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Abstract

Machine learning techniques have numerous applications in modern drug discov-
ery. Advances in computing power, machine learning algorithms and data avail-
ability have inspired renewed interest in artificial intelligence and automation in
chemical synthesis. The field of Computer-Aided Synthesis Planning (CASP)
aims to improve chemists’ workflow by shortening the time required to synthesise
compounds, giving them more time to analyse and design future experiments.
In this thesis, we review contemporary CASP methodologies before developing
machine learning models to predict reaction yield. State-of-the-art approaches
to forward reaction prediction and retrosynthetic analysis tasks are outlined and
compared using quantitative metrics.

Predicting reaction yield is a newer aspect of CASP that has received signifi-
cantly less attention than forward reaction prediction and retrosynthetic plan-
ning. This is owing, in part, to a lack of curated reaction data reporting reaction
yield. Using a combinatorial benchmark dataset generated using high through-
put experimentation, we evaluate machine learning models to predict reaction
yield. Our research focuses on linear, tree-based, and Support Vector Regres-
sion (SVR) machine-learning algorithms. Chemical reactivity regression tasks
frequently use molecular descriptors based on time-consuming, computationally
demanding quantum chemical calculations. Along with quantum chemical de-
scriptors, we investigate a range of topological representations that are quicker
to calculate and applicable to all molecules. SVR emerges as the most promising
machine learning model across all molecular descriptors in a preliminary cross-
validation test evaluating interpolation.

Rigorous out-of-sample tests are designed to reliably assess the extrapolation
capabilities of the most promising SVR models. The performance of SVR mod-
els built on topological representations surpasses those constructed on quantum
chemical descriptors. The top SVR models built on each descriptor are subjected
to additional validation. A collection of previously unseen perspective chemical
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reactions is compiled. Predictions are presented for synthetic assessment to vali-
date and explore the extent of the generalisability of the top SVR models.
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Chapter 1

Artificial Intelligence for Drug
Discovery

1.1 Drug Discovery and Development

The drug discovery process is initiated when there is a lack of effective medicines
to treat or cure a disease or condition. Current treatments may be unsatisfactory,
or few to no treatment options may be available. The discovery or improvement
of medicines is not without challenges. The average time taken from the start
of the drug discovery process to marketing a new drug is typically 12 to 15
years and costs above $2-3 billion.4,5 Many steps are completed between the
discovery and the approval of an Active Pharmaceutical Ingredient (API). The
five primary stages (Figure 1.1) are early drug discovery, preclinical trials, clinical
trials, U.S. Food and Drug Administration (FDA) review and approval, and FDA
post-market safety monitoring.

1.1.1 Early Drug Discovery

Early drug discovery aims to develop drug candidates likely to succeed in preclin-
ical and clinical trials. Drug candidates must be able to prevent or reverse the
effects of a disease or condition. Drug design is an iterative process for detect-
ing and examing new drug candidates (Figure 1.2). It begins with identifying a
biological entity known as the target, which plays a significant role in a disease.
Small organic molecules are designed to bind to a specific target. The desired
therapeutic effect produced upon binding could result from activating or inhibit-
ing a biological response. The ability of small molecules to bind selectively is
important since binding to off-target molecules can cause side effects. The drug

1
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may act as a receptor agonist or antagonist or induce the opening or closing of an
ion channel. Although small organic compounds have dominated treatments, bio-
pharmaceuticals have also proven effective.6 Peptides and therapeutic antibodies
are examples of biopharmaceuticals. The focus of this thesis, on the other hand,
will centre around small molecule drug design and development. Small molecules
are screened against the biological target to identify compounds which bind to
the target with a desired therapeutic effect. The active compounds are optimised
to improve the selectivity, potency and physicochemical properties. Preclinical
studies are conducted on the most promising drug candidates to establish the op-
timum dosage, method of administration, and toxicity. The main steps in early
drug discovery are target identification and validation, hit discovery, hit series
identification, hit-to-lead, and lead optimisation.

The initial focus is on the biological system and understanding the pathogenesis
of the disease or disorder. Key biological targets in the pathogenesis are identified
by searching through published literature and databases or via practical methods
such as target deconvolution and discovery. The targets could include genes,
proteins, or ribonucleic acid (RNA). Despite the nature of the biological entity,
it needs to be disease-modifying and druggable. This means that the binding
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of a drug molecule must cause a desirable biological response. For example,
bromodomains are a potential druggable epigenetic target for treating diseases
such as cancer, neurodegenerative disorders, inflammation, and obesity.7 Small
molecules are designed to inhibit protein interactions that can selectively regulate
gene expression. Assuming all protein family members are equally druggable,
a target can be considered druggable if drugs have successfully targeted other
family members.8 A more robust approach to predicting druggability is to use
structural information about a target’s binding site. Modelling tools can use
this information to distinguish druggability within protein families,9 such as the
Bromodomain and Extra-Terminal (BET) protein family.10 After identifying a
druggable target, it is validated for suitability in drug development.

A hit molecule interacts with a drug target to produce a desired therapeutic ef-
fect, such as inhibition or activation. Occasionally hit molecules are discovered
accidentally, but more frequently than not, hit molecules are identified by trial
and error. High Throughput Screening (HTS) is an effective method for identify-
ing hit molecules. Thousands to millions of small drug-like molecules are screened
in various assays to identify those that interact with the therapeutic target and
induce the desired biological response. HTS uses robotics and automation to
test at the cellular, molecular, and biochemical levels. Utilising robotics, liq-
uid handling devices, detectors, and data processing software allows large-scale
compound libraries to be screened quickly. Other experimental screening tech-
niques used alongside HTS include high-content, phenotypic, and fragment-based
screening. Experimental screening is expensive in terms of money, labour, and
time. Computational methods can reduce experimental screening while process-
ing vast amounts of data. Virtual screening, for example, is a set of computational
techniques that analyse small molecule libraries to identify potential hit candi-
dates.

Experimental screening generates vast amounts of data that are difficult to man-
age. Numerous molecules with the necessary activity may be considered hits. Fil-
ters that remove frequent hitters, unwanted lipophilic compounds, or undesirable
structural motifs may be applied. Compounds that include Pan-Assay Interfer-
ence Compounds (PAINS)11 are also excluded from further analysis. PAINS are
substructures that frequently produce false positive results in high-throughput
screening. Cheminformatics tools are introduced to sort compounds in a hit list.
Computational clustering algorithms based on structural similarity scores cate-
gorise hits into series. A single average structure known as the cluster centroid
represents each cluster. The clusters are ranked using confirmation experiments,
and the top ones (hit series) are selected for further progression. Confirma-
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tions include various assays performed closer to the physiological condition of the
target to verify the hit molecules and measure efficacy values. Activity values,
such as IC50, can be calculated from dose-response curves. Synthetic tractability,
feasibility, scale-up, associated costs, and patentability of the hit molecules are
also evaluated. Alternatively, hits can be classified based on molecular scaffolds.
Medicinal chemists regard structures with common scaffolds or cores to be com-
parable. This method of visualising series immediately demonstrates potential
expansion around the shared core structure, which is beneficial in the lead op-
timisation phase. Small and simple hit molecules are favoured since they allow
for increased molecular weight due to the inclusion of substituents to improve
potency and selectivity.

After identifying a hit series, the molecules are explored and refined in the hit-
to-lead phase. The central process that guides the exploration and exploitation
of a hit series in hit-to-lead is the Design-Make-Test-Analyse (DMTA) cycle.12

An efficient DMTA workflow requires medicinal chemistry, synthetic chemistry,
computational chemistry and Drug Metabolism and Pharmacokinetics (DMPK)
competence. Initially, the focus is on designing analogues of the hit series to test
hypotheses (Design). Synthesising selected analogues (Make) for biochemical
assays provides potency and physicochemical data (Test). Analysing the data
verifies the specified hypotheses (Analyse). This insight aids the redesign process
to improve properties. The DMTA cycle repeats until a molecule with desirable
properties and potency is considered a lead molecule.

Design. Analogues of the hit series are designed in hit expansion using a com-
bination of chemists’ intuition and computational tools. Structure-Activity Re-
lationship (SAR) analyses around the hit scaffolds aim to identify relationships
between the chemical structure and biological activity or chemical properties.
This approach formulates testable hypotheses with clear criteria for success. For
example, whether the addition of a chemical group to the core structure improves
a particular property or biological activity. The hypothesised SAR may have al-
ready been identified by the project experimentally or indicated computationally.
Prediction tools such as Quantitative Structure-Activity Relationship (QSAR)
and Quantitative Structure-Property Relationship (QSPR) models are an easy
way to prioritise hypotheses before synthesis. These tools mathematically repre-
sent structure-activity and structure-property relationships, often using machine
learning models. In QSAR, the chemical structure represented by molecular de-
scriptors or physicochemical properties is related to biological activity. Whereas
in QSPR, the chemical structure is related to a chemical property such as Octanol-
Water Partition Coefficient (logP), polar surface area, and Adsorption, Distri-
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bution, Metabolism and Excretion (ADME) properties. ADME properties give
a deeper understanding of a drug’s pharmacological activity. Another practical
computational tool is de novo drug design, which uses statistical models to gener-
ate drug-like compounds while prioritising the region of chemical space explored.
Molecular docking programs also prioritise compounds by modelling the interac-
tion between the small molecule and the biological target. Lipinski’s rule of five
is a rule of thumb to evaluate whether a compound is likely to be an orally active
drug and proceed as a possible lead. Lipinski’s rules are a collection of charac-
teristics of small drug-like molecules that can operate as a filter to exclude or
deprioritise compounds with poor physicochemical properties.13 Lipinski’s rule
of five states that, in general, poor absorption or permeation is likely when a
molecule exceeds two or more of the following properties: five hydrogen bond
donors, ten hydrogen bond acceptors, a molecular mass of 500 daltons, and a
logP of five. While compounds with these molecular properties correlate well
with high oral bioavailability in terms of solubility and permeability estimation,
the values are considered guidelines. For example, Tinworth and Young suggest
that molecular weight may not be as relevant as logP and aromatic ring count in
predicting the permeability and solubility of orally active drug molecules.11

Make Synthesising and biologically testing each compound in a laboratory re-
quires a large amount of money, time, and resources. Computational tools can be
utilised to reduce these limitations and the number of animal models by prioritis-
ing the compounds for wet lab experiments. Examples include virtual screening
and Computer-Aided Synthesis Planning (CASP) tools. Virtual screening is an
automated process for evaluating and filtering large libraries of compounds to
a manageable amount for synthesis and testing. The libraries may be a pre-
defined list of small molecules such as an in-house repository, public dataset,
or commercial dataset. Alternatively, the libraries can be generated combinato-
rially from a set of pre-defined building blocks or in a more focused approach
from a core scaffold with potential expansion points and a pre-defined list of sub-
stituents. This computational technique searches the virtual library to identify
structures with improved biological activity. Ligand-based virtual screening uses
information about the structure of ligands known to bind to the target without
knowing the structure of the target. It is based on the assumption that molecules
with similar structures have comparable properties, interactions with the target,
and biological responses. Similarity searching, pharmacophore mapping, QSAR,
and QSPR models are examples of ligand-based virtual screening techniques.
Structure-based virtual screening requires knowledge of the structure of the bio-
logical target and its binding/active site. These approaches determine the ligands
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that interact with the target by predicting binding affinity. Molecular docking
is the most widely used structure-based virtual screening technique; other meth-
ods include molecular mechanics and molecular dynamics. Although CASP is
currently in the early phases of development, it has the potential to improve the
efficiency of the DMTA cycle. CASP tools include designing synthesis routes,
predicting reaction conditions, and optimising chemical reactions. The tools aim
to lighten the workload of synthetic chemists by providing synthesis recommenda-
tions. The most promising compounds are synthesised in the lab. Experimental
methods such as combinatorial chemistry and high throughput chemistry may be
employed to prepare a large number (tens to thousands) of compounds in a single
process.

Test DMPK and physical chemistry assays on the synthesised compounds are
performed. With an enhanced screening capability and a shift towards parallel
testing, delivering in vitro data takes around ten working days.12 Parallel testing
results in information-rich data for each compound.

Analyse The assay results provide evidence to accept or reject the tested hy-
potheses. The prediction models implemented in the design stage are validated
using the assay data. The assay data is analysed and converted into knowledge
to aid redesign and propose new hypotheses. The effect of new proposed sub-
structures can be observed via matched molecular pairs analysis against current
benchmark compounds. An efficient DMPK cycle requires consistent quality re-
views and tracking progression from concepts through synthesis and testing to
results.12

The final stage of early drug discovery is lead optimisation. Lead optimisation
aims to optimise or maintain the potency of lead compounds while balancing
many other parameters. Toxicity, oral absorption, metabolic clearance in vivo,
and activity in animal models must all be reviewed. Improving the selectivity
against other biological targets is crucial since off-target interactions can lead to
adverse effects. The DMTA cycle continues to explore analogues of one lead series
and at least one backup series to improve properties. Computational property
prediction models at this point may be sufficiently reliable to guide optimisation.
Animal efficacy models are used to test drug safety and toxicity. A drug suitable
for preclinical studies will exhibit high potency and good physicochemical and
ADME properties while binding selectively to the target to cause the desired
biological response.
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1.1.2 Preclinical and Clinical Trials

Optimised lead compounds are thoroughly evaluated to provide sufficient evi-
dence of safety, efficacy, toxicity, and pharmacokinetic information. In vitro, in
vivo and ex vivo assays enable the evaluation of the drug candidates under condi-
tions similar to those in living cells. In vitro studies are conducted in test tubes, in
vivo studies on living animals, and ex vivo studies in cells or tissues of non-living
animals. Before submitting an Investigational New Drug Application (IND) to
progress to clinical trials, preclinical research must identify the following informa-
tion. (i) Appropriate doses and the drug delivery system. Drug delivery may be
targeted or controlled-release. Drug Delivery methods include oral, topical, mem-
brane, intravenous, and inhalation. (ii) ADME pharmacokinetics properties to
identify how the drug affects the body and if it interacts with healthy tissue. (iii)
Possible side effects, adverse events, and the interaction with other treatments.
(iv) Effects on gender, race or other ethnicity groups. (v) Scaled-up synthesis
process to meet the sufficient qualities required in clinical trials.

If a drug candidate is successful in preclinical trials, it will progress to clinical
trials to evaluate the drug in humans. Phase I of clinical trials involves fewer than
100 healthy volunteers. Human safety, pharmacokinetics, and side effects are in-
vestigated. Doses begin small and gradually increase if no risks are observed.
Phase I trials aim to determine the best way to administer the drug while lim-
iting toxicity and enhancing the therapeutic effect. Phase II clinical trials use a
few hundred patients with the disease or condition, typically 100-500. The safety
and efficacy of the drug are evaluated, optimum dose strength is determined, and
adverse events are monitored. The data collected in the phase II study is used
to optimise the design of the extensive phase III study. Phase III clinical trials
use a few thousand patients with the disease or condition. The drug candidate
is compared to existing treatments and a placebo. The drug efficacy is exam-
ined. Previously undetected long-term or rarer side effects in phases I or II are
identified.

1.1.3 FDA Review and Post-Marketing Monitoring

Clinical trials establish the efficacy and safety of the drug. Before the drug is
allowed to be sold commercially, the FDA must review and approve it. The FDA
examines the results from the clinical trials to make a decision. Reasons for a drug
to fail at this point include too toxic, insufficient efficacy, poor pharmacokinetics
properties, poor bioavailability, or inadequate drug performance. If the drug is
approved, the drug is launched on the market. The FDA continues to monitor the
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drug post-market to ensure long-term safety, efficacy, and risks. Manufacturers,
health professionals, and consumers are responsible for reporting issues to the
FDA using the FDA Adverse Event Reporting System (FAERS).

1.1.4 Drug Repurposing

Drug repurposing is the investigation of pre-existing treatments with unantici-
pated effects as possible treatments for other diseases. It is an efficient approach
since it decreases the number of steps required before clinical development, short-
ening the timeline and lowering the cost of drug discovery and development.
Medications approved by the FDA that have shown beneficial effects in patients
suffering from another disease can thus be considered a possible treatment op-
tion. New clinical trials are necessary to prove that the medication is effective
for the novel purpose and does not cause side effects that people with the dis-
ease are susceptible to. A drug with repurposing potential may be discovered in
preclinical/clinical research or by mining medical information databases.

The development of Parkinson’s disease medication demonstrates a prime exam-
ple of drug repurposing. Parkinson’s disease is a progressive neurodegenerative
disorder that affects dopamine levels in the brain. It is the second-most com-
mon neurological disorder, affecting more than 8 million people worldwide.14

Dopamine-producing (dopaminergic) neurons are located in the substantia nigra
structure of the basal ganglia, which is the part of the brain that controls move-
ment. When people develop Parkinson’s disease, these neurons become impaired
or die. This results in lower dopamine production and hence causes movement
problems. Symptoms are motor-related (e.g. shaking, tremors, muscle stiffness,
and slowness) and nonmotor-related (e.g. cognitive impairment, mental health
disorder and sleep disorders). The first approved drug repurposing treatment for
Parkinson’s disease was Amantadine. The FDA initially approved Amantadine
for the treatment of the influenza virus. When patients with Parkinson’s dis-
ease took this medication, it improved their symptoms. An International Linked
Clinical Trials (iLCT) program for Parkinson’s has been established to repurpose
drugs to accelerate development.15 A few FDA-approved drugs identified from
this program are being considered as treatment options and are in clinical stud-
ies, including Ambroxol and Glucagon-Like Peptide-1 (GLP-1) agonists. Drug
repurposing programs like this have a positive impact on the research commu-
nity. It prompts the discovery and development of novel classes of drug candidates
related to a repurposed biological target.15
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1.2 Advances in Artificial Intelligence

Artificial Intelligence (AI) is the ability of a computer, computer-controlled robot,
or software to perform a task that is typically associated with human intelligence.
Typical intellectual human processes that machines could achieve include reason-
ing, discovering meaning, generalising, and learning from past experiences. Ma-
chines can process and extract relevant information from large amounts of data
that are too large for humans to comprehend and interpret. AI is an object-
achieving system that learns how to achieve a given goal by training on data.
The more high-quality training data, the better the algorithm. For example, a
machine can learn how to make a cake given only the ingredients and no recipe
to follow. The output (response) of AI is dependent on the input variables. If
you change the ingredients (input), the machine will make a different cake (out-
put).

The computer pioneer Alan Turing completed significant early work on AI. In
1950, he proposed that in the future, machines such as digital computers would
be capable of replicating human behaviour that was indistinguishable from a
human being.16 He devised the Turing test to determine such intelligence of ma-
chines. Turing described many concepts of AI in an unpublished report entitled
“Intelligent Machinery”. John McCarthy coined the term “Artificial Intelligence”
in 1955 in his proposal for the first conference on AI at Dartmouth.

Growth in computing power, machine learning frameworks, data availability, and
improved software and hardware has sparked enormous interest in the field of
AI and particularly machine learning. Machine learning is a branch of AI which
uses data-driven algorithms and analytics to build predictive models. Machine
learning models are trained on a predefined dataset to learn patterns in the data
without relying on rules. The training data can be labelled (supervised learning)
or unlabelled (unsupervised learning). By learning from experience, a trained
model can predict the output from a new set of inputs. Many non-linear algo-
rithms are “black-box” methods, meaning it is difficult to determine the decision-
making process behind the predictions. In the baking analogy, it is challenging
to establish the recipe followed from the ingredients to a baked cake. The ability
to comprehend why a machine learning model has made certain decisions or pre-
dictions is called interpretability. High interpretability is desirable for humans to
trust the model and justify its use in daily life. Besides social acceptance, the
ability to extract the additional knowledge captured by the model also enhances
human understanding of the scientific topic.

Deep learning is a subcategory of machine learning that mimics brain neural
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networks. Complex deep neural network algorithms are good at deciphering pat-
terns and noise in large amounts of data. Well-known techniques include speech
recognition, natural language processing, image recognition, and face recognition.
They have many real-life applications, including virtual assistants, Identification
(ID) validity, photo ID verification, and access control mechanisms in smartphone
locks.

There have been several significant milestones that have advanced the capabili-
ties of AI. In 1997, IBM’s Deep Blue17 supercomputer defeated a world-champion
chess player. The expert system won by calculating every possible outcome, dis-
playing the rapid evolution of computers. It took until 2016 for gaming capabil-
ities to advance to the point where Deep Mind’s AlphaGo18 defeated the world’s
Go champion. AlphaGo is built on neural networks to analyse and learn while
playing the game. A recent key milestone occurred in 2020 when Baidu’s Linear-
Fold19 assisted in vaccine development during the early stages of the SARS-CoV-2
Covid-19 pandemic. LinearFold is an RNA folding algorithm. It predicted the
secondary structure of the SARS-CoV-2 RNA sequence in under 30 seconds, 120
times faster than other methods.

AI is not limited to technological advances but also scientific advances, as demon-
strated by LinearFold. Critical Assessment of protein Structure Prediction (CASP)
is a forum that organises a biennial challenge for research groups to test protein-
folding algorithms against experimental data not yet released to the public. Deep
Mind’s AlphaFold placed first in the 13th CASP (2018). AlphaFold is a deep
learning algorithm that predicts the 3D structure of a protein from its amino
acid sequence. A redesigned AlphaFold model demonstrated atomic accuracy in
the 14th CASP (2020).20,21 Applications of AI have extended to physics. Images
taken by the James Webb Space Telescope (JWST) have recently been made pub-
lic. Morpheus22 is a deep learning algorithm that analyses data from the JWST
to detect and classify galaxies in deep space. The neural networks in Morpheus
are trained to classify every pixel in a JWST astronomical image and identify
objects. In recent years, there has been a tremendous increase in the use of AI in
chemistry.23 Implementations of AI include predicting molecular properties, pre-
dicting bioactivities of new drugs, planning synthesis routes, optimising reaction
conditions, and de novo drug design.24–26

AI, machine learning specifically, is a powerful tool with numerous applications.
Compared to manually performing a repetitive task, automation through the use
of AI is faster at decision-making, more efficient, available 24/7, and saves time.
AI also improves accuracy and precision while reducing human error. Fewer errors
save time and resources.
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While AI has considerable scientific and technological benefits, AI costs money,
time, and resources. Extensive initial investment is required to develop AI ap-
plications. Algorithms make predictions based on training data. If the training
data is biased, the output will be discriminatory.

1.3 Computer-Aided Synthesis Planning

The application of AI and automation in chemical synthesis is an upcoming
area to improve chemists’ workflow. Reducing the timeline required to syn-
thesise compounds allows more time for analysing and designing future experi-
ments. Computer-Aided Synthesis Planning (CASP) tools exploit computational
resources and mathematical algorithms to search through vast chemical and re-
action search spaces. The tools intend to inform and inspire synthetic chemists
while freeing time to focus on novel and complex problems, thereby improving
productivity.

Chemical search engines, such as Reaxys and SciFindern, are examples of suc-
cessful and well-integrated CASP tools. Their objective is to provide access to a
wealth of knowledge derived from published literature, including journals, books,
and patents. The tools search through a chemical database with millions of entries
to find relevant chemical information and bioactivity data. Chemical compounds,
reactions and properties can be retrieved by search engines, along with commer-
cially available information. Credible citations supplement the recommended
chemical data. The relevance and usefulness of information are difficult to cap-
ture. For example, chemical information highly relevant to a medicinal chemist
may not be suitable for a process chemist. As a result, search solutions accommo-
date the need of the user through user-specific factors and preferences. Chemical
search engines appeal to synthetic chemists due to the ease and quickness with
which they can gather highly relevant and interpretable chemical information in
a user-friendly and intuitive interface. Therefore, synthetic chemists can focus
more time on conducting research and less time searching for relevant informa-
tion.

Chemical search engines are a single type of CASP tool. Designing and optimising
chemical reactions is usually based on synthetic chemists’ knowledge, experience,
and intuition. Increasing computational power and the establishment of reaction
databases have led to advancements in data-driven decision-making tools. Reac-
tion design and optimisation CASP tools have been developed to reduce the time
and effort required to traverse through the vastness of chemical space via theo-
retically possible transformations. AI and machine learning algorithms have been
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Figure 1.4: Overview of Computer-Aided Synthesis Planning (CASP) tools.

applied to predict chemical reactions and reaction outcomes, design retrosynthetic
routes, classify reactions, and optimise reaction conditions (Figure 1.4).

The interest in CASP tools for forward reaction prediction and retrosynthetic
route design has rapidly increased over the past seven years (Figure 1.5). For-
ward reaction prediction uses reactants, reagents, and conditions to predict the
major product of a reaction. Retrosynthesis is the reverse of forward reaction
prediction. Retrosynthetic route design involves the breakdown of a compound
into precursors by disconnecting bonds or converting functional groups. Recur-
sive breakdown occurs until the precursors are commercially available or in-house
compounds or the pathway reaches a specified number of steps. Classification
tools that identify the type of reaction occasionally supplement forward reaction
prediction and retrosynthesis methods. CASP tools extend to the prediction of
reaction outcomes and the optimisation of reaction conditions. Reaction out-
comes include the reaction yield, Enantiomeric Excess (%ee), and selectivity.
Reaction conditions include categorical variables such as catalysts and solvents
and continuous variables such as temperature and pressure.
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Figure 1.5: Number of publications about Computer-Aided Synthesis Planning
(CASP) tools against time. Source, Google Scholar; date of access, 20/07/2023;
publications contain at least one of the terms searched, ‘computer-aided synthesis
planning’ or ‘computer-assisted synthesis planning’ or ‘computer-aided retrosyn-
thesis’ or ‘computer-assisted retrosynthesis’ or ‘computer-aided synthetic design’
or ‘computer-assisted synthetic design’.

CASP tools are continually improving and becoming readily accessible. Reaxys
and SciFindern have both integrated computer-aided retrosynthesis planning. De-
spite this, synthetic chemists remain wary of adopting CASP tools into their
workflow. The benefits CASP tools can bring to synthetic chemists and ideal
properties to increase integration into everyday decision-making are outlined be-
low.

1.3.1 Integration of CASP

There is a role for CASP tools in drug discovery and development. CASP
tools can determine synthetic pathways based on specific goals such as avoiding
patent restrictions, complying with regulatory and environmental legislations,
and achieving long-term sustainability. In drug discovery, the focus is on the
ability to synthesise and functionalise scaffolds to a series of analogues for lead
optimisation rather than on optimising reaction yield or selectivity. During hit
identification and lead optimisation in drug discovery, chemists synthesise many
compounds for assaying. Chemists must rapidly identify feasible synthetic routes.
Ideally, when implementing de novo drug design tools, novel hits that are not syn-
thetically accessible should be filtered out. Identifying synthetic routes to novel
scaffolds which are not patented is crucial. Proposing reactions in a different
context or inventing new chemical reactions would be beneficial. In drug devel-
opment, the focus is on a few APIs. The aim is to identify optimal routes to meet
Safety, Environmental, Legal, Economics, Control and Throughput (SELECT)
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criteria.27 The focus is on sustainability, atom economy, process mass intensity
and material costs; while optimising reaction yield and selectivity and reducing
the number of steps. Current efforts include green chemistry principles to suggest
greener catalysts, reagents, and solvents while reducing energy consumption and
waste.

Thus far, chemists are yet to implement these tools when planning synthetic
routes to new molecules. A survey was completed in 2017 (13 chemists in two
companies)28 to determine what chemists expect from CASP tools. The survey
revealed the following as the most desirable aspects to include. (i) A user-friendly
interface that is easy to use, accessible, and has a shallow learning curve. (ii)
Provide supportive literature examples with reasoning. (iii) A user-defined list of
possible bonds to break. (iv) Lead the search to commercially available reactant
precursors. (v) Recognise conflicting reactivity and propose protecting groups.
(vi) Prioritise results based on user requirements. While aspects (i) to (v) can be
implemented regardless of the chemist’s area of expertise, prioritising the result
is challenging. Chemists working in different parts of the chemical industry have
distinct priorities when designing reactions. Their criteria for a suitable chemical
reaction could include cost, greenness, reaction conditions (such as temperature
or catalysts), selectivity, or the number of steps. CASP tools must be flexible and
rank pathways based on criteria provided by the chemist. Providing a confidence
score of predicted routes would also be valuable.

1.4 Scope and Objectives of Thesis

Advances in early drug discovery rely on the design and synthesis of novel molecules.
Time, cost and efficiency pressures in the pharmaceutical industry are key drivers
in accelerating drug design and development. Medicinal chemists are conse-
quently biased toward robust reactions that are applicable to structurally diverse
molecules and have a broad range of potential functionalisations, mild reaction
conditions, and a reasonable time frame. The success of artificial intelligence and
machine learning in other fields, such as image recognition and text processing,
has sparked increased interest in their application to drug discovery.29–31 This at-
tention includes the design and synthesis of small molecules. The research in this
thesis focuses on the development, evaluation, and growth of CASP to improve
the workflow of medicinal chemists. Predicting reaction yield is an area of CASP
reported significantly less in the literature. This thesis aims to explore machine
learning models for the prediction of reaction yield. Building on the pioneering
work of the Doyle group,32–34 we investigate the applicability of structure-based
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descriptors when building machine learning models to predict reaction yield. The
specific objectives of each chapter are outlined below.

Chapter 2 describes the fundamentals of machine learning applied to chemistry-
based research. An introduction to supervised learning is covered before delving
into the mathematical details of individual regression techniques. We illustrate
methods to represent the chemical structure of molecules, including machine-
readable representations known as molecular descriptors. Methods to quantify the
evaluation of the performance of machine learning models are also depicted.

Chapter 3 reviews distinguished CASP areas and compares existing state-of-the-
art CASP tools. This chapter is an updated version of Machine Learning for
Chemical Synthesis published in the Royal Society of Chemistry (RSC) book
Machine Learning in Chemistry: The Impact of Artificial Intelligence.35 Initially,
an overview and a brief history of CASP is recounted. A discussion about current
data sources and their potential limitations and progress follows. This literature
review focuses on two types of CASP tools: forward reaction prediction and
retrosynthetic analysis. The quantitative performance of current state-of-the-art
methods on benchmark datasets is extracted from the literature and compared.
This chapter concludes by emphasising existing issues and discussing the field’s
future direction.

Chapters 4 and 5 concentrate on the application of machine learning to predict
reaction yield. These chapters constitute the bulk of my doctoral research, pub-
lished in the American Chemical Society (ACS) Journal of Chemical Information
and Modelling.36

Chapter 4 extends the work of Doyle et al. in developing and comparing the
performance of machine learning models for the prediction of reaction yield.32–34

This chapter evaluates several linear and non-linear machine learning algorithms.
The aim of Chapter 4 is to examine whether the performance of models built on
less computationally demanding, structure-based molecular descriptors is compa-
rable to those built on the quantum chemical properties implemented by Doyle
et al.

Chapter 5 implements a more rigorous evaluation technique to assess the perfor-
mance of the Support Vector Regression (SVR) models identified as most promis-
ing in the preliminary evaluation conducted in Chapter 4. The aim of Chapter 5 is
to construct a model to predict the reaction yield of unexplored Buchwald-Harwig
reactions. We compare the performance of SVR models employing structure-
based descriptors to models employing quantum chemical properties. The top
SVR models built on each descriptor are subject to further external assessment.
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Reaction yield values predicted by the top SVR models for the external test set
are pending synthetic verification.

Chapter 6 summarises the outcomes and future direction of this research.



Chapter 2

Theory and Background

2.1 Introduction to Machine Learning

Artificial intelligence is the foundation of Computer-Aided Synthesis Planning
(CASP) tools. It is a broad field regarding the ability of machines to imitate
cognitive processes linked to human intelligence. Modern approaches to CASP
tools incorporate machine learning, which is an application of artificial intelli-
gence that enables machines to learn and improve through experience without
explicit programming. Machine learning uses vast amounts of data, computer
algorithms, and analytics to build predictive models. The three main types of
machine learning are supervised, unsupervised, and reinforcement learning.

Supervised learning algorithms learn the relationship between input-output pairs.
The input data is labelled, meaning the target variable is known. Regression
and classification are the two types of problems supervised learning deals with.
Regression algorithms are employed when the target data is continuous, and clas-
sification algorithms are employed when the target data is discrete. A supervised
learning model aims to predict the output based on the input data.

Unsupervised learning algorithms identify underlying features and patterns in the
input data without guidance. The input data is unlabelled, meaning there is no
target variable. Clustering and dimensionality reduction are problems that fall
under unsupervised learning. Clustering is the process of grouping data points
and assigning segregated clusters such that similar data points lie in the same
cluster. Dimensionality reduction is a technique to reduce the number of variables
in the input data. An unsupervised learning model aims to interpret and organise
the input data.

18
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Figure 2.1: Three major types of machine learning: supervised, unsupervised,
and reinforcement learning.
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Reinforcement learning algorithms reward desired characteristics while penalising
undesired ones. Through trial and error, an agent learns to perceive and interpret
its environment using feedback from its decisions. These algorithms learn from
outcomes to decide what action to take next. After each step, the algorithm
receives feedback to determine whether the decision was beneficial. The objective
is to maximise the rewards. Reinforcement learning encompasses exploitation or
exploration, Markov’s decision processes, and policy learning.

In the field of CASP, each of the three main types of machine learning has a role.
Supervised learning can be employed to predict a predetermined variable, such as
reaction yield using regression algorithms32 or reaction type using classification
algorithms.37 Unsupervised learning can be used to cluster similar retrosynthesis
pathways.38 Reinforcement learning can be utilised to generate retrosynthesis
pathways.39

The data used to build predictive models in this field contain chemical structures,
often recorded in terms of their chemical composition and atomic configuration.
These are known as molecular representations. Other notations, rather than en-
coding the exact structure of a compound, encode its physicochemical, structural,
topological, or electronic structure. There are numerous types of molecular rep-
resentation and descriptors. The most suitable one will depend on the task.

This chapter covers the theory and background of techniques used when apply-
ing machine learning to CASP. The work undertaken in this thesis focuses on
developing a CASP tool to predict a predetermined value, the yield of chem-
ical reactions. We first introduce the concept of supervised learning and how
to build a predictive model in Section 2.2 before describing the regression algo-
rithms in mathematical detail in Sections 2.3 and 2.4. We then focus on molecular
representations, descriptors, and similarity measures commonly applied to chem-
informatics in Sections 2.5 and 2.6. Finally, we provide details of performance
evaluation metrics used to assess the generalisability of regression models in Sec-
tion 2.7.

2.2 Supervised Machine Learning

Supervised machine learning algorithms model the relationship between indepen-
dent variables and a dependent variable by maximising a performance criterion.
Classification models are employed if the dependent variable is categorical, and
regression models if continuous. Supervised machine learning methods are built
on labelled data, known as training data, comprised of observed independent
input values and corresponding dependent output. Training an algorithm deter-
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mines a function (model) that describes the relationship between one dependent
value (target) y and two or more independent values (features) x. A p-length vec-
tor of continuous or categorical values represents the features. Categories may
be dummy-coded, whereby a number represents a single category. The trained
model can then be used to predict the output values of novel inputs.

Parametric models assume the shape of the mathematical function, for example,
linear. Making this assumption simplifies the optimisation of the function. The
model uses training data to estimate the function’s parameters. A disadvantage
of parametric models is that the assumed form is not always the correct relation-
ship of the data. If the presumed form is far from the unknown function, the
performance of the model will be poor. Non-parametric models do not assume
the function’s form or shape. The function is estimated by fitting data points,
allowing a broader range of functional forms. Compared to parametric models,
non-parametric models require considerably more training examples to predict
the function accurately. Detailed descriptions of machine learning algorithms
can be found in “The Elements of Statistical Learning”, co-written by Hastie,
Tibshirani and Friedman.40

2.2.1 Model Building

Initially, the prediction task is defined. In chemoinformatics, global models are
designed for large datasets that cover broader chemical space, while local models
are for small datasets with bias and narrow applicability range. The general
process for building supervised machine learning models for a specified prediction
task is illustrated in Figure 2.2.

Data Gathering

Machine learning algorithms require large amounts of training examples to per-
form well. When collecting the data, it is essential to consider its quantity, quality,
coverage, diversity (bias), and reliability. The model’s performance reflects these
aspects. The model will overfit the training data if there is insufficient data. If
the data is poor quality, the performance will be inaccurate. If the coverage is
limited, the model will only perform well in a small region of feature space. If the
data is biased and unreliable, the model will also be. Summary statistics give an
overview of the data to capture its nature. For quantitative feature data, sum-
mary statistics include counts, mean, standard deviation, maximum data point,
minimum data point, and percentile values. For categorical data, summary statis-
tics include counts, the number of unique entries, the most frequent category and
its value.
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Figure 2.2: Overview of the model building process in supervised machine learn-
ing.

Data Pre-processing

The collected data is cleaned and converted into a machine-readable format.
Cleaning data entails detecting errors and removing unwanted, missing, and du-
plicate data. If the input variables are already in a numerical format, they can
be implemented in their raw form or standardised if necessary. The data will not
be in a machine-readable format in many circumstances. Numerous types of de-
scriptors can represent the input variables. For cheminformatic-based problems,
molecular descriptors can represent one-, two-, or three-dimensional structures of
molecules.

Once the data is in an appropriate format, it is usually divided into training,
validation, and test sets. The model is optimised using the training set. The
validation set is then used to detect overfitting, select hyperparameter values,
and compare models. Finally, the test set evaluates the performance of the model
and should be representative of the application range. When data is scarce, the
validation set may be bypassed. In this case, the hyperparameter values would
be optimised using the training set.
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Standard methods to split data include randomised, time-based, and leave-one-
class-out splits. Taking a random split of the data is not always the best approach.
In many circumstances, there is an uneven distribution of data. Random splitting
on data with naturally clustered similar examples gives a too-optimistic view of
performance. A time-split of the data is preferred whenever possible because it
simulates how the model will be used in real life, with older training data than
test data. Time splits work best with extensive datasets consisting of millions
of examples. With fewer data, a time split can result in quite different distribu-
tions of data between training, validation, and test sets. Leave-one-class-out is
a frequent solution to limited data. The features of the training set are initially
grouped. Data points in one of the groups are held out of the training set and
used as the test set.

Select Model and Featurisation

Methodologies for selecting molecular descriptors or machine learning algorithms
are yet to be standardised. Often it is necessary to exhaustively compare various
algorithms with various molecular descriptors to identify the most suitable for
the problem specified. Simpler, well-performing models should not be overlooked
as they may provide better predictions than complex models prone to overfitting.
Benchmarking the algorithms and descriptors is desirable. Baseline models may
be pre-defined or generated during model development.

Training and Validation

Machine learning frameworks are available to provide model implementation, such
as scikit-learn for the Python programming language. During training, the model
learns to identify patterns in the training data by determining the model’s pa-
rameters. The model uses the training examples to adjust the parameters grad-
ually.

Validation is an initial evaluation of the trained model. The quality of the model is
checked against the validation set. With a sufficient dataset size, the validation set
is a subset of the dataset generated in data splitting. The trained model predicts
the validation set before calculating the performance statistics. If the dataset
is not large enough to afford a validation set, validation can be achieved using
cross-validation of the training set. Cross-validation is a technique to partition
the training set into iterations of training and test sets. A popular technique
called k-fold cross-validation divides the training data into k equal groups. For
each iteration of training and testing, a different group is the test data, and the
remaining k− 1 groups are the training data. The average performance statistics
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Figure 2.3: Overview of model fit. Light pink line, underfitting; purple, balanced;
dark teal, underfitting.

of the k models are calculated.

There is a fine balance between underfitting and overfitting the parameters in the
model (Figure 2.3). A model is underfitting the training data if it performs poorly
when the training data is used as the test set. Underfitting is when the model has
not captured the complexity of the training data. An underfitted model does not
capture the relationship between the input and target variables. The performance
statistics from the test data can determine if the model is overfitting the training
data. If the model performs well on the training data but poorly on the test
data, the model is overfitting. Overfitting is when the model fits the training
data too closely. The overfitted model is then unable to predict unseen examples
accurately.

Validation, or cross-validation, is also used to determine hyperparameter values.
Hyperparameters are parameters that are not optimised during training. Al-
though the default values are helpful, tuning the hyperparameters could further
improve the model’s performance.

Testing

The trained model is evaluated on the test set generated in data splitting to
determine the performance on previously unseen data. The choice of performance
metric may impact the quality of the model. Therefore, multiple metrics that fit
the application should be evaluated.

The superior model and featurisation identified from testing may be subject to
external testing to determine how well the model performs under real-life condi-
tions. This additional testing uses an external test set, which was not part of the
initially gathered data.
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Deployment

Once satisfied with the performance, the model can be deployed.25 Deployment
involves registering the model and generating documentation and guidelines for
use. The model is integrated into existing tools and workflow with accessibil-
ity for non-data scientists where required. Model ownership and accountability,
monitoring, and maintenance ensure the model is updated with newly available
training data and any issues are fixed.

2.3 Parametric Regression Algorithms

Parametric algorithms assume the function of the mathematical model that re-
lates the features with the targets. In this section, the regression algorithms
discussed assume the relationship is linear. The models define the relationship
between the target yi and the features xi, , given a dataset {yi, xi1, . . . , xip}ni = 1

of n statistical units (i.e., n training samples), using the function

yi = w0 + w1xi1 + . . .+ wpxip + ϵi

= w0 +

p∑
j=1

xijwi + ϵ

= x⊺
iw + ϵi

for i = 1, . . . , n, where xi = (xi1, . . . , xip) is a p-length vector of features, w =

(w1, . . . , wp) is a p length vector of coefficients, w0 is the intercept and ϵi is the
error term. For a dataset of n samples, the equations for all samples can be
written in matrix notation as

y = Xw + ϵ (2.1)
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where

y =


y1
...
yn



X =


x⊺
1
...
x⊺
n

 =


1 x11 · · · x1p

...
... . . . ...

1 xn1 · · · xnp



w =


w0

w1

...
wp



ϵ =


ϵ1
...
ϵn


y is the vector of observed target values yi (i = 1, . . . , n). X is a matrix of n
rows of p-feature vectors xi (i = 1, . . . , n) where xi0 = 1. w is a p + 1 length
vector of coefficients. ϵ is a vector of the error terms ϵi (i = 1, . . . , n). Regression
coefficients are estimated in the training of the linear regression algorithm to fit
a given dataset. From these estimates, predicted target values can be calculated
using

ŷ = ŵ0 +

p∑
j=1

xijwi

= x⊺ŵ.

2.3.1 Multiple Linear Regression

Ordinary Least Squares

Ordinary Least Squares (OLS) regression aims to identify the line of best fit with
the lowest error, known as the Least Square Regression Line (LSRL). The OLS
model estimates the parameters of the linear function by minimising the Residual
Sum of Squares (RSS). Residuals are the differences between the observed targets
y and targets predicted by the linear function of features ŷ. The residual of the ith

training point is given by ϵi = yi − ŷi. Figure 2.4 illustrates of squared residuals
for a simple linear regression model. The equation for calculating the sum of
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squared residual is given below.

RSS =
n∑

i=1

ϵ2i

=
n∑

i=1

(yi − ŷi)
2

=
n∑

i=1

(
yi − w0 −

p∑
j=1

xijwj

)2

=
n∑

i=1

(yi − xi
⊺w)2

The equation for calculating RSS can be rewritten in the lp-norm notation, ∥x∥p =
(
∑

i |xi|p)1/p, as shown in (Equation 2.2). The estimated multiple least squares
regression coefficients w that minimise Equation 2.2 can be used to predict the
target of novel input features.

RSS = (∥y −Xw∥2)2

= ∥y −Xw∥22
(2.2)

Figure 2.4: Illustration of squared residuals that are minimised in linear regres-
sion. Scatter points, observed data; line, least square regression line y = wX;
translucent squares, squared residuals.

The OLS method is easy to implement, efficient to compute, and straightforward
to interpret. While OLS performs well when the training data is linearly separa-
ble, it has several limitations. The method is sensitive to outliers. The presence
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of these extreme target values in the training data can cause drastic effects on
the resulting trained model due to the minimisation of the sum of squared errors.
The magnitude of the residuals will be squared during the sum of squares cal-
culation, meaning the model will try to reduce these extensive residual errors in
training. Extreme errors alter the least squared solution the most, significantly
affecting the final model.

The OLS method assumes there is no relationship between the independent vari-
ables. When features are correlated, changing one independent variable causes
changes in the others. A linear regression model trained on collinear data pro-
duces an unstable model. It can be challenging to differentiate between the
independent effects of the collinear features with the target. Multiple solutions
are considered acceptable, resulting in less precise coefficient estimation with
higher uncertainty. The unstable model becomes harder to interpret and may
cause overfitting of the data, resulting in poor performance on an external test
set.

Another issue arises when there are too many independent variables. As the
number of features approaches or exceeds the number of training examples, the
model overfits the data by fitting both the underlying structure of the data and
noise. Using an extensive number of features requires plenty of training examples
to distinguish between the features correlated with the output and those merely
correlated by chance. Including redundant features will impair the model and
should be avoided.

LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO) is a regulari-
sation technique used to overcome overfitting in linear regression and improve
generalisability. This method employs shrinkage, which reduces the regression
coefficients towards zero. An l1 regularisation term is added as a constraint to
the residual sum of least squares calculation, equal to the l1-norm of the coef-
ficient vector. The optimisation problem solved by LASSO is the minimisation
of

ŵlasso = argmin
w

{RSS + α (l1-norm)}

= argmin
w

{
∥y −Xw∥22 + α∥w∥1

} (2.3)

where RSS is the sum of squared residuals, ∥w∥1 is the l1-norm and α ≥ 0 is a
non-negative pre-defined regularisation parameter. The value of α is tuned as a
hyperparameter. The l1-norm is defined as the sum of the absolute value of the
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magnitude of the components in a vector, as shown below.

∥w∥1 =
p∑

j=1

|wj|

LASSO essentially translates each coefficient by a factor of α and truncates it at
zero. The intensity of the l1 constraint is determined by the constant α, where
α = 0 is the OLS optimisation problem. As α increases, a larger proportion of the
coefficients will equal zero and be eliminated from the model. If α is sufficiently
large enough, all coefficients will equal zero, resulting in a null model.

The enhanced performance of the LASSO method over the OLS method is at-
tributable to the trade-off between the variance and the bias of the LASSO
method. Variance is the amount a function would change when using a dif-
ferent training set. If minor changes to the training set cause large changes to
the estimated function, the model has high variance and is considered unstable
or flexible. Bias is the error in the predicted targets compared to the training
examples due to oversimplifying the complex relationship between the features
and the target. Bias is usually a result of assuming the relationship is linear. If
the predictions significantly differ from the actual training values, for example,
when predicting a non-linear relationship with a linear model, the resulting model
will have a high bias.

As α increases, the model variance decreases and becomes more stable, although
at the expense of a slight bias increase. The reduction in model complexity
helps overcome the overfitting of the training data and mitigate multicollinearity
present in the features. The sparse models generated by LASSO regression have
fewer non-zero coefficients and hence are reliant on a smaller number of features.
This variable selection results in more interpretable models. The LASSO method
becomes limited if multicollinearity, where one feature correlates with multiple
other features, is present in the training data. The LASSO model tends to focus
on one of the features of the group rather than considering all of them.

Ridge Regression

Ridge regression is a regularisation technique based on shrinkage, similar to
LASSO. The coefficients are proportionally shrunk toward zero. Generally, the
resulting coefficients are all non-zero. Therefore, sparse models, reliant on fewer
features, cannot be attained with the ridge regression method. An l2 regularisa-
tion term is added to the OLS optimisation problem. In ridge regression, coeffi-
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cients are estimated by minimising a penalised residual sum of squares

ŵridge = argmin
w

{
RSS + α (l2-norm)2

}
= argmin

w

{
∥y −Xw∥22 + α∥w∥22

} (2.4)

where RSS is the sum of squared residuals, and α ≥ 0 is a non-negative pre-defined
regularisation parameter. The value of α is tuned as a hyperparameter. The
square of the l2-norm, ∥w∥22, is equal to the sum of the square of the magnitude
of the components in the coefficient vector (see below).

∥w∥22 =

( p∑
j=1

|wj|2
)1/2

2

=

p∑
j=1

|wj|2

The penalty is not applied to the intercept w0. The intercept is essentially the
mean of the training target values with the features centred to zero.

When α is zero, the optimisation problem is the same as OLS, and the l2 penalty
term has no effect. As α increases (α → ∞), the influence of the l2 penalty
increases. The resulting decrease in the coefficient estimates toward zero during
optimisation reduces model flexibility, resulting in lower variance but higher bias.
As a result, a minor change in the training data should not cause a significant
change in the regression coefficients. Reducing the complexity of the model re-
duces data overfitting and improves generalisability until a tipping point where
the trade-off between variance and bias begins to cause underfitting. The ridge
regression method is advantageous when the number of features p is close to, or
larger than, the number of training examples n. In this case, the OLS method
will be very flexible, whereas the ridge method can perform well by trading off
small increases in bias for large decreases in variance.

Elastic-Net

The elastic-net method adds l1 and l2 regularisation techniques to the OLS opti-
misation equation.

ŵelastic net = argmin
w

{
RSS + α1 (l1-norm) + α2 (l2-norm)2

}
= argmin

w

{
∥y −Xw∥22 + α1∥w∥1 + α2∥w∥22

} (2.5)
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The α1 and α2 regularisation parameters control the intensity of the l1 and l2 con-
straints, respectively. When α1 = 0, the optimisation problem is ridge regression;
when α2 = 0, the optimisation problem is LASSO regression. The optimisation
equation can be rewritten to depend on a single regularisation parameter α. The
value of α is tuned as a hyperparameter. A ratio parameter describes the ratio
between the α1 and α2 parameters, known as the l1-ratio.

∥y −Xw∥22 + α (l1-ratio) ∥w∥1 + α (1− l1-ratio) ∥w∥22 (2.6)

When the l1-ratio = 0, the optimisation problem is the same as ridge regression
and when the l1-ratio = 1, it is the same as LASSO regression. Intermittent
values of the l1-ratio determine a trade-off between the l1-norm and the squared
l2-norm of the coefficient vector.

Implementing the l1 regularisation technique allows the elastic-net model to be
sparse and coefficients to be reduced to zero for redundant features. Adding the
l2 penalty overcomes limitations in the LASSO method when multiple features
are correlated. The elastic-net method, therefore, performs variable selection and
regularisation simultaneously, which is advantageous when the number of features
is larger than the number of training examples.

2.3.2 Linear Support Vector Regression

In epsilon-Support Vector Regression (ϵ-SVR), the aim is to find a function

y = wX+ w0

that describes the relationship between the observed target values y and ob-
served features X by fitting the error within a certain threshold ϵ, where w =

(w1, . . . , wp) is a vector of coefficients and w0 is the intercept. This linear func-
tion is known as the hyperplane and is shown in Figure 2.5 as a solid line. The
observed variables should deviate by a maximum distance ϵ from the hyperplane.
This defines an area known as the ϵ-insensitive tube or ϵ-tube, which sets a margin
for the observed variables. The boundary of the ϵ-tube is defined as

y = wX+ w0 + ϵ

y = wX+ w0 − ϵ
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Figure 2.5: Illustration of linear support vector regression. Scatter points, ob-
served data; solid line, hyperplane y = wX + w0; dotted lines, boundary lines
y = wX+ w0 + ϵ and y = wX+ w0 − ϵ.

and can be observed in Figure 2.5 as two dashed boundary lines. The hyperplane,
therefore, satisfies the constraints below.

y −wX− w0 ≤ ϵ

y −wX− w0 ≥ −ϵ

The linear hyperplane is determined by a convex optimisation problem to min-
imise the norm value

J (w) =
1

2
w⊺w =

1

2
∥w∥2

subject to all residuals being less than ϵ as shown in Equation (2.7).

min
w

J(w) = min
w

1

2
∥w∥2 (2.7)

It may be possible that no function would satisfy these constraints, and functions
that are found may overfit the observed data. Slack variables (ξ and ξ∗) are
introduced to allow for errors larger than ϵ. Slack variables are defined from the
boundary lines (Figure 2.5) and, therefore, can only be greater than or equal to
zero:

ξ ≥ 0

ξ∗ ≥ 0.
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If the error is above the ϵ-tube it is denoted as ξ and has the format:

yi − x⊺
iw − w0 ≤ ϵ+ ξi.

If the data point is below the ϵ-tube it is denoted as ξ∗ and has the format:

yi − x⊺
iw − w0 ≥ −ϵ− ξ∗i .

Any data points within the ϵ-tube are considered to have an error of zero. The
data points xi that fall outside of the ϵ-tube are called support vectors and are
used to define the hyperplane by contributing to the objective function,41 also
known as the primal formula (Equation 2.8).

J (w) =
1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ∗i ) (2.8)

Equation 2.9 describes the optimisation problem solved during the training of the
SVR algorithm. The hyperparameter C can be tuned to determine the toleration
of points outside of ϵ; as C increases, the tolerance increases. This parameter
helps to prevent overfitting (regularisation) and is considered a trade-off between
the flatness of the hyperplane and the tolerance of deviations larger than ϵ.

min
w,ξ,ξ∗

J(w)

min
w,ξ,ξ∗

1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ∗i )

subject to yi − wTxi ≤ ϵ + ξi

wTxi − yi ≤ ϵ + ξ∗i

ξi, ξ
∗
i ≥ 0

C > 0

(2.9)

The primal optimisation problem is simpler to solve computationally in its dual
formulation. A Lagrange function L(α) can be constructed from the primal ob-
jective function (Equation 2.8) by introducing positive Lagrange multipliers (α
and α∗) for each feature:

L(α) =
1

2

n∑
i,j=1

(αi + α∗
i )(αj + α∗

j )(xixj)

+ ϵ

n∑
i=1

(αi + α∗
i )−

n∑
i=1

yi(αi + α∗
i )
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The construction of the Lagrange function is detailed in Smola and Schölkopf.41

The dual optimisation problem is thus given by Equation 2.10.

min
α,α∗

L(α)

min
α,α∗

1

2

n∑
i,j=1

(αi + α∗
i )(αj + α∗

j )(xixj)

+ ϵ
n∑

i=1

(αi + α∗
i )−

n∑
i=1

yi(αi + α∗
i )

subject to
n∑

i=1

(αi + α∗
i ) = 0

0 ≤ αi ≤ C

0 ≤ α∗
i ≤ C

(2.10)

The parameter w can be written as a linear combination of the observed training
features xi:

w =
n∑

i=1

(αi + α∗
i )xi

The equation of the hyperplane can be rewritten as

y =
n∑

i=1

(αi + α∗
i )(xix) + w0.

Lagrange multipliers (α and α∗) are set to zero for data points inside the ϵ-
tube. Data points outside the ϵ-tube have positive Lagrange multipliers, known
as support vectors.

2.4 Non-Parametric Regression Algorithms

The shape of the mathematical function assumed in parametric models is not
always the same as the actual relationship between a set of features and targets.
Non-parametric models do not assume the form of the function and hence can fit
a broader range of forms.

2.4.1 Support Vector Regression

The relationship between the observed targets and features is not always linear
and, therefore, cannot always be described by a linear model (Figure 2.6). In
non-linear SVR, a kernel function maps the input data to a higher-dimensional
feature space where linear regression is performed. A non-linear kernel function
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Figure 2.6: Illustration of support vector regression implementing the linear (dark
teal), polynomial (purple) and RBF (light pink) kernels, on a one dimensional
dataset with 40 data points. Scatter points, observed data; coloured scatter
points, support vectors; solid line, hyperplane y =

∑n
i=1(αi + α∗

i )K(xi,x) + w0.

is defined as
K(xi,xj) = ⟨θ(xi), θ(xj)⟩

where θ(x) maps x to high-dimensional space. Examples of non-linear kernel
functions include polynomial, Gaussian Radial Basis Function (RBF), and sig-
moid functions. The sigmoid equation is not a valid kernel but has been applied
successfully; see Schölkopf42 for further details. The equations of these kernel
functions between two data points (xi and xj) are shown in Table 2.1.

Table 2.1: Kernel equations on two data points xi and xj

Kernel Name Equation, k(xi,xj)

Linear x⊺
i xj

Polynomial (γp(x
⊺
i xj) + cp)

d

RBF exp
(
−γr∥xi − xj∥2

)
Sigmoid tanh (γs(x

⊺
i xj) + cs)

The non-linear kernel function K(xi,xj) replaces the dot product (xix) in the
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dual formula (Equation 2.11).

min
α,α∗

1

2

n∑
i,j=1

(αi + α∗
i )(αj + α∗

j )K(xi,xj)

+ ϵ

n∑
i=1

(αi + α∗
i )−

n∑
i=1

yi(αi + α∗
i )

subject to
n∑

i=1

(αi + α∗
i ) = 0

0 ≤ αi ≤ C

0 ≤ α∗
i ≤ C

(2.11)

The equation of the hyperplane can be rewritten as

y =
n∑

i=1

(αi + α∗
i )K(xi,x) + w0.

2.4.2 k-Nearest Neighbours

The aim of k-nearest neighbours is to find the nearest k training points to a new
prediction point and calculate the average target value. The nearest k training
points are identified by calculating the distance between the features of the new
point and the features of the training points. The distance between the features
of a training point xi and a test point xj can be calculated by metrics such as
Euclidean distance, Manhattan distance or Minkowski distance (Equation 2.12a
to 2.12c).

Euclidean distance
√
(xi − xj)2 =

√
x2
i − 2xixj + x2

j (2.12a)

Manhattan distance |xi − xj| (2.12b)

Minkowski distance
[∑

(w|xi − xj|p)
]1/p

(2.12c)

The distances are sorted, and the closest k points are selected (N0). The predicted
target value of the new point x0 is the average of these selected points, as shown
below.

f̂ (x0) = ŷ0 =
1

k

∑
xi∈N0

yi

For example, in Figure 2.7, the predicted value represented by the black cross is
calculated from the average of the k closest points (k = 1, 5, 10), highlighted by
coloured scatter points. As k increases, the predicted function becomes smoother
and less flexible, resulting in a lower variance but higher bias. The value of k is
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Figure 2.7: Illustration of k-nearest neighbours implementing k = 1 (light pink),
k = 5 (purple) and k = 10 (dark teal), on a one-dimensional dataset with 40
data points. Scatter points, observed data; black cross, predicted data point;
coloured scatter points, nearest training points to the predicted data point; solid
line, predicted relationship between the features and the target.

tuned as a hyperparameter.

The computation of the distances is typically completed using one of the following
algorithms: brute force, k-dimensional (kD) tree43 or ball tree. The brute force
algorithm calculates distances between the new point and all training points. For
large datasets, this method can become infeasible.

The kD tree algorithm encodes implicit information to reduce the number of
distances that require computing. The kD tree algorithm partitions the training
data into a binary tree structure along each dimension k. An example dataset
x =

(
x1 x2

)
with two dimensions x1 and x2 (k = 2) is shown in Figure 2.8a. The

corresponding kD binary tree is shown in Figure 2.8b. The levels of the binary
tree are known as discriminators and range from zero to k − 1. At each level of
the binary tree, the discriminator alternates between each dimension, x1 and x2

in the example shown. The nodes in the binary tree represent a split through the
data along the dimension determined by the level. The root node corresponds to
the split of the data along the x1 axis at point l1. Data points with x1 < l1 will
be on the left (subtree to the left of the root), and data points with x1 > l1 will
be on the right (subtree to the right of the root). Each side of l1 is split along
the x2 dimension, represented by the two child nodes labelled l2 and l3. The leaf
nodes R1 to R4 correspond to the final subsets of the training data. The kD tree
is traversed to determine the nearest k points by locating the boundary box that
the new point is in. Distances are calculated between the new point and training
points in this boundary box and training points in neighbouring boundary boxes.
From these distances, the closest k training points are identified. The kD tree
algorithm can become infeasible for higher dimensional data.
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(a)

l1

l2

R1 R2

l3

R3 R4

(b)

Figure 2.8: Illustration of the kD algorithm. l1, Split 1 along x1 dimension; l2 and
l3, Split 2 and 3 along x2 dimension; R1 to R4, final subsets of the dataset. (a)
Plot of two-dimensional (2D) data (x1, x2) with 40 data points. Scatter points,
2D data; solid lines, kD tree nodes. (b) Binary tree structure. l1, root node; l2
and l3, inner nodes; R1 to R4, leaf nodes.

The ball tree algorithm is efficient for organising data points in high dimensional
space. It constructs a binary tree, similar to the kD tree (Figure 2.8), except
the data is partitioned into n-dimensional hyperspheres rather than boxes. Ini-
tially, the data is split into two hyperspheres where any n-dimensional point will
belong to only one of these spheres, even if these spheres intersect one another.
Each data point belongs to the hypersphere with the closest centroid. The hy-
perspheres can each be divided in two again to create sub-hyperspheres. The
distance between the data points and the centroid of the sub-hyperspheres will
determine which sub-hypersphere the point belongs. This splitting process is re-
peated until a certain depth is reached. For a new point, the tree is explored until
a leaf node is reached. The distances between the new point and the points inside
this hypersphere are calculated, and the closed k points are identified.

The dimensionality of the feature space hinders the performance of k-nearest
neighbours. A finite number of training data in high dimensional feature space
leads to sparse data, known as the curse of dimensionality. Increasing the di-
mensionality of the features causes the closest distance between two points to
approach the average distance of all points. The model performance decreases
as it will only be slightly better than taking the average target value of the
dataset.
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2.4.3 Decision Trees

Tree-based models predict target values using binary trees where the feature
space is split based on specific rules into non-overlapping regions. The algorithm
is known as the Classification and Regression Trees (CART) algorithm.44 The
root node represents the entire dataset and is split into two or more sub-nodes
following a rule. A divided node is the parent node, and the resulting sub-nodes
are the child nodes. The feature space X is recursively partitioned to form a
tree structure where the intermediate subsets are internal nodes and the final M
subsets of the dataset are leaf nodes R = (R1, . . . , RM). Training the decision
tree model defines the rules for splitting at each non-leaf node. At each leaf
node m, the subset of the training data Rm is represented by a constant cm,
corresponding to the predicted target value. The decision tree model is given by
Equation 2.13. Depending on the loss function used to determine the splits of
the data, cm is either the mean or median of the training data. The indicator
function I() returns one if true and zero otherwise.

f(x) =
M∑

m=1

cmI (x ∈ Rm) (2.13)

The decision tree recursively splits the feature space so that each child node has
similar observed target values. This greedy approach is called recursive binary
splitting. In the training of the algorithm, the splitting rules are determined.
Candidate splits are explored for each division of feature space, and their quality
is evaluated to determine the best division. A candidate division is denoted
as

θ = (j, tm)

where j is the feature of the candidate and tm is the threshold value for node m.
Given data Qm at node m with nm samples, the resulting child nodes (subsets)
are denoted as Qleft

m (θ) and Qright
m (θ). The left child node will contain data with

features lower than or equal to the threshold value

Qleft
m (θ) = {(x, y)|xj ≤ tm}

and the right child node the remaining data

Qright
m (θ) = Qm \Qleft

m (θ)

= {(x, y)|xj > tm}.
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A loss function H(Qm) is used to assess the quality of the candidate split G(Qm, θ)

of node m.

G(Qm, θ) =
nleft
m

nm

H(Qleft
m (θ)) +

nright
m

nm

H(Qright
m (θ))

Minimise the loss function

θ∗ = argminθG(Qm, θ)

to ensure data points in each child node have similar observed target values while
the two child nodes are as different as possible. For a regression task, this loss
function identifies the extent the predictions deviate from the observed target
values and can be the Mean Squared Error (MSE), Poisson deviance or Mean
Absolute Error (MAE). The MSE and Poisson loss functions set the predicted
values of the leaf nodes cm to the mean ȳm of the training values and can be
calculated by

MSE H(Qm) =
1

nm

∑
y∈Qm

(y − ȳm)
2

Poisson Deviation H(Qm) =
1

nm

∑
y∈Qm

(
y log

y

ym
− y − ȳm

)2

where ȳm =
1

nm

∑
y∈Qm

y

where nm is the number of training samples in node m, y are the observed target
values in the data Qm and ȳm is the predicted target value given by the mean of
the data Qm. The MAE loss function sets the predicted values of the leaf nodes
to the median median(y)m and is calculated by

MAE H(Qm) =
1

nm

∑
y∈Qm

|(y − median(y)m|

where median(y)m = median(y)m
y∈Qm

The search and split process is repeated to build the decision tree until a stop
criterion is met. Possible stop criteria include minimum training examples in a
leaf node or a maximum tree depth.

Decision trees have several advantages over other regression algorithms. They
are simple to understand and easy to interpret. The algorithm mirrors human
decision-making and can be displayed graphically to aid understanding and inter-
pretability. Decision trees are beneficial when features contain categorical data
since they do not require dummy coding.
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Figure 2.9: Illustration of decision tree on a one-dimensional dataset with 40
data points with a maximum depth of 2 (light pink), 5 (purple) and no maximum
depth (dark teal). Scatter points, observed data; solid line, predicted relationship
between the features and the target.

Despite many advantages, decision trees suffer from high variance. Minor changes
in the training data cause extensive changes to the decision tree via different splits,
changing the predictions. This leads to overfitting of training data and results in
poor predictions on external test sets. The functions relating the features to the
targets generated by decision trees are not smooth (Figure 2.9), which can hinder
the performance.

Cost-Complexity Pruning

Large decision trees are often too complex, resulting in overfitting of the training
data. Cost-complexity pruning, also known as weakest link pruning, reduces the
size of a decision tree by sequentially removing internal nodes. Not all subtrees are
explored. The internal nodes that give the smallest increase in the loss function
are removed. For a large decision tree T0, a subtree T ⊂ T0 is obtained by
minimising the cost-complexity function defined as

Cα(T ) =

|T |∑
m=1

nmH(Qm) + α|T |

where nm is the number of examples in node m, H(Qm) is the loss function, and
α ≥ 0 is a positive tuning parameter.

The value for α determines a trade-off between the decision tree’s complexity
(size) and the fit of the training data. When alpha is zero (α = 0), the tree is
not pruned, resulting in the large initial decision tree T0. As α increases, more
internal nodes are removed. This decreases the number of terminal leaf nodes
and the tree size, resulting in lower model variance and improved interpretability
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at the expense of a slight increase in bias.

2.4.4 Ensemble Methods

Ensemble methods combine multiple models trained on the same dataset. En-
semble methods based on decision trees include bagging, random forests, and
gradient boosting. The bagging and random forest models use the bootstrap
method to obtain subsets of the training data. In the bootstrap method, samples
are randomly selected from the training data, with sample replacement. This is
repeated B times to generate B subsets with a sample size equal to that of the
original training set. Sampling is performed with replacement meaning the same
training point can be in multiple bootstrapped subsets.

Bagging

In bagging, separate decision trees are built on different subsets of the training
data, and the results are averaged. Splitting the training data into B different
training subsets is called bootstrapping. A separate decision tree is trained on
each of the B training subsets. For a new prediction point x0, the predicted target
value is calculated as the average prediction over the B decision trees (Equation
2.14).

f̂bag(x0) =
1

B

B∑
b=1

f̂ ∗b(x0) (2.14)

If a feature in the training data has a strong correlation with the targets, the
feature will be selected as a splitting criterion in many of the B decision trees.
This causes the trees to be highly correlated and with high variance. The resultant
flexible model is unstable and susceptible to minor changes in the training data,
which causes overfitting.

Random Forests

Random forests are an alternative to bagging, which reduce the overfitting of
training data. Random forests consist of multiple de-correlated decision trees
built on bootstrapped training data. A random forest tree is built for each subset
of the bootstrapped training data. A random-forest tree differs from a decision
tree by how the features are split. A random subset of features m is selected from
the total p features. The data is then split along the dimension of the best-split
point in the m features. The predicted target value of a new point x0 is calculated
as the average prediction over the B random-forest trees (Equation 2.15).
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f̂rf (x0) =
1

B

B∑
b=1

Tb(x0) (2.15)

Selecting only a subset of features for training the random-forest trees results
in a decorrelation of the B random-forest trees. If a single feature has a strong
correlation with the targets, the random selection of features reduces the number
of times it is selected as a splitting criterion because it may not be present in
the m features. Decorrelating the decision trees reduces the variance with a
modest increase in bias and loss of interpretability. As a result, the model is more
reliable, less flexible, and less susceptible to overfitting. Reducing m reduces the
correlation between the trees in the ensemble meaning small values of m may be
beneficial for datasets containing a large number of features.

Gradient Boosting

Gradient boosting differs from bagging and random forest as decision trees are
grown sequentially rather than bootstrapping the dataset and building individ-
ual trees. Each tree is built on the information generated by the previous tree.
The decision trees in gradient boosting are built on residuals, the difference be-
tween the observed and predicted target values, rather than on the target values
themselves.

The gradient boosting algorithm has two requirements, a labelled training set
{(xi, yi)}ni=1 and a differentiable loss function L(yi, f(xi)). The most common
loss function used for gradient boosting in a regression setting is the squared
error

L(yi, f(x)) =
1

2
(observed − predicted)2

=
1

2
(yi − f(xi))

2 .

The derivative of this loss function is given by

∂L(yi, f(xi))

∂f(xi)
= −2

2
(yi − f(xi))

= − (yi − f(xi)) .

The boosting model is initialised with a constant value f(x0) = argminγ

∑n
i=1 L(yi, γ)

where L(yi, γ) is the loss function, yi is the ith observed value and γ is the pre-
dicted value. The value for γ that minimises this loss function is determined by
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equating the derivative of the loss function to zero.

n∑
i=1

∂L(yi, γ)

∂γ
=

n∑
i=1

∂
(
1
2
(yi − γ)2

)
∂γ

= −
n∑

i=1

(yi − γ)

= 0

This equation is solved to find γ which equates to the mean target value 1
n

∑n
i=1 yi.

The initial constant model f0(xi) is a single leaf node tree equal to the mean target
value.

Once initialised, the algorithm builds consecutive decision trees up to a predefined
maximum number of trees M . For each tree m, pseudo residuals are calculated
for the training points i = 1, . . . , n by the negative gradient.

ri,m = −
[
∂L(yi, f(xi))

∂f(xi)

]
f(x)=fm−1(x)

= −
∂
(
1
2
(yi − fm−1(xi))

2)
∂fm−1(xi)

= (yi − fm−1(xi))

For the first decision tree m = 1, the initial function f0(xi) is used to calculate
the predicted value fm−1(xi). A regression tree is fitted to predict the pseudo
residuals ri,m (not target values). The leaf nodes of the regression tree define
terminal regions Rj,m for j = 1, . . . , Jm. For each region Rj,m, the data in the
region is represented by the constant value γj,m, calculated as the minimisation
of

γj,m = argminγ

∑
xi∈Ri,j

L(yi, fm−1(xi) + γ)

= argminγ

∑
xi∈Ri,j

1

2
(yi − (fm−1(xi) + γ))2 .

This is equal to the average residual values of the training samples contained in
the region Rj,m. The predicted target value fm(x) of each training sample is then
calculated using

fm(x) = fm−1(x) + ν
Jm∑
j=1

γj,mI(x ∈ Rj,m)

where fm−1(x) is the predicted target value calculated using the previous model,
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ν is a learning rate between zero and one, and
∑Jm

j=1 γj,mI(x ∈ Rj,m) is the sum
of the predicted residuals. The learning rate determines the effect each tree has
on the final prediction of the target value to prevent overfitting of the training
set. This decreases the variance with a slight increase in the bias. The predicted
target value of a new point x0 is calculated using the function from the final M th

decision tree (Equation 2.16).

fM(x) = fM−1(x) + ν

JM∑
j=1

γj,MI(x ∈ Rj,M) (2.16)

Neural Networks

Neural networks form the basis of deep learning, a subcategory of machine learn-
ing. The anatomy of the human brain inspires deep learning algorithms. Neurons
are highly interconnected human brain cells that transmit electrical signals to each
other to process information. Artificial neural networks consist of interconnected
layers of artificial neurons, known as nodes, that process and analyse data to
solve mathematical problems.

The simple architecture of an artificial neural network has an input layer, one or
more hidden layers, and an output layer. The input layer receives the data and
processes, analyses, or categorises it before passing it on to the next layer. The
hidden layer takes the data from the previous layer (input or hidden) and further
processes it before passing it on to the next layer (hidden or output). The output
layer then predicts the final forecast. This final layer may consist of one or more
nodes. Binary classification, for example, has a single node with a value of zero
or one indicating no or yes, whereas multi-class classification has several output
nodes, one for each class. While a simple architecture may have only one hidden
layer, a deep neural network architecture may have numerous hidden layers with
millions of interconnected neurons.

The nodes in each layer are connected to the following layer. These connections
are assigned an associated weight value to demonstrate the importance of the
variables. A higher weight indicates a larger contribution to the final prediction
and vice versa. The inputs (activations) to each node are multiplied by their
connection weight to compute a weighted sum,

a0w0 + a1w1 + . . .+ anwn

where a is the activation of a single node in the current layer, {a0, a1, . . . , an}
are the activations of the previous layer, and {w0, w1, . . . , wn} are the weights
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connecting the activations of the previous layer with the node in the current
layer. A bias value is added to the weighted sum.

a0w0 + a1w1 + . . .+ anwn + b

The bias value, b, accounts for inactivity, in other words, how high the weighted
sum needs to be before the neuron is meaningfully active. An activation function
is applied to the resulting value, which acts as a threshold to determine whether
or not the neuron is activated.

σ(a0w0 + a1w1 + . . .+ anwn + b)

Activation functions may return a range between 0 and 1, for example, the sigmoid
function.

S(a) =
1

1 + e−a

The activation function most commonly employed in deep learning is the rectified
linear unit (ReLU) function. It returns 0 if it receives any negative input and
itself for any positive value.

ReLU(a) = max(0, a)

The activation of a neuron measures how positive the relevant weighted sum is.
A node’s activation can be expressed in matrix form. See Equation 2.17, where
l represents the current layer, l − 1 represents the previous layer, w represents
the weights, a represents the activation values, and b represents the biases. Each
neuron is a function that takes the preceding layer’s outputs and returns a positive
number.

a
(l)
0 = σ(w0,0a

(l−1)
0 + w0,1a

(l−1)
1 + . . .+ w0,na

(l−1)
n + b0)

a(l) = σ(Wa(l−1) + b)
(2.17)

Training a neural network entails iteratively performing the forward and backward
propagation cycle. Initially, the weights and biases are randomly assigned. The
data flows through the network from the input layer through the hidden layers
to the output layer. The activation of nodes governs the flow of data. If a node
is activated, its output becomes the input to the next layer in the network. If
a node is not activated, it inhibits the data passing to the next layer. This
process is termed forward propagation. The final prediction is the neuron in the
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output layer with the highest value. The values assigned to the output layer are
analogous to probability scores.

The observed output is known during training and is compared to the predicted
output to determine an error value. The magnitude of the error is transferred back
through the neural network. This process is termed backward propagation. The
weights are adjusted based on the error information. The forward and backward
propagation cycle is performed iteratively for multiple input-output pairs.

Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), Recur-
rent Neural Network (RNN), Long Short-Term Memory (LSTM), sequence-to-
sequence, and transformer are examples of neural network architectures.

2.5 Molecular Descriptors

There are many ways of representing a molecule. Names, codes, topology, and
properties are all examples of molecular representations. For example, the name
of the painkiller paracetamol is a shortened form of its chemical name para-
acetyl-amino-phenol. The trade names, Panadol and Tylenol, are examples of
alternate common names for paracetamol, as is the abbreviation APAP from
the alternative chemical name [N -]acetyl-para-aminophenol, and the Interna-
tional Union of Pure and Applied Chemistry (IUPAC) nomenclature N -(4-hy-
droxyphenyl)acetamide. Figure 2.10 depicts the structure of paracetamol, while
Table 2.2 shows common representations.

Machine learning for chemistry requires encoding chemical structures in a machine-
readable format that an algorithm can process. Todeschini and Consonni define
a molecular descriptor formally as “the final result of a logical and mathematical
procedure, which transforms chemical information encoded within a symbolic rep-
resentation of a molecule into a useful number or the result of some standardised
experiment”.45 Descriptors are determined experimentally or theoretically derived
from a symbolic representation of a molecule. They encode a molecule’s struc-
tural, physicochemical, electronic, or topological nature. The choice of descriptor
is critical as it can affect an algorithm’s performance. It is consequently essential

OH

N

H

O

Figure 2.10: The chemical structure of paracetamol.
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Table 2.2: A list of commonly accepted representations for the chemical parac-
etamol.

Representation Name Representation of Paracetamol

Name Paracetamol
Trade Names Panadol, Tylenol
Other Names para-aceyl-amino-phenol, [N -]acetyl-para-aminophenol,

APAP
IUPAC Name N -(4-hydroxyphenyl)acetamide
CAS Registry Number 103-90-2
ChEMBL ID CHEMBL112
Canonical SMILES CC(=O)NC1=CC=C(C=C1)O
InChI 1S/C8H9NO2/c1-6(10)9-7-2-4-8(11)5-3-7/h2-5,11H,1H3,

(H,9,10)
InChIKey RZVAJINKPMORJF-UHFFFAOYSA-N

to evaluate several representations. A descriptor must be able to discriminate
between molecules, have values that change gradually with modest structural
changes, and be interpretable. It must also capture the necessary information
for the specified problem, i.e. correlate well with the target variable. It is ben-
eficial for descriptors to obey physical invariants,46 meaning the descriptor of a
molecule should be independent of distinct characteristics of the molecule’s rep-
resentation. These characteristics may include numbering, labelling, reference
frame, translation, rotation, or molecular conformations.

The perspective of a molecule can characterise molecular descriptors: global, lo-
cal, or field. Descriptors based on the global perspective of a molecule consider the
whole structure, for example, volume, surface area, dipole moment, and molec-
ular graph. Local descriptors only contain information about atoms, bonds, or
fragments within a molecule, including atomic charges, bond polarizabilities, and
molecular fingerprints. The final perspective of a molecule is the molecular fields
surrounding the molecule, such as the electrostatic potential.

The dimensionality of the structural representation can also classify molecular
descriptors. Zero-Dimensional (0D) descriptors include constitutional descriptors
and atom counts. One-Dimensional (1D) descriptors consider a list of structural
fragments. Two-Dimensional (2D) descriptors take into account the connectivity
in a molecule. Three-Dimensional (3D) descriptors encode the geometry of a
molecule. Each class of descriptor is described in further detail below.
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2.5.1 Zero-Dimensional and One-Dimensional Descriptors

0D and 1D descriptors do not contain information about a molecule’s chemical
structure, geometry, or atom connectivity. These representations consist of occur-
rence frequencies, bulk properties, and molecular properties. 0D descriptors are
constitutional descriptors derived from the molecular formula of a molecule. Ex-
amples include molecular weight, atom counts, and bond counts. 1D descriptors
are obtained from structural fragments, including the number of hydrogen bond
donors, hydrogen bond acceptors and rings, and functional group counts. Table
2.3 shows 0D and 1D descriptors of paracetamol. Low-dimensional descriptors
are easily obtained and quick to calculate. They are frequently combined with
other chemical descriptors of the same or higher dimensions since they provide
minimal information about the molecule.

Table 2.3: Zero- and one-dimensional molecular descriptors of paracetamol3

Descriptor Name Value

Empirical Formula C8H9NO2
Molecular Weight 151.16 g mol-1

Hydrogen Bond Donor Count 2
Hydrogen Bond Acceptor Count 2
Rotational Bond Count 1
Heavy Atom Count 11
Formal Charge 0

2.5.2 Two-Dimensional Descriptors

2D descriptors encode a molecule’s topology (i.e. connectivity) based on struc-
tural fragments, atom connectivity, and topological indices. A chemical structure
is the spatial arrangement of atoms and bonds derived from the mathematical
field of graph theory.47 It is also known as a molecular graph. The molecular
graph of paracetamol is depicted in Figure 2.11.

A molecular graph G = (V,E) consists of nodes V corresponding to the atoms
and edges E corresponding to the bonds.48 The vertices vi and vj (vi ∈ V and
vj ∈ V ) of an edge {vi, vj} ∈ E are considered connected and are known as the
endpoints. The edge that connects two vertices is incident with them, the vertex
is incident with the connected edge, and the two vertices connected by the edge
are said to be adjacent.

Molecular graphs are undirected since the edges do not have a direction, coloured
since the nodes are assigned a discrete label, and weighted since the edges are
assigned a number (Figure 2.11). The nodes are coloured according to the atom
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Figure 2.11: The molecular graph of paracetamol.

type, such as carbon (C), nitrogen (N), and oxygen (O). The edges can be
weighted based on bond order, such as single (1), double (2), triple (3), and
aromatic (1.5). Hydrogen atoms are commonly omitted from molecular graphs
when the edges are weighted since they are represented implicitly through va-
lences. Molecular graphs are fast to calculate. They are also easy to interpret as
molecules with identical molecular graphs correspond to the language of organic
chemists.

Topological descriptors are derived from the molecular graph representation. The
molecular graph representation can be directly used as a descriptor or converted
to numerical values or vectors such as molecular fingerprints and graph-based ker-
nels. An alternative 2D representation is line notations that describe a molecule
as a sequence of characters.

Molecular Fingerprints

Molecular fingerprints are topological descriptors derived from the molecular
graph representation. Fingerprints are vectors composed of binary digits de-
noting the presence or absence of structural features, which are quick and easy to
calculate. There are two main classes of molecular fingerprints, structure-key and
hash-key fingerprints, also recognised as knowledge-based and information-based
descriptors.

Structure-Key Fingerprints. Structure-key fingerprints encode a molecule as
a fixed-length bitstring based on a list of predefined substructures or fragments
(subgraphs). Each bit corresponds to the presence or absence of a subgraph in the
predefined list. If the subgraph is present, the bit is set to one; otherwise, it is set
to zero (Figure 2.12). Structure keys cannot encode information about the entire
molecular structure. As structure keys are based on an explicit dictionary, they
cannot encode features outside the predefined list. They have limited applicability
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Cl

[
· · · 0 0 1 0 0 1 0 1 · · ·

]
Figure 2.12: Illustration of a structure-key fingerprint. Subgraphs and corre-
sponding bits in the fingerprint are colour-coded.

as a result. The Molecular ACCess Systems (MACCS)49 keys are an example
of structure-key fingerprints frequently used in drug discovery. MACCS keys
consist of 166 bits corresponding to 166 public structural keys based on SMILES
Arbitrary Target Specification (SMARTS) strings.

Hash-Key Fingerprints Hash-key fingerprints define the connectivity of molecules
without using a predefined list of subgraphs. They intend to encode the struc-
tural information of the entire molecule, akin to the mathematical graph-vector
transform discussed later. Substructure enumeration techniques encode linear or
circular subgraphs. Figure 2.13 and Algorithm 2.1 outline the general hashing
algorithm for generating a hash-key fingerprint. Initially, subgraphs within a
molecule are identified by following linear or circular paths along bonds up to a
specified size. These subgraphs are then converted to numeric values using a hash
function which indicates the bit positions in the fingerprint. The optimum bit
length of hash-key fingerprints can vary depending on the type of fingerprint or
the specific problem and hence should be tuned as a hyperparameter. As the hash
function converts the molecule into a number within a fixed range, bit collisions
are likely. A bit collision is when two different subgraphs are converted to the
same number and, therefore, the same bit. Hashed fingerprints are irreversible,
meaning determining the molecule from the fingerprint is impossible. Examples
of hash-key fingerprints include the RDKit path-based fingerprints50 and Morgan
circular fingerprints.51

RDKit Fingerprints The RDKit fingerprints are based on the Daylight fin-
gerprint.52 Subgraphs within a molecule are generated by following topological
paths starting from each atom up to a predefined path length (number of bonds).
Figure 2.15 illustrates this process for the molecule 4-ethylbenzyl chloride, with
the maximum path length set to three bonds (Figure 2.14). A hash is generated
for each subgraph using the bond order and atom types of the individual bonds.
The hash is then used as the seed to a random generator which generates n ran-
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Start

Molecule

Identify substructure
patterns (subgraphs)

Subgraphs

Last subgraph?

Update fingerprint

Calculate hash

Use hash as the seed to a
random number generator

Generate n random numbers
between 0 and f (0 ≥ n ≥ f)

Set bits corresponding to the
random numbers to ON (1)

Final fingerprint

Stop

NoYes

Figure 2.13: Flow diagram of the general hashing algorithm for generating a
hash-key fingerprint.
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Algorithm 2.1 General hashing algorithm for generating a hash-key fingerprint
function generateFingerprint(molecule, bitLength, subgraphSize)

fingerprint = initialiseFingerprint(bitLength)
subgraphs = getSubgraphs(subgraphSize)
for subgraph in subgraphs do

seed = hash(subgraph)
indicies = random(seed, start = 0, end = bitLength)
for index is indicies do

fingerprint[index] = 1

return fingerprint

dom numbers between zero and the length of the fingerprint. The indices of the
bits that correspond to the random numbers are set to ON (1).

Morgan Fingerprints Circular fingerprints consider the circular environment
surrounding each atom rather than linear paths.53 The Morgan fingerprint is sim-
ilar to the Extended Connectivity Fingerprint (ECFP).53 The Morgan fingerprint
defines the circular radius, whereas ECFP defines the diameter. The algorithm
initially assigns an identifier to each non-hydrogen atom in the molecule. The
identifier is based on the Daylight atomic invariants:54 the number of adjacent
non-hydrogen atoms; valence minus the number of hydrogens; the atomic num-
ber; the atomic mass; the atomic charge; the number of attached hydrogens; and
additionally, whether the atom is in at least one ring. Feature Morgan fingerprints
are a variant similar to the Functional-Class Fingerprints (FCFP), which differ in
the assignment of the atom identifier. Each atom is assigned a code based on its
role: hydrogen-bond acceptor; hydrogen-bond donor; aromatic; halogen; basic;
and acidic. The next step of the algorithm iteratively updates each identifier
to include the identifier and bond order of neighbouring atoms. The iteration
process repeats up to a predefined radius. The value for the radius commonly
implemented ranges between one and three. Figure 2.16 illustrates this itera-
tion process on the 4-ethylbenzyl chloride for atom 1. The iteration process is
performed for all atoms, meaning the final identifiers contain partial implicit in-
formation about other areas of the molecule (Figure 2.17). Lastly, the identifiers
are folded into the fixed length of the bit vector using a hash function, where bit
collisions may occur.
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Figure 2.14: Illustration of the path identification process in RDKit fingerprints
for atom 1 in the orginal molecule, 4-ethylbenzyl chloride. Paths are extended
up to a maximum path length of three bonds.
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Figure 2.15: Illustration of subgraph identification using the RDKit topological
fingerprint. For each atom in the orginal molecule, 4-ethylbenzyl chloride, paths
are extended up to a maximum path length of three bonds.
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Figure 2.16: Illustration of the iterative updating of an atom identifier. The ex-
ample uses atom 1 in 4-ethylbenzyl chloride. At iteration 0, the initial identifier
for atom 1 only contains information about the chlorine atom and its bonds.
After the first iteration, the identifier includes information about the immedi-
ate neighbours of atom 1. By the second iteration, information regarding the
meta-carbon atoms on the phenyl ring is incorporated into the atom 1 identifier.
The iteration process will terminate after a predetermined number of iterations.
Performing more iterations increases the circular environment surrounding the
atoms in the identifier.
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Figure 2.17: Illustration of the identification of subgraphs in the Morgan circular
fingerprint with a radius up to two bonds.



Chapter 2: Theory and Background 58

Weisfeiler-Lehman Graph Kernel

The Weisfeiler-Lehman (WL) subtree graph kernel55 is based on the concepts
used in the Weisfeiler-Lehman test of isomorphism. If two graphs are structurally
identical, i.e., the mapping between the nodes is equivalent, they are said to be
isomorphic. An example of two isomorphic graphs is the cis and trans isomers of
an alkene molecule. The nodes are connected by the same edges regardless of the
isomerism (Figure 2.18). When a graph matches a subgraph in another graph,
this is known as subgraph isomorphism.

Figure 2.19 outlines the algorithm for the WL isomorphism test between two
molecular graphs, G and G′. The molecular graphs are initialised by mapping
the atoms present in both graphs to numbers. When using the subtree kernel as
the base kernel, the node labels are iteratively updated to include information
about the circular neighbourhood of the atoms, similar to the Morgan circular
fingerprint. The number of iterations h is defined prior to the calculation and
requires tuning as a hyperparameter. The algorithm iteratively updates the node
labels in four main steps: multiset-label determination, sorting each multiset,
label compression, and relabelling.

Multiset-Label Determination. A multiset-label Mi(v) is assigned to each
node v of the molecular graphs. This is determined by identifying the direct
(one-bond distance) neighbours u in neighbourhood N (⊑) to the node v.

Mi(v) = {li−1(u)|u ∈ N (v)}

Sorting Each Multiset. The elements in the multiset Mi(v) are sorted in
ascending order to ensure all identical labels are compressed to the same number.
The sorted multiset-label Mi(v) is converted into a string. The current node label
li−1(v) is added as a prefix to the sorted multiset-label string with the format

si(v) = (li(v),Mi(v))

where i is the iteration number and v is the node.

C1
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C 4

C1

C
2
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3

C 4

Figure 2.18: An example of two isomorphic graphs, trans-but-2-ene and cis-but-
2-ene.
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Figure 2.19: Schematic of the Weisfeiler-Lehman algorithm.
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Label Compression. The multiset-label strings si(v) for all nodes v in both
molecules G and G′ are sorted in ascending order. A function f : Σ∗ → Σ is used
to map these strings si(v) to new compressed labels Ci(v).

Relabelling. The nodes li(v) in the two molecules G and G′ are relabelled using
these new compressed labels:

li(v) = f(si(v)) = Ci(v).

Any two nodes with the same multiset-label strings si(v) = si(w) will have the
same new compressed label f(si(v)) = f(si(v)) = Ci(v) = Ci(w).

Once the h iterations have been completed, the molecular graphs G and G′ are
converted into feature vector representations ϕ(G) and ϕ(G′). The vector ϕ is a
concatenation of the counts ci of the original node labels l0(v) and the counts ci

of the compressed node labels li(v) = Ci(v) in the two graphs. Mathematically,
the feature vectors are defined as

ϕ(G) =
(
c0(G, σ01), . . . , c0(G, σ0|

∑
0 |), . . . , ch(G, σh1), . . . , ch(G, σh|

∑
h |)
)

ϕ(G′) =
(
c0(G

′, σ01), . . . , c0(G
′, σ0|

∑
0 |), . . . , ch(G

′, σh1), . . . , ch(G
′, σh|

∑
h |)
)

where
∑

i ⊆
∑

is the set of numbers that occur at least once as node labels in
G or G′ by the end of the ith iteration,

∑
0 is the set of original node labels of

G or G′, assuming all
∑

i are pairwise disjoint and every
∑

i = σi1, . . . , σi|
∑

i | is
ordered and a map ci : {G,G′} ×

∑
i → N such that ci(G, σij) is the number of

occurrences of the number σij in the graph G.

The dot product of the two vectors is calculated to give the WL subtree kernel
between the two molecules as defined in Equation 2.18.

kWLsubtree(G,G′) = ⟨ϕWLsubtree(G), ϕWLsubtree(G
′)⟩ (2.18)

Figure 2.20 illustrates a single iteration of the WL kernel between two molecules,
4-ethylbenzyl chloride and 4-methoxybenzyl bromide.

The WL kernel is calculated for a pair of molecules. This kernel notation can
be used directly as an input to an SVR model or a neural network. While it is
not the norm to use the kernel notation as an input to other machine learning
algorithms, a mathematical transformation can extract the features from the
kernel notation.
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Figure 2.20: Illustration of the calculation of the Weisfeiler-Lehman kernel be-
tween two molecules (4-ethylbenzyl chloride and 4-methoxybenzyl bromide) rep-
resented by molecular graphs. The following (atom: number) mapping is used:
Cl : 1, C : 2, Br : 3 and O : 4. The multiset label is determined. For example,
the carbon atom (2) in the phenyl ring in 4-methoxybenzyl bromide connected to
a chlorine atom (1) and two carbon atoms (2) has a multiset-label of 122. After
sorting the multiset and adding the prefix, the final multiset-label string for the
aforementioned carbon atom is (2, 122). After label compression and relabelling,
the final label of the carbon for the first iteration is 6.



Chapter 2: Theory and Background 62

Line Notation

Line notations are a condensed representation of the chemical structure. They
contain connectivity information analogous to topological descriptors but over-
look information such as protonation states and geometry. Examples include
Simplified Molecular-Input Line-Entry System (SMILES) and IUPAC Interna-
tional Chemical Identifier (InChI).

The most widely used line notation is SMILES and its extensions, SMILES Ar-
bitrary Target Specification (SMARTS) and A Reaction Transform Language
(SMIRKS). Atomic symbols in square brackets represent the atoms. The organic
subset of elements, which includes B, C, N, O, P, S, F, Cl, Br, and I, do not re-
quire brackets. With a few exceptions, hydrogen atoms are implicit. The SMILES
string of ethanol (CH3CH2OH), for example, is CCO. A charged atom requires
a square bracket, explicit hydrogen atoms, the number of charges if greater than
one, and the sign of the charge. A plus symbol represents a positive charge,
and a subtraction symbol a negative. For example, the SMILES string of the
hydroxide anion (HO– ) is [OH−], whereas, for the hydronium cation (H3O+), it
is [OH3+].

Symbols represent the bonds depending on the type: a single bond is ‘-’, double
is ‘=’, triple is ‘#’, quadruple is ‘$’, and aromatic is ‘:’. Examples are illustrated
in the SMILES string of carbon dioxide (CO2) O=C=O and carbon monoxide
(CO) [C−]#[O+]. Many bonds are usually implicit. These include single bonds,
bonds between aliphatic atoms assumed to be single, and aromatic bonds. The
‘.’ character represents a non-bond whereby two parts interact non-covalently,
such as sodium chloride is [Na+].[Cl−].

Rings are broken at an arbitrary point, and ring closure labels are written on
each end to show connectivity between the non-adjacent atoms. For example,
the SMILES string of the aliphatic ring cyclohexane is C1CCCCC1. For a sec-
ond ring closure, the label would be 2, as in the bicyclic compound Decalin
C1CCC2CCCCC2C1. The SMILES string of an aromatic ring has three forms.
The Kekulé form has alternating single and double bonds; for benzene, the string
would be C1=CC=CC=C1. The aromatic character form; C1:C:C:C:C:C1. The
most common form is writing the aromatic atoms in lowercase letters and omit-
ting the bond characters, such as ‘b’, ‘c’, ‘n’, ‘o’, ‘p’, and ‘s’, for B, C, N, O,
P, and S, respectively. For benzene, the SMILES string would be c1ccccc1. A
hydrogen atom bonded to an aromatic nitrogen must be explicitly represented,
as in pyrrole [nH]1cccc1.

Branching is denoted with parentheses. For example, the SMILES string of
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Figure 2.21: The L-enantiomer (a) and D-enantiomer (b) of the amino acid ala-
nine.

ethanol can also be written as C(O)C, indicating that the carbon atom is at-
tached to an oxygen atom and another carbon atom.

Although SMILES string may define stereochemistry, it is not essential. Symbols
represent different types of stereochemistry: ‘\’ and ‘/’ define cis and trans iso-
mers, whereas ‘@’ and ‘@@’ define the tetrahedral configuration. The characters
‘\’ and ‘/’ indicate the direction of the single bonds adjacent to the double bond
in cis and trans isomers. For example, cis-but-2-ene is C/C=C/C, whereas trans-
but-2-ene is C/C=\C. The ‘@’ character implies a clockwise tetrahedral carbon,
whereas ‘@@’ implies anti-clockwise. A stereocentre vital to life is in amino acids
(except for glycine), the building blocks of proteins. Figure 2.21 illustrates the two
enantiomers of alanine, L and D, where L-enantiomers are essential for proteins.
The SMILES string for L-alanine is N[C@@H](C)C(=O)O, and for D-alanine is
N[C@H](C)C(=O)O.

SMARTS strings specify subgraphs within a molecule. They are particularly rele-
vant for substructure searching, i.e., identifying a subgraph in a molecular graph.
While nearly all SMILES strings are valid SMARTS patterns, this is not true
in reverse. SMARTS patterns introduce additional logical operators and special
symbols to enable more generalised structures. For example, [C, N] means the
atom can be an aliphatic carbon or aliphatic nitrogen. The symbol ‘∼’ matches
any bond. The documentation provides a complete list of examples.56

The SMIRKS string describes a chemical reaction. The SMILES strings of the re-
actants, reagents, and products are separated by a ‘>’ symbol. Multiple molecules
can populate each field by delineating with a dot (.)

A single molecule has multiple valid SMILES strings. The string depends on the
starting atom, the path around the molecule, and branching. Several canonical-
ization techniques have been devised. It is crucial to ensure that a molecule is
represented by a single SMILES string when developing machine learning mod-
els.
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2.5.3 Three-Dimensional Descriptors

Three-Dimensional (3D) descriptors are derived from the 3D conformation of a
molecule. They range from geometrical representations of the 3D molecular struc-
ture to properties calculated from the 3D structure. While 3D descriptors provide
additional structural information they can be time-consuming to calculate.

3D topology descriptors define the connectivity of atoms in 3D space. The 3D
representation of molecular graphs is one example. The node or edge labels can
encode atomic coordinates, bond angles, and chirality. The 3D molecular graph
is suitable for a single static depiction of a molecule but inadequate if the atoms
rearrange over time, such as tautomers.

Space-filling models, commonly known as CPK models, can be used to calculate
molecular properties. Spheres represent the atoms in these models. The centre
of the sphere is at the nucleus of the atom, and the radius of the sphere is
proportional to the atom’s Van der Waals radius. Properties calculated from the
CPK model include area, volume, polar and non-polar surface area can all be
calculated from the CPK model.

More advanced calculations, such as quantum chemical, can provide information
about molecular orbitals, vibrational modes, and molecular structure. Exam-
ple quantum chemical calculations include Highest Occupied Molecular Orbital
(HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) energies, vibra-
tional frequencies and intensities, and Nuclear Magnetic Resonance (NMR) chem-
ical shifts.

2.6 Molecular Similarity

The similar property principle in drug discovery states that two structurally simi-
lar ligands tend to have comparable properties and reactivity.57 These properties
may be physicochemical, biological affinities, or ADME. The quantification of
molecular similarity in terms of topology is beneficial in exploring similar regions
of molecular space likely to exhibit similar characteristics. Similarity coefficients
have applications in cheminformatics, including property prediction, molecular
generation, and synthesis route design.

Similarity coefficients are calculated on molecular descriptors. In similarity calcu-
lations, the chemical structures are generally represented using binary molecular
fingerprints. Examples of similarity coefficients include the Tanimoto coefficient,
Euclidean distance, and the Dice coefficient. Table 2.4 lists the equations for
calculating similarity coefficients between two molecules, A and B, represented
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by fingerprints, FA and FB; where a is the number of ON bits in fingerprint FA,
b is the number of ON bits in fingerprint FB and c is the number of shared ON
bits in FA and FB. The resulting quantitative values are typically normalised on
a scale of zero (no similarity) to one (identical).

Table 2.4: Equations for calculating similarity coefficients between two molecules
represented by molecular fingerprints

Similarity Measure Equation

Tanimoto coefficient T (FA, FB) =
c

a+ b− c

Dice coefficient D (FA, FB) =
2c

a+ b

Euclidean distance D (FA, FB) =
√
a+ b− 2c

The Tanimoto coefficient58,59 is widely accepted in cheminformatics and medici-
nal chemistry as a molecular similarity measure. It is worth noting that, in prac-
tice, different fingerprint descriptors may give vastly different Tanimoto scores.
Molecular fingerprints may differ in size and type. While Morgan fingerprints are
relatively sparse, topological-path fingerprints are more dense.

2.7 Performance Evaluation

The performances of the regression models can be evaluated using the Coefficient
of Determination (R2) and Root Mean Squared Error (RMSE) for data points
outside of the training set.

2.7.1 Coefficient of Determination

The coefficient of determination, denoted as R2, is a measure of how well the
model replicates the observed targets. It calculates the proportion of variability
within the predicted targes that can be explained by the regression model. The
mathematical representation is given in Equation 2.19, where ȳ = 1

n

∑n
i=1 yi;

ŷi is the predicted value of the i-th sample; yi is the corresponding observed
(experimental) value; and n is the total number of samples. The residual sum
of squares, SSres is the discrepancy between the observed and predicted target
values, signifying the variability of the target data explained by the model. The
total sum of squares, SStot is proportional to the variance of the target data.

R2 (y, ŷ) = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)2
= 1− SSres

SStot

(2.19)
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The value for the upper bound of R2 is one, which indicates a better goodness-
of-fit. The R2 value can be negative if the mean of the data is a better fit to the
observed values than the predicted values, i.e., SSres > SStot.

2.7.2 Root Mean Squared Error

The RMSE measures how far the predicted values are from the observed target
values. Mean Squared Error (MSE) calculates the mean of the squared residuals,
where the residuals are the differences between the observed and predicted target
values. The RMSE is the root of the MSE as shown in Equation 2.20.

RMSE =

√∑n
i=1 (yi − ŷi)

2

n
=

√
SSres

n
=

√
MSE (2.20)

As the predicted target values get closer to the observed values, the residual
errors are reduced, lowering the RMSE. The value for RMSE ranges from zero
to positive infinity and has the same units as the target variable. A value of
zero means the predicted values are equal to the observed values, a lower value
indicates a better fit and lower errors.



Chapter 3

Artificial Intelligence for
Chemical Synthesis

3.1 Introduction

The synthesis of new molecules is essential for progress in the pharmaceutical in-
dustry and academia. Examples include medicinal and process chemistry in the
development of pharmaceuticals. The prediction and development of synthetic
routes are crucial in exploring reaction space to identify more appealing or novel
syntheses. Anticipating how molecules react (forward reaction prediction) and
how molecules can be synthesised (retrosynthesis) currently relies on synthetic
chemists’ scientific intuition, expertise and experience. Continuous improvements
in computational resources and mathematical algorithms have accelerated the de-
velopment of tools to help chemists explore reaction space and increase synthesis
success rates. These are known as Computer-Aided Synthesis Planning (CASP)
tools. In this chapter, we introduce basic approaches to CASP and review estab-
lished benchmark chemical datasets employed in this field. We discuss recently
developed applications for forward reaction prediction and retrosynthetic analysis.
In particular, the quantitative performance of state-of-the-art tools on benchmark
datasets is extracted from the literature and compared.

CASP tools are challenging to develop due to the high dimensionality of chemical
and reaction search space. Artificial Intelligence (AI) has shaped the progression
of CASP tools with a recent focus on data-driven machine-learning approaches.
The overall aim of CASP tools is to reduce the timelines of chemical syntheses
by aiding the everyday decision-making of synthetic chemists. Areas that would
benefit from such tools include drug design, novel route discovery and the design

67
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of biologically active compounds.

Retrosynthesis is the process of synthetic planning that begins with the product
and works backwards to determine the starting materials.60 Retrosynthetic anal-
ysis is the logical, problem-solving technique applied when planning synthetic
routes to attain a target molecule. E. J. Corey formalised the retrosynthetic pro-
cedure.61 During the 1960s and 1970s, retrosynthetic analysis was developed and
demonstrated in practice.60,62,63 A target molecule is transformed into simpler
precursors by the imaginary disconnection of a bond, the reverse of a chemical
reaction. The disconnection is chosen based on recognising key substructures or
“retrons” present in the target molecule that are the products of known, reliable
reactions. The two synthons resulting from the disconnection are generalised ionic
or neutral fragments corresponding to idealised reagents. The synthetic equiva-
lent of a synthon is a reagent that acts as the synthon. Reagents and reaction
conditions are often not considered during retrosynthetic analysis. For a single
synthon, there may be multiple reasonable synthetic equivalents; additional re-
search would be required to determine the best choice. Each derived precursor
becomes the target molecule for further analysis. This retrosynthetic procedure is
repeated until simple structures, commercially available compounds, or in-house
compounds are reached.

A synthesis tree is a directed acyclic graph of alternative retrosynthetic routes
for a single target molecule. The root node represents the target molecule, the
internal nodes are the intermediate structures, and the leaf nodes are the starting
materials. The edges connecting the nodes refer to potential chemical pathways.
Analysing the graph edges can determine the feasibility and efficiency of the syn-
thetic routes. Retrosynthetic analysis requires the knowledge, experience and
intuition of synthetic chemists. The textbook, The Logic of Chemical Synthe-
sis,64 summarises the principles of retrosynthesis. Corey’s pioneering work was
recognised and honoured with a Nobel Prize in 1990 for “the development of the
theory and methodology of organic synthesis”.61

Automating retrosynthetic analysis would significantly reduce the time taken to
plan, improve efficiency, and reduce the costs of chemical syntheses. In the 1960s,
Corey first researched and demonstrated using computers to plan synthetic routes
by retrosynthetic methodology and AI.60,62 Early pioneering work in this field
primarily led to developing template-based approaches, including Corey’s Logic
and Heuristics Applied to Synthetic Analysis (LHASA) program.65–67 Template-
based methods rely on a knowledge base of reaction templates. The framework
of template-based methods consists of encoding chemical reactions in a machine-
readable format, selecting and prioritising the most suitable reaction templates,
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applying templates to the target molecule in retrosynthetic analysis, and pruning
and ranking the resultant precursors. The history of template-based retrosyn-
thetic analysis tools has been reviewed thoroughly.28,62,66–74

Historically, knowledge bases of reaction templates for template-based approaches
were manually curated. This labour-intensive process requires significant time
and effort to keep up to date as novel syntheses are identified. Advancements
in computing power, storage capacity, data availability, reaction databases and
data-driven algorithms have provoked renewed interest in CASP in the past
decade. Contemporary retrosynthesis methodologies frequently incorporate ma-
chine learning techniques, a subfield of AI. Models are built on training data to
learn relationships and make predictions. Machine learning algorithms not only
contribute to the automated extraction of reaction rules from pre-compiled reac-
tion databases but also to the ranking of the reaction templates and the scoring
of reaction precursors.

Deep learning is a subfield of machine learning with algorithms inspired by the
human brain. Speech recognition, image recognition, and natural language pro-
cessing are examples of various fields which have successfully implemented deep
learning techniques. Deep learning is also prevalent in contemporary CASP
strategies. Graph neural networks (GNN) process data represented as graphs
and have been implemented to process molecular graphs.75–78 Natural Language
Processing (NLP) techniques have governed template-free strategies to CASP by
directly translating reactants to products, or vice versa.79 These techniques in-
clude sequence-to-sequence and Transformer models.80–82 Detailed perspectives
of contemporary CASP strategies can be found in24,26,28,73,74,83–88.

CASP techniques extend to forward reaction prediction and reaction condition
optimisation. Forward reaction prediction is the prediction of products given the
reactants, reagents and a set of reaction conditions. Experiments predominantly
used to identify reaction outcomes are expensive, time-consuming and require ex-
perienced chemists. It would thus be beneficial for computational tools to identify
the major product and any side products and validate retrosynthetic predictions.
Optimising reaction conditions, such as catalysts and solvents, is also essential
in synthesis planning. Changing a set of reaction conditions, even slightly, could
result in the formation of a different major product or a failed reaction. Inte-
grating CASP with high-throughput screening and robotic equipment holds much
promise for the future of reaction optimisation.

In the past decade, CASP tools have been revolutionised by the availability of
big data, the establishment of reaction databases and the advancement of data-
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driven techniques. This chapter reviews contemporary CASP strategies, primarily
focusing on retrosynthetic analysis and forward reaction prediction. Initially,
the fundamentals of CASP are described. We then evaluate the two dominant
approaches to retrosynthetic analysis and forward reaction prediction: template-
based and template-free. The advantages and limitations of each approach are
discussed in a detailed comparison of methods. Lastly, the future outlook and
potential challenges in this field are outlined.

3.2 The Nature of the Chemical Data

CASP tools are based on historical chemical reaction data, which captures how
an experiment was performed and its outcome. The number of reactions in the
literature grows exponentially, doubling every 10-15 years.89,90 Approximately
3000-5000 novel reaction classes with distinct mechanisms are published every
year.91 A chemical reaction chemically transforms one or more reactants to prod-
ucts under specific conditions. Chemists use chemical equations as a symbolic
representation of chemical reactions. Reactants are on the left of the arrow,
products on the right, reagents above, and operating conditions below (Figure
3.1).

Reactants
Reagents
Conditions

Products
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+ NH2
9

N
10

11 Ph
13

Ph
12

Pd(OAc)2, MePhos, Base
t-BuONa, DME, 100 ◦C 7
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Figure 3.1: An example of an atom-mapped reaction. Reaction taken from refer-
ence1.

The reactant(s) undergo a change in connectivity at the reaction centre during a
chemical reaction and contribute to the atoms in the product(s). Atom-to-atom
mapping aligns the atoms in the reactant species to the product species. It is a
valuable technique to ensure the conservation of atoms and aid the identification
of the reaction centre (Figure 3.1). Depending on the reaction type, multiple
products may form. These can be classified as primary products, by-products or
side-products. Primary products are the desired products of a chemical reaction,
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while by-products are produced directly from the desired chemical reaction; both
appear as part of the fully balanced chemical equation.92 Side-products refer to
undesired products of a competitive pathway or further degradation of the pri-
mary products.92 These reduce the experimental reaction yield of the primary
products. Varying reaction conditions could potentially suppress the formation
of side products. The environmental conditions, such as reagents and physical
variables, under which a reaction is optimal are defined in the chemical equation.
Reagents participate in the chemical reaction but are not consumed and do not
contribute to the atoms in the product. Examples of reagents include catalysts
and solvents. Physical variables include temperature and pressure. Along with
the chemical equation, chemists also record supplementary data such as experi-
mental procedures, reaction class, experimental reaction yield, and Enantiomeric
Excess (%ee).

CASP methods typically employ supervised learning methods to learn patterns
of chemical reactivity from chemical reaction data. Training such machine learn-
ing algorithms requires large amounts of labelled data. The input-output pairs
could be product-reactants for retrosynthesis or vice versa for reaction predic-
tion. Chemical reaction data can be manually curated by expert chemists or au-
tomatically extracted from data sources. In the era of big data, current methods
primarily use reaction knowledge mining from data sources, including in-house
Electronic Laboratory Notebook (ELN), literature, patents, and commercially
available reaction databases. Chemical reaction data are noisy and can contain
duplicate and even erroneous reactions. The extracted reaction data is cleaned,
filtered, and converted into a machine-readable representation.93,94 The lack of
a conventional approach for data extraction has resulted in different types of in-
formation, managed in different ways, used as the input to the machine learning
methods. This section discusses molecular representations, data sources, and the
progression of data sources.

3.2.1 Molecular Representations

For a machine learning algorithm to learn from chemical structures, they must
be represented in a way that an algorithm can process. Molecular descriptors are
based on structural, physiochemical, electronic, or topological properties. The
type of molecular descriptor used can affect the performance of the machine
learning model. Molecular descriptors commonly implemented in synthesis plan-
ning tools are based on the chemical structure of molecules; examples include
molecular fingerprints, molecular graphs, and Simplified Molecular-Input Line-
Entry System (SMILES)95 strings. The theory of these molecular descriptors
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is detailed in Chapter 2, Section 2.5. Structure-based descriptors are relatively
quick and easy to calculate. Section 3.3 discusses how molecular descriptors are
employed in various approaches to CASP.

3.2.2 Data Sources

Chemical reaction data is stored in various formats, including patents, journal ar-
ticles, and ELNs. Despite the vast amount of data sources, few curated databases
record organic syntheses in a structured, standardised format and are freely and
publicly available. Current CASP tools are developed using licensed commercial
data, proprietary in-house ELN data or the open-access United States Patent and
Trademark Office (USPTO) dataset.96

Commercial Database Systems

Commercial database systems provide access to chemical reaction data reported
in scientific journal publications and patents. Reaxys97 from Elsevier and
SciFindern 98 from Chemical Abstracts Services (CAS) are chemical search en-
gines designed to retrieve chemical information and data from published litera-
ture. These repositories contain millions of chemical compounds, reactions, and
properties with appropriate citations (Table 3.1). Pistachio99,100 from NextMove
Software is a reaction database and search system containing millions of reactions
extracted from patent data (USPTO, EPO and WIPO). Subject to a license agree-
ment, chemists can search through vast regions of chemical and reaction space to
fill knowledge gaps.

Table 3.1: Commercial Database Systems

Database Reference Number of Reactions (Million)

Reaxys 97,101 49
SciFindern 98,102 150
Pistachio 99 9

Chemical search engines are indispensable in practically every synthetic chemist’s
workflow. Analysing relevant syntheses and the reactivity of analogous structures
aids decision-making in synthetic chemistry. While analysing chemical informa-
tion is a manual process that requires the intellect and time of expert synthetic
chemists, chemical search engines enable vast amounts of data to be instantly fil-
tered and prioritised. These tools facilitate a more focused and directed approach
to conducting synthesis research on a shorter timescale.

Licenses can be purchased to extract large quantities of chemical reaction data
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from commercial databases for data analysis or the training of machine learning
models. Typically, the chemical information provided is not recorded in a stan-
dardised format. Details, such as the structures of reactants, reagents, products,
and experimental procedures, are left as unstructured text in the original doc-
ument.103 Research groups have extracted chemical reactions from Reaxys and
built models for forward reaction prediction,104,105 retrosynthetic planning105–107

and the prediction of reaction conditions.108 Segler and Waller used the chemical
reaction data extracted from Reaxys to develop a multi-step retrosynthesis appli-
cation using neural networks and symbolic AI.104–106 The Bishop group use the
Reaxys data in a different approach to multi-step retrosynthetic planning based
on reinforcement learning.107 Pistachio has also been utilised in CASP tools.81,109

The Lee group utilised the non-public patent data from Pistachio to generate a
time-split test set in the development of a machine translation model for forward
reaction prediction.81

Although commercial databases provide access to millions of chemical reactions,
the data is biased toward high-yielding reactions and requires a commercial li-
cense. CASP tools developed and validated using commercial data may be based
on biased machine learning models with limited comparability to open-source
applications.

Electronic Laboratory Notebooks

An ELN is a software tool that replaces traditional paper laboratory notebooks.
Chemists document experimental procedures, experimental data, and supplemen-
tary notes in laboratory notebooks. A laboratory notebook is a legal document
that can act as evidence in legal matters (e.g., patent disputes) to protect In-
tellectual Property (IP).110 Capturing and storing vital experimental research
in a digital format benefits the user, organisation, external collaborators, and
the broader scientific community. ELNs enable researchers to access, search,
share and backup experimental documentation. Digitally capturing experiments
facilitates long-term data storage, reduced data misplacement or loss risk, en-
hanced experimental record availability, IP protection, collaboration, and open
science.110–112 Standardising experimental records improves the reproducibility of
experiments and simplifies the curation of chemical data. Developing ELNs to
store data in a machine-readable format improves interoperability and allows in-
tegration with third-party tools.112,113 If permitted, the data can also be exported
as an external dataset to support open science.

ELNs store valuable information about chemical reactions including reagents, ex-
perimental conditions, reaction yields, and various spectra. ELNs help facilitate
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the compilation of high quality, reliable, and reproducible data.110 Data is often
recorded for all chemical reactions performed regardless of their success. A data
source containing low-yielding or failed chemical reactions, or both, is advanta-
geous for training machine learning algorithms. Although ELNs are prominent
in industrial research, uptake is limited in academia.110,112,114,115 ELN data gen-
erated in industry are not usually accessible to the public, nor in commercial
databases, due to confidentiality reasons. Within the pharmaceutical industry
and through various collaborations with academia, ELNs have proved a valuable
data source in developing CASP tools, such as reaction prediction,116 retrosyn-
thetic analysis,94,116 and the prediction of reaction conditions.117

Open-Source Patent Data

In 2017, D. Lowe released a large dataset of machine-readable chemical reactions
to the public.96 The dataset contained approximately 1.8 million organic chemical
reactions from US patents and applications published between 1976 and Septem-
ber 2016. Text mining was used to extract the following experimental details
from the USPTO: structures of reactants, products and reagents, reaction condi-
tions, reaction yield, synthesis steps, and patent source.96,118–120 A complete list
of the details extracted can be found in Appendix A. The open-source USPTO
1976-2016 dataset is a subset of the reactions in the Pistachio database, which
includes chemical reactions extracted from the USPTO dating from 1976 to May
2018.

The chemical reactions in the USPTO 1976-2016 dataset are encoded as Reaction
SMILES,56 where each molecule in a chemical reaction are expressed as SMILES
strings. As an example, the USPTO 1976-2016 dataset contains the Reaction
SMILES shown in Figure 3.2.96 The reactions in the dataset have been atom-
mapped, meaning corresponding atoms in the reactants and products are labelled
accordingly in the Reaction SMILES string.

The USPTO 1976-2016 dataset is a common open-source dataset used in devel-
oping CASP tools. It contains prevalent chemical reactions used in medicinal
chemistry. The raw data is often preprocessed as it contains frequent duplicate
chemical reactions due to similar text in multiple patents and numerous cases of
incorrect atom mapping.96 A handful of public benchmarking datasets have been
derived from the raw data and implemented in several research groups (Table 3.2).
In descending order of dataset size, prevalent subsets of the USPTO 1976-2016
dataset in the literature include USPTO-FULL,75,121 USPTO-MIT,122,123 and
USPTO-50K.124
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Figure 3.2: Patent US09447100B2, paragraph 0548, from the USPTO 1976-
2016 dataset. (a) Generic reaction smiles. (b) Reaction smiles of patent
US09447100B2. (c) Atom-mapping of patent US09447100B2.

Table 3.2: USPTO Benchmarking Datasets

Dataset Reference Number of Split

Reactions Train Validation Test

USPTO 1976-2016 Lowe Figshare96 1,808,937 - - -
USPTO-FULL GLN Repo121 1,013,118 810,496 101,311 101,311
USPTO-MIT WLN Repo123 479,035 409,035 30,000 40,000
USPTO-50K (Liu) Seq2Seq Repo125 50,037 40,029 5,004 5,004
USPTO-50K (Coley) GLN Repo126 50,016 40,008 5,001 5,007

The USPTO-FULL dataset contains approximately one million cleaned, unique
single-step reactions.75 The reactions with multiple products were duplicated into
multiple reactions producing a single product to generate a dataset of entirely
single-step reactions. Chemical reactions that were duplicates or had incorrect
atom mappings were removed. Dai et al. divided the USPTO-FULL dataset into
80%:10%:10% training/validation/test sets.75

The USPTO-MIT dataset was derived from the USPTO 1978-2016 after removing
duplicate and erroneous reactions. The dataset contains approximately 480,000
fully atom-mapped single- and multi-step reactions without stereochemical infor-
mation, split into 400,000 training, 30,000 validation, and 40,000 test reactions.
The USPTO-MIT is not as diverse as the other datasets, including USPTO-
50K.

The first benchmarking dataset derived from open-source patent data was pub-
lished in 2016 before the full USPTO 1976-2016 dataset was released. As a result,
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the USPTO-50K dataset only contains patent data up to 2015. The atom map-
pings between reactants and products were updated to ensure high accuracy,
duplicate reactions were removed, and reaction types were assigned. A total of
50,000 reactions were randomly selected. The reactions were classified into ten
distinct reaction types (Table 3.3) which cover common reactions in the medic-
inal chemist’s toolkit.124 Subsequent studies by two separate research groups,
Liu et al.125,127 and Coley et al.,75,126,128 have further processed the USPTO-50K
dataset. Both groups generate single-step reactions by splitting the reactions
with multiple products into multiple single-product reactions. Any chemical re-
actions with trivial products, such as inorganic ions and solvent molecules, were
removed. The resultant 50,000 reactions were split into 80:10:10 percent train-
ing/validation/test sets. USPTO-50K is considered the standard benchmarking
dataset in the analysis of CASP tools. Multiple research groups employ this
benchmark for model comparison.

Table 3.3: Ten Reaction Classes in the USPTO-50K Dataset124

Reaction Class Reaction Name Size (%)

1 Heteroatom alkylation and arylation 30.3
2 Acylation and related processes 23.8
3 C-C bond formation 11.3
4 Heterocycle formation 1.8
5 Protections 1.3
6 Deprotections 16.5
7 Reductions 9.2
8 Oxidations 1.6
9 Functional group interconversions 3.7
10 Functional group addition 0.5

3.2.3 Progression of Data Sources

There are various sources of chemical reaction data, including published liter-
ature, patents, and ELN data. Despite the variety of data sources, there are
underlying issues when using the data to build data-driven models. The chemical
reaction data are often biased, not stored in a machine-readable format, and not
publicly available.

Reaction data published in journals and patents are biased toward high-yielding
reactions.129,130 Low-yielding and failed reactions are reactions with unreacted
starting materials or unexpected products. Examples of these reactions are un-
common in the literature, which is particularly problematic when implementing
supervised machine learning models. Counterexamples are required in training
to prevent model bias and optimise generalisability. One way to overcome the ab-



Chapter 3: Artificial Intelligence for Chemical Synthesis 77

sence of failed data is to generate artificial negative examples. Reaction templates
are applied in the forward direction to the reactants of reported reactions. This
generates chemically plausible “wrong/false” products, for example with incor-
rect regioselectivity.104,106,131 Alternatively, negative examples can be generated
by shuffling the pairs of products and corresponding reactions.106

Although significant scientific knowledge is available in the published literature,
it is not always free to access or straightforward to export. Open-source publish-
ing and reproducibility of data have been subject to discussion.132,133 In patents,
journal articles and supporting information, published reaction data are often
recorded in a hard-to-parse PDF format. The structural drawings of chemical
structures are challenging to translate into a machine-readable format. Text min-
ing is currently required to retrieve reaction data from text. Providing reaction
data in a readily machine-readable format is vital for enhanced scientific growth.
It would help to improve reproducibility and to expand on previously published
work. Establishing guidelines enforced by journals could improve publishing prac-
tices, such as uploading reaction information to a structured repository, ensuring
the data is machine-readable, and disclosing source code.

ELNs are commonly used in the pharmaceutical industry. Reactions frequently
used by medicinal chemists restrict the reaction space covered in ELNs. ELNs
may not contain all reaction information. Material costs and knowledge transfer
protocols for scale-up, purification and crystallisation may be stored elsewhere.134

ELN data generated in the pharmaceutical industry is frequently inaccessible
as data confidentiality limits access, collaboration and sharing with third par-
ties.

Multi-step syntheses are difficult to record in ELNs. As a result, ELNs favour
single-step reactions. Reaction data from High Throughput Experimentation
(HTE) and Design of Experiment (DOE) screening are similarly challenging to
record in ELNs. Screening techniques generate hundreds to thousands of data
points at a quick pace. If the ELN software does not support recording high
throughput data, each reaction must be manually recorded as an individual entry
in the ELN.

ELNs require continuous upgrading to ensure user needs are satisfied, improve the
infrastructure and interoperability, and streamline data extraction for subsequent
reuse. The entry fields are a mix of free-text, restrictive-text, and multiple-
choice options. Increasing the number of specific entry fields increases rigidity
and ease of exportation to generate machine-readable datasets; at the expense of
adaptability.
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While ELNs and commercial databases are useful data sources, they are not con-
sidered further in this thesis due to the lack of availability for benchmarking
software. Benchmarks are required to compare the performance of CASP tools,
including the reaction data underlying the tool and assessment criteria. Multi-
step retrosynthetic planning also requires a standard for the database of com-
mercially available building blocks. A benchmark dataset must be open source
to negate financial costs and accessibility issues. The current standard bench-
marking reaction dataset is the USPTO-50K dataset. This dataset should be
considered with caution as it may contain prophetic examples.135 Prophetic ex-
amples are anticipated experimental methods and results which are yet to be
proven. They are acceptable in US patents, provided they are not in the past
tense. Models based on prophetic examples may predict synthetic routes based
on undetermined reactions.

Progress towards a centralised public repository of chemical reaction data is a
priority. A centralised repository would accelerate the development and growth
of downstream applications involving CASP tools. Any data repository should
adhere to the Findability, Accessibility, Interoperability, and Reusability (FAIR)
principles for data management.136 Both humans and machines must be able to
find the data. The location should be apparent for quick and easy retrieval. Pro-
viding the data in a machine-readable format and consistent representation is
essential for automated data retrieval. The data should be open-source whenever
possible, which is particularly important when comparing CASP tools. Data pro-
cessing, analysis, and storage require interoperability. The infrastructure should
support integration with third-party data, applications and workflows. For ex-
ample, all reaction data should be able to be recorded regardless of the reaction
setup, such as bench reactions, automated high throughput screening, and flow
chemistry. The fundamental goal is to ensure that the data is reusable. Well-
described data is required to facilitate easy replication. Maintaining high-quality
data minimises the amount of time to clean and remove noise. The FAIR princi-
ples for data management extend to metadata (information about the data) and
software infrastructure (access to the data).

The Open Reaction Database (ORD) is one endeavour towards a centralised
repository.103 It is an open-access schema and infrastructure for improving access
and encouraging the sharing of chemical reaction data. Structured, public and
freely available data are provided in a user-friendly interface for viewing and
downloading.
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3.3 Approaches to Computer-Aided Synthesis

Planning

The following sections focus on two primary types of synthesis planning tools
that are inverse processes: forward reaction prediction and retrosynthetic analy-
sis. Forward reaction prediction aims to estimate the likely products of a reaction
using prior knowledge of reactant precursors. Single-step retrosynthesis begins
with a target molecule and proceeds backwards, predicting potential bond dis-
connections to acquire simpler reactant precursors.

Forward reaction prediction is less complex than single-step retrosynthesis as the
input (reactants) contains all reacting functional groups. This limits the number
of possible reaction types and thus reduces the number of possible outputs.

There is no single correct answer in single-step retrosynthesis. The reacting func-
tional groups in the output (reactants) are absent from the input (products).
For example, consider the Buchwald-Hartwig reaction shown in Figure 3.3. The
halide leaving group is not present in the amine product. For a single bond dis-
connection, multiple reaction types may be plausible. As demonstrated in Figure
3.3, the carbon-nitrogen bond in the target could be synthesised via a Buchwald-
Hartwig or Chan-Lam reaction. Unless the reaction type is assigned and provided,
a large number of precursors may be feasible from a single bond disconnection.
In larger molecules, there may be several disconnection sites, resulting in a wider
pool of possible precursors.

Template-based and template-free frameworks are two dominant approaches to
forward reaction prediction and single-step retrosynthesis. These approaches are
defined and outlined in this section.

3.3.1 Template-Based Framework

Traditionally, computer programs for retrosynthetic analysis and forward reaction
planning were based on reaction templates. The terms “reaction template” and
“reaction rule” are commonly used interchangeably in the literature and refer
to encoding a chemical transformation in a machine-readable format. The term
“reaction template” is used herein. Reaction templates can be defined in either the
forward (reactants to products) or reverse (products to reactants) direction.

Figure 3.4 depicts the template-based framework for single-step retrosynthesis
and forward reaction planning. The three primary components are a pre-defined
library of reaction templates, a template application engine, and a scoring func-
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Figure 3.3: An example of forward synthesis planning (a) and retrosynthesis route
design (b) and (c).

tion. The library of reaction templates contains possible disconnections in ret-
rosynthesis or possible reactions in forward reaction planning. Reaction tem-
plates cannot be applied to all molecules. For example, to apply a template of a
carbon-nitrogen bond disconnection, the target molecule must contain a carbon-
nitrogen single bond. The template application engine must determine if the
reaction template is applicable before enumerating the pathway in the forward
or reverse direction. The scoring function can be used to score and rank the
feasibility of the generated candidates131 or more commonly the reaction tem-
plates.75,76,105,106,128,137–140

Defining Reaction Templates

A reaction template encodes the changes in atom connectivity during a chemical
reaction.141,142 Not all atoms and bonds are included in a reaction template. The
chemical transformation is generalised to enable the reaction template to be ap-
plied to overlapping sets of molecules.143 Minimal reaction templates only encode
the reaction centre. The reaction centre is the change in atoms, bonds and bond
orders during bond formation and breaking. Reaction templates are frequently
extended beyond the reaction centre to include neighbouring atoms that may
influence the chemical reaction. The neighbouring atoms could be admissible
substituents, incompatible groups, or have physical-organic effects. Such effects
include electron densities, steric bulk, and molecular strain. Complex templates
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Figure 3.4: Template-based framework for single-step retrosynthesis and forward
reaction planning.

may contain reactivity conflicts, protection requirements, stereoselectivity,137 or
regioselectivity.91,144 Templates may not include additional information due to
data availability, inconsistency, and difficulty encoding.94,131 To minimise the re-
action search space, reaction conditions are frequently omitted from templates
and solved as an independent problem.

The performance of template-based models is dependent on the number of reac-
tion templates and the size of the templates. The number of reaction templates
defines the size of the reaction search space. There is an inevitable trade-off
between generalisation and specificity when defining the size of the reaction tem-
plates. Increasing the number of atoms in the template increases the specificity
and accuracy of the transform while reducing the number of molecules in the tem-
plate is applicable (generalisability). Specific templates cover a smaller amount of
overlapping chemical reactions. As a result, the number of templates, the compu-
tational cost, and the time required to encode chemical reactions increases. If the
templates contain too few atoms neighbouring the reaction centre, they become
overly generic, and crucial information about the indirect effects of neighbouring
atoms is neglected. A model based on this limited information cannot perceive
potential reactivity conflicts, which may result in incorrect template application
and inaccurate predictions. If too many neighbouring atoms are included in the
template, they are overly specific with a limited scope, which results in poor
generalisability.
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Reaction templates are written in a user-friendly syntax, usually specific to the
developers. The SMILES Arbitrary Target Specification (SMARTS) language, an
extension of the SMILES line notation, and descriptors derived from molecular
graphs are examples of commonly used machine-readable formats. Early pro-
grams manually hand-coded reaction templates.65–67,145,146 This method suffered
from three fundamental issues. (1) The intuition of expert synthetic chemists
with years of experience was required to encode each reaction. (2) Manual cod-
ing was a labour-intensive task that could not be scaled up to include an adequate
number of chemistries. Template libraries were typically incomplete and covered
a limited scope of reaction classes.65,67 (3) The complexity of reactions made codi-
fication problematic. Chemical reactions are not straightforward due to reactivity
conflicts and dependence on reaction conditions.

The well-known program Synthia (formerly Chematica), commercialised by
Sigma-Aldrich, incorporates the largest database of hand-coded reaction tem-
plates.91,144,147 The database took over ten years to curate. It contains a total
of 75,000 hand-coded reaction templates. To hand-code a chemical reaction, the
mechanism is initially studied and understood. The core of the transformation is
coded as reaction SMARTS. Functional groups that need to be protected, groups
that are always incompatible in the reaction, typical reaction conditions, repre-
sentative literature sources, and other additional information are also included
in the reaction template.91 Quality control procedures reduced human error in
the encoding process. These procedures included scripts for syntax checking,
testing template applicability, peer-review cross-checking, and final verification
before input into the reaction template database.91 As novel chemistries are dis-
covered and old chemistries refined, the database of hand-coded reaction tem-
plates is continually updated. Synthia has demonstrated that hand-coding is
feasible and manageable if sufficient time is invested. Synthia is a successful im-
plementation of hand-coded reaction templates in the prediction of retrosynthetic
pathways.91,144,147

Automated template extraction from published reaction data is more efficient
and time-saving. The reaction centre and neighbouring atoms are extracted algo-
rithmically from an atom-mapped SMILES pattern. Heuristics are then used to
incorporate groups known to influence the reaction. Atom-mapped reactions are
required to identify the atoms and bonds that change during the chemical trans-
formation.94,106,137,141,148–151 Tools, such as the Reaction Decoder Tool (RDT), are
available to calculate atom map indices if they are unknown.149,150,152 The reaction
centre is identified by iterating around the molecule, recording changes in atom
environments. The shell- or radius-based approach is commonly used to incor-
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porate neighbouring atoms up to a pre-specified number of bonds. Radius-based
template extraction is implemented in RDChiral,141,153 Monte Carlo Tree Search
(MCTS),106 ARChem (Route Designer),148 and InfoChem’s CLASSIFY.154

Reaction templates generated from algorithmic extraction are less robust than
manually hand-coded templates. Extracted templates may be chemically inac-
curate, contain duplicate and nonexclusive templates, and neglect long-distance
effects. Canonicalization is the process of producing a unique reaction template
for a chemical transformation, which is essential in deduplication. Poorly canon-
icalized templates describe the same chemical transformation on the same set of
molecules.143 Nonexclusive templates describe the same chemical transformation
but include different or no special groups on overlapping sets of molecules.143

Poorly canonicalized and nonexclusive templates add unnecessary noise to the
library of reaction templates. RDChiral is a template extraction and applica-
tion algorithm that canonicalizes the extracted reaction templates while handling
stereochemical information.141,153 Not all template extraction techniques handle
stereochemical information correctly. Automated extraction does not account for
long-distance effects. Atoms or groups that are more than four atoms from the
reaction centre are typically not encoded in the reaction template. The accuracy
of automated template extraction has been discussed thoroughly.91,143,155 The ad-
vantages of automated template extraction are speed and scalability. Extracted
template libraries are easier to maintain compared to hand-coded libraries. Al-
gorithmic template extraction has been utilised in forward reaction prediction105

and retrosynthesis planning.75,76,94,105–107,128,137–140

Template Selection

There may be numerous suitable reaction templates for a single target molecule
or reactants in the case of reaction prediction. For large template libraries, apply-
ing every template is computationally expensive and often intractable. Various
algorithms have been developed to identify the appropriate templates while ac-
counting for chemical context, trade-offs, and reactivity. Template selection can
be considered a multi-class classification problem where each template in the
template library is a class. A machine learning model learns how to classify reac-
tions into applicable templates from the library. The template selection models
are restricted to predicting templates in the template library. While the mod-
els can interpolate known reactions encoded in the template library to a novel
target, they cannot extrapolate to reactions not present in the library or novel
chemistries.

One approach to selecting appropriate reaction templates to apply to the input
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molecule is to train a neural network to predict the probability of relevance for
each reaction template in the library.75,105,139 NeuralSym (Neural-Symbolic) is
an example of this approach, which uses molecular fingerprints to represent the
molecules. Using machine learning to determine template applicability can be
biased towards popular reaction classes. When there are too few examples of a
reaction class in the dataset, it is unclear which substituents are admissible or
conflicting. Fortunato et al . built on the NeuralSym framework, employing a
pre-train and data augmentation strategy to reduce bias toward well-represented
templates and thereby extending the scope of the training set.139 Although this
strategy enhanced the performance of rare templates, the model remained limited
to interpolation. The Graph Logic Network (GLN) adopts a similar framework
with a molecular graph representation to improve interpretability.75

An alternative approach is a similarity-based template application implemented
in Retrosim128 and exclusively used in retrosynthesis. Rather than defining a
library of reaction templates, Retrosim generates them on demand. Reaction
templates are extracted from the most similar products in the training set to the
target molecule. The reaction templates are applied to the target to generate
reactant candidates. The candidates are scored and ranked using a combination
of reactant and product similarities.

The template selection approaches discussed above have relied on the global fea-
tures of the target molecules. Chen et al. proposed a graph-based framework
based on locally derived reaction templates.76 The applicability of the local tem-
plates is evaluated using atom or bond features at each reaction centre. As a
result, the proposed LocalRetro model focuses more on local information.

Advantages and Limitations

Template and similarity-based approaches are interpretable as they align with
how synthetic chemists think. The proposed pathways can be traced to the un-
derlying data of successfully performed reactions and the reasoning behind the
decision-making. Despite this, encoding chemical reactions is a bottleneck. The
constant maintenance of template libraries is time-consuming and can be chal-
lenging when including new chemistries. Although hand-coding requires care to
eliminate human errors, the quality is higher than extracted templates. In au-
tomated template extraction, reactions frequently have incomplete or erroneous
atom mapping, resulting in duplicate and nonexclusive templates. Extracted tem-
plates focus on the local environment surrounding the reaction centre, potentially
overlooking non-local influential groups. The advantage of automating template
extraction is scalability. Manual encoding is laborious and requires the knowledge
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of synthetic chemists. Template-based approaches cannot accurately predict re-
actions outside of the template library.105 Rather than discover novel chemistries,
template-based methods aim to assist synthetic chemists with routine synthesis
tasks.

3.3.2 Template-Free Framework

Template-free approaches are fully data-driven, do not rely on predefined reaction
templates, and do not require chemical knowledge. Molecular graphs or SMILES
strings are typically used to represent the input compound(s). Template-free ap-
proaches are further classified as semi-template generation or machine translation
methods. Semi-template generation is a two-step method aligned with template-
based approaches. Machine translation is a single-step method that is comparable
to language translation.

Semi-Template-Based Methods

In semi-template-based methods, the output (reactants or products) is predicted
by generating intermediates or synthons from input molecules represented by
molecular graphs. The two-step procedure is similar to template-based ap-
proaches. Rather than selecting reaction templates in the first step, a graph
neural network or transformer156 is used to identify the reaction centre to generate
synthons. Convolutional, graph attention and message-passing neural networks
are examples of graph neural networks that have been implemented. In the sec-
ond step, the synthons are completed to produce the output using either a graph
generative,157 transformer,156,158 or subgraph selection model.78 Semi-template-
based methods have been developed for forward reaction prediction122,159 and
retrosynthetic analysis.77,78,156–158,160

Machine Translation Methods

Machine translation is a subfield of NLP that focuses on translating text from one
language to another.79 When applied to synthetic chemistry, machine translation
methods are trained end-to-end to learn the syntax of chemical reactions. The
molecules can be represented by text notation, such as SMILES strings. In for-
ward reaction prediction, the reactant SMILES strings are directly transformed
into product SMILES strings, and vice versa for retrosynthesis.

Neural sequence-to-sequence models are based on an encoder-decoder architecture
composed of two recurrent neural networks and an attention mechanism.80,127,161

Each token in the SMILES string is considered sequentially and is assumed to
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be related to its neighbour. Sequence-to-sequence models learn the local environ-
ments in the SMILES strings and their influence on neighbouring tokens. Two
tokens far apart in a SMILES string could be topologically near in the equivalent
molecular graph. As a result, these models may have difficulty identifying long-
range token relationships. Sequence-to-sequence models have been implemented
in reaction prediction80,161 and retrosynthesis tasks.127

The transformer architecture has surpassed the neural sequence-to-sequence ar-
chitecture. Transformer models are based on a fully attention-based encoder-
decoder architecture.162 Due to the absence of recurrent neural networks, trans-
former models can correlate individual tokens in the SMILES strings regardless
of their location and hence capture long-range interactions. Transformer models
have been successfully applied to forward reaction prediction81,116,163 and ret-
rosynthesis.116,163–169

Advantages and Limitations

Template-free methods have some advantages over template-based methods.
They do not require atom mapping, atom features or any chemical knowledge.
As template-free methods are not dependent on a library of reaction templates,
they are scalable to large datasets at a fraction of the computational cost and
can generalise to novel chemistries.

Semi-template-based methods require developing and training two independent
models, one for synthon generation and the other for synthon completion. Semi-
template-based methods, like template-based methods, are analogous to a syn-
thetic chemist’s thought process. As a result, the predictions generated by these
methods are easy to interpret. These methods, however, rely implicitly on pre-
determined reaction templates and atom-mapped data.

Machine translation approaches are based on an implicit representation of the
global environment of molecules. A single model is trained end-to-end to trans-
form the input into the output. The interpretability of machine translation
methods is limited. Attention weights of the atoms (i.e. the SMILES tokens)
can be used to identify which aspects of the input species influence the output
species. Although the attention mechanism enables the models to be interpreted,
it is not intuitive to synthetic chemists. Machine translation approaches suffer
from SMILES invalidity, a lack of diversity, and chemically implausible predic-
tions. As machine translation methods do not directly learn the terminology of
the SMILES notation, they cannot be guaranteed to predict valid SMILES. If
a predicted SMILES string is grammatically incorrect, the molecule is consid-
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ered invalid even if the grammatically correct version is viable or the ground
truth.

3.3.3 Performance Evaluation

The performance of synthesis planning models is a balance between accuracy,
reliability, and adaptability. Top-n exact match accuracy is the most widely
used metric for evaluating overall performance. It is the percentage of test set
molecules whose ground truth was ranked within the top-n predictions. A higher
top-n accuracy indicates a better model performance. The top-1, top-3, top-5,
and top-10 accuracies are commonly reported.

The reliability of a model’s predictions could be estimated to improve its inter-
pretability. The probability that a prediction is correct can be used to calculate
a confidence score. This degree of uncertainty can then be used to determine if a
prediction is incorrect.81,116 Template-free models can suffer from syntax errors in
their predictions. This is common in machine translation methods. Top-n invalid
rate is the percentage of chemically invalid predictions in the top-n predictions.
A higher top-n invalid rate indicates more syntax errors.

The adaptability of synthesis planning models is crucial. While the accuracy of
a model on a small amount of data may be high, the accuracy may decay as
the amount of data increases.160 The accuracy may also vary when trained and
then tested on different regions of chemical space. For example, when a model is
trained on patent data and used to predict synthetic routes in ELNs.116 Accuracy,
reliability, and adaptability are valuable to evaluate in synthesis planning.

3.4 Retrosynthetic Analysis

Retrosynthesis is a fundamental task in synthesis planning in drug research and
development. The goal of retrosynthetic analysis on a novel target molecule is
to discover the complete synthetic pathway, a succession of single-step transfor-
mations. The common painkiller paracetamol, for example, can be synthesised
in two steps. The initial step is a reduction of para-nitrophenol, followed by the
acetylation of para-aminophenol with acetic acid or acetic anhydride.

Single-step computational models can be applied to the target recursively un-
til the precursors are readily available or a termination criterion is satisfied.
More accurate single-step predictions would improve the success rate of multi-
step approaches. The reaction search space grows exponentially as the number
of reaction steps increases. Due to the enormous potential search space, the com-
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putational cost is substantial. Efficient and effective computer-aided approaches
are required to navigate the search space.

3.4.1 Single-Step Retrosynthesis

Single-step retrosynthesis is the simplest form of retrosynthesis, which aims
to break down the target into potential reactant precursors given a tar-
get molecule. For the single-step retrosynthesis problem, several template-
based, semi-template-based, and machine translation methods have been devel-
oped.

This section compares the top-n accuracy of several single-step retrosynthesis
applications on the USPTO-50K benchmark dataset. All top-n accuracy values
are taken directly from the literature. The template-based models are Retrosim,
Neuralsym, GLN, and LocalRetro. The semi-template-based models are G2Gs,
RetroXpert, GraphRetro, RetroPrime, MEGAN, R-SMILES, and Graph2Edits.
The machine-translation-based models are Seq2Seq, Augmented Transformer,
SCORP, GTA, Dual-TF, Tied Transformer, Graph2SMILES, and R-SMILES.
All methods are outlined below.

Retrosim. Retrosim128 is a similarity-based approach in which disconnections
are made strategically based on similarity to known reactions. Reaction prece-
dents are retrieved from a knowledge base based on product similarity. Reaction
templates are extracted from reaction precedents and applied to the target, gen-
erating candidate precursors. Reactant similarity is used to score the candidate
precursors. The overall similarity is calculated from the reactant and product
similarity scores and used to rank the candidate precursors.

Neuralsym. The hybrid Neural-Symbolic (NeuralSym)105 model uses neural
networks to prioritise reaction templates before application. NeuralSym learns
the named reaction used to synthesise the target by multiclass classification for
template selection.

GLN. The conditional Graph Logic Network (GLN)75 is built on GNNs to
learn when to apply reaction templates. GLN uses graph embeddings to model
the conditional joint probability of rules and reactants.

LocalRetro. LocalRetro76 focuses on local reaction templates involving atom
and bond edits. A GNN accounts for the local reactivity and a global attention
mechanism accounts for the nonlocal effects of the chemical reaction. The pre-
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dicted local templates are scored, ranked, and applied to the target molecule to
obtain the final ranked reactants.

G2Gs. The Graph-to-Graphs (G2Gs)77 method converts a target molecular
graph to a set of reactant molecular graphs. The reaction centre of the target
is identified using a GNN and used to split the target into synthons. Graph
translation is used to convert the synthons into the final reactant graphs.

RetroXpert. The Retrosynthesis eXpert (RetroXpert)158,170 initially uses a
GNN to identify the reaction centre of the target and generate synthon molec-
ular graphs. The synthon molecular graphs are converted to SMILES strings.
A Transformer-based162 sequence-to-sequence model generates reactant SMILES
strings from the synthon SMILES strings.

GraphRetro. GraphRetro78 uses a GNN to predict a series of graph edits,
converting a target to synthons. To expand the synthons to reactants, leaving
groups are attached from predefined chemical rules.

RetroPrime. RetroPrime156 consists of two Transformer models: one that con-
verts the product into synthons and another that converts the synthons to reac-
tants. SMILES strings represent the molecules.

MEGAN. Molecular Edit Graph Attention Network (MEGAN)171 initially
generates reactants by performing a sequence of graph edits, i.e. bond changes,
to the target. A graph attention network modifies the target sequentially by
generating intermediate substrates until it terminates and gives the predicted
reactants.

R-SMILES. The Root-aligned SMILES (R-SMILES)172 specifies a tightly
aligned one-to-one mapping between the product and reactants SMILES. R-
SMILES uses the same starting atom (root) of the SMILES string of the reactants
and products, decreasing the edit distance. The model is a Transformer with data
augmentation fine-tuned on reaction data after being pre-trained on unlabelled
data.

Graph2Edits. Graph2Edits160 uses a GNN to predict graph edits sequentially,
generating intermediates. To complete the reactants, a leaving group is attached
to the intermediate. Although comparable to MEGAN, the Graph2Edits method
has a simpler graph-to-edits network architecture.
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Seq2Seq. The Sequence-to-Sequence (Seq2Seq)80 model is a machine transla-
tion method which maps the product SMILES string to reactant SMILES strings.
Two RNNs and an attention mechanism comprise the model. The Long Short-
Term Memory (LSTM) network, an RNN, is used as the encoder and the de-
coder.

MT The Molecular Transformer (MT)81 is a machine translation method based
on the attention Transformer architecture.162 The product SMILES string is con-
verted to reactant SMILES strings.

AT. The Augmented Transformer (AT)82 uses data augmentation of the
SMILES string to decrease overfitting and improve the accuracy of the neural
network Transformer architecture.

SCROP. The Self-Corrected Retrosynthesis Predictor (SCROP)166 has a
Transformer framework with an additional neural network-based syntax correc-
tor. The syntax corrector reduces the number of invalid SMILES strings.

GTA. The Graph Truncated Attention (GTA)173 adds molecular graph infor-
mation into the attention layers of a transformer model.

Dual-TF. Dual-TF174 is an Energy-Based Model (EBM) framework that com-
bines graph- and sequence-based models with various energy functions. A dual
EBM variant is constructed based on the agreement between forward and back-
ward reaction prediction.

Tied-TF. Tied-TF165 couples two transformers with latent modelling. One
transformer is for retrosynthesis prediction, while the other is for forward reaction
prediction.

R-SMILES The Root-aligned SMILES (R-SMILES)172 specifies a tightly
aligned one-to-one mapping between the reactant and product SMILES. R-
SMILES uses the same starting atom (root) of the SMILES string of the reactants
and products, decreasing the edit distance. The model is a Transformer with data
augmentation fine-tuned on reaction data after being pre-trained on unlabelled
data.

Graph2SMILES. The Graph2SMILES175 model has a graph-to-sequence ar-
chitecture which combines a GNN encoder with a Transformer decoder. The
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product is represented by molecular graphs and translated to reactant SMILES
strings, eliminating the need for SMILES augmentation.

The benchmark dataset for single-step retrosynthesis is the USPTO-50K dataset
consisting of approximately 50,000 reactions across ten reaction classes. The
USPTO-50K is a high-quality dataset with accurate atom mappings between
the reactants and products. Single-step retrosynthesis was performed in two
settings: with and without prior knowledge of the reaction class. Tables 3.4 and
3.5 show the top-n exact match accuracy results of the single-step retrosynthesis
models on the USPTO-50K benchmark. The accuracy results are taken directly
from the references. The training, validation, and test sets may differ slightly
between models. Zhong et al. provide a comprehensive review and detailed
quantitative analysis of single-step retrosynthesis methods on several publicly
available datasets.88

Table 3.4: Top-n Accuracy of the Single-Step Retrosynthesis Models on the
USPTO-50K Dataset with Reaction Class Unknown∗

Method Model Reference Accuracies (%)

Top-1 Top-3 Top-5 Top-10

Template-based Retrosim 128 37.3 54.7 63.3 74.1
Neuralsym 105 44.4 65.3 72.4 78.9
GLN 75 52.5 69.0 75.6 83.7
LocalRetro 76 53.4 77.5 85.9 92.4

Semi-template G2Gs 77 48.9 67.6 72.5 75.5
RetroXpert 158,170 50.4 61.1 62.3 63.4
GraphRetro 78 53.7 68.3 72.2 75.5
RetroPrime 156 51.4 70.8 74.0 76.1
MEGAN 171 48.1 70.7 78.4 86.1
R-SMILES 172 49.1 68.4 75.8 82.2
Graph2Edits 160 55.1 77.3 83.4 89.4

Machine-translation Seq2Seq 127 37.4 52.4 57.0 61.7
MT 116 43.8 60.5 - -
AT 82 53.5 - 81.0 85.7
SCROP 166 43.7 60.0 65.2 68.7
GTA 173 51.1 67.6 74.8 81.6
Dual-TF 174 53.6 70.7 74.6 77.0
Tied-TF 165 47.1 67.2 73.5 78.5
R-SMILES 172 56.3 79.2 86.2 91.0
Graph2SMILES 175 52.9 66.5 70.0 72.9

LocalRetro surpasses the other template-based models with and without the re-
action class predefined except for the top-1 accuracy with the reaction class pre-
defined. The top-1 accuracy of the LocalRetro without reaction class known
is 53.4%. For the top-3, top-5 and top-10 accuracy, LocalRetro outperforms
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Table 3.5: Top-n Accuracy of the Single-Step Retrosynthesis Models on the
USPTO-50K Dataset with Reaction Class Known∗

Method Model Reference Accuracies (%)

Top-1 Top-3 Top-5 Top-10

Template-based Retrosim 128 52.9 73.8 81.2 88.1
Neuralsym 105 44.4 65.3 72.4 78.9
GLN 75 64.2 79.1 85.2 90.0
LocalRetro 76 63.9 86.8 92.4 96.3

Semi-template G2Gs 77 61.0 81.3 86.0 88.7
RetroXpert 158,170 62.1 75.8 78.5 80.9
GraphRetro 78 63.9 81.5 85.2 88.1
RetroPrime 156 64.8 81.6 85.0 86.9
MEGAN 171 60.7 82.0 87.5 91.6
R-SMILES 172 - - - -
Graph2Edits 160 67.1 87.5 91.5 93.8

Machine-translation Seq2Seq 127 - - - -
MT 116 - - - -
AT 82 - - - -
SCROP 166 59.0 74.8 78.1 81.1
GTA 173 - - - -
Dual-TF 174 65.7 81.9 84.7 85.9
Tied-TF 165 - - - -
R-SMILES 172 - - - -
Graph2SMILES 175 - - - -

the other template-based models with at least 6.3% and 8.5% margins with and
without reaction class predefined, respectively.

Graph2Edits achieves a top-1 accuracy of 55.1% and 67.1% when the reaction
class is unknown and known, respectively. Graph2Edits reaches state-of-the-art
performance for semi-template-based methods, outperforming the other models
by at least a 3.3% margin for larger n values (n = 3, 5, 10) when the reaction
class is unknown. Although Graph2Edits surpasses template-based LocalRetro
in top-1 accuracy, it falls short in larger n values.

The top-n accuracy of the models, when the reaction class is known, will not be
discussed as only two models reported this information. When the reaction class is
unknown, R-SMILES outperforms the current best product-to-reactant machine
translation methods by 2.7%, 8.5%, 5.2%, and 5.3% in top-1, top-3, top-5, and
top-10 accuracy. R-SMILES is the state-of-the-art in single-step retrosynthesis,
with a top-1 accuracy of 56.3%, which is 2.9% and 1.2% higher than the top
template-based and semi-template-based methods.

A drawback to the product-to-reactant machine translation methods is the pre-
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diction of invalid SMILES strings. The standard transformer architecture is prone
to predicting incorrect SMILES strings as it does not learn the grammar of the
SMILES notation. Although predicted SMILES strings may be grammatically
incorrect, the grammatically correct version could be the ground truth. The
SCROP model incorporates a syntax corrector, which reduces the SMILES inva-
lidity rate but does not significantly improve the accuracy.166 Data augmentation
is now employed to prevent SMILES invalidity at an additional computational
cost.82

3.4.2 Multi-Step Retrosynthesis

A target molecule is broken down recursively until the precursors are commer-
cially available in multi-step retrosynthesis. In the pharmaceutical industry, the
average synthetic route is 8.1 steps.176 This vast reaction search space makes
efficient searching and planning of multi-step syntheses challenging. The multi-
step retrosynthesis task can be represented as a synthesis tree or directed acyclic
graph, with the target molecule at the root. A branching factor and depth restrict
the synthesis tree. The branching factor specifies the number of possible steps
from a particular molecule, while the depth is the maximum number of steps
before termination. An objective function guides the search and repeats until
termination. Pathway termination will occur if the potential precursors are com-
mercially available or a predefined depth constraint is reached. For retrosynthesis,
the branching factor is usually high and the depth low.

The multi-step planning framework contains three phases: selection, expansion,
and update. A selection policy identifies the most promising nodes to expand, i.e.,
the most promising molecules to propose reactants for. Selection can be based
on heuristics or a node value function. An expansion policy applies a pre-trained
single-step retrosynthesis model to the selected nodes. The relevant values along
the path are then updated.

The number of potential synthetic routes grows exponentially as the number of
steps in a pathway increases. Multi-step retrosynthesis tools require intelligent al-
gorithms to identify the most promising branches to avoid exhaustive calculations
of all combinations. Unfortunately, choosing the optimum predicted reaction at
each step may not result in the most efficient pathway. Until the total cost of
the synthetic route is calculated, the effect of each decision is unknown. The
cost could be related to the price of starting materials, number of steps, waste
generated, greenness, ease of product purification, sustainability, safety hazards,
or environmental hazards.

∗Top-n accuracy values are taken directly from the corresponding reference. Highest top-n
accuracies are highlighted in bold.
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There are limited assessment criteria for multi-step retrosynthesis. A double-
blind AB test comparison of proposed and reported routes is valuable but time-
consuming and laborious. Quantitative assessment metrics include the success
rate of different iterations and the number of iterations, reaction nodes, and
molecule nodes. PaRoutes is a benchmarking framework for comparing multi-
step retrosynthesis methods.177 It consists of two sets of patent-extracted routes,
a list of available compounds, and a collection of reactions for training single-step
models. It evaluates performance based on route quality, search speed, and route
diversity. PaRoutes offers an unbiased assessment and comprehension of subtle
differences in state-of-the-art approaches. Although the framework is currently
limited to template-based methods, work on including template-free methods is
ongoing.

Monte Carlo Tree Search

Inspired by game AI, the well-known approach published by Segler and Waller106

combines the Neural-Symbolic (NeuralSym)105 single-step model with Monte
Carlo Tree Search (MCTS).178 Three neural networks incorporated into the
MCTS algorithm comprise the 3N-MCTS model. The neural networks are the
expansion policy, in-scope filter and rollout phase. MCTS is a heuristic search al-
gorithm that selects the best-unexpanded node, expands it with a template-based
single-step model, filters the results, evaluates the new molecules in a rollout
phase, and updates the scores along the pathway. Based on current position val-
ues, the selection policy chooses the most promising node, balancing exploitation
(highest-scoring nodes) and exploration (unvisited nodes).179 The section policy
employed is a version of the one used in AlphaGO.18 The expansion policy, a
single-step, template-based retrosynthesis model, expands the selected node. An
in-scope filter classifies the reactions as feasible or not to remove any unfeasible
chemical reactions. The rollout phase then evaluates the new nodes (precursors)
by iteratively applying a comparable lightweight single-step model. Based on the
difficulty of the synthesis, reward values are assigned to molecules and utilised
to update the tree position values. While the 3N-MCTS model can account for
stereochemistry, it does not consider the prediction of reaction conditions in path-
way generation. ASKCOS,138 AiZynthFinder,140 and AutoSynRoute180 adopt the
MCTS technique in their implementations. AutoSynRoute combines MCTS with
a template-free Transformer model.
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Commercial Software

Most commercial software are closed-source meaning the algorithms, reaction
data, and reaction templates are not publicly available. Due to the limited in-
formation, the focus will be on real-life applications of the methods. Commer-
cially available synthesis planning software includes InfoChem’s ICSYNTH,137

Wiley’s ChemPlanner™ (formerly ARChem Route Designer)148 that has inte-
grated into CAS’ SciFindern and Merck KGaA’s Synthia™ (formerly Chemat-
ica).91,144,147,181–184 These applications are based on reaction templates. Synthia™
contains a template library of over 100,000 reaction templates hand-coded by ex-
pert synthetic chemists. The templates encode possible incompatibility groups,
protecting groups, and reaction conditions. ICSYNTH and ChemPlanner™ auto-
matically extracted templates from reaction databases, consisting of the reaction
centre and neighbouring atom/groups. ICSYNTH also provides tools to generate
template libraries from in-house data, which can be used alone or in conjunction
with the supplied libraries.

Scoring functions based on user-defined criteria, evaluate each synthetic step and
direct the search to commercially available substrates. Synthia™ and ICSYNTH
filter the predictions to remove any unwanted structures. Synthia™ defines addi-
tional heuristics to penalise non-selective reactions, strained intermediates, and
unlikely structural motifs. ICSYNTH compares the predicted structure to a pre-
defined list of prohibited structures. ChemPlanner™ uses a similar method to
eliminate functional group incompatibilities. Synthia™ and ChemPlanner™ ac-
count for regiochemistry and electronic effects, while Synthia™ can also handle
stereochemistry and steric effects. Each program generates synthesis trees that in-
clude references to supporting literature and the cost of starting materials. Com-
mercial multi-step synthesis planning software may have good validation scores,
but chemists will remain sceptical until sufficient evidence supports success. The
applicability of the software to drug-like targets and bioactive molecules has been
the primary objective.

InfoChem, in collaboration with AstraZeneca, has evaluated the performance of
ICSYNTH to act as an idea generator.137 The ability of the program to predict
routes to therapeutic targets, present in AstraZeneca’s commercial drug projects
or the literature, was assessed. Proposed pathways were compared to the litera-
ture, brainstormed proposals, and the in-house experience of chemists working on
the projects. Without prior knowledge of the brainstorm proposals, ICSYNTH
rediscovered known chemistries, returned brainstorm suggestions and provided
new unreported synthetic routes. Due to its unbiased nature, it also identified
an unconventional transformation that led to a non-intuitive solution to a prob-
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lem.137 ICSYNTH can generate ideas to complement synthetic chemists.

ChemPlanner™ experimentally validated proposed synthetic pathways to med-
ically relevant targets.185 These pathways were compared to routes developed
by synthetic chemists. ChemPlanner™ identified almost all routes designed by
synthetic chemists. Not all identified routes were considered the best due to
the scoring functions within the program. ChemPlanner™ also proposed alterna-
tive paths with fewer steps and lower costs. ChemPlanner™ can assist synthetic
chemists in designing synthetic pathways, saving time and money.

Synthia™ uses network theory, high-power computing, AI and expert chemical
knowledge to design retrosynthetic pathways.144 It can construct novel synthe-
sis routes to medicinally and industrially relevant targets. The program found
synthetic pathways to eight commercial bioactive substances and natural prod-
ucts.144 These targets were selected as previous attempts at synthesis were low
yielding, not scalable, or failed. Synthetic chemists experimentally verified the
predicted pathways. Synthia™ designed routes that increased reaction yield while
saving time and money. It also successfully predicted a pathway to a target
without known synthetic paths. An extension of Synthia™ enables one to avoid
patented routes.91 When constructing pathways to novel molecules, it is critical
not to violate existing patented routes. A bond preservation approach identi-
fies and prevents the disconnection of bonds essential to patents. To validate
this technique, three commercial drugs, Linezolid, Sitagliptin, and Panobinostat,
were evaluated by Synthia™. Pathways predicted with and without the patent
bond constraint. Without constraints, Synthia™ proposed similar routes to the
patents. However, by selecting the bonds that must not be broken, the program
could navigate around them and identify alternative routes. Synthia recently
demonstrated passing a Turing-like test, where synthetic routes designed by Syn-
thia were indistinguishable from those designed by synthetic chemists.184

3.5 Forward Reaction Prediction

Synthetic pathways predicted by chemists or machines are not guaranteed to
be experimentally feasible. Synthetic chemists assess the feasibility of synthetic
routes by reviewing the literature for similar transformations. Following this,
the chemical reactions are performed experimentally. This process requires ex-
perienced synthetic chemists and substantial time and money. Forward reaction
prediction is an alternative technique for determining the plausibility of pro-
posed chemical reactions. The aim is to predict the major product of a chemi-
cal reaction given the reactants, reagents, and occasionally reaction conditions.
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This technique can also identify selectivity patterns and potentially harmful or
difficult-to-separate side products or impurities.

In principle, there is only one correct answer in forward reaction prediction. In
practice, however, minor variations in reaction conditions, such as solvent and
temperature, can affect the major product and reaction yield.

This section compares the top-n accuracy of several forward reaction predic-
tion applications on the USPTO-MIT benchmark dataset. All top-n accuracy
values are taken directly from the literature. The current state-of-the-art in for-
ward reaction prediction is template-free methods. The approaches compared
in this section are the semi-template-based methods: WLDN, WLDN5, GTPN,
Symbolic, MEGAN; and the machine-translation methods: Seq2Seq, Molecular
Transformer, Augmented Transformer, Chemformer, R-SMILES. These reaction
prediction models are outlined below.

WLDN. The Weisfeiler-Lehman Difference Network (WLDN)122 is a semi-
template-based method which predicts a series of graph edits. A Weisfeiler-
Lehman Network (WLN) first identifies the reaction centre as pairwise atom
interactions. Enumerating all feasible bond configurations between atoms in the
reaction centre generates product candidates. A WLDN ranks the prospective
products.

WLDN5. WLDN5159 improves on the WLDN model by combining the reaction
centre prediction and candidate ranking into a single task.

GTPN. The Graph Transformation Policy Network (GTPN)186 is a semi-
template-based method that uses reinforcement learning to determine the op-
timal sequence of bond changes to transform the reactants into products. A
Graph Neural Network (GNN) is used to model the reactants. A Node Pair
Prediction Network (NPPN) predicts a single change in connectivity. A Policy
Network (PN) generates an intermediate graph as an input for the following step
until it terminates. The final graph generated is the predicted product.

Symbolic. The Symbolic187 method is a semi-template-based method which
integrates deep neural networks with probabilistic and symbolic inference. A
Graph Convolutional Network (GCN) predicts the likelihood of changes in con-
nectivity which then govern a probability distribution over potential products.
Integer Linear Programming (ILP) infers the most probable product candidate
from the probability distribution. In ILP, heuristic constraints ensure that the
products are chemically valid.
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MEGAN. The Molecular Edit Graph Attention Network (MEGAN)171 is a
semi-template-based method. The model generates products by performing a
sequence of graph edits, i.e. bond changes, to the reactants. A graph attention
network modifies the reactants sequentially by generating intermediate substrates
until it terminates and gives the predicted products.

Seq2Seq The Sequence-to-Sequence (Seq2Seq)80 model is a machine transla-
tion method which maps reactant SMILES strings to product SMILES strings.
Two RNNs and an attention mechanism comprise the model. The Long Short-
Term Memory (LSTM) network, an RNN, is used as the encoder and the de-
coder.

MT The Molecular Transformer (MT)81 is a machine translation method based
on the attention Transformer architecture.162 The reactant SMILES string are
converted to product SMILES strings.

AT The Augmented Transformer (AT)82 uses data augmentation of the
SMILES string to decrease overfitting and improve the accuracy of the neural
network Transformer architecture.

Chemformer The Chemformer164 model is a pre-train-fine-tune Transformer-
based model that uses transfer learning to improve convergence and accuracy.
The model was pre-trained on a large dataset of unlabelled SMILES before being
fine-tuned on the forward reaction prediction task.

R-SMILES The Root-aligned SMILES (R-SMILES)172 specifies a tightly
aligned one-to-one mapping between the reactant and product SMILES. R-
SMILES uses the same starting atom (root) of the SMILES string of the reactants
and products, decreasing the edit distance. The model is a Transformer with data
augmentation fine-tuned on reaction data after being pre-trained on unlabelled
data.

Graph2SMILES The Graph2SMILES175 model has a graph-to-sequence ar-
chitecture which combines a GNN encoder with a Transformer decoder. The re-
actants are represented by molecular graphs and translated to product SMILES
strings, eliminating the need for SMILES augmentation.

NERF The Non-autoregressive Electron Redistribution Framework (NERF)188

models the electron flow in reactants. Molecular graphs represent the reactants
and products. A GNN encodes the reactant graphs. A decoder models the
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electron movement probabilities of bond breaking and bond formation for each
atom in the reactants. The electron movement probabilities are converted to
bond changes, generating the products.

The popular benchmark dataset for reaction prediction is the USPTO-MIT
dataset, composed of approximately 480,000 reactions.122 Forward reaction pre-
diction was performed in two settings: “separated” and “mixed”. In USPTO-MIT-
Separated, a separator token separates the reactants and reagents. In USPTO-
MIT-Mixed, the reactants and reagents are not separated. Forward reaction pre-
diction on the mixed dataset is more challenging than on the separated dataset
since the model must distinguish between reactants and reagents.

Tables 3.6 and 3.7 illustrate the predictive accuracy of the reaction prediction
models on the USPTO-MIT benchmark dataset. Not all models, notably semi-
template models, are tested on the mixed dataset. When evaluating the mod-
els on both datasets, removing the distinction between reactants and reagents
before evaluation reduces the accuracy. The transformer-based models tend to
have higher accuracies than the semi-template methods. Implementing a fully
attention-based Transformer model over the Seq2Seq method improves the accu-
racy by 10.1% to 7.8% from top-1 to top-5. Including data augmentation and
pre-training further enhances the performance of the Transformer model by at
least 1.6%.

Chemformer outperforms the other models in top-1 accuracy, establishing a state-
of-the-art top-1 accuracy of 92.8% on the separated dataset and 91.3% on the
mixed dataset. The top-1 accuracy of R-SMILES is marginally (≤ 0.5%) lower
than Chemformer. Except for this, R-SMILES obtains better top-2 and top-5
accuracy results.
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Table 3.6: Top-n Accuracy of the Reaction Prediction Models on the USPTO-
MIT-Separated Dataset†

Method Model Reference Accuracies (%)

Top-1 Top-2 Top-3 Top-5

Semi-template WLDN 122 79.6 - 87.7 89.2
WLDN5 159 85.6 90.5 92.8 93.4
GTPN 186 83.2 - 86.0 86.5
Symbolic 187 90.4 93.2 94.1 95.0
MEGAN 171 89.3 92.7 94.4 95.6
NERF 188 90.7 92.3 93.3 93.7

Machine-translation Seq2Seq 80 80.3 84.7 86.2 87.5
MT 81 90.4 93.7 94.6 95.3
AT 82 92.0 95.4 - 97.0
R-SMILES 172 92.3 95.8 - 97.5
Chemformer 164 92.8 - - 94.9
Graph2SMILES 175 - - - -

Table 3.7: Top-n Accuracy of the Reaction Prediction Models on the USPTO-
MIT-Mixed Dataset†

Method Model Reference Accuracies (%)

Top-1 Top-2 Top-3 Top-5

Semi-template WLDN 122 - - - -
WLDN5 159 - - - -
GTPN 186 - - - -
Symbolic 187 - - - -
MEGAN 171 86.3 90.3 92.4 94.0
NERF 188 - - - -

Machine-translation Seq2Seq 80 - - - -
MT 81 88.6 92.4 93.5 94.9
AT 82 90.6 94.4 - 96.1
R-SMILES 172 91.0 95.0 - 96.8
Chemformer 164 91.3 - - 93.7
Graph2SMILES 175 90.3 - 94.0 94.8

†Top-n accuracy values are taken directly from the corresponding reference. Highest top-n
accuracies are highlighted in bold.
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3.6 Future Outlook and Potential Challenges

Knowing whether a compound is synthesisable before executing chemical reac-
tions is beneficial. CASP tools propose synthetic routes, ideally with high confi-
dence. Contemporary approaches to retrosynthetic analysis and forward reaction
prediction are classified as template-based or template-free. Recently the num-
ber of template-free models has surged due to higher coverage, scalability and
diversity. Automated extraction of data and the ability to learn from historical
reaction data has resulted in contemporary AI approaches outperforming tradi-
tional expert-based systems in terms of cost and efficiency. There are numerous
benefits to incorporating CASP into synthetic chemists’ daily routines. These
include shortening synthesis planning timelines, reducing the number of steps in
a pathway, lowering costs, and offering alternative, unconventional routes.

When designing paths to novel compounds, chemists are biased towards robust
reactions.189 In CASP programs, AI and machine learning reduce human bias
in predictions, potentially expanding the toolbox of medicinal chemists. Despite
their advantages and recent success, CASP tools are not routine. As the inclu-
sion of reaction conditions increases computational complexity, proposed methods
typically omit reaction conditions. Few attempts have integrated reaction condi-
tions such as reagents, catalysts, solvents, and temperature.39,190,191 Finding the
shortest path drives multi-step retrosynthesis, which can be problematic. The
models cannot replicate the literature route as they fail to account for protec-
tion and deprotection strategies. Underlying chemical reaction data, evaluation
methodologies, and interpretability also limit the tools.

Chemical reaction data is a significant limitation of current methods. Existing
databases are still insufficient in terms of volume and diversity. High-quality,
reproducible reaction data is critical for advancing CASP tools. Benchmark
datasets derived from the USPTO patent data suffer from prophetic examples,
inaccuracies in atom mapping, noisy stereochemical data, and inconsistencies.
Open-source benchmarks are required to ensure fair model comparison. The large
benchmark datasets should incorporate counter-examples to enable algorithms to
perform optimally. There is a push for open sharing of machine-readable reaction
data, open-source code, and changes to publication standards to reflect this.

Rigorous validation methods to assess model generalisability are required to en-
sure that reported results are not misleading.151,190 While top-n accuracy is jus-
tified for reaction prediction, its use in single-step retrosynthesis is misleading.
The top-n accuracy examines whether a model can predict the ground truth.
Compared to forward reaction prediction, retrosynthesis rarely originates from a
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single set of precursors. Depending on the functional groups present in the target
molecule, multiple disconnection sites may exist, leading to numerous valid path-
ways. Top-n accuracy cannot determine whether alternative routes are feasible.
Feasibility is determined experimentally. However, the cost, reaction yield and
diversity are frequently overlooked in model development.

Poor model interpretability has created suspicion among synthetic chemists.
There are four main aspects to interpretability: transparency, justification, in-
formativeness, and uncertainty estimation.192 These aspects enable synthetic
chemists to comprehend why the model generated the predictions. They also as-
sist computational chemists in determining the causes of poor model performance
and guide model improvement. Template-based models rely on templates for in-
terpretability, whereas semi-template models rely on synthons. Neither method
of interpretation explains why a model made a particular prediction. Many CASP
methods employ “black-box” algorithms, such as neural networks, non-linear sup-
port vector machines, or random forests. While “black-box” algorithms have
high predictive power, their decisions and predictions are unexplainable. Current
acceptance and confidence of “black-box” approaches rely on sufficient justifica-
tion by chemical literature or experimentally determined results. Attributing the
relationship between properties and structural fragments has improved the inter-
pretability of molecular prediction models.193–195 Similar methods implemented
in CASP could improve interpretability.

CASP programs aim to assist synthetic chemists in the decision-making process
for designing chemical pathways. We project CASP tools to become increas-
ingly common in modern laboratories imminently. Synthesis planning models
should improve when high-quality reaction data becomes available and algorithms
advance. The future of automated reaction optimisation is the integration of
robotics and CASP. These units would increase productivity in synthesis labo-
ratories without replacing bench chemists. Early and strong engagement with
synthetic chemists will facilitate more rapid development of CASP with broader
acceptance and uptake from the community.

In this chapter, we reviewed retrosynthesis and forward reaction prediction tasks.
We discussed reaction data sources and their progression. Contemporary state-
of-the-art approaches to CASP were classified, outlined, and compared on bench-
mark patent data. Finally, we highlighted potential challenges and the outlook
of this field.



Chapter 4

Machine Learning for Predicting
Yields of Chemical Reactions

4.1 Introduction

The availability of large reaction datasets and high-performance computing have
been key in the development of computer-aided chemistry.35 For example, in
molecular design,196 retrosynthetic planning tools,106,116,166,197,198 reaction pre-
diction80,116,159, and the optimisation of reaction conditions.108,199,200 Whilst the
prediction of biological activities and molecular properties using Quantitative
Structure-Activity Relationship (QSAR) or Quantitative Structure-Property Re-
lationship (QSPR) models have been well-studied,29,201 reactivity prediction, has
been explored much less. This is largely due to a lack of appropriately curated
data, for example, on reaction yield and Enantiomeric Excess (%ee). Performing
a large number of experimental reactions is expensive, time-consuming, resource-
consuming and requires synthetic chemists. High-throughput chemistry, along
with batch and flow systems, have recently opened opportunities to generate re-
action data for use in machine learning.32,202,203 In Chapter 4 and Chapter 5,
we focus on developing machine learning models to predict reaction yield using a
high-throughput reaction dataset. This research aims to determine whether mod-
els built using structure-based descriptors have comparable performance metrics
to those constructed using calculated properties. This chapter discusses the pi-
oneering work in predicting reaction yield undertaken by the Doyle group32–34

before outlining our approach and detailing preliminary work.

A dataset consisting of chemical structures or reactions must be converted to a
machine-readable format before it is presented to a machine learning algorithm.

103



Chapter 4: Machine Learning for Predicting Yields of Chemical Reactions 104

Molecular descriptors are based on the structural, physiochemical, electronic, or
topological nature of molecules. Quantum chemical descriptors are common for
the prediction of chemical reactivity.32,204–206 They have also been used to build
kernel-based QSAR and QSPR models, employing the Gaussian Radial Basis
Function (RBF) kernel.207–209 Site-specific, atomic properties including Nuclear
Magnetic Resonance (NMR) shifts, vibrational frequencies, vibrational intensi-
ties and partial atomic charges have been used, along with global descriptors
such as Highest Occupied Molecular Orbital (HOMO) energies, Lowest Unoccu-
pied Molecular Orbital (LUMO) energies, dipole moment and polar surface area.
Three-dimensional steric descriptors have been included in models of catalyst se-
lectivity to improve predictions, by capturing important conformational informa-
tion.205,206 Quantum chemical descriptors are typically calculated using Density
Functional Theory (DFT), which can be computationally demanding. Therefore,
quantum chemical descriptors may not always be appropriate for large datasets,
particularly if the dataset contains large molecules. Site-specific descriptors cal-
culated for a reaction dataset require shared structural features for each reaction
component.32,204,205 For example, when calculating the carbon NMR shift for a
specific carbon atom in a reaction component, that atom is a requirement across
the dataset. If a reaction dataset has a large variety of molecules for a single
reaction component, there may only be a few key shared atoms. In this scenario,
alternative representations are required, such as structure-based descriptors that
can be calculated for all molecules.

Molecular fingerprints represent the two-dimensional topology of a molecule. Ex-
amples include Molecular ACCess Systems (MACCS) Keys49, Morgan circular
fingerprints53, and RDKit (RDK) fingerprints50. They are fast and easy to cal-
culate, making them a popular choice for representing molecules. They are es-
tablished in machine learning for virtual screening210 and have emerged in the
prediction of reaction conditions.108,199 Sandfort et al.211 have shown that two-
dimensional, structure-based molecular fingerprints can achieve similar accuracy
to quantum chemical descriptors in the prediction of chemical reactivity. Re-
actions were represented by a concatenation of Multiple Fingerprint Features
(MFFs) and were used to build random forest models to predict reaction yields
and %ee.211 Fingerprints have also been utilised in kernel-based QSAR/QSPR
relationship models, using the Tanimoto or RBF kernel.212–214

Labelled molecular graphs are another two-dimensional representation that depict
the connectivity of a set of nodes, labelled with atom type, by a set of edges that
are labelled by the bond order. From herein, we refer to labelled molecular graphs
as molecular graphs. The global molecular structure is considered, in contrast to
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the local environments in fingerprints. The kernel trick can be applied to molec-
ular graphs to build machine learning models based on kernel methods, including
Support Vector Machine (SVM).215 Kriege et al..216 give a detailed overview of
graph kernels and provide guidelines to aid researchers in the identification of
successful kernels for different applications. The Weisfeiler-Lehman (WL)55 al-
gorithm is well-established in the field of Computer-Aided Synthesis Planning
(CASP). The WL algorithm has been embedded in a neural network122,217 and
applied to the prediction of chemical reactivity.122,159 Molecular graphs have been
used in combination with deep learning to generate graph convolutional network
models for reaction prediction,159 retrosynthetic route design197 and the predic-
tion of reaction conditions.218

The prediction of reaction yields and enantiomeric excess are multidimensional
problems as reaction outcomes depend on multiple reaction parameters, includ-
ing both categorical and continuous variables. Minor changes in the reaction
conditions such as catalyst(s), reagent(s), solvent(s), as well as temperature and
pressure, can result in radically different reaction outcomes or possibly failed re-
actions. Even with expert synthetic chemists’ chemical intuition and experience,
chemical reactivity and reaction outcomes can be challenging to anticipate. High-
throughput experimentation enables the screening of multiple discrete reaction
variables (catalysts, reagents, solvents) on a nanomolar scale.219,220 A matrix of
parallel reactions is performed on a plate at the desired temperature and pressure,
with the same reaction time. The samples in each well are analysed using Liq-
uid Chromatography-Mass Spectrometry (LCMS) or Gas Chromatography-Mass
Spectrometry (GCMS). There are challenges associated with such high through-
put chemistry. These include the handling of very small volumes of liquid and
evaporative solvent loss due to the use of volatile organics and solubility. The
technique has proved useful for the optimisation of reaction conditions, as well
as the discovery of new chemical reactivity in the pharmaceutical industry and
academia.219,220 It is also a lower-cost alternative for generating reaction data
with which to build machine learning models.32,206,211,221

In this study, we investigate the use of structure-based descriptors in developing
machine learning models to predict reaction yield. Structure-based descriptors
are derived from the topology of molecules. They are simple and quick to compute
and are applicable to any molecule. Quantum chemical descriptors are atomic,
molecular, and vibrational properties calculated using DFT. In contrast, they can
be computationally demanding and are not applicable to every molecule. The
site-specific descriptors require key shared atoms across the dataset. Models that
employ structure-based descriptors can predict a broader spectrum of reactants,
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and the descriptors are generated on a much quicker timescale. A comparison
of these approaches is demonstrated herein. We discuss the pioneering work of
Doyle et al.,32,34 who developed a random forest model constructed using quan-
tum chemical descriptors to predict reaction yield. This pioneering work was
facilitated by the generation of a high-throughput dataset which included reac-
tion yield. The reactions in the dataset were Buchwald-Hartwig reactions, which
we describe thoroughly, including mechanistic detail and the role of the catalyst.
We outline a broad overview of our approach to predicting the yield of chemical
reactions. Our preliminary work covers two main objectives. Firstly, we deter-
mine the optimum parameters for the structure-based descriptors. Secondly, we
compare machine learning algorithms and identify which is the most promising
to investigate further using more rigorous testing.

In 2018, Doyle et al.32 reported an open-source combinatorial dataset which in-
cluded reaction yields. The dataset contained approximately 4600 Buchwald-
Hartwig amination reactions. We describe the Buchwald-Hartwig reaction, in-
cluding mechanistic detail and the role of the catalyst. In the pioneering work by
the Doyle group, the reactions in this dataset were represented by chemical prop-
erties and used to build machine learning models to predict reaction yield.32

4.1.1 Buchwald-Hartwig Amination Reaction

The Buchwald-Hartwig reaction (Scheme 4.1) is a well-established methodology
for the formation of sp2 carbon-nitrogen bonds. This type of palladium catalysed
C-N cross-coupling of amines and aryl halides has attracted particular atten-
tion, due to its wide application in the pharmaceutical and agrochemical indus-
tries.222–224

Scheme 4.1 General reaction scheme of the Buchwald-Hartwig amination reac-
tion.
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Palladium catalysed cross-coupling reactions between aryl bromines and aminos-
tannanes were pioneered by Migita et al.225 in 1983. The limitations of form-
ing aryl amines using aminostannanes include narrow substrate scope and the
use of toxic aminostannanes. These limitations were overcome by Buchwald and
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Hartwig, who in 1995 reported a tin-free palladium catalysed coupling of aryl bro-
mides and amines.226,227 This initial approach, along with the subsequent work by
the two research groups on the methodology and mechanistic understanding, led
to the Buchwald-Hartwig amination reaction (Scheme 4.1) which has broadened
the substrate scope and improved scalability.

The mechanism of the Buchwald-Hartwig cross-coupling reaction is well under-
stood and the general scheme is shown in Scheme 4.2.1 The palladium catalyst Pd0

(species I) is initially inserted into the aryl halide by oxidative addition, forming
species II. The amine coordinates to the PdII via ligand exchange (species III).
The resulting increase in acidity allows for the deprotonation of the amine by a
hindered base, to form a palladium amine complex (species IV). The reductive
amination of this complex yields the aryl amine product and the regenerated
palladium catalyst (species I). A β-hydride elimination side reaction can com-
pete with reductive amination to give a hydrodehalogenated arene and an imine
by-product.

Scheme 4.2 General reaction mechanism of the Buchwald-Hartwig amination
reaction
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Understanding the mechanistic detail of the Buchwald-Hartwig reaction has led to
the development of multiple catalytic systems which have improved the reactivity
and scope. Early catalytic systems based on monodentate ligands, such as P(o-
tolyl)3, required high temperatures and had limited substrate scope. The use
of biphosphine ligands improved the substrate scope to include the coupling of
primary amines, aryl chlorides and aryl triflates. The success of coupling primary
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amines is partially owing to the preference of the reductive elimination reaction
over the competitive β-hydride elimination. This is due to the chelating effect
of the bidentate ligands to the palladium atom. The application of sterically
hindered biaryl phosphine ligands improved the substrate scope further to include
additional aryl pseudohalides (sulfonates and mesylates), heteroaryl halides and
a larger range of aryl chlorides. A number of reactions containing the sterically
hindered monodentate ligands can be performed under milder conditions. The
commercially available CyPF-tBu bidentate ligand and biaryl phosphine ligands
BrettPhos and RuPhos are considered standard.228 Buchwald has published a
guide to aid the selection of reaction conditions and dialkylbiaryl phosphines
ligands.229

4.1.2 Pioneering Work on the Prediction of Reaction

Yield

An open-source combinatorial dataset, including reaction yields, was reported
by Doyle et al.32 The experiments were performed on three 1536-well high-
throughput plates with the use of the Mosquito robot. The dataset contains
a set of Buchwald-Hartwig amination reactions between 4-methylanaline and 15
aryl/heteroaryl halides (Scheme 4.3). The reactions varied in three hindered bases
and four monophosphine catalyst ligands.

Aniline products are important building blocks for the synthesis of small drug-like
molecules.230 This key transformation can however be limited if the substrates
contain a five-membered ring with a heteroatom-heteroatom bond. Despite the
drug-like characteristics of such heterocycles, for example, isoxazoles, they are not
common in approved pharmaceuticals.230 Doyle et al. assessed the effect of com-
pounds containing isoxazole heterocycles on the reaction performance. Glorius
developed an approach to identify catalysis-inhibiting sub-structures by delib-
erately adding representative fragments to the catalytic mixture.231 Using this
methodology, Doyle et al. added a selection of potentially inhibitory isoxazole
additives to the Buchwald-Hartwig reactions. This allowed assessment of the ad-
ditive’s effect on the reaction performance, without the need to synthesise and
isolate isoxazole (or other) containing aryl halides as a prior step to performing
the coupling reactions. A total of 23 isoxazole additives were investigated.

All possible combinations of the 15 aryl halides, four ligands, three bases, 23 ad-
ditives, aryl halide control and additive control, formed a total of 4608 reactions.
Doyle et al. used this data to build machine-learning models to predict reaction
yield. The reactions were represented using molecular, atomic and vibrational
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Scheme 4.3 Buchwald-Hartwig reactions performed by Doyle et al., including
generic structures of the palladium catalyst, base and additive. Full list of struc-
tures can be found in (Figure B.1 to B.4).
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calculated properties. These quantum chemical descriptors were calculated using
density functional theory. A variety of linear and non-linear regression mod-
els were evaluated with a 70-30% train-test split of the data. The random forest
model exhibited the best performance metrics in predicting reaction yield, Coeffi-
cient of Determination (R2) equal to 0.92 and Root Mean Squared Error (RMSE)
equal to 7.8%.

Datasets with combinatorial structure have an intrinsic pattern (i.e., the presence
or absence of molecules) which can lead to large variations in the performance of
a model, depending on the train-test split of the data.232 By splitting the data
randomly, the reaction components in the test reactions will also be present in
different training reactions. This type of in-sample test, where descriptors of
molecules in the test reactions are already observed in training, can result in an
unreliable representation of model generalisability. Models may fit the pattern of
the data, rather than the relationship between chemically meaningful descriptors
and the observed data. These models would therefore struggle when extrapolating
to unseen chemical entities.

One-hot encodings33 can be used as a baseline descriptor to validate model perfor-
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mance and reveal potential patterns within the training data that may be fitted
by models built on chemically meaningful descriptors. The one-hot encoding of a
reaction simply denotes the presence or absence of each molecule as a vector and
encapsulates no information beyond this. For the same random 70-30% train-test
split of the Buchwald-Hartwig data, Chuang and Keiser showed models built on
one-hot encodings exhibited near identical performance to the models built on
quantum chemical descriptors (R2 = 0.90 and RMSE = 8.6%).33

The 70-30% train-test split of the data is an example of a hold-out cross-validation
test. In hold-out cross-validation, the data is only split once, and hence only a
single model is evaluated. Often this is considered a bottleneck as the performance
metrics will be dependent on the data points that reside in the training and test
sets. This causes high variance in performance as the performance may differ if
another division was made. The variance can be reduced by using k-fold cross-
validation instead. This involves splitting the data into k subsets and building
a separate model using each subset as the test set and the remaining subsets
as the training data. The average performance of the models is calculated and
used for model evaluation. By training and testing on multiple splits of the data,
k-fold cross-validation gives a more stable and reliable indication of performance.
Although cross-validation may overestimate model generalisability, it is a useful
technique for the selection of appropriate models or the optimisation of model
and descriptor parameters.

In this chapter, preliminary k-fold cross-validation on the Doyle et al. dataset
is performed. A selection of linear, tree-based and Support Vector Regression
(SVR) machine learning models are built on quantum chemical descriptors and
two types of structure-based descriptors: molecular fingerprints and molecular
graphs. Structure-based descriptors are applicable to a wider range of molecules
and are less computationally demanding than quantum chemical descriptors. The
performances of the machine learning models are used to identify optimum pa-
rameters of the molecular descriptors and select appropriate models for the task
of predicting reaction yield.

4.2 Computational Methods

4.2.1 Dataset

The data used in this study were 4608 single-step reactions reported by Doyle
et al.32 This open-access dataset contains the reactants, products, reaction con-
ditions and yields of a single reaction class, the Buchwald-Hartwig amination
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reaction (Scheme 4.3). The reactions varied in 23 isoxazole additives, 15 aryl
halides, three bases and four Buchwald ligands (Figure B.1 to B.4). The data
was generated using ultra-high-throughput experimentation in three 1536-well
plates, giving a full matrix of reaction components including controls. Once the
control reactions and reactions containing additive seven were removed, a total of
3955 reactions remained. Additive seven was removed as quantum chemical de-
scriptors could not be calculated;32 see Section 4.2.2 for details. The names of the
aryl halide, additive, base and ligand in each reaction were converted to Simpli-
fied Molecular-Input Line-Entry System (SMILES) strings.95 This was completed
using the Computer-Aided Drug Design Group of the National Cancer Institute
(NCI/CADD) Chemical Identifier Resolver Application Programming Interface
(API)233 except for a few unrecognised names, which were drawn and converted
to SMILES strings in ChemDraw.

4.2.2 Molecular Descriptors and Preprocessing

A total of five molecular descriptors were evaluated in this study (Table 4.1). The
focus of this work was to assess the generalisability of machine learning models
built on structure-based descriptors. Three varieties were considered for their
simplicity, ease of calculation and broad applicability. These were concatenated
molecular fingerprints, Tanimoto kernel descriptors derived from molecular fin-
gerprints and WL kernel descriptors derived from molecular graphs. Quantum
chemical descriptors were also considered to allow comparison with the pioneering
work by Doyle et al .32 One-hot encodings were used as a baseline descriptor due to
the combinatorial nature of the dataset. Detailed descriptions of the descriptors
can be found in Chapter 2, Section 2.5.

Table 4.1: Format and Notation of the Descriptors for a Single Reaction

Descriptor Additive Aryl Halide Base Ligand

One-hot Encodings [OA1 · · · OAn OH1 · · · OHn OB1 · · · OBn OL1 · · · OLn ]
Quantum Chemical [DA

1 · · · DA
19 DH

1 · · · DH
27 DB

1 · · · DB
10 DL

1 · · · DL
64 ]

Fingerprints [ · · · 0 1 · · · · · · 0 1 · · · · · · 0 1 · · · · · · 0 1 · · · ]
Tanimoto Kernel [ kTA

] [ kTH
] [ kTB

] [ kTL
]

WL Kernel [ kWLA
] [ kWLH

] [ kWLB
] [ kWLL

]

One-hot Encodings

One-hot encodings of chemical reactions are binary vectors that denote the pres-
ence (1) or absence (0) of each molecule in the training reactions. This is shown
in Table 4.1, where An, Hn, Bn and Ln are the number of additives, aryl halides,
bases and ligands present in the training reactions. One-hot encodings represent
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the reactions without using chemically meaningful information and therefore by
construction are not able to generalise to unseen chemical entities. Building ma-
chine learning models on one-hot encodings can reveal underlying patterns in
combinatorial datasets and should be used as a validation method.

Quantum Chemical Descriptors

A combination of calculated molecular, atomic and vibrational properties for the
additive (DA), aryl halide (DH), base (DB) and ligand (DL) formed a set of
quantum chemical descriptors for each reaction (Table 4.1). The Spartan ’14
interface for the Q-Chem quantum chemical software package234,235 was used to
calculate 120 descriptors per reaction using the density functional B3LYP with
the 6-31G(d) basis set.236,237 A full list of the descriptors consisting of 19 additive,
27 aryl halide, 10 base and 64 ligand descriptors can be found in Appendix B,
Section B.2. These quantum chemical descriptors for the dataset were calculated
by Doyle et al.32. The descriptors were standardised by centring the data to have
zero mean and scaling to unit variance. The mean and standard deviation were
calculated on the training set and used to standardise both the training and test
sets.

The molecular descriptors included molecular volume, surface area, ovality, molec-
ular weight, EHOMO, ELUMO, electronegativity, hardness and dipole moment.
The atomic descriptors, NMR shifts and electrostatic charge, were calculated for
shared atoms in each reaction component (Figure 4.1). The shared atoms were
predetermined by Doyle et al . The common molecular vibrational modes across
the set of molecules for each reagent class were identified. This was accomplished
by comparing the similarity of the molecular vibrations. For each vibrational
mode, the rotated atomic movement data of the predefined shared atoms was
extracted. The atomic movement data was multiplied by the atom’s atomic mass
to obtain weighted atomic movement data. The Pearson correlation coefficient
was calculated using the weighted atomic movement data between two molecu-
lar vibrations, each from a different molecule. A correlation matrix of Pearson
coefficients for every molecular vibration for a pair of molecules was constructed.
Using the correlation matrix, Pearson coefficient values that were above 0.5, as
well as the highest value in the row and column, were considered shared molec-
ular vibrations if the vibrational frequency was above 500cm–1. The vibrational
frequencies and infrared transition intensities were calculated for the common
modes.

The atomic and vibrational descriptors cannot be calculated for additive seven.
In this molecule, the *C4 labelled atom is a nitrogen atom and is not shared with
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Figure 4.1: Shared atoms for each reaction component.

the other additives. Reactions containing additive seven were therefore removed
from the dataset.

Large discrepancies in a few quantum chemical descriptors of 1-bromo-4-methoxy-
benzene were identified. The energies of the HOMO (−6.00eV) and LUMO
(−0.35eV) reported by Doyle et al. were more negative than the other aryl
halides (Table 4.2). The values of the electronegativity and hardness were both
calculated from the HOMO and LUMO energies using the equations below.

Electronegativity (eV) =
−( EHOMO + ELUMO )

2

Hardness (eV) =
−( EHOMO − ELUMO )

2

The discrepancies therefore extended to these descriptors. The quantum chemical
descriptors were recalculated for 1-bromo-4-methoxybenzene and gave HOMO
(−0.22eV) and LUMO (−0.01eV) energies closer in value to the other aryl halides
(Table 4.2). These results replaced the values reported by Doyle et al. in model
development.

Table 4.2: Discrepancies in the Quantum Chemical Descriptors of 1-bromo-4--
methoxybenzene

Descriptor Other Aryl Halides 1-bromo-4-methoxybenzene

Doyle et al.32 This Work

EHOMO (eV) −0.2648 to −0.2176 −6.0000 −0.2204
ELUMO (eV) −0.0429 to −0.0104 −0.3500 −0.0128
Electronegativity (eV) 0.12 to 0.15 3.18 0.12
Hardness (eV) 0.10 to 0.11 2.82 0.10
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Molecular Fingerprints

Three types of molecular fingerprints were implemented using the RDKit pack-
age: MACCS Keys,49 RDK fingerprints50 and Morgan circular fingerprints.53

Fingerprints are hashes, binary bit vectors, of a specified length. The bit length
of the MACCS fingerprint is 167-bit, where the first bit is always zero and the
remaining bits correspond to 166 public MACCS Keys. The first bit is zero to
allow for the original numbering of the MACCS keys (1-166), due to zero index-
ing in Python. Bit lengths from 32 to 2048 were explored for the topological
fingerprints: RDK fingerprints and Morgan circular fingerprints. The predefined
path length (number of bonds) used in the RDK fingerprint was seven. Morgan
and Feature Morgan (FMorgan) fingerprints were investigated with radii up to
three.

Concatenated Fingerprints The fingerprint of the aryl halide, additive, base
and ligand in each reaction was calculated. The fingerprints of the reaction
components were used to generate fingerprint descriptors, by concatenating to
form a single reaction fingerprint (Table 4.1).

Tanimoto Kernel Descriptors Tanimoto similarity scores were calculated be-
tween the fingerprints of molecules within the same reaction class, as implemented
in RDKit. For two molecules in a single reaction class represented by molecular
fingerprints (Fm1 and Fm2), the Tanimoto similarity58,59 is defined as

kT (Fm1 , Fm2) =
c

a+ b− c
(4.1)

where a and b are the number of bits set in fingerprints Fm1 and Fm2 , and c is
the number of bits set in common in Fm1 and Fm2 . Although slight changes in
the structure of small molecules can lead to substantial changes in the Tanimoto
similarity, it is a very well-established measure and thus appropriate for us to
consider. To calculate the Tanimoto kernel between two reactions (Rx, Rx′), the
Hadamard product of the reaction component kernels was taken. This is shown
in Equation 4.2, where Ai, Hi, Bi and Li are the additive, aryl halide, base and
ligand in reaction i.

k(Rx, Rx′) = k (Ax, Ax′) k (Hx, Hx′) k (Bx, Bx′) k (Lx, Lx′) (4.2)

The training kernel is a symmetrical matrix generated using this method between
all pairs of training reactions. The test kernel matrix is generated by calculating
the Tanimoto kernel between the test reactions and training reactions. For a
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single reaction (Rx) in the training or test set, the Tanimoto kernel (Table 4.1)
is in the format

KRx = kAxkHxkLxkBx (4.3)

where the Tanimoto kernel of each reaction component is

kTMx
= [k(Mx,M1) · · · k(Mx,Mn)]

M is the reaction component class and n is the number of training reactions.

Molecular Graphs

A molecular graph represents the topology of a molecule by a set of labelled nodes
corresponding to the atoms, connected by a set of labelled edges corresponding to
the bonds. From the SMILES string of each molecule in the dataset, the atomic
symbol, the index of each atom, the bond order, the index of each bond and the
adjacency matrix were obtained using RDKit.50 This information was parsed to
a module within GraKel to generate the molecular graph representation.238

WL Kernel Descriptors WL subtree graph kernels55 were calculated for each
reaction component using GraKel. The number of iterations, hyperparameter h

(also referred to as the WL depth), from two to ten were explored. The Hadamard
product of reaction component kernels was calculated to give the WL reaction
kernel as shown in Equation 4.2. The training and test kernel matrices were
also generated using the same method as the Tanimoto kernel descriptors. For a
single reaction, Rx, the format of the WL kernel (Table 4.1) is shown in Equa-
tion 4.3.

4.2.3 Machine Learning Models

Machine learning models relating descriptors to reaction yield were developed and
implemented using scikit-learn.239 A variety of linear, tree-based and support
vector regression models were evaluated. Detailed descriptions of the machine
learning algorithms can be found in Chapter 2, Section 2.3 and 2.4. The quantum
chemical descriptors, concatenated molecular fingerprints and one-hot encodings
can be used directly as an input to the machine learning models. The Tanimoto
and WL kernel descriptors are in matrix form. These can be used directly as a
precomputed kernel for the SVR models. The kernel-based descriptors cannot be
used directly as an input to the linear and tree-based models. The features of
each reaction must be extracted from the kernel matrices using a mathematical
function for the linear and tree-based models. These features can then be given
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to the models as an input.

The linear models explored were linear regression, Least Absolute Shrinkage and
Selection Operator (LASSO), ridge, elastic net and Bayesian ridge. These as-
sume a linear relationship between the molecular descriptors and the target (i.e.,
reaction yield). The tree-based models include decision tree, gradient boosting
and random forest. The latter two are ensemble methods that build multiple
decision trees. These models learn a series of rules from data features to predict
the target values. SVR uses a kernel function to map input data to a higher
dimensional feature space where regression is performed linearly. The kernel
functions explored were linear, polynomial, RBF and sigmoid. All four kernels
were applied to the quantum chemical, concatenated molecular fingerprint and
one-hot encoding feature vectors, with the hyperparameters set to the values in
Table 4.3, using scikit-learn. Although Kriege et al.216 suggest there is little ben-
efit in the combination of the WL kernel with non-linear kernels, we explored the
WL kernel in combination with linear and non-linear kernels for completeness.
Both kernel-based descriptors were used as a precomputed kernel as well as with
the polynomial, RBF and sigmoid kernels applied to the individual entries of the
kernel descriptor matrix. The hyperparameters of the kernels were tuned over
the values in Table 4.3.

Table 4.3: Hyperparameters of the Kernel Functions

Kernel Hyperparameter Condition Descriptor Values

Polynomial γ > 0 Non-kernel 1.0/nfeatures

Kernel 1, 10, 100, 1000
c ≥ 0 Non-kernel 1

Kernel 1
d > 0 Non-kernel 3

Kernel 3

RBF γ > 0 Non-kernel 1.0/nfeatures

Kernel 1, 10, 100, 1000

Sigmoid γ > 0 Non-kernel 1.0/nfeatures

Kernel 1, 10, 100, 1000
c ≥ 0 Non-kernel 1

Kernel 1

4.2.4 Model Building and Evaluation

A preliminary five-fold cross-validation test was performed on the dataset, using
the following models: linear regression, LASSO, ridge, elastic net, Bayesian ridge,
decision tree, gradient boosting, random forest and SVR (with linear, polynomial,
RBF, sigmoid and precomputed kernels). The dataset was shuffled and split into
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five groups. In turn, the models were trained on four-folds of the data and
validated on the fifth. The average performance statistics of the five test sets
were calculated for each machine learning model and used to identify the best
combination of hyperparameters in Table 4.4 and 4.3. The optimum values for
the bit length of the molecular fingerprints and the WL depth of the WL graph
kernel were identified. The linear, tree-based and SVR models were compared to
identify the best-performing model for further evaluation.

Table 4.4: Hyperparameter Grid

Machine Learning Algorithm Hyperparameter Values

Support Vector Regression C 1, 10, 100, 1000
epsilon 1, 5, 10

Linear Regression fit_intercept True, False
Lasso alpha 1, 1×10−1, 1×10−2, 1×10−3, 1×10−4

Ridge alpha 1, 1×10−1, 1×10−2, 1×10−3, 1×10−4

Elastic Net alpha 0.01, 0.1, 0.2, 0.5
Bayesian Ridge alpha_1 1×10−4, 1×10−6, 1×10−8

alpha_2 1×10−4, 1×10−6, 1×10−8

lambda_1 1×10−4, 1×10−6, 1×10−8

lambda_2 1×10−4, 1×10−6, 1×10−8

Decision Tree N/A N/A
Gradient Boosting n_estimators 250, 500, 750, 1000

learning_rate 0.05, 0.1, 0.15, 0.2
Random Forest n_estimators 250, 500, 750, 1000

The performances of the regression models were evaluated by R2 and RMSE
for data points outside of the training set. All analysis was performed using
scikit-learn. Machine learning models built on one-hot encodings were used as a
baseline, for comparison.

4.3 Results and Discussion

4.3.1 Parameter Optimisation of the Descriptors

Cross-validation was used to determine optimum parameters for the molecular de-
scriptors. This included the bit length and radii (where applicable) of the molec-
ular fingerprints, as well as the WL depth of the WL kernel descriptors.

Descriptors Derived from Molecular Fingerprints

The bit length of the Morgan, FMorgan and RDK molecular fingerprints can
affect the performance of the models built on concatenated fingerprints and Tan-
imoto kernel descriptors. The bit length of the MACCS keys is not variable and
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therefore was not considered in parameter optimisation. As bit length increases,
there is a larger capacity for storing additional information about the molecule.
It also decreases the darkness of the fingerprint, meaning a lower proportion of
bits are set to ON (1) which decreases the probability of bit collisions. Cross-
validation was used to identify the optimum bit length; values of 32, 64, 128, 256,
512, 1024 and 2048 were evaluated.

Generally, the bit length of the Morgan and FMorgan fingerprints, with radii of
one to three, had little effect on the performance of the models (Figure 4.2 and 4.3;
see Appendix B, Section B.3.1 for numeric details). The models built on FMor-
gan fingerprints had consistently poor predictive performance in cross-validation,
with R2≤ 0.51 and RMSE≥ 19.3%. Morgan fingerprints differ from FMorgan
fingerprints in the initial encoding of the atoms. The Morgan fingerprints encode
each atom’s properties and connectivity, whereas FMorgan fingerprints gener-
alise this information into roles of the atom, for example, whether the atom is
a hydrogen-bond acceptor or donor, aromatic or a halogen. The FMorgan fin-
gerprints cannot distinguish between halide atoms and therefore models built on
these fingerprints would not recognise the lower reactivity of the aryl chlorides,
nor the higher reactivity of the aryl iodides. Models built on descriptors derived
from the FMorgan fingerprints were not able to capture the correlation between
the molecules in the reactions and the reaction yield, thus were omitted from
further analysis.

The predictive performance of the models built on the RDK fingerprint generally
improved with bit length up to 512 (Figure 4.2 and 4.3). The models built on RDK
fingerprints were the only models majorly affected by the bit length and hence
determined the optimum bit length of the molecular fingerprints. Henceforth, a
bit length of 512 was used in further testing of the models built on descriptors
derived from molecular fingerprints.

The radius of the Morgan fingerprint defines the radius of the circular neighbour-
hood for each atom and hence the size of the subgraphs that are encoded in the
fingerprint, see Chapter 2, Section 2.5 for more details. Radii from one to three
were explored. The larger the radius, the more information about the molecule
is encoded as the subgraphs will be larger. The Morgan fingerprints with a ra-
dius higher than one will contain all the fingerprint bits of lower radii. This also
increases the fingerprint darkness and consequently increases the number of bit
collisions. Variations in the radius caused minor effects on the performance of
the models built on Morgan fingerprints with a bit length of 512 (Figure 4.4).
Encoding more information in the Morgan fingerprints did not notably increase
model performance, as a result only the smallest radius of neighbouring atoms
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(a)

(b)

(c)

Figure 4.2: Average cross-validated Coefficient of Determination (R2) of the linear
models (dark blue), Support Vector Regression (SVR) models (purple) and tree-
based models (pale pink) against the bit length of the molecular fingerprints:
(a) Morgan, (b) Feature Morgan (FMorgan) and (c) RDK. Solid line, models
built on concatenated fingerprints; dashed line, models built on Tanimoto kernel
descriptors. See Appendix B, Section B.3.1 for numeric details.
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(c)

Figure 4.3: Average cross-validated Root Mean Squared Error (RMSE) of the
linear models (dark blue), Support Vector Regression (SVR) models (purple) and
tree-based models (pale pink) against the bit length of the molecular fingerprints:
(a) Morgan, (b) Feature Morgan (FMorgan) and (c) RDK. Solid line, models
built on concatenated fingerprints; dashed line, models built on Tanimoto kernel
descriptors. see Appendix B, Section B.3.1 for numeric details.
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(Morgan1) was considered for further analysis.

Figure 4.4: Average cross-validated performance of the linear models (dark blue),
Support Vector Regression (SVR) models (purple) and tree-based models (pale
pink) against the radius of the Morgan fingerprints with the bit length set to 512.
Solid line, models built on concatenated fingerprints; dashed line, models built
on Tanimoto kernel descriptors.

Descriptors Derived from Molecular Graphs

The number of iterations h, also known as the WL depth, determines the circular
neighbourhoods of the atoms which are used to generate the WL kernel descrip-
tors; see Chapter 2, Section 2.5 for more details. The larger the WL depth,
the more information about the atoms’ connectivity is encoded. Cross-validation
was used to evaluate the influence of the WL depth on the performance of the
models.

The performance of the linear, tree-based and SVR models built on WL ker-
nel descriptors, with WL depths varying from two to ten, are shown in Figure
4.5. Numeric details of the individual model performances can be found in Ap-
pendix B, Section B.3.1. The average performance of the linear models with a
WL depth of two is poor. The resulting negative R2 value is predominantly due
to the linear regression model. Although the other linear models performed rea-
sonably well with R2 ≥ 0.63 and RMSE ≤ 16.7%, the performance was lower than
higher WL depths. Increasing the WL depth above two had little to no effect on
the average performance of the linear models, which remained at approximately
an R2 of 0.87 and a RMSE of 9.1%. The tree-based models exhibited a lower
average performance compared to the linear (with WL depth less than two) and
the SVR models. The average performance of the tree-based models ranged from
0.72 to 0.76 for the R2 and 14.1 to 13.3% for the RMSE. The SVR models had
the highest performance at each WL depth. As WL depth increased to five, the
model performance also increased to R2 = 0.90 and RMSE = 8.5%. The aver-
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age performance of the linear, tree-based and SVR models built on WL kernel
descriptors only marginally improved with WL depth greater than five. The WL
depth was therefore set to five for further analysis.

Figure 4.5: Cross-validated performance of the linear models (dark blue), Sup-
port Vector Regression (SVR) models (purple) and tree-based models (pale pink)
against the Weisfeiler-Lehman (WL) depth of the WL kernel descriptors.

4.3.2 Cross-Validation Performance

The average five-fold cross-validation performance of the linear, tree-based and
SVR models built on one-hot encodings, quantum chemical, concatenated finger-
prints, Tanimoto kernel and WL kernel descriptors are shown in Table 4.5 to 4.7.
The concatenated fingerprints are denoted as “Fingerprints: fingerprint type" and
the Tanimoto descriptors as “Tanimoto: fingerprint type".

The performance of the linear models averaged over the descriptors ranged from
0.65 to 0.79 for the R2 and 16.1 to 11.8% for the RMSE. On average, adding either
the LASSO or ridge regularisation parameters did not improve the performance of
the linear regression models (average R2 = 0.78 and RMSE = 12.2%). Including
both regularisation terms in the elastic net method deteriorated the performance
by −0.13 for the R2 and +3.9% for the RMSE. The Bayesian ridge method also
did not improve the performance of the linear regression model.

For the tree-based models, the decision trees had average performance metrics
across the descriptors of 0.67 for the R2 and 14.9% for the RMSE. The decision
trees were outperformed by the ensemble models. The gradient boosting and
random forest models had an average R2, RMSE scores across the descriptors
of 0.86, 10.0% and 0.84, 10.4%, respectively. These ensemble methods combine
multiple decision trees trained over the same dataset. This decreases the variance
of the predictions with a slight increase in model bias, resulting in a less flexible
model that is less prone to overfitting.
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Table 4.5: Average Cross-Validated Performance of the Linear Models

ML Algorithm Linear Model Mean
Linear

Regression Lasso Ridge Elastic
Net

Bayesian
Ridge

Mean R2:

One-hot 0.69 0.70 0.70 0.70 0.70 0.70
Quantum Chemical 0.70 0.69 0.70 0.68 0.70 0.69
WL 0.92 0.93 0.93 0.67 0.93 0.87
Fingerprints: Morgan1 0.67 0.68 0.68 0.68 0.68 0.68
Fingerprints: RDK 0.69 0.70 0.70 0.70 0.70 0.70
Fingerprints: MACCS 0.62 0.64 0.64 0.64 0.64 0.63
Tanimoto: Morgan1 0.93 0.94 0.94 0.61 0.94 0.87
Tanimoto: RDK 0.91 0.92 0.92 0.59 0.92 0.85
Tanimoto: MACCS 0.88 0.91 0.92 0.62 0.90 0.84
Mean 0.78 0.79 0.79 0.65 0.79

Mean RMSE (%):

One-hot 15.2 15.0 15.0 15.0 15.0 15.0
Quantum Chemical 15.0 15.1 15.0 15.4 15.1 15.1
WL 7.6 7.4 7.3 15.7 7.3 9.1
Fingerprints: Morgan1 15.6 15.4 15.4 15.5 15.5 15.5
Fingerprints: RDK 15.2 15.0 15.0 15.0 15.0 15.0
Fingerprints: MACCS 16.8 16.4 16.4 16.4 16.4 16.5
Tanimoto: Morgan1 7.0 6.8 6.8 17.0 6.7 8.9
Tanimoto: RDK 8.2 7.9 7.8 17.6 7.8 9.9
Tanimoto: MACCS 9.4 8.2 8.0 16.9 8.6 10.2
Mean 12.2 11.9 11.8 16.1 11.9

The linear SVR models had an average performance across the descriptors of
R2 equal to 0.68 and RMSE equal to 15.4%. For the non-linear SVR models,
the descriptors were converted to higher dimensional feature space using a kernel
function. Although the sigmoid function has been successfully used as a valid
kernel, for this regression task it performed worse than the linear SVR model,
with an average R2 of 0.59 and RMSE of 16.6%. The SVR models implementing
the polynomial and RBF kernels had a better predictive performance, with a
respective average R2 of 0.91 and 0.90 and RMSE of 8.3 and 8.4%. The SVR
models built on the precomputed kernel descriptors (WL and Tanimoto) also
performed well, with R2 from 0.90 to 0.94 and RMSE 8.4 to 6.8%. Due to the
moderate performance of the linear SVR model and the SVR model implementing
the sigmoid kernel, these models were not considered in further analysis.

The one-hot encodings, quantum chemical descriptors and concatenated finger-
prints performed better in combination with the tree-based models (average R2:
0.87 to 0.91, RMSE: 9.7 to 8.2%). The predictive performance of the quan-
tum chemical random forest model exhibited similar performance to the 70-30%
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Table 4.6: Average Cross-Validated Performance of the Tree-Based Models

ML Algorithm Tree-Based Model Mean
Decision

Tree
Gradient
Boosting

Random
Forest

Mean R2:

One-hot 0.81 0.90 0.90 0.87
Quantum Chemical 0.87 0.92 0.93 0.91
WL 0.51 0.86 0.78 0.72
Fingerprints: Morgan1 0.88 0.91 0.93 0.91
Fingerprints: RDK 0.86 0.90 0.93 0.90
Fingerprints: MACCS 0.87 0.89 0.92 0.89
Tanimoto: Morgan1 0.43 0.81 0.73 0.66
Tanimoto: RDK 0.44 0.79 0.72 0.65
Tanimoto: MACCS 0.32 0.77 0.71 0.60
Mean 0.67 0.86 0.84

Mean RMSE (%):

One-hot 11.8 8.7 8.7 9.7
Quantum Chemical 9.8 7.8 7.2 8.3
WL 19.1 10.2 12.8 14.1
Fingerprints: Morgan1 9.4 8.2 7.1 8.2
Fingerprints: RDK 10.2 8.5 7.4 8.7
Fingerprints: MACCS 9.8 9.1 7.6 8.8
Tanimoto: Morgan1 20.6 11.8 14.0 15.5
Tanimoto: RDK 20.4 12.4 14.4 15.8
Tanimoto: MACCS 22.5 13.1 14.7 16.8
Mean 14.9 10.0 10.4

hold-out test performed by Doyle et al. In comparison, the kernel-based descrip-
tors (WL and Tanimoto) performed better in combination with the SVR models
(average R2: 0.85 to 0.92, RMSE: 10.1 to 7.8%). There was little to no improve-
ment in the performance of the SVR models built on the kernel-based descriptors
implementing additional kernels. Nevertheless, these models were considered in
further analysis for completeness and to allow direct comparison with other de-
scriptors.

The performances of the models built on one-hot encodings were comparable to
those built on chemically meaningful descriptors. The split of the dataset in k-
fold cross-validation is random; analogous to the 70-30% hold-out split performed
by Doyle et al. Due to the combinatorial nature of the data, each of the five cross-
validation test sets likely contained the same molecules but in different reactions.
This enabled the models to learn the reactivity of the individual molecules and
resulted in an unreliable superior performance. The results of the cross-validation
test were to determine which models and descriptors were unsuitable for this
specific regression task of predicting reaction yield. Should a model perform
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Table 4.7: Average Cross-Validated Performance of the Support Vector Regres-
sion (SVR) Models

ML Algorithm SVR Kernel Mean

Linear Polynomial RBF Sigmoid Pre-
computed

Mean R2:

One-hot 0.70 0.90 0.91 0.59 0.77
Quantum Chemical 0.70 0.90 0.90 0.43 0.73
WL 0.93 0.92 0.83 0.92 0.90
Fingerprints: Morgan1 0.68 0.91 0.92 0.49 0.75
Fingerprints: RDK 0.70 0.91 0.92 0.26 0.70
Fingerprints: MACCS 0.64 0.87 0.86 0.31 0.67
Tanimoto: Morgan1 0.93 0.91 0.89 0.94 0.92
Tanimoto: RDK 0.91 0.89 0.85 0.92 0.89
Tanimoto: MACCS 0.91 0.90 0.69 0.90 0.85
Mean 0.68 0.91 0.90 0.59

Mean RMSE (%):

One-hot 15.0 8.5 8.1 17.5 12.3
Quantum Chemical 15.1 8.8 8.6 20.5 13.2
WL 7.4 7.7 11.2 7.5 8.5
Fingerprints: Morgan1 15.5 8.0 7.5 19.5 12.6
Fingerprints: RDK 15.0 8.1 7.9 23.5 13.6
Fingerprints: MACCS 16.5 9.9 10.0 22.7 14.8
Tanimoto: Morgan1 7.3 8.0 9.2 6.8 7.8
Tanimoto: RDK 8.4 8.9 10.5 7.9 8.9
Tanimoto: MACCS 8.3 8.7 15.1 8.4 10.1
Mean 15.4 8.3 8.4 16.6

poorly in cross-validation, it is also likely to perform poorly when predicting on
unseen data.

4.4 Conclusions

The preliminary evaluation of the machine learning models used to predict the
yield of a set of Buchwald-Hartwig amination reactions was accomplished with
five-fold cross-validation. Linear, tree-based and SVR models were built on
one-hot encodings, quantum chemical descriptors, concatenated molecular finger-
prints, Tanimoto kernel descriptors and WL kernel descriptors. The performance
of the models was compared using the R2 and RMSE performance metrics.

Optimum parameters of the structure-based descriptors were identified. Bit
lengths of the Morgan, FMorgan and RDK molecular fingerprints, varying from
32 to 2048 were evaluated. Altering the bit length had the most effect on the
models built using RDK fingerprint, where these models showed little to no im-
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provement with bit lengths above 512 bits. The predictions of the models built on
FMorgan fingerprints had a poor correlation to the experimental values and were
therefore omitted from further analyses. The radius of the Morgan fingerprints
had a very minor effect on the performance of the models. Further analyses of
the models built on concatenated fingerprints and Tanimoto kernel descriptors
were performed with a bit length of 512 and Morgan fingerprints with a radius
of one. The WL depth of the WL kernel descriptors was assessed, with depths
from two to ten. The models built on WL kernel descriptors with a depth of five
were found to have the optimum performance. A value of five was therefore used
in additional testing.

The preliminary cross-validation work uncovered that, in general, non-linear mod-
els (SVR and tree-based) often outperformed the linear models in predicting re-
action yield. The average cross-validated performance across all descriptors gave
average R2 values ranging from 0.65 to 0.79 for the five linear models, 0.67 to
0.86 for the three tree-based models, and 0.59-0.91 for the three non-linear SVR
models. This trend is also observed in the performance of linear versus non-
linear SVR models. The SVR models implementing the polynomial, RBF and
precomputed kernels showed better performance statistics, with R2 metrics rang-
ing from 0.86 (the RBF kernel applied to the MACCS fingerprints) to 0.94 (the
precomputed Morgan1 Tanimoto kernel). The linear SVR models showed lower
performance statistics with an average R2 value of 0.68 across all descriptors. The
sigmoid kernel also performed poorly, with an average R2 of 0.59 across all de-
scriptors. Overall, the SVR models, implementing the RBF and Sigmoid kernels,
showed marginally better performance metrics on average across all descriptors
(R2 around 0.90) compared to the random forest model (R2 of 0.84).

The non-linear models built on structure-based descriptors showed comparable
results to those built on quantum chemical calculations. The Doyle group’s ran-
dom forest model based on quantum chemical descriptors obtained an R2 score
of 0.93. By comparison, the R2 values for the random forest models constructed
on concatenated fingerprints ranged from 0.92 to 0.93. The random forest models
built using kernel-based descriptors exhibited slightly worse R2 values, ranging
from 0.71 to 0.78. The similar performance metrics between the structure-based
and quantum chemical models extend to SVR. The SVR models with the poly-
nomial and RBF kernels applied to the quantum chemical descriptors had an R2

of 0.90. The structure-based SVR models with the polynomial, RBF, and pre-
computed kernels had R2 ranging from 0.86 to 0.94. Based on these preliminary
cross-validation results, structure-based descriptors should be suitable for this
regression task.
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We have demonstrated the suitability of structure-based descriptors in predict-
ing reaction yield. Structure-based descriptors may be a viable alternative to
quantum chemical properties due to their relative quickness to generate. We
have established the ideal parameters for the structure-based descriptors. We
examined machine learning algorithms using a preliminary cross-validation test
to select non-linear SVR as the most promising for additional exploration. Due
to the moderate performance of the SVR models implementing the linear SVR
sigmoid kernels, these models were not considered further. Chapter 5 subjects
these kernel methods to additional testing and external validation to investigate
the limits to the generalisability of these models.



Chapter 5

Kernel Methods for Predicting
Yields of Chemical Reactions

5.1 Introduction

Molecular descriptors employed in regression tasks related to chemical reactivity
have often been based on time-consuming, computationally demanding quan-
tum chemical calculations, usually Density Functional Theory (DFT). The Doyle
group pioneered the prediction of reaction yield by developing a random forest
model built on quantum chemical descriptors.32–34 While calculated properties
based on shared atoms are common for representing reaction components in a
single reaction class, it limits the domain of applicability. Structure-based de-
scriptors derived from the molecular graph structure, such as fingerprints and
graph kernels, are quicker to calculate and applicable to any molecule. Several
structure-based random forests and deep learning models have been reported for
the regression task of predicting reaction yield.37,211,240,241

In the previous chapter (Chapter 4), preliminary cross-validation was performed
using the Buchwald-Hartwig combinatorial dataset. We evaluated numerous
molecular descriptors and machine learning algorithms. The molecular descrip-
tors included quantum chemical, molecular fingerprints, and kernel-based de-
scriptors. The machine learning algorithms included linear, tree-based, and SVR
methods. The non-linear SVR models provided the best overall performance
statistics across all descriptors. SVRs have also been employed successfully in
a variety of other regression tasks in chemistry, such as predicting bioactivity,
toxicity-related properties, and physicochemical properties.29,212–214,242

The pioneering work published by Doyle et al. focused on models built on calcu-

128
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lated properties.32 It was reported that the random forest method outperformed
SVR in an initial 70-30% hold-out test. The only SVR model evaluated was
linear SVR, which is not able to describe non-linear relationships between fea-
tures and target values. In our preliminary cross-validation work, we investigated
several non-linear kernels. The performance of the models was compared using
the Coefficient of Determination (R2) and Root Mean Squared Error (RMSE)
performance metrics. The linear SVR built on quantum chemical descriptors had
a predictive performance (R2 = 0.70 and RMSE = 15.1%) much lower than the
non-linear SVR implementing the polynomial and Gaussian Radial Basis Func-
tion (RBF) kernels, which both had an R2 of 0.90 and RMSE of 8.3 and 8.4%,
respectively. These values are relatively close to the random forest model with
R2 of 0.93 and RMSE of 7.2%.

The SVR algorithm has proven to be appropriate for regression tasks related to
Quantitative Structure-Activity Relationship (QSAR) and cheminformatics.243

SVR also demonstrates encouraging preliminary results for predicting reaction
yield, as described in Chapter 4. In this chapter, we study the application of ker-
nel approaches for predicting the yield of combinatorial reaction data. Compared
to previously used quantum chemical calculations, structure-based descriptors of-
fer speed, alignment with the language of synthetic chemists, and applicability to
every molecule. This chapter aims to develop SVR models employing structure-
based descriptors and compare their performance to models employing quantum
chemical properties. The best-performing SVR model for each descriptor is sub-
ject to external validation. We establish an external validation procedure to
illustrate a feasible real-life implementation of the models.

5.1.1 Pioneering Work on the Prediction of Reaction

Yield

Cross-validation analyses on the Buchwald-Hartwig dataset are insufficient to
gain a reliable understanding of model generalisability to unseen reactions. This
is owing to the combinatorial nature of the data. By providing the model with
training data that contains molecules in the test reactions, the models can learn
the reactivity of the individual molecules. Although chemically meaningful de-
scriptors are provided, the models perform no better than those built on one-hot
encodings. A more appropriate assessment of model generalisability is to test the
models with molecules not present in the training set.232 In this type of out-of-
sample test, a set of reactions containing specific molecules (one or more reaction
components) not present in the training set are withheld from model training and
used to assess the predictive ability of the trained model.
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In the original work by Doyle et al., out-of-sample test sets were designed by
splitting the reactions along the high-throughput plates, where each plate con-
tained a separate set of additives.32 The random forest model built on quantum
chemical descriptors was trained using the reactions on Plate 1 and Plate 2, then
tested using Plate 3. In a technical comment, Chuang and Keiser identified that
alternative splits of the plates resulted in much lower performance, suggesting
the random forest model built on quantum chemical descriptors was limited.33

Designing out-of-sample tests without considering the distribution of chemical
reactivity covered in the training set was unreliable. The reactions on Plate 2
contained the most inhibitory additives, diminishing the reaction yields (0-10%).
As a result, when failed reactions were not present in training, the models over-
predicted reaction yield. The reactions on Plate 3 contained more high-yielding
reactions (> 80%). Therefore, when Plate 3 was used as the test set, the models
underpredicted the higher-yielding reactions. Reactions that cover a broad range
of chemical space and observed variables must be used in model training and
addressed in the test-set design.

The out-of-sample test sets were redesigned in a technical response using activity
ranking.34 The focus remained on the ability of the models to predict reactions
containing unseen additives. The mean yield of the reactions containing each
additive was ranked from lowest to highest. All training sets included the highest-
and lowest-yielding additives. Test sets were constructed by taking every fourth
molecule from the remaining additives. Repeating this three more times created
four test sets in total. Using activity ranking to design test sets ensured the model
was trained on a wide range of reaction yields. The quantum chemical random
forest model showed good generalisability across the additive dimension, with a
mean R2 of 0.69 and RMSE of 14.9% in the additive ranked test. Doyle et al.
did not perform out-of-sample tests along any other dimension.34

The experiments performed by Doyle et al. aimed to assess additive effects on
the reaction yield of the Buchwald-Hartwig amination. From evaluating the rela-
tive importance of the calculated properties used to construct the random forest
model, Doyle et al. hypothesised that an oxidative additive of the isoxazole to
the palladium catalyst side could act as a competitive side reaction and result in
lower-yielding reactions. Additional experiments supported their hypothesis that
electrophilic isoxazole additives undergo a competitive side reaction. The N-O
oxidative addition of the electrophilic isoxazoles to palladium (Pd0) resulted in a
lower yield of the aniline products in the Buchwald-Hartwig reactions.
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5.1.2 Our Aims

Using machine learning methods for predicting reaction yield from combinatorial
data has real-life applications, for example, pharmaceutical discovery and devel-
opment. High-throughput experimentation is a practical workflow for chemists
working on a specific problem with increased time pressures.244 In lead optimi-
sation, multiple analogues of hit molecules are synthesised to improve the po-
tency, target selectivity, toxicity, physiochemical and Adsorption, Distribution,
Metabolism and Excretion (ADME) properties. Synthesising various analogues
of a hit molecule involves making slight changes to the reactants. In the case of
the Buchwald-Hartwig reaction, this would be the aryl halide or amine. Since
only a single amine was considered in the Buchwald-Hartwig dataset, the amine
dimension of chemical space cannot be explored without performing additional
reactions. However, it is possible to examine the model’s generalisability along
the aryl halide dimension.

The pioneering work of the Doyle group concentrated on developing a model to
evaluate additive effects on the yield of Buchwald-Hartwig amination reactions.32

We focus on constructing a model to predict the reaction yield of unexplored
Buchwald-Harwig reactions; this covers variations in the aryl halide reactant,
catalyst ligand, and base. To assess the viability of a model capable of predicting
reaction yield when altering the reaction components, we perform rigorous testing
using the combinatorial dataset reported by Doyle et al .

Initially, we emphasise the importance of test set design, not just when evaluating
model performance in the additive dimension of the dataset but also in the aryl
halide dimension. We then explore the extent of model generalisability when the
training dataset contains only a few examples of a reaction component; this is
the case for the base and catalyst ligand in the Buchwald-Hartwig combinatorial
dataset. We design leave-one-base-out and leave-one-ligand-out tests, which are
analogous to leave-one-out tests.

We conduct out-of-sample tests using activity ranking for a more reliable evalua-
tion of model performance along the dataset’s additive and aryl halide dimensions.
An additive ranked test allows for a direct comparison of our kernel models to
the work of Doyle et al .34 We also investigate an aryl halide ranked test to de-
termine which models are appropriate for external examination against reactions
unfamiliar to the model.

If a molecule not observed by the model differs significantly from the training
data, the model will struggle to predict accurately. We explore the domain of
applicability of the models to determine the scope of reaction space the models can
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predict. To ascertain the domain of applicability, we evaluate the performance of
the models with respect to similarity to training. The similarity score quantifies
how similar a reaction in the test set is to the training set. We complete this
analysis for both activity-ranked tests.

Lastly, we design an external examination procedure which imitates real-life cir-
cumstances, working with combinatorial reaction data. The aim is to investi-
gate if employing yield prediction models trained on combinatorial data is viable
in a medicinal setting, such as when synthesising analogues of potential drug
molecules. We also study the extent of model generalisability by considering re-
actions with high and low degrees of similarity to the training data. Although
we have yet to conduct any experiments, we report and compare the yields of the
reactions in the proposed combinatorial dataset.

5.2 Methodology

5.2.1 Dataset

The combinatorial dataset reported by Doyle et al.,32 consisting of 4608
Buchwald-Hartwig reactions, was used in this study. The structure of the
Buchwald-Hartwig dataset and the cleaning process is described in Chapter 4,
Section 4.2.1.

A set of prospective combinatorial reactions was compiled to externally validate
the top performing SVR models. The proposed reactions follow the same com-
binatorial framework as the Doyle dataset, differing in the aryl halide, base,
catalyst ligand, and additive, with the same shared atoms for each reaction com-
ponent (Figure 4.1). All possible combinations of 59 aryl halides, three bases,
four catalyst ligands and two additives, formed a total of 1416 proposed reac-
tions. The aryl halides cover ortho-, meta- and para- substituents, with a range
of electron withdrawing and electron donating groups (Figure B.5 to B.7). Five
of the aryl halides are present in the Buchwald-Hartwig dataset and will be used
as benchmarks. The base DBU and catalyst ligand BrettPhos were selected
along with the two higher-yielding bases and ligands from the Buchwald-Hartwig
dataset: MTBD, BTMG, t -BuXPhos and t -BuBrettPhos (Figure B.8 and B.9).
To investigate whether the reactions of the ortho-substituted halopyridines are
proceeding via an alternative reaction pathway, the prospective reactions will
also be performed without a catalyst. As the aim of these reactions is to assess
model generalisability, with particular interest along the aryl halide dimension,
the reactions will be carried out with and without a single high-yielding isoxa-
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zole additive: 3-methylisoxazole (Figure B.10). The proposed reactions will be
performed experimentally using high-throughput chemistry to identify reaction
yields.

5.2.2 Molecular Descriptors and Preprocessing

The molecular descriptors explored were one-hot encodings, quantum chemical
descriptors, concatenated molecular fingerprints, Tanimoto kernel descriptors and
Weisfeiler-Lehman (WL) kernel descriptors. These descriptors represented the re-
actions in the Buchwald-Hartwig dataset and prospective reactions. The method-
ology of the descriptors, including the generation process, is detailed in Chapter 4,
Section 4.2.2.

The quantum chemical descriptors, consisting of molecular, atomic and vibra-
tional properties, were calculated for the prospective reactions using the same
methodology as Doyle et al.32 The calculations were submitted to Spartan and
the features were manually extracted from the resulting text files.∗ During the
calculation of the atomic descriptors, an issue was found in the calculation of
the Nuclear Magnetic Resonance (NMR) shift for the aryl iodides. The issue is
detailed in Appendix B, Section B.5. The aryl iodides were included in the initial
model development for consistency with the methodology used by Doyle et al.,
but due to the ambiguity in the calculations, were not included in the yield pre-
dictions of the prospective reactions. The five aryl iodides removed from Doyle’s
dataset resulted in 1320 excluded reactions, leaving 3288 training reactions in the
external examination.

Five-fold cross-validation on the Buchwald-Hartwig dataset revealed optimal pa-
rameters of the molecular fingerprints and WL kernel descriptors. The optimum
bit length of the Morgan and RDK fingerprints was 512-bits. The optimum WL
depth of the WL graph kernel was five. These values were therefore used in the
out-of-sample and validation tests.

Encoding Missing Molecules

The descriptors must account for the missing molecules included in the prospec-
tive reactions. For the quantum chemical descriptors, concatenated molecular fin-
gerprints and one-hot encodings, the bits corresponding to the missing molecules
were set to zero. For the kernel-based descriptors, the missing molecules were
incorporated in the calculation of the kernel of each reaction component. For

∗The quantum chemical descriptors for the prospective reactions were calculated by Magnus
W. D. Hanson-Heine.
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example, the kernel between two molecules (m1 and m2) is defined below.

k′ (m1,m2) =


k (m1,m2) + 1, if m1 and m2 are both present

2, if m1 and m2 are both missing

1, otherwise

If both molecules were present the kernel of the two molecules is the original
kernel plus one, if both molecules were missing the kernel equals two, otherwise
the kernel is equal to one. This method is only applied when the training or test
data includes missing molecules.

5.2.3 Model Building and Evaluation

Machine learning models relating descriptors to reaction yield were developed
using the SVR method as implemented in scikit-learn.239 Mathematical details
of the SVR algorithm can be found in Chapter 2, Section 2.4. The linear and
sigmoid kernel functions were not explored in this chapter due to the moderate
performance in cross-validation. SVR models implementing the polynomial, RBF
and pre-computed (where applicable) kernel functions were evaluated.

The hyperparameters of the SVR models (ϵ and C) were optimised in scikit-learn
by performing an exhaustive grid-search over the specified parameter grid (Ta-
ble 4.4 and 4.3). This was accomplished by performing five-fold cross-validation
on the training set. For each train-test split of the data, the training set was shuf-
fled and split into five groups. In turn, each of the five groups was used to test a
model trained on the remaining four groups. The average performance statistics
were calculated and compared to identify the best combination of hyperparame-
ters. The grid search cross-validated and training set performances are reported
for each model in the out-of-sample tests and the prospective SVR models in
Appendix B, Section B.7 and B.8. The best combination of hyperparameters
was used to build the SVR model on the training set to predict the yield of the
test set. The hyperparameters of the prospective SVR models are reported in
Appendix B, Section B.9.

The performances of the models were evaluated by R2 and RMSE using data
points outside of the training set. All analysis was performed using scikit-
learn.



Chapter 5: Kernel Methods for Predicting Yields of Chemical Reactions 135

5.2.4 Test Set Design

Out-of-sample test sets were designed to assess model generalisability to unseen
molecules along each reaction component (additive, aryl halide, base and ligand).
The models were tested on a specific set of molecules that were withheld from
model training.

Without Activity Ranking

Out-of-sample test sets designed without activity ranking were investigated. The
Buchwald-Hartwig dataset was split based on the additives on each plate, as
performed by Chuang and Keiser33. This split of the data is referred to as the
additive: plate out-of-sample test (Table 5.1).

Table 5.1: Additives in the Test Sets Split by High Throughput Plate Number

Additive Low Yielding High Yielding

13 10 11 14 16 18 9 8 15 2 1 21 22 23 17 20 12 4 5 6 3 19

Plate 1 2 1 4 5 6 3
Plate 2 13 10 11 14 9 8 15 1 12
Plate 3 16 18 21 22 23 17 20 19

The dataset was also split along the aryl halide dimension in two different ways
(Table 5.2). The first split was based on the ring type of the aryl halide, either
phenyl or pyridyl, referred to as the aryl halide: ring type test. The second, based
on the halide present in the aryl halide, is referred to as aryl halide: halide type
test.

Table 5.2: Aryl Halides in the Test Sets Split by Ring Type and Halide

Aryl Halide Low Yielding High Yielding

4 7 1 13 5 2 6 3 14 10 8 15 11 9 12

Phenyl 4 7 1 5 2 6 3 8 9
Pyridyl 13 14 10 15 11 12

Cl 4 7 1 13 10
Br 5 2 14 8 11
I 6 3 15 9 12

Due to the small number of bases (three) and catalyst ligands (four) in the
dataset, two leave-one-molecule-out tests were performed. In the first test, the
dataset was split into three test sets based on the base used in the reactions,
herein called the leave-one-base-out. For the second test, the dataset was split
into four test sets based on the ligand used in the reactions, herein called leave-
one-ligand-out. In turn, each test set was withheld from model training.
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With Activity Ranking

The generalisability of the models along the additive and aryl halide dimensions
was assessed using activity-ranked tests. Activity ranking was used to ensure
the models were trained on a range of reaction yields.34 The reactions excluded
controls and reactions containing additive 7, as these were not included in model
development. Initially, the mean yields of the reactions containing each molecule
within the two reaction components were ranked from lowest to highest (Fig-
ure 5.1). The molecules with the highest and lowest mean yields were included
in all training sets. Test sets were constructed from the remaining molecules by
taking every nth molecule, where n is four for the additive ranked test (Table 5.3)
and three for the aryl halide ranked test (Table 5.4).

The order of the mean yields of the additives calculated in this work differs
slightly from Doyle et al.34 There are two instances where the mean reaction
yields of two additives are within 0.1%. The interchange of the additives in the
ranked order resulted in slightly different additive ranked test sets (Table 5.3).
The different test sets caused very minor differences in the performance of the
quantum chemical random forest model, with a mean R2 of 0.68 and mean RMSE
15.3% in this work, compared to a mean R2 of 0.69 and mean RMSE of 14.9%
reported by Doyle et al.34
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(a)

(b)

Figure 5.1: Mean experimental yield of the reactions containing each (a) additive
and (b) aryl halide. Errorbars; standard deviation.



Chapter 5: Kernel Methods for Predicting Yields of Chemical Reactions 138

Table 5.3: Additive Ranked Test Sets†

This Work

Additive Low Yielding High Yielding

13 10 11 14 16 18 9 8 15 2 1 21 22 23 17 20 12 4 5 6 3 19

Set 1 10 18 2 23 4
Set 2 11 9 1 17 5
Set 3 14 8 21 20 6
Set 4 16 15 22 12 3

Doyle et al.34

Additive Low Yielding High Yielding

13 10 11 14 16 18 9 8 15 2 1 21 22 23 17 20 12 4 5 6 3 19

Set 1 10 18 15 23 4
Set 2 11 9 1 17 5
Set 3 14 8 21 12 6
Set 4 16 2 22 20 3

†Differences in ranking order are highlighted in bold.

Table 5.4: Aryl Halide Ranked Test Sets

Aryl Halide Low Yielding High Yielding

4 7 1 13 5 2 6 3 14 10 8 15 11 9 12

Set 1 7 5 3 8 9
Set 2 1 2 14 15
Set 3 13 6 10 11

5.3 Results and Discussion

5.3.1 Diversity of the Buchwald-Hartwig Dataset

The reactions in the Buchwald-Hartwig dataset cover a range of yields (Fig-
ure 5.2). The majority of reactions are low yielding (0 to 10%) due to the use
of inhibitory additives and the lower reactivity of the aryl chlorides. The low-
est proportion of reactions are high yielding (90 to 100%). When assessing the
generalisability of a model, it is important to ensure an even spread of chemical
reactivity is included in both the training and the test sets. If specific ranges
of chemical reactivity are excluded from training, the resulting models can be
biased in its predictions and result in the under or overprediction of the test
reactions.

Chuang and Keiser have shown that splitting the Buchwald-Hartwig dataset by
high-throughput plate (where all inhibitory additives were present on a single
plate) leads to an inaccurate estimation of model performance.33 This was due
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Figure 5.2: Distribution of experimental yields, excluding control reactions and
reactions containing 5-phenyl-1,2,4-oxadiazole (additive 7), corresponding to 3955
data points.

to the underrepresentation of inhibitory additives which led to an uneven cover
of reaction yields in the training set (Figure B.13a). The underrepresentation of
less reactive molecules in the training set is prevalent in all out-of-sample tests
designed without activity ranking (aryl halide halide type, aryl halide aryl type,
leave-one-base-out and leave-one-ligand-out). The aryl chlorides are less reactive
than the bromides and the iodides (Figure B.13c), the pyridyl halides are lower
yielding compared to the phenyl halides (Figure B.13b) and the reactions con-
taining the XPhos ligand gave yields less than 70% (Figure B.13e). When these
less reactive molecules are used as the test set, it is likely that these lower yielding
reactions will be overpredicted by the models. Splitting data using activity rank-
ing ensures the models are trained and tested on similar distributions of reaction
yields (Figure B.14).

It is important to assess whether the reactions in the test set are within the
domain of applicability. The similarity of the test reactions to the training reac-
tions was evaluated. The pairwise Tanimoto score calculated using the Morgan2
fingerprint was used as the similarity metric. For each reaction component in a
single test reaction, the similarity was calculated between the test molecule and
all training molecules in the same reaction component class. The dot product of
the reaction component similarity vectors was calculated. The maximum product
was taken as the maximum similarity to training value. The maximum similarity
to training score ranges from zero, which indicates not similar, to one, which
indicates an identical reaction. For the additive and aryl halide ranked tests, the
maximum similarity to training ranged from 0.30 to 0.65 and from 0.30 to 0.60,
respectively (Figure 5.3). The models are expected to predict instances with



Chapter 5: Kernel Methods for Predicting Yields of Chemical Reactions 140

low maximum similarity scores less accurately than those with high maximum
similarity scores.

Figure 5.3: Distributions of maximum similarity to training for the additive
ranked test sets (dark blue bars) and aryl halide ranked test sets (pale pink
bars). Maximum similarity to training was calculated using the maximum prod-
uct of pairwise Tanimoto scores, with the Morgan2 fingerprint, of the reaction
components.

If all combinations of the additives, aryl halides, bases and ligands are in the
dataset (this is not always the case as reactions with missing yield data were
removed), the maximum similarity to training is dependent upon the unseen
molecules in the test sets (i.e. the additives in the additive ranked test and
the aryl halides in the aryl halide ranked test). For example, if the reaction
R1 = (A1, H1, B1, L1) is in the training set and the reaction R2 = (A2, H1, B1, L1)

is in the test set (where An is the nth additive, Hn is the nth aryl halide, Bn

is the nth base and Ln is the nth ligand), then the similarity score would only
be dependent on the additives in the reactions as shown in Equation 5.1. The
maximum similarity to training scores of the additives and aryl halides for both
activity-ranked tests can be found in Table B.10.

T (R1, R2) = T (A1, A2)T (H1, H1)T (B1, B1)T (L1, L1)

= T (A1, A2) · 1 · 1 · 1

= T (A1, A2)

(5.1)

5.3.2 Prediction of Reaction Yield

The generalisability of the machine learning models was evaluated using out-of-
sample tests, designed without and with activity ranking. The models were built
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on quantum chemical descriptors, concatenated molecular fingerprints, Tanimoto
kernel descriptors and WL kernel descriptors. The performances of the SVR and
baseline models in the out-of-sample tests are shown in Table 5.5, 5.6 and 5.7.
The performance metrics are reported as the average over the test sets for the
specified split of the data. The grid search cross-validated (on the training set),
training set and test set performances of the models for the individual test sets can
be found in Appendix B, Section B.7 and B.8. The performances of the models
built on one-hot encodings are reported to assess whether the models were fitting
any underlying combinatorial structure in the training reactions.

Without Activity Ranking

To demonstrate the importance of test set design, out-of-sample tests were de-
signed without considering the distribution of reaction yields covered in the train-
ing and test sets. The following out-of-sample tests were designed without ac-
tivity ranking: additive plate split (Table 5.1), aryl halide ring and halide splits
(Table 5.2), leave-one-base-out and leave-one-ligand-out.

In the additive plate split, the models built on structure-based descriptors had
similar performances (0.50 < R2 < 0.53, 17.9% > RMSE > 17.4%) to the quan-
tum chemical random forest model reported by Doyle et al.32–34. The structure-
based models also overpredicted the yield of the reactions containing the in-
hibitory additives on Plate 2. The models in the aryl halide splits based on ring
type and halide had low performances. The R2 for the aryl chloride test set in
the halide split was negative for all models, due to the overprediction of the less
reactive aryl chlorides.

The average model performances in the leave-one-base-out and leave-one-ligand-
out tests were modest (Table 5.5). The SVR model built on the MACCS finger-
prints with the polynomial kernel applied was the only model to outperform (R2

= 0.57) the one-hot encodings model (R2 = 0.53) in the leave-one-base-out test.
For the leave-one-ligand-out test, all models had a negative R2 for the XPhos test
set due to the uneven representation of low yields in the training set, which re-
sulted in the overprediction of the reaction yields. The quantum chemical model
had a poor performance across all ligand test sets (Table B.25). The SVR model
built on the Tanimoto kernel descriptors with the polynomial kernel applied (R2

= 0.48) outperformed the other models (R2 ≤ 0.32) in the leave-one-ligand-out
test.

The lower average performances of these tests (Table 5.5) in comparison to the
activity ranked tests (Table 5.6 and 5.7) underscore the importance of test set
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Table 5.5: Mean Performance Statistics for the Top Reaction Yield Prediction
Models Built Using the Support Vector Regression (SVR) Algorithm and Baseline
Random Forest Models Without Activity Ranking‡

Descriptor Kernel R2 RMSE (%)
Additive: Plate

One-hot Encodings Polynomial 0.47 (0.28) 18.8 (3.9)
Quantum Chemical RBF 0.17 (0.31) 23.5 (2.7)
Fingerprints: Morgan1 RBF 0.51 (0.35) 17.6 (5.3)
Tanimoto: Morgan1 Polynomial 0.53 (0.30) 17.4 (4.6)
WL Precomputed 0.50 (0.32) 17.9 (4.5)
Quantum Chemical Random Forest 0.54 (0.34) 16.9 (5.2)
One-hot Random Forest 0.41 (0.47) 18.9 (6.0)
Aryl Halide: Ring Type

One-hot Encodings Polynomial -0.21 (0.29) 28.6 (1.7)
Quantum Chemical RBF -0.68 (0.82) 34.4 (14.5)
Fingerprints: MACCS RBF 0.34 (0.17) 21.6 (6.7)
Tanimoto: MACCS Precomputed 0.21 (0.22) 23.5 (7.5)
WL Precomputed -0.04 (0.22) 26.4 (1.9)
Quantum Chemical Random Forest -0.36 (0.06) 30.8 (6.3)
One-hot Random Forest -0.52 (1.0) 30.4 (5.8)
Aryl Halide: Halide Type

One-hot Encodings Polynomial -0.47 (1.11) 26.9 (7.7)
Quantum Chemical RBF -0.95 (0.92) 32.3 (6.8)
Fingerprints: MACCS RBF -0.29 (1.15) 24.5 (9.3)
Tanimoto: MACCS Polynomial -0.20 (1.01) 23.9 (8.5)
WL Precomputed -0.27 (1.08) 24.3 (9.3)
Quantum Chemical Random Forest -0.05 (0.62) 23.2 (6.9)
One-hot Random Forest -0.72 (2.11) 26.3 (14.7)
Leave-One-Base-Out

One-hot Encodings RBF 0.53 (0.25) 17.7 (4.9)
Quantum Chemical RBF -0.30 (0.39) 30.1 (6.9)
Fingerprints: MACCS Polynomial 0.57 (0.17) 17.0 (3.3)
Tanimoto: MACCS Precomputed 0.45 (0.24) 19.7 (6.6)
WL Precomputed 0.52 (0.21) 18.2 (5.6)
Quantum Chemical Random Forest 0.54 (0.23) 17.5 (4.8)
One-hot Random Forest 0.53 (0.26) 17.7 (5.0)
Leave-One-Ligand-Out

One-hot Encodings Polynomial 0.32 (0.54) 18.9 (2.1)
Quantum Chemical RBF -0.13 (0.23) 27.1 (6.2)
Fingerprint: Morgan1 RBF 0.30 (0.90) 16.6 (6.4)
Tanimoto: MACCS Polynomial 0.48 (0.62) 14.3 (7.1)
WL RBF 0.42 (0.77) 14.9 (6.0)
Quantum Chemical Random Forest 0.32 (0.95) 15.6 (7.9)
One-hot Random Forest 0.36 (1.02) 14.1 (8.1)

‡R2 and RMSE statistics are reported in the format “mean (standard deviation)” for the
specified test sets. Performance statistics for the individual test sets can be found in Ta-
ble B.13, B.16, B.19, B.22, B.25. Baseline random forest models are in italics.
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design.33,34 These splits of the data give a low, misrepresentative estimate of
model performance, due to the uneven distribution of reaction yield across the
test sets (Figure B.13).

With Activity Ranking

The performance of the yield prediction models built on quantum chemical de-
scriptors, concatenated fingerprints, Tanimoto kernel descriptors and WL ker-
nel descriptors for the additive and aryl halide ranked tests are shown in Ta-
ble 5.6 and 5.7, Figure 5.4. The random forest model built on quantum chemical
descriptors from Doyle et al.34 was included for comparison. The performance of
the SVR and random forest models built on one-hot encodings are reported to
assess whether the models were fitting any underlying combinatorial structure in
the training reactions.

Figure 5.4: Coefficient of Determination (R2) performance comparison of the
Support Vector Regression (SVR) models built on one-hot encodings, quantum
chemical descriptors, concatenated fingerprints, Tanimoto kernel descriptors and
Weisfeiler-Lehman (WL) kernel descriptors with a range of kernels, in the activity
ranked tests. Marker size is proportional to R2. Numeric values can be found in
Table 5.6 and 5.7.

A few trends in the performance of the algorithms, kernels and descriptors were
present in both the additive and aryl halide ranked tests. The SVR models
built on one-hot encodings had a better predictive performance than the random
forest models built on the same one-hot encodings. Random forest and methods
based on decision trees may not handle well the sparsity that one-hot encoding
introduces into the dataset. This therefore set a higher baseline for the SVR
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Table 5.6: Mean Performance Statistics for the Reaction Yield Prediction Mod-
els Built Using the Support Vector Regression (SVR) Algorithm and Baseline
Random Forest Models in the Additive Ranked Tests§

Descriptor Kernel R2 RMSE (%)

One-hot Encodings Linear 0.59 (0.05) 17.4 (1.5)
Polynomial 0.68 (0.05) 15.4 (1.5)
RBF 0.66 (0.06) 15.9 (1.8)

Quantum Chemical Linear -0.56 (1.23) 32.2 (12.7)
Polynomial 0.18 (0.39) 24.0 (6.1)
RBF 0.47 (0.16) 19.6 (3.4)

Fingerprints: MACCS Linear 0.29 (0.18) 22.8 (2.4)
Polynomial 0.47 (0.18) 19.6 (3.2)
RBF 0.48 (0.15) 19.4 (2.7)

Fingerprints: Morgan1 Linear 0.50 (0.13) 19.2 (2.7)
Polynomial 0.70 (0.13) 14.7 (3.3)
RBF 0.69 (0.14) 14.9 (3.6)

Fingerprints: RDK Linear 0.56 (0.06) 18.0 (1.3)
Polynomial 0.62 (0.09) 16.6 (1.8)
RBF 0.63 (0.07) 16.5 (1.6)

Tanimoto: MACCS Polynomial 0.56 (0.17) 17.8 (3.4)
RBF 0.58 (0.16) 17.5 (3.4)
Precomputed 0.54 (0.17) 18.3 (3.3)

Tanimoto: Morgan1 Polynomial 0.74 (0.11) 13.8 (3.1)
RBF 0.73 (0.10) 13.9 (2.9)
Precomputed 0.73 (0.13) 13.8 (3.5)

Tanimoto: RDK Polynomial 0.64 (0.05) 16.4 (1.3)
RBF 0.63 (0.05) 16.5 (1.3)
Precomputed 0.64 (0.05) 16.3 (1.3)

WL Polynomial 0.67 (0.17) 15.4 (4.0)
RBF 0.66 (0.16) 15.6 (3.8)
Precomputed 0.67 (0.18) 15.3 (4.2)

Baseline Random Forest Models:
One-hot 0.59 (0.11) 17.4 (2.8)
Quantum Chemical 0.68 (0.11) 15.3 (3.0)

§R2 and RMSE statistics are reported in the format “mean (standard deviation)” for the spec-
ified test. Performance statistics for the individual test sets can be found in Table B.28. For
each type of descriptor, the models with the best performance are highlighted in bold.

models (additive split: R2 < 0.68, RMSE > 15.4%; aryl halide split: R2 <

0.35, RMSE > 20.9%) than random forest, for model comparison. The one-hot
encoding models, in the aryl halide ranked test, have a much lower performance
than in the additive ranked test. This could be due to the aryl halide present
in the reaction, generally having a larger effect on the reaction yield than the
additive (Figure 5.1), base or ligand (Figure B.13) present. There are only four
additives that are considered reaction poisons (additives 1, 4, 7 and 13) and hence
have a large effect on the reaction yield. One-hot encoding models tend to fit the
intrinsic pattern in the combinatorial training data (i.e. the presence/absence of
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Table 5.7: Mean Performance Statistics for the Reaction Yield Prediction Mod-
els Built Using the Support Vector Regression (SVR) Algorithm and Baseline
Random Forest Models in the Aryl Halide Ranked Tests¶

Descriptor Kernel R2 RMSE (%)

One-hot Encodings Linear 0.31 (0.05) 21.6 (0.5)
Polynomial 0.35 (0.04) 20.9 (0.5)
RBF 0.34 (0.09) 21.0 (0.9)

Quantum Chemical Linear -505.21 (875.86) 336.4 (549.2)
Polynomial -4.34 (7.85) 47.3 (41.0)
RBF 0.41 (0.14) 19.9 (2.6)

Fingerprints: MACCS Linear 0.52 (0.01) 18.1 (0.8)
Polynomial 0.55 (0.17) 17.2 (3.7)
RBF 0.56 (0.16) 17.1 (3.5)

Fingerprints: Morgan1 Linear 0.55 (0.05) 17.5 (1.5)
Polynomial 0.69 (0.05) 14.6 (1.7)
RBF 0.68 (0.05) 14.6 (1.6)

Fingerprints: RDK Linear 0.54 (0.05) 17.7 (1.3)
Polynomial 0.64 (0.11) 15.4 (2.4)
Sigmoid 0.09 (0.06) 24.9 (1.6)

Tanimoto: MACCS Polynomial 0.58 (0.05) 16.8 (1.2)
RBF 0.58 (0.04) 16.9 (0.7)
Precomputed 0.57 (0.13) 16.9 (2.9)

Tanimoto: Morgan1 Polynomial 0.62 (0.06) 16.0 (1.1)
RBF 0.59 (0.06) 16.5 (1.1)
Precomputed 0.67 (0.06) 15.0 (1.4)

Tanimoto: RDK Polynomial 0.50 (0.13) 18.2 (2.3)
RBF 0.47 (0.13) 18.8 (2.1)
Precomputed 0.57 (0.13) 16.8 (2.4)

WL Polynomial 0.60 (0.05) 16.4 (0.9)
RBF 0.58 (0.05) 16.8 (0.8)
Precomputed 0.63 (0.06) 15.7 (1.2)

Baseline Random Forest Models:
One-hot -0.04 (0.33) 26.2 (3.3)
Quantum Chemical 0.20 (0.17) 23.2 (1.5)

¶R2 and RMSE statistics are reported in the format “mean (standard deviation)” for the spec-
ified test. Performance statistics for the individual test sets can be found in Table B.31. For
each type of descriptor, the models with the best performance are highlighted in bold.

each molecule). In the additive ranked test, the models learn the reactivity of
the aryl halides, bases and ligands in training and are able to predict the yield
of reactions in the test set to a relatively high level. However, in the aryl halide
ranked test, the models struggle to extrapolate to unseen aryl halides as they
have a larger effect on the reaction yield than the additives, bases and ligands
that were fitted in training. This is supported by the following observation. In
the aryl halide ranked test, the predicted yields (made by the one-hot encoding
model) of the reactions containing the four inhibitory additives, which have a
clear effect on lowering the reaction yield, are closer to experimental values than
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most of the other additives. If the molecules in the test set have a clear effect
on the reaction yield and are also observed in training, the model can learn the
reactivity of these molecules and appear to extrapolate well.

The quantum chemical descriptors do not have a linear relationship to the reaction
yield, as the linear SVR model predictions show no statistical correlation. The
extremely poor performance of the linear SVR model in the aryl halide ranked
test is mainly due to the poor predictions of reactions containing 1-bromo-4-
methoxybenzene. This aryl bromide has a high ν1 frequency (1630cm−1) in com-
parison to the other aryl halides (699 to 745cm−1). Therefore, when the quantum
descriptors were scaled, this ν1 frequency had an anomalously high value of 59
(usually expect values between ±3). It is likely that this partially led to pre-
dictions of reactions containing 1-bromo-4-methoxybenzene in the range −2100

to −2181% for the linear SVR model and the prediction of the constant value
(15.9.0%) for the quantum chemical SVR model with the RBF kernel applied.
Non-linear kernels (polynomial and RBF) were considered, to transform the input
data into higher dimensional feature space, where regression could be performed
linearly. For the one-hot, quantum chemical and concatenated fingerprint de-
scriptors, the performance of the SVR models implementing the polynomial and
RBF kernels were better than linear SVR. The application of non-linear kernels
to the WL and Tanimoto kernel descriptors did not substantially improve the
performance of the SVR models and therefore are not considered nor discussed
further. The SVR algorithm performs better with the structure-based descrip-
tors compared to the quantum chemical descriptors. It is encouraging that the
Morgan fingerprints capture enough chemical information that they outperform
the quantum chemical descriptors which were adopted by Doyle et al.32 The best
combinations of descriptors and kernel functions were the same for both activity-
ranked tests (Table 5.8). The top performing SVR model of each descriptor are
henceforth referred to as P (One-hot), R(Quantum), P (Fingerprints), Tanimoto
and WL.

Table 5.8: Top Performing Support Vector Regression (SVR) Model for each
Descriptor in the Activity Ranked Tests

Descriptor Kernel Function SVR Model Name

One-Hot Encodings Polynomial P (One-hot)
Quantum Chemical RBF R(Quantum)
Fingerprints: Morgan1 Polynomial P (Fingerprints)
Tanimoto: Morgan1 Precomputed Tanimoto
WL Precomputed WL

In the additive ranked test, the performance of the top SVR model for each
descriptor ranged from 0.47 to 0.73 for the R2 and 19.6 to 13.8% for the RMSE
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(Table 5.6). According to a Chi-squared (χ2) test, the top two highest performing
models P (Fingerprints) and Tanimoto are not statistically, significantly different.
The R2, RMSE performance of the respective P (Fingerprints) and Tanimoto
models was 0.70, 14.7% and 0.73, 13.8%. Under the null hypothesis that the
distributions of the residual yield are the same, the p-value was calculated as
0.06 (Figure 5.5a, Table 5.9). The P (One-hot), R(Quantum) and WL models are
significantly different with p-values less than 10−7. The SVR models built on one-
hot encodings and quantum chemical descriptors have shorter, broader peaks in
the distribution of residual yields, meaning larger associated errors (Figure 5.5a).
The random forest algorithm learns more from the quantum chemical descriptors
(R2 = 0.68, RMSE = 15.3%) than the SVR algorithm (R2 ≤ 0.47, RMSE ≥
19.6%).

Table 5.9: Pairwise Chi-squared (χ2) Results Calculated on the Distributions of
Residual Yield Between the Top Performing Support Vector Regression (SVR)
models for each descriptor and Random Forest (RF) Baseline

Model A Model B Ranked Test
Additive Aryl halide

P (One-hot) P (One-hot) 1 1
R(Quantum) 3×10−28 3×10−66

P (Fingerprints) 1×10−23 3×10−115

Tanimoto 2×10−36 2×10−85

WL 2×10−18 1×10−69

Quantum RF 1×10−61 4×10−44

R(Quantum) R(Quantum) 1 1
P (Fingerprints) 1×10−35 8×10−70

Tanimoto 8×10−50 3×10−38

WL 4×10−24 1×10−54

Quantum RF 6×10−34 2×10−47

P (Fingerprints) P (Fingerprints) 1 1
Tanimoto 6×10−2 6×10−14

WL 8×10−7 5×10−25

Quantum RF 1×10−18 9×10−88

Tanimoto Tanimoto 1 1
WL 9×10−10 2×10−14

Quantum RF 3×10−15 2×10−88

WL WL 1 1
Quantum RF 3×10−14 3×10−67

Quantum RF Quantum RF 1 1

Model performances along the aryl halide dimension were significantly lower than
along the additive dimension for the baseline and quantum chemical models (Ta-
ble 5.7, Figure 5.4). Models built on structure-based descriptors had a similar
performance to those in the additive ranked test. There is a large difference in
performance between the structure-based descriptors, with an R2 of 0.63 to 0.69,
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(a)

(b)

Figure 5.5: Distributions of residual yield for the (a) additive ranked test and (b)
aryl halide ranked test. Residual yield was calculated as observed yield minus
predicted yield. Numeric details for the test of statistical significance can be
found in Table 5.9.

compared to the R(Quantum) and P (One-hot) models with R2 of 0.41 and 0.35,
respectively. The low performance of the quantum chemical and one-hot encoding
models suggests that they may only be fitting the intrinsic pattern in the training
set and therefore, struggle to extrapolate to the unseen aryl halides. In general,
there is an even distribution of residual yield centred around 0% for the top SVR
model per descriptor (Figure 5.5b). All models however tend to underpredict
the reaction yields of the unseen aryl halides as shown by the smaller, secondary
peaks (between 12.5 to 37.5%) in the distribution of residual yield (Figure 5.5b).
This is partially due to the under-representation of higher reaction yields (Fig-
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ure 5.2), resulting in poorer model performances (Figure 5.6b). This issue is also
observed in the additive ranked test to a lesser extent (Figure 5.6a).

(a)

(b)

Figure 5.6: Root Mean Squared Error (RMSE) performance against the experi-
mental yield for the (a) additive ranked test and (b) aryl halide ranked test.

5.3.3 Domain of Applicability

Assessing model performance with respect to maximum similarity to training
reactions helps to identify molecules that may be outside the domain of appli-
cability. Maximum similarity to training is defined as the maximum product of
pairwise Tanimoto scores (between molecules in the training and test sets) of the
reaction components.

In the additive ranked test, the models performed poorly for reactions in the
lowest maximum similarity to training interval, 0.30 to 0.35 (Figure 5.7a). These
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reactions contain the additives: benzo[c]isoxazole (additive 10) and benzo[d ]-
isoxazole (additive 15). The performance of the models, considering the additives
individually, are generally good for additive 15 (Figure B.15d) but very poor
for additive 10 (Figure B.15a). The models overpredict the yield of reactions
containing the inhibitory additive 10 and result in negative R2 and high RMSE
scores. These reactions may therefore be outside the domain of applicability.
Generally, the performance of the models improves with maximum similarity to
training (Figure 5.7a), as expected. The models have a high RMSE (> 15%)
for the reactions in the maximum similarity to training intervals 0.35 to 0.40
(additive 1 and 14) and 0.55 to 0.60 (additive 4, 6 and 9). This is mainly due
to the underprediction of high-yielding reactions, which is a result of the under-
representation of higher reaction yields (Figure 5.2 and 5.6a). The structure-based
SVR models demonstrate good prediction statistics for reactions with maximum
similarity to training greater than 0.35.

For the aryl halide ranked test, there is a slight improvement in the perfor-
mance statistics as maximum similarity to training increases (Figure 5.7b). The
higher-yielding (> 50%) reactions containing ethyl-substituted aryl halides (0.30
to 0.40), 2-halopyridines and 3-iodopyridine (0.45 to 0.50) are underpredicted
by the models (Figure B.16), due to the under-representation of higher reac-
tion yields (Figure 5.2 and 5.7b). Reactions containing the trifluoromethyl and
methoxy substituted aryl halides, as well as the remaining 3-halopyridines (0.50
to 0.55), are generally predicted well by the models. It is important to consider
the R2 and RMSE together when assessing goodness of fit.245 This is demon-
strated in the model performance of reactions containing 1-chloro-4-ethylbenzene
(aryl halide 7) and 1-chloro-4-(trifluoromethyl)benzene (aryl halide 1). These re-
actions are low yielding and therefore only cover a small range of reaction yields.
While this leads to low R2 scores across all models (Figure B.16), the RMSE
scores are good (≤ 15%) for at least half of the models.
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(a)

(b)

Figure 5.7: Root Mean Squared Error (RMSE) performance against maximum
similarity to training for (a) the additive ranked test and (b) the aryl halide
ranked test.

5.3.4 Predictions of Prospective Reactions

A set of combinatorial reactions was compiled to validate the generalisability of
the SVR models, with particular interest along the aryl halide dimension. Al-
though no experiments have been completed, comparing trends in the predictions
of reaction yields between models is beneficial. Here, we present predicted yields
of the proposed reactions prior to experimentation. The SVR model with the
best predictive performance for each descriptor in the aryl halide ranked test was
employed: R(Quantum), P (Fingerprints), Tanimoto, WL and the P (One-hot)
baseline. The aryl halides in the prospective reactions cover a range of maximum
similarity to training scores between 0.15 to 0.60 (Figure 5.8). This excludes the
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five aryl halides that are present in the Doyle et al. training set, where the max-
imum similarity to training was 1.00. In the aryl halide ranked test, the models
predicted the yield of reactions containing the aryl halide with the lowest maxi-
mum similarity to training score (0.30 to 0.35) reasonably well (Figure 5.7b). The
models may, however, struggle to extrapolate to the aryl halides in the prospec-
tive reactions with maximum similarity scores lower than 0.30 (over half of the
unseen aryl halides). These models in the base and ligand leave-one-out tests gen-
erally showed comparable correlation to the best kernel-descriptor combinations
in these tests (Table B.22 and B.25). The poor performance of the quantum
chemical model in these tests indicates that the model is limited and may be
unable to extrapolate to unseen bases and ligands.

Figure 5.8: Distributions of maximum similarity to training for all prospective
reactions. Maximum similarity to training was calculated using the maximum
pairwise Tanimoto scores (using the Morgan2 fingerprint) of the aryl halides in
the training and test set.

Two tests were designed to investigate the predictive ability of the SVR mod-
els identified as the top descriptor-kernel combinations in the aryl halide ranked
test. The first test considered all 1416 proposed reactions for the comparison
of the structure-based descriptors and one-hot encodings. These descriptors can
be applied to any molecule and are quick and easy to calculate. In this test,
the Fingerprints: Morgan1-Polynomial, Tanimoto: Morgan1-Precomputed, WL-
Precomputed and the One-hot-Polynomial models were trained on the Doyle et
al. dataset, including additive control reactions (i.e. no additive present); a to-
tal of 4135 reactions. The second test only considered a subset of the proposed
reactions to compare the quantum chemical descriptors with the structure-based
descriptors. The quantum chemical descriptors have a limited application range
as they require predefined, key shared atoms to be present for each reaction com-
ponent. The subset excluded any molecules where quantum chemical descriptors
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could not be calculated; this included aryl iodides (see the Supporting Infor-
mation for further details). This prospective test set contained a total of 882
reactions, a combination of 49 aryl halides, two additives, three bases and three
ligands. The SVR models were trained on a subset of 2757 reactions from the
Doyle et al. dataset, including additive control reactions. The predicted yields of
each reaction, calculated in both tests, are shown in Figure B.19 and B.20.

The models built on chemically meaningful descriptors predicted the yield of test
reactions that are also present in the training reactions accurately, with R2 ≥ 0.98

and RMSE ≤ 4.4% (Figure B.17 and B.18). In both tests, the one-hot encodings
model predicted an arbitrary number irrespective of the aryl halide present in
the reaction. The predictions were primarily dependent on the type of base and
ligand in the reaction (Figure B.22 and B.24). The reaction containing the base
DBU and the reactions performed without a catalyst ligand contribute the most
towards the broad peak at approximately 35% in the distribution of predicted
yield for the subset of proposed reactions (Figure 5.9). The base MTBD and
catalyst ligand t-BuXPhos have a broader range of higher yields contributing to
the peak around 50%. The same trend was observed when all prospective re-
actions were considered (Figure B.23 and B.25). There is minimal difference in
the distributions of the predicted yield of the reactions containing each base for
the chemically meaningful SVR models. The baseline one-hot encodings model
was unable to extrapolate to unseen aryl halides from fitting the underlying pat-
tern in the training data. Therefore, it is anticipated that the models built on
quantum chemical and structure-based descriptors were learning from chemically
meaningful information.

Figure 5.9: Distributions of predicted reaction yield for the subset (882) of vali-
dation reactions.
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Reactions performed without a catalyst were included in the prospective reac-
tions to evaluate the following synthetic hypothesis; the reactions containing or-
tho-substituted halopyridines are proceeding via an alternative reaction pathway,
leading to higher reaction yields. No examples of these reactions were provided
in training and therefore, may be beyond the limits of the models. The Quantum
SVR model predicted the yield of reactions without the presence of a catalyst to
be a negative arbitrary number (-0.64%), irrespective of the aryl halide or addi-
tive present in the reactions. Predictions of this negative number suggest these
reactions are outside the domain of applicability for the Quantum SVR model.
These predictions largely contributed to the distinct peak in the distribution of
predicted yield around 0% (Figure 5.9). The structure-based models predicted
a smaller range of yields for reactions performed without a catalyst (∼ 30%)
compared to the reactions containing a catalyst (≳ 60%, Figure B.24 and B.25).
This could indicate a potential limitation in the ability of the structure-based
models to predict reactions without a catalyst. The chemically meaningful mod-
els predicted similar trends in the reactivity of the catalyst ligands (Figure B.24
and B.25), following the order: BrettPhos (where applicable) < no catalyst <

t-BuBrettPhos < t-BuXPhos.

The prospective reactions were designed to validate the applicability of the SVR
models to unseen aryl halides that are not present in the training set. The
models built on chemically meaningful descriptors predicted higher yields for re-
actions containing aryl bromides and aryl iodides (where applicable) compared
to reactions containing aryl chlorides (Figure B.26 and B.27). Using the re-
actions containing the ortho-halo-substituted isopropylbenzene and para-halo-
substituted methylpyridazine molecules as examples, there is an increase in mean
predicted yield from the chloride to bromide to iodide (Table 5.10). This trend is
plausible, as it follows the trend in the training reactions (Figure B.13c). Com-
paring the mean yield of reactions containing 1-chloro-4-isopropylbenzene (∼ 30%

to 45%) with a similar alkyl-substituted aryl halide used in training (1-chloro-4-
ethylbenzene, ∼ 4%), suggests the models may have overpredicted these reaction
yields. Aryl halides with substituents at the ortho position are sterically hindered
which could potentially lower the reactivity. As there are no reactions containing
ortho-substituted aryl halides in the training set, it is possible that the predictions
were influenced by the higher yielding ortho-substituted pyridines (Table 5.10).
The pyridazine molecules contain a nitrogen atom at both the ortho and meta
positions. It is interesting that the structure-based models again appear to make
predictions based on the higher-yielding ortho-substituted pyridines, whereas the
quantum chemical model predicts reactivity closer to the lower-yielding meta-
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substituted pyridines (Table 5.10).

Despite the similar trends between the quantum chemical model and the
structure-based models, the predictions are only slightly correlated (Pearson cor-
relation coefficient of < 0.67, Figure B.28). The structure-based models are
expected to be more robust than the quantum chemical models for extrapolating
to unseen chemical entities. The predictions of the structure-based models are
well correlated and have a Pearson correlation coefficient of > 0.83 (Figure B.29
and B.30).
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Table 5.10: Mean Experiment Yields of Aryl Halides in the Training Set (Top)
and Mean Predicted Yields of Aryl Halides in the Prospective Reactions (Bot-
tom)‖

Mean Experimental Yields (%) of Aryl Halides in the Training Set

Cl Br I

Et

X

3.9 (3.8) 43.5 (24.6) 52.6 (24.2)

N

X

44.1 (26.8) 53.3 (26.5) 59.3 (26.6)

N

X

14.9 (16.2) 43.9 (29.1) 52.3 (29.0)

Mean Predicted Yields (%) of Aryl Halides in the Prospective Reactions

iPr

X

Cl Br I

Subset All Subset All Subset All

P (One-hot) 42.4 (6.7) 47.0 (7.7) 42.4 (6.7) 47.0 (7.7) - 47.0 (7.7)
R(Quantum) 29.6 (4.4) - 73.3 (4.7) - - -
P (Fingerprints) 36.0 (4.2) 33.4 (8.6) 67.0 (4.1) 55.3 (10.6) - 63.2 (8.9)
Tanimoto 35.0 (3.7) 34.9 (7.0) 56.1 (3.8) 53.1 (9.3) - 59.4 (8.0)
WL 41.8 (3.8) 42.8 (8.2) 55.4 (3.7) 55.0 (10.3) - 56.6 (9.0)

Me

N

N

X

Cl Br I

Subset All Subset All Subset All

P (One-hot) 42.4 (6.7) 47.0 (7.7) 42.4 (6.7) 47.0 (7.7) - 47.0 (7.7)
R(Quantum) -4.9 (3.6) - 13.7 (2.2) - - -
P (Fingerprints) 45.3 (4.4) 39.8 (12.4) 61.2 (4.1) 57.2 (9.7) - 63.2 (7.3)
Tanimoto 41.0 (3.7) 39.0 (8.6) 58.3 (3.8) 55.0 (9.1) - 60.7 (7.6)
WL 49.8 (4.2) 48.9 (10.2) 57.3 (4.0) 56.2 (10.5) - 57.6 (9.6)

‖Experimental and predicted yields are reported in the format “mean (standard deviation)”.
Reactions performed without a ligand were excluded.
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5.4 Conclusions

Anticipating reaction yield is a complex task which requires experimental verifi-
cation, resources, and time. A tool which provides confidence that a reaction will
produce sufficient yield would be valuable to synthetic chemists. In this chap-
ter, we developed machine learning models to predict the yield of unexplored
Buchwald-Hartwig reactions. The performance of SVR models was assessed along
each reaction component of the Buchwald-Hartwig combinatorial dataset. We
demonstrated that topological descriptors are a suitable input to an SVR model
to predict yields of combinatorial reaction data.

Poorer model performance in the tests designed without activity ranking high-
lighted the importance of accounting for the distribution of reaction yields in the
training and test sets. Only a few examples of bases and catalyst ligands are
present in the combinatorial dataset. In leave-one-base-out and leave-one-ligand-
out experiments, we investigated how well the SVR model could predict unknown
bases and ligands given only a few instances in training. The moderate perfor-
mances of the SVR models in both leave-one-out tests suggest that the models
might benefit from training on a broader range of bases and ligands.

Out-of-sample tests were constructed using activity ranking. These tests pro-
vided a more reliable evaluation of the ability of the models to predict the yield
of reactions containing unseen additives and aryl halides. The SVR models built
on structure-based descriptors were closely compared to those built on quan-
tum chemical calculations. The SVR models built on structure-based descriptors
demonstrated good prediction statistics in each test. Specifically, those employing
molecular fingerprints surpassed the models employing other descriptors consis-
tently, demonstrating the robustness of molecular fingerprints. In the aryl halide
ranked test, the models built on the Morgan 1 fingerprint achieved an R2of 0.69
and an RMSE of 14.6%, significantly better than the quantum chemical random
forest model, which achieved an R2 of 0.20 and RMSE of 23.2%. The applicability,
ease and quickness of calculating molecular fingerprints make them particularly
attractive (Table 5.11).

The aryl halide ranked test revealed the optimum kernel applied to each descrip-
tor type in the SVR model: quantum chemical calculations, RBF; concatenated
fingerprints, polynomial; Tanimoto and WL kernel descriptors, no additional ker-
nel. The SVR models with these descriptor-kernel combinations were subject to
an external examination against unfamiliar reactions. We designed the external
examination procedure to imitate how medicinal chemists may use yield predic-
tion models on combinatorial data. Buchwald-Hartwig reactions were carefully
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Table 5.11: Comparison of the Molecular Descriptors used in this Studyd

Descriptor Speed Applicability Generalisability
to molecules Additive Aryl Halide

Quantum Chemical + Subset + +
Fingerprints +++ All ++++ ++++
Tanimoto Kernel ++ All ++++ ++++
WL Kernel ++ All +++ +++
One-hot Encodings ++++ All ++ ++

d Speed and generalisability are ranked from poor (+) to good (++++). The ranking
of generalisability refers to the performance of the top SVR model for each descriptor.

curated with the assistance of medicinal chemists to propose a set that varied in
their similarity to the training reactions, allowing us to study the limits of the
models’ generalisability.

Despite not performing the high-throughput experiments, we reported and com-
pared the predicted yields of the proposed Buchwald-Harwig reactions. We ob-
served similar trends in the reactivity of the molecules along each reaction com-
ponent throughout the chemically meaningful SVR models. The reaction yields
predicted by the structure-based models were reasonably correlated. We antic-
ipate, based on the performances of the models in the preceding tests and the
analysis of the predicted yields, that the structure-based models may extrapolate
better than the quantum chemical models. The SVR models used to predict the
prospective Buchwald-Hartwig reactions and instructions on their use are avail-
able on GitHub (https://github.com/alexehaywood/yield_prediction).
The chemically meaningful models should be used with caution since they may
struggle to extrapolate to unseen aryl halides with a similarity to training score
of less than 0.30 and reactions without a catalyst. It may be beneficial to account
for the scope of applicability before utilising the models to offer confidence in the
model’s predictions.

The experimental yields of the proposed reactions will be determined using high-
throughput experimentation. Analysis of the errors in the yield predictions for the
external test set is required to assess the scope and limits of the SVR models. In
the future, it would be interesting to explore the transferability of the structure-
based SVR models to different reaction types or alternative regression-related
problems. The approach presented could also be applied to larger datasets when
they become publicly available.

This chapter demonstrates the applicability of computationally less demanding
structure-based descriptors in predicting reaction yield. The SVR models learnt
from a relatively small (a few thousand instances) combinatorial dataset, prov-

https://github.com/alexehaywood/yield_prediction
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ing their use in facilitating chemical synthesis and optimising reaction condi-
tions.



Chapter 6

Concluding Remarks

Machine learning algorithms are a valuable prediction tool in drug discovery and
development. Synthetic chemists can benefit from Computer-Aided Synthesis
Planning (CASP) tools. They enhance workflows and productivity while short-
ening timelines. Knowing which reactions are likely to succeed minimises the
number of experiments undertaken, lowering the number of chemicals used and
the cost of the experiments. The incorporation of Safety, Environmental, Legal,
Economics, Control and Throughput (SELECT) criteria into CASP tools aids in
the development of greener and more sustainable reactions. This thesis reviewed
contemporary approaches to CASP before focusing specifically on predicting re-
action yield.

Contemporary approaches to forward reaction prediction and retrosynthesis can
be divided into template-based and template-free methods. Template-free meth-
ods focus on selecting templates from a predefined library and applying them
to the input structures to generate a ranked list of chemical reactions. Although
this approach is interpretable, its applicability is limited by the library of reaction
templates. These models cannot extrapolate to chemistries outside the library
or discover or predict new chemistries. Template-free methods consist of semi-
template-based and machine translation techniques. Both techniques take ad-
vantage of machine learning algorithms and do not require a predefined library of
templates. Semi-template-based strategies follow the same input-to-synthon-to-
ouput workflow as the template-based methods, enabling interpretability. They
differ in how the templates are defined. Semi-template-based approaches gener-
ate templates on demand from a database. Machine translation methods follow
a direct input-to-product workflow. Although they implement “black-box” al-
gorithms resulting in limited interpretability, they are state-of-the-art in both

160
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forward reaction prediction and retrosynthetic analysis.

Research into developing tools for the reaction yield prediction task is emerg-
ing. The pioneering work of the Doyle group focused on a random forest model
built on quantum chemical descriptors.32 In Chapter 4, regression algorithms for
predicting reaction yield were evaluated, including linear, tree-based, and Sup-
port Vector Regression (SVR) methods. The regression algorithms were built on
structure-based and quantum chemical descriptors. Preliminary cross-validation
tests demonstrated that the performance of the non-linear SVR algorithms, im-
plementing the polynomial and Gaussian Radial Basis Function (RBF) kernels,
was comparable to that of the quantum chemical random forest model. The SVR-
polynomial and SVR-RBF models built on quantum chemical descriptors both
had Coefficient of Determination (R2) values of 0.90 and Root Mean Squared Er-
ror (RMSE) values of 8.3% and 8.4%, respectively, compared to Doyle’s random
forest model, which had an R2 value of 0.93 and RMSE value of 7.2%.

The pioneering work by the Doyle group was criticised for misrepresenting model
performance in an out-of-sample test.33 When designing the training and test
sets, the distribution of reaction yield was not considered. As a result, the re-
ported performance metrics were not a reliable representation of generalisability.
In a technical response, the Doyle group redesigned the test sets using activity
ranking along the additive dimension.34 Chapter 5 investigated the generalisabil-
ity of SVR models built on structure-based and quantum chemical descriptors
using more rigorous testing. Out-of-sample tests were designed using activity
ranking along each dimension of the Buchwald-Hartwig dataset. SVR models
built on structure-based descriptors demonstrated good performance statistics
and outperformed the SVR and random forest models built on quantum chemi-
cal descriptors. The top-performing SVR models from the aryl halide ranked test
were subjected to further examination. The top descriptor-kernel combinations
were quantum chemical-RBF, Morgan1 fingerprints-polynomial, Morgan1 Tani-
moto kernel, and WL kernel. The Morgan1 fingerprints-polynomial SVR model
performed best with an R2 value of 0.69 and an RMSE value of 14.6%; this was
significantly better than Doyle’s quantum chemical random forest model, which
had an R2 value of 0.20 and an RMSE value of 23.2%. Prospective Buchwald-
Hartwig reactions were compiled to examine the applicability of the SVR models
to unseen molecules, with a particular interest in aryl halides. The predicted
reaction yields for this set of reactions were presented and compared prior to
experimentation.

The work undertaken in this thesis has contributed to the early development of
tools for predicting reaction yield. We have demonstrated that limited combi-
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natorial data, commonly generated in medicinal chemistry, can be used to build
local models. Medicinal chemistry focuses on the design and synthesis of analo-
gous compounds. With further research, localised yield prediction models can be
developed and deployed in the workflow of medicinal chemists. Knowing whether
a chemical reaction will fail or have a high yield prior to experimentation would
be incredibly beneficial. We have also shown for this particular yield prediction
problem that structure-based descriptors incorporate enough information to out-
perform quantum chemical descriptors. The applicability, ease, and quickness of
generating molecular fingerprints make them significantly more appealing than
calculating quantum chemical properties.

Predicting reaction yield is a relatively new area of CASP and has been ex-
plored much less than forward reaction prediction and retrosynthetic planning.
This is partially due to the lack of curated reaction data which reports reaction
yield. The current public benchmarking dataset is the high throughput combi-
natorial dataset published by the Doyle group, which only contains around 4,000
Buchwald- Hartwig reactions. Using this dataset to develop yield prediction tools
restricts them to a single reaction class and a relatively low amount of data. Al-
though deep learning has shown considerable success in many fields, including
chemistry and CASP, the scarcity of data presents issues with implementing
these models. Deep learning models are prone to overfitting and require many
more training examples than are currently available to the public. Therefore, this
work focused on simpler non-linear models with proven success in Quantitative
Structure-Activity Relationship (QSAR) evaluation.

Immediate future work on this project would entail performing the prospective
reactions experimentally using high throughput experimentation. The experi-
mental reaction yields can be used to validate and determine the limits of the
top SVR models. The data would also be valuable to the community for further
development of reaction yield prediction tools. Integrating yield prediction tools
into synthesis planning workflows is a broader vision for the future of the field.
One approach may be to develop a foundation for localised models, refine the
model on a specific reaction class, and update the training data to integrate re-
action yield data as it is generated from high throughput experiments. Another
approach is to initially focus on curating a larger dataset including many reac-
tion classes. A large dataset of numerous reactions allows a global model to be
developed. Integrating a global model into computer-aided retrosynthesis soft-
ware would provide additional quantitative suggestions along with the synthetic
route. This study provides foundation work and shows the potential to develop
such localised and global tools. Higher-quality datasets and focused research into
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reaction-specific descriptors are likely to progress the area of yield prediction.
There is potential to improve the accuracy and reliability of predicting the yield
of chemical reactions to reduce the timeline of chemical syntheses.
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Appendix A

Open-Source Patent Data

Text mining was used to extract experimental details from the United States
Patent and Trademark Office (USPTO).96,118–120 The full dataset can be down-
loaded from figshare. The downloadables files and file descriptions can be found
in Table A.1. The reaction SMILES (*.rsmi) files contain the reaction SMILES,
patent number, paragraph number, year, text-mined yield, and calculated yield.
The ‘text-mined’ yield is the yield reported in the experimental section. The
‘calculated’ yield is the yield calculated from the quantities of the reagents used
and the product obtained. The Chemical Markup Language (*.cml) files contain
the source, text, reaction SMILES, reactant list, product list, spectator list, and
reaction action list. The source includes citations such as paragraph number and
patent (application) ID. The text is the complete experimental method. The re-
action SMILES is the line notation of the reaction, including reactants, reagents,
and products. The reactant list includes the name, SMILES, and InChI of the
reactants. The product list includes name, SMILES, InChI, text-mined yield, cal-
culated yield, appearance, and state of the products. The spectator list includes
solvents and quantities used. The reaction action list is ordered steps on how
to perform the synthesis; each step includes the action performed, components
acted on, conditions, time, and temperature.
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https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
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Table A.1: Downloadable Files and File Descriptions of the USPTO 1976-2016
Dataset

File Name Description

2001_Sep2016_USPTOapplications_cml.7z
Annoted patent applications from
2001-2016 in XML format.

1976_Sep2016_USPTOgrants_cml.7z
Annotated patent grants from
1976-2016 in XML format.

1976_Sep2016_USPTOgrants_smiles.7z
Reaction SMILES for patent grants
from 1976-2016 in a Reaction
SMILES file (.*rsmi).

2001_Sep2016_USPTOapplications_smiles.7z
Reaction SMILES for patent
applications from 2001-2016 in a
Reaction SMILES file (.*rsmi).

xml_xsd.zip Schema Definition for XML files.
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Predicting Yields of Chemical
Reactions

B.1 Buchwald-Hartwig Dataset
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Figure B.1: Additives in the Buchwald-Hartwig dataset, compiled by Doyle et
al.32 Sets one to four are the additive ranked test sets. Additive 13 and 19
are the highest and lowest-yielding additives, respectively. Reactions containing
additive 7 were removed from the Buchwald-Hartwig dataset as quantum chemical
descriptors cannot be calculated.
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Figure B.2: Aryl halides in the Buchwald-Hartwig dataset, compiled by Doyle
et al.32 Sets one to three are the aryl halide ranked test sets. Aryl Halide 12 and
4 are the highest and lowest yielding aryl halides, respectively.
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Figure B.3: Bases in the Buchwald-Hartwig dataset, compiled by Doyle et al.32
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Figure B.4: Catalyst ligands in the Buchwald-Hartwig dataset, compiled by
Doyle et al.32
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B.2 Quantum Chemical Descriptors

Additive Descriptors (n = 19) EHOMO, ELUMO, Dipole Moment, Electroneg-
ativity, Hardness, Molecular Volume, Molecular Weight, Ovality, Surface Area,
*C3 NMR Shift, *C3 Electrostatic Charge, *C4 NMR Shift, *C4 Electrostatic
Charge, *C5 NMR Shift, *C5 Electrostatic Charge, *N1 Electrostatic Charge,
*O1 Electrostatic Charge, ν1 Frequency, ν1 Intensity.

Aryl Halide Descriptors (n = 27) EHOMO, ELUMO, Dipole Moment, Elec-
tronegativity, Hardness, Molecular Volume, Molecular Weight, Ovality, Surface
Area, *C1 NMR Shift, *C1 Electrostatic Charge, *C2 NMR Shift, *C2 Electro-
static Charge, *C3 NMR Shift, *C3 Electrostatic Charge, *C4 NMR Shift, *C4
Electrostatic Charge, *H2 NMR Shift, *H2 Electrostatic Charge, *H3 NMR Shift,
*H3 Electrostatic Charge, ν1 Frequency, ν1 Intensity, ν2 Frequency, ν2 Intensity,
ν3 Frequency, and ν3 Intensity.

Base Descriptors (n = 10) EHOMO, ELUMO, Dipole Moment, Electronegativ-
ity, Hardness, Molecular Volume, Molecular Weight, Ovality, Surface Area, *N1
Electrostatic Charge.

Ligand Descriptors (n = 64) Dipole Moment, *C1 NMR Shift, *C1 Elec-
trostatic Charge, *C2 NMR Shift, *C2 Electrostatic Charge, *C3 NMR Shift,
*C3 Electrostatic Charge, *C4 NMR Shift, *C4 Electrostatic Charge, *C5 NMR
Shift, *C5 Electrostatic Charge, *C6 NMR Shift, *C6 Electrostatic Charge, *C7
NMR Shift, *C7 Electrostatic Charge, *C8 NMR Shift, *C8 Electrostatic Charge,
*C9 NMR Shift, *C9 Electrostatic Charge, *C10 NMR Shift, *C10 Electrostatic
Charge, *C11 NMR Shift, *C11 Electrostatic Charge, *C12 NMR Shift, *C12
Electrostatic Charge, *C13 NMR Shift, *C13 Electrostatic Charge, *C14 NMR
Shift, *C14 Electrostatic Charge, *C15 NMR Shift, *C15 Electrostatic Charge,
*C16 NMR Shift, *C16 Electrostatic Charge, *C17 NMR Shift, *C17 Electro-
static Charge, *H11 NMR Shift, *H11 Electrostatic Charge, *H3 NMR Shift,
*H3 Electrostatic Charge, *H4 NMR Shift, *H4 Electrostatic Charge, *H9 NMR
Shift, *H9 S24 Electrostatic Charge, *P1 Electrostatic Charge, ν1 Frequency, ν1
Intensity, ν2 Frequency, ν2 Intensity, ν3 Frequency, ν3 Intensity, ν4 Frequency, ν4
Intensity, ν5 Frequency, ν5 Intensity, ν6 Frequency, ν6 Intensity, ν7 Frequency, ν7
Intensity, ν8 Frequency, ν8 Intensity, ν9 Frequency, ν9 Intensity, ν10 Frequency,
ν10 Intensity
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B.3 Cross-Validation

B.3.1 Parameter Optimisation of the Descriptors

Descriptors Derived from Molecular Fingerprints

Table B.1: Average Cross-Validated Coefficient of Determination of the Tuned
Linear Models Built on Molecular Fingerprints and Tanimoto Kernel Descriptors
with Bit Lengths from 32 to 2048

Descriptor Bit Length Linear Models MeanLR Lasso Ridge Elastic Net BR
Fingerprints
Morgan1 32 0.67 0.69 0.69 0.69 0.69 0.69

64 0.68 0.68 0.68 0.68 0.68 0.68
128 0.68 0.68 0.68 0.68 0.68 0.68
256 0.68 0.68 0.68 0.68 0.68 0.68
512 0.67 0.68 0.68 0.68 0.68 0.68

1024 0.56 0.68 0.68 0.68 0.68 0.66
2048 0.67 0.68 0.68 0.68 0.68 0.68

Morgan2 32 0.70 0.70 0.70 0.69 0.70 0.70
64 0.68 0.68 0.68 0.68 0.68 0.68

128 0.67 0.68 0.68 0.68 0.68 0.68
256 0.67 0.68 0.68 0.68 0.68 0.68
512 0.67 0.68 0.68 0.68 0.68 0.68

1024 0.68 0.68 0.68 0.68 0.68 0.68
2048 0.68 0.68 0.68 0.68 0.68 0.68

Morgan3 32 0.70 0.70 0.70 0.70 0.70 0.70
64 0.69 0.70 0.70 0.70 0.70 0.70

128 0.69 0.70 0.70 0.70 0.70 0.70
256 0.69 0.70 0.70 0.70 0.70 0.70
512 0.69 0.70 0.70 0.70 0.70 0.70

1024 0.70 0.70 0.70 0.70 0.70 0.70
2048 0.70 0.70 0.70 0.70 0.70 0.70

FMorgan1 32 <-1.00 0.41 0.41 0.36 0.41 <-1.00
64 <-1.00 0.45 0.44 0.37 0.44 <-1.00

128 <-1.00 0.48 0.48 0.39 0.48 <-1.00
256 <-1.00 0.49 0.49 0.41 0.49 <-1.00
512 <-1.00 0.49 0.49 0.41 0.49 <-1.00

1024 <-1.00 0.49 0.49 0.41 0.49 <-1.00
2048 <-1.00 0.49 0.49 0.41 0.49 <-1.00

FMorgan2 32 <-1.00 0.49 0.48 0.40 0.48 <-1.00
64 <-1.00 0.49 0.47 0.39 0.47 <-1.00

128 <-1.00 0.49 0.47 0.41 0.48 <-1.00
256 <-1.00 0.50 0.46 0.42 0.48 <-1.00
512 <-1.00 0.50 0.45 0.42 0.48 <-1.00

1024 <-1.00 0.50 0.45 0.41 0.47 <-1.00
2048 <-1.00 0.50 0.45 0.41 0.47 <-1.00

FMorgan3 32 <-1.00 0.49 0.48 0.42 0.48 <-1.00
64 <-1.00 0.49 0.46 0.40 0.47 <-1.00

128 <-1.00 0.49 0.45 0.40 0.47 <-1.00
256 <-1.00 0.49 0.43 0.40 0.46 <-1.00
512 <-1.00 0.50 0.43 0.39 0.46 <-1.00

1024 <-1.00 0.49 0.43 0.39 0.46 <-1.00
2048 <-1.00 0.49 0.43 0.39 0.46 <-1.00

RDK 32 0.28 0.28 0.28 0.28 0.28 0.28
64 0.56 0.57 0.57 0.56 0.57 0.56

128 0.62 0.62 0.62 0.62 0.62 0.62
256 0.69 0.70 0.70 0.70 0.70 0.70
512 0.69 0.70 0.70 0.70 0.70 0.70

1024 0.70 0.70 0.70 0.70 0.70 0.70
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Table B.1: Average Cross-Validated Coefficient of Determination of the Tuned
Linear Models Built on Molecular Fingerprints and Tanimoto Kernel Descriptors
with Bit Lengths from 32 to 2048 (Continued)

Descriptor Bit Length Linear Models Mean
LR Lasso Ridge Elastic Net BR

2048 0.69 0.70 0.70 0.70 0.70 0.70
Tanimoto
Morgan1 32 0.92 0.93 0.93 0.61 0.93 0.86

64 0.93 0.94 0.94 0.65 0.94 0.88
128 0.93 0.94 0.94 0.62 0.94 0.87
256 0.93 0.94 0.94 0.61 0.94 0.87
512 0.93 0.94 0.94 0.61 0.94 0.87

1024 0.94 0.94 0.94 0.62 0.94 0.88
2048 0.94 0.94 0.94 0.62 0.94 0.88

Morgan2 32 0.92 0.93 0.93 0.64 0.93 0.87
64 0.94 0.94 0.94 0.61 0.94 0.87

128 0.94 0.94 0.94 0.56 0.94 0.86
256 0.94 0.94 0.94 0.54 0.94 0.86
512 0.94 0.94 0.94 0.53 0.94 0.86

1024 0.94 0.94 0.94 0.52 0.94 0.86
2048 0.94 0.94 0.94 0.52 0.94 0.86

Morgan3 32 0.90 0.91 0.92 0.62 0.92 0.85
64 0.93 0.94 0.94 0.62 0.93 0.87

128 0.94 0.94 0.94 0.55 0.94 0.86
256 0.94 0.94 0.94 0.52 0.94 0.85
512 0.94 0.94 0.94 0.49 0.94 0.85

1024 0.94 0.94 0.94 0.47 0.94 0.85
2048 0.94 0.94 0.94 0.46 0.94 0.84

FMorgan1 32 <-1.00 0.41 0.41 0.36 0.41 <-1.00
64 <-1.00 0.45 0.44 0.37 0.44 <-1.00

128 <-1.00 0.48 0.48 0.39 0.48 <-1.00
256 <-1.00 0.49 0.49 0.41 0.49 <-1.00
512 <-1.00 0.49 0.49 0.41 0.49 <-1.00

1024 <-1.00 0.49 0.49 0.41 0.49 <-1.00
2048 <-1.00 0.49 0.49 0.41 0.49 <-1.00

FMorgan2 32 <-1.00 0.49 0.48 0.40 0.48 <-1.00
64 <-1.00 0.49 0.47 0.39 0.47 <-1.00

128 <-1.00 0.49 0.47 0.41 0.48 <-1.00
256 <-1.00 0.50 0.46 0.42 0.48 <-1.00
512 <-1.00 0.50 0.45 0.42 0.48 <-1.00

1024 <-1.00 0.50 0.45 0.41 0.47 <-1.00
2048 <-1.00 0.50 0.45 0.41 0.47 <-1.00

FMorgan3 32 <-1.00 0.49 0.48 0.42 0.48 <-1.00
64 <-1.00 0.49 0.46 0.40 0.47 <-1.00

128 <-1.00 0.49 0.45 0.40 0.47 <-1.00
256 <-1.00 0.49 0.43 0.40 0.46 <-1.00
512 <-1.00 0.50 0.43 0.39 0.46 <-1.00

1024 <-1.00 0.49 0.43 0.39 0.46 <-1.00
2048 <-1.00 0.49 0.43 0.39 0.46 <-1.00

RDK 32 0.27 0.28 0.28 0.23 0.28 0.27
64 <-1.00 0.61 0.61 0.47 0.61 <-1.00

128 <-1.00 0.72 0.73 0.56 0.73 <-1.00
256 <-1.00 0.89 0.89 0.59 0.89 <-1.00
512 0.91 0.92 0.92 0.59 0.92 0.85

1024 0.91 0.92 0.92 0.56 0.92 0.85
2048 0.91 0.92 0.92 0.52 0.92 0.84
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Table B.2: Average Cross-Validated RMSE of the Tuned Linear Models Built on
Molecular Fingerprints and Tanimoto Kernel Descriptors with Bit Lengths from
32 to 2048

Descriptor Bit Length Linear Models Mean
Linear

Regression Lasso Ridge Elastic Net Bayesian
Ridge

Fingerprints
Morgan1 32 15.7 15.2 15.2 15.3 15.2 15.3

64 15.5 15.5 15.5 15.5 15.5 15.5
128 15.5 15.4 15.4 15.5 15.5 15.5
256 15.5 15.4 15.4 15.5 15.5 15.5
512 15.6 15.4 15.4 15.5 15.5 15.5

1024 17.9 15.4 15.4 15.5 15.5 16.0
2048 15.6 15.4 15.4 15.5 15.5 15.5

Morgan2 32 15.0 15.0 15.0 15.1 15.0 15.0
64 15.5 15.4 15.4 15.4 15.4 15.5

128 15.6 15.5 15.5 15.5 15.5 15.5
256 15.6 15.5 15.5 15.5 15.5 15.5
512 15.6 15.4 15.5 15.5 15.5 15.5

1024 15.5 15.5 15.5 15.5 15.5 15.5
2048 15.5 15.5 15.5 15.5 15.5 15.5

Morgan3 32 15.0 15.0 15.0 15.0 15.0 15.0
64 15.2 15.0 15.0 15.0 15.0 15.0

128 15.1 15.0 15.0 15.0 15.0 15.0
256 15.2 15.0 15.0 15.0 15.0 15.0
512 15.3 15.0 15.0 15.0 15.0 15.0

1024 15.0 14.9 15.0 15.0 15.0 15.0
2048 15.1 15.0 15.0 15.0 15.0 15.0

FMorgan1 32 >100.0 20.9 20.9 21.9 20.9 >100.0
64 >100.0 20.2 20.3 21.6 20.3 >100.0

128 >100.0 19.6 19.6 21.3 19.6 >100.0
256 >100.0 19.5 19.6 21.0 19.5 >100.0
512 >100.0 19.5 19.6 21.0 19.5 >100.0

1024 >100.0 19.5 19.6 21.0 19.5 >100.0
2048 >100.0 19.5 19.6 21.0 19.5 >100.0

FMorgan2 32 >100.0 19.5 19.6 21.1 19.6 >100.0
64 >100.0 19.6 19.8 21.3 19.8 >100.0

128 >100.0 19.4 19.9 20.9 19.7 >100.0
256 >100.0 19.3 20.1 20.7 19.7 >100.0
512 >100.0 19.3 20.1 20.8 19.7 >100.0

1024 >100.0 19.3 20.2 20.9 19.8 >100.0
2048 >100.0 19.3 20.2 20.9 19.8 >100.0

FMorgan3 32 >100.0 19.5 19.6 20.9 19.6 >100.0
64 >100.0 19.5 20.1 21.2 19.8 >100.0

128 >100.0 19.4 20.3 21.1 19.9 >100.0
256 >100.0 19.4 20.5 21.2 20.0 >100.0
512 >100.0 19.4 20.6 21.3 20.1 >100.0

1024 >100.0 19.4 20.6 21.3 20.1 >100.0
2048 >100.0 19.4 20.6 21.3 20.1 >100.0

RDK 32 23.1 23.1 23.1 23.1 23.1 23.1
64 18.1 18.0 18.0 18.0 18.0 18.0

128 16.9 16.8 16.8 16.8 16.8 16.8
256 15.2 15.0 15.0 15.0 15.0 15.0
512 15.2 15.0 15.0 15.0 15.0 15.0

1024 15.0 15.0 15.0 15.0 15.0 15.0
2048 15.2 15.0 15.0 15.0 15.0 15.0

Tanimoto
Morgan1 32 7.8 7.2 7.1 17.1 7.1 9.3

64 7.1 6.8 6.8 16.0 6.7 8.7
128 7.2 6.9 6.9 16.8 6.8 8.9
256 7.0 6.8 6.8 17.0 6.7 8.8
512 7.0 6.8 6.8 17.0 6.7 8.9

1024 6.8 6.5 6.6 16.8 6.5 8.6
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Table B.2: Average Cross-Validated RMSE of the Tuned Linear Models Built on
Molecular Fingerprints and Tanimoto Kernel Descriptors with Bit Lengths from
32 to 2048 (Continued)

Descriptor Bit Length Linear Models Mean
Linear

Regression Lasso Ridge Elastic Net Bayesian
Ridge

2048 6.8 6.5 6.6 16.8 6.5 8.6
Morgan2 32 7.5 7.1 7.0 16.5 7.0 9.0

64 6.8 6.7 6.7 17.0 6.7 8.8
128 6.8 6.7 6.7 18.1 6.8 9.0
256 6.6 6.6 6.6 18.5 6.6 9.0
512 6.6 6.6 6.6 18.6 6.6 9.0

1024 6.5 6.6 6.5 18.9 6.5 9.0
2048 6.5 6.5 6.5 18.9 6.5 9.0

Morgan3 32 8.6 8.0 7.9 16.7 7.7 9.8
64 7.0 6.9 6.9 16.9 7.0 8.9

128 6.9 6.9 6.9 18.2 6.9 9.1
256 6.7 6.8 6.7 19.0 6.7 9.2
512 6.7 6.8 6.7 19.5 6.7 9.3

1024 6.7 6.7 6.7 19.9 6.7 9.3
2048 6.7 6.7 6.7 20.0 6.7 9.4

FMorgan1 32 >100.0 20.9 20.9 21.9 20.9 >100.0
64 >100.0 20.2 20.3 21.6 20.3 >100.0

128 >100.0 19.6 19.6 21.3 19.6 >100.0
256 >100.0 19.5 19.6 21.0 19.5 >100.0
512 >100.0 19.5 19.6 21.0 19.5 >100.0

1024 >100.0 19.5 19.6 21.0 19.5 >100.0
2048 >100.0 19.5 19.6 21.0 19.5 >100.0

FMorgan2 32 >100.0 19.5 19.6 21.1 19.6 >100.0
64 >100.0 19.6 19.8 21.3 19.8 >100.0

128 >100.0 19.4 19.9 20.9 19.7 >100.0
256 >100.0 19.3 20.1 20.7 19.7 >100.0
512 >100.0 19.3 20.1 20.8 19.7 >100.0

1024 >100.0 19.3 20.2 20.9 19.8 >100.0
2048 >100.0 19.3 20.2 20.9 19.8 >100.0

FMorgan3 32 >100.0 19.5 19.6 20.9 19.6 >100.0
64 >100.0 19.5 20.1 21.2 19.8 >100.0

128 >100.0 19.4 20.3 21.1 19.9 >100.0
256 >100.0 19.4 20.5 21.2 20.0 >100.0
512 >100.0 19.4 20.6 21.3 20.1 >100.0

1024 >100.0 19.4 20.6 21.3 20.1 >100.0
2048 >100.0 19.4 20.6 21.3 20.1 >100.0

RDK 32 23.4 23.1 23.1 24.0 23.1 23.3
64 >100.0 16.9 17.0 19.9 17.0 >100.0

128 >100.0 14.4 14.3 18.2 14.3 >100.0
256 >100.0 9.2 9.0 17.4 9.0 >100.0
512 8.2 7.9 7.8 17.6 7.8 9.9

1024 8.0 7.8 7.8 18.1 7.7 9.9
2048 8.0 7.9 7.8 18.9 7.8 10.1
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Table B.3: Average Cross-Validated Coefficient of Determination of the Tuned
SVR Models Built on Molecular Fingerprints and Tanimoto Kernel Descriptors
with Bit Lengths from 32 to 2048

Descriptor Bit Length SVR Kernel Mean
Linear Polynomial RBF Sigmoid Precomputed

Fingerprints
Morgan1 32 0.69 0.92 0.93 0.34 0.72

64 0.68 0.91 0.92 0.47 0.75
128 0.68 0.91 0.92 0.47 0.75
256 0.68 0.92 0.93 0.48 0.75
512 0.68 0.91 0.92 0.49 0.75

1024 0.68 0.92 0.93 0.50 0.76
2048 0.68 0.92 0.93 0.50 0.76

Morgan2 32 0.70 0.91 0.93 0.30 0.71
64 0.68 0.91 0.94 0.46 0.75

128 0.68 0.92 0.94 0.47 0.75
256 0.68 0.92 0.94 0.49 0.76
512 0.68 0.92 0.94 0.50 0.76

1024 0.68 0.92 0.94 0.51 0.76
2048 0.68 0.92 0.94 0.52 0.76

Morgan3 32 0.70 0.90 0.92 0.27 0.70
64 0.70 0.91 0.94 0.45 0.75

128 0.70 0.91 0.94 0.48 0.76
256 0.70 0.92 0.94 0.50 0.76
512 0.70 0.91 0.94 0.50 0.76

1024 0.70 0.91 0.94 0.51 0.77
2048 0.70 0.92 0.94 0.51 0.77

FMorgan1 32 0.38 0.38 0.35 0.39 0.38
64 0.41 0.40 0.39 0.43 0.41

128 0.44 0.43 0.41 0.46 0.44
256 0.46 0.44 0.43 0.48 0.45
512 0.46 0.45 0.44 0.48 0.45

1024 0.45 0.44 0.43 0.48 0.45
2048 0.45 0.44 0.43 0.48 0.45

FMorgan2 32 0.46 0.45 0.44 0.48 0.46
64 0.45 0.43 0.45 0.47 0.45

128 0.45 0.44 0.50 0.48 0.47
256 0.45 0.44 0.50 0.48 0.47
512 0.45 0.43 0.51 0.47 0.47

1024 0.45 0.43 0.51 0.47 0.46
2048 0.45 0.43 0.51 0.47 0.46

FMorgan3 32 0.46 0.45 0.44 0.48 0.46
64 0.45 0.43 0.50 0.47 0.46

128 0.44 0.42 0.50 0.46 0.46
256 0.44 0.42 0.50 0.46 0.45
512 0.43 0.41 0.50 0.46 0.45

1024 0.43 0.41 0.50 0.46 0.45
2048 0.43 0.41 0.50 0.46 0.45

RDK 32 0.27 0.25 0.26 -0.02 0.19
64 0.56 0.60 0.60 -0.02 0.44

128 0.62 0.72 0.72 0.17 0.56
256 0.69 0.90 0.89 0.42 0.73
512 0.70 0.91 0.92 0.26 0.70

1024 0.70 0.91 0.91 0.34 0.71
2048 0.70 0.91 0.91 0.34 0.71

Tanimoto
Morgan1 32 0.92 0.91 0.84 0.93 0.90

64 0.93 0.92 0.87 0.94 0.91
128 0.92 0.91 0.87 0.94 0.91
256 0.93 0.91 0.88 0.94 0.92
512 0.93 0.91 0.89 0.94 0.92

1024 0.93 0.92 0.89 0.94 0.92
2048 0.93 0.92 0.89 0.94 0.92
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Table B.3: Average Cross-Validated Coefficient of Determination of the Tuned
SVR Models Built on Molecular Fingerprints and Tanimoto Kernel Descriptors
with Bit Lengths from 32 to 2048 (Continued)

Descriptor Bit Length SVR Kernel Mean
Linear Polynomial RBF Sigmoid Precomputed

Morgan2 32 0.93 0.92 0.84 0.93 0.91
64 0.93 0.91 0.90 0.94 0.92

128 0.92 0.89 0.91 0.94 0.91
256 0.91 0.89 0.91 0.94 0.92
512 0.91 0.89 0.92 0.94 0.92

1024 0.91 0.89 0.92 0.94 0.92
2048 0.91 0.89 0.92 0.94 0.92

Morgan3 32 0.92 0.91 0.82 0.91 0.89
64 0.92 0.91 0.90 0.94 0.92

128 0.91 0.89 0.91 0.94 0.91
256 0.90 0.88 0.92 0.94 0.91
512 0.90 0.87 0.92 0.94 0.91

1024 0.90 0.86 0.92 0.94 0.91
2048 0.90 0.86 0.93 0.94 0.90

FMorgan1 32 0.38 0.38 0.35 0.39 0.38
64 0.41 0.40 0.39 0.43 0.41

128 0.44 0.43 0.41 0.46 0.44
256 0.46 0.44 0.43 0.48 0.45
512 0.46 0.45 0.44 0.48 0.45

1024 0.45 0.44 0.43 0.48 0.45
2048 0.45 0.44 0.43 0.48 0.45

FMorgan2 32 0.46 0.45 0.44 0.48 0.46
64 0.45 0.43 0.45 0.47 0.45

128 0.45 0.44 0.50 0.48 0.47
256 0.45 0.44 0.50 0.48 0.47
512 0.45 0.43 0.51 0.47 0.47

1024 0.45 0.43 0.51 0.47 0.46
2048 0.45 0.43 0.51 0.47 0.46

FMorgan3 32 0.46 0.45 0.44 0.48 0.46
64 0.45 0.43 0.50 0.47 0.46

128 0.44 0.42 0.50 0.46 0.46
256 0.44 0.42 0.50 0.46 0.45
512 0.43 0.41 0.50 0.46 0.45

1024 0.43 0.41 0.50 0.46 0.45
2048 0.43 0.41 0.50 0.46 0.45

RDK 32 0.26 0.26 0.26 0.27 0.26
64 0.60 0.60 0.45 0.60 0.56

128 0.71 0.69 0.57 0.71 0.67
256 0.88 0.87 0.79 0.89 0.86
512 0.91 0.89 0.85 0.92 0.89

1024 0.90 0.89 0.88 0.92 0.90
2048 0.89 0.87 0.89 0.92 0.89



Appendix B: Predicting Yields of Chemical Reactions 195

Table B.4: Average Cross-Validated RMSE of the Tuned SVR Models Built on
Molecular Fingerprints and Tanimoto Kernel Descriptors with Bit Lengths from
32 to 2048

Descriptor Bit Length SVR Kernel Mean
Linear Polynomial RBF Sigmoid Precomputed

Fingerprints
Morgan1 32 15.2 7.8 7.4 22.2 13.2

64 15.5 8.0 7.5 19.9 12.7
128 15.5 8.0 7.5 19.8 12.7
256 15.5 7.9 7.4 19.6 12.6
512 15.5 8.0 7.5 19.5 12.6

1024 15.5 7.9 7.3 19.2 12.5
2048 15.5 7.9 7.3 19.2 12.5

Morgan2 32 15.0 8.1 7.1 22.8 13.2
64 15.5 8.0 6.7 20.1 12.6

128 15.5 7.8 6.7 19.9 12.5
256 15.5 7.8 6.6 19.5 12.4
512 15.5 7.8 6.6 19.2 12.3

1024 15.5 7.8 6.6 19.0 12.2
2048 15.5 7.8 6.6 19.0 12.2

Morgan3 32 15.0 8.5 7.9 23.3 13.7
64 15.0 8.0 6.9 20.2 12.5

128 15.0 8.0 6.8 19.8 12.4
256 15.0 7.9 6.7 19.3 12.2
512 15.0 8.0 6.6 19.4 12.3

1024 15.0 8.0 6.6 19.1 12.2
2048 15.0 7.9 6.6 19.1 12.2

FMorgan1 32 21.4 21.6 21.9 21.2 21.5
64 20.9 21.1 21.4 20.6 21.0

128 20.4 20.5 21.0 20.0 20.5
256 20.1 20.3 20.5 19.8 20.2
512 20.1 20.3 20.5 19.7 20.2

1024 20.1 20.3 20.5 19.7 20.2
2048 20.1 20.3 20.5 19.7 20.2

FMorgan2 32 20.1 20.3 20.4 19.7 20.1
64 20.3 20.5 20.3 19.8 20.2

128 20.2 20.5 19.3 19.7 19.9
256 20.2 20.5 19.2 19.7 19.9
512 20.2 20.5 19.2 19.8 19.9

1024 20.3 20.6 19.1 19.8 20.0
2048 20.3 20.6 19.1 19.8 19.9

FMorgan3 32 20.0 20.2 20.3 19.7 20.1
64 20.3 20.6 19.2 19.9 20.0

128 20.4 20.7 19.2 20.0 20.1
256 20.5 20.8 19.2 20.0 20.1
512 20.5 20.9 19.2 20.1 20.2

1024 20.5 20.9 19.3 20.1 20.2
2048 20.5 20.9 19.2 20.1 20.2

RDK 32 23.3 23.6 23.5 27.6 24.5
64 18.0 17.2 17.3 27.6 20.0

128 16.9 14.4 14.5 24.9 17.7
256 15.1 8.8 8.9 20.8 13.4
512 15.0 8.1 7.9 23.5 13.6

1024 15.0 8.2 8.1 22.2 13.4
2048 15.0 8.4 8.3 22.1 13.5

Tanimoto
Morgan1 32 7.8 8.3 10.9 7.3 8.6

64 7.3 7.9 9.9 6.9 8.0
128 7.5 8.2 9.8 6.9 8.1
256 7.3 8.0 9.4 6.8 7.9
512 7.3 8.0 9.2 6.8 7.8

1024 7.1 7.8 9.0 6.5 7.6
2048 7.1 7.8 9.0 6.5 7.6
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Table B.4: Average Cross-Validated RMSE of the Tuned SVR Models Built on
Molecular Fingerprints and Tanimoto Kernel Descriptors with Bit Lengths from
32 to 2048 (Continued)

Descriptor Bit Length SVR Kernel Mean
Linear Polynomial RBF Sigmoid Precomputed

Morgan2 32 7.2 7.5 10.9 7.1 8.2
64 7.4 8.2 8.8 6.7 7.8

128 7.9 8.9 8.3 6.7 7.9
256 8.0 9.0 8.0 6.6 7.9
512 8.0 9.0 7.9 6.6 7.9

1024 8.0 9.1 7.8 6.6 7.9
2048 8.0 9.2 7.8 6.6 7.9

Morgan3 32 8.0 8.1 11.5 8.1 8.9
64 7.6 8.3 8.7 6.9 7.9

128 8.2 9.2 8.0 6.9 8.1
256 8.4 9.5 7.7 6.8 8.1
512 8.6 9.8 7.6 6.9 8.2

1024 8.8 10.1 7.5 6.9 8.3
2048 8.8 10.1 7.5 6.9 8.3

FMorgan1 32 21.4 21.6 21.9 21.2 21.5
64 20.9 21.1 21.4 20.6 21.0

128 20.4 20.5 21.0 20.0 20.5
256 20.1 20.3 20.5 19.8 20.2
512 20.1 20.3 20.5 19.7 20.2

1024 20.1 20.3 20.5 19.7 20.2
2048 20.1 20.3 20.5 19.7 20.2

FMorgan2 32 20.1 20.3 20.4 19.7 20.1
64 20.3 20.5 20.3 19.8 20.2

128 20.2 20.5 19.3 19.7 19.9
256 20.2 20.5 19.2 19.7 19.9
512 20.2 20.5 19.2 19.8 19.9

1024 20.3 20.6 19.1 19.8 20.0
2048 20.3 20.6 19.1 19.8 19.9

FMorgan3 32 20.0 20.2 20.3 19.7 20.1
64 20.3 20.6 19.2 19.9 20.0

128 20.4 20.7 19.2 20.0 20.1
256 20.5 20.8 19.2 20.0 20.1
512 20.5 20.9 19.2 20.1 20.2

1024 20.5 20.9 19.3 20.1 20.2
2048 20.5 20.9 19.2 20.1 20.2

RDK 32 23.4 23.4 23.5 23.3 23.4
64 17.2 17.3 20.3 17.2 18.0

128 14.8 15.1 17.8 14.6 15.6
256 9.5 9.8 12.4 9.1 10.2
512 8.4 8.9 10.5 7.9 8.9

1024 8.5 9.2 9.4 7.8 8.7
2048 8.8 9.7 9.2 7.8 8.9
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Table B.5: Average Cross-Validated Coefficient of Determination of the Tuned
Tree-Based Models Built on Molecular Fingerprints and Tanimoto Kernel De-
scriptors with Bit Lengths from 32 to 2048

Descriptor Bit Length Tree-based Models Mean
Decision Tree Gradient Boosting Random Forest

Fingerprints
Morgan1 32 0.86 0.90 0.92 0.90

64 0.87 0.91 0.93 0.90
128 0.88 0.91 0.93 0.91
256 0.88 0.91 0.93 0.91
512 0.88 0.91 0.93 0.91

1024 0.88 0.91 0.94 0.91
2048 0.88 0.91 0.94 0.91

Morgan2 32 0.87 0.91 0.93 0.90
64 0.86 0.91 0.93 0.90

128 0.86 0.91 0.93 0.90
256 0.86 0.91 0.93 0.90
512 0.88 0.91 0.93 0.91

1024 0.88 0.92 0.94 0.91
2048 0.88 0.92 0.94 0.91

Morgan3 32 0.84 0.90 0.92 0.89
64 0.89 0.91 0.93 0.91

128 0.85 0.91 0.93 0.90
256 0.85 0.91 0.93 0.90
512 0.87 0.91 0.93 0.90

1024 0.88 0.91 0.93 0.91
2048 0.88 0.92 0.93 0.91

FMorgan1 32 0.14 0.31 0.23 0.23
64 0.15 0.35 0.24 0.25

128 0.17 0.39 0.28 0.28
256 0.18 0.39 0.28 0.28
512 0.17 0.39 0.28 0.28

1024 0.18 0.39 0.29 0.29
2048 0.18 0.39 0.29 0.29

FMorgan2 32 0.12 0.37 0.25 0.25
64 0.12 0.37 0.25 0.25

128 0.12 0.37 0.26 0.25
256 0.12 0.38 0.26 0.25
512 0.12 0.38 0.26 0.25

1024 0.12 0.38 0.25 0.25
2048 0.12 0.38 0.25 0.25

FMorgan3 32 0.12 0.37 0.26 0.25
64 0.11 0.36 0.25 0.24

128 0.12 0.37 0.25 0.25
256 0.12 0.37 0.25 0.25
512 0.11 0.38 0.25 0.25

1024 0.11 0.37 0.25 0.24
2048 0.12 0.38 0.25 0.25

RDK 32 0.27 0.28 0.27 0.28
64 0.58 0.62 0.59 0.60

128 0.45 0.74 0.63 0.61
256 0.84 0.89 0.90 0.88
512 0.86 0.90 0.93 0.90

1024 0.87 0.90 0.93 0.90
2048 0.85 0.90 0.93 0.89

Tanimoto
Morgan1 32 0.45 0.81 0.75 0.67

64 0.45 0.82 0.76 0.68
128 0.31 0.81 0.70 0.61
256 0.39 0.82 0.73 0.65
512 0.43 0.81 0.73 0.66

1024 0.44 0.83 0.75 0.67
2048 0.43 0.83 0.76 0.67
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Table B.5: Average Cross-Validated Coefficient of Determination of the Tuned
Tree-Based Models Built on Molecular Fingerprints and Tanimoto Kernel De-
scriptors with Bit Lengths from 32 to 2048 (Continued)

Descriptor Bit Length Tree-based Models Mean
Decision Tree Gradient Boosting Random Forest

Morgan2 32 0.59 0.84 0.80 0.74
64 0.44 0.83 0.75 0.67

128 0.41 0.81 0.72 0.64
256 0.43 0.81 0.72 0.65
512 0.37 0.80 0.72 0.63

1024 0.44 0.82 0.74 0.67
2048 0.46 0.82 0.75 0.68

Morgan3 32 0.55 0.82 0.78 0.72
64 0.53 0.83 0.78 0.72

128 0.48 0.83 0.76 0.69
256 0.43 0.82 0.74 0.66
512 0.37 0.79 0.72 0.63

1024 0.40 0.80 0.73 0.65
2048 0.41 0.80 0.72 0.64

FMorgan1 32 0.14 0.31 0.23 0.23
64 0.15 0.35 0.24 0.25

128 0.17 0.39 0.28 0.28
256 0.18 0.39 0.28 0.28
512 0.17 0.39 0.28 0.28

1024 0.18 0.39 0.29 0.29
2048 0.18 0.39 0.29 0.29

FMorgan2 32 0.12 0.37 0.25 0.25
64 0.12 0.37 0.25 0.25

128 0.12 0.37 0.26 0.25
256 0.12 0.38 0.26 0.25
512 0.12 0.38 0.26 0.25

1024 0.12 0.38 0.25 0.25
2048 0.12 0.38 0.25 0.25

FMorgan3 32 0.12 0.37 0.26 0.25
64 0.11 0.36 0.25 0.24

128 0.12 0.37 0.25 0.25
256 0.12 0.37 0.25 0.25
512 0.11 0.38 0.25 0.25

1024 0.11 0.37 0.25 0.24
2048 0.12 0.38 0.25 0.25

RDK 32 0.27 0.27 0.27 0.27
64 0.58 0.60 0.59 0.59

128 0.39 0.66 0.59 0.55
256 0.56 0.79 0.75 0.70
512 0.44 0.79 0.72 0.65

1024 0.38 0.79 0.70 0.62
2048 0.37 0.77 0.70 0.61
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Table B.6: Average Cross-Validated RMSE of the Tuned Tree-Based Models Built
on Molecular Fingerprints and Tanimoto Kernel Descriptors with Bit Lengths
from 32 to 2048

Descriptor Bit Length Tree-based Models Mean
Decision Tree Gradient Boosting Random Forest

Fingerprints
Morgan1 32 10.1 8.5 7.7 8.8

64 9.7 8.4 7.2 8.4
128 9.6 8.3 7.1 8.3
256 9.5 8.3 7.1 8.3
512 9.4 8.2 7.1 8.2

1024 9.6 8.1 6.8 8.2
2048 9.5 8.1 6.8 8.1

Morgan2 32 9.9 8.4 7.3 8.5
64 10.1 8.1 7.1 8.4

128 10.2 8.0 7.2 8.5
256 10.2 8.1 7.2 8.5
512 9.6 8.2 7.1 8.3

1024 9.5 7.9 7.0 8.1
2048 9.4 7.8 6.9 8.0

Morgan3 32 10.9 8.6 7.6 9.0
64 9.1 8.3 7.2 8.2

128 10.4 8.1 7.5 8.7
256 10.4 8.1 7.4 8.6
512 9.9 8.1 7.2 8.4

1024 9.6 8.0 7.0 8.2
2048 9.4 7.9 7.0 8.1

FMorgan1 32 25.3 22.6 23.9 23.9
64 25.2 22.0 23.7 23.6

128 24.8 21.3 23.1 23.1
256 24.8 21.3 23.1 23.1
512 24.8 21.3 23.1 23.1

1024 24.7 21.2 23.1 23.0
2048 24.7 21.2 23.1 23.0

FMorgan2 32 25.6 21.7 23.5 23.6
64 25.6 21.6 23.6 23.6

128 25.6 21.6 23.5 23.6
256 25.6 21.5 23.5 23.5
512 25.6 21.6 23.5 23.6

1024 25.5 21.5 23.6 23.5
2048 25.6 21.5 23.6 23.6

FMorgan3 32 25.6 21.6 23.5 23.6
64 25.7 21.8 23.6 23.7

128 25.6 21.6 23.6 23.6
256 25.6 21.6 23.6 23.6
512 25.7 21.5 23.5 23.6

1024 25.7 21.7 23.6 23.6
2048 25.5 21.6 23.6 23.6

RDK 32 23.3 23.1 23.2 23.2
64 17.7 16.8 17.5 17.3

128 20.2 13.8 16.7 16.9
256 10.8 8.9 8.6 9.4
512 10.2 8.5 7.4 8.7

1024 10.0 8.4 7.3 8.6
2048 10.4 8.4 7.4 8.7

Tanimoto
Morgan1 32 20.2 11.8 13.6 15.2

64 20.2 11.6 13.5 15.1
128 22.6 12.0 14.9 16.5
256 21.3 11.6 14.1 15.7
512 20.6 11.8 14.0 15.5

1024 20.3 11.3 13.5 15.0
2048 20.5 11.3 13.5 15.1
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Table B.6: Average Cross-Validated RMSE of the Tuned Tree-Based Models Built
on Molecular Fingerprints and Tanimoto Kernel Descriptors with Bit Lengths
from 32 to 2048 (Continued)

Descriptor Bit Length Tree-based Models Mean
Decision Tree Gradient Boosting Random Forest

Morgan2 32 17.6 11.0 12.1 13.5
64 20.4 11.4 13.6 15.1

128 21.0 11.9 14.5 15.8
256 20.5 11.9 14.4 15.6
512 21.6 12.2 14.4 16.1

1024 20.5 11.6 13.8 15.3
2048 19.9 11.5 13.7 15.0

Morgan3 32 18.4 11.6 12.8 14.2
64 18.5 11.1 12.7 14.1

128 19.7 11.4 13.4 14.8
256 20.6 11.7 13.9 15.4
512 21.7 12.4 14.5 16.2

1024 21.1 12.2 14.0 15.8
2048 20.9 12.3 14.4 15.9

FMorgan1 32 25.3 22.6 23.9 23.9
64 25.2 22.0 23.7 23.6

128 24.8 21.3 23.1 23.1
256 24.8 21.3 23.1 23.1
512 24.8 21.3 23.1 23.1

1024 24.7 21.2 23.1 23.0
2048 24.7 21.2 23.1 23.0

FMorgan2 32 25.6 21.7 23.5 23.6
64 25.6 21.6 23.6 23.6

128 25.6 21.6 23.5 23.6
256 25.6 21.5 23.5 23.5
512 25.6 21.6 23.5 23.6

1024 25.5 21.5 23.6 23.5
2048 25.6 21.5 23.6 23.6

FMorgan3 32 25.6 21.6 23.5 23.6
64 25.7 21.8 23.6 23.7

128 25.6 21.6 23.6 23.6
256 25.6 21.6 23.6 23.6
512 25.7 21.5 23.5 23.6

1024 25.7 21.7 23.6 23.6
2048 25.5 21.6 23.6 23.6

RDK 32 23.3 23.3 23.2 23.2
64 17.7 17.2 17.5 17.5

128 21.2 15.9 17.5 18.2
256 18.1 12.3 13.7 14.7
512 20.4 12.4 14.4 15.8

1024 21.5 12.5 15.0 16.3
2048 21.6 13.1 14.8 16.5
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Descriptors Derived from Molecular Graphs

Table B.7: Average Cross-Validated Performance of the Linear Models Built on
the WL Kernel

WL Depth Linear Models Mean
Linear

Regression Lasso Ridge Elastic Net Bayesian
Ridge

Mean R2

2 <-1.00 0.85 0.86 0.63 0.86 <-1.00
3 0.90 0.92 0.93 0.66 0.93 0.87
4 0.91 0.92 0.93 0.67 0.93 0.87
5 0.92 0.93 0.93 0.67 0.93 0.87
6 0.93 0.93 0.93 0.67 0.93 0.88
7 0.93 0.93 0.93 0.66 0.93 0.88
8 0.93 0.93 0.93 0.65 0.93 0.87
9 0.93 0.93 0.93 0.64 0.93 0.87

10 0.93 0.93 0.93 0.63 0.93 0.87

Mean RMSE (%)

2 >100.0 10.5 10.2 16.7 10.3 >100.0
3 8.6 7.5 7.3 16.0 7.4 9.4
4 8.0 7.5 7.3 15.7 7.4 9.2
5 7.6 7.4 7.3 15.7 7.3 9.1
6 7.4 7.3 7.3 15.7 7.3 9.0
7 7.3 7.3 7.2 15.9 7.3 9.0
8 7.3 7.3 7.2 16.1 7.2 9.0
9 7.3 7.3 7.3 16.3 7.3 9.1

10 7.3 7.3 7.3 16.6 7.3 9.1
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Table B.8: Average Cross-Validated Performance of the SVR Models Built on
the WL Kernel

WL Depth SVR Kernel Mean
Polynomial RBF Sigmoid Precomputed

Mean R2

2 0.92 0.93 0.60 0.85 0.83
3 0.93 0.92 0.68 0.93 0.86
4 0.93 0.92 0.72 0.92 0.87
5 0.93 0.92 0.83 0.92 0.90
6 0.93 0.92 0.85 0.93 0.91
7 0.92 0.92 0.87 0.93 0.91
8 0.92 0.91 0.88 0.93 0.91
9 0.92 0.91 0.89 0.93 0.91

10 0.92 0.91 0.89 0.93 0.91

Mean RMSE (%)

2 7.5 7.4 17.2 10.5 10.7
3 7.4 7.5 15.5 7.4 9.5
4 7.5 7.6 14.3 7.5 9.2
5 7.4 7.7 11.2 7.5 8.5
6 7.4 7.7 10.4 7.4 8.2
7 7.5 7.8 9.9 7.3 8.1
8 7.6 8.0 9.4 7.3 8.1
9 7.7 8.2 9.1 7.3 8.1

10 7.8 8.4 8.9 7.3 8.1

Table B.9: Average Cross-Validated Performance of the Tree-Based Models Built
on the WL Kernel

WL Depth Tree-Based Models Mean
Decision Tree Gradient Boosting Random Forest

Mean R2

2 0.59 0.84 0.82 0.75
3 0.58 0.84 0.80 0.74
4 0.58 0.86 0.80 0.75
5 0.51 0.86 0.78 0.72
6 0.55 0.86 0.80 0.74
7 0.54 0.87 0.79 0.73
8 0.61 0.86 0.81 0.76
9 0.59 0.85 0.80 0.75

10 0.56 0.85 0.79 0.73

Mean RMSE (%)

2 17.4 10.9 11.7 13.3
3 17.5 10.8 12.0 13.5
4 17.5 10.3 12.1 13.3
5 19.1 10.2 12.8 14.1
6 18.2 10.0 12.3 13.5
7 18.4 10.0 12.4 13.6
8 16.9 10.1 11.8 12.9
9 17.4 10.4 12.1 13.3

10 17.9 10.5 12.6 13.7
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B.4 Prospective Buchwald-Hartwig Reactions
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Figure B.5: Aryl chlorides in the prospective Buchwald-Hartwig reactions.
∗Molecules present in the Buchwald-Hartwig dataset, compiled by Doyle et al.32

Hn , key; number, maximum Tanimoto similarity score (with the Morgan2 finger-
print) to the aryl halides in the Buchwald-Hartwig reactions.
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Figure B.6: Aryl bromides in the prospective Buchwald-Hartwig reactions.
∗Molecules present in the Buchwald-Hartwig dataset, compiled by Doyle et al.32

Hn , key; number, maximum Tanimoto similarity score (with the Morgan2 finger-
print) to the aryl halides in the Buchwald-Hartwig reactions.
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Figure B.7: Aryl iodides in the prospective Buchwald-Hartwig reactions.
∗Molecules present in the Buchwald-Hartwig dataset, compiled by Doyle et al.32

Hn , key; number, maximum Tanimoto similarity score (with the Morgan2 finger-
print) to the aryl halides in the Buchwald-Hartwig reactions.
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Figure B.8: Bases in the prospective Buchwald-Hartwig reactions. ∗Molecules
present in the Buchwald-Hartwig dataset, compiled by Doyel et al.32
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Figure B.9: Catalyst ligands in the prospective Buchwald-Hartwig reactions.
∗Molecules present in the Buchwald-Hartwig dataset, compiled by Doyel et al.32
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Figure B.10: Additive in the prospective Buchwald-Hartwig reactions.
∗Molecules present in the Buchwald-Hartwig dataset, compiled by Doyel et al.32
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B.5 Quantum Chemical Descriptors of the

Prospective Reactions

Quantum chemical descriptors were calculated for the 49 aryl halides and the base,
DBU, present in the prospective reactions. Density functional theory (DFT) ge-
ometry optimizations and property calculations were performed using the Spartan
‘14 software package with a combination of the B3LYP exchange-correlation func-
tional and 6-31G(d) basis set.236,237 Properties, including electrostatic charges,
vibrational frequencies, and 13C/1H NMR chemical shifts, were calculated at the
optimized geometries. Improved tolerances and thresholds were set throughout,
using the keywords: SCFTOLERANCE = VERYHIGH, GRADIENTTOLER-
ANCE = 0.000005, DISTANCETOLERANCE = 0.00002, and BIGGRID. Ad-
ditional molecular descriptors including the molecular weight, the energy of the
HOMO and LUMO orbitals, and the total dipole moment, as well as Quantita-
tive Structure-Activity Relationship (QSAR) descriptors for molecular volume,
surface area, ovality, electronegativity, and hardness were also extracted for each
species. The NMR and electrostatic descriptors were extracted for the set of six
shared atoms previously determined for the aryl halide reagent class in the work
by Doyle et al.32 (Chapter 4 Figure 4.1), with C1-C4 and H1-H2 numbered giving
the C1 label to the carbon bound to the heaviest halide for which the associated
atom pattern exists. In cases where the two sides of the aryl halide are not
symmetrically equivalent and two potential C2/C3 and H1/H2 atoms exist, the
labels have been assigned to the atoms on the side with the lowest total mass.
Vibrational frequencies and intensities were extracted for the three shared vibra-
tions previously determined for the aryl halide reagent class by Doyle et al.,32 and
have been identified by visual inspection of the atomic displacements along each
normal coordinate. Electrostatic descriptors were extracted for shared nitrogen
atom (N1) in the base reagent class (Chapter 4 Figure 4.1).

Issues Calculating Quantum Chemical Descriptors for the Aryl Io-
dides

The Spartan files used in the calculations of the quantum chemical descriptors
by Doyle et al.32 are given in the GitHub repository: https://github.com/d

oylelab/rxnpredict.2 According to the supporting information, the Spartan
DFT calculations (including NMR calculations) were performed using Spartan
’14 V1.1.4. Their program used a series of scripts that submitted the calculations
via the command line (B3LYP/6-31G(d)). There is no explicit reference to the
use of a pseudopotential when performing the calculations on the aryl iodides.

https://github.com/doylelab/rxnpredict
https://github.com/doylelab/rxnpredict
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The 6-31G(d) was used for all molecules except the aryl iodides, which used a
mixed basis set: 6-31G(d) and LANL2DZ>kr (Figure B.11). The LANL2DZ>kr
pseudopotential and basis set was used for the iodine atom and gave a chemical
NMR shift of 424.51ppm when using the 1-ethyl-4-iodobenzene molecule as a test
case.

(a) 1-bromo-4-
(trifluoromethyl)benzene/M0001/output

(b) 1-iodo-4-
(trifluoromethyl)benzene/M0001/output

Figure B.11: The Spartan output file for (a) 1-bromo-4-(trifluoromethyl)benzene
and (b) 1-iodo-4-(trifluoromethyl)benzene.2

An analogous NMR calculation was performed, using Win/64b Spartan ’14
V1.1.8, through the standard graphical user interface. The output geometry
of 1-ethyl-iodobenzene was used as the structure and resulted in the following
error message, as shown in Figure B.12, "the calculation failed: NMR not al-
lowed for ECP atoms". The same calculation was performed using an up to date
developers copy of Q-Chem from September 2020, as Q-Chem constitutes the
back-end for most of the Spartan software package. The calculation also failed,
with the error "NMR code does not handle pseudopotentials". The same calcula-
tion performed for a third time with a much earlier Win/64b Spartan ’12 V1.1.0,
using the graphical user interface, did run. However, it gave a chemical shift of
588.11ppm for the Iodine atom, which is an error of 163.60 (ca. 28%) compared
to the result published by Doyle et al.32. In this work, aryl iodides were included
in the initial model development for consistency with the open dataset, but, due
to the ambiguity in the quantum chemical calculations, were not included in the
yield predictions of the prospective reactions.

B.6 Diversity of the Buchwald-Hartwig

Dataset

B.6.1 Chemical Reactivity
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Figure B.12: Error message from running an analogous NMR calculation on the
1-ethyl-iodobenzene output geometry.2
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(a)

(b)

(c)
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(d)

(e)

Figure B.13: Distributions of experimental yield of the training data (pale pink
bars) and test data (dark blue bars) in the test sets designed without activity
ranking. Test Sets were split by (a) high-throughput plates, (b) aryl halide ring
type, (c) aryl halide halide type, (d) base and (e) ligand.
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(a)

(b)

Figure B.14: Distributions of experimental yield of the training data (pale pink
bars) and test data (dark blue bars) in the (a) additive and (b) aryl halide,
activity ranked tests.
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B.6.2 Domain of Applicability

Table B.10: Maximum Similarity to Training Scores for the Additive and Aryl
Halide Ranked Tests

Key Name
Maximum Similarity

Raw Binned

Additive

10 benzo[c]isoxazole 0.31 0.30-0.35
15 benzo[d ]isoxazole 0.31 0.30-0.35
14 methyl-isoxazole-5-carboxylate 0.37 0.35-0.40
1 4-phenylisoxazole 0.39 0.35-0.40
5 3-methylisoxazole 0.40 0.40-0.45
3 3-phenylisoxazole 0.40 0.40-0.45
8 5-methylisoxazole 0.41 0.40-0.45

12 3,5-dimethylisoxazole 0.44 0.40-0.45
17 3-methyl-5-phenylisoxazole 0.44 0.40-0.45
20 5-methyl-3-(1H -pyrrol-1-yl)isoxazole 0.44 0.40-0.45
18 N,N -dibenzylisoxazol-5-amine 0.49 0.45-0.50
2 5-phenylisoxazole 0.50 0.50-0.55

11 ethyl-5-methylisoxazole-4-carboxylate 0.50 0.50-0.55
16 5-(2,6-difluorophenyl)isoxazole 0.50 0.50-0.55
23 ethyl-3-methoxyisoxazole-5-carboxylate 0.51 0.50-0.55
4 ethyl-3-methylisoxazole-5-carboxylate 0.56 0.55-0.60
6 ethyl-5-methylisoxazole-3-carboxylate 0.58 0.55-0.60
9 ethyl-isoxazole-3-carboxylate 0.58 0.55-0.60

21 methyl-5-(furan-2-yl)isoxazole-3-carboxylate 0.64 0.60-0.65
22 methyl-5-(thiophen-2-yl)isoxazole-3-carboxylate 0.64 0.60-0.65

Aryl Halide

8 1-bromo-4-ethylbenzene 0.33 0.30-0.35
7 1-chloro-4-ethylbenzene 0.39 0.35-0.40
9 1-ethyl-4-iodobenzene 0.39 0.35-0.40

10 2-chloropyridine 0.48 0.45-0.50
11 2-bromopyridine 0.48 0.45-0.50
15 3-iodopyridine 0.48 0.45-0.50
13 3-chloropyridine 0.55 0.50-0.55
14 3-bromopyridine 0.55 0.50-0.55
1 1-chloro-4-(trifluoromethyl)benzene 0.52 0.50-0.55
2 1-bromo-4-(trifluoromethyl)benzene 0.52 0.50-0.55
3 1-iodo-4-(trifluoromethyl)benzene 0.52 0.50-0.55
6 1-iodo-4-methoxybenzene 0.52 0.50-0.55
5 1-bromo-4-methoxybenzene 0.60 0.55-0.60



Appendix B: Predicting Yields of Chemical Reactions 214

B.7 Out-of-Sample Tests: Without Activity

Ranking

B.7.1 Additive Test: Plate Split

Grid Search Cross-Validated Performance

Table B.11: Grid Search Cross-Validated Performance for the Models in the
Additive Test: Plate Split

Descriptor ML Algorithm R2 RMSE (%)
P1 P2 P3 Mean P1 P2 P3 Mean

One-hot Linear Regression 0.69 0.72 0.68 0.70 14.2 14.6 15.9 14.9
Lasso 0.69 0.73 0.69 0.70 14.2 14.5 15.7 14.8
Ridge 0.69 0.73 0.69 0.70 14.2 14.5 15.7 14.8
Bayesian Ridge 0.69 0.73 0.69 0.70 14.2 14.5 15.7 14.8
SVR - Linear 0.69 0.72 0.68 0.70 14.3 14.6 15.7 14.8
SVR - Polynomial 0.89 0.90 0.91 0.90 8.3 8.7 8.4 8.5
SVR - RBF 0.91 0.91 0.92 0.91 7.8 8.2 8.0 8.0
SVR - Sigmoid 0.57 0.61 0.54 0.57 16.9 17.2 18.9 17.7
Gradient Boosting 0.89 0.90 0.90 0.90 8.4 8.7 8.8 8.6
Random Forest 0.90 0.89 0.91 0.90 8.0 9.0 8.3 8.4

Quantum Linear Regression 0.69 0.72 0.68 0.70 14.2 14.5 15.7 14.8
Chemical Lasso 0.69 0.72 0.68 0.70 14.3 14.6 15.7 14.9

Ridge 0.69 0.73 0.69 0.70 14.2 14.5 15.7 14.8
Bayesian Ridge 0.69 0.72 0.68 0.70 14.3 14.6 15.7 14.9
SVR - Linear 0.69 0.72 0.68 0.70 14.3 14.6 15.7 14.8
SVR - Polynomial 0.90 0.91 0.89 0.90 8.1 8.2 9.1 8.5
SVR - RBF 0.91 0.92 0.88 0.90 7.6 8.0 9.5 8.4
SVR - Sigmoid 0.47 0.47 0.44 0.46 18.7 20.1 20.9 19.9
Gradient Boosting 0.92 0.92 0.92 0.92 7.5 7.7 7.8 7.7
Random Forest 0.93 0.92 0.93 0.93 6.7 7.6 7.3 7.2

Fingerprints: Linear Regression 0.62 0.43 0.59 0.55 15.8 20.1 17.8 17.9
MACCS Lasso 0.66 0.67 0.62 0.65 15.0 15.9 17.2 16.0

Ridge 0.66 0.67 0.62 0.65 15.0 15.9 17.2 16.0
Bayesian Ridge 0.66 0.67 0.62 0.65 15.0 15.9 17.2 16.0
SVR - Linear 0.66 0.67 0.62 0.65 15.0 15.9 17.3 16.1
SVR - Polynomial 0.88 0.87 0.86 0.87 9.0 10.1 10.5 9.9
SVR - RBF 0.87 0.86 0.85 0.86 9.2 10.3 10.7 10.1
SVR - Sigmoid 0.29 0.28 0.22 0.26 21.7 23.5 24.6 23.3
Gradient Boosting 0.90 0.90 0.89 0.90 8.2 8.7 9.3 8.7
Random Forest 0.92 0.93 0.93 0.93 7.1 7.4 7.5 7.3

Fingerprints: Linear Regression 0.67 0.68 0.50 0.62 14.8 15.6 19.0 16.5
Morgan1 Lasso 0.67 0.70 0.67 0.68 14.6 15.2 16.1 15.3

Ridge 0.67 0.70 0.67 0.68 14.7 15.2 16.1 15.3
Bayesian Ridge 0.67 0.70 0.67 0.68 14.6 15.2 16.1 15.3
SVR - Linear 0.67 0.69 0.67 0.68 14.7 15.3 16.1 15.4
SVR - Polynomial 0.91 0.92 0.91 0.91 7.5 8.0 8.3 7.9
SVR - RBF 0.93 0.93 0.92 0.92 6.9 7.6 8.0 7.5
SVR - Sigmoid 0.47 0.48 0.41 0.45 18.8 20.0 21.4 20.1
Gradient Boosting 0.91 0.92 0.91 0.91 7.6 8.0 8.2 8.0
Random Forest 0.93 0.93 0.93 0.93 6.8 7.5 7.1 7.1

Fingerprints: Linear Regression 0.68 0.71 0.67 0.69 14.6 15.0 15.9 15.2
RDK Lasso 0.69 0.73 0.69 0.70 14.2 14.5 15.7 14.8

Ridge 0.69 0.73 0.69 0.70 14.2 14.5 15.7 14.8
Bayesian Ridge 0.69 0.73 0.69 0.70 14.2 14.5 15.7 14.8
SVR - Linear 0.69 0.72 0.68 0.70 14.3 14.6 15.7 14.8
SVR - Polynomial 0.91 0.91 0.91 0.91 7.6 8.5 8.2 8.1
SVR - RBF 0.92 0.91 0.92 0.91 7.3 8.5 8.1 8.0
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Table B.11 Grid Search Cross-Validated Performance for the Models in the
Additive Test: Plate Split (Continued)

Descriptor ML Algorithm R2 RMSE (%)
P1 P2 P3 Mean P1 P2 P3 Mean

SVR - Sigmoid 0.31 0.27 0.27 0.28 21.4 23.6 23.8 22.9
Gradient Boosting 0.91 0.91 0.91 0.91 7.7 8.3 8.2 8.1
Random Forest 0.93 0.92 0.92 0.92 6.8 7.8 7.6 7.4

Tanimoto: Linear Regression 0.87 0.89 0.89 0.88 9.1 9.1 9.4 9.2
MACCS Lasso 0.91 0.92 0.91 0.91 7.7 8.0 8.5 8.1

Ridge 0.92 0.92 0.91 0.92 7.5 7.9 8.2 7.9
Bayesian Ridge 0.91 0.90 0.89 0.90 7.8 8.6 9.2 8.5
SVR - Polynomial 0.90 0.91 0.91 0.91 8.0 8.1 8.5 8.2
SVR - RBF 0.89 0.91 0.90 0.90 8.4 8.5 9.0 8.6
SVR - Sigmoid 0.69 0.72 0.64 0.68 14.2 14.6 16.8 15.2
SVR - Precomputed 0.91 0.91 0.89 0.90 7.8 8.4 9.1 8.4
Gradient Boosting 0.79 0.80 0.74 0.78 11.9 12.3 14.2 12.8
Random Forest 0.69 0.76 0.64 0.70 14.3 13.5 16.8 14.9

Tanimoto: Linear Regression 0.93 0.93 0.93 0.93 6.8 7.3 7.2 7.1
Morgan1 Lasso 0.93 0.93 0.94 0.93 6.6 7.1 7.1 6.9

Ridge 0.93 0.94 0.94 0.94 6.6 7.0 7.0 6.9
Bayesian Ridge 0.94 0.94 0.94 0.94 6.5 7.0 7.0 6.8
SVR - Polynomial 0.92 0.93 0.92 0.92 7.2 7.6 7.8 7.5
SVR - RBF 0.90 0.91 0.90 0.90 8.0 8.4 8.7 8.4
SVR - Sigmoid 0.89 0.89 0.88 0.88 8.5 9.3 9.8 9.2
SVR - Precomputed 0.93 0.94 0.94 0.94 6.6 6.8 7.1 6.8
Gradient Boosting 0.80 0.82 0.79 0.80 11.5 11.7 12.8 12.0
Random Forest 0.71 0.75 0.70 0.72 13.9 13.7 15.3 14.3

Tanimoto: Linear Regression 0.91 0.90 0.91 0.90 7.9 8.9 8.3 8.4
RDK Lasso 0.91 0.90 0.92 0.91 7.6 8.6 7.9 8.0

Ridge 0.91 0.91 0.92 0.91 7.5 8.4 7.8 7.9
Bayesian Ridge 0.92 0.91 0.92 0.92 7.5 8.4 7.8 7.9
SVR - Polynomial 0.90 0.89 0.90 0.90 8.1 9.1 8.7 8.6
SVR - RBF 0.89 0.88 0.89 0.88 8.6 9.6 9.4 9.2
SVR - Sigmoid 0.86 0.85 0.85 0.85 9.6 10.8 10.8 10.4
SVR - Precomputed 0.91 0.90 0.92 0.91 7.6 8.6 8.0 8.1
Gradient Boosting 0.79 0.78 0.78 0.78 11.9 12.9 13.1 12.6
Random Forest 0.72 0.72 0.71 0.72 13.6 14.6 14.9 14.4

WL Linear Regression 0.91 0.91 0.93 0.92 7.6 8.3 7.3 7.7
Lasso 0.92 0.92 0.93 0.92 7.3 8.0 7.2 7.5
Ridge 0.92 0.92 0.94 0.93 7.2 7.8 7.1 7.4
Bayesian Ridge 0.92 0.92 0.93 0.93 7.3 7.8 7.1 7.4
SVR - Polynomial 0.92 0.92 0.93 0.92 7.3 8.0 7.1 7.5
SVR - RBF 0.91 0.91 0.93 0.92 7.5 8.2 7.4 7.7
SVR - Sigmoid 0.84 0.82 0.83 0.83 10.3 11.7 11.6 11.2
SVR - Precomputed 0.92 0.92 0.93 0.92 7.4 8.0 7.1 7.5
Gradient Boosting 0.85 0.85 0.85 0.85 9.9 10.9 10.6 10.5
Random Forest 0.78 0.77 0.78 0.78 12.1 13.3 13.1 12.8

Training Set Performance

Table B.12: Training Set Performance for the Models in the Additive Test: Plate
Split

Descriptor ML Algorithm R2 RMSE (%)
P1 P2 P3 Mean P1 P2 P3 Mean

One-hot Linear Regression 0.70 0.73 0.69 0.71 14.0 14.3 15.4 14.6
Lasso 0.70 0.74 0.69 0.71 14.0 14.2 15.4 14.6
Ridge 0.70 0.74 0.69 0.71 14.0 14.2 15.4 14.6
Bayesian Ridge 0.70 0.74 0.69 0.71 14.0 14.2 15.4 14.6
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Table B.12 Training Set Performance for the Models in the Additive Test: Plate
Split (Continued)

Descriptor ML Algorithm R2 RMSE (%)
P1 P2 P3 Mean P1 P2 P3 Mean

SVR - Linear 0.70 0.73 0.69 0.71 14.0 14.3 15.5 14.6
SVR - Polynomial 0.97 0.97 0.97 0.97 4.6 4.5 4.6 4.6
SVR - RBF 0.99 1.00 1.00 0.99 3.0 0.9 1.0 1.6
SVR - Sigmoid 0.58 0.63 0.56 0.59 16.7 16.8 18.5 17.3
Gradient Boosting 0.95 0.96 0.96 0.96 5.6 5.6 5.6 5.6
Random Forest 0.99 0.99 0.99 0.99 2.8 3.1 2.8 2.9

Quantum Linear Regression 0.70 0.73 0.69 0.71 14.0 14.3 15.5 14.6
Chemical Lasso 0.70 0.73 0.69 0.71 14.1 14.3 15.5 14.6

Ridge 0.70 0.74 0.69 0.71 14.0 14.2 15.4 14.6
Bayesian Ridge 0.70 0.73 0.69 0.71 14.1 14.4 15.5 14.7
SVR - Linear 0.70 0.73 0.69 0.71 14.0 14.3 15.5 14.6
SVR - Polynomial 0.96 0.97 0.96 0.96 5.1 5.1 5.7 5.3
SVR - RBF 0.98 0.99 0.97 0.98 3.3 3.3 4.9 3.8
SVR - Sigmoid 0.47 0.46 0.44 0.46 18.7 20.3 20.9 20.0
Gradient Boosting 0.97 0.97 0.97 0.97 4.8 4.7 4.7 4.7
Random Forest 0.99 0.99 0.99 0.99 2.2 2.6 2.4 2.4

Fingerprints: Linear Regression 0.67 0.67 0.62 0.65 14.9 15.8 17.3 16.0
MACCS Lasso 0.67 0.68 0.63 0.66 14.8 15.7 17.1 15.9

Ridge 0.67 0.68 0.63 0.66 14.8 15.7 17.1 15.9
Bayesian Ridge 0.67 0.68 0.63 0.66 14.8 15.7 17.1 15.9
SVR - Linear 0.67 0.68 0.63 0.66 14.9 15.7 17.1 15.9
SVR - Polynomial 0.92 0.91 0.90 0.91 7.2 8.5 9.0 8.2
SVR - RBF 0.92 0.90 0.89 0.91 7.2 8.6 9.1 8.3
SVR - Sigmoid 0.32 0.32 0.25 0.30 21.2 22.9 24.1 22.7
Gradient Boosting 0.93 0.93 0.92 0.93 6.6 7.1 7.7 7.1
Random Forest 0.99 0.99 0.99 0.99 2.3 2.5 2.4 2.4

Fingerprints: Linear Regression 0.67 0.70 0.63 0.67 14.7 15.1 17.0 15.6
Morgan1 Lasso 0.68 0.71 0.68 0.69 14.5 15.0 15.9 15.1

Ridge 0.68 0.71 0.68 0.69 14.5 15.0 15.9 15.1
Bayesian Ridge 0.68 0.71 0.68 0.69 14.5 15.0 15.9 15.1
SVR - Linear 0.68 0.70 0.67 0.69 14.5 15.1 15.9 15.2
SVR - Polynomial 0.96 0.96 0.95 0.96 5.2 5.9 6.1 5.7
SVR - RBF 0.98 0.97 0.97 0.97 4.0 4.9 5.2 4.7
SVR - Sigmoid 0.49 0.52 0.44 0.48 18.4 19.2 20.9 19.5
Gradient Boosting 0.95 0.96 0.95 0.96 5.5 5.7 6.0 5.7
Random Forest 0.99 0.99 0.99 0.99 2.3 2.5 2.4 2.4

Fingerprints: Linear Regression 0.70 0.72 0.67 0.70 14.0 14.6 15.9 14.8
RDK Lasso 0.70 0.74 0.69 0.71 14.0 14.2 15.4 14.6

Ridge 0.70 0.74 0.69 0.71 14.0 14.2 15.4 14.6
Bayesian Ridge 0.70 0.74 0.69 0.71 14.0 14.2 15.4 14.6
SVR - Linear 0.70 0.73 0.69 0.71 14.0 14.3 15.5 14.6
SVR - Polynomial 0.97 0.96 0.96 0.97 4.6 5.3 5.3 5.1
SVR - RBF 0.98 0.97 0.97 0.97 3.8 4.9 4.9 4.5
SVR - Sigmoid 0.35 0.32 0.31 0.33 20.8 22.9 23.2 22.3
Gradient Boosting 0.96 0.97 0.97 0.97 4.9 4.9 5.2 5.0
Random Forest 0.99 0.99 0.99 0.99 2.3 2.6 2.5 2.4

Tanimoto: Linear Regression 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0
MACCS Lasso 0.99 0.99 0.99 0.99 2.3 2.3 2.6 2.4

Ridge 0.99 0.99 1.00 0.99 2.8 3.2 1.7 2.6
Bayesian Ridge 0.98 0.97 0.97 0.97 3.9 4.8 5.2 4.6
SVR - Polynomial 1.00 1.00 1.00 1.00 1.3 0.9 1.0 1.1
SVR - RBF 1.00 1.00 1.00 1.00 1.0 1.0 1.0 1.0
SVR - Sigmoid 0.73 0.75 0.67 0.72 13.4 13.8 16.1 14.4
SVR - Precomputed 0.99 0.98 0.98 0.98 2.7 3.8 4.4 3.6
Gradient Boosting 0.99 1.00 0.95 0.98 3.1 1.9 6.5 3.8
Random Forest 0.98 0.98 0.98 0.98 3.3 3.6 3.8 3.5

Tanimoto: Linear Regression 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0
Morgan1 Lasso 1.00 1.00 1.00 1.00 0.9 0.9 0.9 0.9

Ridge 1.00 1.00 1.00 1.00 0.6 0.7 0.7 0.7
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Table B.12 Training Set Performance for the Models in the Additive Test: Plate
Split (Continued)

Descriptor ML Algorithm R2 RMSE (%)
P1 P2 P3 Mean P1 P2 P3 Mean

Bayesian Ridge 1.00 1.00 1.00 1.00 1.0 1.2 0.8 1.0
SVR - Polynomial 1.00 1.00 1.00 1.00 1.1 1.2 1.0 1.1
SVR - RBF 1.00 1.00 1.00 1.00 1.0 1.0 1.0 1.0
SVR - Sigmoid 0.90 0.89 0.88 0.89 8.1 9.2 9.6 9.0
SVR - Precomputed 1.00 0.99 1.00 1.00 1.8 2.2 0.9 1.6
Gradient Boosting 0.99 1.00 1.00 1.00 2.4 0.5 0.6 1.2
Random Forest 0.98 0.98 0.98 0.98 3.4 4.1 4.4 3.9

Tanimoto: Linear Regression 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0
RDK Lasso 1.00 1.00 1.00 1.00 1.5 1.4 1.4 1.4

Ridge 1.00 1.00 1.00 1.00 1.4 1.6 1.5 1.5
Bayesian Ridge 0.99 0.99 1.00 0.99 2.1 2.4 1.9 2.1
SVR - Polynomial 1.00 1.00 1.00 1.00 1.0 1.0 0.9 1.0
SVR - RBF 1.00 1.00 1.00 1.00 0.9 1.0 1.0 1.0
SVR - Sigmoid 0.86 0.84 0.84 0.85 9.7 11.1 11.0 10.6
SVR - Precomputed 1.00 1.00 1.00 1.00 1.2 1.3 1.0 1.2
Gradient Boosting 1.00 1.00 1.00 1.00 1.0 0.7 0.6 0.8
Random Forest 0.98 0.98 0.98 0.98 3.2 4.1 4.1 3.8

WL Linear Regression 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0
Lasso 1.00 1.00 1.00 1.00 1.7 1.6 1.5 1.6
Ridge 0.99 0.99 1.00 1.00 1.9 2.1 1.6 1.9
Bayesian Ridge 0.98 0.98 0.99 0.99 3.3 3.4 2.0 2.9
SVR - Polynomial 1.00 1.00 1.00 1.00 0.9 0.9 0.9 0.9
SVR - RBF 1.00 1.00 1.00 1.00 0.9 1.0 0.9 0.9
SVR - Sigmoid 0.84 0.82 0.82 0.83 10.3 11.7 11.8 11.3
SVR - Precomputed 1.00 1.00 1.00 1.00 1.5 1.7 1.1 1.5
Gradient Boosting 1.00 1.00 1.00 1.00 0.9 0.6 1.8 1.1
Random Forest 0.99 0.98 0.99 0.99 2.9 3.4 3.2 3.2

Test Set Performance

Table B.13: Test Set Performance for the Models in the Additive Test: Plate
Split

Descriptor ML Algorithm R2 RMSE (%)
P1 P2 P3 Mean P1 P2 P3 Mean

One-hot Linear Regression <-1.00 <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0 >100.0
Lasso 0.48 -0.01 0.61 0.36 21.5 24.3 16.2 20.6
Ridge 0.51 0.02 0.60 0.38 20.8 23.9 16.3 20.3
Bayesian Ridge 0.51 0.02 0.60 0.38 20.8 23.9 16.3 20.3
SVR - Linear 0.51 -0.01 0.60 0.37 20.8 24.2 16.3 20.5
SVR - Polynomial 0.58 0.15 0.68 0.47 19.4 22.3 14.6 18.8
SVR - RBF 0.65 -0.13 0.64 0.39 17.7 25.6 15.4 19.6
SVR - Sigmoid 0.37 0.08 0.45 0.30 23.7 23.1 19.2 22.0
Gradient Boosting 0.62 0.01 0.71 0.45 18.3 24.1 14.0 18.8
Random Forest 0.67 -0.13 0.70 0.41 17.1 25.7 14.1 18.9

Quantum Linear Regression <-1.00 <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0 >100.0
Chemical Lasso 0.46 0.14 -1.73 -0.38 22.0 22.3 42.7 29.0

Ridge 0.40 0.04 -1.82 -0.46 23.1 23.6 43.3 30.0
Bayesian Ridge 0.47 0.02 -2.06 -0.52 21.7 23.9 45.2 30.2
SVR - Linear 0.36 0.03 -1.99 -0.53 23.9 23.8 44.6 30.8
SVR - Polynomial 0.49 -0.24 -1.52 -0.42 21.3 26.9 41.0 29.7
SVR - RBF 0.53 -0.05 0.03 0.17 20.5 24.7 25.5 23.5
SVR - Sigmoid 0.22 0.09 0.40 0.24 26.3 22.9 20.0 23.1
Gradient Boosting 0.67 0.12 0.74 0.51 17.1 22.6 13.1 17.6
Random Forest 0.67 0.16 0.80 0.54 17.0 22.1 11.6 16.9
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Table B.13 Test Set Performance for the Models in the Additive Test: Plate
Split (Continued)

Descriptor ML Algorithm R2 RMSE (%)
P1 P2 P3 Mean P1 P2 P3 Mean

Fingerprints: Linear Regression <-1.00 <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0 >100.0
MACCS Lasso 0.23 0.02 0.41 0.22 26.1 23.8 19.8 23.2

Ridge 0.16 0.06 0.48 0.24 27.3 23.3 18.6 23.1
Bayesian Ridge 0.21 0.06 0.49 0.25 26.6 23.4 18.4 22.8
SVR - Linear 0.14 0.03 0.47 0.21 27.7 23.7 18.8 23.4
SVR - Polynomial 0.35 0.03 0.40 0.26 24.0 23.7 20.0 22.6
SVR - RBF 0.35 0.06 0.54 0.32 24.0 23.3 17.6 21.6
SVR - Sigmoid 0.05 -0.06 0.10 0.03 29.1 24.8 24.5 26.1
Gradient Boosting 0.55 0.04 0.51 0.37 20.0 23.6 18.1 20.6
Random Forest 0.64 0.01 0.66 0.44 17.8 24.0 15.0 18.9

Fingerprints: Linear Regression <-1.00 <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0 >100.0
Morgan1 Lasso 0.50 0.08 0.54 0.37 21.1 23.2 17.6 20.6

Ridge 0.52 0.05 0.47 0.35 20.7 23.4 18.7 21.0
Bayesian Ridge 0.52 0.06 0.50 0.36 20.7 23.4 18.2 20.8
SVR - Linear 0.51 0.03 0.55 0.36 20.9 23.8 17.3 20.6
SVR - Polynomial 0.65 0.10 0.75 0.50 17.5 22.8 12.8 17.7
SVR - RBF 0.65 0.11 0.77 0.51 17.6 22.8 12.3 17.6
SVR - Sigmoid 0.25 0.15 0.36 0.25 25.8 22.3 20.6 22.9
Gradient Boosting 0.60 0.12 0.72 0.48 18.9 22.6 13.6 18.4
Random Forest 0.65 0.20 0.80 0.55 17.6 21.6 11.5 16.9

Fingerprints: Linear Regression <-1.00 <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0 >100.0
RDK Lasso 0.52 -0.30 0.42 0.21 20.7 27.5 19.7 22.6

Ridge 0.55 -0.13 0.59 0.34 20.0 25.6 16.4 20.7
Bayesian Ridge 0.55 -0.13 0.59 0.34 20.0 25.6 16.4 20.7
SVR - Linear 0.55 -0.20 0.60 0.32 19.9 26.4 16.4 20.9
SVR - Polynomial 0.66 -0.23 0.62 0.35 17.5 26.7 15.9 20.0
SVR - RBF 0.65 -0.18 0.64 0.37 17.6 26.1 15.5 19.7
SVR - Sigmoid 0.09 -0.05 0.10 0.05 28.4 24.7 24.4 25.8
Gradient Boosting 0.66 -0.38 0.42 0.24 17.4 28.3 19.6 21.8
Random Forest 0.71 -0.35 0.52 0.29 16.2 28.0 17.8 20.7

Tanimoto: Linear Regression 0.39 -0.21 0.55 0.24 23.3 26.5 17.4 22.4
MACCS Lasso 0.41 -0.18 0.57 0.27 23.0 26.2 16.8 22.0

Ridge 0.41 -0.11 0.56 0.29 22.8 25.5 17.2 21.8
Bayesian Ridge 0.43 -0.07 0.61 0.32 22.5 25.0 16.0 21.2
SVR - Polynomial 0.46 -0.09 0.60 0.33 21.9 25.2 16.2 21.1
SVR - RBF 0.49 -0.05 0.61 0.35 21.4 24.7 16.1 20.7
SVR - Sigmoid 0.44 -0.01 0.56 0.33 22.2 24.2 17.2 21.2
SVR - Precomputed 0.41 -0.08 0.61 0.31 23.0 25.1 16.1 21.4
Gradient Boosting 0.53 -0.20 0.51 0.28 20.5 26.4 18.1 21.7
Random Forest 0.55 -0.19 0.43 0.26 20.0 26.3 19.4 21.9

Tanimoto: Linear Regression 0.64 0.15 0.78 0.52 17.9 22.2 12.0 17.4
Morgan1 Lasso 0.64 0.15 0.79 0.52 17.9 22.2 12.0 17.4

Ridge 0.64 0.15 0.79 0.53 17.9 22.2 12.0 17.4
Bayesian Ridge 0.64 0.15 0.79 0.53 17.9 22.2 12.0 17.3
SVR - Polynomial 0.64 0.19 0.76 0.53 18.0 21.7 12.5 17.4
SVR - RBF 0.63 0.20 0.75 0.52 18.3 21.6 13.0 17.6
SVR - Sigmoid 0.61 0.14 0.76 0.50 18.5 22.4 12.6 17.8
SVR - Precomputed 0.64 0.15 0.79 0.52 17.8 22.3 12.0 17.4
Gradient Boosting 0.69 0.04 0.72 0.48 16.5 23.6 13.8 18.0
Random Forest 0.64 -0.05 0.70 0.43 18.0 24.7 14.1 18.9

Tanimoto: Linear Regression 0.61 0.09 0.69 0.46 18.5 23.0 14.5 18.7
RDK Lasso 0.61 0.05 0.68 0.45 18.5 23.5 14.5 18.8

Ridge 0.62 -0.02 0.69 0.43 18.5 24.4 14.4 19.1
Bayesian Ridge 0.62 -0.02 0.69 0.43 18.5 24.3 14.4 19.1
SVR - Polynomial 0.59 0.00 0.67 0.42 19.0 24.2 14.7 19.3
SVR - RBF 0.58 0.00 0.66 0.41 19.4 24.1 15.1 19.5
SVR - Sigmoid 0.60 -0.05 0.64 0.40 18.7 24.7 15.5 19.6
SVR - Precomputed 0.62 -0.02 0.69 0.43 18.5 24.4 14.4 19.1
Gradient Boosting 0.57 0.06 0.60 0.41 19.6 23.4 16.3 19.7
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Table B.13 Test Set Performance for the Models in the Additive Test: Plate
Split (Continued)

Descriptor ML Algorithm R2 RMSE (%)
P1 P2 P3 Mean P1 P2 P3 Mean

Random Forest 0.66 -0.12 0.33 0.29 17.4 25.5 21.2 21.4
WL Linear Regression 0.65 0.14 0.73 0.51 17.7 22.4 13.3 17.8

Lasso 0.65 0.12 0.73 0.50 17.7 22.6 13.4 17.9
Ridge 0.64 0.13 0.73 0.50 17.8 22.5 13.5 17.9
Bayesian Ridge 0.64 0.13 0.73 0.50 17.8 22.4 13.5 17.9
SVR - Polynomial 0.63 0.15 0.72 0.50 18.2 22.3 13.7 18.0
SVR - RBF 0.62 0.15 0.71 0.49 18.5 22.2 13.8 18.2
SVR - Sigmoid 0.61 0.14 0.70 0.48 18.6 22.3 14.2 18.4
SVR - Precomputed 0.64 0.13 0.73 0.50 17.8 22.5 13.5 17.9
Gradient Boosting 0.65 0.02 0.68 0.45 17.6 23.9 14.6 18.7
Random Forest 0.68 -0.14 0.55 0.36 16.9 25.7 17.3 20.0
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B.7.2 Aryl Halide Test: Ring Split

Grid Search Cross-Validated Performance

Table B.14: Grid Search Cross-Validated Performance for the Models in the Aryl
Halide Test: Ring Split

Descriptor ML Algorithm R2 RMSE (%)
Phenyl Pyridyl Mean Phenyl Pyridyl Mean

One-hot Linear Regression 0.69 0.71 0.70 16.6 12.3 14.4
Lasso 0.69 0.72 0.70 16.6 12.2 14.4
Ridge 0.69 0.72 0.70 16.6 12.2 14.4
Bayesian Ridge 0.69 0.72 0.70 16.6 12.2 14.4
SVR - Linear 0.68 0.72 0.70 16.6 12.2 14.4
SVR - Polynomial 0.86 0.92 0.89 10.9 6.4 8.7
SVR - RBF 0.88 0.93 0.91 10.3 5.9 8.1
SVR - Sigmoid 0.57 0.60 0.59 19.4 14.5 16.9
Gradient Boosting 0.85 0.92 0.89 11.3 6.6 8.9
Random Forest 0.86 0.90 0.88 11.0 7.3 9.2

Quantum Linear Regression 0.68 0.72 0.70 16.7 12.2 14.4
Chemical Lasso 0.67 0.71 0.69 16.9 12.2 14.6

Ridge 0.68 0.72 0.70 16.7 12.2 14.4
Bayesian Ridge 0.67 0.71 0.69 17.0 12.3 14.6
SVR - Linear 0.68 0.72 0.70 16.7 12.2 14.5
SVR - Polynomial 0.85 0.91 0.88 11.3 6.8 9.0
SVR - RBF 0.88 0.91 0.89 10.3 7.0 8.6
SVR - Sigmoid 0.49 0.49 0.49 21.0 16.3 18.7
Gradient Boosting 0.88 0.94 0.91 10.2 5.8 8.0
Random Forest 0.91 0.94 0.93 8.7 5.6 7.2

Fingerprints: Linear Regression 0.57 0.63 0.60 19.5 14.0 16.7
MACCS Lasso 0.63 0.64 0.63 18.1 13.8 15.9

Ridge 0.63 0.64 0.63 18.1 13.8 15.9
Bayesian Ridge 0.63 0.64 0.63 18.1 13.8 15.9
SVR - Linear 0.62 0.64 0.63 18.2 13.8 16.0
SVR - Polynomial 0.81 0.89 0.85 13.0 7.8 10.4
SVR - RBF 0.79 0.88 0.84 13.4 7.9 10.6
SVR - Sigmoid 0.34 0.19 0.27 24.0 20.6 22.3
Gradient Boosting 0.85 0.91 0.88 11.5 6.8 9.2
Random Forest 0.89 0.93 0.91 9.7 5.9 7.8

Fingerprints: Linear Regression 0.68 0.64 0.66 16.7 13.7 15.2
Morgan1 Lasso 0.68 0.67 0.68 16.6 13.2 14.9

Ridge 0.69 0.67 0.68 16.6 13.2 14.9
Bayesian Ridge 0.68 0.67 0.68 16.6 13.2 14.9
SVR - Linear 0.68 0.67 0.67 16.6 13.2 14.9
SVR - Polynomial 0.87 0.92 0.90 10.7 6.3 8.5
SVR - RBF 0.88 0.93 0.91 10.2 5.9 8.1
SVR - Sigmoid 0.39 0.42 0.41 23.0 17.5 20.3
Gradient Boosting 0.87 0.93 0.90 10.5 6.3 8.4
Random Forest 0.90 0.94 0.92 9.1 5.7 7.4

Fingerprints: Linear Regression 0.65 0.70 0.68 17.5 12.5 15.0
RDK Lasso 0.69 0.72 0.70 16.6 12.2 14.4

Ridge 0.68 0.72 0.70 16.6 12.2 14.4
Bayesian Ridge 0.69 0.72 0.70 16.6 12.2 14.4
SVR - Linear 0.68 0.72 0.70 16.6 12.2 14.4
SVR - Polynomial 0.86 0.94 0.90 11.0 5.8 8.4
SVR - RBF 0.86 0.94 0.90 11.0 5.7 8.3
SVR - Sigmoid 0.23 0.29 0.26 26.0 19.3 22.7
Gradient Boosting 0.86 0.93 0.90 11.0 6.0 8.5
Random Forest 0.90 0.93 0.92 9.4 5.8 7.6

Tanimoto: Linear Regression 0.84 0.90 0.87 11.9 7.1 9.5
MACCS Lasso 0.87 0.92 0.90 10.5 6.6 8.6

Ridge 0.88 0.92 0.90 10.2 6.5 8.3
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Table B.14 Grid Search Cross-Validated Performance for the Models in the Aryl
Halide Test: Ring Split (Continued)

Descriptor ML Algorithm R2 RMSE (%)
Phenyl Pyridyl Mean Phenyl Pyridyl Mean

Bayesian Ridge 0.86 0.91 0.89 11.2 6.7 8.9
SVR - Polynomial 0.88 0.91 0.89 10.2 7.0 8.6
SVR - RBF 0.87 0.89 0.88 10.7 7.5 9.1
SVR - Sigmoid 0.57 0.66 0.61 19.5 13.3 16.4
SVR - Precomputed 0.86 0.92 0.89 11.2 6.6 8.9
Gradient Boosting 0.75 0.80 0.77 14.9 10.1 12.5
Random Forest 0.61 0.74 0.68 18.6 11.6 15.1

Tanimoto: Linear Regression 0.91 0.93 0.92 9.0 5.9 7.4
Morgan1 Lasso 0.91 0.94 0.92 8.9 5.7 7.3

Ridge 0.91 0.94 0.93 8.8 5.7 7.2
Bayesian Ridge 0.91 0.94 0.93 8.7 5.7 7.2
SVR - Polynomial 0.90 0.92 0.91 9.3 6.5 7.9
SVR - RBF 0.88 0.90 0.89 10.1 7.2 8.7
SVR - Sigmoid 0.83 0.89 0.86 12.2 7.7 9.9
SVR - Precomputed 0.91 0.94 0.92 8.8 5.7 7.2
Gradient Boosting 0.78 0.79 0.78 14.0 10.5 12.2
Random Forest 0.67 0.73 0.70 17.0 11.9 14.5

Tanimoto: Linear Regression 0.87 0.92 0.90 10.5 6.3 8.4
RDK Lasso 0.88 0.93 0.91 10.1 6.0 8.1

Ridge 0.89 0.93 0.91 9.9 5.9 7.9
Bayesian Ridge 0.89 0.93 0.91 9.9 5.9 7.9
SVR - Polynomial 0.88 0.92 0.90 10.3 6.6 8.5
SVR - RBF 0.86 0.90 0.88 10.9 7.2 9.0
SVR - Sigmoid 0.81 0.85 0.83 13.0 8.9 11.0
SVR - Precomputed 0.88 0.93 0.91 10.1 6.0 8.1
Gradient Boosting 0.77 0.82 0.79 14.3 9.8 12.1
Random Forest 0.63 0.75 0.69 18.0 11.5 14.8

WL Linear Regression 0.88 0.93 0.91 10.3 5.9 8.1
Lasso 0.89 0.94 0.91 9.9 5.6 7.7
Ridge 0.89 0.94 0.92 9.7 5.5 7.6
Bayesian Ridge 0.89 0.94 0.92 9.6 5.6 7.6
SVR - Polynomial 0.89 0.94 0.91 9.7 5.8 7.7
SVR - RBF 0.89 0.93 0.91 9.8 6.1 8.0
SVR - Sigmoid 0.79 0.83 0.81 13.5 9.5 11.5
SVR - Precomputed 0.89 0.94 0.91 9.8 5.6 7.7
Gradient Boosting 0.83 0.87 0.85 12.3 8.3 10.3
Random Forest 0.75 0.79 0.77 14.6 10.6 12.6

Training Set Performance

Table B.15: Training Set Performance for the Models in the Aryl Halide Test:
Ring Split

Descriptor ML Algorithm R2 RMSE (%)
Phenyl Pyridyl Mean Phenyl Pyridyl Mean

One-hot Linear Regression 0.70 0.73 0.71 16.3 12.0 14.1
Lasso 0.70 0.73 0.71 16.3 12.0 14.1
Ridge 0.70 0.73 0.71 16.3 12.0 14.1
Bayesian Ridge 0.70 0.73 0.71 16.3 12.0 14.1
SVR - Linear 0.70 0.72 0.71 16.4 12.0 14.2
SVR - Polynomial 0.97 0.98 0.97 5.4 3.0 4.2
SVR - RBF 0.98 1.00 0.99 4.2 0.9 2.6
SVR - Sigmoid 0.59 0.61 0.60 19.1 14.3 16.7
Gradient Boosting 0.93 0.97 0.95 7.7 4.3 6.0
Random Forest 0.98 0.99 0.99 3.8 2.6 3.2
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Table B.15 Training Set Performance for the Models in the Aryl Halide Test:
Ring Split (continued)

Descriptor ML Algorithm R2 RMSE (%)
Phenyl Pyridyl Mean Phenyl Pyridyl Mean

Quantum Linear Regression 0.70 0.73 0.71 16.4 12.0 14.2
Chemical Lasso 0.69 0.72 0.71 16.6 12.1 14.3

Ridge 0.70 0.73 0.71 16.3 12.0 14.2
Bayesian Ridge 0.69 0.72 0.71 16.5 12.1 14.3
SVR - Linear 0.69 0.72 0.71 16.5 12.1 14.3
SVR - Polynomial 0.95 0.97 0.96 6.8 4.0 5.4
SVR - RBF 0.98 0.99 0.98 3.9 2.6 3.3
SVR - Sigmoid 0.51 0.49 0.50 20.8 16.4 18.6
Gradient Boosting 0.97 0.98 0.97 5.4 3.4 4.4
Random Forest 0.99 0.99 0.99 3.0 1.9 2.4

Fingerprints: Linear Regression 0.53 0.64 0.59 20.3 13.7 17.0
MACCS Lasso 0.64 0.65 0.64 17.8 13.6 15.7

Ridge 0.64 0.65 0.65 17.8 13.6 15.7
Bayesian Ridge 0.64 0.65 0.64 17.8 13.6 15.7
SVR - Linear 0.64 0.65 0.64 17.9 13.6 15.8
SVR - Polynomial 0.86 0.93 0.90 11.0 6.2 8.6
SVR - RBF 0.86 0.93 0.89 11.3 6.0 8.6
SVR - Sigmoid 0.24 0.23 0.24 25.9 20.1 23.0
Gradient Boosting 0.92 0.95 0.93 8.4 5.4 6.9
Random Forest 0.99 0.99 0.99 3.2 2.0 2.6

Fingerprints: Linear Regression 0.69 0.67 0.68 16.6 13.2 14.9
Morgan1 Lasso 0.70 0.68 0.69 16.3 13.1 14.7

Ridge 0.70 0.68 0.69 16.3 13.1 14.7
Bayesian Ridge 0.70 0.68 0.69 16.3 13.1 14.7
SVR - Linear 0.70 0.67 0.69 16.4 13.1 14.7
SVR - Polynomial 0.94 0.97 0.96 7.0 4.3 5.6
SVR - RBF 0.96 0.98 0.97 6.3 3.3 4.8
SVR - Sigmoid 0.44 0.45 0.44 22.3 17.0 19.6
Gradient Boosting 0.95 0.96 0.95 7.0 4.6 5.8
Random Forest 0.99 0.99 0.99 3.0 1.9 2.5

Fingerprints: Linear Regression 0.67 0.72 0.69 17.1 12.2 14.7
RDK Lasso 0.70 0.73 0.71 16.3 12.0 14.1

Ridge 0.70 0.73 0.71 16.3 12.0 14.1
Bayesian Ridge 0.70 0.73 0.71 16.3 12.0 14.1
SVR - Linear 0.70 0.72 0.71 16.4 12.0 14.2
SVR - Polynomial 0.95 0.98 0.96 6.8 3.3 5.1
SVR - RBF 0.95 0.99 0.97 6.6 2.8 4.7
SVR - Sigmoid 0.27 0.34 0.30 25.3 18.7 22.0
Gradient Boosting 0.96 0.97 0.97 6.2 3.7 4.9
Random Forest 0.99 0.99 0.99 3.2 2.0 2.6

Tanimoto: Linear Regression 1.00 1.00 1.00 0.0 0.0 0.0
MACCS Lasso 0.99 0.99 0.99 2.6 1.9 2.3

Ridge 0.99 0.99 0.99 2.3 2.4 2.4
Bayesian Ridge 0.95 0.98 0.97 6.3 3.1 4.7
SVR - Polynomial 1.00 1.00 1.00 1.0 0.9 1.0
SVR - RBF 1.00 1.00 1.00 1.1 1.0 1.0
SVR - Sigmoid 0.60 0.70 0.65 18.8 12.6 15.7
SVR - Precomputed 0.96 0.99 0.98 5.9 2.1 4.0
Gradient Boosting 1.00 1.00 1.00 1.7 1.4 1.6
Random Forest 0.98 0.98 0.98 4.5 2.9 3.7

Tanimoto: Linear Regression 1.00 1.00 1.00 0.0 0.0 0.0
Morgan1 Lasso 1.00 1.00 1.00 0.6 0.8 0.7

Ridge 1.00 1.00 1.00 0.9 0.6 0.7
Bayesian Ridge 1.00 1.00 1.00 1.4 0.8 1.1
SVR - Polynomial 1.00 1.00 1.00 1.4 0.9 1.2
SVR - RBF 1.00 1.00 1.00 1.0 0.9 1.0
SVR - Sigmoid 0.86 0.86 0.86 11.2 8.6 9.9
SVR - Precomputed 0.99 1.00 0.99 2.8 0.9 1.8
Gradient Boosting 1.00 1.00 1.00 1.5 0.1 0.8
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Table B.15 Training Set Performance for the Models in the Aryl Halide Test:
Ring Split (continued)

Descriptor ML Algorithm R2 RMSE (%)
Phenyl Pyridyl Mean Phenyl Pyridyl Mean

Random Forest 0.97 0.98 0.97 5.0 3.4 4.2
Tanimoto: Linear Regression 1.00 1.00 1.00 0.0 0.0 0.0
RDK Lasso 0.98 1.00 0.99 4.5 1.3 2.9

Ridge 1.00 1.00 1.00 1.9 1.3 1.6
Bayesian Ridge 0.99 0.99 0.99 3.2 1.9 2.6
SVR - Polynomial 1.00 1.00 1.00 1.0 0.9 1.0
SVR - RBF 1.00 1.00 1.00 1.0 0.9 1.0
SVR - Sigmoid 0.84 0.87 0.85 12.0 8.4 10.2
SVR - Precomputed 1.00 1.00 1.00 1.4 1.0 1.2
Gradient Boosting 1.00 1.00 1.00 0.7 1.5 1.1
Random Forest 0.98 0.98 0.98 4.5 3.1 3.8

WL Linear Regression 1.00 1.00 1.00 0.0 0.0 0.0
Lasso 0.97 1.00 0.98 4.8 1.5 3.2
Ridge 0.99 1.00 0.99 2.4 1.6 2.0
Bayesian Ridge 0.98 0.99 0.98 4.5 2.2 3.3
SVR - Polynomial 1.00 1.00 1.00 1.0 0.9 1.0
SVR - RBF 1.00 1.00 1.00 1.0 0.9 1.0
SVR - Sigmoid 0.79 0.83 0.81 13.6 9.5 11.5
SVR - Precomputed 0.98 1.00 0.99 4.3 1.2 2.8
Gradient Boosting 1.00 1.00 1.00 0.8 1.4 1.1
Random Forest 0.98 0.98 0.98 4.1 2.9 3.5

Test Set Performance

Table B.16: Test Set Performance for the Models in the Aryl Halide Test: Ring
Split

Descriptor ML Algorithm R2 RMSE (%)
Phenyl Pyridyl Mean Phenyl Pyridyl Mean

One-hot Linear Regression <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0
Lasso -0.56 0.02 -0.27 28.7 29.4 29.0
Ridge -0.58 -0.02 -0.30 28.8 30.0 29.4
Bayesian Ridge -0.57 -0.02 -0.30 28.8 30.0 29.4
SVR - Linear -0.60 -0.03 -0.31 29.0 30.1 29.6
SVR - Polynomial -0.42 -0.01 -0.21 27.4 29.8 28.6
SVR - RBF -0.77 0.08 -0.35 30.6 28.4 29.5
SVR - Sigmoid -0.64 -0.13 -0.39 29.4 31.5 30.5
Gradient Boosting -0.98 0.07 -0.45 32.3 28.7 30.5
Random Forest <-1.00 0.22 -0.52 34.5 26.3 30.4

Quantum Linear Regression <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0
Chemical Lasso <-1.00 <-1.00 <-1.00 >100.0 67.4 >100.0

Ridge <-1.00 0.15 <-1.00 >100.0 27.3 90.5
Bayesian Ridge <-1.00 0.12 <-1.00 >100.0 27.8 90.5
SVR - Linear <-1.00 0.14 <-1.00 >100.0 27.5 95.0
SVR - Polynomial <-1.00 <-1.00 <-1.00 >100.0 65.6 >100.0
SVR - RBF -0.10 -1.26 -0.68 24.1 44.6 34.4
SVR - Sigmoid <-1.00 <-1.00 <-1.00 47.8 58.3 53.1
Gradient Boosting -0.67 -0.13 -0.40 29.6 31.5 30.6
Random Forest -0.32 -0.40 -0.36 26.3 35.2 30.8

Fingerprints: Linear Regression -0.02 <-1.00 <-1.00 23.2 >100.0 >100.0
MACCS Lasso 0.18 0.16 0.17 20.8 27.2 24.0

Ridge 0.17 0.15 0.16 20.8 27.4 24.1
Bayesian Ridge 0.18 0.15 0.16 20.8 27.4 24.1
SVR - Linear 0.11 0.15 0.13 21.6 27.4 24.5
SVR - Polynomial 0.36 0.28 0.32 18.3 25.3 21.8



Appendix B: Predicting Yields of Chemical Reactions 224

Table B.16 Test Set Performance for the Models in the Aryl Halide Test: Ring
Split (continued)

Descriptor ML Algorithm R2 RMSE (%)
Phenyl Pyridyl Mean Phenyl Pyridyl Mean

SVR - RBF 0.46 0.21 0.34 16.8 26.3 21.6
SVR - Sigmoid -0.63 -0.25 -0.44 29.3 33.2 31.2
Gradient Boosting 0.29 0.04 0.17 19.3 29.1 24.2
Random Forest 0.19 -0.07 0.06 20.7 30.8 25.7

Fingerprints: Linear Regression <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0
Morgan1 Lasso -0.98 -0.02 -0.50 32.3 29.9 31.1

Ridge -0.32 0.09 -0.12 26.4 28.4 27.4
Bayesian Ridge -0.32 0.09 -0.11 26.3 28.4 27.3
SVR - Linear -0.37 0.10 -0.14 26.9 28.2 27.5
SVR - Polynomial -0.25 0.15 -0.05 25.6 27.4 26.5
SVR - RBF -0.14 0.15 0.01 24.5 27.3 25.9
SVR - Sigmoid -0.36 -0.16 -0.26 26.8 31.9 29.4
Gradient Boosting -0.24 0.06 -0.09 25.6 28.7 27.2
Random Forest 0.03 -0.10 -0.04 22.6 31.2 26.9

Fingerprints: Linear Regression <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0
RDK Lasso -0.58 0.32 -0.13 28.8 24.6 26.7

Ridge -0.27 0.11 -0.08 25.9 28.0 26.9
Bayesian Ridge -0.27 0.11 -0.08 25.9 28.1 27.0
SVR - Linear -0.30 0.10 -0.10 26.2 28.1 27.1
SVR - Polynomial -0.26 0.19 -0.04 25.8 26.8 26.3
SVR - RBF -0.23 0.18 -0.02 25.4 26.9 26.2
SVR - Sigmoid -0.39 -0.32 -0.35 27.0 34.1 30.6
Gradient Boosting -0.73 0.36 -0.18 30.1 23.7 26.9
Random Forest -0.35 0.39 0.02 26.6 23.1 24.9

Tanimoto: Linear Regression -0.19 0.17 -0.01 25.0 27.1 26.1
MACCS Lasso 0.12 0.15 0.13 21.6 27.4 24.5

Ridge 0.36 0.06 0.21 18.3 28.8 23.6
Bayesian Ridge 0.36 0.06 0.21 18.3 28.8 23.6
SVR - Polynomial 0.22 -0.02 0.10 20.2 29.9 25.1
SVR - RBF 0.15 -0.05 0.05 21.1 30.4 25.8
SVR - Sigmoid 0.08 0.00 0.04 22.0 29.7 25.8
SVR - Precomputed 0.37 0.06 0.21 18.2 28.8 23.5
Gradient Boosting -0.15 0.05 -0.05 24.6 29.0 26.8
Random Forest -0.72 -0.11 -0.41 30.1 31.3 30.7

Tanimoto: Linear Regression 0.17 0.01 0.09 20.9 29.5 25.2
Morgan1 Lasso 0.11 0.01 0.06 21.6 29.6 25.6

Ridge 0.09 0.01 0.05 21.9 29.5 25.7
Bayesian Ridge 0.09 0.01 0.05 21.9 29.5 25.7
SVR - Polynomial -0.03 -0.03 -0.03 23.2 30.1 26.7
SVR - RBF -0.07 -0.05 -0.06 23.7 30.4 27.1
SVR - Sigmoid 0.11 0.02 0.07 21.6 29.3 25.5
SVR - Precomputed 0.08 0.01 0.05 22.0 29.5 25.7
Gradient Boosting <-1.00 0.14 -0.85 38.7 27.5 33.1
Random Forest <-1.00 0.03 <-1.00 48.1 29.3 38.7

Tanimoto: Linear Regression -0.46 -0.09 -0.27 27.7 31.0 29.3
RDK Lasso -0.35 -0.10 -0.22 26.6 31.1 28.9

Ridge -0.32 -0.09 -0.21 26.4 31.0 28.7
Bayesian Ridge -0.32 -0.09 -0.21 26.4 31.1 28.7
SVR - Polynomial -0.42 -0.15 -0.29 27.3 31.9 29.6
SVR - RBF -0.45 -0.17 -0.31 27.6 32.1 29.9
SVR - Sigmoid -0.23 -0.06 -0.15 25.5 30.6 28.0
SVR - Precomputed -0.32 -0.09 -0.20 26.3 31.0 28.7
Gradient Boosting -0.85 -0.80 -0.83 31.2 39.8 35.5
Random Forest <-1.00 -0.63 <-1.00 49.7 37.9 43.8

WL Linear Regression -0.20 0.15 -0.02 25.1 27.4 26.2
Lasso -0.33 0.16 -0.08 26.4 27.2 26.8
Ridge -0.19 0.12 -0.03 25.0 27.8 26.4
Bayesian Ridge -0.19 0.12 -0.03 25.0 27.8 26.4
SVR - Polynomial -0.14 0.06 -0.04 24.5 28.8 26.6
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Table B.16 Test Set Performance for the Models in the Aryl Halide Test: Ring
Split (continued)

Descriptor ML Algorithm R2 RMSE (%)
Phenyl Pyridyl Mean Phenyl Pyridyl Mean

SVR - RBF -0.14 0.03 -0.05 24.5 29.2 26.8
SVR - Sigmoid -0.26 0.14 -0.06 25.8 27.5 26.6
SVR - Precomputed -0.19 0.12 -0.04 25.1 27.8 26.4
Gradient Boosting -0.49 <-1.00 -0.94 28.0 45.9 36.9
Random Forest -0.53 <-1.00 <-1.00 28.4 49.9 39.1
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B.7.3 Aryl Halide Test: Halide Split

Grid Search Cross-Validated Performance

Table B.17: Grid Search Cross-Validated Performance for the Models in the Aryl
Halide Test: Halide Split

Descriptor ML Algorithm R2 RMSE (%)
Aryl Cl Aryl Br Aryl I Mean Aryl Cl Aryl Br Aryl I Mean

One-hot Linear Regression 0.68 0.71 0.67 0.69 14.4 15.1 14.8 14.8
Lasso 0.68 0.71 0.68 0.69 14.3 14.9 14.8 14.7
Ridge 0.68 0.71 0.68 0.69 14.3 14.9 14.8 14.7
Bayesian Ridge 0.68 0.71 0.68 0.69 14.3 14.9 14.8 14.7
SVR - Linear 0.68 0.71 0.67 0.69 14.4 15.0 14.8 14.7
SVR - Polynomial 0.88 0.91 0.90 0.89 8.9 8.5 8.4 8.6
SVR - RBF 0.89 0.91 0.91 0.90 8.4 8.1 7.9 8.1
SVR - Sigmoid 0.58 0.60 0.55 0.58 16.5 17.7 17.5 17.2
Gradient Boosting 0.87 0.90 0.90 0.89 9.1 8.7 8.4 8.7
Random Forest 0.87 0.90 0.88 0.88 9.1 8.7 9.1 9.0

Quantum Linear Regression 0.68 0.71 0.68 0.69 14.4 15.0 14.8 14.7
Chemical Lasso 0.67 0.71 0.68 0.69 14.6 15.0 14.8 14.8

Ridge 0.68 0.71 0.68 0.69 14.4 14.9 14.8 14.7
Bayesian Ridge 0.68 0.71 0.67 0.69 14.5 15.1 14.8 14.8
SVR - Linear 0.68 0.71 0.67 0.69 14.5 15.0 14.8 14.8
SVR - Polynomial 0.88 0.90 0.89 0.89 8.9 9.0 8.6 8.8
SVR - RBF 0.90 0.90 0.88 0.89 8.0 8.9 8.9 8.6
SVR - Sigmoid 0.50 0.56 0.34 0.47 18.0 18.6 21.1 19.2
Gradient Boosting 0.89 0.92 0.91 0.91 8.4 7.8 7.7 8.0
Random Forest 0.92 0.93 0.92 0.92 7.4 7.5 7.3 7.4

Fingerprints: Linear Regression 0.61 0.64 0.59 0.61 15.9 16.7 16.7 16.4
MACCS Lasso 0.64 0.65 0.61 0.63 15.2 16.5 16.3 16.0

Ridge 0.65 0.65 0.61 0.64 15.2 16.5 16.3 16.0
Bayesian Ridge 0.64 0.65 0.61 0.64 15.2 16.5 16.2 16.0
SVR - Linear 0.64 0.65 0.61 0.63 15.3 16.5 16.3 16.0
SVR - Polynomial 0.87 0.86 0.85 0.86 9.3 10.3 10.2 9.9
SVR - RBF 0.87 0.86 0.84 0.85 9.3 10.5 10.4 10.1
SVR - Sigmoid 0.33 0.26 0.21 0.27 20.9 24.0 23.1 22.7
Gradient Boosting 0.88 0.89 0.88 0.88 8.9 9.4 9.1 9.1
Random Forest 0.92 0.91 0.90 0.91 7.3 8.4 8.2 8.0

Fingerprints: Linear Regression 0.67 0.68 0.65 0.67 14.6 15.8 15.5 15.3
Morgan1 Lasso 0.68 0.69 0.65 0.68 14.3 15.6 15.3 15.1

Ridge 0.68 0.69 0.65 0.68 14.3 15.6 15.3 15.1
Bayesian Ridge 0.68 0.69 0.65 0.67 14.3 15.6 15.3 15.1
SVR - Linear 0.68 0.68 0.65 0.67 14.4 15.6 15.3 15.1
SVR - Polynomial 0.89 0.91 0.90 0.90 8.4 8.4 8.2 8.3
SVR - RBF 0.91 0.92 0.91 0.91 7.8 7.8 7.9 7.8
SVR - Sigmoid 0.49 0.48 0.38 0.45 18.3 20.2 20.6 19.7
Gradient Boosting 0.89 0.91 0.90 0.90 8.3 8.5 8.4 8.4
Random Forest 0.92 0.93 0.91 0.92 7.2 7.4 7.9 7.5

Fingerprints: Linear Regression 0.66 0.69 0.67 0.67 14.8 15.5 15.0 15.1
RDK Lasso 0.68 0.71 0.68 0.69 14.3 14.9 14.8 14.7

Ridge 0.68 0.71 0.68 0.69 14.3 14.9 14.8 14.7
Bayesian Ridge 0.68 0.71 0.68 0.69 14.3 14.9 14.8 14.7
SVR - Linear 0.68 0.71 0.67 0.69 14.4 15.0 14.8 14.7
SVR - Polynomial 0.88 0.91 0.90 0.90 8.7 8.2 8.1 8.4
SVR - RBF 0.89 0.91 0.90 0.90 8.6 8.1 8.1 8.3
SVR - Sigmoid 0.35 0.28 0.24 0.29 20.6 23.6 22.7 22.3
Gradient Boosting 0.87 0.91 0.91 0.90 9.1 8.3 8.0 8.5
Random Forest 0.90 0.92 0.92 0.92 8.1 7.6 7.2 7.6

Tanimoto: Linear Regression 0.87 0.86 0.85 0.86 9.3 10.5 10.0 10.0
MACCS Lasso 0.88 0.89 0.88 0.88 8.7 9.4 8.8 9.0

Ridge 0.89 0.89 0.89 0.89 8.4 9.1 8.6 8.7
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Table B.17 Grid Search Cross-Validated Performance for the Models in the Aryl
Halide Test: Halide Split (Continued)

Descriptor ML Algorithm R2 RMSE (%)
Aryl Cl Aryl Br Aryl I Mean Aryl Cl Aryl Br Aryl I Mean

Bayesian Ridge 0.88 0.88 0.88 0.88 8.7 9.6 9.0 9.1
SVR - Polynomial 0.89 0.88 0.88 0.88 8.5 9.6 9.0 9.0
SVR - RBF 0.87 0.87 0.87 0.87 9.2 9.9 9.4 9.5
SVR - Sigmoid 0.66 0.69 0.63 0.66 14.9 15.6 15.8 15.4
SVR - Precomputed 0.88 0.89 0.88 0.88 9.0 9.4 8.9 9.1
Gradient Boosting 0.75 0.75 0.72 0.74 12.8 13.9 13.8 13.5
Random Forest 0.65 0.71 0.67 0.68 15.1 15.0 14.9 15.0

Tanimoto: Linear Regression 0.92 0.93 0.92 0.92 7.2 7.4 7.5 7.4
Morgan1 Lasso 0.92 0.93 0.92 0.93 7.1 7.2 7.3 7.2

Ridge 0.92 0.93 0.92 0.93 7.1 7.2 7.3 7.2
Bayesian Ridge 0.92 0.93 0.92 0.93 7.0 7.2 7.2 7.1
SVR - Polynomial 0.91 0.92 0.91 0.91 7.6 7.7 7.8 7.7
SVR - RBF 0.89 0.91 0.89 0.90 8.4 8.4 8.5 8.4
SVR - Sigmoid 0.87 0.88 0.86 0.87 9.0 9.6 9.7 9.4
SVR - Precomputed 0.93 0.93 0.92 0.93 7.0 7.2 7.3 7.2
Gradient Boosting 0.79 0.82 0.78 0.80 11.8 11.8 12.1 11.9
Random Forest 0.67 0.76 0.71 0.71 14.7 13.7 13.9 14.1

Tanimoto: Linear Regression 0.87 0.92 0.90 0.90 9.1 8.0 8.1 8.4
RDK Lasso 0.88 0.92 0.91 0.90 8.8 7.8 7.9 8.1

Ridge 0.89 0.92 0.91 0.91 8.6 7.7 7.7 8.0
Bayesian Ridge 0.89 0.92 0.91 0.91 8.6 7.7 7.7 8.0
SVR - Polynomial 0.87 0.91 0.90 0.89 9.3 8.2 8.2 8.6
SVR - RBF 0.85 0.90 0.89 0.88 9.9 8.7 8.7 9.1
SVR - Sigmoid 0.82 0.85 0.83 0.83 10.8 10.6 10.8 10.7
SVR - Precomputed 0.88 0.92 0.91 0.90 8.7 7.8 7.8 8.1
Gradient Boosting 0.73 0.82 0.79 0.78 13.4 11.9 12.0 12.4
Random Forest 0.60 0.76 0.71 0.69 16.2 13.6 14.0 14.6

WL Linear Regression 0.90 0.92 0.91 0.91 8.0 7.9 7.6 7.9
Lasso 0.91 0.92 0.92 0.92 7.8 7.7 7.4 7.6
Ridge 0.91 0.93 0.92 0.92 7.6 7.5 7.3 7.5
Bayesian Ridge 0.91 0.93 0.92 0.92 7.7 7.5 7.3 7.5
SVR - Polynomial 0.91 0.92 0.92 0.92 7.7 7.7 7.5 7.6
SVR - RBF 0.90 0.92 0.91 0.91 8.0 7.8 7.7 7.8
SVR - Sigmoid 0.81 0.83 0.81 0.82 11.0 11.4 11.3 11.2
SVR - Precomputed 0.91 0.92 0.92 0.92 7.7 7.8 7.4 7.6
Gradient Boosting 0.83 0.86 0.83 0.84 10.6 10.5 10.6 10.5
Random Forest 0.75 0.82 0.76 0.78 12.7 11.7 12.6 12.3

Training Set Performance

Table B.18: Training Set Performance for the Models in the Aryl Halide Test:
Halide Split

Descriptor ML Algorithm R2 RMSE (%)
Aryl Cl Aryl Br Aryl I Mean Aryl Cl Aryl Br Aryl I Mean

One-hot Linear Regression 0.69 0.72 0.69 0.70 14.1 14.7 14.6 14.5
Lasso 0.69 0.72 0.69 0.70 14.1 14.7 14.5 14.5
Ridge 0.69 0.72 0.69 0.70 14.1 14.7 14.5 14.5
Bayesian Ridge 0.69 0.72 0.69 0.70 14.1 14.7 14.5 14.5
SVR - Linear 0.69 0.72 0.69 0.70 14.2 14.8 14.6 14.5
SVR - Polynomial 0.97 0.98 0.97 0.97 4.7 4.3 4.6 4.5
SVR - RBF 0.98 1.00 1.00 0.99 3.9 1.0 1.0 1.9
SVR - Sigmoid 0.58 0.61 0.56 0.58 16.5 17.4 17.3 17.1
Gradient Boosting 0.95 0.96 0.95 0.95 5.7 5.5 6.0 5.7
Random Forest 0.99 0.99 0.99 0.99 3.1 2.9 3.1 3.0



Appendix B: Predicting Yields of Chemical Reactions 228

Table B.18 Training Set Performance for the Models in the Aryl Halide Test:
Halide Split (Continued)

Descriptor ML Algorithm R2 RMSE (%)
Aryl Cl Aryl Br Aryl I Mean Aryl Cl Aryl Br Aryl I Mean

Quantum Linear Regression 0.69 0.72 0.69 0.70 14.2 14.7 14.6 14.5
Chemical Lasso 0.68 0.72 0.68 0.69 14.4 14.8 14.6 14.6

Ridge 0.69 0.72 0.69 0.70 14.2 14.7 14.6 14.5
Bayesian Ridge 0.69 0.72 0.68 0.70 14.3 14.9 14.6 14.6
SVR - Linear 0.69 0.72 0.68 0.70 14.3 14.8 14.6 14.6
SVR - Polynomial 0.95 0.96 0.95 0.95 5.6 5.4 5.9 5.6
SVR - RBF 0.99 0.99 0.97 0.98 3.0 2.9 4.2 3.4
SVR - Sigmoid 0.49 0.54 0.30 0.44 18.2 18.9 21.8 19.6
Gradient Boosting 0.96 0.97 0.97 0.97 4.8 5.0 4.7 4.9
Random Forest 0.99 0.99 0.99 0.99 2.4 2.5 2.5 2.5

Fingerprints: Linear Regression 0.61 0.63 0.62 0.62 16.0 17.0 16.1 16.4
MACCS Lasso 0.65 0.66 0.62 0.64 15.0 16.3 16.1 15.8

Ridge 0.65 0.66 0.62 0.64 15.0 16.3 16.1 15.8
Bayesian Ridge 0.65 0.66 0.62 0.64 15.0 16.3 16.1 15.8
SVR - Linear 0.65 0.66 0.61 0.64 15.1 16.3 16.2 15.9
SVR - Polynomial 0.91 0.91 0.90 0.91 7.7 8.4 8.4 8.1
SVR - RBF 0.91 0.91 0.90 0.90 7.5 8.5 8.4 8.2
SVR - Sigmoid 0.36 0.30 0.25 0.30 20.4 23.3 22.5 22.1
Gradient Boosting 0.92 0.93 0.92 0.92 7.2 7.6 7.5 7.4
Random Forest 0.99 0.99 0.99 0.99 2.4 2.7 2.8 2.6

Fingerprints: Linear Regression 0.69 0.69 0.66 0.68 14.2 15.4 15.2 15.0
Morgan1 Lasso 0.69 0.70 0.66 0.68 14.1 15.4 15.1 14.9

Ridge 0.69 0.70 0.66 0.68 14.1 15.4 15.1 14.9
Bayesian Ridge 0.69 0.70 0.66 0.68 14.1 15.4 15.1 14.9
SVR - Linear 0.69 0.69 0.66 0.68 14.2 15.4 15.2 14.9
SVR - Polynomial 0.95 0.96 0.95 0.95 5.9 5.9 5.9 5.9
SVR - RBF 0.96 0.97 0.96 0.97 4.8 4.9 4.9 4.9
SVR - Sigmoid 0.51 0.50 0.41 0.47 17.9 19.7 20.0 19.2
Gradient Boosting 0.95 0.96 0.94 0.95 5.8 5.9 6.2 6.0
Random Forest 0.99 0.99 0.99 0.99 2.4 2.4 2.7 2.5

Fingerprints: Linear Regression 0.69 0.72 0.68 0.70 14.2 14.7 14.6 14.5
RDK Lasso 0.69 0.72 0.69 0.70 14.1 14.7 14.5 14.5

Ridge 0.69 0.72 0.69 0.70 14.1 14.7 14.5 14.5
Bayesian Ridge 0.69 0.72 0.69 0.70 14.1 14.7 14.5 14.5
SVR - Linear 0.69 0.72 0.69 0.70 14.2 14.8 14.6 14.5
SVR - Polynomial 0.95 0.97 0.96 0.96 5.6 5.2 5.1 5.3
SVR - RBF 0.96 0.97 0.97 0.97 5.1 4.7 4.5 4.8
SVR - Sigmoid 0.39 0.33 0.28 0.33 20.0 22.9 22.0 21.6
Gradient Boosting 0.95 0.96 0.96 0.96 5.9 5.3 5.1 5.4
Random Forest 0.99 0.99 0.99 0.99 2.6 2.5 2.5 2.5

Tanimoto: Linear Regression 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0
MACCS Lasso 0.99 0.99 0.99 0.99 2.4 2.6 2.5 2.5

Ridge 0.98 0.98 0.98 0.98 3.3 3.8 3.6 3.6
Bayesian Ridge 0.96 0.96 0.96 0.96 4.8 5.9 5.2 5.3
SVR - Polynomial 1.00 1.00 1.00 1.00 0.9 1.0 1.0 1.0
SVR - RBF 1.00 1.00 1.00 1.00 1.0 1.1 1.1 1.1
SVR - Sigmoid 0.68 0.72 0.66 0.69 14.3 14.9 15.1 14.8
SVR - Precomputed 0.97 0.97 0.98 0.97 4.0 5.1 4.0 4.4
Gradient Boosting 1.00 0.94 0.94 0.96 0.6 6.6 6.6 4.6
Random Forest 0.98 0.98 0.98 0.98 3.6 4.0 4.0 3.8

Tanimoto: Linear Regression 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0
Morgan1 Lasso 1.00 1.00 1.00 1.00 0.9 0.9 0.9 0.9

Ridge 1.00 1.00 1.00 1.00 0.6 0.7 0.8 0.7
Bayesian Ridge 1.00 1.00 1.00 1.00 0.9 1.1 1.4 1.1
SVR - Polynomial 1.00 1.00 1.00 1.00 1.1 0.9 1.2 1.1
SVR - RBF 1.00 1.00 1.00 1.00 1.0 0.9 1.0 1.0
SVR - Sigmoid 0.85 0.87 0.87 0.86 9.8 10.2 9.3 9.8
SVR - Precomputed 0.99 0.99 0.99 0.99 1.9 2.1 2.4 2.1
Gradient Boosting 0.99 1.00 1.00 1.00 2.2 0.6 0.6 1.1



Appendix B: Predicting Yields of Chemical Reactions 229

Table B.18 Training Set Performance for the Models in the Aryl Halide Test:
Halide Split (Continued)

Descriptor ML Algorithm R2 RMSE (%)
Aryl Cl Aryl Br Aryl I Mean Aryl Cl Aryl Br Aryl I Mean

Random Forest 0.98 0.98 0.97 0.98 3.9 4.2 4.2 4.1
Tanimoto: Linear Regression 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0
RDK Lasso 1.00 1.00 1.00 1.00 1.5 1.4 1.4 1.5

Ridge 1.00 1.00 1.00 1.00 1.6 1.5 1.5 1.5
Bayesian Ridge 0.99 0.99 0.99 0.99 2.6 2.2 2.3 2.4
SVR - Polynomial 1.00 1.00 1.00 1.00 1.0 0.9 1.0 1.0
SVR - RBF 1.00 1.00 1.00 1.00 1.0 0.9 0.9 1.0
SVR - Sigmoid 0.80 0.83 0.86 0.83 11.5 11.5 9.9 11.0
SVR - Precomputed 1.00 1.00 1.00 1.00 1.3 1.0 1.2 1.2
Gradient Boosting 0.99 1.00 0.99 0.99 2.3 0.7 2.1 1.7
Random Forest 0.98 0.98 0.98 0.98 3.8 3.9 4.1 3.9

WL Linear Regression 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0
Lasso 1.00 1.00 1.00 1.00 1.6 1.6 1.6 1.6
Ridge 0.99 1.00 0.99 0.99 1.9 1.9 1.9 1.9
Bayesian Ridge 0.98 0.99 0.99 0.99 3.3 3.1 3.1 3.2
SVR - Polynomial 1.00 1.00 1.00 1.00 0.9 0.9 0.9 0.9
SVR - RBF 1.00 1.00 1.00 1.00 0.9 0.9 0.9 0.9
SVR - Sigmoid 0.82 0.84 0.76 0.80 10.8 11.2 12.8 11.6
SVR - Precomputed 1.00 1.00 1.00 1.00 1.7 1.5 1.6 1.6
Gradient Boosting 1.00 0.99 1.00 1.00 0.7 2.2 0.6 1.2
Random Forest 0.98 0.99 0.98 0.98 3.5 3.4 3.5 3.4

Test Set Performance

Table B.19: Test Set Performance for the Models in the Aryl Halide Test: Halide
Split

Descriptor ML Algorithm R2 RMSE (%)
Aryl Cl Aryl Br Aryl I Mean Aryl Cl Aryl Br Aryl I Mean

One-hot Linear Regression <-1.00 <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0 >100.0
Lasso <-1.00 0.43 -0.13 -0.56 36.5 19.1 26.9 27.5
Ridge <-1.00 0.36 -0.13 -0.52 35.4 20.1 26.9 27.5
Bayesian Ridge <-1.00 0.36 -0.14 -0.52 35.3 20.1 27.0 27.5
SVR - Linear <-1.00 0.37 -0.15 -0.53 35.4 20.1 27.1 27.6
SVR - Polynomial <-1.00 0.40 -0.09 -0.47 34.8 19.5 26.4 26.9
SVR - RBF <-1.00 0.50 -0.04 -0.57 37.7 17.8 25.8 27.1
SVR - Sigmoid <-1.00 0.21 -0.36 -0.62 34.9 22.4 29.5 28.9
Gradient Boosting <-1.00 0.47 -0.12 -0.56 36.8 18.3 26.7 27.3
Random Forest <-1.00 0.59 0.40 -0.72 43.1 16.1 19.6 26.3

Quantum Linear Regression <-1.00 <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0 >100.0
Chemical Lasso <-1.00 <-1.00 <-1.00 <-1.00 30.8 74.0 >100.0 >100.0

Ridge <-1.00 -0.48 <-1.00 <-1.00 34.0 30.6 >100.0 >100.0
Bayesian Ridge <-1.00 -0.50 <-1.00 <-1.00 33.9 30.9 >100.0 >100.0
SVR - Linear <-1.00 -0.61 <-1.00 <-1.00 34.6 32.0 >100.0 >100.0
SVR - Polynomial <-1.00 -5.42 <-1.00 <-1.00 35.6 63.9 >100.0 >100.0
SVR - RBF <-1.00 0.06 <-1.00 -0.95 35.1 24.5 37.2 32.3
SVR - Sigmoid <-1.00 -0.34 <-1.00 <-1.00 33.1 29.2 >100.0 86.9
Gradient Boosting -0.69 -0.18 0.62 -0.08 27.5 27.5 15.7 23.5
Random Forest -0.57 -0.22 0.64 -0.05 26.5 27.9 15.2 23.2

Fingerprints: Linear Regression <-1.00 <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0 >100.0
MACCS Lasso <-1.00 -0.30 -0.95 -0.81 31.2 28.7 35.4 31.8

Ridge <-1.00 0.45 -0.05 -0.40 34.0 18.7 26.0 26.2
Bayesian Ridge <-1.00 0.45 -0.05 -0.39 34.0 18.7 26.0 26.2
SVR - Linear <-1.00 0.44 -0.12 -0.44 34.4 18.9 26.8 26.7
SVR - Polynomial <-1.00 0.62 0.10 -0.30 34.3 15.5 24.0 24.6
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Table B.19 Test Set Performance for the Models in the Aryl Halide Test: Halide
Split (Continued)

Descriptor ML Algorithm R2 RMSE (%)
Aryl Cl Aryl Br Aryl I Mean Aryl Cl Aryl Br Aryl I Mean

SVR - RBF <-1.00 0.63 0.09 -0.29 34.0 15.4 24.2 24.5
SVR - Sigmoid <-1.00 -0.02 -0.73 -0.68 32.1 25.5 33.3 30.3
Gradient Boosting <-1.00 0.40 0.36 -0.27 34.0 19.5 20.2 24.6
Random Forest <-1.00 0.82 0.21 -0.19 34.1 10.8 22.4 22.5

Fingerprints: Linear Regression <-1.00 <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0 >100.0
Morgan1 Lasso <-1.00 0.38 0.42 -0.42 37.0 19.9 19.2 25.3

Ridge <-1.00 0.18 0.30 -0.37 34.1 22.8 21.1 26.0
Bayesian Ridge <-1.00 0.18 0.30 -0.37 34.1 22.8 21.2 26.0
SVR - Linear <-1.00 0.19 0.27 -0.39 34.3 22.7 21.5 26.2
SVR - Polynomial <-1.00 0.20 0.45 -0.33 34.3 22.5 18.8 25.2
SVR - RBF <-1.00 0.19 0.45 -0.32 34.1 22.8 18.8 25.2
SVR - Sigmoid <-1.00 -0.04 -0.40 -0.60 32.5 25.7 29.9 29.4
Gradient Boosting <-1.00 -0.76 -0.45 <-1.00 36.2 33.5 30.4 33.4
Random Forest <-1.00 <-1.00 0.51 -0.76 34.2 37.2 17.7 29.7

Fingerprints: Linear Regression <-1.00 <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0 >100.0
RDK Lasso <-1.00 0.38 0.43 -0.45 37.7 19.8 19.0 25.5

Ridge <-1.00 0.48 0.15 -0.38 35.2 18.1 23.3 25.5
Bayesian Ridge <-1.00 0.48 0.15 -0.38 35.2 18.1 23.4 25.6
SVR - Linear <-1.00 0.49 0.14 -0.38 35.2 18.1 23.5 25.6
SVR - Polynomial <-1.00 0.64 0.27 -0.31 35.7 15.2 21.6 24.2
SVR - RBF <-1.00 0.63 0.25 -0.30 35.4 15.3 21.9 24.2
SVR - Sigmoid <-1.00 -0.02 -0.72 -0.69 32.4 25.5 33.1 30.3
Gradient Boosting <-1.00 0.67 0.60 -0.24 36.6 14.6 16.0 22.4
Random Forest <-1.00 0.75 0.56 -0.18 35.7 12.5 16.8 21.7

Tanimoto: Linear Regression <-1.00 0.68 0.14 -0.28 34.5 14.4 23.5 24.1
MACCS Lasso <-1.00 0.67 0.14 -0.24 33.6 14.6 23.5 23.9

Ridge <-1.00 0.64 0.09 -0.22 32.8 15.1 24.2 24.0
Bayesian Ridge <-1.00 0.63 0.08 -0.23 32.7 15.4 24.2 24.1
SVR - Polynomial <-1.00 0.63 0.07 -0.20 32.3 15.3 24.3 23.9
SVR - RBF <-1.00 0.62 0.07 -0.20 32.0 15.5 24.5 24.0
SVR - Sigmoid <-1.00 0.39 -0.19 -0.44 33.6 19.7 27.5 27.0
SVR - Precomputed <-1.00 0.64 0.08 -0.23 32.9 15.1 24.2 24.1
Gradient Boosting <-1.00 0.09 -0.40 -0.53 32.0 24.1 29.9 28.6
Random Forest <-1.00 -0.66 -0.85 -1.07 34.7 32.5 34.4 33.9

Tanimoto: Linear Regression <-1.00 0.21 -0.07 -0.39 32.1 22.4 26.1 26.9
Morgan1 Lasso <-1.00 0.21 0.21 -0.32 32.5 22.4 22.5 25.8

Ridge <-1.00 0.19 0.21 -0.29 31.9 22.7 22.5 25.7
Bayesian Ridge <-1.00 0.19 0.21 -0.29 31.9 22.7 22.5 25.7
SVR - Polynomial <-1.00 0.22 0.11 -0.29 31.4 22.3 23.8 25.8
SVR - RBF <-1.00 0.22 0.08 -0.29 31.2 22.3 24.3 25.9
SVR - Sigmoid <-1.00 0.17 0.23 -0.32 32.4 23.0 22.2 25.9
SVR - Precomputed <-1.00 0.20 0.20 -0.29 31.9 22.6 22.6 25.7
Gradient Boosting <-1.00 0.30 -0.12 -0.67 37.8 21.1 26.7 28.6
Random Forest <-1.00 0.13 0.02 -0.52 34.8 23.5 25.0 27.8

Tanimoto: Linear Regression <-1.00 0.43 -0.01 -0.31 32.4 19.0 25.5 25.6
RDK Lasso <-1.00 0.42 -0.09 -0.34 32.6 19.1 26.4 26.0

Ridge <-1.00 0.43 -0.05 -0.33 32.5 19.1 25.9 25.8
Bayesian Ridge <-1.00 0.42 -0.05 -0.33 32.5 19.1 25.9 25.8
SVR - Polynomial <-1.00 0.36 -0.11 -0.36 32.3 20.1 26.7 26.4
SVR - RBF <-1.00 0.33 -0.14 -0.38 32.3 20.6 27.0 26.6
SVR - Sigmoid <-1.00 0.41 -0.03 -0.33 32.6 19.4 25.7 25.9
SVR - Precomputed <-1.00 0.43 -0.05 -0.33 32.5 19.1 25.9 25.8
Gradient Boosting -0.86 -0.30 <-1.00 -0.93 28.8 28.8 41.0 32.9
Random Forest <-1.00 -0.75 <-1.00 <-1.00 31.2 33.3 43.4 36.0

WL Linear Regression <-1.00 0.65 0.28 -0.30 35.5 15.0 21.5 24.0
Lasso <-1.00 0.64 0.14 -0.30 34.6 15.2 23.4 24.4
Ridge <-1.00 0.63 0.12 -0.27 33.9 15.4 23.7 24.3
Bayesian Ridge <-1.00 0.63 0.12 -0.27 33.9 15.4 23.8 24.4
SVR - Polynomial <-1.00 0.59 0.07 -0.27 33.3 16.2 24.4 24.6
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Table B.19 Test Set Performance for the Models in the Aryl Halide Test: Halide
Split (Continued)

Descriptor ML Algorithm R2 RMSE (%)
Aryl Cl Aryl Br Aryl I Mean Aryl Cl Aryl Br Aryl I Mean

SVR - RBF <-1.00 0.56 0.04 -0.28 33.1 16.7 24.7 24.8
SVR - Sigmoid <-1.00 0.59 0.08 -0.32 34.4 16.1 24.3 24.9
SVR - Precomputed <-1.00 0.63 0.12 -0.27 33.9 15.3 23.7 24.3
Gradient Boosting <-1.00 0.53 0.11 -0.15 30.6 17.2 23.8 23.9
Random Forest <-1.00 0.53 0.16 -0.02 28.1 17.2 23.2 22.8
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B.7.4 Leave-One-Base-Out Test

Grid Search Cross-Validated Performance

Table B.20: Grid Search Cross-Validated Performance for the Models in the
Leave-One-Base-Out Test

Descriptor ML Algorithm R2 RMSE (%)
BTMG MTBD P2Et Mean BTMG MTBD P2Et Mean

One-hot Linear Regression 0.67 0.65 0.79 0.70 16.2 14.7 12.9 14.6
Lasso 0.68 0.66 0.79 0.71 16.0 14.5 12.8 14.4
Ridge 0.68 0.66 0.79 0.71 16.0 14.5 12.8 14.4
Bayesian Ridge 0.68 0.66 0.79 0.71 16.0 14.5 12.8 14.4
SVR - Linear 0.68 0.65 0.79 0.71 16.0 14.6 12.9 14.5
SVR - Polynomial 0.89 0.86 0.94 0.89 9.6 9.3 6.8 8.6
SVR - RBF 0.90 0.87 0.95 0.91 9.2 8.8 6.4 8.1
SVR - Sigmoid 0.51 0.50 0.65 0.55 19.8 17.4 16.6 18.0
Gradient Boosting 0.89 0.85 0.94 0.89 9.5 9.7 6.7 8.6
Random Forest 0.90 0.86 0.92 0.89 9.0 9.4 7.7 8.7

Quantum Linear Regression 0.68 0.65 0.79 0.71 16.0 14.6 12.8 14.5
Chemical Lasso 0.68 0.65 0.78 0.70 16.1 14.7 13.1 14.6

Ridge 0.68 0.65 0.79 0.71 16.0 14.6 12.8 14.5
Bayesian Ridge 0.68 0.65 0.78 0.70 16.2 14.7 13.0 14.6
SVR - Linear 0.68 0.65 0.79 0.71 16.0 14.7 12.9 14.5
SVR - Polynomial 0.87 0.84 0.93 0.88 10.1 9.9 7.2 9.1
SVR - RBF 0.89 0.85 0.93 0.89 9.5 9.7 7.6 8.9
SVR - Sigmoid 0.42 0.39 0.52 0.45 21.5 19.3 19.4 20.1
Gradient Boosting 0.90 0.88 0.95 0.91 8.8 8.5 6.2 7.8
Random Forest 0.93 0.90 0.95 0.93 7.4 7.7 5.9 7.0

Fingerprints: Linear Regression 0.61 0.56 0.73 0.63 17.7 16.5 14.6 16.3
MACCS Lasso 0.62 0.58 0.73 0.64 17.6 16.1 14.5 16.0

Ridge 0.62 0.58 0.73 0.64 17.5 16.1 14.5 16.0
Bayesian Ridge 0.62 0.58 0.73 0.64 17.6 16.1 14.5 16.0
SVR - Linear 0.62 0.58 0.73 0.64 17.6 16.1 14.6 16.1
SVR - Polynomial 0.85 0.82 0.91 0.86 10.9 10.4 8.3 9.9
SVR - RBF 0.85 0.82 0.91 0.86 11.1 10.5 8.6 10.1
SVR - Sigmoid 0.22 0.19 0.30 0.23 25.1 22.4 23.4 23.6
Gradient Boosting 0.88 0.85 0.94 0.89 9.9 9.5 7.0 8.8
Random Forest 0.93 0.90 0.94 0.92 7.5 7.7 6.9 7.4

Fingerprints: Linear Regression 0.65 0.63 0.76 0.68 16.8 15.1 13.7 15.2
Morgan1 Lasso 0.66 0.63 0.76 0.69 16.5 15.0 13.6 15.0

Ridge 0.66 0.63 0.76 0.69 16.5 15.0 13.6 15.0
Bayesian Ridge 0.66 0.63 0.76 0.69 16.6 15.0 13.6 15.0
SVR - Linear 0.66 0.63 0.76 0.68 16.6 15.0 13.6 15.1
SVR - Polynomial 0.90 0.88 0.95 0.91 8.8 8.5 6.4 7.9
SVR - RBF 0.92 0.89 0.95 0.92 8.2 8.1 6.0 7.4
SVR - Sigmoid 0.40 0.38 0.52 0.43 22.1 19.6 19.4 20.4
Gradient Boosting 0.90 0.88 0.95 0.91 8.9 8.7 6.4 8.0
Random Forest 0.94 0.91 0.95 0.93 7.0 7.5 6.3 6.9

Fingerprints: Linear Regression 0.68 0.64 0.78 0.70 16.1 14.8 13.0 14.6
RDK Lasso 0.68 0.66 0.79 0.71 16.0 14.5 12.8 14.4

Ridge 0.68 0.66 0.79 0.71 16.0 14.5 12.8 14.4
Bayesian Ridge 0.68 0.66 0.79 0.71 16.0 14.5 12.8 14.4
SVR - Linear 0.68 0.65 0.79 0.71 16.0 14.6 12.9 14.5
SVR - Polynomial 0.90 0.88 0.95 0.91 9.1 8.7 6.3 8.0
SVR - RBF 0.90 0.88 0.95 0.91 8.9 8.6 6.2 7.9
SVR - Sigmoid 0.33 0.15 0.59 0.36 23.2 22.9 17.8 21.3
Gradient Boosting 0.89 0.86 0.95 0.90 9.3 9.4 6.3 8.3
Random Forest 0.92 0.90 0.96 0.93 7.8 7.9 5.9 7.2

Tanimoto: Linear Regression 0.88 0.86 0.90 0.88 10.0 9.1 8.7 9.3
MACCS Lasso 0.90 0.88 0.93 0.90 8.9 8.5 7.4 8.3

Ridge 0.90 0.89 0.94 0.91 8.7 8.2 6.9 7.9
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Table B.20 Grid Search Cross-Validated Performance for the Models in the
Leave-One-Base-Out Test (Continued)

Descriptor ML Algorithm R2 RMSE (%)
BTMG MTBD P2Et Mean BTMG MTBD P2Et Mean

Bayesian Ridge 0.88 0.86 0.93 0.89 9.7 9.2 7.1 8.7
SVR - Polynomial 0.90 0.89 0.92 0.90 9.1 8.3 7.7 8.4
SVR - RBF 0.88 0.87 0.92 0.89 9.7 8.9 8.0 8.9
SVR - Sigmoid 0.66 0.57 0.74 0.66 16.6 16.2 14.1 15.6
SVR - Precomputed 0.89 0.87 0.93 0.90 9.6 9.0 7.2 8.6
Gradient Boosting 0.78 0.71 0.85 0.78 13.3 13.3 10.8 12.5
Random Forest 0.71 0.60 0.79 0.70 15.3 15.7 12.7 14.6

Tanimoto: Linear Regression 0.93 0.92 0.94 0.93 7.3 7.1 6.6 7.0
Morgan1 Lasso 0.94 0.92 0.95 0.94 7.1 7.0 6.4 6.8

Ridge 0.94 0.92 0.95 0.94 7.1 6.9 6.4 6.8
Bayesian Ridge 0.94 0.92 0.95 0.94 7.1 6.9 6.3 6.8
SVR - Polynomial 0.93 0.91 0.94 0.92 7.7 7.6 6.8 7.4
SVR - RBF 0.91 0.89 0.93 0.91 8.6 8.3 7.5 8.1
SVR - Sigmoid 0.87 0.84 0.91 0.88 10.1 9.9 8.2 9.4
SVR - Precomputed 0.94 0.92 0.95 0.94 7.1 7.0 6.2 6.8
Gradient Boosting 0.82 0.77 0.85 0.81 12.2 11.9 10.7 11.6
Random Forest 0.76 0.68 0.77 0.74 13.9 13.9 13.3 13.7

Tanimoto: Linear Regression 0.90 0.87 0.93 0.90 9.1 9.0 7.3 8.5
RDK Lasso 0.90 0.88 0.94 0.91 8.8 8.7 7.0 8.2

Ridge 0.91 0.88 0.94 0.91 8.7 8.5 6.9 8.0
Bayesian Ridge 0.91 0.88 0.94 0.91 8.6 8.4 6.9 8.0
SVR - Polynomial 0.89 0.87 0.92 0.90 9.3 8.9 7.7 8.6
SVR - RBF 0.88 0.86 0.91 0.88 9.8 9.3 8.4 9.2
SVR - Sigmoid 0.83 0.80 0.90 0.84 11.7 11.1 9.0 10.6
SVR - Precomputed 0.90 0.88 0.94 0.91 8.8 8.7 6.9 8.1
Gradient Boosting 0.77 0.75 0.82 0.78 13.5 12.3 11.8 12.5
Random Forest 0.71 0.69 0.75 0.71 15.4 13.9 14.0 14.4

WL Linear Regression 0.91 0.89 0.95 0.91 8.5 8.2 6.5 7.7
Lasso 0.91 0.90 0.95 0.92 8.4 7.9 6.3 7.5
Ridge 0.92 0.90 0.95 0.92 8.2 7.8 6.2 7.4
Bayesian Ridge 0.92 0.90 0.95 0.92 8.2 7.8 6.3 7.4
SVR - Polynomial 0.91 0.90 0.95 0.92 8.3 7.9 6.5 7.6
SVR - RBF 0.91 0.89 0.94 0.92 8.5 8.1 6.7 7.8
SVR - Sigmoid 0.82 0.76 0.88 0.82 12.1 12.1 9.7 11.3
SVR - Precomputed 0.91 0.90 0.95 0.92 8.4 8.0 6.3 7.6
Gradient Boosting 0.85 0.81 0.89 0.85 11.0 10.9 9.0 10.3
Random Forest 0.79 0.72 0.84 0.78 13.2 13.0 11.3 12.5

Training Set Performance

Table B.21: Training Set Performance for the Models in the Leave-One-Base-Out
Test

Descriptor ML Algorithm R2 RMSE (%)
BTMG MTBD P2Et Mean BTMG MTBD P2Et Mean

One-hot Linear Regression 0.69 0.67 0.80 0.72 15.7 14.3 12.6 14.2
Lasso 0.69 0.67 0.80 0.72 15.7 14.3 12.6 14.2
Ridge 0.69 0.67 0.80 0.72 15.7 14.3 12.6 14.2
Bayesian Ridge 0.69 0.67 0.80 0.72 15.7 14.3 12.6 14.2
SVR - Linear 0.69 0.66 0.79 0.72 15.8 14.4 12.7 14.3
SVR - Polynomial 0.97 0.96 0.99 0.97 4.9 4.7 3.1 4.2
SVR - RBF 1.00 1.00 0.99 1.00 1.0 1.0 2.1 1.3
SVR - Sigmoid 0.52 0.52 0.65 0.56 19.7 17.2 16.4 17.8
Gradient Boosting 0.95 0.94 0.98 0.95 6.6 6.1 4.2 5.6
Random Forest 0.99 0.98 0.99 0.99 3.2 3.2 2.7 3.0
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Table B.21 Training Set Performance for the Models in the Leave-One-Base-Out
Test (Continued)

Descriptor ML Algorithm R2 RMSE (%)
BTMG MTBD P2Et Mean BTMG MTBD P2Et Mean

Quantum Linear Regression 0.69 0.66 0.80 0.72 15.8 14.4 12.6 14.3
Chemical Lasso 0.69 0.66 0.79 0.71 15.9 14.5 12.9 14.5

Ridge 0.69 0.66 0.80 0.72 15.8 14.4 12.6 14.3
Bayesian Ridge 0.69 0.66 0.79 0.71 15.9 14.5 12.8 14.4
SVR - Linear 0.69 0.66 0.79 0.71 15.8 14.4 12.8 14.4
SVR - Polynomial 0.95 0.94 0.98 0.96 6.1 6.0 4.4 5.5
SVR - RBF 0.97 0.97 0.99 0.98 5.0 4.2 3.3 4.2
SVR - Sigmoid 0.42 0.38 0.51 0.44 21.7 19.5 19.5 20.2
Gradient Boosting 0.97 0.95 0.98 0.97 5.2 5.4 3.9 4.9
Random Forest 0.99 0.99 0.99 0.99 2.5 2.5 2.1 2.4

Fingerprints: Linear Regression 0.62 0.58 0.72 0.64 17.4 16.0 14.7 16.0
MACCS Lasso 0.63 0.59 0.74 0.65 17.3 15.9 14.3 15.9

Ridge 0.63 0.59 0.74 0.65 17.3 15.9 14.3 15.9
Bayesian Ridge 0.63 0.59 0.74 0.65 17.3 15.9 14.3 15.9
SVR - Linear 0.63 0.59 0.74 0.65 17.4 15.9 14.4 15.9
SVR - Polynomial 0.89 0.87 0.94 0.90 9.2 8.9 6.7 8.3
SVR - RBF 0.89 0.87 0.94 0.90 9.3 8.9 6.8 8.4
SVR - Sigmoid 0.25 0.22 0.33 0.27 24.7 21.9 22.8 23.1
Gradient Boosting 0.92 0.90 0.96 0.93 8.2 7.9 5.6 7.2
Random Forest 0.99 0.99 0.99 0.99 2.6 2.5 2.3 2.5

Fingerprints: Linear Regression 0.65 0.64 0.77 0.68 16.9 14.9 13.5 15.1
Morgan1 Lasso 0.67 0.64 0.77 0.70 16.3 14.8 13.4 14.8

Ridge 0.67 0.64 0.77 0.70 16.3 14.8 13.4 14.8
Bayesian Ridge 0.67 0.64 0.77 0.70 16.3 14.8 13.4 14.8
SVR - Linear 0.67 0.64 0.77 0.69 16.4 14.8 13.4 14.9
SVR - Polynomial 0.95 0.94 0.98 0.96 6.3 6.2 4.2 5.6
SVR - RBF 0.97 0.96 0.98 0.97 5.2 5.3 3.4 4.6
SVR - Sigmoid 0.43 0.41 0.55 0.46 21.4 19.0 18.8 19.7
Gradient Boosting 0.95 0.94 0.97 0.95 6.5 6.3 4.6 5.8
Random Forest 0.99 0.99 0.99 0.99 2.4 2.5 2.2 2.4

Fingerprints: Linear Regression 0.69 0.66 0.79 0.71 15.9 14.4 12.7 14.3
RDK Lasso 0.69 0.67 0.80 0.72 15.7 14.3 12.6 14.2

Ridge 0.69 0.67 0.80 0.72 15.7 14.3 12.6 14.2
Bayesian Ridge 0.69 0.67 0.80 0.72 15.7 14.4 12.6 14.2
SVR - Linear 0.69 0.66 0.79 0.72 15.8 14.4 12.7 14.3
SVR - Polynomial 0.96 0.96 0.98 0.97 5.4 5.0 3.5 4.7
SVR - RBF 0.97 0.97 0.99 0.97 5.2 4.4 3.1 4.3
SVR - Sigmoid -0.07 0.18 0.57 0.23 29.4 22.4 18.4 23.4
Gradient Boosting 0.96 0.95 0.98 0.96 6.0 5.5 4.1 5.2
Random Forest 0.99 0.99 0.99 0.99 2.6 2.6 2.0 2.4

Tanimoto: Linear Regression 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0
MACCS Lasso 0.99 0.99 0.99 0.99 2.6 2.6 2.5 2.6

Ridge 1.00 1.00 0.99 0.99 1.7 1.6 3.0 2.1
Bayesian Ridge 0.96 0.95 0.98 0.96 5.7 5.3 3.9 5.0
SVR - Polynomial 1.00 1.00 1.00 1.00 1.0 1.0 1.7 1.2
SVR - RBF 1.00 1.00 1.00 1.00 1.0 1.0 1.0 1.0
SVR - Sigmoid 0.69 0.60 0.77 0.69 15.8 15.6 13.4 14.9
SVR - Precomputed 0.97 0.97 0.99 0.98 5.1 4.4 3.0 4.2
Gradient Boosting 0.99 0.99 1.00 0.99 2.2 2.1 1.8 2.0
Random Forest 0.98 0.98 0.99 0.98 3.8 3.7 3.3 3.6

Tanimoto: Linear Regression 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0
Morgan1 Lasso 1.00 1.00 1.00 1.00 0.9 1.0 0.9 1.0

Ridge 1.00 1.00 1.00 1.00 0.8 0.8 0.7 0.7
Bayesian Ridge 1.00 1.00 1.00 1.00 1.1 1.1 1.2 1.1
SVR - Polynomial 1.00 1.00 1.00 1.00 0.9 0.9 1.2 1.0
SVR - RBF 1.00 1.00 1.00 1.00 1.0 1.0 1.0 1.0
SVR - Sigmoid 0.87 0.80 0.91 0.86 10.4 11.1 8.4 10.0
SVR - Precomputed 1.00 1.00 1.00 1.00 0.9 0.9 1.9 1.3
Gradient Boosting 1.00 1.00 1.00 1.00 0.8 0.6 0.5 0.6
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Table B.21 Training Set Performance for the Models in the Leave-One-Base-Out
Test (Continued)

Descriptor ML Algorithm R2 RMSE (%)
BTMG MTBD P2Et Mean BTMG MTBD P2Et Mean

Random Forest 0.98 0.97 0.98 0.98 3.9 4.0 3.8 3.9
Tanimoto: Linear Regression 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0
RDK Lasso 1.00 1.00 1.00 1.00 1.5 1.4 1.5 1.5

Ridge 1.00 1.00 1.00 1.00 1.7 1.6 1.4 1.6
Bayesian Ridge 0.99 0.99 0.99 0.99 2.5 2.4 2.1 2.3
SVR - Polynomial 1.00 1.00 1.00 1.00 1.0 1.0 1.0 1.0
SVR - RBF 1.00 1.00 1.00 1.00 1.0 0.9 1.0 1.0
SVR - Sigmoid 0.83 0.83 0.86 0.84 11.9 10.3 10.4 10.8
SVR - Precomputed 1.00 1.00 1.00 1.00 1.1 1.2 1.2 1.2
Gradient Boosting 0.99 0.99 1.00 0.99 2.7 2.4 0.7 1.9
Random Forest 0.98 0.98 0.98 0.98 4.3 3.9 3.8 4.0

WL Linear Regression 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0
Lasso 1.00 1.00 1.00 1.00 1.7 1.7 1.6 1.6
Ridge 0.99 0.99 1.00 0.99 2.1 2.0 1.7 1.9
Bayesian Ridge 0.98 0.98 0.99 0.99 3.5 3.2 2.5 3.1
SVR - Polynomial 1.00 1.00 1.00 1.00 1.0 1.0 0.9 1.0
SVR - RBF 1.00 1.00 1.00 1.00 1.0 1.0 1.5 1.1
SVR - Sigmoid 0.81 0.76 0.89 0.82 12.4 12.2 9.4 11.3
SVR - Precomputed 1.00 1.00 1.00 1.00 1.7 1.6 1.3 1.5
Gradient Boosting 1.00 1.00 1.00 1.00 0.8 0.7 1.7 1.1
Random Forest 0.99 0.98 0.99 0.99 3.4 3.3 3.2 3.3

Test Set Performance

Table B.22: Test Set Performance for the Models in the Leave-One-Base-Out
Test

Descriptor ML Algorithm R2 RMSE (%)
BTMG MTBD P2Et Mean BTMG MTBD P2Et Mean

One-hot Linear Regression <-1.00 <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0 >100.0
Lasso 0.68 0.44 0.01 0.38 13.9 22.4 24.7 20.3
Ridge 0.69 0.50 0.22 0.47 13.7 21.2 22.0 19.0
Bayesian Ridge 0.69 0.50 0.22 0.47 13.7 21.2 21.9 19.0
SVR - Linear 0.69 0.50 0.20 0.46 13.8 21.1 22.2 19.0
SVR - Polynomial 0.55 0.28 0.29 0.38 16.5 25.3 20.9 20.9
SVR - RBF 0.76 0.57 0.26 0.53 12.1 19.7 21.3 17.7
SVR - Sigmoid 0.64 0.35 0.31 0.43 14.9 24.1 20.6 19.9
Gradient Boosting 0.73 0.58 0.13 0.48 12.8 19.5 23.2 18.5
Random Forest 0.76 0.58 0.24 0.53 12.1 19.5 21.6 17.7

Quantum Linear Regression <-1.00 <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0 >100.0
Chemical Lasso 0.62 -0.59 0.31 0.11 15.2 37.8 20.7 24.6

Ridge -0.35 0.46 0.24 0.12 28.7 21.9 21.7 24.1
Bayesian Ridge -0.37 0.66 0.24 0.18 28.9 17.4 21.6 22.6
SVR - Linear -0.36 <-1.00 0.20 <-1.00 28.7 >100.0 22.3 >100.0
SVR - Polynomial -2.43 <-1.00 -0.52 <-1.00 45.7 >100.0 30.6 >100.0
SVR - RBF 0.15 -0.49 -0.55 -0.30 22.7 36.5 30.9 30.1
SVR - Sigmoid -0.46 -0.22 0.10 -0.19 29.8 33.1 23.5 28.8
Gradient Boosting 0.74 0.60 0.21 0.52 12.6 19.1 22.0 17.9
Random Forest 0.77 0.57 0.30 0.54 11.9 19.7 20.8 17.5

Fingerprints: Linear Regression <-1.00 <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0 >100.0
MACCS Lasso 0.47 0.50 -0.06 0.30 18.0 21.2 25.5 21.6

Ridge 0.65 0.47 0.23 0.45 14.6 21.9 21.8 19.4
Bayesian Ridge 0.65 0.47 0.23 0.45 14.6 21.9 21.7 19.4
SVR - Linear 0.64 0.46 0.22 0.44 14.7 22.0 22.0 19.6
SVR - Polynomial 0.71 0.62 0.39 0.57 13.3 18.4 19.4 17.0
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Table B.22 Test Set Performance for the Models in the Leave-One-Base-Out
Test (Continued)

Descriptor ML Algorithm R2 RMSE (%)
BTMG MTBD P2Et Mean BTMG MTBD P2Et Mean

SVR - RBF 0.74 0.44 0.44 0.54 12.6 22.4 18.5 17.8
SVR - Sigmoid 0.29 0.00 0.17 0.15 20.8 29.9 22.6 24.4
Gradient Boosting 0.71 0.55 0.35 0.54 13.2 20.0 20.0 17.8
Random Forest 0.72 0.65 0.36 0.58 13.0 17.7 19.8 16.9

Fingerprints: Linear Regression <-1.00 <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0 >100.0
Morgan1 Lasso 0.67 0.53 0.32 0.50 14.2 20.6 20.5 18.4

Ridge 0.69 0.48 0.26 0.48 13.8 21.5 21.3 18.9
Bayesian Ridge 0.69 0.49 0.26 0.48 13.8 21.5 21.3 18.9
SVR - Linear 0.69 0.48 0.25 0.47 13.8 21.6 21.5 19.0
SVR - Polynomial 0.72 0.52 0.37 0.54 13.0 20.9 19.7 17.8
SVR - RBF 0.76 0.54 0.41 0.57 12.2 20.4 19.0 17.2
SVR - Sigmoid 0.52 0.19 0.30 0.34 17.2 26.9 20.7 21.6
Gradient Boosting 0.69 0.58 0.34 0.54 13.6 19.3 20.2 17.7
Random Forest 0.71 0.54 0.34 0.53 13.2 20.3 20.2 17.9

Fingerprints: Linear Regression <-1.00 <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0 >100.0
RDK Lasso 0.52 0.55 0.01 0.36 17.0 20.1 24.6 20.6

Ridge 0.62 0.52 0.20 0.45 15.1 20.7 22.2 19.3
Bayesian Ridge 0.62 0.52 0.20 0.45 15.1 20.7 22.2 19.3
SVR - Linear 0.62 0.53 0.18 0.44 15.1 20.6 22.5 19.4
SVR - Polynomial 0.65 0.68 0.19 0.51 14.5 17.0 22.3 17.9
SVR - RBF 0.75 0.63 0.32 0.57 12.4 18.1 20.5 17.0
SVR - Sigmoid 0.43 -0.09 0.26 0.20 18.6 31.3 21.3 23.8
Gradient Boosting 0.62 0.68 0.14 0.48 15.2 16.8 23.0 18.4
Random Forest 0.77 0.66 0.18 0.54 11.9 17.4 22.4 17.2

Tanimoto: Linear Regression 0.66 0.33 0.39 0.46 14.4 24.4 19.3 19.4
MACCS Lasso 0.66 0.34 0.40 0.47 14.3 24.4 19.3 19.3

Ridge 0.67 0.20 0.47 0.45 14.2 26.9 18.0 19.7
Bayesian Ridge 0.67 0.20 0.47 0.45 14.1 26.8 18.0 19.6
SVR - Polynomial 0.59 0.07 0.44 0.37 15.7 28.8 18.6 21.1
SVR - RBF 0.55 0.04 0.41 0.33 16.5 29.3 19.1 21.6
SVR - Sigmoid 0.60 0.18 0.36 0.38 15.7 27.2 19.8 20.9
SVR - Precomputed 0.68 0.19 0.47 0.45 14.0 27.0 18.0 19.7
Gradient Boosting 0.58 0.28 0.42 0.43 15.9 25.4 18.9 20.1
Random Forest 0.39 0.30 0.16 0.28 19.2 25.1 22.8 22.4

Tanimoto: Linear Regression 0.41 0.17 0.27 0.28 19.0 27.3 21.2 22.5
Morgan1 Lasso 0.40 0.01 0.23 0.21 19.1 29.8 21.7 23.5

Ridge 0.41 -0.04 0.28 0.22 19.0 30.5 21.0 23.5
Bayesian Ridge 0.41 -0.04 0.28 0.22 19.0 30.5 21.0 23.5
SVR - Polynomial 0.32 -0.08 0.20 0.15 20.3 31.1 22.2 24.5
SVR - RBF 0.30 -0.09 0.18 0.13 20.7 31.2 22.5 24.8
SVR - Sigmoid 0.49 0.01 0.33 0.28 17.7 29.9 20.3 22.6
SVR - Precomputed 0.41 -0.04 0.28 0.22 18.9 30.5 21.0 23.5
Gradient Boosting 0.10 0.01 -0.06 0.02 23.4 29.8 25.6 26.3
Random Forest -0.07 0.00 -0.16 -0.07 25.5 30.0 26.7 27.4

Tanimoto: Linear Regression 0.63 0.44 0.17 0.41 14.9 22.5 22.6 20.0
RDK Lasso 0.62 0.44 0.23 0.43 15.2 22.5 21.8 19.8

Ridge 0.57 0.46 0.07 0.37 16.1 22.1 23.9 20.7
Bayesian Ridge 0.57 0.45 0.07 0.37 16.1 22.1 23.9 20.7
SVR - Polynomial 0.47 0.36 0.01 0.28 18.0 24.0 24.7 22.2
SVR - RBF 0.42 0.32 0.00 0.25 18.7 24.7 24.9 22.8
SVR - Sigmoid 0.61 0.49 0.10 0.40 15.4 21.4 23.5 20.1
SVR - Precomputed 0.57 0.46 0.07 0.37 16.1 22.1 24.0 20.7
Gradient Boosting 0.54 0.33 0.32 0.40 16.7 24.5 20.5 20.6
Random Forest 0.49 0.41 0.22 0.37 17.7 23.1 21.9 20.9

WL Linear Regression 0.73 0.47 0.42 0.54 12.8 21.8 18.9 17.8
Lasso 0.73 0.47 0.35 0.52 12.8 21.9 20.0 18.2
Ridge 0.76 0.40 0.40 0.52 12.2 23.3 19.2 18.2
Bayesian Ridge 0.75 0.39 0.40 0.52 12.2 23.3 19.2 18.3
SVR - Polynomial 0.66 0.27 0.34 0.42 14.4 25.5 20.2 20.1
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Table B.22 Test Set Performance for the Models in the Leave-One-Base-Out
Test (Continued)

Descriptor ML Algorithm R2 RMSE (%)
BTMG MTBD P2Et Mean BTMG MTBD P2Et Mean

SVR - RBF 0.61 0.23 0.31 0.38 15.4 26.2 20.7 20.8
SVR - Sigmoid 0.79 0.48 0.41 0.56 11.4 21.6 19.0 17.3
SVR - Precomputed 0.76 0.40 0.40 0.52 12.2 23.3 19.2 18.2
Gradient Boosting 0.43 0.30 -0.16 0.19 18.7 25.0 26.8 23.5
Random Forest 0.27 0.29 -0.53 0.01 21.1 25.2 30.7 25.7
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B.7.5 Leave-One-Ligand-Out Test

Grid Search Cross-Validated Performance

Table B.23: Grid Search Cross-Validated Performance for the Models in the
Leave-One-Ligand-Out Test

Descriptor ML Algorithm R2 RMSE (%)

ABP XP tBBP tBXP Mean ABP XP tBBP tBXP Mean
One-hot Linear Regression 0.69 0.75 0.67 0.68 0.70 14.9 14.4 15.4 15.0 14.9

Lasso 0.69 0.75 0.68 0.68 0.70 14.8 14.3 15.0 15.0 14.8
Ridge 0.69 0.75 0.68 0.68 0.70 14.8 14.3 15.0 15.0 14.8
Bayesian Ridge 0.69 0.75 0.68 0.68 0.70 14.8 14.3 15.0 15.0 14.8
SVR - Linear 0.69 0.74 0.68 0.68 0.70 14.9 14.4 15.1 15.0 14.9
SVR - Polynomial 0.90 0.92 0.88 0.89 0.90 8.6 7.8 9.3 8.9 8.7
SVR - RBF 0.91 0.93 0.89 0.90 0.90 8.2 7.5 8.9 8.5 8.3
SVR - Sigmoid 0.55 0.65 0.53 0.52 0.57 18.0 16.8 18.1 18.3 17.8
Gradient Boosting 0.89 0.92 0.87 0.88 0.89 8.9 8.1 9.5 9.2 8.9
Random Forest 0.88 0.91 0.85 0.88 0.88 9.2 8.6 10.2 9.0 9.3

Quantum Linear Regression 0.69 0.75 0.68 0.68 0.70 14.9 14.4 15.0 15.0 14.8
Chemical Lasso 0.69 0.74 0.67 0.67 0.69 15.0 14.6 15.2 15.1 15.0

Ridge 0.69 0.75 0.68 0.68 0.70 14.9 14.3 15.0 15.0 14.8
Bayesian Ridge 0.69 0.74 0.67 0.67 0.69 15.0 14.4 15.2 15.2 15.0
SVR - Linear 0.69 0.74 0.68 0.67 0.70 14.9 14.4 15.1 15.1 14.9
SVR - Polynomial 0.89 0.91 0.87 0.89 0.89 9.1 8.7 9.4 8.9 9.0
SVR - RBF 0.88 0.89 0.88 0.89 0.89 9.2 9.2 9.3 8.6 9.1
SVR - Sigmoid 0.43 0.50 0.43 0.46 0.46 20.2 20.1 20.1 19.4 20.0
Gradient Boosting 0.91 0.93 0.90 0.91 0.91 8.0 7.3 8.6 8.0 8.0
Random Forest 0.92 0.94 0.90 0.93 0.92 7.8 6.9 8.2 7.2 7.5

Fingerprints: Linear Regression 0.63 0.65 0.61 0.54 0.61 16.4 16.8 16.5 17.9 16.9
MACCS Lasso 0.64 0.66 0.62 0.62 0.64 16.2 16.5 16.3 16.3 16.3

Ridge 0.64 0.66 0.62 0.62 0.64 16.2 16.5 16.3 16.3 16.3
Bayesian Ridge 0.64 0.66 0.62 0.62 0.64 16.2 16.5 16.3 16.3 16.3
SVR - Linear 0.63 0.66 0.62 0.62 0.63 16.2 16.6 16.4 16.3 16.4
SVR - Polynomial 0.86 0.88 0.85 0.86 0.86 10.1 9.9 10.3 10.0 10.1
SVR - RBF 0.85 0.87 0.84 0.85 0.86 10.2 10.2 10.5 10.2 10.3
SVR - Sigmoid 0.29 0.30 0.27 0.25 0.28 22.6 23.8 22.8 23.0 23.0
Gradient Boosting 0.88 0.90 0.87 0.88 0.88 9.1 8.8 9.6 9.1 9.2
Random Forest 0.92 0.94 0.89 0.91 0.92 7.7 7.2 8.7 7.7 7.8

Fingerprints: Linear Regression 0.67 0.71 0.66 0.65 0.67 15.5 15.3 15.6 15.6 15.5
Morgan1 Lasso 0.67 0.72 0.66 0.66 0.68 15.3 15.1 15.5 15.4 15.3

Ridge 0.67 0.72 0.66 0.66 0.68 15.3 15.1 15.5 15.4 15.3
Bayesian Ridge 0.67 0.72 0.66 0.66 0.68 15.3 15.1 15.5 15.5 15.3
SVR - Linear 0.67 0.72 0.66 0.66 0.68 15.4 15.1 15.6 15.5 15.4
SVR - Polynomial 0.91 0.92 0.90 0.90 0.91 8.2 7.9 8.6 8.3 8.2
SVR - RBF 0.92 0.93 0.91 0.92 0.92 7.6 7.6 8.1 7.6 7.7
SVR - Sigmoid 0.46 0.50 0.45 0.43 0.46 19.7 20.1 19.8 20.0 19.9
Gradient Boosting 0.90 0.92 0.89 0.90 0.90 8.4 7.8 8.8 8.6 8.4
Random Forest 0.92 0.94 0.90 0.93 0.92 7.5 7.0 8.3 7.2 7.5

Fingerprints: Linear Regression 0.68 0.74 0.68 0.67 0.69 15.1 14.4 15.1 15.2 15.0
RDK Lasso 0.69 0.75 0.68 0.68 0.70 14.8 14.3 15.0 15.0 14.8

Ridge 0.69 0.75 0.68 0.68 0.70 14.8 14.3 15.0 15.0 14.8
Bayesian Ridge 0.69 0.75 0.68 0.68 0.70 14.8 14.3 15.0 15.0 14.8
SVR - Linear 0.69 0.74 0.68 0.68 0.70 14.9 14.4 15.1 15.1 14.9
SVR - Polynomial 0.90 0.93 0.88 0.90 0.90 8.6 7.7 9.1 8.6 8.5
SVR - RBF 0.90 0.93 0.89 0.90 0.91 8.4 7.6 8.9 8.2 8.3
SVR - Sigmoid 0.40 0.48 0.34 0.37 0.40 20.7 20.5 21.5 21.0 21.0
Gradient Boosting 0.89 0.92 0.88 0.89 0.90 8.7 8.0 9.3 8.8 8.7
Random Forest 0.91 0.93 0.90 0.92 0.92 7.8 7.3 8.5 7.5 7.8

Tanimoto: Linear Regression 0.86 0.90 0.84 0.88 0.87 10.1 9.1 10.6 9.2 9.7
MACCS Lasso 0.89 0.91 0.87 0.90 0.89 9.0 8.6 9.6 8.2 8.9

Ridge 0.89 0.92 0.88 0.91 0.90 8.9 8.2 9.2 8.0 8.6
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Table B.23 Grid Search Cross-Validated Performance for the Models in the
Leave-One-Ligand-Out Test (Continued)

Descriptor ML Algorithm R2 RMSE (%)

ABP XP tBBP tBXP Mean ABP XP tBBP tBXP Mean
Bayesian Ridge 0.88 0.90 0.87 0.90 0.89 9.3 8.9 9.6 8.5 9.1
SVR - Polynomial 0.88 0.91 0.86 0.91 0.89 9.4 8.5 10.0 8.0 9.0
SVR - RBF 0.86 0.90 0.84 0.90 0.88 10.0 9.1 10.5 8.3 9.5
SVR - Sigmoid 0.68 0.67 0.66 0.67 0.67 15.3 16.3 15.6 15.3 15.6
SVR - Precomputed 0.88 0.90 0.87 0.90 0.89 9.2 8.9 9.5 8.4 9.0
Gradient Boosting 0.77 0.81 0.73 0.77 0.77 13.0 12.5 13.9 12.7 13.0
Random Forest 0.71 0.74 0.67 0.72 0.71 14.4 14.5 15.4 14.1 14.6

Tanimoto: Linear Regression 0.93 0.94 0.91 0.93 0.93 7.2 6.9 7.9 6.8 7.2
Morgan1 Lasso 0.93 0.94 0.92 0.94 0.93 7.1 6.8 7.7 6.7 7.1

Ridge 0.93 0.94 0.92 0.94 0.93 7.1 6.7 7.7 6.6 7.0
Bayesian Ridge 0.93 0.94 0.92 0.94 0.93 7.0 6.7 7.6 6.6 7.0
SVR - Polynomial 0.92 0.93 0.90 0.92 0.92 7.6 7.6 8.4 7.4 7.7
SVR - RBF 0.90 0.91 0.88 0.90 0.90 8.3 8.4 9.2 8.2 8.5
SVR - Sigmoid 0.88 0.89 0.86 0.88 0.88 9.5 9.3 9.8 9.3 9.5
SVR - Precomputed 0.93 0.94 0.92 0.94 0.93 7.1 6.8 7.7 6.7 7.1
Gradient Boosting 0.81 0.81 0.77 0.81 0.80 11.8 12.3 12.7 11.6 12.1
Random Forest 0.72 0.74 0.68 0.73 0.72 14.3 14.5 15.1 13.9 14.4

Tanimoto: Linear Regression 0.88 0.94 0.86 0.90 0.90 9.2 7.1 9.9 8.4 8.6
RDK Lasso 0.89 0.94 0.87 0.91 0.90 9.0 7.0 9.6 8.1 8.4

Ridge 0.89 0.94 0.88 0.91 0.90 8.9 6.9 9.4 8.0 8.3
Bayesian Ridge 0.89 0.94 0.88 0.91 0.91 8.8 6.9 9.3 7.9 8.2
SVR - Polynomial 0.87 0.94 0.86 0.91 0.89 9.5 7.2 10.1 8.1 8.7
SVR - RBF 0.86 0.93 0.84 0.90 0.88 10.2 7.5 10.7 8.3 9.2
SVR - Sigmoid 0.86 0.88 0.84 0.85 0.86 10.0 9.8 10.5 10.2 10.1
SVR - Precomputed 0.89 0.94 0.88 0.91 0.90 8.9 6.9 9.3 8.0 8.3
Gradient Boosting 0.74 0.87 0.72 0.83 0.79 13.6 10.2 14.2 10.9 12.2
Random Forest 0.64 0.83 0.63 0.76 0.71 16.0 11.7 16.3 13.0 14.3

WL Linear Regression 0.92 0.94 0.90 0.91 0.92 7.8 7.0 8.4 8.0 7.8
Lasso 0.92 0.94 0.90 0.91 0.92 7.6 6.8 8.2 7.7 7.6
Ridge 0.92 0.94 0.91 0.92 0.92 7.5 6.8 8.1 7.6 7.5
Bayesian Ridge 0.92 0.94 0.91 0.92 0.92 7.5 6.9 8.1 7.6 7.5
SVR - Poly 0.92 0.94 0.90 0.92 0.92 7.6 7.1 8.3 7.6 7.6
SVR - RBF 0.92 0.93 0.90 0.91 0.91 7.8 7.4 8.6 7.9 7.9
SVR - Sigmoid 0.83 0.85 0.82 0.82 0.83 11.1 11.1 11.4 11.1 11.2
SVR - Precomputed 0.92 0.94 0.90 0.91 0.92 7.6 6.9 8.3 7.8 7.6
Gradient Boosting 0.86 0.88 0.83 0.85 0.85 10.1 9.9 11.0 10.3 10.3
Random Forest 0.80 0.84 0.74 0.78 0.79 12.1 11.6 13.6 12.4 12.4

Training Set Performance

Table B.24: Training Set Performance for the Models in the Leave-One-Ligand-
Out Test

Descriptor ML Algorithm R2 RMSE (%)

ABP XP tBBP tBXP Mean ABP XP tBBP tBXP Mean
One-hot Linear Regression 0.71 0.76 0.69 0.69 0.71 14.6 14.1 14.8 14.8 14.6

Lasso 0.71 0.76 0.69 0.69 0.71 14.6 14.1 14.8 14.8 14.6
Ridge 0.71 0.76 0.69 0.69 0.71 14.6 14.1 14.8 14.8 14.6
Bayesian Ridge 0.71 0.76 0.69 0.69 0.71 14.6 14.1 14.8 14.8 14.6
SVR - Linear 0.70 0.75 0.69 0.68 0.71 14.6 14.2 14.8 14.9 14.6
SVR - Polynomial 0.97 0.98 0.96 0.97 0.97 4.8 3.7 5.0 4.8 4.6
SVR - RBF 1.00 1.00 0.98 1.00 0.99 1.0 0.9 4.1 1.0 1.7
SVR - Sigmoid 0.55 0.67 0.53 0.53 0.57 18.1 16.5 18.2 18.2 17.7
Gradient Boosting 0.96 0.96 0.94 0.94 0.95 5.7 5.5 6.6 6.4 6.1
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Table B.24 Training Set Performance for the Models in the Leave-One-Ligand-
Out Test (Continued)

Descriptor ML Algorithm R2 RMSE (%)

ABP XP tBBP tBXP Mean ABP XP tBBP tBXP Mean
Random Forest 0.99 0.99 0.98 0.99 0.99 3.2 2.9 3.5 3.0 3.2

Quantum Linear Regression 0.70 0.75 0.69 0.69 0.71 14.7 14.2 14.8 14.8 14.6
Chemical Lasso 0.70 0.75 0.68 0.68 0.70 14.8 14.4 15.0 15.0 14.8

Ridge 0.70 0.75 0.69 0.69 0.71 14.6 14.1 14.8 14.8 14.6
Bayesian Ridge 0.70 0.75 0.69 0.68 0.70 14.7 14.2 14.9 15.0 14.7
SVR - Linear 0.70 0.75 0.69 0.68 0.71 14.7 14.3 14.9 14.9 14.7
SVR - Polynomial 0.95 0.96 0.95 0.95 0.95 5.8 5.7 6.2 5.9 5.9
SVR - RBF 0.98 0.98 0.97 0.98 0.98 4.1 4.5 4.3 4.0 4.2
SVR - Sigmoid 0.42 0.50 0.41 0.46 0.45 20.4 20.1 20.4 19.5 20.1
Gradient Boosting 0.97 0.97 0.96 0.96 0.96 5.0 4.7 5.4 5.2 5.1
Random Forest 0.99 0.99 0.99 0.99 0.99 2.6 2.3 2.7 2.4 2.5

Fingerprints: Linear Regression 0.63 0.64 0.63 0.62 0.63 16.4 17.2 16.2 16.2 16.5
MACCS Lasso 0.65 0.67 0.63 0.63 0.64 16.0 16.4 16.1 16.1 16.2

Ridge 0.65 0.67 0.63 0.63 0.64 16.0 16.4 16.1 16.1 16.2
Bayesian Ridge 0.65 0.67 0.63 0.63 0.64 16.0 16.4 16.1 16.1 16.2
SVR - Linear 0.64 0.67 0.63 0.63 0.64 16.1 16.4 16.2 16.2 16.2
SVR - Polynomial 0.91 0.91 0.90 0.90 0.90 8.3 8.4 8.6 8.4 8.4
SVR - RBF 0.90 0.91 0.90 0.90 0.90 8.3 8.5 8.6 8.5 8.5
SVR - Sigmoid 0.33 0.34 0.30 0.27 0.31 22.0 23.2 22.3 22.6 22.5
Gradient Boosting 0.92 0.93 0.91 0.92 0.92 7.6 7.4 7.9 7.7 7.7
Random Forest 0.99 0.99 0.99 0.99 0.99 2.5 2.4 2.8 2.6 2.6

Fingerprints: Linear Regression 0.68 0.73 0.66 0.66 0.68 15.3 15.0 15.6 15.4 15.3
Morgan1 Lasso 0.68 0.73 0.67 0.67 0.69 15.1 14.9 15.3 15.3 15.1

Ridge 0.68 0.73 0.67 0.67 0.69 15.1 14.9 15.3 15.3 15.1
Bayesian Ridge 0.68 0.73 0.67 0.67 0.69 15.1 14.9 15.3 15.3 15.2
SVR - Linear 0.68 0.73 0.67 0.66 0.68 15.2 15.0 15.4 15.3 15.2
SVR - Polynomial 0.95 0.96 0.94 0.95 0.95 5.9 5.9 6.2 5.9 6.0
SVR - RBF 0.97 0.97 0.96 0.97 0.97 4.8 5.1 5.3 4.9 5.0
SVR - Sigmoid 0.49 0.54 0.47 0.45 0.49 19.3 19.4 19.4 19.6 19.4
Gradient Boosting 0.95 0.96 0.94 0.95 0.95 6.2 6.0 6.6 6.2 6.3
Random Forest 0.99 0.99 0.99 0.99 0.99 2.5 2.4 2.7 2.4 2.5

Fingerprints: Linear Regression 0.70 0.75 0.69 0.68 0.71 14.7 14.3 14.9 14.9 14.7
RDK Lasso 0.71 0.76 0.69 0.69 0.71 14.6 14.1 14.8 14.8 14.6

Ridge 0.71 0.76 0.69 0.69 0.71 14.6 14.1 14.8 14.8 14.6
Bayesian Ridge 0.71 0.76 0.69 0.69 0.71 14.6 14.1 14.8 14.8 14.6
SVR - Linear 0.70 0.75 0.69 0.68 0.71 14.6 14.2 14.8 14.9 14.6
SVR - Polynomial 0.96 0.98 0.96 0.96 0.97 5.0 4.2 5.4 5.2 5.0
SVR - RBF 0.98 0.98 0.97 0.97 0.97 4.2 3.6 4.7 4.9 4.4
SVR - Sigmoid 0.08 -0.08 0.03 0.17 0.05 25.8 29.7 26.3 24.2 26.5
Gradient Boosting 0.94 0.97 0.95 0.95 0.95 6.5 5.1 5.9 5.8 5.8
Random Forest 0.99 0.99 0.99 0.99 0.99 2.6 2.5 2.8 2.5 2.6

Tanimoto: Linear Regression 1.00 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0 0.0
MACCS Lasso 0.99 0.99 0.99 0.99 0.99 2.8 2.7 2.8 2.7 2.8

Ridge 0.98 1.00 0.98 1.00 0.99 3.7 1.6 3.8 1.6 2.7
Bayesian Ridge 0.96 0.97 0.95 0.96 0.96 5.5 5.3 5.7 5.0 5.4
SVR - Polynomial 1.00 1.00 1.00 1.00 1.00 1.0 0.9 1.0 0.9 1.0
SVR - RBF 1.00 1.00 1.00 1.00 1.00 1.1 1.0 1.1 1.0 1.1
SVR - Sigmoid 0.71 0.70 0.69 0.69 0.70 14.6 15.6 14.9 14.7 14.9
SVR - Precomputed 0.98 0.98 0.96 0.98 0.97 4.2 4.5 5.1 4.1 4.5
Gradient Boosting 0.99 0.98 0.98 0.98 0.98 3.2 4.2 3.3 3.4 3.5
Random Forest 0.98 0.98 0.98 0.98 0.98 3.8 3.6 3.7 3.6 3.7

Tanimoto: Linear Regression 1.00 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0 0.0
Morgan1 Lasso 1.00 1.00 1.00 1.00 1.00 1.0 1.0 1.0 0.9 1.0

Ridge 1.00 1.00 1.00 1.00 1.00 0.7 0.7 0.7 0.6 0.7
Bayesian Ridge 1.00 1.00 1.00 1.00 1.00 1.2 0.9 1.3 0.8 1.1
SVR - Polynomial 1.00 1.00 1.00 1.00 1.00 1.0 1.2 1.0 0.9 1.0
SVR - RBF 1.00 1.00 1.00 1.00 1.00 1.0 1.0 1.0 1.0 1.0
SVR - Sigmoid 0.87 0.90 0.87 0.86 0.87 9.7 9.2 9.6 9.9 9.6
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Table B.24 Training Set Performance for the Models in the Leave-One-Ligand-
Out Test (Continued)

Descriptor ML Algorithm R2 RMSE (%)

ABP XP tBBP tBXP Mean ABP XP tBBP tBXP Mean
SVR - Precomputed 1.00 1.00 0.99 1.00 1.00 0.9 0.9 2.5 0.9 1.3
Gradient Boosting 1.00 0.99 1.00 1.00 1.00 0.7 2.2 0.7 1.0 1.2
Random Forest 0.98 0.98 0.98 0.98 0.98 4.0 3.9 4.1 3.8 4.0

Tanimoto: Linear Regression 1.00 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0 0.0
RDK Lasso 1.00 1.00 1.00 1.00 1.00 1.3 1.4 1.4 1.5 1.4

Ridge 1.00 1.00 0.97 1.00 0.99 1.3 1.3 4.2 1.4 2.1
Bayesian Ridge 0.99 1.00 0.99 0.99 0.99 2.8 1.9 3.3 2.3 2.6
SVR - Polynomial 1.00 1.00 1.00 1.00 1.00 1.0 1.0 1.0 1.0 1.0
SVR - RBF 1.00 1.00 1.00 1.00 1.00 1.0 0.9 1.0 0.9 1.0
SVR - Sigmoid 0.88 0.88 0.86 0.85 0.87 9.4 9.8 10.0 10.4 9.9
SVR - Precomputed 1.00 1.00 0.97 1.00 0.99 1.0 1.2 4.4 1.2 1.9
Gradient Boosting 0.99 1.00 0.99 1.00 0.99 2.8 0.9 2.9 1.0 1.9
Random Forest 0.97 0.98 0.97 0.98 0.98 4.4 3.6 4.6 3.8 4.1

WL Linear Regression 1.00 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0 0.0
Lasso 1.00 1.00 1.00 1.00 1.00 1.8 1.7 1.6 1.6 1.7
Ridge 0.99 1.00 1.00 1.00 1.00 2.0 1.8 1.9 1.7 1.8
Bayesian Ridge 0.99 0.99 0.98 0.99 0.99 3.2 2.6 3.5 2.9 3.0
SVR - Poly 1.00 1.00 1.00 1.00 1.00 0.9 0.9 1.0 0.9 0.9
SVR - RBF 1.00 1.00 1.00 1.00 1.00 0.9 0.9 1.0 1.0 1.0
SVR - Sigmoid 0.83 0.85 0.79 0.79 0.82 11.0 11.0 12.1 12.1 11.6
SVR - Precomputed 1.00 1.00 1.00 1.00 1.00 1.6 1.6 1.5 1.3 1.5
Gradient Boosting 1.00 1.00 1.00 1.00 1.00 0.8 0.8 0.9 1.6 1.0
Random Forest 0.98 0.99 0.98 0.99 0.98 3.5 3.3 3.5 3.2 3.4

Test Set Performance

The poor performing models that had a mean R2 value less than -1.00 and a
mean RMSE greater than 100% were not included in the following table.

Table B.25: Test Set Performance for the Models in the Leave-One-Ligand-Out
Test

Descriptor ML Algorithm R2 RMSE (%)

ABP XP tBBP tBXP Mean ABP XP tBBP tBXP Mean
One-hot Lasso 0.68 <-1.00 0.70 0.61 0.24 16.1 25.1 15.7 17.6 18.6

Ridge 0.70 <-1.00 0.68 0.57 0.23 15.6 25.0 16.3 18.5 18.8
Bayesian Ridge 0.70 <-1.00 0.68 0.57 0.23 15.6 25.0 16.3 18.5 18.8
SVR - Linear 0.70 <-1.00 0.68 0.56 0.21 15.5 25.5 16.4 18.7 19.0
SVR - Polynomial 0.65 -0.48 0.62 0.50 0.32 16.8 21.3 17.8 19.9 18.9
SVR - RBF 0.87 <-1.00 0.85 0.71 0.30 10.0 26.2 11.1 15.2 15.6
SVR - Sigmoid 0.60 -0.78 0.53 0.40 0.19 17.9 23.4 19.7 21.9 20.7
Gradient Boosting 0.83 <-1.00 0.87 0.78 0.35 11.7 25.3 10.3 13.2 15.1
Random Forest 0.84 <-1.00 0.94 0.81 0.36 11.3 25.8 7.1 12.1 14.1

Quantum Lasso 0.53 -0.83 0.23 <-1.00 <-1.00 19.4 23.7 25.2 67.4 33.9
Chemical SVR - RBF -0.12 -0.16 0.17 -0.40 -0.13 30.0 18.9 26.1 33.2 27.1

SVR - Sigmoid <-1.00 <-1.00 0.40 0.33 -0.70 51.7 26.1 22.2 23.0 30.8
Gradient Boosting 0.81 <-1.00 0.88 0.65 0.28 12.5 26.0 9.9 16.7 16.3
Random Forest 0.90 <-1.00 0.89 0.56 0.32 8.9 25.3 9.4 18.7 15.6

Fingerprints: Lasso 0.60 <-1.00 0.64 0.61 0.13 17.9 26.8 17.1 17.5 19.8
MACCS Ridge 0.62 <-1.00 0.64 0.40 0.11 17.5 26.2 17.1 21.7 20.6

Bayesian Ridge 0.62 <-1.00 0.64 0.40 0.11 17.5 26.1 17.1 21.7 20.6
SVR - Linear 0.63 <-1.00 0.65 0.39 0.09 17.4 26.6 17.1 22.0 20.8
SVR - Polynomial 0.84 <-1.00 0.87 0.49 0.21 11.2 26.8 10.3 20.2 17.1
SVR - RBF 0.84 <-1.00 0.86 0.51 0.27 11.4 25.5 10.6 19.7 16.8
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Table B.25 Test Set Performance for the Models in the Leave-One-Ligand-Out
Test (Continued)

Descriptor ML Algorithm R2 RMSE (%)

ABP XP tBBP tBXP Mean ABP XP tBBP tBXP Mean
SVR - Sigmoid 0.26 <-1.00 0.23 -0.02 -0.14 24.5 24.9 25.2 28.4 25.8
Gradient Boosting 0.84 <-1.00 0.87 0.59 0.22 11.2 27.3 10.3 18.0 16.7
Random Forest 0.91 <-1.00 0.91 0.82 0.33 8.5 26.7 8.6 12.0 13.9

Fingerprints: Lasso 0.67 <-1.00 0.68 0.32 0.05 16.4 27.5 16.1 23.2 20.8
Morgan1 Ridge 0.58 <-1.00 0.66 0.51 0.13 18.3 26.0 16.8 19.7 20.2

Bayesian Ridge 0.58 <-1.00 0.66 0.51 0.14 18.3 26.0 16.8 19.8 20.2
SVR - Linear 0.57 <-1.00 0.65 0.49 0.10 18.6 26.6 16.9 20.1 20.6
SVR - Polynomial 0.77 <-1.00 0.88 0.62 0.28 13.7 25.7 9.8 17.2 16.6
SVR - RBF 0.75 <-1.00 0.88 0.63 0.30 14.1 25.0 9.9 17.2 16.6
SVR - Sigmoid 0.38 -0.75 0.46 0.23 0.08 22.3 23.2 21.2 24.7 22.8
Gradient Boosting 0.56 <-1.00 0.90 0.58 0.21 18.8 25.9 9.3 18.3 18.1
Random Forest 0.83 <-1.00 0.91 0.64 0.30 11.8 25.8 8.5 16.9 15.8

Fingerprints: Lasso 0.48 -0.99 0.71 0.35 0.14 20.5 24.7 15.5 22.7 20.9
RDK Ridge 0.68 <-1.00 0.72 0.34 0.17 15.9 25.1 15.1 22.9 19.8

Bayesian Ridge 0.68 <-1.00 0.72 0.34 0.17 16.0 25.1 15.1 22.9 19.8
SVR - Linear 0.69 <-1.00 0.72 0.32 0.14 15.8 25.7 15.2 23.2 20.0
SVR - Polynomial 0.86 <-1.00 0.92 0.29 0.23 10.6 25.6 8.3 23.8 17.1
SVR - RBF 0.87 <-1.00 0.92 0.27 0.25 10.1 25.2 8.1 24.0 16.9
SVR - Sigmoid 0.10 <-1.00 0.08 -0.08 -0.53 27.0 31.4 27.5 29.2 28.7
Gradient Boosting 0.77 <-1.00 0.92 0.30 0.22 13.7 25.5 8.4 23.6 17.8
Random Forest 0.50 <-1.00 0.93 0.04 0.11 20.1 24.9 7.5 27.6 20.0

Tanimoto: Linear Regression 0.91 -0.79 0.94 0.56 0.41 8.3 23.4 7.1 18.6 14.3
MACCS Lasso 0.91 -0.75 0.94 0.56 0.41 8.6 23.2 7.2 18.6 14.4

Ridge 0.90 -0.56 0.93 0.53 0.45 9.0 21.9 7.8 19.2 14.5
Bayesian Ridge 0.88 -0.55 0.91 0.52 0.44 9.9 21.8 8.8 19.5 15.0
SVR - Polynomial 0.90 -0.39 0.93 0.48 0.48 8.8 20.7 7.5 20.2 14.3
SVR - RBF 0.89 -0.36 0.92 0.45 0.48 9.3 20.4 8.0 21.0 14.7
SVR - Sigmoid 0.63 -0.81 0.66 0.34 0.20 17.3 23.6 16.6 22.8 20.1
SVR - Precomputed 0.89 -0.58 0.92 0.52 0.44 9.2 22.0 8.2 19.5 14.8
Gradient Boosting 0.87 <-1.00 0.89 0.38 0.26 10.4 25.3 9.6 22.1 16.9
Random Forest 0.84 <-1.00 0.87 0.30 0.14 11.5 27.5 10.3 23.6 18.2

Tanimoto: Linear Regression 0.73 -0.71 0.93 0.62 0.39 14.7 22.9 7.6 17.4 15.7
Morgan1 Lasso 0.73 -0.61 0.93 0.62 0.42 14.7 22.2 7.6 17.4 15.5

Ridge 0.72 -0.65 0.93 0.62 0.41 14.9 22.5 7.6 17.4 15.6
Bayesian Ridge 0.72 -0.65 0.93 0.62 0.41 14.9 22.5 7.6 17.4 15.6
SVR - Polynomial 0.67 -0.53 0.90 0.59 0.41 16.3 21.7 8.9 18.0 16.2
SVR - RBF 0.64 -0.51 0.88 0.57 0.39 17.0 21.6 10.0 18.4 16.8
SVR - Sigmoid 0.71 -0.82 0.87 0.59 0.34 15.3 23.6 10.2 18.0 16.8
SVR - Precomputed 0.72 -0.65 0.92 0.62 0.40 14.9 22.5 7.9 17.4 15.7
Gradient Boosting 0.62 <-1.00 0.85 0.54 0.22 17.5 25.5 11.1 19.0 18.3
Random Forest 0.58 -0.98 0.85 0.38 0.21 18.3 24.7 11.0 22.2 19.0

Tanimoto: Linear Regression 0.90 <-1.00 0.94 0.26 0.27 9.1 24.9 7.3 24.2 16.4
RDK Lasso 0.90 <-1.00 0.94 0.26 0.27 9.1 24.8 7.1 24.2 16.3

Ridge 0.90 <-1.00 0.94 0.26 0.27 9.1 24.8 7.1 24.3 16.3
Bayesian Ridge 0.89 -1.00 0.94 0.27 0.27 9.2 24.8 7.0 24.1 16.3
SVR - Polynomial 0.90 -0.98 0.94 0.26 0.28 9.1 24.7 7.0 24.3 16.3
SVR - RBF 0.90 -0.96 0.94 0.26 0.28 9.1 24.6 7.0 24.2 16.2
SVR - Sigmoid 0.81 <-1.00 0.86 0.28 0.23 12.3 25.1 10.6 23.9 18.0
SVR - Precomputed 0.90 <-1.00 0.93 0.25 0.27 9.1 24.9 7.5 24.4 16.5
Gradient Boosting 0.76 -0.73 0.89 0.27 0.30 13.9 23.0 9.3 24.0 17.5
Random Forest 0.56 -0.95 0.87 0.10 0.15 18.8 24.5 10.4 26.7 20.1

WL Linear Regression 0.78 -0.94 0.91 0.76 0.38 13.3 24.4 8.7 13.9 15.1
Lasso 0.78 -0.91 0.91 0.76 0.38 13.4 24.2 8.5 13.9 15.0
Ridge 0.77 -0.87 0.91 0.75 0.39 13.7 24.0 8.4 13.9 15.0
Bayesian Ridge 0.77 -0.86 0.91 0.75 0.39 13.7 23.9 8.4 13.9 15.0
SVR - Poly 0.76 -0.78 0.91 0.75 0.41 14.0 23.4 8.5 14.0 14.9
SVR - RBF 0.75 -0.73 0.91 0.75 0.42 14.2 23.1 8.5 14.0 14.9
SVR - Sigmoid 0.71 -0.89 0.81 0.66 0.32 15.3 24.1 12.5 16.4 17.1
SVR - Precomputed 0.77 -0.88 0.91 0.75 0.39 13.6 24.0 8.6 13.9 15.0
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Table B.25 Test Set Performance for the Models in the Leave-One-Ligand-Out
Test (Continued)

Descriptor ML Algorithm R2 RMSE (%)

ABP XP tBBP tBXP Mean ABP XP tBBP tBXP Mean
Gradient Boosting 0.61 -0.67 0.82 0.78 0.38 17.8 22.6 12.1 13.3 16.5
Random Forest 0.28 -0.79 0.90 0.83 0.30 24.1 23.5 9.0 11.7 17.0
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B.8 Out-of-Sample Tests: With Activity Rank-

ing

B.8.1 Additive Ranked Test

Grid Search Cross-Validation Performance

Table B.26: Grid Search Cross-Validated Performance for the Models in the
Additive Ranked Test

Descriptor ML Algorithm R2 RMSE (%)
1 2 3 4 Mean 1 2 3 4 Mean

One-hot Linear Regression 0.69 0.72 0.69 0.69 0.70 15.0 14.4 15.4 15.2 15.0
Lasso 0.70 0.72 0.69 0.69 0.70 15.0 14.3 15.4 15.2 15.0
Ridge 0.70 0.72 0.69 0.69 0.70 15.0 14.3 15.4 15.2 15.0
Bayesian Ridge 0.70 0.72 0.69 0.69 0.70 15.0 14.3 15.4 15.2 15.0
SVR - Linear 0.69 0.72 0.68 0.69 0.70 15.1 14.4 15.4 15.2 15.0
SVR - Poly 0.90 0.90 0.89 0.90 0.90 8.6 8.6 9.2 8.7 8.8
SVR - RBF 0.91 0.91 0.90 0.91 0.91 8.1 7.9 8.6 8.2 8.2
SVR - Sigmoid 0.58 0.60 0.56 0.57 0.58 17.6 17.0 18.1 18.0 17.7
Gradient Boosting 0.90 0.90 0.89 0.90 0.90 8.7 8.5 9.2 8.8 8.8
Random Forest 0.89 0.91 0.89 0.90 0.90 8.8 8.2 9.2 8.5 8.7

Quantum Linear Regression 0.69 0.72 0.68 0.69 0.70 15.0 14.4 15.4 15.3 15.0
Chemical Lasso 0.69 0.72 0.68 0.69 0.70 15.1 14.4 15.4 15.3 15.0

Ridge 0.70 0.72 0.69 0.69 0.70 15.0 14.3 15.4 15.2 15.0
Bayesian Ridge 0.69 0.71 0.68 0.69 0.69 15.1 14.4 15.4 15.3 15.1
SVR - Linear 0.69 0.72 0.68 0.69 0.69 15.1 14.4 15.4 15.3 15.0
SVR - Poly 0.89 0.91 0.89 0.89 0.89 8.9 8.3 9.2 9.1 8.9
SVR - RBF 0.90 0.92 0.89 0.90 0.90 8.4 7.7 8.9 8.8 8.5
SVR - Sigmoid 0.45 0.47 0.45 0.45 0.45 20.2 19.7 20.3 20.3 20.1
Gradient Boosting 0.92 0.92 0.91 0.92 0.92 7.7 7.5 8.2 7.9 7.8
Random Forest 0.93 0.93 0.92 0.93 0.93 7.2 7.1 7.6 7.4 7.3

Fingerprints: Linear Regression 0.60 0.60 0.54 0.64 0.60 17.1 16.9 18.5 16.3 17.2
MACCS Lasso 0.65 0.66 0.63 0.66 0.65 16.2 15.8 16.7 16.0 16.2

Ridge 0.65 0.66 0.63 0.66 0.65 16.2 15.8 16.7 16.0 16.2
Bayesian Ridge 0.65 0.66 0.63 0.66 0.65 16.2 15.8 16.7 16.0 16.2
SVR - Linear 0.64 0.66 0.63 0.65 0.65 16.2 15.8 16.7 16.1 16.2
SVR - Poly 0.87 0.88 0.85 0.87 0.87 9.8 9.3 10.5 9.8 9.9
SVR - RBF 0.87 0.88 0.85 0.87 0.86 9.9 9.5 10.7 10.0 10.0
SVR - Sigmoid 0.31 0.28 0.27 0.26 0.28 22.6 23.0 23.5 23.6 23.2
Gradient Boosting 0.89 0.90 0.88 0.90 0.89 8.9 8.5 9.6 8.8 9.0
Random Forest 0.93 0.93 0.92 0.93 0.93 7.1 7.1 7.7 7.4 7.3

Fingerprints: Linear Regression 0.65 0.69 0.66 0.66 0.67 16.0 14.9 16.0 15.9 15.7
Morgan1 Lasso 0.67 0.70 0.67 0.67 0.68 15.6 14.8 15.8 15.7 15.5

Ridge 0.67 0.70 0.67 0.67 0.68 15.6 14.8 15.8 15.7 15.5
Bayesian Ridge 0.67 0.70 0.67 0.67 0.68 15.6 14.8 15.8 15.7 15.5
SVR - Linear 0.67 0.70 0.66 0.67 0.67 15.6 14.9 15.9 15.7 15.5
SVR - Poly 0.91 0.92 0.91 0.91 0.91 8.2 7.7 8.4 8.2 8.1
SVR - RBF 0.92 0.93 0.91 0.92 0.92 7.6 7.2 8.0 7.7 7.6
SVR - Sigmoid 0.49 0.48 0.45 0.45 0.46 19.5 19.6 20.3 20.4 19.9
Gradient Boosting 0.91 0.92 0.90 0.91 0.91 8.2 7.8 8.6 8.3 8.2
Random Forest 0.93 0.93 0.92 0.93 0.93 7.1 6.9 7.5 7.4 7.2

Fingerprints: Linear Regression 0.69 0.71 0.67 0.68 0.69 15.1 14.6 15.6 15.5 15.2
RDK Lasso 0.70 0.72 0.69 0.69 0.70 15.0 14.3 15.4 15.2 15.0

Ridge 0.70 0.72 0.69 0.69 0.70 15.0 14.3 15.4 15.2 15.0
Bayesian Ridge 0.70 0.72 0.69 0.69 0.70 15.0 14.3 15.4 15.2 15.0
SVR - Linear 0.69 0.72 0.68 0.69 0.70 15.1 14.4 15.4 15.2 15.0
SVR - Poly 0.91 0.91 0.90 0.91 0.91 8.1 8.0 8.6 8.2 8.2
SVR - RBF 0.91 0.92 0.91 0.92 0.91 7.9 7.7 8.3 7.9 8.0
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Table B.26 Grid Search Cross-Validated Performance for the Models in the
Additive Ranked Test (Continued)

Descriptor ML Algorithm R2 RMSE (%)
1 2 3 4 Mean 1 2 3 4 Mean

SVR - Sigmoid 0.23 0.36 0.45 0.33 0.34 23.8 21.5 20.4 22.4 22.0
Gradient Boosting 0.91 0.91 0.90 0.91 0.91 8.3 8.0 8.9 8.3 8.4
Random Forest 0.93 0.93 0.92 0.93 0.93 7.4 6.9 7.8 7.5 7.4

Tanimoto: Linear Regression 0.90 0.87 0.87 0.89 0.88 8.4 9.6 9.8 9.1 9.2
MACCS Lasso 0.92 0.90 0.90 0.91 0.91 7.5 8.4 8.8 8.3 8.3

Ridge 0.93 0.91 0.90 0.91 0.91 7.3 8.0 8.7 8.1 8.0
Bayesian Ridge 0.91 0.91 0.88 0.91 0.90 8.2 8.3 9.5 8.4 8.6
SVR - Poly 0.92 0.90 0.89 0.90 0.90 7.6 8.6 9.0 8.4 8.4
SVR - RBF 0.91 0.89 0.88 0.90 0.89 8.0 9.0 9.5 8.8 8.8
SVR - Sigmoid 0.70 0.69 0.66 0.68 0.68 14.8 15.0 15.9 15.5 15.3
SVR - Precomputed 0.92 0.90 0.89 0.91 0.90 7.9 8.4 9.2 8.3 8.5
Gradient Boosting 0.78 0.79 0.76 0.77 0.78 12.8 12.3 13.3 13.1 12.9
Random Forest 0.71 0.68 0.69 0.72 0.70 14.7 15.2 15.2 14.4 14.9

Tanimoto: Linear Regression 0.94 0.93 0.93 0.93 0.93 6.7 7.1 7.1 7.4 7.1
Morgan1 Lasso 0.94 0.93 0.93 0.93 0.94 6.5 6.9 7.0 7.2 6.9

Ridge 0.94 0.93 0.93 0.93 0.94 6.5 6.9 7.0 7.1 6.9
Bayesian Ridge 0.94 0.94 0.94 0.93 0.94 6.5 6.8 7.0 7.1 6.9
SVR - Poly 0.93 0.92 0.92 0.92 0.92 7.3 7.5 7.8 7.8 7.6
SVR - RBF 0.91 0.91 0.90 0.90 0.90 8.2 8.2 8.7 8.6 8.4
SVR - Sigmoid 0.88 0.90 0.87 0.88 0.88 9.2 8.6 9.8 9.6 9.3
SVR - Precomputed 0.94 0.94 0.93 0.93 0.94 6.6 6.8 7.1 7.2 6.9
Gradient Boosting 0.82 0.81 0.78 0.79 0.80 11.6 11.7 12.8 12.4 12.1
Random Forest 0.74 0.74 0.69 0.71 0.72 13.8 13.7 15.3 14.8 14.4

Tanimoto: Linear Regression 0.92 0.90 0.90 0.91 0.91 7.9 8.5 8.7 8.3 8.3
RDK Lasso 0.92 0.91 0.91 0.91 0.91 7.7 8.1 8.4 8.0 8.0

Ridge 0.92 0.91 0.91 0.92 0.91 7.6 8.0 8.3 7.9 8.0
Bayesian Ridge 0.92 0.91 0.91 0.92 0.92 7.6 8.0 8.2 7.9 7.9
SVR - Poly 0.91 0.90 0.90 0.90 0.90 8.3 8.6 8.9 8.5 8.6
SVR - RBF 0.89 0.88 0.88 0.89 0.89 9.0 9.2 9.5 9.0 9.2
SVR - Sigmoid 0.85 0.86 0.85 0.85 0.85 10.6 10.0 10.7 10.5 10.4
SVR - Precomputed 0.92 0.91 0.91 0.91 0.91 7.6 8.1 8.4 8.0 8.0
Gradient Boosting 0.78 0.78 0.78 0.78 0.78 12.7 12.6 12.7 12.7 12.7
Random Forest 0.71 0.71 0.71 0.72 0.71 14.6 14.6 14.8 14.5 14.6

WL Linear Regression 0.94 0.91 0.92 0.92 0.92 6.9 7.9 8.0 7.9 7.7
Lasso 0.94 0.92 0.92 0.92 0.92 6.9 7.7 7.8 7.7 7.5
Ridge 0.94 0.92 0.92 0.92 0.93 6.8 7.5 7.7 7.5 7.4
Bayesian Ridge 0.94 0.92 0.92 0.92 0.93 6.9 7.5 7.8 7.6 7.4
SVR - Poly 0.94 0.92 0.92 0.92 0.92 6.9 7.6 7.9 7.7 7.5
SVR - RBF 0.93 0.92 0.91 0.92 0.92 7.2 7.8 8.2 7.9 7.8
SVR - Sigmoid 0.83 0.84 0.82 0.83 0.83 11.3 10.7 11.7 11.4 11.3
SVR - Precomputed 0.94 0.92 0.92 0.92 0.92 6.8 7.6 7.9 7.7 7.5
Gradient Boosting 0.86 0.86 0.85 0.85 0.85 10.2 10.2 10.7 10.6 10.4
Random Forest 0.79 0.78 0.75 0.76 0.77 12.4 12.7 13.7 13.3 13.0

Training Set Performance

Table B.27: Training Set Performance for the Models in the Additive Ranked
Test

Descriptor ML Algorithm R2 RMSE (%)
1 2 3 4 Mean 1 2 3 4 Mean

One-hot Linear Regression 0.70 0.73 0.69 0.70 0.71 14.9 14.1 15.2 15.0 14.8
Lasso 0.70 0.73 0.69 0.70 0.71 14.8 14.1 15.2 15.0 14.8
Ridge 0.70 0.73 0.69 0.70 0.71 14.8 14.1 15.2 15.0 14.8
Bayesian Ridge 0.70 0.73 0.69 0.70 0.71 14.8 14.1 15.2 15.0 14.8
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Table B.27 Training Set Performance for the Models in the Additive Ranked
Test (Continued)

Descriptor ML Algorithm R2 RMSE (%)
1 2 3 4 Mean 1 2 3 4 Mean

SVR - Linear 0.70 0.73 0.69 0.70 0.70 14.9 14.2 15.2 15.0 14.8
SVR - Poly 0.97 0.97 0.97 0.97 0.97 4.7 4.7 4.8 4.7 4.7
SVR - RBF 1.00 0.99 1.00 1.00 1.00 1.0 3.3 1.0 1.0 1.5
SVR - Sigmoid 0.59 0.61 0.57 0.57 0.59 17.5 16.9 17.9 17.9 17.5
Gradient Boosting 0.96 0.95 0.95 0.95 0.95 5.6 6.1 6.1 5.8 5.9
Random Forest 0.99 0.99 0.99 0.99 0.99 3.0 2.8 3.1 2.9 2.9

Quantum Linear Regression 0.70 0.73 0.69 0.70 0.70 14.9 14.2 15.2 15.1 14.8
Chemical Lasso 0.70 0.72 0.69 0.70 0.70 14.9 14.2 15.2 15.1 14.9

Ridge 0.70 0.73 0.69 0.70 0.71 14.8 14.1 15.2 15.0 14.8
Bayesian Ridge 0.70 0.72 0.69 0.70 0.70 14.9 14.2 15.3 15.1 14.9
SVR - Linear 0.70 0.73 0.69 0.70 0.70 14.9 14.2 15.2 15.0 14.8
SVR - Poly 0.96 0.96 0.95 0.96 0.96 5.7 5.3 5.9 5.7 5.7
SVR - RBF 0.98 0.98 0.98 0.98 0.98 3.8 3.5 4.0 3.9 3.8
SVR - Sigmoid 0.44 0.46 0.43 0.44 0.44 20.4 19.9 20.7 20.5 20.4
Gradient Boosting 0.97 0.97 0.96 0.97 0.97 5.0 4.9 5.3 5.1 5.1
Random Forest 0.99 0.99 0.99 0.99 0.99 2.4 2.4 2.6 2.5 2.5

Fingerprints: Linear Regression 0.65 0.66 0.63 0.59 0.63 16.1 15.8 16.7 17.5 16.5
MACCS Lasso 0.65 0.67 0.64 0.66 0.66 16.0 15.6 16.5 15.9 16.0

Ridge 0.65 0.67 0.64 0.66 0.66 16.0 15.6 16.5 15.9 16.0
Bayesian Ridge 0.65 0.67 0.64 0.66 0.66 16.0 15.6 16.5 15.9 16.0
SVR - Linear 0.65 0.67 0.64 0.66 0.65 16.1 15.6 16.6 15.9 16.0
SVR - Poly 0.91 0.92 0.90 0.91 0.91 8.2 7.6 8.8 8.1 8.2
SVR - RBF 0.91 0.92 0.90 0.91 0.91 8.2 7.7 8.9 8.2 8.2
SVR - Sigmoid 0.34 0.32 0.30 0.29 0.31 22.1 22.3 22.9 23.1 22.6
Gradient Boosting 0.93 0.93 0.91 0.93 0.93 7.4 6.9 8.0 7.3 7.4
Random Forest 0.99 0.99 0.99 0.99 0.99 2.4 2.4 2.6 2.4 2.5

Fingerprints: Linear Regression 0.57 0.70 0.66 0.67 0.65 17.8 14.9 15.9 15.7 16.1
Morgan1 Lasso 0.68 0.71 0.67 0.68 0.68 15.4 14.7 15.7 15.5 15.3

Ridge 0.68 0.71 0.67 0.68 0.68 15.4 14.7 15.7 15.5 15.3
Bayesian Ridge 0.68 0.71 0.67 0.68 0.68 15.4 14.7 15.7 15.5 15.3
SVR - Linear 0.68 0.70 0.67 0.68 0.68 15.5 14.7 15.7 15.6 15.4
SVR - Poly 0.95 0.96 0.95 0.95 0.95 6.0 5.4 6.2 5.9 5.9
SVR - RBF 0.97 0.97 0.96 0.97 0.97 5.0 4.4 5.2 4.8 4.8
SVR - Sigmoid 0.51 0.51 0.48 0.48 0.49 19.1 19.0 19.7 19.8 19.4
Gradient Boosting 0.95 0.96 0.94 0.95 0.95 6.3 5.6 6.5 6.3 6.2
Random Forest 0.99 0.99 0.99 0.99 0.99 2.5 2.4 2.5 2.4 2.4

Fingerprints: Linear Regression 0.70 0.72 0.68 0.70 0.70 14.9 14.3 15.5 15.1 15.0
RDK Lasso 0.70 0.73 0.69 0.70 0.71 14.8 14.1 15.2 15.0 14.8

Ridge 0.70 0.73 0.69 0.70 0.71 14.8 14.1 15.2 15.0 14.8
Bayesian Ridge 0.70 0.73 0.69 0.70 0.71 14.8 14.1 15.2 15.0 14.8
SVR - Linear 0.70 0.73 0.69 0.70 0.70 14.9 14.2 15.2 15.0 14.8
SVR - Poly 0.97 0.97 0.97 0.97 0.97 4.9 4.8 5.0 4.8 4.9
SVR - RBF 0.98 0.98 0.98 0.98 0.98 4.2 3.8 4.3 4.2 4.1
SVR - Sigmoid 0.28 -0.09 0.26 0.08 0.13 23.1 28.3 23.7 26.3 25.3
Gradient Boosting 0.96 0.97 0.96 0.96 0.96 5.3 5.0 5.6 5.5 5.4
Random Forest 0.99 0.99 0.99 0.99 0.99 2.4 2.3 2.5 2.5 2.5

Tanimoto: Linear Regression 1.00 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0 0.0
MACCS Lasso 0.99 0.99 0.99 0.99 0.99 2.6 2.6 2.8 2.6 2.7

Ridge 1.00 0.99 1.00 0.99 0.99 1.4 3.2 1.7 3.2 2.4
Bayesian Ridge 0.97 0.97 0.96 0.98 0.97 4.4 4.5 5.6 4.2 4.7
SVR - Poly 1.00 1.00 1.00 1.00 1.00 1.0 1.6 1.0 0.9 1.1
SVR - RBF 1.00 1.00 1.00 1.00 1.00 1.0 1.0 1.0 1.0 1.0
SVR - Sigmoid 0.73 0.72 0.69 0.71 0.72 14.1 14.2 15.2 14.8 14.6
SVR - Precomputed 0.98 0.99 0.97 0.99 0.98 3.8 3.3 5.0 3.3 3.9
Gradient Boosting 0.99 0.99 0.97 0.99 0.99 2.4 2.6 4.6 2.3 3.0
Random Forest 0.98 0.98 0.98 0.98 0.98 3.9 3.4 3.9 3.4 3.6

Tanimoto: Linear Regression 1.00 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0 0.0
Morgan1 Lasso 1.00 1.00 1.00 1.00 1.00 1.0 1.0 1.0 1.1 1.0

Ridge 1.00 1.00 1.00 1.00 1.00 0.7 0.7 0.7 0.8 0.7
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Table B.27 Training Set Performance for the Models in the Additive Ranked
Test (Continued)

Descriptor ML Algorithm R2 RMSE (%)
1 2 3 4 Mean 1 2 3 4 Mean

Bayesian Ridge 1.00 1.00 1.00 1.00 1.00 0.9 1.2 1.0 1.2 1.1
SVR - Poly 1.00 1.00 1.00 1.00 1.00 0.9 1.2 1.0 0.9 1.0
SVR - RBF 1.00 1.00 1.00 1.00 1.00 1.0 1.0 1.0 1.0 1.0
SVR - Sigmoid 0.89 0.90 0.88 0.87 0.88 9.1 8.5 9.6 9.8 9.2
SVR - Precomputed 1.00 0.99 1.00 1.00 1.00 0.9 2.0 0.9 0.9 1.2
Gradient Boosting 1.00 0.99 1.00 1.00 1.00 0.8 2.4 0.8 0.8 1.2
Random Forest 0.98 0.98 0.98 0.98 0.98 4.0 3.6 4.1 4.2 4.0

Tanimoto: Linear Regression 1.00 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0 0.0
RDK Lasso 1.00 1.00 1.00 1.00 1.00 1.6 1.6 1.6 1.6 1.6

Ridge 1.00 1.00 1.00 1.00 1.00 1.5 1.5 1.5 1.5 1.5
Bayesian Ridge 0.99 0.99 0.99 0.99 0.99 2.0 2.3 2.3 2.3 2.2
SVR - Poly 1.00 1.00 1.00 1.00 1.00 1.0 1.0 0.9 1.0 1.0
SVR - RBF 1.00 1.00 1.00 1.00 1.00 1.0 1.0 1.0 0.9 1.0
SVR - Sigmoid 0.84 0.85 0.84 0.84 0.84 10.8 10.3 11.1 11.0 10.8
SVR - Precomputed 1.00 1.00 1.00 1.00 1.00 1.2 1.2 1.0 1.2 1.2
Gradient Boosting 1.00 1.00 1.00 1.00 1.00 0.9 0.9 0.9 1.1 0.9
Random Forest 0.98 0.98 0.98 0.98 0.98 4.1 3.7 4.3 3.9 4.0

WL Linear Regression 1.00 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0 0.0
Lasso 1.00 1.00 1.00 1.00 1.00 1.7 1.8 1.9 1.9 1.8
Ridge 1.00 0.99 0.99 0.99 1.00 1.6 1.9 2.1 2.0 1.9
Bayesian Ridge 0.99 0.99 0.99 0.99 0.99 2.0 3.3 3.3 3.3 3.0
SVR - Poly 1.00 0.99 1.00 1.00 1.00 0.9 3.0 0.9 0.9 1.5
SVR - RBF 1.00 1.00 1.00 1.00 1.00 0.9 1.9 1.0 1.0 1.2
SVR - Sigmoid 0.83 0.84 0.82 0.83 0.83 11.2 10.9 11.7 11.4 11.3
SVR - Precomputed 1.00 0.97 1.00 1.00 0.99 1.1 4.4 1.6 1.6 2.2
Gradient Boosting 0.99 1.00 1.00 1.00 1.00 2.2 0.9 0.9 0.9 1.2
Random Forest 0.98 0.99 0.99 0.99 0.98 3.7 3.2 3.3 3.2 3.4

Test Set Performance

The poor performing models that had a mean R2 value less than -1.00 and a
mean RMSE greater than 100% were not included in the following table.

Table B.28: Test Set Performance for the Models in the Additive Ranked Test

Descriptor ML Algorithm R2 RMSE (%)
1 2 3 4 Mean 1 2 3 4 Mean

One-hot Lasso 0.55 0.54 0.64 0.65 0.59 18.3 19.1 16.1 15.8 17.3
Ridge 0.56 0.54 0.64 0.63 0.59 18.1 19.1 16.2 16.2 17.4
Bayesian Ridge 0.56 0.54 0.64 0.63 0.59 18.1 19.1 16.2 16.2 17.4
SVR - Linear 0.56 0.54 0.64 0.63 0.59 18.0 19.1 16.1 16.2 17.4
SVR - Poly 0.64 0.63 0.73 0.71 0.68 16.3 17.0 14.0 14.3 15.4
SVR - RBF 0.61 0.61 0.72 0.71 0.66 17.1 17.6 14.2 14.5 15.9
SVR - Sigmoid 0.47 0.46 0.52 0.50 0.49 19.8 20.6 18.5 18.8 19.4
Gradient Boosting 0.64 0.61 0.74 0.75 0.68 16.4 17.5 13.7 13.4 15.3
Random Forest 0.49 0.49 0.65 0.71 0.59 19.5 20.0 15.7 14.4 17.4

Quantum Lasso -2.36 0.28 0.46 0.31 -0.33 50.1 23.8 19.7 22.2 28.9
Chemical Ridge -2.71 -0.14 0.47 -0.16 -0.63 52.6 30.0 19.6 28.7 32.7

Bayesian Ridge -1.29 0.32 0.47 0.15 -0.09 41.3 23.2 19.5 24.6 27.2
SVR - Linear -2.35 -0.16 0.45 -0.16 -0.56 50.0 30.3 19.8 28.8 32.2
SVR - Poly -0.25 0.36 0.63 0.00 0.18 30.5 22.5 16.2 26.7 24.0
SVR - RBF 0.34 0.45 0.70 0.40 0.47 22.3 20.8 14.6 20.7 19.6
SVR - Sigmoid 0.37 0.33 0.38 0.39 0.37 21.8 23.0 21.1 20.9 21.7
Gradient Boosting 0.64 0.54 0.71 0.77 0.67 16.4 19.2 14.4 12.7 15.7
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Table B.28 Test Set Performance for the Models in the Additive Ranked Test
(Continued)

Descriptor ML Algorithm R2 RMSE (%)
1 2 3 4 Mean 1 2 3 4 Mean

Random Forest 0.57 0.60 0.72 0.81 0.68 17.8 17.7 14.1 11.6 15.3
Fingerprints: Lasso 0.39 0.51 0.06 0.26 0.31 21.3 19.7 26.0 23.0 22.5
MACCS Ridge 0.36 0.51 -0.02 0.25 0.27 21.9 19.7 27.0 23.1 22.9

Bayesian Ridge 0.36 0.51 0.04 0.27 0.30 21.8 19.8 26.2 22.8 22.6
SVR - Linear 0.34 0.50 0.08 0.23 0.29 22.2 19.9 25.7 23.4 22.8
SVR - Poly 0.24 0.67 0.52 0.44 0.47 23.8 16.0 18.6 20.0 19.6
SVR - RBF 0.30 0.67 0.51 0.45 0.48 22.8 16.2 18.7 19.7 19.4
SVR - Sigmoid 0.16 0.28 0.29 0.23 0.24 25.1 23.8 22.5 23.5 23.7
Gradient Boosting 0.31 0.65 0.76 0.63 0.59 22.7 16.6 13.1 16.2 17.1
Random Forest 0.33 0.64 0.82 0.80 0.64 22.4 16.9 11.5 12.1 15.7

Fingerprints: Lasso 0.33 0.37 0.44 0.66 0.45 22.3 22.2 20.0 15.5 20.0
Morgan1 Ridge 0.35 0.49 0.53 0.64 0.50 22.1 20.0 18.4 16.0 19.1

Bayesian Ridge 0.37 0.49 0.54 0.65 0.51 21.7 20.0 18.2 15.8 18.9
SVR - Linear 0.33 0.48 0.54 0.64 0.50 22.3 20.3 18.2 16.0 19.2
SVR - Poly 0.53 0.68 0.78 0.82 0.70 18.7 16.0 12.6 11.5 14.7
SVR - RBF 0.51 0.66 0.77 0.83 0.69 19.2 16.4 13.0 11.0 14.9
SVR - Sigmoid 0.35 0.43 0.48 0.45 0.43 22.1 21.3 19.3 19.8 20.6
Gradient Boosting 0.47 0.48 0.76 0.78 0.62 19.9 20.3 13.2 12.5 16.4
Random Forest 0.52 0.49 0.84 0.86 0.68 18.9 20.1 10.7 9.9 14.9

Fingerprints: Lasso 0.39 0.54 0.45 0.53 0.48 21.4 19.1 19.8 18.3 19.7
RDK Ridge 0.49 0.59 0.53 0.63 0.56 19.5 18.0 18.4 16.3 18.1

Bayesian Ridge 0.49 0.59 0.53 0.63 0.56 19.5 18.0 18.4 16.3 18.0
SVR - Linear 0.49 0.59 0.54 0.63 0.56 19.5 18.1 18.2 16.3 18.0
SVR - Poly 0.54 0.70 0.56 0.70 0.62 18.5 15.4 17.8 14.7 16.6
SVR - RBF 0.56 0.68 0.57 0.70 0.63 18.0 15.8 17.5 14.6 16.5
SVR - Sigmoid 0.19 0.07 0.33 0.21 0.20 24.5 27.0 21.9 23.7 24.3
Gradient Boosting 0.43 0.61 0.46 0.71 0.55 20.7 17.7 19.6 14.5 18.1
Random Forest 0.53 0.51 0.46 0.61 0.53 18.7 19.7 19.8 16.7 18.7

Tanimoto: Linear Regression 0.28 0.65 0.65 0.46 0.51 23.2 16.5 15.9 19.6 18.8
MACCS Lasso 0.31 0.66 0.66 0.48 0.53 22.7 16.5 15.5 19.2 18.5

Ridge 0.30 0.66 0.66 0.50 0.53 22.8 16.5 15.6 18.9 18.5
Bayesian Ridge 0.38 0.65 0.68 0.52 0.56 21.6 16.5 15.1 18.6 17.9
SVR - Poly 0.33 0.66 0.71 0.53 0.56 22.4 16.4 14.3 18.3 17.8
SVR - RBF 0.36 0.66 0.73 0.56 0.58 21.9 16.4 13.9 17.8 17.5
SVR - Sigmoid 0.40 0.56 0.65 0.62 0.56 21.2 18.6 15.8 16.5 18.0
SVR - Precomputed 0.31 0.67 0.67 0.49 0.54 22.7 16.1 15.3 19.1 18.3
Gradient Boosting 0.46 0.53 0.69 0.80 0.62 20.0 19.2 14.9 12.0 16.5
Random Forest 0.55 0.50 0.70 0.77 0.63 18.4 19.9 14.5 12.9 16.4

Tanimoto: Linear Regression 0.55 0.69 0.82 0.84 0.73 18.3 15.7 11.2 10.7 14.0
Morgan1 Lasso 0.57 0.69 0.83 0.84 0.73 17.9 15.6 11.1 10.7 13.8

Ridge 0.57 0.69 0.83 0.84 0.73 17.9 15.6 11.2 10.7 13.8
Bayesian Ridge 0.57 0.69 0.83 0.84 0.73 17.9 15.6 11.1 10.7 13.8
SVR - Poly 0.59 0.70 0.82 0.83 0.74 17.4 15.3 11.3 11.1 13.8
SVR - RBF 0.60 0.70 0.81 0.81 0.73 17.3 15.4 11.5 11.5 13.9
SVR - Sigmoid 0.54 0.66 0.80 0.82 0.70 18.5 16.5 11.9 11.4 14.6
SVR - Precomputed 0.57 0.69 0.83 0.84 0.73 17.9 15.6 11.2 10.7 13.8
Gradient Boosting 0.56 0.65 0.76 0.73 0.67 18.1 16.6 13.2 13.9 15.4
Random Forest 0.55 0.54 0.78 0.70 0.64 18.3 19.1 12.4 14.7 16.1

Tanimoto: Linear Regression 0.58 0.65 0.62 0.70 0.64 17.6 16.6 16.4 14.7 16.3
RDK Lasso 0.59 0.65 0.63 0.70 0.64 17.6 16.5 16.4 14.6 16.3

Ridge 0.58 0.65 0.62 0.70 0.64 17.7 16.5 16.5 14.5 16.3
Bayesian Ridge 0.58 0.66 0.62 0.70 0.64 17.6 16.5 16.5 14.6 16.3
SVR - Poly 0.58 0.64 0.62 0.70 0.64 17.7 16.8 16.5 14.5 16.4
SVR - RBF 0.58 0.63 0.62 0.70 0.63 17.7 17.0 16.5 14.7 16.5
SVR - Sigmoid 0.58 0.65 0.58 0.68 0.62 17.6 16.7 17.3 15.1 16.7
SVR - Precomputed 0.58 0.65 0.62 0.70 0.64 17.7 16.5 16.5 14.5 16.3
Gradient Boosting 0.56 0.54 0.59 0.59 0.57 18.1 19.0 17.1 17.2 17.8
Random Forest 0.57 0.54 0.57 0.53 0.55 17.8 19.1 17.5 18.2 18.2
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Table B.28 Test Set Performance for the Models in the Additive Ranked Test
(Continued)

Descriptor ML Algorithm R2 RMSE (%)
1 2 3 4 Mean 1 2 3 4 Mean

WL Linear Regression 0.42 0.68 0.78 0.81 0.67 20.9 15.9 12.7 11.5 15.2
Lasso 0.42 0.68 0.78 0.81 0.67 20.8 15.9 12.7 11.5 15.2
Ridge 0.42 0.68 0.78 0.81 0.67 20.8 15.9 12.6 11.6 15.2
Bayesian Ridge 0.42 0.68 0.78 0.81 0.67 20.7 15.9 12.7 11.6 15.2
SVR - Poly 0.43 0.66 0.76 0.81 0.67 20.6 16.3 13.0 11.8 15.4
SVR - RBF 0.44 0.66 0.75 0.80 0.66 20.5 16.5 13.3 12.0 15.6
SVR - Sigmoid 0.45 0.65 0.74 0.77 0.65 20.2 16.5 13.7 12.7 15.8
SVR - Precomputed 0.42 0.67 0.78 0.81 0.67 20.8 16.0 12.7 11.5 15.3
Gradient Boosting 0.50 0.66 0.76 0.74 0.67 19.3 16.3 13.0 13.5 15.5
Random Forest 0.45 0.58 0.75 0.76 0.64 20.2 18.3 13.4 13.0 16.2
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B.8.2 Aryl Halide Ranked Test

Grid Search Cross-Validated Performance

Table B.29: Grid Search Cross-Validated Performance for the Models in the Aryl
Halide Ranked Test

Descriptor ML Algorithm R2 RMSE (%)
1 2 3 Mean 1 2 3 Mean

One-hot Linear Regression 0.69 0.72 0.71 0.71 15.7 14.5 14.8 15.0
Lasso 0.70 0.72 0.71 0.71 15.6 14.5 14.8 15.0
Ridge 0.70 0.72 0.71 0.71 15.6 14.5 14.8 15.0
Bayesian Ridge 0.70 0.72 0.71 0.71 15.6 14.5 14.8 15.0
SVR - Linear 0.69 0.72 0.71 0.71 15.7 14.6 14.9 15.0
SVR - Poly 0.89 0.91 0.91 0.90 9.5 8.2 8.4 8.7
SVR - RBF 0.90 0.92 0.92 0.91 9.1 7.7 7.9 8.2
SVR - Sigmoid 0.58 0.61 0.60 0.60 18.4 17.1 17.5 17.6
Gradient Boosting 0.88 0.91 0.91 0.90 9.6 8.2 8.4 8.7
Random Forest 0.89 0.91 0.92 0.90 9.5 8.1 8.0 8.5

Quantum Linear Regression 0.69 0.72 0.71 0.71 15.7 14.5 14.9 15.0
Chemical Lasso 0.69 0.72 0.70 0.70 15.8 14.6 14.9 15.1

Ridge 0.69 0.72 0.71 0.71 15.7 14.5 14.8 15.0
Bayesian Ridge 0.69 0.72 0.70 0.70 15.8 14.6 15.0 15.1
SVR - Linear 0.69 0.72 0.70 0.70 15.8 14.6 14.9 15.1
SVR - Poly 0.89 0.90 0.89 0.89 9.5 8.6 8.9 9.0
SVR - RBF 0.90 0.90 0.90 0.90 9.0 8.7 8.9 8.8
SVR - Sigmoid 0.47 0.45 0.48 0.47 20.6 20.3 19.9 20.3
Gradient Boosting 0.91 0.93 0.93 0.92 8.7 7.5 7.5 7.9
Random Forest 0.92 0.94 0.94 0.93 8.2 6.6 6.8 7.2

Fingerprints: Linear Regression 0.64 0.62 0.64 0.63 17.0 16.9 16.6 16.8
MACCS Lasso 0.65 0.65 0.66 0.66 16.7 16.1 16.1 16.3

Ridge 0.65 0.65 0.66 0.66 16.7 16.1 16.1 16.3
Bayesian Ridge 0.65 0.65 0.66 0.66 16.7 16.1 16.1 16.3
SVR - Linear 0.65 0.65 0.65 0.65 16.7 16.2 16.2 16.4
SVR - Poly 0.86 0.88 0.88 0.87 10.8 9.4 9.5 9.9
SVR - RBF 0.85 0.88 0.88 0.87 10.9 9.6 9.6 10.0
SVR - Sigmoid 0.29 0.27 0.31 0.29 23.8 23.5 22.8 23.4
Gradient Boosting 0.87 0.90 0.89 0.89 10.0 8.5 9.0 9.2
Random Forest 0.92 0.93 0.93 0.93 7.9 7.3 7.3 7.5

Fingerprints: Linear Regression 0.68 0.70 0.67 0.68 16.1 15.0 15.7 15.6
Morgan1 Lasso 0.69 0.71 0.68 0.69 15.8 14.8 15.5 15.4

Ridge 0.69 0.71 0.68 0.69 15.8 14.8 15.5 15.4
Bayesian Ridge 0.69 0.71 0.68 0.69 15.8 14.8 15.5 15.4
SVR - Linear 0.69 0.71 0.68 0.69 15.9 14.8 15.6 15.4
SVR - Poly 0.90 0.92 0.91 0.91 9.1 7.8 8.0 8.3
SVR - RBF 0.91 0.93 0.92 0.92 8.5 7.3 7.5 7.8
SVR - Sigmoid 0.47 0.47 0.48 0.47 20.7 20.0 19.8 20.1
Gradient Boosting 0.90 0.92 0.92 0.91 9.0 7.9 7.8 8.2
Random Forest 0.93 0.94 0.94 0.93 7.8 7.0 6.8 7.2

Fingerprints: Linear Regression 0.68 0.72 0.70 0.70 15.9 14.7 15.0 15.2
RDK Lasso 0.70 0.72 0.71 0.71 15.6 14.5 14.8 15.0

Ridge 0.70 0.72 0.71 0.71 15.6 14.5 14.8 15.0
Bayesian Ridge 0.70 0.72 0.71 0.71 15.6 14.5 14.8 15.0
SVR - Linear 0.69 0.72 0.71 0.71 15.7 14.6 14.9 15.0
SVR - Poly 0.89 0.92 0.92 0.91 9.4 7.8 7.7 8.3
SVR - RBF 0.89 0.92 0.93 0.91 9.3 7.5 7.5 8.1
SVR - Sigmoid 0.47 0.46 0.45 0.46 20.6 20.2 20.3 20.4
Gradient Boosting 0.89 0.92 0.91 0.91 9.5 7.6 8.3 8.5
Random Forest 0.92 0.94 0.93 0.93 8.2 6.7 7.2 7.3

Tanimoto: Linear Regression 0.86 0.90 0.88 0.88 10.4 8.7 9.6 9.6
MACCS Lasso 0.89 0.91 0.90 0.90 9.4 8.2 8.7 8.8

Ridge 0.89 0.91 0.90 0.90 9.2 8.0 8.4 8.6
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Table B.29 Grid Search Cross-Validated Performance for the Models in the Aryl
Halide Ranked Test (Continued)

Descriptor ML Algorithm R2 RMSE (%)
1 2 3 Mean 1 2 3 Mean

Bayesian Ridge 0.88 0.91 0.90 0.90 9.7 8.5 8.7 9.0
SVR - Poly 0.89 0.91 0.89 0.90 9.3 8.3 9.0 8.9
SVR - RBF 0.88 0.89 0.88 0.88 9.8 8.9 9.4 9.4
SVR - Sigmoid 0.68 0.68 0.70 0.69 16.0 15.5 15.0 15.5
SVR - Precomputed 0.88 0.91 0.90 0.89 9.9 8.3 8.7 9.0
Gradient Boosting 0.75 0.77 0.79 0.77 14.1 13.1 12.7 13.3
Random Forest 0.72 0.71 0.74 0.72 15.0 14.7 14.0 14.6

Tanimoto: Linear Regression 0.92 0.94 0.93 0.93 7.7 6.9 7.0 7.2
Morgan1 Lasso 0.93 0.94 0.94 0.93 7.6 6.8 6.9 7.1

Ridge 0.93 0.94 0.94 0.94 7.5 6.8 6.9 7.1
Bayesian Ridge 0.93 0.94 0.94 0.94 7.5 6.8 6.9 7.0
SVR - Poly 0.92 0.92 0.92 0.92 8.0 7.5 7.6 7.7
SVR - RBF 0.91 0.91 0.91 0.91 8.7 8.3 8.3 8.4
SVR - Sigmoid 0.87 0.89 0.89 0.88 10.1 9.1 9.2 9.4
SVR - Precomputed 0.93 0.94 0.94 0.93 7.5 6.8 6.9 7.1
Gradient Boosting 0.81 0.81 0.82 0.81 12.3 12.0 11.7 12.0
Random Forest 0.72 0.73 0.78 0.74 14.9 14.3 13.0 14.1

Tanimoto: Linear Regression 0.89 0.92 0.91 0.91 9.4 7.9 8.0 8.5
RDK Lasso 0.90 0.92 0.92 0.91 9.1 7.7 7.8 8.2

Ridge 0.90 0.92 0.92 0.91 9.0 7.6 7.7 8.1
Bayesian Ridge 0.90 0.92 0.92 0.92 8.9 7.7 7.6 8.1
SVR - Poly 0.89 0.91 0.91 0.90 9.4 8.3 8.4 8.7
SVR - RBF 0.88 0.89 0.89 0.89 9.9 8.9 8.9 9.2
SVR - Sigmoid 0.84 0.86 0.85 0.85 11.2 10.2 10.5 10.7
SVR - Precomputed 0.90 0.92 0.92 0.91 9.1 7.7 7.8 8.2
Gradient Boosting 0.80 0.80 0.81 0.80 12.8 12.1 12.0 12.3
Random Forest 0.71 0.73 0.75 0.73 15.2 14.3 13.8 14.4

WL Linear Regression 0.91 0.93 0.93 0.92 8.6 7.4 7.4 7.8
Lasso 0.91 0.93 0.93 0.92 8.4 7.2 7.1 7.6
Ridge 0.91 0.93 0.93 0.93 8.3 7.1 7.0 7.5
Bayesian Ridge 0.91 0.93 0.93 0.93 8.3 7.2 7.0 7.5
SVR - Poly 0.91 0.93 0.93 0.92 8.4 7.3 7.2 7.6
SVR - RBF 0.91 0.92 0.93 0.92 8.6 7.5 7.4 7.8
SVR - Sigmoid 0.82 0.84 0.83 0.83 11.9 10.9 11.3 11.4
SVR - Precomputed 0.91 0.93 0.93 0.92 8.5 7.2 7.2 7.6
Gradient Boosting 0.85 0.86 0.86 0.86 11.1 10.1 10.4 10.5
Random Forest 0.79 0.79 0.80 0.80 13.0 12.4 12.1 12.5

Training Set Performance

Table B.30: Training Set Performance for the Models in the Aryl Halide Ranked
Test

Descriptor ML Algorithm R2 RMSE (%)
1 2 3 Mean 1 2 3 Mean

One-hot Linear Regression 0.70 0.73 0.72 0.72 15.4 14.3 14.7 14.8
Lasso 0.70 0.73 0.72 0.72 15.4 14.3 14.7 14.8
Ridge 0.70 0.73 0.72 0.72 15.4 14.3 14.7 14.8
Bayesian Ridge 0.70 0.73 0.72 0.72 15.4 14.3 14.7 14.8
SVR - Linear 0.70 0.73 0.71 0.72 15.5 14.3 14.7 14.8
SVR - Poly 0.97 0.97 0.98 0.97 5.0 4.5 4.3 4.6
SVR - RBF 1.00 1.00 1.00 1.00 1.0 1.0 1.0 1.0
SVR - Sigmoid 0.59 0.62 0.60 0.60 18.2 16.9 17.3 17.5
Gradient Boosting 0.95 0.96 0.96 0.96 6.2 5.5 5.5 5.8
Random Forest 0.99 0.99 0.99 0.99 3.3 2.9 2.7 3.0
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Table B.30 Training Set Performance for the Models in the Aryl Halide Ranked
Test (Continued)

Descriptor ML Algorithm R2 RMSE (%)
1 2 3 Mean 1 2 3 Mean

Quantum Linear Regression 0.60 0.73 0.71 0.68 17.9 14.3 14.7 15.6
Chemical Lasso 0.70 0.73 0.71 0.71 15.6 14.4 14.8 14.9

Ridge 0.70 0.73 0.72 0.72 15.5 14.3 14.7 14.8
Bayesian Ridge 0.70 0.73 0.71 0.71 15.6 14.4 14.8 14.9
SVR - Linear 0.70 0.73 0.71 0.71 15.5 14.3 14.7 14.9
SVR - Poly 0.95 0.96 0.96 0.96 6.2 5.4 5.5 5.7
SVR - RBF 0.98 0.98 0.98 0.98 4.0 3.6 3.5 3.7
SVR - Sigmoid 0.44 0.43 0.46 0.44 21.2 20.9 20.2 20.7
Gradient Boosting 0.97 0.97 0.97 0.97 5.2 4.9 4.9 5.0
Random Forest 0.99 0.99 0.99 0.99 2.7 2.3 2.3 2.4

Fingerprints: Linear Regression 0.64 0.65 0.65 0.65 17.1 16.3 16.2 16.5
MACCS Lasso 0.66 0.67 0.66 0.66 16.5 15.9 15.9 16.1

Ridge 0.66 0.67 0.66 0.66 16.5 15.9 15.9 16.1
Bayesian Ridge 0.66 0.67 0.66 0.66 16.5 15.9 15.9 16.1
SVR - Linear 0.66 0.66 0.66 0.66 16.5 15.9 16.0 16.2
SVR - Poly 0.90 0.92 0.92 0.91 9.0 7.6 7.8 8.1
SVR - RBF 0.90 0.92 0.92 0.91 9.1 7.6 7.7 8.2
SVR - Sigmoid 0.33 0.30 0.35 0.33 23.2 23.0 22.2 22.8
Gradient Boosting 0.92 0.93 0.93 0.93 8.0 7.0 7.1 7.4
Random Forest 0.99 0.99 0.99 0.99 2.7 2.5 2.4 2.6

Fingerprints: Linear Regression 0.69 0.71 0.69 0.70 15.8 14.8 15.4 15.3
Morgan1 Lasso 0.70 0.72 0.69 0.70 15.6 14.6 15.4 15.2

Ridge 0.70 0.72 0.69 0.70 15.6 14.6 15.4 15.2
Bayesian Ridge 0.70 0.72 0.69 0.70 15.6 14.6 15.4 15.2
SVR - Linear 0.70 0.72 0.69 0.70 15.7 14.6 15.4 15.2
SVR - Poly 0.95 0.96 0.96 0.96 6.2 5.4 5.6 5.7
SVR - RBF 0.97 0.98 0.97 0.97 5.2 4.3 4.6 4.7
SVR - Sigmoid 0.50 0.51 0.51 0.51 20.0 19.4 19.3 19.6
Gradient Boosting 0.95 0.96 0.96 0.95 6.5 5.8 5.8 6.0
Random Forest 0.99 0.99 0.99 0.99 2.6 2.4 2.3 2.4

Fingerprints: Linear Regression 0.70 0.73 0.71 0.71 15.5 14.3 14.8 14.9
RDK Lasso 0.70 0.73 0.72 0.72 15.4 14.3 14.7 14.8

Ridge 0.70 0.73 0.72 0.72 15.4 14.3 14.7 14.8
Bayesian Ridge 0.70 0.73 0.72 0.72 15.4 14.3 14.7 14.8
SVR - Linear 0.70 0.73 0.71 0.72 15.5 14.3 14.7 14.8
SVR - Poly 0.96 0.97 0.97 0.97 5.5 4.8 4.6 4.9
SVR - RBF 0.97 0.98 0.98 0.98 4.7 3.8 3.9 4.1
SVR - Sigmoid 0.28 0.17 0.27 0.24 24.1 25.1 23.5 24.2
Gradient Boosting 0.96 0.97 0.96 0.96 5.8 5.0 5.2 5.3
Random Forest 0.99 0.99 0.99 0.99 2.7 2.3 2.4 2.5

Tanimoto: Linear Regression 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0
MACCS Lasso 0.99 0.99 0.99 0.99 2.8 2.4 2.4 2.5

Ridge 1.00 0.99 0.99 0.99 1.9 3.1 3.1 2.7
Bayesian Ridge 0.96 0.97 0.97 0.97 5.8 4.4 4.6 5.0
SVR - Poly 1.00 1.00 0.99 1.00 1.0 1.0 2.0 1.3
SVR - RBF 1.00 1.00 1.00 1.00 1.0 1.0 1.2 1.1
SVR - Sigmoid 0.70 0.72 0.73 0.72 15.4 14.7 14.3 14.8
SVR - Precomputed 0.97 0.99 0.98 0.98 5.2 3.2 3.7 4.0
Gradient Boosting 0.94 0.97 0.99 0.97 6.9 4.4 3.1 4.8
Random Forest 0.98 0.98 0.98 0.98 4.1 3.7 3.7 3.8

Tanimoto: Linear Regression 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0
Morgan1 Lasso 1.00 1.00 1.00 1.00 0.9 0.9 1.0 0.9

Ridge 1.00 1.00 1.00 1.00 0.8 0.6 0.6 0.7
Bayesian Ridge 1.00 1.00 1.00 1.00 1.4 0.8 0.8 1.0
SVR - Poly 1.00 1.00 1.00 1.00 1.2 0.9 0.9 1.0
SVR - RBF 1.00 1.00 1.00 1.00 1.0 1.0 1.0 1.0
SVR - Sigmoid 0.87 0.90 0.89 0.89 10.1 8.7 9.2 9.4
SVR - Precomputed 0.99 1.00 1.00 1.00 2.3 0.9 0.9 1.4
Gradient Boosting 1.00 1.00 0.99 1.00 0.8 0.7 2.4 1.3
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Table B.30 Training Set Performance for the Models in the Aryl Halide Ranked
Test (Continued)

Descriptor ML Algorithm R2 RMSE (%)
1 2 3 Mean 1 2 3 Mean

Random Forest 0.98 0.98 0.98 0.98 4.2 4.0 4.1 4.1
Tanimoto: Linear Regression 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0
RDK Lasso 1.00 1.00 1.00 1.00 1.5 1.5 1.5 1.5

Ridge 1.00 1.00 1.00 1.00 1.7 1.5 1.5 1.5
Bayesian Ridge 0.99 0.99 0.99 0.99 2.8 2.2 2.2 2.4
SVR - Poly 1.00 1.00 1.00 1.00 1.0 0.9 1.0 1.0
SVR - RBF 1.00 1.00 1.00 1.00 1.0 1.0 0.9 1.0
SVR - Sigmoid 0.84 0.85 0.81 0.83 11.5 10.8 11.9 11.4
SVR - Precomputed 1.00 1.00 1.00 1.00 1.2 1.0 1.2 1.2
Gradient Boosting 1.00 1.00 1.00 1.00 0.8 0.8 0.8 0.8
Random Forest 0.98 0.98 0.98 0.98 3.9 3.8 3.9 3.9

WL Linear Regression 1.00 1.00 1.00 1.00 0.0 0.0 0.0 0.0
Lasso 1.00 1.00 1.00 1.00 1.6 1.7 1.8 1.7
Ridge 0.99 1.00 1.00 1.00 2.1 1.9 1.9 1.9
Bayesian Ridge 0.98 0.99 0.99 0.99 3.7 3.1 2.7 3.2
SVR - Poly 1.00 1.00 1.00 1.00 0.9 0.9 0.9 0.9
SVR - RBF 1.00 1.00 1.00 1.00 0.9 0.9 0.9 0.9
SVR - Sigmoid 0.82 0.81 0.83 0.82 11.9 11.9 11.2 11.7
SVR - Precomputed 1.00 1.00 1.00 1.00 1.7 1.5 1.6 1.6
Gradient Boosting 1.00 1.00 1.00 1.00 0.3 0.8 0.3 0.5
Random Forest 0.98 0.98 0.98 0.98 3.6 3.4 3.6 3.5

Test Set Performance

Table B.31: Test Set Performance for the Models in the Aryl Halide Ranked
Test

Descriptor ML Algorithm R2 RMSE (%)
1 2 3 Mean 1 2 3 Mean

One-hot Linear Regression <-1.00 <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0 >100.0
Lasso 0.17 0.30 0.37 0.28 22.6 22.3 21.1 22.0
Ridge 0.25 0.31 0.36 0.31 21.5 22.1 21.2 21.6
Bayesian Ridge 0.25 0.31 0.36 0.31 21.5 22.1 21.2 21.6
SVR - Linear 0.25 0.30 0.36 0.31 21.5 22.2 21.2 21.6
SVR - Poly 0.32 0.35 0.39 0.35 20.6 21.5 20.6 20.9
SVR - RBF 0.25 0.35 0.43 0.34 21.6 21.5 20.0 21.0
SVR - Sigmoid 0.21 0.26 0.27 0.24 22.2 23.0 22.7 22.6
Gradient Boosting 0.28 0.34 0.41 0.34 21.2 21.7 20.3 21.1
Random Forest -0.40 0.01 0.26 -0.04 29.5 26.5 22.8 26.2

Quantum Linear Regression <-1.00 <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0 >100.0
Chemical Lasso <-1.00 -0.60 -0.97 <-1.00 >100.0 33.7 37.1 73.8

Ridge <-1.00 0.53 0.39 <-1.00 >100.0 18.2 20.6 >100.0
Bayesian Ridge <-1.00 0.52 0.39 <-1.00 >100.0 18.4 20.8 >100.0
SVR - Linear <-1.00 0.52 0.43 <-1.00 >100.0 18.5 20.0 >100.0
SVR - Poly <-1.00 0.36 0.03 <-1.00 94.5 21.3 26.1 47.3
SVR - RBF 0.48 0.50 0.25 0.41 18.0 18.8 22.9 19.9
SVR - Sigmoid -0.25 0.23 0.14 0.04 27.8 23.3 24.5 25.2
Gradient Boosting 0.28 0.20 0.30 0.26 21.2 23.8 22.2 22.4
Random Forest 0.01 0.26 0.32 0.20 24.8 22.9 21.8 23.2

Fingerprints: Linear Regression <-1.00 0.49 0.49 <-1.00 >100.0 19.0 18.9 >100.0
MACCS Lasso 0.50 0.54 0.50 0.51 17.5 18.2 18.8 18.2

Ridge 0.52 0.54 0.50 0.52 17.3 18.2 18.8 18.1
Bayesian Ridge 0.52 0.54 0.50 0.52 17.3 18.1 18.8 18.1
SVR - Linear 0.52 0.51 0.51 0.52 17.2 18.6 18.6 18.1
SVR - Poly 0.69 0.36 0.61 0.55 13.8 21.3 16.6 17.2
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Table B.31 Test Set Performance for the Models in the Aryl Halide Ranked Test
(Continued)

Descriptor ML Algorithm R2 RMSE (%)
1 2 3 Mean 1 2 3 Mean

SVR - RBF 0.68 0.38 0.63 0.56 14.1 20.9 16.2 17.1
SVR - Sigmoid 0.16 0.31 0.18 0.21 22.9 22.2 24.0 23.0
Gradient Boosting 0.64 0.67 0.64 0.65 14.9 15.4 16.0 15.4
Random Forest 0.55 0.69 0.01 0.42 16.6 14.8 26.3 19.3

Fingerprints: Linear Regression <-1.00 0.48 <-1.00 <-1.00 >100.0 19.3 >100.0 >100.0
Morgan1 Lasso 0.58 0.50 0.53 0.54 16.2 18.8 18.2 17.7

Ridge 0.60 0.50 0.54 0.55 15.8 18.8 17.9 17.5
Bayesian Ridge 0.60 0.50 0.54 0.55 15.8 18.8 17.9 17.5
SVR - Linear 0.59 0.50 0.55 0.55 15.9 18.8 17.7 17.5
SVR - Poly 0.74 0.68 0.64 0.69 12.7 15.1 15.9 14.6
SVR - RBF 0.73 0.67 0.64 0.68 12.9 15.2 15.8 14.6
SVR - Sigmoid 0.39 0.45 0.31 0.39 19.4 19.7 22.0 20.4
Gradient Boosting 0.65 0.64 0.66 0.65 14.7 15.9 15.4 15.4
Random Forest 0.61 0.71 -0.02 0.43 15.6 14.4 26.7 18.9

Fingerprints: Linear Regression <-1.00 <-1.00 <-1.00 <-1.00 >100.0 >100.0 >100.0 >100.0
RDK Lasso 0.57 0.55 0.25 0.46 16.4 18.0 22.9 19.1

Ridge 0.55 0.58 0.48 0.54 16.6 17.3 19.2 17.7
Bayesian Ridge 0.55 0.58 0.48 0.54 16.7 17.2 19.2 17.7
SVR - Linear 0.56 0.57 0.48 0.54 16.6 17.5 19.1 17.7
SVR - Poly 0.68 0.73 0.53 0.64 14.2 13.9 18.3 15.4
SVR - RBF 0.67 0.74 0.53 0.65 14.4 13.6 18.2 15.4
SVR - Sigmoid 0.13 0.02 0.10 0.09 23.2 26.3 25.1 24.9
Gradient Boosting 0.74 0.69 0.03 0.49 12.7 14.7 26.1 17.9
Random Forest 0.77 0.71 0.62 0.70 12.0 14.4 16.3 14.2

Tanimoto: Linear Regression 0.69 0.43 0.66 0.60 13.8 20.2 15.3 16.4
MACCS Lasso 0.69 0.46 0.67 0.61 14.0 19.7 15.1 16.3

Ridge 0.66 0.47 0.67 0.60 14.5 19.4 15.2 16.4
Bayesian Ridge 0.65 0.49 0.67 0.60 14.8 19.0 15.3 16.3
SVR - Poly 0.59 0.53 0.63 0.58 16.0 18.2 16.2 16.8
SVR - RBF 0.54 0.57 0.62 0.58 17.0 17.6 16.2 16.9
SVR - Sigmoid 0.49 0.65 0.46 0.54 17.8 15.7 19.4 17.6
SVR - Precomputed 0.66 0.42 0.63 0.57 14.6 20.2 16.1 16.9
Gradient Boosting 0.60 0.64 0.51 0.58 15.8 16.0 18.5 16.8
Random Forest 0.56 0.44 0.43 0.48 16.6 20.0 19.9 18.8

Tanimoto: Linear Regression 0.66 0.73 0.63 0.68 14.5 13.7 16.1 14.8
Morgan1 Lasso 0.66 0.74 0.61 0.67 14.4 13.7 16.5 14.9

Ridge 0.65 0.74 0.61 0.67 14.7 13.7 16.5 15.0
Bayesian Ridge 0.65 0.74 0.61 0.67 14.7 13.7 16.5 15.0
SVR - Poly 0.59 0.69 0.59 0.62 16.0 14.8 17.1 16.0
SVR - RBF 0.55 0.67 0.56 0.59 16.7 15.4 17.5 16.5
SVR - Sigmoid 0.67 0.72 0.60 0.66 14.3 14.1 16.8 15.1
SVR - Precomputed 0.65 0.73 0.61 0.67 14.7 13.7 16.5 15.0
Gradient Boosting 0.55 0.38 0.40 0.44 16.7 21.0 20.5 19.4
Random Forest 0.49 0.29 -0.10 0.23 17.8 22.5 27.8 22.7

Tanimoto: Linear Regression 0.52 0.72 0.49 0.58 17.3 14.1 18.9 16.8
RDK Lasso 0.53 0.72 0.49 0.58 17.2 14.1 18.9 16.7

Ridge 0.51 0.72 0.49 0.57 17.4 14.1 18.9 16.8
Bayesian Ridge 0.51 0.72 0.49 0.57 17.5 14.1 18.9 16.8
SVR - Poly 0.42 0.66 0.43 0.50 18.9 15.6 20.0 18.2
SVR - RBF 0.39 0.62 0.40 0.47 19.5 16.4 20.5 18.8
SVR - Sigmoid 0.52 0.72 0.49 0.58 17.2 14.2 18.9 16.8
SVR - Precomputed 0.51 0.72 0.49 0.57 17.4 14.1 18.9 16.8
Gradient Boosting 0.28 0.68 0.01 0.32 21.2 15.1 26.4 20.9
Random Forest 0.28 0.60 -0.79 0.03 21.1 16.8 35.4 24.5

WL Linear Regression 0.61 0.71 0.60 0.64 15.6 14.3 16.8 15.6
Lasso 0.61 0.71 0.60 0.64 15.7 14.4 16.8 15.6
Ridge 0.60 0.70 0.60 0.63 15.7 14.5 16.8 15.7
Bayesian Ridge 0.60 0.70 0.60 0.63 15.8 14.6 16.9 15.8
SVR - Poly 0.57 0.66 0.57 0.60 16.3 15.5 17.4 16.4
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Table B.31 Test Set Performance for the Models in the Aryl Halide Ranked Test
(Continued)

Descriptor ML Algorithm R2 RMSE (%)
1 2 3 Mean 1 2 3 Mean

SVR - RBF 0.55 0.64 0.55 0.58 16.6 16.1 17.7 16.8
SVR - Sigmoid 0.58 0.68 0.57 0.61 16.2 15.2 17.3 16.2
SVR - Precomputed 0.60 0.70 0.60 0.63 15.7 14.5 16.8 15.7
Gradient Boosting 0.21 0.29 0.53 0.34 22.1 22.4 18.2 20.9
Random Forest -0.12 0.09 -0.01 -0.01 26.4 25.4 26.7 26.1
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B.8.3 Domain of Applicability

Additive Ranked Tests

(a)
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(b)

(c)
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(d)

Figure B.15: Predicted yield against observed yield for each additive in the addi-
tive ranked test sets one (a) to four (d). R2, coefficient of determination; dashed
line, y = x; solid line, line of best fit.
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(a)

(b)
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(c)

Figure B.16: Predicted yield against observed yield for each aryl halide in the
aryl halide ranked test sets one (a) to three (c). R2, coefficient of determination;
dashed line, y = x; solid line, line of best fit.
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B.9 External Validation

B.9.1 Training Set Performance

Figure B.17: Predicted yield against observed yield for the 16 reactions present in
both the training and test set (subset of the validation reactions). R2, coefficient
of determination; RMSE (%), root mean squared error; dashed line, y = x.
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Figure B.18: Predicted yield against observed yield for the 19 reactions present
in both the training and test set (all validation reactions). R2, coefficient of
determination; RMSE (%), root mean squared error; dashed line, y = x.

B.9.2 Grid Search Cross-Validation

Table B.32: Grid Search Cross-Validated Performance for the SVR Validation
Models

Validation Test SVR Model R2 RMSE (%)

Subset One-hot-Poly 0.90 8.4
Quantum-RBF 0.86 9.9
Fps: Morgan1-Poly 0.90 8.3
Tan: Morgan1-Precomputed 0.92 7.2
WL-Precomputed 0.91 7.8

All One-hot-Poly 0.90 8.5
Fps: Morgan1-Poly 0.91 8.2
Tan: Morgan1-Precomputed 0.94 6.8
WL-Precomputed 0.92 7.7
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Table B.33: Best Combination of Hyperparameters for the Prospective SVR
Models Identified Using Grid Search Cross-Validation

Hyperparameter Possible Validation Model Value
Values Test Used

C 1, 10, 100, Subset One-hot-Poly 100
1000 Quantum-RBF 1000

Fps: Morgan1-Poly 1000
Tan: Morgan1-Precomputed 100
WL-Precomputed 100

All One-hot-Poly 100
Fps: Morgan1-Poly 1000
Tan: Morgan1-Precomputed 100
WL-Precomputed 100

epsilon 1, 5, 10 Subset One-hot-Poly 5
Quantum-RBF 1
Fps: Morgan1-Poly 5
Tan: Morgan1-Precomputed 1
WL-Precomputed 1

All One-hot-Poly 5
Fps: Morgan1-Poly 5
Tan: Morgan1-Precomputed 1
WL-Precomputed 1

B.9.3 Prospective Predictions
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(a)
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(b)

Figure B.19: Predicted reaction yields of the subset of validation reactions (a)
with the additive 3-methylisoxazole and (b) without an additive present. B1,
BTMG; B2, MTBD; B3, DBU; L0, no ligand; L1, t-BuBrettPhos; L2, t-BuXPhos;
L3, BrettPhos. The keys corresponding to the aryl halides (H1 to H59) are shown
in Figures B.5, B.6, and B.7.
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(a)
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(b)

Figure B.20: Predicted reaction yields of the validation reactions (a) with the
additive 3-methylisoxazole and (b) without an additive present. B1, BTMG;
B2, MTBD; B3, DBU; L0, no ligand; L1, t-BuBrettPhos; L2, t-BuXPhos; L3,
BrettPhos. The keys corresponding to the aryl halides (H1 to H59) are shown in
Figures B.5, B.6, and B.7.
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Figure B.21: Distributions of predicted reaction yield for all validation reactions.



Appendix B: Predicting Yields of Chemical Reactions 269

Figure B.22: Distributions of predicted reaction yield for the subset of validation
reactions split by base (MTBD, BTMG, DBU).
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Figure B.23: Distributions of predicted reaction yield for all validation reactions
split by base (MTBD, BTMG, DBU).
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Figure B.24: Distributions of predicted reaction yield for the subset of validation
reactions split by catalyst ligand (no catalyst, t-BuXPhos, t-BuBrettPhos). A
distribution for the Quantum-RBF predictions of reactions containing no ligand
is not provided as a constant value (-0.64%) was predicted.
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Figure B.25: Distributions of predicted reaction yield for all validation reactions
split by catalyst ligand (no catalyst, t-BuXPhos, t-BuBrettPhos, BrettPhos).
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Figure B.26: Distributions of predicted reaction yield for the subset of validation
reactions split by halide type (Cl, Br). Reactions performed without a ligand
were excluded.
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Figure B.27: Distributions of predicted reaction yield for all validation reactions
split by halide type (Cl, Br, I).
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B.9.4 Model Comparison

Figure B.28: Comparison between the predicted yield of the quantum chemical
models with the structure-based models, and between the structure-based models.

Figure B.29: Comparison between the predicted yield of the structure-based mod-
els. Solid line, line of best fit.
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Figure B.30: Comparison between the predicted yield of the structure-based mod-
els. Solid line, line of best fit.
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