
Mathematical Modelling of

Antimicrobial and Heavy Metal

Resistance in Bacterial Populations

Within the Flow of Agricultural Slurry

in a UK Dairy Farm

Henry Todman

School of Biosciences

University of Nottingham

Supervisors: Dov Stekel, Theo Kypraios & Michelle Baker



Contents

Page

Declaration 2

Acknowledgements 3

Abstract 4

1 Introduction - A background to antimicrobial resistance and the use of mathematical

modelling to study AMR 5

2 The development and calibration of a multiscale hybrid discrete-continuous model

for the flow of waste and antimicrobial resistance on a dairy farm 17

3 Modelling the impact of farm waste water management on antimicrobial resistance

in dairy farms 55

3.1 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 A model of antibiotic resistance genes accumulation through lifetime exposure from

food intake and antibiotic treatment 113

1



Declaration

I have read and understood the School and University guidelines on plagiarism. I confirm

that the work presented herein is the result of my own research completed during the period

of study, with the exception of the acknowledged references. Any experimental work not

completed by myself has been acknowledged and appropriately referenced.

2



Acknowledgements

The course of my studies has been an incredibly difficult and mentally strenuous process, and I owe a

significant amount of gratitude to numerous individuals for helping me get to this stage.

Thank you to my supervisors Professor Dov Stekel, Professor Theo Kypraios and Dr Michelle Baker

for their input, guidance and support throughout the course of my studies. In particular, a significant

thanks to Dov for his enormous degrees of support and patience during my ongoing mental health troubles

during my period of study

Thank you to the University of Nottingham, the School of Biosciences and the School of Mathematics

for funding my research.

Thank you to the other members of our research group: Sankalp Arya, Hokin Chio, Anastasia

Kadochnikova and Jennifer Brazier, for your help and support over the course of my research.

I would also like to thank all the many members of the EVAL-FARMS research project (funded by

NERC) with whom I collaborated, learnt so much from and provided me with the experimental data

necessary to conduct my studies: Richard Helliwell, Jon Hobman, Elizabeth King, Tom Dodsworth,

Charlotte Gray-Hammerton, Alex Williams, Steve Hooton, Christine Dodds, Jan-Ulrich Kreft, Sujatha

Raman, Carol Morris, Helen West, Rosa Baena-Nogueras, Mike Jones, Chris Hudson, Steve Ramsden,

and Rachel Gomes.

Thank you also to the Medical Research Foundation for including me as part of their National PhD

Training Programme in Antimicrobial Resistance Research, allowing me to attend annual conferences

and residential training camps to learn about the wide array of interdisciplinary research being conducted

in the field of AMR.

I would also like to issue my enormous gratitude to my partner, Emily, who has been forever supportive

of me and helped me through of all of my struggles during the course of my studies. I would also like

to thank my parents and sister - Kevin, Sandra and Amy - for similarly showing me such support -

especially my father who is always eager to read through any draft that I may have written.

Finally, thank you to my friends for keeping me sane and distracting me - particularly my old friends

from the Warwick University Climbing Club who provided me with much needed trips away to help with

my mental state.

3



Thesis Abstract

Antimicrobial resistance (AMR) is a one of the most important global public health problems facing the

modern era. Dairy cattle represents one of the largest agricultural industries, with approximately 265

million dairy cows across the globe. These are estimated to produce 3 billion tonnes of manure each

year. Dairy slurry represents a major source for environmental contaminations of antimicrobial resistance

genes (ARG). The management and storage systems of dairy slurry provide a setting in which bacteria,

antibiotic residues, metals and chemicals to mix and may be a locus for selection of AMR. Mathematical

modelling offers a powerful tool to explore the impact that changes to farm management practices may

have on AMR dynamics, where it would be impossible to empirically explore such changes on a working

farm.

We present a mathematical model describing the dynamics of AMR and waste within the slurry

management system of a UK dairy farm, and explore the impact that different farm policies have on the

selection of AMR within this system. This model is built on a volumetric flow model for the farm based

on ethnographic observations of the farm and has been calibrated against metal concentrations in the

slurry tank from a longitudinal study of the farm using Bayesian inference methods. We then coupled

this model with a bacterial growth and gene transfer model to develop a multiscale, discrete-continuous,

compartmental ODE model for the flow of slurry, bacteria, antibiotic residues and metals around the

farm. The model found that footbath emptying practices lead to a significant bacteriocidal input in

the slurry flow leading to large fluctuations in resistance levels on the farm. Furthermore, adjusting

the model suggested that cephalosporin resistance is more observable when cephalosporin resistance

is chromosomally-encoded (rather than on plasmids) - this observation is consistent with studies of a

chromosomally encoded ISEcp1 element found on the farm. This work concludes that farm management

practices can have a material impact on AMR in dairy slurry, and offers opportunities for farm-specific

policies to mitigate the drive and spread of AMR, beyond reduction in antibiotic (Ab) usage.

The farm flow model details the beginnings of a possible pathway for environmental AMR contam-

ination which may affect food crops - It is also important to consider the risk of dietary exposure to

ARG/ARBs. The lifelong acquisition (through ARGs in food intake) and persistence of resistance genes

in the gut resistome may lead to resistance in endogenous infections (e.g. urinary tract infections),

particularly in individuals of older-age. Chapter 4 of this work presents a probabilistic model for the

acquisition and persistence of ARGs over an individual’s lifespan. We consider potential strategies to

reduce the overall resistance load in the microbiome, and the effectiveness of these strategies in countries

of different Ab usage. This work surmises that policies considering the ARGs in food intake would be

more effective in reducing ARG accumulation than polices that solely consider reducing Ab usage.
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Chapter 1

Introduction - A background to antimicrobial
resistance and the use of mathematical modelling to

study AMR



1.1 Introduction

Antimicrobial resistance (AMR) is an enormous global health concern and an area of extreme interest

in research. In this chapter, we will provide a brief overview of the history of and research into AMR,

as well as discuss the role that mathematical modelling has previously played in this field, We shall also

discuss existing research gaps in the area and provide a summary of the work presented in later chapters

and discuss how it seeks to fill some of the research gaps.

1.2 Antimicrobial Resistance

The problem of antimicrobial resistance is widely acknowledged as one of the most pressing global health

concerns facing us in the modern era. Currently there are over 700,000 deaths associated with AMR

each year. The problem of AMR carries not only a great cost in human life but also exerts a significant

economic burden as well, costing over $50 billion a year in the USA alone. [24, 30]. It is estimated that

there will be up to 10 million deaths each year due to AMR by 2050 if action is not taken to face this

issue [24].

The discovery and development of antibiotics, following Alexander Fleming’s discovery of Penicillin

in 1928 alongside the clinical availability of sulphonamides in the 1930s, has often been hailed as one of

the scientific triumphs of the 20th century. Throughout the 1950s and 1960s, the world saw a golden

age of antibiotics drug development which has formed the basis of modern healthcare around the world:

aminoglycoside, chloramphenicol, tetracycline, macrolides, vancomycin, and quinolones were among just

a few of the new antimicrobials developed during this period [9, 10, 28]. This is perhaps epitomised by

the famous statement of the US Surgeon General, William Stewart in 1969: “the war against diseases

has been won” [30]. However, despite the assertions of Stewart, infectious diseases continue to attack

humans and the past 20-30 years have seen a great slow down in the development of new antimicrobials.

Since the 1990s, only four new classes of antimicrobials have been developed and released for clinical use:

oxazolidinones in 2000, lipopeptides in 2003, pleuromutilins in 2007 and macrolactones in 2011 [18]. How-

ever, these newly developed classes do not in fact truly present any novel discoveries as they are largely

based on previous developments in the 1970s and 1980s. Furthermore pharmaceutical companies have

largely divested from research and development into new antimicrobials, often in favour of research into

non-communicable diseases: a study in 2013 found only 4 large multinational pharmaceutical companies

currently engaged in research and development of new antimicrobials [13,18].

Resistance can be transmitted through bacterial populations by either vertical or horizontal transfer.

Vertical transfer is where bacteria develop resistance through spontaneous chromosomal mutation, which

may then passed onto daughter cells as the bacteria divides via binary fission. Horizontal evolution is

7



where bacteria acquire genetic material from other resistant organisms; this can occur by conjugation,

transformation or transduction [1, 20].

Conjugation is where AMR is spread by the transfer of a plasmid - a circular segment of genetic

material that can replicate independently of the chromosome. The plasmid can be passed to other

bacterial cells when a pilus forms between neighbouring cells. Conjugation is the most commonly observed

method of horizontal transfer of resistance.

Resistance can also be spread by transformation, where free genetic material of a cell that has been

broken down, becomes integrated into the chromosome of a nearby bacterial cell.

The final method of horizontal transfer is by transduction where resistance transfer between bacterium

is mediated by viruses called bacteriophage. Gene segments encoding resistance may be picked up by

the phage as it infects resistant bacterium, and this genetic material can then be disseminated through

a bacterial community as the phage infect new cells.

While much research into AMR has been focussed on human health, resistance in agriculture and the

environment also poses a great concern [15, 19, 21, 32]. It is widely acknowledged among the scientific

community that a One-Health approach is required to tackle the crisis of antimicrobial resistance. Figure

1.1 shows a simplified diagram showing possible ways in which AMR can be transmitted between humans,

animals and the environment, highlighting the need for a One Health view of the AMR problem.

Antimicrobial Resistance in Agriculture

Agriculture accounted for 33% of total UK antibiotic sales in 2016 [7] and over 70% of overall antibiotic

use in the USA [23]. Sustained, low dose uses of antimicrobials such as those we observe in most

farms around the world provide an ideal selection environment for the propagation of resistance among

bacterial populations: indeed we have observed increased levels of resistance found in farm animals,

manures, slurries and soil.

The emergence and selection of AMR on farms then presents numerous potential risks for transfer

to humans and animals by commensal or pathogenic bacteria either through directly on the farm, or

indirectly through the food chain or spreading of manure and slurries on fields.

In 1998 in Nebraska, USA, a child contracted a salmonella infection resistant to ceftriaxone (a first

generation cephalosporin). The resistant isolates were found to be the same strain as samples taken from

faecal matter cattle on the child’s family ranch following an outbreak of salmonellosis [2].
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Figure 1.1: This diagram gives a simplified view of the One Health perspective of AMR and illustrates

some of the possible methods that AMR can be transmitted across the human, agricultural, environmen-

tal, veterinary and water sectors. (1) Resistance can be acquired and selected for within hospitals putting

humans at risk of nosocomial infections. (2) Humans may be prescribed antibiotics by a GP which can

allow for the selection of resistant bacteria within the community. (3) Veterinarians may prescribe an-

timicrobials for pets. This allows for direct transmission of resistance through direct contact between

pets and their owners. (4) Antibiotics are used on farms for therapeutic use and, in some countries, for

nontherapeutic such as for growth promotion. AMR can then be transmitted either directly to farmers

or indirectly through the food chain. (5) Resistance can also be spread into the environment from farms

as manure and slurry from food producing animals is often spread on fields to help grow crops. These

crops may then transmit resistance through the food chain. (6) Resistant bacteria in the environment

can be carried by wild animals or insects, who may then spread AMR through interaction with humans

or pets. (7) Waste water treatment plants do not fully eliminate resistant bacteria before releasing water

back into the environment. Water run-off from fields can carry resistance to large sources of water such

as the sea. Once resistance emerges in water reserves it can be easily distributed as humans and animals

use water for drinking or washing.

The 1986 study of Hummel et al [17] following the spread of nourseothricin resistance is a clear
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example of how resistance can spread from the use of antimicrobials in agriculture. Nourseothricin is a

streptothricin antibiotic that was exclusively used as a growth promoter for pigs in East Germany between

1980 and 1990, and had no other applications to humans or animals. Prior to use in animal husbandry,

resistance to nourseothricin was rarely observed and was never mediated by plasmids. Within two years

of use as a growth promoter, resistance plasmids encoding streptothricin resistance in E.coli were found

in 33% of strains from pigs fed nourseothricin as a growth promoter and also in manure and local rivers.

Furthermore resistance was found in the local environment (on fields spread with swine manure and in

the local rivers) and in the faecal matter of humans: both those having direct contact with the pigs

(i.e. farmers working on the farm), and those who have obtained resistant strains indirectly: family of

the farmers, and outpatients in nearby towns (including those with urinary tract infections) [17]. The

plasmids encoding resistance to streptothricins were later found in pathogenic strains of salmonella and

shigella of human diarrhea between 1987 and 1989 [33]. While nourseothricin had no human applications,

this case illustrates how the use of antimicrobials in agriculture can quickly spread resistance across to

humans. The use of antibiotics for non-therapeutic use (e.g. for use as a growth promoter) has since

been forbidden in the Europe Union, however, this practice still remains in many countries, especially in

the developing world where regulation of antibiotic use in agriculture is nearly non-existent.

In 1969, the Swann Report concluded antimicrobials used as growth promoters contributed to the rise

of MDR resistant infections - recommended growth promoters using antimicrobials used in human therapy

should be banned [31]. Initially the UK (and other countries in Europe) banned growth promotion with

antimicrobials used in human therapy. However, antimicrobials not used in human therapy were still used

and similarities existed in the structure between some of the non-therapeutic agricultural antimicrobials

and antibiotics used in human medicine. This means that there are still transmission pathways for

bacterial strains to obtain resistance to human antibiotics.

By 2006, the European Union and several other countries (such as Canada and Scandinavia) had

banned the use of antimicrobials for non-therapeutic use in agriculture. However, the practice of non-

therapeutic antimicrobial use continues in many countries around the world especially in developing

nations. Although more and more countries are beginning to recognise the need to address this issue: in

2017 the USA banned non-therapeutic use of antimicrobials in agriculture [11], and China implemented

a ban on the use of colistin as a feed additive in animal husbandry in response to the discovery of the

MCR-1 mobile genes encoding colistin resistance on plasmids in E. coli on a pig farm [38].

The World Health Organisation completed a global surveillance of antimicrobial resistance in 2014

which highlighted significant knowledge gaps on the impact of AMR in foodborne bacteria and the

significance this could have on animal and human health [39].
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Metal Resistance and Co-Selection of Antimicrobial Resistance

A potentially significant concern in the study of antimicrobial resistance is observed cases of co-resistance

and co-selection of AMR [25].

While bacteria require metals (such as cadmium, copper, silver and zinc) as essential nutrients for

growth, in high enough concentrations heavy metals can have toxic effects on bacteria, and these have

historically been used as antimicrobials. However, in a similar way to antibiotic resistance, bacteria can

develop tolerances to the antimicrobial effects of heavy metals [16,29]. A strong link has been established

between resistances to metals and antibiotics. Co-resistance between metal and antibiotic resistance was

first observed when mercury and penicillin resistances were found on plasmids in Staphylococcus aureus in

the 1960s [27]. Since then, resistances to multiple drugs and heavy metals have been observed to co-occur

on the same mobile genetic elements (MGEs). Co-resistance between metal and antibiotic resistances

raises the significant issue of co-selection where we see resistant bacterial populations persist and selected

for in the absence of antibiotics. [5, 6, 16,25,26,40]

Heavy metal use is also prevalent on farms as large amounts of elements such as copper and zinc are

used in feed as growth promoters, and the majority of these metals are not absorbed within the animal

and are passed through in the animal faeces, entering the farm slurry system. In addition to metals used

in feed, heavy metal footbaths are often used to prevent hoof infections on dairy and swine farms. The

heavy use of metals can lead to selection of MRGs and also brings the increased risk of co-selection of

antimicrobial resistance. Faecal bacteria in swine slurry was found to be significantly more likely to carry

genes for Cu2+-resistance compared to bacteria found in the swine feed, along with a "strong association

between heavy metal tolerance and antimicrobial resistance" between bacteria in swine slurry [22].

1.3 Mathematical Modelling in AMR

Mathematical modelling is a powerful tool in the study of AMR in the environment and agriculture and

provides a valuable approach to answering questions for given a hypothetical parameter set, that cannot

be predicted by experiments or observed. For example we can use mathematical models to estimate the

effect of antimicrobials in an environment have on a bacterial population and predict the impact it may or

may not have on the emergence of AMR in the population [3,36], or we can model the effects of potential

control strategies for AMR within the environment, such as reducing the use of antimicrobials [34], or

increasing withdrawal periods of animals subjected to antibiotic treatment [8].

Different methods of mathematical modelling have been used to model the spread of AMR in the

environment. Most studies of antibiotic resistance evolution assume that it happens in a well-mixed,

spatially homogeneous environment and use (relatively) simple deterministic ODE models to represent
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the bacterial population dynamics and antibiotic concentrations [3, 4, 8, 35–37].

Some studies have also developed simple spatial mathematical models to model the spread of AMR

within bacterial populations: Zhang et al developed a simple spatial model for the competition of

antibiotic-susceptible and antibiotic-resistant bacterial populations in a heterogeneous environment made

up of microhabitats [41]. This model uses a system of coupled equations on a 2D lattice to model the

heterogeneity of a larger environment consisting of different smaller homogeneous microhabitats, and

has been used as the basis to apply an antibiotic concentration gradient across an environment in other

models for the spread of AMR [12,14].

Two mathematical models of particular interest to the research presented herein would be Baker et

al’s ODE models of a dairy slurry tank [3,4]. An initial model is presented of the slurry tank modelling

the spread of AMR in bacteria within the slurry flow [3] and highlights the importance of the rate of gene

transfer to the prevalence of resistant bacteria. However, this model did not consider natural bacterial

death or the effects of metal co-selection. This model was extended in later work to consider a wider

number of antimicrobials including metals (and their potentially co-selective effects) [4]. This model

formed part of a large interdisciplinary study which I had the opportunity to assist on by providing

estimations of the antibiotic and metal concentrations within the slurry (based upon calculations done

in the parametrisation of my farm flow model), and these were used to inform mini-tank experiments to

provide microbiological data used in the MCMC parameter estimation for the Baker et al model. The

model presented in Baker et al [4] helped form the basis for the bacterial growth and horizontal gene

transfer dynamics in the farm flow model we have developed here.

1.4 Summary

In our search of the existing literature surrounding mathematical modelling of AMR in the environment

we have been unable to find any examples of multiscale mathematical models that model the spread of

resistance across bacterial populations flowing between different compartments in space where certain

characteristics of each compartment are allowed to be variable: for example modelling bacterial popu-

lations in the flow of dairy slurry across different areas of a farm. Furthermore we have been unable to

find any research in the existing literature into developing mathematical models of the co-selection of

heavy metal and antimicrobial resistance. We propose to develop a multiscale mathematical model for

the spread of AMR among bacterial populations within the flow of dairy slurry across different spatially

segregated areas of a UK dairy farm which includes co-selection of antibiotic and heavy metal resistances

and using this model we shall evaluate whether any factors on the farm could drive or reduce the spread

of AMR.

12



Bibliography

[1] S. Arya, H. Todman, M. Baker, S. Hooton, A. Millard, J. Kreft, J.L. Hobman, and D.J. Stekel. A

generalised model for generalised transduction: the importance of co-evolution and stochasticity in

phage mediated antimicrobial resistance transfer. FEMS Microbiology Ecology, 96(7), 2020.

[2] P Aul, D F Ey, Homas J S Afranek, Ark E R Upp, Ileen F D Unne, Eter C I Wen, Atricia A B

Radford, F Rederick, and J A Ngulo. Ceftriaxone-resistant salmonella infection acquired by a child

from cattle. New England Journal of Medicine, 342(17):1242–1249, 2000.

[3] Michelle Baker, Jon L. Hobman, Christine E. R. Dodd, Stephen J. Ramsden, and Dov J. Stekel.

Mathematical modelling of antimicrobial resistance in agricultural waste highlights importance of

gene transfer rate. FEMS Microbiology Ecology, 92(4), 2016.

[4] Michelle Baker, Alexander D. Williams, Steven P.T. Hooton, Richard Helliwell, Elizabeth King,

Thomas Dodsworth, Rosa María Baena-Nogueras, Andrew Warry, Catherine A. Ortori, Henry Tod-

man, Charlotte J. Gray-Hammerton, Alexander C.W. Pritchard, Ethan Iles, Ryan Cook, Richard D.

Emes, Michael A. Jones, Theodore Kypraios, Helen West, David A. Barrett, Stephen J. Ramsden,

Rachel L. Gomes, Chris Hudson, Andrew D. Millard, Sujatha Raman, Carol Morris, Christine E.R.

Dodd, Jan-Ulrich Kreft, Jon L. Hobman, and Dov J. Stekel. Antimicrobial resistance in dairy slurry

tanks: A critical point for measurement and control. Environment International, 169:107516, 2022.

[5] Craig Baker-Austin, Meredith S. Wright, Ramunas Stepanauskas, and J.V. McArthur. Co-selection

of antibiotic and metal resistance. Trends in Microbiology, 14(4):176–182, 2006.

[6] Carmen Bednorz, Kathrin Oelgeschläger, Bianca Kinnemann, Susanne Hartmann, Konrad Neu-

mann, Robert Pieper, Astrid Bethe, Torsten Semmler, Karsten Tedin, Peter Schierack, Lothar H.

Wieler, and Sebastian Guenther. The broader context of antibiotic resistance: Zinc feed supplemen-

tation of piglets increases the proportion of multi-resistant Escherichia coli in vivo. International

Journal of Medical Microbiology, 303(6-7):396–403, 2013.

13



[7] Peter Borriello, Fraser Broadfoot, Kitty Healey, Stacey Brown, and Ana Vidal. UK veterinary

antibiotic resistance & sales surveillance report. Technical report, Veterinary Medicines Directorate,

Department for Environment, Farming and Rural Affairs, 2017.

[8] CL. Cazer, L. Ducrot, VV. Volkova, and YT Gröhn. Monte Carlo simulations suggest current

chlorotetracycline drug-residue based withdrawal periods would not control antimicrobial resistance

dissemination from feedlot to slaughterhouse. Frontiers in Microbiology, 8(1753), 2017.

[9] J.M. Conly and B.L. Johnston. Where are all the new antibiotics? The new antibiotic paradox.

Canadian Journal of Infectious Diseases and Medical Microbiology, 16(3):159–160, 2005.

[10] Julian Davies and Dorothy Davies. Origins and evolution of antibiotic resistance. Microbiology and

Molecular Biology Reviews, 74(3):417–33, 2010.

[11] Food, U.S. Department of Health Drug Administration, and Human Services. Guidance for industry

veterinary feed directive regulation questions and answers. Technical report, Center for Veterinary

Medicine, 2015.

[12] P. Greulich, B. Waclaw, and Allen RJ. Mutational pathway determines whether drug gradients

accelerate evolution of drug-resistant cells. Physics Review Letters, 109(8), 2012.

[13] Boucher H., Talbot G., Benjamin D., Bradley J., and Guidos R. et. al. 10 x ’20 Progress–development

of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society

of America. Clinical Infectious Diseases, 56(12):1685–1694, 2013.

[14] R. Hermsen, JB. Deris, and Hwa T. On the rapidity of antibiotic resistance evolution facilitated by

a concentration gradient. Proceedings of the National Academy of Sciences, 109(27), 2012.

[15] Holger Heuer, Heike Schmitt, and Kornelia Smalla. Antibiotic resistance gene spread due to manure

application on agricultural fields. Current Opinion In Microbiology, 14:236–243, 2011.

[16] Jon L. Hobman and Lisa C. Crossman. Bacterial antimicrobial metal ion resistance. Journal of

Medical Microbiology, 64(5):471–497, 2015.

[17] R. Hummel, H. Tschape, and M. Witte. Spread of plasmid-mediated nourseothricin resistance due

to antibiotic use in animal husbandry. Journal of Basic Microbiology, 26(8):461–466, 1986.

[18] Daniela Jabes. The antibiotic R&D pipeline: an update. Current Opinions in Microbiology,

14(5):564–569, 2011.

[19] G.G. Khachatourians1998. Agricultural use of antibiotics and the evolution and transfer of

antibiotic-resistant bacteria. Canadian Medical Association Journal, 159(3):1129–1136, 1998.

14



[20] Q. Leclerc, J. Lindsay, and G. Knight. Mathematical modelling to study the horizontal transfer of

antimicrobial resistance genes in bacteria: current state of the field and recommendations. J. R.

Soc. Interface, 16, 2019.

[21] Bonnie M Marshall and Stuart B Levy. Food animals and antimicrobials: impacts on human health.

Clinical Microbiology Reviews, 24(4):718–733, 2011.

[22] J. Medardus, B. Molla, M. Nicol, W. Morrow, P. Rajala-Schultz, R. Kazwala, and W. Gebreyes. In-

feed use of heavy metal micronutrients in U.S. swine production systems and its role in persistence

of multidrug-resistant salmonellae. Appl Environ Microbiol., 80(7), 2014.

[23] Center For Veterinary Medicine. Summary Report On Antimicrobials Sold or Distributed for Use

in Food-Producing Animals. Technical report, U.S. Food And Drug Administration, 2016.

[24] Jim O’Neill. Tackling drug resistant infections globally: final report and recommendations. Technical

report, The Review on Antimicrobial Resistance, 2016.

[25] Chandan Pal, Karishma Asiani, Sankalp Arya, Christopher Rensing, Dov J. Stekel, D.G. Joakim

Larsson, and Jon L. Hobman. Metal resistance and Its association with antibiotic resistance. Ad-

vances in microbial physiology, 70:261–313, 2017.

[26] Keith Poole. At the Nexus of Antibiotics and Metals: The Impact of Cu and Zn on Antibiotic

Activity and Resistance. Trends in Microbiology, 25(10):820–832, 2017.

[27] M.H. Richmond, M.T. Parker, M. Patricia Jevons, and Madeleine John. High Penicillinase Pro-

duction Correlated With Multiple Antibiotic Resistance in Staphylococcus Aureus. The Lancet,

283(7328):293 – 296, 1964.

[28] Tomoo Saga and Keizo Yamaguchi. History of Antimicrobial Agents and Resistant Bacteria. Japan

Medical Association Journal, 52(2):103–108, 2009.

[29] Simon Silver and Le T Phung. Bacterial Heavy Metal Resistance: New Surprises. Annu. Rev.

Microbiol, 50:753–789, 1996.

[30] Richard Smith and Joanna Coast. The true cost of antimicrobial resistance. British Medical Journal,

346, 2013.

[31] M Swann. Report of the Joint Committee on the Use of Antibiotics in Animal Husbandry and

Veterinary Medicine. Technical report, The Joint Committee on the use of Antibiotics in Animal

Husbandry and Veterinary Medicine, 1969.

15



[32] Sophie Thanner, David Drissner, and Fiona Walsh. Antimicrobial resistance in agriculture. mBio,

7(4), 2016.

[33] H. Tschape. The spread of plasmids as a function of bacterial adaptability. FEMS Microbiology

Ecology, 15:23–31, 1994.

[34] B. A. D. van Bunnik and M. E. J. Woolhouse. Modelling the impact of curtailing antibiotic usage

in food animals on antibiotic resistance in humans. Royal Society Open Science, 4(4):161067, 2017.

[35] V. V. Volkova, C. L. Cazer, and Y. T. Gröhn. Models of antimicrobial pressure on intestinal bacteria

of the treated host populations. Epidemiology and Infection, 145(10):2081–2094, 2017.

[36] VV. Volkova, C. Lanzas, Z. Lu, and Gröhn YT. Mathematical model of plasmid-mediated resistance

to ceftiofur in commensal enteric escherichia coli of cattle. PLoS ONE, 7(5), 2012.

[37] VV. Volkova, Z. Lu, T. Besser, and Gröhn YT. Modeling the infection dynamics of bacteriophages

in enteric escherichia coli: estimating the contribution of transduction to antimicrobial gene spread.

Applied and Environmental Microbiology, 80(14), 2014.

[38] R Wang, L van Dorp, LP Shaw, et al. The global distribution and spread of the mobilized colistin

resistance gene mcr-1. Nature Communications, 9(1179), 2018.

[39] World Health Organisation. Antimicrobial resistance: global report on surveillance. Technical

report, World Health Organisation, 2014.

[40] Zhongyi Yu, Lynda Gunn, Patrick Wall, and Fanning Séamus. Antimicrobial resistance and its

association with tolerance to heavy metals in agriculture production. Food Microbiology, 370, 2017.

[41] Q. Zhang, G. Lambert, D. Liao, H. Kim, K. Robin, C-K. Tung, N. Pourmand, and Austin RH.

Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science,

333(6050), 2011.

16



Chapter 2

The development and calibration of a multiscale hybrid
discrete-continuous model for the flow of waste and

antimicrobial resistance on a dairy farm



Abstract

Antimicrobial resistance (AMR) presents a significant global health threat and requires a

One Health approach to remediate the risk of this threat. The UK dairy farm industry

produces approximately 28 million tonnes of manure each year, a significant proportion of

which is liquid slurry. This represents a potential locus for the emergence of antimicrobially

resistant bacterial populations, as slurry is mixed with other waste products (e.g. waste

milk, formalin and heavy metal footbaths, and antimicrobials) providing an ideal co-selective

environment for antibiotic resistance genes (ARGs). This presents a significant risk as a

transmission path to humans when slurry is spread onto fields as fertiliser and so we should

consider potential mitigating action. Previous studies have shown that reducing antibiotic

usage in livestock does not significantly affect the spread of AMR from livestock to humans,

and it would be difficult to further reduce antimicrobial usage without affecting the health

and welfare of the animals, so it may be more productive to consider the effects of changes to

farming infrastructure and management practices. We have developed a multiscale hybrid

discrete-continuous ODE mathematical model of a typical high-performance dairy farm in

the UK to model the flow of slurry, bacteria, metals and antibiotics across the different

areas of the farm, incorporating discrete events to model different farming practices. This

model is calibrated using metal concentration data collected from the slurry tank at 27 time

points over a six month period. In the next chapter, we shall use this model to evaluate the

impact of different farm layout scenarios on the dynamics and prevalence of antimicrobially

resistant bacteria across the farm.
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2.1 Introduction

The use of antibiotics (Ab) in agriculture can result in drug-resistant strains of pathogens infecting human

populations through the food chain [1, 2], or may lead to the transfer of novel antibiotic resistance genes

(ARGs) from livestock-associated bacteria to human-acquired infections [3, 4, 5]. The importance of

mitigating the risks of AMR in the agricultural sector has been recognised by many countries, including

the UK and European Union[6, 7], with reductions and restrictions being imposed on Ab usage in

agriculture (particularly on "critically important" Ab). However, despite a 50% reduction in Ab usage

in the UK agriculture sector since 2014 [8], usage still remains high representing 36% of the total UK

Ab use [9] and represents a risk of spread of ARGs and AMR. Further reduction in usage of Ab will

be extremely challenging for countries that have already made major reductions due to the need for

antibiotics in the care and welfare of diseased animals. Therefore it may be appropriate to consider

whether changes in farm management and infrastructure can reduce selection for resistance.

In addition to antibiotics, other antimicrobials such as metals (e.g. copper and zinc) and other chem-

icals (e.g. formalin) are widely used across farms globally, particularly in footbaths to prevent lameness

in livestock - a prevalent concern in dairy and sheep farming [10]. Metals and other antimicrobial agents

(such as formalin and glutaraldehyde) are known to have a co-selective effect on antibiotic resistance,

allowing for the persistence of ARBs in the absence of antibiotic selective pressures [11, 12, 13, 14, 15, 16].

Farm waste management is of particular interest as large volumes of manure and slurry present a

system in which faecal bacteria and antibiotics mix, alongside other co-selective antimicrobial agents such

as metals and formalin and presenting a possible locus for the selection and co-selection of resistance [17].

The UK dairy farm industry produces on average 2.8 ⇥1010 kg of manure each year (approximately 1.8

⇥1010 kg of which is undiluted dairy slurry) [18]. Dairy slurry is often stored in slurry tanks or lagoons

for long periods of time, and such accumulated storage of agricultural waste may act as a hotspot for

the spread of ARGs and AMR, potentially giving rise to multi-drug resistance (MDR) - microbiological

studies on a dairy farm at the University of Nottingham found resistances to multiple antibiotics in over

two thirds of Escherichia coli strains that were cultured [19, 17].

The spreading of slurry/manure onto field soil as fertiliser may then release ARGs and ARBs into

the surrounding environment. Studies of fields that have been spread with dairy slurry have observed a

higher proportion of ARGs [20, 21, 22], while studies of crops fertilised with dairy slurry have been shown

to accumulate ARGs associated with the slurry [20, 23, 24, 25]. This is of particular concern as this

opens potential transmission pathways for these ARGs to transfer to human pathogens [26] and as well

as the risk for the more widespread dissemination of such ARGs in the environment through waterways

and the food chain.
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Hence there is a clear and potentially significant risk of AMR spread from agricultural waste, and

efforts should be made to reduce this contamination risk. However, many developed countries have

already made major reductions in the usage of antibiotics in livestock and further reduction will be

extremely difficult without potentially compromising the care and welfare of diseased animals. Indeed

modelling studies have shown that further reduction in antibiotic usage in livestock has little impact in

reducing the levels of AMR in human populations [27].

Therefore it is important to consider other ways that we can effectively mediate the risks of AMR

spread from manure, such as through changes in infrastructure or farm management practices [17].

However, it is often impractical to effectively study such structural changes since they would require

potentially expensive changes to infrastructure or management practice, with numerous unknown welfare

and business risks. In this regard mathematical modelling is a powerful tool as it allows us to model

alternative scenarios through changes in simulations’ parameters or processes to which adverse outcomes

(i.e. proliferation of ARBs) are especially sensitive can be identified, which serve as potential points of

control [17].

Most mathematical models studying the impact of AMR in dairy farms (or other livestock farm

environments) consider a single area of a farm [28, 29, 30, 31, 17], treat the entire farm as a single

compartment [27], or are interested in within-host dynamics of the livestock [32]. While such approaches

are undoubtedly useful, to our knowledge, there are no modelling studies that investigate the effects of

farm layout, the farm practices associated across different areas of the farm, and the impact these may

have upon the emergence and/or spread of AMR across the farm.

We have developed and evaluated a mathematical model of a typical UK dairy farm that considers the

entire flow of dairy waste from its source in the cattle sheds to the slurry tank where waste is stored until

it is needed for spreading on fields. Informed by ethnographic observations of the dairy farm (performed

by Richard Helliwell, University of Nottingham), this model considers many sources of waste input across

the farm, as well as contaminants such as antibiotics and metals. This model is then calibrated against

data of observed metal concentrations in the slurry tank [17] using a Bayesian estimation approach. This

flow model is then coupled with a traditional horizontal gene transfer model to provide a multiscale

hybrid discrete-continuous ODE model that models the dynamics of antimicrobially-resistant bacteria

across the different areas of the farm.
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2.2 Materials & Methods

Figure 2.1: A flow diagram showing the different compartments of the dairy farm, and how waste flows

between the compartments. Waste from the main dairy and bulling heifer sheds flows into an underground

reservoir (UR) via scraper channels. Slurry is then passed through a separator where slurry solids are

put on the muck heap, and liquid slurry is pumped into the slurry tank, which is then emptied when the

tank is full or slurry is needed for spreading on fields (purple arrow). The only metal (blue arrows) and

antibiotic (red arrows) inputs into the waste water flow system are through metal in the daily cow feed in

both sheds and heavy metal footbaths used in the main dairy shed. There are two main feedback loops

where waste water is recycled through the system to clear the scraper channels of any waste build up:

slurry is pumped back from the UR into the scraper channels for 4 hours each day (green arrows), and

effluent run-off from the muck heap is collected and used to flush out the scraper channels once every

3-4 weeks (yellow arrows).
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Dairy Farm Background

This study considers a mid-sized, high performance commercial dairy farm in the East Midlands, UK,

housing 200 milking Holstein Friesian cattle at the time of study. Milking cattle are housed indoors on

concrete, and all excreta are regularly removed from cattle yards by automatic scrapers into a drainage

system terminating at the 3 M litre slurry tank. The drainage system also receives used cleaning materials

and wash water, used footbath, waste milk, and rainwater runoff. An automated screw press (Bauer

S655 slurry separator with sieve size 0.75 mm; Bauer GmbH, Voitsberg, Austria) performs liquid-solid

separation of the slurry before it is passed to the slurry tank. Liquids enter the slurry tank semi-

continuously, while solids are removed to a muck heap. Calves, dry cows, and heifers are housed separately

from the milking cows. Faeces and urine from calves drain into the common drainage system, whilst

dirty straw from calf housing is taken directly to the muck heap. Excess slurry can be pumped to an 8

M litre lagoon for long term storage. Slurry is used to fertilize grassland and arable fields. Practice at

this farm is typical of management methods at high-performance dairy farms, although all farms vary.

Mathematical Model

We have developed a mathematical model (2.1)-(2.24) to evaluate the risk of the spread of AMR across

bacterial populations within dirty water as it flows around different areas of a typical UK dairy farm

described in figure 2.1, using a multiscale, hybrid discrete-continuous, compartmental system of ordinary

differential equations (ODEs). The six different farm compartments are described by a volumetric flow

ODE model, to describe the flow of dirty water (Vi) between the compartments, in which the rates of

flow between the different compartments follow first order mass action kinetics, and materials within the

waste flow between compartments have the non-variable fractional flow rates. The flow model is then

extended to include the concentrations of copper and zinc (M [Cu]
i and M

[Zn]
i ), and antibiotics (A[Oxy]

i

and A
[Cex]
i ). The flow model was coupled with a bacterial resistance transfer ODE model [17], that

describes populations of antimicrobial sensitive (Si) and resistant (R[x1,x2,x3,x4]
i bacteria in each of the

six compartments, where [x1, x2, x3, x4] 2 {0, 1}4, such that x1 = 1 if the population is resistant to

copper, while x1 = 0 if it is sensitive to copper, and similarly x2, x3 and x4 reflect zinc, oxytetracycline

and cefalexin resistant bacteria. All the parameters of the model are described in table 2.B1-2.B6 with

realistic value ranges for each parameter based on ethnographic observations of the Sutton Bonington

dairy farm and available information in the existing literature. This hybrid discrete-continuous farm

flow model was built on a continuous version of the farm flow model which we initially developed. The

equations defining the continuous farm flow model are given in Appendix in Appendix 2.A.
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dVdairy

dt
= a� ⇢Vdairy +

�VUR

2
+⇥ (Tfootbath)Vfootbath

+⇥ (Textra foot.)Vextra foot. +⇥ (TEff. flush)
(1� ✏eff)Veff

2
,

(2.1)

dVheifer

dt
= b� ⇢Vheifer +

�VUR

2
+⇥ (TEff. flush)

(1� ✏eff)Veff

2
, (2.2)

dVUR

dt
= ⇢ (Vdairy + Vheifer)� �VUR � �VUR , (2.3)

dVmuck

dt
= (1� ") �VUR � ⌘Vmuck � muckVmuck , (2.4)

dVeff

dt
= ⌘Vmuck + ◆silage �⇥ (TEff. flush) (1� ✏eff)Veff , (2.5)

dVtank

dt
= "�VUR �⇥ (TTank empty) (1� ✏Tank)Vtank , (2.6)

where ⇥(T ) =

8
>><

>>:

1 t 2 T

0 otherwise
.

We assume that the amount of volume of daily waste inputs in the main dairy shed (a) and bulling

heifer shed (b) (i.e. from faecal matter, trough water, footbaths, bedding etc.) are constant. Copper

and zinc are used in the cattle feed for growth promotion purposes and a significant percentage of these

metals are not absorbed by the cow (⇡ 99% and 85% for Cu and Zn respectively [33]) and enter the

slurry flow system in the cow faeces. We also assume that the solid slurry matter separated onto the

muck heap has no residual liquid and effluent run off is determined only by rainfall (⌘).

On top of the continuous flow model, three farm processes are represented by discrete processes within

the model: the emptying of metal footbaths into the main dairy shed scraper channel; the flushing of

the scraper channels with muck heap effluent; and the emptying of the slurry tank. To model these

processes, we assert that at time Tfootbath that the volume of the footbath (Vfootbath and mass of copper

and zinc (a[Cu]
footbath

& a
[Zn]
footbath

) is instantly added to the slurry volume and metal mass in the main

dairy shed respectively. The emptying of the slurry tank is modelled similarly where at time TTank,

the slurry tank compartments are emptied. We model the tank as not being completely emptied and

that a small proportion (0 < ✏Tank ⌧ 1) of the volume, mass of metals and antibiotics and population
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of bacteria in the slurry tank contents remains. Similarly, at time TEff. Flush we assume that a small

fraction (0 < ✏eff ⌧ 1) of the contents in the effluent tank contents remains and (1�✏eff)Veff/2 is added to

the main dairy and bulling heifer sheds each. We also include the term ◆silage for the runoff from the farm

silage clamp that is added to the effluent tank also. However, in the interest of model complexity we

assume that this run-off is just water containing no additional metals, bacteria or antibiotics (although

we appreciate that this is not a realistic assumption of silage clamp run-off and an interesting extension

of the farm flow model could be to consider the silage clamp and the sheds which feed into it).

dM
[j]
dairy

dt
= a

[j]
feed

� ⇢M
[j]
dairy

+
�M

[j]
UR

2
+⇥ (Tfootbath) a

[j]
footbath

+⇥ (Textra foot.) a
[j]
extra foot.

+⇥ (TEff. flush)
(1� ✏eff)M

[j]
eff

2
,

(2.7)

dM
[j]
heifer

dt
= b

[j]
feed

� ⇢M
[j]
heifer

+
�M

[j]
UR

2
+⇥ (TEff. flush)

(1� ✏eff)M
[j]
eff

2
, (2.8)

dM
[j]
UR

dt
= ⇢

⇣
M

[j]
dairy

+M
[j]
heifer

⌘
� �M

[j]
UR

� �M
[j]
UR

, (2.9)

dM
[j]
muck

dt
= (1� ") �M [j]

UR
� ⌘M

[j]
muck

� muckM
[j]
muck

, (2.10)

dM
[j]
eff

dt
= ⌘M

[j]
muck

�⇥ (TEffluent) (1� ✏eff)M
[j]
eff

, , (2.11)

dM
[j]
tank

dt
= "�M

[j]
UR

�⇥ (TTank empty) (1� ✏Tank)M
[j]
tank

, (2.12)

where j 2 {Cu,Zn}.

Antibiotics enter the slurry flow system in the main dairy shed sick pens as we assume the antibiotics

pass into the scrapers channels in the sick pen cow’s faeces and we model the antibiotic input (a[j](t) for

j 2 {Oxy, Cex} as a time-dependent discrete parameter based on the farm antibiotic usage records. We

model the degradation of the antibiotics using previously identified first-order degradation kinetics[17].

The microbiological model is a subset of the model previously described[17], but with four rather than

six antimicrobials (copper, zinc, oxytetracyline and cephalexin).

24



dA
[j]
dairy

dt
= a

[j] (t)� ⇢A
[j]
dairy

+
�A

[j]
UR

2
� �[j]A

[j]
dairy

+⇥ (TEff. flush)
(1� ✏eff)A

[j]
eff

2
, (2.13)

dA
[j]
heifer

dt
= �⇢A[j]

heifer
+
�A

[j]
UR

2
� �[j]A

[j]
heifer

+⇥ (TEff. flush)
(1� ✏eff)A

[j]
eff

2
, (2.14)

dA
[j]
UR

dt
= ⇢

⇣
A

[j]
dairy

+A
[j]
heifer

⌘
� �A

[j]
UR

� �A
[j]
UR

� �[j]A
[j]
UR

, (2.15)

dA
[j]
muck

dt
= (1� ") �A[j]

UR
� ⌘A

[j]
muck

� muckA
[j]
muck

� �[j]A
[j]
muck

, (2.16)

dA
[j]
eff

dt
= ⌘A

[j]
muck

� �[j]A
[j]
eff

�⇥ (TEffluent) (1� ✏eff)A
[j]
eff

, , (2.17)

dA
[j]
tank

dt
= "�A

[j]
UR

� �[j]A
[j]
tank

�⇥ (TTank empty) (1� ✏Tank)A
[j]
tank

, (2.18)

where j 2 {Oxy,Cex}.

We define ⌦i as the set of all bacterial populations within the compartment i:

⌦i =
n
Si, R

[1,0,0,0]
i , R

[0,1,0,0]
i , . . . , R

[1,1,1,1]
i

o
,

and define ⌦⇤
i as the set of all bacterial populations carrying at least one resistance within the compart-

ment i, i.e. ⌦⇤
i = ⌦i 6 {Si}.

The flow of each bacterial population, R[x1,x2,x3,x4]
i , between the different farm areas is described by

the function F : ⌦i ! R such that:

F (R[x1,x2,x3,x4]
i ) =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

a⌫[x1,x2,x3,x4] E.coli � ⇢R
[x1,x2,x3,x4]
dairy

+
�R

[x1,x2,x3,x4]
UR

2 , for i = dairy

b⌫[x1,x2,x3,x4] E.coli � ⇢R
[x1,x2,x3,x4]
heifer

+
�R

[x1,x2,x3,x4]
UR

2 , for i = heifer

⇢

⇣
R

[x1,x2,x3,x4]
dairy

+R
[x1,x2,x3,x4]
heifer

⌘
� �R

[x1,x2,x3,x4]
UR

� �R
[x1,x2,x3,x4]
UR

, for i = UR

(1� ") �R[x1,x2,x3,x4]
UR

� ⌘R
[x1,x2,x3,x4]
muck

� muckR
[x1,x2,x3,x4]
muck

, for i = muck

⌘R
[x1,x2,x3,x4]
muck

, for i = eff

"�R
[x1,x2,x3,x4]
UR

, for i = tank
(2.19)
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We define the effect of the discrete farm processes on each bacterial population, R[x1,x2,x3,x4]
i , by the

function D : ⌦i ! R such that:

D(R[x1,x2,x3,x4]
i ) =

8
>>>>>>>>>><

>>>>>>>>>>:

⇥ (TEff. flush)
(1�✏eff)R

[x1,x2,x3,x4]
eff
2 , for i = dairy, heifer

0, for i = UR, muck

�⇥ (TEff. flush) (1� ✏eff)R
[x1,x2,x3,x4]
eff

, for i = eff

�⇥ (TTank empty) (1� ✏tank)R
[x1,x2,x3,x4]
tank

, for i = tank

(2.20)

Similarly, we describe the growth and death of each bacterial population, R[x1,x2,x3,x4]
i , by the function

G : ⌦i ! R such that:

G (R[x1,x2,x3,x4]
i ) =rR

[x1,x2,x3,x4]
i )

�
1� x1↵[Cu] � x2↵[Zn] � x3↵[Oxy] � x4↵[Cex]

�✓
1� Ni

Nmax

◆

�
1� (1� x3)ES[Oxy]

�
�
�
(1� x1)ES[Cu] � (1� x2)ES[Zn] � (1� x4)ES[Cex]

� �
�
R

[x1,x2,x3,x4]
i

(2.21)

Where Ni denotes the total bacterial population in the compartment i 2 {dairy, heifer, UR, muck, eff,

tank}, such that:

Ni =
X

Ri2⌦i

(Ri) , (2.22)

and E
[j]
i

(for i 2 {dairy, heifer, UR, muck, eff, tank} and j 2 {Cu, Zn, Oxy, Cex}) denotes the antimi-

crobial effect on the bacterial growth rate in the case of bacteriostatic antibiotics (e.g. oxytetracycline),

or the antimicrobial effect on the bacterial death rate in the case of bacteriocidal antimicrobials (e.g.

copper, zinc or cefalexin). Since xi 2 {0, 1}, the general equation for the bacterial growth dynamics,

(2.21), includes the fitness cost, ↵[j], incurred by the presence of resistance (i.e. when xi = 1), as well as

the negated bacteriocidal/bacteriostatic effects if the bacteria is resistant to that antibiotic.

E
[j]
i

=
E

[j]
max (Ai/Vi)

H[j]

MIC[j]
H[j] + (Ai/Vi)

H[j]
(2.23)

Finally, the horizontal transfer of resistance between bacterial populations is defined by the function

H : ⌦i ! R (the full definition of this H is given by (2.C25)-(2.C40) in Appendix 2.C.

The dynamics of each bacterial population in the farm flow system can therefore be described by the

system of equations defined by:
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dR
[x1,x2,x3,x4]
i

dt
= F (R[x1,x2,x3,x4]

i ) + D(R[x1,x2,x3,x4]
i ) + G (R[x1,x2,x3,x4]

i ) + H (R[x1,x2,x3,x4]
i ),

where i 2 {dairy, heifer, UR, muck, eff., tank} & [x1, x2, x3, x4] 2 {0, 1}4.
(2.24)

Simulations

We simulated our farm flow model using MATLAB R2020 [34]. We produced time course simulations

with the standard parameter values (Table 2.B1) using the ODE45 solver to show the concentration

of the different bacterial populations over time. For all simulations of the model, we used the steady

state values of the continuous farm flow model for the initial conditions of the slurry volume and metal

equations, and assume that the initial volume of the slurry tank is 1 ⇥106 L and the effluent tank has

recently been used and in a near empty state (Veff(0) = !) to avoid division by zero errors in the HGT

terms of the effluent bacterial populations). We initialise the bacterial populations in our model using

the average E. coli counts sampled from each area of the farm and assume the proportion of each distinct

resistant bacterial population is the same.

Model Calibration

We have calibrated the model using data sets of the metal concentrations across different areas in the

slurry flow chain of the Sutton Bonington dairy farm using two different methods. We used HACH

UV-Vis Spectrophotometer kits to determine copper and zinc concentrations in the slurry tank at 27

time points between 7th June 2017 and 23rd November 2017, as well as concentrations at a single time

point from 23rd November 2017 for other areas of the farm flow system (the dairy shed and heifer shed

scraper channels, underground reservoir and muck heap effluent). We also used ICP-MS analysis to give

heavy metal concentrations of 9 samples from slurry tank taken on 2nd July 2015. We used both the

HACH and ICP-MS metal concentration data to estimate the concentration of copper and zinc in the

cattle feed as this was initially understood to be a significant component of the metal inputs into the

slurry system (this concentration determined the value of a
[j]
feed

and b
[j]
feed

for j 2 {Cu, Zn} along with

mass of feed per cow and number of cows in each shed). We estimated heavy metal content of the cow’s

daily feed using a Metropolis-Hastings Markov Chain Monte Carlo (MCMC) method on the continuous

farm flow model with an uninformed uniform prior between 0 and the maximum permitted levels of

heavy metal in dairy feed according to the European Food Safety Authority (EFSA) [35, 36, 37]. We

estimated the feed copper and zinc concentrations individually as well as used each set of concentration

data individually in our parameter estimations. For each estimate we used an initial estimate for the
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parameter based on values calculated from the farm daily feed menu and ran the MCMC algorithm for

1000 iterations.

Figure 2.2: Parameter estimation of cattle feed metal contents using MCMC approach

against HACH UV-vis spectrophotometer data (A) shows histograms of the uniform prior distri-

butions (red) and the posterior distributions (blue) of the MCMC estimation against the HACH data.

(B) shows the trace plots of the parameter estimation at each iteration of the Metropolis-Hasting algo-

rithm. (C) is a time course of the continuous farm flow model for the metal mass across the different

areas of the farm using the mean of the posterior distribution estimated in the MCMC (Cu: 393.997 and

Zn: 247.926) against the metal concentrations observed in the slurry tank and across the farm measured

using the HACH UV-vis spectrophotometer kits.
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2.3 Results and Discussion

We initially developed the continuous volumetric model for the flow of dairy slurry around the Sutton

Bonington dairy farm (2.A1)-(2.A6) and an analogous model for the mass of copper and zinc in the

slurry flow (2.A7)-(2.A12).

Figure 2.3: Parameter estimation of cattle feed metal contents using MCMC approach

against ICP-MS data. (A) shows histograms of the uniform prior distributions (red) and the posterior

distributions (blue) of the MCMC estimation against the HACH data. (B) shows the trace plots of the

parameter estimation at each iteration of the Metropolis-Hasting algorithm. (C) is a time course of the

continuous farm flow model for the metal mass across the different areas of the farm using the mean

of the posterior distribution estimated in the MCMC (Cu: 118.233 and Zn: 198.877) against the metal

concentrations observed in the slurry tank using ICP-MS (as this was only taken at a single time point

before the period of interest we show this as a constant line).

We have attempted to calibrate the continuous model using metal concentrations observed on the
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farm between 7th June 2017 and 23rd November 2017. In order to do this we have used this data to

estimate the metal input from the milking herd feed (a value that we have also approximated using data

from the farm’s feeding menu and EFSA regulations [35, 36, 37]) using a Metropolis-Hastings algorithm

and ran this method over 1000 iterations. For our estimation, we assumed a uniform prior distribution

with an upper bound limit defined by the EFSA limits for Cu (30 mg/kg on 88% dry matter basis) and

Zn (100 mg/kg on 88% dry matter basis) content in dairy cattle feed.

We evaluated the model in this way against two different data sets:

• Copper and zinc concentrations from the slurry tank gathered at 27 distinct time points between 7th

June and 23rd November 2017 and analysed using HACH UV-Vis spectrophotometer kits. These

also include a measurements across the other farm areas at a single time point (23rd November

2017) [17].

• Copper and zinc concentrations from the slurry tank from a single time point (2nd July 2015)

measured using ICP-MS analysis.

The MCMC estimation using the HACH data as a sample set provides a reasonable estimate for the

feed Cu content (figure 2.2) - we estimated the mean Cu fed per cow per day to be 393.997mg, where the

value calculated from the farm feed menu was approximately 361.77mg per cow per day. However the

MCMC estimate for the Zn content of the feed (247.926) is approximately five times lower than expected

value based on the farm menu (1538.43mg).

When the MCMC estimation was run against the ICP-MS data (figure 2.3), both copper and zinc

content in the feed - 118.233 mg and 198.877 mg respectively - were notably lower than the expected

menu concentrations.

Figure 2.4 shows time course simulations of the hybrid discrete-continuous model using the mean

MCMC estimates given for Cu and Zn inputs from the cattle feed. We can clearly observe that estimated

feed metal concentration parameters do not provide a great fit when used in the discrete-continuous

model.
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Figure 2.4: Time course simulation of the hybrid discrete-continuous farm flow model using

the parameters estimated using MCMC plotted against both the HACH and ICP-MS

metal concentration data These time course simulations of the discrete-continuous farm flow model

use parameter values of metal footbath inputs based on the feed metal concentrations estimated using

the continuous model (Figure 2.2-2.3).

It should be noted that the ICP-MS data is only taken from a single time point in 2015, while our

model is based on knowledge of the farm practices carried out in 2017 and 2018, so our model may not

accurately represent the practices on the farm at that time - e.g. the EFSA MPL for copper in dairy

cattle feed was reduced in 2016 [36].

We also note that the concentration of copper in the slurry tank is measured to be nearly two-fold

the zinc concentration using the HACH kits, while feed information from the farm and the EFSA MPLs

for Cu and Zn, would suggest that there are significantly higher amounts of Zn entering the system than

Cu. We suggest that this large discrepancy may be caused by a high-bias for copper due to interfering

levels of iron in the dairy slurry - HACH have acknowledged interference in copper measurements for

levels of iron above 15 mg/L [38, 39] and ICP-MS analysis shows average iron concentration of 25.27

mg/L in the slurry tank. Furthermore similar inaccuracies of the UV-Vis spectrophotometer method

have been observed in method comparisons against ICP-MS and ICP-OES [40, 41].

Discrepancies between the estimation and the observed metal concentrations may also be partially

explained by adsorption of the metals into slurry solids before and after the slurry passes through the

screw press separator - an interesting extension to the model may be to include these adsorption dynamics.
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2.4 Conclusion

In this chapter, we have presented a mathematical model for bacteria and antimicrobials within the flow

of dairy slurry across the different areas of a typical UK dairy farm. We have attempted to calibrate

the model against two different metal concentration data sets, and while the this calibration has not

provided the best fit, there are numerous degrees of uncertainty that may have affected this outcome

such as interference levels from iron in the HACH UV-vis spectrophotometer kits, an insufficient number

of time points for the ICP-MS (as we only have a single time-point from outside the period of study).

Another important consideration is that the mass of metal input due to the emptying of the footbaths

is significantly higher than from the feed and this difference likely had a impact on the parameter

estimation since the feed metal input accounts for such a small proportion of the total metal input.

Therefore it would be more appropriate to have calibrated the model by estimating the metal footbath

metal concentration instead.
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2.A Appendix: Continuous Farm Flow Model

We initially developed a continuous version of the farm flow model where all farm processes were consid-

ered to occur continuously at a constant rate. The continuous farm flow model is defined by the system

of equations (2.A1) - (2.A24).

The volume of slurry equations in the continuous model are defined as:

dVdairy

dt
= a� ⇢Vdairy +

�VUR

2
+ afootbath +

!

2
, (2.A1)

dVheifer

dt
= b� ⇢Vheifer +

�VUR

2
+
!

2
, (2.A2)

dVUR

dt
= ⇢ (Vdairy + Vheifer)� �VUR � �VUR , (2.A3)

dVmuck

dt
= (1� ") �VUR � ⌘Vmuck � muckVmuck , (2.A4)

dVeff

dt
= ⌘Vmuck + ◆silage � ! , (2.A5)

dVtank

dt
= "�VUR � tankVtank , (2.A6)

where afootbath represents the footbaths being emptied into the main dairy shed at a constant rate,

! is the constant rate of effluent being used to flush the scraper channels and kappatank is the rate at

which the slurry tank is emptied.

Similarly the equations for the metal mass, M [j]
i , in the continuous farm flow model are given by:

dM
[j]
dairy

dt
= a

[j]
feed

� ⇢M
[j]
dairy

+
�M

[j]
UR

2
+ ā

[j]
footbath

+
!M

[j]
eff

2Veff

, (2.A7)

dM
[j]
heifer

dt
= b

[j]
feed

� ⇢M
[j]
heifer

+
�M

[j]
UR

2
+
!M

[j]
eff

2Veff

, (2.A8)
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dM
[j]
UR

dt
= ⇢

⇣
M

[j]
dairy

+M
[j]
heifer

⌘
� �M

[j]
UR

� �M
[j]
UR

, (2.A9)

dM
[j]
muck

dt
= (1� ") �M [j]

UR
� ⌘M

[j]
muck

� muckM
[j]
muck

, (2.A10)

dM
[j]
eff

dt
= ⌘M

[j]
muck

� !M
[j]
eff

Veff

, , (2.A11)

dM
[j]
tank

dt
= "�M

[j]
UR

� tankM [j]
tank

, (2.A12)

where j 2 {Cu,Zn}, and ā
[j]
footbath

is the constant rate of metals entering the main dairy shed scraper

channel due to footbath emptying.

The antibiotic mass equations of the continuous case are similarly defined:

dA
[j]
dairy

dt
= a

[j] (t)� ⇢A
[j]
dairy

+
�A

[j]
UR

2
� �[j]A

[j]
dairy

+
!A

[j]
eff

2Veff

, (2.A13)

dA
[j]
heifer

dt
= �⇢A[j]

heifer
+
�A

[j]
UR

2
� �[j]A

[j]
heifer

+
!A

[j]
eff

2Veff

, (2.A14)

dA
[j]
UR

dt
= ⇢

⇣
A

[j]
dairy

+A
[j]
heifer

⌘
� �A

[j]
UR

� �A
[j]
UR

� �[j]A
[j]
UR

, (2.A15)

dA
[j]
muck

dt
= (1� ") �A[j]

UR
� ⌘A

[j]
muck

� muckA
[j]
muck

� �[j]A
[j]
muck

, (2.A16)

dA
[j]
eff

dt
= ⌘A

[j]
muck

� �[j]A
[j]
eff

� !A
[j]
eff

Veff

, , (2.A17)

dA
[j]
tank

dt
= "�A

[j]
UR

� �[j]A
[j]
tank

� tankA
[j]
tank

, (2.A18)

where j 2 {Oxy,Cex}. Note that for both the continuous and the hybrid discrete-continuous farm

flow models, we model the antibiotic input (a[j](t) for j 2 {Oxy, Cex} as a time-dependent discrete

parameter based on the farm antibiotic usage records.

The bacterial dynamics for the flow, F : ⌦i ! R, growth G : ⌦i ! R and horizontal gene transfer

H : ⌦i ! R of each bacterial population are the same as in the discrete farm flow model (2.19), (2.21)

and (2.C25)-(2.C40).
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The flow of each bacterial population, R[x1,x2,x3,x4]
i , between the different farm areas is described by

the function F : ⌦i ! R such that:

F (R[x1,x2,x3,x4]
i ) =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

a⌫[x1,x2,x3,x4] E.coli � ⇢R
[x1,x2,x3,x4]
dairy

+
�R

[x1,x2,x3,x4]
UR

2 , for i = dairy

b⌫[x1,x2,x3,x4] E.coli � ⇢R
[x1,x2,x3,x4]
heifer

+
�R

[x1,x2,x3,x4]
UR

2 , for i = heifer

⇢

⇣
R

[x1,x2,x3,x4]
dairy

+R
[x1,x2,x3,x4]
heifer

⌘
� �R

[x1,x2,x3,x4]
UR

� �R
[x1,x2,x3,x4]
UR

, for i = UR

(1� ") �R[x1,x2,x3,x4]
UR

� ⌘R
[x1,x2,x3,x4]
muck

� muckR
[x1,x2,x3,x4]
muck

, for i = muck

⌘R
[x1,x2,x3,x4]
muck

, for i = eff

"�R
[x1,x2,x3,x4]
UR

, for i = tank
(2.A19)

G (R[x1,x2,x3,x4]
i ) =rR

[x1,x2,x3,x4]
i

�
1� x1↵[Cu] � x2↵[Zn] � x3↵[Oxy] � x4↵[Cex]

�✓
1� Ni

Nmax

◆

�
(1� x3)E[Oxy]

�
�
�
(1� x1)E[Cu] � (1� x2)E[Zn] � (1� x4)E[Cex]

� �
�
R

[x1,x2,x3,x4]
i

(2.A20)

Where Ni denotes the total bacterial population in the compartment i 2 {dairy, heifer, UR, muck, eff,

tank}, such that:

Ni =
X

Ri2⌦i

(Ri) , (2.A21)

and E
[j]
i

(for i 2 {dairy, heifer, UR, muck, eff, tank} and j 2 {Cu, Zn, Oxy, Cex}) denotes the antimi-

crobial effect on the bacterial growth rate in the case of bacteriostatic antibiotics (e.g. oxytetracycline),

or the antimicrobial effect on the bacterial death rate in the case of bacteriocidal antimicrobials (e.g.

copper, zinc or cefalexin).

E
[j]
i

=
E

[j]
max (Ai/Vi)

H[j]

MIC[j]
H[j] + (Ai/Vi)

H[j]
(2.A22)

And the horizontal transfer of resistance between bacterial populations is defined by the function

H : ⌦i ! R (the full definition of this H is given by (2.C25)-(2.C40) in Appendix 2.B.

However, the bacterial dynamics defined by the discrete farm practices differ from (2.20) since we

assume that all farm processes occur at a continuous rate, e.g. effluent flushing occurs at rate ! and

the emptying of the slurry tank at rate tank. Note that we do not consider the impact of the footbath

emptying here since since the emptying of the footbaths does not directly impact the inflow of bacteria,
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but rather and the antimicrobial effect this change from discrete to continuous is encapsulated by the

changes in M
[j]
i given in the equations (2.A7) - (2.A12). In the continuous model, we define the effect of

the farm processes on each bacterial population, R[x1,x2,x3,x4]
i , by the function Dcts. : ⌦i ! R such that:

Dcts.(R
[x1,x2,x3,x4]
i ) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

!R
[x1,x2,x3,x4]
eff
2Vdairy

, for i = dairy

!R
[x1,x2,x3,x4]
eff
2Vheifer

, for i = heifer

0, for i = UR, muck

�!R
[x1,x2,x3,x4]
eff
Vheifer

, for i = eff

�tankR
[x1,x2,x3,x4]
tank

, for i = tank

(2.A23)

The dynamics of each bacterial population in the continuous farm flow system are therefore described

by the system of equations defined by:

dR
[x1,x2,x3,x4]
i

dt
= F (R[x1,x2,x3,x4]

i ) + DCts(R
[x1,x2,x3,x4]
i ) + G (R[x1,x2,x3,x4]

i ) + H (R[x1,x2,x3,x4]
i ),

where i 2 {dairy, heifer, UR, muck, eff., tank} & [x1, x2, x3, x4] 2 {0, 1}4.

(2.A24)
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2.B Appendix: Model Parameters

The tables 2.B1-2.B6 give the typical parameter values used in simulations of the farm flow model.

Parameter Parameter Name Parameter Values Units Source

Volume Flow Parameters

a

Main dairy shed waste

volume input
1.238 ⇥103 L h�1

farm

observations, [42]

b

Bulling heifer shed waste

volume input
1.358 ⇥102 L h�1

farm

observations, [42]

⇢
Scraper channel natural

outflow rate
4.167 ⇥10�2 h�1 Assumed

�

Pump rate from UR to

slurry tank
9.625 ⇥10�2 h�1

farm

observations, [43]

�

Pump rate from UR to

scraper channels
4.010 ⇥10�3 h�1

farm

observations, [43]

"

Fraction of slurry

separated as liquid
0.950 - farm observations

muck Muck heap emptying rate 7.500 ⇥10�5 h�1 farm observations

⌘
Muck heap effluent run

off rate
2.083 ⇥10�5 h�1 farm observations

◆silage

Volume of effluent run off

from the silage clamp
2.382 L h�1 farm observations

Table 2.B1:

Parameter Parameter Name Parameter Values Units Source

Metal Parameters

a
[Cu]
feed

Copper input from daily

cow feed in main dairy

shed

2.985 ⇥103 mg h�1

farm

observations,

[35, 44]

a
[Zn]
feed

Zinc input from daily cow

feed in main dairy shed
1.090 ⇥104 mg h�1

farm

observations,

[37, 44]

b
[Cu]
feed

Copper input from daily

cow feed in bulling heifer

shed

8.954 ⇥102 mg h�1

farm

observations,

[35, 44]

b
[Zn]
feed

Zinc input from daily cow

feed in bulling heifer shed
3.269 ⇥103 mg h�1

farm

observations,

[37, 44]

Table 2.B2:
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Parameter Parameter Name Parameter Values Units Source

Antibiotic Parameters

�
[Oxy]

Oxytetracycline

degradation rate
3.269 ⇥103 h�1 [17]

�
[Cex]

Cefalexin degradation

rate
3.269 ⇥103 h�1 [17]

Table 2.B3:

Parameter Parameter Name Parameter Values Units Source

Bacterial Parameters

r Specific growth rate 8.000 ⇥10�2 h�1 [17]

�

Horizontal gene transfer

rate
1.000 ⇥10�6 h�1 [17]

NMax Carrying capacity 1.000 ⇥1010 CFU L�1 [17]

�

Natural death rate of

bacteria
4.684 ⇥10�2 h�1 Estimated, [17]

 E.coli

Concentration of bacteria

in slurry inflow
4.479 ⇥107

CFU L�1

h�1
[17]

⌫

Proportion of resistant

bacteria in slurry inflow
3.178 ⇥10�4 - Estimated, [17]

↵
[Cu]

Fitness cost of copper

resistance carried on

plasmid

2.921 ⇥10�1 - Estimated, [17]

↵
[Zn]

Fitness cost of zinc

resistance carried on

plasmid

2.921 ⇥10�1 - Estimated, [17]

↵
[Oxy]

Fitness cost of

Oxytetracycline

resistance carried on

plasmid

3.000 ⇥10�3 - [17]

↵
[Cex]

Fitness cost of Cefalexin

resistance carried on

plasmid

1.561 ⇥10�1 - Estimated, [17]

Table 2.B4:
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Parameter Parameter Name Parameter Values Units Source

Pharmacodynamic Parameters

MIC
[Cu]

Minimum inhibitory

concentration of copper
212.79 mg L�1 [45, 30, 17]

MIC
[Zn]

Minimum inhibitory

concentration of zinc
2760.31 mg L�1 [45, 30, 17]

MIC
[Oxy]

Minimum inhibitory

concentration of

Oxytetracycline

1 mg L�1 [17]

MIC
[Cex]

Minimum inhibitory

concentration of

Cefalexin

8 mg L�1 [17]

E
[Cu]
Max

Maximum death rate due

to copper
1.74 h�1 [45, 30, 17]

E
[Zn]
Max

Maximum death rate due

to zinc
1.37 h�1 [45, 30, 17]

E
[Oxy]
Max

Maximum death rate due

to Oxytetracycline
1 h�1 [17]

E
[Cex]
Max

Maximum death rate due

to Cefalexin
1 h�1 [17]

H
[Cu] Hill coefficient for copper 1.54 - [45, 30, 17]

H
[Zn] Hill coefficient for zinc 0.72 - [45, 30, 17]

H
[Oxy]

Hill coefficient for

Oxytetracycline
2 - [17]

H
[Cex]

Hill coefficient for

Cefalexin
2 - [17]

Table 2.B5:
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Parameter Parameter Name Parameter Values Units Source

Discrete Farm Parameters

Tfootbath

Days on which metal

footbaths are emptied

into the main dairy shed

scraper channels

{7, 14, 21, . . . , 364} days Assumed

Textra foot.

Days on which additional

metal footbaths are

emptied into the main

dairy shed scraper

channels

{21, 42, 63, . . . , 357} days Assumed

Teff. flushing

Days on which MHE is

used to flush out the

main dairy shed and

bulling heifer shed

scraper channels

{28, 56, 74, . . . , 364} days Assumed

TEmpty Tank

Days on which the slurry

tank is emptied
{50, 110, 170, . . . , 350} days Assumed, [17]

Table 2.B6:
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2.C Appendix: Horizontal Gene Transfer Equations

We define the horizontal transfer of resistance between bacterial populations by the function H : ⌦i ! R

such that:

H (Si) = � �Si
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Chapter 3

Modelling the impact of farm waste water management
on antimicrobial resistance in dairy farms
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Abstract

Dairy slurry is one of the world’s largest sources of environmental contamination with an-

timicrobial resistant genes and bacteria. However, it is not known to what extent waste

water management practises on farms can contribute to or control antimicrobial resistance

(AMR) in slurry. We use mathematical modelling, informed by detailed anthropological re-

search, to investigate how AMR depends on farm infrastructure and practises around waste

water use. We find that experimentally observed temporal fluctuations in cephalosporin-

resistant Escherichia coli can be explained by periodic farm activities, notably the emptying

of spent copper and zinc footwash into the slurry system, leading to co-selection of metal

and antibiotic resistance. The model shows that resistance to cephalosporins is also more

observable when relevant genes are encoded chromosomally rather than on plasmids, a find-

ing backed up with genome sequence analysis. Resistance is also predicted to be reduced in

conditions with lower growth rate and higher environmental death rate. In contrast, tempo-

ral fluctuations in cephalosporin resistance were not explained by the re-use of muck heap

effluent, despite survival of cephalosporin resistant Escherichia coli in the muck heap even

in cold weather. We conclude that farm practises can have a material impact on AMR in

slurry spread on land, and so provide farm-specific opportunities to reduce AMR pollution

beyond reduction of overall antibiotic use.
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3.1 Introduction

Antimicrobial resistance (AMR) is one of the most important global public health problems. It is es-

timated that there are over 700,000 deaths a year attributable to AMR across the globe, and, unless

suitable countermeasures are taken, that number is predicted to rise to 10 million by 2050 [1]. AMR

is driven by antibiotic use; the majority (73%) of antibiotic (Ab) sales are for use for food-producing

livestock [2]. The use of Abs in agriculture can result in drug-resistant strains infecting human popu-

lations through the food chain [3, 4], or may lead to the transfer of antibiotic resistance genes (ARGs)

from livestock-associated bacteria to human-acquired infections [5, 6, 7]. The importance of mitigating

the risks of AMR in the agricultural sector has been recognised by many countries, including the UK

and European Union [1, 8], with reductions and restrictions being imposed on Ab use in agriculture,

particularly on critically important Ab. However, despite a 50% reduction in Ab use in the UK agri-

culture sector since 2014 [9], use still remains high, representing 36% of the total UK Ab use [10], with

consequent risk of spread of ARGs and AMR.

In addition to antibiotics, other antimicrobials such as metals (copper and zinc) and other chemicals

(e.g. formalin) are widely used across farms globally, particularly in footbaths to prevent lameness in

livestock - a prevalent concern in dairy and sheep farming [11]. Metals and other antimicrobial agents

(such as formalin and glutaraldehyde) are known to have a coselective effect on antibiotic resistance [12],

allowing for the persistence of ARBs in the absence of antibiotic selective pressures [13, 14, 15, 16, 17, 18].

Cattle account for approximately 50% of global livestock (by Livestock Standard Units) including

approximately 265 million dairy cows (www.faostat.org). These are estimated to produce 3 billion tonnes

of manure per year. This study is based in the UK, whose agriculture sector produces approximately 83

million tonnes of livestock manure each year, with a significant amount of this due to dairy cattle farming

(28 million tonnes) where 63% of the dairy waste produced is undiluted liquid slurry [19]. Liquid slurry

is often stored in slurry tanks or lagoons for several months, principally to avoid spreading on land due

to Nitrogen Vulnerable Zone restrictions. Dairy slurry is known to contain bacteria resistant to many

antibiotics, including ESBL-producing E. coli[20, 21]. The spreading of slurry/manure onto field soil as

fertiliser may then release ARGs and ARBs into the surrounding environment, which may then allow

for potential transmission to human pathogens [22]. Studies of fields that have been spread with dairy

slurry have demonstrated increased levels of resistance present [23, 24, 25]. Similar studies have shown

that crops fertilized with manure can accumulate ARGs associated with the slurry [23, 26, 27, 28].

Thus there is a clear need to reduce AMR contamination from agricultural waste. However, further

reduction in usage of Ab will be extremely challenging for countries that have already made major

reductions, due to the need for antibiotics in the care and welfare of diseased animals. Therefore it
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is appropriate to consider whether changes in farm management, infrastructure or practice can reduce

selection for resistance[21]. Such changes are often difficult to evaluate empirically, because they would

need expensive changes to infrastructure, or changes in management practise, with consequent welfare or

business risks. Mathematical modelling is a powerful tool in such studies, because alternative strategies

can be readily evaluated through simulations, and parameters or processes to which adverse outcomes

(i.e. proliferation of ARBs) are especially sensitive can be identified, which serve as potential points of

control[21].

Most mathematical models studying the impact of AMR in dairy farms (or other livestock farm

environments) consider a single area of a farm [29, 30, 12, 31, 21], treat the entire farm as a single

compartment [32], or are interested in within-host dynamics of the livestock [33]. While such approaches

are undoubtedly useful, to our knowledge, there are no modelling studies that investigate the effects of

farm layout, the farm practices associated across different areas of the farm, and the impact these may

have upon the emergence and/or spread of AMR across the farm.

In this study, we specifically aim to understand how fluctuations in important ARBs could arise as

a result of farm infrastructure and practise. This is motivated by previous empirical work, in which we

observed the sporadic appearance of ESBL-producing E. coli in the slurry tank [21]. At the core of this

paper is the development and analysis of a multi-scale whole-farm mathematical model for AMR, that

describes the flow of waste water around a dairy farm, and the spread of resistance within and between

farm compartments. In order to develop the model, we have carried out anthropological research on

farm management practise on a typical high performance dairy farm, that has allowed us to identify

deep understanding of farm operations, which are then incorporated into the model. Moreover, we

have also taken additional microbiological measurements on E. coli counts and genome sequencing in

different farm locations, in order to support the model process. We used the model to explain ARB

outcomes and fluctuations, testing hypotheses derived from the ethnographic and microbiological data,

by using sensitivity analyses and counterfactual simulations. We also test whether resistance levels will

depend upon plasmid or chromosomal carriage of genes conferring cephalosporin resistance, backed up

with genome sequence analysis. In this way, we show how an interdisciplinary approach, combining

mathematical modelling, anthropology and microbiology, can show how large-scale farm activities can

have a material impact on AMR at a molecular genetic level.
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3.2 Materials & Methods

Dairy Farm Background

The study considers a mid-sized, high performance commercial dairy farm in the East Midlands, UK,

housing 200 milking Holstein Friesian cattle at the time of study. Milking cattle are housed indoors on

concrete, and all excreta are regularly removed from cattle yards by automatic scrapers into a drainage

system terminating at the 3 M litre slurry tank. The drainage system also receives used cleaning materials

and wash water, used footbath, waste milk, and rainwater runoff. An automated screw press (Bauer

S655 slurry separator with sieve size 0.75 mm; Bauer GmbH, Voitsberg, Austria) performs liquid-solid

separation of the slurry tank influent. Liquids enter the slurry tank semi-continuously, while solids

are removed to a muck heap. Calves, dry cows, and heifers are housed separately from the milking

cows. Faeces and urine from calves drain into the common drainage system, whilst dirty straw from calf

housing is taken directly to the muck heap. Excess slurry can be pumped to an 8 M litre lagoon for long

term storage. Slurry is used to fertilize grassland and arable fields. Practice at this farm is typical of

management methods at high-performance dairy farms, although all farms vary.

Ethnographic Methods

The farm flow model was informed by ethnographic participant observations with farm staff on the dairy

farm. Ethnography is a well-established qualitative method in rural research [34]. At its core it involves

detailed and prolonged engagement with a specific actor or set of actors within their social context. This

method is valuable in elucidating habitual or ‘hidden’ practices that would not be readily highlighted

through seated interviewing or a survey as was the case in this study. The ethnographic research was

conducted over a four-month period beginning September 2017. It involved two weeks of continuous on-

farm participant-observations shadowing farm staff through their daily routines. Following this, the farm

was visited regularly throughout the remaining period for short engagements (one to two days or half

days) to observe specific re-occurring practices of interest and in response to events of interest arising

on the farm. All members of staff were shadowed at different times over this period. Observations

focused on the farm staff’s everyday practices of animal management, animal disease diagnosis and

treatment, and waste management. Further detail on the method and the broader ethnographic findings

are reported in Helliwell, et al. (2019, 2020) [35, 36] These participant observations identified additional

waste management infrastructure and practices that resulted in two feedback loops within the system

that had not been previously identified through discussions with farm staff. These feedback loops are

identified via the yellow and green arrows on the farm flow diagram Figure (3.1).
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Mathematical Model

We have developed a mathematical model ((A1)-(A40) in Supplementary Material A) to evaluate the

risk of the spread of AMR across bacterial populations within dirty water as it flows around different

areas of a typical UK dairy farm described in figure 3.1, using a multiscale, hybrid discrete-continuous,

compartmental system of ordinary differential equations (ODEs). The six different farm compartments

are described by a volumetric flow ODE model, to describe the flow of dirty water (Vi) between the com-

partments, in which the rates of flow between the different compartments follow first order mass action

kinetics, and materials within the waste flow between compartments have the non-variable fractional

flow rates. The flow model is then extended to include the concentrations of copper and zinc (M [Cu]
i

and M [Zn]
i

), and antibiotics (A[Oxy]
i

and A[Cex]
i

). The flow model was coupled with a bacterial resis-

tance transfer ODE model[21], that describes populations of antimicrobial sensitive (Si) and resistant

(R[x1,x2,x3,x4]
i

) bacteria in each of the six compartments, where [x1, x2, x3, x4] 2 {0, 1}4, such that x1 = 1

if the population is resistant to copper, while x1 = 0 if it is sensitive to copper, and similarly x2, x3

and x4 reflect zinc, oxytetracycline and cefalexin resistant bacteria. All the parameters of the model are

described in table A1 with realistic value ranges for each parameter based on ethnographic observations

of the Sutton Bonington dairy farm and available information in the existing literature.

We assume that the amount of volume of daily waste inputs in the main dairy shed (a) and bulling

heifer shed (b) (i.e. from faecal matter, trough water, footbaths, bedding etc.) are constant. Copper

and zinc are used in the cattle feed for growth promotion purposes and a significant percentage of these

metals are not absorbed by the cow (⇡ 99% and 85% for Cu and Zn respectively [37]) and enter the

slurry flow system in the cow faeces. We also assume that the solid slurry matter separated onto the

muck heap has no residual liquid and effluent run off is determined only by rainfall (⌘).

On top of the continuous flow model, three farm processes are represented by discrete processes within

the model: the emptying of metal footbaths into the main dairy shed scraper channel; the flushing of

the scraper channels with muck heap effluent; and the emptying of the slurry tank. To model these

processes, we assert that at time Tfootbath that the volume of the footbath (Vfootbath) and mass of copper

and zinc (a[Cu]
footbath

& a[Zn]
footbath

) is instantly added to the slurry volume and metal mass in the main

dairy shed respectively. The emptying of the slurry tank is modelled similarly where at time TTank, the

slurry tank compartments are emptied. We model the tank as not being completely emptied and that

a small proportion (0 < ✏Tank ⌧ 1) of the volume, mass of metals and antibiotics and population of

bacteria in the slurry tank contents remains. Similarly, at time TEff. Flush we assume that a small fraction

(0 < ✏Tank ⌧ 1) of the contents in the slurry tank contents remains and (1�✏eff)Veff/2 is added to the main

dairy and bulling heifer sheds each.
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Figure 3.1: Schematic diagrams explaining the processes included in the farm flow model.

(A) Bacterial growth and death processes: bacteria growth occurs according to a logistic-style growth

determined by the carrying capacity of the slurry. The rate of growth may be reduced by the fitness cost

associated with carriage of ARGs on plasmids, or by the effects of bacteriostatic antibiotics. The bacterial

death rate is determined by environmental conditions (e.g. due to unsuitable temperature, pH, oxygen

levels, or predation by phage, protozoa or bacteria), as well as due to the toxic effects of heavy metals

and bactericidal antibiotics. (B) Horizontal gene transfer: this diagram shows the possible pathways

for resistance to spread between different bacterial sub-populations. Blue arrows show sensitive bacteria

acquiring a single resistance gene, green arrows and yellow arrows indicate the paths where bacteria

become resistant to 2 or 3 antimicrobials respectively, and red arrows bacteria acquiring resistance to all

4 antimicrobials considered in this study. (C) A flow diagram showing the different compartments of

the dairy farm, and how waste flows between the compartments. For a full description of this diagram,

see Figure 2.1 in Chapter 2. (D) Antibiotic processes: antibiotics decay according to first-order mass

action kinetics.

Antibiotics enter the slurry flow system in the main dairy shed sick pens as we assume the antibiotics

pass into the scrapers channels in the sick pen cow’s faeces and we model the antibiotic input (a[j](t) for
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j 2 {Oxy, Cex}) as a time-dependent discrete parameter based on the farm antibiotic usage records. We

model the degradation of the antibiotics using previously identified first-order degradation kinetics[21].

The microbiological model is a subset of the model previously described[21], but with four rather than

six antimicrobials (copper, zinc, oxytetracyline and cephalexin).

We also consider a variation of the farm flow model where cefelexin-resistance is chromosomally-

encoded. As cefelexin-resistance is now chromosomal, there is no fitness cost for cefelexin-resistance (i.e.

↵[Cex] = 0) and cefelexin-resistance genes can not be transferred via conjugation (although resistance to

oxytetracycline, zinc and copper can still be spread via HGT). The system of equations (C17) describing

the farm flow model with chromosomal cefelexin-resistance can be found in supplementary material C.

Simulations

We simulated our farm flow model using MATLAB R2020 [38]. We produced time course simulations

with the standard parameter values (Table A1) using the ODE45 solver to show the concentration of the

different bacterial populations over time. For all simulations of the model, we used the steady state values

of the continuous farm flow model for the initial conditions of the slurry volume and metal equations,

and assume that the initial volume of the slurry tank is 1 ⇥106 L and the effluent tank has recently been

used and in a near empty state (Veff(0) = !) to avoid division by zero errors in the HGT terms of the

effluent bacterial populations). We initialise the bacterial populations in our model using the average

E. coli counts sampled from each area of the farm and assume the proportion of each distinct resistant

bacterial population is the same.

Sensitivity Analysis

We perform a global sensitivity analysis of bacterial parameters and discrete farm practice parameters

to determine what factors have the most influence on the concentration of oxytetracyline- and cefelexin-

resistance within the slurry tank. For each parameter, we take 1000 parameter values sampled from

the feasible parameter space (Table B7 and B8) using the Latin hypercube sampling method. We then

complete a local one-at-a-time sensitivity analysis for each parameter values and calculate the relative

sensitivity of each parameter, as described in [29]. The relative sensitivity, SX
p

, of the output of interest

X relative to a change in the model parameter p is given by:

SX

p
=

�X/X
�p/p

.

Due to the significant oscillatory nature of the model, we were unable to consider the sensitivity at

the steady state, so instead we evaluated the sensitivity of the max and mean of the resistant bacteria
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population over the time period. We use MATLAB R2020b [38] to carry out the sensitivity analysis and

plot the outputs as box plots.

Microbiological Sampling

Liquid samples were collected from different areas on the farm on two different dates. On 21st November

2017, samples were taken from the dairy lane inside, dairy lane outside dairy shed scraper channel,

bulling heifer shed scraper channel, underground reservoir, slurry tank, heifer shed (older cows), muck

heap effluent and silage clamp effluent. On 12th December 2017, samples were taken from the heifer shed

with older cows (as before), the heifer shed with younger cows, muck heap straw, muck heap effluent,

slurry tank, feed from the floor, concentrated feed pellets and straw from the heifer shed. Escherichia coli

strains were isolated using Tryptone Bile X-Glucuronide (TBX) or MacConkey agar or TBX/MacConkey

supplemented with 16µg ml�1 ampicillin (AMP), or 2 µg ml�1 cefotaxime (CTX); or on CHROMagar

ESBL TM agar. Putative E. coli isolates were subcultured onto TBX agar or TBX agar supplemented

with 2 µg ml�1 CTX. E. coli strains were confirmed using oxidase and catalase tests as described[20].

3.3 Results

Farm practices leads to high variability in the bacterial load across the farm

Time course simulation of the farm flow model (figure 3.2) using the default parameter set (table A1-A6)

shows high variability in the bacterial populations corresponding to different farm practices. First, we

observe oscillations with a frequency of 7 days in all bacterial populations across the dairy shed, bulling

heifer shed, underground reservoir and slurry tank, associated with the emptying of the metal footbaths

into the scraper channels, as this causes significant increases in the metal concentration within the slurry

(Cu and Zn increases by up to 115-fold and 38-fold respectively in the main dairy shed). This results in

increased bacterial death due to the antimicrobial effects of copper and zinc, as we see the total bacterial

concentration in the main dairy shed fall by approximately 98% each time the footbaths are emptied.

A second timescale is associated with the use of additional metal footbaths every 21 days (figure

3.2). This leads to increased reductions in the total bacterial population, and we see the Ab-sensitive

bacteria sharply decline (from the order of 106 CFU/L to 104 CFU/L) while the resistant populations

are significantly less affected by the increased metal concentration, leading to an significantly increased

resistant proportion of the bacterial population, especially those resistant to copper and zinc (from 0.5%

to 20%).

Finally, there is a third time scale of fluctuations within the slurry tank associated with emptying of
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the tank. We observe increases in the concentration of all bacterial populations due to the tank being

emptied before the concentrations return to the continuous steady state. However, the emptying of the

slurry tank has a less pronounced effect on the bacterial populations than the effects of adding metal

footbaths. No observed fluctuations in bacterial dynamics appear to be associated with the effluent

flushing of the scraper channels every 28 days.

Figure 3.2: Time course simulations of farm flow model where resistance is plasmid-encoded.

(A) Time course simulation showing the concentration of bacterial populations across different areas

of the farm over a time period of 365 days. (B) Figure showing the relative proportion that each sub-

population (sensitive, Cu-, Zn-, Oxy- and Cex-resistant bacteria) make up of the total bacterial load

over the time course. We simulated this time course using parameter values gathered from farm data

(given in supplementary material A). In this simulation, resistance genes to oxytetracycline, cefelexin,

copper and zinc are assumed to be encoded on plasmids and may be transferred horizontally between

populations.
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However, the fluctuations of cephalexin resistant bacteria in these simulations are considerably smaller

than those observed empirically[21]. Specifically, experimental sampling of the slurry tank found E. coli

counts with spikes up to approximately 105.6CFU L�1, while simulation of our farm flow model only

suggests increases in Cex-resistance up to approximately 103.5CFU L�1. In order to identify possible

sources of this discrepancy, we carried out a global sensitivity analysis of the model to its continuous

process parameters.

Figure 3.3: Global sensitivity analysis of bacterial parameters. Boxplots of the relative sensitivity

of the average oxytetracycline- and cefelexin resistant bacteria populations in the slurry tank to ±1%

change in each key bacterial parameter. This sensitivity analysis considers 1000 values of each individual

parameter sampled from the realistic parameter ranges (given in supplementary material A) by the Latin

hypercube sampling method. We observe that each resistant population is most sensitive to the fitness

cost associated with plasmid-borne resistance (↵[i]), and the bacterial death rate due to environmental

factors such as temperature, pH, or predation (�S). Conversely, we note that the sensitivity coefficients

of the degradation rate of both antibiotics (�Oxy and �Cex ) and the rate of horizontal gene transfer (�)

are negligible for both resistant bacterial populations.
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Concentrations of antimicrobial-resistant bacteria are most sensitive to the

fitness cost and the natural bacterial death rate

We conducted a global sensitivity analysis of the biologically-relevant parameter space to determine those

parameters that most affect the concentration of resistant bacteria across the farm in our model (figure

3.3). We find that the antimicrobial-resistant bacterial population levels are most sensitive to the fitness

cost of carrying resistance (↵[j]) and the environmental bacterial death rate (�).

The average concentration of resistant bacteria is also shown to be sensitive to the proportion of

resistant bacteria (⌫) entering the farm flow system in the heifer waste in the main dairy and bulling

heifer sheds and also to the bacterial growth rate (r).

Interestingly, the sensitivity analysis showed that the average concentration of both oxytetracycline-

and cefalexin-resistant bacteria are not sensitive to variation in the rate of horizontal gene transfer (�).

This contrasts with the original slurry tank model [29], likely due to the fact that this model only

considered the slurry tank in isolation and did not include factors like natural death rate (�) or metal

co-selection. We also observe that our sensitivity analysis results are consistent with observations of

similar mathematical models considering metal co-selection [12].

Figure 3.4: Parameter analysis of the fitness cost of carrying cefelexin resistance against

the maximum bacterial populations. This figure shows how the maximum bacterial populations

in the hybrid discrete-continuous farm flow model vary as the fitness cost of cefelexin resistance varies

across the parameter space ↵[Cex] 2 [0, 1] .
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Figure 3.5: Time course of farm flow model when cefelexin-resistance is chromosomal (A) A

schematic diagram describing the horizontal gene transfer dynamics in the case where cefelexin resistance

is encoded chromosomally (rather than on a plasmid). As cex-resistance is located on the chromosome,

bacteria carrying cex-resistance do not incur a fitness cost as in figure 3.2. Metal and oxytetracline

resistances are still plasmid mediated in this case and transfer of these resistances can occur horizontally,

however, cex-resistance cannot be transferred from one cell to another horizontally. Bacteria labelled

in red denotes bacterial populations which have cefelexin-resistance, while bacteria labelled in black do

not. (B) Time course simulation of farm flow model where Cex-resistance is chromosomally-encoded

(described in supplementary material C). (C) Figure showing the relative proportion that each sub-

population (sensitive, Cu-, Zn-, Oxy- and Cex-resistant bacteria) make up of the total bacterial load

over the time course. This time course uses the same model parameters as in the simulation where

cefelexin-resistance is plasmid-encoded (figure 3.2).

Spikes in ESBLs are consistent with chromosomal carriage of Cex-resistance

genes

Following the global sensitivity analysis, single parameter variation analysis of the maximum bacterial

populations as the fitness cost of carrying a plasmid with cefelexin-resistance genes is varied (figure
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3.4) indicates that the spike concentration of cefelexin-resistant bacteria only reaches the experimentally

observed maximum levels in the periodic spikes when the fitness cost is below 10�2. We therefore

simulated the scenario where cefelexin resistance is encoded on the chromosome instead of the plasmid.

In this simulation, we assert that cefelexin-resistance confers no fitness cost, but also that the resistance

genes for cefelexin can no longer be transferred horizontally.

In simulations of the chromosomal cefelexin-resistance case (figure 3.5), the temporal dynamics are

similar to the case where cefelexin-resistance is plasmid-encoded (figure 3.2). However, the amplitudes of

the spikes in cefelexin-resistant populations due to periodic footbath emptying are considerably greater

when resistance is chromosomally encoded as compared with plasmid-enocded: in the plasmid case,

the proportion of the bacterial load possessing cefelexin-resistance fluctuates between 0.1% and 11.9%,

whilst with chromosomal encoding, the proportion of the bacterial load fluctuates between 0.2% and

21%. These concentrations are more consistent with the observed levels of spiked ESBL-producing E.coli

from the slurry tank.

Resistant bacterial populations are insensitive to effluent flushing and highly

sensitive to heavy metal footbath use

Two different farm activities could potentially explain the regular re-appearance of ESBL-producing

E. coli in the slurry tank: periodic flushing the scraper channels with muck heap effluent, leading to

possible re-seeding of the farm with ESBLs living in the muck heap; or periodic emptying of the metal

footbaths into the slurry tank, leading to possible co-selection of ESBLs by copper and zinc. Support

for the first hypothesis is given by microbial counts of E. coli cells grown on TBX/CTX media in

different farm location. On 21st November, ESBL E. colis were detected in 7 of the 9 locations tested,

including the heifer shed, scraper channels, underground reservoir, slurry tank and muck heap effluent.

On 12th December, ESBL E. coli cells were only detected in the muck heap effluent, and not in any

other compartments. From 8th December that year, the temperature had been below 2�C, and the

temperature was -0.5�C at the time of sampling. The muck heap is the one part of of the external farm

environment with mesophyllic temperatures, and so it is reasonable that use of muck heap effluent could

lead to spread of ESBL E. coli cells to other parts of the farm.

However, a global sensitivity analysis of the farm management parameters in this model (figure 3.6A)

showed that the long-term average levels of antimicrobial resistance around the farm are extremely

sensitive to the metal footbath emptying frequency, and not sensitive to the scraper channel effluent

flushing frequency, nor to the volumes used for the metal footbath or effluent flushing. Negative sensitivity

was seen to the frequency of slurry tank emptying, as would be expected, because of the physical removal
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of bacteria. This is a clear indication that it is the metal footbath use that is responsible for spikes of

ESBLs rather than the use of muck heap effluent.

To investigate the footbath use further, we show the impact of the different bactericidal antimicrobials

(cefelexin, copper and zinc) to the death rate of sensitive bacteria (�S) 3.6B. Due to the limited use and

relatively high degradation rate of cefelexin, it has an extremely limited impact on �S across the different

areas, where we see the most impact in the main dairy shed reaching a brief maximum of 6.7% of �S ,

however, it largely has a near-zero impact on the death rate of sensitive bacteria in all areas. The

bactericidal effects of copper and zinc have a much more pronounced effect on �S . There are substantial

oscillations in the impact of both copper and zinc across the farm due to the metal footbath emptying

in the main dairy shed once a week: we see the most considerable impact of this in the main dairy shed

and UR where the effect of copper dramatically increases to 80% of �S when the footbaths are emptied

from a minimum of 0.01%, though there is still considerable variation in the bactericidal effect of copper

in the slurry tank oscillating between 25.7% and 63.0% of �S . We also see substantial oscillations in the

bactericidal effect of zinc on the sensitive death rate due to the footbath emptying: both the main dairy

shed and UR varying between 15% and 42% while the slurry tank fluctuates between 24.0% and 39.9%.

Comparing the concentrations of copper and zinc in the different areas of the farm with the minimum

inhibitory concentrations (MIC) of copper and zinc (103.7 mg/L and 1205.8 mg/L respectively [21]), we

observe that the concentration of copper in the main dairy shed and underground reservoir is well in

excess of the MIC (477.6 mg/L and 234.2 mg/L), while the concentration of zinc in these areas when

the footbaths are emptied (521.8 mg/L and 260.1 mg/L) remains below the MIC of zinc when the metal

footbath is emptied, hence why copper contributes up to 80% of �S in the areas of the farm.

In time course simulations of both plasmid-encoded (figure 3.2) and chromosomally-encoded (figure

3.5) resistance farm flow models we observe significant variation in the bacterial population due to the

bactericidal effects of Cu and Zn when the metal footbaths are emptied into the slurry flow. A closer look

at the resistant profiles of the different resistant bacterial populations shows that bacteria with resistance

to both copper and zinc quickly become the dominant resistant populations, while bacterial populations

which have resistances to oxytetracycline and/or cefelexin but are not resistant to both metals have trivial

population size. For example, the average concentration of E. coli in the slurry tank with chromosomally

encoded cex-resistance is approximately 5 CFU/L when there is no metal resistance, and approx. 20

CFU/L and 100 CFU/L when the bacteria has no Cu-resistance and Zn-resistance respectively. This

suggests that the farm practice of emptying the heavy metal footwash into the slurry waste system inputs

excessive metal into the systems creating a potentially co-selective environment.
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Figure 3.6: (A) Global sensitivity analysis of the discrete farm management parameters. Boxplots

of the relative sensitivity of the average oxytetracycline- and cefelexin resistant bacteria populations

in the slurry tank to +1% change in key parameters for the discrete farm processes. This sensitivity

analysis consider 1000 values of each individual parameter sampled from the realistic parameter ranges

(given in supplementary material A) by the Latin hypercube sampling method. We observe that the

system is extremely sensitive to the frequency of the emptying of metal footbaths. (B) This figure

shows the what proportion of the overall sensitive bacterial death rate (�S) over the time period by each

bactericidal antimicrobial. At each time point, the total death rate for sensitive bacteria is the sum of

the environmental death rate (�) and the bactericidal effects of cefelexin (E[Cex]i ), copper E[Cu]i )

and zinc E[Zn]i ).

Further confirmation of this finding can be given by running counterfactual simulations, in which

either the footbaths are no longer emptied into the slurry system (Figure 3.7), or in which the muck heap

effluent is no longer reused (Figure 3.8). In the first counter-factual scenario (Figure 3.7), the proportion

of the total bacterial population carrying resistance is substantially lower than in the standard model

simulations: in the case where cex-resistance is carried on the plasmid, oxytetracycline- and cefelexin-

resistant sub-populations on average consist of 0.08% and 0.03% of of the total bacterial load (compared

to 1.98% and 1.19% in the standard model), while in the case where cex-resistance is contained on

the chromosome, these sub-populations both make up on average 0.14% of the total E.coli population
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(compared to 2.65% and 2.67% in the chromosomal resistance case of the standard model). However,

despite significantly lower proportions of resistance in this counter-factual scenario, we can see in the time

course simulation (figure 3.7A) that the total bacterial load across the farm is significantly higher ( 109

CFU/L compared to 106 CFU/L). Without the system receiving the repetitive bactericidal injections of

the metal footbaths, the selective pressures for copper and zinc resistance are removed, and we observe

significant rises in oxytetracycline-resistance to 106 CFU/L in the slurry tank.

In the case where cex-resistance is chromosomally encoded (Figure 3.7B), we also observe a sustained

increased concentration level of 106 CFU/L in the slurry tank (similar to oxy-resistance), however,

in the case where cex-resistance is plasmid-mediated, the concentration of cex-resistant bacteria in the

slurry tank varies between 103.7 and 104.3 CFU/L (slightly higher than the maximums reached in to

the standard model, 103.8 CFU/L). The significantly increased bacterial load appears to be a result of

copper and zinc resistances no longer being necessary for Cex- and Oxy-resistant bacterial populations

to survive as the bacterial cells are no longer exposed to high levels of antimicrobial metals from the

footbaths ,and hence the fitness cost for carrying these genes is no longer outweighed by the excess

presence of copper and zinc from the metal footbaths.
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Figure 3.7: Time course of counterfactual case of farm flow model (with no metal footbaths).

(A) Plasmid-encoded resistance (B) Cefelexin-resistance encoded on the chromosome. The counterfac-

tual simulations of both plasmid and chromosomal resistance case use the same model equations and

parameters as in previous simulations (given in supplementary material A-C), however, we no longer

include the emptying of the metal footbaths: i.e Tfootbath = Textra foot. = ;. We observe that in both (A)

and (B), the removal of the metal footbaths from the system results in a reduction in the proportion of

resistance, but also a significant increase in the total bacterial concentration to over 109 CFU/L.
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Figure 3.8: Time course of counterfactual case of farm flow model with no effluent flushing

feedback loop. (A) Plasmid-encoded resistance (B) Cefelexin-resistance encoded on the chromosome.

The counterfactual simulations of both plasmid and chromosomal resistance case use the same model

equations and parameters as in previous simulations (given in supplementary material A-C), however,

we no longer include the flushing of the main dairy and bulling heifer shed scraper lanes with muck heap

effluent: i.e TEff. Flushing = ;. We observe that in both (A) and (B), the removal of the effluent flushing

feedback loop results in no significant difference in the bacterial populations across the farm compared

to Figure 3.2A and 3.5B.

73



3.4 Discussion

Farm practices can have a material impact on AMR dynamics

The farm flow model we have developed uses a multiscale modelling approach that exhibits behaviour not

captured by more homogeneous approaches. Many mathematical models considering AMR in agricultural

settings have focussed on a within-host model [33, 39] or on a particular area of the farm, e.g. cattle shed

[40], manure heaps or slurry tanks [29, 12, 31, 21]. While within-host models do provide scope to consider

the effects of farm management on AMR, for example antimicrobial usage [32] or the effectiveness of

sequestering of animals undergoing treatment [39], it is not practical for these models to assess the

effects of structural farm management practices. Other models considering the spread of AMR in slurry

tanks can provide useful analysis of farm management such as the role of water troughs in maintaining

bacterial loads in cattle pens [40], how altering slurry storage time [29, 31] or the use of a two-tank

slurry storage system [21] may control spread of resistance in dairy slurry. However, such models may

not capture salient effects of practices in other areas of the farm as we have observed in the comparison

of our farm flow model and a model focussing on the slurry tank only. This suggests that the multiscale

modelling approach to consider the wider farm layout could be an important modelling tool in future

work considering how farm practices may affect bacterial dynamics and the spread of resistance, given

the wide view of the modelling approach and the versatility of a modelling approach to consider alternate

scenarios for comparison through altering certain parameters - such as how we have considered counter-

factual scenarios where the farm uses an alternative to metal footbaths in the dairy sheds.

While our farm flow model is uniquely designed to model the layout of the particular farm considered

in this study, the use of sensitivity analyses provide generality by considering a wide range of realistic

farm parameters. Moreover, the model could readily be adapted to the layout and waste management

practices of other farms by the adjustment of the farm specific parameters and introducing (or removing)

compartments dependent on the farm layout.

The inherent flexibility of this modelling approach to explore variations on the farm system that

would be a serious challenge to test empirically can provide insight into the effect that making changes

to farm management practices may have on the dynamics of AMR within bacterial communities on

the farm. From seeing the significant impact of the emptying of the heavy metal footbaths on the

system creating a potentially co-selective environment, one may consider the simplest solution may be to

stop emptying heavy metal footbaths into the main dairy shed scraper lanes. However, counter-factual

simulations of the farm flow model (figure 3.7) demonstrated that while this may reduce the proportion

of antibiotic resistance within the slurry flow, the absence of the repeated bactericidal shockloading from

excess metals results in an overall bacterial population that is 1000 time larger than the previous case,
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and the oxytetracycline- and cefelexin-resistant E.coli populations being at a greater and more sustained

concentration with the absence of the periodic oscillations created by the weekly emptyings.

These unexpected consequences also sit in addition to more practical issues around the removal of

metal footbaths from the system. There is a significant question of how would the waste footwash be

disposed of without emptying into the slurry system. It cannot be allowed to run-off into the environment

due to environmental regulations as the elevated levels of copper can have a toxic impact on the envi-

ronment potentially impacting on vegetation and wildlife. Similarly emptying footwash into local sewer

systems is not an acceptable solution as this may lead to contamination of the public drinking water

supply if wastewater treatment plants are unable to suitably remove the elevated heavy metal levels. In

the UK it is possible to remove waste footbath through a licensed contractor but this solution is likely

to be very expensive in the longterm. This may lead to the assumption that metal footbaths should not

be used , but heavy metal footbaths are commonly used in dairy farms across the UK to prevent digital

dermatitis, an issue that causes 20-25% of lameness in cattle [41], so an alternative option would need to

be explored. Formalin footbaths are also available as an option, however, this may present other issues:

for example formalin is listed as a Known Human Carcinogen (KHC) [42].

Another possible option would be to continue the usage of metal footwash and explore the possibility

of removing copper and zinc from the the slurry system after the footbaths have been emptied via

adsorbents [43], however, such a solution may not be practical or affordable on such a scale, and may

have equally surprising consequences as observed in our counter-factual simulations.

While the model demonstrated the significant impact of the disposal of footbaths into the waste flow,

analysis of the model also showed that the feedback loops in the farm slurry system due to recycling of

muck heap effluent to clear scraper channels has a negligible impact on the AMR profile of the farm in

the model. However, the importance of the muck heap and effluent run-off from it should not necessarily

be discounted. Our understanding of the muck heap is far more limited due to a lack of study of the

muck heap (compared to the slurry tank). Despite the limited study, antibiotic residues within the

muck heap solids have been identified including some that have not been used on the farm for several

years [21]. As farms may pivot away from the usage of antibiotics that have human-use, the long term

retention of antibiotics within the muck heap, acting like an archive of antibiotics historically used on the

farm, may be problematic and may lead to the co-selection and accumulation of resistances to different

antibiotics. It is important to note that, in the interest of computational complexity, this model takes

a simplified view of the muck heap by assuming the homogeneity of all factors (temperature, pH, COD,

etc) throughout the entire compartment and neglects the possible effects of adsorption of metal ions,

antibiotic residues and bacteria. An expanded model considering spatial inhomogeneities and adsorption

processes within the muck heap could provide useful insight into the bacterial and resistance dynamics
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within the muck heap, and further understand the possible AMR risks that usage of muck heap effluent

and manure may pose.

Understanding how resistance is encoded in bacteria is important

In this study we have also shown the importance of considering where ARGs are located within bacteria.

Observed spikes in ESBL resistance across different areas of the farm were not reflected in the slurry

tank only model [21], and while time course simulations of our initial farm flow model (figure 3.2)

showed variation in the concentration of cefelexin-resistance in the slurry tank, the maximum increase

observed in the plasmid-encoded case was significantly lower than those observed experimentally in the

slurry tank. However, when we alter the model to consider a scenario where cefelexin resistance genes

are encoded chromosomally (figure 3.5), the model predicts spikes in the concentration of all resistant

populations corresponding to the emptying of additional metal footbaths every 3 weeks, with magnitude

more consistent with the concentrations of ESBLs observed in the presumptive E. coli counts of the

slurry. This result presented an experimentally testable hypothesis for why we observe these sharp

fluctuations in the levels of ESBLs across the farm that were previously unexplained by the model. Thus

was backed up by whole genome sequencing data from E. coli isolates both from different areas of the

farm, and from the slurry tank [21], identifying a chromosomally encoded ISEcp1 element containing

blaCTX-M15 resistance genes, as well as tetracycline and quinolone resistances.

Most models of antimicrobial resistance consider the spread of resistance via conjugative plasmids

[29, 33, 39, 12, 21], and while some models have considered other methods of HGT such as transduction

[44, 30], these models still consider ARGs located on extra-chromosomal mobilisable elements, with

an associated fitness cost of carriage. The fitness cost associated with carriage in these models are

consistently seen as a highly sensitive parameter. When we explore further cases of the farm flow

model where other resistances are chromosomally-encoded (e.g. copper, zinc, and oxytetracycline), we

observe significantly changed dynamics: we see that all resistant populations become dominant with

concentrations of ⇡ 109CFU L�1, while the concentration of sensitive bacteria fluctuates. Hence an

understanding of the way ARGs are encoded in bacteria is of great importance in understanding the

dynamics of AMR in the wider environment.

Metagenomic analysis of samples from the slurry tank have revealed multiple metal resistance genes

(MRGs) present: cop, cus, pco/sil which can confer copper resistance, czc which can confer resistance to

zinc (as well as cadmium and cobalt), as well as mer (mercury), ars (arsenic & antimony), pbr (lead)

and cad (cadmium) [21]. Both pco/sil and czc genes are typically plasmid-borne, hence our modelling

assumption that both copper and zinc resistance are plamid-mediated is not unreasonable. However,
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it should be noted this metagenomic only informs us that these pco/sil and czc genes are present in

the slurry tank, does not confirm whether these genes are associated with E.coli plasmids in the slurry

tank or other areas of the farm. Further experiments to select for CTX and zinc resistant strains of

E.coli sampled from the farm could be completed to evaluate this hypothesis. The usage of long-read

metagenomic sequencing could be of great advantage in future work to give a better overall view of the

resistance profile and types of resistance observed. This is of particular advantage in interdisciplinary

studies involving modelling, since we have demonstrated that consideration of different resistance types

can impact on the results of the model.

Whether ARGs are located on the chromosome or plasmid has significant consequences for the risk

that the bacteria within the slurry may pose to environmental and human health. One of the biggest risk

factors of AMR within dairy slurry is transmission of ARGs into the environment in slurry spreading:

the potential for ARGs to transfer cross-species, to potentially pathogenic bacteria, provides indirect

pathways to impact on human health. Plasmid-borne resistance genes therefore present a greater threat

within this context given the possibility of transmission via conjugation, while chromosomally-encoded

resistances present less risk in this regard as ARGs are unable to be transferred horizontally to other

bacteria.

3.5 Conclusion

We have developed a hybrid discrete-continuous multiscale mathematical model of the dynamics of

antimicrobial resistant bacteria within the flow of slurry around a typical high performance UK dairy

farm and evaluated the impact of farm management practices on the emergence and spread of AMR

around the farm.

Disposal of copper sulphate / zinc oxide footbaths into the waste flow is predicted to have a significant

effect on AMR within bacterial communities of the slurry tank. Weekly emptying of the footbaths provide

periodic bactericidal inputs (particularly due to copper concentrations well in excess of MIC) which gives

rise to high magnitude fluctuations across all bacterial sub-populations modelled. When considered

alongside chromosomally-encoded cefelexin-resistance, the peak concentrations of these oscillations are

concurrent with observed spikes in the presence of ESBL-producing E.coli in the slurry tank, offering a

valid hypothesis for the reason for these observed spikes.
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A Model Equations

We have developed a mathematical model describing the interactions between antimicrobial resistant

and sensitive bacterial populations within the flow of slurry across a typical high-performance dairy

farm in the UK. This model considers 6 different areas of the farm (the main dairy shed, bulling heifer

shed, underground reservoir (UR), muck heap, effluent tank and slurry tank), and in each different area

we model the volume of slurry ((A1)-(A6)), the mass of metals within the slurry ((A7)-(A12)), the

mass of antibiotics within the slurry ((A13)-(A18)) and the populations of sensitive and resistant E.coli

((A19)-(A40)), giving a system of 126 ordinary differential equations.

Volume Flow

(A1)-(A6)

dVdairy

dt
= a� ⇢Vdairy +

�VUR

2
+⇥ (Tfootbath)Vfootbath

+⇥ (Textra foot.)Vextra foot. +⇥ (TEff. flush)
(1� ✏eff)Veff

2
,

(A1)

dVheifer

dt
= b� ⇢Vheifer +

�VUR

2
+⇥ (TEff. flush)

(1� ✏eff)Veff

2
, (A2)

dVUR

dt
= ⇢ (Vdairy + Vheifer)� �VUR � �VUR , (A3)

dVmuck

dt
= (1� ") �VUR � ⌘Vmuck � muckVmuck , (A4)

dVeff

dt
= ⌘Vmuck + ◆silage �⇥ (TEff. flush) (1� ✏eff)Veff , (A5)

dVtank

dt
= "�VUR �⇥ (TTank empty) (1� ✏Tank)Vtank , (A6)

where ⇥(T ) =

8
>><

>>:

1 t 2 T

0 otherwise
.
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Metal Mass Flow
dM

[j]
dairy

dt
= a

[j]
feed

� ⇢M
[j]
dairy

+
�M

[j]
UR

2
+⇥ (Tfootbath) a

[j]
footbath

+⇥ (Textra foot.) a
[j]
extra foot.

+⇥ (TEff. flush)
(1� ✏eff)M

[j]
eff

2
,

(A7)

dM
[j]
heifer

dt
= b

[j]
feed

� ⇢M
[j]
heifer

+
�M

[j]
UR

2
+⇥ (TEff. flush)

(1� ✏eff)M
[j]
eff

2
, (A8)

dM
[j]
UR

dt
= ⇢

⇣
M

[j]
dairy

+M
[j]
heifer

⌘
� �M

[j]
UR

� �M
[j]
UR

, (A9)

dM
[j]
muck

dt
= (1� ") �M [j]

UR
� ⌘M

[j]
muck

� muckM
[j]
muck

, (A10)

dM
[j]
eff

dt
= ⌘M

[j]
muck

�⇥ (TEffluent) (1� ✏eff)M
[j]
eff

, , (A11)

dM
[j]
tank

dt
= "�M

[j]
UR

�⇥ (TTank empty) (1� ✏Tank)M
[j]
tank

, (A12)

where j 2 {Cu,Zn}.

Antibiotic Mass Flow
dA

[j]
dairy

dt
= a

[j] (t)� ⇢A
[j]
dairy

+
�A

[j]
UR

2
� �[j]A

[j]
dairy

+⇥ (TEff. flush)
(1� ✏eff)A

[j]
eff

2
, (A13)

dA
[j]
heifer

dt
= �⇢A[j]

heifer
+
�A

[j]
UR

2
� �[j]A

[j]
heifer

+⇥ (TEff. flush)
(1� ✏eff)A

[j]
eff

2
, (A14)

dA
[j]
UR

dt
= ⇢

⇣
A

[j]
dairy

+A
[j]
heifer

⌘
� �A

[j]
UR

� �A
[j]
UR

� �[j]A
[j]
UR

, (A15)

dA
[j]
muck

dt
= (1� ") �A[j]

UR
� ⌘A

[j]
muck

� muckA
[j]
muck

� �[j]A
[j]
muck

, (A16)

dA
[j]
eff

dt
= ⌘A

[j]
muck

� �[j]A
[j]
eff

�⇥ (TEffluent) (1� ✏eff)A
[j]
eff

, (A17)

dA
[j]
tank

dt
= "�A

[j]
UR

� �[j]A
[j]
tank

�⇥ (TTank empty) (1� ✏Tank)A
[j]
tank

, (A18)
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where j 2 {Oxy,Cex}.

Bacteria

In each compartment i 2 {dairy, heifer, UR, muck, eff., tank}, we shall denote bacterial populations by

R
[x1,x2,x3,x4]
i , where [x1, x2, x3, x4] 2 {0, 1}4 such that x1 = 1 if the population is resistant to copper,

while x1 = 0 if it is sensitive to copper, and similarly x2, x3 and x4 reflect zinc, oxytetracycline and

cefalexin resistance or sensitivity respectively. We shall denote the bacterial population sensitive to all

antimicrobial agents as Si (i.e. Si = R
[0,0,0,0]
i )

We define ⌦i as the set of all bacterial populations within the compartment i:

⌦i =
n
Si, R

[1,0,0,0]
i , R

[0,1,0,0]
i , . . . , R

[1,1,1,1]
i

o
,

We shall also define ⌦⇤
i as the set of all bacterial populations carrying at least one resistance within the

compartment i, i.e. ⌦⇤
i = ⌦i 6 {Si}.

We shall also describe the flow of each bacterial population, R[x1,x2,x3,x4]
i , between the different farm

areas by the function F : ⌦i ! R such that:

F (R[x1,x2,x3,x4]
i ) =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

a⌫[x1,x2,x3,x4] E.coli � ⇢R
[x1,x2,x3,x4]
dairy

+
�R

[x1,x2,x3,x4]
UR

2 , for i = dairy

b⌫[x1,x2,x3,x4] E.coli � ⇢R
[x1,x2,x3,x4]
heifer

+
�R

[x1,x2,x3,x4]
UR

2 , for i = heifer

⇢

⇣
R

[x1,x2,x3,x4]
dairy

+R
[x1,x2,x3,x4]
heifer

⌘
� �R

[x1,x2,x3,x4]
UR

� �R
[x1,x2,x3,x4]
UR

, for i = UR

(1� ") �R[x1,x2,x3,x4]
UR

� ⌘R
[x1,x2,x3,x4]
muck

� muckR
[x1,x2,x3,x4]
muck

, for i = muck

⌘R
[x1,x2,x3,x4]
muck

, for i = eff

"�R
[x1,x2,x3,x4]
UR

, for i = tank
(A19)

We shall also define the effect of the discrete farm processes on each bacterial population, R[x1,x2,x3,x4]
i ,

by the function D : ⌦i ! R such that:

D(R[x1,x2,x3,x4]
i ) =

8
>>>>>>>>>><

>>>>>>>>>>:

⇥ (TEff. flush)
(1�✏eff)R

[x1,x2,x3,x4]
eff
2 , for i = dairy, heifer

0, for i = UR, muck

�⇥ (TEff. flush) (1� ✏eff)R
[x1,x2,x3,x4]
eff

, for i = eff

�⇥ (TTank empty) (1� ✏tank)R
[x1,x2,x3,x4]
tank

, for i = tank

(A20)
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Similarly, we describe the growth and death of each bacterial population, R[x1,x2,x3,x4]
i , by the function

G : ⌦i ! R such that:

G (R[x1,x2,x3,x4]
i ) =rR

[x1,x2,x3,x4]
i )

�
1� x1↵[Cu] � x2↵[Zn] � x3↵[Oxy] � x4↵[Cex]

�✓
1� Ni

Nmax

◆

�
1� (1� x3)ES[Oxy]

�
�
�
(1� x1)ES[Cu] � (1� x2)ES[Zn] � (1� x4)ES[Cex]

� �
�
R

[x1,x2,x3,x4]
i

(A21)

Where Ni denotes the total bacterial population in the compartment i 2 {dairy, heifer, UR, muck, eff,

tank}, such that:

Ni =
X

Ri2⌦i

(Ri) , (A22)

and E
[j]
i

(for i 2 {dairy, heifer, UR, muck, eff, tank} and j 2 {Cu, Zn, Oxy, Cex}) denotes the antimi-

crobial effect on the bacterial growth rate in the case of bacteriostatic antibiotics (e.g. oxytetracycline),

or the antimicrobial effect on the bacterial death rate in the case of bacteriocidal antimicrobials (e.g.

copper, zinc or cefalexin).

E
[j]
i

=
E

[j]
max (Ai/Vi)

H[j]

MIC[j]
H[j] + (Ai/Vi)

H[j]
(A23)

We shall also describe the horizontal transfer of resistance between bacterial populations by the

function H : ⌦i ! R such that:

H (Si) = � �Si

 
R

[1,0,0,0]
i

Si +R
[1,0,0,0]
i

+
R

[0,1,0,0]
i

Si +R
[0,1,0,0]
i

+
R

[0,0,1,0]
i

Si +R
[0,0,1,0]
i

+
R

[0,0,0,1]
i

Si +R
[0,0,0,1]
i

+

R
[1,1,0,0]
i

Si +R
[1,1,0,0]
i

+
R

[1,0,1,0]
i

Si +R
[1,0,1,0]
i

+
R

[1,0,0,1]
i

Si +R
[1,0,0,1]
i

+
R

[0,1,1,0]
i

Si +R
[0,1,1,0]
i

+

R
[0,1,0,1]
i

Si +R
[0,1,0,1]
i

+
R

[0,0,1,1]
i

Si +R
[0,0,1,1]
i

+
R

[1,1,1,0]
i

Si +R
[1,1,1,0]
i

+
R

[1,1,0,1]
i

Si +R
[1,1,0,1]
i

+

R
[1,0,1,1]
i

Si +R
[1,0,1,1]
i

+
R

[0,1,1,1]
i

Si +R
[0,1,1,1]
i

+
R

[1,1,1,1]
i

Si +R
[1,1,1,1]
i

!
,

(A24)
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H

⇣
R

[1,0,0,0]
i

⌘
=

�SiR
[1,0,0,0]
i

Si +R
[1,0,0,0]
i

� �R
[1,0,0,0]
i

 
R

[0,1,0,0]
i

R
[1,0,0,0]
i +R

[0,1,0,0]
i

+
R

[0,0,1,0]
i

R
[1,0,0,0]
i +R

[0,0,1,0]
i

+

R
[0,0,0,1]
i

R
[1,0,0,0]
i +R

[0,0,0,1]
i

+
R

[1,1,0,0]
i

R
[1,0,0,0]
i +R

[1,1,0,0]
i

+
R

[1,0,1,0]
i

R
[1,0,0,0]
i +R

[1,0,1,0]
i

+

R
[1,0,0,1]
i

R
[1,0,0,0]
i +R

[1,0,0,1]
i

+
R

[0,1,1,0]
i

R
[1,0,0,0]
i +R

[0,1,1,0]
i

+
R

[0,1,0,1]
i

R
[1,0,0,0]
i +R

[0,1,0,1]
i

+

R
[0,0,1,1]
i

R
[1,0,0,0]
i +R

[0,0,1,1]
i

+
R

[1,1,1,0]
i

R
[1,0,0,0]
i +R

[1,1,1,0]
i

+
R

[1,1,0,1]
i

R
[1,0,0,0]
i +R

[1,1,0,1]
i

+

R
[1,0,1,1]
i

R
[1,0,0,0]
i +R

[1,0,1,1]
i

+
R

[0,1,1,1]
i

R
[1,0,0,0]
i +R

[0,1,1,1]
i

+
R

[1,1,1,1]
i

R
[1,0,0,0]
i +R

[1,1,1,1]
i

!
,

(A25)

H

⇣
R

[0,1,0,0]
i

⌘
=

�SiR
[0,1,0,0]
i

Si +R
[0,1,0,0]
i

� �R
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The dynamics of each bacterial population in the farm flow system can then be described by the

system of equations defined by:
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dR
[x1,x2,x3,x4]
i

dt
= F (R[x1,x2,x3,x4]

i ) + D(R[x1,x2,x3,x4]
i ) + G (R[x1,x2,x3,x4]

i ) + H (R[x1,x2,x3,x4]
i ),

where i 2 {dairy, heifer, UR, muck, eff., tank} & [x1, x2, x3, x4] 2 {0, 1}4.
(A40)

Model Parameters

Parameter Parameter Name Parameter Values Units Source

Volume Flow Parameters

a

Main dairy shed waste

volume input
1.238 ⇥103 L h�1

farm

observations, [8]

b

Bulling heifer shed waste

volume input
1.358 ⇥102 L h�1

farm

observations, [8]

⇢
Scraper channel natural

outflow rate
4.167 ⇥10�2 h�1 Assumed

�

Pump rate from UR to

slurry tank
9.625 ⇥10�2 h�1

farm

observations, [7]

�

Pump rate from UR to

scraper channels
4.010 ⇥10�3 h�1

farm

observations, [7]

"

Fraction of slurry

separated as liquid
0.950 - farm observations

muck Muck heap emptying rate 7.500 ⇥10�5 h�1 farm observations

⌘
Muck heap effluent run

off rate
2.083 ⇥10�5 h�1 farm observations

◆silage

Volume of effluent run off

from the silage clamp
2.382 L h�1 farm observations

Table A1:
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Parameter Parameter Name Parameter Values Units Source

Metal Parameters

a
[Cu]
feed

Copper input from daily

cow feed in main dairy

shed

2.985 ⇥103 mg h�1

farm

observations,

[1, 5]

a
[Zn]
feed

Zinc input from daily cow

feed in main dairy shed
1.090 ⇥104 mg h�1

farm

observations,

[2, 5]

b
[Cu]
feed

Copper input from daily

cow feed in bulling heifer

shed

8.954 ⇥102 mg h�1

farm

observations,

[1, 5]

b
[Zn]
feed

Zinc input from daily cow

feed in bulling heifer shed
3.269 ⇥103 mg h�1

farm

observations,

[2, 5]

Table A2:

Parameter Parameter Name Parameter Values Units Source

Antibiotic Parameters

�
[Oxy]

Oxytetracycline

degradation rate
2.888 ⇥103 h�1 [4]

�
[Cex]

Cefalexin degradation

rate
1.764 ⇥103 h�1 [4]

Table A3:
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Parameter Parameter Name Parameter Values Units Source

Bacterial Parameters

r Specific growth rate 8.000 ⇥10�2 h�1 [4]

�

Horizontal gene transfer

rate
1.000 ⇥10�6 h�1 [4]

NMax Carrying capacity 1.000 ⇥1010 CFU L�1 [4]

�

Natural death rate of

bacteria
4.684 ⇥10�2 h�1 Estimated, [4]

 E.coli

Concentration of bacteria

in slurry inflow
4.479 ⇥107

CFU L�1

h�1
[4]

⌫

Proportion of resistant

bacteria in slurry inflow
3.178 ⇥10�4 - Estimated, [4]

↵
[Cu]

Fitness cost of copper

resistance carried on

plasmid

2.921 ⇥10�1 - Estimated, [4]

↵
[Zn]

Fitness cost of zinc

resistance carried on

plasmid

2.921 ⇥10�1 - Estimated, [4]

↵
[Oxy]

Fitness cost of

Oxytetracycline

resistance carried on

plasmid

3.000 ⇥10�3 - [4]

↵
[Cex]

Fitness cost of Cefalexin

resistance carried on

plasmid

1.561 ⇥10�1 - Estimated, [4]
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Parameter Parameter Name Parameter Values Units Source

Pharmacodynamic Parameters

MIC
[Cu]

Minimum inhibitory

concentration of copper
212.79 mg L�1 [6, 3, 4]

MIC
[Zn]

Minimum inhibitory

concentration of zinc
2760.31 mg L�1 [6, 3, 4]

MIC
[Oxy]

Minimum inhibitory

concentration of

Oxytetracycline

1 mg L�1 [4]

MIC
[Cex]

Minimum inhibitory

concentration of

Cefalexin

8 mg L�1 [4]

E
[Cu]
Max

Maximum death rate due

to copper
1.74 h�1 [6, 3, 4]

E
[Zn]
Max

Maximum death rate due

to zinc
1.37 h�1 [6, 3, 4]

E
[Oxy]
Max

Maximum death rate due

to Oxytetracycline
1 h�1 [4]

E
[Cex]
Max

Maximum death rate due

to Cefalexin
1 h�1 [4]

H
[Cu] Hill coefficient for copper 1.54 - [6, 3, 4]

H
[Zn] Hill coefficient for zinc 0.72 - [6, 3, 4]

H
[Oxy]

Hill coefficient for

Oxytetracycline
2 - [4]

H
[Cex]

Hill coefficient for

Cefalexin
2 - [4]
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Parameter Parameter Name Parameter Values Units Source

Discrete Farm Parameters

Tfootbath

Days on which metal

footbaths are emptied

into the main dairy shed

scraper channels

{7, 14, 21, . . . , 364} days Assumed

Textra foot.

Days on which additional

metal footbaths are

emptied into the main

dairy shed scraper

channels

{21, 42, 63, . . . , 357} days Assumed

Teff. flushing

Days on which MHE is

used to flush out the

main dairy shed and

bulling heifer shed

scraper channels

{28, 56, 74, . . . , 364} days Assumed

TEmpty Tank

Days on which the slurry

tank is emptied
{50, 110, 170, . . . , 350} days Assumed, [4]

Table A6:
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B Sensitivity Analysis Parameter Space

Parameter Parameter Name Parameter Value
Reasonable Parameter

Space

↵
[metal]

Fitness cost of metal

resistance
2.921 ⇥10�1 [0, 1]

↵
[Oxy]

Fitness cost of

oxytetracycline resistance
3.000 ⇥10�3 [0, 1]

�
[Oxy]

Degradation rate of

oxytetracycline
2.888 ⇥10�3

⇥
1⇥ 10�5

, 1⇥ 10�1
⇤

↵
[Cex]

Fitness cost of cefelexin

resistance
1.561 ⇥10�1 [0, 1]

�
[Cex] Degradation rate of cefelexin 1.764 ⇥10�3

⇥
1⇥ 10�5

, 1⇥ 10�1
⇤

⌫

Proportion of resistant

bacteria in waste inflow
3.178 ⇥10�4 [0, 0.3]

r Bacterial growth rate 8.000 ⇥10�2 [0, 0.9]

� Horizontal gene transfer rate 1.000 ⇥10�6
⇥
1⇥ 10�9

, 1⇥ 10�2
⇤

�

Bacterial environmental

death rate
4.684 ⇥10�2

⇥
1.250⇥ 10�2

, 3.360⇥ 10�1
⇤

Table B7: This table shows the farm flow model bacterial and antimicrobial parameters that we have ex-

plored in our parameter sensitivity analysis, Fig 3.3, and gives the parameter space which the parameters

were sampled from in this analysis.
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Parameter Parameter Name Parameter Value
Reasonable Parameter

Space

⌧tank

Frequency of emptying of

the slurry tank
60 [0, 365]

⌧footbath

Frequency of emptying of

the main dairy shed metal

footbaths

7 [0, 100]

V
[footbath]

Volume of main dairy shed

metal footbaths
800 [50, 5000]

⌧eff. flushing

Frequency of muck heap

effluent flushing of the main

dairy shed and bulling heifer

shed scraper channels

28 [0, 365]

!

Volume of muck heap

effluent used in flushing of

scraper channels

1.182 ⇥104
⇥
1⇥ 102, 1⇥ 105

⇤

Table B8: This table shows the farm flow model discrete farm management parameters that we have

explored in our parameter sensitivity analysis, Fig 3.5, and gives the parameter space from which the

parameters were sampled.
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C Chromosomally-Encoded Resistance Model Equations

In the case where cefelexin-resistance is chromosomally encoded, the volume, metal and antibiotic model

equations remain the same ((A1)-(A18)), however, the model equations describing the bacterial dynamics

are different: since they are now located on the chromosome, cefelexin-resistance genes no longer bear

a fitness cost (i.e. ↵[Cex.] = 0) and also cannot be passed on to other cells via HGT. The function

H
[0,0,0,1] : ⌦i ! R describes the horizontal gene transfer processes in this case and is defined by the set

of equations (C1)-(C16).
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(C16)

Therefore the farm flow model when cefelexin resistance is chromosomally encoded is defined by the

system of equations given by (A1)-(A21), (C1)-(C17).
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dR
[x1,x2,x3,x4]
i

dt
= F (R[x1,x2,x3,x4]

i ) + D(R[x1,x2,x3,x4]
i ) + G (R[x1,x2,x3,x4]

i ) + H
[0,0,0,1](R[x1,x2,x3,x4]

i ),

where i 2 {dairy, heifer, UR, muck, eff., tank} & [x1, x2, x3, x4] 2 {0, 1}4.

(C17)

where F (R[x1,x2,x3,x4]
i ), D(R[x1,x2,x3,x4]

i ), G (R[x1,x2,x3,x4]
i ) are defined by (A19), (A20) and (A21)

respectively.
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Chapter 4

A model of antibiotic resistance genes accumulation
through lifetime exposure from food intake and

antibiotic treatment



Publication Note

The following work has now been published in PLOS ONE:

Todman H, Arya S, Baker M, Stekel DJ. A model of antibiotic resistance genes accumulation

through lifetime exposure from food intake and antibiotic treatment. PLOS ONE 18(8),

2023: e0289941. https://doi.org/10.1371/journal.pone.0289941

Abstract

Antimicrobial resistant bacterial infections represent one of the most serious contemporary

global healthcare crises [1]. Acquisition and spread of resistant infections can occur through

community, hospitals, food, water or endogenous bacteria [2, 3]. Global efforts to reduce re-

sistance have typically focussed on antibiotic use, hygiene and sanitation and drug discovery

[4, 5, 6]. However, resistance in endogenous infections, e.g. many urinary tract infections,

can result from life-long acquisition and persistence of resistance genes in commensal mi-

crobial flora of individual patients [7, 8], which is not normally considered. Here, using

individual based Monte Carlo models calibrated using antibiotic use data [9] and human

gut resistomes [10], we show that the long-term increase in resistance in human gut micro-

biomes can be substantially lowered by reducing exposure to resistance genes found in food

and water, alongside reduced medical antibiotic use. Reduced dietary exposure is especially

important during patient antibiotic treatment because of increased selection for resistance

gene retention; inappropriate use of antibiotics can be directly harmful to the patient being

treated for the same reason. We conclude that a One Health approach to antimicrobial

resistance that additionally incorporates food production and diet considerations will be

more effective in reducing resistant infections than a purely medical-based approach.
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4.1 Introduction

The human gut is a diverse and dynamic environment playing host to a wide variety of bacteria, viruses,

archaea and eukaryotes. Genomic studies have shown that the human gut microbiota contains more than

300 species of bacteria [11]. These commensal enteric bacteria are thought to be largely harmless and

play an important role in maintaining the health of the host through various mechanisms: i.e. protection

against colonisation by pathogens through competitive exclusion or production of antimicrobial chemicals

[12, 13, 14], maintaining the host immune system [15, 13], and extracting energy and nutrients from

food [13]). However, at lower levels there are pathogenic bacteria endogenous to the gut (in particular

Enterobacteriaceae and Enterococcaceae) [16].

In addition to playing host to a diverse collection of bacteria and other micro-organism, the human gut

represents a reservoir of antimicrobial resistance (AMR) as enteric bacteria hold antimicrobial resistance

genes (ARGs) either on their chromosomes or on mobile genetic elements; it is thought that these ARGs

predominantly reside within non-pathogenic unclassified species [17].

Antimicrobial resistances in the gut may become established after ingestion of contaminated food.

Many studies have shown ARGs to be present in a range of high-risk food products: raw and cooked

meats [18, 19, 20, 21, 22], fermented milk products [23, 24, 25], fermented meat products [26, 27] and

vegetable products [28, 29, 30]. The ready-to-eat food market is particularly problematic due to a lack

of cooking and washing before consumption [31, 32, 33, 34].

Several authors have identified systematic differences in ARG levels between individuals resident

in different countries [9, 35]. One source of these differences is likely to result from differing levels of

availability of antibiotic treatments. Governmental approaches to antibiotic availability are diverse and

defined daily doses per inhabitant can vary widely [10, 36].

Ageing individuals are at higher risk of AMR infections because of increased exposure to ARGs,

increased lifetime exposure to antibiotics and increased vulnerability to infection with age.

Recently, research has shown that the number of ARGs within an individual’s intestinal tract is

correlated with age[37, 38]. Work by Lu et al [37] showed that the number of resistances from faecal

samples of four different age groups were positively correlated with increasing age. Further, cluster

analysis suggested that resistances were being acquired and accumulated over time rather than being

transient. Other research has also supported this view. Ghosh et al [17] profiled resistance genes of 275

gut flora samples sourced from multiple countries and found increasing ARG diversity with age.

Antimicrobial resistant bacterial infections in older age can often result from endogenous bacteria

moving from the intestinal tract to other areas of the body, for example the urinary tract [7, 39].

In this work, we bring together these aspects of ARG establishment using a probabilistic mathematical
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model of the accumulation of antimicrobial resistance over an individual lifetime. We consider four key

model parameters: antibiotic use, ARG ingestion, and the probabilities of an ARG becoming established

in the presence and absence of concurrent antibiotic use. Taking reported demographic data, we show

how accumulation of resistances are likely to vary by country depending on antibiotic availability and

use. We show that alterations to food intake during antibiotic treatment can reduce the overall antibiotic

resistance level in an individual.

Figure 4.1: Schematic diagram of the lifetime food model showing key model interactions.

4.2 Methods

We have defined a probabilistic model to define the acquisition of ARGs in the enteric system of indi-

viduals (figure 4.1), which we have evaluated using Monte Carlo simulations.

We consider the acquisition of resistance genes to 14 different classes of antibiotics. It is important to

note that this is an oversimplified view of resistance to different antibiotics: there is significant variation

in resistance genes of antibiotics within the same class and indeed variation between ARGs conferring

resistance to the same antibiotic (e.g. there are over 40 different genes divided into 11 different classes of

action which encode resistance to tetracycline [40]). However, in order to reduce model complexity, we

consider resistance to individual classes of antibiotics (e.g. beta lactams, carbapenems, cepholosporins,

aminoglycosides, etc), rather than specific antibiotics.

For each antibiotic class, we consider the probability that an individual is exposed to resistance genes

through ingestion of food, and the probability of these resistance genes becoming fixed in the individual’s

enteric bacterial communities. The probability of resistance becoming established in the gut microbiome

is dependant on whether the individual may be undergoing antibiotic treatment (of the same class as the

resistance genes), as the presence of antibiotic treatment provides selective pressure for these resistance

genes.
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Parameter Parameter Name Parameter Values

Parameter

Range

Source

N
Number of antibiotic

classes considered
14 - [40]

n
Number of individuals

simulated
1000 - -

PAb. Treat(Ai)

Probability of an

individual receiving

antibiotic treatment for

antibiotic class Ai

1.4 ⇥10�2 (low Ab

usage)
2.1 ⇥10�2(medium Ab

usage)
5.0 ⇥10�2 (high Ab

usage)

0 - 1

[9]

[9]

Assumed

�food

Upper bound for

uniform distribution of

Pfood res.(Ai)

0.5 0 - 1 [41, 42]

Pfood res.(Ai)

Probability of resistance

genes for antibiotic class

Ai being present in an

individual’s food intake

Pfood res.(Ai) ⇠ U (0,�food) 0 - �food -

PFix(Ai)

Probability of resistance

genes becoming

established in an

individuals resistome in

absence of antibiotics

1.0 ⇥10�4 0 - 1 [37]

PAb. Fix(Ai)

Probability of resistance

genes for antibiotic class

Ai becoming established

in an individuals

resistome in presence of

antibiotics

5.0 ⇥10�2 0 - 1 [37]

PLoss(Ai)

Probability of resistance

genes for antibiotic class

Ai being lost

1.0 ⇥10�6 0 - 1 [43]

Table 4.1: A table giving the standard parameters used when simulating the lifetime resis-

tance model.
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For each class of antibiotic, we consider the probability of exposure to resistance genes for that

antibiotic via the food chain, as well as the probability of resistance becoming established in the gut

microbiome in the presence and absence of selective pressures from concurrent antibiotic treatment. For

simplicity, once acquired and established, we assume that the resistance will persist in the commensal

flora of an individual throughout their lifetime; this is in accordance with metagenomics studies [37].

Throughout our analysis we considered three different levels of antibiotic use, which reflect different

national levels of antibiotic availability. We ran different simulations of this model, with each scenario

for 1000 individuals. We have based the parameter values for the probability of antibiotic use in areas

with low and medium antibiotic usage from drug utilization figures for European countries [9], and then

estimated high antibiotic use areas parameter values based on this.

We simulate individual lifetimes in the Monte Carlo model with time steps of one week. The prob-

ability of an individual being exposed to resistance via food intake each week (PFoodRes.) is a random

variable with a uniform distribution. Once exposed to resistance, there is a probability that this resis-

tance shall establish in the microbial flora in the gut of the individual (PFix). Each week, there is an

independent probability that the individual may undergo antibiotic treatment (PAb. Treat.). As the use of

antibiotics can exert selective pressures on resistant bacterial populations, we assign a greater probability

of establishment of ARGs in the presence of antibiotic treatment (PAb. Fix.). The probability that the

individual acquires a new class of resistance in any given week is given by the transition probability (4.1).

µi = Pfood res.(Ai) ((1� PAb. treat(Ai))PFix(Ai) + PAb. treat(Ai)PAb.F ix(Ai)) (4.1)

The parameters used for each scenario are given in the table 4.1. At each time step in the model, we

sample the probability of resistance in food intake from a continuous uniform distribution U(0,�food):

this distribution is chosen to reflect intake of a varied diet from a variety of food sources, with the upper

bound based on observed frequencies of resistance in E. coli isolates from food products [41, 42]. Then

we estimate probabilities of resistance becoming established for this model based on metagenomic data

for human gut microbiota in areas of different levels of antibiotic use [37].

We conducted a local sensitivity analysis for each of the model parameters. For each parameter, we

take 1000 parameter values sampled from the feasible parameter space (table 4.1) and calculate the mean

resistance load at the age of 70 over the corresponding 1000 simulations.

We then considered an alternative model which includes the possibility of acquired resistance genes

to be lost. In order to simulate the possible loss of ARGs from the resistome through wash out, at the

end of each time step in the Markov chain model there is a possibility that an acquired resistance, Ai, is

lost with probability PLoss(Ai).

118



MATLAB R2020b was used to run time course simulations of the lifetime resistance model and to

perform a local sensitivity parameter analysis of the model.

(a) Time course of lifetime resistance model

(b) Histogram showing the distribution of ARG load in individual’s resistomes

Figure 4.2: (a) Time course simulation of Lifetime resistance model for low, medium and

high antibiotic use countries. In each of the three antibiotic use scenarios (low, medium and high),

we have run the lifetime resistance model using the standard parameter set (given in table 4.1) for 1000

individuals. Each line represents an individual simulated in the lifetime resistance model. We can clearly

see that individuals acquire more ARGs more quickly in areas of higher antibiotic usage.

(b) Histogram showing the distribution of ARG load in individual’s resistomes by age

70 for the lifetime resistance model. These histograms show the distribution of the number of

resistance classes at the end of the time course simulations of 1000 individuals shown in (a) (i.e. at age

70). The mean and standard deviation, (µ, �), for low, medium and high antimicrobial use areas are

(7.2120, 1.9475), (9.0410, 1.7946) and (12.6250, 1.1321) respectively.

4.3 Results & Discussion

Simulation of 1000 individuals in each of the 3 antibiotic usage scenaios (low, medium and high) for the

standard parameter set (table 4.1) shows that higher antibiotic use increases ARG acquisition over time
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by commensal bacteria (figure 4.2).

The average resistance load in individuals, at 70 years of age, from medium and high antibiotic use

areas is 24.38% and 71.40% higher, respectively, than low antibiotic use areas. Thus our model concurs

with many researchers and organisations including WHO [44], in advocating a reduction in antibiotic

usage as a way to control the spread of antibiotic resistance, among other strategies. This strategy reduces

opportunities for resistance genes to be the selected for in the gut over the lifetime of the individual.

Figure 4.3: Local sensitivity analysis of the lifetime resistance model parameters. We vary the

model parameters (PAb. Treat., PFix, PAb. Fix, and �food) across the possible parameter space (given in

table 4.1) and then calculated the mean ARG load at age 70 of 1000 individuals for each of the different

parameter values. For PAb. Treat., the black line shows the mean resistance load as the probability of

undergoing antibiotic treatment is varied across the parameter space, and the dashed red, blue and green

lines indicate the parameter values used for PAb. Treat.in the low, medium and high antibiotic use areas

respectively. For the local sensitivity analyses of PFix, PAb. Fix, and �food res., the red, blue and green

lines represent the average resistance load as the parameter of interest is varied for low, medium and

high antibiotic use areas respectively. The dashed black line in these subplots represents the values used

for these parameters in the model simulations.
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In order to frame analyses of potential interventions on long term accumulation of resistance, we

carried out local sensitivity analyses of the key parameters from the model (Figure 4.3). The accumulation

of resistance is most sensitive to the probability of antibiotic treatment, and the probability of resistance

fixing during antibiotic use. This effect is greatest in low and medium use countries. This led us to

investigate impact of those factors in greater detail

(a) 20% reduction in antibiotic usage

(b) 50% reduction in antibiotic usage

Figure 4.4: Histograms showing distribution of ARG load in individual by age 70 when there

is (a) 20% and (b) 50% reduction in the probability of antibiotic treatment. The mean and

standard deviation, (µ, �), for the low antibiotic use area are (6.4400, 1.9042) and (4.6970, 1.7985)

for the 20% and 50% reduction respectively. Similarly (µ, �) for the medium and high antibiotic use

areas is (8.0660, 1.8604) and (11.9670, 1.3243) respectively when antibiotic use is reduced by 20%, and

(6.0160, 1.8160) and (9.8370, 1.7770) respectively when reduced by 50%.

The number of resistance genes acquired by an individual is dependent on

the use of antibiotics over the individual’s lifetime and can be meaningfully

reduced by a reduction in an individual’s intake of ARGs through food.

We explored the impact of a reduction in Ab usage by running simulations with a 20% and 50% reduction

in the probability of an individual undergoing treatment in any given week (figure 4.4).
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While mathematically this is no different from exploring the three different Ab usage areas as shown

in figure 4.2, this analysis explores the practical effects of an Ab reduction policy in countries such as

Denmark (low usage), Spain (medium usage) or China (high usage).

Another avenue of control is the reduction of ARG intake through food and water. We considered

two possibilities: an overall reduction of ARGs in food, representative of a ONE Health approach that

includes food and water; and a reduction only during antibiotic treatment, representing dietary change

during such treatment, e.g. avoiding higher risk or raw foods. We considered two levels of reduction, 20%

and 50% for both antibiotic usage and ARG levels in food. All scenarios were applied for low, medium

and high antibiotic use countries.

(a) 20% reduction in resistance genes in food intake

(b) 50% reduction in resistance genes in food intake

Figure 4.5: Histograms showing distribution of ARG load in individual by age 70 under a

20% and 50% reduction in resistance genes in an individual’s food intake. Simulated using

1000 individuals in each of the case for each of the 3 Ab usage areas (low, medium & high). [Mean, Std,

Max] for 20% food resistance reduction are [6.2150, 1.8842, 13], [7.8720, 1.9056, 14] and [11.8560, 1.7087,

14] in Low, Medium and High areas respectively. For 50% reduction [4.3020, 1.7099, 10], [5.7340, 1.8522,

12] and [9.677, 1.7087, 14] .

Figure 4.4 shows the effect of reducing the probability of undergoing antibiotic treatment alone and

figure 4.5 the effect of reducing the probability of ARG in food alone. As expected, we observe that
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both these approaches result in a reduction in ARG acquisition over a lifetime, and reducing either ARG

intake or antibiotic consumption by 50% gives a greater effect than reducing by 20%.

Reducing the antibiotic consumption in areas that have a higher rate of antibiotic treatment is on

average more effective at reducing the ARG load: a 20% reduction in Ab usage yields an average 5.98%

and 11.33% reduction in resistance load by age 70 in high and medium use areas respectively, while a

50% reduces the mean resistance load by 21.21% and 32.92%. Comparatively a reduction in ARG intake

via food is more effective at reducing ARG acquisition in low antibiotic usage areas with a 20% and 50%

reduction in ARG intake giving a 13.11% and 35.23% reduction in the mean resistance load.

Reducing ARG intake via food during periods of antibiotic treatment is par-

ticularly effective at limiting acquisition of resistance genes.

The greatest reduction in the number of resistance classes acquired by 70 years comes for a combined

approach. Here for even a modest 20% decrease in both actions we see a reduction of between 12.63%

and 24.02%, depending upon the original level antibiotic usage. For a 50% decrease in both, we observe

the number of resistance classes acquired by 70 years can be reduced significantly (by between 46.35%

and 56.52%) reducing the likelihood that endogenous bacterial infections in older age will be resistant to

treatment. For the case of reduction only at times of antibiotic use, we saw a similar reduction in ARG

load as for the reduced probability of ARG in food in general (Figure 4.6, 4.A1 & 4.A2).
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Figure 4.6: Distributions of ARG load in resistome for different levels of intervention strate-

gies in high antibiotic usage area. Simulated using 1000 individuals in each intervention case. In

each of these simulations the reduction in food resistance is assumed to only occur while the individual

in undergoing antibiotic treatment, i.e. we assume a dietary change whilst under treatment.
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Inclusion of ARG loss from resistome does not significantly impact lifetime

resistance model simulations for realistic values of PLoss.

(a) The distribution of the number of ARGs in the resistome for the lifetime resistance model with ARG loss

(b) Local sensitivity analysis of the lifetime resistance model with ARG loss to PLoss

Figure 4.7: (a) Histogram showing the distribution of ARG load in individual’s resistomes by

age 70 for the lifetime resistance model including ARG washout. These histograms have been

made by simulating the lifetime resistance model for 1000 individuals in each of the three antibiotic usage

areas, where at each time step in the model there is a possibility that an individual may lose a resistance

with probability PLoss = 1⇥ 10�6. The mean and standard deviation, (µ, �), for the low, medium and

high antibiotic use areas are (7.3330, 1.8841), (9.0780, 1.7131) and (12.6290, 1.1012) respectively.

(b) Local parameter sensitivity analysis of lifetime resistance model to the probability of

resistance gene loss. We vary the value of the probability of an individual losing an acquired resistance,

PLoss, across the realistic parameter space (given in table 4.1) and then calculated the mean ARG load

at age 70 of 1000 individuals for each of the different parameter values.

We adapted the lifetime model to include the possibility of resistance loss due to ARG washout or other

factors. At the end of each time step in the markov chain model, there is a possibility that an acquired
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resistance, Ai, may be lost with probability Ploss (Ai). We then simulated the lifetime model with ARG

loss (figure 4.7(a)) for 1000 individuals in each of the three antibiotic usage areas using the parameter

values given in table 4.1. A comparison of the results of the simulation with ARG loss, figure 4.7(a), and

without ARG loss, figure 4.2(b), shows negligible differences between the models for each of the three

antibiotic usage scenarios considered.

We then performed a local sensitivity analysis of the lifetime model with ARG loss to the parameter

Ploss (figure 4.7(b)). Sensitivity analysis showed that the average resistance load was consistent with the

standard lifetime model without ARG loss when the probability of resistance loss was less than 10�4,

while for Ploss greater than 10�4, we see that the chance of ARG loss is high enough that it leads to a

significant reduction on the average resistance load. However, it is important to note that this threshold

probability of 10�4 is much higher than we would expect to see for the probability of ARG washout and

the physically relevant parameter space for Ploss is expected to be [10�7, 10�5] [43].

4.4 Conclusion

We have shown that the long-term acquisition and retainment of genes providing resistance to different

classes of antibiotics can be reduced by at three implementable factors. First, the number of resistance

genes acquired by an individual is dependent upon the use of antibiotics over an individual’s lifetime. A

conservative approach to antibiotic availability and dosing guidelines, as already implemented in many

countries, and as advocated in much of literature on antibiotic resistance, would be a practical approach to

reducing the long-term number of acquired resistances. Indeed, the converse is true, in that unnecessary

antibiotic treatment can lead to long-term harm to the patient being treated, and could be considered

unethical; this argument stands in contrast to the more standard argument that the risk of over-use is

primarily to patients other than the one being treated. Second, the number of acquired genes can be

reduced even further if an individual’s intake of resistance genes, carried on both pathogenic and non-

pathogenic bacteria, is also reduced. This could be achieved by policy and practice changes in the food

supply chain, including agriculture and post-harvest food production. Third, the reduction in intake of

resistance genes is particularly effective during periods of antibiotic treatment where selective pressures

increase the likelihood of the retainment of genes. We would suggest that dietary advice should be given

to those undergoing antibiotic treatment to avoid products at higher risk of carrying ARGs (even on

non-pathogens), as well as ensuring that all food consumed during treatment is fully cooked. The level

of benefit to be gained from alterations in medical treatment and dietary changes is highly dependent

upon the level of antibiotic use, which varies greatly between countries. Whilst our general model shows

benefit at all prescribing levels, a differentiated model looking at region- and country-specific practices,
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as well as containing specific details of antibiotic classes and associated resistance genes, would be better

able to be quantify the potential benefits of such changes. There are several potentially interesting

extensions to this model that could be explored in further work. One such avenue may be to explore the

impacts of age based dietary and antibiotic treatment patterns - for example we would largely expect an

individual to require more antibiotic treatment in early years and in older ages. Another way to extend

this model may be to incorporate the probabilistic model presented here into an agent-based model to

further explore the heterogeneities of individuals within a wider population (since our model assumes a

large amount of homogeneity across the population).
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4.A Appendix: Additional Figures

Figure 4.A1: Distributions of ARG load in resistome for different intervention strategies in

low antibiotic usage area.
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Figure 4.A2: Distributions of ARG load in resistome for different intervention strategies in

medium antibiotic usage area.
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