and coherent fraction fitted for all individual XSW readings. The error
bars are a 1σ error from the confidence of the XSW curve fit in Matlab, given by the local gradient of the contour
map. (a) H2O@C60; (c) HF@C60. (Right side) Fitted XSW spectra for endofullerenes on Ag(111); (b) H2O@C60; (d)
HF@C60.

returns an upper limit, zub, and lower limit, zlb, for each molecule. The data spread in
experimental findings is in good agreement with molecular dynamics simulations.

Molecule height distribution calculations are complicated by a hypothesised mixture
of discrete heights241 of endofullerenes on the metal substrate. Experimental values
of z111(O) and z111(F) are significantly different from the modelled result58, with a
discrepancy averaging 0.2 Å in either direction. This is addressed by consideration of
previous observations of multiple adsorption sites in SPM218,242 and further low energy
electron diffraction (LEED) analysis229,230,243. Experimental XSW data could also pro-
vide insight via Argand diagram analysis241. XSW readings can be represented as a
resultant vector of polar coordinates (Fc, 360

◦ x Pc). The induced adsorbate height
distribution, such as by thermal vibrations, can be treated qualitatively as associated
component vectors, with their own set of coherent positions and coherent fractions241.
Beyond single site occupancy, contributions from different adsorption sites can be ex-
amined quantitatively by decomposition of the XSW experimental data’s representative
vectors. Argand diagram analysis aimed to find the best fit for component vectors as-
sociated with each C60:Ag(111) site.

Previous observations, LEED and DFT calculations suggest two possible adsorption
sites for C60 on Ag(111), a lower vacancy site and a higher atop site, shown in Figure
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Figure 5.3.4: Discerning the outermost limits on intra-cage position. (Left side) Plot of temperature against the z
displacement above the (111) plane, using the coherent position and coherent fraction derived from the fitted XSW
curves for individual measurements. The lower bound of the probed atom above the outermost (111) plane, zlb, and
upper bound, zub, are derived from the lowest and highest possible value of z111±δz111, with δz111 derived from the
XSW curve fitting. (a) H2O@C60; (c) HF@C60. (Right side) Modelled side-view of deposited endofullerenes, annotated
with the mean z displacement of the encapsulated molecule, z̄. (b) H2O@C60:Ag(111); (d) HF@C60:Ag(111).

5.3.2(c)(i) and (ii) respectively. The sites have a height difference of ∆z111 = 0.4
Å and, assuming the fullerenes and molecules move as one, would address the 0.2
Å discrepancy in either direction. Hence, the two component vectors on the Argand
diagram needed to be ∆z111/d111(Ag) ≡ 60.99◦ apart. The experimental coherent
position and coherent fraction for H2O@C60, Pc = 0.36± 0.05 and Fc = 0.72± 0.10,
is represented by the vector (0.72±0.10, 129.6±2.0◦), plotted in Figure 5.3.5. A pro-
gram, written by Prof. Robert Jones, from the School of Chemistry, Nottingham, and
described in greater detail in the supporting information of Jarvis et al.58, decomposes
the vector into two component vectors. The vectors, at θ and θ + 61◦ are rotated
through 360◦, in steps of 1◦, with the radii systematically varied from 0 to 1, in steps of
0.04. For every combination, the resultant vector is calculated by vector summation,
and all resultants that fall within the uncertainty range of the experimental vector
are assigned a quality of fit parameter. The parameter is defined as the normalised
distance from the experimental value, with 0 being outside and at the edge of the
box enclosing the experimental error, and 1 at the experimental value. A threshold of
5-15% is added to the radial error, to account for imperfections and thermal vibrations
in the substrate scatterers, which reduce the maximum observable coherent fraction.241

Figure 5.3.5 plots the most probable solutions for both H2O and HF, prepared using the
experimental values and error on the coherent position and coherent fraction acquired
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Figure 5.3.5: Argand diagram analysis for NIXSW data on endofullerenes. The experimental vector (green) is fitted
directly from the XSW data, at (Fc, 360◦ x Pc). The gray area highlights the locations of all possible vector pair angles
and lengths by which the resultant vector is enclosed by the error bars on the experimental value. The component
vectors (red) are the most likely pair which give the resultant vector (green), which correspond to the two positions
of the encapsulated molecule relative to the extended crystallographic planes of the bulk silver crystal, annotated with
the adsorption sites of the endofullerenes.

by averaging over the temperature range in Figure 5.3.3. The quality of fit parameter
is maximised in both cases when the populations are equal, which suggests adsorption
at the vacancy or atop sites occurs in equal abundance. To summarise, when modelled
with equal populations (0.5:0.5) and a 5% threshold, the two water molecule positions
are z111(O)=5.37±0.10 Å (vacancy site) and 5.77±0.10 Å (atop site). The error on
each z111(O) value corresponds to changes in population from 0.2:0.8 to 0.8:0.2. For
HF, z111(F)=5.46±0.20 Å (vacancy site) and 5.86±0.20 Å (atop site) when modelled
for a 10% threshold with equal populations. The errors correspond to changes in
population from 0.13:0.87 to 0.87:0.13. Argand analysis shows the XSW data is
broadly consistent with the two-site adsorption model.

5.4 Conclusion

The results of a series of x-ray synchrotron-based experiments on endofullerenes ad-
dress the extent to which encapsulated molecules are electrostatically screened and
decoupled from their external environment. NIXSW upon H2O@C60 and HF@C60 de-
posited on Ag(111) suggests adsorption to a metal surface causes a strong modification
of the electrostatic potential within the cage, resulting in a displacement of the en-
capsulated molecules from their otherwise central position.

No systematic change in coherent position or coherent fraction was observed in the
observed temperature range. Data across the whole temperature range was instead
used to examine the disorder in the position of the molecular encapsulate. Experimen-
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tal NIXSW measurements could be reconciled within a two adsorption site framework,
with a height difference of 0.4 Å. The experimental findings were carried forward for
published work.58

Rotating the Ag(111) crystal along the azimuthal, polar, and linear directions to per-
form XSW measurements in different crystal orientations was planned. A combination
of (111), (111̄) and (200) would allow for triangulation of molecule positions, which
could aid in drawing further experimental conclusions on adsorption sites and tem-
perature dependency, though little success was had with early attempts at NIXSW
measurements at (111̄). Future atomic resolution SPM was planned, beginning with
AFM and KPFM in Appendix D. The aim would be identifying single molecules of wa-
ter and HF within C60, H2O/HF@C60, in a deposition of known percentage abundance
of filled and empty fullerenes.
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6 Automating Nanostructure Discovery in SPM Data
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O.G. wrote the paper, with revisions to the final manuscript provided by all authors.
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6.1 Goals of algorithmic image processing

6.1.1 Tools of the trade

The recent prominence of machine learning within science, and by extension nanoscience,
as well as new exploration of modelled data, has caused demand for a high volume
of processed image data. Manually processing large data sets is not only impractical,
but places significance on finding a consistent workflow, a set of sequentially applied
processing techniques with the same parameters, that processes the most amount of
images to a satisfactory level. Standardised and well-documented solutions to data
pre-processing, contextualised by the physics and objective of the project, are crucial.

Within popular software, the user interface (UI) may not make it transparent to the
user the most optimal methods to process all their similar images, from both a visual
and statistical standpoint. Popular readily available image processing software is easy
to treat as a black box, often uncritical of image statistics and placing more emphasis
on the visual appeal of the finalised image. Automation replaces the judgement of a
nanoscientist with the principles of statistics and attempts to remove the user from
the equation, and any visualisation biases they bring.

Critical probing of image statistics and meeting the individual needs of different re-
search sooner or later leads to the integration of image processing into the data prepa-
ration steps of machine learning, within the coded script. Said methods remove the
component of user visual feedback entirely, putting the code in control of all image pro-
cessing algorithms. Creating a generic code that automates the entire image processing
for all image data inputted presents some challenges. The strengths and weaknesses
of various image processing approaches have been previously studied, but there is no
clear theoretical combination of these techniques to provide optimised images. Much
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like traditional image processing software, a toolbox of image-manipulating scripted
functions, callable in sequence, is essential to creating versatile scripts.

This chapter explores the experimentation with bespoke code written in Python and R
for automated mass image processing tailored to the study of nanostructures. The aim
is to create a new toolbox for image processing of nanostructures, alongside that of
statistical tools developed in Chapter 4, similarly using gold nanoparticle AFM imaging
as the primary lens. This includes the exploration of common data science techniques,
beyond those available in popular image processing software, that particularly enhance
the processing and study of images containing nanostructures.

The development of an algorithm essential for published work8,9 is also presented.
This extracts raw image files from a large data set of historic AFM data, and out-
puts pre-processed image files, using a combination of optimal functions from the
toolbox. Seamless integration of the pre-processed data set with images produced by
Rabani et al.’s model1 was achievable. Algorithms aim to minimise the information lost
from imaging the nanostructures and enhance the performance of feature extraction
methods that characterise the geometry of nanostructures164. Statistical and machine
learning tools for predictive modelling and relationship mining165, trained on modelled
data and readily applied to the pre-processed real data, had the potential to solve
the problem of fitting observed dewetting behaviour to initial generative parameters,
and ultimately the problem of inverse mapping of experimental images back to their
starting experimental parameters.

6.1.2 User bias in visualisation

Images returned from SPM presented in other chapters were processed individually and
manually using popular image analysis tools, most commonly Gwyddion139. Gwyddion
provides a wide selection of individual algorithms available to the user to be applied to
loaded SPM images. Figure 6.1.1 shows the appearance of Gwyddion’s UI, including
typically called software features for image processing. Once the user is satisfied, the
final image is saved, and either the image itself or data extrapolated from it, such as
line profiles, are presented elsewhere. The priority while processing these images is
normally results-oriented, often treating the processed image as the final product. The
processed image may be used as a scientific communication tool in publications, pre-
sentations, and similar visual media. This places emphasis on the visual component of
image processing, bringing attention to the physics at play at sub-micron length-scales
relies heavily on visual observations. This goal involves a few broad steps, achievable
within Gwyddion.

The first of these is the removal of undesirable features such as noise and discontinu-
ities introduced during SPM scans. Kernel-based image filtering and data alignment
algorithms can be applied in individual menus with a variety of options for what image
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Figure 6.1.1: UI elements of Gwyddion 139 for standard processes utilised during image pre-processing. (a) Gwyddion’s
default toolbar; (b) colour range modification window with the image histogram, a plot of pixel counts against grayscale
pixel values; (c) row alignment tool window with an embedded image preview; (d) polynomial background detrending
tool window with the resulting image and subtracted background shown.

statistics to rely upon for each. The user may also look to enhance the visibility and
place emphasis on key features. Corrections to the contrast by altering the colour
range of the image, or encouraging flattening of regions of the image by use of back-
ground detrending or explicit levellers, are offered in Gwyddion with a range of degrees
of freedom.

Sometimes the user may use the image to extract data along 1D line profiles, such
as distance, height and roughness, shown in Figure 6.1.2. Images with features of
distinct shifts in height and texture such as those with terraces, films and flakes may
want to be presented graphically by the user. The user may also seek to conduct
image segmentation. Image segmentation in Gwyddion and other user-centric image
processing software offers simple height-based thresholding, shown in Figure 6.1.3.
This is often presented to the user as a slider representing the pixel value range of the
image, and moving it will highlight regions on the image that are encapsulated by the
range. When the user is satisfied with the highlighted region, this region can be used
as either an image mask for further processing or to segment the image into a binary
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image by means of converting all pixels of value below the chosen threshold to 0 and
above it to 1. Creating this image may help the user distinguish two phases within the
image, or identify the percentage coverage of each phase.

Figure 6.1.2: Gwyddion’s 1D line profiling tool used throughout Chapter 4. A line is marked onto the image and a 2D
slice is taken and displayed in the graph window.

Figure 6.1.3: Gwyddion’s manual segmentation by thresholding process as applied to gold nanoparticle dewetting
pattern AFM images. (left) Pre-processed AFM image; (centre) mark by grains tool window, moving the slider
labelled Height until the nanoparticles in the preview image are all highlighted, which is saved as an image mask when
applied; (right) binary image of the regions marked using the “Extract Mask” feature.

All these steps have the potential to introduce user biases. The user will often cycle
between the options for filtering and alignment, selecting and applying them with a
short time spent on judgement of the results exclusively on a visual level. Kernel-based
filters that blur or sharpen the image, though enhancing the images visually, have a
tendency to remove data from the image, particularly around sharp changes in pixel
values in the image. Colour ranges, particularly non-linear ones, can misrepresent im-
age feature heights or the existence of certain features at all by windowing the data
range. The background detrending and levelling algorithm parameters chosen by the
user may not be fully optimal on a statistical level. Processing images to yield profiles
of certain features creates further bias in the user’s approach, placing more focus on
denoising and aligning those features. Image segmentation by eye is highly subjective
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between users, resulting in potential inconsistencies in inferred statistics between im-
ages and users.

A by-eye approach to all these steps is exacerbated by inexperience with the platform,
but a good-enough approach by experienced users processing a large number of images
in a session can also result in statistically compromised images. Said images introduce
corruption into proposed machine learning sets, while contributions of images by differ-
ent users result in statistical classification by a user as opposed to by image features.
Algorithmic image processing, during which the same set of functions is applied in
order to every supplied image, aims to remove the majority of user bias.

6.1.3 Contextualising image processing

Although the Monte Carlo approach used in Rabani et al.’s model1 is relatively simple,
it is nonetheless an exceptionally powerful and accurate method of simulating “real
world” nanoparticle patterns. Given the model’s ability to simulate experimental data
so well, a key question to address was whether a network trained on simulated data
could be used to classify experimental images. This has obvious advantages in terms of
bandwidth and quantity of data: it takes seconds to simulate a particular nanoparticle
pattern but tens of minutes at a minimum - and hours, or days at worst, if the AFM tip
is poorly behaved - to generate an experimental image. If one takes into account the
time required to prepare the sample the measurement bandwidth is lowered still further.

Proof of concept for machine learning-based categorisation of SPM images using sim-
ulated images exists, but an integration of real experimental data was not involved244.
The solvent-evaporation experiments explored in Chapter 4 did not focus primarily on
reproducing and studying diverse morphologies on uniform substrates, and machine
learning demands a high volume of images, so a larger experimental data set was re-
quired. Hence the newer data set (2019 - 2021) was combined with a historic data set
(2002 - 2009) of AFM images, exhibiting the various morphologies of gold nanoparti-
cle patterns observed, produced by previous members of the Nottingham Nanoscience
Group. This unification of real and simulated data necessitates the segmentation of
the experimental images to match the final cell states of the simulated images. Map-
ping the experimental data like this aimed to make the images indistinguishable from
simulated data, but comes with numerous challenges. Inherent noise in SPM is not re-
produced by simulations, segmentation of nanostructures of this scale requires a strong
protocol to minimise the effects of known noise features. Data mining of this historic
data set would return a unique training and test set for machine learning, with image
processing code written acting as a foundation for re-purposing previously dormant
SPM data for exploring new technologies.

Hence this chapter does not consider the visual aspect of images as the result, but
instead places more emphasis on statistics returned by a large data set of images. It
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is not only impractical to manually and individually process images in the historic data
set, but an automated approach to also prevent user bias is preferable, maintaining
consistency and integrity in image statistics. An automated approach would involve
a script that extracts visual data from the raw scan file, performs a series of image
transformations using available image statistics then saves the resulting image in a
transferable image file format. This presents some coding obstacles: writing an algo-
rithm that is robust enough to process a variety of images containing nanostructures,
with different noise features, to a satisfactory degree.

6.1.4 Inherent noise in SPM

Imaging at the nanoscale puts one’s image quality at the mercy of countless sources
of noise. The major sources will be from the tip, sample surface, feedback parameters
and piezo-scanners. The laser beam reflected partially off the surface, as opposed to
entirely off the cantilever, can result in low-frequency undulations across an image.
Damage or passengers upon the tip caused by user inexperience, surface contaminants
and defects, or tapping mode’s intermittent contact with the probed surface can create
significant tip artefacts and loss of resolution in the image. Quantisation errors in the
electronic conversion of physical observations to a digital calculation, then to a physi-
cal response, produce a loss of resolution in the signal. The probe is highly susceptible
to vibrations from the environment, with strong vibration events rendering portions of
the image unusable, and smaller ones causing salt and pepper noise. Incorrect set-
ting of feedback parameters within the scanning software can result in uncharacteristic
sample features18. A lot of these noise-producing factors in AFM can be fixed on a
short timescale, on the length-scale between scans or scan sessions, within the micro-
scope’s scanning software or by physical adjustments. Flaws in the piezo-scanner and
associated electronics are non-trivial to prevent, while their resulting noise is similarly
non-trivial to remove.

Almost all images in the historic data set were taken with an atomic force microscope
in tapping mode in air. A relatively large surface area of side lengths of 5 - 20 microns
was used for all scans to get a strong survey of the nanoparticle pattern present. All
of these experimental parameters introduce potential noise patterns to the images in
the data set, with traceable origins across the SPM process.

Tapping mode images are created by mapping the shift in amplitude of the cantilever
made to oscillate close to its resonant frequency. Images are formed using multiple
sweeps along the fast scan direction, the effective y axis in all images shown, the
tip is incrementally stepped in the slow scan direction, the effective x axis, at the
completion of each sweep. The resulting trajectory scans over the probed region in
a series of rows, with the atomic force measurement derived from the movement of
the tip plotted to pixels along the x and y directions in a raster approach, forming a
finalised image. Feedback loops and error analysis algorithms are used to deduce the
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extension needed to be induced in the piezoelectric material holder that manages the
position of the tip, to maintain tip-sample distance in the effective z axis. The PID
controller that manages this performs a short calculation with the signal, quantised by
an analogue-to-digital converter (ADC), and then the control value is converted back
with a digital-to-analogue converter (DAC) to a voltage for the piezo-scanner.

The strength of this feedback loop is controlled numerically in software with the PID
controller, primarily by adjusting the integral gain. Producing images that accurately
describe the topography of 1 - 3 nm high nanostructures over micron distances de-
mands a high integral gain and scan speed to maintain sufficient tracking of the
patterns. This is known to induce instabilities in the feedback loop245. Abrupt inade-
quacies in the acquisition of height information during the fast scan direction result in
rows seemingly tracing the visually correct height features, while appearing at different
overall heights to neighbouring rows. This effect is one of two types of noise inherent
to every AFM image taken while probing nanostructures, distinguishing it from other
forms of noise. Figure 6.1.4 shows the appearance of this noise as it appears on raw
AFM images, row-by-row shifts in image contrast while clearly describing the same
surface.

Figure 6.1.4: Raw AFM images with row misalignment.

The second inherent noise source is image curvature. Curvature in a 2D image is
understood as a background value added to pixel values as a function of x and y
coordinates. AFM piezo-scanners are supported on a mechanical assembly, hence the
natural path of the probe is spherical or parabolic. Additionally, piezo-scanners are
non-linear devices, responding to driving voltages applied by communication with the
DAC in a non-linear trend. This creates a reproducible trend across scans taken in the
same position of the piezo-scanner. These two factors result in AFM probes following
a curved trajectory, particularly visible in images of the scan size and speed being used
for nanostructure probing. While the scanning software, Asylum Research, compen-
sates for this with line-by-line correction, this can have limited effectiveness at faster
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scan speeds. Bowing in resulting images often is not clear by visual inspection, particu-
larly on images containing densely-packed nanostructures. Taking a 2D profile to view
the z axis data more clearly reveals inherent curvature, demonstrated in Figure 6.1.5.
Common solutions to address image background bowing, as well as background tilt if
the probe-sample angle is not perpendicular, which results in a planar background, are
discussed in this chapter.

Figure 6.1.5: AFM image with a height profile taken along x axis, showing a distinctive bow across the image.

Both of these inherent sources of noise provide a strong basis for the workflow of image
processing software users. The strong correlation between the image statistics, and
hence the effectiveness of segmentation, and these two sources renders them the core
obstacles of automated image processing.

6.2 Image processing techniques

The majority of image processing experimentation was conducted in the Python cod-
ing language within the PyCharm integrated development environment (IDE). Current
computational research within the group is conducted within Python, in particular,
the Monte Carlo method simulations and convolutional neural network (CNN) scripts.
Hence, integration using the same language is preferred. Python offers a variety of
common libraries and downloadable packages designed for array manipulation and sta-
tistical analysis. NumPy, for numeric data manipulation, and Matplotlib, for graphs
and images, are essential for scientific computing, while packages such as Pycroscopy
and Pandas serve for more specialised uses. The IDE was chosen due to its simple
cloud synchronisation tools and plugins to run different coding languages natively.
Parallel to a user’s workflow in Gwyddion, the image processing scripts used all take
on a general structure. Python scripts compromise independent algorithms ordered
similar to the way a user would sequentially call them. This also meant understanding
and then recreating some preexisting functions in Gwyddion and other popular image
processing software, then visually and statistically accessing their suitability to the im-
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ages within the data set. Some Gwyddion features can not be recreated, particularly
those requiring user input such as point triangulation or hand-drawn line-based image
levelling algorithms. Also, metadata such as scan size and scan date is only accessible
in the original SPM file format.

First, a data file is loaded into the software. The data trace representative of the
scanned surface is selected from the loaded file and then pre-processed to remove
the aforementioned inherent noise from the image. In this context a segmentation is
performed, an image threshold is calculated and binarisation is performed. The image
is then screened for confidence in the pre-processing and fitted threshold value, then
saved to a universal image format for future usage. This model user workflow is used
as a starting framework for proposed Python scripts. Each step is covered below, while
saving is covered in Appendix E.1.

6.2.1 Extracting scan data

Data from individual AFM scans are saved as IGOR Pro binary wave (.ibw) files by the
Asylum Research scan software. IBW files contain channels of data traces arrays and
metadata such as scan parameters set within the scanning software and scan date246.
In the case of the historic data set, the IBW files only contain 2 channels; a height
retrace and phase retrace. The height retrace can be extracted to be manipulated in
Python using the Python package Pycroscopy. This returns a 2-dimensional NumPy
array, where each value in the array represents a pixel in an image, which can be
displayed as a grayscale image. The majority of the historic data set is 512 line scans,
resulting in 512 by 512 arrays. The height trace array’s values represent pixel intensities
which in this case represent relative height across the imaged surface. This concept
can be illustrated in Gwyddion’s 3D viewer, shown in Figure 6.2.1, with the underlying
surface being the darker orange, and deposited gold nanoparticles being the lighter
orange.

6.2.2 Normalisation

The loaded data trace array has a simple transformation function applied to all values.
The Python package NumPy has known degradation issues when performing calcu-
lations with sub-decimal numbers, resulting in quantisation errors. The data trace
array assigns values in NumPy based on relative heights, often resulting in negative
sub-thousandth values due to the scaling and calibration of the original scan. Normal-
isation aims to correct this by scaling all data to fall between the range of 0 to 1. A
normalisation function is defined that, when supplied a 2-dimensional array, uses the
maximum value and minimum value present in the array to offset and rescale all values
in the array to fit the range of 0 to 1 using the normalisation formula in equation 6.1
on all values. pnew here is a newly normalised pixel value in an array with range pmin

to pmax.
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Figure 6.2.1: Pre-processed AFM image displayed in Gwyddion’s 3D viewer.

pnew =
p− pmin

pmax − pmin

{6.1}

The function has to have no effect on the statistics or appearance of the array when
displayed by figure plotting functions or when saved as an image file, so is recalled after
each stage of pre-processing to minimise degradation. The effectiveness of normalisa-
tion is reduced significantly by “salt and pepper” noise. Salt and pepper noise appears
as black and white pixels dispersed across the grayscale image, with pixel values, by
definition, at the minimum and maximum of the range of pixel values present in an
image. results in the data range for pixel values being artificially widened. This was
later addressed with masking and cropping algorithms.

6.2.3 De-noising representative 2D arrays

Image pre-processing aims to remove inherent noise in SPM from the grayscale image
arrays. This requires scripts that transform the array with the context of noise within
AFM. It is important the filters chosen do not compromise image statistics. Many
processes that may aesthetically improve an image also remove information, for exam-
ple, low pass filters such as Gaussian blurring. The transformations deployed all use
image statistics across the entire array to offset pixel intensity values with an additive
approach, as opposed to convolving them with kernel-based filters. The AFM scan
pre-processing functions were split into two types, image de-striping and image de-
trending. Each function is run consecutively on the supplied data trace array, with the
normalisation function applied before, in between and after. This order was chosen as
detrending algorithms heavily rely on fitting trends to the pixel data, correcting surface
incongruities provides a more reliable fit. There was a large amount of experimentation
in this stage and the resulting protocols and analysis strategies form the results of such
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form the key findings of this chapter.

Image de-striping algorithms attempt to remove streaking and striping noise from im-
ages. In the case of AFM images, this is to address the discrepancies in pixel values
between each row, discussed in Subsection 6.1.4. The primary method for de-striping
while maintaining image integrity is row alignment. During AFM scans, data is col-
lected row by row from either the top or bottom of the set scan area. The path taken
horizontally by the cantilever provides important relative information determined by
the cantilever’s deflection. Aligning rows in an additive manner by offsetting all data
in each row by the same offset value is a common way to avoid falsely portraying
the cantilever’s trajectory. The statistical approach compares a common statistic of
each row to neighbouring rows, then increments all pixel values in that row by the
numerical difference. These statistics in popular image processing software include
mean, median and mode, all easily calculable for all pixels present in individual rows.
Offsetting all rows with this approach returns a more visually and statistically congru-
ent image, with overall effectiveness dependent heavily on the data presented. Images
containing nanostructures will contain multiple populations of pixel values, one associ-
ated with the surface level and then numerous populations of layers of nanostructures.
Each population will have their own statistics, while the dominant population of a row
will determine the statistic presented to the alignment algorithm. This can result in
ineffective row alignment, or even exacerbate the incongruity. Hence row alignment
approaches sensitive to nanostructures were explored.

Image detrending algorithms upon row-aligned images aim to remove the curvature
in images produced by the equipment. Treating the additive trend across pixels as a
three-term function or multiple two-term functions provides a calculable approach to
detrending. The derived function or functions that describe the pixel value background
can be subtracted from the image’s pixel values by a matrix subtraction, then the
image is normalised. The effectiveness of detrending is dependent on the preceding row
alignment of the image, and the algorithm’s ability to fit to the trend of the image data
presented. The presence of multiple populations similarly needs to be addressed, fitting
algorithms sensitive to the trend experienced by all pixels, as opposed to the data, are
preferred. Subsection 6.4.2 describes the initial attempts at writing detrending code,
while Subsection 6.4.4 expands upon this with further methods and comparisons.

6.2.4 Image Segmentation

A key aspect of studying nanostructures on surfaces is the ability to identify, charac-
terise and visually distinguish nanostructures from the surface they are deposited onto.
Though the user may be able to identify the locations of features, phase shifts and
other distinctive physical changes shown in an SPM image, manually or statistically
mapping such locations presents numerous problems. It is difficult for the user to
physically communicate boundaries between expansive regions to a computer in a fast
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and accurate manner. Mapping regions by hand may be sufficient for a small set of
images, but the task’s length and complexity scales immensely with large data sets
and images with more than two phases. Additionally, the user introduces their own
biases, a by-eye approach may not correctly identify all regions correctly while mapping
the image. A computational approach to partitioning images, or data in general, is
preferential for statistical analysis and is widely studied under the term segmentation,
grouping pixels in an image with other pixels using statistical and spatial cues.

In the context of images that present two phases, for example, regions where a single
layer of nanostructures is deposited and regions absent of nanostructures, showing
only bare substrate, a binary image will suffice. A binary image acts as a map of the
regions on the image and acts as both an easily transferable description of a region and
a visual end product of segmentation. The optimal binary image in this case prescribes
all pixels that describe the surface to 0 and all that describe the nanostructure layer to
1, visually a black surface and white nanostructures. Such optimisation is illustrated
in Figure 6.2.2, the first set of images shows the use of height-based thresholding as a
segmentation method when used upon images from the historic data set, pre-processed
by the code. Figure 6.2.2 additionally shows a set of images associated with a ternary
image, a segmented image with three distinct phases. Similar to the optimal binary
image, the perfect ternary image assigns 0, 0.5 and 1 to the pixels associated with the
surface, nanostructure and third layer features respectively. Though not thoroughly
explored within the proposed mass-processing code, third layer effects are investigated
in a separate code, and segmented using similar methods to the binarisation code.

The majority of simulated images produced by the Rabani et al. model contain two
phases, the substrate and the nanoparticles. One of the proposed experiments was
to map images produced experimentally to identify the regions of the image contain-
ing nanoparticles and regions of bare substrate. The goal of this mapping would be
to incorporate the historic data set produced by AFM into machine learning code
trained on simulated images, requiring one to render images produced experimentally
indistinguishable from those produced computationally. The role of the proposed bi-
narisation algorithms is to provide a generic, reliable, optimal segmentation of the now
pre-processed images, automated using image statistics.

All segmentation methods deployed in Python relied on height-based thresholding.
In the case of binarisation, thresholding involves applying a pre-determined threshold
value to an image, which converts every pixel with a value above the threshold value
to 1 and below the threshold value to 0. The term height is used as it is assumed
the AFM images presented here generally couple pixel values to physical height, like
that in Figure 6.2.1. The expectation is, that due to the bimodal distribution of pixel
values in surface-nanostructure images, choosing an intermediary value as the thresh-
old value will provide the most optimal labelling of the surface and nanostructures in
binary images produced by this method. As mentioned in Subsection 6.1.2, Gwyddion
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Figure 6.2.2: Pre-processed AFM images next to their respective binary and ternary images segmented by height.

similarly offers thresholding by relative heights and gradient, as well as other segmen-
tation methods such as watershed and edge detection139. This includes a manual
approach to height-based thresholding, shown in Figure 6.1.3, which relies on the user
to select the threshold value using a slider, with the user informed of the end result by
an updating preview. The use of image statistics aims to provide a more consistent
and unsupervised method, without the biases introduced by this by-eye approach.

The image histogram helps inform the user visually whether the combination of pre-
processing and segmentation algorithms is correctly segmenting the image, depicted
in Figures 6.1.1(b) in Gwyddion and 6.4.13 in Python. In the case of grayscale im-
ages, the image histogram is a graphical representation of a single image that shows
the frequency distribution of its residual pixel values. AFM images with two distinct
populations after pre-processing will have a clearer bimodal distribution and will be
easier to binarise. Similarly, histograms where the two populations are partially or fully
convolved are more difficult to binarise. This renders image histograms a useful metric
for testing both segmentation and pre-processing effectiveness. Additionally, marking
each algorithm’s chosen threshold value on the image histogram during testing pro-
vides another algorithm evaluation tool.

The two main segmentation methods explored in the Python code were Otsu’s thresh-
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olding and Gaussian mixture modelling thresholding. Both are two of the simpler and
computationally lightweight forms of segmentation, with effectiveness dependent on
the shape of the image histogram. Both are discussed in Subsection 6.4.4. Further
experimentation with segmentation was conducted using the pre-processed data set
by Gordon et al.9 and Farley et al.8 for the purposes of CNN incorporation with the
simulated data. K-means and mean-shift clustering, local means and artificial neural
network-based segmentation were all deployed to further optimise the process. Pre-
processing significantly improved the effectiveness of these methods of segmentation,
spurring further investigation into its improvement, using simple segmentation as an-
other metric for the success of each pre-processing method.

6.3 Image screening

6.3.1 Automating screening

When testing new techniques, a handful of diverse images from the entire data set are
selected to constitute a testing set to represent the entire data set. Every resulting
image in the testing set is visually inspected by the user at multiple stages throughout
processing. The user is looking for failings or shortcomings in the algorithms that
appear visibly in the images or interpolated from within accompanying graphs. Addi-
tionally, the user may observe types of image noise or corruption that render images
unworkable, resulting in inevitable failures in any type of processes run on them. These
inspection phases give the user a chance to not only check the effectiveness of chosen
algorithms but also disqualify unworkable images from the data set. Such a process
has been referred to as screening.

When code is run on the whole data set, screening all images visually is impossible.
Several attempts when made at automating the screening process. Some simple al-
gorithms to screen out images that fail by corruption, unsuccessful pre-processing or
failed segmentation, are deployed as a method of reducing the time users spend visually
inspecting returned images. Assessment of image metadata by a simple screening test
is discussed in Appendix E.2. The proposed image segmentation regime’s effectiveness
is heavily influenced by the chosen pre-processing, but some types of noise features
may cause unexpected shortcomings within segmentation algorithms. Some SPM im-
ages are inherently difficult or impossible to segment within the confines of Python, R
or even Gwyddion. Though these failed cases may be fixable on an individual image
basis, such as by manually setting the threshold values during simple height segmen-
tation, this significantly adds to the time spent processing data. Introducing visual
inspection phases to the process not only increases time spent but reintroduces the
previously mentioned user biases. Otherwise, there may be internal problems with the
chosen algorithm, so a new algorithm could be written and deployed on the data set.
Experimentation with parts of the algorithm is important, but the final algorithm will
not likely provide a 100 percent success rate for both pre-processing and segmenta-
tion. When current algorithms provide an overwhelming majority success rate, it is no
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longer a worthwhile time investment to introduce new code to fix outlier images with
the possibility of introducing new outliers within the passing data set. The succeeding
machine learning algorithms run using the pre-processed data can adapt to a minor
amount of data corruption in the data set, so corruption is instead minimised to within
a chosen threshold by running screening algorithms between stages.

Automated screening was conducted using a pass-fail system. Checkpoints using if

statements were set up between stages, probing statistics about the file being processed
in that loop. When an image array fails a check, the algorithm does not continue
processing that image and instead the loop restarts and moves to processing the next
file. The code returns an error message in the command window informing the user
at which checkpoint the image was rejected and the reason why.

6.3.2 Identifying row-based corruption

SPM is an inherently highly sensitive process. Scans take place on a line-by-line basis,
changes in surface and tip physics may result in lines devoid of information. Such
lines were referred to as null lines and can occur on an individual basis or in groups.
These can occur for a variety of reasons, the most common causes include environ-
mental vibrational noise, the AFM user physically nudging the microscope or altering
a parameter mid-scan causing the tip to need to readjust trajectory. Rapid shifts in
either tip or surface state may result in the decoupling of the tip and surface. Loss
in surface contact results in the cantilever oscillating freely above the surface. The
scanning software can not distinguish when these corrupting events that result in null
lines occur, and as such saves all this erroneous scan data as true probing data. Hence
null lines are considered a form of data corruption, with the potential to harshly affect
attempts at pre-processing, segmentation and further extraction of statistics. Figure
6.3.1 shows a few examples of images containing them.

Figure 6.3.1: Pre-processed AFM images showing null lines identified by the screening algorithms, marked with a *.

A screening process was developed to run alongside pre-processing that attempts to
identify these null lines within an individual image, then compared the number of null
lines identified with an arbitrary confidence limit to either accept or reject the image.
A confidence limit was chosen as processing and machine learning could handle small
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amounts of corruptions, a single null line would not skew image statistics enough to
reject the whole image. Averaging and morphological approaches could phase out
the effects of null lines if they occurred in an amount limited by the confidence limit,
defined as the maximum percentage of null lines per image. The null line confidence
limit was set to 97.5%. An image exhibiting identifiable corruption on over 2.5% of
its rows was considered irrecoverable and rejected.

The definition of a null line chosen within the methodology is a horizontal row within
the data array that does not fully represent surface data. The scanning software can
not distinguish between when it is collecting surface data or null data. This results
in said null data being saved within the output file after the scan window is finished.
This means the pixels within null lines will have values assigned. The arrangement of
these pixel values lends to common types of row corruption which can be tested for
using pre-defined functions. The first and most common arrangement to identify is
when the row has been assigned the same value within series, often the minimum or
maximum value a pixel can take. In the case of a grayscale visual representation of the
array, a null line with this corruption appears to be a large black or white horizontal
stripe or numerous dashes across the image. The algorithm suggested to identify this
arrangement is a simple logic statement that checks every pixel value in a row to see if
it takes on the minimum or maximum value. Rows that take on these values exceeding
a set degree of error are marked as null lines. This corruption is more much difficult
to identify when the corrupt pixels take on an arbitrary value instead of the minimum
or maximum possible value. The difficulty comes from identifying this arbitrary value.

Another common arrangement to identify is where a series of pixels take on a slope-like
pattern. Similar to the previous arrangement, the grayscale visual representation will
display a noticeable stripe across the image, this time however changing from either a
lighter or darker tone. The code to identify this arrangement was running an ascending
or descending sorting algorithm on each row, then comparing the sorted row to the
original data pixel by pixel using a logic statement. If the code recognised the sorted
row was similar enough to the original row, it would consider that row a null line. The
most common appearance of a null line is a sinusoid, characteristic of a tip-substrate
contact event. Identification of this arrangement is done by fitting a sinusoidal model
to each row’s pixel values, and then comparing the model to the row pixel by pixel. A
near-perfect fit of the line data to the model suggests the row is a null line.

It is important to acknowledge the limitations during the implementation of this screen-
ing process. Universally among coding languages, functions that compare values in
arrays to other values, often by logic statements, are considerably slower than other
processes. Simple-to-implement approaches to identify null lines rely on sorting or
directly comparing pixel values in each row of the image array. The inherently compu-
tationally taxing nature of these processes is amplified over the 512 iterations required
to screen entire image arrays for individual null lines. This places a strong limit on the
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complexity of the screening process if a logic statement approach is chosen, identify-
ing more complex types of null lines such as slopes and waves was found to double
computation time. Additionally, this means identifying partially corrupt null lines, lines
with which the event that caused the corruption occurred over a shorter time-frame
than that of a single line scan, can similarly be too taxing to identify.

An abundance of null lines within images has a significant effect on proposed image
processing. They reduce the effectiveness of the most sensitive techniques of both
pre-processing and segmentation. Null lines appear as uncharacteristic scarring or
streaking on images. The incongruous data in null lines has an influence on fitting
parameters when fitting the background of the row-aligned images when running the
background detrender. Some fitting algorithms will attempt to fit a background to the
image that caters towards this uncharacteristic data. This results in a background-
detrended image with a less confident fit, which is visually noticeable as it creates a
wave-like pattern over the image, and is statistically unrepresentative of the imaged
surface. Fitting algorithms that were less sensitive to discontinuities were deployed in
order to combat this effect.

In segmentation, null lines similarly have both visual and statistical effects. Null lines
potentially appear as uncharacteristic white or black streaks on binarised images, this
can have consequences when the images are inspected for connected regions. A black
streak through a region can be mistaken for a break in connectivity of a region of
nanostructure while a white streak can connect two otherwise unconnected regions,
affecting the Minkowski metrics. Corrective morphological or machine learning pro-
cesses were utilised to manage or correct this effect on the segmented images. Higher
degrees of null lines of similar values can have significant detrimental effects on the
general image statistics. Pixel values of the null lines of similar values appear as a
large peak in the image histogram, a rogue population of pixel values that do not
characterise the imaged surface. Segmentation algorithms that rely on identifying the
statistical midpoint of the two pixel value populations, the pixel value with an equal
likelihood to be a member of either population, then using it as the threshold value
for binarisation, may shift the calculated value to cater towards this uncharacteristic
peak in the image histogram. This weakens the estimate of the surface-nanostructure
phase boundary, resulting in misclassification of data in the images. This is even worse
when segmenting third layer effect images to three phase or ternary images, segmen-
tation of the third often smaller peak containing the third layer relies on identifying
a small population above the nanostructure layer. As null lines often take on arbi-
trary values within the higher range of allowed pixel values, the algorithm for third
layer segmentation may treat a rogue population as the pixels that represent this third
layer.
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6.3.3 Further screening techniques

The methodology, experimentation and programming of some screening procedures
are tied to individual approaches to pre-processing and segmentation. These methods
had varying degrees of success, sometimes providing an approach to reject useless
images from the data set early within processing, but sometimes weakening the inher-
ent algorithms or requiring user observations. These will be discussed alongside the
experimentation with each of these approaches.

6.4 Experimentation and adaptation of script

6.4.1 Tools and principles for testing software

Now that the broad structure of the proposed image processing code has been dis-
cussed, it is now necessary to talk about the experimentation that was required to meet
the standards required for the proposed further analysis. The role of each stage of the
processing algorithm can be filled by various popular or experimental methods devel-
oped for and adapted to the data set. Processing algorithms offered in popular image
processing software for nanoscience such as Gwyddion and WSxM, or more generic
processing tools like ImageJ were recreated in Python for the sake of comparison to
proposed methods and usage in an automated workflow. These widely available sta-
tistical methods offered an effective starting point for structuring the processing code,
and a comparison point for experimentation, as algorithms designed for the data set
would be replacing these common conventional approaches.

Some proposed methods coded in Python and R have changeable numeric parame-
ters tied to factors such as sensitivity, degrees of freedom, sampling rate or returned
number of data points. Fine-tuning these parameters to the data set takes a lot of
trial and error, relying on a combination of visual and statistical analysis. Some key
principles for experimenting within the IDE were established. These principles were
code implementations across all proposed scripts that aimed to streamline the experi-
mentation and debugging phases.

The first of which was the concept of test sets, a small sample of images that repre-
sent the entire data set. These representative sets meant new features of the program
could be tested faster, as running processing algorithms on the whole data set is time
intensive, while only a handful of images of resulting images would be evaluated by
the user, so limiting the number of images being initially processed is preferred.

These test sets were built through visual inspection of the data set, often categorised
based on visual predictions on how the raw images would interact with the first conven-
tional processing approaches, and selecting images of different types of dewetting pat-
terns. The first test set was built based on the proposed screening of height-segmented
images, at this stage primarily visual inspection of images and their respective image
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histograms. Visual inspection checked for frequency of problematic noise patterns
identified as having a significant effect on image statistics8 and wasn’t typically ad-
dressed by a standardised image processing workflow. An ideal image histogram, for
those segmented by height, has two distinct populations, bimodal peaks, with minimal
overlap to minimise the degree of misclassification when binarised, as well as a low
presence of peaks associated with noise, such as peaks at 0 and 1 in the normalised
image, caused by “salt and pepper” noise. The set was split into four categories,
these were true positive (TP), false negative (FN), false positive (FP) and true neg-
ative (TN). The true positive category encapsulates images where the original scan
had very little noise, was fairly uniform and had at least two distinct layers, including
those tied to the surface and nanoparticles. The true positive images both provide
useful visual information and segment into binary images effectively. The false nega-
tives folder contains similarly useful images, but contain noise features that may cause
shortcomings in some conventional processing algorithms. For example, images that
fail the final stage of height-based segmentation due to the minor nanoparticle layer
or a major third layer effect. False negative images represent a large amount of the
actual data set, images that are often worth recovering by developing new processing
algorithms. False positive images are fewer in number but provide another challenge
for the program, FP images that provide little to no visual information to the user that
possibly are not rejected by the code at any stage due to noise features that imitate
physical features. False positives should be screened out by means other than the con-
fidence in the segmentation, through other screening algorithms or user intervention.
True negative images contain little to no useful visual or statistical information, and
hence the user and program were predicted to agree upon this in each case. This first
test set was effective for testing simple segmentation methods, but new unique test
sets were derived from the data set and shared with the group for testing individual
proposed techniques against their conventional counterparts over time. Furthermore,
the principle of selecting images for the test set that represent challenges to the pro-
posed algorithms is carried forward.

Visual inspection at every stage of the algorithm as well as the final produced image
is a useful procedure while experimenting and debugging the processing script. Saving
the returned images at every stage adds additional processing time within the program,
as well as time added browsing for the images in the file explorer. Instead, subplots
were deployed to provide instantaneous feedback as an array of images and graphs in a
temporary window. A rudimentary set of subplots is returned in most cases, containing
images before and after certain algorithms, plots of the image histogram, and other
plots unique to tested algorithms. This is particularly useful when comparing two or
more processes that take the same role within the script, or when changing a single
variable or function within a script between runs, as with Figures 6.4.9 to 6.4.11.
Additionally, a unique colourmap was chosen for subplots. Red-to-gray (RdGy), shown
in Figure 6.4.1, was picked over a grayscale or single-colour cold to hot gradient map,
such as afmhot as it helped in spotting minor fluctuations, particularly background
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contrast, and noise features.

RdGy

afmhot

0 256
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Figure 6.4.1: Colourmaps used throughout scripts.

6.4.2 Initial framework

The first version of the proposed script was aimed at testing Python’s capacity to
replicate the workflow of a user within Gwyddion. In the case of images of nanostruc-
tures aimed to be segmented into binary images, this would be to load a raw AFM
file, process the loaded image, and save the resulting binary image. In this version,
a raw AFM file, the IBW file from the same root directory as the code, is loaded,
converted into an array, pre-processed, segmented, and the resulting binary image is
presented to the user. Pre-processing techniques were chosen based on what is com-
monly used for processing such images in Gwyddion within the cohort. These were row
alignment using the median of differences approach, and background detrending using
a planar-flattening approach. Segmentation was conducted using a differential and
graphical interpolation approach to finding Otsu’s threshold. No images were saved in
this script, resulting images and subplots were instead displayed in the IDE for code
feedback.

Pycroscopy and h5py were shown in combination to translate the IBW file into an HD5
format, then into an array manipulable in Python’s NumPy library with zero degrada-
tion at an acceptable speed. This translation algorithm was standardised for all future
code, with zero functional revisions.

The raw files loaded as arrays were then pre-processed, starting with the initially pro-
posed row alignment method. Unlike other methods of row alignment, by which a
single statistic is derived from each row, then all pixel values are incremented or re-
duced by an offset row by row until that statistic is consistent across all rows, a median
of differences approach derives the offset between two neighbouring rows. The algo-
rithm was coded and tested with basic NumPy numeric functions and is outlined in
Figure 6.4.2. Starting with the second row, a temporary 512 value array is created
that contains the difference between pixel values in the row and the previous row. The
median of this array is calculated, returning the statistic used as the offset - the median
of differences. This offset is then applied to all values in the row and the process then
repeats for all further rows. The resulting aligned array is then normalised to guarantee
all values still lie within and fit the 0 to 1 range.

128



6 AUTOMATING NANOSTRUCTURE DISCOVERY IN SPM DATA

Figure 6.4.2: Diagram illustrating use of median of differences for row alignment of a 512-row image.

Mean or median alignment, two common forms of single statistic row alignment avail-
able in software such as Gwyddion, were implemented for qualitative comparison by
means of visual and histogram inspection. Figure 6.4.3 compares the three row align-
ers for four different images that encapsulate multiple common complications with
row-by-row correction in images of nanostructures. 6.4.3(a) pre-processes a region
containing cellular patterning of continuous feature length, spanning the entire probed
area. All three aligners worked effectively, returning near-identical two-population im-
age histograms for all options. The mean aligner’s line-by-line offset appears diagonal,
as it attempts to correct the image’s vertical trend. 6.4.3(b) contains fingering pat-
terns of various sizes, and significant variations in contrast across the surface and
nanoparticle pattern layers. Additionally, a third layer, appearing as black dots, spans
the top half of the image. The third layer is expected to appear as a small peak at high
gray levels in the image histogram. Both median of differences and mean alignment
perform similar offsets on the image, however median alignment places emphasis on
the third layer and misaligns all rows containing it. This results in suppression of the
third peak in the image histogram. Additionally, median alignment misaligns rows
where the population of pixels associated with the nanoparticles, exceeds that of the
background substrate. The featureless gap between the two contacts in 6.4.3(c) is
misaligned by the mean and median aligners, which attempt to equate their respective
parameter for rows of bare substrate to rows containing both the surface and contacts.
This is especially true for mean alignment, to a degree the image histogram returns
four peaks, as opposed to the expected three peaks, one for the bare substrate, and
one for each contact. 6.4.3(d) exhibits both a third layer and cellular patterns with
two feature lengths. The aligners perform similarly to the pre-processing in (b), with
mean alignment most effectively separating the first and second layers, as seen by the
gap between the first two peaks in the histogram. A deeper gap between population
peaks in the image histogram reduces the number of pixels misclassified as the oppo-
site population when the threshold value is defined between them.

The median of differences approach to row alignment proved to be highly effective.
While sometimes outperformed by mean alignment, it makes a strong attempt at all
given image types, with no manual parameterisation required, which would be more
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Figure 6.4.3: Testing row-alignment algorithms on AFM images. Each raw image is row-aligned by either median
of differences (MoD), equating each row’s mean, or equating each row’s median. The final row-aligned and planar-
flattened image, the graph of relative pixel value correction, or offset, down the image, and the image histogram are
provided for each row aligner.
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useful in a fully automated mass-processing script. The median of differences approach
was found to be much more sensitive to surface features, was less likely to produce un-
characteristic misalignments due to pattern discontinuities or small amounts of noise,
returned a more ideal image histogram shape, and provided generally visually stronger
results for the first test set. When provided with further test sets, the key feature
of median of differences alignment was its higher success rate and sensitivity when
aligning multi-phase images with a continuous nanoparticle pattern prominent across
the image or with a discontinuity. These test sets, and the final data set, were almost
entirely made of two-phase images with a sub-5% coverage third layer. These two
phases were continuous in almost every row of the images, feature lengths of nanopar-
ticle patterns were always exceedingly larger than the single pixel length of rows, but
exceedingly smaller than the scan size, and there were several cases of the particle-free
surface phase being the only phase present over multiple rows. Quantitative analysis
on the image histograms in the test set, when combined with subsequent background
detrending, showed median of differences alignment minimised the average misclas-
sification rate, as defined in Subsection 6.4.4. Short-term tip interactions had the
potential to induce horizontal image curvature across one or more rows, affecting the
row-by-row correction described in Figure 6.4.2. Similar to the discontinuities from
substrate to adsorbate during median or mean row alignment in 6.4.3(c), this results
in an uncharacteristic step across the image after all 3 forms of row alignment, signif-
icantly lowering the effectiveness of subsequent background detrending and segmen-
tation. While not disqualifying a median of differences approach, algorithms sensitive
to single-line curvature would be tested in future frameworks.

Background detrending was conducted using an iterative process called the planar-
flattening approach, shown in Figure 6.4.4. The algorithm begins by returning two
arrays of the same size of the image, each representing a slope in the vertical and
horizontal directions across the image, with gradients defined by the means of the
pixel values in the leftmost and rightmost column, and top and bottom row respec-
tively. These arrays are combined into a third array, representing a pseudo-3D plane
describing the generalised slope of the image, this was referred to as the test plane,
this test plane was optimised by means of a goodness of fit test. The test plane array
is subtracted from the image array in the same manner as a matrix subtraction. The
goodness of fit is evaluated by summing the square of all values in the resulting array,
the resulting fit factor, effectively a square-sum of the residuals, is saved. Based on
this initial test plane, new test planes are created and evaluated using nested loops. A
range of different gradients in both the horizontal and vertical directions are applied
in combination using these loops. The test plane that returns the lowest fit factor
is assumed to be the plane that aligns with the background noise of the image most
effectively. This optimal test plane is subtracted as before, returning a planar-flattened
image that is normalised and then carried forward within the algorithm.

Background detrending using a planar-flattening approach was favourable when ap-
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Figure 6.4.4: Diagram illustrating use of planar-flattening approach to image detrending. (a) AFM image with rows
aligned by median of differences; (b) 3D representation of the AFM image, with the derived optimal test plane shown
above it; (c) 3D representation with test plane subtracted; (d) resulting planar-flattened AFM image.

plied to images within the first test set. Though it was effective at removing linear
sloping from images, which was particularly common in the first test set, it began
to visually fail a large number of images as the test sets expanded. It became clear
the limits of this approach when images demonstrated a non-linear trend, significant
curvature caused by the equipment. This was particularly clear after segmentation,
height-based thresholding fails when too many pixel values associated with the surface
were higher than that of the nanoparticles, or pixel values associated with the nanopar-
ticles were lower than that of the surface. Strong curvature that was unaffected by
this background detrending approach would result in the effect shown in Figure 6.4.5.
The pre-processed image on the left shows bow-like curvature by means of the sur-
face appearing lighter, especially towards the bottom centre, and hence, by the RdGy

colourmap shown in Figure 6.4.1, considered physically higher for height-based thresh-
olding. This shows an incorrect mapping of the locations of the nanoparticles due
to the pixels associated with the nanoparticle layer on the left and right sides falling
below the calculated threshold value. This emphasises the importance of the role of
the background detrender to mitigate this effect.

Figure 6.4.5: Median of differences aligned and planar-flattened AFM image with strong curvature before and after
height-based thresholding.
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Additionally, optimising this approach for a data set entirely consisting of images with
a linear slope trend requires calculating the fit factor for more test planes per image.
This would mean increasing the number of values in the testing range and the testing
range of different gradients in both the horizontal and vertical directions. The iterative
nature of the approach combined with a large matrix subtraction scales computation
time significantly, tripling the number of gradients tested in both directions increases
the computation time nine-fold.

Immediate alternatives to the planar-flattening approach were explored for future
scripts, in Subsection 6.4.4. Gwyddion offered a three point levelling tool, by which
a user marks three points in the image that are at the same level, and then a plane
is computed from them and subtracted from the data. Manually selecting points, or
choosing a single set of coordinates for all images, would not scale for large data sets,
and introduce potential inaccuracies by incorrectly marking separate layers. Expand-
ing beyond these 1st order approaches to 2nd order upwards was proposed, exploring
in-built functions within NumPy to reduce computation time, and critically addressing
image curvature.

A simplified application of Otsu’s thresholding was deployed as a way to binarise the
pre-processed images. This would estimate the threshold value, the pixel value at
which the likelihood a pixel of that value is either a member of the nanoparticle or
surface phase is equal. First, the cumulative distribution function (CDF) of suitable
smoothness is plotted. This begins with creating an array of 1000 evenly spaced po-
tential threshold values between 0 and 1, then producing an array of the same size that
determines the percentage of pixel values that fall below each potential threshold. The
derivative of this cumulative histogram provides the probability distribution function
(PDF). The highly bimodal nature of the images means the PDF commonly returns
an image with two peaks along the x-axis, representing two populations of phases, the
leftmost peak representing the lower grayscale value pixels tied to the surface phase,
and the second rightmost peak representing the higher grayscale value pixels tied to
the nanoparticle phase, much like the image histogram. A third small peak tied to
the third layer is sometimes visible too. The trough between the first two peaks in
the PDF can be estimated to have a pixel value representing equal probability of such
pixel being part of either population. This would make for a strong estimate of the op-
timal threshold value, so an algorithm to interpolate this threshold value was proposed.

A lightweight approach for interpolation was initially chosen. This was to identify
the index of the trough by means of SciPy’s find peaks function, it can be adapted
to find troughs by running the function on the PDF reflected in the y-axis. First a
Gaussian-smoothed differential of the CDF was returned, as to limit occurrences of
further troughs in the PDF. Then find peaks was run on this PDF, returning multiple
indices of troughs that were displayed visually by plotting crosses on this PDF at the
identified troughs. The pixel value associated with the index of the first trough along
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the PDF was taken to be the threshold value for binarisation. An image plot was
displayed as a subplot which had applied a logic statement to the image, assigning all
pixels with pixel values below the threshold value 0 and above to 1.

This approximation to Otsu’s thresholding proved highly effective on the first test set
and served the purpose of understanding the potential ways to communicate multi-
phase images to both users and artificial intelligence. The algorithm was not without
its problems, it required a very clear bimodal distribution within the PDF, with a sub-
stantial separation of pixel values of the surface and nanoparticle populations. This
approach also was shown to fail when there was not a visible trough between the
two populations in the image histogram, the find peaks function fails to find a local
minimum.

Though the Gaussian-smoothing approach was useful for mitigating the effects of noise
on the bimodal distribution’s clarity within the test set, finding a universal smoothing
parameter, σ, that provided a clear bimodal distribution for the entire data set was
going to prove near impossible. Additionally, another source of trial and error was the
prominence factor in the find peaks function was difficult to set universally by means
of the high variance in the sharpest of the two main peaks. There was an immediate
attempt to remedy both of these problems by the addition of some further steps in
data preparation before differentiating, smoothing and running the find peaks func-
tion on the PDF.

The proposal was to crop the data both presented in the PDF and what is presented
to find peaks. The presence of noise, particularly salt and pepper noise, results in
the data range for pixel values being artificially widened. This was particularly obvious
in the CDFs, which often had two large plateaus at 0% and 100%. A short algorithm
that identifies the starting and ending indices of the interval which shows the phase
shift. The smoothed PDF is calculated for this interval alone, making it easier to
standardise the parameters, as the bimodal distribution occupies the majority of the
PDF. Secondly, find peaks was run on this distribution to identify the indices of the
bimodal peaks, before identifying the troughs. The algorithm was then run to find the
trough between these two peaks, limiting find peaks to application on the reflected
PDF between the indices calculated in its first application. This further improved con-
fidence in the location of the threshold value, without the user needing to view the
subplotted graph of the PDF.

Despite these adaptations and improvements, with further increases in success rate
caused by future changes to the pre-processing algorithms, the method by definition
was not statistically rigorous. Farley et al., using the historic data pre-processed using
the final script that concluded this work, showed a U-Net segmentation outperformed
Otsu’s thresholding of two-phase images visually, even when artificial noise was added8.
More global threshold approaches were explored to replace this application of Otsu’s
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thresholding in Subsection 6.4.4, as well as exploration of a more localised approach
to segmentation with FlexMix in Subsection 6.4.5.

6.4.3 Adaptation for mass processing

The natural progression for the code was the ability to find all IBW files within a
local folder, and save subplots and processed images based upon those IBW files to
a separate folder, without any user input. This move to automation on a directory
scale entailed a few steps. The script included a loop through the initial framework
for image processing, with an iteration for each IBW file found in the directory chosen
within a UI, stating whether each image passes or fails, then saving resulting plots and
images passed on each case, without breaking out of the loop due to common errors.
Each component will be discussed individually, but the flowchart shown in Figure 6.4.6
is the culmination of all these elements.

Screening proposed in Section 6.3 was introduced at this stage. Python’s own errors
that would return an error message in the Python console would often terminate the
script, this meant an error caused by a single image would cause the loop to cancel
and fail to process further images on the list. As these errors were often individualised,
break-out conditions that would restart or bypass sections of the for loop were imple-
mented, this took the form of the screening process. These cases are reported within
the console, as well as further user communication, discussed in Appendix E.3.

Noted at this stage was the effect of null lines, the script’s main processing algorithms
could not distinguish null lines from rows that characterised the surface. The pro-
posed null line checker from Subsection 6.3.2 was integrated into the row aligner, as
the row-by-row inspection nature of both algorithms could be consolidated for the sake
of efficiency. After conducting row-alignment, the percentage of null lines detected
would be compared to an increased confidence limit, 5%, and the whole image would
be rejected accordingly. The limit was considered to be low, but identifiable null lines
with the current algorithm was considered to beget a larger amount of undetectable
corruption.

The script would not attempt to return a binary image of an array in the loop if no
clear threshold value was obtained, found at this point by identifying a trough between
the bimodal peaks with the find peaks function. The function’s current capacity to
identify Otsu’s threshold was acting as a screening process. Previously covered im-
provements to the implementation of Otsu’s thresholding naturally improved its effi-
ciency as a screening process, particularly reducing the number of false negative cases
of no clear threshold value being available.

Using a for loop that encapsulates the entire processing code that acts upon every
queried image became the basis for all other future scripts. This approach did have
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Figure 6.4.6: Flowchart showing framework of image processing code used for directory processing.
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limits, the loop would be liable to crash after roughly 200 loops due to a lack of
assignable computer memory. Any test sets larger than 200 images were either split
or the loop was modified to begin at a later index in order to avoid this.

6.4.4 Further exploration of processing tools within Python

The three highlighted key processes shown in Figure 6.4.6 were written to be modular,
and hence easily interchangeable with new potentially more effective techniques. The
row aligner module was not going to be addressed further within Python, but the
background detrender and segmentation modules were in need of either enhancement
or replacement to meet the standards required for further analysis.

At this stage, the subplots produced by looping the script through images in a test
set took the appearance of Figure 6.4.7. This displays an AFM file with a similar
issue to that shown in Figure 6.4.5, the general trend of the image is second order
curvature that can not be removed with the planar flattening approach. The planar
flatten approach is shown to remove the vertical trend, but not the curved horizontal
trend This shows the importance of tackling unique trends in all directions, so some
approaches were developed that took into account trends in each direction individually.
The second image on the bottom row displays the unscaled PDF of the pre-processed
image, with crosses marking the locations of the peaks and troughs found using the
find peaks function. The found trough, the red or second cross, does not lie within a
clear trough, resulting in a failed segmentation that bypasses screening. Pre-processing
that resulted in two clearly separated bimodal peaks on the PDF returned segmenta-
tion with the highest confidence.

The background detrender so far had only been a 1st order line fit approach. The
planar-flattening approach would estimate a flat plane that fit the image’s global noise
trend most effectively. The expansion of this to 2nd order and beyond was a necessity,
illustrated by Figure 6.4.5, it was clear not all background trends were linear. Fitting
to surface curvature using high order polynomials brings a new problem, called over-
fitting. The background detrender’s role is to accurately detect the uncharacteristic
trend caused by the scanning process, and subtract that trend to leave behind the
best estimate of the appearance of the substrate-nanoparticle assembly. It is assumed
this trend is far broader than the local data, small raised regions upon the surface
where nanoparticle reside. The use of polynomials to help define this trend is highly
efficient and sensitive to the background trend. However, a higher order polynomial’s
higher sensitivity has the potential to fit a trend to the local data, effectively treating
characteristic nanoparticle data as the uncharacteristic background trend. This causes
detrending to remove height data from the image, making the heights of nanoparticle
data much more similar to that of surface data and sometimes adding uncharacteristic
features to the image in the form of peaks and troughs, weakening future analysis
and particularly segmentation. Hence it stresses the importance of choosing a sensible
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Figure 6.4.7: Subplots produced by a bowed image in the test set of the mass-processing script.

range of orders to test, though a higher order polynomial may return a lower fit factor
within the code, this may be a misleading case of over-fitting. Visual inspection can
help at this phase to help set this range, particularly by studying the returned back-
ground trend as its own image.

Figure 6.4.8 graphically demonstrates what happens during over-fitting. A slice of a
real AFM image with submonolayer coverage of gold nanoparticles with a consistent
height of 3 nm is displayed as a 2D profile. A straight line does not accurately de-
scribe this trend, resulting in an under-fit, while too many degrees of freedom result
in a periodic fit to the data, a line representing over-fit. The middle ground fits the
curvature of the trend, the desired fitting created by limiting the order of polynomials
in the background detrender.

Three experimental approaches to background detrending were explored in Python,
all ran from the same directory-processing script on the same test set using a UI to
choose which was inserted into the algorithm. The first was referred to as the “gen-
eralised” approach, a generalised fit to the image using NumPy’s polyfit function
upon the mean trend in the vertical and horizontal directions across the image. This
generalised polynomial background approach uses independent degrees of freedom in
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Figure 6.4.8: Profile of an AFM image of nanoparticles of uniform heights before detrending. Three coloured lines
show three potential extremes for the detrending algorithm’s fitter; (green) an under-fit as a linear function, (yellow)
a perfect polynomial fitted to the trend of the data, and (red) an over-fit where the polynomial fits to the data.

the vertical and horizontal direction, each direction is generalised by means of each
column averaged to form a 1D array in the x-direction, and each row is averaged to
form a 1D array in the y-direction. The polyfit function is provided with a range
of different orders of polynomial, with the range set to take into account the compro-
mise between fit accuracy and over-fitting. The range was set to 1 to 4, as beyond
4 characteristic over-fitting was observed for images in the test set. The fits in each
direction are converted into a 2D meshgrid, combined into a 2D trend, and, similar
to the planar-flattening approach, the fit factors are calculated in an iterative manner
until an optimal combination of orders in each direction is calculated. The script using
this approach returns a wide array of subplots within the IDE and saves the plots and
final binary image as PNGs.

Figure 6.4.9 shows the resulting subplots, using the same raw image as that in Figure
6.4.7. The second row shows the polyfit approach in sequence, with the polynomial
describing the mean of the horizontal and vertical directions displayed as individual,
then combined, as a 2D plane. The plane subtraction shows the result of detrending
the median of difference aligned using this combined fit, returning the detrended and
normalised image. The bottom-right unscaled PDF graph compared to that in Figure
6.4.7 shows how significantly successful background detrending separates the bimodal
peaks. This returns a height-thresholded image, with far more confidence in the seg-
mentation.

As a way to address shifts in trend local to individual rows, that result in a streaking
effect particularly at the left and right edges, a local application of polyfit was con-
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Figure 6.4.9: Subplots produced within Python of the mean-generalised global polyfit method.

sidered. The script would supply an order n, fitting a unique nth degree polynomial to
every row and column. Figure 6.4.10’s second row shows the process, the horizontal fit
(Horz. Fit) image displays 512 line-fits of each row of the median of differences aligned
image with n = 3. This is similarly calculated for the vertical direction (Vert. Fit) and
then combined into a third matrix. There was a consideration that the vertical trend
was over-augmenting the horizontal trend, resulting in uncharacteristic peaks in the
detrended image, so a convolution filter was applied to the image as a way to smooth
out the peaks. A high strength (standard deviation on all axes σ = 5) application
of ndimage’s Gaussian filter was applied to the 2D array. This uses a kernel, a small
matrix, which performs a convolution on the image, this centres the kernel on a pixel
and recalculates the pixel’s value by adding all the neighbours’ pixel values, with those
values scaled by the values in the kernel. The kernel for a Gaussian filter will take the
appearance of a 2D Gaussian centred upon the centre of the kernel, providing more
weighting to the nearest neighbours. The result when applied to all pixels in the array
is a blurred image, this turns the combined fit into the blurred trend (Blur. Fit) in
Figure 6.4.10. The unscaled PDF subplot in the case displays a third population, a
broadening feature on the right side of the second peak. Though the found trend
takes a similar appearance to the trend in Figure 6.4.9, the fit is not strong enough
to detrend the curvature in the bottom left and right of the image, resulting in an
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uncharacteristic population visible on the PDF, and a binary image that does not dis-
tinguish the nanoparticle phase from the surface phase at these locations.

Figure 6.4.10: Subplots produced within Python of the local Gaussian filtered polyfit method.

In a similar vein to the second approach, the idea of local weighting using a kernel
was applied in the third experimental approach within Python. Each row and column
was filtered using a 1D Gaussian kernel in their perpendicular direction, resulting in
each row being weighted with data from neighbouring rows, but not by data within
the row, with the same being true for the columns. Figure 6.4.11’s first row shows
the result (labelled Blurred) of this 1D filter. The individual rows and columns in this
new local-weighting array were fitted with nth order polynomials and compiled into a
new array to describe the trend (Comb. Fit in Figure 6.4.10). The bottom row shows
a common issue with the script in its current state, resulting in no second peak being
found by the find peaks function. Some uncharacteristic noise introduced by the
detrender has caused the PDF to shift towards the left, and due to the standardised
smoothing of the PDF has returned the second bimodal peak as a broadening feature
of the first peak. This shows the importance of cropping the CDF before calculating
the derivative, a feature not yet implemented at the time. The result is an incorrectly
segmented image, displaying zero features.

All three methods were able to identify the general trend within the image, but the
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Figure 6.4.11: Subplots produced within Python of the 1D Gaussian filtered local polyfit method.

mean-generalised global polyfit method was shown to outperform the planar flat-
tening approach and the other two experiment approaches. Though this method was
not susceptible to local deviations, such as row-by-row shifts in trend, the proposed
segmentation, those demonstrated by Farley et al., heavily diminished local and other
subtle fluctuations. This rendered the priorities of the local fitters less significant.
Additional flaws in the local fitters included the necessary use of a traditional low-pass
filter, which contradicts the original goal of not compromising image statistics. Plus
the shifts in trend do not occur within columns, as they only occur in the direction of
the cantilever, a fitting approach that found a general trend in the vertical direction
and local trends along each row was briefly considered, but the effectiveness at remov-
ing local trends by segmentation demonstrated made it less of a priority. Though the
generalised approach was the largest improvement over the planar-flattening approach,
replacing it until further notice, there was still a goal of seeking a more versatile back-
ground detrender within the coding space.

The next priority was to address new methods of segmentation, based upon the image
histogram. On Figure 6.4.7’s PDF, the first and third crosses are the found peaks
and the second cross is the found trough, all estimated by find peaks. Though
this particular image’s PDF exhibited a much more prominent trough when using the
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mean-generalised polyfit background detrender, shown in Figure 6.4.9, some im-
ages are inherently more difficult to infer the midpoint from the image statistics, even
with optimal pre-processing. Though a broad overlap between the bimodal peaks can
suggest overlap between the pixel values associated with the surface and nanoparticle
phases, identifying and separating the two Gaussian-like distributions of pixel values
by modelling can help provide an accurate height threshold.

At this stage, the aforementioned improvements to the find peaks (FP) algorithm
were implemented, as well as integrated into a few new experimental approaches.
The first was the deployment of a simple image mask to address the effects of un-
characteristic salt and pepper noise and null lines on segmentation and normalisation.
The effects of it on normalisation are addressed in Subsection 6.2.2, but this form of
noise would often introduce difficulties during the analysis phase. Relevant features on
graphs like the image histogram would appear much smaller when the entire pixel value
range is plotted, affecting image histogram binning and curve fitting. A masking func-
tion would identify the range of pixel values encapsulating 99.5% of the image data,
centred on the mean using standard deviation, then masks all pixel values outside this
range to take on the value on the bound of the range it falls outside of. The masked
array is then normalised. Figure 6.4.12 shows the identification of pixels outside of this
range, showing these pixels are often associated with uncharacteristic image streaking
or tall debris. The array is not saved as an image, as the masking method is considered
to add uncharacteristic data to the image for algorithmic purposes, a compromise to
reduce degradation while performing statistical processes.

Figure 6.4.12: Three pre-processed AFM images demonstrating the use of the masking algorithm to identify salt and
pepper noise. Red pixels were identified as having pixel values below the 99.5% range for the whole image, centred on
the mean, while blue pixels were identified as having pixel values above the range.

Further to the goals of this masking approach, truncation of the image histogram was
found to be beneficial for biasing fitting algorithms towards the transition between
surface and nanoparticle phases. The method to accomplish this became known as
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cropping, as the starting and ending indices were defined by an algorithm that effec-
tively cropped the flat regions of the CDF. Cut-off indices for each end of the CDF
were calculated using a short function. The function would query in sets of five val-
ues along the CDF function, when the variance of the last five values went over a
predefined value, the function defined that index as the point at which the CDF was
considered no longer effectively flat. The function would run from both ends of the
CDF, returning two indices that would define the start and end of where the bimodal
peaks appeared in the image histogram, the cut-off indices. This approach to cropping
the CDF successfully truncates the image histogram to the statistical region of interest
for segmentation.

A new test set was assembled, in collaboration with Farley et al., for testing image
segmentation methods. Farley et al. curated a test set of pre-processed images that
previously interacted poorly with U-Net segmentation8. This was expanded to reflect
the diversity within the historic data set, featuring images from the previous FN set of
a range of dewetting pattern types and correlation lengths.

The two new segmentation methods relied on fitting two Gaussian curves, assumed
to fit to the nanoparticle and surface phases, to the image histogram of a provided
pre-processed image, then using the intercepts of the individual Gaussian curves as the
threshold value. The first script was calling curve fit from scipy.optimize, when
supplied with a function that defines the sum of two Gaussians with their own unique
and unknown coefficients, and the bin centres and frequencies of the image histogram,
returns optimised coefficients of the function. The curve fit (CF) algorithm was
chosen to use the least-squares approach, similar to that of the planar-flattening and
mean-generalised global polyfit background detrender, as the optimisation method.
This function, as well as individual components, could then be plotted as PDFs for
the sake of visual inspection, otherwise, the binary image is saved using the threshold
value, defined as where the likelihoods are equal. The index at which the components
intercept, where this is true, is calculated by means of finding the index of the mini-
mum value of an array of the modulus of the difference between the two components,
bounded between the indices of the peaks. The boundary between the two peaks is
chosen to prevent the algorithm from defining effectively flat portions of the compo-
nent Gaussians as the point of interception.

The second new script used GaussianMixture from sklearn.mixture. Scikit-learn
is a machine learning and statistical modelling library that offers a Gaussian mixture
model (GMM) clustering algorithm that can fit the provided image data, as opposed
to the image histogram’s returned data points, to a provided number of Gaussians, in
this case, 2. As with CF, the script fits a mixture model consisting of two Gaussian
distributions with unknown parameters. The mixture-of-Gaussians model is fitted us-
ing an implementation of the expectation-maximisation (EM) algorithm, an iterative
approach to estimating local maximum likelihoods. The individual PDFs and thresh-
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old values can be extracted from the returned model using two tests on the model,
test proba and score samples return the posterior probabilities and weighted loga-
rithmic probabilities respectively of each component of the model. The threshold value
is calculated in the same manner as the CF algorithm, using the peaks as a boundary
condition for finding the point at which the likelihoods of each individual PDF are
equal, and the binary image is saved.

Figure 6.4.13: Plots displaying different approaches to peak-fitting for height-based thresholding over the image his-
togram with three different methods, and their resulting binary images. Two different AFM images of gold nanoparticles
from the test set segmented using 3 different Python scripts.

Figures 6.4.13 and 6.4.14 show the segmentation of four different images in the test
set, pre-processed using the median of differences row aligner, and the newly imple-
mented mean-generalised global polyfit method for background detrending. Each
new curve-fitting method was presented in the same figure overlaid on the image
histogram windowed onto the bimodal peaks via the cut-off indices, which was saved
locally along with each binary image produced by each proposed segmentation method.
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Figure 6.4.14: Further plots displaying 3 different approaches to peak-fitting for height-based thresholding.

The binning of the image histograms was consistent between images. The curves pro-
duced by each algorithm are labelled, alongside the coordinate used to determine the
threshold value, σFP , σCF & σGMM are the determined threshold value of their re-
spective methods.

6.4.13(a) shows the failure of the trough-finding approach, the appearance of the his-
togram does not present a trough on the smoothed PDF. translating to there being
no turning point in the CDF. The surface phase has substantial physical fluctuations
in height that are not detrended by the software, this combined with the intermit-
tent formation of fingering patterns proves a challenging image to segment. The CF
method misidentifies the broadening feature, instead considering the first peak the pri-
mary peak and the second peak the broadening feature of the image histogram. This
may be due to the least-squares approach prioritising the non-Gaussian distribution
of the first peak. The GMM method displays the most effective fit compared to the
other methods when visually inspected, providing the strongest estimate of the two
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bimodal peaks. The GMM peaks do not heavily bias towards fitting to the positions
of the modes in the image histogram, as it fits to the data instead of the histogram,
and demonstrates the high misclassification rate of the image. The misclassification
rate is defined by the area enclosed by the point of intersection of the curves, what
is being defined as the threshold value, and the segment curves on the opposite side
of this point from their mode, and the x axis, a triangle-like region. These segments
of the curve mark the pixel values that are misclassified as part of the other class
by segmentation using this threshold value, hence a larger enclosed area means more
pixels are considered misclassified. This is strongly related to the parameters of the
model, and the appearance of the image histogram.

6.4.13(b) shows a successful segmentation attempt by all methods. This is aided by
the clear Gaussian bimodal peaks representing the nanoparticle and surface phases,
displayed within the image histogram. The fingering patterns are much larger and
visually distinct in this image, present in all rows of the image. The pre-processing
appears to be successful, but some minor streaking across the image is visible. CF
method has the lowest misclassification rate among the modelling approaches, yet the
FP approach provides the best segmentation upon visual inspection. Some of the
surface phase in the top left of the binary images segmented by the CF and GMM
methods display small white streaks, where segmentation has misclassified the surface
as nanoparticles. The GMM method, similar to all other images presented in the fig-
ure, does not fit to the height or position of the modes of the Gaussian peaks of the
image histogram, or significantly to the spread of the second peak. This is partially
due to the model fitting directly to the image data, instead of the binned image data
of the image histogram.

6.4.14(a)’s image displays a dense, continuous nanoparticle network, a fairly common
image type in the historic data set. The horizontal scar towards the top of the im-
age does not appear to significantly affect segmentation, but FP classifies the scar
as surface, while CF and GMM classify it as nanoparticles. The image histogram has
significantly more bins, as the pixel values of the bimodal peaks occupy more of the
normalised space after masking. FP identifies multiple troughs in the smoothed PDF,
due to some fluctuations between the bimodal peaks being misidentified as a third
peak, the script takes into account this occurrence and only treats the final index of
the FP algorithm for calculation of the threshold value. The GMM and CF approaches
assign a Gaussian model to a non-Gaussian second peak, fitting a wide Gaussian and
returning weaker, though in this case still adequate, segmentations. Between the
binary images, one can observe the nanoparticle network phase coarsening as the as-
signed threshold value approaches the first peak.

6.4.14(b) has a very low number of bins on the cropped image histogram, bin width
was kept constant across all image histograms, and in this case, the histogram was
cropped to be between 0.02 and 0.09, despite the image’s pixel values being nor-
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malised to be between 0 and 1. This appears to work in the favour of both the CF and
FP approaches, with both identifying similar and visually-successful threshold values.
CF benefits from the low number of bins, as the model fits the coordinates of the
bin centres and frequencies in the cropped region. This is due to the peaks in the
histogram appearing more Gaussian due to the binning. GMM still provides an effec-
tive segmentation, with only a few streaks and scars classified differently to CF and FP.

Multiple lessons were drawn from visual inspection of the returned statistics of seg-
mentation of these four images, and the rest of the test set. The presented modelling
approaches to segmentation made multiple assumptions about the data presented.
The first assumption was the pixel value data of an image is bimodal. This bimodal
demand was not a significant source of issues in the nanostructure images in the test
set, but across the whole historic data set there was a potential case of one of the two
populations presenting an auxiliary peak that was larger than that of the other phase,
such as an image sparsely populated with islands but with large fluctuations in the
surface roughness, the model could misidentify the auxiliary peak as the other phase.
The second assumption was that all data presented should be part of the fitted model.
The algorithms both use an iterative process to fit the model to the data but do not
bias towards the regions of high gradient or the turning points across each iteration.
Background noise between the two peaks and third layer effects result in the artificial
broadening of the PDFs, causing their intersection point and hence threshold value to
shift. Lastly, the models assume the two populations take the form of a mixture of
two Gaussians. Fitting the PDFs to the population when its associated peak appears
non-Gaussian in the image histogram resulted in further artificial broadening and a
higher misclassification rate.

The nature of FP makes it difficult to statistically evaluate, as no misclassification
rate is returned, though when successful often visually out-performed the binary im-
ages of CF and GMM. FP was found to be highly sensitive to the shape of the image
histogram, particularly with the addition of the cropping and masking tools. There
were still cases of FP not returning a segmented image. This was due to a lack of
significant separation between the two populations in select images, resulting in no
index for the trough and hence no threshold value.

The GMM method is the most statistically sensitive approach of those tested, con-
sidering nearly all 5122 data points. The test set suggests failures to fit a suitable
model when the separation between populations was low, resulting in low confidence
thresholding. The sklearn implementation of this approach did not meet the neces-
sary standards for nanostructure image segmentation in its current version.

The tested modelling approaches could not confidently fill the role of the segmentation
algorithm for mass-processing. Further optimisation such as biasing towards peaks
or fitting different distributions could provide a more accurate threshold value, but
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all methods tested still had the inherent limits of height-based thresholding with a
single value. Adaptive segmentation, assigning pixels to the surface or nanoparticle
phase based on a different statistical measure, was proposed and explored on a small
scale in Python and R, but segmentation was the primary focus of Farley et al., with
proposed advanced segmentation methods. The position of this processing software
in the workflow made both optimisation of the two core pre-processing algorithms and
adaptation of script for mass-processing the focal point.

6.4.5 Integrating R code functions

The R coding language offers expansive tools for statisticians and data miners, while
providing simpler and more efficient routes to image processing methods possible in
Python. A plugin within the PyCharm IDE allowed for the running of R code and R
markdown scripts, while the RPy function allowed for seamless integration of R script
into Python script. RPy meant image processing available in R code could potentially
replace the three image processing modules built in Python, while maintaining the
saving, loading, and plotting capability of Python.

A more rigorous application of Otsu’s thresholding was performed within R. This begins
by considering the bimodal nature of the image histogram, regarding the surface phase
as the background (b) and the nanoparticle phase as the foreground (f). Nobuyuki
Otsu showed that minimising the within-class variance, σW , is the same as maximising
the between-class variance, σB, in the case of a bimodal image histogram. The max-
imum separation between each population would correspond to maximised σB, and
provide the optimal threshold for binarisation. The equation for deriving this is

Within Class Variance: σ2
W = Wbσb +Wfσ

2
f

Between Class Variance: σ2
B = σ2 − σ2

W

= Wb(µb − µ)2 +Wf (µf − µ)2

= WbWf (µb − µf )
2 (where µ = Wbµb +Wfµf )

where Wb and Wf are the weightings of the modal peaks of the background and fore-
ground respectively, the ratio of the number of pixels in a population to that of the
whole image, and µb and µf are the mean pixel value of the background and fore-
ground phases respectively. By considering all potential 256 grayscale channel pixel
values, the value returning the maximum value of σB returns Otsu’s threshold247.

When implemented with the test set used during image segmentation, it was found this
application of Otsu’s thresholding could replace the graphical approaches developed
in Python, though both relied on the same statistics, this version was regarded as
more statistically rigorous and outperformed the segmentation methods developed in
Python. The algorithm for Otsu’s threshold was defined as a function within the R
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script, and could be applied to grayscale image data of any size. It was hence proposed
as a potential row aligner, as with most row aligners returned a single statistic about
a row’s pixel data that could be equalised across all rows by a simple offset applied
to each row. This was tested within an R markdown to some mild success, but when
the test set expanded by use of RPy, two issues emerged. It became clear this aligning
approach was very susceptible to noise patterns across rows, unlike with a 512 x 512
array, where noise was often mitigated by two large populations, the nanoparticles and
surface, for a 512 x 1 array often a noise feature could be misrepresented as one of the
populations for the bimodal demand. There was an attempt to mitigate this by using
neighbouring rows, so to use a 512 x 3 array, to derive Otsu’s threshold, but another
more significant issue occurred when attempting to run this algorithm over a loop.
The constant communication with R over 512 iterations was causing severe memory
leaks in the IDE, there was not a simple solution to this, and hence the testing of
usage of R as an aligner tool was discontinued.
R has a library for fitting quadratic spline and orthogonal polynomial-based regression
models, with general framework for implementation in a background detrending algo-
rithm. As before, the normalised residuals of the returned fit is the effective detrended
image. Both the assignment of maximum knots in the spline and highest order of
polynomials within the linear model function control the degrees of freedom in the
curve fitting. Degrees of freedom were maintained the same in both the vertical and
horizontal directions across the images. The same test set was used to test these two
methods alongside two row aligners, the aforementioned Otsu’s threshold method and
median of differences, for degrees of freedom in a suitable range of 1 to 4, to avoid
under and over-fitting. A visual and statistical inspection phase took place for the
resulting pre-processed images from the four potential routes.

Figure 6.4.15 shows part of the test set results, with the pre-detrended images at the
top. As discussed, the Otsu’s threshold-based row aligner was highly susceptible to sin-
gle high features in all but (c), where no such features were present, where the aligner
performed only slightly better than the median of differences approach. The detrend-
ing performed by the two R detrending algorithms were visually similar at the same
degree in most cases, with misclassification rate, discussed in Subsection 6.4.4, during
segmentation being the determining factor in performance. The polynomial-detrended
images were returning a lower misclassification rate, and unlike spline-detrended im-
ages were not visually over-fitting for degrees of freedom below 4.

Figure 6.4.15(d) shows a non-nanostructure AFM image from within the historic data
set, of two metallic contacts placed as macroscopic markers upon the clean silicon sur-
face. Though the image was part of the test set yet not part of the final pre-processed
data set, consideration of the algorithms’ effect on large isolated features was a short
study into the versatility of the tools and a clear visual example over-fitting. In the
first and third columns of (d), the effects of median of differences alignment followed
by spline and polynomial detrending respectively, display a clear introduction of wave-
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like features in the region between the two contacts. This is particularly visible in the
spline-based detrending of the maximum degrees of freedom tested. The curve fitting
algorithm has prioritised describing the edge of the contacts, known to be 24 nm high
with a 10 nm ridge, and the local dark halo caused by a tip event. For detrended
images from all degrees of fitting, pixels on the top of the contact were found to
have lower intensity than those on the surface, resulting in a highly uncharacteristic
binary image during height-based segmentation, of a seemingly simple image. This
highlights the necessity for a continuous nanostructure and multi-population presence,
both structures and the surface, across the whole image.

Another prospective image segmentation in R was tested, the use of flexmix to
derive a mixture regression model that described the surface and nanoparticle phases.
FlexMix provides a general framework for assigning finite unweighted data points to a
finite number of clusters248,249. An image of two clusters, defining the surface phase
and nanoparticle phase, could be used to return a binary image. This method uses an
iterative approach, first assigning the data points, each being the xy coordinates and
intensity of each pixel, to the number of classes provided to a first approximation, then
using an expectation-maximisation (EM) algorithm, class assignments are repeated
until a pre-defined likeliness threshold is met. The EM approach allows for an adaptive
segmentation approach, sensitive to local fluctuations in intensity, described by Figure
6.4.16. FlexMix considers the local most likely pixel members of each phase, as if locally
calculating the image histogram, and uses that to help assign other neighbouring pixels.
The adaptive segmentation approach using flexmix under-performed compared to the
single-value thresholding approach of Otsu’s thresholding within R. The spatial sensi-
tivity of the adaptive segmentation would often cause fitting to large noise features,
resulting in regions of binary images having uncharacteristic white regions where no
nanoparticles were present. The algorithm would also often take 50-300 iterations to
converge, or fail to converge at all, returning no binary image. This added significant
computing time and a fail rate higher than that of the FP method. Convergence could
be reached on individual images within the test set by altering the algorithm’s parame-
ters for each image, but the goals of mass-processing made this impractical. Although
theoretically, this algorithm provides the desired flexibility, experimentation shows it
does not meet the standards or consistency required for mass-processing nanoparticle
images yet. Improvements to flexmix’s code could make it an effective tool in the
future.

The appeal of R was the ease of integration within the Python IDE. R code uses dif-
ferent indexing, packages and syntax to Python, meaning interpreting commands from
both Python and R in the same script requires the use of additional tools. The RPy

function allowed the execution of R code in Python in the form of string packets for-
warded to a concurrent instance of an R console, that compiled the string and returned
data to the Python console. The resulting image arrays were parsed to the rest of
the script, similar to any other modular image processing tool previously developed in
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(a) (b)

(c) (d)

Figure 6.4.15: Results of median of differences (MoD) and Otsu’s threshold-based row alignment, top row of two
images, followed by subsequent spline and polynomial detrending for different degrees of freedom within R for four
different AFM images in the test set.
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Figure 6.4.16: Image histograms of four different regions on a surface, the straight black line shows the threshold
value calculated by height-based threshold, while the curved red line shows the adaptive segmentation approach of
flexmix.

Python. Remote execution has been shown to have some limitations, such as memory
leaks with more strenuous usage such as with the proposed Otsu’s aligner, otherwise,
the potential image processing tools within R could be considered as readily available
as the tools in Python.

After visual and statistical inspection of all images in the test set detrended within R,
the polynomial background detrender with two degrees of freedom in both the x and y
directions was settled upon as the optimal parameters for the image of nanostructures
of the most interest. Similar to other detrending algorithms, over-fitting to large
regions of uninterrupted surface or nanoparticle phase on nanostructure images is
still a common occurrence. This method could still replace the current background
detrending approach in the finalised pre-processing script. Despite its strong statistical
basis, the current version of flexmix was not considered alongside the segmentation
methods proposed by Farley et al. The tool is not suited for a data set of images with
such high diversity in noise features and nanoparticle feature lengths.

6.4.6 Pre-processing data queries

With the processing algorithms in their final states, a final feature was written that
allowed for direct user requests of specific images via a CSV of file names. This was
motivated by the work of Farley et al., who, using nanoparticle images from the historic
data set pre-processed using Gwyddion, had recorded visual descriptions, including the
original file name, nanoparticle pattern category and noise features, in a spreadsheet
with the purpose of testing segmentation methods. It was proposed that all images
described in the spreadsheet be pre-processed by the Python script.

153



6.5 Summary

The data querying algorithm used a dataframe manipulation library, pandas, to parse
the spreadsheet in Python, which first saved the column of file names to an array
of strings. Over a loop, each file name string in term was, using the os module
which could search all directories and subdirectories, searched for within an external
storage device which contained the historic data, returning the full path of all IBW
files that matched the file name. Similar to the directory screening code, each match
is pre-processed, row-aligned by median of differences and background detrended by a
polynomial fit, and the resulting images were saved as PNGs in a designated folder.

6.5 Summary

The resulting script adapted for usage with the historic data set is attached in Appendix
C and described by the flowchart in Figure 6.5.1. A folder of pre-processed images
based on requested file names in the historic data set was forwarded to Farley et al.
and Gordon et al. for use in published work8,9. Farley et al. provided a spreadsheet of
requested AFM images of known pattern types with visual descriptions, the raw AFM
file name column of the sheet was used to query the external storage device which
contained all the historic data, with any found files being pre-processed and saved to
a secondary external storage device as generic image files. Farley et al. segmented the
resulting images via a U-Net8, followed by Gordon et al.’s post-processing script9 to
further denoise the now binary images. The images, now indistinguishable from those
produced by Monte Carlo methods, were incorporated in Gordon et al.’s test set for
a convolutional neural network, previously trained on simulated data provided by the
Rabani et al. model.9

Some resulting images from that over 1000 image set are shown in Figure 6.5.2. The
chosen row aligner and background detrender were the optimal choices from among
those tested, the median of differences row aligner developed in Python, and the
polynomial background detrender developed in R. Though there are still cases of pre-
processed images that presented both inherent noise, the combination minimised the
misclassification rate, defined by each image histogram, to a satisfactory degree across
all images. This meant segmentation methods chosen by the groups in receipt were
highly effective at distinguishing the surface and nanoparticle phases with minimal in-
formation loss. Some tip event-induced noise, be it partially or across the entire slow
scan direction, would require denoising on an individual image basis. Tackling individ-
ualised image noise is beyond the scope of mass processing, and the introduction of
minor corruption into the machine learning is negligible.

Nanostructure images can have a majority of their noise removed by two statistical
steps, that are both modular in nature. Each method tested for both steps had its
own individual merits, and could supplant the final ones chosen for the nanoparticle
image historic data set when using other nanostructure images, providing the ability
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Figure 6.5.1: Flowchart showing framework of image mass pre-processing code used for data queries involving the
historic data set of gold nanoparticle AFM images.
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Figure 6.5.2: Images pre-processed by the finalised code in Figure 6.5.1.

to adapt to the data set provided. The screening tools detect corruption common
enough amongst SPM for use across all AFM images. Similarly, the background de-
trenders all had multiple parameters provided by the user, such as degrees of freedom
or EM threshold, all further lending to the flexibility of the tools for implementation
of mass-processing other data sets of nanostructure images.

The adaptation to multi-population images quickly led to their necessity. The code was
much more effective at pre-processing images with non-periodic nanostructures with
sub-monolayer coverage across all rows. Large nanostructures with flat regions that
occupied more than 10% of the image would frequently be over-fitted by polynomial-
based detrenders, while overwhelming majority row coverage of either the surface or
nanoparticle phase could result in major discontinuities produced by the single-statistic
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6 AUTOMATING NANOSTRUCTURE DISCOVERY IN SPM DATA

row aligners. While median of differences row alignment was shown to minimise the
frequency of induced row-by-row discontinuities, this was the major compromise for
producing image pre-processing software that was sensitive to nanostructures while
not compromising image statistics.

There were some avenues left unexplored. Multiple images in the historic data set
exhibited third layer effects, with all images both pre-processed and containing a third
layer noted within the dataframe. Segmentation to isolate the third layer of all was
relatively simple and consistent using Otsu’s threshold, followed by a morphological
opening operation to split some observed clusters. The third layer could then be
regarded as particles, and could be used for point particle modelling and analysis.
The FFT solving tools developed in Subsection 3.3.5 could be deployed on processed
nanoparticle images.

A large historic data set of seven years’ worth of raw nanoparticle AFM images was
data-mined over ten years later. Images were utilised in modern machine learning
analysis by mass-processing software tailored towards the data presented, all while
developing and evaluating multiple pre-processing tools for the versatile treatment of
other data sets of nanostructure images. Visually-simple images presented complex
statistics, leading to a broad exploration of image processing and data science tech-
niques across multiple programming languages.
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7 Depositions of Photoactive Molecular Dyads

An inevitable and exciting part of nanoscience is being the first to study and report
on new materials through the unique lenses provided by the field. The new organic
material, in this case, was synthesised, purified and characterised entirely within the
Champness Group at the University of Birmingham. Molecular dyads formed of naph-
thalene diimide (NDI) and phenothiazine (PTZ) were investigated due to their capacity
for mimicking photosynthetic solar energy transduction, leading to the consideration
of further study within the Nottingham Nanoscience Group and Nanoscale and Mi-
croscale Research Centre. Systematic study of the dyads focusing on concentration,
deposition techniques, substrate and sample preparation formed the basis of newer
research. Scanning probe experiments, conducted and proposed, involving the ma-
terial provided a short project, acting as a learning tool for surface preparation and
experimental design under ambient conditions. The lessons play a major role in future
dewetting experiments, particularly in terms of solvent behaviour at the microscale.

7.1 Background

Research into artificial photosynthesis aims to recreate the biological process for con-
verting solar radiation into store-able energy at high efficiency and low cost through
synthetic means. Products of photocatalytic water and carbon dioxide splitting act
as fuel, allowing for the chemical storage of solar energy. Photoelectrochemical cells
(PECs) based on semiconductors (most notably TiO2) contain modules for light har-
vesting, water oxidation and proton reduction, all necessary for creating these fuels,
hence mimicking natural photosynthesis. Photovoltaic cells (PVs) take a similar role,
instead converting solar energy directly to electrical energy as opposed to chemical
energy in fuel.250–253

Molecular dyads are consistently suggested as a future role player within both these
cells250,254,255. Photoinduced electron transfer (PET) across a covalently linked elec-
tron donor-acceptor complex is of great interest for applications in artificial photosyn-
thesis. Chromophore-catalyst dyad molecules anchored onto semiconductor surfaces
take the role of a photo-anode within a PEC while donor-acceptor dyads replace the
role of bulk heterojunctions (BHJ) within PVs251,256. Donor-acceptor dyad molecules
circumvent the physical fine-tuning of complex BHJ interactions in PVs, allowing
this fine-tuning to occur more meticulously on the synthesis side257. Designing dyad
molecules for these roles means experimentation with the donor-bridge-acceptor sys-
tems (DBAs), various studies have been conducted with a focus on each component
within this system.258–260

The work by Pearce et al.261 on dyads constituent of naphthalene diimide (NDI) and
phenothiazine (PTZ) bridged by a phenyl spacer262 within the domestic School of
Chemistry acts as a precursor to this project. Polycyclic aromatic hydrocarbon diimide
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7 DEPOSITIONS OF PHOTOACTIVE MOLECULAR DYADS

derivatives as an electron acceptor and phenothiazine as an electron donor are not
new concepts, but little previous study into the dyad exists. NDI was chosen due
to previous success changing its redox properties through thionation, while PTZ is a
well-studied donor in analogous systems investigating PET258–260,263. The in-depth
electrochemical characterisation of the dyad and its thionated derivatives in the study
demonstrate observable variations in parameters important for applications within ar-
tificial photosynthesis. The acceptor moiety offers a systematic approach to tuning
the DBA through thionation with Lawesson’s reagent, shown in Figure 7.2.1. It was
shown increasing degrees of thionation of the NDI moiety reduced the HOMO-LUMO
energy gap. A decrease in energy gap size has been shown to affect the light harvest-
ing capacity of the dyads and increase the output voltage within PVs utilising dyad
molecules257. This previous study of naphthalene diimide phenyl-phenothiazine dyads
(NDP) offers a foundation for conceptualised scanning probe measurements during
this project.

Figure 7.1.1: Chemical structure of naphthalene diimide phenyl-phenothiazine, referred to as NDP or NDIS0-PTZ
throughout the literature.

The bridge between the donor and acceptor moieties has been shown to significantly
affect the charge transfer time. Chosen donor and acceptor moieties also have an
effect due to their impact on crystal packing, for example, the alkyl chain on NDI
in NDP affects the dyad’s planarity and hence photovoltaic performance. Electron
transfer time has been studied using a combination of nano and picosecond region
transient absorption spectroscopy and time resolved and steady state fluorescence
spectroscopy on dyads using various bridges. The phenyl spacer within NDP lies on a
plane perpendicular to the rest of the dyad molecule, affecting charge transfer proper-
ties twofold.251,258,264

Fluorescence and other spectra in the referenced material were commonly recorded
from solution. The project’s goal, however, is measurements in situ on a substrate
alongside SPM. Collecting superimposed light spectra consisting of spectra for each
NDP species with varying degrees of thionation is possible, though SPM could mea-
sure light emission from single dyad molecules or speculatively individual bonds261,265.
Studies into tip-induced luminescence, electroluminescence, from single molecules re-
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ported LED-like behaviour governed by a voltage drop between the molecule and
substrate. In these cases, STM tip-molecule junctions induce light emission when the
voltage drop at the junction exceeds the voltage drop between the molecule and sub-
strate, allowing scanning tunnelling microscopy light emission (STM-LE) spectra to
be recorded266,267. Recent atomic force microscopy advancements allow for potential
viewing of molecular orbitals and variations in charge density under ultra high vacuum
conditions. This could be compared to density functional theory calculations previously
taken of NDP, adapted for substrate-deposited NDP or light-stimulated NDP.261,268,269

Experimental design of the systematic study of NDP upon surfaces was highly influ-
enced by concurrent investigations of the influence of the substrate on the fluorescence
of adsorbed organic molecules265,270,271. PTCDI, PTCDA, TCPP and free-base ph-
thalocyanine upon hexagonal boron nitride (hBN) were studied and offered a potential
source of analogies to NDP. The works concluded with hypothesised resonant and
non-resonant effects272–275 on the spectra, commonly red-shifted270, predicted and
calculated by time-dependent modelling. A non-resonant interaction induces a direct
shift in molecular energy levels due to substrate adsorption270,271. This includes by a
change in molecular conformation, the case of the investigation of TCPP by Korolkov
et al.265 arising by van der Waals interactions, through the presence of permanent
dipoles or other mechanisms. Fluorescence spectra and time-dependent modelling
upon PTCDA-hBN showed the presence of dielectric hBN substrate leads to reduction
of the HOMO-LUMO gap and weakening of the electron-hole interaction271. Com-
pared to a PTCDA molecule in a gas phase, these red-shifting sources are independent
of shifts due to the presence of a permanent dipole, attributed to PTCDA’s high sym-
metry and planar appearance, and negligible distortion upon the substrate.271

Red-shifts in monolayer coverage of these molecules do not discount the resonant and
non-resonant effects induced by neighbouring molecules, informed primarily by SPM
images. The works place a significant emphasis on monolayer coverage and often the
periodic appearance of the organic molecules upon the surface. The systematic in-
crease in red-shift was strongly correlated to the refractive index of the surface, while
neighbouring molecules’ contribution to the increase was much less, typically by an
order of magnitude.

These findings informed the early experimental design of systematic study with NDP.
The chromatic shifts observed in preceding work265,270,271 were highly dependent on
substrate, leading to considerations of all readily available substrates for deposition.
SiO2/Si(100), SiO2/Si(111), hBN/Si, HOPG, gold on mica, and black phosphorus
were all considered. Still, silicon and exfoliated hBN upon silicon were the most suit-
able, due to ease of spin-casting and visibility upon them.

Significant demand is placed on sub-monolayer coverage for both fluorescence measure-
ments and proposed tip-molecule interactions. The majority of experiments focused
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7 DEPOSITIONS OF PHOTOACTIVE MOLECULAR DYADS

on preparing samples of different deposition techniques, substrates, solvents and con-
centrations, with the goal of sub-monolayer of NDP upon the substrate. This came
with some challenges in ambient conditions, first, it was unwise to consider NDP
as a 2D molecule while considering its morphology as an adsorbate. The deposited
appearance of perylene derivatives PTCDI and PTCDA does not help deduce this,
due to the arrangement of NDP in 3D space. Unlike naphthalene diimide (NDI) or
perylene diimide (PDI), the PTZ moiety modifies the hypothetical crystal packing in
multiple ways, demonstrated theoretically in Figure 7.1.2. Figure 7.1.2(a) and (b)
shows NDP’s molecular structure before, when loaded from ChemDraw, and after a
molecular mechanics-based geometry optimisation script was run upon NDP in gas
phase. The script, run in Avogadro, utilised a universal force field at 300K. Consid-
eration of local forces causes the phenyl spacer to become perpendicular and PTZ to
buckle due to the presence of sulphur. This results in lower affinity for π-π stacking
among neighbouring molecules compared to the discussed perylene derivatives. Com-
bined with the reduction in symmetry, the result is slipped stacking of molecules, with
PTZ positioned adjacent to neighbouring NDI, asserted by previous single crystal x-ray
diffraction results261 shown in Figure 7.1.2(c).

(b)

(c)

(a)

Figure 7.1.2: Informed predictions of NDP bulk crystal arrangement. (a) 2D arrangement NDP displayed in Atomic
Simulations Environment (ASE) in Python from two different angles. (b) Predicted 3D arrangement of NDP in ASE
after a 3D geometry optimisation script in Avogadro. (c) Predicted packing arrangement attained from single crystal
x-ray diffraction data by Pearce et al. 261.

161



7.2 Synthesis and sample preparation

7.2 Synthesis and sample preparation

One of the project’s initial goals was to acquire familiarity with the synthesis, purifi-
cation and characterisation of NDP in the domestic School of Chemistry. This would
involve synthesis of the molecular dyad starting from its constituent moieties, and pu-
rifying the resulting crude reaction mixture to acquire the solid non-thionated product.
This was done while consistently characterising the products at different stages, by a
combination of thin-layer chromatography (TLC), nuclear magnetic resonance (NMR)
spectroscopy, time of flight mass spectrometry (ToFMS) and visual inspection, and
comparing the results to that of pure or hypothetical product.

NDP is a 1:1 dyad synthesisable from 2 reagents that form its moieties and phenyl
spacer. The dashed box in Figure 7.2.1 encloses the reaction required for synthesis.
Naphthalene monoimide (NMI) and 4-aminophenyl-phenothiazine (Ph-PTZ) are made
to covalently bond by substitution, giving water as a byproduct. The conditions for
this reaction were met using a low pressure line fed to a multi-neck flask inside a con-
ductive heat sheath rested on a magnetic heat plate. The weighed dry reagents, NMI,
an excess of Ph-PTZ, and imidazole were heated to 130 ◦C with a target pressure set
to 2.2 mbar for 8 hours. The resulting crude reaction mixture was washed out of the
flask within an ultrasonic bath using a combination of chloroform and hydrochloric acid.

Figure 7.2.1: Chemical reactions for formation of NDP (labelled NDIS0-PTZ here) and its thionated derivatives.

The crude reaction mixture is made to settle within a separator funnel. The mixture
separates into a majority-product section at the bottom and a majority-solvent section
at the top. The bottom part is collected in a beaker, and the rest is disposed of.
This process continues multiple times to separate more solvent from the solid mixture,
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including washes of water, and brine, and then finally magnesium sulphate is added as
a desiccant to remove the water. The resulting hydrated solid magnesium sulphate is
filtered out using filter paper and the reaction mixture is carried forward, taking some
aside for characterisation.

Thin-layer chromatography (TLC) in acetone of both the reaction mixture and pure
product dissolved in chloroform reveals the reaction mixture contains the pure prod-
uct and some impurities. These impurities are expected to be imidazole, unreacted
reagents and (NMI)2. The impure mixture was also characterised using MALDI time
of flight mass spectrometry (ToFMS), using DCTB as the matrix. Figure 7.2.2(a) dis-
plays a high intensity negative ion peak, and smaller peaks for low abundance carbon
isotopes, centred on the molecular mass of NDP confirm its presence in the mixture.
The molecular mass (Mr) embedded is slightly off due to lack of calibration.

Excess solvent was removed using a rotary evaporator, and the resulting impure solid
was dissolved in clean chloroform. The impurities were then removed using a chro-
matography column. The solution splits into bands through the silica-chloroform solu-
tion, and the solution collected from each band as it reaches the valve on the column
was tested with TLC against the pure product. The band with the TLC comparable
to the pure product was put through the rotary evaporator to acquire the pure product.

Once again, the product was characterised; first by eye, as the solid is expected to be a
blue powder and colourless in solution, and secondly using nuclear magnetic resonance
(NMR) spectra from solution. The NMR spectrum can be compared to a simulated
spectrum generated from NDP’s chemical structure and hence, proton locations on
the dyad. The structure was successfully verified using proton NMR, compared to the
estimated chemical shifts in ChemDraw, the spectra are shown in 7.2.2(b).

Depositions in ambient conditions were all performed on a wafer from a precut sheet
of Si(100) with a pregrown native 90 nm thick SiO2 layer, where individual tiles were
cut to 10 mm x 10 mm x 400 µm. The cut silicon wafers were solvent cleaned using
the standard method from Subsection 2.5.2. Hexagonal boron nitride (hBN) was de-
posited onto a small portion of a similarly prepared Si(111) wafer, with a 4 - 25 4-25
µm thick SiO2 layer, using the exfoliation method described in Subsection 2.5.3.

All NDP was deposited from solution onto the silicon wafer in two ways, with results
compared. The solution for both was prepared by dissolving weighed NDP in toluene.
Toluene is a non-polar solvent volatile enough to dewet from the silicon at room tem-
perature. NDP-toluene solutions formed a colourless solution that remained stable at
room temperature for three months, by which time, visible insoluble blue crystals had
aggregated and no longer dissolved in solution. Concentrations in the range of 0.7 g/l
to 4.6 g/l were tested. The minimum of the range reflects the lowest concentration at
which deposited crystals were visible with the MFP-3D camera, while the maximum
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Figure 7.2.2: Characterisation spectra produced during the synthesis of NDP. (a) MALDI time of flight mass spectrum
of negative ions within an NDP crude reaction mixture in chloroform using a DCTB matrix, with a relative intensity
peak table embedded. (b) Proton nuclear magnetic resonance spectrum of purified NDP in chloroform, with the
predicted chemical shifts of protons calculated in ChemDraw embedded.

Si(100)
SiO2 (90nm±10%)

hBN (50nm±50%)
NDP (2nm±50%)

Si(100)
SiO2 (90nm±10%)

NDP (200nm±50%)

Figure 7.2.3: 3D surface arrangements of NDP samples prepared for AFM, including observed layer heights.
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concentration in the range marks the point of saturation.

The first, and in theory, most simple approach to deposition was a dip coating method.
The individual cut wafers were dipped perpendicularly, held by tweezers into the solu-
tion, then removed and held flat to let the toluene leave the surface. The immersion
times were between 10 and 100 seconds, with a withdrawal time for all wafers of half
a second. This was conducted for all concentrations of NDP-toluene solution in the
aforementioned range, after which the surface was optimally immediately probed with
an optical microscope and AFM. Figures 7.3.1(a-c) and 7.3.3(a-b) all utilised this ap-
proach.

Demand for thin films without visible drying lines introduced the use of a spin-coater.
NDP-toluene solution was pipetted onto vacuum-held, clean, 1 x 1 cm2 wafers of
silicon or hBN-layered silicon until the meniscus entirely filled the surface, then spun
up to 2.5 krpm at 1 krpm/s with a 10 second dwell time. The resulting surface was
optimally immediately probed with an optical microscope and AFM.

Early stages of systematic study of solution-deposited NDP on silicon wafers placed
significant emphasis on preventative measures for impurity-induced aggregation. AFM
scan sizes for the initial sample were often of the order of 10s of microns, with ag-
gregated NDP deposits measuring as high as 300 nm. Discrete profiling of NDP
aggregates in this configuration also meant the tip was inherently highly susceptible
to surface debris. The growth of high-quality thin films without contaminants meant
changes to sample preparation. This included changing the solvent from ACS to
HPLC-grade toluene, and changes to the cleaning method. While the solvent cleaning
method from Subsection 2.5.2 became standard procedure for newly cut wafers, sub-
sequent plasma cleaning was also added to the workflow for non-hBN-layered silicon.
Plasma removes all traces of organic matter while leaving no residue. The cut, solvent-
cleaned wafers are etched in 25/75% oxygen/argon plasma in a plasma oven at vacuum
pressure for 15 minutes. NDP in HPLC-grade toluene was then accordingly deposited
with different methods and different concentrations onto each plasma-cleaned wafer.

The prepared samples could generally be described as those in Figure 7.2.3. All AFM
measurements were taken with the Asylum Research MFP-3D system.

7.3 NDP on SiO2/Si(100) and hBN/Si(111)

Figure 7.3.1 shows the various morphologies among tested deposition methods and
concentrations upon native oxide-terminated silicon. Despite significant diversity among
these AFM images, there is some observable conformity. The deposited NDP takes on
two simultaneous phases, relatively large ribbon-like nanocrystals that self-assemble
and aggregate upon the surface, and uniform thickness monolayers that are grain-
like towards the edges, with holes throughout, and have no clear overlapping grains.
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Figure 7.3.1: Tapping mode AFM images of naphthalene diimide phenyl-phenothiazine deposited from toluene solution
on 1 x 1 cm2 SiO2/Si(100). (a) 100s dip-coat in 0.73 g/l; (b) 10s dip-coat in 4.63 g/l; (c) 70s dip-coat in 0.73 g/l;
(d) 1.97 g/l spin-cast; (e) 1.50 g/l spin-cast; (f) 4.60 g/l spin-cast; (g) 15 hour submersion in 0.87 g/l; (h) 15 hour
submersion in 1.50 g/l; (i) 1.97 g/l spin-cast.

Grains provided up to 98% monolayer coverage, of highly uniform thickness 3.0±0.2
nm. There were often holes in the monolayer, like those in (c), derived from the limited
intrinsic degrees of freedom caused by the shape of the nanocrystalline grains. The
monolayer phase was often disrupted by a denuded perimeter around the ribbon phase
aggregates, visible in (e) and (i).

The ribbon phase, most visible as an individual ribbon in 7.3.1(a), or aggregates in
7.3.1(g), appears consistently on the silicon surface. During dip coating, the ribbons
arrange heavily upon the drying lines, like that in (b), that are often thick enough to
be visible to the naked eye. The shape is not a uniform 3D cylinder, the individual
ribbons in (g), the product of soaking the silicon wafer in a 0.87 g/l concentration
NDP-toluene solution overnight, had an average length of 554±200 nm along their
major axes, 78±30 nm on the minor axes, and were 14.8±2.0 nm thick. The result
is ribbons that preferentially lie flat upon the surface. The sizes of all images of NDP
on SiO2/Si(100) exhibiting a clear ribbon-like phase are plotted in Figure 7.3.2. There
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was little observed correlation between the concentration of NDP in toluene and the
observed spread in ribbon sizes and major-to-minor axis ratios across the chosen con-
centration range. Preparation by overnight submersion returned a more consistent
spread in axis ratio, as well as larger maximum ribbon sizes and average axis ratios,
than those prepared by spin-coating.

Figure 7.3.2: Size distribution of long crystalline phases of substrate-deposited NDP as observed in Figures 7.3.1 and
7.3.3.

Though the grains that form the monolayer are isotropic, in some cases, the ribbons
have an orientation dependence on that of neighbouring ribbons during aggregation.
7.3.1(d), (e) and (i) exhibit dendrite-like aggregates, with widths on the same scale
as the observed lengths of the ribbons. This implies formation by lateral stacking of
parallel major axis to major axis ribbons to form a branching superstructure upon to
3 µm long. Similar superstructures observed for perylene crystals276,277 are explained
by spatial and chemical inhibition of crystal growth. This is in agreement with spatial
inhibition during self-organisation observed in the enclosed droplet in Figure 7.3.1(d).

A saturated solution was also investigated, by which NDP was added to toluene until it
no longer fully dissolved into the resulting clear solution. 7.3.1(f) shows the saturated
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4.6 g/l NDP in toluene solution, spin-casted onto the silicon substrate and probed
with AFM. What resembles an intermediate phase between the ribbon and monolayer
phases is present. The second layered phase has a slighter lower average height of 2
nm, compared to the 3 nm monolayer phase, but is compromised of more distinctive
ribbon shapes that protrude upon the surface. The more distinctive ribbon aggregates
in the image have a thickness greater than 10 nm and take on a more oval appear-
ance. The oval-shaped aggregates are formed of parallel ribbons, but with a lower
average major axis length of 240±30 nm compared to other depositions. These ag-
gregates are potentially short-term aggregation of NDP left suspended post-saturation.

Observing two simultaneous phases of NDP necessitates discussing what potentially
separates the two phases. Similar molecules exhibit crystallisation into sub-micrometre
scale crystals that easily precipitate from solution. Aggregation of perylene diimide
(PDI) crystals in solution, often at the liquid-air boundary276, have a similar appear-
ance to the ribbon phase observed for NDP. Given their formation at drying lines,
ribbon-like NDP crystals may be imperfect crystal fragments, aggregating at similar
rates in solution. It is assumed the slipped π-π stacking in NDP powder observed by
Pearce et al.261, shown in 7.1.2(c), also occurs in the observed surface-bound phases.
The direction of stacking, however, is unknown and may be the distinguishing factor
for the two phases. Slipped π-π stacking in the direction of the major axis of ribbons
was observed for PTCDI-C8

278 while dialkyl-PDI exhibiting superstructures similar to
those in 7.3.1(d), (e) and (i), caused by kinetic inhibition277 similarly observed slipped
π-π stacking in the direction of the major axis. The grain-like phase constituting the
monolayer may be observations of π stacking in the direction of the substrate plane.279

Hexagonal boron nitride, discussed in Subsection 2.5.3, was the second considered
substrate. Its wide usage in preceding work265,270,271 was due to its inert nature, both
maximising van der Waals interactions with the planar molecules and minimising fluo-
rescent quenching. The high symmetry axis of the substrate could resolve hypothetical
difficulties with the parallel arrangement of the naphthalene or perylene group to the
surface, caused by NDP’s phenyl spacer, maximising potential ordering during mono-
layer coverage. This additionally facilitated future investigations of the correlation
between morphology and optical properties.

Deposited hBN flakes were typically between 10 and 90 nm high and 10 to 30 µm
across. Figure 7.3.3(c) shows a low dispersion of a secondary phase on top of the
monolayer phase, with an average major axis length 529±30 nm, but with an average
thickness of 2.3±0.2 nm, more similar to that of the first monolayer phase. The size
distributions for (c) and (d) are plotted alongside those for silicon in Figure 7.3.2.
The average major-to-minor axis ratio and percentage spread are consistent for both
concentrations. The first monolayer still adsorbed tightly to the surface, with a 2-3
nm height throughout, which could be mechanically removed with a closer contact
tip in contact mode AFM. AFM images of the SiO2 substrate surrounding the hBN
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Figure 7.3.3: Tapping mode AFM images of naphthalene diimide phenyl-phenothiazine deposited from toluene solution
on flakes of hexagonal boron nitride on 1 x 1 cm2 SiO2/Si(111) by spin-casting. (a-b) 10s dip-coat in 0.73 g/l; (c)
0.73 g/l spin-cast; (d) 1.97 g/l spin-cast.

flakes displayed the characteristic ribbon phase, the lack of a ribbon-like phase upon
hBN may be due to variance in absorption energy. The NDP-hBN surface had the
properties to grow a second layer, previous STM experiments upon crystalline perylene
derivatives on hBN271,280 assert a molecular arrangement, and π stacking, parallel to
the substrate plane. The surface energy of the grain-like monolayer phase of NDP upon
SiO2 layer does not afford the growth of a second layer, instead favouring aggregation
independent of the surface, similar to that in solution.

7.4 Conclusions on molecular dyad assemblies

Numerous surface morphologies of naphthalene diimide phenyl-phenothiazine by ad-
sorption on two different surfaces are observed via AFM. Deposited naphthalene di-
imide phenyl-phenothiazine exhibited two unique phases, and microscale superstruc-
tures were observed in the higher concentration range. Dissolved NDP formed a highly
stable thin film layer upon both substrates, with a second layer forming on high affin-
ity hexagonal boron nitride. The instability of NDP in toluene solution brings into
question the proportion of self-assembly of the ribbon aggregate phase manifests dur-
ing dewetting, yet the absence of the phase on hBN, as well as previously observed
self-assembly at liquid-air boundary276, suggests the rapid formation of ribbons in-
dependent of the surface during evaporation of the solvent. The AFM images were
consistent with other deposition studies of nanocrystals in related families of polycyclic
aromatic hydrocarbons within the Group and wider field, hence the NDI moiety plays
the leading role in the physical appearance.
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Though the far-from-equilibrium morphologies of NDP nanocrystals were evaluated,
the true molecular arrangement in each phase remains unknown. Molecular resolu-
tion imaging via SPM and x-ray measurements or other synchrotron approaches281

upon NDP could shed light on interplanar separation, unit cell, and molecular axis
with respect to the substrate. UV-visible spectrum fluorescence measurements from
deposited NDP, particularly layered NDP nanocrystals of different thicknesses to inves-
tigate transfer properties282 could be complemented by proposed sub-molecular single
photon collection via STM-LE. This would entail a proposed experimental setup with
optical access, previously conceived using combinations of mirrors, lenses, photodiodes
and optical fibre-based STM tips in situ. Such a setup could allow for the simultaneous
collection of topographical and electronic characterisation supplemented by electrolu-
minescence data collected from the tunnel junction, photon maps, emission, local
density of states and photon yield spectra, density of state maps, the second-order
correlation function and luminescence time response as part of the investigation of
NDP283. Such experiments would include the thionated derivatives of NDP, known to
be red-shifted by the sulphur substitutions on the NDI moiety.261

UHV experiments were continued elsewhere, due to low stability of NDP in solvent,
alongside changes in scope. Though questions are left unanswered, the study of NDP
helped inform upon the natural microscale to high-end nanoscale dewetting behaviour
of molecules dispersed in solution. This formed the early foundations for gold nanopar-
ticle dewetting study, which utilised similar spin-casting and substrate preparation pro-
cedures. Presently, a pathway from synthesis to early ambient surface characterisation
was demonstrated for a new material, as well as considerations for further steps in a
full surface investigation of NDP.
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8 Conclusions

8.1 Summary of Findings

The goal of chapter 4 was to expand both the parameter space in studies of passivated
gold nanoparticle dewetting patterns from thin film, and explore rigorous applications
of statistics to common nanostructure observables and data processing when measur-
ing with contemporary imaging techniques. The roles of the concentration of gold
nanoparticles in solution, local wettability gradients induced by large particulates and
the underlying surface roughness and chemistry were visually and statistically dis-
cussed. Despite being a fairly simple deposition experiment, the parameter space is
exceedingly wide, and yet to be fully explored. Increasing the concentration of the
octanethiol-functionalised gold nanoparticles in toluene solution and increasing the
roughness of the underlying surface slowed the dewetting process. The spin-casting
of higher concentrations stabilised the resulting thin film on the thermally-oxidised
Si(111) substrate, which in turn was likely nucleated by Maragoni convection and
spinodal dewetting. The increased roughness on top of small uniform heterogeneous
regions, grown on a very local level with a charged probe, acted to reduce the evap-
oration rate of solvent. These factors resulted in cellular dewetting patterns with an
increased average distance between neighbouring cell centres, as derived from Fourier
analysis and Voronoi tessellation mapping.

Fabricated surface heterogeneities provide an expansive domain for experimentation
with directed self-organisation of nanoparticles, while enhancing our fundamental un-
derstanding of the physics at play in a dewetting thin film. AFM study of co-deposited
and tip-induced heterogeneities suggest the features that rupture the film, such as
tall aggregates, induce a strong local wettability gradient centred upon them during
morphological evolution of the dewetting thin film, significantly diminishing the effects
of other surface heterogeneities. As the film thins further, the gradient competes with
the limiting factors in final pattern formation, resulting in strong transitions in pat-
tern type and correlation length along the wettability gradient, as observed by Fourier
analysis on residual gold nanoparticles and the underlying surface.

Monte Carlo method-based simulations continue to provide an unmatched simulation
of far-from-equilibrium gold nanoparticle dewetting. The Rabani et al. model, and new
modifications, effectively supported experimental observations, as well as the testing
of analytical software. Use of test sets of optimised simulated AFM images allowed
for expansive trials of a new software toolbox for Minkowski morphometry, Fourier
analysis, and Voronoi tessellation, during prolonged absence from a laboratory setting.
The performance of the Minkowski morphometry and Fourier analysis applications on
simulated data was compared with previously unexplored principal component analy-
sis. Clustering between the principal components of statistics extracted from images of
nanostructure assemblies by these methods offered a promising alternative mechanism
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whereby different image classes may be distinguished. PCA showed Minkowski metrics
exhibiting stronger clustering than Fourier analysis, and hence, was a stronger can-
didate for automated dewetting pattern classification. Fourier analysis found success
in evaluating the decay of “liquid” states and subsequent coarsening, closely tracking
the evolving Monte Carlo model in reciprocal space for numerous resulting dewetting
pattern types. Fourier analysis and Voronoi tessellations successfully extracted the
same correlation lengths from the dewetting patterns’ cellular geometry during the
systematic concentration study.

X-ray measurements upon endofullerenes adsorbed to a metal surface suggested ad-
sorption modified the electrostatic potential within the C60 cage. This in turn modified
the position of the encapsulated molecules, H2O and HF, relative to the Ag(111) sur-
face, calculated using the coherent position and coherent fraction data from NIXSW
measurements. Direct determination of the position of caged molecules is compli-
cated by bonding geometry between the fullerene and silver surface, reconciled with
Argand diagram analysis with experimental data, further molecular modelling, SPM
and LEED.58

Data-mining was highly fruitful, providing a foundational data set for the develop-
ment of published machine learning research into the categorisation and segmentation
of AFM images of gold nanoparticles dewetting patterns8,9, and future relationship
mining with the Rabani et al. model. Row alignment followed by background detrend-
ing removed the majority of the inherent noise in SPM. A combination of median of
differences-based row-alignment and polynomial background detrending minimised in-
formation loss and corruption when pre-processing raw multi-phase nanostructure AFM
data for machine learning applications. Segmentation code, supplemented by Farley’s
U-net model segmentation and Gordon’s denoising autoencoder, rendered AFM images
from the historic data set near-indistinguishable from those produced by the Rabani
et al. model, seamlessly integrating the simulated and real historic data.

A pathway from synthesis to early ambient surface characterisation of a new crystalline
molecular dyad is presented in Chapter 7. Naphthalene diimide phenyl-phenothiazine
(NDP) deposition experiments under ambient conditions were invaluable in establish-
ing the workflow for AuNP experiments. Surface morphologies observed in AFM were
visually consistent with other deposition studies of nanocrystals on silicon and hexag-
onal boron nitride in related families of polycyclic aromatic hydrocarbons within the
group and wider field, suggesting the naphthalene diimide moiety plays the leading
role in the physical appearance of the surface-bound dyad.

Current and newly explored statistical approaches to self-organised nanostructure study
are highly transferable. Fourier analysis code is written to be compatible with common
systems exhibiting periodic ordering. Mass image processing software is easily applied
to common formats of data banks of SPM data, and the primary pre-processing and
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segmentation algorithms are highly modular.

8.2 Further work

Avenues for further study of filled and empty fullerenes with x-ray measurements and
SPM are discussed in Section 5.4. Work begins to address substrate-deposited buck-
minsterfullerene in Chapter 4 and Appendix D in two very different studies. Atomic
resolution upon species-encapsulating C60 is necessary for single-point AFM force spec-
troscopy, which would accompany NIXSW measurements58. C60-AuNP co-depositions
returned unique and highly complex patterning. While providing visual evidence of
coalescence phenomena by the favourability of clear distinctive boundaries between
pattern types, images were too complex to assign further meaningful statistics. More
rigorous experiments would require the fixing of the positions of similar particles on
the substrate before or during deposition. This could be supplemented by new genetic
algorithms by means of modifications to the Rabani et al. model to include stalagmite-
like heterogeneities with wettability gradients centred around them.

More confident applications of PCA to utilise Minkowski morphometry as a classi-
fication method would require reevaluating how to impose scale-invariance on the
Minkowski metrics. Fourier analysis could not identify any individual correlations across
the whole parameter range between input parameters in the Rabani et al. model and
the appearance of the PSD of a final stable frame of simulated dewetting. A far larger
data set consisting of either all pattern morphologies or a single morphology after any
coarsening has occurred, combined with the PCA, could provide more answers. Testing
of presented open-source tools for Fourier analysis on similar periodic systems, such as
polymers, polymer blends and biomaterials, could also be considered. This could also
include point particle modelling and analysis of third layer effects identified in new and
data-mined dewetting pattern AFM data.

Scanning probe lithography by AFM tip-induced oxidation provided a source of highly
localised deviations in surface roughness and surface chemistry. Despite controlling
the humidity and scan speed, and performing all chemical etching in the same batch,
it was still challenging to control the roughness of the newly formed oxide layer. It is
difficult to control the true tip apex-substrate separation, and the tip condition would
change varying degrees throughout the invasive oxidation process. This would also
require either a means of modifying the transient roughness value derived from the
PSD such to be comparative value between samples, or a standardised set of AFM
parameters and resolution limits for measuring roughness. If these are achieved, an
extension of the parameter space into higher roughness or smoothness and the effects
upon dewetting patterns could be of great benefit, particularly alongside a move to
fabricate nanodevices, potentially evaluated with electrical transport.

Further steps in the study of naphthalene diimide phenyl-phenothiazine are discussed
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in Section 7.4. Additionally, different deposition methods, substrates, solvents, and
the degrees of thionation proposed in the original work, would help characterise the
effects of each crystal growth mode. Electrospray deposition of NDP into UHV for
STM experiments was planned, with a future pathway to STM-LE.
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U. Nagel, T. Rõõm, M. Carravetta, M. H. Levitt, and R. J. Whitby, “The dipolar
endofullerene HF@C60,” Nature Chemistry, vol. 8, pp. 953–957, 10 2016.

[215] C. Beduz, M. Carravetta, J. Y.-C. Chen, M. Concistre, M. Denning, M. Frunzi,
A. J. Horsewill, O. G. Johannessen, R. Lawler, X. Lei, M. H. Levitt, Y. Li,
S. Mamone, Y. Murata, U. Nagel, T. Nishida, J. Ollivier, S. Rols, T. Room,
R. Sarkar, N. J. Turro, and Y. Yang, “Quantum rotation of ortho and para-
water encapsulated in a fullerene cage,” Proceedings of the National Academy
of Sciences, vol. 109, pp. 12894–12898, 8 2012.
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Āp Average particle area

q (Peak) wave vector

hrms Root mean square roughness

∆q Shift in peak wave vector

∆%hrms Percentage change in root mean square roughness

Cov(x, y) Covariance between variable x and y

A Hamaker constant

PCX Xth principal component

MT Transpose of matrix M

Mr Molecular mass

Image Segmentation

pnew Normalised pixel value

p Original pixel value

pmin Minimum pixel value in image

pmax Maximum pixel value in image

σ Standard deviation

σX Threshold value of segmentation method X

σW Within class variance

209



LIST OF SYMBOLS & NOMENCLATURE

σB Between class variance

Wb Weighting of background modal peak

µb Mean of background modal peak

Wf Weighting of foreground modal peak

µf Mean of foreground modal peak

210



A FFT-BASED COARSENING ANALYSIS SCRIPT

A FFT-based coarsening analysis script

# Fast Fourier Transform Power Spectral Density code adapted to look at
# different runs of Monte Carlo simulations of gold nanoparticle dewetting
# from the Farley test set to plot the shift in peak of the PSD via
# coarsening. Also returns a gif of how the radially averaged 1D FFT spectra
# change with the simulation on request .

import os
import numpy as np
import matplotlib. pyplot as plt
from scipy import fftpack
import re
import pylab as py
import imageio

# From the folder structure , select the type of pattern and the run number,
# edit these accordingly
selected type = 3 # 0’ Cellular ’, 1’ Fingering ’, 2’Holes ’, 3’ Islands ’,
# 4’Labyrinthine ’, 5’Worm−like’
selected run = 2
remove liquid = 1 # Make it so the liquid isn ’ t present by making liquid
# states = substrate states for the FFT
save movie = 0 # Save a gif of the coarsening , saving the subplots to a
# movie folder
image size = 20 # Provide the image size in microns

sim plot = 0 # Used for plotting some PSDs on the same graph, for figure
# production

# Change the 4 frames if necessary , the current frames chosen happen to be
# quintessential phases
# The default frames for (type,run) are as follows , graph in is the starting
# index for the plot (to avoid leakage)
# Fingering 2 (1,2): 420, 2920,3820, 5500, 3:230
# Islands 2 (3,2): 140, 240, 1080, 1500, 8:230
# Worm−like 2 (5,2): 140, 520, 720, 1000, 8
if selected type == 1:

selected frames = [420, 2920, 3820, 5500]
graph in = 3

elif selected type == 3:
selected frames = [140,240,1080,1500]
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graph in = 8
elif selected type == 5:

selected frames = [140, 520, 720, 1000]
graph in = 8

height = 0 # Dummy starting variable for tracking PSD peak height

psd1D sim plot = np.zeros((len( selected frames ), 362)) # 362 is the number
# of values in the x array for the sim plot
i=−1 # Counter for the simultaneous plot

# Sets the thickness and sizes of elements in the plotsFFT Frame crop.py
line = 0.7
marker = 3

# Find the chosen folder
type = [’ Cellular ’ , ’ Fingering ’ , ’Holes’ , ’ Islands ’ , ’ Labyrinthine ’ ,

’Worm like’]
type dir = r’Frame Data/’ + type[selected type] + ’/’ + str( selected run )\

+ ’/’

# Define a function that converts PNGs to grayscale arrays
def rgb2gray(rgb):

return np.dot(rgb [..., :3], [0.299, 0.587, 0.144])

# Define a function that calculates the radially averaged profile of a 2D
# power spectrum
def radial profile2 (data, center=None, binning=2):

y, x = np. indices ((data.shape)) # first determine radii of all pixels

if not center :
center = np.array ([( x.max() − x.min()) / 2.0, (x.max() − x.min())

/ 2.0])

r = np.sqrt((x − center [0]) ∗∗ 2 + (y − center [1]) ∗∗ 2)

# radius of the image.
r max = np.max(r)
bin no = np.rint (r max/binning).astype( int)
ring brightness , radius = np.histogram(r, weights=data, bins=bin no)
return ring brightness
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A FFT-BASED COARSENING ANALYSIS SCRIPT

# Define a function that sets an image numpy array’s values to be between 0
# and 1
def normalise( array ):

norm array = (array−np.min(array))\
/ (np.max(array)−np.min(array))

return norm array

# Look into the folder for all images that are PNGs
files = os. listdir ( type dir )
files png = [i for i in files if i .endswith(’ .png’)]

# Write a file name RegEx that all file names take to extract the data from
# the file name
re input = re.compile(’ outfile C (?P<C>\d+) ’

’kT(?P<kT>\d+) MR1 mu0(?P<mu0>\d+) ’
’muf15 vus75 sig01 L1024 m(?P<m>\d+) ’
’IC.png’)

print( ’ Sorting files ... ’ )
# Sort images in order of monte carlo steps , m
steps = list ([]) # Make an empty array for sorting
for j in files png :

image name = j
match = re input.match(image name)
m = match.group(’m’)
steps .append(int(m))

steps sort = np.argsort(steps)

print( ’ Calculating power spectra ... ’ )
# In the calculated order , start the loop
for index in steps sort :

# Load the image location
image name = files png[index ]
image loc = type dir + image name

# Use the RegEx to find the value of m from the file name
match = re input.match(image name)
m = match.group(’m’)

# Load the image from location then convert it to grayscale then
# normalise
image = plt.imread(image loc)

213



image gray = normalise(rgb2gray(image))

# Convert the array such that the liquid isn ’ t presence , if requested
if remove liquid == 1:

image gray[image gray > 0.9] = 0 # Sets the liquid layer to 0
image gray = (image gray > 0.5).astype( int) # Sets the nanoparticle
# layer to 1

# Take the 2D Fourier transform of the image.
F1 = fftpack. fft2 (image gray)

# Now shift the quadrants around so that low spatial frequencies are in
# the center of the 2D fourier transformed image.
F2 = fftpack. fftshift (F1)

# Calculate a 2D power spectrum
psd2D = np.abs(F2) ∗∗ 2

# Calculate the radially averaged 1D power spectrum
psd1D = radial profile2 (psd2D)

# Save the spectrum’s peak index
height = np.append(height, np.max([psd1D[5:255]]))

# Calculate the x−axis in per−micron
x, y = image gray.shape
# Use Pythagoras to work out the furthest radius on the image for the
# sake of cropping
horz = np.linspace (0, np. sqrt ((x / 2) ∗∗ 2 + (y / 2) ∗∗ 2), 362)\

/ image size

# Plot the 1D power spectrum in a log plot
py. figure (1)
py. clf ()
py.semilogy(horz [:255], psd1D[:255], label=’FFT’, lw=line)
py. xlabel ( ’Wavevector /$\u03BCmˆ{−1}$’)
py. ylabel ( ’Power Spectrum’)
# py.legend(loc=”best”, fontsize=’xx−small’)

# Save both the figure and grayscale image to the results folder
# res/frame/
fig sav loc = r’ res/frame/’ + type[selected type ] + ’ ’\

+ str( selected run ) + ’ 1DFFT m’ + m + ’.png’
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img sav loc = r’ res/frame/’ + type[selected type ] + ’ ’\
+ str( selected run ) + ’ IMG l’ + str( remove liquid)\
+ ’ m’ + m + ’.png’

py. savefig ( fig sav loc , dpi=300)
py.imsave(img sav loc , image gray, dpi=300, cmap=py.cm.gray)

print(m)

# Save the spectrum at the selected frames
if sim plot == 1 and int(m) in selected frames:

i+=1
print( ’Appending... ’ )
psd1D sim plot[ i ] = psd1D
# py.figure (3)

# Make and save subplots for the gif
if save movie == 1:

py. figure (2)
py. clf ()
py. subplot (1, 2, 1)
py.imshow(image gray, cmap=py.cm.gray)
py. xticks ([])
py. yticks ([])
py. title ( ’m = ’ + m)
py. subplot (1, 2, 2)
py.semilogy(horz [:255], psd1D[:255], label=’FFT’, lw=line)
py.ylim([1e6, 1e11])
py. xlabel ( ’Wavevector /$\u03BCmˆ{−1}$’)
# py.ylabel (’Power Spectrum’)
sub sav loc = r’ res/frame/movie/’ + type[selected type] + ’ ’ +\

str( selected run ) + ’ SUB l’ + str( remove liquid ) +\
’ m’ + m + ’.png’

py. savefig ( sub sav loc , dpi=300)

if sim plot == 1:

# Plot the simultaneous plot of the selected frames
py. figure (3)
py. clf ()
i = 0

# Use green triangle , red square , blue circle , purple diamond for the
# plot
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markers to use = [’gˆ’ , ’ rs ’ , ’bo’ , ’md’]
lines to use = [’g’ , ’ r ’ , ’b’ , ’m’]

for m in selected frames :
psd1D = psd1D sim plot[i]
label = str(m) + ’ Steps’
f=(image size / 1024)
py.semilogy(f∗horz[ graph in :255:2], psd1D[graph in :255:2],

lines to use [ i ], lw=line)
py.semilogy(f∗horz[ graph in :255:2], psd1D[graph in :255:2],

markers to use [ i ], ms=1, label=label, lw=line)
i+=1

py. xlabel ( ’Wavevector /pixels$ˆ{−1}$’)
py. ylabel ( ’ Intensity (a.u.) ’ )
py. yticks ([])
py. legend()

# Save the plot to an appropriate location
sub sav loc = r’ res/frame/paper/’ + type[selected type ] + ’ ’ +\

str( selected run ) + ’ SUB l’ + str(
remove liquid ) + ’ m’ + str(m) + ’.png’

sub sav loc eps = r’ res/frame/paper/’ + type[selected type ] + ’ ’ +\
str( selected run ) + ’ SUB l’ + str(

remove liquid ) + ’ m’ + str(m) + ’.svg’
py. savefig ( sub sav loc , dpi=300)
py. savefig ( sub sav loc eps , dpi=300, format=’svg’)

# Makes the gif by stitching together the subplots of the simulation and the
# PSD
if save movie == 1:

print( ’Saving gif ... ’ )
images = []
for index in steps sort :

m = steps[index]
sub sav loc = r’ res/frame/movie/’ + type[selected type] + ’ ’ +\

str( selected run ) + ’ SUB l’ + str(
remove liquid ) + ’ m’ + str(m) + ’.png’

images.append(imageio.imread(sub sav loc ))
gif sav loc = img sav loc = r’ res/frame/gif/’ + type[selected type ] +\

’ ’ + str( selected run ) + ’ GIF l ’ +\
str( remove liquid ) + ’ m’ + str(m) + ’.gif ’

imageio.mimsave( gif sav loc , images, duration=0.5)
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print( ’Done!’)

# Use the saved height indices of the PSD to fit to a power law

# Function to calculate the power−law with constants a and b
def power law(x, a, b):

return a∗np.power(x, b)

# Modify these parameters accordingly until the established exponential
# graph fits the data
a fit = 1e9
b fit = 0.25

py. figure (4)
py. plot (np.arange(60, 1520, 20), height [1:], ’ rx ’ )
py. plot (np.arange(60, 1520, 20), power law(np.arange(60, 1520, 20), a fit ,

b fit ))
py.show()
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B Sectional Fourier analysis script

# Code that takes in a singular image, and can return the radially averaged
# 1D FFT spectrum of two squares of the same size.
# Used mainly for oxide layer images.

# Import the usual suspects
import numpy as np
import matplotlib. pyplot as plt
from scipy import fftpack
import pylab as py
from skimage. filters import window

def rgb2gray(rgb): # Define a function that converts PNGs to grayscale
# arrays
return np.dot(rgb [..., :3], [0.299, 0.587, 0.144])

def normalise( array ): # Set an image numpy array’s values to be between 0
# and 1
norm array = (array−np.min(array))\

/ (np.max(array)−np.min(array))
return norm array

def radial profile2 (data, center=None, binning=1): # Radial profile
# calculator
y, x = np. indices ((data.shape)) # first determine radii of all pixels

if not center :
center = np.array ([( x.max() − x.min()) / 2.0, (x.max() − x.min()) /

2.0])

r = np.sqrt((x − center [0]) ∗∗ 2 + (y − center [1]) ∗∗ 2)

# radius of the image.
r max = np.max(r)
bin no = np.rint (r max/binning).astype( int)

ring brightness , radius = np.histogram(r, weights=data, bins=bin no)
# plt. plot ( radius [1:], ring brightness )
# plt.show()
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B SECTIONAL FOURIER ANALYSIS SCRIPT

return ring brightness

def SpectralFFT(array): # Calculate the radially averaged 1D FFT spectrum
# Take the fourier transform of the image.
F1 = fftpack. fft2 ( array )

# Now shift the quadrants around so that low spatial frequencies are in
# the center of the 2D fourier transformed image.
F2 = fftpack. fftshift (F1)

# Calculate a 2D power spectrum
psd2D = np.abs(F2) ∗∗ 2

# Calculate the radially averaged 1D power spectrum
spectra = radial profile2 (psd2D)

return spectra

# def hann SpectralFFT(array): # Calculate the radially averaged 1D FFT
# spectrum of a Hann windowed image
# wimage gray = array ∗ window(’hann’, array .shape)
# windowed array spectrum = SpectralFFT(wimage gray)
# return windowed array spectrum

nudes = 0 # set to 1 if you are in Oxide Data/Nudes
img name = ’2a 0.75 5x5 hs’ # Take a file name from Oxide Data, or Oxide
# Data/Nudes if nudes = 1
file name = img name + ’.png’

run no = 10 # appends a number to image, useful tool for when you don’t
# want to overwrite old data
image size = 7 # provide the whole image size in microns
# Black is square 1, put it on the tip−oxidised region #
# Orange is square 2, put it on the air−oxidised region #
look good = 1 # change to 1 when you’re happy with the square locations ,
# otherwise just displays the square locations
square 1 origin = [150,388] # Modify these coordinates
square 2 origin = [100,0]
square size = 82 # size of square in pixels , must be the same size for
# comparable results
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# Make the parameters for use in drawing
ox1 = square 1 origin [0]
oy1 = square 1 origin [1]
rx1 = square size
ry1 = square size
c x1 = [ox1, ox1+rx1, ox1+rx1, ox1, ox1] # make a set of coordinates to
# draw the rectangle on the image
c y1 = [oy1, oy1, oy1+ry1, oy1+ry1, oy1]

ox2 = square 2 origin [0]
oy2 = square 2 origin [1]
rx2 = square size
ry2 = square size
c x2 = [ox2, ox2+rx2, ox2+rx2, ox2, ox2] # make a set of coordinates to
# draw the rectangle on the image
c y2 = [oy2, oy2, oy2+ry2, oy2 + ry2, oy2]

# Find the image directory
if nudes == 1:

image loc = ’Oxide Data/Nudes/’ + file name
else :

image loc = ’Oxide Data/’ + file name
# Load the image, then grayscale and normalise the pixel values
image = plt.imread(image loc)
image gray = normalise(rgb2gray(image))
# Returns the image shape, used sometimes
x, y = image gray.shape

# Plot the image with the 2 squares drawn on it
py. figure (1)
py. clf ()
py.imshow(image gray, cmap=py.cm.Greys)
py. plot (c y1, c x1, ’ black ’ , ms=10)
py. plot (oy1, ox1, ’kx’ , ms=10)
py. plot (c y2, c x2, ’tab:orange’ , ms=10)
py. plot (oy2, ox2, ’kx’ , ms=10)
fig sav loc = ’res/oxide/comparesquares/’ + img name + ’locns ’ +\

str(run no) + ’.png’
py. savefig ( fig sav loc , dpi=300)
py.show()
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B SECTIONAL FOURIER ANALYSIS SCRIPT

# Crop to the squares
crop square1 array = image gray[ox1:ox1+rx1, oy1:oy1+ry1]
crop square2 array = image gray[ox2:ox2+rx2, oy2:oy2+ry2]

# Display the returned cropped region
py. figure (2)
py. clf ()
py. subplot (1, 2, 1)
py.imshow(crop square1 array , cmap=py.cm.Greys)
py. subplot (1, 2, 2)
py.imshow(crop square2 array , cmap=py.cm.Greys)
py.show()

# Quits out here if you’re just testing square locations look good=0
if look good == 0:

exit

# Save the raw 2D FFT of the images
# Square 1
F1 = fftpack. fft2 ( crop square1 array )
F2 = fftpack. fftshift (F1)
cm 2d = np.abs(F2) ∗∗ 2
s1 sav loc = ’res/oxide/comparesquares/’ + img name + ’ square1 ’ +\

str(run no) + ’.png’
py.imsave( s1 sav loc , np.log(cm 2d), dpi=300, cmap=’rainbow’)

# Square 2
F1 = fftpack. fft2 ( crop square2 array )
F2 = fftpack. fftshift (F1)
cm2 2d = np.abs(F2) ∗∗ 2
s2 sav loc = ’res/oxide/comparesquares/’ + img name + ’square2 ’ +\

str(run no) + ’.png’
py.imsave( s2 sav loc , np.log(cm2 2d), dpi=300, cmap=’rainbow’)

# Solve for the 1D power spectra
psd1D 1 = SpectralFFT(crop square1 array)
psd1D 2 = SpectralFFT(crop square2 array)

# Calculate the wavevector to plot on the x−axis, using the provided image
# size
ratio = square size / x
horz 1 = np.linspace (0, np. sqrt (( square size / 2) ∗∗ 2 + ( square size / 2)
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∗∗ 2), len(psd1D 1)) / ( image size ∗ ratio ∗
1000)

horz 2 = np.linspace (0, np. sqrt (( square size / 2) ∗∗ 2 + ( square size / 2)
∗∗ 2), len(psd1D 2)) / ( image size ∗ ratio ∗

1000)

# Display the 1D radially averaged FFT of the 2 squares on the same graph
py. figure (3)
py. clf ()
py.rcParams[’ font . size ’ ] = ’17’
region1 = int(np. floor (len(psd1D 1)/np.sqrt(2))) # Use the ratio between
# the diagonal and side length to remove cusp
region2 = int(np. floor (len(psd1D 2)/np.sqrt(2))) # ’ ’
py.semilogy(horz 1 [1: region1 :1], psd1D 1[1:region1 :1], ’ko’ ,

label=’FFT Region 1’, ms=5)
py.semilogy(horz 2 [2: region2 :1], psd1D 2[2:region2 :1], ’ s ’ , color=’orange’,

label=’FFT Region 2’, ms=5)
py. yticks ([])
py. ylabel ( ’ Intensity (a.u.) ’ , fontsize =22)
py. xlabel ( ’Wave vector ($nmˆ{−1}$)’, fontsize=22)
# py.legend(loc=”best”, fontsize=’xx−small’)
fig sav loc = ’res/oxide/comparesquares/’ + img name + ’plot ’ +\

str(run no)+ ’.svg’
py. savefig ( fig sav loc , dpi=300)
fig sav loc = ’res/oxide/comparesquares/’ + img name + ’plot ’ +\

str(run no) + ’.png’
py. savefig ( fig sav loc , dpi=300)
py.show()

# Display the wave vector of the peak intensity and their separation in per
# micron
print( ’Black Square peak is ’ + str(horz 1[np.argmax(psd1D 1[1:])+1]))
print( ’Orange Square peak is ’ + str(horz 2[np.argmax(psd1D 2[1:])+1]))
print( ’Delta = ’ + str(horz 1[np.argmax(psd1D 1[1:])]−horz 2[np.argmax
(psd1D 2 [1:])]))

# Calculate and display the area under the 1D radially averaged FFT ie the
# rms roughness squared
area1 = np.trapz(psd1D 1[1:region1 ], x=horz 1[1:region1 :1])
area2 = np.trapz(psd1D 2[1:region2 ], x=horz 2[1:region2 :1])

print( ’Area under Oxide PSD is ’ + str(area1))
print( ’Area under Silicon PSD is ’ + str(area2))
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C Image pre-processing script

# Finalised pre−processing code with just the median of difference row
# aligner and R−based polynomial background detrender modules inserted,
# takes in any file structure from an external storage device ,
# finds every ibw file , and preprocesses them into locally −saved png
# files . Also creates a csv file of all found ibw file name instances (
# useful for finding duplicate file names)

import pycroscopy as scope
import matplotlib. pyplot as plt
import h5py
import numpy as np
import os
import pandas as pd
import glob
from rpy2 import robjects as ro

def preprocess (ibw name, ibw path):
# Create an object capable of translating .ibw files
TranslateObj = scope.io . translators .IgorIBWTranslator(max mem mb=1024)

# Translate the requisite file
Output = TranslateObj. translate (

file path =ibw path, verbose=False)

print(Output)

# Opening this file to read in sections as a numpy array
# Read Path = Output
h5 File = h5py.File(Output, mode=’r’)

data Trace = h5 File [ ’Measurement 000/Channel 000/Raw Data’]

data Trace Array = np.array(data Trace [:])

# Identify the size of the data trace array
if data Trace Array .shape[0] == 65536:

row num = 256
elif data Trace Array .shape[0] == 262144:

row num = 512
elif data Trace Array .shape[0] == 1048576:
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row num = 1024
else :

row num = 0
norm data Trace Array = 0

h5 File . close ()
os.remove(Output)

# Define a function that sets an image numpy array’s values ( pixel
# intensities ) to be between 0 and 1
def normalise( array ):

norm array = (array − np.min(array)) \
/ (np.max(array) − np.min(array))

return norm array

if row num > 0:
shaped data Trace Array = np.reshape(data Trace Array,

(row num, row num))
aligned med data Trace Array = normalise(shaped data Trace Array)

# Next step is to apply median difference to rows #
# Create a function to take two adjacent rows and return the
# alignment required to move the second row in line with the first

def line align (row1, row2):
diff = row1 − row2
bins = np.linspace(np.min(diff ), np.max(diff), 1000)
binned indices = np. digitize ( diff , bins , right=True)
np. sort ( binned indices )
median index = np.median(binned indices)
return bins [ int(median index)]

for i in range(1, row num):
row iless1 = aligned med data Trace Array[ i − 1, :]
row i = aligned med data Trace Array[ i , :]
Offset = line align ( row iless1 , row i)
aligned med data Trace Array [ i , :] =\

aligned med data Trace Array [ i , :] + Offset

aligned med data Trace Array = normalise(
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aligned med data Trace Array)

# Next step is polynomial detrending #
# In R Code apply a polynomial detrending algorithm to the image
# array

polystring = ’’’
row num<−dim(alignim)[1]
# Turning image1 into a dataframe of columns x, y and intensity
im1data<−data.frame(as.vector(alignim))
names(im1data)<−”intensity”
im1data$x<−rep(1:row num,row num)
# 1st step of poly detrend
im1data$y<−as.vector(t(matrix(rep(1:row num,row num),
row num,row num)))
im4mod3<−lm(intensity˜poly(x,df)∗poly(y,df),data=im1data)
im1data$lmresid<−(im4mod3$residuals −min(im4mod3$residuals))
# 2nd step of poly detrend
/(max(im4mod3$residuals)−min(im4mod3$residuals))

poly dt<−(matrix(im1data$lmresid,row num,row num))
’’’

data matrix = ro.r .matrix(aligned med data Trace Array , nrow=row num
, ncol=row num)

ro . r . assign (” r data matrix”, data matrix)
ro . r(”alignim <− r data matrix”)

poly dt data Trace Array = ro.r( polystring )
norm data Trace Array = normalise( poly dt data Trace Array )

# Where to save the resulting files , all appended with the file name
# and method number
sav loc = r’res2/’ + ibw name + ’.png’

# Save the raw ibw and processed images
plt . imsave(sav loc , norm data Trace Array, origin =’lower’ ,

cmap=’gray’)

return norm data Trace Array
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# # Below few lines used for targeting unique folders , commented out when
# looking at whole USBs
import tkinter
from tkinter import filedialog
# root = tkinter .Tk()
# root.withdraw()
# dirname = filedialog . askdirectory (parent=root, initialdir =”/”,
# title =’Please select a directory ’)

dirname = ’D:/USB 3’
usb num = 3 # Change this to reflect the USB number for the ibw location

Data = pd.read csv(’ManualImageClassificationsV2 4 .csv ’ , sep=’,’ )

FileNames = Data[’Predicted ibw file name’]

ro .numpy2ri. activate () # Converts all R−objects entering the python
# variable space into numpy−able formats
# Define a degree of freedom to be used in polynomial detrender
Df = 2
# Assign DoF to a variable in R space
DoF = ro.r.matrix(Df)
ro . r . assign (”df”, DoF)

for k in range(0, FileNames.size ):
if k not in [363, 364, 374, 391, 395, 531, 561, 765]:

# Some corrupted file numbers that break the loop
print( ’Searching for image ’, k + 1, ’ of ’ , FileNames. size )
locate = dirname + ’/∗∗/’ + FileNames[k]
matches = glob.glob(locate , recursive =True)
print( ’˜˜˜ ’ + str(len(matches)) + ’ found’)
if len(matches) > 0:

col name = ’Ibw matches ’ + str(usb num)
new col = pd.Series(Data[col name][k]+len(matches), name=
col name, index=[k])
Data.update(new col)
for j in range(0, len(matches)):

file name = FileNames[k]. replace ( ’ . ibw’ , ’ ’ ) + ’ ’ + \
str(usb num) + ’ ’ + str(j )

preprocess ( file name , matches[j ]) # Run code commented out
# to just count the number of found images
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# Run this in console to save changes to the csv if doesn’t reach end
Data.to csv( ’ManualImageClassificationsV2 4 .csv ’ , index=False)
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D Fullerene deposition on HOPG for SPM

Fullerenes were deposited into UHV onto HOPG using the sublimation cell from Figure
2.4.1 into the low-temperature scanning tunnelling microscope’s (LT-STM) prepara-
tion chamber. A 1 x 1 cm HOPG sample was cleaved using sellotape, entered into
the UHV chamber via the loadlock, then degassed at 600 ◦C for three hours, then left
to cool to room temperature to avoid desorption events during the sublimation of C60

onto the freshly-cleaved and degassed HOPG. 99% C60 powder was sublimed at 400
◦C onto the HOPG at a glancing angle exposure to the sublimation cell from Figure
2.4.1 for two hours at room temperature. The sample was withdrawn from UHV and
probed with the Cypher AFM. A second attempt with an exposure time of one hour
on a subsequently cleaved and degassed HOPG sample followed.

Figure D.0.1: Ambient conditions AFM images of cleaved and degassed HOPG exposed to a C60 sublimation cell for
two hours in UHV conditions, then withdrawn from UHV. (a) 102, (b) 4.42, (c) 2.252 micron scans in first harmonic
tapping mode; (d) 15 x 15 nm2 scan in third harmonic FM mode.

Figure D.0.1 shows the typical structure of a C60 film. The fractal-like geometry of the
first layer is attributed to diffusion-limited aggregation, by which particles undergoing
a random walk accrete to form an aggregate by individually approaching it from a dis-
tance, and sticking to a point-like aggregation centre or to particles that have already
accreted284. Initial adsorption is often spurred by the quenching of surface defects
induced during heating, with further fullerenes coalescing due to diffusion, resulting
in a “fractal” growth pattern285,286. The second and third layers form mainly towards
the centre of the more expansive regions of the first layer, where the binding energy
exceeds that of adsorbed monolayer.221
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The first layer’s average height was 1.9±0.3 nm, with heights up to 3.2 nm for the
small islands atop the layer. C60 multilayer regions occurred in a fairly high abundance,
of the observed maximum 60% coverage of C60 upon the HOPG, 70% had a secondary
layer or more. While the first three images in Figure D.0.1 were taken in the amplitude
modulation (AM) mode tuned to the cantilever’s first harmonic from across a variety
of locations on the HOPG surface, the last image was taken in frequency modula-
tion (FM) mode tuned to the cantilever’s third harmonic upon a C60 monolayer, as a
means to achieve molecular resolution. The fullerenes self-assemble as a close-packed
monolayer film in a hexagonal lattice at low coverage286, with an observed molecular
separation of 1.00±0.04 nm for the first layer. This value is in agreement with existing
C60-HOPG SPM data.221,286,287

Figure D.0.2: 10 x 10 µm2 AM-AFM scans of multi-layer coverage of C60 on HOPG (two hour deposition), with their
respective 3 V KPFM images below.

Kelvin probe force microscopy was also used to investigate the fullerene samples, shown
in Figure D.0.2. This was done to evaluate the relative electrostatic force response of
fullerene deposits compared to HOPG, in preparation for KPFM on mixed depositions
of filled and unfilled C60 molecules, as a continuation from endofullerene research in
Chapter 5. KPFM was performed with a conductive Cr/Pt tip with a 50 nm height
above the surface and a 3 V tip bias. The height retraces and potential retraces clearly
track the same surface, with the brightest regions in the KPFM scan correlating to
the most expansive nude HOPG regions of highest relative work function, and the
darkest regions correlating with regions of expansive C60 layers of lowest relative work
function. Though the effective CPD image distinguishes the C60 from HOPG, the
resolution of KPFM was limited, often making distinguishing the two surface phases
difficult at lower scan sizes, while there was also an observed height dependence on
larger scans due to an abundance of defects and terraces in HOPG.
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Figure D.0.3: AFM images of cleaved and degassed HOPG exposed to a C60 sublimation cell for one hour in UHV
conditions. (From left to right, first row then second row) 3.82, 1.52, 3.92 µm scans in tapping mode.

The deposition time was halved for a subsequent deposition, with the resulting sur-
faces shown in Figure D.0.3. Average C60 coverage was observed to be 13%, with
relatively nascent “fractal” and cluster-like forms with heights consistent with the first
experiment across the surface. While single-molecule resolution KPFM measurements
were further pursued in UHV conditions within the Group, C60 is utilised as a dewetting
mediator in Subsection 4.3.1.
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E Supplementary technical material for Chapter 6

E.1 Saving

The final stage of any image processing code is converting and saving the processed
arrays locally as a file. The 512 by 512 array is effectively a bitmap. Every individual
pixel represents data about the surface, so a lossless, transferable and generic storage
method was chosen. Each array is saved as a portable network graphic (.png) file,
such that when opened in any image viewing software, it displays a grayscale image
perfectly representative of the saved array. Unlike using a plain text format such as a
text (.txt) or comma-separated values (.csv) file, this allows for quick visual inspection
of resulting images by the user from outside an IDE. The main downside to this storage
method is the large file size, this makes transferring large directories of results slower
and adds an additional step to all further processing in which image files need to be
re-converted back into arrays in a more computationally taxing manner than plain text
files would require.

Saved files were named and labelled appropriately, the PNG files were given the same
name as the source IBW files. This allows for easy querying during further analysis,
keeping naming consistent with databases relating to the data set. Depending on the
code and the objectives of the further analysis, the images before and then after the
proposed segmentation were saved into a folder of results, labelled with useful exten-
sions. It was not uncommon that images in the data set shared the same IBW file
name. As the IBW files are in their own folder structure, this was not a problem until
the PNG files of the same names were saved into a single results folder. This was fixed
during querying, checking every occurrence of the same name of IBW file and putting
an extension of a number on the end of the saved PNG file to distinguish between
re-occurrences.

While developing mass-processing code, Subsection 6.4.3, displaying figures and re-
sulting images within the IDE was no longer effective for visual inspection. It was
becoming necessary to be able to visually inspect results without rerunning the script
or opening the IDE, especially when larger test sets were being used. The script was
updated to save arrays and figures as PNGs at the end of each loop. The saved fig-
ure included subplots of the median of differences-aligned array, planar-flattened array,
CDF and PDF with peaks and trough marked if found, Figure 6.4.7, and a binary im-
age using the threshold value provided by the trough location if found, via the Otsu’s
thresholding method. The naming scheme for these files was the filename of the IBW
file, with “fig” and “thres” appended to the figure and binary image filenames respec-
tively, and all saved in an individual output folder within the probed directory.

While querying the entire historic data set, during Subsection 6.4.6, name redundancy
at this stage was becoming a greater issue, as the visual description would only match
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one of the returned images. This was resolved in a few ways, the first was enumer-
ating PNG file names with multiple matches with the provided file name to prevent
new matches from overwriting and deleting each other. The number of matches asso-
ciated with each file name was saved to an array and written to a new column in the
spreadsheet using pandas. These two methods of flagging redundancies still required
a manual inspection of the redundant images to choose which image reflected the
visual description.

E.2 Screening image and array metadata

Another screening measure is confirming the loaded data from the IBW file is not only
the height retrace but also a 2-dimensional 512 by 512 pixel array when loaded. The
SPM software provided three options when collecting the used historic scan data that
could lead to these parameters not being the same throughout the data set. The user
may have set a different resolution to either produce sharper images or reduce scan
times. The pre-processing and segmentation were set up for resolutions different from
512 by 512, but further processing and extraction of statistics done by succeeding
parties required identical resolutions, and the overwhelming majority of images were
512 by 512 arrays. Another case is that the user may have preemptively ended a
scan and saved a partial image, resulting in less than 512 rows in the image. The
resulting rectangular images are incompatible with the deployed and future code, so
they are hence rejected. Both are checked between loading and pre-processing by
simply counting the number of cells in the loaded array and rejecting the image if it
does not contain 262144, 5122, cells. Finally, during the SPM scanning session, the
software allows reconfiguration of the data collection channels, changing the data or
order of channels where the data is stored. The algorithm that extracts the height
retrace from the HD5 file format of the loaded IBW file assumes the height retrace
is stored in the first channel. The screening algorithm for this occurrence is another
simple check between the loading and pre-processing stages, if the name of the first
channel in the IBW file’s metadata is not height retrace, the image is rejected.

E.3 Console messages

Transparency was also a useful quality for scripts to have during this stage. Messages
for users printed to the console were triggered by the script. These informative updates
took numerous forms, providing instant feedback to the user. They would display the
progress through the script, such as how many images of those provided had been
processed and when the code had started and finished. Custom error messages as-
sociated with the aforementioned break-out conditions would be displayed when the
image within the current loop failed to meet the screening standards. This included
displaying how many null lines the current null line checker identified and whether
that many would result in a pass or fail. The script also printed a threshold value
obtained by the Otsu’s thresholding and, if so, the threshold value found. After all
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loops are finished, a success rate showing how many images of those found in the
directory made it to the end of the loop and was saved as a segmented binary image.
This rate could be recorded, for example, when trying to refine Otsu’s thresholding or
other segmentation methods, as a metric for the success of the current combination
of processing algorithms.
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