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Abstract

The chameleon model is a modified gravity theory that introduces an ad-

ditional scalar field that couples to matter through a conformal coupling.

This ‘chameleon field’ possesses a screening mechanism through a nonlinear

self-interaction term which allows the field to affect cosmological observ-

ables in diffuse environments whilst still being consistent with current local

experimental constraints. Due to the self-interaction term, the equations of

motion of the field are nonlinear and therefore difficult to solve analytically.

The analytic solutions that do exist in the literature are either approximate

solutions and or only apply to highly symmetric systems.

In this work I introduce the software package SELCIE (https://github.

com/C-Briddon/SELCIE.git). This package equips the user with tools to

construct an arbitrary system of mass distributions and then to calculate

the corresponding solution to the chameleon field equation. It accomplishes

this by using the finite element method and either the Picard or Newton

nonlinear solving methods. I compare the results produced by SELCIE

with analytic results from the literature including discrete and continuous

density distributions. I find strong (sub-percentage) agreement between

the solutions calculated by SELCIE and the analytic solutions.

One consequence of this screening mechanism is that the force induced by

the field is dependent on the shape of the source mass (a property that
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distinguishes it from gravity). Therefore an optimal shape must exist for

which the chameleon force is maximised. Such a shape would allow ex-

periments to improve their sensitivity by simply changing the shape of the

source mass. In this work I use a combination of genetic algorithms and

SELCIE to find shapes that optimise the force at a single point in an ide-

alised experimental environment. I note that the method I use is easily

customised, and so can be used to optimise a more realistic experiment in-

volving particle trajectories or the force acting on an extended body. I find

the shapes outputted by the genetic algorithm possess common character-

istics, such as a preference for smaller source masses, and that the largest

fifth forces are produced by small ‘umbrella’-like shapes with a thickness

such that the source is unscreened but the field reaches its minimum in-

side the source. This remains the optimal shape even as we change the

chameleon potential, and the distance from the source, and across a wide

range of chameleon parameters. I find that by optimising the shape in this

way the fifth force can be increased by 2.45 times when compared to a

sphere, centred at the origin, of the same volume and mass.
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Figure 1: The chameleon field profile of a chameleon inside a vacuum cham-
ber, calculated by SELCIE.
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Chapter 1

Introduction

Einstein’s theory of general relativity (GR) is currently our best description

of gravity. Under the assumption that gravity obeys GR at all scales, and

that the universe is homogeneous and isotropic, the universe is found to be

capable of periods of expansion. Through a variety of astrophysical and

cosmological observations including type Ia supernova [5], baryon acoustic

oscillations (BAO) [6], and gravitational waves [7, 8], it has been discovered

that the universe is currently in a period of accelerated expansion. This

indicates that the universe recently has become dominated by a vacuum

energy refereed to as ‘dark energy’, the exact nature of which is not entirely

understood. Some sources of this energy are a bare cosmological constant

(CC) that appears in GR and zero-point fluctuations from quantum fields

[9].

Another possible source, referred to as quintessence, introduces a scalar

degree of freedom that starts to behave like a vacuum energy close to

today [10, 11]. There is also the possibility that GR is an incomplete

theory and so requires modifications [12]. However, through the use of a

conformal transformation of the metric tensor, some modifications of GR
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1.1. GENERAL RELATIVITY

can be recast as GR but with a new scalar degree of freedom that couples

to matter [13]. This field would therefore mediate a new fundamental force

due to this coupling. This ‘fifth force’ would be observed as deviations in

gravitational phenomena from those predicted by GR. However, to date,

all experimental results have been in agreement with the predictions of GR,

placing strong constraints on the couplings between such a scalar field and

matter, in models with a linear equation of motion [14, 15, 16]. This has

motivated research into nonlinear scalar field models that possess screening

mechanisms [12]. These models have fifth forces that are suppressed in and

around regions of relatively high density, resulting in weaker experimental

constraints. Some examples of such models include the symmetron [17],

chameleon [18], and Galileon models [19].

In this work I will focus on the chameleon, which is a class of models where

the field has an effective mass that scales with the local matter-energy

density [18]. Consequently, in regions of high density, such as close to the

Earth, the field’s mass is larger and interactions are suppressed. Despite

this, numerous experiments, including torsion balance [20], Casimir [21, 22,

23, 24], levitated force sensors [25], atom interferometry [26, 27, 28, 29, 30],

atomic spectroscopy [31, 32], neutron bouncing [33, 34, 35, 36, 37], and

neutron interferometry [38, 39], have been able to constrain the chameleon

parameter space, as will be discussed in section 1.6.3. For a comprehensive

review of the constraints on the chameleon model see Refs. [40, 41, 42].

1.1 General Relativity

Since this work is in regards to modifications to GR, I will begin with a

short review of the unmodified theory. In this section I outline some of the

2



1.1. GENERAL RELATIVITY

key concepts of GR and derive the most important expressions that will

be needed when addressing the modified theory. I conclude this section by

commenting on the successes of GR, along with some reasons that suggest

the theory may require modifying.

The metric gµν is a rank-2 tensor that relates coordinate distances (dxµ =

(dt, dx⃗)) to the physical separation distances (ds) of two events in an arbi-

trarily curved space-time through the equation

ds2 = gµνdx
µdxν , (1.1)

where I have used the Einstein summation convention. The metric also has

an inverse gαβ which is defined by the expression gµλg
λρ = δρµ, where the

Kronecker delta function δρµ is unity if its indices match and zero otherwise.

In GR the metric gµν , and therefore the curvature of space-time itself, is

treated as a dynamical field that depends on the matter-energy content

of the universe. What we observe as gravitational forces then are objects

following straight line trajectories, or geodesics, through a curved space-

time where the curvature has been induced by the massive ‘gravitating

body’.

Under a change of coordinates xµ → x̃µ, the infinitesimal displacement

transforms as dxµ → (∂xµ/∂x̃α) dx̃α, while ds2 is invariant since it is a nu-

merical value. Applying these transformation rules to equation (1.1), it can

be shown that under this coordinate transformation the metric transforms

as

g̃αβ(x̃) =

(
∂xµ

∂x̃α

)(
∂xν

∂x̃β

)
gµν(x). (1.2)

This is the transformation rule for a tensor of rank-2 for a change of coor-
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1.1. GENERAL RELATIVITY

dinates, with the general rule for a tensor of any rank being

T̃
µ′
1...µ

′
k

ν′1...ν
′
q
=

(
∂x̃µ

′
1

∂xµ1

)
...

(
∂x̃µ

′
k

∂xµk

)(
∂xν1

∂x̃ν
′
1

)
...

(
∂xνq

∂x̃ν
′
q

)
T µ1...µk

ν1...νq
. (1.3)

From this transformation rule it is simple to show that the partial derivative

of a tensor is not itself a tensor. Instead the covariant derivative should be

used, which is the tensor form of the partial derivative and when acting on

a tensor is written as

∇σT
µ1...µk

ν1...νk
= ∂σT

µ1...µk
ν1...νk

+ Γµ1

σλT
λ...µk

ν1...νk
+ ...+ Γµk

σλT
µ1...λ

ν1...νk

− Γω
σν1
T µ1...µk

ω...νk
− ...− Γω

σνk
T µ1...µk

ν1...ω
, (1.4)

while becoming the partial derivative when acting on a scalar. In this

definition Γλ
µν is the metric connection, which is not a tensor but transforms

under a coordinate change such that the covariant derivative of a tensor

is itself a tensor. If we restrict the metric connection to ones that are

symmetric in the lower indices1 and are metric compatible (∇σgµν = 0),

then the unique choice of connection is

Γλ
µν =

1

2
gλω (∂µgων + ∂νgµω − ∂ωgµν) , (1.5)

which is referred to as the Levi-Civita connection.

In flat space, particle trajectories follow straight lines, which can be consid-

ered as the particle’s velocity vector being transported parallel to itself. The

general expression for a vector being parallel transported through a curved

space-time is V µ∇µV
ν = 0. Parallel transporting a particle’s four-velocity

1This is done such that the torsion of the space-time, which is defined as Tσ
µν =

Γσ
µν − Γσ

νµ, is always zero.
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1.1. GENERAL RELATIVITY

Uµ = dxµ/dτ , where τ is the proper time, gives the geodesic equation

d2xσ

dτ 2
+ Γσ

µνU
µUν = 0. (1.6)

The curvature of the space-time is a measure of how vectors change when

parallel transported around an infinitesimally small closed loop, and this

information is encoded by the Riemann curvature tensor

Rα
µβν = ∂βΓ

α
µν − ∂νΓ

α
µβ + Γω

µνΓ
α
ωβ − Γω

µβΓ
α
ων . (1.7)

Contracting the upper and second lower indices we obtain the Ricci tensor

Rµν ≡ Rρ
µρν = ∂σΓ

σ
µν − ∂νΓ

σ
µσ + Γσ

µνΓ
ω
σω − Γσ

µωΓ
ω
σν , (1.8)

which is then related to the Ricci scalar by R = gµνRµν .

The matter and energy of a system can be described by its energy-momentum

tensor, which is defined as

T µν = − 2√
−g

∂Lm

∂gµν
, (1.9)

where Lm is the Lagrangian density of the system. A tensor theory of

gravity must relate the matter and energy of a system, described by the

energy-momentum tensor, to the curvature of the space-time. Additionally,

such a theory would need to be in agreement with Newton’s law of gravi-

tation in the non-relativistic regime and the curvature terms must be zero

when acted upon by the covariant derivative, so as to agree with energy

conservation (∇µT
µν = 0). This ultimately leads to the Einstein equation

Rµν −
1

2
Rgµν + Λgµν =M−2

pl Tµν , (1.10)
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1.1. GENERAL RELATIVITY

whereMpl =
√

1/8πG is the reduced Planck mass, G is Newton’s constant,

and Λ is the cosmological constant (CC), which is required to be small to

be consistent with Newton’s law of gravitation. This equation describes

how the matter and energy content of a system, Tµν , induces curvature in

space-time, which then through the geodesic equation (1.6) governs how

bodies move through that space-time. Rewriting equation (1.10) as an

action gives the Einstein-Hilbert action

S =

∫
d4x

√
−g

M2
pl

2
(R− 2Λ)−

∫
d4xLm, (1.11)

Not only does equation (1.10) accurately reproduce Newton’s laws of grav-

itation in the non-relativistic limit but it also accurately predicts the per-

ihelion of Mercury [43], a feat that Newton’s gravity could not account

for barring the existence of unseen gravitational bodies. Other success-

ful predictions of GR include: measuring light bending around the Sun

[44], Shapiro time delay [45], gravitational waves [46], and even black holes

which have recently been directly imaged for the first time [47, 48]. The

weak equivalence principle (WEP) states that the inertial and gravitational

mass of an object are equal, no matter the composition of the object. The

consequence of this principle is that point like particles will fall in a gravita-

tional field in the same way, independently of their composition. The WEP

is a foundational concept in GR and any detected violations of this princi-

ple is tantamount to proving GR is not the fundamental theory of gravity.

That being said, the recent MICROSCOPE experiment, which tests the

WEP by precisely measuring the relative free fall of cylinders composed of

different material, found no violations up to a precision of 10−15 [49]. Ad-

ditionally, as will be discussed further in section 1.2, our universe appears

to resemble one that is governed by GR and is homogeneous and isotropic

6



1.2. A HOMOGENEOUS AND ISOTROPIC UNIVERSE

on large scales.

Despite all the experimental and predictive success of GR, just like how

the perihelion of Mercury hinted towards a more fundamental theory of

gravity than that stated by Newton, there are aspects of GR that also hint

towards the need for an even more fundamental theory, or modifications to

our existing one. Some of these problems include: the fine-tuning of Λ so as

to reproduce observations [9] (this will be elaborated upon in section 1.3),

the fact that the effective field theory description of GR breaks down at

high energies [50], and the existence of singularities at the centre of black

holes [51]. Consequently, there are a plethora of modified gravity models

in the literature that aim to resolve one or more of the above mentioned

problems. The contents of this work, however, will only discuss a specific

scalar-tensor theory known as the chameleon model, which is a modification

of GR that exhibits different behaviour depending on the contents of the

local environment, and leads to violations of the WEP.

1.2 A Homogeneous and Isotropic Universe

In the previous section, I discussed GR and how it relates the matter and

energy content of space to the curvature of the surrounding space-time. In

this section I will discuss the consequences of assuming that the universe is

homogeneous and isotropic, and what GR can tell us about the evolution

of such a universe. We will find that the evolution will depend on the

energy contents of the universe, along with its intrinsic curvature, and can

therefore be described using four constants. I will conclude this section by

commenting on the values of these constants obtained from observations,

and on some of the problems that arise specifically regarding the dark

7



1.2. A HOMOGENEOUS AND ISOTROPIC UNIVERSE

energy contribution.

The cosmological principle states that on large scales our universe becomes

homogeneous and isotropic. The former states that there are no special

points in the universe, while the latter states that there are no preferred

directions. Applying the condition of homogeneity to a spatial metric im-

poses that it must be unchanged (form-invariant) under all translations.

This is because if the metric is initially defined using coordinates that have

Earth at the origin, after a translation the origin will have moved to a

new position. If the universe is homogeneous then all choices of origin are

equivalent and so the metric should have the same form, and therefore be

independent of the choice of origin. By a similar argument, imposing the

space to be isotropic means the metric must be form-invariant to rotation.

For three spatial dimensions the metric will therefore be invariant to six

independent transformations. Therefore, a spatial metric that obeys the

cosmological principle must be maximally symmetric. Neglecting metrics

related through a coordinate transformation, there exists only three unique

solutions, each represented by the Robertson-Walker metric

ds2 = −dt2 + a2(t)

[
dr2

1− kr2/R2
0

+ r2dθ2 + r2 sin2(θ)dφ2

]
, (1.12)

where the curvature scale R0 is a constant, and the specific maximally sym-

metric spatial solutions are spherical (k = +1), hyperbolic (k = −1), and

flat (k = 0). The function a(t), referred to as the scale factor, describes

how this homogeneous and isotropic universe will evolve between maxi-

mally symmetric spatial slices, through expansion and contraction. Using

equations (1.5) and (1.10), the Ricci tensor of the metric in equation (1.12)

8



1.2. A HOMOGENEOUS AND ISOTROPIC UNIVERSE

is calculated to be

R00 = −3
ä

a
(1.13)

Rij =

((
2k

a2R2
0

)
+ 2

(
ȧ

a

)2

+

(
ä

a

))
gij (1.14)

R0i = 0, (1.15)

where I have used the short-hand ḟ(t) = df
dt
.

Since we are taking the universe to be homogeneous and isotropic, we

require its matter and energy content to be as well. This condition leaves

the only valid option for the energy-momentum tensor to be that of a

perfect fluid

Tµν = pgµν + (ρ+ p)UµUν , (1.16)

where both the fluid’s pressure, p, and energy density, ρ, are defined in the

rest frame, while Uµ is the four-velocity of the fluid. Imposing conservation

of energy (∇µT
µν = 0) then results in the continuity equation

ρ̇ = −3
ȧ

a
(ρ+ p). (1.17)

If we consider a perfect fluid consisting of only relativistic particles (par-

ticles with momentum much larger than their mass), or of non-relativistic

particles (particles with mass much larger than their momentum), then

the pressure and density of the fluid will be related as p = ωρ, where the

constant ω is the equation of state, and therefore equation (1.17) gives

ρ ∝ a−3(1+ω). (1.18)

For non-relativistic fluids ω = 0, and so ρ ∝ a−3, which matches the

intuition of how the density of a fixed number of particles changes in an

9



1.2. A HOMOGENEOUS AND ISOTROPIC UNIVERSE

expanding volume of size V ∝ a3. For relativistic particles, such as photons,

ω = 1/3 and therefore behaves as ρ ∝ a−4. Recalling that the energy of a

particle is inversely proportional to its wavelength, the extra inverse power

of a(t) implies relativistic particles are not only diluted in an expanding

space, but also lose energy due to their wavelengths increasing with the

expanding space. Through a rescaling of our time coordinate we can choose

the scale factor to equal unity when t = t0, where the subscript 0 denotes

the value today. This choice then means the constant of proportionality in

equation (1.18) is ρ0.

Inputting the expression for Tµν shown in equation (1.16) and the expres-

sions for Rµν shown in equations (1.13) - (1.15) into the Einstein equation

(1.10), we arrive at the Friedmann equations

H2 =
ρ

3M2
pl

+
Λ

3
− k

a2R2
0

(1.19)

ä

a
= − 1

6M2
pl

(ρ+ 3p) +
Λ

3
, (1.20)

where H(t) ≡ ȧ/a is the Hubble parameter. These two equations, along

with the continuity equation (1.17), govern the evolution of a homogeneous

and isotropic universe. The contents of said universe will be assumed to

consist of relativistic radiation (ρr) and non-relativistic matter (ρm), ne-

glecting any intermediate states. We can therefore express the total energy

density of the universe as ρ = ρr + ρm + ρΛ, where the Λ-term on the

right-hand side of equation (1.19) has been absorbed into the total energy

density by expressing it as an effective energy density

ρΛ = ΛM2
pl. (1.21)

10



1.2. A HOMOGENEOUS AND ISOTROPIC UNIVERSE

This is the dark energy density2 and since ρΛ is a constant in time, equation

(1.18) implies that it has an equation of state of ω = −1. In the case of a

flat universe (k = 0), the total density is

ρc = 3H2M2
pl, (1.22)

which is referred to as the critical density, and is used to define the dimen-

sionless density parameters Ωi ≡ ρi/ρc for i ∈ [r,m,Λ]. Using this notation,

we can rearrange equation (1.19) into the form

H2 = H2
0

(
Ωr,0a

−4 + Ωm,0a
−3 + Ωk,0a

−2 + ΩΛ,0

)
, (1.23)

where Ωi,0 ≡ Ωi(t = t0), Ωk,0 ≡ −k/(H0R0)
2, and I have made explicit how

each density term varies with a(t). In this form we see that the expansion

history of an idealised universe can be described using only the four con-

stants, Ωr,0, Ωm,0, ΩΛ,0, and H
2
0 , where I have used the fact that when t = t0

then equation (1.23) gives the constraint Ωk,0 = 1 − (Ωr,0 + Ωm,0 + ΩΛ,0).

In reality, however, this formula is only valid under the assumption that

the number of particles that are relativistic and non-relativistic are fixed.

As the universe expands and cools, relativistic particles can become non-

relativistic and so the expansion during different eras will be described

using formulas with the same form as equation (1.23), but with different

density parameters. That being said, the contents of this work is only

interested in late time cosmology post matter domination.

Through a combination of baryon acoustic oscillations and cosmic mi-

crowave background measurements, the curvature parameter is found to

be very close to zero and so is treated as being zero in the base cosmologi-

2Non-CC contributions to the total dark energy content of the universe will be dis-
cussed in section 1.3.
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1.3. THE COSMOLOGICAL CONSTANT PROBLEM

cal model [52]. This means that all terms on the right-hand side of equation

(1.23) are positive, and so H(t) > 0 at all times. Consequently, the uni-

verse will always be expanding, which will ultimately lead ΩΛ to dominate

at late times and the rate of growth to tend towards being exponential.

Using a range of cosmological observations, and assuming k = 0, the re-

maining parameters are determined to be Ωr,0 ≈ 9.0 × 10−5, Ωm,0 ≈ 0.31,

ΩΛ,0 ≈ 0.69, and H0 ≈ 67 kms−1Mpc−1 [53]. Additionally, the baryonic

matter contribution is only Ωb,0 ≈ 0.05, with the majority of the matter

content of the universe being made of matter that has only been observed

through its gravitational interaction, and so is referred to as ‘dark matter’

[53]. Therefore, the cosmological model discussed throughout this section

is called the ΛCDM model, where CDM stands for ‘cold dark matter’.

1.3 The Cosmological Constant Problem

The measured value of the dark energy density is ρΛ ≈ (2.4 meV)4. In the

previous section, this density was determined entirely by the CC that ap-

pears in the Einstein equations (1.10). In reality, however, this dark energy

would also receive contributions from the ‘vacuum energy’ that arises from

the zero-point fluctuations of quantum fields. These fluctuations are a pre-

diction of quantum field theory (QFT) and are a property of the vacuum.

Therefore, since the vacuum is Lorentz invariant, the energy-momentum

tensor of this vacuum energy will be

TQFT
µν = −⟨ρ⟩gµν , (1.24)

which clearly behaves as a CC, when compared to equation (1.10). From

vacuum loop calculations the contribution of a single particle of mass m
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to the vacuum energy is expected to go as ⟨ρ⟩ ∼ m4 [9]. This is usually

not of too much interest since most of physics is concerned with changes in

energy and not the absolute values. However, this is not the case with GR

which states that all energy, including vacuum energy, will induce space-

time curvature. Considering both CC and QFT contributions the total

effective dark energy is

ρeff = ρΛ +
∑
i

⟨ρi⟩, (1.25)

where the summation is over all particle species. As discussed in section 1.2,

we have measurements of ρeff from cosmological observations. However, the

QFT contributions are found to be substantially larger than the measured

value of ρeff . Allowing particle masses up to the TeV scale, this corresponds

to a ratio of ⟨ρ⟩/ρeff ∼ 1060. This means that the value of the bare CC, Λ,

must be extremely fine-tuned so as to ensure the effective value is small.

The requirement of this fine-tuning is the CC problem. There are a range

of proposed solutions to the CC problem, including invoking the anthropic

principle, extra dimensions, and modifications to GR [54, 55, 56, 57].

1.4 Quintessence

One proposed solution to the CC problem is that the observed dark energy

is sourced by a scalar field, ϕ, while some undiscovered mechanism causes

the bare constant to cancel the QFT contribution [11]. Such a field is

called a quintessence field and if we neglect any possible couplings to other

non-gravitational fields, the action of such a field is

S =

∫
d4x

√
−g
[
−1

2
gµν∂µ∂νϕ− V (ϕ)

]
, (1.26)
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where V (ϕ) is the field’s potential. Varying the action with respect to ϕ

gives the equation of motion for the field as

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0, (1.27)

where since we are working under the cosmological principle, the spatial

derivatives of the field are zero and the metric is of the form (1.12). This

field equation is of the same form as the Klein-Gordon equation, but with

an addition term known as the Hubble friction. The pressure and energy

density of this scalar field are

pϕ =
1

2
ϕ̇2 − V (ϕ) (1.28)

ρϕ =
1

2
ϕ̇2 + V (ϕ), (1.29)

which gives an equation of state of

ωϕ =
ϕ̇2 − 2V (ϕ)

ϕ̇2 + 2V (ϕ)
. (1.30)

This implies that a scalar field whose potential is much larger that its kinetic

part will behave like a CC with ωϕ ≈ −1. On the other hand, if the field

is dominated by its kinetic part it will have an equation of state ωϕ ≈ +1.

Equation (1.18) then implies that the field will dilute as a−6(t), which is

faster than both matter and radiation at a−3(t) and a−4(t) respectively.

This means that, depending on whether the field’s kinetic or potential

energy term dominates, it will determine if the field is diluting faster than

the other components or has constant energy density. If the scalar has a

monotonically decreasing potential, the dynamics of equation (1.27) will,

for a wide range of initial conditions, lead the scalar field’s equation of
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state to converge to a common evolutionary track [10]. These are known as

tracking solutions; they reduce the problem of obtaining a scalar field that

is subdominant at early times but dominates at late times to finding an

appropriate form for the field’s potential, and not on its initial conditions.

The current measured value for the equation of state of the cosmological

dark energy has an upper-bound of ωDE ≲ −0.95 [53, 58]. Therefore, a

further constraint on the potential of a dark energy candidate scalar field

is that its equation of state today satisfies this observational constraint.

On the other hand, if more accurate measurements of ωDE start to become

in tension with the CC value, then this would be evidence in favour of a

quintessence model.

Throughout this section we assumed that the scalar field does not couple

to the matter sector. If such a coupling did exist, however, it would mean

that this field would mediate a new fundamental force. Therefore, such a

coupling would be very tightly constrained due to laboratory experiments,

such as torsion balance, and solar system dynamics, such as lunar laser

ranging [14, 59]. In section 1.6, I will discuss a model where the scalar field

can have a larger coupling strength whilst still satisfying the observational

constraints mentioned above through the use of a screening mechanism.

1.5 Conformal Transformations

The scalar field, discussed in the previous section, was a possible candidate

for the observed dark energy. In this section I will show how a modified

version of GR involving an explicit, non-minimal, coupling between a scalar

field and gravity can, through a change of reference frame, be equated to

GR with an additional scalar degree of freedom. However, unlike in the
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previous section, where the scalar field was assumed to not couple to matter,

a consequence of the frame transformation is that the field becomes non-

minimally coupled to the matter sector. I will then state the strength of

the force that acts on matter due to this coupling.

As mentioned in section 1.1, GR has many experimental and predictive

successes, but there also exists hints that a more fundamental theory is

required. According to Lovelocks’s theorem [60, 61] if we wish to construct

a gravitational action which only depends on a local 4-dimensional met-

ric gµν and is Lorentz invariant, then the only possible choice that gives

second-order equations of motion (for higher than second-order Ostrograd-

sky instabilities can occur [62]) are ones that have the same form as the

Einstein-Hilbert action shown in equation (1.11). This means any the-

ory that modifies the GR action must break one of the conditions stated

in Lovelock’s theorem. We have already explored how introducing a new

scalar degree of freedom could amend the fine-tuning problem, as discussed

in section 1.4. In this section I will show how modifying the curvature term

in the action shown in equation (1.11) can be equated to GR with a scalar

degree of freedom that couples to the matter fields, thereby breaking the

Lovelock condition that gµν is the only field in the gravitational sector.

To start I will introduce the conformal transformation

gµν = A2(φ)g̃µν , (1.31)

where φ is a dynamical scalar field. Applying this to equation (1.5), and

using the notation A′(φ) = ∂A/∂φ, we obtain that the Levi-Civita connec-

tion in the g̃µν frame is

Γ̃σ
µν = Γσ

µν −
A′

A

(
δσµφ,ν + δσνφ,µ − gµνg

σλφ,λ

)
, (1.32)
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where I have used the short-hand f,µ = ∂f/∂xµ. Inputting equation (1.32)

into equation (1.8) gives that the Ricci tensor transforms as

A−2R̃ = R + 6 [2 ln(A)− gµν (∇µ ln(A)) (∇ν ln(A))] , (1.33)

where 2 is the d’Alembert operator. If we assume a modified gravity model

with an action

S =

∫
dx4

√
−g
(
M2

pl

2
A2(φ)R̃− 1

2
g̃µν∂µφ∂νφ− Ṽ (φ)

)
−
∫
d4xLm(g̃µν , ψi),

(1.34)

where Lm(g̃µν , ψi) represents the dynamics of the matter fields, then apply-

ing the conformal transformation shown in equation (1.31), followed by a

field redefinition of the form

(
dϕ

dφ

)2

=
1

A2
+ 6M2

pl

(
A′

A

)2

, (1.35)

will give the action of the theory as

S =

∫
dx4

√
−g
(
M2

pl

2
R− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

)
−
∫
d4xLm(A

−2(ϕ)gµν , ψi),

(1.36)

where Ṽ (φ) = A4(ϕ)V (ϕ). Note that the 2 ln(A) term from the conformal

transformation of R is missing since it is a total derivative and so con-

tributes zero so long as ∂µϕ = 0 at infinity. Since physical observables are

not affected by our choice of frame, the two actions shown in equations

(1.34) and (1.36) must be equivalent. Therefore, a modified gravity theory

of the form (1.34) is equivalent to GR with a scalar field non-minimally

coupled to the non-gravitational fields. In this work the initial frame, g̃µν ,

shall be referred to as the Jordan frame, while the Einstein frame, gµν , is

the one for which the curvature part of the action is the same as in GR.
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Using the definition of the energy-momentum tensor in equation (1.9) we

see that under the conformal transformation in equation (1.31) it trans-

forms as

T̃ µν = A6T µν , (1.37)

and therefore its trace (T̃ = g̃µνT̃
µν) will transform as

T̃ = A4T. (1.38)

Using these transformation laws and varying the action in equation (1.36)

with respect to ϕ, the field’s equation of motion is

2ϕ = V ′(ϕ)− β(ϕ)

Mpl

A−4T̃ , (1.39)

where the coupling strength β(ϕ) is defined as

β(ϕ) ≡ −Mpl
d ln(A)

dϕ
. (1.40)

We see that the equation of motion is simply the Klein–Gordon equation,

but with an extra term due to the conformal coupling which couples the

field to the trace of the energy-momentum tensor in the Jordan frame3.

Consequently, the scalar field does not couple to relativistic particles, like

photons, since they are traceless (T = 0). The reason the field is written

in terms of its coupling to matter in the Jordan frame is because in this

frame particle masses and couplings have no dependence on ϕ.

If we consider a test particle of mass m in the Einstein frame, its motion

will go along geodesics governed by equation (1.6). Returning to the Jordan

3When applying a conformal transformation, of the form shown in equation 1.31,
to the standard model action, and after performing canonical normalisation, only the
Higg’s mass term will explicitly depend on the conformal factor, A(ϕ). Therefore, if the
Higgs was massless, then the scalar field would not couple to the matter sector [63].
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frame, by substituting equation (1.32) into (1.6), we see that the geodesic

can be expressed as

d2xσ

dτ 2
+ Γ̃σ

µνU
µUν =

β(ϕ)

Mpl

(
2Uσϕ̇+ g̃µλϕ,λ

)
. (1.41)

While the left-hand side of this expression is the usual geodesic equation

(1.32), the right-hand side is not necessarily zero, representing a new force

mediated by the scalar field. This ‘fifth force’ is therefore a means of

confirming the existence of such a conformal scalar field. For particles

that move much slower than the speed of light (v ≪ 1) the term on the

right-hand side of equation (1.41) simplifies to

F⃗ϕ = −mβ(ϕ)

Mpl

∇⃗ϕ. (1.42)

The contents of this work shall focus solely on a conformal model known

as the chameleon model. However, for completeness I will comment that

modifications to GR of the kind shown in equation (1.34) are not the only

ones that can be equated to GR but with an additional scalar degree of

freedom. One potential solution to address why gravity is so much weaker

than the other forces is that it exists in a higher-dimensional space, which

can be evaluated as an effective 4-dimensional theory with additional scalar

degrees of freedom through dimensional reduction [64]. Additionally, there

exist other models consisting of a scalar field coupled to gravity. Any scalar

tensor theory that has equations of motion no higher than second-order,

including the class of models discussed in this section, can all be shown

to be subclasses of the Horndeski Lagrangian [65]. DHOST (Degenerate

Higher Order Scalar Tensor) models are a further generalisation of scalar

tensor theories, where the equations of motion are capable of being greater

than second-order, but with no Ostrogradsky instabilities [66, 67].
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1.6 The Chameleon Model

In the previous section, I showed how a conformal transformation can be

used to equate a modified gravity action to the GR action at the cost

of introducing a scalar degree of freedom non-minimally coupled to the

matter sector. This section focuses on a specific conformal field model

know as the chameleon, and how its screening mechanism allows it to avoid

observational constraints from high density regions. I will then discuss

some approximate analytic solutions to the field’s nonlinear equation of

motion for highly-symmetrical source shapes, including spheres, cylinders,

and ellipsoids. Some examples of experiments that have constrained the

chameleon model’s parameter space will be provided at the end of this

section.

1.6.1 The Chameleon Screening Mechanism

Using the definition of the coupling strength shown in equation (1.40), we

see that by choosing to have a coupling strength that is a constant in ϕ

this gives a conformal factor of

A(ϕ) = e
− βϕ

Mpl . (1.43)

In principle each matter species can have a different coupling strength;

however, in this work, along with much of the literature, a universal cou-

pling strength shall be assumed for all matter species. This means that the

chameleon’s equation of motion, in the Einstein frame, is exactly the same

as that shown in equation (1.39).

Desiring the chameleon to act as late time dark energy, as discussed in
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section 1.4, we shall assume it to have a potential

V (ϕ) =
Λn+4

ϕn
, (1.44)

where Λ is a mass scale and n is an integer4, following Ref. [18]. Through-

out this work we shall be in the non-relativistic regime, and can therefore

make use of the approximation T̃ ≈ −ρ, where ρ is the energy density of

non-relativistic matter in the Jordan frame. Therefore the non-relativistic

equation of motion for the chameleon field is

2ϕ = −nΛ
n+4

ϕn+1
+

βρ

Mpl

, (1.45)

where we have also assumed Mpl ≫ βϕ, and so e−βϕ/Mpl ≈ 1. This field

equation is a Klein-Gordon equation with an effective potential of

Veff(ϕ) = V (ϕ) +
βρ

Mpl

ϕ. (1.46)

Since the bare potential, V (ϕ), is a monotonically decreasing function for

n > 0, the effective potential will therefore have a minimum at the field

value

ϕmin(ρ) = Λ

(
nMplΛ

3

βρ

) 1
n+1

, (1.47)

and therefore the mass of the chameleon field at the position of this mini-

mum is

m2
ϕ = V ′′

eff(ϕmin) = n− 1
(n+1) (n+ 1)Λ2

(
βρ

MplΛ3

) (n+2)
(n+1)

. (1.48)

We see from equation (1.48) that the effective mass of the field depends

on ρ, such that as ρ increases so does the mass. This means the field’s

4I note here that in principle n can take some negative values. However, due to time
constraints the contents of this thesis focus solely on models where n > 0.
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Compton wavelength, λ = 1/mϕ, will be smaller in regions of higher den-

sity, resulting in any forces mediated by the field to become suppressed.

This is the chameleon’s screening mechanism which allows it to avoid con-

straints from Earth bound and solar system experiments, while having a

non-negligible contribution on cosmological scales. Additionally, the fact

that the minimum of the chameleon’s effective potential, equation (1.47),

depends on the matter density makes it an ideal tracker solution [68].

One consequence of the chameleon’s screening mechanism is that large

dense sources of matter will exhibit a ‘thin-shell’ effect. This is because

contributions to the fifth force from matter inside a dense source will be

suppressed by the screening mechanism. Consequently, the fifth force will

effectively be sourced by a thin-shell of matter at the edge of the source

mass only, and not the entire mass as is the case in GR. Since the Earth

and other dense objects are presumably screened, we would only observe

gravitational effects as expected of GR, while the chameleon contribution

would be relatively negligible. Another consequence of this thin-shell effect

is that it would violate the WEP as screened and unscreened bodies would

not experience the same fifth force and so would follow different trajectories,

governed by equation (1.41). In the following subsection, I will discuss

how the thin-shell effect is used in the literature to construct approximate

analytic solutions.

1.6.2 Approximate Analytic Solutions

The parameters of the chameleon model are the integer n, which controls

the form of the bare potential, the coupling strength to matter β, and the

self-coupling strength Λ, which if the chameleon does source the observed

dark energy should have a value of ΛDE = 2.4 meV as indicated in section
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1.3. To understand the constraints on the chameleon model from exist-

ing observations and identify which regions of the parameter space remain

viable, exact solutions to the equation of motion, equation (1.45), are re-

quired. However, the nonlinear nature of equation (1.45), while providing

the chameleon with its screening mechanism, makes obtaining exact solu-

tions extremely difficult. The approach often adopted in the literature to

solve for the field around a source of density ρc in a background of den-

sity ρbg is to take advantage of the thin-shell effect by approximating the

chameleon’s effective potential, equation (1.46), as

Veff(ϕ) ≈


mc(ϕ− ϕc) , screened inner region

βρc/M
2
pl , thin-shell

mbg(ϕ− ϕbg) , background,

(1.49)

where ϕc and ϕbg are the field values that minimise the effective potential

inside the source and in the background respectively, equation (1.47), and

mc and mbg are the corresponding field masses, equation (1.48). These

solutions can then be pieced together by enforcing the field to be continuous

at the boundaries between these regions. I will now discuss some examples

of approximate analytic solutions from the literature that are constructed

using this approach, each of which are for the n = 1 model as this is the

most researched.

Sphere

The approximate analytical solution for a spherical source was first derived

in Ref. [18]. Since the source is static we assume the field has no time

dependence. Additionally, given the spherical symmetry of the system the
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Laplacian can be written as

∇2ϕ =
1

r2
∂

∂r

(
r2
∂ϕ

∂r

)
, (1.50)

where r is the radial coordinate. Solving the static Klein-Gordon equation

for each form of the effective potential in equation (1.49) gives three equa-

tions consisting of six unknown constants of integration. Using the index

i ∈ [c, bg], both the solutions for the inner screened and background regions

can be expressed as

ϕ = ϕi +
Ai

r
e+mir +

Bi

r
e−mir, (1.51)

where Ai and Bi are constants. Applying the boundary conditions ϕ(r =

0) = ϕc and ϕ(r → ∞) = ϕbg, we see that Ac = Bc = 0 and Abg = 0.

This therefore reduces the number of unknowns to three. If the sphere is

screened then there is an additional unknown, Rc, which is the boundary

of the screened region, such that ϕ = ϕc when r ≤ Rc. Enforcing the field,

and its derivative, to be continuous at the boundaries of the thin-shell,

r ∈ [Rc, R], gives four constraint relations that can be used to calculate

these unknowns. The resulting approximate solution for the chameleon

field profile produced by a spherical source of radius R can then be written

as

ϕ(r) ≈


ϕc , 0 ≤ r ≤ Rc

βρc
6M2

pl

(
r2 + 2R3

c

r
− 3R2

c

)
, Rc ≤ r ≤ R

ϕbg −
(

3β
4πMpl

) (
∆R
R

)
Mc

r
e−mbg(r−R) , R ≤ r,

(1.52)

where Mc is the mass of the source and ∆R = R − Rc is the width of

the thin-shell. Since we are interested in models that are relevant on cos-

mological scales, the field’s Compton wavelength in vacuum is assumed to
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be large. Therefore, in the bottom expression of equation (1.52) it was

assumed that mbgR ≪ 1. It is also assumed that the thin-shell is small,

which gives the constraint relation

∆R

R
=

|ϕbg − ϕc|
6βMplΦc

≪ 1, (1.53)

where Φc = Mc/8πM
2
plR is the Newtonian potential at the surface of the

source. Equation (1.53) is the condition determining whether objects are

large and dense enough (more specifically objects with a sufficiently high

surface Newtonian potential) to have a thin-shell and thus be screened.

For an unscreened source, ∆R/R > 1, the field can be solved using the

exact same method as discussed above but with Rc → 0 and dropping

the requirment that ϕ(r = 0) = ϕc. Therefore, the field profile of an

unscreened source has an equivalent solution to equation (1.52) but with

the substitution ∆R/R → 1.

For cases where ρc ≫ ρbg this implies that ϕc ≪ ϕbg, due to equation (1.47).

Applying this to equation (1.53) and then substituting it into equation

(1.52) gives the background field solution in the form

ϕ(r) ≈ ϕbg

(
1− R

r
e−(r−R)/λbg

)
, (1.54)

where λbg = 1/mbg is the Compton wavelength of the field in the back-

ground. This form of the solution will be used later in this work.

Cylinder

As shown in Ref. [26], we can obtain the chameleon field profile around a

cylindrical source by utilising the same methodology as was used above for

the spherical case. For a static cylindrical system, the Laplacian simplifies
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to

∇2ϕ =
1

r

∂

∂r

(
r
∂ϕ

∂r

)
, (1.55)

where r is the radial distance as defined in cylindrical coordinates. As be-

fore, we solve the static Klein-Gordon equation using each of the approxi-

mations of the effective potential in equation (1.49), once again giving us

three equations with six unknown constants of integration. The solutions

will involve modified Bessel functions of the first and second kind, I0(x)

and K0(x) respectively, since they are solutions to the ordinary differential

equation

x2y′(x) + xy′(x)− x2 = 0. (1.56)

Enforcing the same boundary conditions as was used in the spherical case,

and requiring the field to be continuous at the boundary of the cylinder, R,

and the edge of the thin-shell region, S, we arrive at the piece-wise solution

ϕ(r) ≈


ϕc , 0 < r ≤ S

ϕc +
βρcr2

4Mpl

(
1− S2

r2
+ 2 ln

(
S
r

))
, S ≤ r ≤ R

ϕbg − βρcR2

2Mpl

(
1− S2

R2

)
K0(mbgr) , R ≤ r,

(1.57)

where again the bottom expression has been simplified by assumingmbgR ≪

1. The expression for the radial value where the thin-shell starts, S, is

4Mplϕbg

βρcR2
=

(
1− S2

R2

)(
1− 2γE − 2 ln

(
mbgR

2

))
+

2S2

R2
ln

(
S

R

)
, (1.58)

where γE is the Euler-Mascheroni constant. Like in the spherical case, we

see that the source must be sufficiently large and dense to have a thin-shell

(S ̸= R). In the regime where mbgR ≪ 1, equation (1.58) simplifies to

1− S2

R2
≈ − 2Mplϕbg

βρcR2 ln(mbgR/2)
. (1.59)
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Substituting this into the bottom expression in equation (1.57) gives the

field profile for r > R as

ϕ(r) ≈ ϕbg

(
1− 2K0(r/λbg)

ln(4λ2bg/R)

)
. (1.60)

Since this solution assumes cylindrical symmetry it would only be valid

around an infinitely long cylinder. That said, for very long but finite cylin-

ders the field profile around the cylinder should be well approximated by

equation (1.60) when sufficiently far from the ends of the cylinder.

Ellipsoids

In Ref. [69] an attempt was made to derive an approximate analytic solution

for the chameleon field around an ellipsoidal shape. On inspection, however,

this expression was incorrect and so I will recalculate it using the same

method as shown in Ref. [69] . The coordinate system that will be used is

x = a
√

(ξ2 − 1)(1− η2) cos (ϕ),

y = a
√

(ξ2 − 1)(1− η2) sin (ϕ),

z = aξη,

(1.61)

where a is the distance from the ellipse’s foci to the origin, η is analogous to

an angular coordinate (−1 ≤ η ≤ +1), ξ is analogous to a radial coordinate

(1 ≤ ξ < ∞), and ϕ is the azimuthal angle (0 ≤ ϕ < 2π). In these

coordinates the Laplacian is

∇2 =
1

a2(ξ2 − η2)

(
∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

∂

∂η
(1− η2)

∂

∂η

)
+

1

a2(ξ2 − 1)(1− η2)

∂2

∂φ2
. (1.62)
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The sources that will be investigated are rotationally symmetric around

the azimuthal-axis, and so the field will be independent from φ. Note that

unlike the previous approximate analytic solutions discussed in this sec-

tion, where the symmetry of the source reduced the effective problem to 1-

dimensional, the solution around an elliptical source will be 2-dimensional.

After applying the rotational symmetry, what remains of the Laplacian has

a separable form, and so the ansatz for the form of the field is

ϕ(ξ, η) =
∞∑
l=0

Xl(ξ)Hl(η). (1.63)

Using this ansatz we obtained the pair of separable equations

∂

∂ξ

(
(ξ2 − 1)

∂Xl(ξ)

∂ξ

)
− λlXl(ξ) = 0 (1.64)

∂

∂η

(
(1− η2)

∂Hl(η)

∂η

)
+ λlHl(ξ) = 0. (1.65)

It is then shown in Ref. [69], that λl = l(l+1), thereby reducing equations

(1.64) and (1.65) into copies of the Legendre equation

(1− x2)y′′(x)− 2xy′(x) + n(n+ 1)y(x) = 0, (1.66)

the solutions to which are the Legendre functions of the first and second

kinds, Pn(x) and Qn(x) respectively. Therefore, after taking into account

the domains of the different kinds of Legendre functions, the ansatz for the

form of the field shown in equation (1.63) becomes

ϕ(ξ, η) =
∞∑
l=0

[AlPl(η)Pl(ξ) +BlPl(η)Ql(ξ)] , (1.67)

where Al and Bl are constants.

We take our source ellipsoid to be bounded by ξ = ξ0, and assume the
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boundary of the thin-shell with the screened inner region to be at ξ = ξc.

Note that we are making the implicit assumption that the boundary where

the field starts to vary inside the source is independent of the angular

position η. Inside the screened region the field is ϕ = ϕc, while inside the

thin-shell it is

ϕ =
∞∑
l=0

[AlPl(η)Pl(ξ) +BlPl(η)Ql(ξ)]

+
a2βρc
Mpl

(ξ2 − 1) [P0(η)− P2(η)] , (1.68)

and in the background regions it is assumed to have the form

ϕ = ϕbg +
∞∑
l=0

ClPl(η)Ql(ξ), (1.69)

where we have used the boundary condition at ξ → ∞, and have taken

mbg ≈ 0. We shall now enforce that the field, and its gradient with re-

spect to ξ, are continuous at the boundaries ξ and ξ0. Since the Legendre

functions of the first kind form a complete basis, enforcing continuity also

means the coefficients corresponding to the functions Pl(η) must match on

both sides of the boundaries. This will give an infinite number of con-

straint equations for each boundary. Luckily, almost all of the constants

can be shown to be zero, and the existence of a degeneracy between some

of the constraint equations prevents the remaining ones from being over

constrained. This ultimately leads to the field solution inside the thin-shell

to be

ϕ = ϕc +
a2βρc
6Mpl

{(
ξ2 − ξ2c

)
[1− P2(η)]− 3ξ (ξ − ξc)

(
ξ2c − 1

)
P2(η)

+2ξc
(
ξ2c − 1

)
[Q0(ξ)−Q0(ξc)] [1− P2(η)P2(ξ)]

}
, (1.70)
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and the field solution in the background to be

ϕ(ξ, η) = ϕbg−
a2βρc
3Mpl

[
ξ0(ξ

2
0 −1)− ξc(ξ2c −1)

](
Q0(ξ)−P2(η)Q2(ξ)

)
. (1.71)

As with the spherical and cylindrical cases, we end the calculation with an

additional constraint on the thin-shell boundary ξc,

6MPl

a2βρc
ϕbg + (ξ2c − 1)

{
1 + 2ξcQ0(ξc)

}
= (ξ20 − 1)

{
1 + 2ξ0Q0(ξ0)

}
, (1.72)

where it has been assumed that ϕbg ≫ ϕc.

In the case of a very small thin-shell (δξ = ξ0 − ξc ≪ ξ0), the equation

(1.72) simplifies to

δξ =
3Mplϕbg

βρca2(3ξ20 − 1)Q0(ξ0)
≪ ξ0, (1.73)

while equation (1.71) simplifies to

ϕ(ξ, η) = ϕbg

(
1− Q0(ξ)− P2(η)Q2(ξ)

Q0(ξ0)

)
. (1.74)

1.6.3 Chameleon Bounds

Looking at the background field profiles for the spherical, cylindrical, and

ellipsoidal sources, as shown in equations (1.52), (1.57), and (1.71) respec-

tively, we see that as the thickness of the thin-shell increases the gradient of

the field also increases at all distances. This corresponds to the fifth force

increasing as the source becomes less screened and more matter contributes

to the force. Despite this screening mechanism, however, various table top

experiments and astrophysical observations have constrained the model’s

parameter space. The strongest of these bounds, at time of writing, are
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shown in Figure 1.1.

Atom Interferometry

In these experiments laser pulses are used to place a vertical beam of cold

atoms into a quantum superposition, with the different states possessing

different momentum and therefore reaching a different maximum height.

Later in their trajectories a series of lasers are used to merge the particle

beams so that any phase shifts resulting from their different paths can

be measured. As mentioned in section 1.5, a conformal field, such as the

chameleon, does not couple to relativistic (traceless) particles. Since the

beam is made of cold atoms and not photons, as is the case in regular

interferometry experiments, the beam will be sensitive to the effects of the

chameleon. Therefore, the phase shift between the beam paths is used as

a measure of the difference in gravitation forces between the paths. This

result can then be compared to the value predicted by GR and therefore

constrain the strength of any fifth forces. This method is especially useful

for probing models with screening mechanisms, such as the chameleon,

since individual particles can be unscreened and so the fifth force will not

be suppressed. Typical values for the size and density of the vacuum and

materials involved can be seen in Table 1.1 [27, 28]. In Ref. [29] anomalous

accelerations, possibly due to a fifth force, were not detected with an upper-

bound of 50 nm/s2, placing an upper bound on the strength of any fifth

forces, chameleon or otherwise.

Torsion Balance

The WEP is a fundamental property of GR, and as discussed in section

1.6.1 can be violated in scalar-tensor theories with a screening mechanism,
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Figure 1.1: The current constraints (shaded regions) on the parameter
space of the chameleon model with a V (ϕ) = Λ5/ϕ potential. M = Mpl/β
controls the strength of the coupling to matter and Λ is the strength of the
self-interactions of the scalar field. The black line indicates where Λ is equal
to the dark energy value, ΛDE = 2.4 meV. The red line indicates where
the chameleon can explain the difference in the measured and theoretical
values of the muon g−2 value [70]. LFS stands for Levitated Force Sensor.
Figure reproduced with permission from Ref. [24].
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radial (cm) density (g/cm3)

source mass (aluminium) 0.95 2.7

vacuum 5 6.6× 10−17

vacuum chamber outer wall ∼ 7 7

Table 1.1: Typical values for the radial size and density of the source mass,
vacuum, and chamber outer wall for an atom interferometry experiment,
as depicted in Refs. [27, 28]. The wall thickness is the difference between
the vacuum and vacuum chamber outer wall radii.

such as the chameleon. Torsion balance experiments therefore constrain

models such as the chameleon by probing for violations in the WEP. In

Ref. [71], this was accomplished by using an I-shaped pendulum with tung-

sten masses at both ends, suspended across from a rotating disk holding

‘attractor masses’ that alternate between tungsten and glass. The result

is that in a purely Newtonian universe, the forces of attraction at both

ends of the suspended pendulum would cancel out resulting in zero torque.

However, since the alternating attractor masses possess different densities,

the chameleon will have different minima in the two materials, and subse-

quently the fifth force will differ depending on the attractor mass. This will

then result in a net torque that can be measured. The resulting constraints

on the n = 1 chameleon model from this experiment are plotted in Figure

1.1.

Levitated Force Sensor

Until recently, there was still a region of parameter space for the n = 1

chameleon model that was not ruled out where the field had a self-coupling

strength equal to the dark energy scale. However, this last part has recently

been ruled out using a levitated force sensor [25]. How this setup works is
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a magnetically levitating plate is held inside a vacuum chamber, separated

from the source masses by a thin film. These source masses are thin plates,

positioned at the edge of a wheel. As the wheel rotates this will induce

an attractive force with oscillating magnitude on the levitating plate. The

frequency of the rotating source mass plates was set to equal the resonance

frequency of the force sensor along the z-direction. The constraints from

this experiment on the parameter space of the n = 1 chameleon model are

labelled as LFS in Figure 1.1.

1.7 Outline

Chapter 2 of this thesis introduces the software package SELCIE, which

was designed to solve for the chameleon field profile of arbitrarily complex

physical systems. The topic of chapter 3 then covers my research into

optimising vacuum chamber experiments by combining SELCIE with a

genetic algorithm. Finally, in chapter 4 I review when the analytic solutions

for NFW and cosmic void density profiles break down.

I begin with section 2.1, where I introduce the rescaled parameters and

equations that will be used throughout this thesis.

In section 2.2 I introduce the finite element method. I outline the equations

that define finite element method and illustrate how it can be equated a

problem defined over a non-uniform mesh to a problem of matrix multipli-

cation.

In section 2.3 I describe the Picard and Newton nonlinear solving methods.

I show how these methods can be applied to a problem defined by the finite

element method. I then go on to discussing preconditioners and show how
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different ones scale with the number of cells in a mesh.

Section 2.4 regards the applications of SELCIE. I will discuss how a user

can use SELCIE to generate a mesh, and how a 3D system can be de-

scribed using a 2D mesh through the inclusion of symmetry factors. I then

analyse the chameleon field profile calculated by SELCIE for a torus in-

side a vacuum chamber. I compared the residual of the components of the

field’s equation of motion to the expected error due to machine precision

and found that the residual was in acceptable bounds. I also compared

solutions calculated from a 2D and 3D mesh to confirm the effectiveness of

the symmetry factors. The relative error was sufficiently small everywhere

except at the boundaries, where the error was likely due to the amount of

refinement on the 3D mesh.

In section 2.5 I go through several examples of analytic and numerically

calculated solutions to the chameleon field found in the literature. I then

compare the results obtained from SELCIE for these systems and compare

them to the solution from the literature.

I then conclude chapter 2 with a comment on the outlook of the SELCIE

code in section 2.6.

In section 3.1 I expanded upon the large-α regime first introduced in section

2.5. I show that in this regime the shape dependence of the field solutions

can be separated from the model parameters.

The details of the genetic algorithm will be explained in section 3.2.

In section 3.3 I defined various shape parameterisations. I also discussed the

behaviour of the chameleon around an ellipsoidal source and commented

on the appearance of a critical volume which maximises the chameleon’s

fifth force, given a fixed eccentricity. For the other shapes investigated, I
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have commented on the shapes returned by the genetic algorithm, and the

apparent convergent evolution towards a general optimal solution.

Throughout this chapter the chameleon fifth force was measured at a fixed

distance to the source mass. In sections 3.4 I investigate the effect varying

the measuring distance has on the optimal shapes outputted by the genetic

algorithm.

In section 3.5 I show how the optimal shape varies when changing the

chameleon’s bare potential and comment on what the common features

tell us about optimising the fifth force through the shape of the source

mass.

I conclude chapter 3 in 3.6, with a discussion on the applicability of the

optimisation method developed in this work and on the results from this

chapter more generally.

In chapter 4 I discuss some of my contributions to the papers Ref. [2] and

Ref. [3]. Specifically, I review the calculation that determines when the

tracing solution of the scalar field breaks down in systems with a continuous

density profile. I then apply this calculation to NFW and cosmic void

profiles.

I will then conclude this work in chapter 5.
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Chapter 2

SELCIE: A tool for

investigating the chameleon

field of arbitrary sources

In section 1.6.2, I discussed the difficulty of solving the chameleon equation

of motion, equation (1.45), and gave some examples from the literature of

approximate analytic solutions for highly symmetric source shapes. How-

ever, even for this small subset of possible source shapes we see that the

strength of the fifth force can vary depending on the matter configuration.

To compare screened scalar theories with experimental and observational

tests, and to optimise these searches, we need the ability to determine the

scalar field profiles and corresponding fifth forces for arbitrary sources. It

is for this reason I developed SELCIE1.

SELCIE (Screening Equations Linearly Constructed and Iteratively Evalu-

ated) is a software package that provides the user with tools to investigate

nonlinear scalar field models such as the symmetron and chameleon in

1Code available at https://github.com/C-Briddon/SELCIE.git.
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user defined systems such as an irregularly shaped source inside a vacuum

chamber, galaxy clusters, etc. To accomplish this SELCIE uses a nonlinear

solving method (either the Picard or Newton method [72]) with the finite

element method (FEM) via the software package FEniCS [73, 74, 75, 76].

Through the FEM the field equations can be solved over irregularly spaced

meshes. This allows the use of meshes that are more refined in regions

where the field variation is largest, allowing us to solve the equations to a

greater degree of accuracy with less computing time. Tools to easily con-

struct and optimise these meshes are also provided in SELCIE, using the

mesh generating software GMSH [77]. From the calculated field solutions,

SELCIE can determine the strength of the corresponding fifth force that

would be experienced by test particles.

This is not the first time the FEM, or meshes tailored to experimental con-

figurations, have been used to determine the behaviour of screened scalar

fields. A similar approach to solving screened equations of motion using

the FEM was recently taken in Ref. [78], and this has been used to investi-

gate the existence of screening in UV complete Galileon models [79]. The

behaviour of chameleon and symmetron fields inside an experimental cham-

ber has been studied using finite difference and finite element techniques,

in Ref. [25, 28, 80] leading to new bounds on the parameters of the theory

[29]. In Ref. [22] the symmetron equations of motion were solved for the

experimental set-ups used to search for Casimir forces. Currently SELCIE

is configured to find solutions for the chameleon equation of motion; how-

ever, in principle the methodology used can be generalized to other scalar

fields.

In this chapter I will demonstrate the effectiveness of SELCIE in solving

the chameleon equation of motion in a variety of different scenarios. I will

start in section 2.1 by showing how the chameleon’s equation of motion,
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equation (1.45), can be rescaled for ease of numerical solving. In section

2.2 I introduce the FEM, followed in section 2.3 by a description of the

nonlinear solving methods that SELCIE uses. Section 2.4 describes the

application of SELCIE and section 2.5 describes how its results compare

to existing results. Finally, I conclude with a summary of the results and

will briefly discuss the future of SELCIE.

2.1 A Rescaled Chameleon Field

The aim of this work is to solve the chameleon’s equation of motion for

arbitrary systems using numerical methods. To simplify the computations

I worked using a dimensionless form of the chameleon’s equation of motion

shown in equation (1.45). To derive this new form I rescaled the density and

scalar field as ρ̂ = ρ/ρ0 and ϕ̂ = ϕ/ϕ0, where ρ0 is a density scale, typically

the density of the background inside the vacuum chamber hence referred

to as the vacuum density, and ϕ0 is simply equation (1.47) evaluated at

ρ = ρ0. Spatial distances are rescaled with respect to an arbitrary length

scale L, meaning the Laplacian rescales as ∇̂2 = L2∇2. Although this

length is arbitrary, in practise it is useful to take it to be the characteristic

length of the system, such as the vacuum chamber radius. Substituting

these dimensionless parameters into equation (1.45), and using equation

(1.47) to relate ρ0 to ϕ0, we get that the dimensionless chameleon equation

is

α∇̂2ϕ̂ = −ϕ̂−(n+1) + ρ̂, (2.1)
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where I have assumed a static field, and introduced the dimensionless con-

stant α which is defined as

α ≡
(
MplΛ

L2βρ0

)(
nMplΛ

3

βρ0

) 1
n+1

. (2.2)

In this dimensionless rescaling, the minimum of the effective potential and

the Compton wavelength of fluctuations around this minimum have the

simpler forms,

ϕ̂min(ρ̂) = ρ̂−
1

n+1 , (2.3)

and

λ̂2(ρ̂) =
α

(n+ 1)
ρ̂−

n+2
n+1 , (2.4)

respectively, where λ̂ = λ/L is the rescaled Compton wavelength. Note

that if ρ0 is taken to be the vacuum density, then we see that α is related

to the field’s vacuum Compton wavelength, λ̂0, by the expression

α = (n+ 1)λ̂20. (2.5)

The magnitude of the fifth force experienced by an unscreened test particle,

equation (1.42), in these rescaled units is

|F⃗ϕ|
|F⃗g|

=

(
βϕ0

LMpl |⃗ag|

)
|∇̂ϕ̂|, (2.6)

where I have also rescaled the force by the magnitude of the gravitational

force F⃗g which is related to the gravitational acceleration by F⃗g = ma⃗g.

Therefore, for fixed model parameters, by maximising the rescaled field

gradient magnitude, |∇̂ϕ̂|, we will also be maximising the corresponding

fifth force.

Through this rescaling the field is now a function of only three variables
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(α, n and ρ̂). The definition of α also makes it simple to discern the

degeneracies of any particular model. In other words, when solving ϕ̂ for

some value of α, that solution is also valid for all combinations of Λ, β,

ρ0 and L that produce the same α-value. A similar approach to utilising

degeneracies in the chameleon model was taken in Ref. [30].

2.2 Finite Element Method

As discussed in section 2, I intended to solve for the chameleon field profile

around matter distributions with complicated shapes. To do this I used the

FEM to solve the chameleon equation of motion shown in equation (2.1).

Because of the ease in which this method can be adapted to arbitrary

meshes, this allows us to adjust the mesh to any arbitrary source shape,

and to add additional refinement where necessary. For example, for sources

where the chameleon field profile exhibits the thin-shell effect, much of the

variation in the field occurs at the boundaries of the dense regions. I can

add additional refinement to the mesh in these regions, and make the mesh

in other regions coarser to reduce computation cost whilst not sacrificing

the accuracy of the solution. To perform the FEM calculations I use the

FEniCS software package [73, 74, 75, 76]. In this section I introduce the

FEM, and its application to solving the chameleon equation of motion. For

a more detailed introduction to the FEM I refer the reader to Ref. [81].

In the FEM the domain of the problem, Ω, is segmented into cells, whose

boundaries are defined by their vertices, Pi. The value of the field inside

each cell is approximated by a piecewise polynomial function that matches

the field values at each of the cell’s vertices [82]. Extending this to the

whole domain, the field, u(x), can be defined using the basis functions
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ei(x) as

u(x) =
∑
i

Uiei(x), (2.7)

where Ui = U(Pi). In this setup, ei is defined such that ei(Pj) = δij and

between vertices ei is only nonzero in cells containing the corresponding

vertex Pi [83].

The FEM is designed to solve second order PDEs of the form ∇2u (x) =

−f (x), with boundary conditions u(x) = u0(x) applied to the edge of

the domain, ∂Ω [82]. This is done by first transforming the second order

equation into the integral of a first order equation using Green’s theorem,

∫
Ω

(
∇2u

)
vjdx⃗+

∫
Ω

∇u · ∇vjdx⃗ =

∫
∂Ω

(∂nu) vjds, (2.8)

where ∂nu is the gradient of the field perpendicular to ∂Ω. The functions

vj are continuous test functions, chosen from the Sobolev function space

by FEniCS, which vanish on ∂Ω for all j [81, 82]. As a result of this choice

∂nu = 0 and the boundary term in equation (2.8) vanishes. Applying this

boundary condition and substituting in the form of the second order PDE

gives the relation ∫
Ω

∇u · ∇vjdx⃗ =

∫
Ω

f(x)vjdx⃗. (2.9)

Decomposing the field u as in equation (2.7) we find

∑
i

(∫
Ω

∇ei · ∇vjdx⃗
)
Ui =

∫
Ω

f(x)vjdx⃗, (2.10)

which can be rewritten explicitly as a linear matrix relation,

MU = b, (2.11)

where U is a vector with elements Ui and the matrix M and vector b are
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defined to be

Mij =

∫
Ω

∇ei · ∇vjdx⃗, (2.12)

bj =

∫
Ω

f(x)vjdx⃗. (2.13)

The vector U can therefore be determined by inverting M. The calculation

of the inverse is made easier by the fact that the ei are only nonzero for

cells that contain the vertex Pi, and so M is a sparse matrix [83]. Addi-

tionally, while the original Poisson equation would generally require two

sets of boundary conditions to obtain a unique solution, the Lax-Milgram

Theorem [84] gives the conditions required for equation (2.9) such that it

has a unique solution. This enables FEniCS to obtain a unique solution

for U using less than two bouindary conditions [74].

2.3 Nonlinear Solvers

Integrating the chameleon equation of motion, equation (2.1), as described

in the previous section, we find the integral form of the equation of motion:

α

∫
Ω

∇̂ϕ̂ · ∇̂vjdx⃗ =

∫
Ω

ϕ̂−(n+1)vjdx⃗−
∫
Ω

ρ̂vjdx⃗. (2.14)

This equation is nonlinear in ϕ̂, and so a nonlinear solving method is re-

quired to compute the solution. SELCIE has two inbuilt solvers of this

form, the Picard and Newton iterative solving methods. In the following

subsections I outline how these solvers work and their performance. For a

full discussion of these methods and proof of their validity I refer the reader

to Ref. [72].
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2.3.1 Picard Method

In the Picard method I take the Taylor series expansion of the potential

term around some field ϕ̂k which is the kth estimate of the field,

ϕ̂−(n+1) ≈ ϕ̂
−(n+1)
k − (n+ 1)ϕ̂

−(n+2)
k (ϕ̂− ϕ̂k) +O(ϕ̂− ϕ̂k)

2

≈ (n+ 2)ϕ̂
−(n+1)
k − (n+ 1)ϕ̂

−(n+2)
k ϕ̂+O(ϕ̂− ϕ̂k)

2.

(2.15)

Neglecting higher order terms and substituting the expansion in equation

(2.15) into equation (2.14) gives the following equation for ϕ̂:

α

∫
Ω

∇̂ϕ̂·∇̂vjdx⃗+(n+1)

∫
Ω

ϕ̂
−(n+2)
k ϕ̂vjdx⃗ = (n+2)

∫
Ω

ϕ̂
−(n+1)
k vjdx⃗−

∫
Ω

ρ̂vjdx⃗,

(2.16)

where I have rearranged terms so that the left-hand side of Equation (2.16)

is bi-linear in ϕ̂ and vj, and the right-hand side is linear in vj [82]. With

the equation in this form, FEniCS can then be used to solve for the field ϕ̂.

I iterate this procedure by setting ϕ̂k+1 = ϕ̂ and then re-solving equation

(2.16) to find a new ϕ̂. I then repeat this process iteratively updating the

value ϕ̂k each time until the condition |ϕ̂k+1 − ϕ̂k| < δ, where δ is the

tolerance, is satisfied at all vertices.

A downside of the Picard method outlined above is that the process gives

no control over the rate of change of ϕ̂ between iterations and by extension

the stability of the convergence. To address this I introduce a relaxation

parameter, ω, and a new update procedure so that

ϕ̂k+1 = ωϕ̂+ (1− ω)ϕ̂k. (2.17)

By decreasing the parameter ω, the solver takes smaller step sizes between

values and as such is less likely to overshoot the true solution and diverge.
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However, smaller step sizes also mean that the solver will take longer to

converge. Therefore, some care is needed in the choice of ω.

As discussed in section 2.2, the FEM calculation can be expressed as a

linear equation for a vector whose elements are the values of the field at

each vertex. Writing equation (2.16) in this form gives

[αM+ (n+ 1)Bk] Φ̂ = (n+ 2)Ck − P̂, (2.18)

where Φ̂ is the vector whose elements are the values of the field ϕ̂ at each

of the mesh vertices. Here M is defined as in equation (2.12), while the

matrices Bk and Ck are defined as

[Bk]ij =

∫
Ω

ϕ̂
−(n+2)
k eivjdx⃗, (2.19)

[Ck]j =

∫
Ω

ϕ̂
−(n+1)
k vjdx⃗, (2.20)

and ei are the basis functions of the field. The density vector P̂ is defined

as

P̂i =

∫
Ω

ρ̂(x)vidx⃗, (2.21)

which is calculated alongside Bk and Ck using FEniCS2. The advantage

of solving the problem in the form of equation (2.18) is that since M and

P̂ do not depend on ϕ̂k these can be computed once, before the iterative

solver, thereby reducing the total amount of computing required.

2The computational cost for computing these vectors and matrices will depend on
the number of vertices in the mesh.
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2.3.2 Newton Method

The FEM Newton iterative method solves equations of the form F (ϕ̂; vj) =

0, by evaluating the linear problem

N∑
i=1

∂F

∂ϕ̂i

δϕ̂i = −F (ϕ̂k; vj), (2.22)

where ϕ̂k is the kth estimate of the field, as was the case in the Picard

method, and δϕ̂i are the elements of a correction field δϕ̂ which has the

same basis functions as ϕ̂ [82]. The components of the field ϕ̂k are then

updated as

ϕ̂k+1 = ϕ̂k + ωδϕ̂, (2.23)

where again ω is a relaxation parameter. The code terminates when |δϕ̂| <

δ at all vertices, where again δ is the tolerance. For the chameleon field, I

want the field ϕ̂ to satisfy

F (ϕ̂; vj) = α

∫
Ω

∇̂ϕ̂ · ∇̂vjdx⃗+
∫
Ω

ρ̂vjdx⃗−
∫
Ω

ϕ̂−(n+1)vjdx⃗ = 0. (2.24)

Therefore, equation (2.22) becomes

α

∫
Ω

∇̂δϕ̂ · ∇̂vjdx⃗+ (n+ 1)

∫
Ω

ϕ̂
−(n+2)
k δϕ̂vjdx⃗

= −α
∫
Ω

∇̂ϕ̂k · ∇̂vjdx⃗−
∫
Ω

ρ̂vjdx⃗+

∫
Ω

ϕ̂
−(n+1)
k vjdx⃗.

(2.25)

In matrix form the equation to be solved at each iteration is

[αM+ (n+ 1)Bk]δΦ̂ = −αMΦ̂k − P̂+Ck, (2.26)

where δΦ̂ and Φ̂k are the vector forms of δϕ̂ and ϕ̂k respectively. The

matrices M, B, C and P̂ are defined in equations (2.12) and (2.19)-(2.21)
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respectively. As was the case with the Picard method, I can compute M

and P̂ prior to the iterative solver to reduce computation time.

2.3.3 Optimising Solvers

Regardless of whether the Picard or Newton solver is chosen, when solv-

ing for ϕ̂k or δϕ̂ in equations (2.18) and (2.26) respectively, at each step

it is necessary to solve a linear system of the form Ax = b. For large

matrices A, direct substitution is impractical, so iterative methods are re-

quired, which can be further classified into stationary and Krylov subspace

methods. Stationary methods apply an operator to the residual error from

some initial estimate of x through, for example, splitting of the matrix A.

Krylov methods work by forming a set of basis functions with successive

powers of A applied to the residual, and are guaranteed to converge (al-

though this may be slow for large systems). The archetypal example of a

Krylov solver is the conjugate gradient (CG) method, which is suitable for

symmetric positive-definitive A. Due to the construction of the test and

trial functions, the matrices in equations (2.18) and (2.26) always satisfy

this property [82]. The convergence of both types of iterative methods can

be improved by preconditioning with a matrix K. This involves solving

the system K−1Ax = K−1b, where K is chosen such that the spectrum of

eigenvalues ofK−1A is close to 1, andK−1b is inexpensive to evaluate. The

simplest type of preconditioner is the Jacobi (or diagonal) preconditioner,

where K = diag (A).

To determine the optimal choice of nonlinear method, linear solver and

preconditioner, I tested various combinations against meshes of varying

cell number for a 2D spherical source inside a vacuum chamber. In total,

I investigated 6 nonlinear methods: (1) Newton; (2) Picard; (3) Newton
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with pre-calculated system matrices; (4) Picard with pre-calculated system

matrices; (5) the inbuilt FEniCS Newton solver; (6) the inbuilt FEniCS

SNES (Scalable Nonlinear Equations Solvers). For each of these I tested

10 linear solvers and 11 preconditioners included in FEniCS, giving a total

of 660 solver combinations. Some of these either did not work together or

converge, so were excluded from the analysis. The results are summarised

in Figure 2.1, which shows the total run-time against cell number for each

nonlinear method. In each case, I show the best combination of linear solver

and preconditioner. From this, we see that the matrix form of the Picard

method is both the fastest and also scales better with mesh size. In this

case, the optimal combination was found to be the CG solver with Jacobi

preconditioner. To check this generalised to other systems, I evaluated the

solution time of the linear system for a variety of source shapes, and found

only small differences. The combination of matrix Picard and CG solver

with Jacobi preconditioner is therefore the default choice in SELCIE.

2.4 Using SELCIE

In this section I will illustrate the typical work flow of a SELCIE user.

2.4.1 Mesh Generating Tools

I begin by determining the spatial regions within which I wish to solve

the chameleon equations of motion, and covering them with an array of

points defining a mesh. SELCIE is equipped with tools to help the user

construct meshes using the GMSH software [77]. One possibility is to use

the functions built into SELCIE to generate basis shapes such as ellipses

and rectangles. These shapes can then be rotated, translated, combined or
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Figure 2.1: Plot showing how the optimum linear solver and preconditioner
combinations for various nonlinear solving methods scale with mesh cell
number for a 2D spherical source inside a vacuum chamber.

subtracted from one another to produce new, more complex shapes. An

example of a complex shape constructed in this manner is shown in Figure

2.2a. Alternatively, it may be that the desired mesh shape is defined by a

known function. In that case, SELCIE can construct the mesh directly from

a list of points obtained from the function that defines the closed surface

of the shape. Figure 2.2b is an example of a mesh constructed using this

method. These tools, either used separately or in combination, allow the

user to construct a vast range of shapes without prerequisite knowledge of

the GMSH interface. These shapes can also be made into subdomains of a

larger mesh which can be used to evaluate the field.

A major benefit to the finite element method is the ability to use non-

uniform meshes. This can be especially useful with screened scalar field

models where the field may vary more significantly in some regions of space

than others. As such, SELCIE gives the user control over the size of indi-
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(a) (b)

Figure 2.2: GMSH meshes constructed using: a) a combination of functions
manipulating rectangles and ellipses into a complex shape. b) A mesh of
a shape obtained from a series of Legendre polynomials with coefficients
[0.0547, 0.0013, 0.0567, 0.2627], constructed using the points to surface()
function.

vidual cells as a function of distance from the boundaries. This can be done

by defining some range for which the cell size will vary linearly between

some given minimum and maximum. Once generated the mesh is saved as

a .msh file.

2.4.2 Dimensional Reduction Through Symmetry

Solving differential equations in three spatial dimensions can be computa-

tionally expensive. To reduce the number of degrees of freedom in a given

problem a symmetry can be imposed, reducing the effective dimension of

the problem. When applicable, this can be done in SELCIE through the

introduction of a symmetry factor, σ into the integrations,

∫
Ω

f (x)dx⃗→
∫
Ω/S

f (x)σdx⃗. (2.27)

where S is the symmetry group of the applied symmetry. Systems with

axis symmetry around the x or y axes can be simplified to 2-dimensions

using the symmetry factors |y| and |x| respectively. The final option built

into SELCIE is a translational symmetry perpendicular to the plane of the
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2D mesh which has a symmetry factor equal to 1.

2.4.3 Solving for the Field

Once the mesh has been created and saved, the user can then define the

matter distribution which sources the chameleon field profile. The user can

define the density profile in terms of a set of functions, each defining the

density on a different subdomain of the mesh. In this way, complex density

profiles can be easily constructed.

After applying the appropriate symmetry factor, the user is now free to

use either the picard() or newton() functions to solve for the field given

the density profile and a choice of the chameleon parameters n and α. It is

then possible to compute the field gradient (vector or scalar magnitude).

To diagnose the accuracy of the solutions to the chameleon equation of

motion obtained by SELCIE, the strong residual can be evaluated. I do

this by inputting the solution obtained for the scalar field into the equation

of motion, equation (2.1). The amount by which this differs from zero is

the strong residual, and I say that the solutions I obtain are accurate when

the strong residual is significantly smaller than the dominant term(s) in

the equation of motion. As an example, Figure 2.3 shows the density

profile of a torus inside a vacuum chamber, the associated chameleon field

profile, the magnitude of the field gradient, and the strong residual. The

equations have been solved assuming that the system is symmetric under

rotations around the vertical y-axis. From Figure 2.3d it can be seen that

the strong residual varies by orders of magnitude across the spatial domain.

In Figure 2.4 I show the strong residual alongside the component terms of

the equation of motion, along the x and y-axes. In regions of high density
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(a) (b)

(c) (d)

Figure 2.3: Calculated field results from SELCIE for an axis-symmetric
system in the y-axis consisting of a torus with a hole radius of 0.05 and a
tube radius of 0.1, inside a vacuum chamber of unit radius, wall thickness
0.1, and density equal to that of the torus. The chameleon parameters
are n = 3 and α = 1012. a) The density profile of the system. b) The
chameleon field profile. c) The magnitude of the field gradient. d) The
strong residual of the field.

we see that the dominant terms are ϕ̂−(n+1) and | − ρ̂|. Meanwhile, in the

vacuum regions the dominant terms are ϕ̂−(n+1) and |α∇2ϕ̂|. Assuming

that the error on the field is of machine precision, δϕ̂ ∼ 10−14, and that the

field value is ϕ̂ ∼ 10−4, this gives that the expected error of the field’s bare

potential ϕ̂−(n+1) is ∼ 107. This demonstrates that the error on equation

(2.1) can be very large, even at machine precision, due to the nonlinear

nature of the equation. I will consider the solutions I find to be accurate

if the strong residual is at least one order of magnitude smaller than the

dominant terms in the equation of motion. This can be seen to be the case

in Figure 2.4.
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(a) (b)

Figure 2.4: Plot of the strong residual of equation (2.1) and the components
of the equation of motion for a torus with hole radius 0.05 and tube radius
of 0.1, inside a unit sized vacuum chamber with wall thickness 0.1 and with
axis-symmetry imposed in the y-axis. The variation of the residual and the
components of the equation of motion along the lines y = 0 and x = 0
are shown in Figures 2.4a and 2.4b respectively. Both the torus and the
vacuum walls have a rescaled density of 1017 and the system the chameleon
parameters used are n = 3 and α = 1012.

To check the accuracy of the solver in 3D, we can also solve for the chameleon

field around the torus without imposing axis-symmetry. Figure 2.5 shows

the maximum relative difference between the 2D and 3D solutions across

a range of azimuthal angles. From these plots we see a significant rela-

tive error at the discontinuous boundaries of ∼ 60%. I found this to be a

consequence of the 3D mesh not being sufficiently refined at the boundary.

However, due to the scaling relation between boundary precision and cell

number, it can quickly become a computationally expensive calculation to

construct better refined meshes in 3D. Nevertheless, away from the bound-

aries the relative error decreases to percent levels and the two solutions have

a strong agreement. This illustrates that even with a coarser boundary in

3D, SELCIE can still accurately determine the solution to the equation of

motion.
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(a) (b)

Figure 2.5: Plots of the maximum relative difference between the 2D and
3D solutions of a torus inside a vacuum chamber for a range of azimuthal
angles. Figure 2.5a shows the whole domain while Figure 2.5b shows a
small region at the boundary of the source. The torus has a hole of radius
0.05, tube radius of 0.1 and rescaled density of 1017. The chamber wall has
the same density as the torus and a thickness of 0.1. Both measurements
were measured using the chameleon parameters n = 3 and α = 1012.

2.5 Comparison with Known Field Profiles

In this section I will compare the analytic solutions to the chameleon model

discussed in section 1.6.2 to the solutions numerically calculated by SEL-

CIE. To accomplish this I will start by performing the parameter rescaling

discussed in section 2.1 to obtain dimensionless forms of the analytic solu-

tions. These can then be compared directly to the SELCIE solutions.

2.5.1 Field Maximum with No Source

I will start by considering the chameleon field profile inside an empty spher-

ical vacuum chamber. Since I define ρ̂0 = 1 everywhere inside the vacuum

chamber, equation (2.4) then shows that when α ≫ (n + 1) the field’s

vacuum Compton wavelength is many orders larger than the size of the

vacuum chamber. The field, therefore, does not have enough space to reach

the value that minimises the effective potential inside the chamber and I

can make the approximation ϕ̂−(n+1) ≪ ρ̂ in the vacuum region. Applying

54



2.5. COMPARISON WITH KNOWN FIELD PROFILES

this approximation to equation (2.1) and defining a new field related to the

original by the rescaling

ϕ̂(n, ρ̂, α) = α−1/(n+2)φ̂(n, ρ̂), (2.28)

I then find that the resulting equation for φ̂,

∇̂2φ̂ = −φ̂−(n+1), (2.29)

is independent of α. The equivalent relation for the n = 1 case was derived

in Ref. [26].

We see that the chameleon field profiles inside an empty vacuum chamber

are all equivalent up to the rescaling in equation (2.28) as long as α ≫

(n+ 1).

It was shown in Ref. [26] that when n = 1 the value of φ̂ at the centre of

an empty vacuum chamber should equal 0.69 (to two significant figures).

Figure 2.6 shows the profile of φ̂ computed with SELCIE for a range of

α values, all of which are much greater than unity. As predicted, φ̂ has

the same profile inside the vacuum for the whole range of α values tested,

verifying that equation (2.29) holds. The value of φ̂ at the origin was also

consistent with the value found in Ref [26].

2.5.2 Solutions around Circular Sources

For ease of comparison with the results of the SELCIE code, I will express

the vacuum field profiles around spherical, equation (1.54), and cylindri-

cal, equation (1.60), sources using the dimensionless rescaled parameters

discussed in section 2.1. These expressions for a sphere and cylinder re-
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Figure 2.6: The rescaled chameleon field as described in equation (2.28)
inside an empty vacuum chamber for various values of α. In each case
n = 1 and ρ̂c = 1017. Note that, except when r̂ > 1, the three curves
exactly overlap.

spectively are

ϕ̂(r̂) ≈ 1− R̂

r̂
e−(r̂−R̂)

√
(n+1)

α , (2.30)

and

ϕ̂ ≈ 1−
2K0

(
r̂
√

(n+1)
α

)
ln
(

4α

(n+1)R̂2

) , (2.31)

both with a rescaled radius of R̂. As stated in section 1.6, both these

solutions assume mbgR ≪ 1, which is equivalent to (n + 1)R̂2 ≪ α, and

that the thin-shell is very small. To determine if the latter condition is

satisfied I apply the parameter rescaling to equations (1.53) and (1.73),

which give the conditions for equations (2.30) and (2.31) to be valid as
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respectively

α ≪ ρ̂cR̂
2 (2.32)

α ≪ 1

4
ρ̂cR̂

2 ln

(
4α

(n+ 1)R̂2

)
(2.33)

To verify that SELCIE can reproduce these approximate analytic solutions,

I constructed a 2D mesh of a circular source of radius R̂ = 0.005 inside a

circular vacuum chamber of radius unity. Both spherical and cylindrical

cases can be explored using the above 2D mesh by imposing axis-symmetry

(along either the x or y-axis) and translational symmetry normal to the

mesh, respectively. For the values of the corresponding symmetry factors

see section 2.4.2. In both cases I choose n = 1, α = 0.1 and the source

density was set to ρ̂c = 1017, therefore satisfying both equation (2.32) and

(2.33). The analytic and numerical field profiles for both spherical and

cylindrical sources are shown in Figure 2.7. From this plot we see that

SELCIE is able to reproduce the analytic results to within the accuracy of

the analytic approximations.

2.5.3 Solutions around Ellipsoidal Sources

As was done for the spherical and cylindrical cases, I will be working in the

regime where the thin-shell is very small, δξ = ξ0 − ξc ≪ ξ0. Applying the

rescaling discussed in section 2.1 to equations (1.73) and (1.74), we obtain

that when the small thin-shell condition

δξ =
3αϕ̂bg

â2(3ξ20 − 1)Q0(ξ0)
≪ ξ0 (2.34)
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Figure 2.7: The calculated field profiles for the spherical and cylindrical
cases against the approximate analytic solutions. For both cases, n = 1,
α = 0.1, ρ̂c = 1017, and the source radius was set to 0.005.

is satisfied, where â = a/L, then the rescaled field profile around the ellip-

soidal source is

ϕ(ξ, η) = ϕ̂bg

(
1− Q0(ξ)− P2(η)Q2(ξ)

Q0(ξ0)

)
. (2.35)

To test this solution against the field profile found by SELCIE around an

elipsoidal source, I first constructed a mesh of an ellipse inside a unit radius

vacuum chamber with a wall thickness of 0.1. The value of ξ0 for this ellipse

was allowed to vary while the value of a was set such that for any ξ0 the

volume was set to that of a sphere of radius 0.005. Taking ρ̂c = 1017,

n = 1 and α = 103 the chameleon field inside the chamber was calculated

using SELCIE for various values of ξ0. These results are compared to

equation (2.35) in Figure 2.8. Close to the surface the analytic result

appears to break down as the value of the field is negative. Away from the
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(a) ξ0 = 1.01 (b) ξ0 = 1.25

(c) ξ0 = 1.50 (d) ξ0 = 1.75

Figure 2.8: Comparison between the chameleon field profiles calculated by
SELCIE around an elliptical source of uniform density and the approximate
analytic solution shown in equation (2.35) for various values of ξ0. The
parameters used were n = 1 and α = 103.

surface, however, the results from SELCIE agree with the analytic results

with ∼ 1% relative error. Given that this is only an approximate analytic

solution, I consider our results to be in good agreement. Commenting on

the analytic solution itself, recall that an assumption made in its derivation

was that the thin-shell began at ξc which is independent of η. The plots

shown in Figure 2.8 appear to validate this assumption; however, this is

simply due to the thickness of the thin-shell being very small. If α is

increased to 1015, therefore increasing the Compton wavelength of the field

in the source, we see from Figure 2.9 that ξc does depend on η.
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Figure 2.9: The chameleon field profiles around an ellipsoidal source inside
a unit sized spherical vacuum chamber. The boundary of the ellipsoid is
given by the curve of constant ξ = 1.01 and has equal volume to a sphere
of radius r = 0.005. The density of the ellipsoid relative to the vacuum is
1017. Each line corresponds to the field along lines of constant η. We see
that the thickness of the thin-shell in ξ-coordinates is not constant in η,
and is in fact thickest at the tip of the ellipsoid (η = 1).
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2.5.4 Analytic solutions for NFW galaxy cluster ha-

los

In the previous subsections I have discussed solutions to the chameleon

equation of motion around dense sources, with clearly defined surfaces, in-

side a vacuum chamber. In this section I will demonstrate that SELCIE

can also provide accurate chameleon field profiles for continuous density

distributions. An important example of such a system, of relevance to

a number of observational tests, is galaxy clusters. These are the largest

gravitationally bound systems in the universe. The ability to measure clus-

ter masses in a variety of ways (X-ray temperature, the Sunyaev–Zeldovich

effect, weak lensing and other methods [85, 86, 87]) makes clusters invalu-

able when studying and testing gravity on cosmological scales. In addi-

tion, galaxy clusters are known to have a complicated density distribution,

which will need to be evaluated when testing for screened models such as

the chameleon. These features have been employed in astrophysical fifth

force searches, producing strong constraints on chameleon gravity and other

models [2, 41, 88, 89, 90, 91, 92, 93].

It has been shown that the underlying density distribution on galaxy and

galaxy cluster scales is well-approximated by the Navarro–Frenk–White

(NFW) profile [94]. After rescaling, this profile can be written as

ρ̂(r) =
ρ̂s

r̂ (1 + r̂)2
, (2.36)

where the radial coordinate has been rescaled by the scale radius of the

cluster rs, such that r̂ = r/rs, and the density has been rescaled by the

cosmological critical density ρc such that ρ̂ = ρ/ρc and ρ̂s = ρs/ρc. The

NFW profile of equation (2.36) diverges as r̂ → 0, so I also introduced a
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core radius, r̂cut, so that ρ̂ (r̂ < r̂cut) = ρ̂ (r̂cut).

There is no exact analytical solution for a chameleon field profile within

and around a spherical NFW halo. However, as in the previous subsections,

an approximate analytic solution can be obtained by using a piecewise

approach as shown in Ref. [88]. Applying the rescaling outlined in section

2.1, this solution can be written as

ϕ̂(r̂) =


ϕ̂s

[
r̂ (1 + r̂)2

] 1
n+1 r̂ ≤ r̂c

ϕ̂0

(
1− r̂c

r̂

)
+
ρ̂s
α

1

r̂
ln

(
1 + r̂c
1 + r̂

)
r̂ ≥ r̂c,

(2.37)

where ϕ̂s = ϕ̂min(ρ̂s), as defined by equation (2.3), ϕ̂0 is the field value at

spatial infinity (or at the boundary of the numerical simulation), and r̂c

is the transition scale such that for r < rc the cluster is screened. For

distances less than r̂c the potential and matter terms dominate over the

gradient term and so the field takes the value that minimises the effective

potential as given by equation (2.3). For scales larger than r̂c the field takes

values away from this minimum as the potential term becomes subdominant

to the gradient and matter terms. The transition scale is r̂c ≈ (ρ̂s/αϕ̂0)−1

where, in both this expression and equation (2.37), it has been assumed

that ρ̂s ≫ 1 and therefore ϕ̂s ≪ 1.

I compared equation (2.37) against solutions calculated using SELCIE for

the cases when r̂c is much larger than the domain size and for r̂c ≪ 1.

These results are plotted in Figure 2.10. In both cases the calculated and

analytic results have a strong agreement, with sub-percentage relative error.

However, I should mention here that due to the before mentioned cutoff

that was introduced to the density profile, the assumption that the field

traces the minimum of the effective potential near the origin can be broken.

This can be seen in Figure 2.10b where the analytic solution predicts the

62



2.5. COMPARISON WITH KNOWN FIELD PROFILES

(a) (b)

Figure 2.10: Plots comparing the field profile calculated by SELCIE with
the expected analytic solution in the regime: a) rc ≫ 1 (α = 10−9), b)
rc ≪ 1 (α = 109). In both cases the rescaled critical density was set to
ρs = 106.

field would tend to zero at the origin but the calculated field tends to some

larger value instead.

2.5.5 Solutions around Legendre polynomial shapes

As another comparison to work in the literature, I attempted to reproduce

the results from Ref. [95]. This paper attempted to use a Picard nonlinear

solving method with the FEM to solve the chameleon field around irregu-

larly shaped sources. In this sense, SELCIE can be viewed as a continuation

of this work. Ref. [95] aimed to investigate what shapes would optimise

experimental searches for the chameleon field by maximising the resulting

fifth force. Specifically, the shapes tested were constructed using Legendre

functions, Pi (cos θ), as a basis such that shapes are defined

R (cos θ) =
3∑

i=0

aiPi (cos θ) , (2.38)

where ai are the coefficients of the shape. The shapes were placed in a

vacuum chamber of radius 15 cm and wall thickness of 3 cms. The fifth

force was measured for a distance of 5 mms from the surface of the source.
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The wall and source density were both set to 1 g/cm3 while the vacuum

density was 10−17 g/cm3. The remaining parameters used were: n = 1,

M = Mpl/β = 1018 GeV and Λ = 10−12 GeV. Using SELCIE I recon-

structed this setup for each Legendre polynomial shape tested in Ref. [95].

The densities were rescaled by the vacuum value stated above and the

length scale L was set to the chamber radius. The value of α was cal-

culated using equation (2.2) to be α = 6.1158 × 1018. Our results are

presented alongside the original results from Ref. [95] in Table 2.1.

From this table we see that our results are in disagreement with the previous

results. In fact, both the individual values and the increase in the fifth

force from the spherical case (bottom row) disagree. However, due to the

extensive testing I have performed on SELCIE, I am confident in its results

and believe there is an error in the calculation of the results reported in

Ref. [95]. The new results for these shapes, found with SELCIE, could be

interpreted as implying that optimising the shape may not yield as large

an increase to the fifth force as previously suggested in Ref. [95]. However,

since I am not confident in the previous results, I also have no reason to

believe that the Legendre coefficients listed are the optimum values. It

is still possible that for some choice of coefficients there is a significant

increase to the fifth force compared to the spherical case.

2.6 Discussion

In this chapter I have introduced SELCIE as a tool to help study the

chameleon field. Currently SELCIE solves the static chameleon equation

of motion in the form of equation (2.1). Using SELCIE the chameleon field

equation can be solved for highly non-symmetric systems constructed by
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a0 a1 a2 a3
δg

g

∣∣∣∣
P

[10−11]
δg

g

∣∣∣∣
S

[10−11]

0.82 0.02 0.85 3.94 4.82 2.25

0.97 0.59 0.03 3.99 4.68 2.24

1.34 0.18 0.41 2.89 4.52 2.26

1.47 0.19 0.27 2.63 4.47 2.29

2.00 0.00 0.00 0.00 1.73 2.24

Table 2.1: Table of fifth forces measured from Ref. [95] (labelled as P ) com-
pared to results produced from SELCIE (labelled as S). In both cases the
recorded acceleration experienced by a test particle, δg, is stated relative to
the gravitational acceleration on the surface of the Earth (g = 9.81 ms−2).
The ai values correspond to the Legendre coefficients used to define the
shapes in [95].

the user. This can therefore be used to find solutions for systems which lack

an analytic solution and to optimise existing experiments used to detect

the chameleon field.

I have demonstrated the reliability of SELCIE to reproduce approximate

analytic results from the literature for a variety of sources and density

profiles; however, its functionality is much broader than this. For exam-

ple, density distributions from N-body simulations or galaxy halo profiles

can be easily inputted into SELCIE to find the corresponding chameleon

profile and fifth force, enabling precision tests of the chameleon model on

cosmological scales.

In Ref. [2], SELCIE has already been used to test the viability of detect-

ing a chameleon signal through observations of galaxy cluster halos. In

the following chapter I will use SELCIE with a genetic algorithm to find

experimental configurations which optimise the possibility of detecting a

chameleon fifth force. This optimisation algorithm could be used, for ex-
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ample, to extend the reach of current and future experiments that search

for chameleon fifth forces with atom interferometry [26, 27, 28, 29, 96],

ultra-cold neutrons [36, 38, 39, 97, 98, 99], torsion balances [20, 71, 100],

Casimir experiments [23, 101, 102, 103, 104] or opto-mechanical sensors

[105, 106, 107, 108].

I intend to continue to develop and extend SELCIE in the future to gen-

eralise the methodology to work with alternative forms of the chameleon

model and other screened scalar fields such as the symmetron. I also plan

to extend the code to allow the density profile and the field to evolve in

time. Throughout the literature the chameleon field is assumed static,3 and

so it would be of interest to study what effects a dynamic system has on the

field. This could lead to strengthening constraints by re-evaluating known

systems (e.g. Earth-Moon system) or by developing new experiments that

utilise dynamical systems.

3Notable exceptions include Refs. [109, 110, 111, 112, 113, 114].
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Chapter 3

Using Machine Learning to

Optimise Chameleon Fifth

Force Experiments

The nonlinearity of the chameleon’s equations of motion makes calculating

analytic solutions very difficult. Examples do exist in the literature, as

discussed in section 1.6.2, but these are only for highly symmetrical source

shapes and often involve approximations that limit the solution to specific

regions of parameter space. Constraints from experiments and observa-

tions will either come from one of these analytic approximations or from

numerically solving the equations of motion for the system being studied.

The question may then arise: is the experimental system optimal for de-

tecting chameleons? Comparing the solutions in section 1.6.2 it is clear that

the resulting field profiles will differ even for sources with equal density and

size1. We therefore see clearly that the chameleon violates the WEP, since

1The cylinder would, due to the assumed symmetry, be infinite in length and mass.
Therefore, when comparing the sources I am considering a cylinder with equal radial
size to the spherical source. When comparing the spherical and ellipsoidal sources I do
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its fifth force has a dependence on the shape of the source mass. This means

that in an experiment measuring fifth forces, choosing to use a spherical

source over a cylinder will improve the experimental sensitivity. Since a

dependence on the source shape exists for the chameleon [69, 95, 115, 116],

there must exist a shape that maximises the force when taking all other pa-

rameters to be fixed. Using such an optimised source shape in current and

near future experiments would yield improvements to experimental sensi-

tivity and thereby strengthen the resulting model constraints. The aim of

this work is to demonstrate a method by which this optimised source shape

can be found. The exact shape will depend on what observable is being

optimised and so will depend on the specific experiment.

In this chapter I will determine the rotationally symmetric shape which

maximises the force at a single point a fixed distance from the source,

inside a spherical vacuum chamber. I employ several parameterisations

to mathematically describe the source shapes. This reduces the problem

to finding the set of parameters that maximise the fifth force, although

the dimension of this parameter space will inevitably be large if we wish

it to encompass complex shapes. Using the SELCIE software package,

discussed in chapter 2, meshes were generated of the source shape inside

a spherical vacuum chamber, with an additional surface for measurements

at a fixed distance from the source.2 SELCIE was also used to numerically

solve for the chameleon field profile of the system and solve for the field

gradient magnitude which is proportional to the force. I then iterate over

the mesh vertices along the ‘measuring surface’ and output the maximum

value of the field gradient magnitude. The goal then is to find the set

of parameters defining the source shape that maximise the field gradient

so assuming equal mass.
2For a review of the challenges in numerically simulating screened theories in labora-

tory and astrophysical environments see Ref. [117], and for a related finite element code
that can simulate the behavior of the chameleon in satellite experiments see Ref. [118].
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3.1. USING LARGE α APPROXIMATION

magnitude outputted by this algorithm. To achieve this optimisation I

used the DEAP software package (https://github.com/deap/deap.git)

to automate the design and running of a ‘genetic algorithm’ (GA) [119].

These GAs are a class of machine learning algorithms that use concepts

of Darwinian evolution to improve a population of solutions so that it

converges to an extremum in the solution space [120, 121]. They also do

not require the problem being optimised to have an analytic form, and are

efficient even for problems with a large solution space dimension.

I will begin this chapter by reviewing the large α approximation in section

3.1. The details of the GA will be explained in section 3.2. In section 3.3

I will define the shape parameterisations used and show the results of my

investigation using the GA when the measuring distance from the source

and chameleon potential are fixed. Sections 3.4 and 3.5 will then explore

the effects of changing the measuring distance and potential, respectively. I

will then end this chapter with section 3.6, where I will discuss the findings

obtained by combining the GA with SELCIE.

3.1 Using Large α Approximation

In section 2.5.1, I showed that in the regime where α ≫ (n + 1) the

chameleon field inside a vacuum chamber is well approximated by equa-

tion (2.29), where φ̂ is related to ϕ̂ by equation (2.28). The significance

of this result is that by solving for |∇̂ϕ̂| for one value of α, we can then

determine the fifth force strength for all values where α ≫ (n + 1), by

applying an overall rescaling to the solution. This statement remains true

while the dense regions of the system are much more dense than the vac-

uum, because the value of φ inside the dense regions will differ for different
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3.2. GENETIC ALGORITHM

values of α, but for sufficiently large density the differences become negli-

gible as φ ≈ 0. Therefore, assuming the above conditions to be satisfied I

can express equation (2.6) as

|F⃗φ̂|
|F⃗g|

=
βΛ

MplL|⃗ag|
(
nL2Λ2

) 1
n+2 |∇̂φ̂|, (3.1)

where |∇̂φ̂| (which in the rest of this work will be referred to as the force)

depends on n and the profile of ρ̂ but not on Λ, β or L. This equation is

also entirely independent of both the source and vacuum density values, so

long as there exists a sufficiently large hierarchy between them. We also

see from this equation the importance of the domain size on the measured

fifth force. Since β and Λ are constants, and φ̂ is independent of L (as

long as α ≫ (n + 1)), the total dependence of the domain size, L, on the

above expression is L−n/(n+2). This means smaller systems will yield higher

sensitivity to fifth forces. For the case where n = 1 equation (3.1) can be

used to express the acceleration acting on the test mass due to the scalar

field in physical units as

(
|⃗aφ̂|

nm/s2

)
= 0.373β

(
Λ

meV

) 5
3
(
L

cm

)− 1
3

|∇̂φ̂|. (3.2)

3.2 Genetic Algorithm

In this chapter I use the genetic algorithm (GA) software DEAP [119]

to optimise the shape of a source mass such that the fifth force it gives

rise to at a fixed distance is maximised. GAs are designed to take an

initially random population of solutions to a problem and evolve them

in order to find the optimum solution [120, 122]. This is done in three

stages; selection, crossover, and mutation. In the first stage, selection, it is
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3.2. GENETIC ALGORITHM

determined which individuals will survive to parent the next generation. To

make this determination each solution in the population is evaluated using

the function we wish to maximise (or minimise), which I will refer to as

the fitness function. The fitness of an individual in our population is then

the corresponding output of this fitness function, and will determine the

likelihood of an individual surviving. As is the case with the later stages

(crossover and mutation) there are many methods to determine survivors in

our population. For a comparison of the different possible configurations of

the GA see Appendix A. The method I ultimately chose was a tournament

method, where I randomly select Ntournsize individuals and return the one

with the best fitness (largest value if searching for maximum and smallest

value for minimum) [123]. This process is repeated N times, where N is

the size of our original population. Note that it is possible for individuals

to be selected multiple times. This process imitates natural selection and

results in a new population with an increased average fitness. It is these

survivors that will be the parents of the next generation. The fact that

an individual can be selected multiple times is analogous to members of a

species that have more offspring, thereby making its characteristics more

abundant in the next generation.

Reproduction is replicated in the crossover stage, whereby individuals in

the population are paired and each pair has some probability, Px, of repro-

ducing. If this occurs then each attribute of the solution pair (e.g. their

coefficients) have a px chance of being swapped. The pair has now become

a pair of children that replace the parents in the population. This process

combined with the selection process allows individuals with better fitness

values to share features with a larger number of other individuals at a faster

rate than those with worse fitness. Overall, this will lead the population

as a whole to flow towards optimum fitness.
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A general problem with optimisation algorithms is that of local maxima.

If an individual finds such a solution, it can lead the rest of the popula-

tion to it without finding the global maximum (e.g., see Ref. [124]). The

strategy used by a GA to address this is contained in the mutation stage.

This stage is inspired by the mutations in natural organisms required for

evolution, and modifies the information present in the current population.

In this stage, each individual in the population has some probability, Pm,

of receiving a mutation. This involves changing some of the attributes of

the individual through some process involving randomness. In this chap-

ter, since our parameters are continuous, each coefficient of the mutated

individual has probability pm of receiving a Gaussian perturbation with

standard deviation σ. This allows individuals to escape from local maxima

while introducing more variation into the population, allowing more of the

parameter domain to be explored.

In total, this algorithm has 7 parameters that must be set by the user,

{N , Ntournsize, Px, Pm, px, pm, σ}. In this chapter {N , Ntournsize, Px, Pm,

px} = {105, 5, 0.7, 0.1, 0.5}. The values of {pm, σ} will depend on the

number and domain of the coefficients. The process by which I decided on

the methods described above, and the values of the parameters, is discussed

in Appendix A.

3.3 Shape optimisation

To begin finding the shape which optimises the chameleon force, I will need

to first define a space of shapes through some parameterisation. I note

that any parameterisation of shapes, for reasons of practicality, must be

described by a finite number of coefficients. However, in a complete basis an
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3.3. SHAPE OPTIMISATION

infinite number of coefficients is required to reproduce all possible shapes.

Therefore, any optimisation performed using a particular parameterisation

will at best find the global maximum of a finite sub-space of shapes, and

not of the infinite space of shapes. I therefore investigated multiple shape

parameterisations to probe different regions of the shape space in the hope

of discovering consistent solutions, or even shared features that point to a

more globally optimum solution. For each of these parameterisations I will

require a function that maps the parameters to the measurable of interest. I

shall henceforth refer to this function as the fitness function, given I intend

to maximise it using the GA discussed in section 3.2. In this chapter, the

measurable outputted by this fitness function is the force at a single point

that lies somewhere on a measuring surface a distance d from the source,

which lies inside of a spherical vacuum chamber (For details see Appendix

B). I restricted our search to rotationally symmetric sources as it allowed

us to represent the systems using 2D meshes by imposing the symmetry

on the field solutions. The reason for this was to reduce the runtime and

memory requirements, although in principle our approach can be extended

to more arbitrary systems by using 3D meshes instead.

The fitness function starts by taking the shape parameters and from them

derives a list where each element contains the coordinates of a point. These

points connected in sequence by straight lines define the boundary of the

source. The python package SELCIE is then used to construct a mesh

representing the system. This includes the source, a measuring surface a

distance d from the source3, the vacuum, and the chamber wall. The mesh

settings used were such that the cell size was a minimum at the boundary of

two regions, with a size of CellSizeMin = 10−4, grew linearly for a distance

3In Ref. [95], the chamber radius was 15 cm and the force was measured a distance
0.5 cm from the source, giving a ratio of ∼ 0.03. Therefore in the following sections
the default distance from the source where the force is measured, in rescaled units, is
d = 0.05.
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DistMax = 0.1, beyond which the cell size was CellSizeMax = 0.01 (see

Appendix C for a discussion on the tests performed to calibrate the mesh

settings). The exception to this was the boundary between the vacuum and

the chamber wall which had CellSizeMin = 5 × 10−4 and DistMax = 0.5

instead, since this improved the runtime while contributing negligibly to

the solutions’ accuracy. The thickness of the chamber wall was set to 0.05,

as this is a small value, therefore the mesh is smaller, but still large enough

so that the field reaches its minimum inside the wall (even for the case

of an empty vacuum chamber which is the scenario with the largest field

values). Using this mesh, SELCIE is then used to calculate the scalar field

profile and the force induced by the field. Finally, the magnitude of the

force is evaluated at the mesh vertices that form the measuring surface.

The largest of these values is then the output of the fitness function. The

optimal shape will correspond to the global maximum of this function on

the shape parameter space. For shape spaces with a dimensionality of one

or two, it is reasonable to perform an iterative search of the parameters.

However, as the dimension of our parameterised shape space increases this

method becomes impractical. I will therefore use the GA, as described in

section 3.2, to find the shape parameters that maximise the outputted force

value.

In the following sections I will define our shape parameterisations and will

probe the corresponding space of shapes to find the shapes that maximise

the chameleon force. I will then compare these optimal shapes to determine

if there are any consistent features among them and whether these are

indicative of a superior class of shapes.
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3.3.1 Ellipsoids

I will begin our investigation with ellipsoidal shapes (for earlier work see

Ref. [69]). Being the simplest deviation from spherically symmetric sources,

these shapes are parameterised by the horizontal and vertical axis radii, rx

and ry respectively. Since the shape space is only 2-dimensional, it can be

thoroughly investigated without the need of the GA. The boundary of the

ellipse in the (x, y) plane is (x, y) = (rx sin(θ), ry cos(θ)), for θ = [0, 2π). For

our purposes, however, it will be more useful to parameterise the ellipsoids

by their axis-ratio, ϵ = ry/rx, and the volume of the ellipsoid

V =
4π

3
r2xry, (3.3)

where I have used the fact that our source has rotational symmetry around

the y-axis. For such ellipsoids with a volume V and axis ratio ϵ, their axis

radii can be expressed as (rx, ry) = (ζ, ζϵ), where the scale factor ζ is

ζ =

(
3V

4πϵ

)1/3

. (3.4)

Some examples of ellipsoids parameterised by (V, ϵ) are shown in Figure

3.1.

Figure 3.2 shows the magnitude of the resulting force, at a distance d =

0.05 (in units of vacuum chamber radii) from the source, for the values

ϵ = [0.01, 2.0] and V = [10−5, 0.1]. A note-worthy feature of this plot is

that slight deviations from spherical sources appear to always result in an

increase in the measured force, the location of which is around the pointed

region of the ellipsoid as predicted in Ref. [115]. I also note that Figures

3.2a and 3.2b show that for fixed ϵ as V decreases the force increases. The

intuition behind this is that as the source decreases in size, and the vacuum
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3.3. SHAPE OPTIMISATION

Figure 3.1: Boundary curves of elliptical shapes of varying volume and
axis-ratio. The left plot contains ellipses with ϵ = 0.5, while the right
contains ellipses with ϵ = 1.5.

increases in size, the field can reach a larger maximum value in the vacuum,

and consequently the field gradients will be larger. However, Figures 3.2c

and 3.2d show that this trend reverses after some critical volume, Vc(ϵ),

due to the fact that there is less overall matter contributing to the force.

The overall effect can be seen clearly in Figure 3.3 where I have plotted the

force against volume for a range of ϵ-values.

Figure 3.4 shows this critical volume Vc(ϵ), at which the force is maximised,

for a range of ϵ. In this plot I also show the maximal force obtained for

the corresponding ellipsoids. We see that as the ellipsoids deform away

from the spherical case, along either axis, the critical volume decreases and

the corresponding force increases. This change is strongest with decreas-

ing ϵ, which corresponds to disc like ellipsoids. I acknowledge that the

plot of Vc(ϵ) is not entirely smooth. This is because when performing our

simulations I use a mesh of finite precision, resulting in a small numeri-

cal uncertainty. Although the relative uncertainty on the force is of the
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(a) (b)

(c) (d)

Figure 3.2: The measured maximum force (at distance 0.05 from the surface
of an ellipsoid) against axis ratio ϵ = ry/rx. The colour map represents the
volume of the ellipsoid. Each subplot shows the results for a different order
of magnitude in volume, with the largest volumes in the top left and the
smallest in the bottom right.
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Figure 3.3: Measured maximum force (at distance 0.05 from the surface of
the ellipsoid) against source volume, for a range of axis-ratio values.

order 10−4, the finite mesh precision leads to a larger uncertainty on our

measurement of Vc. Finally, I acknowledge that our plots would indicate

that the ideal ellipsoid lies outside our parameter range. This is because

of computational limitations of solving the field equation using meshes ca-

pable of resolving such small and elongated shapes. In practise, however,

a very small ellipsoid will be impractical in realistic experiments.

3.3.2 Legendre Polynomial Shapes

As mentioned in section 1.6.2, Legendre polynomials, Pn, are a special set

of polynomials that are solutions to equation (1.66). This set of functions

has the property ∫ 1

−1

Pn(x)Pm(x)dx =
δnm

2n+ 1
, (3.5)
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Figure 3.4: Critical volume (blue) and corresponding force measurement
(red) against axis-ratio, ϵ. The vertical gray dashed line at ϵ = 1 indicates
the location of the spherical case.

showing that it forms a complete basis in the interval [−1, 1]. This means

if I define a set of curves in polar coordinates (R(θ), θ) where

R(θ) =
N∑

n=0

anPn(cos θ) (3.6)

and an are the series coefficients, then in the limit N −→ ∞ the set will

grow to contain every closed curve that is also symmetric around the y-

axis. However, I must still consider how I relate these curves to shapes.

For example, for some sets of an, it is possible for R(θ) to take negative

values, which can result in the curve intersecting itself. In this chapter I

take positive r < R(θ) to be inside the shape, and to avoid complications

will set R(θ) = Rmin whenever the value of R(θ) given by equation (3.6) is

less than Rmin. To investigate the shape dependence of the force, I keep

the volume of the source fixed. I therefore define a mapping (see Appendix
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Figure 3.5: Examples of Legendre polynomial shapes defined using N = 20
coefficients and with a volume fixed to V = 0.01.

E)4 from one set of coefficients, an, to a new set where the corresponding

Legendre polynomial shape is similar to the original but with a volume V .

Some examples of the kinds of shapes contained inside this class are shown

in Figure 3.5.

It can be shown that the Legendre polynomials, in the domain [−1,+1]

have a maximum at P (θ = 0) = 1. Constraining the coefficients an to be

positive, this means the maximum value taken by equation (3.6) is

Rmax =
∑
i

ai. (3.7)

For practical reasons, I will only consider Legendre polynomial shapes that

4Initially I used the method in Appendix D. However, errors due to numerical preci-
sion compounded as N increased, rendering it unreliable when using N = 20 coefficients.
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are contained entirely inside the vacuum chamber, e.g. Rmax < 1 (after

constraining the volume).

Using the method described in section 3.3 I can obtain a force value from

the set of coefficients an that define a Legendre polynomial shape. The

number of coefficients used was N = 20; however, after applying the vol-

ume constraint the number of dimensions of the shape parameter space is

reduced to 19. Because of the large number of dimensions of the shape

space I will use the GA discussed in section 3.2 to find the shape, param-

eterised by Legendre polynomials, that maximises the force at a distance

d = 0.05 from the source evaluated at a single point. For a volume of

V = 0.01 the shape outputted by the GA generated a force of |∇̂φ̂|d = 5.07

(located along the y-axis), which is a 48% increase when compared to a

spherical source of the same volume centred at the origin. The profile of

the scalar force induced by the source is shown in Figure 3.6 along with

the position where the force is maximised.

I repeated our GA simulation for a range of other volumes, and found

that as the volume is decreased the force becomes larger, as was the case

with the ellipsoids. I also observed that the ‘umbrella’-like5 feature near

θ = 3π/4 in Figure 3.6 appears to be a common feature in each case, with

the extra volume being diverted to the upper region, as seen in Figure 3.7.

Since our populations have independently evolved this feature, it suggests

this may be the most important feature of the final shape and that it is

independent of the total volume. This aspect will be further investigated

in section 3.3.4.

5Since I have imposed that the system has rotational symmetry around the y-axis,
the shapes will be ‘umbrella’-like when viewed in 3-dimensions.
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Figure 3.6: The chameleon force profile of an N = 20 Legendre polynomial
source (boundary of which is indicated by the red line) inside a spherical
vacuum chamber. The left plot contains the full solution while the right
is zoomed in on the central region. In the right plot the red cross on
the y-axis below the source, at around y = −0.075, indicates the position
where the force (at a distance from the source of d = 0.05) is maximised.
The value of this maximal force is |∇̂φ̂|d = 5.07.
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Figure 3.7: Shapes outputted by the GA when finding the optimal Legendre
polynomial shape withN = 20 coefficients. Each line indicates a shape with
a different volume, as shown in the legend, from V = 10−4 to V = 10−2.
The left plot shows the full shapes, while the right is a zoomed in image
of the area inside the dashed line.
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3.3.3 Radially-Parameterised Shapes

In this class the N points defining the source boundary are given in polar

coordinates as (Rn, θn), where θn = πn/N and Rn is a product of the

coefficients bk such that

Rn = Πn
k=0bk. (3.8)

For the case bk = 1 for all k-values, the shape will approximately be a

sphere (once the rotational symmetry is taken into account). To ensure

the class contains well-behaved shapes I enforce that bk > 0, so radial

values are always positive. Also, since each radial value can be seen as the

previous value multiplied by a factor bk, by changing the range of values

bk can take, I can control the smoothness of the shapes. This second point

is important since I am refining the boundary of the shape, and so a large

perimeter will require more cells, increasing the overall simulation time and

memory required. I again will constrain the volume of the shapes to be

a predetermined value V , therefore reducing the dimension of the shape

space to N − 1. This was done using the same method as the Legendre

polynomial shapes, and is discussed in Appendix E. Some examples of

shapes contained in this class are shown in Figure 3.8.

I used the GA to optimise the force, a distance d = 0.05 from the source,

of a radially-parameterised shape defined by N = 50 coefficients ranging

between 0.5 and 1.5, and with a target volume of V = 0.01. The shape

outputted by the GA had a force of |∇̂φ̂|d = 5.16 (which is slightly larger

than the value obtained for the optimal Legendre polynomial shape), and

was again located along the y-axis. The profile of the force generated by this

optimised source shape is shown in Figure 3.9, along with the position of the

recorded value. Comparing this shape to the optimal Legendre polynomial

shape shown in Figure 3.6, we see that the GA has outputted a similar

84



3.3. SHAPE OPTIMISATION

Figure 3.8: Examples of radially-parameterised shapes defined using N =
50 coefficients and with a volume fixed to V = 0.01.

shape, with a large lobe around θ = 0 and a protruding spike (umbrella-

like shape) in the lower region near θ = 3π/4, despite being generated

from two different shape parameterisations. This similarity is not only

present for the V = 0.01 case. Comparing the GA results for radially-

parameterised shapes of different volumes, I noticed similar shapes to those

found when the GA was used with Legendre polynomial shapes for those

same volumes, which can be seen by comparing Figures 3.7 and 3.10. In

section 3.3.2 I hypothesised that the umbrella-like feature might be the

most important to maximising the force, and that the rest of the shape is

just there to satisfy the volume constraint. These new results support this

hypothesis since we see the same feature independent of the volume and

for V = 10−4 we obtained only this feature without the upper lobe (note

that it is not possible to obtain this shape with our Legendre polynomial

parameterisation due to the property shown in equation (3.7)).
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Figure 3.9: The chameleon force profile of a radially-parameterised source
(boundary of which is indicated by the red line) inside a spherical vacuum
chamber. The left plot contains the full solution while the right is zoomed
in on the central region. The red cross on the y-axis below the source, at
around y=-0.075, indicates the position where the force (at a distance from
the source of d = 0.05) is maximised. The value of this maximal force is
|∇̂φ̂|d = 5.16.
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Figure 3.10: Shapes outputted by the GA when finding the optimal
radially-parameterised shape with N = 50 coefficients that range between
0.5 and 1.5. Each line indicates a shape with a different volume, as shown
in the legend, from V = 10−4 to V = 10−2. The left plot shows the full
shapes, while the right is a zoomed in image of the area inside the dashed
line.
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3.3.4 Is the Umbrella the Most Impactful Feature?

In sections 3.3.2 and 3.3.3 I found that for both the Legendre polynomial

and radially-parameterised shapes, the GA appeared to converge to similar

shapes. Furthermore, shapes obtained from different volume constraints

consistently produced a similar feature, as seen in Figures 3.7 and 3.10.

As I impose rotational symmetry around the y-axis, the feature of interest

is an umbrella shape. To test the importance of this umbrella feature I

investigated how the measured force responds when other sections of the

shapes, obtained in the previous two subsections, are removed. To do this

I removed any part of the shape that lies above a cut-off height yc = δymax,

where ymax is the maximum y-value of the shape and δ ∈ [0, 1]. The

resulting forces for the Legendre polynomial and radially-parameterised

shapes are plotted in Figures 3.11a and 3.11b respectively. In each case we

see the position where the force is maximised is unchanged while its value

increases as more of each shape is removed. This is in agreement with what

was observed in section 3.3.1 (in Figure 3.3), in that above some critical

volume the force increases with decreasing source volume. This further

suggests that the umbrella shape, of this particular size, is the optimal

shape we have been looking for. I will now test this hypothesis using a new

shape class inspired by the umbrella shape in hopes to further improve our

force.

This new class consists of three polynomials (one of order N and two of

order N + 1) defined over the range x ∈ [0, Lu], where Lu is a parameter

of the shape. The first polynomial (P0) acts as the baseline of the shape

and is defined to have N roots that are contained in the shape coefficients.

The magnitudes of the second (P+) and third (P−) act as a displacement

between P0 and the boundary of the shape in the positive and negative y-
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(a) (b)

(c) (d)

Figure 3.11: The force around Legendre polynomial (a) and radially-
parameterised (b) shapes when parts of the upper lobe are removed. Each
curve in plot (a) corresponds to one shape shown in Figure 3.7, while in
plot (b) the curves correspond to the shapes in Figure 3.10. Plots (c) and
(d) show the change in volume for the corresponding shapes shown in plots
(a) and (b) respectively. The volumes of the unmodified shapes are shown
in the legends.
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3.3. SHAPE OPTIMISATION

directions respectively. These two polynomials are also defined by N roots

contained in the shape coefficients but also have an additional root at x =

Lu so that the combined curves form a closed loop. For simple polynomials

with not too many curves this will lead to umbrella-like shapes. However,

this class still has the possibility of producing much more complicated

shapes. For further generality the shape is then rotated around the origin

anti-clockwise in the (x, y) plane by an angle θ, and then translated by the

vector (x0, y0). Altogether, the number of parameters defining this class is

3N +4. In this and future sections I used polynomials of order 5 and 6, so

the number of coefficients is 19, each ranging between 0 and 0.3. Unlike the

previous shape classes, I place no constraints on the volume of the shape.

I do, however, set a minimum positive value on the polynomials P+ and

P−, to ensure that the curve does not intersect itself. A depiction of how

shapes in this class are constructed, along with some examples, is shown

in Figure 3.12. Among these examples one shows a case where the source

has been separated into two disconnected pieces (shape filled in black).

This occurred because to impose axis-symmetry I only consider parts of

the shape for which x > 0, therefore a sufficiently curvy shape can become

two disconnected sources.

Using the GA to find the shape in this class that optimises the force, I

obtained the shape shown in Figure 3.13. We see the shape outputted by

the GA is in agreement with our hypothesis that the umbrella was the

optimal shape. Furthermore, thanks to the extra freedom provided by our

parameterisation the outputted shape produces the best force value so far

at |∇̂φ̂|d = 5.77, and with a volume of V = 1.26×10−5. For scale this force

is 2.45 times larger than that generated by a sphere, located at the origin, of

equal volume and using the same measuring distance. Furthermore, since

the volume (and by extension mass) of the source is so small, this will lead
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3.4. EFFECTS OF VARYING MEASURING DISTANCE

(a) (b)

Figure 3.12: Plot (a) illustrates the construction of the polynomial class of
shapes where N = 5. The dashed line is the polynomial P0, while the red
and blue lines correspond to (P0 + |P+|) and (P0 − |P−|) respectively. The
region enclosed defines the polynomial shape which is then translated and
rotated according to the remaining shape coefficients. Plot (b) shows exam-
ples of shapes belonging to the polynomial class with coefficients bounded
between 0 and 0.3.

to large ratios between the chameleon and gravitational forces.

3.4 Effects of varying measuring distance

In this chapter so far the distance between where I wish to measure, and

therefore maximise, the force and the surface of the source has been fixed

at d = 0.05. In this section I investigate how varying this distance, d,

affects the optimal shape. I will use the polynomial shape class discussed

in section 3.3.4 as it has provided the best results so far. The shapes shown

in Figure 3.14a are the results of the GA using this class, for varying values

of d. We see that the umbrella shape remains the optimal shape found in

each case, with the point of greatest force (at our fixed distance) being on

the y-axis. It can also be seen that the vertical position and length of the

shape does depend on the measuring distance, with both increasing with

d.

91



3.4. EFFECTS OF VARYING MEASURING DISTANCE

Figure 3.13: The chameleon force profile of a source whose shape belongs
to the polynomial shape class where N = 5 (the boundary of the shape is
indicated by the red line), inside a spherical vacuum chamber. The left plot
contains the full solution while the right is a zoomed in version showing the
region immediately around the shape. The red cross on the y-axis below
the source, at around y = 0.09, indicates the position of where the force
(at a distance from the source of d = 0.05) is maximised.
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3.5. EFFECTS OF VARYING N

For each shape in Figure 3.14a I measured the maximum force at a range of

distances, the results of which are shown in Figure 3.14b. In this plot I have

also indicated where on each curve the value d is equal to the measuring dis-

tance the corresponding shape was optimised for, dopt. As expected each

shape has a force that monotonically increases with decreasing distance;

however, for d > dopt the force decreases much faster than when d < dopt.

Focusing on the points where d = dopt we see that they approximately fol-

low a 1/d relation, and the largest forces for any value of d are from the

shapes optimised at that specific measuring distance. This provides further

evidence that the optimal shape does depend on the measuring distance in

the experiment. This then means that when designing an experiment the

minimum measuring distance (due to the experiment’s design or from phys-

ical effects such as Casimir or Van der Waals forces) must be established

first before the optimal source shape can be determined.

3.5 Effects of Varying n

In the preceding sections I have explored the source shapes that could

optimise the chameleon force measured in an experiment, for the potential

shown in equation (1.44) with n = 1. However, this is not the only possible

choice, and as more of the parameter space for n = 1 is excluded, interest

will increase in the n > 1 chameleon models. To investigate how changing

the value of n would affect the optimal source shape, I used the GA to

find the shape in the polynomial class (see section 3.3.4) that optimises the

force at a separation distance d = 0.05 for n = 2 and n = 3. I note that

n can take some negative values that were not investigated in this work,

but I expect the findings of this section to hold for these cases as well. The

shapes outputted by the GA, and corresponding force profiles, are plotted
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3.5. EFFECTS OF VARYING N

(a) (b)

Figure 3.14: Each line in plot (a) depicts the outline of a cross section of
a polynomial shape (as described in section 3.3.4) outputted by the GA
when optimising the force at different measuring distances, dopt. For each
of these shapes I then measured the maximum force at a range of distances,
d, from the surface of the shape and plotted the resulting curves in plot
(b). The black circles indicate when d = dopt, and the black line shows the

curve |∇̂φ̂| = 0.295/d.
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3.5. EFFECTS OF VARYING N

in Figure 3.15a along with the n = 1 result discussed in section 3.3.4, for

comparison. We see that the umbrella again appears as the optimal shape

in each case, but with an increasing thickness and vertical displacement

with increasing n.

We see that the n = 2 shape has a hole in it, and that the n = 3 shape

appears to be an umbrella with a ‘spike’. Looking at other shapes in the

GA population for the n = 2 simulations I find almost identical shapes that

generate very similar forces as the optimal but with no hole. I therefore

conclude that the existence of the hole contributes negligibly to the force.

This is because the size of the hole is smaller than the field’s Compton

wavelength. Since the Compton wavelength is the inverse of the field’s

mass, as expressed in equation (1.48), as n increases so will the Compton

wavelength and consequently smaller features will not affect the chameleon

field profile and not contribute as significantly to the force. We also see

this in the n = 3 case where the shape outputted is consistent with the

umbrella-like shape but with a spike. Looking at the force magnitude

plotted in Figure 3.15d we see the spike contributes little to the force. The

reason the GA outputted this shape can then be considered a consequence

of an increasing Compton wavelength leading to a larger degeneracy in the

shape to force mapping.

Now that I have determined that both the Compton wavelength and thick-

ness of the shapes are increasing with n, I should determine whether the

two effects are related by checking how much screening is occurring in each

case. In this chapter I consider the interior of the source to be screened

if the field has reached the value that minimises its effective potential in

the source, ϕ̂c (see equation (1.47)), and the field gradient has a small

magnitude, |∇̂ϕ̂| < 10−10. Under this definition I find that each shape

shown in Figure 3.15 is unscreened. However, measuring the field inside
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the sources, I found that the minimum field value was of the same order

of magnitude as ϕ̂c. This combination of properties make intuitive sense

as an unscreened source has all of its mass contributing to the field, and

minimising the field’s value inside the source allows for larger gradients

around it. The reason then for the thickness of the shapes in Figure 3.15

to increase with n is because as the field’s Compton wavelength increases,

so does the thickness needed for the field to reach ϕ̂c. This also helps to

explain why the umbrella shape appears to be the optimal shape, since it

maximises the amount of unscreened matter around the measuring position

while also maintaining the optimal thickness.

3.6 Discussion

In this chapter I aimed to show that by exploiting the shape dependence

of the chameleon field, experimental sensitivity could be improved through

the use of an optimised source shape. I also aimed to determine what

characteristics were necessary for such a shape. To accomplish this I used

the software package SELCIE, discussed in chapter 2, to numerically solve

for the chameleon field profile of an axis-symmetric source mass inside a

spherical vacuum chamber, and to measure the resulting force at a fixed

distance from the source. The first class of shapes I investigated using this

method were ellipsoids centred at the origin. I found that, for all volumes

tested, as the ellipsoids deviate from the spherical limit the scalar force

increases, with the largest forces being generated by disc-like ellipsoids.

Additionally, I found that if the axis-ratio is fixed, then there is a critical

volume which maximises the force, resulting in a preference for very small

sources.
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(a) (b)

(c) (d)

Figure 3.15: Polynomial shapes outputted by the GA for fixed measuring
distance d = 0.05, but for varying n. Figure (a) shows the shapes com-
pared to one another. Figures (b), (c), and (d) each show the chameleon
force profiles sourced by the shapes in (a), for n = 1, n = 2, and n = 3
respectively. The red lines indicate the boundary of the shape.
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I investigated more complex shapes, with fixed volumes, using multiple

shape parameterisations combined with a GA, using the software package

DEAP. I found that for each parameterisation used, the GA would converge

to shapes with a common feature, even when the volume of the shapes was

varied, indicating a solution that is independent of the choice of parame-

terisation. After further investigation using a new shape parameterisation

that did not constrain the volume of the source, I confirmed that the shapes

that generate the largest force values are ‘umbrella’-like shapes, with the

point where the force is maximised being located on the axis of rotation.

The force generated by the optimum shape found (for n = 1) was 2.45

times larger than that of a sphere of equal volume located at the origin

when the force is measured at the same distance to the source.

I also found that the thickness of the umbrella is tuned so that it was both

unscreened and had the field reach the value that minimises its effective

potential inside the source. This means all the matter sources the field

profile whilst also having as large a total field variation as possible, leading

to high field gradients. I found that when changing the form of the field’s

potential, the thickness of the umbrella changed with the field’s Compton

wavelength, in such a way that this feature was present in each case tested.

This characteristic is consistent with the critical volumes found for ellip-

soids. When varying the measuring distance d, I found that the umbrella

shape remains the optimal choice but its vertical position and length have

a dependence on d. Furthermore, I found that the optimal force varies as

1/d.

The umbrella shapes obtained in this chapter were designed to maximise

the fifth force at a single point inside a spherical vacuum chamber. It

is not necessarily a given, therefore, that they would be the best shape

in an actual experiment, as experiments may use either moving particles,
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such as in atom interferometry, or an extended body as in torsion bal-

ance experiments. However, I believe that the property of the umbrella

shapes, whereby the source is unscreened but the field reaches the value

that minimises the effective potential inside the source, are generally nec-

essary for optimising a fifth force experiment. Additionally, the method

used in this chapter is general enough and sufficiently customisable that

it can be tailored to specific experiments. One would only need to change

the value outputted by the fitness function, obtained from the field solu-

tion, to whatever observable is used in that particular experiment. This is

easily accomplished by extracting the required information from the field

profile calculated using SELCIE, for example the total work done on a

particle trajectory or scalar forces acting on an extended object. Any ex-

perimental constraints such as laser paths, particle trajectories, or different

vacuum chamber shapes can also be enforced at the level of mesh gener-

ation using shape manipulation tools in SELCIE. These types of changes

will likely break rotational symmetry and would therefore require solving

the chameleon equations of motion using 3D meshes, which will greatly

increase the simulation runtime and will therefore be left to future works.
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Chapter 4

Analytic Solutions for

Astrophysical Systems

The bulk of work in this thesis is in regards to using SELCIE to numerically

solve for the chameleon field profile in laboratory sized experiments. Recall

that the chameleon equation that is solved by SELCIE, equation (2.1), is

defined over an arbitrary length scale. As demonstrated in section 2.5.4,

SELCIE can therefore be used to solve for the field profile on astrophysical

and cosmological scales just as easily as it can for laboratory scales. How-

ever, in this section I also showed that for a continuous density profile, such

as the NFW profile discussed in section 2.5.4, a sufficiently small value of α

leads to the field solution with the analytic form of equation (1.47), hence

forth referred to as the tracing solution. This occurs because the gradient

of the density profile becomes too large compared to the Compton wave-

length of the field in the same region of space. Recalling the definition of

α in equation (2.2), we see that small values of α, and therefore Compton

wavelength through equation (2.4), are easier to obtain on astrophysical

and cosmological scales, as apposed to laboratory scales. In this scenario,
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the use of computational solvers such as SELCIE is not necessary. It is

therefore important to understand when the tracing solution is valid, and

equivalently when tools like SELCIE are required.

In this chapter I will discuss work I contributed to the papers Ref. [2]

and Ref. [3]. I will derive the general formula which determines whether

the tracing solution is valid for an arbitrary continuous density profile. The

following subsections will be dedicated to specific examples from cosmology,

namely the NFW and void profiles.

4.1 Analytic Investigation

In this chapter I use the term tracing solution to refer to a field that is at

the value that minimises its effective potential everywhere. For the case

of a constant background density this will mean that field will have the

same value throughout the domain. This scenario is possible no matter the

size of the field’s Compton wavelength. However, for background density

profiles that vary continuously, then the tracing solution can only be valid

if the density does not vary too much over distances comparable to the

Compton wavelength of the field.

To show this explicitly, and find when the tracing solution becomes invalid,

I applied a perturbation to the tracing solution such that ϕ̂ = ϕ̂min+δϕ̂. To

obtain the form of this perturbation I start by rearranging the chameleon

equation of motion shown in equation (2.1) into the form

ϕ̂(ρ̂) = ϕ̂min(ρ̂)

(
1− α∇̂2ϕ̂

ρ̂

) −1
(n+1)

, (4.1)

where ϕ̂min(ρ̂) is defined as it is in equation (2.3). Taking α∇̂2ϕ̂ ≪ ρ̂,
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equation (4.1) can be approximated as

ϕ̂ ≈ ϕ̂min(ρ̂) + λ̂2(ρ̂)∇̂2ϕ̂ (4.2)

where I have used the definition of the field’s rescaled Compton wavelength

λ̂(ρ̂), as shown in equation (2.4). Plugging equation (4.2) into itself and

neglecting both higher derivatives of ϕ̂ and higher order terms in α∇̂2ϕ̂/ρ̂,

I obtain that the linear perturbation of the tracing solution is

δϕ̂ ≈ λ̂2(ρ̂)∇̂2ϕ̂min. (4.3)

For the tracing solution to be considered valid δϕ̂≪ ϕ̂. Using the definition

of ϕ̂min from equation (2.3), the above condition can be expressed as

α ≪ (n+ 1)2ρ̂
(n+2)
(n+1)[

(n+2)
(n+1)

(
∇̂ρ̂
ρ̂

)2
−
(

∇̂2ρ̂
ρ̂

)] . (4.4)

I will now apply equation (4.4) to the NFW and void profiles, as was done

in Ref. [2] and Ref. [3] respectively.

NFW Galaxy Cluster Profiles

In section 2.5.4 I mentioned some reasons why the NFW cluster profile is of

interest. The rescaled form of the NFW profile is shown in equation (2.36).

Applying this profile to equation (4.4) I obtain the tracing condition

α ≪ (n+ 1)3ρ̂
(n+2)
(n+1)
s r̂

[3r̂2(n+ 1) + (n+ 2)(1 + 6r̂)] [r̂(1 + r̂)]1/(n+1)
. (4.5)

Since the length and density scales, referred to as L and ρ0 in section 2.1,
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are arbitrary, they can be chosen such that ρ̂s = 1 and in the region of

interest r̂ ∼ 1. This will mean that the right-hand side of equation (4.5)

will be of order one, in the region of interest, and therefore the condition

for the tracing solution to be valid is simply α ≪ 1. This is affirmed by the

result calculated by SELCIE, for α = 10−9, that is plotted in Figure 2.10a.

I note here that in both the limits r̂ → 0 and r̂ → ∞, the right-hand side

of equation (4.5) goes to zero. This means no matter how small the value

of α is, the tracing solution will become invalid at small r̂ and at large r̂.

This is not too concerning, however, since the NFW profile is not realistic

for values of r̂ that are too small or large.

Void Density Profiles

In the context of cosmological tests of gravity, a system of special interest

is that of cosmic voids. Voids are the largest underdensities in the Uni-

verse and their properties are inherently linked to the physics of large scale

structure. Given these properties, cosmic voids make ideal cosmological

laboratories for testing screened gravity theories. Using voids as a test-

ing ground for models of modified gravity has been explored extensively in

the literature (e.g. see Ref. [125, 126, 127, 128]). Previous works such as

Ref. [129] have used void density profiles that obey a step function. In this

case to solve the field profile a numerical solver such as SELCIE would be

required. In Ref. [3], however, we investigated voids with a rescaled profile

of the form

ρ̂(r̂) =
1

2
[(ρ̂in + ρ̂out) + (ρ̂out − ρ̂in) tanh(k(r̂ − r̂step))] , (4.6)

where ρ̂in, ρ̂out, and k are constants. The value r̂step is also a constant that
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defines the ‘edge’ of the void. As k → ∞, this profile converges to a step

function, with density ρ̂in for r̂ < r̂step and density ρ̂out for r̂ > r̂step.

Assuming ρ̂in ≪ ρ̂out, after applying equation (4.6) to (4.4), the constraint

on α is

α ≪ (n+ 1)3

k
[
(n+ 2)k − (n+ 1)r̂−1

step

] ( ρ̂out
2

) (n+2)
(n+1)

. (4.7)

As with the NFW case, we are free to choose our length and density scales

so that r̂step and ρ̂out are of order unity. Therefore, in the limiting case

where k is large, the tracing solution will hold so long as
√
α ≪ 1/k. When

n = 1, for α to lie in the allowed regions of the parameter space it must

satisfy α < 10−12. Therefore, so long as k ≪ 106, the tracing solutions will

be valid, for all values of α allowed by the parameter space. Taking the

derivative of equation (4.6) and evaluating it at the step, the constraint on k

can be written in as ρ′(rstep)/ρ(rstep) ≈ k ≪ 106, where I have reintroduced

physical units. Slopes steeper than this must be solved using SELCIE or

other numerical solvers.
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Chapter 5

Conclusion

The chameleon is a scalar field model that conformally couples to mat-

ter and possesses a screening mechanism that causes fifth forces mediated

by the field to become suppressed in regions of high density. Such a field

could source the dark energy that drives the late time expansion of the uni-

verse whilst also avoiding observational constraints. However, the nonlinear

dynamics that make the model interesting to study also makes obtaining

field solutions very difficult, especially for irregularly shaped source masses.

Therefore, to obtain solutions for arbitrary systems, computational meth-

ods must be employed.

In this thesis I have investigated how the strength of the chameleon fifth

force has a dependence on the shape of the matter sourcing the field, in con-

trast to the gravitational force as predicted by GR. To perform this inves-

tigation I developed the SELCIE software package, details of which can be

found in chapter 2. This package combines non-uniform mesh generation,

the finite element software FEniCS, with nonlinear solving methods. The

end result is a software package that allows the user to construct meshes

representing arbitrarily complex systems and assign discrete or continuous
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density profiles to each sub-region independently from one another. The

code will then solve the chameleon equation of motion, shown in equation

1.45, to produce a field profile for the given system. From this profile the

resulting force can be calculated and from which experimental constraints

can be obtained. This software is also very efficient, allowing the user to

control which regions in the mesh are more refined than others and the

level of refinement in each. This allows the simulations to have high pre-

cision in regions where it is required, whilst also not wasting computing

power on unimportant regions. This is possible since SELCIE communi-

cates information from the mesh through the finite element method, which

importantly for our purposes does not require a uniform mesh. Addition-

ally, systems that posses a symmetry, such as rotational or translational

symmetry, can be expressed using 2D meshes, reducing the required com-

puting resources.

In section 2.5 of this thesis I tested SELCIE against analytic solutions

for the chameleon field from the literature including spherical, cylindrical,

and ellipsoidal sources. The two former solutions had strong agreement

throughout the domain, whilst the latter disagreed at small distances. This,

however, was shown to likely be an issue with the analytic solution since it

gave unphysical field values close to the source. I also tested the analytic

solutions for NFW galaxy clusters in the regimes of the field’s Compton

wavelength being small and large, relative to the size of the cluster. The

calculated results from the former agreed with the analytic results; however,

the latter did not. I found that this was not an error with the numerical

result but rather caused by the inclusion of a core region of constant density

introduced to address the fact that the NFW profile diverges as r → 0.

In chapter 3 I combined SELCIE with a genetic algorithm to produce code

that would optimise an experiment. In this work the code optimised the
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shape of an axis-symmetric source mass inside a spherical vacuum chamber

so that the resulting fifth force, at a fixed distance to the source, was

maximised. I note here that the methodology of the code is more general

and is easily altered to optimise other, possibly more realistic, experiments.

The results of this investigation are discussed in section 3.3. Ultimately,

the optimal shape found was an umbrella-like shape, with the location of

the maximum force being located on the axis of rotation on the concave

side of the shape. Compared to a spherical source of equal mass, centred at

the origin, the umbrella shape had a fifth force 2.45 times stronger, when

measured at the same separation distance. This affirms that fifth force

experiments can receive improved sensitivity by optimising the shape of

matter sources in the experiment.

In section 3.4 I investigated whether this optimal shape would change if

I altered the distance from the source where the force was measured. I

found that although the shapes returned by the genetic algorithm code

changed position and length, they retained the umbrella-like shape and

even the relative position where the force was maximised. I also found

that each shape was the best choice when measuring at the distance it

was optimised for, meaning that the optimal shape is dependent on the

measuring distance. Finally, in section 3.5 I investigated how changing

the field’s potential affects the optimal shape. I found that not only were

the umbrella shapes still the best choice, but the exact thickness of the

umbrella in each case was such that the field just reaches its minimum

value in the dense source. This meant that the source was unscreened

while still having as small a minimum value as possible. This combination

of features is interpreted as the main criteria for the optimal shape, and

is hypothesised to be required even in a more realistic experiment where

the fifth force is not measured at a single point but instead over a path or
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acting on an extended body.

I have shown in this work that not only does the shape of the sources

of matter in a fifth force experiment affect the experiment sensitivity but

I have also demonstrated a method to find the optimal shape for said

experiments.

SELCIE is ideal for researchers working on the chameleon field, especially if

they are interested in obtaining observables from systems that are very diffi-

cult to approximate. It has already been used to investigate the chameleon

field profiles of astrophysical systems such as NFW galaxy clusters [2] and

cosmic voids [3], for both of which I am a co-author. Additionally, SELCIE

was recently used by members of the MICROSCOPE team in Ref. [118] to

calibrate and test their own FEM code femtoscope.

Future plans for SELCIE include introducing time-dependent systems, and

generalising the code so that it can also solve other screened scalar field

models besides the chameleon. Some progress has already been made into

adapting SELCIE to solve the symmetron equations of motion [130].
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ary algorithms made easy. Journal of Machine Learning Research,

13:2171–2175, jul 2012.

123



[120] John R Koza, Martin A Keane, Matthew J Streeter, William Myd-

lowec, Jessen Yu, and Guido Lanza. Genetic programming IV: Rou-

tine human-competitive machine intelligence, volume 5. Springer Sci-

ence & Business Media, 2005.

[121] Andrew N. Sloss and Steven Gustafson. 2019 Evolutionary Algo-

rithms Review. arXiv e-prints, page arXiv:1906.08870, June 2019.

[122] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and

Machine Learning. Addison Wesley series in artificial intelligence.

Addison-Wesley, 1989.

[123] Brad L. Miller and David E. Goldberg. Genetic algorithms, tourna-

ment selection, and the effects of noise. Complex Syst., 9, 1995.

[124] M.J. Kochenderfer and T.A. Wheeler. Algorithms for Optimization.

MIT Press, 2019.

[125] Yan-Chuan Cai, Nelson Padilla, and Baojiu Li. Testing gravity using

cosmic voids. Monthly Notices of the Royal Astronomical Society,

451(1):1036–1055, 2015.

[126] Eder LD Perico, Rodrigo Voivodic, Marcos Lima, and David F Mota.

Cosmic voids in modified gravity scenarios. Astronomy & Astro-

physics, 632:A52, 2019.

[127] ND Padilla. Testing gravity with cosmic voids. Boletin de la Asocia-

cion Argentina de Astronomia La Plata Argentina, 57:6–11, 2015.

[128] Christopher T Davies, Marius Cautun, and Baojiu Li. Cosmological

test of gravity using weak lensing voids. Monthly Notices of the Royal

Astronomical Society, 490(4):4907–4917, 2019.

124



[129] Joseph Clampitt, Yan-Chuan Cai, and Baojiu Li. Voids in modi-

fied gravity: excursion set predictions. Monthly Notices of the Royal

Astronomical Society, 431(1):749–766, 2013.

[130] Kate Clements, Benjamin Elder, Lucia Hackermueller, Mark

Fromhold, and Clare Burrage. Detecting dark domain walls. arXiv

preprint arXiv:2308.01179, 2023.

125



Appendices

126



Appendix A

Genetic Algorithm Calibration

In this work I used DEAP [119], a software package designed to construct

and perform GA simulations. DEAP comes equipped with a wide range of

options including choices for selection, crossover, and mutation methods,

each with their own control parameters. Before using the GA to optimise

our fitness function, as laid out in section 3.2, I first tested the various

possible configurations of the GA to find the most optimal one. This was

accomplished using a test fitness function where the fitness value is the

non-overlapping cross-sectional area of an input and target shape, both

created using the Legendre polynomial parameterisation defined in section

3.3.2. Therefore, the goal of the GA in these simulations is to minimise

this fitness value and return coefficients that are as close to the target ones

as possible.

Due to the large number of possible configurations, I decided to treat our

choice of selection, crossover and mutation methods as being independent

from one another. This greatly reduces the number of configurations that

require testing. For each of these configurations the GA was run 10 times.

The distribution of the number of generations needed to reach convergence
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and the corresponding fitness values outputted by the GA are both plotted

in Figure A.1 for a range of configurations. Additionally, I used this same

test to evaluate other in-build algorithms available in DEAP, information

on which can be found at https://deap.readthedocs.io/en/master/

api/algo.html. Taking both the fitness distribution and number of gen-

erations until convergence into account I ultimately found the best choice

of those tested was a custom algorithm that uses the methods: cxUni-

form(indpb=0.5) for crossover (configuration 3 in top plot of Figure A.1),

mutGaussian(sigma=0.1) for mutation (configuration 1 in middle plot of

Figure A.1), and selTournament(tournsize=10) for the selection method

(configuration 1 in bottom plot of Figure A.1). Finally, I tested the effects

of changing the input parameters of the chosen methods and found little

effect on the distributions of the fitness values or number of generations

until convergence.
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Figure A.1: Violin plots showing the distribution of the number of
generations taken to reach convergence and corresponding fitness val-
ues outputted by 10 runs of the GA for a range of configurations,
the details of which can be found at https://deap.readthedocs.io/

en/master/api/tools.html. The fitness value is the non-overlapping
cross-sectional area of the outputted shape and a target shape with
coefficients [0.5, 2, 0.9, 1.3], both of which are created using the Leg-
endre polynomial parameterisation described in section 3.3.2. In each
plot the selection, crossover, and mutation stages not being varied are
set as selTournament(tournsize=10), cxUniform(indpb=0.5), and mut-
Gaussian(sigma=0.1), respectively. The number of individuals in each
population was 100. In the top plot the crossover method is varied
with the configuration number, from left to right, corresponding to [cx-
OnePoint(), cxTwoPoint(), cxUniform(indpb=0.5), cxBlend(alpha=0.1),
cxSimulatedBinary(eta=0.1), cxSimulatedBinary(eta=0.5), cxSimulated-
BinaryBounded(eta=0.1), cxSimulatedBinaryBounded(eta=0.5)]. In the
middle plot the mutation method is varied and the configura-
tions are [mutGaussian(sigma=0.1), mutGaussian(sigma=0.3), mutGaus-
sian(sigma=0.5), mutGaussian(sigma=0.7), mutGaussian(sigma=0.9),
mutShuffleIndexes(), mutPolynomialBounded(eta=0.1), mutPolynomial-
Bounded(eta=0.5), mutPolynomialBounded(eta=1.0)]. The bottom has
the selection method being varied between [selTournament(tournsize=10),
selTournament(tournsize=20), selTournament(tournsize=30), selTourna-
ment(tournsize=40), selTournament(tournsize=50), selNSGA2(), selS-
PEA2(), selRandom(), selBest()].
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Appendix B

Defining Measuring Surface

Since I aim to investigate how the shape of the source contributes to the

chameleon force, I require all other contributing factors to be kept un-

changed. This includes the distance from the source where measurements

are performed, which shall henceforth be denoted as d. Since the shapes

used in this work can have a high level of complexity to them, the method

used to enforce the measuring distance must work for arbitrary shapes.

In this section I will discuss the different methods developed and compare

them.

Refinement Method

The first method developed was to iterate over each of the mesh’s vertex

points and only consider the points which lie inside the vacuum chamber

subdomain and that satisfy the required distance constraint. Recall that

the boundary of the source is defined by a list of points Pi, where i ∈ [0,N].

The shortest distance between a point, Pm, and the surface of the source

can then be approximated by measuring the Euclidean distance between
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Pm and each Pi, as shown in equation (B.1).

∆m ≈ argmin
i

√√√√ 3∑
j=0

(Pi,j − Pm,j)2 (B.1)

This value becomes a better approximation as the separation distance be-

tween consecutive source boundary points decreases. Since the likelihood of

a mesh vertex lying within machine precision (∼ 10−14) of the distance d is

ludicrously small, I must define a tolerance Td. Therefore, if ∆m ∈ d±Td/2

then the field gradient at Pm will be recorded. Of these recorded values the

largest is returned as the measurement.

An obvious problem with this method is the number of computations re-

quired. To find which vertices are a part of the vacuum subdomains a

number of operations equal to the total number of vertices in the mesh

need to be performed. If I have Nvac vertices in the vacuum mesh with

Nvac and a source boundary defined by Ns points, then the number of

times equation (B.1) would need to be called is Nvac × Ns. As the mesh

precision is increased this quickly becomes a very large number of opera-

tions, and consequently this procedure for obtaining the measurement is

slow. Furthermore, this method introduces an error on the measuring dis-

tance of Td/2, which will also produce an error on the measurement that

favours vertices closer to the source where the field gradients are typically

larger. However, decreasing Td does not improve the error. This is because

if Td is reduced so as to be smaller than the typical cell size within the

measuring distance, then it becomes increasingly likely for no values to be

recorded in some regions. Therefore, Td has a minimum size and so the

error on the measurement will persist.
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Boundary Method

Another method I developed involves modifying the mesh generating code

so that what was previously the vacuum subdomain is now two distinct sub-

domains, and the surface between them (hence forth the measuring surface)

is at all points a shortest distance d from the source boundary. Once such

a mesh is constructed, rather than iterating over all vertices in the mesh

and performing distance calculations, instead one simply iterates over the

vertices on this new surface and returns the largest value field gradient

magnitude as before. This resolves the problems with the previous method

since there is no need to iterate over all the mesh vertices and of the ones I

do, no distance calculation is required. Furthermore, the uncertainty on the

true distance from the source to the vertices I measure are now at machine

precision rather than the somewhat arbitrary Td/2. Finally, an additional

benefit is that since the measuring surface connects two subdomains, the

size of the cells on this surface can be manually set in the code. This gives

the user the ability to control the number of vertices, for increased spatial

accuracy, and the precision of the field and field gradient profiles on the

measuring surface. To construct the measuring surface around a 2D source

formed from the list of points Pi, I constructed the following algorithm.

First a sorted copy of the list Pi is made such that the point with the

largest y value is the first entry, while also preserving the ordering of the

points. The reason for this is that it forces the first point of the measuring

surface to be convex and so will always be located at the point (x0, y0+d),

regardless of the behavior of the rest of the curve. In the case of multiple

points sharing the same y-value then the first instance is chosen. The list

is also made periodic by appending a duplicate of the first entry to the end

of the list, so as to avoid “index out of range” errors later in the algorithm.
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Next both the lengths and directions are calculated for the separation vec-

tors between consecutive points Pi and Pi+1 for i ∈ [0,N], and are labelled

li and n⃗i, respectively. These two lists are also made periodic in the same

way Pi was. For a convex shape, each point in the source boundary, x⃗i,

corresponds to two points in the measuring surface given by

x⃗
(+)
i = x⃗i +Rn⃗i (B.2)

x⃗
(−)
i = x⃗i +Rn⃗i−1, (B.3)

where the matrix R is defined as

R = σd


0 1 0

−1 0 0

0 0 0

 . (B.4)

Here σ has magnitude unity but its sign depends on whether the points

defining the source boundary run in the clockwise or counter-clockwise

direction. Since the sign of σ is fixed for any given boundary (otherwise the

measuring surface would intersect the source boundary) it can therefore be

calculated around the first boundary point where the boundary’s direction

is unambiguous due to it having the largest y-value. Using the fact that all

vectors n⃗i have a zero z component, the formula for σ can be written as

σ = sgn((n⃗N−1 × n⃗0) · ẑ) (B.5)

To construct the measuring surface, an arc length, centred at x⃗i, is con-

structed starting at x⃗
(−)
i and ending at x⃗

(+)
i . This arc is then connected to

a line that joins x⃗
(+)
i and x⃗

(−)
i+1. This process is then repeated for each point

defining the source boundary to form the measuring surface. However, for

concave source boundaries this introduces the possibility of intersecting
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lines and even lines going through the source boundary. To ensure the

algorithm works for any closed source boundary, the algorithm computes

where intersections will occur in advance and modify the measuring surface

during construction.

The lines used to construct the surface each correspond to a single point

belonging to the source boundary, such that the point x⃗i maps to

L⃗i = n⃗iui + x⃗
(+)
i , (B.6)

where x⃗
(+)
i is given in equation (B.2), and ui ∈ [0, li]. If another line, L⃗k,

were to intersect this initial line then this would occur if

ui =
(δ⃗ik × n⃗k) · ẑ + σd(1− n⃗i · n⃗k)

(n⃗i × n⃗k) · ẑ
, (B.7)

lay in the range ui ∈ [0, li], and

uk =
(δ⃗ik × n⃗i) · ẑ − σd(1− n⃗i · n⃗k)

(n⃗i × n⃗k) · ẑ
, (B.8)

in the range uk ∈ [0, lk], where ẑ is the unit vector in the z-direction, and

δ⃗ik = x⃗k−x⃗i. Another possibility is that the line L⃗i intersects the arc length

centred at x⃗k instead of the accompanying line. This can only occur if L⃗i

comes within a distance d of the point x⃗k, which then means that η2ik ≥ 0

where

η2ik = ((δ⃗ik × n⃗i) · ẑ)(2σd− ((δ⃗ik × n⃗i) · ẑ)). (B.9)

This alone does not guarantee that the line intersects the arc length that

accompanies x⃗k. However, since L⃗i starts on the measuring surface if it

were to come within a distance d of the point x⃗k, but not intersect the

accompanying arc length, then it must have intersected another part of

the surface first, with a small value of ui. Therefore, since I am only
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interested in the first intersection, the condition η2ik ≥ 0 is enough to ensure

an intersection with the arc length. If this occurs then the position on the

line where the first intersection occurs will be at

ui = (δ⃗ik · n⃗i)− |ηik|. (B.10)

The procedure to determine where the line Li should end is to iterate

over all values k > i and return the smallest value of ui
1. This value

then gives the position of the intersection through equation (B.6). This

becomes the starting point of the proceeding line, or arc, and the index

is set to k, skipping all the points between i and k. In the case of a line-

line intersection this means the lower bound of uk is the value returned

by equation (B.8). For a line-arc intersection the starting point of the arc

length will the position of the intersection instead of x⃗
(−)
k .

When determining if the arc length Ai is ended prematurely due to an

intersection I again use η2ik ≥ 0 to determine whether the line Lk comes

within a distance d of the point x⃗i. If it does it will do so when

uk = −(δ⃗ik · n⃗k)± s|ηik|, (B.11)

where

s = σsgn((n⃗i × n⃗k) · ẑ). (B.12)

However, unlike in the line-arc intersection case, η2ik ≥ 0 is not enough to

ensure the intersection is on the arc length itself. I must therefore test

which of the points given in equation (B.11) lie on the arc length and in

the case of both which occurs earliest. To accomplish this I calculate the

tangent vector to the chord connecting the start (x⃗start) and end (x⃗end) of

1Since the last point in the list is a copy of the first, interactions between these points
are ignored.
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the arc length

T⃗ = (x⃗end − x⃗start)× ((x⃗end − x⃗start)× (x⃗centre − x⃗start)), (B.13)

where x⃗centre is the centre of the circle. If a point x⃗ lies on the arc length

then (x⃗− x⃗start) · T⃗ ≥ 0. When such an intersection point is found, T⃗ can

be updated using the intersection point as the new x⃗end, thus ensuring the

next intersection point will occur earlier (closer to x⃗start).

If |δ⃗ik| < 2d then there will exist two intersection points of circles centred

at x⃗i and x⃗k located at

x⃗p = x⃗i +
1

2
δ⃗ik ± ξRδ⃗ik, (B.14)

where

ξ =

√
1

|δ⃗ik|2
− 1

4d2
. (B.15)

I use the same method as before to check whether either of these points

are located on the arc length Ai, and if so which occurs earliest. As with

the line case this will be done for all line and arc lengths corresponding to

the points x⃗k where k > i. After which, the arc length will be constructed,

terminating at the earliest intersection point, and the algorithm will skip

to the line or arc length responsible for the intersection.

One disadvantage of this method compared to the first is that it is designed

to work for systems defined on a 2D mesh, while the first method could

also be applied to 3D systems. In theory an algorithm that constructs the

measuring surface for a 3D source could be developed; however, in this

work I focus on systems that can be expressed using a 2D mesh, and so a

more complicated algorithm is not required.
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(a) (b)

(c) (d)

Figure B.1: Example meshes of the boundary surfaces constructed using the
boundary method algorithm. In a) and b) the separation distance between
the source shape and measuring surface is 0.1 and 0.2 respectively, while
in c) and d) the separation distance is 10−3 and 10−2 respectively.

Some examples of measuring surface meshes constructed using this method

are shown in Figure B.1

Comparison Between the Methods

To compare the two methods outlined above, I ran two copies of code

that found the maximum fifth force around at a distance d = 1/30 to

a source of density ρ̂c = 1017, in a unit radius spherical vacuum cham-
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ber with a wall thickness of 0.1, and a background density of ρ̂bg = 1.

The source shape used is the axis-symmetric Legendre polynomial shape

shown in Figure 2.2b. Both meshes used the settings (CellSizeMin = 10−4,

CellSizeMax = 0.1, DistMax = 0.4) for both the source and wall bound-

ary. In the boundary method, the settings for the measuring surface were

(CellSizeMin = 10−2, CellSizeMax = 0.1, DistMax = 0.4), while in the

refinement method the cell size in the measuring region was dictated by

the equation 10−4 + 700∆2
m.

The time taken for each section of the code to run was recorded and is

shown in Table B.1. Comparing the run times of the two methods we

see that although the initial time required to generate the mesh is long, all

other parts of the algorithm are quicker. This is especially true for when the

fifth force is being measured, since on the measuring surface fewer points

need to be evaluated and the evaluation does not require any additional

computation.
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Refinement
Method (M1)

Boundary
Method (M2)

Ratio
(M1/M2)

Construct mesh (s) 122.02 374.216 ∼ 0.33

Construct density (s) 11.96 5.19 ∼ 2.31

Setup solver class (s) 93.70 59.02 ∼ 1.59

Solve field (s) 210.62 111.86 ∼ 1.88

Solve gradient (s) 1.51 0.63 ∼ 2.40

Make bounding box (s) 5.57 1.08 ∼ 5.17

Measure fifth force (s) 273.31 1.27 ∼ 214.50

Total run time (s) 718.70 553.26 ∼ 1.30

Measures force (10−6) 4.517 4.482 ∼ 1.01

Table B.1: A table containing the runtimes of each section of the fitness
function described in section 3.3, but using different approaches to mea-
suring where the fifth force is maximised.

139



Appendix C

Test Mesh Settings

Throughout this work I have simulated source masses inside of a unit radius

vacuum chamber. The meshes used to perform these simulations consist

of three boundaries: source, measuring, and the inner chamber wall1. The

level of mesh refinement in the vicinity of each of these boundaries is con-

trolled by the four parameters: CellSizeMin, CellSizeMax, DistMin, and

DistMax. This would imply that the total number of parameters control-

ling the refinement of the mesh is twelve. I chose to set DistMin = 0 in all

simulations, therefore reducing the number of parameters by three. This

can be reduced by another three due to a degeneracy between CellSizeMax

and DistMax when the other parameters are fixed. To determine how these

six remaining parameters, three CellSizeMin and three DistMax, affect the

measured value of the force and the total runtime, I ran simulations varying

these parameters. The results are shown in Figure C.1. We see that for the

ranges tested the fifth force always stayed within a 1% bound. Addition-

ally, we see that changes to the wall boundary setting, both CellSizeMin

and DistMax, had the largest effect on the runtime. Since the GA will call

1The refinement of the outer wall is left unconstrained and so will depend on the
setting of the inner wall.
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Figure C.1: Plots of measured fifth force (|∇̂ϕ̂|), and runtime in minutes,
against mesh settings CellSizeMin and DistMax for each boundary. All
parameters not being varied are set to the default values of CellSizeMax =
0.01, DistMin = 0, and DistMax = 0.1. The default values for CellSizeMin
for the source and measuring boundaries was 10−4, and 5 × 10−4 for the
wall boundary.

this function multiples times it is important to balance precision against

runtime. Using the results in Figure C.1, I concluded that the default val-

ues chosen were satisfactory and were therefore used throughout the work

in chapter 3.
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Appendix D

Constraint Volume of

Legendre shapes

Expanding out the Legendre polynomials in equation (3.6), it can be writ-

ten as

R(x) =
∑
k

Ckx
2k + /Ckx

2k+1, (D.1)

where I have used the short-hand

Ck =
∑
q

a2q

(
(−1)q−k(2q + 2k)!

4q(q − k)!(q + k)!(2k)!

)
/Ck =

∑
q

a2q+1

(
1 +

(−1)q−k(2q + 2k)!

4q(q − k)!(q + k)!(2k)!

)
.

(D.2)

The volume of this shape can be calculated by performing the integral

V =
2π

3

∫ π

0

[R(cos θ)]3H(R(cos θ)) sin θdθ, (D.3)

where H(x) is the Heavy step function. The reason for introducing H(x) is

that for some combinations of ai, it is possible for equation 3.6 to be nega-

tive at some θ values. When this occurs, if |R(cos θ)| < |R(cos (θ + π))| =
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|R(− cos θ)| then the negative regions could be interpreted as holes in the

shape. However, this condition can also be broken and so I choose to ig-

nore these negative values by including H(x). Evaluating the integral in

equation D.3 gives

V =
2π

3

∫ 1

−1

[R(x)]3H(R(x))dx

=
2π

3

∑
i

∫ ω+
i

ω−
i

[R(x)]3dx

=
2π

3

∑
i

∑
k1,k2,k3

∫ ω+
i

ω−
i

(
Ck1Ck2Ck3 + 3Ck1Ck2

/Ck3x

+ 3Ck1
/Ck2

/Ck3x
2 + /Ck1

/Ck2
/Ck3x

3
)
x2(k1+k2+k3)dx

=
2π

3

∑
k1,k2,k3

(
Ck1Ck2Ck3

2k + 1
Ω(2k+1) +

3Ck1Ck2
/Ck3

2k + 2
Ω(2k+2)

+
3Ck1

/Ck2
/Ck3

2k + 3
Ω(2k+3) +

/Ck1
/Ck2

/Ck3

2k + 4
Ω(2k+4)

)
.

(D.4)

In the first line of equation (D.4) I used the transformation x = cos θ. I

then used the Heavy step function to break the integral into terms bounded

by the roots of R(x). In the final line I used the short-hand

Ω(n) =
∑
i

(
ω+
i

)n − (ω−
i

)n
, (D.5)

and k = k1 + k2 + k3. Using this equation for the volume, I can rescale the

coefficients, ai, such that the volume has a particular value, η. Since each

term in this expression possesses a combination of three ai-coefficients, any

set of coefficients can be mapped to a unique set that possesses the correct

volume through the rescaling

ai → ãi =

(
V (ai)

η

) 1
3

ai, (D.6)
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where V (ai) is the volume of the original set of coefficients as given by

equation D.4.
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Appendix E

Rescaling Shapes to Constrain

Volume

In our simulations the continuous space is replaced by a mesh consisting

of discrete cells. For a 3D mesh these cells would consist of tetrahedrons

with 4 vertices. In this case, measuring the volume of the shape simply

involves summing over the volumes of each individual cell that comprises

it. For systems with an imposed symmetry, the system can be represented

using a 2D mesh consisting of triangular cells made with three vertices. I

therefore wish to know how to calculate the volume of the full 3D shape

using its 2D intersection and knowledge of the symmetry.

For rotational symmetry we can imagine projecting each of the triangular

cells comprising the shape around the axis of symmetry. For cells not

touching the axis this will lead to triangular tori centred on the axis, while

cells touching the axis will form cone segments. I find that the volume of

one of these rotationally extended triangles is

V =
2π

3
A(δ1 + δ2 + δ3), (E.1)
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where A is the area of the triangle and δi, for i ∈ {1, 2, 3}, are the distances

between the vertices of the triangle and the axis of rotation. To obtain the

total volume of the shape, I iterate over every cell comprising the shape

and calculate the volume contribution of each cell using equation E.1.

In this work, shapes are constructed by joining a series of points together by

straight lines to form their boundary. These points are defined on a plane

by the radial values Rn, for n ∈ [0, N ], and have an angular separation

δθ = π/N . Therefore the nth triangle will be defined by the vertices at

(Rn, nπ/N), (Rn+1, (n+1)π/N), and the origin. Using equation (E.1) and

summing over all the triangles the total volume of the shape is

V =
π

3
sin(δθ)

N−1∑
n=0

RnRn+1[Rn+1 sin((n+ 1)δθ) +Rn sin(nδθ)]. (E.2)

By performing the rescaling Ri → ϵRi, we see from equation (E.2) that the

value transforms as V → ϵ3V . This means if I first calculate the volume

using equation (E.2) and define ϵ = (V/V̄ )1/3, then by rescaling the radial

distances by ϵ this will act to fix the volume of the shape to be the target

volume V .
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