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CHAPTER I:  

 

THE SYSTEMIC EFFECTS OF 

SURGICAL TRAUMA ON PROTEIN 

METABOLISM 
  



1. INTRODUCTION 

1.1 The Metabolic Response to Surgical Trauma 

Surgical trauma is known to lead to the development of various metabolic 

pathologies. These lead to post-surgical complications, increased rates of mortality, as 

well as the prolongment of the duration of clinical care required for successful patient 

recovery. The perioperative care of patients is therefore crucial in optimising not only 

patient health and recovery, but also the efficient use of clinical resources. Through 

further understanding the metabolic consequences of surgery and the mechanisms 

underlying their development, we may inform perioperative care strategies and 

improve clinical outcomes.  

Early research in this field by Sir David Cuthbertson 1,2, whose work examined 

patients with tibial fractures, illustrated the occurrence of two distinct phases in the 

response to injury; the ‘ebb’ and ‘flow’ phases. The ‘ebb’ phase is characterised by 

depressed metabolic activity, hyperglycaemia and hypotension. For those that survive 

the ebb phase, it is followed by the ‘flow’ phase; characterised by maximal protein 

catabolism, increased metabolic rate, heat generation and salt and water retention. In 

later years, these stages were further expanded by Moore 3, who included an 

‘anabolic’ phase which consists of accelerated healing, returned appetite, restored 

anabolic metabolism and normalised salt and water excretion. Although by 

Cuthbertson’s classical works it appeared lessened compared to the initial traumatic 

injury, it was noted in patients who underwent subsequent surgical procedures that 

these metabolic phases also occurred as a consequence of surgical trauma 1. This was 

further defined by Moore, whose work on the metabolic responses to surgical trauma 

supported these observations and led to the inclusion of the ‘anabolic’ phase during 

recovery.   

Both classical authors noted that protein catabolism and metabolic rate were strongly 

affected surgical parameters. As skeletal muscle is an important glucose sink and a 

major energy reserve, this tissue is heavily implicated in the metabolic response to 

surgical trauma and poses as the predominant site of catabolism. These metabolic 

effects are also likely contributed to by the periods of disuse that often occur in 

conjunction with traumatic injury and surgery. Early work by Cuthbertson 

acknowledged the relevance of this input and displayed that healthy immobilised 

controls displayed a similar yet less acute response to bed-rest and lower limb 

immobilisation 4. Further and more recent studies have confirmed these observations, 

displaying immobilisation to cause suppressions in muscle protein synthesis and 

induce overall muscle wasting 5. However, it is evident that the metabolic responses 

to surgery and trauma are influenced by other factors that lead to a much greater 

overall metabolic response.  

The influence and input of hormonal signalling, primarily through the action of the 

adrenal glands, has long been associated with the perioperative stress response, 

particularly in the ‘ebb’ or now more commonly referred to, ‘acute’ phase. 

Cuthbertson observed adrenal-hormone-dependent nitrogen loss in early murine 

studies 6. They attributed causation of this to the systemic presence of these 



hormones; demonstrating this in adrenalectomized rats which received ‘maintenance’ 

dosages of cortical hormones following operative trauma and consequently displayed 

nitrogen excretion comparable to control specimens. Through their experiments they 

also suggested that the priming or sensitisation of molecular pathways was an 

important factor in this response, and as such was not an ‘all or nothing’ effect limited 

to adrenal inputs. 

The concept of inflammation following trauma being dangerous, yet crucial to the 

development of metabolic responses that enable healing, has existed for millennia. 

Historically, Hippocrates suggested inflammation to be an important part of the 

healing process, but when unchecked could lead to severe consequences 7. This 

concept was elegantly iterated many centuries later by John Hunter, within his work 

“A Treatise on the Blood, Inflammation and Gunshot Wounds” 8, wherein he stated; 

“There is a circumstance, attending accidental injury which does not belong to 

disease, namely that the injury done has in all cases a tendency to produce both the 

disposition and means of cure”. Over the last century, research has greatly expanded 

our understanding of inflammatory mechanisms; with studies specifically focused on 

surgically-induced inflammation starting to elucidate the underlying mechanisms that 

occur during this metabolic state. 

This review will focus on physiological processes central to the perioperative 

metabolic response; with particular attention to neuro-hormonal signalling, 

inflammation, the metabolic implications for skeletal muscle and the regulation of 

skeletal muscle mass following surgical trauma. 

 

1.2 The Perioperative Stress Response: The Regulation of HPA Axis and Cortisol 

Metabolism  

Trauma from surgery initiates alterations in the neuro-hormonal signalling axis, which 

is believed to drive the early stress response. This predominantly occurs through the 

hypothalamic-pituitary-adrenal (HPA) signalling axis 9, and this response is known to 

be relative to the intensity and duration of traumatic insult 10. Afferent signals from 

the site of surgical trauma invoke an increased release of hormones from the pituitary 

gland, mediated through altered hormonal regulation at the site of the hypothalamus, 

centrally the paraventricular nucleus (PVN) 11. This promotes the release of 

glucocorticoids and catecholamines from the adrenal glands into the circulation, 

which have various metabolic effects. A significant example of this process is the 

increased hormonal secretion of corticotrophin-releasing hormone (CRH) from the 

hypothalamus and the consequent increase in release of corticotrophin (ACTH) from 

the anterior pituitary. This results in the subsequent production of the glucocorticoid 

stress hormone, cortisol, from the adrenal cortex thus completing the HPA signalling 

axis. Production of cortisol along this signalling axis is further enhanced through the 

simultaneous release of anti-diuretic hormone (ADH, also known as arginine 

vasopressin (AVP)) from the posterior pituitary, following its prohormone peptide 

synthesis in the hypothalamus. This concomitant release of ADH has shown to be 

most pronounced following major abdominal surgery, and exerts significant 

additional impacts on fluid balance regulation 12–14.  Together, these processes have  



Figure 1: Impacts of surgery on the regulation of the hypothalamic-pituitary-adrenal (HPA) axis. PVN; paraventricular nucleus, CRH; corticotrophin-releasing hormone, 

ACTH; corticotrophin, CBG; corticosteroid-binding globulin, TNF-α; tumour necrosis factor alpha, IL; interleukin. Figure adapted from Manou-Stathopoulou, et al. 201911. 



shown to result in ACTH production higher than physiologically required for 

maximal adrenocortical stimulation within minutes of the onset of surgery 15. Under 

homeostatic conditions, levels of cortisol provide negative feedback on ACTH 

production, thus modulating hormone levels within this signalling axis. However, 

following surgical insult this regulatory feedback loop fails, with ACTH and cortisol 

levels in blood remaining in an elevated state for a significant period following 

surgery. This is believed to primarily occur due to prolonged disruption of the 

inherently pulsatile release of cortisol via ACTH, relative to circadian rhythm; with 

increased pulsatile activity being shown to occur following cardiac surgery, 

displaying elevated ACTH and cortisol levels that persist for approximately 8 and 24 

hours respectively 16. A meta-analysis of cortisol serum levels following surgery has 

further expounded that more invasive procedures can produce elevated cortisol levels 

for as long as 7 days compared to healthy controls 10. However, the exact mechanisms 

that drive this disproportionate persistence of cortisol levels relative to ACTH is 

unknown. This imbalanced relationship is likely influenced by various external 

factors, with several parameters implicated in the regulation of cortisol levels within 

blood and tissues. 

Within plasma, cortisol travels bound to the carrier-proteins, corticosteroid-binding 

globulin (CBG) and albumin. This results in only ~5% of total cortisol freely 

circulating within the blood 17. Due to this binding, only freely circulating cortisol is 

capable of migrating into tissues and diffusing across cell membranes through its 

lipophilic structure to exert its regulatory effects. It is therefore commonly accepted 

that cortisol (and similar steroid hormones) exist in an inactive form when bound to 

their carrier-proteins. Following increased cortisol levels there is reduced availability 

of these carrier-proteins, which enables more cortisol to freely circulate and diffuse 

into tissue cells. This is complemented at sites of inflammation, whereby activated 

neutrophils cleave CBG and further promote local active cortisol concentrations 18,19. 

Carrier-protein-glucocorticoid interactions are therefore an important means of 

glucocorticoid regulation, and further modifications have been displayed in response 

to inflammatory stress. This includes the down-regulation of CBG following stress 

and chronic illness, resulting in increased active glucocorticoid within blood plasma 
18.    

Once able to successfully diffuse across cell membranes, cortisol binds intracellular 

receptors. Glucocorticoids, such as cortisol, interact with two distinct receptor types; 

mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) 20,21. Following 

receptor binding, both receptors translocate to the nucleus whereby they influence 

gene expression, either to repress or promote transcription via interactions with DNA 

and transcription factors. The GR further regulates intracellular signalling pathways 

via non-genomic, G-protein second messenger signalling transduction 22. Many of 

these signalling pathways directly modulate metabolism and are present in tissues 

throughout the body.  

The expression of the MR and GR receptors is also influenced by metabolic stress. 

Oxidative stress has been shown to down-regulate GR expression 23 and up-regulate 

MR expression 24,25, while increased cellular cAMP (cyclic adenosine 

monophosphate) has shown to increase the expression of both receptors 21,26. Surgical 



trauma often results in oxidative stress within both damaged and highly active 

metabolic tissues, primarily as a result of inflammation and the subsequent generation 

of reactive-oxygen-species (ROS). Surgery has also been shown to induce blood 

plasma increases in second-messenger cAMP (which is involved in various metabolic 

signalling pathways) 27–29. It has been shown that elevations in plasma cAMP are 

associated with activation of β-adrenergic receptors from adrenaline 30, and that this 

relationship is observed within surgically-induced elevations in both adrenaline and 

cAMP 27. This would therefore suggest that adrenaline-driven responses aid in 

promoting the upregulation of glucocorticoid-GR signalling and thus would amplify 

the metabolic response to stress from this pathway. The interaction of both 

glucocorticoids and adrenaline are also associated with early immune responses along 

this axis. In a study of blunt trauma it was observed that trauma-induced increases in 

both adrenaline and cAMP were significantly correlated with plasma neutrophil 

counts 31. This study hypothesised that this may be a result of adrenaline-induced 

increases in neutrophil intracellular cAMP, resulting in the promotion of neutrophil 

demargination and their subsequent release into the bloodstream. However, it is also 

probable that associated increases in neutrophil count following trauma are mainly 

attributed to the glucocorticoid-driven responses of demargination and enhanced 

maturation process 32. Regardless, it would appear that both cortisol and adrenaline 

separately coordinate and together amplify metabolic stress responses following 

trauma and contribute to the early neutrophilia observed following trauma.  

Another important parameter in understanding the role of the primary human 

glucocorticoid, cortisol in the perioperative stress response is the regulation of 

cortisol’s removal from the blood. As there exists a large pool of cortisol bound to 

carrier proteins, which thus allows for rapid fluctuations in freely existing cortisol 

within plasma, cortisol degradation is very important in controlling net cortisol levels. 

This is largely achieved through the activity of the hepatic and adipose tissue 

reductases, which breakdown cortisol via 5α-reductase and 5β-reductase. 

Additionally, cortisol is broken down into its inactive cortisone counterpart within 

kidney tissue by 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) 33. In a study 

investigating cortisol metabolism in critically ill ICU patients 34, it was shown that 

clearance of plasma cortisol was reduced by over 50% compared to surgical controls, 

through measurement of infused deuterated-cortisol disappearance in patients. This 

occurred in paradigm to a poor correlation between elevated cortisol and comparably 

low ACTH levels, strongly suggesting that the increased circulating cortisol was due 

to decreased metabolic breakdown. This was further demonstrated by greater 

suppression of cortisol clearance in non-survivors when compared to survivors, 

suggesting this alteration in cortisol metabolism likely occurs as a protective 

mechanism to reduce metabolic demand. The downregulation of cortisol breakdown 

was also apparent at the tissue level. Patient liver showed over 75% decreased mRNA 

expression of 5α-reductase, and over 80% decreased mRNA expression of 5β-

reductase, compared to controls. 5β-reductase mRNA expression positively correlated 

with protein expression and negatively correlated cortisol levels, with over 50% 

reduced enzymatic activity also present as a likely consequence of increased 

circulating bile acids 33. Together, these findings strongly suggest decreased cortisol 



breakdown as a mechanism to maintain elevated cortisol levels during persistent 

clinical stress responses.  

It is likely similar mechanisms occur following elective surgery and may be involved 

in the persistence of stress responses within tissues, even when cortisol levels have 

returned to baseline levels. Similar cortisol dynamics could also pose as an 

explanation for the observed imbalance between ACTH and cortisol levels 

demonstrated following surgery 16. In two perioperative studies of cardiac surgery 
35,36, surgery resulted in decreased cortisol – cortisone conversion, which was 

hypothesised by the authors to be the result of exhausted 11β-HSD2 enzymatic 

activity following surgically elevated cortisol. Although plausible, these studies did 

not directly measure 11β-HSD2 activity or expression, and as such these 

interpretations are limited. There exists another regulator central to cortisol 

metabolism, which may also present a cause of elevated cortisol levels following 

surgical trauma, particularly in its pathogenesis within tissues. 11β-hydroxysteroid 

dehydrogenase type 1 (11β-HSD1) controls the conversion of cortisone to cortisol. 

This process happens readily in the liver, but also within various other tissues. As 

plasma cortisol often returns to near baseline levels following 24hr post-surgery 10, 

yet the effects of what is largely attributed to be cortisol-driven stress responses may 

persist in tissues for much longer, dysregulation of 11β-HSD1 is a potential cause for 

the continued stress pathology present in these tissues. Following minor elective 

surgery, skeletal muscle has demonstrated elevated 11β-HSD1 activity up to 6 days 

after the procedure, while plasma cortisol levels were shown to return to baseline 

levels after 24 hours 37. This upregulation was remote to the site of surgery (vastus 

lateralis biopsy following abdominal surgery), and as such suggests 11β-HSD1 as a 

viable regulator of systemic stress within tissues.  

 

1.3 The Effects of Glucocorticoids on Metabolism: Impacts for Skeletal Muscle and 

the Pathogenesis of Insulin-Resistance 

Glucocorticoids are hormones originating from steroid precursors synthesised by the 

zona fasciculata of the adrenal cortex that exert potent effects on carbohydrate, 

protein and fat metabolism. Glucocorticoids and GRs play an important role in 

maintaining sufficient gluconeogenesis production in the liver; which is crucial during 

times of fasting to ensure sufficient glucose availability and is thought to partially 

explain their circadian cycle of release 38. Glucocorticoids further act to ensure 

sufficient circulating glucose levels by suppressing pancreatic β-cell secretion of the 

glucose storage hormone, Insulin, and within skeletal muscle can significantly reduce 

the translocation of GLUT4, the glucose membrane transporter required for the uptake 

of glucose into muscle 39–41. This activity is largely dependent on GR expression and 

availability, as well as local glucocorticoid levels. Glucocorticoids can further 

facilitate increases in gluconeogenesis by providing gluconeogenic substrates for 

metabolism in the liver from amino acids mobilised from peripheral skeletal muscle 

through increasing rates of protein breakdown. Dysregulation of these processes is 

heavily implicated in the pathogenesis of insulin-resistance that is observed in various 



conditions; such as type 2 diabetes, the metabolic syndrome and as a result of surgical 

trauma. 

Hyperglycaemia is pronounced following surgical trauma and manifests rapidly, 

usually peaking within 24 hours following surgery 42,43. The suppression of glucose 

storage via insulin-dependent mechanisms and the upregulated production of glucose 

in the liver provides a protective mechanism to enable sufficient energy availability in 

times of physiological stress, and thus would appear to provide an initial benefit 

during surgery. However, persistent hyperglycaemia post-surgery can have negative 

metabolic impacts and is associated with increased rates of mortality 44–46. This is 

suggested to be contributed to by the various metabolic and biochemical impacts of 

prolonged hyperglycaemia 42. These present greater risks of infection and sepsis post-

surgery, likely through hyperglycaemic immunomodulatory effects. These include 

abnormalities in monocyte and neutrophil functional capacity; primarily the reduction 

of neutrophil phagocytic function. In studies of both diabetic and non-diabetic cardiac 

patients 47,48 maintenance of normoglycaemic levels via insulin treatment provided 

improved neutrophil and monocyte post-operative immune function compared to 

controls, along with protection from infectious complications compared to controls. A 

recent meta-analysis on the potential benefits of glycaemic control following surgical 

trauma supported these observations 49, demonstrating reductions in infection and 

sepsis in patients who undertook post-operative glycaemic control. They also 

displayed post-operative glycaemic control to result in reduced short-term mortality, 

further conveying the metabolic importance of glycaemic regulation in clinical 

outcomes.      

Skeletal muscle is an essential post-prandial glucose sink and fuel store, consisting of 

up to 50% of human body mass.  It therefore poses as a crucial metabolic tissue and as 

such, effects of metabolic dysregulation here are substantial. The development of 

insulin-resistance within skeletal muscle is thus of great consequence to metabolic 

whole-body function following traumatic insult, and elucidating the mechanistic 

action and consequences of skeletal muscle insulin-resistance is critical. 11β-HSD1 

has been implicated as a causative mechanism of cortisol-induced insulin resistance 

within peripheral tissues. As levels of cortisol within tissues are highly regulated by 

the active conversion of cortisone to cortisol via 11β-HSD1 activity, 11β-HSD1 has 

been studied as a mechanistic target of glucocorticoids metabolic effects. In C2C12 

myotubes it has been shown that glucocorticoid-mediated insulin-resistance was 

dependent on 11β-HSD1 activity, and when 11β-HSD1 inhibitors were introduced, 

the antagonistic effects of cortisol on insulin were negligible 50. This has been further 

supported in both murine and human primary skeletal muscle cell lines, which 

showed 11β-HSD1 to possess an integral role in modulating glucocorticoid-induced 

insulin-resistance 51. As previously mentioned, surgical trauma has been shown to 

lead to increased 11β-HSD1 activity in skeletal muscle for up to 6 days post-surgery 
37 which supports 11β-HSD1 as a potential effector of peripheral insulin-resistance. 

However, other metabolic processes are also known to impact insulin and its 

signalling effects within skeletal muscle.  

Free-fatty acids (FFA) are an important source of energy within skeletal muscle and 

are the predominant fuel source under fasting conditions. The use and generation of 



FFAs within skeletal muscle is regulated by various hormones including both insulin 

and glucocorticoids. Glucocorticoids have been shown to increase FFA availability 

through modulation of catecholamine receptors, GR-mediated mechanisms and 

promotion of lipolysis 52. In a study of primary human skeletal muscle cell lines 53, the 

introduction of cortisone and cortisol reduced myocyte glucose uptake and glycogen 

synthesis, while increasing palmitate oxidation and pyruvate dehydrogenase kinase 4 

(PK4). This illustrates a mechanistic shift in metabolism similar to that observed in 

the skeletal muscle of type 2 diabetes patients who exhibit high expression of PDK4 

in conjunction with impaired glucose utilisation 54. When PDK4 was inhibited it 

prevented the cortisol-driven metabolic responses, suggesting it to be a central 

effector in this process. However, when myocytes were stimulated with insulin the 

effects of cortisol were prevented within this study. This is likely due to insulin 

exerting its own regulatory effects on PDK4, with insulin levels demonstrating an 

inverse correlation with PDK4 expression 55.  

In murine skeletal muscle it has been shown that during a lipid-induced insulin-

resistant state, the capabilities of insulin to suppress PDK4 expression decrease by 2-3 

fold 56. This study also observed that insulin-resistance following intralipid infusion 

resulted in decreased insulin signalling via Akt and FOXO1 signalling pathways, 

implicating fatty acids to suppress insulin regulation of PDK4 via alterations in 

insulin signalling. Under normal homeostatic (post-prandial) conditions, insulin acts 

to increase glucose uptake and promote growth in skeletal muscle through binding its 

tyrosine-kinase receptor and inducing a signalling cascade. Activation of the insulin 

receptor results in the intracellular tyrosine phosphorylation of various associated 

proteins, with insulin-receptor-substrate 1 (IRS1) being the major docking protein. 

This phosphorylation mediates the activation of PI3K and the generation of second 

messenger PIP3 at the plasma membrane. PIP3 activates Akt (also known as protein 

kinase B), which is a central regulator of insulin-mediated effects on metabolism and 

growth 57. Akt is now capable of phosphorylating substrate, AS160, a Rab GTPase-

activating protein which activates Rab GTPases required for the translocation of 

GLUT4 vesicles to the cell membrane, which enables the subsequent uptake of 

glucose into skeletal muscle 58. Human studies have aimed to further define the 

mechanisms of fatty acid inhibition on insulin signalling in skeletal muscle through 

nuclear magnetic resonance spectroscopy (NMRS) 59. These studies have illustrated 

that increased fatty acids cause defects in IRS1 phosphorylation and its associated 

activation of PIP3 in skeletal muscle. This suggests that the availability of fatty acids 

may be the driving force in the development of insulin-resistance in skeletal muscle, 

with glucocorticoids actions inhibiting glucose uptake into skeletal muscle and 

initiating the promotion of fatty acid oxidation augmenting this process. 

Therefore, post-operative hyperglycaemia may also be attributed to increases in 

circulating FFAs which dysregulate the insulin signalling pathway and promote 

insulin-resistance. As surgery has been shown to result in increased plasma FFA in 

conjunction with hyperglycaemia 60, it is possible that increased release of FFA 

contributes to the pathology of insulin resistance following surgical trauma. This 

hypothesis was examined in a study of patients who underwent elective major open 

abdominal surgery 61. Surgery resulted in increased plasma FFA and hyperglycaemia. 



This was in tandem with a 4-fold increase in PDK4 mRNA expression and a greater 

than 50% decrease in pyruvate dehydrogenase complex activity within the vastus 

lateralis of patients post-surgery. This supports that surgical trauma initiates a local 

upregulation of fat oxidation in skeletal muscle, and these effects occur in the 

periphery remote to the site of traumatic insult. Although these observations support 

this hypothesis, this study lacked further molecular measures to substantiate the 

molecular underpinnings of their observations. Regardless, there appears to be a 

strong association between increased FFA availability and the development of insulin-

resistance in skeletal muscle following surgical trauma, which is likely augmented via 

the metabolic actions of glucocorticoids. 

  

1.4 Nutrient-Sensing and Energy Status: Regulation of Muscle Protein Turnover  

Under homeostatic conditions, the regulation of muscle synthesis and breakdown is 

primarily controlled via energy status. As the metabolic demands of skeletal muscle 

are highly fluctuant due to its inherent role in locomotion, as well as its essential role 

as a metabolic store and regulator of whole-body metabolism, the ability of skeletal 

muscle to sense changes in both nutrient and energy status is of the upmost 

importance. Energy sensing is controlled through the combined action of both 

peripheral and central mechanisms.  

The arcuate nucleus (ARC) of the hypothalamus is a group of neurons located at the 

bottom of the third ventricle of the brain, in close proximity to the median eminence. 

The median eminence is a structure of the blood-brain-barrier, and due to its 

proximity, enables the ARC to sense nutritional and hormonal changes within the 

blood. This site is thus capable of monitoring peripheral energy signals that are 

carried within the blood, and responding with centrally-driven responses that act 

through effector neuro-hormonal signals that in turn modulate systemic, and tissue 

specific, metabolism. This enables the regulation of energy status through central 

mechanisms, with the ARC consisting of two major regulatory neuron groups: those 

that produce neuro-peptide Y (NPY) and Agouti-related protein (AgRP), and those 

neurons that produce the pro-opiomelanocortin (POMC) and cocaine-and 

amphetamine-related transcript (CART) 62. The former group are termed orexigenic 

and promote feeding behaviour, while also presenting inhibitory synaptic effects via 

release of gamma amino-butyric acid (GABA) and are known inverse-agonists for the 

melanocortin receptors 63,64. POMC and CART are anorexigenic neurons, with POMC 

capable of both excitatory and inhibitory transmission via glutamate and GABA 

release, as well as releasing post-translational products of POMC peptide which 

include; α-, β-, γ-melanocyte-stimulating hormone (MSH) and the adrenocorticotropic 

hormone (ACTH). Together, the neuron groups of the ARC modulate systemic energy 

responses via synaptic transmission that target secondary effector neurons which 

consequently release energy hormones into the circulation.  

An important secondary neuron structure downstream of the ARC is the PVN. During 

the fed state, release of α-MSH from the POMC initiates the catabolic melanocortin 

signalling cascade via the G-protein-coupled melanocortin receptors (MCR). This acts 

to decrease food intake and increase energy expenditure through positive regulation of 



the HPA axis 62. This response is subject to intra-PVN competition with AgRP and 

inhibition of the POMC via GABA secreted from the intermingled orexigenic neuron 

groups. Neuronal projections of the PVN are also capable of influencing sympathetic 

and parasympathetic activation through interaction with the dorsal motor nucleus of 

the vagus nerves (DMX) and the intermedio-lateral cell column (IML), with 

sympathetic tone being an important mechanism of increased lipolysis, liver 

gluconeogenesis and decreased insulin secretion. This is partly achieved through 

innervation of many peripheral tissues, such as adipose tissue, from the autonomic 

nervous system (ANS). 

In murine studies, central manipulation of the melanocortin signalling cascade has 

been shown to cause changes in peripheral tissue metabolism, irrespective of nutrient 

intake 65,66. Overall, these changes promoted shifts towards lipid metabolism, with 

increased mobilisation and storage in white adipose tissue while causing decreases in 

glucose metabolism within skeletal muscle. These shifts have been suggested as 

potential causes of metabolic syndrome in peripheral tissues and have been implicated 

as such within studies that have demonstrated selective peripheral metabolic changes 

following ablation of NPY/AgRP to result in obesity irrespective of dietary intake 
67,68.  

Surgery is known to cause defects in HPA-axis signalling, as well as the development 

of insulin-resistance in peripheral tissues with associated alterations in fat 

metabolism. However, whether these changes are affected by inputs from the ARC 

during surgery is relatively unknown, largely due to the methodological difficulty of 

measures within humans. Alteration to ARC pathways may however pose 

explanations for some of the metabolic changes observed following surgery, and 

research should be conducted in this field to investigate these parameters.    

It is also common following surgery for patients to feel incapable of eating or to 

experience suppressed hunger. This complicates recovery, and in turn can contribute 

to increased catabolism in the days following surgery. If ARC dysregulation does in 

fact occur following surgery, it could also provide a causative mechanism for the lack 

of hunger observed in patients. This would further support ARC signalling as a 

potential therapeutic target in minimising the detrimental impacts of surgical trauma 

on whole-body metabolism. At this stage however, any potential alterations in the 

ARC signalling axis following surgical trauma is largely speculative.  

Within skeletal muscle, the ability to sense local changes in cellular energy demands 

is important in ensuring the continued supply of energy required for both mechanical 

function and metabolism. An important sensor of this process within skeletal muscle 

is AMP-activated protein kinase (AMPK). ATP is the body’s cellular energy 

currency, and demand for ATP within skeletal muscle can increase by up to 1000-fold 

during intense exercise 69. In order to maintain ATP requirements, skeletal muscle 

rapidly generates ATP through the coordinated action of the skeletal muscle energy 

systems: the phosphagen, glycolytic and mitochondrial respiratory. However, during 

times of cellular energy stress, there can still present a decrease in available ATP and 

a concomitant increase in cellular AMP. Increased cellular AMP activates AMPK, 

which has various metabolic effects that promote catabolism and inhibit anabolism. 



These aim to ensure sufficient ATP demand within tissues, with AMPK posing as one 

of the most pivotal regulators of this metabolic switch. AMP activates AMPK through 

inducing a conformational change that enables phosphorylation, and subsequently 

inhibits dephosphorylation, of Thr172 within the AMPK activation-loop 70. AMPK 

can additionally be activated by decreased inhibitory action from glycogen, which is 

suggested to be mediated via alleviated inhibitory kinase activity towards AMPK. The 

production of ROS, which commonly occurs during various inflammatory settings 

such as that following surgical trauma, are also known to both directly and indirectly 

activate AMPK 70.   

Once activated, AMPK inhibits mTORC1 (the central promoter of protein synthesis) 

through both direct inhibitory phosphorylation of the raptor mTORC1 subunit, as well 

as upstream activation of tuberous sclerosis complex 2 (TSC2) which also inhibits 

mTORC1. With the inhibition of mTORC1, AMPK is now capable of exerting 

inhibition on both transcription and translation machinery within cells 71,72. AMPK is 

also known to directly promote autophagy, mitophagy and mitochondrial fission; all 

of which are known to contribute to skeletal muscle wasting 70,73–78. Combined, these 

processes strongly promote catabolism and suggest AMPK to be an integral regulator 

of protein turnover within skeletal muscle.   

Perioperatively, it is common for patients to have reduced dietary intake due to either 

medically recommended restriction of fluid and food or from the common side effects 

of nausea, reduced appetite and abdominal discomfort following operation 79. These 

often result in negative energy balance during the days following surgery, when 

skeletal muscle catabolism is known to be most prevalent. It has been shown that 

hypocaloric nutrition alone for several days can induce insulin-resistance in healthy 

volunteers 80 and therefore likely also contributes to its pathogenesis following 

surgery. Insufficient caloric intake is therefore a culpable mechanism of skeletal 

muscle catabolism both in the period directly before and in the days following 

surgical trauma, and additionally may contribute to the development of insulin-

resistance. This is supported by studies that display decreased catabolism, as well as 

reduced insulin-resistance, in patients that received pre- and/or post-surgical 

supplementation with carbohydrates and amino acids compared to placebo and control 

patients who did not 81–91. Regarding catabolism, these studies have shown that fasting 

before surgery and reduced intake after, both promote MPB and reduce MPS 

compared to when supplementation protocols are utilised. However, it should be 

noted that these studies have utilised heterogenous, and often minimal, methods of 

measuring muscle protein turnover. This conveys the need to carry out more 

comprehensive and sensitive measurements of muscle protein turnover following 

surgical trauma. These would likely benefit from recent advances in the use of stable 

isotope techniques to measure muscle synthetic rates, in combination with other 

methods that can quantify the activation of these synthetic and degradative pathways 

within skeletal muscle 92.   

The direct activity of nutrient-sensing regulators of muscle protein turnover within 

skeletal muscle, such as AMPK, have to the authors knowledge, not been assessed 

following surgical procedures. However, the regulation of these energy-sensing 

mediators is likely affected and involved in the catabolic processes that ensue surgical 



trauma. With increased insulin-resistance as a result of surgery, there will 

consequently be decreased uptake of glucose into skeletal muscle via GLUT4-

dependent mechanisms and decreased glycogen synthesis. This would relieve 

inhibitory action on AMPK from glycogen, enabling greater activation of AMPK 

within skeletal muscle. Traumatic insult is also known to induce systemic 

inflammation, which together with the concerted activation of neutrophils, leads to 

increased ROS production. ROS are capable of activating AMPK both indirectly 

through increases in cellular AMP 93, as well as through direct modulation of AMPK 

phosphorylation 70; however in skeletal muscle cell lines this direct interaction is yet 

to be elucidated 94. These mechanisms could both pose as possible means of AMPK 

activation following surgery, but research in this field is needed to substantiate these 

hypotheses. AMPK is also known to interact with central mechanisms in the 

hypothalamus that regulate hunger, with the gastric hunger-promoting hormone, 

Ghrelin, being known to promote AMPK-induced inhibition of mTORC1. Ghrelin 

also acts to increase AgRP levels, which has been shown to occur in an AMPK-

dependent manner, but which can be offset by increased insulin-mTORC1 signalling 
95. The impacts of fasting or reduced calorie intake pre- and post-surgery likely impact 

these signalling pathways, and may promote AMPK-activation through both central 

and peripheral mechanisms. Future research should assess the relevancy of these 

pathways following surgical trauma, and their influence on the improved metabolic 

outcomes that have thus far been associated with carbohydrate and amino acid 

supplementation in patients perioperatively.  

 

1.5 The Effects of Immobilisation on Skeletal Muscle 

Immobilisation is known to induce loss of muscle mass and insulin-resistance in 

healthy humans. Immobilisation-induced loss of muscle mass is a consequence of 

dysregulated muscle protein turnover, although the mechanisms underlying this 

process are still to be mechanistically defined. Rodent models of acute limb 

immobilisation for 6 and 24 hour periods have shown decreases in MPS and increases 

in MPB, when measured using in vivo stable isotope tracer methodologies 96,97. 

Further research of muscle synthetic and degradative pathways during several days of 

cast-limb immobilisation in rodents has suggested protein breakdown to be the 

driving factor of the associated muscle atrophy 98. This is due to observed increases in 

mRNA expression of the ubiquitin-ligases, muscle atrophy F-box (MAFbx) and 

muscle RING-finger 1 (MuRF1), whose peak expression at day 3 of immobilisation 

was in parallel to the plateaued decrease of muscle wet weight (12% decrease in 

gastrocnemius muscle) also observed at day 3. This suggestion of MPB driving the 

observed muscle atrophy was further supported by in vivo administration of the 

proteasome inhibitor, Velcade, which reduced the observed hindlimb atrophy of the 

gastrocnemius muscle by approximately 50% at day 3 of immobilisation.  

In humans however, the progression of muscle atrophy following immobilisation is 

primarily believed to stem from suppressions in MPS 99. Various tracer studies 

utilising immobilisation models of both lower-limb cast 100,101 and bed-rest 102–105 in 

humans have displayed decreased synthetic rates in skeletal muscle. In a study by de 



Boer et al. 101, the authors measured post-absorptive decreases in myofibrillar 

synthetic rates of ~50%. They highlighted this could plausibly account for the decline 

in muscle cross-sectional area (CSA) alone, without the need for additional 

upregulation of degradative pathways. Although these measures were limited to 

muscle synthetic responses in the basal (fasted) state, such drastic suppressions in 

MPS could very well account for the changes in quadricep CSA across the 

measurement period of 10 days in these young, healthy volunteers. Although few 

studies have measured changes in muscle protein breakdown in skeletal muscle 

following immobilisation 102,105, these have illustrated negligible input from MPB 

during the development of atrophy in humans, or have illustrated adaptive declines in 

MPB following immobilisation. It is due to these observations, in paradigm with the 

substantial decreases in MPS, that it is widely believed suppressions in MPS are 

culpable for the progression of skeletal muscle atrophy during periods of 

immobilisation. However, it should be noted that there is a significantly reduced 

number of MPB studies that utilise tracer methodologies compared to those that have 

measured MPS, and as such we cannot discredit a potential role for these degradative 

pathways in the pathogenesis of skeletal muscle atrophy following periods of 

immobilisation. 

It has been shown that immobilisation alters the expression of mRNA and protein 

components of several muscle degradative pathways 101,106–111, with the ubiquitin-

proteasome pathway most heavily implicated. Although the ubiquitin-proteasome 

system is unable to degrade intact myofibrils (first requiring preparatory degradation 

from other systems), it is generally believed to be the primary mediator of coordinated 

net skeletal MPB 112,113. Alterations in the activity of this pathway are therefore 

palpable in the development of atrophy, and in human immobilisation models, have 

generally shown increases during the early stage (first 3-5 days) of immobilisation. As 

such, it is possible that increased MPB provides a transient mechanism for promoting 

skeletal muscle atrophy during the initial stages of inactivity. Early increases in MPB 

following disuse have also been displayed by increases in 3-methylhistidine excretion 

following 72 hours of unilateral lower-limb suspension 114. With currently few 

reliable studies utilising tracer methodologies to assess the contributions of MPB to 

muscle atrophy during early disuse in humans, the influence of these pathways in the 

pathology of immobilisation-induced skeletal muscle atrophy remains to be 

understood.  

Although the underlying cellular mechanisms that direct skeletal muscle atrophy 

during immobilisation are yet to be fully understood, there are several candidate 

explanations. As it most likely that alterations in MPS are driving immobilisation-

induced atrophy, especially over longer periods when notable declines in muscle CSA 

begin to occur, dysregulation of muscle synthetic pathways is a probable cause of this 

process. Initiation of protein translation, characterised by association of mRNA 

transcripts with ribosomal machinery, is upregulated during periods of increased 

amino acid availability and muscular contraction. Research has shown this to be an 

important point of regulation for MPS, even during times of reduced MPS rates such 

as those observed during sepsis 115–117. Within rodent models, nutrient- and 

contractile- induced activation of translation initiation has shown to be centred around 



the activity and phosphorylation status of the Akt/mTORC1/p70S6k signalling axis. 

This is primarily due to rodent studies that have illustrated electrical-stimulation of 

skeletal muscle to induce hypertrophy with associated increases in the 

phosphorylation of these proteins along this signalling axis 118, as well as that 

overexpression of this signalling axis in transgenic mice results in significant 

hypertrophy 119. However, studies of this signalling pathway in human models of 

atrophy do not support the relevancy of this axis. It has been shown that neither 

phosphorylation state nor content of Akt, p70S6K, 4E-BP1 or eIF-4E were drastically 

altered in the post-absorptive state following either 10 or 21 days of immobilisation 

that resulted in ~5 and 10% reductions in quadricep CSA respectively 101. In an 

immobilisation study across 14 days which investigated changes in MPS during both 

the post-absorptive and post-prandial state following amino acid infusion, the authors 

noted that although immobilisation blunted muscle protein synthesis in response to 

amino acid provision in the immobilised vs control limb, these effects were not 

reflected in the phosphorylation status of the Akt/mTORC1/p70S6k signalling axis 
100. Other studies of immobilisation in humans have produced similar findings 108,109, 

although one study following 48-hours of unilateral immobilisation displayed 

decreases in the phosphorylation status of the Akt-signalling axis in the immobilised 

compared to the contralateral control limb 107. This supports the previously suggested 

role of this axis in contributing to muscle atrophy, but to date, overall evidence 

suggests that alterations in the Akt/mTORC1/p70S6k signalling axis is not the driving 

mechanism of muscle atrophy during immobilisation in humans. 

Immobilisation and bed-rest are also known to induce insulin-resistance in healthy 

volunteers. This occurs as a whole body response, as indicated by increases in plasma 

glucose and insulin concentrations, and more importantly by reduced clearance of 

glucose following infusion with hyperinsulinemic-euglycaemic clamp 120,121. Insulin-

resistance can occur as early as 3-5 days following immobilisation 122, and due to its 

presence also being observed in the limbs, it is interpreted that insulin-resistance 

additionally manifests itself in skeletal muscle during periods of immobilisation. 

Studies have further illustrated that reducing ambulation alone is sufficient to cause 

reductions in insulin-sensitivity 123,124, indicating that decreases in the contractile 

activity of skeletal muscle are involved in these metabolic changes. However, the 

potential mechanisms behind this process are, as of yet, unclear.   

Due to the sequential and seemingly concomitant manifestation of insulin-resistance 

and skeletal muscle atrophy following periods of reduced activity or immobilisation, 

insulin-resistance has been implicated as a causative mechanism of immobilisation-

induced atrophy. This is generally believed to occur via alterations in the insulin, 

IRS1-Akt signalling axis, which is an important pathway for nutrient-hormonal 

signalling regulation of mTORC1 complex and the consequent upregulation of MPS. 

This is supported by rodent models that have shown reductions in IRS1 protein 

expression and Akt activity following hindlimb immobilisation 125, as well as bed-rest 

models in humans that have illustrated suppressions in insulin-stimulated 

phosphorylation of Akt 124,126,127. Interference in insulin-signalling would also explain 

the reductions in GLUT-4 translocation observed with immobilisation following 7-19 

days of bed-rest 128–130, and the consequent increase in plasma glucose concentrations. 



Further implications of insulin-signalling disruption have been illustrated by both 

reduced hexokinase activity and glycogen synthase activity in skeletal muscle 

following 7 days of immobilisation in healthy, young men 130,131. However, whether 

these responses drive or occur as a consequence of immobilisation is still unknown. 

With it being suspected that reductions in contractile activity drive these responses, 

we do not yet know the intrinsic mechanisms that sense and regulate internal 

metabolic activity within skeletal muscle as a product of inactivity. AMPK activity 

has shown to be unchanged following 9 days of bed-rest even though several AMPK 

subunits were upregulated 127, and it has been shown that exercise following a period 

of 7 days bed-rest abolishes activation of AMPK suggesting that this target and/or 

pathway is directly affected from skeletal muscle inactivity. Again, it is unknown 

whether these effects are driving or consequential to immobilisation-induced insulin-

resistance. Regarding physical inactivity; it has been illustrated that a model of dry-

immersion (a simulation of micro-gravity) invokes a 6-fold increase in neural-cell-

adhesion-molecule (NCAM) association with muscle fibres (which is typically 

indicative of a denervation process) 132, with this occurring in skeletal muscle after 

only 3 days. The implications for skeletal muscle denervation in the pathogenesis of 

both insulin-resistance and muscular atrophy are yet to be fully explored, but it should 

be noted that dry-immersion is an intense model of immobilisation; with a separate 

study reporting a decrease of ~10% in vastus lateralis myofiber CSA after only 3 days 

of dry-immersion 133. As such this model may not be indicative of immobilisation that 

is more applicable to everyday life scenarios that require bed-rest or limb-

immobilisation, e.g. limb injury and surgical recovery.  

Another important consideration in the pathogenesis of insulin-resistance (as 

discussed previously in section: The Effects of Glucocorticoids on Metabolism…) is 

the input from increased plasma FFA and increased lipid presence in peripheral 

tissues. Within skeletal muscle, it has been shown that 28-days of bed-rest leads to 

accumulation of intramyocellular lipid (IMCL) content 134, with this occurring in a 

less pronounced manner after 7-days of bed-rest 120. Increased skeletal muscle IMCL 

may arise as a result of decreased basal fat oxidation from physical inactivity and the 

associated reductions in metabolic rate, likely augmented by the concomitant positive 

energy intake increasing circulating FFA availability. This hypothesis is supported by 

studies that have illustrated bed-rest to decrease lipid oxidation 135–137, which was 

shown to occur irrespective of positive energy balance and in association with insulin-

resistance. These changes have been observed after as little as 7 days of bed-rest, 

suggesting that these effects manifest rapidly following reduced physical activity. As 

use of the lipid-lowering agent, Acipimox, has been shown to simultaneously lower 

plasma FFA and IMCL in healthy adults, while simultaneously improving insulin-

sensitivity in correlation to these reductions 138; alterations in IMCL could potentially 

be driving the development of insulin-resistance following immobilisation or reduced 

physical activity. IMCL accumulation in skeletal muscle would expectedly lead to 

increases in intracellular fatty acid metabolites; such as long-chain fatty acyl CoAs, 

acylcarnitines and diacylglycerols. Accumulation of these metabolites would inhibit 

pyruvate dehydrogenase activity, as well as blunt insulin-signalling, and together 

these would suppress glucose metabolism in skeletal muscle. Whether increased 

IMCL and the associated alterations in metabolic signalling are driving insulin-



resistance or occurring as a consequence of it during periods of immobilisation is 

currently unknown. Furthermore, the greater implications that these processes may 

have on muscle atrophy is yet to be comprehensively understood in the context of 

human immobilisation. 

An alternative explanation for immobilisation-driven changes in metabolic substrate 

utilisation is the activity and content of mitochondria. A microarray analysis revealed 

both 2- and 14-days of immobilisation heavily impacted the expression of genes 

related to mitochondrial bioenergetics and carbohydrate metabolism; downregulating 

the activity of these pathways, with these changes present by 2-days of 

immobilisation and persisting until 14-days 139. Whereas these changes occurred early 

and were maintained throughout immobilisation, significant changes in protein 

synthesis and degradation (which were down- and up-regulated respectively) only 

occurred following 14-days of immobilisation. As such, it is plausible that these early 

metabolic changes in mitochondrial function may influence the later changes in 

muscle protein metabolism observed later on in the immobilisation period 140. Further 

to this, 14-days of immobilisation has been shown to elicit declines in quadricep 

mitochondrial respiratory capacity and protein content in both men and women 139, 

and for men this has been shown to occur to a comparable extent in both younger and 

older participants 141. This is believed to stem from decreased mitochondrial content, 

due to analysis of respiratory capacity revealing restoration to baseline levels once 

values were normalised to citrate synthase activity (a marker of total mitochondrial 

content). Supportive of this was the fact that exercise training after the period of 

immobilisation restored both mitochondrial respiratory capacity in unison with citrate 

synthase activity 141. Changes in mitochondrial content are regulated through both 

mitochondrial biogenesis; primarily regulated through the signalling of PGC1-α, and 

mitophagy; the specific degradation of mitochondria via autophagy. In humans, 7-

days of immobilisation has been shown to affect the regulation of both these 

pathways, causing decreases in mRNA and protein expression of mitochondrial 

biogenesis-related proteins and inversely increasing mitophagy-related mRNA and 

protein expression 142. This suggests immobilisation induces early changes in the 

regulation of mitochondrial synthetic and degradative pathways in a fashion that 

would reduce total cellular mitochondrial content, which would support previous 

observations of decreased respiratory capacity in skeletal muscle cells being related to 

reduced mitochondrial protein. Future studies should utilise measurements of 

autophagy/mitophagy flux, in addition to microscopy techniques, to thoroughly assess 

both the direct action of these pathways and any alterations that may occur in 

mitochondria number and quality. 

In summary, immobilisation is known to induce metabolic changes that are of great 

consequence to whole body metabolism and skeletal muscle mass. With many 

patients following elective surgical procedures being bed-ridden for varying periods 

during recovery, there is undoubtedly great importance in understanding the 

metabolic implications of immobilisation and their progression in order to provide 

efficient medical care in the recovery period. When attempting to elucidate the 

mechanisms driving the metabolic responses to surgical trauma, it is of the upmost 

importance to understand the physiological context, and how other parameters such as 



nutrition, energy intake and immobilisation impact upon these responses. Although 

there is available literature on how the modulation of nutrition affects various 

physiological parameters in the perioperative period, there is very little research on 

the potentially augmented effects immobilisation may have on post-operative 

conditions; namely the pathogenesis of insulin-resistance and muscle atrophy. There 

is a need for further work in this field that is capable of assessing these parameters 

and broadening our understanding of the interactional effects these various clinical 

procedures and circumstances likely have on patient health and recovery.   

 

1.6 The Inflammatory Response to Surgical Trauma 

Surgery is known to induce both local and systemic inflammatory responses. These 

tend to originate at the site of trauma, but may also progressively manifest in tissues 

throughout the body. Inflammation can result from either the release of intracellular 

components as a direct result of tissue damage (known as sterile inflammation) or 

alternatively from microbial infection, which can lead to complications such as sepsis. 

Both inflammatory responses are known to lead to the increased release of cytokines, 

altered immune responses and immune cell activation, the production of ROS, and the 

consequent development of various ailments that negatively influence clinical 

outcomes. Although surgical trauma typically induces an inflammatory response via 

sterile inflammation 11, up to 10% of patients who undergo elective surgery develop 

an infection 143. These combined can lead to a severe inflammatory state and the 

development of sepsis, which is strongly correlated to increased patient mortality 144.    

In addition to its impacts on immune function and the development of sepsis 

following surgery, inflammation is known to influence muscle homeostatic regulation 

and signalling pathways involved in atrophy 5. Within rodent models, several pro-

inflammatory cytokines have been implicated in atrophy 145,146, with these cytokines 

being shown to increase MPB through increased activation of the ubiquitin-

proteasome system. Notable examples of this are that the infusion of TNF-α in vivo 

has been shown to induce upregulation of E3-ligases, MAFbx and Murf-1 in rodents 
147, while the interleukins-1 and -6 (IL-1, IL-6) have been demonstrated to increase 

myofibrillar protein breakdown 148,149. IL-6 may be a target of particular interest, as 

both TNF-α and IL-1 are known to induce production of IL-6 by a variety of cell 

types 150. However, although direct induction of IL-6 into rats elicited the increased 

release of 3-methylhistidine and tyrosine within skeletal muscle (suggestive of 

increased MPB), when IL-6 was introduced directly to rat skeletal muscle in vitro this 

did not affect MPB 148. This disparity between in vivo and in vitro analyses has been 

additionally noted for TNF-α in other work by this author 151, as well as in other 

studies 152–154, and thus suggests that regulation of skeletal muscle protein metabolism 

by cytokines is likely mediated via other effectors within these pathways.      

In humans, septic patients in ICU constitute a significant proportion of critically-ill 

patients, with the most common infections stemming from abdominal cavity, urinary 

tract and lung surgery 155. Mortality rates in these patients is high (approx. 30-50%), 

with a study of septic shock in Danish ICUs showing abdominal infection to have the 

highest incidences of mortality 156. However, many patients in ICU display systemic 



inflammatory profiles without a known site of origin (often termed, systemic 

inflammatory response syndrome or SIRS) as a result of surgical trauma, which is 

also related to poorer clinical outcomes 157. In patients with chronic inflammation 

(both septic and non-septic), muscle loss occurs rapidly 158 and is an independent 

predictor of mortality both within clinical care 159 and during periods of recovery 

thereafter 160. These patients present high levels of circulating cytokines (namely IL-

6), increased production of the hepatic C-reactive protein (CRP) and modulated 

immune responses with particularly notable impacts on neutrophil kinetics and 

functions 161–165.  

There are limited data that detail the effects inflammatory responses have on skeletal 

muscle metabolism following surgical trauma. Since early work in this field, such as 

that of Sir David Cuthbertson 1,4, it has been understood that trauma elicits declines in 

muscle mass and that the progression of this anomaly is linked to perturbations in 

homeostatic regulation from the inflammatory response that accompanies this 

condition. Yet, since recent advances in measurements of muscle protein metabolism 

over the last 20 years 92, our understanding of these responses is largely limited to less 

reliable measures of urinary nitrogen and 3-methylhistidine excretion 166–169, as well 

as non-labelled amino acid observations and ribosome counts 170,171. Of the limited 

studies available utilising stable isotope tracers, it appears that surgery elicits 

immediate declines in MPS and increased rates of MPB. Studies of elective 

abdominal surgery have illustrated decreases in MPS of approximately 25-30% within 

the first 24-hours following the procedure 172–175, irrespective of total parental 

nutrition 173. A further study has shown decreases in MPS of up to 50% after 3-days, 

also irrespective of nutritional support 176. Furthermore, a study utilising stable 

isotope [15N2]urea to assess protein breakdown within skeletal muscle observed an 

approximate 25% increase in MPB among their surgical control group 177. The 

relative importance of these measures in the regulation of skeletal muscle mass has 

been aptly illustrated in a study of tumour resection among colorectal cancer patients 
178. This study demonstrated that after early exacerbation of muscle atrophy following 

surgery (as highlighted by a decline in muscle mass of approximately 7% as 

quantified by DEXA), recovery of muscle mass was strongly correlated to that of 

normalised post-prandial MPS responses. Although perioperative nutrition strategies 

have been shown to provide clinical benefits 179, they do not appear to effectively 

combat declines in MPS or increases in MPB following surgery among these studies. 

There is some evidence to suggest that the use of epidural blockade prevents 

hyperglycaemia and elevated cortisol levels following surgery 175,180 and may 

minimise the development of catabolism through attenuation of MPB levels post-

operation 177,181. However, these studies have not shown epidural blockade to provide 

any attenuation for the declines in MPS observed following surgical trauma, which 

appears to largely contribute to post-surgery net catabolism. As the effects of epidural 

blockade are mainly attributed to attenuations in neuro-hormonal signalling and 

reduced sympathetic drive, it would appear that dysregulation of muscle synthetic 

responses is being controlled by other mechanisms following surgical trauma.    

It should, however, be noted that many of these studies are limited to short sampling 

periods that are only reflective of one post-operative timepoint for MPS, relative to 



pre-operative baseline values. As such, there is great need to accurately define 

surgically-induced alterations in MPS across longer periods in order to 

comprehensively examine the impacts of surgery on muscle synthetic responses. This 

would likely benefit from the use of deuterium-oxide (D2O), which has been shown 

to precisely measure fractional synthetic rates of muscle protein across extended study 

periods 182, and would thus provide a more comprehensive assessment of these 

responses throughout the immediate periods of recovery following operative 

procedures. 

The role of inflammation in regulating skeletal muscle mass and metabolic function 

during chronic inflammatory states and as a result of trauma is becoming increasingly 

apparent 5. Inflammation may therefore represent the driving mechanism behind the 

post-operative suppressions of MPS. ICU patients have demonstrated elevated levels 

of the muscle cytokines, IL-6 (6.5-fold) and TNF-α (2-fold) when compared to 

healthy volunteers 183. In conjunction with these increases, patients demonstrated 

dephosphorylation (inactivation) of MPS signalling proteins (Akt, GSK3α/β, mTOR, 

p70S6K and 4E-BP1). The authors additionally noted upregulation of muscle specific 

E3-ligases, MAFbx and Murf-1, which displayed increased levels of mRNA (4.5-fold, 

2.5-fold) and protein (5-fold, 4.5-fold) respectively. This study also observed 

increases in mRNA and protein of 20S proteasome (5-fold, 2.5-fold) and myostatin 

(3-fold, 8.5-fold) in patients vs controls. This suggests inflammatory states to 

simultaneously downregulate MPS while promoting MPB. The Akt/FOXO signalling 

pathway is a likely controller of this process, and has been implicated as such in a 

rodent model of endotoxemia involving 24-hour infusion of lipopolysaccharide (LPS) 
184. This study demonstrated endotoxemia to produce expected increases in TNF-α 

and IL-6 (8.9-fold, 8.4-fold) in association with reductions in IRS-1 mRNA 

expression and Akt protein, while increasing dephosphorylation (activation) of 

FOXO1 and FOXO3 protein. These changes coincided with notable increases in 

muscle MAFbx (mRNA 5.5-fold, protein 2-fold), as well as PDK4 mRNA and protein 

expression (15-fold, 1.6-fold respectively) and a 56% reduction in pyruvate 

dehydrogenase activity. With similar reductions in glucose metabolism via these 

mechanisms being displayed in patients following major abdominal surgery 61, as well 

as in ICU and septic patients 183,185, cytokine-driven alterations in the regulation of the 

Akt/FOXO signalling pathway are a probable cause of the skeletal muscle metabolic 

dysregulation and catabolism observed during these inflammatory conditions. In 

support of this, further research conducted with animal models of endotoxemia 186,187 

have illustrated in vivo strategies to minimise the inflammatory-mediated increase in 

circulating cytokines results in the attenuation of muscle atrophy and glucose 

dysregulation, through improved Akt/FOXO signalling and pyruvate dehydrogenase 

activity.  

A study on the inflammatory impacts of major abdominal surgery has illustrated 

operative trauma to result in increased muscle cytokine levels both local and remote 

to the site of surgery, with elevated cytokine levels persisting in plasma for 48-hours 

thereafter 188. This was characterised by increases in rectus abdominus (RA) as well 

as vastus lateralis (VL) mRNA levels for TNF-α (16.5-fold, 5.8-fold respectively) 

and IL-6 (1058-fold, 126-fold respectively). This was in addition to increased mRNA 



expression of FOXO1 (10.5-fold RA, 2.5-fold VL), MAFbx (11.5-fold RA, 6.4-fold 

VL) and PDK4 (7.8-fold RA, 4.1-fold VL). Overall, this illustrated that the 

inflammatory response local to the site of surgical trauma also manifested itself in a 

similar pattern within skeletal muscle remote to the site of surgery (albeit in a reduced 

capacity). With the metabolic changes observed similar to those previously described 

in animal models of inflammation, it seems plausible that these alterations are driven 

by surgically-induced inflammation. Of particular note are the drastic increases in IL-

6 at both the site of surgery (RA), as well as in peripheral skeletal muscle (VL).  

IL-6 has been otherwise shown to reduce myofiber size and induce metabolic 

dysregulation in skeletal muscle. It has been shown that introduction of IL-6 to 

rodents in vivo initiates MPB 148, with IL-6 augmented upregulation of CRP posing as 

an indirect mechanism of suppressing MPS signalling in human myotubes 189. In this 

study of human myotubes, suppressed MPS signalling occurred in conjunction with 

the activation of AMPK. This has been further illustrated within both in vitro and in 

vivo rodent models, as well as in C2C12 myotubes 190, which have shown increased 

activation of AMPK in association with increases in glycogen breakdown and fat 

oxidation following exposure to IL-6. These findings suggest another causative link 

between surgical-induced cytokine release and the observed decline in skeletal muscle 

glycogen content, increased PDK4 expression, as well as the observed activation of 

FOXO-mediated proteolysis as a potential consequence of AMPK-dependent 

signalling 188. IL-6 has been further implicated in the maintenance of corticosteroid 

responses during inflammation and infection, irrespective of CRH-ACTH-dependent 

signalling, suggesting this cytokine to be capable of direct interactions with the 

adrenal glands 191. Although research is currently tentative, these interactions may 

also be involved in the disparity between pulsatile-secretion of CRH-ACTH 

(especially during the early stages of traumatic insult) with TNF-α, IL-6 and AMPK 

all being known to interact and regulate hypothalamic processes 95,192,193. Cytokines 

have additionally been inferred as important activators of centrally-driven catabolic 

responses to chronic inflammatory conditions, such as cancer cachexia 192, further 

emphasising their importance as a potential link between inflammation and post-

surgical catabolism. 

Together, these observations strongly implicate the potent ramifications of increased 

cytokine release (in particular IL-6) and their role in mediating metabolic 

dysregulation following surgery. Although the study of major abdominal surgery by 

Varadhan et al. 188 effectively measured the presence of candidate inflammatory 

cytokines, their measures of skeletal muscle protein turnover were limited to the 

observed increases in proteolytic genes (FOXO1, MAFbx). Further research would 

benefit from assessing how elevated cytokine levels might modulate human skeletal 

muscle protein turnover in vivo in perioperative periods via the use of stable isotope 

measurements of MPS and MPB. Additionally, with the production of cytokines 

being largely attributed to various immune cell types, and neutrophils being by far the 

most abundant of these, measurements of neutrophil migration and activation may 

also be useful in ascertaining the pathogenesis of systemic inflammation following 

surgery. 

 



1.7 The Impacts of Surgery on Skeletal Muscle Catabolism 

Within skeletal muscle, one of the most significant alterations that occurs during the 

metabolic response to trauma is skeletal muscle catabolism and the accompaniment of 

muscle atrophy. As previously described, this occurs commonly in the ‘flow’ phase of 

the metabolic response following trauma, with increased availability of glucose and 

FFAs preceding this development. Muscle catabolism is a probable result of various 

inputs, of which the most culpable are: energy demand, disruption of muscle 

signalling pathways via metabolic dysregulation, inflammation and the requirements 

for accelerated protein turnover synonymous with muscle healing. It is likely the 

pathogenesis of skeletal muscle atrophy following surgical trauma during the ‘flow’ 

phase is also augmented by the consequent immobilisation of patients post-surgery, 

which is known to independently suppress muscle metabolism. As post-surgical loss 

of skeletal muscle mass is associated with complications and mortality 194,195, gaining 

knowledge of the mechanisms that drive these processes is important in improving 

clinical outcomes. 

Skeletal muscle mass is maintained via the balance between muscle protein 

breakdown (MPB) and muscle protein synthesis (MPS); with the balance between 

these processes referred to as muscle protein turnover. These processes are regulated 

via neuro-endocrine and local regulatory signalling pathways, which are responsive to 

energy status, mechanical load and physiological stress. MPB within skeletal muscle 

occurs through several degradative pathways; the autophagal-lysosomal, the 

ubiquitin-proteasome, as well as the calpain and caspase systems. The activity of 

these pathways is often integrated, with the ubiquitin-proteasome pathway generally 

being attributed to be the requisite degradative pathway within skeletal muscle. 

Skeletal muscle synthetic responses are primarily mediated through activation of 

mammalian target of rapamycin complex 1 (mTORC1), which through its 

downstream effectors enables increased MPS transcription and translation events. 

Measurements of protein turnover by mass spectrometry have traditionally utilised 

either whole body or tissue-specific tracer methodologies 196. These commonly 

involve administering amino acids containing the stable isotopes; 13C, 15N or 2H, 

across a constant ‘steady-state’ period or via a ‘flooding’ supraphysiological dose 197. 

Following equilibrium of the exogenous tracer with the intracellular amino acid (AA) 

pools (arterial, venous, intracellular/extracellular spaces); changes in either whole 

body or tissue-specific protein turnover can be determined 198. 

Perioperative measurements of protein turnover have typically utilised one of three 

methodological approaches. Arterio-venous (AV) tracer measurements, which reflect 

whole-body (or limb-specific) protein turnover, whereby tracer and tracee are 

measured in both arterial (or more commonly arterialised-venous) and venous blood. 

This allows for rates of disappearance to be determined from arterial blood, which 

provides a proxy for protein synthesis via uptake of stable isotopically-labelled amino 

acids into tissue, while dilution of the amino acid tracer within the venous pool by 

release of endogenous amino acids provides a proxy for protein breakdown. These 

processes are typically modelled as a two-pool stochastic system, which poses several 

constraints and has been suggested to in fact reflect amino acid transport opposed to 



protein turnover per se 199. Extension of this approach to a 3-pool stochastic model is 

possible by further sampling the intracellular amino acid pool of the specific 

metabolic tissue of interest, but this approach often requires use of more than one 

stable isotope to successfully model both protein synthesis and protein breakdown 

simultaneously, while also being more clinically invasive. Irrespective, arterio-venous 

approaches require intravenous administration of stable isotopically-labelled amino 

acids and maintenance of strict physiological conditions to ensure accurate 

measurements of protein turnover, and therefore are typically employed acutely in 

clinical settings across the span of several hours. 

End-product stable isotope techniques enable amino acid tracers to be employed 

either intravenously or orally and can be applied for temporal measurements of 

whole-body protein turnover. Initially developed for minimally-invasive measurement 

of protein kinetics in paediatric research, these techniques assess the incorporation of 

stable isotopes into the end products of protein metabolism present in the urine, 

specifically ammonia and urea 200. End-product methodology is founded on the 

principle that the flux or dilution of tracer in urinary end products is reflective of 

whole-body protein breakdown, with it then being possible to model rates of protein 

synthesis through the combined knowledge of breakdown rates and tracer dose 

administered, which again represents a two-pool stochastic model.  

These methods are in contrast with direct-incorporation measures, currently 

considered the ‘gold’ standard for the assessment of protein turnover within skeletal 

muscle 201. As tracer enters the intracellular pool and is incorporated into proteins 

within skeletal muscle, through serial tissue biopsies it is possible to directly 

determine the incorporation of tracer into skeletal muscle as proteins are synthesised 

or broken down across time. For measurements of protein synthesis this conforms to a 

precursor: product model, where isotopic enrichment of the precursor pool 

(aminoacyl-tRNA being the true precursor pool in skeletal muscle) must be factored 

into calculations of protein turnover.  

While advancements have been made in the application of direct-incorporation 

methods in recent years, their implementation within studies assessing the impacts of 

surgical procedures on skeletal muscle metabolism have lagged. With a lack of 

uniform tracer methodologies being applied across decades of surgical research, as 

well as the substantial technological advancements in mass spectrometry 

instrumentation across the last 10-15 years, a comprehensive characterisation of 

protein kinetics in the surgical patient has yet to be achieved 202. Furthermore, 

interpretation of randomised controlled trials assessing the impacts of perioperative 

care strategies aimed at ameliorating skeletal muscle wasting, as quantified by stable 

isotope mass spectrometry analysis of amino acid metabolism, are confounded by the 

variability in methods employed across the span of several decades 196. This 

necessitates a synthesis of previous studies and methodologies, as well as future 

studies employing up-to-date direct-incorporation stable isotope techniques, in order 

to characterise the underlying kinetics driving skeletal muscle atrophy following 

surgical insult. 
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ABSTRACT 

 

Background & aims: Elective surgery induces skeletal muscle wasting driven by an 

imbalance between muscle protein synthesis and breakdown. From examination of 

diverse stable isotope tracer techniques, the dynamic processes driving this imbalance 

are unclear. This meta-analysis aimed to elucidate the mechanistic driver(s) of 

postoperative protein catabolism through stable isotope assessment of protein 

turnover before and after abdominal surgery. 

Methods: Meta-analysis was performed of randomized controlled trials and cohort 

studies in patients undergoing elective abdominal surgery that contained 

measurements of whole-body or skeletal muscle protein turnover using stable isotope 

tracer methodologies pre- and postoperatively. Postoperative changes in protein 

synthesis and breakdown were assessed through subgroup analysis of tracer 

methodology and perioperative care. 

Results: Surgery elicited no overall change in protein synthesis [standardized mean 

difference (SMD) -0.47, 95% confidence interval (CI): -1.32, 0.39, p = 0.25]. 

However, subgroup analysis revealed significant suppressions via direct-incorporation 

methodology [SMD -1.53, 95%CI: -2.89, -0.17, p = 0.03] within skeletal muscle. 

Changes of this nature were not present among arterio-venous [SMD 0.61, 95%CI: -

1.48, 2.70, p = 0.58] or end-product [SMD -0.09, 95%CI: -0.81, 0.64, p = 0.82] 

whole-body measures. Surgery resulted in no overall change in protein breakdown 

[SMD 0.63, 95%CI: -0.06, 1.32, p = 0.07]. Yet, separation by tracer methodology 

illustrated significant increases in urinary end-products (urea/ammonia) [SMD 0.70, 

95%CI: 0.38, 1.02, p < 0.001] that were not present among arterio-venous measures 

[SMD 0.67, 95%CI: -1.05, 2.38, p = 0.45]. 

Conclusions: Elective abdominal surgery elicits suppressions in skeletal muscle 

protein synthesis that are not reflected on a whole-body level. Lack of uniform 

changes across whole-body tracer techniques are likely due to contribution from 

tissues other than skeletal muscle. 

 

Keywords: Meta-analysis; Muscle protein breakdown; Muscle protein synthesis; 

Postoperative; Stable isotope studies; Surgery. 

  



Abbreviations 

AV: Arterio-venous 

CI: Confidence interval 

DI: Direct-incorporation 

EP: End-product 

FSR: Fractional synthetic rate 

GC-IRMS: Gas chromatography-isotope ratio mass spectrometry 

GI: Gastrointestinal 

IQR: Interquartile range 

RCT: Randomized controlled trial 

SD: Standard deviation 

SMD: Standardized mean difference  



2.1 INTRODUCTION 

Skeletal muscle wasting is a key feature of the metabolic response to surgery, known 

to complicate postoperative recovery and impair clinical outcomes [1]. Although this 

phenomenon has been observed since early investigations into the metabolic 

perturbations that occur as a result of trauma and surgery [[2], [3], [4]], the underlying 

dynamic drivers of these metabolic changes within muscle are yet to be fully defined. 

Loss of skeletal muscle mass must occur through a chronic imbalance between muscle 

protein synthesis and muscle protein breakdown, with stable isotope techniques that 

calculate fractional synthetic rate currently considered a ‘gold standard’ for the 

measurement of muscle protein synthesis [5]. These techniques have been employed 

in the perioperative setting [[6], [7], [8]] and have shown distinct synthetic responses 

when compared with other stable isotope tracer techniques that quantify arterio-

venous protein kinetics within the blood [9,10] or tracer kinetics within urinary end-

products [11,12]. Comparisons of protein breakdown rates across tracer 

methodologies are limited by challenges in the assessment of skeletal muscle protein 

breakdown due to both underlying assumptions in kinetic modelling [13,14] and 

protocols ill-suited to clinical populations [14,15]. Hence, there is a paucity of 

information on fractional breakdown rates in the surgical patient, with stable isotope 

measures of protein breakdown predominantly reflecting whole-body kinetics. Taken 

together, the dynamic changes driving postoperative muscle wasting are unclear. 

Major abdominal surgery has been shown to elicit systemic metabolic dysregulation 

within skeletal muscle, including alterations in catabolic and inflammatory signalling 

pathways [16]. In addition, traditional surgical care for these patients has often 

prescribed prolonged periods of preoperative fasting [17], putting these patients at 

great risk of postoperative skeletal muscle wasting through energy deficits [18]. Even 

in light of enhanced recovery programs aimed at reducing the metabolic stress 

response to surgery [19], in part through recommendations on the avoidance of 

preoperative fasting and early resumption of oral nutrition postoperatively [1], a 

recent audit of UK hospitals has illustrated elective surgical procedures - constituted 

by approximately 70% upper GI, colorectal or general surgery - to routinely involve 

preoperative fasting of >12 h for food (73% incidence) and clear fluids (21% 

incidence) [20]. A synthesis of stable isotope studies quantifying protein kinetics in 

the patient undergoing abdominal surgery may elucidate the changes in protein 

turnover driving postoperative catabolism, while informing future care strategies 

aimed at minimizing skeletal muscle wasting to improve patient outcomes and 

recovery. 

The aims of this meta-analysis were to: 

• determine postoperative changes in protein kinetics driving skeletal muscle 

catabolism, through a synthesis of studies utilizing stable isotope research 

methodologies across a range of elective abdominal surgical procedures and clinical 

care. 

• assess the impact of perioperative care strategies such as nutritional support, 

neuraxial blockade and minimally invasive (laparoscopic) surgical approaches, and 



• evaluate the postoperative time-course of protein turnover responses. 

 

2.2 METHODS 

Search strategy 

Electronic searches were performed in PubMed, MEDLINE and Cochrane Library 

databases to identify suitable articles (i.e. evaluating either whole-body or skeletal 

muscle protein turnover using stable isotope tracer methodology in adult patients 

undergoing elective abdominal surgery) published between 01 January 1990 and 08 

November 2020. This date restriction was imposed due to the validation of several 

clinically suitable stable isotope techniques for protein metabolism occurring 

throughout the 1980s [[21], [22], [23], [24]]; studies which contributed to increased 

interest into the effects of surgical trauma on protein turnover during the late 1980s 

[25,26] and to the development of commercially available gas chromatography-

isotope ratio mass spectrometers (GC-IRMS) capable of capturing increased signal 

sensitivity within complex biological matrices [27]. The search terms [“surgery”] 

AND [“muscle” OR “protein”] AND [“stable isotope” OR “tracer” OR “turnover”] 

were used to search each database by title and abstract. The bibliographies of all 

studies which fulfilled the inclusion criteria were manually reviewed to aid in locating 

additional eligible articles. There were no language restrictions in place during article 

selection. This meta-analysis was conducted in accordance with the guidance of the 

PRISMA statement [28] and conforms to AMSTAR-2 guidelines [29]. 

 

Study selection 

Articles were screened for suitability by title and abstract on two separate occasions 

by one reviewer (MJ) and verified by a senior reviewer (MSB). Articles were deemed 

eligible if they described at least one adult patient cohort undergoing elective 

abdominal surgery, with pre- and postoperative measures of whole-body or skeletal 

muscle protein turnover through stable isotope tracer methodologies. Postoperative 

measures were included if they were performed within two weeks of surgery. Patients 

receiving a variety of nutritional and analgesic regimens were included due to the 

inherent heterogeneity of surgical care across different hospital settings and 

procedures. However, any patient cohort that was specified by study authors to be 

undergoing non-conventional perioperative care or receiving non-standard drug 

administration or hormone therapy was excluded. Pre- and postoperative measures of 

protein turnover had to be performed during the same nutritional state for each patient 

group, specifically; pre- and postoperative measures had to be both in the 

postabsorptive or postprandial state to enable accurate comparisons of protein 

turnover within patients, due to the dynamic regulation of muscle protein turnover 

with feeding [30]. Patients undergoing emergency, transplant or reconstructive 

procedures or suffering from burns, preoperative trauma, metabolic disorders, 

prolonged anti-inflammatory or antibiotic medication, organ dysfunction or failure 

were excluded. Abdominal surgery was defined as general, urological, or gynecologic, 



with vascular procedures omitted. Only studies on patients undergoing abdominal 

surgery were included in this analysis to improve homogeneity in postoperative 

protein turnover responses, as there is evidence to suggest that the catabolic response 

to surgery is relative to the magnitude of trauma [11,12,31]. Further, ischemia and 

reperfusion effects have been shown to impact protein turnover rates within an animal 

model [32], with great variation in postoperative protein turnover responses in 

humans previously being demonstrated within a heterogenous abdominal surgical 

cohort containing vascular procedures [33]. Patients were deemed adults if they were 

18 years or older, with all pediatric studies being ineligible. Records containing 

duplication of study results were omitted, with only the primary publication taken 

forward for inclusion. Duplication of articles eligible for screening were assessed by 

title using Python programming language (version 3.6.5), with a subsequent manual 

check to ensure the full removal of duplicate articles. Duplication of study results was 

checked manually during full-text screening of eligible articles. For any article where 

fulfilment of the inclusion criteria was unclear, inclusion was discussed by two 

reviewers (MJ and MSB) and a final decision was made. 

 

Data extraction 

Data were extracted by one author (MJ) on two separate occasions and cross-

compared to ensure accurate inclusion of article information. These data were then 

reviewed by a second author (MSB). Where studies contained more than one patient 

cohort, these cohorts were combined to prevent unit-of-analysis-error in accordance 

with recommendations from the Cochrane Handbook for Systematic Reviews of 

Interventions [34]. Data were additionally collected on patient demographics, surgical 

preparation and underlying conditions necessitating surgical intervention. Where 

studies did not contain the necessary information, study authors were contacted for 

retrieval. Where studies did not report the mean and standard deviation of protein 

turnover measures; median and interquartile ranges were converted to means and 

standard deviations according to the technique described by Hozo et al. [35]. This 

technique takes the median as the best estimate of the mean and calculates the SD as 

follows: 
 

 

 

Where relevant, risk of bias for randomized controlled trials (RCTs) was assessed 

using the Cochrane Collaboration Tool [36]. Publication bias was assessed via funnel 

plots and tested for via Pustejovsky's and Rodgers' [37] modified test of linear 

regression for standardized mean difference effect sizes. 

 



Outcome measures 

The primary outcome was to detect changes before and after surgery in whole-body or 

skeletal muscle protein turnover measured via stable isotope tracer methodology. 

Secondary outcomes aimed to investigate the influence of tracer methodology, 

severity of trauma (laparoscopic vs. open procedures), nutritional support and 

anaesthetic regimen on the primary outcome measures. Meta-analysis of these 

outcomes was achieved through subgroup analyses. The population, intervention, 

comparator group and outcome (PICO) are summarized in Supplementary Table 1. 

 

Statistical analyses 

Data were prepared in Excel spreadsheet format and imported into R programming 

language (version 4.1.0, The R Foundation for Statistical Computing, http://www.R-

project.org). The ‘meta’ package was used for data analysis. Continuous variables are 

quoted as standardized mean difference (SMD) with 95% CI and were analysed using 

a random-effects, inverse-variance model. The DerSimonian-Laird estimator [38] was 

used to calculate heterogeneity variance, τ2, with Knapp-Hartung adjustments [39] 

applied in the calculation of confidence intervals around pooled study effects. Forest 

plots were generated, with statistical significance determined as p < 0.05 with 2-tailed 

testing. Study heterogeneity was assessed by I2 statistic [40], with <25% representing 

low heterogeneity, 25–50% representing moderate heterogeneity and >50% 

representing high heterogeneity. Meta-regression was performed to investigate time as 

a continuous variable across postoperative sampling timepoints, to determine whether 

this impacted the assessment of postoperative protein turnover. 

 

Protocol registration 

The protocol for this meta-analysis was registered on the Prospero database 

(www.crd.york.ac.uk/prospero), registration number: CRD42021178987. 

 

2.3 RESULTS 

From the 714 studies identified through electronic database searches, 14 studies [[6], 

[7], [8], [9],11,12,31,[41], [42], [43], [44], [45], [46], [47]] reporting on 190 patients, 

were included (Fig. 1). Of these, twelve [[6], [7], [8], [9],11,12,[41], [42], [43], [44], 

[45], [46]] reported measures of protein synthesis (154 patients) and nine 

[9,11,12,31,[41], [42], [43],46,47] reported measures of protein breakdown (139 

patients). From the studies reporting more than one postoperative timepoint 

[9,11,12,31,42,43], the timepoint closest to surgery was used for analyses, and where 

differential feeding was involved, its corresponding preoperative baseline value. The 

full-text from one eligible study [45] was unable to be sourced and attempts to contact 

the corresponding authors were unsuccessful. However, the abstract contained the 

necessary information required for inclusion and as such the decision was made 

between reviewers (MJ and MSB) to include data from this article in the meta-



analysis. There were six studies [10,[48], [49], [50], [51], [52]] that fulfilled inclusion 

criteria but did not contain the necessary information needed for synthesis in the 

meta-analysis, with the authors being unable to provide the necessary information 

upon request. These studies were subsequently omitted from the analyses 

(Supplementary Table 2). 

 

 

Figure 1: PRISMA flow-diagram detailing article identification for meta-analysis. 

 

Risk of bias 

Of the 14 studies included in this meta-analysis, eight were RCTs (predominantly 

investigating parameters related to perioperative catabolism) [6,7,[41], [42], [43], 

[44], [45],47] and six were cohort studies [8,9,11,12,31,46]. However, none of the 

RCTs involved randomization of the respective variables of interest within the 

subgroup analyses performed, with randomized cohorts within these studies thus 

combined prior to calculation of pooled effect size across studies. Therefore, RCT and 

cohort studies were not separated throughout this meta-analysis. Additional 

information on RCT risk of bias can be found in Fig. 2. 

 



 

Figure 2: Risk of bias of the included randomized controlled trials. 

 

Publication bias was analysed via funnel plot and Pustejovky's and Rodger's modified 

test of linear regression [37], for both measures of protein synthesis and protein 

breakdown across studies (Fig. 3a and b). Neither tests of publication bias for protein 

synthesis nor protein breakdown were deemed statistically significant (p = 0.97 and p 

= 0.57 respectively), although interpretation of these results was limited by the low 

study numbers included. Several studies in each funnel plot were in range of statistical 

significance, however due to the high heterogeneity expected across studies due to 

variation in perioperative care and tracer methodology, all studies were subsequently 

taken forward for further analyses. 

 



 

Figure 3: Contour-enhanced funnel plots of protein synthesis (A) and protein breakdown (B) study 

effects, with significance represented by contour shading at thresholds of p < 0.1, p < 0.05 and p < 

0.01. 

 

 

 



Demographics 

Indication for surgery was predominantly colorectal cancer [6,11,12,31,41,42] with 

the remaining indications a mixture of malignant and benign pathologies [[7], [8], 

[9],[43], [44], [45], [46], [47]]. Two studies [7,45] included patients having open 

surgery, with the remaining studies not providing this information 

[6,8,9,11,12,31,[41], [42], [43], [44],46,47]. A mix of anaesthetic protocols were 

employed, with five studies [6,41,43,44,47] selectively providing epidural block as 

part of the anaesthetic regimen (either randomized to patients as part of the study 

design or based on patient need). Five studies did not provide information on 

anaesthetic protocol [9,11,12,31,46], with anaesthetic protocol being unknown for one 

study [45] due to its inclusion based on abstract only. There was varied perioperative 

nutrition provided to patients across the study period (Table 1), with eight studies [[7], 

[8], [9],41,[43], [44], [45], [46]] including patient cohorts that underwent a 

preoperative fast (of approximately 12 h or more overnight) or bowel preparation. 

Tracer methodology utilized within studies came under three categories; those that 

assessed the direct incorporation of stable isotopes into skeletal muscle that measure 

fractional synthetic rate (FSR), those that assessed whole-body protein kinetics in the 

blood via arterio-venous (AV) measures and those that assessed the whole-body 

kinetics of stable isotope labelling in excreted total or specific urinary substrates (EP). 

There were five studies that measured protein synthesis via FSR [[6], [7], [8],44,45], 

four [9,[41], [42], [43]] via AV, and three [11,12,46] via EP. Studies that utilized 

direct-incorporation methodology assessed muscle FSR distant from the site of trauma 

(quadriceps). Five studies [9,[41], [42], [43],47] measured protein breakdown via AV, 

and four [11,12,31,46] via EP. Postoperative timepoints for measures of protein 

turnover were predominantly between 24 and 72 h, with only one study's measures 

[42] being performed later than this range at 144 h. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1: Patient demographics of studies included 

 

Article Eligible Patient 

Cohort 

Number 

of 

Patients 

(Total) 

Surgical Procedure Anaesthesia and 

Analgesia 

Perioperative Nutrition Stable 

Isotope 

Tracer 

Sampling 

Timepoints 

Included 

(Pre-: Post-

operative) 

Tashiro et al. 

1991 [11] 

Gastric/colorectal 

surgery 

11 Total gastrectomy: 7, 

hemicolectomy: 3, low 

anterior resection: 1 

Unknown TPN exclusively, 1.5 g 

protein/kg/day and 35 

kcal/kg/day 

[15N] 

Glycine; EP 

Pre: Not 

specified 

Post: 72h 

Lattermann 

et al. 2002 

[41] 

General anaesthesia 

with epidural 

block/General 

anaesthesia only 

8/8 (16) Hemicolectomy/colectomy: 

2/5, sigmoid resection: 3/1, 

anterior resection: 3/1, 

Ileocolic resection: 0/1 

General anaesthesia 

with patients 

randomised to either 

epidural or IV 

morphine 

postoperatively 

~36h preoperative fast L-[1-13C] 

Leucine; AV 

Pre: 0h 

Post: 2h 

Carli et al. 

1997 [42] 

Parenteral nutrition 

control group 

6 All surgery for non-metastatic 

adenocarcinoma of the 

rectosigmoid colon 

General anaesthesia 

with postoperative 

subcutaneous 

infusion of 

papaveretum (3-5 

mg/h) for 3-4 days 

0.1 g nitrogen/kg/day and 20 

kcal/kg/day. Nonprotein 

calories were 60% lipid and 

40% carbohydrate. Oral 

intake was started 6 days 

before surgery under dietetic 

supervision, and was then 

changed to parenteral 

nutrition at 500mL Vamin 14, 

1L Intralipid 10% and 1L 

dextrose 10% 2 days before 

surgery and continued for 6 

days afterward. 

L-[1-13C] 

Leucine; AV 

Pre: 0h 

Post: 144h 

Carli and 

Halliday 

1997 [6] 

General anaesthesia 

with epidural 

block/general 

anaesthesia only 

6/6 (12) Paramedian incision for non-

metastatic adenocarcinoma of 

the rectosigmoid colon 

General anaesthesia 

with patients 

randomised to 

either; epidural 

maintained for 48h 

postoperatively 

0.1 g nitrogen/kg/day and 20 

kcal/kg/day. Nonprotein 

calories were 60% fat and 

40% carbohydrate. Oral 

intake commenced 6 days 

before surgery under dietic 

L-[1-13C] 

Leucine; FSR 

Pre: 0h 

Post: 48h 



supplemented with 

papaveretum (8–10 

mg) given i.m. 

every 8h or 

continuous 

subcutaneous 

infusion of 

papaveretum set at 

3–8 mg/h 

supervision and changed to 

parenteral nutrition (500ml 

Vamin 14, 1L Intralipid 10%, 

1L dextrose 10%) 2 days 

before surgery. Discontinued 

at midnight day before 

surgery, recommenced at 4h 

postoperatively and 

maintained for 2 days after 

surgery. 

Carli et al. 

2011 [43] 

Oral Glucose 

Nutrition/Oral 

Whey Nutrition 

6/7 (13) Hemicolectomy/colectomy: 

4/4, Sigmoid resection: 0/2, 

Anterior resection: 2/1 

General anaesthesia 

with epidural or 

intraoperative IV 

analgesia; 

postoperative 

epidural for 2 days 

or PCA with opioids 

Preoperative fast of ~24-36h. 

Postoperatively, patients were 

allowed to drink clear fluids 

unless contraindicated. Clear 

fluids consisted of a small 

portion of apple juice 

(approximately 110 kcal) and 

Jell-O® (Kraft Foods, 

Northfield, Illinois) 

(approximately 70 kcal).    

L-[1-13C] 

Leucine; AV 

Pre: -168h 

Post: 48h 

Tashiro et al. 

1996 [12] 

Gastric or colorectal 

surgery 

22 Total gastrectomy, 

hemicolectomy or lower 

anterior resection, and lymph 

node dissection. 

Unknown Parenteral nutrition providing 

1.5 g amino acid/kg/day and 

energy intake of 35 

kcal/kg/day. No fat was 

provided as an energy source. 

PN was started 7 days prior to 

the operation and maintained 

across the study duration. 

Doses of protein and energy 

were maintained strictly the 

same throughout the study. 

[15N] 

Glycine; EP 

Pre: Not 

specified 

Post: 72h 

Hammarqvist 

et al. 2001 

[44] 

Glutamine PN group 8 Colon resection: 4, rectum 

resection: 3, retroperitoneal 

resection: 1 

General anaesthesia. 

3 patients were also 

provided with 

epidural blockade, 

Postoperative parenteral 

nutrition containing 0.15 g 

nitrogen/kg/day including an 

amino acid solution, 

L-[2H5] 

Phenylalanine; 

FSR 

Pre: 0h 

Post: 72h 



although this was 

not provided 

continuously 

throughout the study 

period. 

supplemented with 0.28 g 

glutamine/kg/day. Energy 

provided as glucose and fat, 

calculated as 1.2-fold of 

caloric need as determined by 

Harris-Benedict formula. 

75% of parenteral nutrition 

dose administered in first day 

after operation (25% across 

following 2 days). 

Essén et al. 

1993 [45] 

Saline/Parenteral 

nutrition 

8/9 (17) Cholecystectomy Unable to source 

full-text article. 

Saline or parenteral nutrition 

for 3 days postoperatively. 

L-[1-13C] 

Leucine; FSR 

Pre: 

Unknown 

Post: 72h 

Tjäder et al. 

1996 [7] 

Saline 7 Cholecystectomy - subcostal 

incision 

General anaesthesia, 

with diazepam (5 

mg) and 

pancuronium (0.1 

mg/kg) for 

neuromuscular 

block, with 

postoperative IV 

injections of 

pethidine (synthetic 

opioid). 

Saline perioperatively 3 

ml/kg/h, followed by 35 

ml/kg/day postoperatively. 

L-[2H5] 

Phenylalanine; 

FSR 

Pre: 0h 

Post: 24h 

López-Hellín 

et al. 2004 

[46] 

Fasted/Parenteral 

nutrition 

21/8 

(29) 

Left hemicolectomy: 9; right 

hemicolectomy: 5; front 

rectum resection: 4; Miles' 

resection: 1; gastrectomy: 1; 

sigmoidectomy: 1 (21). 

Left hemicolectomy: 3; Miles' 

resection: 2; front rectum 

resection: 1; right 

hemicolectomy: 1; 

gastrectomy: 1 (8). 

Unknown Preoperative hypocaloric 

parenteral nutrition: CHO (28 

kJ/kg/day), Amino acids (1 

g/kg/day) - followed by 

either: preoperative fast and 

postoperative parenteral 

nutrition of glucose (28 

kJ/kg/day) OR TPN (56.1 

kJ/kg/day CHO, 56.1 

kJ/kg/day Fat, 1.5 g/kg/day 

Amino acids) administered 

[15N] 

Glycine; EP 

Pre: -72h 

Post: 24h 



pre- and post-operatively for 

24h.  

Essén et al. 

1992 [8] 

Cholecystectomy 

patient group 

7 Cholecystectomy - subcostal 

incision 

General anaesthesia, 

with diazepam (5 

mg) and 

pancuronium-

bromide (0.1 mg/kg) 

for neuromuscular 

block. 

Acute fasted study. L-[1-13C] 

Leucine; FSR 

Pre: 0h 

Post: 

Immediately 

after surgery 

Lattermann 

et al. 2001 

[47] 

General 

anaesthesia/General 

anaesthesia with 

epidural block 

7/7 (14) Elective cystoprostatectomy - 

Ileal neobladder: 6/6, Ileal 

conduit: 1/1 

General 

anaesthesia/General 

anaesthesia with 

epidural block. 

Epidural terminated 

immediately after 

surgery – both 

patient cohorts 

received IV 

Piritramide 

postoperatively. 

Parenteral nutrition from 24h 

postoperatively until 10h 

before postoperative 

measurement. 2 g/kg/day 

xylitol and amino acids, 

equivalent to 0.15 g of 

N/kg/day. 

[15N2] Urea; 

AV 

Pre: -72h 

Post: 72h 

Tashiro et al. 

1996b [31] 

Gastric or colorectal 

surgery 

22 Total gastrectomy: 11, 

Hemicolectomy: 4, Low 

anterior resection: 6, Miles' 

operation: 1 

Unknown Parenteral nutrition providing 

1.5 g of protein and 40 

kcal/kg/day, commenced at 

least 5 days prior to surgery 

and maintained throughout 

study period. 

[15N] 

Glycine; EP 

Pre: Not 

specified 

Post: 72h 

Carli et al. 

1990 [9] 

Total abdominal 

hysterectomy 

6 Menorrhagia Unknown 0.1 g of nitrogen/kg body 

weight and 1200-1400 

calories  

(5021-5858 kJ)/day was 

commenced 7 days before 

surgery by oral intake. The 

same amount of nitrogen and 

calories was administered 

intravenously after surgery 

L-[1-13C] 

Leucine: AV 

Pre: -48h 

Post: 48h 



starting 4 h from the end of 

surgery when the 

cardiorespiratory conditions  

were stable. The parenteral 

nutritional support, based on  

a mixture of glucose, lipid 

and amino acids 

(KabiVitrum), was then 

continued for 4 days after 

surgery until patients were 

able to tolerate the pre-

operative oral diet again. 

 

FSR: fractional synthetic rate; AV: arterio-venous; EP: end-product 

 

 

 

 

 

 

 

 

 

 



Tracer methodology 

Protein synthesis  

Subgroup analysis of relative changes in protein synthesis (Fig. 4a) pre-post operation 

illustrated significant suppressions through direct-incorporation methodology (FSR, 

SMD -1.53, 95%CI: −2.89 to −0.17, p = 0.03). No significant change was observed in 

whole-body arterio-venous measures (SMD 0.61, 95%CI: −1.48 to 2.70, p = 0.58) or 

whole-body end-product measures (SMD -0.09, 95%CI: −0.81 to 0.64, p = 0.82). 

Overall protein synthesis showed a slight trend for suppression, but this did not reach 

statistical significance (SMD -0.47, 95%CI: −1.32 to 0.39, p = 0.25). 

 

 



Figure 4: Forest plot illustrating relative changes in protein synthesis (A) and protein breakdown (B), 

before and after surgery, with studies separated into subgroups by stable isotope tracer methodology. A 

random-effects, inverse-variance model was used to conduct the meta-analysis. 

 

Protein breakdown  

Subgroup analysis of relative changes in protein breakdown (Fig. 4b) before and after 

surgery demonstrated significant increases via whole-body end-product methodology 

(SMD 0.70, 95%CI: 0.38 to 1.02, p < 0.001). No significant effect was observed via 

whole-body arterio-venous measures (SMD 0.67, 95%CI: −1.05 to 2.38, p = 0.45). 

Overall protein breakdown showed a trend for increase, but this did not reach 

significance (SMD 0.63, 95%CI: −0.06 to 1.32, p = 0.07). 

 

Preoperative fasting 

Nutritional support is a key parameter in the metabolic management of the surgical 

patient, with recent evidence reinforcing the negative consequences of extended 

periods of caloric and protein deficits in critically-ill surgical patients [53]. Thus, a 

key component of many current recommendations on clinical nutrition for the surgical 

patient advocate the avoidance of prolonged periods of preoperative fasting among 

elective procedures, particularly within gastrointestinal surgery where bowel 

preparation has traditionally been common practice [1,19]. 

 

Protein synthesis  

In six studies [[7], [8], [9],41,43,44] measuring protein synthesis within this meta-

analysis, patients underwent a preoperative fast as part of conventional perioperative 

care or bowel preparation. In four studies [6,11,12,42], patients did not undergo a 

preoperative fast (and were receiving consistent nutritional support prior to 

operation). One study [46] had to be excluded from subgroup analysis of preoperative 

fasting due to preoperative study measures of protein synthesis being pooled across 

two patient cohorts; one of which underwent preoperative fasting and the other 

avoided preoperative fasting. The study author was unable to provide the necessary 

information to enable inclusion of these cohorts. Incidence of preoperative fast could 

not be sourced from a further study [45], due to its inclusion on abstract only, and was 

consequently excluded from the subgroup analysis. Preoperative fast resulted in no 

significant changes in protein synthesis (SMD -0.58, 95%CI: −2.07, 0.91, p = 0.45, 

Fig. 5a), although there was high heterogeneity present among studies (I2: 85%, p < 

0.01). Avoidance of preoperative fasting also demonstrated no significant changes 

(SMD 0.07, 95%CI: −1.15, 1.29, p = 0.92). 

 



 

Figure 5: Forest plot illustrating relative changes in protein synthesis (A) and protein breakdown (B), 

before and after surgery, with studies separated by whether patients underwent or avoided preoperative 

fast. A random-effects, inverse-variance model was used to conduct the meta-analysis. 

 

Protein breakdown  

In four studies [9,41,43,47] measuring protein breakdown patients underwent a 

preoperative fast, with four studies [11,12,31,42] containing patient cohorts that 

avoided preoperative fasting or bowel preparation. As before, one study [46] was 

excluded due to pooled preoperative baseline measures between fasted and non-fasted 

patients. Avoidance of preoperative fasting resulted in significant increases in protein 

breakdown (SMD 0.95, 95%CI: 0.04 to 1.86; p = 0.04, Fig. 5b), with fasted patients 

demonstrating no significant change (SMD 0.29, 95%CI: −1.47 to 2.05, p = 0.76). 

 

 



Preoperative nutritional management 

To further examine the role of preoperative nutrition in the metabolic management of 

the surgical patient, we examined changes in protein turnover following surgery in 

patients that received controlled nutritional support opposed to those that didn't, as 

well as for those articles where this information was unknown. 

 

Protein synthesis 

Five studies [6,9,12,42,46] provided early nutritional management in the form of 

controlled dietary intake (Fig. 6a) commenced 3–7 days before surgery. Three studies 

[7,8,41] did not provide early nutritional management to patients, with this 

information being unknown for the remaining four studies [11,[43], [44], [45]]. Lack 

of early nutritional management resulted in significant declines in protein synthesis 

rates postoperatively (SMD -1.49, 95%CI: −2.40, −0.59, p = 0.001). Postoperative 

declines in protein synthesis were not present among studies where patients received 

early nutritional management (SMD 0.29, 95%CI: −0.53, 1.11, p = 0.50). For studies 

where preoperative nutritional support information was not available, there was a non-

significant effect (SMD -0.85, 95%CI: −3.52, 1.82, p = 0.54) and high heterogeneity 

(I2 = 92%). 

 



 

Figure 6: Forest plot illustrating relative changes in protein synthesis (A) and protein breakdown (B), 

before and after surgery, with studies separated by whether patients received early nutritional 

management. A random-effects, inverse-variance model was used to conduct the meta-analysis. 

 

Protein breakdown 

Five studies [9,12,31,42,46] provided early nutritional management through 

controlled dietary intake (Fig. 6b) commenced 3–7 days before surgery. Only one 

study [41] could be confirmed to have not provided preoperative nutritional 

management, with information on preoperative nutrition unknown for three studies 



[11,43,47]. Early nutritional management resulted in elevations in (whole-body) 

protein breakdown (SMD 0.85, 95%CI: 0.19, 1.52, p = 0.01). The study without 

preoperative nutritional management [41] demonstrated significant declines in 

(whole-body) protein breakdown (SMD -1.22, 95%CI: −1.98, −0.45, p = 0.002). 

Studies where information on preoperative nutritional support was unavailable 

demonstrated a non-significant effect (SMD 0.71, 95%CI: −0.42, 1.83, p = 0.22). 

Further subgroup analyses of nutritional support parameters, such as: nutrient 

composition, preoperative carbohydrate loading and early postoperative resumption of 

oral feeding, were not possible with the low study numbers contained within this 

meta-analysis. 

 

Time 

Meta-regression of postoperative timepoint sampling (representing the proximity of 

protein turnover measures to surgery) illustrated a trend for early suppressions in 

protein metabolism with gradual restoration over time towards baseline values. 

Protein synthesis demonstrated a non-significant trend (p = 0.21, Fig. 7a), while 

protein breakdown demonstrated a significant trend (p = 0.01, Fig. 7b). However, 

interpretation of these findings is limited by the small study numbers and with respect 

to protein breakdown measures, potentially impacted by study homogeneity stemming 

from three data sets by the same author [11,12,45] being grouped closely together 

within the meta-regression analysis (Fig. 7b). 

 



 

Figure 7: Bubble plot illustrating meta-regression analysis of postoperative changes in protein 

synthesis (A) and protein breakdown (B), relative to the timepoint (in hours) of postoperative sampling. 

 

Anaesthesia, epidural blockade and severity of surgical trauma 

There was insufficient reporting of open vs. laparoscopic procedures to enable 

comparisons between the extent of surgical trauma and measures of protein 

synthesis/breakdown, with specification of these parameters contained within only 

two studies [7,45]. Anesthetic regimens differed but there were insufficient study 

numbers to group by minor modalities (specific drug regimens to induce general 

anesthesia, Table 1). Only three studies [6,41,47] included a patient cohort where all 

participants received epidural blockade as part of their anesthetic treatment, with a 

further two studies [43,44] containing patient cohorts receiving mixed anesthetic 

treatment with and without epidural administration and five studies [9,11,12,31,46] 

not providing this information. Therefore, no subgroup analyses were performed on 

these parameters within this meta-analysis. 

 



2.4 Discussion 

What our study found 

Assessment via stable isotope techniques demonstrated trends for reductions in 

protein synthesis and elevations in protein breakdown to occur following abdominal 

surgery, within the context of varied perioperative care. These were characterized by 

significant suppressions in skeletal muscle protein synthesis that were not reflected 

within whole-body measures and significant increases in whole-body end-product but 

not arterio-venous protein breakdown. 

The findings of this meta-analysis suggest that suppressions in postoperative protein 

synthesis were not contributed by preoperative fasting but are more importantly 

regulated by whether sufficient caloric and protein intake of patients was met in the 

days leading up to their operation. Avoidance of preoperative fasting resulted in 

elevated protein breakdown that was not reflected in patients that underwent 

preoperative fast, with early nutritional management also resulting in elevated protein 

breakdown postoperatively and lack of early preoperative diet management resulting 

in suppressed protein breakdown. Care must be taken in the interpretation of these 

findings, as only whole-body protein breakdown was measured and based on the 

findings of this meta-analysis, these measures likely do not accurately reflect the 

protein kinetics of skeletal muscle. However, it overall appears that sufficient 

preoperative caloric and protein intake facilitates increased rates of protein turnover 

postoperatively. Meta-regression provides limited support for postoperative 

suppressions in protein turnover to be most acute during the immediate postoperative 

period, and to thereafter increase with time. This may suggest early recommencement 

of nutritional support to be vital in the immediate postoperative period, although 

examination of this effect was unfortunately not possible within this meta-analysis. 

 

What is available in the literature 

Variation in stable isotope assessment of protein kinetics through techniques 

measuring distinct metabolic pools has previously been observed in surgical patients 

undergoing coronary artery bypass grafts [54], who demonstrated significant 

reductions in muscle protein synthesis (-∼36%) but notable increases in plasma 

fibrinogen (+∼177%) and albumin (+∼45%) synthesis postoperatively. Discrepancy 

between these metabolic pools has been suggested to be a result of the different 

metabolic demands these pools are subject to following surgical trauma [55], wherein 

amino acids are mobilized from skeletal muscle to necessitate energy and healing 

demands and liver protein metabolism is accelerated to promote the production of 

acute phase reactants. Increases in whole-body protein turnover associated with 

healing-driven hypermetabolism, would be in line with traditional observations 

correlating early wound healing and elevated urinary nitrogen excretion rates among 

patients in receipt of good preoperative nutrition [4], where administration of 

parenteral nutrition during the postoperative period appears to augment 

hypermetabolism compared to hypocaloric glucose [56], but simultaneously results in 

improved nitrogen balance [57]. Our findings support these concepts. There is a clear 



disparity between the postoperative synthetic responses of muscle and whole-body, 

with muscle alone demonstrating significant reductions postoperatively. Preoperative 

nutrition aimed at meeting the caloric and protein requirements of patients attenuates 

reductions in protein synthesis and elevates protein breakdown, with lack of unified 

magnitude in these responses likely reflective of the inclusion of direct-incorporation 

methodology within studies measuring protein synthesis. This reaffirms the 

importance of applying stable isotope techniques specific to the metabolic pool of 

interest to accurately study protein metabolism. 

 

Strengths and limitations 

Only studies utilizing stable isotope tracer methodologies were included in this meta-

analysis, with these believed to provide the most comprehensive insight into protein 

kinetics within the surgical patient [58]. This meta-analysis is strengthened by a pre-

test post-test design that enables the accurate determination of relative changes in 

protein turnover for each patient cohort through measurement of protein turnover in a 

controlled nutritional state before and after surgery (either postabsorptive or 

postprandial stable isotope measures). Many previous insights into perioperative 

catabolism and the investigation of care strategies aimed at modulating the catabolic 

response to surgery (as measured through stable isotope techniques) have utilized 

RCT designs centred on postoperative comparisons between cohorts, with many of 

these studies measuring postabsorptive protein turnover at baseline but postprandial 

protein turnover postoperatively [59, 60, 61, 62, 63, 64, 65] (Supplementary Table 2). 

Although this design is suitable in discerning the benefits of care strategies aimed at 

ameliorating catabolism through between-patient comparisons, they are limited in 

their ability to discern the mechanistic drivers of these changes during the surgical 

care period within patients. 

However, this exclusion resulted in low study numbers that was unfortunately further 

contributed by the omission of several eligible articles [10, 48, 49, 50, 51] 

(Supplementary Table 2) that did not present the continuous data necessary for 

inclusion in this meta-analysis. Additionally, data from several included papers had to 

have their means and standard deviations estimated from median and interquartile 

range [44,45,47]; although this was performed using an established method [35] that 

has been employed in numerous published meta-analyses. The use of only continuous 

data to calculate pooled effect sizes does, however, aid in further strengthening the 

validity of results in the context of a highly heterogenous data set. With reference to 

the I2 statistic; for both protein synthesis and protein breakdown, only whole-body 

[EP] measures under tracer subgrouping had an I2 statistic <25%, with the majority of 

subgroups having an I2 statistic >50%. With low study numbers, it is difficult to 

discern whether this reduced heterogeneity may be due to the necessary control of 

nutritional intake to enable accurate stable isotope measures [66] or whether it is 

influenced by many of these studies being performed by the same research group 

potentially utilizing standardized procedures [11,12,45]. Overall, heterogeneity for 

protein synthesis was 85% and 75% for protein breakdown, potentially lower due to 

the lack of direct-incorporation measures. This high variation must be taken into 



consideration when evaluating the findings of this meta-analysis, but with such low 

study numbers this observation is not unexpected, even within a strictly defined meta-

analysis design. 

Subgroup analyses investigating the impacts of preoperative nutrition on 

postoperative changes in protein synthesis and breakdown demonstrated preoperative 

fasting to result in high heterogeneity among study results (I2 = 85% for both protein 

synthesis and breakdown). Less heterogeneity was present among studies where 

preoperative fasting was avoided (I2 = 56% for protein synthesis, I2 = 33% for protein 

breakdown). For studies measuring protein synthesis, early nutritional management 

presented moderate heterogeneity (I2 = 49%) and lack of early nutritional 

management presented low heterogeneity (I2 = 0%), with unknown nutritional 

management demonstrating expectantly high heterogeneity (I2 = 92%). Interpretation 

of heterogeneity regarding nutritional management for studies measuring protein 

breakdown is limited due to the presence of only one study that did not receive early 

nutritional management. Overall, heterogeneity was low to moderate for these results. 

Following the high heterogeneity present among tracer methodology subgroup 

analyses, mixed tracer subgrouping by nutritional parameters resulted in relatively 

low heterogeneity. These observations may support preoperative nutrition to exert 

effects on the postoperative response of protein turnover, likely through the 

administration of regimented dietary intake providing adequate caloric and protein 

intake among patients for their metabolic demands. Unfortunately, varied pre- and 

postoperative nutritional regimens and varied postoperative nutritional administration 

prevented examination of these parameters with the low study numbers contained 

within this meta-analysis. 

 

2.5 Conclusions 

Elective abdominal surgery elicits suppressions in skeletal muscle protein synthesis 

remote to the site of trauma that are not reflected on a whole-body level. Lack of 

uniform changes across whole-body tracer techniques are likely due to contribution 

from tissues other than skeletal muscle and complicate the discernment of mechanistic 

processes driving postoperative skeletal muscle wasting. Future work should focus on 

tissue-specific stable isotope approaches to comprehensively characterize the protein 

turnover responses of skeletal muscle, within the context of enhanced recovery after 

surgery care strategies. 

 

 

 

 

 

 



2.6 Supplementary Materials 

 

Supplementary Table 1: PICO statement 

 

Patients Elective abdominal surgical patients 

Intervention Abdominal operation 

Comparison Pre-postoperative comparison within patient cohorts 

Outcomes Protein turnover measured via stable isotope tracers 

 

 

Supplementary Table 2: Relevant studies excluded 
 

Article Reason for Exclusion 

Lattermann et al. 2007 

[59] 

Preoperative protein turnover assessed under post-

absorptive feeding conditions; postoperative protein 

turnover assessed under post-prandial feeding 

conditions 

Schricker et al. 2008 [60] Preoperative protein turnover assessed under post-

absorptive feeding conditions; postoperative protein 

turnover assessed under post-prandial feeding 

conditions 

Lugli et al. 2010 [61] Preoperative protein turnover assessed under post-

absorptive feeding conditions; postoperative protein 

turnover assessed under post-prandial feeding 

conditions 

Lattermann et al. 2003 

[62] 

Preoperative protein turnover assessed under post-

absorptive feeding conditions; postoperative protein 

turnover assessed under post-prandial feeding 

conditions 

Schricker et al. 2004 [63] Preoperative protein turnover assessed under post-

absorptive feeding conditions; postoperative protein 

turnover assessed under post-prandial feeding 

conditions 

Schricker et al. 2005 [64] Preoperative protein turnover assessed under post-

absorptive feeding conditions; postoperative protein 

turnover assessed under post-prandial feeding 

conditions 

Schricker et al. 2013 [65] Preoperative protein turnover assessed under post-

absorptive feeding conditions; postoperative protein 

turnover assessed under post-prandial feeding 

conditions 

Tjäder et al. 2004 [33] Heterogenous surgical population including patients 

undergoing vascular procedures.  

Carli and Halliday. 1996 

[10] 

Unable to source necessary data from article or 

author(s) 



Carli et al. 1991 [48] Unable to source necessary data from article or 

author(s) 

Carli et al. 1991b [49] Unable to source necessary data from article or 

author(s) 

Carli et al. 1997 [50] Unable to source necessary data from article or 

author(s) 

López Hellín et al. 2008 

[51] 

Unable to source necessary data from article or 

author(s) 

Carli et al. 1990 [52] Unable to source necessary data from article or 

author(s) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.7 REFERENCES 

[1] Weimann A, Braga M, Carli F, Higashiguchi T, Hübner M, Klek S, et al. ESPEN 

guideline: Clinical nutrition in surgery. Clin Nutr 2017;36:623–50.  

[2] Cuthbertson DP. Observations on the disturbance of metabolism produced by 

injury to the limbs. QJM 1932;1:233–46. 

[3] Cuthbertson DP. The metabolic response to injury and other related explorations in 

the field of protein metabolism: an autobiographical account. Scott Med J 

1982;27:158–71. 

[4] Moore FD. Metabolic Care of the Surgical Patient. 1959. Philadelphia: W. B. 

Saunders Co. 

[5] Brook MS, Wilkinson DJ, Phillips BE, Perez‐Schindler J, Philp A, Smith K, et al. 

Skeletal muscle homeostasis and plasticity in youth and ageing: impact of nutrition 

and exercise. Acta Physiol (Oxf) 2016;216:15–41.  

[6] Carli F, Halliday D. Continuous epidural blockade arrests the postoperative 

decrease in muscle protein fractional synthetic rate in surgical patients. 

Anesthesiology 1997;86:1033–40.  

[7] Tjäder I, Essen P, Thörne A, Garlick PJ, Wernerman J, McNurlan MA. Muscle 

protein synthesis rate decreases 24 hours after abdominal surgery irrespective of total 

parenteral nutrition. JPEN J Parenter Enteral Nutr 1996;20:135–8.  

[8] Essén P, McNurlan MA, Wernerman J, Vinnars E, Garlick PJ. Uncomplicated 

surgery, but not general anesthesia, decreases muscle protein synthesis. Am J Physiol 

1992;262:E253-260.  

[9] Carli F, Webster J, Ramachandra V, Pearson M, Read M, Ford GC, et al. Aspects 

of protein metabolism after elective surgery in patients receiving constant nutritional 

support. Clin Sci 1990;78:621–8.  

[10] Carli F, Halliday D. Modulation of protein metabolism in the surgical patient. 

Effect of 48-hour continuous epidural block with local anesthetics on leucine kinetics. 

Reg Anesth 1996;21:430–5. 

[11] Tashiro T, Mashima Y, Yamamori H, Horibe K, Nishizawa M, Okui K. Alteration 

of whole-body protein kinetics according to severity of surgical trauma in patients 

receiving total parenteral nutrition. JPEN J Parenter Enteral Nutr 1991;15:169–72.  

[12] Tashiro T, Yamamori H, Takagi K, Morishima Y, Nakajima N. Effect of severity 

of stress on whole-body protein kinetics in surgical patients receiving parenteral 

nutrition. Nutrition 1996;12:763–5.  

[13] Tipton KD, Hamilton DL, Gallagher IJ. Assessing the role of muscle protein 

breakdown in response to nutrition and exercise in humans. Sports Med 2018;48:53–

64.  

[14] Holm L, O’Rourke B, Ebenstein D, Toth MJ, Bechshoeft R, Holstein-Rathlou N-

H, et al. Determination of steady-state protein breakdown rate in vivo by the 



disappearance of protein-bound tracer-labeled amino acids: a method applicable in 

humans. Am J Physiol Endocrinol Metab 2013;304:E895–907.  

[15] Holm L, Dideriksen K, Nielsen RH, Doessing S, Bechshoeft RL, Højfeldt G, et 

al. An exploration of the methods to determine the protein-specific synthesis and 

breakdown rates in vivo in humans. Physiol Rep 2019;7:e14143.  

[16] Varadhan KK, Constantin-Teodosiu D, Constantin D, Greenhaff PL, Lobo DN. 

Inflammation-mediated muscle metabolic dysregulation local and remote to the site of 

major abdominal surgery. Clin Nutr 2018;37:2178–85.  

[17] Platell C, Hall J. What is the role of mechanical bowel preparation in patients 

undergoing colorectal surgery? Dis Colon Rectum 1998;41:875–82; discussion 882-

883.  

[18] Yuill KA, Richardson RA, Davidson HIM, Garden OJ, Parks RW. The 

administration of an oral carbohydrate-containing fluid prior to major elective upper-

gastrointestinal surgery preserves skeletal muscle mass postoperatively--a randomised 

clinical trial. Clin Nutr 2005;24:32–7.  

[19] Gustafsson UO, Scott MJ, Hubner M, Nygren J, Demartines N, Francis N, et al. 

Guidelines for perioperative care in elective colorectal surgery: Enhanced Recovery 

After Surgery (ERAS®) Society recommendations: 2018. World J Surg 2019;43:659–

95.  

[20] El-Sharkawy AM, Daliya P, Lewis-Lloyd C, Adiamah A, Malcolm FL, Boyd-

Carson H, et al. Fasting and surgery timing (FaST) audit. Clin Nutr 2021;40:1405–12.  

[21] Matthews DE, Motil KJ, Rohrbaugh DK, Burke JF, Young VR, Bier DM. 

Measurement of leucine metabolism in man from a primed, continuous infusion of L-

[1-3C]leucine. Am J Physiol 1980;238:E473-479.  

[22] Rennie MJ, Edwards RH, Halliday D, Matthews DE, Wolman SL, Millward DJ. 

Muscle protein synthesis measured by stable isotope techniques in man: the effects of 

feeding and fasting. Clin Sci (Lond) 1982;63:519–23.  

[23] Ford GC, Cheng KN, Halliday D. Analysis of (1-13C)leucine and (13C)KIC in 

plasma by capillary gas chromatography/mass spectrometry in protein turnover 

studies. Biomed Mass Spectrom 1985;12:432–6.  

[24] Garlick PJ, Wernerman J, McNurlan MA, Essen P, Lobley GE, Milne E, et al. 

Measurement of the rate of protein synthesis in muscle of postabsorptive young men 

by injection of a “flooding dose” of [1-13C]leucine. Clin Sci 1989;77:329–36.  

[25] Harrison RA, Lewin MR, Halliday D, Clark CG. Leucine kinetics in surgical 

patients. I: A study of the effect of surgical “stress.” Br J Surg 1989;76:505–8.  

[26] Harrison RA, Lewin MR, Halliday D, Clark CG. Leucine kinetics in surgical 

patients. II: A study of the effect of malignant disease and tumour burden. Br J Surg 

1989;76:509–11.  



[27] Wilkinson DJ. Historical and contemporary stable isotope tracer approaches to 

studying mammalian protein metabolism. Mass Spectrom Rev 2018;37:57–80.  

[28] Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et 

al. The PRISMA 2020 statement: an updated guideline for reporting systematic 

reviews. BMJ 2021;372:n71.  

[29] Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a 

critical appraisal tool for systematic reviews that include randomised or non-

randomised studies of healthcare interventions, or both. BMJ 2017;358:j4008.  

[30] Millward DJ, Smith K. The application of stable‐isotope tracers to study human 

musculoskeletal protein turnover: a tale of bag filling and bag enlargement. J Physiol 

2019;597:1235–49.  

[31] Tashiro T, Yamamori H, Takagi K, Morishima Y, Nakajima N. Increased 

contribution by myofibrillar protein to whole-body protein breakdown according to 

severity of surgical stress. Nutrition 1996;12:685–9.  

[32] MacLennan PA, Rennie MJ. Effects of ischaemia, blood loss and reperfusion on 

rat muscle protein synthesis, metabolite concentrations and polyribosome profiles in 

vivo. Biochem J 1989;260:195–200.  

[33] Tjäder I, Essen P, Garlick PJ, McMnurlan MA, Rooyackers O, Wernerman J. 

Impact of surgical trauma on human skeletal muscle protein synthesis. Clin Sci 

(Lond) 2004;107:601–7.  

[34] Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA 

(editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.2 

(updated February 2021). Cochrane, 2021. Available from 

www.training.cochrane.org/handbook. (accessed June 7, 2021). 

[35] Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the 

median, range, and the size of a sample. BMC Med Res Methodol 2005;5:13.  

[36] Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The 

Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 

2011;343:d5928.  

[37] Pustejovsky JE, Rodgers MA. Testing for funnel plot asymmetry of standardized 

mean differences. Res Synth Methods 2019;10:57–71.  

[38] DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 

1986;7:177–88.  

[39] Knapp G, Hartung J. Improved tests for a random effects meta-regression with a 

single covariate. Stat Med 2003;22:2693–710.  

[40] Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat 

Med 2002;21:1539–58.  



[41] Lattermann R, Carli F, Wykes L, Schricker T. Epidural blockade modifies 

perioperative glucose production without affecting protein catabolism. Anesthesiology 

2002;97:374–81.  

[42] Carli F, Webster JD, Halliday D. Growth hormone modulates amino acid 

oxidation in the surgical patient: leucine kinetics during the fasted and fed state using 

moderate nitrogenous and caloric diet and recombinant human growth hormone. 

Metab Clin Exp 1997;46:23–8.  

[43] Carli F, Ball J, Wykes L, Kubow S. Oral whey protein decreases protein 

breakdown and increases protein balance in surgical patients. A stable isotope study. 

Can J Anesth 2011;58:S13.  

[44] Hammarqvist F, Sandgren A, Andersson K, Essén P, McNurlan MA, Garlick PJ, 

et al. Growth hormone together with glutamine-containing total parenteral nutrition 

maintains muscle glutamine levels and results in a less negative nitrogen balance after 

surgical trauma. Surgery 2001;129:576–86.  

[45] Essén P, McNurlan MA, Sonnenfeld T, Milne E, Vinnars E, Wernerman J, et al. 

Muscle protein synthesis after operation: effects of intravenous nutrition. Eur J Surg 

1993;159:195–200. 

[46] López-Hellín J, Baena-Fustegueras JA, Vidal M, Riera SS, García-Arumí E. 

Perioperative nutrition prevents the early protein losses in patients submitted to 

gastrointestinal surgery. Clin Nutr 2004;23:1001–8.  

[47] Lattermann R, Schricker T, Wachter U, Goertz A, Georgieff M. Intraoperative 

epidural blockade prevents the increase in protein breakdown after abdominal surgery. 

Acta Anaesthesiol Scand 2001;45:1140–6.  

[48] Carli F, Webster J, Pearson M, Forrest J, Venkatesan S, Wenham D, et al. 

Postoperative protein metabolism: effect of nursing elderly patients for 24 h after 

abdominal surgery in a thermoneutral environment. Br J Anaesth 1991;66:292–9.  

[49] Carli F, Webster J, Pearson M, Pearson J, Bartlett S, Bannister P, et al. Protein 

metabolism after abdominal surgery: effect of 24-h extradural block with local 

anaesthetic. Br J Anaesth 1991;67:729–34.  

[50] Carli F, Webster JD, Halliday D. A nitrogen-free hypocaloric diet and 

recombinant human growth hormone stimulate postoperative protein synthesis: fasted 

and fed leucine kinetics in the surgical patient. Metabolism 1997;46:796–800.  

[51] López Hellín J, Baena-Fustegueras JA, Sabín-Urkía P, Schwartz-Riera S, García-

Arumí E. Nutritional modulation of protein metabolism after gastrointestinal surgery. 

Eur J Clin Nutr 2008;62:254–62.  

[52] Carli F, Ramachandra V, Gandy J, Merritt H, Ford GC, Read M, et al. Effect of 

general anaesthesia on whole body protein turnover in patients undergoing elective 

surgery. Br J Anaesth 1990;65:373–9.  

[53] Yeh DD, Fuentes E, Quraishi SA, Cropano C, Kaafarani H, Lee J, et al. Adequate 

nutrition may get you home. JPEN J Parenter Enteral Nutr 2016;40:37–44.  



[54] Caso G, Vosswinkel JA, Garlick PJ, Barry MK, Bilfinger TV, McNurlan MA. 

Altered protein metabolism following coronary artery bypass graft (CABG) surgery. 

Clin Sci (Lond) 2008;114:339–46.  

[55] Gillis C, Carli F. Promoting perioperative metabolic and nutritional care. 

Anesthesiology 2015;123:1455–72.  

[56] Pöyhönen MJ, Takala JA, Pitkänen O, Kari A, Alhava E, Alakuijala LA, et al. 

Urinary excretion of polyamines in patients with surgical and accidental trauma: 

effect of total parenteral nutrition. Metabolism 1993;42:44–51.  

[57] Svanfeldt M, Thorell A, Nygren J, Ljungqvist O. Postoperative parenteral 

nutrition while proactively minimizing insulin resistance. Nutrition 2006;22:457–64.  

[58] Schricker T, Lattermann R. Perioperative catabolism. Can J Anaesth 

2015;62:182–93.  

[59] Lattermann R, Wykes L, Eberhart L, Carli F, Meterissian S, Schricker T. A 

randomized controlled trial of the anticatabolic effect of epidural analgesia and 

hypocaloric glucose. Reg Anesth Pain Med 2007;32:227–32.  

[60] Schricker T, Meterissian S, Lattermann R, Adegoke OAJ, Marliss EB, Mazza L, 

et al. Anticatabolic effects of avoiding preoperative fasting by intravenous 

hypocaloric nutrition: a randomized clinical trial. Ann Surg 2008;248:1051–9.  

[61] Lugli AK, Schricker T, Wykes L, Lattermann R, Carli F. Glucose and protein 

kinetics in patients undergoing colorectal surgery: perioperative amino acid versus 

hypocaloric dextrose infusion. Metab Clin Exp 2010;59:1649–55.  

[62] Lattermann R, Carli F, Wykes L, Schricker T. Perioperative glucose infusion and 

the catabolic response to surgery: the effect of epidural block. Anesth Analg 

2003;96:555–62.  

[63] Schricker T, Meterissian S, Wykes L, Eberhart L, Lattermann R, Carli F. 

Postoperative protein sparing with epidural analgesia and hypocaloric dextrose. Ann 

Surg 2004;240:916–21.  

[64] Schricker T, Wykes L, Eberhart L, Carli F, Meterissian S. Randomized clinical 

trial of the anabolic effect of hypocaloric parenteral nutrition after abdominal surgery. 

Br J Surg 2005;92:947–53.  

[65] Schricker T, Wykes L, Meterissian S, Hatzakorzian R, Eberhart L, Carvalho G, et 

al. The anabolic effect of perioperative nutrition depends on the patient’s catabolic 

state before surgery. Ann Surg 2013;257:155–9.  

[66] Fern EB, Garlick PJ, McNurlan MA, Waterlow JC. The excretion of isotope in 

urea and ammonia for estimating protein turnover in man with [15N]glycine. Clin Sci 

(Lond) 1981;61:217–28. 

 

 



CHAPTER II: 

 

USE OF DEUTERIUM-OXIDE STABLE 

ISOTOPE TRACER TO STUDY HUMAN 

METABOLISM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. INTRODUCTION 

1.1 DEUTERIUM-OXIDE STABLE ISOTOPE TRACER 

Stable isotopes represent elements that are chemically and functionally identical to 

their more common isotope counterparts, yet differ in mass due to the addition of 1 or 

more neutrons within their atomic nucleus. These isotopes occur naturally in very low 

quantities and contrast with radioactive isotopes, in that their nuclei are stable and 

non-radioactive. This makes stable isotopes suitable as metabolic tracers for use 

across a variety of biological and non-biological fields of research, with some of the 

most commonly employed stable isotope tracers being those of nitrogen (15N), oxygen 

(18O), carbon (13C) and hydrogen (2H). Following the discovery of deuterium (2H), the 

stable isotope of hydrogen, by Urey, Brickwedde, & Murphy in 19321,2, deuterium 

became one of the first stable isotopes to be employed as a metabolic tracer in the 

seminal works of Schoenheimer, Rittenberg, and Ussing, who demonstrated 

deuterium to incorporate into a variety of metabolic pools3–5. While future 

implementation of stable isotopes in metabolic research slowed following the second 

world war and the concomitant increase in availability of radioactive isotopes and 

their associated analytical tools, concerns over their safety in biological research 

resulted in a resurgence in stable isotope tracers from the 1970s onwards6. 

While early investigations involving stable isotope tracers had demonstrated their 

utility for specificity towards different metabolic substrates, deuterium-oxide (heavy 

water) was soon revisited as a tracer capable of enabling numerous metabolic 

measurements simultaneously6, due its metabolic incorporation via the body water 

pool. While this initial renaissance primarily focused on D2O’s application to 

glucose7 and lipid metabolism8, attention soon turned to its utilisation for slow-

turnover metabolic pools, such as skeletal muscle9 and cells of the adaptive immune 

system10. This was aided by D2O’s ease of oral administration across prolonged 

periods thanks to its relatively long half-life (~10 days within the body water pool). 

As D2O equilibrates within the body water pool, it is then transported intracellularly 

where deuterium is incorporated into a variety of molecules via 

condensation/hydrolysis reactions de novo, which occurs at relatively constant rates11. 

This enables for maintenance of a steady state precursor pool via daily or even weekly 

top-up doses (although this is generally termed pseudo-steady state dosage). Similar 

to applications with other stable isotope tracer methodologies, use of deuterium oxide 

for metabolic measurements generally conforms to a precursor: product model, 

whereby measurements of metabolic incorporation (substrate turnover) are a function 

of the availability of the substrate precursor6. This circumnavigates the limitations of 

alternative stable isotope approaches whereby substrate specific isotopes are utilised, 

whose innate properties may alter cellular and physiological responses (e.g. stable 

isotope amino acids) or be predicated on the assumption of substrate transport into 

cellular pools occurring at a constant rate (e.g. amino acid transport)12. While the true 

precursors for many metabolic pools are rarely measured due the difficulty in their 

repeated or accurate sampling (e.g. aminoacyl-tRNA pool for proteins)11, deuterium-

oxide enables for accessible pseudo-precursor sampling through the ability to measure 

deuterium enrichment within body water pools such as saliva or urine, which can be 



measured both non-invasively and have demonstrated direct correlation with 

deuterium enrichment of the true metabolic precursor pools of interest13–15. While this 

generally requires further considerations in order to accurately model molecular 

amplification or theoretical labelling sites, use of pseudo-precursor pools aids 

metabolic measurements where sampling may need to be limited for ethical or 

logistical constraints (e.g. tissue biopsies of critical care patients or children) or 

longitudinal studies where deuterium-oxide levels require monitoring over a period of 

weeks-months. 

With the increased interest in systems biology in recent years due to the fast-moving 

development of -omics based technologies, the application of stable isotopes to 

measure metabolic processes at a systems-wide level has gained recent attention. 

Primarily, this has focused on the application of D2O for the labelling of amino acid 

polypeptides in order to study proteome dynamics16–19, but also cellular 

proliferation10,20,21. While information on cellular protein turnover is critical to 

understand proteostasis, this has also proven attractive due to the stochastic nature of 

proteomics LC-MS data and the combinatorial principles that govern polypeptide 

synthesis enabling for more simplistic mass spectrometry analysis, at least in 

principle, compared to other mass spectrometry analyses of metabolites and lipids. 

Over recent years several software have become available for deuterium-labelled 

mass isotopic distribution analysis of LC-MS proteomics data22, where they have been 

successfully utilised in both pre-clinical and human models19. Analysis of this nature 

is dependent on precise analytical measurements, with isotopic analysis of this nature 

requiring high-resolution mass spectrometry instrumentation. In humans, for 

sufficient resolution and analytical precision this necessitates enrichment of deuterium 

within the body water pool to be approximately 2%, with higher quantities of D2O 

frequently being utilised in cell culture and animal models23. While promising, these 

techniques are still in a stage of relative infancy compared to more established 

quantitative protocols.  

Since deuterium-oxide was revisited as a metabolic tracer, less attention has been 

given to the utilisation of this stable isotope tracer towards the study of nucleic acid 

metabolism (DNA/RNA), especially when compared to the advancements seen in 

investigations of lipid metabolism over the last ~80 years and the recent interest in 

deuterium-oxide as a metabolic tracer for the study of protein and metabolite turnover 

across the past ~10 years24. While early investigations into the kinetic analysis of cell 

proliferation via isotope incorporation began with the use of radioactive tracers that 

are now deemed unethical for human research, use of deuterium-based stable isotope 

tracers (D2O and deuterated glucose) are beginning to receive attention for their 

suitability towards the study of nucleic acid metabolism across a range of physiology 

and diseases25–27. Similar to other metabolic pools already described, use of 

deuterium-oxide enables for de novo incorporation into the (deoxy)ribose moieties of 

either DNA or RNA, which occurs at high rates during cell proliferation10. As 

ribosomal RNA constitutes approximately 80% of all cellular RNA, deuterium 

incorporation into ribose moieties can be used to indicate rates of ribosomal synthesis 

and biogenesis28, while measurements of deuterium incorporation into the 

deoxyribose moieties of DNA have provided novel information on the kinetics of cells 



whose altered rates of cellular proliferation are implicated in a variety of diseases - 

such as peripheral blood mononuclear B- and T-cells in leukaemia29 and HIV 

patients26. While pulse-labelling approaches with deuterated glucose have been 

successfully applied to characterise neutrophil half-lives and labelling kinetics30, an 

abundant immune cell type known for its short circulatory life-span, use of deuterium 

oxide which has a much slower rate of cellular incorporation has proven suitable for 

prolonged calculation of proliferation in slow-turnover peripheral T-cells20,26.  

 

1.2 ASSESSING CELL PROLIFERATION THROUGH 2H-LABELLING OF 

DNA 

Initial assessments of isotope incorporation into DNA moieties to measure cell 

proliferation involved toxic or radioactive analogues that generally were incorporated 

via salvage pathways24. While able to provide early estimates of cell turnover, these 

measurements were confounded by both artifacts via physiological toxicity impacting 

cell cycle dynamics and lifespan, as well as difficult to predict non-uniform 

incorporation via secondary substrate (base or nucleoside) salvage pathways10. 

Alternatively, the de novo synthesis pathway predominates cellular contribution to the 

deoxyribose precursor pool of deoxyribonucleotide-triphosphates (dNTPs), and 

primarily derives from extracellular glucose flux with input from extracellular 

nucleoside concentrations or deoxyribose reutilisation following DNA degradation 

both being negligible. As deuterium-oxide equilibrates with the cellular water pool, it 

is incorporated at multiple stages of the de novo synthesis pathway including 

glycolysis/gluconeogenesis, the pentose phosphate pathway and ribonucleotide 

reductase enzyme activity10. To avoid the input of base purine/pyrimidine secondary 

metabolism (from which 2H also becomes incorporated via de novo synthesis but is 

additionally impacted by base salvage) it is recommended that subsequent mass 

spectrometric analyses specifically target the deoxyribose moiety exclusively, 

omitting the base portion containing purine deoxyribonucleosides, with analysis of 

derivatives including the base portion being shown to increase physiological 

variability and underestimate cellular proliferation rates31.  

At low level body water 2H enrichments (~2%) it is unlikely that deuterium will bind 

at more than one of the seven possible sites of deoxyribose within slow-turnover cell 

types, while within rapidly dividing cells it is likely that 2H will bind multiple sites - 

with these sites providing an amplification factor as a function of body water 2H 

enrichment20. This poses several analytical considerations: firstly, within slow-

turnover cells it will be possible to assume that detection at M+1 will represent a near 

complete sum of deuterated deoxyribose derivative compared to base peak M0, 

whereas within fast-turnover cell types it will be necessary to assess the isotopic 

envelope for complete determination of enrichment levels (e.g. M+2 and M+3). 

Secondly, in order to more accurately model the precursor availability of 2H for slow-

turnover cell types, a factor reflecting the biological amplification due to the multiple 

incorporation sites available must be taken into account for modelling slow-turnover 

cellular proliferation (although as stated above, it is unlikely these will all become 

labelled). The amplification factor can be calculated from a fast-turnover cell type that 



is fully enriched to isotopic plateau, from which a fractional replacement rate can be 

determined and applied to calculate slow-turnover proliferation rates. For example, in 

a human study assessing naïve T-lymphocyte kinetics31, granulocytes and monocytes 

were used for the calculation of fractional replacement rates where they observed an 

enrichment plateau at 7-10 days of the 8-10 week labelling experiment, with cellular 

deoxyribose enrichments reaching ~7% at ~2.0% body water deuterium enrichment 

(amplification factor of ~3.5). This enabled modelling of proliferation rates for slow-

turnover naïve T-lymphocytes which demonstrated half-lives ~700 days (fractional 

replacement rate of ~0.1% per day). This suggests that although D2O may be highly 

suitable for proliferation measurements in slow-turnover cell types, it is generally still 

prudent to include a fast-turnover cell type as an internal reference.  

While it is possible to perform these analyses with LC-MS, the majority of published 

reports opt for GC-MS instrumentation10,32,33, where changes in the ratio of M0 and 

M+1 ions for deoxyribose derivatives are quantified by selected ion-monitoring (SIM). 

While this has successfully demonstrated analytical precision capable of quantifying 

changes in deuterium incorporation over time in slow-proliferation cell types33, a 

recent report measuring RNA turnover in both proliferating immune cells and skeletal 

muscle utilised selected reaction monitoring (SRM)28, which in theory, should provide 

greater analytical sensitivity. This may be especially relevant to slow-turnover cell 

types, whose levels of deuterium incorporation will inevitably be lower across time as 

deuterium is incorporated. Future studies may therefore benefit from implementing 

SRM to quantify deuterium enrichment in the deoxyribose moieties of hydrolysed 

DNA via GC-MS, especially in cases where analytical sensitivity at low relative 

deuterium enrichments is critical.  

 

1.3 KINETIC MEASUREMENTS OF THE CELLULAR PROTEOME WITH 

DEUTERIUM-OXIDE 

While crude or targeted stable isotopic measurements of protein and tissue turnover 

have proven insightful towards our understanding of protein kinetics across health and 

disease6,34, the proteome represents a heterogenous pool of tens of thousands of 

proteins that exhibit diverse functions. While changes in mRNA expression provide 

meaningful insights to cellular biology, it has been repeatedly demonstrated that these 

do not correlate well with protein abundance35, particularly at cellular level36. As 

such, rates of protein turnover represent an important aspect of proteostasis that is 

often under-examined. Many pathologies exhibit changes in metabolic rate and 

cellular remodelling that are either driven or reflect their associated pathologies. 

Further information on rates of cellular protein turnover across the proteome may 

inform our ability to diagnose and understand a variety of these conditions, while 

possibly providing future novel biomarkers based upon protein kinetics.  

While early implementation of stable isotopes for kinetic proteome-wide 

measurements in cell culture and animal models introduced high levels of stable 

isotopically-labelled amino acids through the diet to enrich peptides/proteins6, dietary 

enrichment at these levels is unsuitable for human use. This has necessitated an 

alternative approach, with D2O representing a suitable replacement metabolic 



tracer23. Across the last decade, investigations into proteome kinetics using D2O have 

been successfully employed and represent an exciting avenue for future development. 

Much of this work has been led by the Price18,37 and Ping19,38 laboratories, drawing 

upon previous principles outlined by Hellerstein and Neese39. This has centred around 

analysis of shifts in the mass isotopomer distribution from ‘bottom-up’ proteomics 

experiments, which is characterised by reductions on the M0 peptide ion (which alone 

can be used to calculate half-life/decay rate of the base monoisotopic peak) as well as 

the appearance and increased intensity of mass isotopic peaks at set intervals related 

to the M+1, M+2, M+3…for specific peptides detected at MS1 level22. Interpretation of 

these changes as a result of stable isotope introduction depends on comparisons 

between observed experimental and theoretical mass isotopomer distributions, which 

can be calculated from the number of exchangeable hydrogens possible within each 

peptide sequence. As the mass addition from deuterium is known, this enables for 

prediction of shifts in the mass isotopic distribution over time as deuterium is 

incorporated. This is dependent on the calculation of accurate peptide mass, which is 

generally computed through a series of binomial calculations40. From this, changes in 

peptide mass arising from deuterium incorporation can be calculated through 

combinatorial probability, using theoretical or previously estimated experimental 

values to model the number of hydrogen atoms available for exchange within a 

peptide’s amino acid sequence22,37. As expected, with maintenance of a stable 

precursor pool, calculations of turnover follow a precursor: product model, with a 

maximum asymptote value of 1 typically employed during rate calculations37.  

There are several approaches to model turnover rates from stable isotopically-labelled 

proteomics data. These typically involve either calculating a decay rate of the 

monoisotopic peak over time as its intensity depletes or comparing shifts across the 

mass isotopic distribution over time relative to theoretical distributions modelled as a 

function of deuterium-labelling22,37,39,41. Both assess peptide isotopic envelopes at 

MS1 to quantify these changes in peptides that have typically already been identified 

via tandem MS and standard database searching. At present, there is no software 

whose algorithm is capable of accounting for shifts in mass as a result of heavy mass 

isotopomers and their subsequent fragmentation patterns during database searching. 

Expectedly, the increased isolation of deuterated precursors for fragmentation and 

identification via MS2 (DDA) has been associated with decreased rates of peptide and 

protein identifications during deuterium-labelling experiments22. Additionally, data 

quality controls during secondary analysis of mass isotopic distributions required to 

meet expected m/z accuracy and peak intensities acts to further decrease the number 

of peptides (and therefore proteins) taken forth for turnover quantification in 

proteomics datasets37. Together, this has typically resulted in the calculation of 

turnover rates for only a few hundred proteins or less in published experimental 

datasets18,37,42, although greater depth has been reported19,38. This emphasises the 

importance of high-quality proteomics datasets in order to improve rates of protein 

identification for downstream turnover analysis. While quantitative accuracy is vital 

within all mass spectrometry applications, this poses a major constraint for the 

comprehensive analysis of proteome kinetics at present.  



There are currently several bioinformatic software capable of analysing deuterium-

labelled proteomics datasets, with three of these being openly-available. DeuteRater37 

builds upon the combinatorial principles outlined in Hellerstein and Neese’s work on 

MIDA, and is freely available as both a GUI and Python source code, published on 

GitHub. d2ome43 is also a freely available C++ resource on GitHub, while 

ProTurn19,38 utilises Java and R programming languages. As expected, these three 

software model rates of protein turnover through assessments of mass isotopic 

profiles, where they are capable of combining common database search engines such 

as Mascot44, SEQUEST45 and Andromeda46, with software specific mass isotopomer 

detection and quantification algorithms. These workflows generally conform to three 

stages of analysis: pre-processing, peak detection (of mass isotopic distributions) and 

fraction new/rate calculations. All three freely-available software accept open file 

formats; mzid and mzml, with DeuteRater further requiring manual input of a 

reference file containing all identified sequences from database searches specified at a 

user-defined limit. All three rate calculation algorithms utilise nonlinear least 

squares47 to fit label incorporation, with differences arising from differential 

calculation between these algorithms not yet being comprehensively investigated. It is 

likely kinetic proteomic analysis will undergo and benefit from future computational 

development as more researchers become interested, as has been observed with other 

proteomics applications in recent years48–51. 
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2. PROTEOME-WIDE TURNOVER MEASUREMENTS 

IN DIFFERENTIATING M1- AND M2-LIKE 

MACROPHAGES EX VIVO 

  



ABSTRACT 

 

Background and Aims: Deuterium-oxide (D2O) stable isotope tracer has recently 

received attention as a tool to calculate individual protein turnover rates using 

‘shotgun’ LC-MS proteomics. This study investigated whether this technique could be 

applied within a clinically relevant primary cell model of monocytes undergoing 

differentiation into M1 or M2 macrophages. 

Methods: Two healthy blood donors provided 150ml whole blood for monocyte 

isolation. Eight samples were generated from each blood donor, so that 16 primary 

monocyte cell cultures were differentiated into macrophages. 5% D2O was added at 

days 0 and 4 of a 7-day monocyte differentiation period. Proteome kinetics were 

measured via LC-MS and quantified using DeuteRater analytical software.  

Results: Cells supplemented with 5% D2O demonstrated similar rates of protein 

identification and iBAQ compared to matched H2O controls. Greater than 40% of 

total identified proteins had rates of turnover quantified within D2O-labelled cells 

through shifts in the mass isotopic distribution of individual peptides per protein, 

following stringent dataset filtering. Turnover rates within differentiating monocytes 

varied from ~0 to 0.83 day-1, with an average turnover rate of 0.07 day-1.  

Conclusions: D2O presents an effective metabolic tracer capable of enabling 

simultaneous quantification of protein abundance and turnover during dynamic 

metabolic processes within a primary cell model of differentiating monocytes.  

 

Keywords: D2O, protein turnover, proteomics, macrophages, monocytes. 

 

  



2.1 INTRODUCTION 

LC-MS proteomics technologies are advancing at a rapid pace and have recently 

achieved the sensitivity and throughput required for deep characterisation of a variety 

of immune cell phenotypes25. While great advancements have been made in 

monitoring alterations in the proteome of single cells, analysis is generally centred 

around the identification and measurement of protein abundance. Consequently, an 

important aspect of proteostasis – protein turnover – is often understudied and rarely 

accounted for. This may represent particular importance to clinical pathologies with 

known associations to altered cellular proliferation and protein turnover.  

Deuterium-oxide (D2O) represents a safe and versatile stable isotope tracer fit for 

human consumption at enrichments of 1-10%. Thus far, application of D2O for 

measurements of protein turnover via LC-MS technologies have largely been limited 

to cell culture and pre-clinical models, primarily concerned with proof-of-concept 

(Chapter II, section 1.1).  

This study looks to extend this approach to a more complex primary cell model of 

monocytes undergoing differentiation into macrophages, in the presence and absence 

of a known immunomodulatory stimulant, the adenosine receptor agonist, NECA10. 

This study aims to address whether D2O is a suitable metabolic tracer for dynamic 

measurements of the proteome in a primary cell culture model of clinical relevance.   



2.2 METHODS 

Monocyte Isolation 

150ml peripheral blood was obtained from healthy donors under approval from the 

University of Nottingham Medical School Ethics Committee (ref 161-1711) in 

accordance with the Declaration of Helsinki, with all participants providing informed 

consent. Blood was collected in heparinised 60ml syringes and was layered 

immediately on Lymphoprep (Stemcell technologies). Blood samples were separated 

through density centrifugation at 800g for 25min at 21°C on minimum brake. 

Peripheral blood mononuclear cells (PBMCs) were harvested from the buffy-coat 

layer and washed twice in endotoxin-free Phosphate Buffer Saline (PBS, Sigma) at 

350g for 8min followed by 300g for 5 minutes. Cells were then resuspended in 400μl 

magnetic-activated cell sorting (MACS) buffer supplemented with PBS, 1% fetal calf 

serum (FCS) and 2mM EDTA. PBMCs were then incubated for 15 minutes at 4°C 

with 30μl CD14-antibody magnetic microbeads (Miltenyi). PBMCs were then passed 

through an LC column with a magnet to retain the CD14+ cells on the column while 

CD14- cells flowed through. Following three washes with MACS buffer, CD14+ cells 

were then eluted away from the magnet in 1ml MACS buffer. 

 

Macrophage Cell Culture 

CD14+ cells were spun for 5 minutes at 300g before resuspension in culture medium; 

RPMI 1640 (Hyclone), 10% v/v FCS (Sigma) and NaPy 1% v/v.  CD14+ monocytes 

were then plated in ultra-low attachment 24-well plates (Corning Costar 3473) at a 

concentration of 106 cells per well. For M1-like macrophage differentiation, 

granulocyte-macrophage colony-stimulating factor (GMCSF, Peprotech) was added at 

day 0 and day 4 at 10ng/ml with either 5% H2O or 5% D2O in 1ml culture medium, 

in the presence or absence of 1μM of the adenosine receptor agonist, NECA (Sigma). 

For M2-like macrophages, macrophage colony-stimulating factor (MCSF, 

Immunotools) was added at day 0 and day 4 at 10ng/ml with either 5% H2O or 5% 

D2O in 1ml culture medium, in the presence or absence of 1μM of the adenosine 

receptor agonist, NECA (Sigma). On day 7, macrophages were washed with PBS 

twice and scraped in 200μl 100mM ammonium bicarbonate containing 0.1% SDS (pH 

8) and transferred into 2ml Eppendorfs (Eppendorf, UK) for storage at -80⁰C until 

further analysis. 

 

Proteomics Analysis 

Samples were pelleted via centrifugation at 17,000g for 1 minute, supernatant 

removed and samples were then processed according to the protocol; Sample 

Preparation by Easy Extraction and Digestion (SPEED) 1. Briefly, cells were lysed in 

100μl pure Trifluoroacetic acid (TFA) then neutralised with 10x 2M Tris-base in 

double-distilled water (ddH2O). Samples were then immediately reduced and 

alkylated with the addition of Tris (2-carboxyethyl) phosphine (TCEP) to a final 

concentration of 10 mM and Iodoacetamide (IAA) to a final concentration of 40mM, 



and incubated for 5 minutes at 95⁰C. Protein concentrations were adjusted to 1μg/μl 

using a solution of 1x TFA to 10x 2M Tris in ddH2O, and Trypsin was added at a ratio 

of 1:100 for overnight digestion at 37⁰C. Digestion was quenched through addition of 

TFA to a total concentration of 2% and peptides were desalted using Pierce C18 

StageTips (ThermoScientific). Samples were then dried under nitrogen stream using a 

TurboVap (Biotage) at 40⁰C for 30 minutes and stored at -20⁰C until mass 

spectrometry analysis. 

For mass spectrometry analyses, samples were resuspended in 95% ddH2O, 5% 

Acetonitrile (ACN) and 0.1% Formic acid. 1µg peptides were injected for analysis 

with a Q-Exactive orbitrap mass spectrometer (Thermo Scientific) in line with a 

Dionex Ultimate 3000 ultra-high pressure nano liquid chromatography system and 

electrospray ionisation source (Thermo Scientific). A non-linear gradient of solvent B 

(80% ACN (v/v) in 0.1% FA (v/v)) was applied for a total gradient time of 104 

minutes and total run time of 120 minutes. Full MS scans were acquired at a 

resolution of 60,000 for the mass range 380-1300 m/z, with a precursor isolation 

window of 2 m/z for MS2 scans at a resolution of 17,500. 

Raw data files were provided to the MaxQuant processing software (v. 2.1.3.0) and 

searched against the human Uniprot databases (UP000005640_9606.fa, 

UP000005640_9606_additional.fa) using the Andromeda search algorithm2. False‐

discovery rates were controlled at 1% for both peptide spectral matches (PSMs) and 

proteins. Peptides with a length of 7-50 amino acids were considered, with N‐terminal 

acetylation and methionine oxidation specified as variable modifications and cysteine 

carbamidomethylation as a fixed modification. Maximum peptide mass was set at 

5000 Da and spectra were searched with strict Trypsin specificity (KR not P), 

allowing up to two missed cleavage sites. Accurate mass identifications were 

transferred between samples using the ‘match between run’ setting of MaxQuant, with 

a match window of 0.7 minutes and an alignment window of 20 minutes. Quantitation 

was performed via intensity‐based absolute quantification (iBAQ)3,4.  

MaxQuant search output files were formatted appropriately using Python 

programming language (v. 3.9.7) for input into the DeuteRater GUI (v. 5). Raw files 

were additionally converted to mzml format via ProteoWizard (v. 3.0) for peak-

picking of the mass isotopic distribution by DeuteRater for peptides identified within 

the respective MaxQuant output file(s). Within the DeuteRater GUI, deuterium 

enrichment of the precursor pool was set at 5% for samples supplemented with D2O. 

The ‘% peptide fraction new’ was calculated via spacing-based measurements of 

changes in the mass isotopic distribution over time. Turnover rates for identified 

proteins were then calculated by fitting the ‘fraction new’ to a kinetic rate curve with 

equation: 1-e -rate*time, as specified by DeuteRater5. These results were further analysed 

via Python programming language (v. 3.9.7), in conjunction with the Python modules: 

pandas (v. 2.0.2), matplotlib (v. 3.5.3), seaborn (v. 0.12.2), scipy (v. 1.10.1), scikit-

learn (v. 1.1.2) and numpy (1.20.3). PANTHER (release 17.0) was utilised for protein 

classifications and ontology analysis of associated biological functions.  

 

 



2.3 RESULTS 

Overview 

Two healthy participants provided 150ml of blood each for cell culture analyses. Each 

blood sample enabled the culture of 8 replicate wells resulting in approximately 1 

million macrophages per well. Respectively, 4 wells were utilised for the generation 

of the M1-like macrophage phenotype and 4 wells for the production of the M2-like 

macrophage phenotype. Each treatment (GMCSF or MCSF supplemented cells) were 

then divided again into H2O or D2O supplemented cells, with one well from each of 

these pairs then being further treated with the adenosine receptor agonist, NECA. 

Cumulatively, this resulted in n=2 for each specific treatment/condition combination 

within this pilot experiment. 

Across the 16 experimental samples, there were ~190,000 peptide spectral matches 

(PSMs) relating to ~900 protein groups detected in the dataset. Across identified 

peptides, ~94% contained no missed cleavage sites (cleaved at K or R only, not P) and 

~90% of peptides were identified without modifications (including contaminant 

peptides). Removal of contaminant proteins resulted in a final total of 823 protein 

groups across samples, which translates to ~700 protein groups detected per sample at 

1% FDR. Ontology analyses conducted via PANTHER illustrate the range of protein 

classes and biological processes identified across samples, which encompass many 

processes highlighted previously via transcriptional6 and single-cell proteomic 

analysis7 of M1- and M2-like macrophages cultured ex vivo and from U-937 cell lines 

(Figure 1).  



 

 

Figure 1: Protein classes and biological processes associated with identified proteins across samples. 

 

It has previously been observed that deuterium-labelling coupled with data-dependent 

acquisition (DDA) results in decreasing rates of peptide and protein identifications 

over time as deuterium is increasingly incorporated into peptides and proteins de 

novo8. To assess whether deuterium-labelling resulted in a decrease in identifications 

within this dataset, experimental samples supplemented with 5% H2O and 5% D2O 

were compared for protein group identifications across all treatments.  

 

  



Figure 2: Venn diagram depicting protein groups identified in samples supplemented with 5% H2O vs 5% D2O. 

Gold; depicts shared protein groups, orange; protein groups detected only in H2O supplemented samples and 

green; protein groups detected only in D2O supplemented samples. 

Figure 2 demonstrates a high degree of homology for protein group identifications 

between H2O and D2O supplemented samples, with 787 of 823 total protein groups 

shared between both conditions. There are more protein groups uniquely identified in 

H2O supplemented samples at 34, than the 2 unique protein groups identified in D2O 

supplemented samples, supporting a minor trend for higher average identifications 

when averaging the 8 individual H2O treatments vs the 8 individual D2O treatments 

(713 vs 672 protein groups, respectively). However, cumulatively, as demonstrated in 

Figure 2 above, this does not represent a tangible shift in rates of protein group 

identifications. In fact, there was a greater disparity in identification rates between 

blood donors (617 vs 768 protein groups identified on average per sample) than those 

samples supplemented with 5% H2O vs 5% D2O, suggesting introduction of 

deuterium-oxide to result in a lower degree of variation than that provided by 

interindividual variability.  



iBAQ Quantitation 

Intensity-based absolute quantitation (iBAQ) was chosen as the method of protein 

quantification for experimental samples due its utilisation of the entire (detected) 

mass isotopic cluster, in order to calculate protein abundance relative to the total 

number of theoretically observable tryptic peptides for a given protein4. This method 

of absolute quantification was deemed suitable for mass spectra containing peptides 

enriched with deuterium, where it is expected that shifts in the mass isotopic 

distribution over time as incorporation increases will ultimately lead to numerous 

peaks of comparable intensities8.  

The impacts of deuterium-labelling on iBAQ intensities relative to paired H2O 

control samples was first examined to ascertain the influence of deuterium-labelling 

on protein quantitation accuracy. Figure 3 illustrates log-transformed iBAQ data from 

H2O and D2O supplemented samples to correlate well across all treatments (GMCSF 

and MCSF supplementation, as well as NECA treatment). The correlation of these 

values is in line with other reports of correlations between technical replicates3, 

further suggesting that iBAQ is a suitable method of protein quantitation for samples 

labelled with deuterium for parallel protein turnover experiments.  
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Figure 3: Jointplots for each cytokine/NECA treatment, containing scatter plots with lines of best-fit, 

as well as histograms of log-transformed iBAQ data distributions. GMCSF-N and MCSF-N indicate 

the addition of NECA to the culture media. All treatments demonstrate strong, statistically significant 

correlations between iBAQ data from H2O and D2O conditions (p<0.05, Pearson correlation 

coefficient).  

 

To further assess the impacts of deuterium-labelling from introduction of deuterium-

oxide into the macrophage media during differentiation into M1-like (GMCSF) or 

M2-like (MCSF) phenotypes, principal component analysis (PCA) was performed 

between H2O vs D2O supplemented samples across all treatments. Figure 4 illustrates 

that PCA in two-dimensions was unable to effectively separate H2O and D2O 

conditions across combined cytokine treatments, with further PCA analysis of each 

separate macrophage subtype (M1-like, GMCSF; M2-like, MCSF) also proving 

unable to clearly separate H2O vs D2O conditions; albeit with D2O demonstrating 

tighter clustering relative to H2O and therefore reduced separation along PC2. 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: PCA plots illustrating H2O vs D2O conditions across cytokine treatments (including NECA treatments). 

Red dots represent H2O supplemented samples and blue dots represent D2O supplemented samples.  

 

 

 



When examining protein identifications (detailed above), it appeared that 

interindividual variability arising from blood donors (n=2) provided a more 

significant source of variability within the iBAQ dataset than H2O vs D2O 

conditions. To further investigate this factor within the iBAQ dataset, PCA analysis 

was again performed in two-dimensions to ascertain if blood donors could be easily 

separated with an unsupervised machine learning approach.  

 

Figure 5: PCA of interindividual variability arising from blood donors across all treatments. 

 

Figure 5 illustrates separation of blood donors across PC2, which accounts for ~8.6% 

of heterogeneity within the PCA model and iBAQ datasets. This supports previous 

interpretation that interindividual variation in macrophages cultured from different 

blood donor monocytes is responsible for a significant proportion of heterogeneity 

within this dataset, although this is not unexpected within such a small experimental 

sample size9. 



Finally, PCA was performed to ascertain whether macrophage phenotypes (M1, M2) 

could be separated according to the additional presence of the adenosine receptor 

agonist, NECA, a known modulator of immunological function10,11. Perhaps 

unsurprisingly, within the context of significant interindividual variability from n=2 

blood donors, PCA was unable to separate combined GMCSF and MCSF treatments 

from their NECA counterparts (Figure 6).  

 

 

Figure 6: PCA of M1 and M2 macrophage phenotypes induced by GMCSF and MCSF treatment respectively, 

without NECA (red dots) and with NECA supplementation (blue dots). 

 

 

 

 



 

In order to assess differences within each macrophage phenotype following NECA 

treatment, a supervised machine learning approach was adopted. Partial Least Squares 

Discriminant Analysis (PLS-DA) is a form of partial least squares regression (PLSR) 

capable of determining whether there are differences between known sample groups, 

and which features within the dataset best separate these groups (if differences do 

exist)12. For this, iBAQ of proteins shared across sample groups were analysed for 

each macrophage phenotype (M1, M2) to determine if samples treated by NECA 

could be separated from their untreated counterparts. 

For GMCSF supplemented (M1-like phenotype) macrophage samples, PLS-DA 

effectively separated NECA treated samples from controls (untreated), with a PLS r2 

value of 0.92 (Figure 7). 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Partial least squares discriminant analysis of GMCSF supplemented samples with (blue dots) and 

without (red dots) NECA treatment, 1μM for 7 days. 

 



The top 20 features with the greatest coefficients following PLS-DA classification 

(Figure 7) were extracted and are displayed in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: The 20 features presenting the greatest coefficients following PLS-DA for GMCSF supplemented 

macrophages, with and without NECA. Positive coefficients are coloured in green, negative coefficients in red. 

Figure 8 demonstrates both positive and negative coefficients to contribute to 

separation of M1-like macrophage phenotypes with and without NECA treatment. 

Classification of these top 20 proteins via PANTHER illustrates these proteins to 

largely belong to the metabolite interconversion enzyme and translational protein 

classes (Figure 9). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Protein classification via PANTHER of 20 proteins with the largest coefficients within the PLS-DA 

model for GMCSF supplemented macrophages. 



Univariate analysis of these 20 proteins in M1-like macrophages cultured with and 

without NECA were analysed via paired t-test. None of the 20 proteins demonstrated 

statistically significant differences between NECA and non-NECA treatments 

(p>0.05). 

To validate the importance of these features within this model, iBAQ log-transformed 

data pertaining only to these 20 isolated features, were again subjected to 

unsupervised PCA analysis for M1-like (GMCSF) macrophages treated with and 

without NECA. 

 

Figure 10: PCA analysis of the top 20 features identified via PLS-DA for n=8, GMCSF supplemented M1-like 

macrophages treated with (yellow dots) and without (purple dots) NECA, 1μM for 7 days. 

 

Figure 10 illustrates clear separation of M1-like macrophages treated with and 

without NECA utilising the 20 protein features identified as most important in the 

supervised machine learning-based classification of these treatment groups via PLS-

DA. This supports these features relative importance in differentiating NECA 

treatment groups, with PC1 being the feature with the highest coefficient identified 

via PLS-DA (Gamma-interferon-inducible lysosomal thiol reductase) and PC2 

representing another protein identified within the top 20 highest coefficients following 

PLS-DA (SH3 domain-binding glutamic acid-rich-like protein 3). 

These analyses were repeated for the separation and classification of M2-like 

macrophages (MCSF supplemented) for those treated with and without NECA. PLS-

DA resulted in the separation of NECA treatment groups, albeit with a reduced model 

efficacy, presenting a fit with a PLS r2 value of 0.67 (Figure 11a). This is likely due to 

an outlier detecting along the latent variable 1 axis, whose subsequent removal 

resulted in an improved model fit of 0.92 (the same as for M1-like macrophage 

treatments, Figure 11b). As such this outlier was omitted from further iBAQ analysis. 
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Figure 11: A; PLS-DA of MCSF supplemented samples with (blue) and without (red) NECA. B; PLS-DA of MCSF 

supplemented samples with (blue) and without (red) NECA following outlier removal. 



The top 20 protein features with the greatest coefficients in the PLS-DA model were then extracted as before and are displayed in Figure 12. 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: The 20 protein features with the highest coefficients identified by PLS-DA for M2-like macrophages supplemented with MCSF with and without NECA. 

 

An interesting observation following PLS-DA to separate M2-like macrophages treated with or without NECA, is that negative coefficients are 

predominant among the top 20 features with the highest coefficients, which is in contrast to M1-like macrophages where positive coefficients 

were most prevalent. The top 20 proteins identified via PLS-DA were classified via PANTHER to assess the degree of homology between M1-

like vs M2-like macrophage responses to NECA treatment. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Protein classification via PANTHER for the top 20 protein features identified via PLS-DA. 

 

Figure 13 illustrates metabolite interconversion enzyme-related proteins to be among 

the most important protein features classified within the PLS-DA model, a similar 

observation to M1-like macrophage NECA classification (Figure 9). However, the 

translational protein class is not identified as important to the PLS-DA model in M2-

like macrophage treatments (as observed with M1-like macrophage classification), 

with the membrane traffic protein class being uniquely identified in M2-like 

macrophages, conveying some heterogeneity between protein classes identified as 

important in separating macrophage phenotypes from their NECA treatment 

counterparts. 

Univariate analysis was performed via paired t-test for the 20 proteins identified as 

most important in separating NECA treatments within M2-like cultured macrophages. 

One protein feature was deemed statistically significant between M2-like 

macrophages that were treated with and without NECA (Aflatoxin B1 aldehyde 

reductase member 2, p=0.04), with two further protein features nearing statistical 

significance (Plasma protease C1 inhibitor, p=0.07; Fructose-1,6-bisphosphatase 1, 

p=0.08). Boxplots displaying the log-transformed iBAQ data for these three protein 

features are displayed in Figure 14.  

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Box and whisker plots for 3 of the 20 protein features identified as most important via PLS-DA for 

MCSF/M2-like macrophages treated with and without NECA.  

All of these proteins demonstrate NECA treatment to result in decreased protein 

abundance relative to the untreated M2-like macrophage phenotype. NECA is known 

to suppress proinflammatory responses in macrophages10, with upregulated 

carbohydrate metabolism and glycolytic flux being hallmarks of classical (M1) 

macrophage activation13. Both Aflatoxin B1 aldehyde reductase and Fructose-1, 6-

biphosphatase are implicated in carbohydrate metabolism, with the latter specifically 

an important regulator of gluconeogenesis14. Fructose-1, 6-biphosphatase is 

allosterically regulated via Fructose-2, 6-biphosphate, which is involved in glycolytic 

flux and has shown to be upregulated in macrophages following exposure to 

inflammatory stimuli, such as LPS treatment13.  
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Plasma protease C1 inhibitor protein and its alternate isoforms; Epididymis tissue 

protein Li 173 and Serpin peptidase inhibitor clade G member 1, are all expressed by 

the SERPING1 gene. This gene has demonstrated the capability to modulate 

activation of the complement immune system in monocytes, exerting 

immunosuppressive effects in both HIV+ patients and in monocytes ex vivo following 

treatment with IFN’s: α, β and γ15. Further, SERPING1 is known to increase vascular 

permeability through its role as a C1 protease inhibitor, by triggering activation of 

bradykinin pathways16. Macrophage treatment with NECA has previously 

demonstrated the ability to initiate an “angiogenic switch”, that increases 

angiogenesis growth factors (such as VEGF) as well as vascular permeability10. It 

therefore appears that application of PLS-DA successfully classified treatment groups 

via proteins whose functions are related to previously reported macrophage responses 

following NECA treatment. 

 

Measurements of Protein Turnover with Deuterium-Oxide Metabolic Labelling 

Data Quality and False-Discovery 

DeuteRater identified ~77,000 peptides across the 8 samples supplemented with D2O 

that contained deuterium incorporation across a minimum peak isotopic envelope of 

5, equating to an approximate 9621 peptides per sample. Of the ~77,000 peptides with 

deuterium incorporation detected across the isotopic envelope, ~25% contained 

negative values that impacted the calculation of “fraction new” peptides, likely arising 

as a result of analytical noise from mass spectrometry measurements. These peptides 

were therefore discarded, leaving ~57,900 peptides with sufficient deuterium 

incorporation across the isotopic envelope for the calculation of protein turnover rates, 

for an average of 311 proteins per sample. 

As this cell culture experiment contained only one timepoint (cells harvested at day 

7), turnover rates could not be fit for each protein as a function of time (as is typically 

performed in DeuteRater and displayed via graphical output). As a result, rates and 

coefficient of variation (CV) were calculated manually in Python (v. 3.9.7) across all 

“neutromer-spacing fraction new” (nsfn) peptides per protein. To calculate rates of 

protein turnover, median nsfn was calculated from all peptides belonging to a specific 

protein identifier, and then fit to the rate equation specified in DeuteRater5: 

Fraction New = 1-e -rate*time 

Average CV for “fraction new” calculations across all samples was 0.5, with 50% of 

proteins containing a CV of 0.3 or lower and approximately 45% of calculated protein 

turnover rates presenting a CV of 0.2 or lower. While these CVs are quite high, 

similar levels have been reported elsewhere in the literature for the quantification of 

peptide/protein turnover with D2O labelling using DeuteRater5 and other 

bioinformatic software8. Calculated rates of protein turnover ranged from ~0 (little-no 

detectable protein synthesis) to 0.83 day-1 (high turnover proteins; fixed asymptote 

value=1), with a mean protein turnover rate of 0.07 day-1. 



The “fraction new” output file generated by DeuteRater, which details the amount of 

turnover for each peptide following deuterium-labelling analysis, was provided to 

Python (v. 3.9.7) and matched against the MaxQuant database search “evidence” 

output file containing peptide sequences identified across all samples. This approach 

was adopted to characterise false-discovery rates for protein turnover when 

deuterium-labelling analysis was computed from both specific and non-specific 

peptide sequences, explicitly; a master database containing identified peptides 

(proteins) from all 8 experimental samples as a reference database of peptide 

sequences for DeuteRater to search raw mzml data files. Rates of false discovery were 

then assessed for proteins whose peptides had been quantified for deuterium-labelling. 

Database filtering across all 8 samples combined revealed a total FDR of 163 proteins 

from a total of 2491 calculated protein turnover rates. On average, this equates to an 

approximate protein turnover FDR of 20 per 311 for each respective sample or ~6.5%. 

This is approximately double reports of FDR arising from matching-between-runs 

within label-free quantification experiments17,18, but far less than reported false 

matches arising without implementation of the two peptide per protein rule employed 

for quantitation by MaxQuant’s LFQ algorithm17. This suggests that detection of the 

mass isotopic envelope (feature detection) by DeuteRater and its transfer between 

samples is relatively stringent at a set deuterium isotopic enrichment, even with the 

inclusion of protein identifications via single peptides. Turnover rates of falsely-

discovered proteins were subsequently removed from the dataset, resulting in a final 

average of 291 proteins per sample to be taken forward for further analysis. 

 

Protein Turnover vs iBAQ 

For each cytokine treatment, the agreement between iBAQ quantitation and turnover 

rate was investigated across identified proteins, to assess whether there was any 

relationship between protein abundance and turnover. First, in order to compare iBAQ 

and turnover datasets, both data were scaled via quantile transformation (scikit-learn 

v. 1.1.2), which is an effective method to reduce the impacts of outliers and render 

variables measured at different scales comparable. Proteins identified in both datasets 

were then visualised via heatmap (Figure 15a-d) and jointplots (Figure 16a-d) to 

investigate relationships between protein abundance and turnover for each cytokine 

treatment. 

 

  



 

   

 



 

 

 



 

 



 

Figure 15: Heatmaps depicting iBAQ vs turnover rate (day-1) for proteins identified in treatments: A; GMCSF, B; 

GMCSF-NECA, C; MCSF, D; MCSF-NECA. 
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Figure 16: Jointplots depicting scatter plots with lines of best-fit, as well as histograms, of iBAQ and turnover 

rates for proteins identified in treatments: A; GMCSF, B; GMCSF-NECA, C; MCSF, D; MCSF-NECA. 

 

Figure 15 illustrates a largely complementary relationship between protein abundance 

(iBAQ) and protein turnover (rate day-1) for each cytokine treatment, with a relatively 

low proportion of proteins demonstrating similar heatmap values for both abundance 

and turnover within each respective treatment. This would suggest that turnover 

measurements are providing an additional level of information on proteome regulation 

relative to measures of abundance. Figure 16 illustrates that three of four treatments 

present a negative correlation between protein abundance and turnover, albeit with 

none of the treatment correlations reaching statistical significance (p>0.05). This 

however, may suggest a slight trend for reduced protein turnover in proteins of high 

abundance, as has been previously reported in deuterium-labelling experiments19,20. 

This relationship may be influenced by the propensity for DDA to select high 

abundance precursors for MS2 fragmentation and subsequent peptide sequencing, 

with a consequent bias towards the identification of high abundant peptides (and 

proteins) within the dataset. Simultaneously, as DDA with narrow window isolation 

(as employed in this experiment at 2 m/z) is unlikely to select and successfully 

sequence M0 base monoisotopic peaks in highly deuterated (turned-over) peptides, it 

is further plausible that DDA proteomics analysis within a relatively long deuterium-

labelling protocol (such as the one-week protocol employed within this experiment) 

may preferentially identify and quantify peptides of low deuterium enrichment for 

rate calculations. This would not be surprising, given that various other D2O-labelling 

experiments have reported proteins whose turnover rates are saturated and therefore 

unable to be accurately quantified due to their respectively high rates of protein 

turnover and deuterium-labelling5,21. An average quantified protein turnover rate of 

0.07 day-1 within this dataset would further support this theory and would therefore 

pose as one potential mechanistic explanation for the relationship between protein 

abundance and turnover observed within this dataset. Depending on the experimental 

design and the intended target proteins deemed to be of highest importance, the 

duration of D2O labelling should therefore be carefully considered during 

experimental planning. 

Another potential explanation for the observed negative trend in Figure 16 may be 

that the potential increases in deuterium-labelling in fact assist feature detection and 

subsequent iBAQ quantitation of the isotopic envelope (cluster), especially in low 

abundant peptides (proteins) presenting reduced signal: noise within the MS1 spectra. 

Similarly, as low abundant peptides may be nearing the limits of analytical detection, 

quantifying shifts in their mass isotopic distributions becomes more challenging as 

signal intensity decreases, and it is possible that during data processing the removal of 

“fraction new” peptides impacted by negative values arising from analytical noise 

disproportionately affects low abundant peptides of low deuterium enrichment. This 

would therefore produce a relative increase in low abundant peptides with greater 

deuterium incorporation (higher turnover), capable of passing stringency filters and 

may further present an explanation for the minor negative correlation observed within 

the dataset. Regardless, dataset filtering should also be considered as an important 



downstream parameter for the quantification of protein turnover in datasets where 

abundance is being investigated in parallel. 

Within -omics datasets it is also common for biologically relevant proteins to be 

obscured through relatively lower levels of expression compared to those proteins 

(often of high abundance) whose core functions are less responsive to cellular or 

environmental stress22. It is therefore further possible that the observed leftward shift 

in (lower) relative protein abundance to higher rates of cellular protein turnover is 

merely a reflection of the relative expression levels of proteins that may be more 

responsive to each cytokine and adenosine receptor agonist (NECA) treatment. 

Furthermore, with DDA proteomics datasets prone to preferential detection of high 

abundance proteins, it is plausible complete turnover of this cellular protein pool will 

follow a longer time course, assuming that across experimental conditions the 

majority of proteins will present little-no change in their regulation22,23. 

For a final exploratory analysis, PCA was performed on both M1-like (GMCSF and 

GMCSF-NECA) and M2-like (MCSF and MCSF-NECA) macrophages to assess if 

measures of protein abundance and turnover were clearly separated across these 

datasets via a common unsupervised machine learning technique (Figure 17). 

 

 

 



Figure 17: Principal component analysis of M1-like and M2-like macrophages protein turnover and abundance 

(iBAQ) data. Red dots indicate iBAQ data and blue dots indicate turnover data. 

 

Principal component analysis clearly separates protein turnover from abundance 

datasets (Figure 17) for both macrophage phenotypes. In both cases, two proteins 

(Chloride intracellular channel protein 1; Myc box-dependent-interacting protein 1) 

belonging to the localisation protein class (PANTHER ontological classification) 

represent the most important features for PCA. 

 

  

  

 



Protein Turnover Analysis: M1- and M2-like Macrophage Responses to NECA 

To assess the utility of deuterium-labelling derived protein turnover measurements to 

separate culture treatments, principal component analysis was performed on M1-like 

(GMCSF supplemented) and M2-like (MCSF supplemented) macrophages in 

response to NECA treatment. Principal component analysis was unable to separate 

M1-like macrophages from those that received NECA, although minor separation was 

apparent along PC1, with an alternate unsupervised clustering technique, feature 

agglomeration, also unable to clearly separate NECA treatments (Figure 18a and b, 

respectively). 
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Figure 18: A; Principal component analysis of protein turnover rates in GMCSF and GMCSF-NECA treated 

macrophages. B; Feature agglomeration of GMCSF and GMCSF-NECA treated macrophages protein turnover 

rates. Red dots represent GMCSF-treated (M1-like) macrophage protein turnover rates, blue dots represent 

GMCSF-NECA treated (M2-like) macrophage protein turnover rates. 

 

While unsupervised machine learning techniques were unable to clearly separate 

GMCSF supplemented samples treated with and without NECA, this was similarly 

observed previously for protein abundance (iBAQ) analysis (Figure 6). Unfortunately, 

due to the low sample size (n=2) PLS-DA is not suitable to separate NECA treatments 

as previously performed for the iBAQ datasets (Figure 7). For further visual 

comparison of GMCSF and GMCSF-NECA protein turnover rates, heatmaps and 

jointplots were produced (Figure 19a and b).  
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Figure 19: A; Heatmap depicting GMCSF and GMCSF-NECA treated macrophage protein turnover rates. B; 

Jointplot combining scatter plot with line of best-fit and histograms for GMCSF and GMCSF-NECA protein 

turnover rates. 

 

Figure 19a illustrates predominantly similar rates for protein turnover in GMCSF and 

GMCSF-NECA treated macrophages across proteins identified in both treatments, 

however, some clear differences are present. In this untransformed data comparison, 

the extent of proteins that possess low rates of turnover (<0.1 rate day-1) is apparent, 

and is represented by the leftward skew of turnover distributions illustrated in Figure 

19b histograms. GMCSF and GMCSF-NECA demonstrate correlated and statistically 

significant protein turnover rates, however, this again is likely influenced by the 

relative proportion of protein turnover rates clustered in the bottom left of the scatter 

plot (Figure 19b). To further investigate differences between treatments, 20 proteins 

with the highest rates of turnover for both GMCSF and GMCSF-NECA supplemented 

macrophages were examined. Figure 20 illustrates protein classes with the highest 

turnover rates for GMCSF and GMCSF-NECA treated macrophages. 
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Figure 20: Protein classes associated with 20 proteins of highest turnover for GMCSF and GMCSF-NECA 

macrophages. 



Ontological analysis of the 20 proteins with the highest turnover rates revealed minor 

changes, with the RNA metabolism and protein modifying enzyme classes unique to 

GMCSF-NECA treatment and the defence/immunity protein class unique to GMCSF 

treated macrophages. With low sample sizes, further multivariate exploratory analysis 

of differences in protein turnover rates is limited, but lack of the defence/immunity 

protein class would align with NECA’s anti-inflammatory effect on macrophages. 

Analyses investigating differences in protein turnover rates were repeated for M2-like 

macrophages (MCSF) treated with and without NECA (MCSF/MCSF-NECA). 

Similar responses to GMCSF treated macrophages were observed for all analyses into 

the effects of NECA supplementation (Figures 21-24). 

 

Figure 21: Principal component analysis of protein turnover rates in MCSF and MCSF-NECA treated 

macrophages. Red dots represent MCSF treatment and blue dots represent MCSF-NECA treatment. 

 

 



 

Figure 22: Heatmap depicting MCSF and MCSF-NECA treated macrophage protein turnover rates. 

 

 



 

Figure 23: Jointplot combining scatter plot with line of best-fit and histograms for MCSF and MCSF-NECA 

protein turnover rates.  
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Figure 24: Protein classes associated with 20 proteins of highest turnover for MCSF and MCSF-NECA 

macrophages. 



2.4 DISCUSSION 

Application of deuterium-oxide (D2O) to an ex vivo cell culture model of 

differentiating M1- and M2-like macrophages enabled for quantitative analysis of 

proteome-wide turnover through an effective and minimalist metabolic stable isotope 

labelling approach. Application of a relatively stringent mass isotopic envelope (5 

peptide isotopic peaks meeting m/z spacing criterion) enabled for an average 

quantification of >40% of total detected proteins per sample within this pilot 

experiment. Use of 5% D2O further allowed for the parallel quantitation of protein 

abundance via iBAQ4, without notable effects on quantitative precision, presenting 

similar results from paired (5%) H2O and D2O treatments to those previously 

reported in the literature for technical replicates3. Furthermore, deuterium-labelling 

appeared to have a minimal effect on rates of protein identification compared to H2O-

supplemented controls, contrasting with previous reports of reduced rates of peptide 

and protein identifications following a deuterium-labelling protocol8.  

Deuterium metabolic labelling of proteins covered a range of turnover rates in 

identified peptides/proteins, which in this dataset averaged 0.07 day-1. This supports 

D2O as an effective metabolic tracer for temporal investigations into protein 

metabolism over periods of days-months. While 5% D2O was maintained in 

macrophages across the period of 7 days with the aim to capture changes between 

differentiating M1- and M2-macrophage phenotypes with and without the adenosine 

receptor agonist, NECA, it is possible that peptides (proteins) of higher turnover were 

not detected after 7 days due to large shifts in the mass isotopic distribution 

preventing identification of these peptides (proteins) at this timepoint. Shorter 

metabolic measurements with D2O may therefore enable assessment of protein 

dynamics in fast-turnover proteins where the monoisotopic precursor peak is unlikely 

to be selected by DDA for sequencing at high deuterium enrichments. Consideration 

should therefore be taken during experimental planning to ascertain the importance of 

fast- vs slow-turnover proteins. D2O poses as a versatile metabolic stable isotope 

tracer for use in cell culture studies interested in investigating temporal protein 

dynamics, an often overlooked aspect of proteome regulation in quantitative 

workflows24.  

While hindered by the low sample size of this pilot study, multivariate analysis was 

still able to clearly separate protein abundance and turnover measurements (Figure 

17), driven by proteins of shared ontology according to PANTHER classification. 

Visualisation of iBAQ and turnover values for shared proteins across macrophage 

treatments demonstrated a minor trend for negative correlation between turnover rate 

and abundance (Figure 16a-c), suggesting a possible relationship between high 

turnover rates and low abundance in this dataset. A similar observation has previously 

been observed in a technical report on proteome kinetics with D2O that utilised an 

alternative method of protein quantitation19, although the authors failed to comment 

on potential reasons for this observation. This seemingly complementary relationship 

merits further investigation in future experiments, with deuterium-labelling protocols 

proving insightful when applied to other pre-clinical models that combine protein 

kinetics with iBAQ quantitation21.  



iBAQ data alone enabled for separation of both M1- and M2-like macrophages with 

and without NECA treatment, even within the context of low sample sizes (n=4, 

respectively). This demonstrates the ability of protein abundance measures applied in 

parallel with D2O-labelling to successfully separate macrophage responses to a 

known anti-inflammatory stimulus10. In future, the combined analysis of iBAQ 

quantitation and protein kinetic analysis may pose a powerful tool in deciphering 

proteome regulation. While promising, there is still a paucity of studies applying 

D2O-labelling techniques to human and clinical models. Future work should therefore 

aim to utilise the versatility of deuterium-oxide as a metabolic tracer to further 

investigate the role of protein turnover in health and disease through integrated 

proteomics analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.5 REFERENCES 

1. Doellinger, J., Schneider, A., Hoeller, M. & Lasch, P. Sample Preparation by Easy 

Extraction and Digestion (SPEED) - A Universal, Rapid, and Detergent-free 

Protocol for Proteomics Based on Acid Extraction. Mol. Cell. Proteomics MCP 

19, 209–222 (2020). 

2. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant 

environment. J. Proteome Res. 10, 1794–1805 (2011). 

3. Krey, J. F. et al. Mass spectrometry quantitation of proteins from small pools of 

developing auditory and vestibular cells. Sci. Data 5, 180128 (2018). 

4. Schwanhäusser, B. et al. Global quantification of mammalian gene expression 

control. Nature 473, 337–342 (2011). 

5. Naylor, B. C. et al. DeuteRater: a tool for quantifying peptide isotope precision 

and kinetic proteomics. Bioinformatics 33, 1514–1520 (2017). 

6. Martinez, F. O., Gordon, S., Locati, M. & Mantovani, A. Transcriptional Profiling 

of the Human Monocyte-to-Macrophage Differentiation and Polarization: New 

Molecules and Patterns of Gene Expression1. J. Immunol. 177, 7303–7311 

(2006). 

7. Specht, H. et al. Single-cell proteomic and transcriptomic analysis of macrophage 

heterogeneity using SCoPE2. Genome Biol. 22, 50 (2021). 

8. Sadygov, R. G. Protein turnover models for LC–MS data of heavy water 

metabolic labeling. Brief. Bioinform. 23, bbab598 (2022). 

9. Buscher, K. et al. Natural variation of macrophage activation as disease-relevant 

phenotype predictive of inflammation and cancer survival. Nat. Commun. 8, 

16041 (2017). 



10. Haskó, G. & Pacher, P. Regulation of macrophage function by adenosine. 

Arterioscler. Thromb. Vasc. Biol. 32, 865–869 (2012). 

11. Csóka, B. et al. Adenosine promotes alternative macrophage activation via A2A 

and A2B receptors. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 26, 376–386 

(2012). 

12. Ruiz-Perez, D., Guan, H., Madhivanan, P., Mathee, K. & Narasimhan, G. So you 

think you can PLS-DA? BMC Bioinformatics 21, 2 (2020). 

13. Ruiz-García, A. et al. Cooperation of Adenosine with Macrophage Toll-4 

Receptor Agonists Leads to Increased Glycolytic Flux through the Enhanced 

Expression of PFKFB3 Gene. J. Biol. Chem. 286, 19247–19258 (2011). 

14. Timson, D. J. Fructose 1,6-bisphosphatase: getting the message across. Biosci. 

Rep. 39, BSR20190124 (2019). 

15. Sanfilippo, C. et al. SERPING1 mRNA overexpression in monocytes from HIV+ 

patients. Inflamm. Res. Off. J. Eur. Histamine Res. Soc. Al 66, 1107–1116 (2017). 

16. Valerieva, A. & Longhurst, H. J. Treatment of hereditary angioedema-single or 

multiple pathways to the rescue. Front. Allergy 3, 952233 (2022). 

17. Lim, M. Y., Paulo, J. A. & Gygi, S. P. Evaluating False Transfer Rates from the 

Match-between-Runs Algorithm with a Two-Proteome Model. J. Proteome Res. 

18, 4020–4026 (2019). 

18. Yu, F., Haynes, S. E. & Nesvizhskii, A. I. IonQuant Enables Accurate and 

Sensitive Label-Free Quantification With FDR-Controlled Match-Between-Runs. 

Mol. Cell. Proteomics MCP 20, 100077 (2021). 

19. Lau, E. et al. A large dataset of protein dynamics in the mammalian heart 

proteome. Sci. Data 3, 160015 (2016). 



20. Kim, T.-Y. et al. Metabolic Labeling Reveals Proteome Dynamics of Mouse 

Mitochondria. Mol. Cell. Proteomics MCP 11, 1586–1594 (2012). 

21. Lam, M. P. Y. et al. Protein kinetic signatures of the remodeling heart following 

isoproterenol stimulation. J. Clin. Invest. 124, 1734–1744 (2014). 

22. Brunner, A. et al. Ultra‐high sensitivity mass spectrometry quantifies single‐cell 

proteome changes upon perturbation. Mol. Syst. Biol. 18, e10798 (2022). 

23. Cox, J. et al. Accurate Proteome-wide Label-free Quantification by Delayed 

Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Mol. 

Cell. Proteomics MCP 13, 2513–2526 (2014). 

24. Holmes, W. E., Angel, T. E., Li, K. W. & Hellerstein, M. K. Chapter Seven - 

Dynamic Proteomics: In Vivo Proteome-Wide Measurement of Protein Kinetics 

Using Metabolic Labeling. in Methods in Enzymology (ed. Metallo, C. M.) vol. 

561 219–276 (Academic Press, 2015). 

25. Rieckmann, J. C. et al. Social network architecture of human immune cells 

unveiled by quantitative proteomics. Nature Immunology 18, 583–593 (2017). 

 

 

 

  



3. INVESTIGATIONS INTO CELLULAR 

PROLIFERATION AND PROTEIN TURNOVER IN 

HUMAN IMMUNE CELL POPULATIONS USING 

DEUTERIUM-OXIDE IN VIVO: A PILOT STUDY 

  



ABSTRACT 

 

Background and Aims: Application of deuterium-oxide (D2O) metabolic tracer for 

‘shotgun’ measurements of proteome kinetics via LC-MS have primarily employed 

cell culture and pre-clinical models. This study aimed to assess proteome kinetics in 

peripheral immune cell populations isolated from the blood of healthy participants 

dosed with D2O. 

Methods: Six healthy participants were dosed with D2O to reach a deuterium body 

water enrichment of ~1.5%, which was maintained across a six-week period. 

Deuterium body water enrichment was determined from saliva samples at each study 

visit. Venous blood was drawn via venepuncture at eight timepoints and cell 

populations were isolated via MACs/FACs. Cell populations were then analysed by 

mass spectrometry to determine rates of cellular proliferation and proteome kinetics. 

Results: Deuterium body water enrichment plateaued at 1.64 ± 0.16% across study 

participants. Monocytes and effector memory T-cells demonstrated average cellular 

turnover rates of 7%/day and 0.48%/day, respectively. Approximately 90% of 

identified proteins in effector memory T-cells were quantified for turnover across the 

study time-course, with participant body water deuterium enrichments of 1-1.2% 

proving optimal for proteome kinetic analysis. Only ~6% of total identified monocyte 

proteins rates of turnover were successfully quantified. 

Conclusions: Deuterium body water enrichment of 1-1.2% is sufficient to enable 

mass spectrometry-based measurements of cellular proliferation and proteome 

kinetics in peripheral immune cell populations. Future work should address 

constraints in modelling turnover that arise from input of fast cellular proliferation 

rates which consequently reduce proteome coverage. Optimal time point sampling is 

therefore imperative during proteome kinetic experiments in proliferating cell types. 

 

Keywords: D2O, monocytes, effector-memory T-cells, turnover, proliferation. 

  



3.1 INTRODUCTION 

Previous applications of deuterium-oxide (D2O) metabolic tracer for ‘shotgun’ 

measurements of proteome kinetics via LC-MS have primarily utilised cell culture 

and pre-clinical models. While informative, there is a current paucity of studies 

utilising D2O as a metabolic tracer for proteome-wide kinetic measurements in vivo 

(Chapter II, section 1). Furthermore, this has, to the author’s knowledge, yet to be 

employed in proliferating immune cell types isolated from human peripheral blood. 

This study therefore aims to simultaneously assess cellular proliferation and proteome 

kinetics in peripheral immune cell populations isolated from the blood of healthy 

participants dosed with D2O across a six-week period. To fully address the utility of 

this technique, a fast-proliferation cell type of the innate immune system, monocytes, 

as well as a more slowly proliferating cell type, effector memory T-cells, have been 

selected for kinetic analysis.  

This study aims to not only provide proof-of-concept for the analysis of proteome 

kinetics in proliferating cell types of the immune system, but to also investigate 

parameters intrinsic to performing D2O labelling studies in humans - such as the 

ability to effectively estimate and maintain deuterium body water enrichment at a 

defined constant, the effects of participant characteristics on D2O loading (BMI, sex), 

and importantly to determine the analytical constraints and capabilities of these 

analyses. This will inform future studies interested in utilising D2O as a metabolic 

tracer for in vivo analysis of human proteome kinetics.  



3.2 METHODS 

Study Participants 

Eight healthy adult participants (five males and three females; Table 1) were recruited 

to the study, with none presenting a history of autoimmune disease. This study was 

approved by the University of Nottingham Medical School Ethics Committee in 

accordance with the Declaration of Helsinki and all participants provided informed 

consent and completed a general health questionnaire prior to enrolment. This study 

was performed following the second UK COVID-19 lockdown and as such, 

recruitment was constrained to staff and students at the University of Nottingham. 

Unfortunately, due to the ongoing prevalence of COVID-19 and UK government 

restrictions, several participants missed one or more study timepoints due to self-

isolation or COVID-19 infection during the six-week study protocol (detailed in Table 

1). Following recovery and a negative COVID-19 test result, participants were 

allowed to resume their involvement in the pilot study.  

Participants were asked to maintain their current levels of exercise and to not alter 

their diet across the duration of the study. The morning of each study day, participants 

were asked to refrain from drinking for at least 30 minutes and to not consume food 

for at least two hours prior to their visit. Estimates of body water content were based 

on participant body mass and activity level, with estimates ranging from 55-65% body 

mass1. 

 

Deuterium Enrichment 

Deuterium-oxide (D2O, 70% atom, IsoWater Corporation) was administered to 

participants during an initial ‘ramp’ phase spread across 1-2 days aimed at achieving a 

deuterium enrichment of approximately 1-2% total body water, calculated relative to 

total body mass (600-1050ml 70% D2O administered). Assuming body water turnover 

of approximately 6% per day2, daily ‘top-up’ doses of D2O were administered 

throughout the remainder of the six-week study period to maintain isotopic plateau 

(40-100ml of 70% D2O administered per day).  

Rapid increases in deuterium body water enrichment during the ramp phase has been 

known to result in nausea and dizziness, attributed to temporary shifts in water density 

that affect the vestibular system of the inner ear3. These are transient at low deuterium 

enrichments (1-2% total body water) and once deuterium levels equilibrate with the 

body water pool, have no known side effects. One of the eight study participants 

experienced acute nausea during the early stages of the loading protocol (~halfway 

through the ramp phase) which resulted in vomiting. This study participant was 

therefore immediately withdrawn from the study and monitored by a physician, 

during which they experienced no further side effects. One study participant withdrew 

from the study following the ramp phase of their own personal volition, with the 

baseline samples from these two participants stored under the Human Tissues Act 

(2005) and subsequently utilised for development of proteomics sample preparation 

protocols (section 3.2). All six remaining study participants completed the six-week 



loading protocol without issue. Participant characteristics from the study are described 

in Table 1. 

To monitor deuterium enrichment in body water throughout the study protocol, saliva 

samples were collected from participants at each study visit. Once collected, saliva 

was immediately separated by centrifugation (10 minutes at 13,000 rpm) and the 

supernatant stored at -80⁰C until analysis. The deuterium enrichment of saliva samples 

was analysed via base-catalysed isotopic exchange of hydrogen (deuterium) atoms 

with acetone4. Briefly, 100µL from each sample was incubated with 2µL of 10M 

NaOH and 1µL of acetone for approximately 15h at room temperature. Following 

incubation, acetone was extracted through the addition of 200µL n-heptane and 1µL 

of the extracted n-heptane phase was injected into a Trace 1310 gas-chromatograph 

(Thermo Scientific) linked to a ISQ single-quadrupole mass spectrometer (Thermo 

Scientific) for isotope analysis. Samples were run alongside a standard curve of 

known D2O enrichment to enable calculation of body water enrichment, through 

monitoring changes in the ratio of the 59:58 m/z ions of acetone. 

 

Blood Sampling and Immune Cell Isolation 

At each study visit, 20ml blood was drawn via venepuncture into green lithium 

heparin BD vacutainers (Becton, Dickinson and Company, USA). Blood was 

collected at baseline (immediately prior to commencement of D2O dosing) and then at 

days 2, 7, 14, 21, 28, 35 and 42 of the six-week study. At the end of each study visit, 

participants consumed their daily maintenance dose under supervision and were 

provided with a sufficient volume of D2O to enable self-administration until the next 

study visit.  

To isolate peripheral blood mononuclear cells (PBMCs), blood was immediately 

layered on 15ml histopaque (Sigma) at room temperature. Density centrifugation was 

performed at 800g for 25 minutes at 21°C on minimum brake to acquire layered blood 

samples. PBMCs were then harvested from the buffy-coat layer, washed twice in 

endotoxin-free Phosphate Buffer Saline (PBS, Sigma) at 350g for 8 minutes, followed 

by 300g for 5 minutes to eliminate any remaining red blood cells. PBMCs were 

resuspended in Magnetic-activated cell sorting (MACS) buffer, PBS, 1% FCS and 

EDTA 2mM. PMBCs were then incubated for 15 minutes at 4°C with CD14 antibody 

coated magnetic microbeads (Miltenyi). Using an MS column (Miltenyi) attached to a 

magnet, PBMCs were passed through the column allowing for the CD14- cells to flow 

through. Following 3 washes with MACS buffer, CD14+ cells were eluted in 1ml 

MACS buffer away from the magnet.  

CD14- cells were spun down and resuspended in MACS buffer according to PBMC 

yield; 40μl per 107 PBMCs. Pan T-cell Biotin-Antibody cocktail was then added at a 

volume of 10μl per 107 PBMCs. Cells were vortexed and incubated at 4°C for 5 

minutes. Next, 20μl of Pan T-cell Microbead cocktail was added per 107 PBMCs and 

mixed by vortex. Following 10 minutes incubation at 4°C, cells were passed through 

an LS column (Miltenyi) attached to a magnet. After 3 washes with MACS buffer, 

flow-through containing pan T-cell mix was collected. 



Every T-cell sample was then distributed into four tubes for sorting of 

CD3+CD45RO+CCR7+ vs CD3+CD45RO+CCR7-. Two of the tubes served as 

Fluorescence Minus One (FMO) samples where cells were incubated with CD3 

antibody, plus either CD45RO antibody and CCR7 isotype control or CD45RO 

isotype control and CCR7 antibody. One sample would contain unstained cells in 

order to distinguish the CD3+ cells. Using the FMO samples and a SONY cell sorter 

(SH800S), CD3+CD45RO+CCR7+ cells could be distinguished from 

CD3+CD45RO+CCR7-. Briefly, the FMO sample containing a mix of T-cells was run 

through the SONY SH800S sorter on ordinary flow cytometry mode. Projecting a dot 

plot display of Forward vs Side Scatter, T-cells were gated excluding debris and 

possible dead cells. Next, forward side-scatter area vs forward side-scatter height 

graphs were used in order to exclude doublets or falsely oversized cells. Single cells 

were then plotted as Side Scatter vs Fluorescence Intensity. Using the FMO controls 

and the unstained sample, a gate separating the two populations of interest was set 

before running the analytical samples. Each sample was then sorted into two tubes 

containing CD3+CD45RO+CCR7+ and CD3+CD45RO+CCR7- cells, respectively.  

10μl of each sample was used to confirm correct labelling of the sorted cells with a 

MACSQuant 10 flow cytometer and sorted samples were then pelleted by 

centrifugation 300g 5 minutes and all of the supernatant was removed by pipetting 

and discarded. Cells were sorted at an average efficiency of 94%. 

All sorted cell populations were finally spun at 300g for 5 minutes to obtain a cell 

pellet for mass spectrometry analyses. Samples were divided equally and washed 

three times with phosphate buffered saline (PBS) via centrifugation at 300g for 5 

minutes and PBS removed from cell pellets. Cells were then stored at -80°C until 

processing for mass spectrometry analyses. Information on sorted cell numbers for 

each immune population at their respective participant timepoints are detailed in Table 

2. 

 

Measurement of Deuterium Incorporation into Nucleic Acids 

Immune cells were thawed on ice and 200µL extraction buffer (0.1M Tris·HCl, pH 8, 

0.01M EDTA, pH 8, and 1M NaCl) was used to lyse cell pellets via pipetting. Equal 

volume phenol: chloroform: isoamyl alcohol (pH 8) was added to samples, inverted 

15 times and centrifuged for 10 minutes at 13,000rpm, 4⁰C. Following centrifugation, 

the upper aqueous layer was removed to a clean Eppendorf. Nucleic acids were 

precipitated through addition of equal volume isopropanol, inverted 15 times and 

centrifuged at 13,000rpm for 20 minutes at 4⁰C. Isopropanol was removed and pellets 

were washed with addition of 100µL 70% ethanol and centrifugation at 13,000rpm for 

5 minutes (4⁰C). This wash step was repeated twice. Pellets were allowed to air-dry at 

room temperature before resuspension with 22µl molecular biology grade water and 

samples stored at -80°C until further analysis.  

Samples were thawed and nucleic acids hydrolysed via addition of 5µl of 375mM 

sodium acetate (pH 4.8) and 750µM ZnSO4 containing 0.5 units of nuclease S1 and 

0.25 units of potato acid phosphatase at 37°C overnight. Hydrolysates were then 



reacted with 10µl of O-(2,3,4,5,6-Pentafluorobenzyl) hydroxylamine hydrochloride 

(2% wt/vol) and 7.5µl of acetic acid at 100°C for 30 min. Samples were then cooled 

at room temperature prior to the addition of 100µl acetic anhydride followed by 10µl 

of 1-methylimidazole. Reactions were transferred to boiling tubes after approximately 

20 minutes and quenched by the addition of 2ml of double-distilled water. Newly 

formed derivates were extracted via addition of 500µl of dichloromethane (DCM), 

following vortex and phase separation. By prewetting the tip with DCM, the lower 

layer was removed to a clean boiling tube and this step was repeated to ensure all 

formed derivatives were successfully transferred. Derivatives were dried under 

nitrogen stream at room temperature (~25⁰C), resuspended in 40µl ethyl acetate and 

transferred to fresh autosampler vials for GC-MS/MS analysis. 

For CD14+ monocytes, 0.5µl of sample was injected into a Trace 1310 Gas 

Chromatograph connected to a TSQ 8000 triple quadrupole GC-MS/MS (Thermo 

Scientific). For CCR7- T-cells with lower cell counts and respective nucleic acid 

yields, 2µL sample was injected. All samples were injected on splitless mode with an 

inlet temperature of 280°C, with GC ramp conditions: 120°C for 1 min, ramp to 

280°C at 10°C/min, and hold for 3 min.  Selected reaction monitoring (SRM) was 

performed at m/z 395: 112 and 396: 113, representing the M0 and M+1 ions of 

deoxyribose, following a collision-induced dissociation energy of 15. Shifts in the 

ratio of the mass isotopic product ion peaks were monitored over time, and along with 

body water deuterium enrichment values determined from saliva, enabled calculation 

of cellular turnover rates as follows: 

Changes in deuterium enrichment were calculated as:  

M+1/(M + M+1) 

with the mole percent excess (MPE) expressed as difference from unlabelled D2O free 

samples. 

 

Fractional turnover were calculated as:  

F% = (r-MPE)/[(p-MPE x af)] × 100 

where r-MPE is the excess enrichment of bound deoxyribose, p-MPE is the mean 

precursor enrichment over the time period, af is the amplification factor of the 

precursor enrichment due to the multiple binding sites of deoxyribose, multiplied by 

100 to convert fractional turnover into a percentage.  

 

Fractional replacement rates (k) were then calculated as: 

-ln[1-f]/t 

where f refers to the fraction of new cells (fractional turnover) and t represents the 

time between measurements.   

  

For mass spectrometry analyses, all samples were run in triplicate alongside standard 

curves of deoxyribose at known standard concentrations. Average values for each 

triplicate measurement were taken forward for further analysis, for all samples. All 

cellular proliferation data are displayed as mean ± standard deviation, unless 

otherwise stated. Statistical significance is defined as p<0.05.  



Participant Age Sex Height (cm) Weight (kg) BMI 

 

Ramp Phase 

D2O Volume 

(ml) 

Daily 

Maintenance 

D2O Volume 

(ml) 

Target D2O 

Enrichment 

(%) 

1 25 Male 187.5 67.5 19.2 950 100 1.5 

2 26 Male 176.5 75 24.1 1050 100 1.5 

3 28 Female 169 57.2 20 800 NA 1.5 

4 28 Female 166 71.3 25.9 1000 NA 1.5 

5 54 Male 172 64 21.6 800 50 1.5 

6 23 Male 180 64 19.75 800 50 1.5 

7 40 Female 163 64.1 24.1 600 40 1.2 

8 31 Male 177 78.8 25.2 800 50 1 

Table 1: Study participant characteristics and deuterium-oxide (D2O, 70% atom) doses administered to each participant over the ramp and 

maintenance phase of the 6-week study protocol. No daily maintenance D2O volumes are presented for participants 3 and 4 (NA), as participant 

3 withdrew from the study due to personal reasons and participant 4 was withdrawn from the study due to acute nausea during the ramp phase 

that resulted in vomiting. 



Proteomics Sample Preparation 

Immune cells were lysed by the addition of 50-100µl trifluoroacetic acid (TFA), 

gently vortexed and incubated on ice for approximately 8 minutes. Samples were then 

gently vortexed for 2 seconds and immediately neutralised via addition of 

neutralisation buffer (2M Tris Base in double-distilled H2O) at 10 times the volume of 

TFA. Neutralisation was left to occur at room temperature for 10 minutes. 

Reduction/alkylation buffer (100 mM Tris (2-carboxyethyl) phosphine (TCEP), 400 

mM Iodoacetamide (IAA) in double-distilled H2O) was added at 1.1 times volume of 

TFA and samples were immediately incubated in the dark at 95⁰C for 5 minutes. 

Samples were then cooled on ice for approximately 30 minutes prior to determination 

of protein quantification at 280nm using a NanoDrop Lite Spectrophotometer 

(Thermo Scientific). Samples were then stored at -80⁰C until further processing.  

100µg of protein was aliquoted into fresh Protein LoBind Eppendorfs (Thermo 

Scientific) and diluted 1:5 with double-distilled H2O. Trypsin was added to protein 

samples at a ratio of 1:100, and samples were incubated overnight for approximately 

19 hours at 37⁰C. Tryptic digests were quenched via the addition of TFA to 2% total 

volume. Sample peptides were transferred to chromatography vials and dried under 

liquid nitrogen stream at 40⁰C for 30 minutes. Samples were then stored at -80⁰C until 

nanoLC-MS/MS analysis. 

Samples were thawed at room temperature for 15 minutes before resuspension in 50µl 

95% Acetonitrile (ACN), 5% double-distilled H2O with 0.1% formic acid (FA). 

Peptide concentrations were estimated by nanodrop measurements at 280nm and 

samples adjusted to approximately 1 µg/µl peptide concentrations. 2µl from each 

sample was pooled for quality control measurements (QCs) and all analytical batches 

included standards, sample specific QCs and blank instrument measurements to 

monitor instrument performance and repeatability throughout the run.  

For CD14+ monocyte samples, 2µg of peptides were analysed via a LTQ Orbitrap XL 

(Thermo Scientific) mass spectrometer in line with an EASY-nLC 1000 ultra-high 

pressure liquid chromatography system and EASY-Spray nano electro spray 

ionisation (nESI) source (Thermo Scientific). Peptides were loaded onto a pre-column 

(C18 Pepmap100 5mm x 5um), prior to separation on a 50cm analytical column (C18, 

5um, 50cm, 100 A⁰ Easy nano spray column #ES903, Thermo Scientific) at a flow 

rate of 250nl/min. A non-linear gradient of solvent B (80% ACN (v/v) in 0.1% FA 

(v/v)) was applied for a total gradient time of 104 minutes and total run time of 131 

minutes. Data were acquired in data-dependent acquisition (DDA) mode. Full MS 

scans were acquired at 60,000 resolution m/z 200 measured using Orbitrap mass 

analyser, with a mass range 400-1600 m/z. The top 12 precursor ions were selected 

with an isolation window of 2 m/z units for fragmentation via CID at a normalised 

collision energy of 35. MS2 spectra were acquired at a resolution of 17,500 m/z 200 

with the Orbitrap mass analyser and a dynamic exclusion duration of 180 seconds. 

For CCR7- samples, 5µg of peptides were analysed via a Q-Exactive Focus orbitrap 

mass spectrometer (Thermo Scientific) in line with an EASY-nLC 1000 ultra-high 

pressure liquid chromatography system and EASY-Spray nano electro spray 

ionisation (nESI) source (Thermo Scientific). After equilibrating the column at 98% 



solvent A (0.1% FA in water) and 2% solvent B (0.1% FA in 80% ACN) samples were 

loaded onto a µ-precolumn (C18 Pepmap100 5mm x 5um) and eluted using a linear 

gradient from 2-40% solvent B over 120mins. Following this solvent B was increase 

to 98% over 1min, held at 98% for 10mins and returned to 2% for equilibration over 

18mins. Flow rate was set at 250nl/min. The QE was operated in DDA and positive 

ionisation mode. Full MS scans were acquired at 70,000 resolution for a mass range 

of 400 -1600 m/z, with AGC 1e6 and a maximum IT of 120ms. The top 12 most 

abundant precursor ions were selected with an isolation window of 2 m/z units for 

HCD fragmentation at a normalised collision energy of 25%. MS2 spectra were 

acquired at 17,500 resolution, with AGC 1e5 and 60ms maximum IT.  

 

Mass Spectrometry Data Analysis 

Raw data files were input to the MaxQuant processing software (v. 2.1.3.0) and 

searched against the human Uniprot databases (UP000005640_9606.fa, 

UP000005640_9606_additional.fa) using the Andromeda search algorithm30. False‐

discovery rates were controlled at 1% for both peptide spectral matches (PSMs) and 

proteins. Peptides with a length of 7-50 amino acids were considered, with N‐terminal 

acetylation and methionine oxidation specified as variable modifications and cysteine 

carbamidomethylation as a fixed modification. Maximum peptide mass was set at 

5000 Da and spectra were searched with strict Trypsin specificity (KR not P), 

allowing up to two missed cleavage sites. Accurate mass identifications were 

transferred between samples using the ‘match between run’ setting of MaxQuant, with 

a match window of 0.7 minutes and an alignment window of 20 minutes. Quantitation 

was performed via intensity‐based absolute quantification (iBAQ)31.  

MaxQuant search output files were formatted appropriately using Python 

programming language (v. 3.9.7) for input into the DeuteRater GUI (v. 5). Raw files 

were additionally converted to mzml format via ProteoWizard (v. 3.0) for peak-

picking of the mass isotopic distribution by DeuteRater for peptides identified within 

the respective MaxQuant output file(s). Deuterium enrichment of the body water 

(precursor) pool for each participant timepoint were provided to the DeuteRater GUI. 

The ‘% peptide fraction new’ was calculated via spacing-based measurements of 

changes in the mass isotopic distribution over time. Turnover rates for identified 

proteins were then calculated by fitting the ‘fraction new’ to a kinetic rate curve with 

equation: 1-e -(rate+proliferation)*time, as specified by DeuteRater32. These results were 

formatted for further analysis via Python programming language (v. 3.9.7), in 

conjunction with the Python modules: pandas (v. 2.0.2), matplotlib (v. 3.5.3), seaborn 

(v. 0.12.2), scipy (v. 1.10.1), scikit-learn (v. 1.1.2) and numpy (1.20.3). PANTHER 

(release 17.0) was utilised for protein classifications and ontology analysis of 

associated biological functions. 

 

  



3.3 RESULTS 

Deuterium Enrichment in the Body Water Pool 

Rapid increases in levels of deuterium within the body water pool during the ‘ramp’ 

phase were measured in two study participants (Participants 5 and 6) across the first 

~8 hours of D2O loading. Figure 1 demonstrates both participants followed relatively 

linear increases in body water deuterium enrichment (P5: R2 0.91; P6: R2 0.99) across 

the initial period of D2O loading towards a body water enrichment of >1.5%. 

Participant 6 consumed all D2O doses allocated for the ramp-phase within the ~8-hour 

period to reach a peak body water deuterium enrichment of 1.77%, whereas 

Participant 5 consumed 75% of D2O doses for the ramp-phase during the ~8-hour 

period, and as such, reached a lower body water deuterium enrichment of 1.56% 

(Figure 1). This may explain a less linear increase in deuterium enrichment during the 

first ~8 hours of D2O loading (R2 0.91, Figure 1). Participant 5 consumed the 

remaining D2O doses for the ramp-phase over the following two days.  

 

Figure 1: Body water deuterium enrichments in Participants 5 and 6 over the first approximate 8-hours of the 

deuterium loading protocol (‘ramp’ phase). R2 represents the Pearson correlation coefficient and shading 

represents the 95% confidence intervals for each participant’s deuterium time courses, respectively. 

As D2O is known to take 2-5 hours to equilibrate within the body water pool33, it is 

likely that these values at the end of the initial ~8-hour loading period are slight 

overestimations of the values of deuterium present within total body water. Figure 2 

demonstrates that once deuterium had equilibrated within the body water pool, 

Participants 5 and 6 plateaued at the expected deuterium body water enrichments of 

1.53% ± 0.17% and 1.51% ± 0.09% respectively, over the duration of the 6-week 

study protocol.  



Figure 2: Deuterium enrichment of the body water pool for each participant across the six-week study period. 

Over the six-week study protocol, average deuterium enrichment in body water was 

1.64 ± 0.16% across all study participants. The first four study participants were 

dosed with D2O with the aim of reaching a body water enrichment of approximately 

1.5%. This was successfully achieved in three study participants (Participant 2: 1.58 ± 

0.24%; Participant 5: 1.53% ± 0.17%; Participant 6: 1.51% ± 0.09%; Figure 2). 

Participant 1, however, reached an average body water deuterium enrichment of 

2.8 ± 0.19%. As enrichment in this participant is stable across the 6-weeks, it is likely 

that this is due to an erroneous estimation of total body water content and not the rate 

of body water turnover. Participant 1 presented a BMI of ~19 which borders on 

underweight classification (<18.5). This, paired with a low level of physical activity, 

likely resulted in an overestimation of body water content as a result of reduced 

skeletal muscle mass relative to that typically expected at this participant’s body mass 

(kg). 

Participants 7 and 8 consumed D2O with the aim of reaching lower deuterium 

enrichments of 1.2 and 1% body water respectively. This was to provide a range of 

deuterium enrichments within this pilot study for downstream mass spectrometry 

analyses of cellular labelling. Participants 7 and 8 demonstrated respective deuterium 

body water enrichments of 1.29 ± 0.04% and 0.95 ± 0.22% (Figure 2). This 

demonstrates that the majority of study participants reached the approximate 

deuterium enrichments intended, with methods for calculating D2O doses appearing 

suitable in both male and female participants during free-living conditions. Participant 

1, however, illustrates that these calculations may need to further consider BMI and 

the ramifications of body composition on total body water estimates, with lower 

dosages likely being suitable for inactive participants with low skeletal muscle mass. 

However, with a coefficient of variation of 0.1 across six study participants 

encompassing an approximate three-fold range in body water deuterium enrichments, 

methods for the calculation of body water turnover appear robust for future 

implementation, with the observed variation in body water turnover rates comparable 



to other reported estimates2. Finally, to further validate these calculations, a saliva 

sample was collected from Participant 7 two-weeks after the final D2O dose in order 

to assess the decay rate of deuterium from the body water pool.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Body water deuterium enrichment across the 6-week maintenance phase and subsequent decay of 

deuterium from the body water pool of Participant 7 following two weeks without D2O. 

 

Figure 3 displays Participant 7’s body water deuterium enrichment during the 

maintenance phase and the subsequent decay rate of deuterium from the body water 

pool across two weeks following the final D2O dose. For this study, a body water 

decay rate of 6% was utilised for maintenance dose calculations, based on previous 

estimates from Disher et al, 20212. Figure 3 demonstrates Participant 7 to have a 

slightly higher decay rate than this literature average, with a daily deuterium body 

water decay rate of 7%. However, this rate is well within the limits reported by Disher 

et al, 2021, and implementation of a 6% decay rate still enabled for stable 

maintenance of deuterium enrichment in the body water pool of Participant 7, who 

presented a standard deviation of 0.04% across the 6-week plateau phase. This data 

therefore supports previous estimations of body water turnover in active individuals 

from which future body water deuterium decay rate and maintenance dose 

calculations can be based.  

 

Deuterium-Labelling of DNA to Determine Cellular Proliferation Rates 

Monocytes (CD14+) and effector memory T-cells (CD14- CD3+ CD45RO+ CCR7-) 

were subjected to mass spectrometry analysis to quantify incorporation of deuterium 

into the deoxyribose moieties of DNA, in order to calculate rates of cellular 

proliferation through changes in the deuterium enrichment of these cell type’s DNA 

over the time course of deuterium-labelling. Monocytes were selected as a fast-

turnover cell population that are expected to have fully turned-over within the blood 



compartment after approximately 2 weeks18,34,35. Effector memory T-cells were 

selected as a model cell type for slow-turnover immune populations associated with 

the adaptive immune system, whose changes in proliferation and function are 

associated with a variety of immunological disorders17,35,36.  

Selective reaction monitoring (SRM) was performed via GC-MS/MS for unlabelled 

(M0) and labelled (M+1) products of deoxyribose. Changes in the isotopic ratio were 

then normalised to body water deuterium enrichment and an amplification factor, 

calculated from body water and DNA deuterium enrichments (present as a result from 

the multiple potential hydrogen/deuterium exchange sites of deoxyribose). This 

enabled the calculation of fractional turnover rates for both monocytes and effector 

memory T-cells, displayed in Figure 4. 

 

Figure 4: Fraction of newly divided cells in monocytes (CD14+) and effector memory T-cells (CCR7-) populations 

across the 6-week D2O loading time course. Error bars represent standard error of the mean. 



Fractional turnover illustrates monocytes to have fully turned over in the blood 

compartment by day 14, in line with previous estimations from other D2O labelling 

experiments in humans18,34,35. At days 14 and 21 it appears that fraction new cells 

exceeded the expected plateau of 100% newly divided cells. This may be explained 

by two primary factors. Firstly, data were normalised to an average amplification 

factor that may not reflect interindividual or intraindividual variability across time as 

a result of differential amplification from the multiple potential deuterium exchange 

sites in deoxyribose. Secondly, three of six study participants were believed to have 

contracted COVID-19 between days 2-14, which may have very likely impacted both 

monocyte kinetics and the size of the blood monocyte pool (although no increase in 

monocyte cell numbers following MACs were noted at these timepoints, section 

3.23). This, however, would additionally explain the increased fraction of newly 

divided effector memory T-cells between days 2-7 observed in Figure 4. Average 

fractional turnover in monocytes was 7%/day, which is in line with previous 

estimations of monocyte turnover from D2O labelling in humans (at 6%/day)34. 

Effector memory T-cells demonstrated an average turnover of 0.48%/day. 

The fractional replacement rate constant (k) for each cell type was additionally 

calculated according to Neese et al, 200234. Figure 5a illustrates k rates for both cell 

types, with Figure 5b illustrating replacement k rates for effector memory T-cells only. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A 

 

Figure 5A: Fractional replacement rate constants (k) for monocytes (CD14+) and effector memory T-cells 

(CCR7-) across D2O loading. 
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Figure 5B: Fractional replacement rate constant (k) for effector memory T-cells (CCR7-) with adjusted y-axis 

scale. Error bars represent standard error of the mean. 

 

Figure 5a and 5b illustrate k rates to increase sharply from day 2-7 of D2O loading, 

with a subsequent decrease from day 14 to 21, after which rates plateau. This is an 

expected observation for monocytes, whose fractional turnover would be expected to 

be highest until ~14 days, after which it would be expected that cells are fully turned 

over and consequently the rate of deuterium-labelling will fall sharply to plateau. The 

sharp increase in monocyte k rate from day 2-7 is also expected and likely explained 

by the post-mitotic release of monocytes from bone marrow into the peripheral blood 

taking approximately 1.6 days, with similar increases in monocyte fractional 

deuterium-labelling previously being reported in humans using deuterated glucose18. 

The fractional replacement rate of effector memory T-cells also demonstrates an early 



increase followed by stabilisation to plateau at ~21 days onwards. While less expected 

for this slower turnover immune cell population, initial expansion followed by 

reductions in relative deuterium-labelling have been observed in other deuterium-

labelling experiments37, especially where infection elicits a rapid expansion of the 

active cellular pool then subsequent decline due to increased cell death. To the 

author’s knowledge, deuterium-labelling kinetics for effector memory T-cells isolated 

via expression of these specific cell-surface markers (CD14- CD3+ CD45RO+ CCR7-

) has not previously been reported in humans, and as such this data represents the first 

deuterium-labelling kinetic dataset of its kind. Broader comparisons between the 

average fractional turnover of effector memory T-cells within this dataset (Figure 4, 

average 0.48%/day) and those available within the current literature35, demonstrate 

turnover to be within the range of that expected in humans at steady-state 

(~0.33%/day) and increased rates as a result of active immune disease (~1.33, active 

HIV-1/AIDs infection). Again, it is possible that the proliferation rates of this dataset 

may be impacted by COVID-19 infection in three of the six participants within this 

pilot study, which would explain the increased k rates and fractional turnover between 

days 2-21 across this active infection window (Figures 4 and 5b).  

To determine whether COVID-19 infection is impacting calculation of fractional 

cellular turnover in this dataset, the three participants that were believed to have 

contracted COVID-19 (two tested positive and one self-isolated due to proximity to 

one of the COVID-19 infected study participants) were compared against the other 

three participants of the pilot study (Figure 6a and 6b). 
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Figure 6A: Fractional turnover of monocytes (CD14+) in COVID-19 positive (n=3) and negative (n=3) 

participants over time (days). 
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Figure 6B: Fractional turnover of effector memory T-cells (CCR7-) in COVID-19 positive (n=3) and negative 

(n=3) participants over time (days). Error bars represent standard error of the mean. 

 

Figure 6a demonstrates a clear increase in the fractional turnover of monocytes in 

participants infected with COVID-19 compared to those uninfected, which surpasses 

the theoretical maximum fractional turnover of 1 (100%). COVID-19 negative 

participant fractional monocyte turnover increases to the expected maximum of 1 at 

day 14, in line with previous estimates18,34,35, albeit with a subsequent plateau slightly 

below the expected value of 1 from thereon. Figure 6a supports the hypothesis that the 

previously observed increase in the fraction of new monocytes past the expected 

fractional plateau of 1 (100% turned over cells, Figure 4) is likely driven by increases 

in the size of the monocyte pool in participants following COVID-19 infection, with 

 



participants who were COVID-19 negative not surpassing the % fraction new cell 

threshold of 100% at any timepoint. Differences between COVID-19 positive and 

negative participants during the study duration are less apparent in effector memory T-

cell fractional turnover (Figure 6b), with average values across timepoints between 

groups generally within one standard error of each other’s mean.  

 

In Vivo Proteome Kinetics in Human Monocytes 

Due to the fast proliferation rates of monocytes, only data from days 2, 7, 14 and 21 

were included for calculating turnover rates in proteins identified by LC-MS/MS 

analysis. Across these timepoints, 348 proteins were detected across a diverse range of 

ontologies (Figure 7a and 7b).  

 

A 

Figure 7A: Protein classes identified by PANTHER in human monocytes proteomics dataset during the first 3-

weeks of D2O loading. 
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Figure 7B: Biological processes identified by PANTHER in human monocytes proteomics dataset during the first 

3-weeks of D2O loading. 

Deuterium incorporation was then quantified across a minimum peak isotopic 

envelope of 5, resulting in ~2400 peptide sequences, equating to approximately 270 

peptides per sample. The coefficient of variation (CV) among these measurements per 

peptide was relatively low (CV 0.18) and median values were taken forward from 

each peptide per protein for turnover rate calculations. Isotopic envelopes that 

contained negative values which may impact turnover rates were removed and the 

neutromer-spacing “fraction new” values for proteins were fit to the rate equation 

specified by DeuteRater:  

Fraction New = 1-e -(rate+proliferation)*time 

which accounts for the input of cell proliferation in order to accurately model protein 

turnover. 

This resulted in the successful calculation of turnover rates for 20 proteins identified 

within the dataset, with an average turnover rate among these proteins of 0.44/day-1. 

While these quantified proteins represent a low proportion of the total proteins 

identified (~6%), it may be that within these fast-turnover cells deuterium 

incorporation arising from cell proliferation predominates that incorporated into 

cellular peptides (proteins) over time. This, in addition to the previously demonstrated 

interindividual variability as a result of COVID-19 (Figure 6a) and use of an average 

proliferation rate calculated across timepoints and participants (Figure 5a), appears to 

present difficulties in modelling protein turnover within monocytes. Indeed, of the 20 

proteins quantified, many are proteins associated with core cellular functions (e.g. 

actin-beta, histones) that are typically present in high abundance, whose turnover rates 



demonstrate relatively uniform increases over time (Figure 8). To further investigate 

the reliability of these measurements, changes in the mass isotopic distribution of 

actin-beta peptides were investigated (Figure 9a-c) to ascertain whether changes in 

isotopic peak intensities met theoretical and experimental expectations from previous 

deuterium-labelling experiments14,32. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Fractional turnover of proteins; actin-beta (P60709), Histone H2A type 1 (P04908) and Histone H3.2 

(Q71DI3). Error bars represent standard error of the mean. 
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Figure 9: Decay rate of monoisotopic peak (M0) of actin-beta peptide, AGFAGDDAPR (A) and all detected actin-

beta peptides; AGFAGDDAPR, DLTDYLMK, GYSFTTTAER, DSYVGDEAQSK, SYELPDGQVITIGNER (B). Error 

bars represent standard error of the mean. C; shifts in peak abundance of the mass isotopic distribution of M0-3 

for all actin-beta peptides. 

 

Figure 9 demonstrates decay of the monoisotopic peak abundance of actin-beta 

peptide from days 2-14 and then to plateau from days 14-21, both of which support 

the fractional protein turnover of core proteins (actin-beta, histone H2A type-1 and 

H3.2) depicted in Figure 8. Decay of the monoisotopic peak of a peptide as 

deuterium-labelling increases is an expected observation in protein turnover LC-MS 

studies utilising D2O
14. Shifts in abundance from the unlabelled monoisotopic peak 

towards M+ isoforms is further confirmed for actin-beta peptides in Figure 9c, with 

stark relative increases in the M+3 isotopomer observed in conjunction with the 

decrease of the monoisotopic peak abundance. Interestingly, a similar decrease in 

iBAQ abundance for actin-beta protein was observed over the time-course of 

deuterium-labelling (Figure 10a) from days 2-14.  

To investigate this further, iBAQ abundance was assessed across days 2-21 in all 

proteins quantified for measures of turnover via deuterium-labelling. Figure 10b 

clearly demonstrates stable iBAQ quantification during the period of 2-7 days of 

deuterium-labelling, but a severe decrease of approximately three-fold from days 7-14 

which plateaus from days 14-21. This suggests that in a fast-turnover immune cell 

population such as monocytes, that once cells have largely been replaced, deuterium-

labelling of this extent within cells (and therefore proteins) prevents the accurate 

quantitation of the cellular proteome via iBAQ, assuming that in this dataset 

expression of these proteins remains relatively stable across time31,38.  
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Figure 10: A; iBAQ quantitation of actin-beta in human monocytes over the first two weeks of D2O loading. B; 

iBAQ quantitation of all proteins with calculated turnover rates via deuterium-labelling. Error bars represent 

standard error of the mean. 



To confirm the relationship between iBAQ quantitation and deuterium-labelling over 

time, CVs were calculated from extracted ion current (XIC, MaxQuant) peptide 

intensity values for proteins across study participants. Figure 11 demonstrates the 

duration of deuterium-labelling does not have a notable effect on (raw) calculated 

protein intensity CVs from peptides.  

Figure 11: Coefficients of variation for extracted ion current peptide intensities quantified across the first three 

weeks of D2O loading in human monocytes, in vivo. Error bars represent standard error of the mean.  

 

Figure 11 supports that the decrease in iBAQ quantitation observed with deuterium-

labelling in Figure 10 is not related to reduced confidence in LC-MS measurements as 

a result of the in vivo human D2O loading protocol. As Figure 9c has previously 

confirmed the expected shifts in the mass isotopic distribution of peptides within this 

dataset over time, the relationship between the number of isotopic peaks used to 

calculate peptide intensity was next investigated.  

Figure 12a displays the number of isotopic peaks utilised for abundance quantification 

in identified peptides across the deuterium-labelling time-course.  
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Figure 12: A; Violin plots of quantified peptide isotopic distributions/envelopes relative to the number of isotopic 

peaks detected by MaxQuant, B; The number of quantified peptides at each time point of the D2O loading pilot 

study. 



Figure 12a demonstrates an increase in the number of mass isotopic peaks quantified 

across peptides as deuterium-labelling increases from days 0 and 2 to days 7 and 14, 

with day 21 then demonstrating a decrease in the number of mass isotopic peaks 

quantified. While this has demonstrated no impact on quantitative precision (Figure 

11) there is a clear impact for deuterium-labelling on the number of peptides whose 

abundance can be quantified. Figure 12b suggests a transitory point of cellular 

deuterium-labelling at days 7-14, where the number of quantifiable peptides thereafter 

drastically decreases, which is reflected in the reduced density of the mass isotopic 

distribution that is still detected at M0-M+3 compared to other time points (Figure 

12a). This suggests detection of the mass isotopic distribution itself to be the limiting 

factor impacting peptide quantitation, which appears to decrease as deuterium-

labelling shifts the mass isotopic distribution past ~70% fractional turnover (Figure 

8), after which it is likely only those proteins of high abundance (or low turnover) are 

still sufficiently detected in the mass spectrum for protein quantitation. This is 

confirmed by an observed relationship between peptide extracted ion current (XIC) 

intensity and number of mass isotopomers quantified (Figure 13), where there is a 

rightward shift in the intensity and number of mass isotopic peaks over the period of 

in vivo deuterium-labelling. 

Figure 13: Extracted ion current intensities of peptides quantified across a mass isotopic distribution of 2-6 mass 

isotopomers. Bars represent time points. Error bars represent standard error of the mean. Note: only 1 peptide is 

detected with 6 mass isotopic peaks at days 0 and 2. 

 



In Vivo Proteome Kinetics in Human Effector Memory T-cells 

As effector memory T-cells have demonstrated slower proliferation rates than 

monocytes (Figure 4), an additional late study time point of Day 42 was included for 

turnover analyses. This resulted in the total identification of 249 distinct proteins 

across a range of ontologies (Figure 14a and 14b), with a notable detection of proteins 

related to translational processes (Figure 14a), similar to that previously detected in 

monocytes (Figure 7a). 
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Figure 14A: Protein classes identified by PANTHER in effector memory T-cells across D2O loading in humans. 
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Figure 14B: Biological processes identified by PANTHER in effector memory T-cells across D2O loading in 

humans. 

Assessing deuterium incorporation across a minimum peak isotopic envelope of 5, 

resulted in the detection of 138,652 deuterium-labelled peptides across all samples, 

translating to ~4620 peptides per participant across the study time course. Removal of 

negative values within the isotopic envelope that may impact turnover rate 

calculations, resulted in 110,553 peptides suitable for quantification within the 

dataset, relating to 234 proteins and an average of 127 proteins detected per 

participant. The coefficient of variation (CV) among these measurements per peptide 

was at an acceptable level (CV 0.28), with median values then calculated from all 

peptides per protein in order to calculate protein turnover. 

When modelling protein turnover rates, factoring in the input of “fraction new” cells 

(as described in section: In Vivo Proteome Kinetics in Human Monocytes), this 

resulted in turnover rates for 224 proteins, with these calculations requiring the 

detection of proteins at a minimum of two study time points in at least one participant. 

This accounts for approximately 90% of the total proteins identified within this 

dataset (249 proteins). This appears to follow an inverse relationship to monocytes, 

whose proteins are most easily quantified at early time points due to their fast cellular 

turnover, whereas protein turnover is more easily quantified at later time points in 

effector memory T-cells (Figure 15).  



 

Figure 15: Counts of unique proteins modelled via deuterium-labelling turnover measurements at sampled study 

time points.  

 

As with monocytes, this is likely explained by the input from fraction new cells 

within the turnover rate model, whereby there appears to be optimal sampling 

windows for protein turnover measurements relative to cellular proliferation. This is 

clearly demonstrated for effector memory T-cells in Figure 16, whereby average 

“fraction new” protein exceeds that of “fraction new” cells at days 21 and 42 of D2O 

loading.  



Figure 16: Fraction new cells (orange, dashed line) and fraction new protein (blue, solid line) across D2O 

loading. Error bars represent standard error of the mean. 

 

This is largely attributed to a high proportion of protein turnover rates being within 

two decimal places of cellular turnover, suggesting that many proteins turn over as a 

result of cellular proliferation, with a smaller subset of proteins presenting rates 

greater than cell proliferation. 163 proteins demonstrate rates above cell proliferation, 

however, only 83 of these are above cell proliferation in all instances (across 

participants). Visualising these proteins fractional turnover in Figure 17a clearly 

illustrates the input of cellular proliferation on protein turnover modelling, with only 3 

proteins detected at day 2, none at days 7 and 14 (no error bars present), with 65 and 

13 detected at days 21 and 42, respectively. As at day 42, fractional turnover is 

starting to exceed 50%, it is likely the decrease in turnover rates at this time point is 

impacted by reduced peptide identifications and quantitation of the isotopic envelope, 

as previously illustrated in monocytes (Figures 8 and 12).  
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Figure 17A: Fraction new protein and cells in effector memory (CCR7-) T-cells. Orange, dashed line illustrates 

fraction new cells, blue, solid line indicates fraction new protein, with error bars representing standard error of 

the mean. 
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Figure 17B: Relatively stable protein turnover (k/day) for rates greater than cell proliferation in effector memory 

(CCR7-) T-cells at time points 2, 21 and 42 days D2O loading. Shaded area represents standard error of the mean.  

 

To assess differences between proteins whose turnover diverged from deuterium-

labelling via cellular renewal, ontology analyses were conducted of protein classes 

and associated biological pathways (Figure 18a and 18b). Figure 18a protein class 

ontology demonstrates clear differences in proteins whose turnover reflect or exceed 

cellular proliferation. Of note, is that the translational protein class that was present in 

high abundance in previous ontology analysis of this proteomics dataset (Figure 14a) 

is preferentially detected in the high protein turnover grouping, being >20% of overall 

proteins. Also of note, are significant increases in metabolite interconversion enzyme 

and cytoskeletal protein classes, with an increase in unassigned proteins. Drastic 

decreases in the presence of protein classes are also evident in high vs equal-to-

proliferation protein turnover groups, including the transporter, DNA metabolism and 

gene-specific transcriptional regulator protein classes. Pathway analysis (Figure 18b) 

reveals distinct changes in a variety of biological pathways, with increases in: 

cytoskeletal regulation by Rho GTPase, nicotinic acetylcholine receptor signalling 

and glycolysis; and significant decreases in cadherin and VEGF signalling.  
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Figure 18: Protein classes (A) and biological pathways (B) identified by PANTHER in effector memory T-cells, 

whose protein turnover approximates (equals) or exceeds (is greater than) cell proliferation rates. 

To assess the impact of deuterium-labelling on protein quantitation in effector 

memory T-cells, changes in abundance of the mass isotopic distribution was assessed 

at day 2 and 21 of D2O loading (Figure 19a). Figure 19 demonstrates both a relative 

rightward shift in the mass isotopic distribution over time, as well as a significant 

reduction in abundance of the monoisotopic peak. Figure 19b shows quantified 

peptide abundance (XIC) to plateau from day 21-42, however, a significant reduction 

in peptides identified is observed from day 21 to day 42 (370 to 34 peptides), 

supporting previous interpretation that reduced peptide sampling occurs after day 21 

in this dataset as a result of deuterium-labelling above 50% fractional turnover. 
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Figure 19A: Mass isotopic distribution intensities of peptides quantified for protein turnover in 

effector memory T-cells, at days 2 and 21 of D2O loading. 
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Figure 19B: Changes in the monoisotopic peak abundance of all peptides quantified for protein turnover in 

effector memory T-cells at days 2, 21 and 42 of D2O loading. Error bars represent standard error of the mean at 

all time points.  

 

To investigate the relationship between iBAQ protein abundance and turnover (k rate) 

measurements, data were log-transformed and visualised via jointplot. Figure 20 

demonstrates a slight negative correlation between protein turnover (k rate) and iBAQ 

quantitation, similar to that previously reported in cultured ex vivo human monocytes 

(chapter II, section 2.2) and the available literature39,40. As previously alluded to in 

chapter II, section 2.3, it is possible that this is a result of a real biological relationship 

or can be attributed to biases in peptide sampling and quantitation concomitant with 

DDA LC-MS/MS analysis.  



 

Figure 20: Jointplot depicting scatter plot with line of best fit for log-transformed protein abundance (iBAQ) vs 

protein turnover (k rate), and histograms of data distributions for each dataset, respectively. 

Of final interest, was to investigate whether the temporal limitations in peptide 

identification and consequent quantitation were related to the body water deuterium 

enrichments of participants, which spanned an approximate three-fold range (Figure 

2). While all identified proteins in the dataset were detected at each time point in at 

least one participant, Figure 21 demonstrates a clear reduction in unique proteins 

quantified by iBAQ (Figure 21a) and for protein turnover (Figure 21b) in participants 

loaded to higher body water deuterium enrichments. Figure 21a illustrates deuterium 

enrichments of 1-1.2% body water to present significant improvements in number of 

proteins quantified via iBAQ, compared to those participants with deuterium body 

water enrichments >1.5%. Interestingly, an increase in average plateau enrichment 

from ~1.5% to ~2.8% did not have as significant an impact on iBAQ quantitation 

(Figure 21a) as increases from 1-1.2% to ~1.5%. Of further interest, there appears to 

be a greater improvement in the number of proteins quantified for turnover 



measurements than for iBAQ with lower body water deuterium enrichments of 1-

1.2% (Figure 21b). This demonstrates lower body water deuterium enrichments to 

have beneficial effects for both deuterium-labelling measures of protein turnover and 

iBAQ quantitation, with the added experimental benefit of reduced dose volumes 

concurrent with decreased cost, time and potential side-effects within participants 

during D2O loading. A trend for higher deuterium enrichments (~2.8) to aid iBAQ and 

turnover quantitation at earlier time points (days 2-14), followed by a shift towards 

lower deuterium enrichments (~1.5%) to aid quantitation at later time points (days 21-

42) supports previous interpretations of deuterium-labelling to alter detection of the 

mass isotopic distribution over time (chapter II, section 2.3 and 3.3). No differences 

were observed between COVID-19 positive and negative participants across the study 

duration. 
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Figure 21A: Unique proteins quantified for iBAQ per body water deuterium enrichment range and time point 

(day). Error bars represent standard error of the mean. Due to COVID-19 self-isolation, ~1.5% body water 

deuterium enrichment has only one participant timepoint at day 7 and 1-1.2% has only one participant timepoint 

at day 14. Only one participant was loaded to ~2.8% body water deuterium enrichment for the study duration 

(Participant 1). 
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Figure 21B: Unique proteins quantified for turnover per body water deuterium enrichment range and time point 

(day). Error bars represent standard error of the mean. Due to COVID-19 self-isolation, ~1.5% body water 

deuterium enrichment has only one participant timepoint at day 7 and 1-1.2% has only one participant timepoint 

at day 14. Only one participant was loaded to ~2.8% body water deuterium enrichment for the study duration 

(Participant 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.4 DISCUSSION 

This pilot study’s findings demonstrate that deuterium-oxide (D2O) can be safely 

administered to both male and female participants, in order to accurately enrich and 

maintain deuterium concentrations within the body water pool for metabolic 

measurements of cellular proliferation and protein turnover in immune cell 

populations. This enabled the determination of cellular proliferation in both fast 

(monocyte) and slow (effector memory T-cell) immune populations, with sufficient 

sensitivity to detect differences both acutely and temporally within these processes 

following infection with COVID-19 (Figure 6a). Differences between rates of cellular 

proliferation, however, present greater challenges towards successful modelling of 

protein turnover in these cell populations, with greater difficulties apparent when 

quantifying proteome kinetics in fast-turnover (monocyte) vs slow-turnover (effector 

memory T-cell) populations. Both datasets convey the importance of optimal time 

point sampling, with early sampling recommended for monocytes (<7 days) and later 

sampling appearing optimal for protein turnover quantification in effector memory T-

cells (~21 days; Figures 15 and 17). For future studies, this suggests that 

consideration of optimal time point sampling is vital to experimental planning, but 

also demonstrates that alterations in protein turnover rate modelling may be required 

in order to improve proteome coverage throughout deuterium-loading time courses 

(Figures 16 and 17a), in particular with regards to addressing limitations in the use of 

standardised and/or linear constants to account for input from the dynamic processes 

of cellular turnover, that may not fully account for interindividual variability.  

Assessment of changes in the mass isotopic distribution with deuterium-labelling 

abided by previous theoretical and experimental observations14,32, in both monocytes 

and effector memory T-cells (Figures 9 and 19). Interestingly, the effects of 

deuterium-labelling on quantitative precision for both abundance and turnover appear 

to be a reflection of the detection of the mass isotopic distribution (i.e. peptide 

identification) opposed to any alterations in quantitative accuracy resulting from 

variation in the numbers or intensity of mass isotopomers used for quantification 

(Figure 11). Of further interest, is that this observation has a greater impact on 

proteome depth for turnover measurements with deuterium-labelling than on iBAQ 

quantitation (Figure 21), both of which suggest a lower body water deuterium 

enrichment of 1-1.2% to be superior to ≥1.5%. This proves beneficial for future 

studies that may consequently benefit from reduced costs due to decreased deuterium-

oxide volumes and a reduced likelihood of any potential side-effects (such as nausea) 

that are known to occur as a result of D2O dosing3.  

Relatively stringent dataset filtering during protein turnover quantification in this 

study still enabled for the quantification of turnover rates in ~90% of all identified 

proteins in slow-turnover effector memory T-cells, albeit a much lower range of ~6% 

was achieved in fast-turnover monocytes. It is likely interindividual variability in 

cellular proliferation rates as a result of COVID-19 (Figure 6a) and body water 

deuterium enrichments (Figure 21b) largely impacted this pilot study’s ability to 

quantify turnover rates of these immune populations proteomes. However, knowledge 

of the inputs and relative importance of these factors may prove invaluable for future 



studies looking to implement similar stable isotope labelling techniques to assess 

proteome-wide protein turnover measurements. While the range and depth of these 

datasets is largely impacted by limitations in peptide (and therefore protein) 

identifications with deuterium-labelling, quantitative accuracy was at acceptable 

levels for protein turnover measurements (average CVs: monocytes 0.18, effector 

memory T-cells 0.28). The capability to simultaneously quantify protein abundance 

via iBAQ in parallel to protein turnover during deuterium-labelling experiments with 

D2O loading has previously been illustrated in chapter II, section 2.2, along with one 

published study41, albeit this study only presented iBAQ data as a complement to 

turnover rates in rats, and not humans. This pilot study is therefore the first (to the 

author’s knowledge) to provide in vivo iBAQ data in tandem with paired protein 

kinetics through deuterium-labelling from D2O in humans. Comparisons between 

paired protein turnover and abundance measurements demonstrated a minor negative 

correlation as previously reported in the literature39,40, in chapter II, section 2.2, and 

in both monocytes (not shown) and effector memory T-cells (Figure 20) within this 

dataset. While a mechanistic explanation has previously been alluded to in chapter II, 

section 2.2, this dataset further displays an interesting effect in Figure 10b, whereby at 

high fractional cellular turnover (≥70%) iBAQ quantitation of all monocyte proteins 

quantified for turnover decreases drastically after day 7 to plateau at days 14-21. 

Figure 12 suggests this may be due to shifts in the mass isotopic distribution at high 

levels of deuterium-labelling subsequently reducing peptide sampling through a 

decreased ability to identify the monoisotopic peak (required for peptide 

identification), with the additional requirement for higher numbers of mass isotopic 

peaks to be included in XIC (and therefore iBAQ) quantitation in order to provide 

accurate abundance measurements (Figure 13). Insufficient detection of a mass 

isotopic envelope of 6 or greater (Figure 13) may be why there is a significant decline 

and probable underestimation of iBAQ protein abundances at later time points during 

D2O loading, which is supported in Figure 12a where a mass isotopic envelope of 

only 2-5 mass isotopomers is quantifying highly deuterated peptide species. Due to 

the slower proliferation rate of effector memory T-cells, this behaviour is not detected 

following 6-weeks of in vivo deuterium-labelling in this cell type (Figure 21a).  

 

 

 

 

 

 

 

 

 

 



3.5 CONCLUSIONS 

The work of chapter II presents deuterium-oxide as a versatile and effective stable 

isotope tracer for application to cellular proliferation and proteome kinetic analyses in 

humans, within both ex vivo and in vivo experiments. Ease of administration enables 

deuterium-oxide to be utilised without the requirement for extensive prior clinical 

experience within human studies, and is extremely well-suited to free-living 

investigations where maintenance of deuterium enrichment in the body water pool can 

be achieved through participant self-administration across a period of days-months. 

Stable maintenance of body water deuterium enrichment in human participants within 

this study was easily achieved across a three-fold range, without prior knowledge of 

individual body water kinetics, although caution is advised for participants whose 

BMI may be near underweight or obese classification, especially when in conjunction 

with relative inactivity. In human studies, where it is desirable to administer as little 

D2O as possible, it appears deuterium enrichment of 1-1.2% body water is sufficient 

for both cellular proliferation and proteome kinetic analyses. Future work should look 

to address constraints in protein turnover modelling arising from inputs of cellular 

proliferation, that may consequently reduce proteome depth or quantitative accuracy, 

particularly in proteins of low turnover or cell types with fast cellular renewal.  

Implementation of these techniques in tandem with more established quantitative 

methods, such as iBAQ, will benefit experiments interested in deciphering proteome 

regulation across a diverse range of cell types, while drawing much needed attention 

to the often overlooked aspect of proteome regulation that is, protein turnover. It is 

likely for these stable isotope techniques to reach the proteome depth required for 

comprehensive characterisation of cellular proteome kinetics, that implementation of 

more up-to-date instrumentation and acquisition strategies is required, with great 

potential for improved bioinformatic approaches incorporating deuterium-labelled 

peptide-specific search algorithms and quantitation being desirable in order to 

improve confidence within these measurements. With many diseases characterised by 

alterations in cellular and proteome turnover, these techniques pose exciting avenues 

for mass spectrometrists and biologists alike, which may present an important step to 

further understanding a plethora of human pathologies. 

 

 

 

 

 

 

 

 

 



3.6 APPENDIX 

Optimising Proteomics Sample Preparation 

 

Proteome Coverage of Unlabelled Immune Cell Populations 

 3.61 Methods 

Prior to the commencement of this study, it was important to test the efficacy of our 

current proteomics protocols for single-cell immune populations. 35ml of whole 

blood was obtained from one healthy participant following informed consent under 

ethical approval from the University of Nottingham, from which blood sample 

PBMCs were isolated via Histopaque gradient. Briefly, 35ml whole blood was 

carefully layered onto 15ml Histopaque (Sigma). The sample was centrifuged at 800g 

for 25 minutes at 21⁰C. The PBMC layer was removed with a 10ml glass pipette and 

transferred to a fresh 50ml tube, and PBS added to a total volume of 50ml. The 

sample was then centrifuged at 1400rpm for 8 minutes at room temperature and 

supernatant discarded. Cells were washed twice with PBS by centrifugation at 300g 

for 5 minutes.  

PBMCs were counted using a cell counter and MACS buffer containing CD14+ beads 

was added at a volume based on manufacturer’s recommendations (Miltenyi). The 

sample was mixed and incubated at 4⁰C for 15 minutes before addition of 20ml cold 

MACS buffer, and washed via centrifugation at 1000rpm for 5 minutes. Supernatant 

was discarded and the cell pellet resuspended in 500µl MACS buffer. An MS column 

(Miltenyi) was equilibrated with 500µl MACS buffer before addition of the sample. 

The column was washed three times with 500µl MACS buffer and the CD14- flow-

through collected for downstream FACs. The CD14+ fraction was subsequently eluted 

from the column by passing through 1ml MACS buffer away from the magnet.  

The CD14- cell flow-through was collected and resuspended in MACS buffer 

according to PBMC yield, as detailed previously (section 3.2). 50µl of sample was 

removed for use as a control, and the remaining sample was stained with antibodies; 

CD3-PE, CD4-APC, CD8-PE-Vio 770 (Miltenyi) and CD14 APC-eFluor 780 

(eBioscience), in order to sort CD4+ and CD8+ T-cell populations with a Beckman 

Coulter Astrios EQ. Isolated cells were pelleted via centrifugation at 300g for 5 

minutes and supernatant removed, then washed three times with phosphate buffered 

saline (PBS) by centrifugation at 300g for 5 minutes. PBS was carefully removed 

from cell pellets and these were then stored at -80°C until processing for mass 

spectrometry analysis. 

Immune cell populations CD14+ monocytes, CD14- CD4+ T-cells and CD14- CD8+ 

T-cells, were lysed by addition of 100µl 100mM ammonium bicarbonate containing 

0.1% SDS (pH 8). 2.1µl of 500mM Dithiothreitol (DTT) in 50mM ammonium 

bicarbonate was added to the samples (final sample concentration of ~10mM DTT), 

which were then incubated at 50⁰C for 45 minutes. Samples were cooled for 10 

minutes on ice before addition of 11.5µl 500mM Iodoacetamide (IAA) in 50mM 

ammonium bicarbonate (final IAA sample concentration of ~50mM) and incubation 



in the dark at room temperature for 20 minutes. 460µl ice-cold acetone was then 

added to samples which were incubated overnight at -20⁰C to precipitate proteins. The 

following day, samples were centrifuged at 17,000g for 20 minutes at 4⁰C. Acetone 

was carefully removed and the resulting protein pellets washed with 50µl ice-cold 

acetone and centrifugation at 17,000g for 5 minutes. Acetone was removed and 

protein pellets air-dried prior to resuspension in 100µl 50mM ammonium bicarbonate. 

1µg of MS Grade Trypsin (Pierce, Thermo Scientific) was added to samples which 

were incubated at 37⁰C overnight. 2.5µl of 10% formic acid was added the following 

morning to quench protein digestion and samples were transferred to glass LC-MS 

vials and dried under nitrogen stream for 30 minutes at 40⁰C. Samples were 

resuspended in 100µl 95% double-distilled H2O and 5% acetonitrile with 0.1% formic 

acid. 1µg peptides were injected for analysis with a Q-Exactive orbitrap mass 

spectrometer (Thermo Scientific) in line with a Dionex Ultimate 3000 ultra-high 

pressure nano liquid chromatography system and electrospray ionisation source 

(Thermo Scientific). A non-linear gradient of solvent B (80% ACN (v/v) in 0.1% FA 

(v/v)) was applied for a total gradient time of 104 minutes and total run time of 120 

minutes. Full MS scans were acquired at a resolution of 60,000 for the mass range 

380-1300 m/z, with a precursor isolation window of 2 m/z for MS2 scans at a 

resolution of 17,500.  

Data were analysed with Proteome Discoverer software (v. 2.4) utilising the 

SEQUEST and INFERYS modules. Raw data files were searched against the UniProt 

Homo Sapiens databases (UP000005640_9606.fa, UP000005640_9606_additional.fa) 

and a vendor-specific contaminant file. Peptides of amino acid length 7-30 were 

searched for with cysteine carbamidomethylation set as a static modification and 

methionine oxidation set as a dynamic modification, allowing up to two missed 

cleavage sites. Peptide and protein identifications were controlled at a false-discovery 

rate (FDR) of 1%. Output files were read into Python programming language (v. 

3.9.7) for analysis and plotting through use of the modules: Pandas (v. 1.4.4), SciPy 

(v. 1.9.1), Matplotlib (v. 3.5.3) and Seaborn (v. 0.11.2). PANTHER (release 17.0) was 

utilised for protein classifications and gene ontology analysis of biological function. 

 

 3.62 Results 

At 1% FDR, 6215 peptides were identified in CD14+ monocytes, relating to 1436 

proteins and 1056 protein groups. In CD4+ T-cells, 4214 peptides were identified, 

relating to 1013 proteins and 713 protein groups. And in CD8+ T-cells, 2436 peptides 

were identified, relating to 790 proteins and 459 protein groups. Across all cell types 

there were 1306 protein groups identified, with 329 protein groups shared among cell 

types, 522 protein groups detected uniquely in monocytes, 136 uniquely in CD4+ T-

cells and 55 proteins unique to CD8+ T-cells (Figure 1).  



 

Figure 1: Venn-diagram displaying shared and unique protein groups across immune cell types; CD14+, CD14- 

CD4+, CD14- CD8+, isolated via MACs and FACs. This graph was generated using the module matplotlib_venn. 

 

Figure 1 illustrates differences in protein group identifications relative to cell type, 

with ~50% of identified protein groups in monocytes not detected in the other two T-

cell populations. A similar level of separation is present between CD4+ T-cells and 

CD8+ T-cells, with ~45% of protein groups unique to CD4+ cells. There is slightly 

less separation between CD8+ T-cells and CD14+ monocytes, with only around 33% 

of CD8+ protein groups not detected in CD14+ monocytes, however, this may be 

related to the reduced number of protein group identifications in CD8+ cells and not 



differences in homology per se. The number of unique protein identifications for 

monocytes are approximate to those demonstrated elsewhere in a study evaluating 

protein homology between immune cell types isolated from patient bone marrow, 

albeit with the caveat of differences in sample numbers and cell types assessed5. 

To further examine the proteomes of these three cell types, ontology analysis of 

protein groups identified from each cell type were input to PANTHER in order to 

identify the range and abundance of protein classes present (Figure 1A). Across all 

cell types, the most prevalent protein classes were: metabolite interconversion 

enzyme, cytoskeletal protein, RNA metabolism protein and translational protein 

classes (Figure 1B). For both CD4+ and monocyte cells, the predominant protein 

class was, metabolite interconversion enzyme, which currently relates to 192 genes 

known to be implicated in enzymatic activity of various metabolites (accessed 

31/05/2023, Figure 1A). For the CD8+ cell type, the extracellular matrix protein class 

was the most prevalent.  

The relevance of these protein classes was confirmed via gene ontology analysis of 

the identified cell proteome’s biological functions, which again illustrated metabolite 

interconversion enzyme activity, cytoskeletal proteins, RNA metabolism proteins and 

extracellular matrix proteins to be among the most enriched groupings (Figure 2). 
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Figure 1A: Protein classes identified for each immune cell type using PANTHER. 
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Figure 1B: Protein class identifications across all immune cell types with PANTHER, error bars represent 95% 

confidence intervals. 

 

 



 

Figure 2: Gene ontology analysis via PANTHER for biological functions related to identified protein groups across 

all three immune cell types. 

 

 3.63 Future Steps 

While these results are initially satisfactory and similar in proteomic depth to protein 

identification rates reported elsewhere through single-injection shotgun proteomic 

analysis using similar instrumentation6,7, to gain more detailed insight into biological 

processes and the regulation of the human proteome, isolation of distinct cellular 

populations is important in order to comprehensively characterise biological 

responses.  

For this pilot study, central memory (CD14- CD3+ CD45RO+ CCR7+) and effector 

memory (CD14- CD3+ CD45RO+ CCR7-) T-cell populations were chosen8,9, as they 

represent cell types whose functions are implicated in a variety of immunological 

diseases10–12. While these cell types are still sufficiently abundant in the periphery for 

their successful isolation from whole blood via FACs10,11, due to the need to also 

assess cellular proliferation in order to calculate accurate measurements of protein 

turnover with in vivo deuterium-oxide stable isotope labelling, sorted immune cells 

will consequently need split for downstream analysis. This will therefore substantially 

reduce cell numbers for mass spectrometry analysis. Label-free proteomic analysis of 

low abundant immune cells has proven challenging with commercial mass 

spectrometers >10 years old, such as the Q-Exactive instrument (Thermo Scientific)6. 

While recent advances in sample preparation and instrument optimisation have 



successfully enabled mass spectrometry-based proteomics down to true single-cell 

resolution using orbitrap mass spectrometers13, it has additionally been observed that 

stable isotope labelling with deuterium-oxide reduces peptide and protein 

identifications via data-dependent acquisition schemes14. This is due to shifts in the 

mass isotopic distribution of deuterium-labelled peptides over time resulting in 

increased spectral complexity and reduced sampling of the M0 (unlabelled peptide) 

precursor for sequencing via tandem MS, thus reducing spectral matching and peptide 

identification with current analytical software14,15. Together, it is unclear to what 

extent these factors will impact proteomics analysis within this current proteomics 

workflow. 

To assess this, several samples of deuterium-labelled CD14- CD3+ CD45RO+ 

CCR7+ cells were analysed from one study participant (Participant 5, Table 1) 

according to the proteomics protocol detailed in section 3.21 Methods. Application of 

this proteomics protocol resulted in an average protein identification rate of ~90 

proteins, confirming the requirement for optimisation of this proteomics protocol 

prior to further analysis. As similar T-cell populations have exhibited relatively slow 

rates of cellular proliferation16,17, CD14+ cells were retained within this pilot study to 

enable comparison with a fast-turnover cell population18, for measures of cellular 

proliferation and protein turnover. All cell counts are detailed in Table 2. 

 

  



Participant Timepoint 
(Day) 

CD14+ 
(Total cells 
sorted) 

CD14+ 
Proteomics 
Cells (Approx.) 

CD3+CD45RO+CCR7- 
(Total cells sorted) 

CCR7- 
Proteomics 
Cells (Approx.) 

CD3+CD45RO+CCR7+ 
(Total cells sorted) 

CCR7+ 
Proteomics 
Cells (Approx.) 

Unsorted 
CD14- 
Cell 
Count 

1 0 4216500 2108250 NS NS NS NS 4940000 

1 2 5475000 2737500 221522 110761 441794 220897 
 

1 7 9087500 4543750 233279 116640 801863 400932 
 

1 14 7125000 3562500 101270 50635 370366 185183 
 

1 21 1700000 850000 119903 59952 453383 226692 
 

1 28 1350000 675000 183171 91586 638115 319058 
 

1 35 985000 492500 326264 163132 802291 401146 
 

1 42 925000 462500 141901 70951 286032 143016 
 

         

2 0 2047500 1023750 NS NS NS NS 1625000 

2 2 2700000 1350000 137247 68624 19362 9681 * 
 

2 7 1657500 828750 135548 67774 34056 17028 * 
 

2 14 3005000 1502500 160803 80402 70630 35315 * 
 

2 21 1300000 650000 175672 87836 106890 53445 
 

2 28 730000 365000 79429 39715 * 50652 25326 * 
 

2 35 875000 437500 500144 250072 821550 410775 
 

2 42 355000 177500 146525 73263 62507 31254 * 
 

         

3 0 750000 375000 72540 36270 * 100119 50060 
 

4 0 2400000 1200000 141115 70558 462057 231029 
 

         

5 0 970000 485000 209900 104950 138454 69227 
 

5 2 684000 342000 191958 95979 117048 58524 
 

5 7 NI NI NI NI NI NI 
 

5 14 760000 380000 167632 83816 275540 137770 
 

5 21 1560000 780000 227315 113658 224990 112495 
 



5 28 1770000 885000 490063 245032 750010 375005 
 

5 35 1990000 995000 503838 251919 1210910 605455 
 

5 42 2220000 1110000 581272 290636 1621105 810553 
 

         

6 0 1585000 792500 13914 6957 * 6139 3070 * 
 

6 2 1600000 800000 113619 56810 99273 49637 * 
 

6 7 NC NC NC NC NC NC 
 

6 14 1215000 607500 150526 75263 528208 264104 
 

6 21 1125000 562500 142528 71264 210418 105209 
 

6 30 1785000 892500 183459 91730 925283 462642 
 

6 35 3300000 1650000 362233 181117 1722597 861299 
 

6 42 NA NA NA NA NA NA 
 

         

7 0 2580000 1290000 405043 202522 837950 418975 
 

7 2 3060000 1530000 556707 278354 1698447 849224 
 

7 7 2800000 1400000 502315 251158 1455829 727915 
 

7 14 NC NC NC NC NC NC 
 

7 21 2200000 1100000 457625 228813 1855944 927972 
 

7 30 930000 465000 NS NS NS NS 3900000 

7 35 1550000 775000 762771 381386 2060087 1030044 
 

7 42 4450000 2225000 705728 352864 2973549 1486775 
 

         

8 0 5650000 2825000 ND  ND ND ND 
 

8 2 7400000 3700000 399099 199550 447046 223523 
 

8 7 3830000 1915000 1411041 705521 963066 481533 
 

8 14 7950000 3975000 1661165 830583 1644741 822371 
 

8 21 6550000 3275000 1036882 518441 980176 490088 
 

8 30 170000 85000 NS NS NS NS 3240000 

8 35 4500000 2250000 1083732 541866 1030187 515094 
 

8 42 2500000 1250000 856428 428214 1011718 505859 
 



Table 2: Cell counts from isolated cells via MACs (CD14+/-) and FACs (CD14- CD3+ CD45RO+ CCR7+/-). NC; no sample collection due to 

COVID-19 infection. NI; No sample collected due to self-isolation following contact with COVID-19 infected, Participant 6. NA; no sample 

available due to participant absence. NS; no sample sorted via FACs due to technical difficulties. ND; No data available for FACs cell counts. 

Samples indicated with asterisk (*) are deemed low abundance at <50,000 cells. 



 3.64 Optimising Protein Extraction 

An initial observation with this method of proteomics sample preparation was a low 

protein yield during protein extraction, with an average concentration of 0.52µg/µl in 

100µl (total protein content: 52µg) extraction buffer across cell types (CD14+, 

0.9µg/µl; CCR7+, 0.52µg/µl; CCR7-, 0.14µg/µl; Participant 5, Table 2). This not only 

reduces the quantity of protein for tryptic digestion and LC-MS/MS analysis, but also 

means that subsequent precipitation steps to remove SDS detergent may result in a 

more profound loss of sample relative to total protein content. While this proteomics 

protocol incorporates an element of single-pot processing to reduce sample loss via 

adsorption to pipette and vial surfaces, digested peptide samples are required to be 

transferred to LC-MS vials for drying and resuspension prior to analysis, which again 

can reduce sample yield. Together, it seems important to first optimise protein 

extractions to provide the greatest amount of material for further processing and 

analysis. All samples used for purposes of development were collected under this 

study’s ethics (detailed in section 3.2). 

To minimise introduction of detergent (SDS) which is non-compatible with MS 

analysis19–22, the current protocol utilises 0.1% SDS and 100mM ammonium 

bicarbonate (ABC) to lyse cells with the aid of mechanical lysis (pipetting). To further 

solubilise proteins for extraction, DTT is added for the reduction of disulphide bonds 

under denaturing conditions (incubation at 50⁰C for 45 minutes). As other current 

protocols for the analysis of low cell numbers have utilised Tris (2-carboxyethyl) 

phosphine (TCEP)) as a reducing agent opposed to DTT23,24, the choice of reducing 

agent on protein concentrations was first assessed. 

Use of TCEP (at equal concentration to DTT; 10mM) for sample preparation of 

CCR7+ cells (Participant 4, Table 2) resulted in an improvement in peptide yield of 

50% and 59% at concentrations of 0.04 and 100µg/µl protein respectively (Figure 3), 

using the protocol outlined in section 3.21 Methods. Such a drastic improvement in 

end peptide yield is surprising and use of TCEP poses other benefits, as a less toxic 

reagent that is not known to chemically inhibit the activity of any commonly 

employed alkylating reagent for proteomics sample preparation25.  



 

Figure 3: Comparison of reducing agents, DTT and TCEP, on peptide concentrations (technical replicate samples 

from one participant). Concentrations are expressed as arbitrary units (AU). 

Within this protocol, improvements in sample yield were assessed at the peptide level, 

as loss of protein from acetone precipitation (during detergent clean-up) may impact 

respective concentrations and so protein was standardised following acetone 

precipitation prior to reduction and alkylation steps.  

Sample protein concentration was quantified immediately after lysis and then 

following subsequent acetone precipitation. Surprisingly, protein concentrations were 

improved when assessed following sample clean-up with acetone by approximately 5-

fold. This suggests that even the low level of SDS present within the extraction buffer 

(100mM ammonium bicarbonate, 0.1% SDS) is impacting protein quantification 

accuracy, as well as any standardisation across samples thereafter. While the 

downstream use of TCEP demonstrates a clear benefit in end peptide concentrations, 

it is unclear whether this is through improved protein yield or digestion efficiency, 

and this information is unlikely to be elucidated when applying this protocol due to 

the necessity for sample clean-up steps via acetone precipitation. 

To assess the effects of TCEP as a reducing agent at the protein level, the proteomics 

sample preparation method, SPEED26 was adopted (as detailed in Chapter II, Section 

2.1). As this method of sample preparation has noted improved protein yields within a 

protocol that assesses protein concentrations following reduction of proteins with 

TCEP (albeit through measurements of turbidity at a different wavelength, 360nm), 

the apparent benefit of TCEP for proteomics sample preparation was confirmed 

according to SPEED’s protocol, with the exception that IAA was retained as the 

alkylating reagent (opposed to CAA) in order to enable a comparison with the above 

protocol (Figure 3). 

Following reduction with TCEP and alkylation with IAA, SPEED demonstrated a 

significant protein concentration of 7.1µg/µl in 1.21ml from CCR7+ cells (Participant 

3, Table 2; Figure 4). Irrespective of potential losses following acetone precipitation, 



this protein concentration is far greater than any previously achieved with the protocol 

outlined in section 3.21, while additionally avoiding the use of MS-incompatible 

detergent, SDS and additional sample clean-up. For this reason, SPEED was taken 

forward for further development of proteomics sample processing. 

 

Figure 4: Averaged comparisons of protein extractions following sample preparation with SPEED vs methods 

detailed in section 3.21 (technical replicates, n=3 per protocol). Concentration is expressed as protein content to 

account for differences in sample volumes. SPEED demonstrates ~33-fold increase in protein content, which 

extends to ~150-fold when data is normalised to cell numbers (not shown). 

Following confirmation of the benefits of TCEP reducing agent for protein extraction 

and processing, the impact of alkylating reagents on protein yield was next assessed. 

SPEED utilises chloroacetamide (CAA) opposed to the Iodoacetamide (IAA) 

implemented previously (Figure 4). To assess which alkylating agent was the most 

suitable, one sample (CD14+, Participant 3) was lysed according to SPEED’s 

acidification approach, neutralised and then separated into six aliquots of lysate. 

Comparison of protein yield following reduction with TCEP and alkylation with IAA 

or CAA was performed in triplicate to assess the impacts of alkylating reagent on end 

protein yield (prior to tryptic digest). Figure 5 illustrates that IAA alkylation enabled 

an average 12-fold increase in protein concentration compared to CAA. These results 

are somewhat surprising, as there is no available data in the literature to suggest an 

interactive effect between TCEP and CAA that would inhibit either’s activity. Of 

further interest, protein concentrations were also determined before reduction and 

alkylation; following cell lysis with trifluoroacetic acid and neutralisation with 2M 

tris base. It appears that reduction and alkylation with TCEP/IAA increased protein 

concentrations by ~12-fold but no change in protein concentrations occurred with 

TCEP/CAA. This may further support the potential for an interactional effect of TCEP 

reducing agent with CAA alkylating reagent, that does not occur with IAA (Figure 5). 

To confirm these observations, the experiment was repeated using replicates of the 

CCR7- cell type (Participant 3 and 4; n=4), which demonstrated the same response to 

alkylating reagents. 

 



 

Figure 5: Bar plot displaying effects of alkylating reagents; Iodoacetamide (IAA) and Chloroacetamide (CAA), on 

protein concentrations with SPEED sample preparation. Error bars represent standard deviation. 

 

Nanodrop spectrophotometers determine protein concentration through the 

absorbance of light from the aromatic amino residues: cysteine, tryptophan and 

tyrosine. As reducing agents target the disulphide bonds between cysteine residues 

within proteins, it is possible that protein concentrations appear amplified following 

reduction of these bonds and alkylation of these sites to prevent bond reformation, 

increasing absorbance at the wavelength 280nm (Nanodrop Lite Spectrophotometer, 

User Guide 2012, Thermo Scientific). Readings of protein concentration may 

therefore be related to increased absorbance and not protein concentration per se. 

However, the results of Figure 3 illustrated that improvements during 

reduction/alkylation translated to downstream increased estimates at the peptide level. 

As reduction and alkylation with SPEED occur under denaturing conditions (5 

minutes at 95⁰C) it is possible that the efficacy of these reactions is also subject to 

temperature25. Overall, these observed improvements in protein and peptide 

concentrations, as determined by a NanoDrop Lite Spectrophotometer (Thermo 

Scientific), seem indicative of improved proteomics processing within this protocol 

and illustrate SPEED’s acidification-based approach for proteomics sample 

preparation to provide the greatest protein yield from the isolated immune cell 

populations contained within this study. 

SPEED’s protocol26 relies on utilisation of the exothermic reaction of neutralisation to 

further optimise reduction and alkylation efficiency and protein solubilisation through 

denaturation. As experience applying this protocol for sample development 

progressed, further changes in protein extraction and processing were implemented. It 

was observed that increasing cell incubation time with TFA from 2-3 minutes to 

approximately 8 minutes, followed by extending denaturation via exothermic 

neutralisation with 2M Tris from immediate to 10 minutes prior to the subsequent 

reduction/alkylation (TCEP, IAA) of samples, further improved protein concentrations 



to an average of 10µg/µl in CD14+ cells, 9.3µg/µl in CCR7- cells and 8.4µg/µl in 

CCR7+ cells. 

As these developments in sample processing were largely to facilitate reduced cell 

numbers and protein yields, the capacity for this protocol to extract and process 

protein from the least abundant samples of this study (indicated by * in Table 2) was 

tested. All parameters of sample handling and processing were as before, except that 

reduced volumes were utilised relative to a TFA lysis volume of 50µl, opposed to 

100µl. The newly optimised application of SPEED for protein extraction and sample 

processing not only enabled sufficient protein yield from as low as ~3000 CD14- 

CD3+ CD45RO+ CCR7+ T-cells (Participant 6, timepoint 1), relative to cell numbers 

it operated more efficiently than with samples of higher cell counts (Figure 6). This 

successfully enabled a more than sufficient level of protein to be extracted from all 

low abundant samples collected under this study. 

 

Figure 6: Relative protein concentrations across low-high cell numbers for CCR7+ cell type. Samples used in 

analysis: participant 2, day 21; participant 6, day 0 and 21; participant 7, day 21; participant 8, day 42. 

It had previously been noted that application of this protocol to CD14+ monocytes, 

with cell counts ranging from 100,000s-1,000,000+, exhibited similar or occasionally 

decreased protein concentrations than either T-cell population with cell counts of 

10,000s-100,000s. As SPEED utilises TFA for cell lysis, not only due to its ability to 

disrupt the cellular membrane to lyse cells, but also as it constitutes an excellent 

solvent for the solubilisation of cellular proteins, within the range of 40,000-

1,000,000+ cells the same volume of TFA has been utilised for processing (100µl). It 

is therefore possible that the lysis and solubilisation of cellular protein is saturated at 

this volume in higher abundance samples, which from this pilot study appears to be at 

~100,000 cells irrespective of cell type (Figure 6, other cell data not displayed). There 

was no further investigation to optimise the protein extraction of higher abundance 

samples, however, as protein concentrations were already well-sufficient for 

downstream processing. 



 3.65 Data Quality: Tryptic Digestion and Modifications 

Previous implementation of proteomics sample preparation with SPEED in section 

2.2, demonstrated a tryptic digest efficiency of ~93.7% in cultured macrophages (i.e. 

no missed cleavages with strict specificity; cleaved at K and R residues, not P), which 

represents an improvement over SPEED’s publication26 that exhibited ~77% of 

identified peptides to have no missed cleavage sites (albeit when applied across 

different cell types; HeLa, E.Coli, B.Cereus cells and mouse lung tissue). As SPEED 

recommends the dilution of samples prior to tryptic digest in order to reduce the 

molarity of salts, omitting further introduction of Tris salt during standardisation of 

protein samples prior to digestion (as performed in the SPEED protocol) was tested to 

investigate whether this had a positive effect on digestion efficiency. By additionally 

implementing a nano electrospray ionisation source, which demonstrates a higher 

tolerability to non-volatile salts such as Tris27,28, it could be hypothesised that the 

reduction of Tris salt may negate the requirement for offline desalting via C18 

columns (e.g. with C18 StageTips, Thermo Scientific), reducing sample handling and 

associated peptide losses. 

In order for this to be feasible, all samples had to exhibit relatively homogenous 

protein extraction yields to maintain relative concentrations of enzyme and protein, 

which will invariably differ across samples even if the ratio of enzyme: protein (1: 

100µg) is kept constant. By not standardising each sample aliquot of protein with 

Tris-trifluoroacetate solution (aka. sample dilution buffer; SPEED protocol26) prior to 

dilution with double-distilled water for tryptic digest, across samples (incl. all cell 

types) this would result in a relative protein concentration of ~1-2µg/µl during tryptic 

digestion. As previous implementation of this protocol (section 2.2) involved 

digestion by Trypsin at a concentration of 1µg/µl, it was important to additionally 

assess whether the consequent variability in protein and enzyme dilutions across 

samples impacted digestion reactions. By increasing protein yields through protocol 

optimisation (demonstrated above), direct sample dilution enabled for a reduction in 

sample processing volumes to <100µl (on average 60-65µl volumes). As tryptic 

digestion occurs under Michaelis-Menten kinetics29, this alteration will increase 

substrate availability and may therefore result in improved digestion efficiency. 

To test this, 0.5/2/5µg peptides from CCR7- samples (Participant 8, timepoint 4) were 

injected into a LTQ Orbitrap XL (Thermo Scientific) mass spectrometer in line with 

an EASY-nLC 1000 ultra-high pressure liquid chromatography system and EASY-

Spray nano electro spray ionisation (nESI) source (Thermo Scientific). Peptides were 

loaded onto a pre-column (C18 Pepmap100 5mm x 5um), prior to separation on a 

50cm analytical column (C18, 5um, 50cm, 100 A⁰ Easy nano spray column #ES903, 

Thermo Scientific) at a flow rate of 250nl/min. A non-linear gradient of solvent B 

(80% ACN (v/v) in 0.1% FA (v/v)) was applied for a total gradient time of 69 minutes 

and total run time of 96 minutes. Data were acquired in data-dependent acquisition 

(DDA) mode. Full MS scans were acquired at 60,000 resolution m/z 200 measured 

using an orbitrap mass analyser, within a mass range of 400-1600 m/z. The top 12 

precursor ions were selected with an isolation window of 2 m/z units for 

fragmentation via CID at a normalised collision energy of 35. MS2 spectra were 



acquired at a resolution of 17,500 m/z 200 with the Orbitrap mass analyser and a 

dynamic exclusion duration of 180 seconds. 

 

 

Figure 7: Tryptic digest efficiency of CCR7- cell type across two protein concentrations and loading conditions for 

mass spectrometry analysis (Participant 8, timepoint 4). 

Figure 7 demonstrates an average tryptic digestion efficiency of 93.9% (1µg/µl) and 

95.3% (2µg/µl) identified peptides with no missed cleavage sites, maintaining an 

improvement over rates demonstrated in SPEED’s publication26, with a minor 

increase over previous application with cultured macrophages (section 2.2). 

Importantly, there was no difference between digests conducted under the protein 

concentrations ~1µg/µl vs ~2µg/µl over triplicate sample injections at three different 

peptide amounts (Figure 7, paired t-test p>0.05). This enabled MS analysis without 

offline desalting (as performed in SPEED and section 2.2), while reducing sample 

processing volumes to maximise sample recovery. 

The effects of sample preparation on rates of peptides identified through 

modifications (Methionine oxidation, protein N-terminal acetylation and 

combinations/multiple sites) were also assessed (Figure 8). Mass spectrometry 

analysis demonstrated modified peptides to constitute <6% of total identified peptides 

(combined across both protein concentrations; 1µg/µl and 2µg/µl), an improvement 

over both the modification rates published with SPEED26 (which presented an average 

of ~80% unmodified peptides relative to total) and those previously observed in 

section 2.2. This demonstrates that protocol optimisation of sample processing 

provides direct benefits for data quality, specifically tryptic digest activity and 

reduced rates of modified peptides. Furthermore, this data demonstrates sample 

concentrations of up to 2µg/µl protein to not impact these results (paired t-test, 

p>0.05). 



 

Figure 8: Triplicate measurements across peptide loads (0.5, 2 and 5 µg) for peptides identified via modifications 

encompassing Acetylation of the protein N-terminal or Methionine oxidation, for CCR7- samples digested under 1 

or 2µg/µl protein concentrations. Paired t-test demonstrated no statistical significance between treatments. 

Finally, it was assessed whether together these alterations to proteomics sample 

preparation translated to improved identification rates for peptides and proteins, a 

problem previously identified in section 3.23. Identification rates from these samples 

are depicted in Figure 9. 

 

Figure 9: Peptide and protein identifications from CCR7- sample digested at two different protein concentrations 

and triplicate measurements at three peptide quantities. 

Figure 9 demonstrates identifications up to approximately 700 peptides and 300 

proteins with mass spectrometry analysis. Protein identifications are approximately 

three times greater than those achieved previously in a similar cell type (CCR7+) 



within this thesis using alternate methods (section 3.23). Analysis of 5µg peptide 

quantities provided the greatest rates of peptide and protein identifications, with little 

difference observed between 1µg/µl and 2µg/µl protein digests at this peptide load. 

However, there were increased peptide and protein identifications at the lower peptide 

quantities of 0.5 and 2µg for 100µg protein digests. While there was no indication of 

this disparity at the level of data quality (% fully cleaved peptides), there is a clear 

pattern for improved peptide and protein identifications at the lower peptide loads of 

0.5 and 2µg (Figure 9, however, neither peptide nor protein identification rates 

between treatments reached statistical significance: paired t-test, p>0.2; albeit this is 

likely influenced by high data variability from identifications across loading 

conditions further reducing statistical power with only triplicate measurements).  

This data was generated from a CCR7- sample of Participant 8 collected at day 14 of 

the deuterium-loading protocol (Table 2). As such, it would be expected that peptides 

(and therefore proteins) identified at this stage will be enriched with deuterium. 

Applying a shorter analytical gradient of 96 minutes than previously (section 3.21) 

and based on identification rates in FACs cell types published elsewhere6, these 

peptide and protein identifications are acceptable for downstream analysis of 

deuterium-incorporation to model protein turnover within this pilot study. From these 

results, 100µg protein digests and 5µg peptide loads were selected as optimal for 

proteomics analysis within the remainder of the study. 

 

  



3.7 REFERENCES 

1. Watson, P. E., Watson, I. D. & Batt, R. D. Total body water volumes for adult 

males and females estimated from simple anthropometric measurements. Am. J. 

Clin. Nutr. 33, 27–39 (1980). 

2. Disher, A. E., Stewart, K. L., Bach, A. J. E. & Stewart, I. B. Contribution of 

Dietary Composition on Water Turnover Rates in Active and Sedentary Men. 

Nutrients 13, 2124 (2021). 

3. Money, K. E. & Myles, W. S. Heavy water nystagmus and effects of alcohol. 

Nature 247, 404–405 (1974). 

4. Yang, D. et al. Assay of Low Deuterium Enrichment of Water by Isotopic 

Exchange with [U-13C3]Acetone and Gas Chromatography–Mass Spectrometry. 

Anal. Biochem. 258, 315–321 (1998). 

5. Hennrich, M. L. et al. Cell-specific proteome analyses of human bone marrow 

reveal molecular features of age-dependent functional decline. Nat. Commun. 9, 

4004 (2018). 

6. Maes, E., Cools, N., Willems, H. & Baggerman, G. FACS-Based Proteomics 

Enables Profiling of Proteins in Rare Cell Populations. Int. J. Mol. Sci. 21, 

E6557 (2020). 

7. Rørvig, S., Østergaard, O., Heegaard, N. H. H. & Borregaard, N. Proteome 

profiling of human neutrophil granule subsets, secretory vesicles, and cell 

membrane: correlation with transcriptome profiling of neutrophil precursors. J. 

Leukoc. Biol. 94, 711–721 (2013). 

8. Sallusto, F., Lenig, D., Förster, R., Lipp, M. & Lanzavecchia, A. Two subsets of 

memory T lymphocytes with distinct homing potentials and effector functions. 

Nature 401, 708–712 (1999). 



9. Jameson, S. C. & Masopust, D. Understanding Subset Diversity in T Cell 

Memory. Immunity 48, 214–226 (2018). 

10. Wang, Y. et al. A novel mechanism linking memory stem cells with innate 

immunity in protection against HIV-1 infection. Sci. Rep. 7, 1057 (2017). 

11. Moaaz, M., Youssry, S., Baess, A., Abed, A. & Moaaz, M. Immune signature of 

CCR7+ central memory T cells associates with disease severity and 

Immunoglobulin E in bronchial asthma. Eur. Ann. Allergy Clin. Immunol. 53, 

115–127 (2021). 

12. Kwiecień, I. et al. Effector Memory T Cells and CD45RO+ Regulatory T Cells 

in Metastatic vs. Non-Metastatic Lymph Nodes in Lung Cancer Patients. Front. 

Immunol. 13, (2022). 

13. Kelly, R. T. Single-cell Proteomics: Progress and Prospects. Mol. Cell. 

Proteomics MCP 19, 1739–1748 (2020). 

14. Sadygov, R. G. Protein turnover models for LC–MS data of heavy water 

metabolic labeling. Brief. Bioinform. 23, bbab598 (2022). 

15. Deberneh, H. M. & Sadygov, R. G. Software Tool for Visualization and 

Validation of Protein Turnover Rates Using Heavy Water Metabolic Labeling 

and LC-MS. Int. J. Mol. Sci. 23, 14620 (2022). 

16. Ahmed, R. et al. CD57+ Memory T Cells Proliferate In Vivo. Cell Rep. 33, 

108501 (2020). 

17. Ladell, K. et al. Central memory CD8+ T cells have a shorter lifespan and 

reduced abundance as a function of HIV disease progression. J. Immunol. 

Baltim. Md 1950 180, 7907–7918 (2008). 

18. Patel, A. A. et al. The fate and lifespan of human monocyte subsets in steady 

state and systemic inflammation. J. Exp. Med. 214, 1913–1923 (2017). 



19. Loo, R. R., Dales, N. & Andrews, P. C. Surfactant effects on protein structure 

examined by electrospray ionization mass spectrometry. Protein Sci. Publ. 

Protein Soc. 3, 1975–1983 (1994). 

20. Loo, R. R., Dales, N. & Andrews, P. C. The effect of detergents on proteins 

analyzed by electrospray ionization. Methods Mol. Biol. Clifton NJ 61, 141–160 

(1996). 

21. Rundlett, K. L. & Armstrong, D. W. Mechanism of signal suppression by 

anionic surfactants in capillary electrophoresis-electrospray ionization mass 

spectrometry. Anal. Chem. 68, 3493–3497 (1996). 

22. Danko, K., Lukasheva, E., Zhukov, V. A., Zgoda, V. & Frolov, A. Detergent-

Assisted Protein Digestion—On the Way to Avoid the Key Bottleneck of 

Shotgun Bottom-Up Proteomics. Int. J. Mol. Sci. 23, 13903 (2022). 

23. Schoof, E. M. et al. Quantitative single-cell proteomics as a tool to characterize 

cellular hierarchies. Nat. Commun. 12, 3341 (2021). 

24. Phlairaharn, T. et al. High Sensitivity Limited Material Proteomics Empowered 

by Data-Independent Acquisition on Linear Ion Traps. J. Proteome Res. 21, 

2815–2826 (2022). 

25. Evans, C. A. Reducing Complexity? Cysteine Reduction and S-Alkylation in 

Proteomic Workflows: Practical Considerations. Methods Mol. Biol. Clifton NJ 

1977, 83–97 (2019). 

26. Doellinger, J., Schneider, A., Hoeller, M. & Lasch, P. Sample Preparation by 

Easy Extraction and Digestion (SPEED) - A Universal, Rapid, and Detergent-

free Protocol for Proteomics Based on Acid Extraction. Mol. Cell. Proteomics 

MCP 19, 209–222 (2020). 



27. Juraschek, R., Dülcks, T. & Karas, M. Nanoelectrospray--more than just a 

minimized-flow electrospray ionization source. J. Am. Soc. Mass Spectrom. 10, 

300–308 (1999). 

28. Wilm, M. Principles of Electrospray Ionization. Mol. Cell. Proteomics MCP 10, 

M111.009407 (2011). 

29. Michaelis, L., Menten, M. L., Johnson, K. A. & Goody, R. S. The original 

Michaelis constant: translation of the 1913 Michaelis-Menten paper. 

Biochemistry 50, 8264–8269 (2011). 

30. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant 

environment. J. Proteome Res. 10, 1794–1805 (2011). 

31. Cox, J. et al. Accurate Proteome-wide Label-free Quantification by Delayed 

Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Mol. 

Cell. Proteomics MCP 13, 2513–2526 (2014). 

32. Naylor, B. C. et al. DeuteRater: a tool for quantifying peptide isotope precision 

and kinetic proteomics. Bioinformatics 33, 1514–1520 (2017). 

33. Davidsson, L. Introduction to Body Composition Assessment Using the 

Deuterium Dilution Technique with Analysis of Saliva Samples by Fourier 

Transform Infrared Spectrometry: IAEA Human Health Series No. 12. Introd. 

Body Compos. Assess. Using Deuterium Dilution Tech. Anal. Saliva Samples 

Fourier Transform Infrared Spectrom. IAEA Hum. Health Ser. No 12 (2010). 

34. Neese, R. A. et al. Measurement in vivo of proliferation rates of slow turnover 

cells by 2H2O labeling of the deoxyribose moiety of DNA. Proc. Natl. Acad. 

Sci. U. S. A. 99, 15345–15350 (2002). 

35. Hellerstein, M. K. et al. Subpopulations of long-lived and short-lived T cells in 

advanced HIV-1 infection. J. Clin. Invest. 112, 956–966 (2003). 



36. Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011). 

37. Grossman, Z., Meier-Schellersheim, M., Sousa, A. E., Victorino, R. M. M. & 

Paul, W. E. CD4+ T-cell depletion in HIV infection: Are we closer to 

understanding the cause? Nat. Med. 8, 319–323 (2002). 

38. Brunner, A. et al. Ultra‐high sensitivity mass spectrometry quantifies single‐cell 

proteome changes upon perturbation. Mol. Syst. Biol. 18, e10798 (2022). 

39. Lau, E. et al. A large dataset of protein dynamics in the mammalian heart 

proteome. Sci. Data 3, 160015 (2016). 

40. Kim, T.-Y. et al. Metabolic Labeling Reveals Proteome Dynamics of Mouse 

Mitochondria. Mol. Cell. Proteomics MCP 11, 1586–1594 (2012). 

41. Lam, M. P. Y. et al. Protein kinetic signatures of the remodeling heart following 

isoproterenol stimulation. J. Clin. Invest. 124, 1734–1744 (2014). 

 

 

  



4. DEUTERIUM BRAIN IMAGING AT 7T DURING 

DEUTERIUM-OXIDE DOSING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Published as a full-text article in Magnetic Resonance in 

Medicine, 89(4):1514-1521., April 2023. 



ABSTRACT 

 

Purpose: To characterize the (2H) deuterium MR signal measured from human brain 

at 7T in participants loading with D2O to ˜1.5% enrichment over a six-week period. 

Methods: 2H spectroscopy and imaging measurements were used to track the time-

course of 2H enrichment within the brain during the initial eight-hour loading period 

in two participants. Multi-echo gradient echo (MEGE) images were acquired at a 

range of TR values from four participants during the steady-state loading period and 

used for mapping 2H T1 and T2 * relaxation times. Co-registration to higher resolution 
1H images allowed T1 and T2 * relaxation times of deuterium in HDO in cerebrospinal 

fluid (CSF), gray matter (GM), and white matter (WM) to be estimated. 

Results: 2H concentrations measured during the eight-hour loading were consistent 

with values estimated from cumulative D2O dose and body mass. Signal changes 

measured from three different regions of the brain during loading showed similar 

time-courses. After summing over echoes, gradient echo brain images acquired in 7.5 

minutes with a voxel volume of 0.36 ml showed an SNR of ˜16 in subjects loaded to 

1.5%. T1 -values for deuterium in HDO were significantly shorter than corresponding 

values for 1H in H2O, while T2 * values were similar. 2H relaxation times in CSF were 

significantly longer than in GM or WM. 

Conclusion: Deuterium MR measurements at 7T were used to track the increase in 

concentration of 2H in brain during heavy water loading. 2H T1 and T2 * relaxation 

times from water in GM, WM, and CSF are reported. 

 

Keywords: D2O loading; MEGE; deuterium (2H); heavy water; human brain; 

relaxation times. 

  



4.1 INTRODUCTION 

The low natural abundance (˜0.015%) and gyromagnetic ratio (6.54 MHz/T) of 

deuterium (2H) reduce the available NMR signal compared to 1H. However, the 

shorter longitudinal relaxation times of 2H allow faster signal averaging, partially 

compensating for the reduction in SNR associated with the reduced signal strength. 

The minimal equipment modifications required for implementing 2H imaging and the 

simplicity of the pulse sequences that can be used, mean that 2H imaging has 

significant potential for use in clinical applications. This has led to an increasing 

interest in the use of deuterium magnetic resonance in conjunction with injection or 

ingestion of 2H‐labeled compounds, as a means of monitoring cellular metabolism 1 , 2 

, 3. 

Deuterium metabolic imaging (DMI) involves using 2H chemical shift imaging to 

map the distribution of the metabolic products of administered 2H‐labeled 

compounds. The majority of experiments in humans and animals have used [6,6′‐D2] 

glucose 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16. In this case, lactate and 

glutamine/glutamate (Glx) are produced alongside deuterated water (HDO), and their 

relative concentrations reflect the cells' preference for glucose metabolism, i.e., 

aerobic, anaerobic glycolysis or oxidative phosphorylation. Spatially localized, 

elevated, lactate production has been observed using DMI in a patient with a 

glioblastoma, 2 in keeping with an increased glycolysis in neoplastic cells, known as 

the Warburg effect 17. 

DMI can provide spatially resolved measurements of metabolite concentrations and 

pathway fluxes, 1 , 4 but this often requires knowledge of the local relaxation times of 

the 2H signals from metabolites. The signal from naturally abundant HDO can be used 

in calculating absolute concentrations of other metabolites. Therefore, knowledge of 

the relaxation times of HDO in different tissues is important for quantitative 

measurements. Previous measurements of HDO relaxation times in human 

participants have used non‐localized signals 2 , 3 , 11 which do not allow the variation of 

relaxation times across regions and compartments to be evaluated. 

Oral intake of heavy water is commonly used for assessment of body composition 18 

and is increasingly being applied in studies of triglyceride synthesis 19 and protein 

turnover 20 , 21 , 22. These approaches generally involve analysis of body fluid samples 

or tissue biopsies. However, 2H magnetic resonance allows direct, non‐invasive, 

measurement of the concentration of HDO, deuterated lipids, and other metabolic 

products of 2H labelled water and so could complement invasive measurements. The 

feasibility of imaging the distribution of HDO in the body following oral ingestion of 

D2O was demonstrated in animal experiments carried out in the 1980 s, 23 , 24 , 25 , 26 , 27 

but has not yet been performed in humans. 

Here, we implemented deuterium MRI at 7T and used it to characterize HDO signals 

from the human brain in four healthy participants who increased their deuterated 

water content to ˜1.5% for a six‐week period by drinking D2O. The heavy water 

loading was carried out as part of a parallel study. 

 



4.2 METHODS 

Six healthy participants took part in this 2H‐imaging sub‐study which was approved 

by the local institutional ethics committee with the volunteers giving informed 

consent. Two participants were scanned during a set‐up phase in which we established 

the feasibility of 2H imaging and identified favourable imaging parameters. Here, we 

report data from four participants (A‐D) who were subsequently scanned using the 

optimized imaging protocols on a 7T Achieva scanner (Philips Healthcare), operating 

at 45.8 MHz for 2H. A 26.4‐cm‐inner‐diameter, dual‐tuned 1H/2H birdcage coil (Rapid 

Biomedical) was used for deuterium measurements, while the standard, 32‐channel 

Rx/2‐channel Tx head coil (Nova Medical) was used for acquiring anatomical 1H 

images. 

The parallel study required an initial loading regime in which the targeted enrichment 

was built up in around eight hours. This involved the participants drinking between 12 

and 16, ˜50 ml doses of 70% D2O/30% H2O (one dose every ˜30 minutes), with the 

total amount of D2O consumed adjusted according to the participant's body weight to 

produce 1.5% enrichment. Participants subsequently drank ˜50 ml of D2O each 

morning over the six‐week study period to maintain 1.5% enrichment. Similar 

enrichment levels and durations have been used in recent studies 28 , 29 , 30 with no 

adverse events reported, however some participants experienced a brief period of 

dizziness during the initial loading phase due to the rapid rise in body water 

enrichment 28. Saliva samples were collected from participants at regular intervals 

during the study and analysed using gas chromatography–mass spectrometry (GC-

MS) 31 (as previously described in Chapter II, section 3.2). 

Two participants (A and B) were scanned during the initial eight‐hour loading period 

to monitor the time‐course of deuterated water concentration changes in the brain. A 

scanning protocol of ˜15 minutes duration was performed before dosing and after 30, 

90, 150, 210, 270, 360, 420, and 540 minutes. The protocol comprised a 1H scout scan 

for planning, followed by acquisition of 2H pulse‐acquire spectra from the whole head 

and from a 2‐cm‐thick axial slice positioned over the lateral ventricles. Both used the 

following scan parameters: flip angle α = 90°, 2048 samples, bandwidth 

(BW) = 3000 Hz, repetition time TR = 1 s and 64 averages (scan time, Tscan = 64 s). 

We then acquired axial, 3D MEGE 2H images (20 averages, Tscan = 453 s, FOV = 288 

× 288× 80 mm3, 6 × 6 × 10 mm3 voxels, α = 33°, TR = 62 ms, five echoes, 

TE1 = 8.9 ms and ΔTE = 8.4 ms). Axial 1H 3D GE images (Tscan = 232 s, 32 slices, 

FOV = 288 × 288 × 80 mm3, 3 × 3 × 2.5 mm3 voxels, TE = 5.9 ms, TR = 39 ms) were 

also acquired. This scanning protocol was repeated 17 days after the initial loading to 

provide comparative data at steady‐state enrichment. The spectroscopy measurements 

made before loading provided an estimate of the signal from naturally abundant 

deuterium in water: scaling subsequent measurements then allowed the absolute HDO 

concentration to be estimated at each time‐point. The HDO concentration in the body 

was also estimated from the ratio of the total imbibed D2O volume to an estimate of 

total body water 32. 

We used the image data to track the changes in 2H signal from different tissue 

compartments. The 2H images acquired at each time‐point were summed over the five 



echoes, and regions of interest (ROI) were then formed for a background region, 

general brain tissue, the lateral ventricles and for a region of high signal intensity 

thought to arise from blood vessels and CSF in the superior cistern. The SNR in 

images acquired before loading was too low to make good estimates of natural 

abundance signals, so values were normalized to the signal measured in the superior 

cistern ROI at the last time point of the initial loading period. 

2H relaxation times for water in CSF, GM, and WM were calculated from data 

acquired during the six‐week loading period using the dual‐tuned 2H/1H coil. In each 

session, we acquired 2H 3D sagittal MEGE images (voxels = 6 × 6 × 10 mm3, 

FOV = 288 × 288 × 240 mm3, slices = 24) at a range of TR values, along with 1H 3D 

MEGE images (voxels = 3 ×3 × 5 mm3, FOV = 288 × 288 × 240 mm3, slices = 48, 15 

echo times with TE1 = 2.5 ms, ΔTE = 2.34 ms, and TR = 41 ms). 2H MEGE data from 

Participants A and B were acquired with five echoes (TE1 = 4.3 ms, ΔTE = 8.4 ms), 

α = 60°, and TR = 68, 136, 272, 544 ms, with 8, 4, 2, and 1 averages, so that 

Tscan = 487 s per image. 2H MEGE data from participants C and D were acquired 

with six echoes (TE1 = 4.3 ms, ΔTE = 8.4 ms) and one additional TR‐value 

(TR = 816 ms, one average, Tscan = 730 s). The number of TE and TR values were 

increased to improve fitting quality. The 2H scanning sessions were performed twice 

on Participants C and D. 

We also acquired 1H MPRAGE images (0.7 mm resolution) and 1H 3D MEGE images 

(3 × 3 × 5 mm3 voxels, 15 echo times, TE1 = 2.5 ms, ΔTE = 2.57 ms, and TR = 41 ms) 

from each participant in a separate scanning session using the Nova coil. These 

images were used for image segmentation and estimation of the 1H T2 * values. 

For calculation of maps of 2H relaxation rate constants R1 and R2 *, we first 

estimated the variation of flip angle (α) over the image volume by summing the 

images across TEs, at each TR, and fitting the data voxel‐wise to a saturation recovery 

curve (i.e., fitting signal variation with TR for α, R1, and signal amplitude). The 

resulting flip‐angle maps were smoothed by averaging over 5 × 5 × 5 voxel 

neighbourhood and the α‐values then used as fixed parameters in dual‐fitting the 

variation in signal intensity Si,j across TRi and TEj values for R1, R2 * and signal 

amplitude, A. This involved minimisation of 

 

                                                                                                                                 (1) 

using the Matlab fmincon command. 1H R2 * maps were obtained by similar fitting to 

the exponential signal decay with TE in the 1H MEGE data acquired using the Nova 

coil. 

To evaluate the relaxation times in different compartments, we segmented the 1H 

MPRAGE data (FSL FAST 33) and transformed the resulting GM, WM, and CSF 

masks to the space of the 2H relaxation time maps. Following brain extraction (FSL 



BET 34) and bias field correction, an affine matrix was obtained from image co‐

registration (FSL FLIRT 35 , 36) that transformed the 1H MEGE data acquired using the 

Rapid Biomedical coil to the space of the 1H MEGE Nova Medical coil data, along 

with an affine matrix for the 1H MEGE to MPRAGE transformation. The MEGE data 

were summed across echoes and repetition times before co‐registration. 

The brain‐extracted MPRAGE image was segmented to create binary masks for GM, 

WM, and CSF using FSL FAST 33. These masks were transformed to the 2H space 

using the previously obtained affine matrices and the outer regions of the CSF mask 

were manually removed so that the majority of the mask comes from the lateral 

ventricles. The new masks were applied to the relaxation maps for calculation of 

mean relaxation times for CSF, GM, and WM. 

 

4.3 RESULTS 

Figure 1 shows example 2H image data obtained during the steady‐state loading 

period. Figure 1A shows 3D sagittal image data produced by summing the MEGE 

data over TE and TR values. The resulting images clearly depict the brain anatomy 

and have a similar appearance to T2 *‐weighted, 1H‐images. The CSF in the ventricles 

and at the cortical surface appears hyperintense, while regions where there is little 

partial‐voluming with CSF, such as the white matter in the corpus callosum, appear 

hypointense. Figure 1B shows the variation of image intensity with TE and TR in a 

central sagittal slice. The slower T2 * decay of the CSF signal compared with that of 

the GM and WM signals is evident, along with the signal saturation at reduced TR, 

and the reduction of contrast at low TE and TR values. 

 

 

Figure 1: (A) 3D MEGE 2H image data from Participant C. Images produced by summing over six TE 

values and five TR values. (B) 3D MEGE 2H image from one slice from Participant D. Images are 

displayed with TE value varying horizontally and TR‐value varying vertically. Voxel 

size = 6 × 6 × 10 mm3, FOV = 288  × 288 mm2 in data used for both sub‐figures. 

 



Figure 2 shows maps of the relaxation rate constants from two participants, with the 

dominant feature in the 2H maps being the reduced R2 * and R1 values in the 

ventricles. Table 1 reports the average and SDs of the 2H T1 and T2 * values, along 

with 1H T2 * values measured in GM, WM, and CSF in the four participants. 

 

 

Figure 2: 2H R2 * and R1 maps are shown along with 1H R2 * maps in sagittal (A) and axial (B) format. 

Maps show five central slices from Participants C and D. Relaxation maps were calculated from 

MEGE data equivalent to that displayed in Figure 1. The elevated R2 * in iron‐rich deep GM structures 

is evident in the lower slices of the 1H maps (red arrows), but is not seen in the 2H maps. The images 

shown have a reduced FOV of 204 × 204 mm2. 
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TABLE 1 

Average and SD of 2H (T2 
* and T1) and 1H (T2 

*) relaxation times in CSF, GM, and 

WM for different participants and visits. 

  
Deuterium relaxation times [ms] 

Proton relaxation 

times [ms] 

  
CSF GM WM CSF GM WM 

Subj

ect 

Vis

it T1 T2 * T1 T2 * T1 T2 * T2 * T2 * T2 * 

A 1 450 ± 

200 

110 ± 

90 

280 ± 

100 

32 ± 

8 

260 ± 

100 

30 ± 

10 

106 ± 

90 

26 ± 

20 

27 ± 

20 

B 1 520 ± 

200 

83 ± 5

0 

300 ± 

100 

33 ± 

10 

280 ± 

100 

32 ± 

20 

103 ± 

90 

25 ± 

20 

23 ± 

10 

C 1 460 ± 

100 

76 ± 4

0 

301 ± 

80 

31 ± 

7 

290 ± 

100 

30 ± 

10 

93 ± 1

00 

22 ± 

10 

21 ± 

6 

C 2 390 ± 

100 

82 ± 6

0 

295 ± 

90 

32 ± 

8 

267 ± 

90 

32 ± 

10 

   

D 1 720 ± 

200 

84 ± 5

0 

420 ± 

100 

31 ± 

6 

350 ± 

100 

28 ± 

6 

87 ± 9

0 

23 ± 

10 

22 ± 

8 

D 2 510 ± 

100 

110 ± 

40 

320 ± 

80 

31 ± 

6 

277 ± 

80 

28 ± 

6 

   

Mean 510 90 320 32 290 30 97 24 23 

SD 100 10 50 1 30 1 5 2 2 

Note: These values were produced by averaging over segmented relaxation time maps, similar to those 

shown in Figure 2. Average values and SDs across participants are also shown. 

 

Figure 3 reports example 2H images acquired from Participants A and B during the 

loading process. The different regions of interest in which the signal changes were 

tracked are indicated on Figure 4A (for Participant A) and Figure 4B shows the time 

courses from the different ROIs, along with the steady‐state values measured after 

17 days of loading. Figure 4C plots the temporal variation of the absolute 2H 

concentration estimated from the spectroscopy measurements. The concentration 

calculated from the cumulative D2O dose and estimated total body water volume is 

shown for comparison. 
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Figure 3: 2H images acquired from two participants at different times during the initial, 8‐h heavy 

water loading period. The time since the first dose is indicated above each image and the cumulative 

dose of heavy water is indicated below. A single axial slice spanning the lateral ventricles is shown. 

The images shown are formed from the average over five echoes (TE1 = 8.9 ms, ΔTE = 8.4 ms). The 

images shown have a reduced FOV of 204  × 204 mm2. 

 



 

Figure 4: (A) Regions of interest used for following the time‐course of signal change during D2O 

loading. Black = superior cistern; Red = lateral ventricle; Blue = brain (GM, WM, and CSF); 

Green = background noise. (B) Time course of average signal change in image ROIs (red = lateral 

ventricle; blue = brain tissue; black = superior cistern; green = background noise) in two participants. 

Signals from all compartments are scaled by the superior cistern signal at the final measurement time‐

point. Scaled signals measured at steady state (after 17‐days loading) are shown in the box at the far 

right (C) Time course of the concentration of deuterium in the brain estimated from the 2H 

spectroscopy measurements (red = from 2 cm slice at level of lateral ventricles; blue = whole head). 



Percentage estimated by scaling by the signal measured at natural abundance (assumed to be 0.015%). 

The orange blocks indicate the concentration estimated from the cumulative D2O dose and body 

weight. The measurements made at steady state (after 17 days of loading) are shown in the box at the 

far right. 

 

4.4 DISCUSSION 

The results shown in Figures 1 and 3 indicate that 2H images of 6  × 6  × 10 mm3 voxel 

size with a useful SNR can be acquired in 7.5 minutes at 7T with a head‐sized bird‐

cage coil, when participants have been deuterium‐enriched to ˜1.5% concentration 

(˜100 times natural abundance). After summing over echo times these images 

(Figure 3) showed SNR ˜16 in brain tissue in the steady‐state condition (after 17 days 

of loading). 

The measured relaxation times were reasonably consistent across the six 

measurements (Table 1), with CSF having significantly higher T1 and T2 
* values than 

GM or WM (p < 0.007 for two‐sample t‐test). The measured T1 and T2 
* values were 

consistently higher in GM than in WM, but the differences did not reach statistical 

significance (T1: p = 0.21; T2 
*: p = 0.08). The relatively coarse resolution of the 2H 

images made it difficult to avoid the effects of partial voluming, particularly of CSF 

and GM, and the limited range of TE (4.3–46.3 ms) and TR (68–816 ms) values 

reduced the accuracy of measurement of the long T1 and T2 
* values in CSF, as is 

evident from the larger SDs of these measurements (Table 1). Longer echo trains with 

a duration that exceed the expected T2 
* value and measurements at longer TR values 

should be used in future experiments targeting a better characterization of 2H HDO 

relaxation times in CSF. For example, simulations show that inclusion of an additional 

measurement with a TR of 1500 ms would halve the SD of the estimated T1 relaxation 

time of CSF but would also require 20 minutes of additional scanning time: use of an 

inversion recovery sequence may therefore be a better option. The average values of 

the relaxation times are consistent with values reported from non‐localized 

measurements of HDO signals in human, 2 , 3 , 11 cat 27 and rat 1 , 2 brain. 

Focusing on human brain measurements, De Feyter et al. 2 reported HDO T1 of 

346 ± 5 ms at 4T, while Ruhm et al. 11 measured 362 ± 6 ms at 9.4T – values which lie 

between the values for CSF (510 ms) and GM/WM (320/290 ms) measured here at 

7T. As expected, the measured 2H T1‐values are significantly shorter than the 

corresponding 1H values at 7T, 32 due to the quadrupolar relaxation of 2H. The long 

T1 of HDO in CSF relative to GM/WM will lead to greater saturation in the CSF 

signal in short CSI measurements used for DMI (for example Ruhm et al. used 

TR = 155 ms 11 ) which needs to be considered when quantifying signals from 

other 2H‐labeled metabolites using natural abundance HDO signals. Bi‐exponential 

T2 decay was previously identified at 4T 2 and 7T 37 using non‐localized spin echo 

measurements: at 7T large (small) pools were found to have relaxation times of 29 ± 1 

(412 ± 40) ms, respectively, 37 consistent with our identification of short and long 

T2 
* values in GM/WM (32/30 ms) and CSF (90 ms). 

The TE‐summed MEGE images in Figures 1A and 3 show contrast that is dominated 

by T2 
*‐weighting, with the CSF appearing hyperintense relative to grey and white 
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matter, as is the case in T2 
*‐weighted 1H images. A notable difference between the 1H 

and 2H R2 
* maps (Figure 2) is that deep GM structures which appear with elevated 

R2 
* in 1H maps due to their high iron content 38 do not appear hyperintense in the 2H 

maps. This is a consequence of the dominance of quadrupolar, rather than dipolar, 

relaxation in the case of 2H and the relatively short T2 relaxation times that the 

quadrupolar interactions produce in tissue, along with the lower 2H gyromagnetic 

ratio. Together these mean that the large, microscopic and macroscopic field 

inhomogeneities generated by the iron‐rich inclusions in deep GM structures regions, 

which increase the 1H R2 
* relaxation rate constants, do not have a significant effect 

on the measured 2H R2 
*‐values. The 1H R2 

* maps also show larger regions of 

hyperintensity near the frontal sinuses due to the greater field‐inhomogeneity‐related 

intra‐voxel dephasing resulting from the higher γ of 1H. Signals from structures 

outside the brain (apart from the eyeball) are only evident in the 2H images acquired 

with the shortest TE value (Figure 1B) most likely because of the very short T2 
* of 

HDO in muscle. 39 , 40 

Figure 4 shows that the changes in HDO concentration during the initial heavy water 

loading could be readily tracked with imaging and spectroscopy. The concentrations 

estimated from the 2H spectra are in reasonably good agreement with the values 

calculated from the cumulative D2O dose and body mass (Figure 4C.) The signal 

amplitudes measured from ROIs in the brain images all have similar time‐courses and 

maintain relatively constant ratios, with values that are most likely dictated by 

differences in T2 
*‐weighting and water fraction in the different brain regions. This 

implies that the dispersal kinetics following oral ingestion of D2O are rapid 

throughout the body on the timescale of the measurements. This is consistent with 

previous measurements based on blood sampling which indicate that the half‐life of 

absorption into blood is ˜12 minutes, with similar time constants for dispersal into 

other body water compartments. 41 , 42 In our experiments the subject came out of the 

magnet bore between measurements, leading to the potential for changes in signal 

intensity due to variation of the slice position. Nevertheless the 2H signals tracked the 

monotonically increasing dose and the values measured at maximum dose were 

similar to those measured 17 days later during the steady state loading period. 

Although both participants had approximately the same weight and target D2O dose, 

Participant B was only able to ingest 600 ml during the initial loading. The deuterium 

concentration measured from Participant A was consequently higher at the end of the 

loading period. The rest of participant B's loading was completed over the following 

4 days, along with the daily 50 ml top‐up and similar concentrations were measured 

from the two participants in the steady state (Figure 4C). The GC-MS measurements 

of deuterium concentrations in the saliva samples from Participant A and B were 

1.51% ± 0.09%, and 1.53% ± 0.17%, respectively. 

Rapid increases in body water enrichment can lead to feelings of dizziness and 

nausea. These symptoms can occur at relatively low enrichments while equilibrium 

has not yet been achieved and are thought to result from temporary effects on the 

vestibular system due to density changes in the semi‐circular canals of the inner 

ear. 43 Some participants experienced these effects and so the rate of D2O loading was 

slowed. The rapid loading was required for the parallel study, but a more gradual 
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099797/#mrm29539-bib-0038
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099797/figure/mrm29539-fig-0001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099797/#mrm29539-bib-0039
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099797/#mrm29539-bib-0040
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099797/figure/mrm29539-fig-0004/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099797/figure/mrm29539-fig-0004/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099797/#mrm29539-bib-0041
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099797/#mrm29539-bib-0042
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099797/figure/mrm29539-fig-0004/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099797/#mrm29539-bib-0043


increase in heavy water uptake could be used for future MR‐loading experiments to 

minimize these effects. 

 

4.5 CONCLUSIONS 

Deuterium MR measurements at 7T have been successfully used to track the increase 

in concentration of 2H in brain during heavy water loading to 100 times natural 

abundance, in four human participants. Gradient echo images with an SNR of 16 and 

a voxel volume of 0.36 ml could be acquired in 7.5 minutes. 2H T1 and T2 
* relaxation 

times from water in GM, WM, and CSF have also been measured at 7T. These 

relaxation times can be applied in research protocols using the natural abundance 2H 

signal from water for calibration.  

In future work we aim to track uptake from a single D2O dose on a shorter time scale, 

using faster, interleaved acquisition of 2H images and spectra. This is in light of the 

recent renaissance for the utility of stable isotopes within the field of metabolic 

imaging, in particular for its benefits regarding safety and ease of administration 

within clinical practice3.  

This study is the first to demonstrate the utility of DMI in human participants loaded 

with D2O, and has contributed to the increased attention D2O and deuterated-glucose 

are currently receiving for their application to measurements of glucose metabolism 

and neurotransmitter abundance implicated in several disease states44, 45, as well as for 

their use in monitoring tumour progression and metabolism46.  
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1. REVIEW 

1.1 INTRODUCTION 

The development of many pathologies relates to the progressive or chronic activity of 

heterogenous cells that exist within a complex tissue microenvironment. For instance, 

in cancer it has long been recognised that tumours exist through the concerted activity 

of multiple cell types1,2. This interplay of heterogenous cell types extends to 

autoimmune diseases such as rheumatoid arthritis3, where macrophage subtypes have 

demonstrated distinct associations with clinical state and disease remission4,5. In 

further complex tissues such as those of the musculoskeletal system, the presence of 

heterogenous cell types is known to be vital for homeostatic mechanisms related to 

healing and regeneration6; in particular following trauma7 or exercise-induced muscle 

damage8,9. 

Recent advances in RNA sequencing technologies have enabled resolution down to a 

single-cell level10,11, with these technologies presenting significant clinical value 

through examination of cellular heterogeneity within single-cell populations12–14. 

However, knowledge of cellular RNA profiles can only provide a proxy for protein 

levels within cells of interest15 and have shown divergence once resolution reaches the 

level of single-cells16. As proteins constitute the molecular machinery for cellular 

metabolism, information relating to their levels of expression, turnover and 

modification status can provide detailed information regarding cellular function. 

Previously, deciphering the proteomes of single-cell subpopulations within complex 

biological matrices has proven incredibly difficult, due to analytical techniques 

requiring bulk measurements that often obscure cellular heterogeneity within complex 

tissues. Techniques for the isolation of cell subspecies such as magnetic-activated cell 

sorting (MACs) and fluorescence-activated cell sorting (FACs) have demonstrated 

capabilities to efficiently isolate single-cells from mixed populations17,18, yet 

downstream detection of proteins with common methods such as western blotting, 

mass cytometry or ELISAs present limitations in their capacity for multiplexing and 

accurate protein quantification with such low amounts of biological material. Recent 

developments have increased the viability of these technologies to the study of single-

cell proteomes19,20, yet challenges remain in their widespread adoption21. 

In recent years, great advances have been made in the application of liquid 

chromatography tandem mass spectrometry (LC-MS/MS) proteomics capable of 

analysing low protein quantities, with these techniques starting to gain traction 

towards the study of single-cell proteomes22. This has primarily been achieved 

through recent advances in instrumentation that enable for quicker scan rates and 

parallel acquisition strategies23,24, but have also been greatly contributed by 

developments in sample preparation25,26, experimental optimisation of 

instrumentation27–29 and bioinformatic analysis pipelines30–32. This review aims to 

provide an overview of current considerations and prospects for mass spectrometry 

single-cell proteome analysis. 

 



1.2 SAMPLE PROCESSING 

Sample processing represents a key step for any proteomics workflow, with this being 

of critical importance within single-cell proteomics where starting quantities of 

protein are limited and loss of sample can be particularly detrimental. While single-

cell RNA sequencing technologies are able to utilise product amplification to ensure 

sufficient signal intensity33, alternate strategies must be employed within single-cell 

MS proteomic workflows to enable detection. These commence with sample 

processing.  

When analysing single-cells in the range of 1000-100000s of cells (generally termed, 

bulk analysis) only minor adjustments to standard sample preparations are necessary 

to enable MS analysis29,34. Consequently, these often still utilise detergents or 

chaotropic agents for cell lysis, as there is sufficient biological material to allow for 

subsequent sample clean-up via precipitation or desalting thereafter. These processes 

become less feasible as cell numbers approach 100s-10s of cells and minimisation of 

sample handling becomes paramount. A recent publication35 demonstrated the 

efficacy of an acidification-based proteomics extraction and processing method 

utilising Trifluoroacetic acid, that demonstrated improved protein yield and 

circumnavigated the necessity for detergents or chaotropic agents while generating 

high quality data. Indeed, in our hands slight alterations to this protocol have resulted 

in significant improvements in protein extraction yield compared to more 

conventional detergent-based approaches, down to as low as ~3000 human T-cells 

(FACs: CD14- CD3+ CD45RO+ CCR7+; unpublished data). This quick and 

minimalist method only requires downstream removal of Tris-Trifluoroacetate that 

can be successfully removed with offline or online desalting via reversed-phase C18 

resins. Although to the author’s knowledge this approach has yet to be otherwise 

tested in the field of single-cell proteomics, a derivative of Trifluoroacetic acid, 

Trifluoroethanol, has been successfully applied to single-cell analysis in a culture 

model of primary leukaemia where it has demonstrated improved protein extraction 

compared to pure water28 and reduced sample losses compared to detergent-based 

approaches that require additional sample clean-up steps36. Indeed, for low input 

proteomics where associated loss of sample via clean-up strategies must be negated, 

use of organic solvents have proven viable options for efficient cell lysis, protein 

solubilisation and denaturation that reduce the requirements for subsequent sample 

purification prior to MS analysis16,28,36,37. Pure water has alternatively been 

implemented as a means to remove the need for sample purification, yet usually 

requires additional physical disruption via either sonication38 or heat-cool cycles25.  

Among the first of these studies was Single Cell ProtEomics by Mass Spectrometry 

(SCoPE-MS)38. This study opted for mechanical lysis through acoustic sonication39 to 

circumnavigate sample clean-up and its associated losses for true single-cell analysis. 

Single-cell processing volumes were reduced to microlitre scale within PCR strip-

tubes at 2-200ul volumes following which peptides were isobarically-labelled before 

being combined with ‘booster’ channels of 200 cells to increase MS2 signal 

intensities for peptide identification. Although important in ensuring sufficient signal 

intensities, use of a ‘booster’ channel also reduces single-cell peptide surface 



interaction through relative dilution, minimising both adsorptive losses from plastic or 

glassware during chemical preparation and nano liquid-chromatography (nLC). 

Further development of this protocol aimed to reduce processing volumes by 10-fold 

through Minimal ProteOmic sample Preparation (mPOP)40, with the aims of 

promoting automation for higher analytical throughput and reduced sample handling, 

while utilising widely available equipment. mPOP demonstrated superior protein 

extraction via cell lysis when compared to a traditional urea-based method, confirmed 

by SILAC LC-MS analysis, suggesting its suitability for implementation within the 

SCoPE analysis framework. Adoption of this platform was further developed into the 

SCoPE2 framework25, that incorporated single-cell processing within multi-well plate 

format utilising widely available and cost-effective PCR thermocyclers and liquid 

dispensers. Combined with utilisation of mass spectrometry instrumentation that has 

been commercially-available for over 10 years, this presents a highly accessible 

single-cell MS analysis platform that has demonstrated capabilities to discern cellular 

heterogeneity at single-cell resolution41. 

While adsorptive losses during sample preparation and chromatographic separation 

can be reduced within multiplexed workflows through use of a carrier channel, 

alternate strategies must be employed within label-free approaches to maximise the 

introduction of low peptide inputs for separation and detection via (nano) LC-MS. 

One of these strategies is through minimising sample transfer and processing volumes 

via a single-pot approach. While a single-pot approach was originally introduced in 

the field of proteomics to ameliorate issues of sample quantity 42 and has 

demonstrated some utility in the field of single-cell proteomics within a study of 

human oocytes43, further adaptations have been implemented to facilitate the analysis 

of smaller mammalian cell types of lower protein content that may not tolerate the 

losses inevitable during sample clean-up within these workflows. To this end, a recent 

publication investigated the use of 1µl single-pot sample preparation for label-free 

single-cell proteomics44. Utilising the CellenONE automated liquid handling system, 

they observed substantial benefits in protein identifications through enhanced 

recovery and digestion efficiency when sample hydration was maintained via addition 

of water every 15 minutes during tryptic digest. This, along with the addition of 5% 

DMSO to aid hydrophobic peptide solubilisation, significantly reduced adsorptive 

peptide losses from plastic or glassware and translated directly to increased protein 

identifications44. This was further enhanced when samples were injected directly from 

the 384-well plate formats used for single-pot processing, reinforcing the importance 

of minimal sample transfer during preparation. 

Alternative protocols utilising greater levels of miniaturisation into the nanolitre scale 

have also proven successful, with the aim of maximising sample recovery and 

enabling enzymatic digestion to occur at comparable concentrations relative to bulk 

analyses22. Originally implemented using custom nano well or chip designs26,45,46, 

nanodroplet approaches have also been successfully automated via the liquid handling 

system, CellenONE47–51. This increased level of miniaturisation has enabled 

identification of 100-1000s proteins from single-cells using both label-free and 

multiplexed experimental designs, with application of nano-PrOteomic sample 

Preparation (nPOP) within the SCoPE2 framework demonstrating improved 



proteomic profiling of HeLa and U-937 monocytic cell lines during cell cycle division 

compared to the previously adopted mPOP protocol40. However, comparable results 

have recently been achieved with use of processing volumes ~2ul in conjunction with 

low protein-binding microwell plates16,28,37,41, representing an attractive and 

accessible approach to single-cell analysis utilising widely available equipment and 

MS instrumentation. The viability of these approaches, however, is arguably 

contributed by the integration of ion mobility (TIMS/FAIMS) within these workflows 

that improve signal: noise ratios (akin to the aim of nanodroplet processing) which 

will be discussed in further detail below. Reducing spectral complexity appears key to 

improving protein identifications with current LC-MS technologies, whether this is 

achieved through nanodroplet approaches or downstream ion mobility filtering.  

 

1.3 CHEMICAL LABELLING VS LABEL-FREE 

APPROACHES 

Both label-free and chemical labelling strategies have been applied to the proteomic 

analysis of single-cells. Label-free proteomic techniques represent a minimalist 

approach that do not require the introduction of isobaric or non-isobaric mass tags, 

simplifying the workflow and reducing sample handling. Labelling strategies seek to 

chemically modify samples in order to improve the chances of peptide identification 

and quantification but have the potential to impact sample processing, 

chromatographic separation and MS analysis. However, both techniques present 

benefits and limitations for the identification and quantification of proteins within 

single-cells. 

Isobaric labelling originally gained traction in the field of proteomics as an alternative 

method for protein quantification due to the limitations of stable isotope approaches 

currently employed at the time. Although in vitro stable isotope labelling 

approaches52,53 demonstrated some utility for quantitative proteomics as long as the 

model organism was compatible with the necessary culture conditions, in vivo 

labelling approaches were more difficult to implement due to limitations in accurate 

prediction of isotope incorporation or for their laborious and expensive nature54. 

Alternatively, chemical derivatisation techniques using stable isotopes can present 

their own constraints55,56, in particular when deuterium is the stable isotope label of 

choice. Although the mass modification following deuterium-labelling is small, it has 

been shown to increase mobility of deuterated peptides during high performance 

reversed-phase liquid chromatography to the point that they often elute as a separate 

fraction55,57. This poses problems in treating the ‘heavy’ (deuterated) and ‘light’ 

peptides as internal standards for one another during relative protein quantification, as 

these peptides do not co-elute for integrated detection of ion intensities and therefore 

it is possible that they are differentially suppressed during ionisation by interfering 

compounds. Although for deuterium-labelled compounds this appears less 

problematic with HILIC separations58,59, stable isotopes are further capable of being 

incorporated at multiple sites within a peptide of interest. As a result, the discrepancy 

between the extent of isotopic labelling among ‘heavy’ and ‘light’ peptide pairs can 



differentially alter the charge state of peptides during electrospray ionisation, further 

reducing the confidence in peptide quantification57,60. 

Tandem mass tags (TMT) were introduced as a solution to some of these limitations 

in isotope labelling strategies and involve the incorporation of multiple ‘tags’ - present 

as amino acids – that label peptides with a sensitisation group, mass normaliser and 

cleavage enhancer61. These tags are analysed using MS2 data acquisition, where their 

design facilitates the collision-induced dissociation (CID) of the TMT fragment from 

the precursor ion in a manner that enables its detection as a reporter at a specific 

mass-charge ratio. Tags can be designed for reactive specificity to label a variety of 

nucleophile target sites and therefore are capable of targeting distinct peptides with a 

high level of accuracy. Through the use of a mass normalisation group, pairs of TMT 

labelled peptides have the same mass and chemical composition, thus ensuring 

comigration during chromatographic separation to provide more accurate internal 

standards for peptide quantification. Additionally, as these peptides coelute and share 

the same chemical properties, they are detected as one peak during MS1. This 

provides a clear benefit for low-input proteomics, as there is an increased chance of 

peptide detection through greater cumulative ion intensities. This is in juxtaposition to 

stable isotope labelling where peptide pairs are separated into two peaks (or more) 

and respective ion intensities will therefore be weaker. With peptide pairs sharing a 

peak in MS1, they can also be isolated together more accurately for quantification via 

MS2 acquisition, which provides an improved signal-noise ratio due to the absence of 

non-specific peptides or compounds.  

Within the field of single-cell proteomics the use of TMT labelling has become an 

attractive option for protein identification and quantification, where it has 

demonstrated high analytical throughput and deep proteome coverage28,38. Single-cell 

isolations are separately lysed and digested, before being differentially labelled with 

isobaric mass tags. Samples are then pooled together, with detection of these low 

abundance samples being augmented by their further combination with a carrier 

sample that typically comprises hundreds of cells from the experimental populations 

of interest62. Multiplexed analysis of single-cells in this way circumnavigates some of 

the innate difficulties of detecting such low intensity ions, thus improving detection in 

MS1 and subsequent selection for and improved sequencing in MS2. Use of a carrier 

channel has successfully enabled analysis of >100 cells per day from up to 16 

multiplexed single-cell samples, achieving >1000 protein group identifications per 

cell and thus representing a powerful tool for single-cell MS proteomics28,41.  

Control and consideration of the carrier channel is, however, vitally important as 

alterations to this channel will directly impact intensities and therefore detection of 

sample peptides63; although this also presents an opportunity to enrich detection of 

specific sample peptides through adjustments to the quantities of these same peptides 

in the carrier. To avoid quantification bias, carrier channels are generally limited to no 

more than 200-cells within analytical workflows28,38, with reductions to 20-100 cell 

carriers appearing optimal for true single-cell analysis63,64. With the aim to further 

reduce bias effects, use of linear ion traps have been implemented to separate sample 

and carrier precursors prior to their introduction to the Orbitrap63, while experimental 

removal of a carrier channel altogether has been achieved through miniaturised 



sample analysis using nanolitre volumes50. Although use of nanolitre preparation 

showed an improved reporter ion signal: noise ratio when assessed with 16-plex TMT 

labelling (although this appears in part to be contributed by the choice of TMT 

reagent) lack of a 20x carrier channel reduced average PSMs, peptides and proteins 

identified (from ~2000 protein groups to ~1500), suggesting a potential trade-off 

between quantitative accuracy and rates of identification50. However, these 

identifications with removal of a carrier are still comparable to other reported rates in 

single-cell experiments37,65, suggesting the viability of nanolitre workflows to 

improve quantitative accuracy while maintaining relative levels of protein 

identification. 

Current applications of isobaric labelling to single-cell proteomics provide some of 

the highest rates of identification and analytical throughput, but there are still 

drawbacks to this approach. Although labelling is generally highly efficient, it can be 

impacted by contaminating primary amino groups contained within the sample that 

interact with the amine-reactive mass tags66,67. For this reason, sufficient sample 

clean-up is imperative prior to isobaric labelling or alternatively avoidance of amine-

containing buffers such as Tris and ammonium bicarbonate68. Additionally, isotopic 

impurities of isobaric labels can impact MS quantification through their cross-

detection within alternate channels, necessitating data correction via computational 

methods69. Both of these present challenges for single-cell proteomics, at the level of 

both sample processing and data interpretation. At serial bulk dilutions aimed at 

reflecting single-cell quantities, application of isotopic impurity correction factors 

have been shown to increase quantitative error63, suggesting currently employed 

computational strategies that are successful for bulk analyses may not be as suitable 

for single-cell proteomics. Cross-channel contributions from isotopic impurities have 

been shown to result in reductions in quantitative precision within single-cell 

workflows28,63,70 and appear to be exacerbated by increased carrier: single-cell 

channel ratios70. Additional issues are known to arise from the co-isolation of peptide 

fragments, where ratio compression may undermine the ability to accurately 

distinguish quantitative differences between samples71. Within single-cell frameworks 

that utilise a carrier channel, this proves particularly problematic, as single-cell 

reporter ion intensities may be saturated by the carrier and collected as noise within 

the MS spectrum70. As a result, CVs for single-cell channels have been shown to 

increase inversely with signal: noise at both PSM and protein levels63,70. At such low 

relative signal intensities, it is possible single-cell analysis may result in increased 

missing values not observed with bulk analysis63, presenting further difficulties for 

downstream statistical analysis. As a result, label-free quantification (LFQ) likely 

presents a more robust method for peptide quantification at either MS1 or MS2 level, 

due to not being constrained by the biases and extenuating considerations of isobaric 

labelling approaches and for minimal sample handling. However, the need for 

increased analytical throughput is still a prominent issue within single-cell 

proteomics, especially if the technology is to become suitable for routine clinical 

applications and keep pace with other current single-cell sequencing technologies, 

particularly where parallel single-cell experiments are required. 

 



1.4 DATA ACQUISITION 

1.41 DDA Or DIA 

Choice of quantification via LFQ or chemical labelling will influence the choice of 

data acquisition during single-cell proteomic analysis, namely the selection of data-

dependent acquisition (DDA) or data-independent acquisition (DIA). DDA has 

traditionally been employed within chemical labelling workflows in order to select the 

most abundant precursors for fragmentation. However, as precursors are isolated 

individually for fragmentation prior to MS2, this invariably leads to increased 

analytical times in order to achieve deep proteome coverage when using Orbitrap 

instrumentation72. Non-isobaric labelling (such as mTRAQ or dimethyl labelling) 

enables sample multiplexing to improve throughput but as a result increases precursor 

numbers and therefore requires longer cycle times in MS1 for sufficient 

resolution56,73. High resolution is often necessary at both MS1 and MS2 to enable 

accurate peptide identifications with the low signal intensities of single-cell peptides 

but invariably such a multiplex approach increases spectrum complexity, challenging 

data interpretation. Alternatively, as discussed earlier within this review, isobaric 

labelling enables comigration of multiplexed sample peptides, enabling greater 

throughput by selection of a higher pooled signal precursor for fragmentation (albeit 

with drawbacks in the quantitative accuracy henceforth). Due to the limitations of co-

isolation with isobaric labelling, techniques such as TMT labelling are generally 

constrained to DDA, as simultaneous isolation of multiple peptide precursors within 

an isolation window will result in indistinguishable reporter ions during MS2 

quantification. Computational developments are now facilitating greater 

implementation of DIA as a powerful tool for deep and robust proteome analysis to 

interpret the chimeric complexity of spectra obtained via DIA24,31,32,74. Recent reports 

into the application of DIA with TMT labelling demonstrated improved data 

completeness and improved precision without compromising identification rates64,75, 

yet did not necessarily resolve the concerns regarding co-isolation within these 

workflows. However, replicability was high across runs of low sample inputs (0.5ng, 

1ng, 5ng, 10ng), potentially as a result of more consistent signal: noise intensities that 

henceforth enable for the consistent detection of precursor and reporter ion 

intensities75. This was further complemented by this study’s observation that data 

point generation was reproducible across samples when applying their DIA isolation 

scheme. This suggests that DIA may be possible for TMT experiments and presents an 

augmentation to the multiplex capabilities of isobaric labelling strategies to further 

increase throughput, however, likely requires further validation to confirm its 

quantitative accuracy. 

In an attempt to circumnavigate the underlying quantitative issues of isobaric 

labelling while maintaining or increasing analytical throughput by taking advantage of 

the multiplicative nature of DIA, recent studies have employed alternative methods 

utilising novel isotopic76 or mTRAQ51 non-isobaric tags for triplex analysis. The first 

method involves use of an isotopically labelled acetyl-isoleucine-proline (Ac-IP) 

tag76, that applies a minor modification to peptides resulting in incremental 1 Da shifts 

for separate precursor detection and quantification via MS1. Fragmentation of the Ac-



IP tag induces dissociation by neutral loss that leads to its detection at a defined m/z 

within MS2, minimising the complexity of resulting MS2 spectra during peptide 

identification. Together, this enables for use of modest resolution at both MS1 

(70,000) and MS2 (17,500) level, which for Orbitrap instruments enables cycle times 

to be kept at an acceptable level, therefore retaining the benefits in throughput from 

DIA. This is an improvement on previous methods for multiplex DIA utilising 

neutron-encoded mDa shifts with 13C or 15N that require use of ultra-high resolution at 

MS2 (>120,000) and in comparison reduced acquisition rates through longer Orbitrap 

cycle times77–79. Although promising, Ac-IP has yet to be applied to the study of 

single-cell proteomes. An alternate triplex non-isobaric labelling approach with 

mTRAQ51 has, however, been successfully applied to the study of single-cells. This 

method was implemented following observation of the benefits from DIA strategies 

employed in recent LFQ workflows16,24 that have enabled throughput and 

identifications similar (or superior) to previously reported isobaric labelling 

approaches32,80, while avoiding the inherent quantitative limitations of isobaric 

labelling to present improved quantitative accuracy. This triplex non-isobaric DIA 

method termed plexDIA51 similarly utilises MS1-based peptide quantification, while 

incorporating the benefits of DIA to increase quantitative accuracy and reduce 

missing values. However, this results in minor trade-offs in protein identifications 

under similar chromatography and instrument times when compared to previous 

TMT-DDA methods using the same Orbitrap instrument41. Utilisation of a timsTOF 

mass spectrometer within this workflow (opposed to a Q Exactive Classic Orbitrap) 

did however return identifications approximate to those identified with TMT-DDA51. 

This choice, again, has likely been largely influenced by the introduction and success 

of DIA-timsTOF workflows within low-input LFQ24,32,81, whose benefits will be 

discussed in further detail below. Regardless of quantification strategy, DIA presents 

many opportunities for the study of single-cell proteomes and will likely undergo 

further developments in the coming years.   

 

 1.42 Optimising Data Acquisition 

For single-cell proteomic analysis, both DDA and DIA approaches pose the potential 

to increase the accumulation of precursor ions for improved signal, through either 

pooling isobarically-labelled peptides from multiple samples within DDA or 

multiplying precursor peptide selection via wider m/z isolation windows from single 

(or multiple) samples within DIA. As previously discussed within this review, this is 

essential for single-cell proteomics, where increased signal: noise ratios are integral to 

successful peptide identification through either acquisition or preparation strategies 

(such as nanoscale preparation). However, further adjustments to instrument set-up 

and utilisation can have profound effects on data generation, precursor detection, 

peptide identification and subsequent quantification. Indeed, many of the advances 

already described within this review have only become possible through considerable 

optimisation of their associated instrumentation, that cumulatively represent further 

vital considerations for the MS analysis of low input samples and true single-cell 

proteomics. These are routinely characterised by increased ion accumulation times, 



high resolution MS1 and MS2 (with options for deep MS3 and beyond), adjustments 

to n precursor selection within DDA, increased injection times, low-flow nano liquid 

chromatography, optimisation of data points per peak and adjustments to automatic 

gain control (AGC) targets. These key ingredients must be balanced relative to the 

experimental parameters of single-cell studies and minor alterations to only a few of 

these parameters can already demonstrate notable benefits within bulk analysis of up 

to as many as 10,000 cells29. Where analysis involves 1000s - true single-cells, the 

influence of these alterations becomes increasingly profound. 

 

 1.43 Nanoflow Liquid Chromatography 

Following sample preparation, separation of the resultant complex peptide mixtures 

prior to measurement via MS is instrumental to enable detection across the dynamic 

range of proteins present within limited samples22,82. Due to the reduced protein 

quantities present within single-cells and the synonymous elongated injection and 

accumulation times required to reach sufficient AGC targets for sequencing, nanoflow 

systems implementing reduced flow rates have demonstrated benefits in the 

optimisation of ion flux prior to subsequent nano electrospray ionisation83. Due to 

such low flow rates (typically 100-250nl/min16,25,28,51, chromatography is generally 

employed using columns with inner diameters of 50-100µm and particle sizes ranging 

from 1.6-2µm16,38,51,75,84. As sensitivity in proteomics is largely a function of 

concentration and dependent on the optimal ionisation and subsequent delivery of 

ions through the vacuum system for detection within the instrument, use of low flow 

nLC increases sensitivity by increasing the relative concentration of peptides 

delivered to the nESI source85. Simultaneously, nESI enables the formation of smaller 

droplets, reducing the influence of contaminants that may suppress peptide ionisation, 

in particular non-volatile salts86,87. A drawback of low-flow nLC systems, however, is 

the difficulty in their maintenance and robust operation, partly due to the consequent 

increases in back-pressure as a result of such narrow columns and fine particles. 

However, steps towards the robust implementation of nanoflow liquid 

chromatography systems are being realised. A recent publication utilised an offline 

EvoTip trap column coupled to the EvoSep One liquid chromatography system for 

sample separation through use of a single-pump across a pre-formed beta gradient to 

great success16. Sample peptides were concentrated into 20nl packages during elution 

from the offline trap column for direct introduction into the separation system, 

facilitating miniaturised sample clean-up without additional processing steps. This 

liquid chromatography system standardised for reproducible results at a flow rate of 

100nl/min (although as low as 25nl/min was performed successfully) and its 

application for analysis of 1ng HeLa digest produced a 10-fold increase in MS signal 

using DDA detection coupled with a timsTOF instrument compared to 1µl/min 

separations, with further benefits in MS detection observed following the use of DIA 

within this workflow16. Invariably synonymous with signal: noise when assessing the 

analytical input of nLC efficiency is the generation of sharp peaks through contracted 

ion elution profiles. To this end, as well as the low flow rate, the design of this liquid 

chromatography system enabled concentration of separated peptides within a pre-



formed gradient prior to their separation through the analytical column88. Peptides 

eluted from the EvoTip trap with an organic solvent (<35% organic) were then offset 

by a gradient that reduced organic solvent composition, focusing sample peptides 

within a storage loop at the set organic content from which they will subsequently 

elute. Formation of a chromatographic gradient within a storage loop henceforth 

facilitates the use of a high-pressure single-pump to transfer peptides onto the 

analytical column for further separation, which results in very narrow peak widths for 

MS detection16,88. An added benefit to this approach is that washing of the column is 

integrated within the composition of the pre-formed gradient and therefore does not 

require separate loading of a wash buffer into the system, increasing analytical 

throughput by reducing wait times between sample loading. Such advancements will 

be necessary if routine proteomic analysis of low input biological samples is to 

become viable within the field of clinical proteomics.  

Further developments in column composition, diameter and reductions in nanoflow 

rate have been implemented for low input or single-cell proteomics. Among these 

involve microfluidic pillar array column designs (µPAC)89,90; ordered non-porous 

columns that boast reproducible retention times, sharp peak capacities, minimal on-

column losses and whose optimal operation at low flow rates naturally lends itself to 

single-cell MS analysis. Indeed, application of µPAC columns has demonstrated 

improved protein identifications for low input samples90,91 and has successfully been 

applied to the proteomic analysis of single-cells37. Its inherent low-binding capacity is 

well-suited to single-cell applications and will likely receive further attention as a 

column of choice as a result. Among other recently employed options are use of 

porous layer open tubular (PLOT) columns92, which have been successfully employed 

to the analysis of ~50-100 spiked MCF-7 cells from whole blood isolations where 

they identified ~1300-2000 protein groups respectively93, while employing a low flow 

rate of 20nl/min across a 4-hr gradient using a 4m column with an inner diameter of 

10µm and porous permeability of ~1 µm. Use of narrow-bore columns <50µm have 

also been successfully employed with standard 3µm C18 porous particles through 

custom column packing, where use of narrow-bore columns of inner diameter (ID) 

20µm demonstrated improved rates of protein identifications over 30µm, when flow 

rates of 20nl/min and 50nl/min were employed respectively94. This was observed for 

both low input proteomics of 0.2-2ng HeLa digest and single HeLa cell proteomic 

analysis, where use of a 20µm ID column resulted in identification of ~300 protein 

groups compared to ~200 protein groups when applying a 30µm ID column94. Further 

application of this custom 20µm narrow-bore column for chromatography within an 

expanded proteomics workflow utilising field-asymmetric ion mobility spectrometry 

(FAIMS) for filtration of ion precursors prior to detection with a Thermo Scientific 

Orbitrap Eclipse Tribrid MS instrument enabled identification of >1000 protein 

groups from a single HeLa cell95, representing one of the most in-depth label-free 

single-cell measurements of a mammalian cell type to date while demonstrating the 

utility of this column type for single-cell proteomics experiments. 

 

 



 1.44 Ion Mobility Spectrometry 

Among the great developments in the field of single-cell proteomics in recent years 

has been the successful implementation of trapped ion mobility spectrometry (TIMS, 

Bruker instrumentation)96 or Field Asymmetric Ion Mobility Spectrometry (FAIMS, 

Thermo instrumentation)97 techniques. Although mass spectrometry instrumentation is 

generally set-up to disregard singly-charged contaminant species, these can still 

influence ion flux and may be co-isolated along with target peptides, increasing 

spectral complexity and reducing the ability to efficiently identify peptides. While 

perhaps negligible with bulk analyses, these effects become exaggerated with the 

inherently low signal: noise of single-cell peptide abundances. This has been 

evidenced within a study whereby use of a FAIMS device to quantify single HeLa cell 

proteomes resulted in an approximate doubling (~100% increase) of both unique 

peptides and protein groups95. Designed to omit singly-charged species, FAIMS 

achieves reduced spectral complexity and poses the possibility to perform gas-phase 

fractionation in real-time to assist deeper targeted sequencing via MS2 or MS328,37 or 

alternatively to minimise the need for MS2 acquisition through utilisation of ion 

mobility values that provide sufficiently robust and detailed information for three-

dimensional matching with MS1 and chromatographic retention times98. 

A peptide’s ability to traverse the gas phases of either TIMS or FAIMS instruments is 

relative to its size and chemical composition, from which a value denoting its 

collisional cross section can be calculated99. Peptide collisional cross section values 

increase specificity through the capability to differentiate amino acid sequences based 

on both length and structure to the point where isobaric peptides can be 

distinguished100,101, with the integration of this data dimension into the MaxQuant 

analytical software demonstrating improved precision for MS1 label-free 

quantification30. As one can imagine, this technology can pose a multiplicative benefit 

via matching ion mobility values across analytical runs, where it has demonstrated 

greater reproducibility than liquid chromatography retention times across 

experimental batches102. Indeed, detailed information can be garnered from collisional 

cross section measurements with TIMS instrumentation, which demonstrate good 

agreement with standard drift-tube ion mobility measurements, and when TIMS is 

applied in conjunction with a parallel accumulation-serial fragmentation approach 

(PASEF)103 it has demonstrated approximately a 10-fold analytical improvement to 

sequence peptides102. While TIMS separation improves peptide identifications 

through enhanced signal: noise and reduced spectral complexity, it also poses the 

possibility to further optimise the delivery of analyte ions for detection. Ions are 

separated and accumulate via a counteracting electrical field that retains ions in the 

gas phase prior to their sequential release through stepped decreases in the electrical 

current (an inverse mechanism to drift tube IMS) and this enables delivery of ions as 

concentrated packages to increase sequencing speed without compromising sensitivity 

within MS/MS analysis103. Naturally, this is an exciting option for low input and 

single-cell proteomics as a means to further optimise ion delivery to the MS 

instrumentation for improved signal detection and naturally parallelises well to both 

DDA and DIA acquisition methods24,103. This has resulted in the application of DIA-

PASEF TIMS-TOF analysis to successfully identify thousands of proteins from low 



input and single-cell samples16,32,104, which currently represent the deepest proteomic 

profiling of single-cells achieved to date.  

Further advancements towards increasing throughput are also being realised, drawing 

upon the principles introduced in SONAR105 and Scanning SWATH106, whereby 

precursor ions are isolated by a quadrupole across a continuous DIA selection window 

(opposed to traditional stepped isolations) enabling for the direct determination of 

precursor-fragment relationships through time-dependent signal intensity calculations. 

This generates an additional data dimension (termed Q1) aimed at facilitating high 

analytical throughput without compromising quantitative precision and was 

successfully able to differentiate COVID-19 disease severity based on plasma 

proteome measurements using microflow chromatography gradients as short as 60 

seconds106. Applied within the context of two DIA-PASEF TIMS-TOF 

workflows107,108, quadrupole ‘slicing’ increased precursor sampling efficiency, speed 

and signal intensities, extending this data acquisition strategy to six dimensions: 

retention time, ion mobility, quadrupole selection, Q1 profile, m/z and intensity. 

Applied to the analysis of 200pg HeLa cell tryptic digest (approximate to single-cell 

quantities109) this approach enabled the quantification of ~1400 proteins from a 

2µl/min gradient employed at 200 samples per day throughput on the EvoSep One 

chromatography system paired with a timsTOF Pro 2 instrument108. This poses an 

exciting technological advance that will likely receive considerable attention in the 

coming years towards the realisation of high throughput quantitative proteomics 

compatible with single-cell and clinical applications. 

 

 1.45 Linear Ion Traps 

Although advancements to enable single-cell proteomics began with the use of 

orbitrap mass analysers26,38 and TIMS-TOF instruments currently enable some of the 

deepest proteomic profiling for low input omics16,32, linear ion trap mass analysers 

have recently gained attention for their speed and sensitivity in measuring low input 

samples110,111. Current advanced instrumentation additionally supports switching 

between orbitrap and linear ion trap acquisition schemes for both standard tandem 

MS/MS as well as deeper MSn sequencing37,84, thus facilitating utilisation of this 

acquisition strategy without the need to acquire further instruments within the 

laboratory. This has consequently enabled internal instrument comparisons between 

orbitrap and linear ion trap acquisition schemes.  

Investigation of differences in peptide and protein identification rates (as well as 

quantitative accuracy) from MS2 data acquired via orbitrap vs linear ion trap for low 

input samples was first employed for serial bulk dilutions of HeLa digests using an 

Orbitrap Fusion Lumos Tribrid (ThermoFisher) in DIA mode110. When analysing 

10ng or lower, use of a linear ion trap resulted in improved peptide identifications and 

CVs compared to the orbitrap while decreasing cycle times. Increasing the precursor 

isolation windows, while removing the benefit of reduced cycle times, further 

increased peptide precursor identifications to approximately double that of the DIA-

orbitrap acquisition scheme at 10ng and 1ng analytical loads110. A further study 



extended investigation into the benefits of linear ion traps for low input proteomics, 

again utilising a serial bulk HeLa dilution111. This study similarly observed benefits 

for peptide identifications with linear ion traps once sample loads decreased to 10ng 

or less, additionally observing minimal increases in identification rates when 

analysing loads above 5ng111. This suggests the innate suitability of linear ion traps for 

low input proteomics as both studies observed an earlier plateau in identifications 

relative to sample concentration for linear ion trap methods compared to orbitrap, 

which demonstrated superior identification rates at higher sample loads110,111. These 

studies attributed these differences to the reduced specificity of linear ion traps driven 

by their low resolution capabilities, resulting in their associated DIA-generated 

spectra being more complex, and affirming the benefit of small isolation windows for 

DIA-LIT. An interesting observation to this effect was the influence of injection time 

on spectrum complexity and consequently peptide identifications. Increased injection 

times resulted in improved peptide coverage110,111 and quantitative accuracy111 when 

isolation windows were maintained resulting in longer cycle times, with peptide 

identifications decreasing when cycle time was matched through use of larger 

isolation windows. This iterates the specific suitability of linear ion traps for low input 

proteomics, as it appears that increased ion flux or complexity arising from larger 

isolation windows or bulk digests is problematic for DIA-linear ion trap analysis, as 

the time required for proper resolution would become impractical or impossible at 

these loads. Indeed, at 1ng inputs linear ion traps exhibited peptide identifications and 

CVs superior to orbitrap analysis unless analytical resolution at MS2 was massively 

increased to 120,000 (and by association cycle times)111, reinforcing their superior 

sensitivity. With analytical throughput posing a constant consideration for the 

practical implementation of single-cell proteomics, particularly within clinical 

settings, the rapid scan rates possible with linear ion traps may complement the 

increased injection times required to achieve deep proteomic profiling.  

Linear ion traps have successfully been applied to the study of single-cell proteomes; 

with a study utilising nanoPOTS preparation, low flow nanoLC separation at 

100nl/min and an Orbitrap Eclipse Tribrid interfaced with a FAIMSpro (Thermo 

Instrumentation) enabling detection of ~3000 proteins at single-cell level84. Data was 

acquired with DDA and matching to a spectral library of 11 cells proved highly 

successful for peptide and protein identifications, as previously alluded to for low 

input samples analysed via linear ion trap111. This supports the effective use of both 

DDA and DIA acquisition strategies with linear ion traps for MS2 peptide 

identification, with 6-plex TMT-labelled quantification having additionally been 

achieved via linear ion trap MS3112 (although this has yet to be applied within the 

context of single-cell proteomics). Indeed, due to the high sensitivity and reduced 

specificity of linear ion traps DDA acquisition strategies may prove preferable, 

particularly in scenarios where parallel acquisition can be performed to parallelise 

high-resolution orbitrap MS1 with increased MS2 injection times for linear ion trap 

sequencing84. Use of linear ion traps for MS2 real-time peptide searches (RTS) prior 

to successive MS2 or MS3 quantitative orbitrap scans has also been successfully 

employed for single-cell MS37 (again with use of an Orbitrap Eclipse Tribrid 

instrument). Although the linear ion trap scans employed were rapid (23ms and 46ms 

max injection times respectively), inclusion of on-the-fly RTS-enabled precursor 



matching led to substantial improvements in spectra interpretation and subsequent 

protein identification rates, in particular when performed within an RTS-MS3 

protocol37.  It is likely further development of low input linear ion trap acquisition 

strategies will drive new progress within the field of single-cell proteomics. 

 

1.5 DATA PROCESSING AND ANALYSIS 

Spectral processing and statistical inference are key parameters in the interpretation of 

single-cell proteomics data, and within the context of the reduced: signal noise present 

within low input MS spectra, optimisation of these parameters is often inherent to the 

choice of search engine, algorithm, spectral library and limits of statistical probability, 

that determinatively impress upon the ensuing data analysis and research outputs. 

While analytical incorporation of further data dimensions has shown to result in 

improved spectral interpretation28,37,98, increased data parameters are secondary to the 

functional paradigm of computational analysis which must be implemented 

appropriately relative to the experimental design. 

Matching between runs is a feature that was first incorporated into the MaxQuant 

software algorithm in order to tackle the missing value problem recurrent within -

omics technologies113. Through accounting for variation in liquid chromatography 

retention times, features can be matched between experimental runs by accurate mass 

to increase identification rates in cases where MS2 data may not have been generated. 

Naturally, this would be particularly suited to low input proteomics, where a DDA 

acquisition strategy is unlikely to uniformly sample the same MS1 precursors relative 

to retention time. The proposed benefits of the MBR feature within MaxQuant 

processing have been repeatedly demonstrated for low input and single-cell 

proteomics, where they have shown the capacity to increase identifications by >2-

fold26,45,95. This was achieved through both matching across single-cell samples and to 

a bulk sample composed of greater cell numbers from the population of interest. 

Although false transfer rates from MBR are generally at a minimum when applied in 

the context of LFQ114, recent application of FDR-controlled MBR with IonQuant115(as 

part of the FragPipe analytical suite) demonstrated some benefits in improving 

quantitative accuracy during the re-analysis of two single-cell proteomics 

experiments95,116. With FDR-controlled MBR also being successfully employed in one 

of the deepest proteomic profiling of single-cells to date with DDA84, use of FDR-

controlled MBR may be prudent and viable for similar single-cell proteomics 

experiments without being overtly detrimental to identification rates. However, this 

study employed a relatively high MBR-FDR (0.05)84 that may not necessarily provide 

a drastic reduction in FDR-derived identifications115, in conjunction with the bulk-

generated (11 cells) spectral library that was used for matching to experimental runs.  

Experiment-specific bulk spectral libraries can be applied both individually, in 

combination with library-free database searches or in multiplicity. In another study of 

single-cells98, FAIMS was used to fractionate high-input bulk samples into up to 4-gas 

phase fractions at different compensation voltages (CV) in order to generate in-depth 

DDA spectral libraries for subsequent matching to experimental LC-MS runs of 



single-cells in which multiple CV settings were cycled through sequentially. This 

resulted in the successful identification and label-free quantification of >1000 proteins 

from single HeLa cells98. While the use of experimentally-derived spectral libraries 

has been adopted to great success within these single-cell DDA workflows84,98, use of 

bulk spectral libraries may present the greatest benefit for DIA workflows where there 

is increased spectral stochasticity. Here, generation of spectral libraries poses the 

benefit of providing experimentally accurate spectra; foregoing the need for 

theoretical reference spectra that may deviate in their predicted (vs observed) 

fragmentation intensities117. In a study that generated a spectral library from DDA-

PASEF TIMS-qTOF analysis of bulk HeLa cells, searching against this experimental 

spectra enabled the identification of ~4000 proteins with a significantly reduced 20-

minute gradient when analysing 10ng HeLa digest using single-shot DIA analysis104. 

This study similarly utilised 4-phase gas fractionation via TIMS to increase spectral 

library proteome coverage, a strategy that poses an attractive avenue in order to 

reduce analytical time per sample for low input proteomics and may prove suitable for 

single-cell DIA. Although highly successful, DDA spectral libraries are often 

experiment and instrument dependent, which may necessitate the time-consuming and 

costly repeated generation of spectral libraries for every project. Coupled with their 

limited capacity for novel identifications when matching to experimental runs, there 

has been a drive in recent years towards the implementation of deep learning 

approaches capable of generating in silico spectral libraries comparable or superior in 

performance to those derived experimentally118,119. 

An exciting implementation of this outlook for fast and robust DIA analysis of low 

input samples is the application of deep neural network modelling to augment 

identification and quantitative performance through deconvolution of spectra signal: 

noise, as well as additional interference correction strategies; termed DIA-NN74. 

Within this approach, deep neural networks are trained for the calculation of target 

and decoy elution peak discriminant scores to generate subsequent q-values that 

determine the statistical significance of precursor matches. Through incorporation of 

both peptide-120 and spectrum-centric approaches121, DIA-NN improves identification 

performance at strict FDR through extensive peak scoring at the peptide level to 

iteratively train a classifier, before incorporating an evaluation of potential precursor 

interference in cases where multiple precursors map to the same retention time; 

selecting only those identifications best supported by the model. Additionally, 

implementation of an interference-removal algorithm to select the most suitable 

fragment ions based on their respective peak elution’s (with the aim to minimise co-

elution interference) demonstrated improved quantitative precision when compared to 

other common software tools, such as Spectronaut74. DIA-NN is consequently being 

increasingly applied to the analysis of low input or single-cell proteomics16,32,51,104. 

Among these developments is the implementation of DIA-NN to single-cell multiplex 

and low input label-free workflows aimed at increasing analytical throughput51,108, 

with further capabilities for the analysis of post-translational modifications (PTMs) 

being developed122,123. Extension of DIA-NN to the re-analysis of low input (10-

100ng) HeLa digest collected via DIA PASEF on a timsTOF Pro32 demonstrated 

significant increases in protein identifications of 28-56% compared to the original 

report24. Additional incorporation of the recently introduced timsTOF Pro 2 within a 



comparable DIA-PASEF workflow utilising DIA-NN further enabled this research 

group to identify 7442 proteins from a single injection of 10ng HeLa digest and 3651 

proteins from a single injection of 1ng HeLa digest32, demonstrating the ability to 

generate deep proteome coverage while maintaining quantitative performance at low 

sample inputs32. Adoption of DIA-NN for single-cell proteomics collected via DIA 

PASEF on a timsTOF Pro16 resulted in improved performance compared to 

Spectronaut processing, enabling the identification of ~2000 proteins per single HeLa 

cell16. Deep-learning strategies are continuing to grow at a rapid pace, similar to the 

field of single-cell proteomics, and their expansion will likely continue to improve our 

ability to interpret the complex experimental data sets arising from these 

investigations. 

 

1.6 SUMMARY 

MS single-cell proteomics is developing at a rapid rate, and with it, our understanding 

of processes central to cellular biology16,41 and disease28,37. Technical advancements 

have been driven by several factors; in particular the miniaturisation of sample 

preparation to nanoscale volumes, automation of sample handling, parallelised data 

acquisition and novel analytical strategies to optimise and uncover the data 

complexity awaiting discovery within single-cells. As throughput and analytical 

sensitivity improve, it is likely single-cell MS proteomics technologies will be 

increasingly implemented within clinical research applications, where they pose the 

complementary potential to those observed via the RNA landscape for diagnostics and 

investigations into disease pathology. 
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