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Abstract

Functional Magnetic Resonance Imaging (fMRI) is a widely adopted

imaging modality used to study human brain function. The advancements

in MR hardware and acquisition have enabled researchers to investigate

brain function at sub-millimetre resolution, detecting brain activation at

depths across the cortex. Layer-fMRI at ultra-high field (UHF, defined as

B0 ≥ 7 T) has the potential to answer many neuroscience questions that

were previously untenable due to low spatial resolution or a low signal-

to-noise ratio (SNR). In addition, the combination of layer-fMRI with

electroencephalography (EEG) provides a tool to investigate neuronal

oscillation across cortical depths.

This thesis develops methods for the analysis of layer-dependent simul-

taneous EEG-fMRI data acquired at 7 T using a gradient echo (GE)

Blood Oxygenation Level Dependent (BOLD) sequence during an eyes

open, eyes closed task to assess the origins of human alpha oscillations.

An optimal pipeline is developed for the combination of EEG and fMRI

data with structural MRI data in order to calculate layer-specific alpha

activation profiles. These methods will be an important building block

for the growth of layer-dependent EEG-fMRI as an imaging tool, with

only one previous 3 T study to date known to have acquired such data

[1]. A key limitation of the methods was found to be the draining vein

effect present in GE-BOLD data, with multiple methods considered to

correct for it.

To improve understanding of alpha oscillations, the bespoke analysis

pipeline was applied to layer-dependent EEG-fMRI data acquired on

10 subjects at 7 T during an eyes open, eyes closed task. The results

showed significant negative correlation between EEG alpha power and

the BOLD response in the visual cortex. The cortical layer profiles of

negative alpha-BOLD correlations exhibited a dip in the middle cortical

depths and peaked in the deeper and superficial depths, suggesting that

during an eyes open/closed paradigm alpha is predominantly generated

during top-down processing through corticocortical mechanism.
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This is then followed by a study using the non-BOLD fMRI contrast

of vascular space occupancy (VASO) for layer-fMRI measures. High

spatial resolution VASO has greater spatial specificity and does not suffer

from the impacts of the draining vein effect making it a good option for

layer-fMRI. However, VASO has inherently lower signal than GE-BOLD

and is often SNR limited. In this thesis, a denoising method of NOise

Reduction with DIstribution Correction (NORDIC) Principal Component

Analysis (PCA) was assessed for its application to high resolution 3D-

EPI BOLD data before being applied to an optimised 1 mm isotropic

VASO sequence for layer-specific measures during a finger-tapping task.

The results from ten subjects show a VASO layer profile that peaks

in the middle cortical depths. A double peak was expected from the

literature however this disparity was most likely due to acquiring at a

spatial resolution that was too coarse. When compared, the VASO and

‘deveined’ GE-BOLD layer profiles showed a similar shape for cortical

depths 1 – 4 which then diverged in depths 5 and 6, highlighting the need

for further work to validate corrections of the draining vein effect.

Finally, NORDIC denoising was applied to T1 mapping data for structural

layer measures. It was found that there was a small improvement in

the T1 fit, represented by an increase in the wellness of the fit value, R2.

Additionally, there was a tightening in the peaks for both the grey matter

(GM) and white matter (WM) T1 values, shown by decreases in the full

width at half maximum (FWHM). WM showed greater improvements

than GM for both the R2 and FWHM.
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Chapter 1

Introduction

Functional Magnetic Resonance Imaging (fMRI) is a valuable tool widely used

by neuroscientists and clinicians around the world. After its discovery in 1990

[2], the Blood Oxygen Level Dependent (BOLD) contrast soon became the most

popular imaging modality to study the function of the human brain. BOLD

fMRI is a non-invasive, non-ionising imaging technique that has been used to

investigate the function and neurophysiology of the healthy brain, as well as

understand and diagnose neurovascular disorders, neurodegenerative diseases

and mental illness.

Following years of development in MR hardware, acquisition and analysis,

it is now possible to image brain function with incredible detail. This has been

facilitated by the development of Ultra-High Field (UHF) MRI scanners. The

vast majority of scanners worldwide are ≤ 3 T, but since 2005 there has been a

rapid growth in the number of UHF MRI scanners, defined as scanners with

magnetic field strengths ≥ 7 T, and there are currently ∼ 100 worldwide [3].

The increased magnetic field strength provides increased signal-to-noise ratio

and greater BOLD contrast enabling functional imaging with greater spatial

resolution. The ability to measure brain activity at sub-millimetre resolutions

gives rise to the field of layer-fMRI – the investigation of neuronal activity across

cortical layers. The cortex has a thickness of 2–4 mm and so at typical fMRI
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resolutions of ∼ 2 mm isotropic it was previously impossible to differentiate

signals from different locations across cortical depths. Layer-fMRI provides

a key tool to understand the processing of information in the brain and it’s

hierarchical organisation [4].

Advances in acquisition have brought about non-BOLD contrasts that are

sensitive to Cerebral Blood Flow (CBF) or Cerebral Blood Volume (CBV).

These additional techniques are more spatially specific measures of neuronal

activity than gradient echo BOLD (GE-BOLD) and so can help to provide

a more accurate picture of cortical activation in layer-fMRI. However, these

techniques have a lower Contrast to Noise Ratio (CNR) than BOLD and need

longer acquisition times or to be acquired at UHF to achieve the required spatial

resolution.

In addition to developments in UHF hardware, there has been substantial

work on combining different neuroimaging modalities in order to capitalise on

the unique benefits of each modality. The most widely adopted of these is EEG-

fMRI which combines the high temporal resolution of EEG with the high spatial

resolution of fMRI. EEG is used extensively in the diagnosis [5, 6], treatment

[7] and monitoring [6, 8] of epilepsy. EEG measures the electrical oscillations

generated in the brain by 1000s of synchronously firing neurons. The oscillations

are separated into five frequency bands: delta, theta, alpha, beta and gamma

(see Section 3.2.4). EEG-fMRI allows the study of the relationship between

the BOLD response and these electrophysiological frequency bands. One of the

most extensively researched frequency bands is the alpha frequency – the first

to be detected in the human brain [9]. Despite this, its generating mechanisms

are still widely debated. This thesis utilises high resolution simultaneous layer

EEG-fMRI data acquired at 7 T to assess the origins of human alpha oscillations

through the development and implementation of a bespoke pipeline for the

combination of EEG and layer-fMRI data.

In addition, this thesis studies improvements to the Signal to Noise Ratio

(SNR) of BOLD fMRI experiments by the removal of thermal noise. The
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1.1. Thesis Outline

increase in SNR due to the denoising approach enables the optimisation of a

VASO-BOLD layer-fMRI acquisition which is used to investigate layer-specific

activation during a motor task. The VASO layer activation profile is compared

with a corrected BOLD layer profile to assess a model for correcting the draining

vein effect.

1.1 Thesis Outline

Chapter 2 outlines the theory of Nuclear Magnetic Resonance (NMR) and its

use to form an image using Magnetic Resonance Imaging (MRI). A detailed

description is given for the origins of the signal, image formation, image contrasts

and imaging acceleration methods. Details of the 7 T system used to collect all

the data in this thesis are also given, along with an overview of the sequences

used throughout this thesis.

Chapter 3 provides details on the neuronal origin of the EEG signal, cortical

layer cytoarchitecture, top-down and bottom-up processing and previous work

that has investigated the origin of alpha oscillations. Following this is an

explanation of the origin of the BOLD fMRI signal with additional information

on the combination of EEG and fMRI. The chapter concludes with a description

of the typical preprocessing and analysis pipelines for fMRI data.

Chapter 4 is the first experimental chapter and covers the development

of a bespoke pipeline for the analysis of layer-dependent simultaneous EEG-

fMRI data. Including the formation of regressors from the EEG data, precise

alignment of the MRI functional and structural data, the definition of subject

specific ROIs, and the generation and corrections of layer profiles by correcting

GE-BOLD measures using LayNii.

Chapter 5 applies this optimal pipeline to EEG-fMRI layer data collected

in 10 healthy subjects to assess the origins of human alpha oscillations.

Chapter 6 first explores the testing and application of the NOise Reduction

with DIstribution Correction (NORDIC) PCA denoising method. This is

3



1.1. Thesis Outline

followed by the implementation of VASO for layer-specific measures and the

development and optimisation of a 1 mm isotropic VASO sequence. This

sequence is used on healthy subjects to assess layer-specific activation in the

motor cortex with a comparison of VASO layer measures with corrected GE-

BOLD layer measures. Chapter 6 concludes with the assessment of applying

NORDIC to T1 mapping structural measures.

Chapter 7 concludes the thesis, providing a summary of the key findings

from each chapter and outlining directions for future research.
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Chapter 2

Magnetic Resonance Imaging

2.1 NMR

2.1.1 Nuclear Spin

Nuclear Magnetic Resonance (NMR) is a phenomenon that arises from the

interaction between the nucleus of an atom and an external magnetic field

(B0). All nuclei have the intrinsic properties of mass (m), charge (q) and spin

(I). In the nucleus the spin of neutrons and protons combine to give the total

spin angular momentum, which is a quantum mechanical property that takes

half-integer or integer values. If a nucleus contains an even number of both

neutrons and protons, I = 0, and the nucleus is NMR inactive, for example 12C.

NMR is only exhibited in nuclei when I ̸= 0. If there are an odd number of both

neutrons and protons the nucleus will have integer I, for example deuterium
2H. If there is an odd number of neutrons or protons, the nucleus will have

half-integer I, the most common half-integer nucleus is proton 1H (Table 2.1).
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2.1. NMR

Isotope Spin γ (MHzT−1) Natural abundance %
1H 1/2 42.58 99.985
2H 1 6.54 0.015
13C 1/2 10.71 1.11
23Na 3/2 11.27 100
31P 1/2 17.25 100

Table 2.1: Common NMR active isotopes, their nuclear spin, gyromagnetic ratio

and natural abundance.

A nucleus with non-zero spin can be described as a rotating sphere with a

charge, which gives rise to a current and subsequently a magnetic moment µ,

µ = γJ (2.1)

where γ is the gyromagnetic ratio of the nucleus and J is the spin angular

momentum vector. γ is a constant that is dependent on the mass and charge of

each nucleus. 1H is the most commonly imaged nucleus in MRI due to its high

concentration in the body (∼60%) and its high gyromagnetic ratio of γ = 42.58

MHzT−1 compared to other nuclei see Table 2.1. The remaining chapter and all

work in this thesis uses 1H MRI, the nucleus of which contains a single proton

and therefore has an intrinsic nuclear spin of 1/2.

When placed into an external magnetic field, B0, aligned along the z-axis,

there are two possible orientations for the magnetic moment of a 1H nucleus due

to a phenomenon known as Zeeman splitting (Figure 2.2). These orientations are

the ‘spin up’ and ‘spin down’ state, with the ‘spin up’ orientation corresponding

to the magnetic moment aligned parallel to the magnetic field and the ‘spin

down’ state corresponding to the magnetic moment aligning anti-parallel to the

magnetic field (Figure 2.1).
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2.1. NMR

(a) Equilibrium, no external mag-

netic field

B0

(b) External magnetic field, B0, ap-

plied

Figure 2.1: a) At equilibrium the spins are distributed randomly. b) Following

the application of an external magnetic field B0, the spins align parallel or

anti-parallel to the field with a resultant net magnetisation aligned with B0 and

the spins precess at the Larmor frequency, ω0.

The z component of these magnetic moment orientations is given by

µz = mIh̄γ (2.2)

where mI are the possible spin quantum numbers of the 1H nucleus, ±1/2, and

h̄ is the reduced Planck’s constant, h/2π. This results in two potential energy

states for the ‘spin down’ state and the ‘spin up’ states of

E↓ = +
1

2
h̄γB0, (2.3)

E↑ = −1

2
h̄γB0. (2.4)

The energy difference between these two spin states is given by,

∆E = h̄γB0 = h̄ω0 (2.5)

where ω0 is the Larmor frequency given by

ω0 = γB0 (2.6)
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2.1. NMR

E

E

ΔE=γħB0

E
ne

rg
y

Magnetic Field Strength (B0)

Figure 2.2: The energy difference, ∆E, due to Zeeman splitting, between the

‘spin down’ (E↓) and ‘spin up’ (E↑) state as a function of magnetic field strength,

B0.

2.1.2 Net Magnetisation

For an ensemble of spins in a magnetic field, B0, there is an imbalance in the

number of spins occupying the E↓ or E↑ energy states, with the parallel ‘spin

up’ state (E↑) aligned with the magnetic field being slightly more energetically

favourable. The distribution of the spins between spin states can be described

using Boltzmann statistics,

n↑

n↓
= exp

(
−∆E

kBT

)
(2.7)

where n↑ is the number of spins in the lower energy ‘spin up’ state (E↑), n↓

is the number of spins in the higher energy ‘spin down’ state (E↓), kB is the

Boltzmann constant and T is the absolute temperature of the ensemble of spins.

The imbalance in spin energy state populations results in a net magnetisation

for the ensemble, M0 which is given by

M0 =
N(h̄γ)2B0

4kBT
. (2.8)

where N is the number of spins per unit volume. To increase the signal detected

with NMR, M0 can be increased by probing a nuclei with a higher γ, increasing

8



2.1. NMR

B0 or lowering temperature T . For human scanning, it is most viable to increase

the magnetic field strength, B0.

2.1.3 Precession

A magnetic moment, µ placed into an external magnetic field, B, experiences

a torque, τ , that acts to align µ with the direction of the external magnetic

field, resulting in a rotation. Torque is defined as the rate of change of angular

momentum, resulting in the relation

τ =
dJ

dt
= µ×B (2.9)

substituting for Equation 2.1 gives

dµ

dt
= γµ×B (2.10)

This equation describes the precessional motion of a single magnetic moment µ

in a magnetic field B at the Larmor frequency, ω0. The Larmor frequency for a

proton in a 7 T magnetic field is 298 MHz.

2.1.4 RF Excitation

An NMR signal can be detected by perturbing the precessing net magnetisation

vector away from its alignment with the external magnetic field, B0. This is

achieved by applying a second time varying magnetic field, B1, that oscillates

with a frequency near to the Larmor frequency of the sample, and is orthogonal to

B0. The B1 field typically oscillates at a frequency in the Radio Frequency (RF)

range, and is therefore referred to as an RF excitation or RF pulse. The

application of B1 brings the spins into phase and ‘tips’ the net magnetisation

vector M0 into the transverse plane. The extent to which the net magnetisation

is tipped, known as the Flip Angle (FA) α, depends on the duration, τ and

amplitude B1 of the RF pulse (α = γB1τ). As the magnetisation relaxes back

to align with B0, it precesses about B0 at the Larmor frequency. The precession
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2.1. NMR

of the relaxing magnetisation is detectable via the induction of an electromotive

force (emf) in a pickup coil, this is the NMR signal.

To simplify the picture of precessing magnetisation and oscillating B1 fields,

the rotating frame is often used as the coordinate system in which to consider

the evolution of the spins following RF excitation. The rotating frame is a

reference frame that rotates at the Larmor frequency about the z-axis that is

aligned with B0. Figure 2.3 shows the evolution of the magnetisation vector,

M , following a 90◦ RF pulse in a) the stationary laboratory frame and b) in

the rotating frame. In the laboratory frame the magnetisation vector M is

tipped into the transverse plane to yield transverse magnetisation,Mxy, and

then rotates around B0 at the same time as it returns to equilibrium. In the

rotating frame matched to the Larmor frequency, M no longer precesses around

B0 and B1 is also stationary along the x-axis.

(a) Laboratory Frame (b) Rotating Frame

Figure 2.3: Magnetisation evolution following a 90◦ RF excitation pulse in the

a) laboratory and b) rotating reference frames. In the a) laboratory frame M

precesses about B0 whilst recovering to equilibrium, whereas in the b) rotating

frame M solely rotates around the x′ axis.
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2.1. NMR

2.1.5 Relaxation

After an RF excitation pulse has concluded, the net magnetisation vector begins

to relax back into its equilibrium state via two independent processes known

as the longitudinal relaxation and the transverse relaxation. Longitudinal

relaxation is the process by which the longitudinal magnetisation, Mz returns to

its equilibrium alignment with B0 signifying the restoration of the equilibrium

spin populations. Transverse relaxation is the dephasing process to return

the transverse magnetisation, Mxy back to zero. These processes are governed

by their own independent time constants T1 and T2 respectively, which are

dependent on the properties of the local environment and give rise to the different

contrasts for tissues in the body. Longitudinal and transverse magnetisation

are described by the Bloch equation

dM

dt
= γ(M ×B)− (Mz −M0)k

T1

− Mxi+Myj

T2

(2.11)

where T1 is the longitudinal relaxation time, and T2 is the transverse relaxation

time. The first term refers to precession inside the magnetic field, the second

longitudinal relaxation and the third transverse relaxation.

2.1.5.1 Longitudinal Relaxation T1

When an RF pulse is applied to a spin ensemble, energy is transferred into

the system altering the longitudinal magnetisation Mz. After the RF pulse,

this energy is transferred from the spin ensemble into the surroundings as the

spins return to the equilibrium population difference M0. The efficiency of this

energy transfer is dependent on the timescale on which the molecules move

via Brownian motion. This molecular motion has an associated time constant,

known as the correlation time τ , that can be related to the frequency of the

local magnetic field variation (Figure 2.4). The closer this frequency of field

variations is to the Larmor frequency, the more efficient the energy transfer,

and the shorter the longitudinal T1 relaxation time. When molecules are able
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2.1. NMR

to move freely, such as in water, the correlation time is short, therefore the

frequency of local field variation is far from the Larmor frequency resulting in

a long T1. When molecular movement is slow or more restricted, in tissue for

example, this leads to a correlation time with a frequency similar to the Larmor

frequency, consequently shortening T1.

Figure 2.4: T1 dependence on the molecular correlation τ at a field strength of

7 T. τ0 is the correlation time corresponding to the Larmor frequency ω0.

The recovery of longitudinal magnetisation over time, Mz(t), is described

by the following solution to the Bloch equation

Mz(t) = M0

(
1− exp

(
− t

T1

))
+Mz(0) exp

(
− t

T1

)
(2.12)

where M0 is the equilibrium longitudinal magnetisation and Mz(0) is the longi-

tudinal magnetisation at time t = 0.

An inversion recovery sequence is often used to measure T1 or acquire T1-

weighted (T1w) images. In this sequence a 180◦ inversion pulse is applied

to invert Mz(t) from equilibrium M0 to -M0, Mz(t) then recovers back to

equilibrium as governed by Equation 2.12 which is given by

Mz(t) = M0

(
1− 2 exp

(
− t

T1

))
, (2.13)
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The magnetisation Mz(t) is measured at a given time along the inversion

recovery curve, known as the Inversion Time (TI), by applying a 90◦ RF

excitation to produce a Free Induction Decay (FID) with an initial magnetisation

Mxy(0) equal to the longitudinal magnetisation at that time. This process is

then repeated to collect data at multiple TI values to fit T1, typically a long

repetition time (TR) is left between each repeated measure. Alternatively

the incomplete recovery can be accounted for in the fit, as performed in the

T1 mapping used in Chapter 6 [10]. Figure 2.5 shows an inversion recovery

sequence, with the magnetisation shown for the three tissue types in the brain,

Grey Matter (GM), White Matter (WM) and Cerebrospinal Fluid (CSF) which

have different longitudinal relaxation times. These differences in T1 can be used

to optimise the contrast in MR images, for example obtaining high contrast

between GM and WM. At 7 T the T1 of WM has been measured to be ∼ 1130

ms [11, 12], ∼ 1940 ms for GM [12], ∼ 4425 ms for CSF [11] and 2450 ms for

arterial blood [13]. For each tissue type there is a given TI at which Mz(t) = 0,

this is known as the null point, and this difference in T1 between GM and blood

is a key characteristic used in the Vascular Space Occupancy (VASO) sequence

used in Chapter 6.
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2.1. NMR

Figure 2.5: The recovery of longitudinal magnetisation Mz following an inversion

pulse. Mz(t) is shown for white matter with a simulated T1 of 1130 ms (orange),

grey matter with a simulated T1 of 1940 ms (blue) and CSF with a simulated T1

of 4425 ms (yellow).

2.1.5.2 Transverse Relaxation (T2 & T ∗
2 )

After the spins are brought into phase coherence by an 90◦ excitation pulse

they immediately begin to dephase via two interactions. Firstly, spin-spin (T2)

relaxation arises from dipole-dipole interactions whereby neighbouring spins

induce time varying local magnetic field inhomogeneities resulting in varying

precession frequencies across the spin population, and therefore dephasing. Spin-

spin dephasing is irreversible, once the Mxy magnetisation is lost it cannot be

restored. The second mechanism of transverse relaxation is from the dephasing

of spins due to static field inhomogeneities and has a time constant T ′
2. The

loss of magnetisation due to static field inhomogeneities can be restored as it is

possible to rephase the spins. The time constants for the intrinsic dephasing

T2, and the static field inhomogeneity dephasing, T ′
2, are combined to give

a time constant, T ∗
2 , that describes the overall time scale for the transverse

magnetisation Mxy to decay
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1

T ∗
2

=
1

T2

+
1

T
′
2

(2.14)

The recovery of the transverse magnetisation, Mxy, is described by the solution

to the transverse component of the Bloch equation

Mxy(t) = Mxy(0) exp

(
− t

T2

)
, (2.15)

where Mxy(0) is the transverse magnetisation at t = 0, and T2 is the intrinsic T2.

In this equation T2 can also be replaced by T ∗
2 dependent on the pulse sequence

used, as described next.

Figure 2.6a illustrates the effect of T2 and T ′
2 relaxation on Mxy following

a 90◦ RF excitation. The effects of T ′
2 can be reversed with the addition of

a 180◦ refocusing pulse to form what is known as a Spin Echo (SE). Initially

phase coherence is induced by the 90◦ RF pulse, following this the spins begin

to dephase due to T ∗
2 effects and Mxy decays to zero. Due to static field

inhomogeneities (T ′
2), some spins will precess at higher Larmor frequencies and

accrue a larger positive phase difference, and some will precess at lower Larmor

frequencies, accruing a larger negative phase difference in the rotating frame

of reference (Figure 2.6). If a 180◦ RF pulse is applied at a time equal to half

the Echo Time (TE), the T ′
2 phase shifts are reversed. The previously higher

frequency spins now have a negative phase difference and vice versa. This

results in the spins with the higher Larmor frequency ‘catching up’ with the

lower frequency spins and refocusing to form an echo at time t = TE. A SE

sequence can be used to measure T2 by repeating the sequence at a range of echo

times TE. When repeating acquisitions, the time between each inversion pulse

is termed the Repetition Time (TR). Alternatively multiple 180◦ RF pulses

can be applied in a Carr-Purcell-Meiboom-Gill (CPMG) sequence to generate a

train of echos that have a peak amplitude weighted by T2.
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T2 envelope
a)

T2* envelope

TE

180°90°

b)

t=0
90° RF

t=TEt=TE/2
Before 180° RF

t=TE/2
After 180° RF

Figure 2.6: a) SE sequence showing the application of a 90◦ RF pulse followed

by a 180◦ at t = TE/2 to generate an echo at t = TE. b) The evolution of a

spin population during a SE sequence. Phase coherence at t = 0, followed by T ∗
2

dephasing, refocusing after the 180◦ RF pulse at TE/2, with an echo forming

at time t = TE.

Another option to form an echo is the Gradient Echo (GE) sequence, which

is a T ∗
2 weighted sequence. This is the sequence used throughout this thesis for

all fMRI and VASO readouts in Chapters 4, 5 and 6. The gradient coils in an

MRI scanner allow for a spatially linear variation in the magnetic field across

the sample and are explained further in Section 2.2.2. A 90◦ RF excitation

pulse is applied to tip the magnetisation vector into the transverse plane, at

which point a gradient field is applied. Spins in high field areas dephase quickly

and spins and low field areas dephase slowly. After a time TE/2, the polarity

of the gradient field is flipped, leading to the spins refocusing and a gradient

echo (GE) being formed at time t = TE. Figure 2.7 shows the evolution of Mxy,

the RF excitation and gradient waveform during a GE sequence. Typically

at 7 T the T2∗ of grey matter is ∼ 30 ms, compared to a T ∗
2 of ∼ 40 ms at
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3 T (however this will vary across brain regions and also change with spatial

resolution). As described in Chapter 3, for fMRI the optimal echo time of a

GE sequence should be equal to the T ∗
2 of the tissue.

T2* envelope

Gradient dephase

90°

Figure 2.7: A GE sequence with a TE of 40 ms for tissue with a T ∗
2 of ∼ 40ms.

2.2 Image Acquisition

So far it has been shown how NMR can be used to measure the magnetisation

from a sample and how the intrinsic properties of T1 and T2 can be determined.

This section will build on this to describe how these measures can be spatially

localised to acquire an image of a sample with Magnetic Resonance Imaging

(MRI), as described by Lauterbur [14] and Mansfield [15] in 1973. Key milestones

in the development of MRI include the mathematical framework of k-space [15],

slice localisation [16], and finally the implementation of Fourier imaging [17].

These advances led to the acquisition of MR images of the body on realistic

time scales. Fast MR acquisition took another leap forward when Mansfield

developed Echo Planar Imaging (EPI) [18], enabling images of the human body
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2.2. Image Acquisition

to be acquired in less than 100 ms [19]. This was crucial for the development of

functional MRI (fMRI) of the brain, the focus of this thesis.

2.2.1 Gradient fields

The magnetisation detected using NMR can be spatially encoded using the

relationship between the Larmor frequency and the magnetic field B0 (Equation

2.6). If a spatially varying magnetic field is applied, the Larmor frequency of

the magnetisation will be spatially specific.

This is achieved by applying an additional gradient field G in addition to

B0. This can be in any orthogonal direction (x,y,z) using a Maxwell pair or

saddle coils (see Section 2.3) described by:

G = Gxi+Gyj +Gzk. (2.16)

The B0 field is typically oriented along the z-axis. The equation for the Larmor

frequency of magnetisation in a spatially varying magnetic field is therefore

ω0(r) = γ(B0 +G.r) (2.17)

2.2.2 Slice select

Slice selection is the localisation of the NMR signal to a specific cross section of

a volume along a specific axis. Slice selection can be achieved by applying an

RF excitation pulse with a specific range of frequencies (bandwidth) to a sample

that has a linear gradient field applied along one axis, in this example the z-axis.

The slice thickness, ∆z, can be decreased by narrowing the bandwidth, ∆ω, of

the RF pulse, or by increasing the gradient amplitude, Gz.

∆z =
∆ω

γGz

(2.18)
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2.2. Image Acquisition

Figure 2.8: A slice of thickness of ∆z is excited by applying an RF pulse of

bandwidth ∆ω together with a gradient field Gz.

To excite a slice, a thin rectangular slab, the required RF pulse shape in

frequency space can be calculated by Fourier transforming the required slice

profile shape, this results in a sinc RF pulse shape. To achieve a perfect

rectangle, the sinc pulse would need to be infinitely wide. However, as there is

a limited time to apply RF pulses when acquiring an image, a truncated sinc is

used resulting in a slice profile that is not a perfect rectangle.

2.2.3 Phase Encode

After localising the signal to a slice within a volume, phase encoding is used to

spatially localise in the y direction. Following slice selection, a linear gradient,

Gy, is applied for a short time, this results in each spin in the slice preccessing

at different Larmor frequencies depending on their position along the y-axis of

the slice. After Gy is turned off, the spins return to the Larmor frequency and

will have accrued a phase shift that is dependent on their position along the

y-axis.
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2.2.4 Frequency Encode

Finally, the signal can be localised along the x direction using frequency encoding.

This is achieved in a similar way to slice selection and phase encoding by applying

a linear gradient, Gx. Gx is applied during the sampling of the signal, also known

as the readout, and by doing so each frequency of the signal will correspond to

a position along the x-axis. By Fourier transforming the acquired signal from

the slice, each frequency will correspond to a spin along the x-axis with a phase

corresponding to its position along the y-axis.

2.2.5 k-space

k-space is a useful mathematical tool for interpreting MRI pulse sequences and

the frequencies detected in the NMR signal. It provides a way to visualise

the effects of phase encoding and frequency encoding when sampling the MR

data. MR data are acquired by the scanner in k-space and are then Fourier

transformed to form an image. Each point in k-space corresponds to a specific

frequency and its magnitude corresponds to the level of its contribution to

the image. When acquiring an image, the application of phase and frequency

encoding gradients can be thought of as moving t5hrough k-space, sampling

the point as you go. The centre of k-space corresponds to the low spatial

frequencies and low resolution aspects of an image, and the outer parts of

k-space correspond to the high spatial frequencies and high resolution aspects

of the image.

At the start of the acquisition in a pulse sequence, the sampling of k-space

starts at the origin. When a gradient is applied, the sampling moves outwards

depending on the polarity and magnitude of the applied gradients and the time

they are applied for. The resulting position in k-space is given by,

kx = γGxtx (2.19)
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ky = γGyty (2.20)

where Gx and Gy are the gradients in the frequency and phase encode directions

respectively and tx and ty are the corresponding times the gradients are applied

for.

After raw data sampled in k-space has been acquired following a pulse

sequence, the data is Fourier transformed. A 2D Fourier transform produces a

complex image with magnitude and phase data (shown in Figure 2.9).

𝑘𝑦

𝑘𝑥

-space𝑘

Reconstructed

MagntiudeFourier 
transform

Phase

Figure 2.9: a) Raw data sampled in k-space and b) The magnitude and phase

data images following a 2D Fourier transform.

2.3 MR Hardware

A typical MRI scanner consists of four main hardware components: the static

magnetic field, B0, shim coils, gradient coils, and RF coils, as well as the console.

A 7 T Philips Achieva scanner was used to acquire all the data presented in
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this thesis, a schematic of the position of the coils in the scanner is shown in

Figure 2.10.

B0 static field coil

Gradients coil
Shim coil

RF coils

Gradient coils
Shim coil Static field coil

Bore

Cover

Bore diameter
55 cm

RF head coil

Figure 2.10: Schematic showing 2 cross sections of the Philips Achieva 7 T

MRI scanner and its constituent coils.

2.3.1 Static field

The static magnetic field B0 is oriented horizontally through the bore of the

scanner in the z-direction and generated by a superconducting solenoid. The

magnetic field generated from a solenoid increases with the number of turns

per unit length. To keep the coils of wire at a low enough temperature to

maintain superconductivity, the coil is surrounded by a bath of liquid helium.

The magnetic field inside the bore of the scanner is ∼100,000 times greater than

the Earth’s magnetic field, therefore it is important for the safety of others that

the scanner is magnetically shielded. The 7 T scanner room in Nottingham is

shielded with 230 tonnes of iron to reduce the field to the safe regulatory level of

5 G at a distance of 11 m radially and 16 m axially to the bore of the magnet.
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2.3.2 Shim coils

The static field is calibrated to provide a homogeneous magnetic field for a

sphere with a diameter of ∼25 cm in the middle of the bore. However, when

a sample is placed into the field, inhomogeneities in the static field arise that

are dependent on the size, orientation and properties of the sample. Shim coils

provide users with the ability to correct for these distortions and counteract

any image distortions that are caused by B0 field inhomogeneity. Typically

shimming gradients can be applied at the start of a scanning session after being

calculated from initial calibration scans after the sample is placed in the scanner.

2.3.3 Gradient coils

Gradient coils are used to spatially encode the signals detected from a sample

to form an image (see Section 2.2). There are three sets of gradient coils in

an MRI scanner, one for each of the orthogonal x, y and z directions. The

gradient coils switch rapidly whilst scanning, particularly for echo planar imaging

(EPI), requiring large amounts of current, inducing Lorentz forces on the coils

themselves and in turn generating a high level of acoustic noise. The rapid

gradient switching also leads to heating, which has a knock on effect on gradient

performance and the static field, this is known as scanner drift. To combat this,

water cooling of the gradients is performed but this can limit the number of

high resolution fMRI datasets that can be collected. The gradient coils on the

Philips Achieva 7 T system have a maximum gradient strength of 40 mTm−1

and a maximum slew rate of 200 mTm−1s−1.

2.3.4 RF coils

Two RF coils are needed for the acquisition of MR data, one to transmit RF

excitation pulses uniformly across the region of interest, and another to receive

the much smaller RF signals from the sample. When acquiring fMRI and

structural brain images a volume coil or surface coil are used for reception of the
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signal as they can be placed close to the brain, increasing the detected signal.

For the work in this thesis all data was collected using the NOVA Medical 1TX

Head coil as the transmit coil. For the receive coil a 32 channel NOVA head coil

was used for Chapter 6 and two 16-channel surface coils were used for Chapter

4 and 5.

Multi-channel high density array surface coils can be positioned closer to the

imaging region of interest and therefore provide a much higher sensitivity and

Signal to Noise Ratio (SNR) compared to volume coils. The higher SNR allows

for high resolution fMRI scans to be acquired without the need to increase

the scan duration. In addition, the high density of receive arrays in a surface

coil allows an increased parallel acceleration factor (see Section 2.3.5.2 below)

in the right-left (R-L) direction of the image acquisition of a 2D or 3D EPI.

This reduces the echo train length and in turn: the achievable echo time, TE

(which should be matched to the T ∗
2 of grey matter) and image distortions.

These benefits come with the consideration that the geometry of the receive

coil results in an inhomogeneous receive profile across the brain.

2.3.5 Accelerated Imaging

Image acquisition time in MRI is always an important factor, whether it is for

subject comfort, higher throughput, allowing multiple contrast measures, or

improved sampling of functional changes. The development of MR hardware

and acquisition strategies is always striving to reduce acquisition time whilst

maintaining the SNR of the data. Specifically for functional MRI (fMRI) of the

brain, reduced image acquisition time increases the temporal resolution, and

therefore the rate at which the haemodynamics relating to brain activity can be

sampled. In fMRI the time taken to acquire an entire volume is often referred

to as repetition time (TR) but the strict definition of TR is the amount of time

between pulse sequences applied to the same slice. For some sequences this

can give rise to a TR that is different to the volume acquisition time, therefore

TRvol is also reported for some acquisitions.
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2.3.5.1 Partial Fourier

One way to reduce acquisition time is to acquire fewer lines of k-space. This

can be achieved by using the phase conjugate symmetry of k-space, which could

theoretically allow for only half of k-space to be acquired without any loss in

resolution. This technique is known as Halfscan (HS) or partial Fourier [20, 21]

(see Figure 2.11). The reduction in the amount of k-space does come with a

reduction in SNR, as well as impacting the phase of the reconstructed data so

care should be taken if phase data is required for further processing.
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Figure 2.11: Example k-space (top) and reconstructed (bottom) data for 3 levels

of halfscan acceleration. Fully sampled k-space (left), 75% halfscan (middle)

and 51% halfscan (right).

2.3.5.2 Parallel Imaging

Another common acceleration technique is parallel imaging [22] which uses

information provided by the multiple receive coils that are used with current

MRI scanners. Each receive coil can detect any given signal but it will be

stronger for the receive coils that are closer to the signal’s source, leading to a

variation in signal strength detected by each individual receive coil. Each receive

coil’s sensitivity map provides more information about the sample allowing for
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more k-space undersampling. When fewer points through k-space are sampled,

the Field Of View (FOV) of the image is reduced, resulting in aliasing of the

image. Aliased images are acquired simultaneously on each receive coil and the

sensitivity maps are used to spatially decode where signals are coming from

and reconstruct an unaliased image. For Philips scanners the parallel imaging

method is known as Sensitivity Encoding (SENSE) [22, 23]. The total SENSE

factor is limited by the number of receive coils and gives rise to a spatially

varying amplification of the noise, known as the g-factor [24]. For common fMRI

sequences, such as EPI, the decrease in SNR due to SENSE is often outweighed

by the increase in signal due to faster acquisition of the signal before it decays

due to T ∗
2 .

2.3.5.3 Simultaneous Multi-Slice

Simultaneous Multislice (SMS) or Multiband (MB) imaging, is another imaging

acceleration method. Significant reductions in repetition time TR are achieved

by acquiring multiple slices simultaneously following a single RF excitation pulse

[25]. The number of simultaneously acquired slices is referred to as the SMS

or MB acceleration factor and is typically 2–4. The technique is implemented

by combining multiple RF pulses, each with a different frequency offset. Each

RF pulse excites a 2D slice in a specific position in the sample. The signals

detected at the coils will be an aliased combination of the slices, weighted by

the coil sensitivities. Each slice can be unaliased using SENSE reconstruction,

based on the sensitivities of the coils along the slice direction. An advantage of

this technique is that there is no reduction in SNR due to undersampling of

k-space or shortening of the echo train length, however there are losses in SNR

and non-uniform spatial noise amplification due to the coil g-factor [26].
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2.4 Imaging Techniques

This section outlines the sequences used to acquire functional and structural

data for the layer-specific fMRI measures used throughout this thesis.

2.4.1 Echo Planar Imaging (EPI)

To sample all the lines of k-space after a single RF pulse to form a 2D image

an echo planar imaging (EPI) sequence can be used [18]. Following a single RF

excitation, an entire 2D plane of k-space is traversed by rapidly switching the

readout gradient, acquiring an image in <100 ms. By switching the readout

gradients rapidly multiple echos are formed, however this can push the limits of

the scanner hardware. Due to the acquisition times achievable with EPI, this

has become a staple for fMRI research to study the dynamic function of the

brain.

Figure 2.12 shows the Pulse Sequence Diagram (PSD) and k-space trajectory

for a 2D-EPI sequence. The sequence starts with an RF excitation and slice

select gradient to excite the spins in a volumetric 2D slice. Following this a

phase encode gradient, Gy and frequency encode gradient, Gx, are applied to

move from the centre to the edge of k-space. To transverse through the entire

k-space, frequency encode gradients with alternating polarity are applied to

move backwards and forwards along kx with small ‘blips’ between each lobe to

move up ky in k-space.

k-space can be acquired following a single RF excitation, known as single

shot, or with multiple RF excitations, known as multishot [27]. The EPI

sequence is prone to image distortions due to its low bandwidth in the phase

encode direction. Field inhomogeneities cause the mislocation of spins and

distort the image along the phase encode direction of the image, these distortions

are worse at higher field strengths due to greater field inhomogeneity.
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Figure 2.12: a) Pulse sequence diagram and b) k-space trajectory for a 2D-EPI

sequence.

2D-EPI is used in Chapter 6 to initially assess the effects of denoising on

fMRI data.

2.4.1.1 3D-EPI

For 2D-EPI, a single 2D slice is acquired following each RF excitation, this

is repeated for N slices until the desired volume has been acquired in a given

volume TR. For this the RF excitation pulse has a flip angle of θ given by the

Ernst angle cos(θ) = exp(−TR/T1). It is important to calculate the correct flip

angle for each experiment as if an angle that is above the Ernst angle is used,

over flipping occurs and this increases inflow effects in the data [28]. For 3D-EPI,

lower flip angle RF pulses are applied to excite a thick slab and gradients are

applied along the slice direction, Gz, as an addition phase encoding. The slab

is repeatedly excited while the Gz gradients are incremented to cover all the

required kxy planes over the range of kz (see Figure 2.13). 3D-EPI has a higher

inherent SNR than 2D-EPI as the whole slab is excited for each acquisition of a

kxy plane, all the spins contribute to the acquired signal at each shot leading

to increased SNR advantage of
√
Nslices compared to 2D-EPI. Additionally, as

there are two phase encode directions, parallel imaging can be applied along
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both axis, enabling higher combined image acceleration factors compared to

2D-EPI (see Section 2.3.5.2). For 3D-EPI there is less time for the spins to

recover between RF excitations compared to 2D-EPI, therefore lower flip angles

are needed for the system to reach a steady state, lowering the overall amplitude

of magnetisation. 3D-EPI sequences are used in Chapter 4 and 5 for high

resolution fMRI, and Chapter 6 as the readout for the VASO scheme.
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Figure 2.13: a) Pulse sequence diagram and b) k-space trajectory for 3D-EPI

sequence.

2.4.2 Magnetisation Prepared Rapid Gradient

Echo (MPRAGE)

Whole head anatomical images are often used in an fMRI scan session to plan

functional runs and for tissue segmentation and coregistration to standard

templates during analysis. T1 weighted structurals with good GM/WM contrast

are frequently used by neuroscientists using a magnetisation prepared rapid

gradient echo (MPRAGE) sequence [29]. In an MPRAGE sequence, a 180◦

inversion is applied followed by a delay to build T1 weighting. After a time, a

rapid gradient echo is acquired to sample the magnetisation and following this

the magnetisation is left to recover.
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Figure 2.14: a) A schematic of the pulse sequence diagram for the MPRAGE

sequence. Shaded red areas indicate spoiler gradients. b) An example of a sagittal

slice of an example MPRAGE image.

2.4.3 Phase Sensitive Inversion Recovery (PSIR)

A PSIR sequence is similar to an MPRAGE sequence in that it is T1 weighted

inversion recovery sequence. However a PSIR has a second rapid gradient echo

readout, therefore two images are acquired at different points along the inversion

recovery with different contrasts. The pulse sequence diagram is shown below in

Figure 2.15. Phase correction is used to retrieve the sign of the magnetisation for

the first image from the second image. The second image is acquired after the

nullpoints of GM, WM and CSF and is used to bias field correct the magnitude

of the first image. The timing of the acquisitions results in an image with

optimal contrast to noise ratio (CNR) between the WM and GM. The PSIR is

the structural scan that was predominantly used throughout Chapters 4, 5 and

6 of this thesis.
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Figure 2.15: a) A schematic of the pulse sequence diagram (PSD) for the PSIR

sequence and b) an example of a sagittal slice of the acquisitions at TI1 and TI2,

and the field-bias corrected PSIR image, optimised for contrast at the GM/WM

boundary.

2.4.4 Fast Low Angle Shot (FLASH)

The FLASH sequence is a gradient echo sequence that can be T1 or T ∗
2 weighted

depending on the flip angle, TE and TR used. Using smaller flip angles and a

longer TR results in reduced T1 effects, and lengthening the TE results in T ∗
2

weighting. FLASH sequences with a long TE are T ∗
2 weighted and provide good

sensitivity for locating veins due to the deoxygenated blood being paramagnetic

and therefore have a short T ∗
2 . This FLASH sequence was used to generate vein

masks in Chapter 6.
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Figure 2.16: An example of an axial slice of a FLASH image, veins are clearly

visible in black due to their short T ∗
2 .

2.5 Conclusion

This chapter has described the physical origins of the NMR signal and how it

can be used to acquire images with tissue specific contrast using MRI. The key

sequences that are used in the rest of this thesis have been described. Chapter

3 will describe the physiological origins of signals that can be detected using

fMRI in addition to the origins of electroencephalography (EEG) signal.

32



Chapter 3

Neurophysiology Theory: Origins

of EEG and fMRI signals

3.1 Introduction

Understanding the physiology of the human brain has been of great interest

in medicine and science for many years. Discoveries have been made using

a multitude of techniques, from the study of how individual cells function

and interact, to monitoring brain wide networks and sensorimotor interaction.

Research in neurophysiology and neuroscience is discovering ways to diagnose

and help treat conditions such as epilepsy [6] and schizophrenia [30], and neu-

rodegenerative diseases such as dementia [31]. Early studies of neurophysiology

involved intracranial measures on animals or postmortem histological samples

from humans. The majority of this work was conducted using electrophysio-

logical measures, with patch clamps [32] and microelectrode [33] Local Field

Potentials (LFPs) [34] used for cellular recordings, and electroencephalography

[9] (EEG) or magnetoencephelography (MEG) [35] for whole brain recordings.

The invention of EEG provided a non-invasive way to directly measure

neuronal activity on a very short timescale. The neuronal signals detected by

EEG are split into five frequency bands: delta (0.3 – 4 Hz), theta (4 – 8 Hz),
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alpha (8 – 13 Hz), beta (13 – 30 Hz) and gamma (30 – 200 Hz), and the roles

of each of these in brain health and function are heavily researched. Due to

the mobility and affordability of EEG it is widely adopted clinically, in the

diagnosis and treatment of epilepsy [6, 36].

Functional MRI (fMRI) with endogenous contrast was first implemented in

the early 1990s [37–39], and since has been the dominant research technique

in neuroimaging to study brain function due to being non-invasive and using

non-ionising radiation. In fMRI, a series of image volumes are typically acquired

in quick succession to measure changes in the MR signal due to the Blood

Oxygenation Level Dependent (BOLD) contrast. BOLD contrast is related to

the ratio of oxyhaemoglobin and deoxyhaemoglobin in the blood and is therefore

an indirect measure of neuronal activity. The temporal resolution of BOLD

fMRI is limited by the haemodynamics of the brain, but it has excellent spatial

resolution especially when compared to EEG or MEG. The spatial specificity

of BOLD fMRI can be limited due to its sensitivity to draining veins so other

fMRI image contrasts have been developed to study brain function for example:

Arterial Spin Labelling (ASL) which is sensitive to cerebral blood flow (CBF),

and Vascular Space Occupancy (VASO) which is sensitive to cerebral blood

volume (CBV) and is explored further in Chapter 6.

In this chapter the physiology and origins of the EEG signal are explained,

cortical layering is detailed, and the origins of alpha oscillations and their role

in top-down and bottom-up processing is discussed. This is followed by an

outline of the physiology and origin of the fMRI BOLD signal and how this can

be analysed to monitor brain activity.
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3.2. Origin of the EEG signal

3.2 Origin of the EEG signal

3.2.1 Neurons

EEG detects the electrical volatages on the surface of the scalp generated by the

synchronous firing of thousands of neurons in the brain. Neurons are responsible

for the transmission and processing of information in the brain by sending

electrical impulses to other neurons. A neuron consists of three main sections:

the soma, containing the cell nucleus and its DNA; the dendrites, that branch

out from the soma and receive information from other neurons in the form of

electrical signals; and the axon, a single long fibre that extends away from the

soma and transmits electrical signals to other neurons (see Figure 3.1). The

boundary between the soma and the axon is known as the axon hillock and is

the final region before the axonal initial segment which triggers the transmission

of electrical signals down the axon. Most axons are surrounded by a myelin

sheath which provides electrical insulation and increases transmission speed.

The ends of the axons (nerve endings) connect to other neurons at synapses,

which consist of the presynaptic nerve terminal, the synaptic cleft and the

postsynaptic membrane. To transmit an electrical signal to a connecting neuron

the presynaptic nerve terminal releases neurotransmitters into the synaptic cleft

which bind to the postsynaptic membrane to open ion channels and trigger

the onward transmission of electrical stimulation (see Section 3.2.3 for a more

detailed explanation). Nerve endings can form synapses with the dendrites, soma,

or axon of neighbouring neurons resulting in a highly complex interconnected

network by which neurons communicate with each other.

Neurons are highly specialised cells that can vary considerably in size and

shape dependent on their location in the body. In the brain there are two main

types of neurons, stellate neurons and pyramidal neurons. Stellate neurons are

star shaped with the soma in the centre and dendrites propagating outwards

in all directions. Pyramidal neurons have dendrites that run parallel to each
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other and are often oriented perpendicular to the cortical surface. The structure

and orientation of neuronal cells is an important factor that dictates whether

they contribute to the EEG signal (see Section 3.3.2). In contrast, the BOLD

signal originates from the haemodynamic response to the energy demand of the

neuronal cells (see Section 3.4). All cell types contribute to the BOLD signal,

and so the neuronal origins of the BOLD and EEG signals are not identical.

Figure 3.1: Schematic of a pyramid neuron with dendrites oriented parallel to

one another. The soma contains the cell nucleus and connects to the axon via

the axon hillock. The transmission of electrical signals between neurons occurs

at the synapses. Taken from Hamalainen et al [40]

3.2.2 Action Potentials

The cell membrane of a neuron contains ion pumps that control the flow of

potassium (K+) and sodium (Na+) ions in and out of the cell. Even during

‘rest’ a neuron maintains a potential difference, known as the resting potential,
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3.2. Origin of the EEG signal

of -70 mV between the inside and outside of the cell due to the difference in

ion concentrations in the intracellular and extracellular space. In addition to

ion pumps, there are voltage-gated ion channels which are closed whilst the

cell is at the resting potential but open when the potential at the axon hillock

reaches ∼-40 mV. When a neuron receives a stimulus, some ion channels open

and Na+ ions start to flow into the cell, decreasing the potential difference. If

the potential at the axon hillock passes ∼-40 mV an action potential is initiated.

More Na+ ion channels open and Na+ ions flood into the cell along both an

electrical gradient and a chemical gradient. This results in the cell reaching

a potential of ∼+40 mV and becoming ‘depolarised’. The action potential

causes neighbouring areas of the membrane to depolarise and leads to the

propagation of the action potential along the axon. After depolarisation, K+

ion pumps begin to move K+ ions out of the cell against the concentration

gradient which returns the potential towards the resting potential, this period is

know as repolarisation. During repolarisation, too many K+ ions leave the cell,

resulting in hyperpolarisation where the potential dips below -70 mV before

finally returning to the resting potential, this is called the refractory period.

The action potential propagates along the axon depolarising and repolarising

sections of the cell membrane until it reaches the nerve ending. The local

differences in the cell potential caused by depolarisation and repolaristation can

be modelled as two anti-parallel current dipoles, forming a quadrupole.

3.2.3 Post Synaptic Potentials

When the action potential reaches the end of the axon at the presynaptic

nerve terminal, voltage gated Calcium (Ca+) ion channels are opened and

Ca+ ions flow into the cell. With the influx of Ca+ ions, vesicles containing

neurotransmitters bind to the cell membrane and release them into the synaptic

cleft. The neurotransmitters diffuse across the synaptic cleft and bind to

receptors on the post synaptic membrane, triggering the opening of ion channels

(Na+ if excitatory, K+/Cl− if inhibitory) into the post synaptic cell and changing
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the potential, known as the Post Synaptic Potential (PSP). The influx of ions

into the cell induces a current along the direction of the dendrite. Dependent

on the type of synapse that was stimulated there are two types of PSP: an

Excitatory Post Synaptic Potential (EPSP), where the post synaptic cell is

depolarised and the cell voltage increases; and an Inhibitory Post Synaptic

Potential (IPSP) where the post synaptic cell is hyperpolarised and the cell

voltage decreases, becoming more negative. The more EPSPs that are induced

in the post synaptic cell, the more likely it will be for it to reach the -40 mV

threshold required to initiate an action potential. Conversely, the more IPSPs

that are induced, the further from the threshold the cell potential will be and

an action potential will not be initiated. After an action potential has been

triggered, K+ ion pumps begin to move K+ ions out of the cell against the

concentration gradient which returns the potential towards the resting potential.

The movement of ions out of the cell creates an extracellular current, known as

the volume current, in the opposite direction to the postsynaptic current.

Primary Current Ion  
pumpsIon flux
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Figure 3.2: Schematic of a current dipole along a dendrite due to the movement

of ions in and out of the cell.
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3.2.4 EEG signals

Using EEG there are a number of electrical signals which can be measured on

the surface of the head including oscillatory activity. It is clear from the sections

above that there is more than one electrical signal which is generated during

neuronal activity, but not all of these are detected with scalp EEG. The volume

current due to the PSP can be modelled as a single current dipole oriented along

the dendrites. The field from this postsynaptic current dipole falls of at a rate

of 1/r2 and the field from the action potential current quadrupole falls off as 1/r3.

Therefore, at a distance of the scalp, the postsynaptic current is larger than the

action potential current. In addition, the action potential current is bi-phasic

so multiple action potentials from neighbouring neurons with different timings

will lead to cancellations and a reduction in the overall current. The timescales

at which PSPs and action potentials operate also differ, with PSPs lasting for

tens of milliseconds compared to just 2 ms for action potentials. Therefore, it is

believed that the main contributors to EEG signals are dendritic currents from

PSPs [41]. Further, due to the symmetrical shape of the dendrites branching

from stellate neurons, the resulting currents cancel out at short distances. The

currents from pyramidal neurons are detectable at the surface of the scalp as

their dendrites run parallel to one another and are typically perpendicular to

the cortical surface. As a result, EEG signals are thought to originate from the

postsynaptic currents from the dendrites of pyramidal neurons.

EEG signals are typically in the range of 0.5 – 100 µV. The number of

synchronously firing neurons required to produce such a signal is on the order of

105. Such large numbers of neurons synchronously firing gives rise to oscillatory

variations in the EEG signal. These brain oscillations were first measured in

humans in the frequency range of 8 – 13 Hz and were labelled alpha oscillations

[9]. Since then, more frequency bands have been defined: delta (1 – 4 Hz),

theta (4 – 8 Hz), beta (13 – 30 Hz) and gamma (30 – 200 Hz). Each of these
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frequencies behave differently in response to stimuli, with a summary of each

provided in Table 3.1.

Precisely how each of these oscillatory signals are generated and their

functional role is still debated and an area of active research [42–50]. In this

thesis I will be studying the origin of the alpha band signal. One way to elucidate

the origins and functional roles of these oscillatory signals is to determine which

layers of the grey matter they originate from, as explained further in Section

3.3.

Oscillation
Frequency

(Hz)

Amplitude

(µ V)
Modulation

Delta 0.3 – 4 100 – 200
concentration, working

memory [51]

Theta 4 – 8 50
memory, inhibition [52,

53]

Alpha 8 – 13 50
eyes closed, attention

[54, 55]

Beta 13 – 30 < 50 motor tasks [56–58]

Gamma 30+ 10 – 20
attention, memory, per-

ception [59–61]

Table 3.1: A summary of the EEG oscillations showing their frequency range,

typical amplitude and how they can be modulated.

3.3 Brain Structure and Cortical Layers

The brain can be categorised into three tissue types: the grey matter (GM),

largely consisting of dendrites and soma, this is where the majority of commu-

nication between neurons occurs; the white matter (WM), consisting of axons,

is where the electrical signals travel for communication between neurons in

different brain regions; and the cerebral spinal fluid (CSF) which protects the

40



3.3. Brain Structure and Cortical Layers

brain and clears waste products (see Figure 3.3a). The brain is divided into

four main anatomically distinguishable regions: the frontal lobe, parietal lobe,

temporal lobe and occipital lobe (see Figure 3.3b).

Frontal 
lobe

Central 
sulcus

Parietal 
lobe

Occipital 
lobe

Sylvian 
fissure

Temporal lobe Cerebellum

b)a)
Grey matter

White matter

Cerebral spinal 
fluid

Figure 3.3: a) A coronal cross-section of the brain highlighting the grey matter,

white matter and cerebral spinal fluid tissue types. b) A schematic showing the

the four lobes of the brain and some other structural landmarks. Adapted from

Bear et al. [62]

Each region is commonly further subdivided into Brodmann areas [63]

based on the cytoarchitectural organisation of the neurons. Some areas of

the brain are responsible for basic functions such as the primary visual cortex

processing visual stimuli (as studied in Chapters 4 and 5), the motor cortex

processing movement (as studied in Chapter 6), the primary somatosensory

cortex processing touch, and the temporal lobe processing hearing. These are

referred to as lower order regions and are present in most mammals. Other

regions of the brain responsible for cognition such as memory [64], attention

[65], speech [66] and decision-making [67] are labelled as higher order regions

and tend to only be found in the human brain as the result of millions of years

of evolution [68]. How information from stimuli flows between these regions

and is combined to form our perception can be categorised into top-down or

bottom-up processing (see Section 3.3.1).
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The cerebral cortex forms the outer layer of the cerebrum and is a 2 – 4 mm

thick layer of grey matter (GM) largely consisting of neuronal cell bodies and

dendrites [69]. The cortex has been divided into six layers across the cortical

depth from the cortical surface to the WM boundary based on histology (see

Figure 3.4). These layers are:

Layer I – Molecular (plexiform) layer: The most superficial layer containing

mainly nerve axons and a small number of Cajal-Retzius cells. This layer

predominantly consists of axons from deeper layers synapsing with dendrites

from other areas of the cortex.

Layer II – Molecular external granular layer: Containing mostly stellate

neurons and some small pyramidal neurons. The pyramidal dendrites terminate

in other cortical layers, especially the molecular layer, and their axons travel

to deeper layers synapsing locally. In addition, some axons are long range and

travel through the WM to synapse with other brain regions.

Layer III – External pyramidal layer: Containing predominantly pyramidal

cells with dendrites that extend to the molecular layer and also dendrites that

extend into the WM and on to the cortex in other regions.

Layer IV – Internal granular layer: Mostly containing stellate neurons

and a small percentage of pyramidal neurons, this is the main cortical input

layer. The stellate axons synapse locally and the pyramidal axons project to

deeper layers and the WM. In the sensory areas of the cortex (such as the

primary visual, auditory and sensory cortices) axonal fibres from the thalamus

enter layer IV and project horizontally to synapse with the wide distribution of

stellate neurons. The higher percentage of myelinated axons running parallel in

layer IV results in a thin white strip known as the external band of Baillarger.

This is particularly prominent in the primary visual cortex and is known as the

Stria of Gennari.

Layer V – External pyramidal layer: Consisting of medium and large

pyramidal neurons mostly responsible for the output of information to other

cortical regions. This is prominent in the motor cortex, with the pyramidal
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axons originating from layer V forming tracts that synapse with other brain

regions and subcortical motor centres. Layer V also contains a horizontal

myelinated stripe, known as the inner band of Baillarger, formed from the axons

of layer IV that synapse locally within the layer.

Layer VI – Multiform cell layer: The deepest layer of the cortex containing

mostly fusiform neurons with axons projecting to the thamalus and the opposite

hemisphere of the brain.

These histological layers have been shown to have differing responsiveness to

external stimuli and roles in cognitive and physiological processes, as is outlined

in the next section [70–72].

Figure 3.4: A drawing of the cell bodies of neurons in the primary visual (left)

and motor (right) cortices by Ramón y Cajal, with the difference in neuron size

and shape dictating the the structure of cortical layers I – VI in the human

cerebral cortex. [73]

3.3.1 Top down/bottom up processing

Knowing the structure and connectivity of the cortical layers has enabled re-

searchers to form neurophysiological descriptions for how the brain processes
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information. Originally posed in psychology, bottom-up and top-down process-

ing are descriptions of how the brain perceives external stimuli [74]. Bottom-up

processing starts with sensory information that is converted to an electrical

signal that moves on to be interpreted and integrated by the brain to form our

experience. In comparison, top-down processing occurs when a sensory input

needs more information to be interpreted correctly, for example recognising a

face. In top-down processing the sensory information is integrated with prior

information in the brain from previous experience and expectations. In relation

to the cortical layers, bottom-up connections between brain areas are known to

target Layer IV [75], while top-down connections target deeper and superficial

layers mainly avoiding Layer IV [1, 4, 76].

Layer-fMRI has the potential to differentiate signals coming into the cortex

across GM cortical depths from the WM to pial surface boundaries, and therefore

distinguish between bottom-up and top-down responses. These are spatially

amalgamated at standard imaging resolutions but at high spatial resolution it

is possible to image the activity at different cortical depths using fMRI [77]. It

may therefore be possible to separate bottom-up and top-down contributions to

neuronal activity by studying cortical layer BOLD fMRI and linking this with

electrophysiological signals through simultaneous EEG.

3.3.2 Origins of Alpha Oscillations

Alpha oscillations were the first to be measured in humans [9]. Despite this, their

generation and functional mechanisms are poorly understood, with opinions

divided between alpha being driven by bottom-up processes, top-down processes,

or a combination of both. A key area within the debate is whether alpha

oscillations are generated within layer IV of the cortex, regardless of task (and

thus bottom-up or top-down processing).

A bottom-up process, in the context of the primary visual cortex (V1), is

thought to occur during a simple ‘eyes open’, ‘eyes closed’ stimulus where no

higher brain function is required and during which alpha power is significantly
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modulated [9, 78]. The hypothesis in this case is that the visual information flows

to the thalamus and on to layer IV of V1. In comparison, it is hypothesised that

alpha power modulation during a visual attention task is potentially modulated

through top-down processing. In this situation the information would flow to

the thalamus, then to a higher cortical area (such as the lateral intraparietal

area) and finally into layers I, II, III, V or VI in V1 [4] (see Figure 3.5).
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visual cortex
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Superficial

Higher order 
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Top-down processing

Sensory 
Input

Bottom-up processing

Figure 3.5: Schematic of the flow of information following a sensory input

during top-down and bottom-up processing.

It is currently unanswered as to whether such bottom-up and top-down

tasks, both of which are accompanied by modulation in alpha oscillations, are

the result of different sources of alpha generation or not [45, 46, 70, 79–81]. If

different mechanisms of generation do occur, it is predicted that the layers in

which we see activity related to the alpha modulations will be different for the

two tasks. If the alpha signal originates from a purely fundamental bottom-up

process, alpha modulations are hypothesised to always be seen in layer IV.

Being able to measure the layer from which the alpha signals are detected can
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help define their origin and increase understanding of the function of alpha

oscillations.

3.3.2.1 Evidence from animal work

The majority of work investigating the generating mechanisms of alpha oscilla-

tions on a laminar level has been conducted on animal models using invasive

intracranial measures such as micro-electrodes and local field potentials (LFPs).

Work by Hughes et al used micro-electrodes and LFPs to measure EEG

data from the Lateral Geniculate Nucleus (LGN) of the thalamus in cats, both

in vitro and in vivo [45]. In vitro it was found that activation of Metabotropic

Glutamate Receptor 1 (mGluR1) induced synchronised oscillations in the alpha

and and theta frequencies in the LGN of the thalamus. The in vivo recordings

with microelectrodes implanted into the LGN showed similar characteristics to

the in vitro data, suggesting that mGluR1a-induced alpha oscillations and are

a possible mechanism by which the thalamus promotes EEG alpha activity.

In a review of the work done by Lopes da Silva et al it is stated that alpha

waves with the same characteristics can be recorded from the visual cortex and

the LGN and pulvinar in the thalamus [82]. In addition, it was found that

alpha rhythms of the visual cortex are generated by cortical neurons forming

an equivalent dipole layer at cortical layers IV/V [83]. It was also found that

the coherence of intracortical alpha signals between two regions significantly

decreased when the effect of a thalamic site was removed, indicating that

thalamic alpha activity influences cortical alpha activity [84]. Finally, despite

the removal of the thalamic signal effects it was seen that cortico-cortical

coherence remained, suggesting that there is cortico-cortical generation of alpha.

Overall this work suggests that there are two generators of alpha, one being

thalamo-cortical and the other being cortico-cortical.

in vitro work in rats by Silva et al [85] also showed that pyramidal neurons

of layer V sustained rhythmic oscillations within the alpha frequency band

following triggering with a small current pulse. The rhythmic behaviour was
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only observed in layer V suggesting an intrinsic oscillatory mechanism for each

neuron in layer V of the cortex.

Work by Buffalo et al measured LFPs using microelectrodes implanted into

V1, V2 and V4 of the visual cortex at two cortical depths in Rhesus monkeys.

Recordings were taken from deep and superficial cortical layers during a visual

attention task [46]. The LFPs showed maximum coherence of the alpha band

in layer V of the cortex. The synchrony of this alpha activity was reduced by

attention, suggesting that alpha synchrony is generated from layer V of the

cortex, thus that in this instance top-down mechanisms are generating the alpha

signal.

3.3.2.2 Evidence from human work

The acquisition and analysis of layer dependent simultaneous EEG-fMRI in

humans has previously only been performed at 3 T by Scheeringa et al [1,

86]. In their work they investigated the relationship between EEG alpha,

beta and gamma oscillations and the BOLD response across different cortical

layers. Interleaved EEG-fMRI data were acquired on 34 subjects during a visual

attention task consisting of contracting rings at varying speeds. Functional

GE-BOLD data were acquired using 3D-EPI with 0.75 mm isotropic resolution

and a volume TR of 3.792 s. The fMRI data were then averaged to form one

timecourse per cortical layer within each visual region, these were then input

into a General Linear Model (GLM) with EEG regressors.

In the work of Scheeringa et al 2016, it was found that during an attention

task, gamma-band EEG power correlates positively with the BOLD response

in superficial layers, whilst beta-band EEG power is negatively correlated to

the BOLD response in deep layers, and alpha-band EEG power is negatively

correlated to the BOLD response in both deep and superficial layers. However,

this work used a GE-BOLD acquisition which suffers from draining vein effects

and can bias EEG-BOLD correlations towards the superficial layers, unlike CBV

based acquisitions such as VASO. To account for the draining vein effect, a ratio
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of the attention-on effect to the attention-off effect was used when performing

the EEG-BOLD layer analysis. These results lay the ground work for the use

of layer-fMRI to answer neurophysiological questions and to bridge the gap

between human and animal model neuroscience.

More recently the data in Scheeringa et al 2016 was reanalysed [86] to assess

how EEG power modulations relate to layer-fMRI connectivity between and

within brain regions. Continuing on from the analysis in [1], the connectivity of

the BOLD fMRI data between two separate layers was assessed and related to

EEG power on a group level. It was found that the attention task induced a

decrease in beta power that related to an increase in deep-to-deep layer coupling

between regions, and increased connectivity of deep/middle-to-superficial layers

within brain regions. The attention alpha power decrease predominantly related

to reduced connectivity between deep and superficial layers within brain regions.

This work suggests that alpha and beta power relate to different top-down

neural processes.

3.4 Origin of the fMRI signal

This section describes the origin of the neuronal signals that can be measured

using functional MRI (fMRI).

3.4.1 Physiology

Despite being only 2% of the body by weight, the brain has a high energy

demand in comparison to other organs, accounting for 20% of the body’s total

energy expenditure. To maintain regular brain function, neurons require energy

from metabolising glucose and oxygen. The brain has a limited capability to

store glucose compared to other organs, and so a constant blood supply is

required. This is achieved by a complex network of arteries, arterioles and

capillaries that transport oxygen rich blood from the heart to the capillary

bed where nutrients can cross the Blood Brain Barrier (BBB) into the neurons.
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Waste products from the neurons diffuse in the other direction across the BBB

back into the capillary bed and travel back towards the heart, with the now

deoxygenated blood, through venules and large pial veins on the surface of the

cortex.

During neuronal activity, the local demand for glucose and oxygen increases.

To meet the demand, the surrounding arterioles and capillaries dilate to increase

blood flow. The local increases in cerebral blood flow (CBF), accompanied by

changes in cerebral blood volume (CBV), give rise to an increased supply of

oxygenated blood. If the supply of oxygenated blood outweighs the demand,

this results in a change in the MR signal due to a phenomenon known as the

Blood Oxygenation Level Dependent (BOLD) contrast.

3.4.2 BOLD contrast

First demonstrated in 1990, the BOLD contrast is an indirect measure of

neuronal activity [2] that can be measured with fMRI. During activation there is

a local increase in the Cerebral Metabolic Rate of Oxygen (CMRO2) leading to an

increased demand for oxygen. Oxygen is transported in the blood in the form of

oxyhaemoglobin in red blood cells, a diamagnetic iron protein complex bound to

four O2 molecules. Once the oxygen dissociates, it is known as deoxyhaemoglobin

which is paramagnetic. The paramagnetism of deoxyhaemoglobin causes local

magnetic field distortions leading to a variation in the precession frequencies of

nearby spins, resulting in dephasing and the shortening of T∗
2 around venous

blood vessels. To meet the increased demand for oxygen, local arteriole CBF

and CBV increase but the increase in these measures is greater than what is

required, leading to a higher ratio of oxyhaemoglobin to deoxyhaemoglobin.

This local decrease in deoxyhaemoglobin results in an increase in the MR signal,

this is known as the BOLD signal.

The T∗
2 dephasing effects are increased at higher field strengths, and as a

result the BOLD signal increases [87]. As well as increased BOLD signal, the

overall SNR increases at higher field strengths. Due to these factors at ultra-high
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field (UHF), the higher BOLD fMRI signal can be traded for higher spatial

resolution. However, higher field strengths do come with compromises of greater

B1 inhomogeneity, and shorter T∗
2 values. The latter shortens the available time

that data can be collected before the signal decays and necessitates a shorter

echo time (TE). To achieve such short TEs, higher gradient strengths and slew

rates are sometimes used, with these reaching 40 mTm−1 and 200 mTm−1s−1.

respectively on the 7T Philips Achieva system.

BOLD fMRI is typically acquired with a Gradient Echo EPI (GE-EPI)

sequence but a Spin Echo EPI (SE-EPI) sequence can also be used. The design

of each of these sequences results in different sensitivities to the BOLD signal.

The difference in the BOLD signal between GE and SE EPI arises from the

areas surrounding large vessels. The spins surrounding large vessels experience

a reasonably constant magnetic field over time and therefore the long range

susceptibility dephasing effects from field inhomogeneities (T′
2) are refocused

by the 180◦ inversion pulse in the SE sequence but are not refocused in a GE

sequence. This results in no contribution to the SE-BOLD signal from the

extravascular regions near large vessels, reducing the SE-BOLD sensitivity [88,

89]. The spins in the vicinity of small vessels experience random dephasing

effects due to diffusion that cannot be refocused by the SE sequence, resulting

in T2 BOLD contrast. In summary, SE-BOLD is less sensitive to the BOLD

contrast than GE-BOLD but has better spatial specificity to the small vessels

in the capillary bed, and therefore the area of neuronal activity.

After neuronal activity the BOLD signal varies over time, this is referred

to as the BOLD Haemodynamic Response Function (HRF). The BOLD HRF

consists of three features: the primary response, the post stimulus undershoot,

and the ‘initial dip’ which is included in some models but is still debated [90].

A schematic of these features is shown in Figure 3.6. The primary response is a

positive increase in signal from baseline immediately after the stimulus onset,

reaching it’s peak after ∼6 s, this delayed time to the peak is referred to as

the haemodynamic lag. Following the primary response is the post stimulus
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undershoot where the signal begins to decrease back towards baseline but

undershoots before returning to baseline most likely due to an uncoupling of

the return to baseline in blood volume compared to blood flow.

Figure 3.6: The BOLD haemodynamic response function (HRF) following a

short stimulus at time 0 s. The primary response which peaks at ∼ 6 s, followed

by the post stimulus undershoot before returning to baseline. The debated ‘initial

deoxy dip’ isn’t shown.

Vascular space occupancy (VASO) is an alternative fMRI contrast whereby

changes in the MR signal are induced by changes in the cerebral blood volume. A

180◦ inversion pulse is applied to invert the grey matter and blood magnetisation,

after a period of time the signal is acquired at the null point of the blood

magnetisation (described in detail in Section 6.1.1). During neuronal activation,

the blood volume increase results in a decrease in the MR signal. VASO is less

sensitive than GE-BOLD but is more spatially specific as the CBV response

is thought to originate from small vessels, whilst the GE-BOLD signal which

originates from venous origin has a suggested spatial accuracy of about 3.5 mm,

based on the vascular Point Spread Function (PSF) [91].
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3.4.3 Combined EEG-fMRI

Despite Echo Planar Imaging (EPI) acquisitions only requiring 10s of millisec-

onds per slice, the temporal resolution of fMRI is poor compared to other

brain imaging methods such as MEG and EEG. This is because the temporal

resolution of fMRI is ultimately limited by the haemodynamic response function

as shown in Figure 3.6. Conversely, EEG/MEG detects the electrophysiological

activity of synchronously firing neurons and thus is a direct measure of brain

activity with temporal resolutions on the order of 1 ms. Combining the high

spatial resolution of fMRI with the high temporal resolution of EEG, creates

a multimodal technique to probe the haemodynamics of the brain related to

specific signatures of neural activity from the EEG, enabling us to investigate

the origins of the alpha signal. The combination of EEG and fMRI arose in the

mid 1990s, with its development driven by a clinical interest to localise epileptic

EEG activity [92]. Since then, further developments of hardware and data

analysis [93] have led to multiple approaches to combine EEG and fMRI data.

Combined EEG and fMRI data can be collected in an interleaved fashion with

EEG collected during temporal gaps in the MRI acquisition (used in Scheeringa

et al), or in a continuous fashion. In this thesis, continuous EEG-fMRI data

is collected. Collecting the EEG data continuously throughout the MRI scan

means there are no gaps in the fMRI acquisition for a ‘quiet’ period in which

to collect the EEG data. This has two benefits, (1) the signal variation in the

EEG signal is collected for the entire fMRI timeseries, and (2) since a pause

is not required in the fMRI acquisition (i.e. the fMRI data is not acquired

in a sparse-sampling acquisition) the temporal resolution of the acquisition

of the fMRI signal is much shorter. For continuous EEG-fMRI one of the

biggest concerns is the quality of the EEG data [94, 95]. MRI scanners give

rise to multiple artefacts in the EEG data, the most prominent being Pulse

Artefacts (PA) [96], Gradient Artefacts (GA) [97] and Motion Artefacts (MA)

[98]. Working with EEG-fMRI at UHF is therefore very challenging as the
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magnitude and prevalence of PAs and MAs are increased due to the increased

magnetic field strength. Additionally, the presence of the EEG electrodes can

reduce the MR image quality [95], and if an RF surface coil is used to collect

the MR data, then this needs careful planning to ensure the coil is optimally

placed over the cortical area of interest.

As EEG and BOLD fMRI are measuring two distinct measures of neuronal

activity, it is important to understand how they correspond to each other.

EEG detects the electrophysiological signals from 1000s of synchronously firing

neurons whereas fMRI BOLD detects changes in blood flow, blood volume

and oxygenation. Most commonly features of the EEG timecourse are used

as regressors in GLMs (see Section 4.4.3.1). When an oscillatory activity is

of interest, often the continuous EEG timecourse is used to form a regressor,

averaging all the signal within a TR period and convolving with a HRF.

For effective combination of EEG and fMRI, it is important to understand

how these signals predominantly correlate to each other during brain activity. It

has been shown that delta power correlates positively with the BOLD response

during the resting state [99] and that gamma power correlates positively during

a task [100, 101]. Beta power has been shown to correlate positively [102] in the

default mode network during rest and negatively [101] during visual stimulus

to the BOLD response. Alpha power has been shown to correlate negatively

with the BOLD response at rest [101–103] and prefrontal theta power has been

shown to correlate negatively [104].

3.5 fMRI Analysis

fMRI data can be acquired during a task or in the resting state. Task fMRI

involves the subject being exposed to a stimulus or instructed to perform a task

for a given period of time. The data is then analysed using the knowledge of

the stimulus characteristics i.e onsets and duration. Stimuli can be presented

in defined blocks of ‘ON’ and ‘OFF’, often repeated a number of times during
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each fMRI run, or as short events occurring at predefined times throughout

the fMRI run. Resting state fMRI is analysed without stimulus information

and involves correlating the BOLD fMRI signal between different regions in the

brain to define functional connectivity networks [105, 106] or by using another

measure of brain activity such as EEG to create a model of expected BOLD

response [93, 103, 107, 108].

Following acquisition, multiple analysis steps are required to identify areas

of activation in the brain in response to delivery of a stimulus or performing a

task. For the work in this thesis this is outlined in Chapter 4.

3.5.1 Analysis of fMRI data

The acquired fMRI data is considered as a 4D matrix with three spatial dimen-

sions x, y, z each with a time-series, t. Statistical tests can be performed on each

voxels time-series to determine how it correlates with a predicted timecourse

modelled using information about the stimulus timings and the BOLD HRF.

Prior to performing such tests, pre-processing steps are required to remove

artefacts and noise from the data.

3.5.1.1 Conventional Preprocessing Steps

The following steps are typically used in the pre-processing of fMRI data:

Motion Correction: The spatial registration of sequential volumes of the

fMRI data to a specific reference volume to minimise the effect of subject head

movement. The reference volume is often the first or middle volume acquired

during the fMRI run. This step is especially important for high spatial resolution

fMRI studies so that specific localisation of activation can be maintained.

Spatial Smoothing: This reduces the influence of noise on the detection

of brain activation. Typically, a smoothing kernel with a Full Width Half

Maximum (FWHM) of 1.5 – 2 times the voxel size is used. This step is very

common in whole brain fMRI studies at 3 T with lower spatial resolutions (>2
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mm isotropic), but is detrimental for fMRI studies using high spatial resolution

as it reduces specificity.

Temporal filtering: Typically high pass filtering (> 0.01 Hz) is used to remove

slow changes in the baseline from the data due to scanner drift. Scanner drift

is predominantly caused by gradient heating, which can often occur during

high resolution fMRI acquisitions as the acquisition is often at the limit of the

hardware.

Normalisation: Finally, registration is often performed so that subjects can be

aligned to a ‘standard’ space template. The Montreal National Institute (MNI)

template is a widely adopted common coordinate system used to define regions

of the brain. There are multiple atlases that have been defined in this space to

give an estimate template of common brain structures, or functional regions.

Relevant to this thesis is the Benson atlas which defines areas of the visual

cortex [109], and is described in Chapter 4.

3.5.1.2 General Linear Model (GLM)

Once the fMRI data has been pre-processed, statistical analysis can be performed

to separate regions of noise from regions of brain activation in the data. A

common analysis is to use a general linear model (GLM). For the GLM the

data is modelled as a linear combination of multiple models (called regressors)

collectively known as the design matrix, X. The contribution of each regressor

to the variance of each voxel’s timecourse, Y , is assessed and a weighting, β, is

given according to its contribution. The model regressors in the design matrix

are generated by predicting the shape of the BOLD signal in response to the

stimulus. This is done by convolving a standard HRF with a boxcar function of

the stimulus, with the boxcar being 1 when the stimulus is ON and 0 when at

REST. The remaining variance unexplained by Xβ is assumed to be noise, e,

this results in the matrix equation,

Y = Xβ + e (3.1)
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where Y is the fMRI data, X is the design matrix (or regressors), β is the

amplitude weighting (known as β-weights) and e is the noise vector (or residuals).

The analysis adjusts the β-weights until the best description of the variance

in Y is found, large β-weights correspond to a voxel timecourse that is well

explained by the regressor. First-level GLM analysis is used for data from a

single subject. Second-level analysis is used to combined results from multiple

sessions or subjects.

3.5.2 t/z statistics

To identify areas of statistically significant activity the β-weights can be tested

against a null hypothesis using a t-test.

t =
x̄− µ
σ/√n

(3.2)

where x̄ is the mean of the sample, µ is population mean, σ is the standard

deviation of the error and n is the degrees of freedom – usually the number

of data points minus the number of regressors. The measured t-statistic is

compared with a t-distribution to determine if the t-statistic has arisen by

chance if the means are the same. The t-stats are transformed to z-stats using

a standard statistical transform and activation maps are usually displayed at a

set z threshold that corresponds to a specified p-value.

3.5.3 Noise sources in fMRI data and correction

fMRI data has two main sources of noise, thermal noise and physiological noise.

Thermal noise arises from MR hardware and the sample and is the dominant

source of noise in high spatial resolution acquisitions of < 1 mm isotropic. fMRI

studies using high spatial resolution are often in the thermal noise dominated

regime and Temporal Signal to Noise Ratio (tSNR) limited. To overcome such

low tSNR, long block stimuli are used and multiple fMRI runs are acquired to

reduce noise by averaging over a number of trials. This increases total scan
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session time and reduces the time available to acquire other fMRI paradigms or

structural measures. Recently NOise Reduction using DIstribution Corrected

PCA (NORDIC PCA) denoising has been developed for the removal of thermal

noise from fMRI and diffusion MRI data [110, 111] and its application to high

spatial resolution BOLD and VASO fMRI data is considered in Chapter 6.

Physiological noise, consists of cardiac noise and respiratory noise and is the

dominant noise source in fMRI data with spatial resolutions > 3 mm isotropic.

Physiological noise increases with magnetic field strength, but methods can

be used to correct for this such as Retrospective Correction of Physiological

Motion Effects in the Image Domain (RETROICOR) [112]. RETROICOR can

be applied during pre-processing using the cardiac and respiratory data collected

from the respiratory bellows and a Peripheral Pulse Unit (PPU) during fMRI

scanning. The phase of the cardiac and respiratory data is used to calculate

and remove the corresponding noise.

To assess the data quality and noise levels in fMRI data, the image stability

over time is measured using a metric known as temporal signal-to-noise ratio

(tSNR). tSNR is calculated by dividing the mean signal of each voxel by the

standard deviation of the voxels timecourse.

tSNR =
mean signal of timecourse

standard deviation of timecourse
. (3.3)

3.6 Conclusion

This chapter has provided an outline of the origins of EEG and fMRI signals,

as well as the processing pipelines for fMRI. These methods will be applied in

Chapters 4 and 5 in combined EEG-fMRI of layer-specific alpha response, and

in Chapter 6 to study BOLD and VASO responses to a motor task.
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Chapter 4

Analysis pipeline to assess

layer-specific alpha signals using

EEG-fMRI
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Abstract

In this chapter a simultaneous 7 T EEG-fMRI study is described and

the optimal pipeline for layer-dependent analysis of this EEG-fMRI data

is explored. This is then applied to study the origins of human alpha

oscillations in Chapter 5.

7 T EEG-fMRI data with a 3D GE-EPI readout was previously acquired

on ten healthy subjects during an eyes open/closed paradigm along with

structural MRI and retinotopic mapping fMRI measures. This chapter

outlines optimal motion correction and coregistration of the fMRI data,

using a single concatenated transformation matrix, followed by B0 field

map distortion correction to maintain spatial resolution of the functional

data and align it with the structural data. The EEG alpha power

timecourse during the eyes open/closed paradigm is used as a regressor

for the fixed effects GLM, with the convolution of the EEG timeseries at

500 Hz with a HRF found to be optimal and temporally downsampling

to generate alpha specific BOLD responses. From a separate scan session,

retinotopic mapping fMRI data is used to define a Region Of Interest (ROI)

for visual regions V1, V2 and V3. The PSIR structural data from the

EEG-fMRI and retinotopy scan session are coregistered, and the resulting

transforms applied to the V1, V2 and V3 ROIs to move these into the

EEG-fMRI space.

The EEG-fMRI PSIR structural data are segmented into tissue type and

upsampled to result in GM masks within V1, V2 and V3 ROIs with

manual correction used to avoid any large vessels. Equivolume cortical

layers are then calculated and 4,000 cortical columns generated across

the GM ribbon.

Finally, the optimal parameters for layer-specific BOLD analysis are

explored to show the effect of active voxel choice, denoising and deveining.

The columns within V1, V2 and V3 are filtered for those containing

significant alpha-BOLD correlation and denoised using a threshold equal

to 5% of the maximum value in the visual region. The β-weights within

the remaining columns are then deveined in LayNii using the spatial
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deconvolution leakage model. Methods to study the uncorrected and

deveined layer profiles are then presented.

This work was presented as an oral presentation at International Society

of Magnetic Resonance in Medicine (ISMRM) 2020 ‘Assessing the origin

of human alpha oscillations using laminar layer 7 T fMRI-EEG’; a talk

at the ISMRM UHF Workshop Lisbon 2022 ‘Laminar layer 7 T fMRI-

EEG reveals human alpha oscillations are predominately from superficial

and deep layers’; a digital poster at ISMRM 2022 ‘Laminar layer 7

T fMRI-EEG reveals human alpha oscillations are predominately from

superficial and deep layers’; and a poster at Organisation for Human

Brain Mapping (OHBM) 2022, Glasgow ‘Layer 7 T fMRI-EEG: human

alpha oscillations originate from visual cortex superficial and deep layers’.
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4.1 Introduction

In recent years advances in the acquisition and analysis of functional Magnetic

Resonance Imaging (fMRI) and the push to higher field strengths has made

the measurement of cortical depth dependent fMRI signals viable in humans

[113–116]. Using fMRI to obtain measures from across the cortical layers in the

human brain opens up opportunities to investigate neuroscience questions that

were previously only possible using animal models or invasive methods such as

electrocorticography (ECoG). Studying functional activation and connectivity of

the cortical layers can help to answer questions on the hierarchical organisation

of the brain and how it processes information [117–119]. In hierarchical brain

systems, such as in humans, neural inputs from one region to another are known

to arrive in different cortical layers, dependent on whether this is a top-down or

bottom-up process (for a complete description see Section 3.3.1).

To achieve high spatial resolution and sufficient temporal resolution to

detect such subtle neurovascular changes in thin cortical layers, the majority

of researchers use ultra-high-field (UHF) MR systems with highly optimised,

bespoke sequences in order to maximise contrast-to-noise ratio (CNR) and

signal-to-noise ratio (SNR). UHF MR scanners (defined to be 7 T and higher)

are used in over 80% of layer-fMRI publications, with Siemens being the most

common vendor and used in over 80% of layer-fMRI publications [120]. These

publications predominantly use gradient echo (GE) EPI BOLD contrast or

vascular space occupancy (VASO) measurements collected with 2D-EPI or 3D-

EPI readouts, whilst a small number of studies collect spin echo (SE) EPI BOLD

contrast and Arterial Cerebral Blood Volume (aCBV) [121–124]. Typically

the functional acquisitions are collected with a small field of view (FOV) and

a thin stack of slices covering the domain of interest, typically the primary

sensorimotor or visual cortex. Layer-specific fMRI paradigms mostly use block

stimuli (of up to 30s ON/OFF periods) for strong activation of the sensorimotor

or visual cortex, for example by displaying a flashing checkerboard or performing
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fingertapping. Multiple runs of the functional data are acquired alongside high

resolution structural scans, usually a Magnetisation-Prepared Rapidly Acquired

Gradient Echo (MPRAGE) [125], Magnetisation Prepared 2 Rapid Gradient

Echo (MP2RAGE) [126] or Phase Sensitive Inversion Recovery (PSIR) scan

[127]. Stringent motion correction and distortion correction is required to best

align the high spatial resolution (≤ 1 mm) functional and structural data.

Functional data has then predominantly been analysed using a general linear

model (GLM) followed by cortical layer analysis.

Most layer-specific fMRI studies follow the methods described above but

compromise and concessions for the acquisitions and analysis are required (as

described in [128]). The key limitations are low sensitivity/specificity, small

coverage, asymmetric voxel sizes and the need for manual intervention in the

analysis pipeline. Each of these points are discussed below.

Low sensitivity and specificity: There is a drastic reduction in signal-

to-noise ratio (SNR) when acquiring data at sub-millimetre voxel sizes for

layer-specific fMRI compared to standard fMRI acquisitions. For example,

increasing the spatial resolution from 2 mm isotropic to 0.8 mm isotropic results

in a 15-fold reduction in volume (from 8 mm3 to 0.512 mm3) and therefore a

similar reduction in the signal. The reduced SNR of acquisitions necessitates

the use of block-design tasks with longer ‘ON’ and ‘OFF’ periods to study

brain activation in primary areas. Sensitivity is highest for GE-EPI BOLD

and reduced when acquiring SE-EPI BOLD, VASO or aCBV contrasts as these

have inherently lower contrast-to-noise ratio (CNR) than GE-EPI BOLD [129,

130] (see Chapter 3 for a detailed discussion of this point). Therefore, GE-EPI

BOLD is often used for high resolution fMRI studies. However, due to its

sensitivity to extravasculature T ∗
2 changes [131], the large draining veins in the

cortex blur the fMRI activity towards the pial surface. This signal blurring is

a substantial limitation to layer-specific fMRI using GE-BOLD and must be

corrected for using post processing methods, which are outlined in Section 4.7

of this chapter.

62



4.1. Introduction

Small coverage: In order to achieve sufficient spatial resolution but collect

fMRI data with a reasonable temporal resolution, acquisitions are often limited

to a few slices in a stack covering a single brain region of interest. This poses

challenges when the experimenter is setting up and planning the protocol and

care must be taken to ensure the brain area(s) of interest are not cropped or

missed in the data acquisition. The recent development of multiband (MB)

[132], also known as simultaneous multislice (SMS), which to acquires data

from different slices simultaneously provides acquisitions with greater coverage

without changing the total readout time for a volume. However, care must be

taken to avoid aliasing between slices [133] using a MB acquisition, particularly

for thin slices and a small stack of slices.

Asymmetric voxel sizes: To increase the sensitivity of an fMRI acquisition,

asymmetric voxel sizes are often used, typically with sub-millimetre resolution

in-plane and lower resolution (∼1.5 mm) through plane. Brain regions that

have stable folding patterns across subjects (e.g. the motor cortex) are more

accommodating to this approach. However, careful slice positioning is required

to ensure sufficient sampling across the cortical ribbon. For higher order brain

regions, which have more complex folding patterns and higher variability between

subjects, isotropic resolution is vital to capture the brain activation across the

cortical ribbon.

Manual intervention: At high spatial resolution, distortion correction and

registration is vital for maximum alignment between functional EPI-based data

and structural data. This requires manual checking of registrations and can be

improved by manual adjustments of realignment parameters on a subject-by-

subject basis. Layer modelling is highly dependent on high quality, accurate

definitions of the GM/CSF and GM/WM boundaries. There are software

libraries (such as fMRIB Software Library (FSL) [134], Statistical Paramet-

ric Mapping toolbox (SPM) [135] and Freesurfer [136]) available to segment

structural brain images into GM, WM and CSF tissue types but these need

checking and typically need manual editing to achieve the required quality for
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layer analysis. Each dataset can require as much as 8 – 12 hours for precise

editing of the GM boundaries.

To take full advantage of layer-fMRI to aid understanding of the origin of

EEG scalp signals there are a number of methodological challenges yet to be

fully addressed. These include: 1) The origin of the alpha signal in terms of the

specific location(s) in the visual cortex from which it is originating is unknown,

therefore the region of interest (ROI) which is imaged with fMRI must cover

the whole of visual areas V1, V2 and V3 whilst minimally compromising spatial

and temporal resolution. 2) How to combine the EEG and fMRI data using

higher spatial resolution GE-BOLD or VASO acquisitions which have longer

repetition times (TR) (of the order of 4 s) than standard spatial resolution

EEG-fMRI studies (typically TR of 2 s [137, 138]). 3) How to account for the

draining vein effect which alters the specificity of layer-specific fMRI.

This chapter outlines the details of the EEG-fMRI acquisition at 7 T for

layer-specific fMRI. The development of an analysis pipeline to overcome the

associated challenges of layer-specific EEG-fMRI is then presented with steps

primarily illustrated in a single subject. This pipeline is then applied to the

full dataset in Chapter 5 to investigate the overarching question of ‘What is

the origin of the EEG Alpha signal?’. The data acquisition was performed

prior to the commencement of my PhD studies, my contribution relates to the

development of the analysis pipeline to apply to these datasets. For completeness

full details of the data acquisitions are provided in Section 4.2.

4.2 Acquisition of 7 T EEG-fMRI data

This study was conducted with approval from the local ethics committee and

complied with the Code of Ethics of the World Medical Association (Declaration

of Helsinki). Ten healthy, experienced fMRI subjects (four female) with a mean

age 28±5 years, participated in this study. Each subject gave written, informed

consent before participation. The protocol involved a core experimental eyes
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open/eyes closed paradigm during which simultaneous EEG-fMRI data was

collected, alongside this functional and structural data were acquired to define

core visual cortex regions (V1, V2 and V3) and define the grey matter for layer

analysis.

4.2.1 Experimental Paradigm: Eyes open/closed

A simple ‘eyes open/eyes closed’ core paradigm was chosen to induce bottom-up

alpha modulation for during the study of EEG and fMRI responses. Subjects

were cued to open or close their eyes by delivery of a short (100 ms) vibrotactile

stimulus to their finger applied using a piezoelectric stimulation device (Dancer

Designs). A fixation cross was present during the eyes open periods. Blocks

consisted of 30 s of eyes open and 30 s of eyes closed, with four blocks per run

as shown in Figure 4.1. Four or five runs were acquired per subject (5 subjects

had five runs and 5 subjects had four runs).

Figure 4.1: Eyes open, eyes closed paradigm used to modulate alpha power.

4.2.2 Session 1: EEG-fMRI and associated structural

measures

All MRI data were acquired on a 7 T Phillips Achieva MR scanner (Phillips

Medical Systems, Best, Netherlands) using a volume transmit coil (Nova Medical,

Wilmington, USA) and two 16 channel high density array surface receive coils

(MR Coils, Netherlands). Cardiac and respiratory traces were simultaneously
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recorded throughout using the scanner’s physiological monitoring system (vector

cardiogram (VCG) and respiratory belt).

Figure 4.2: The apparatus used to acquire the MRI data. a) 7 T Phillips Achieva

MR scanner, b) the two 16 channel high density array surface receive coils with

one showing the individual 16 receive coils elements, c) MR-compatible EEG

cap, BrainAmp MR-plus EEG amplifier and Brain Vision Recorder d) The EEG

cap and positioning of the two surface receive coils on a volunteer using Coban

Tape prior to scanning.

The surface coils were positioned over the individual subject’s occipital

cortex using a previously acquired structural image for each subject and the

known relative position of the EEG electrodes to the individuals anatomy.

Coban Tape was used to hold the surface coils in position prior to the subject

being placed in the scanner. To ensure the correct positioning of the coil, survey

scans were initially collected using the linear coil for both transmit and receive

to allow a 3-dimensional survey image to be collected. A survey scan was then

performed using the the high density array surface receive coils and, if required,

the surface coils were moved to ensure optimal sensitivity to V1.

EEG data were recorded using an MR-compatible EEG cap (EasyCap,

Herrsching, Germany) with 63 scalp electrodes following the extended interna-
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tional 10 – 20 system and an additional channel for recording the electrocardiograph

(ECG). The reference electrode was positioned at FCz. A BrainAmp MR-plus

EEG amplifier (Brain Products, Munich) and Brain Vision Recorder (Version

1.10) was used for data acquisition.

fMRI data: These were collected using the two 16-channel surface receive coils

with a 3D GE-EPI sequence (see Figure 4.3) at 0.8 mm isotropic resolution,

TE/TR = 32/76 ms, FA = 28◦, TRvolume = 3.8 s, Bandwidth (BW) in EPI

frequency = 740.4 Hz, acquired matrix size 88×168 (AP×RL), SENSE 3.45×1.7

(Phase×Slice) (reconstructed matrix = 256×256), slices were positioned centred

along the calcarine sulcus (Figure 4.3) with 44 slices in an axial orientation and

Image Based (IB) shimming. The two 16-channel surface receive coils allowed a

high SENSE factor to be used in the RL phase encoding direction. A single

scan consisted of 68 volumes, resulting in a scan duration of ∼4 minutes, a

minimum of 4 functional runs were acquired for each subject.

In addition, following the functional runs, multi-TE 3D GE-EPI data were

collected at a range of echo times (TE = 30 ms, 35 ms, 40 ms and 50 ms) with

6 dynamics collected at each, to allow for a T∗
2 map to be calculated. This was

collected with the goal of subsequently using this data to define the veins and

Stria of Gennari from either the T∗
2 map or the associated proton density (M0

map) fitting the data voxel-wise to M0e
−t/T∗

2 (Equation 2.15).

Prior to the fMRI acquisition, a B0 field map was acquired with the same

geometry as the 3D-EPI data (TR = 20 ms, TE/∆TE = 5.92/1 ms, 4 mm

isotropic resolution, 64×64 matrix, 40 slices, FA = 25◦, SENSE 2) with the

same image based (IB) shim volume as used for the fMRI data acquisition

to match the field perturbations. This B0 field map could then be used for

distortion correction of the 3D-EPI fMRI datasets.
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Figure 4.3: A summary of the acquisitions collected using the two 16-channel

surface receive coils. Showing a) an example the dynamic of functional 3D

GE-EPI data b) an example TE (40 ms) of the Multi TE 3D GE-EPI data c) a

B0 field map in Hz and d) a single phase (TI = 780 ms) of the PSIR data.

EEG data: These were recorded using a sampling rate of 5 kHz and hardware

filtering to the frequency range of 0.016 – 250 Hz with a roll-off of 30 dB/octave

at high frequency. The electrode impedances were kept below 20 kΩ. EEG

artefacts from the MRI environment were minimised by isolating the EEG

amplifiers from the scanner bed and reducing the MR room noise by switching

off the cold head pumps during acquisition [139]. The optimal correction of the

gradient artefact was made possible by adapting the 3D GE-EPI sequence to

ensure that the TR was equal to a multiple of the EEG sampling period and

by synchronising the EEG and MRI scanner clocks [140]. The MRI scanner’s

vectorcardiograph (VCG) was used to monitor the cardiac trace to enable the

correction of the pulse artefact.

After completion of MRI scanning, the locations of the EEG electrodes on the

scalp surface, and the shape of the subject’s head were digitally recorded using

a Polhemus isotrack 3D system (Polhemus, Vermont, USA). The 3D digitised
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head shape was subsequently fit to each subject’s whole-head anatomical MRI

scan (see below) in order to compute the location of each electrode with respect

to the individuals brain anatomy.

Anatomical data: These were also collected using the two 16-channel surface

receive coils with the same geometry as the 3D GE-EPI fMRI data using a

phase-sensitive inversion recovery (PSIR) sequence [141]: 0.7 mm isotropic

resolution, 252×250 matrix, 175 slices, TI = 780/2280 ms, SENSE factors: 2.2

(right-left, phase encode), 2 (foot-head, slice selection). As with the 3D GE-EPI

fMRI acquisition this was a partial head acquisition covering the visual cortex.

4.2.3 Session 2: Retinotopic Mapping

In a second scan session, data was collected on a separate day using a 32-

channel whole head receive coil (Nova-Medical) with no EEG cap in place. A

whole head PSIR (0.7 mm isotropic) dataset was acquired with matched image

parameters to the PSIR dataset acquired in Session 1 (see Figure 4.4). 2D

GE-EPI fMRI data were acquired (2D-EPI, TR = 2 s, TE = 25 ms, 1.5 mm3

isotropic resolution, 124×121 matrix, 85◦ FA, SENSE 2.5, receiver bandwidth

1,089 Hz/pixel, phase encode direction: foot-head) for retinotopic mapping. 32

coronal oblique slices were acquired to cover the entire visual stream (V1 to

IPS), with IB shimming performed over this target region, and 120 volumes

collected per run.
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Figure 4.4: The dataset acquired in the second scan session using the 32-channel

whole head receive coil (Nova Medical). This comprised a 0.7 mm isotropic

whole head PSIR and a functional 2D GE-EPI retinotopy dataset.

Eccentricity and polar angle maps were measured using standard retinotopic

mapping procedures comprising an expanding annulus and rotating wedge (see

Figure 4.5) to define visual areas (V1, V2, V3) for each subject, as performed

in [142].
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Figure 4.5: Retinotopic mapping paradigm using a) expand-

ing/contracting rings and b) clockwise/anti-clockwise wedges.

One complete expansion/contraction/rotation took 24 seconds.

These are standard retinotopic stimuli provided in the mgl toolbox [143].

Visual eccentricity was measured using an expanding annulus that started from

a fixation point at the fovea and moved out to the periphery. To measure polar

angle in the visual cortex, a wedge rotated clockwise. Both the annulus and

wedge stimuli were textured with a checkerboard with alternating chromatic

contrast. One period of stimulation (i.e., a full expansion from fovea to the

periphery or a complete clock-wise rotation of the wedge) took 24 s, with 10

repeats collected per scan. For both annuli and wedges, a second scan was

collected with a reverse order (i.e., from expansion to contraction, or clockwise

to counter-clockwise) to control for the spatiotemporal haemodynamic response

function. For all conditions subjects fixated on a central cross which flickered

between red and grey.
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4.3 Analysis Pipeline Overview

The use of simultaneous EEG-fMRI data for layer analysis is a very new field,

thus the methods for analysing and combining these data have necessitated

the development of an optimal analysis pipeline which will be outlined in the

following sections. Section 4.4 outlines the functional analysis pipeline of the

EEG-fMRI data to the eyes open/closed task and associated retinotopic mapping

fMRI data. Section 4.6 outlines the definition of cortical layers and columns,

whilst Section 4.7 outlines how layer profiles can be generated including the

deveining process for GE-BOLD data. These components are illustrated as a

schematic overview in Figure 4.6 to show how the structural and functional

components are combined together for layer analysis of alpha modulations.

Figure 4.7 provides a detailed flow chart with a detailed description of each of

the steps in the analysis pipeline and how they feed into one another. In this

chapter, the results of optimising each of the individual analysis steps are shown

for a single subject to illustrate the development of the processing pipeline.

Results for all subjects who took part in the full study are then provided in

Chapter 5.
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Figure 4.6: A summary of the analysis steps implemented in this chapter for the multiple streams of data. This shows an overview

of the combination of the ‘Functional’ simultaneously collected EEG-fMRI data doing an eyes open/closed task and retinotopy

fMRI data with the ‘Structural’ data. The functional data then undergoes corrections prior to computing layer profiles.
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Figure 4.7: Processing pipeline for the analysis of simultaneous layer-dependent EEG-fMRI data.
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4.4 Functional Analysis Pipeline

4.4.1 EEG processing

The pre-processing of the raw EEG data was not carried out as part of this

PhD, but the ‘cleaned’ EEG data was provided for each subject. In brief, the

EEG data was gradient artefact (GA) and pulse artefact (PA) corrected by

Dr Rodika Sokoliuk using Brain Vision Analyzer2. Data were then filtered

0.1 – 40 Hz and downsampled to 500 Hz and exported to FieldTrip [144]

where all further analysis was performed. Noisy channels were removed and

Independent Component Analysis (ICA) was performed on the remaining

data, with components corresponding to eye blinks removed. The remaining

independent components were back projected to channel space and data were

re-referenced to an average of all the non-noisy channels. Data were then filtered

into the alpha (8 – 13 Hz) frequency band. Only the alpha frequency band is

studied for this simultaneous UHF fMRI-EEG study. This is because the other

frequency bands are too noisy to be assessed due to the artefacts introduced in

the EEG data due to the UHF MR environment. Higher frequency bands are

affected by residual gradient artefacts and the lower bands are affected by pulse

and motion artefacts.

Source localisation was performed using a Linear Constraint Minimum

Variance (LCMV) beamformer. Pseudo-T-statistic (T̄-stat) maps showing

significant task-related changes between eyes open and eyes closed in oscillatory

alpha-power were calculated over the whole head. The location of the maximum

change in alpha power between eyes open and eyes closed in the occipital cortex

was identified from each subject’s T̄-stat map (see Figure 4.8) and chosen as the

site of the Virtual Electrode (VE). Selecting this peak ensured the maximum

signal-to-noise ratio of the alpha-timecourse [145].
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1.5-1.5 0
Ŧ-stat

Figure 4.8: Source localisation using an LCMV beamformer for a representative

subject (Subject 1) showing maximum change in alpha power between eyes closed

and eyes open in the occipital cortex. This was selected as the location for a

VE-timecourse of the activity to be extracted for each run.

A VE-timecourse of the alpha activity during the entire experiment was

extracted from this location for each run. These VE alpha timecourses were

produced for each run and time locked to the beginning of the EPI data

acquisition, to be used in the current work. From this point I took the Fast

Fourier Transform (FFT) of the EEG timecourse from the peak VE for each

run and averaged over runs to assess each subjects alpha power modulation

(see Figure 4.9).
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Figure 4.9: FFT of the EEG timecourses extracted from the peak VE

for a representative subject (Subject 1). The FFT was determined per

run and averaged over runs. Orange shows the measured responses when

the eyes were closed and the green overlay shows the eyes open response

with diminished alpha power (8 – 13 Hz).

Due to the long volume TR (3.8 s) of the 3D GE-EPI acquisition, the

optimal way to produce a model of the EEG fluctuations in the BOLD signal

was first investigated. The primary question here was whether to convolve

at high temporal resolution and then downsample to the TR of the fMRI

data or whether to downsample to the fMRI TR and then convolve with the

haemodynamic response function (HRF). To address this the different methods

explored were (i) to keep the EEG data at its original sample rate of 500 Hz, or

(ii) to downsample to 10 Hz as an intermediate, or (iii) to downsample to the

fMRI rate of 0.26 Hz (1/TR), before convolving with a HRF. Figure 4.10 shows

the results. It can be seen that downsampling the data prior to convolution

leads to a spurious timecourse that is not as well matched to the stimulus

timings when compared to a convolution using the 10 Hz and 500 Hz EEG data.

The optimal pipeline was found to be when the EEG data were kept at the
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original sampling rate of 500 Hz (2 ms) before convolving with the HRF and

downsampling to the sampling rate of the fMRI (0.26 Hz = 1/3.8 s).
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Figure 4.10: Assessment of the optimal method to produce an EEG alpha model for the BOLD GLM. a) EEG alpha power

timecourse downsampled to 10 Hz and with all runs concatenated together (blue line). Overlaid in orange are the stimulus

timings. b) Comparison of the EEG timecourse at a sampling rate of 500 Hz, 10 Hz or 0.26 Hz after convolution with a HRF

and then downsampled to 0.26 Hz (1/TR). c) Each run of the ‘eyes open/eyes closed’ task for the model paradigm derived from

the pre-processed 500 Hz EEG data convolved with a HRF and then downsampled to the TR of each 3D GE-EPI volume. All

data shown for an example subject (Subject 1)
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4.4.2 Pre-processing of 3D GE-EPI eyes open/closed data

The 3D-EPI data were first corrected for physiological noise, due to respiratory

and cardiac motion, using retrospective image correction (RETROICOR) [112].

Following this, the functional data were corrected for distortions due to B0 inho-

mogeneities. Two methods were assessed: 1) non-linear registration correction

and 2) B0 field map based distortion correction.

For the non-linear registration, the 3D GE-EPI data were cropped and the

structural PSIR data were cropped and resampled to the 0.8 mm3 resolution

of the 3D GE-EPI data such that they were in matched space (see Figure

4.11). Non-linear registration was performed using FMRIB’s Non-linear Image

Registration Tool (FNIRT) in FSL [146] registering the 3D GE-EPI data to the

second (TI = 2280ms) image of the PSIR data, with a warp resolution equal to

the acquisition resolution (0.8 mm).

Figure 4.11: The 3D GE-EPI data (a) prior to being B0 distortion corrected and

the PSIR data (b) after being cropped and resampled to match the 3D GE-EPI

native space

For distortion correction, the B0 field maps were resampled and cropped to

the same spatial resolution and field of view as the 3D GE-EPI data (see Figure

4.12). These data were then used to perform B0 distortion correction using

fMRIB’s Utility for Geometrically Unwarping EPIs (FUGUE) in FSL. The

distortion correction shifts the voxels in the image to correct for the frequency
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change in the data due to magnetic field inhomogeneities. This processing

involved first creating a skull-stripped brain mask of the modulus of the field

map and applying this to the phase of the field map, converting the phase map

to radians, and applying the field map to correct the EPI mean image using

FUGUE. For this data, the water-fat-shift was 61.4 in pixels resulting in an

echo spacing of 1.71 ms which is converted to an effective echo spacing taking

account of the parallel imaging SENSE factors. The warp field was saved for

application to the functional 3D GE-EPI data.

Figure 4.12: a) multiple axial slices of the unprocessed 3D GE-EPI (left panel)

and multiple axial slices of the B0 field map (right panel). b) The pathway

from unprocessed 3D GE-EPI image to distortion corrected 3D GE-EPI image

shown for a single slice. The top middle panel of b) shows the 3D GE-EPI after

physiological noise has been removed using RETROICOR. The bottom panel of

b) shows the B0 map (in Hz) after being resampled and cropped to match the

3D GE-EPI data. The right panel shows the 3D GE-EPI data after distortion

correction using FUGUE (FSL).
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To assess which method was optimal, the resultant distortion corrected

images were overlaid on the PSIR image for visual assessment. In addition,

the non-linear FNIRT registration warp field and the B0 distortion correction

warp were each applied to an ‘activation map’ following GLM analysis (Section

4.4.3.1). The overlap of each warped activation map with a GM mask of the

PSIR was calculated. It was found that qualitatively visual inspection of the B0

field map corrected data resulted in a more optimal match. Quantitatively the

B0 distortion corrected activation had 75.5% overlap with a GM mask and the

non-linear registration had 71.8% overlap. Therefore B0 distortion correction

was the chosen method.

Next, motion correction of the multiple fMRI 3D GE-EPI runs was performed

using linear registration methods. The motion transformation matrices were

calculated in FSL (Motion Correction using FMRIB’s Linear Image Registration

Tool (MCFLIRT) and FMRIB’s Linear Image Registration Tool (FLIRT)) for

within each fMRI run and also between each fMRI run, such that each volume

could be aligned to the central dynamic of the entire session. These matrices were

then concatenated (FSL, convert_xfm) and applied to each of the datasets

using spline interpolation which minimised blurring. By applying a single

transformation matrix the effects of spatial blurring were minimised as shown

in Figure 4.13.

Having now distortion-corrected and aligned the datasets to the same native

space whilst maintaining the spatial resolution, next the functional BOLD

response was modelled.
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Figure 4.13: Comparison of the methods for the motion correction within and

between runs of the functional 3D GE-EPI data. a) Applying within and between

motion correction in one step using a combined transformation matrix with

spline interpolation shown for a single slice of i) a single dynamic and ii) the

average across all runs. b) Applying within and between motion correction

separately using multiple transformation matrices with the default tri-linear

interpolation shown for a single slice of i) a single dynamic and ii) the average

across all runs. Note the increased blurring for b (ii) compared to a (ii).

4.4.3 Defining the EEG/fMRI General Linear Model

A model of the BOLD response was created using the EEG timecourse as

described in Section 4.4.1. At the first-level, for each run, the main effect of the

EEG alpha response regressor and motion parameters as regressors of no interest

were modelled in a GLM (FSL, fMRI Expert Analysis Tool (FEAT)). For each

subject the average response was calculated across all runs using a second-level

fixed-effects analysis to produce the z-stat map across all runs per subject. Since

alpha oscillations are known to correlate negatively with the BOLD response

[103], a threshold of z < −2.3 was applied to all z-stats and cluster correction

(p < 0.05) performed. Voxels with large negative z-stats (z < −2.3) indicate

an area with high alpha-modulation to the task. In preparation for the layer
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analysis (see Section 4.6.1), the z-stat maps were then up-sampled to 0.175 mm

isotropic resolution using nearest neighbour resampling (FSL).

4.4.3.1 Combining EEG and fMRI

Figure 4.14 shows the results of using the GLM analysis to model the EEG alpha

power for Subject 1. Only the negative z-stats are shown with a threshold of

z > −2.3 since alpha oscillations negatively correlate with the BOLD response.

The threshold z-stat maps formed from second level analysis in FEAT across

all runs are shown overlaid on to the subjects PSIR image. It can be seen that

the areas with high correlation to the alpha BOLD timecourse are localised to

the visual cortex and are spatially specific to the grey matter.
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Figure 4.14: Overlay of the GLM of the EEG alpha response convolved with a double gamma HRF. The z-stat map is thresholded

at z < −2.3 and overlaid on the PSIR image, this is shown for a single subject (Subject 1). The responses can be seen to map

onto the grey matter.
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4.4.4 Retinotopic Mapping to define visual boundaries

The visual retinotopic mapping dataset [147] acquired in Session 2 (see Figure

4.4) was used to provide functional boundaries of V1, V2, and V3 in the visual

cortex necessary to define ROIs for the EEG-fMRI dataset. First, each of the

four retinotopic runs were individually motion corrected and then coregistered

to the second run (FSL, MCFLIRT & FLIRT). The 0.7 mm isotropic whole

head PSIR collected in this scan session was down-sampled to 1 mm3 and input

into Freesurfer [136, 148] to calculate the GM, WM and CSF surfaces. The 1

mm3 PSIR and functional retinotopic data were then loaded into mrTools [143]

and aligned (using mrAlign) before performing a travelling wave analysis [149]

to produce retinotopic phase maps of the cortical surface.

The data from the two retinotopic paradigms: the rotating wedges and the

expanding/contracting annuli, were analysed to map visual polar angle and

eccentricity, respectively. First, scans from both the clockwise and counter-

clockwise condition were shifted by two frames, then the order of the volumes of

the scans from the counter-clockwise condition were reversed prior to averaging

with the scans from the clockwise condition. This reversal and shift was used to

cancel out the effects from the spatiotemporal HRF (See Figure 4.15). Following

this averaging, the time series at each point was correlated with a cosine function

with a frequency that matched the stimulus delivery. This analysis provides a

correlation — which indicates model fit, and a phase angle — which corresponds

to the phase of the stimulus presentation and thus visual polar angle. Voxels

that survived a correlation threshold of 0.4 were analysed to map their phase.
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Figure 4.15: Schematic to show the shift and reversal of the retinotopic mapping

data to align with the timings of the stimulus and account for the haemodynamic

lag. a) The modelled timecourse of the BOLD signal during the clockwise

stimulus for a single voxel in the brain with a sinusoidal fit overlaid (dashed). b)

The modelled timecourse of the BOLD signal during the anti-clockwise stimulus

for the same voxel as in a) with a sinusoidal fit overlaid (dashed). c) The BOLD

timecourse from a) (yellow) after being shifted by 2 TRs and b) (purple) after

being shifted by 2 TRs and temporally reversed. Overlaid are the sinusoidal fits

for both timecourses (dashed). d) Shows the average of the BOLD timecourses

from c) with a sinusoidal fit overlaid (dashed). This final timecourse was used

to calculate the phase and correlation of the voxel location compared to a cosine

function.

The GM and WM surfaces were imported into mrTools. The phase, eccen-

tricity and correlation results from the travelling wave analysis were overlaid

onto the surface of the brain. An area of high correlation near the calcarine

sulcus is selected (middle panel of Figure 4.16) and a circular area of the cortex

surrounding this point is flattened to create a cortical flat patch (right panel of

Figure 4.16). The correlation and phase maps from the travelling wave analysis

can be overlaid on the cortical flat patch.
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Figure 4.16: Cortical flattening using the GM and WM surfaces from Freesurfer

and selecting an area around the calcarine sulcus. A cortical flat patch is created

for the definition of ROIs for V1, V2 and V3.

Half of the visual hemifield contained phases that ranged from [0, π] whereas

the other half ranged from [π, 2π]. Boundaries where the phase reverses denote

the border of visual areas [150, 151]. A similar procedure was repeated for the

annuli paradigm.

Since the phase reversal is not always clearly defined it was advantageous to

be guided by an atlas of where the V1, V2 and V3 boundaries were expected.

The Benson atlas [109] is an atlas of the visual areas generated using Bayesian

mapping. This was imported into mrTools [143] (Figure 4.17) and used to aid

the manual definition of V1, V2 and V3 ROIs for each of the subjects.
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Figure 4.17: The Benson atlas in voxel space (Top left, Top

right and Bottom Right) showing V1 (Red), V2 (Blue) and V3

(Green). Retinotopic phase map from Subject 1 overlaid onto a

cortical flatpatch with the Benson atlas V1, V2 and V3 ROIs

shown overlaid as white ROIs (bottom right).

Comparing the boundaries denoted in Figure 4.17, which shows the Benson

boundaries, and Figure 4.18, which shows the manual defined boundaries, there

are clear differences between boundaries for this subject due to individual

subject anatomical variation. This illustrates the need to use manual individual

subject boundaries and use the Benson atlas as a guide only.
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Figure 4.18: Results of retinotopic mapping for a single subject showing the

phase flat map (right) from the expanding/contracting rings stimulus, and the

phase flat map for rotating wedges stimulus (right). The manually defined V1,

V2 and V3 and boundaries are labelled in white.

Once the ROIs had been defined, the 1 mm3 whole head PSIR from scan

session 2 was then registered to the partial head PSIR from the EEG-fMRI scan

session 1 (FSL, FLIRT). The transformation matrix from this registration was

then applied to the ROIs from the retinotopic mapping, thus moving the maps

of V1, V2, and V3 into native EEG-fMRI space. ROIs had a threshold applied

to counteract the smoothing due to the registration and were viewed in FSLeyes

[146] with manual correction applied to account for overlaps between V1, V2

or V3. The final ROIs of visual areas V1, V2 and V3 were then upsampled to

0.175 mm to allow for layer analysis to be performed on the data.

Figure 4.19 shows the retinotopic mapping definitions of visual areas V1,

V2 and V3 for Subject 1.
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Figure 4.19: a) The Benson atlas V1, V2 and V3 ROIs overlaid on the flat

patch for a single subject, b) The subject specific boundary definitions for V1,

V2 and V3, informed by the Benson ROIs. The top of a) and b) shows the

eccentricity which indicates the extent of the visual region. The bottom images of

a) and b) show the polar angle of the visual field, where cycles in phase indicate

the boundaries of the visual regions. c) The final V1, V2 and V3 ROIs in voxel

space having been transformed to the 0.8 mm isotropic partial head PSIR from

the EEG-fMRI session.

4.5 Interrogating the fMRI timecourse

To consider a model free approach to assess alpha-BOLD correlations the mean

timecourses from V1, V2 and V3 were calculated. The V1, V2 and V3 ROI

masks were used to select the voxels from the fMRI data and the mean calculated

in MATLAB.

In addition, the z-stat maps from the second level fixed effects GLM were

used to calculate the mean timecourse of all significant negatively (z < −2.3)

and positively (z > 2.3) correlated voxels using the same method. To consider

inter trial variability, the EEG alpha power regressors were compared to the
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fMRI response for each eyes open/closed period. The EEG regressors along

with the mean BOLD response in a region was split into a ∼65 s time period

defined by the eyes open/closed task. The regressor and BOLD ‘responses’

were then ranked from largest to smallest. The largest response was defined as

the largest range in the data calculated by taking the difference between the

average of the maximum value and its neighbouring values and the minimum

value and its neighbouring values. The range of each fMRI response was then

plotted against the range of the EEG response in the corresponding period. A

line of best fit was determined using a linear regression.

4.6 Defining Cortical Layers and Columns

4.6.1 Cortical Layers

The partial head PSIR data from scan session 1, comprising of magnitude and

phase images at two delays (TI = 780 ms/TI = 2280 ms), were combined to

form a field-bias corrected PSIR image [141] (as shown in Figure 4.20 step 2).

Brain extraction tools have generally been optimised for use on whole brain

datasets (FSL Brain Extraction Tool (BET), Freesurfer reconall), this was

not the case for the session 1 PSIR data. To extract the brain from the partial

head PSIR the optimal method was to take the magnitude image acquired at

TI = 2280 ms from the PSIR dataset and skull strip using BET2 in FSL [146].

The resultant image then underwent two erosion iterations using FSL, and was

viewed in FSLeyes and any manual correction of the brain mask performed (as

shown in Figure 4.20 step 3).
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Figure 4.20: Analysis of the partial head PSIR data to create a high resolution

GM mask for cortical layer modelling. 2) shows the combination of the 1) PSIR

data at TI = 780 ms and TI = 2280 ms to form the bias field corrected PSIR.

The data is then 3) skull stripped, 4) tissue segmented using FSL FAST and 5)

the GM mask is upsampled to 0.175 mm in-plane, 0.8 mm through-plane and

manually edited to form 6) the final GM mask cropped and upsampled to 0.175

mm isotropic resolution.

This skull stripped partial PSIR image was then segmented into four tissue

types (FSL, FMRIB’s Automated Segmentation Tool (FAST) [146]), and a grey

matter (GM) binary mask was created from the Partial Volume Estimation

(PVE) GM map (as shown in Figure 4.20 steps 4 & 5). The skull stripped partial

PSIR image and GM binary mask image were then cropped and resampled to

match the field of view (FOV) and resolution of the 3D GE-EPI fMRI data. The

GM mask was upsampled to an in-plane resolution of 0.175 mm so that multiple
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voxels could be allocated to each layer across the cortex; the slice thickness

remained at 0.8 mm to reduce the number of slices to be manually corrected.

The slice thickness was later upsampled to 0.175 mm for layer modelling. The

GM mask was viewed in FSLeyes and manually corrected within the V1, V2 and

V3 ROIs (defined from retinotopic mapping) to create smooth GM boundaries

and reallocate any voxels that were mislabelled due to noise/signal drop off of

the surface coil (shown in Figure 4.20 step 6). Veins were manually removed

from the mask whenever they were visually obvious in the PSIR data (defined

to be areas of high intensity). A labelled mask was then created (values of

CSF = 1, WM = 2, GM = 3) by visually inspecting the GM mask and filling

areas of cerebral spinal fluid (CSF) and white matter (WM). The labelled mask

was upsampled to 0.175 mm isotropic resolution and used to define six layers

across the cortex (LayNii v2.0.0 [152]). There are other software libraries such

as Freesurfer that can be used for layer modelling however these require whole

head acquisitions with a continuous GM surface. LayNii is able to generate

layers from partial head GM masks.

Two definitions of layers, equidistant and equivolume, were implemented in

LayNii. Figure 4.21 shows examples of the original cortical layer model [153]

alongside the equidistant and equivolume implementations in LayNii [152]. The

equidistant model produces cortical laminae that maintain a constant distance

from the WM/GM boundary and the CSF/GM boundary (Figure 4.21b). To

improve upon this, the equivolume model produces layers that maintain a

constant columnar volume throughout the cortical ribbon (Figure 4.21c) [154].

This results in layers that are thick in areas of high curvature and thin in areas

of low curvature, showing better agreement with layers defined using histological

samples.
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Figure 4.21: Model section of a cortical ribbon, showing a) the

original description by Sigfried Thomas [153], and the differences

between the b) equidistant and c) equivolume modelling alongside

d) the GM rim file used to generate layers in LayNii. From this

in LayNii the e) six equidistant layers and f) six equivolume

layers generated. Adapted from [155]

.

4.6.2 Cortical Columns

For the purpose of fMRI layer analysis, cortical columns are defined as small

parcellations that lie perpendicular to the cortical surface which are not based on

any anatomical structures [156, 157]. These columns will be used in subsequent

analysis to correct for the bias of the BOLD signal to the pial surface [75].
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Figure 4.22: A model section of a cortical ribbon, a) The ‘mid

GM’ output from LayNii used to seed the centroids for column

generation. b) The N centroids in equally spaced locations along

the ‘mid GM’ to produce N columns. c) The final columns

generated using Voronoi diagramming [158].

.

The number of cortical columns were calculated based on the assumption

that the columns are cylindrical with volume hπr2, with height h corresponding

to the average cortical depth, estimated to be 2 – 3 mm [69]. The mean column

diameter was chosen to be in the range 0.8 – 1 mm, therefore requiring 20,000

columns to be calculated across the GM within the field of view of the 3D

GE-EPI functional data collected in the EEG-fMRI scan session. The LayNii

layering algorithm outputs the mid-GM voxels, which are used as a seed to

calculate cortical columns. The mid-GM voxels are divided into centroids, one

for each required column. Each centroid is grown into a full column using

Voronoi diagramming [158]. Once the columns were generated they were filtered

to contain only those that lay entirely within V1, V2 or V3. These columns

were taken forward and refined (see Section 4.6.3) to define the final ROI for

each subject. This was the initial number of columns defined, based on the

definition of cortical columns originally posed by Mountcastle et al. However, it

was necessary to optimise this number of columns for analysis later, see Section

4.6.5.
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4.6.3 Columnar and Layer Analysis

Columns were filtered so that only those containing significant negative acti-

vation (z < −2.3) remained. Figure 4.23 shows a schematic to illustrate how

columns were chosen to be included or excluded in further analysis. Crucially,

in contrast to previous studies, the activation of the whole column, rather

than just those voxels which contained z < −2.3 [159, 160], were included for

further analysis. This was chosen as all layers within a column contribute to

the draining vein effect.

Figure 4.23: Schematic showing two example columns. Column 1 contains

multiple voxels that have a significant negative alpha-BOLD correlation (z <

−2.3 shown in light blue) whereas Column 2 has no significant negative alpha-

BOLD correlations.

From this point on, when interrogating the data, the raw GLM β-weights

are used instead of the z-stat map, with large positive β-weights corresponding

to the strongest negative correlation between EEG alpha power and the BOLD

response. The percentage of positive and negative β-weights within each column
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was assessed. Since the whole column is in our analysis, it was important to

exclude voxels within the column where the β-weights were likely to dominated

by noise, rather than brain activity. Section 4.6.4 outlines the method followed

to assess exclusion of voxels from columns which are likely to reflect noise.

4.6.4 Determining a Noise Threshold for the β-weights

Noise is defined as a voxel within a column with a low amplitude β-weight. This

definition arises as such a voxel is unlikely to be responding to the neuronal

alpha signal of interest and to contribute to the pial draining vein effect which

needs to be corrected for in GE-EPI BOLD. Therefore, the working hypothesis

is that these noisy voxels should be excluded from the process of correcting the

draining vein effect (outlined in Section 4.7). Three thresholds were assessed: i)

no threshold, ii) 5% threshold of the absolute maximum β-weight (max |β|) and

iii) 10% threshold of the absolute maximum β-weight across all the remaining

columns. Any β-weights that had a magnitude lower than this threshold were

set to Not a Number (NaN) and therefore did not contribute to any further

layer analyses. Figure 4.24 illustrates this process.
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Figure 4.24: Schematic showing the application of a 5% threshold of the maxi-

mum absolute β to all the voxels in a column.

Figure 4.25 presents example histograms showing the composition of the a)

positive β-weights (corresponding to negative z-stats) and b) negative β-weights

(corresponding to positive z-stats) within each of the columns on applying the

different noise thresholds (i, ii, iii). When (i) no noise threshold is applied, but

the columns have been selected to contain at least one voxel with a significant

(z < −2.3) positive β-weight, it can be seen that there are far more columns

that contain a high percentage of positive β-weights than negative β-weights.

However, there are still a large number of columns that contain 20 – 50% negative

β-weights, as a column may contain a small cluster of significant positive β-

weights with the majority of voxels having negative β-weights. On applying (ii)

a threshold of 5% of the maximum β-weight over all the columns, the number

of columns containing 20 – 50% negative β-weights is greatly reduced (Figure

4.25b.ii), suggesting these β-weights are likely to be noise. Whilst, the number

of columns with a high percentage of positive β-weights remains high (Figure

4.25a.ii) on applying threshold (ii). On increasing the threshold to (iii) 10%

of the maximum β-weight, nearly all of the columns contain 0 – 5% negative
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β-weights above the threshold (Figure 4.25b.iii), however the number of columns

with a high percentage of positive β-weights above the threshold has greatly

reduced (Figure 4.25a.iii). This behaviour was seen across all nine subjects, see

Appendix A.1. Therefore, a 5% threshold of the maximum β-weight over all

columns, was used going forward to exclude those voxels which were believed

to only be dominated by noise.

Figure 4.25: Histograms showing the percentage of (a) positive β-weight voxels,

and (b) negative β-weight voxels across the three thresholding methods.

In addition to examining the composition of the β-weights within each

column, the percentage of voxels that fell below the 5% of the maximum

β-weight threshold within each of the six cortical layers was also assessed.

Figure 4.26 shows that, as expected, for positive β-weights (a) there is a lower

percentage of voxels that are below the threshold in the superficial layers than

in the deeper layers. In comparison, there is a fairly uniform percentage across

the layers of negative β-weights below the threshold (b). Also note the greater

percentage of negative β-weight voxels that are below the threshold than positive
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β-weight voxels in all layers. Similar patterns were seen across all nine subjects

(see Appendix A.1). This provides further justification for the choice of the 5%

of maximum β-weight threshold to exclude noisy β-weights.

Figure 4.26: The distribution of β-weights below the 5% threshold for a) positive

β-weights and negative b) β-weights across cortical depths. Error bars show the

standard error on the mean across subjects.

4.6.5 Column size

Next, the impact of the numbers of columns was assessed on the layer analysis

pipeline. Here, the main question was to determine the impact of the β-weights

in each layer of each column on processing performed to remove draining vein

effects. As described in Section 4.6.2, the column size was originally chosen

such that when considered as a cylinder the diameter would be ∼0.8 mm for

columns with heights matching the GM cortical thickness of 2 – 3 mm. But

with such small columns and a 5% noise threshold implemented (Section 4.6.4),

it was possible for some columns to have layers that contain no β-weights. This

is shown for a single subject in Figure 4.27. Over 40% of columns have no β-

weights at cortical depth six which would have an impact on later analysis steps

as corrections of the more superficial depths are dependent on the preceding

deeper depths (see Section 4.7).
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Figure 4.27: Percentage of columns with layers containing no β-weights after

the 5% threshold has been applied within V1 for a single subject. This was

calculated using the original 20,000 column size.

Therefore a range of numbers of columns were generated, from 4,000 to

20,000 columns, and the percentage of ‘full columns’ were calculated. A ‘full

column’ was defined as a column containing β-weights in all six cortical layers.

Figure 4.28: Volume view to show the difference in column size when different

numbers of 20,000, 10000 and 4,000 columns are generated across the GM

ribbon.
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Figure 4.29 shows, as expected, that the larger the columns (hence a smaller

number of columns) the higher percentage of full columns. There is a slight

reduction in the number of columns that have a value in every layer when

only the positive β-weights are selected (right) for the layer profile calculation.

Regardless of which β-weights are selected, the larger columns gave the best

chance of having β-weights in every layer. Therefore the effect of the column

size was taken forward into the future analysis steps for further investigation

(see Section 4.7.3.1).

Figure 4.29: Percentage of ‘full columns’ for 4,000, 10,000 and 20,000 columns.

This is shown at two stages in the analysis pipeline ‘All β-weights’ (left) consid-

ers all the columns after they have been filtered for those containing significant

negative correlations (z < −2.3), and ‘Positive β-weights over threshold’ con-

siders only the positive β-weights remaining in each column that would be used

to calculate the layer profile. Error bars show the standard deviation between

subjects.

4.7 Calculating layer profiles

Due to the sensitivity of GE-BOLD to draining vein effects (see Section 4.1),

an increase in signal towards the pial surface is typically seen in layer profiles

of GE-BOLD fMRI data. This section outlines the methods that can be used
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to correct for such an effect, and then these methods are used to investigate

the sensitivity to studying alpha-BOLD correlation.

4.7.1 Deveining Methods Background

A number of models have been proposed to correct the artifactual signal bias

due to blood draining across the cortical surfaces. Here the most commonly

employed models are applied to the data.

4.7.1.1 Method 1: Deveining using Linear Scaling

The simplest, linear offset model assumes that the macrovascular task inde-

pendent signal is added to the layer-specific microvascular signal [155, 161]. A

version of this model is implemented in the LayNii software library, as a linear

scaling of the β-weights based on their cortical layer depth, with layers closer

to the pial surface being reduced more than those at the GM/WM boundary.

Ifn = Iinln, (4.1)

where Iin and Ifn are the β-weights in layer n before and after deveining and ln

is the fractional distance layer n is from the pial surface, equal to 0 at the pial

surface and 1 at the WM/GM boundary. It is important to note that n has a

single value for all voxels within a layer.

4.7.1.2 Method 2: Deveining using Linear Regression

An alternative implementation of the linear offset is to perform a simple linear

regression on the final layer activation profile to remove the effect of draining

veins.

Iin = a+ bIfn + ϵ, (4.2)

where a is the y-intercept and b is the gradient of the layer profile and ϵ is the

error.
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4.7.1.3 Method 3: Deveining using Linear CBV scaling

This model requires an estimate of the voxel-wise Venous Cerebral Blood

Volume (CBVv). One method used in LayNii for this is to identify those voxels

with the largest variance in an fMRI series and assume these voxels can be

attributed to veins [162, 163]. Here, CBVv was estimated for each subject

by calculating the mean variance of the BOLD signal during the eyes closed

periods for each run, and then taking the mean of the variance over runs. The

CBV scaling model assumes the superficial macrovascular signal bias is due

to increased vein density, therefore venous blood volume, in superficial layers

[164, 165]. LayNiis implementation of this model calculates the mean CBV per

layer, n, within each column, m, and adjusts the β-weights across the layers

according to the following equation,

Ifm,n =
Iim,n

CBVm,n

nmax, (4.3)

where CBVm,n is the mean CBV in layer n of column m and nmax is the

maximum layer in the data.

4.7.1.4 Method 4: Deveining using Deconvolution

The final model, known as the leakage model, is the most physiologically

grounded model. In this case it is assumed that each layer contains a mixture

of neural signals from that specific layer along with signals from all preceding

deeper layers [166–168]. This spatial signal subtraction, involves correcting the

current layer in the column with a weighted sum across the preceding layers,

Ifn = Iin −
1∑

k=n

λ

(
Im,k/nmax

CBVm,n

)
, (4.4)

where k indicates previous layer numbers and λ is a scaling parameter that

relates to the peak-to-tail ratio of layer-dependent point spread function (PSF),

which was set to 0.25 corresponding to a normal estimated CBF [169]. CBV

is calculated as described above for Method 4.7.1.3. It is important to note
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that in this correction both the negative and positive β-weights are used, hence

the thresholding process outlined in Section 4.6.4 is important so that the

subtraction is not biased by noise.

4.7.2 Extracting layer profiles for the different deveining

methods

After applying a noise threshold and correcting for the draining vein effect using

different deveining methods, the β-weights were used to calculate layer profiles

to show the variation of alpha-BOLD correlations across cortical depth. First

the mean of all the positive β-weights in each layer was taken. Then profiles

were combined across V1, V2 and V3. First the profile for the V1, V2 or V3

was normalised to the mean β value of the first cortical depth (at the CSF-GM

boundary) and then the weighted average, according to the number of columns

present in the V1, V2 and V3 ROIs, was calculated to give a layer profile over

the whole active visual area.

Figure 4.30 shows the initial results of implementing each deveining method.

Figure 4.30a shows the data with no correction, highlighting the expected

increase towards the cortical surface. Figure 4.30b shows the result of the linear

offset correction implemented in LayNii. The profile shows a decrease in signal

towards the pial surface and an overall decrease in mean β-weight per layer

and suggests this method has over-corrected the draining vein effect. Figure

4.30c shows the result of linear regression correction using in-house code. The

profile shows two peaks in cortical depths 2 and 5 and as expected the overall

amplitude of the profile is greatly reduced across all depths. The profile from

the CBV scaling model is shown in Figure 4.30d, there is an overall amplitude

increase throughout the entire profile but the increase in signal towards the

pial surface is still present and in fact has been amplified. Figure 4.30e shows

the leakage model deconvolution, with a reduced signal throughout the cortex

and a slope towards the pial surface still appears to be present. However, this
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method reveals a peak in the signal for cortical depths 1 – 3 and a dip in the

signal for depths 4 – 6 of the cortex.

Figure 4.30: Effect of the different deveining methods on layer profiles from V1

shown for a single subject (Subject 1). Panel a) no correction of draining veins,

Method 1: Linear Scaling, c) Method 2: Linear regression, d) Method 3: CBV

scaling, and e) Method 4: Deconvolution. Error bars show the Standard Error

on the Mean (SEM) for the mean β-weight across each cortical depth.

Figure 4.30 highlights that the different correction methods give different

profiles. This is problematic if the correct profile is unknown, as is the case

in this work. Method 4, the deconvolution method is the most physiologically

based, but as seen from Equation 4.4 there are a number of assumptions made

and constants used which may affect results. The sensitivity of this method to

changing the choice of layers/columns and constants on the profile is shown

in Figure 4.30e and whether this leads to a profile more similar to the profiles

obtained using Methods 1 – 3 (Figures 4.30 b – d). It is also important to note

at this point that this process of ‘deveining’ the GE-BOLD data is in effect

an attempt to correct these data and make it more similar to methods such
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as VASO which does not have this draining vein contribution. Therefore, a

comparison between deveined GE-BOLD data and VASO data is another way

to assess these correction methods, and this will be studied in Chapter 6.

4.7.3 Impact of analysis steps on the shape of the layer

profile

Here, the effects of column size and method of averaging as well as parameters

used in the deconvolution deveining method are assessed to establish their effect

on the shape of the resultant layer profile.

4.7.3.1 Column Size

The effect of column sizes and denoising the β-weights were investigated in

Section 4.6.5. This section looks at how the change in column size alters the

shape of the layer profile. Figure 4.31 shows that the layer profile for the

‘Uncorrected’ data is a consistent shape for each column size, there is only a

slight difference in the mean β-weight magnitude for each column size. The

‘Deveined’ layer profiles also have a consistent shape with the superficial depths

having a higher mean β-weight before dipping in cortical depths 4 to 6.
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Figure 4.31: Layer profiles from V1 for a single subject shown for (a) ‘Uncor-

rected’ and (b) ‘Deveined’ data calculated as described in Section 4.7.2. The

data were ‘deveined’ using the spatial deconvolution ‘leakage’ model (Method

4). Data is shown for 4,000, 10,000 and 20,000 columns. Error bars show the

standard error on the mean (SEM) for the mean β-weight of each cortical depth.

In conclusion, this suggests that the profiles are not greatly affected by the

size of the columns and therefore using the larger column size is preferable to

maximise the presence of β-weights in all layers.

4.7.3.2 ‘Global Mean’ versus ‘Column Profile Mean’

Up until this point the method used to calculate the mean β-weight for each

layer uses all the columns that are remaining after filtering for those containing

voxels with significant (z < −2.3) negative alpha-BOLD correlations at once to

produce one profile, this is called the ‘Global Mean’ method. An alternative

approach is to calculate an individual layer profile for each column remaining

after the filtering for those containing voxels with significant (z < −2.3) negative

alpha-BOLD correlations and then average all of these column profiles together,

this is referred to as the ‘Column Profile Mean’ method. The ‘Column Profile

Mean’ method is likely to be more physiologically accurate but also more prone

to noise.
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Figure 4.32 shows the layer profile shape using the ‘Global Mean’ and

‘Column Profile Mean’ show very similar shapes for both the ‘Uncorrected‘

(Figure 4.32a and ‘Deveined’ (Figure 4.32b data, regardless of at what stage

the averaging across columns occurred during the analysis process.

Figure 4.32: Layer profiles from the V1 region for a single subject shown for

‘Uncorrected’ (a) and ‘Deveined’ (b) GE-BOLD data. Blue and Orange lines

indicate the ‘Global Mean’ and ‘Column Profile Mean’ methods respectively.

Error bars show the standard error on the mean (SEM) for the mean β-weight

of each cortical depth.

4.7.3.3 ‘Unmatched’ versus ‘Matched’ Method

So far, the layer profile calculation has used only voxels with positive β-weights,

by thresholding before calculating the layer profiles for both the ‘Uncorrected’

and ‘Deveined’ data (See Section 4.7.2). After deveining, the β-weights in each

layer are altered which may mean that β-weights that were > 0 are now < 0.

As a result the voxels which are used in calculating the layer profiles after

deveining may be in spatially different locations to those voxels used to generate

the ‘Uncorrected’ profile. I term this method ‘Unmatched’. An alternative is

to use the same voxels for both the ‘Uncorrected’ and ‘Deveined’ layer profile

calculation. The voxels used in the ‘Matched method’ are determined by the
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positive β-weights before deveining. As a result the ‘Deveined’ layer profile will

use different voxel locations between the ‘Unmatched’ and ‘Matched’ methods.

Figure 4.33 shows the layer profile shape using the ‘Unmatched’ and ‘Matched’

method. In Figure 4.33 the ‘Unmatched’ case shows high mean β-weights in

superficial cortical depths 1 – 3 before dipping in the deeper depths. However,

for the ‘Matched’ method the layer profile is at it’s lowest at cortical depth 1

and increases towards the middle depths 3 and 4 before increasing again through

depths 5 and 6. As was seen in Figure 4.31, the profiles for each column size

are offset with mean β-weight magnitude with column size.

It is difficult to know which of the deveined profiles is correct. The unmatched

method was taken forward as this results in positive β-weights being used for

the calculation of all profiles. This will be revisited in Chapter 6.

Figure 4.33: The ‘deveined’ layer profiles from V1 for a single subject calculated

using ‘Unmatched’ (a) and ‘Matched’ (b) method. Blue, Orange and Yellow

lines indicate the number of columns the GM ribbon was divided into for the

analysis. Error bars show the standard error on the mean (SEM) for the mean

β-weight of each cortical depth.
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4.7.3.4 Choice of λ Value in Deconvolution Deveining Method

As seen in Equation 4.4, λ is a scaling parameter used in the deconvolution

deveining method in LayNii [152] related to the layer-dependent point-spread-

function (PSF). It reflects an estimate of the CBF.

Using 20,000 columns, the ‘Global Mean’ averaging method, and the ‘Un-

matched’ method, the effect of λ in the deconvolution deveining method was

investigated for values of λ of 0.2, 0.25, and 0.3, which corresponded to a

plausible range previously reported [169].

Figure 4.34 shows that as expected at cortical depth 6 the profiles all have

the same mean β-weight but they diverge as they move towards the superficial

layers. This can be predicted from Equation 4.4, as λ is effectively scaling the

amount that is subtracted from each depth so the cumulative effect by the time

cortical depth 1 is reached will be greater. It is important to note however that

the divergence of the profiles does not change the overall shape of the profile.

Figure 4.34: The ‘deveined’ layer profiles from the V1 region for a single subject

calculated using 20,000 columns, the ‘Global Mean’ and the ‘Unmatched’ method

shown for data ‘deveined’ using deconvolution with default (λ = 0.25), low

(λ = 0.25) and high (λ = 0.3) λ values in LayNii. Error bars show standard

error on the mean.
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4.7.3.5 Effect of proximity to veins

As discussed earlier, and shown in Fracasso et al 2021, large draining veins

impact layer dependent GE-BOLD, not only in those voxels that contain the

veins themselves but also in surrounding voxels. When calculating profiles for

each column using the ‘Column Profile Mean’ method (Section 4.7.3.2) it was

also possible to assess how profiles were changed after deveining. Here this is

shown for data analysed using 4,000 columns.

The uncorrected profile for each column was calculated and the gradient

across cortical depth determined in MATLAB. This was then repeated for the

deveined profile and the difference between each profiles gradient was calculated.

In some cases, the profile completely flipped the gradient (shown in Figure 4.35)

indicating an over correction from the deveining, potentially due to the presence

of a nearby draining vein.

Figure 4.35: Example from one column where the gradient can be seen to flip

from the ‘Uncorrected’ to the ‘Deveined’ profile.

Data was analysed such that each of the 4,000 columns now had a value for

how much the gradient changed due to deveining correction. The columns were

then classified into three groups of Bottom 25%, Middle 50% and Top 25% of

gradient profile changes.
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The optimal method to extract small veins from the 3D GE-EPI data was

then assessed using either the multi-echo T∗
2 data or raw 3D-EPI functional data.

For the multi-echo 3D GE-EPI data acquired across 6 dynamics at a range of

echo times (See Section 4.2), the data was averaged across each echo time (TE),

and then concatenated. The multi-echo data was then fit to a monoexponential

decay (Equation 4.5) to generate a weighted map of T ∗
2 and M0 map,

M = M0 exp

(
−TE

T ∗
2

)
. (4.5)

However, the resultant generated T ∗
2 map did not provide sufficient contrast

to accurately automatically segment the veins (see Figure 4.36) likely due to

spatial variation in noise due to the surface coils impacting the fit.

Figure 4.36: The weighted T ∗
2 map shown for all 44 axial slices for a single test

subject (Subject 3).

Instead, a vein mask was generated from the functional 3D GE-EPI data

from the EEG-fMRI session. All the dynamics of the central functional run

that was used as the reference for coregistration were averaged to create a mean

image. The mean image was smoothed using a Gaussian kernel with σ = 2

mm and the smoothed image was subtracted from the original mean image.

An upper threshold was applied manually in FSLeyes to create a binary vein
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mask that closely matched the extent of the veins visible in the mean functional

image (as shown in Figure 4.37).

Figure 4.37: The generation of the vein mask shown axially (top), coronally

(middle) and sagitally (bottom) for a single subject. Smoothed image subtracted

from average 3D-EPI timecourse (left column), threshold by eye in FSLeyes

(middle column), masked to V1 ROI and manually corrected (right column).

The resulting vein mask was then upsampled to 0.175 mm in plane and

masked to include only the V1, V2 and V3 visual regions before being manually

corrected in FSLeyes. Finally, the mask was upsampled to 0.175 mm isotropic

resolution. Examples of vein masks for each subject can be seen in Appendix

B.1.

Figure 4.38 illustrates the spatial correspondence in the gradient changes

between the ‘Uncorrected’ and ‘Deveined’ profiles in each column and the vein

mask. The percentage overlap of the vein mask with each of the profile gradient

regions for each of the subjects was assessed as shown in Figure 4.39.
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Figure 4.38: A section of the cortex shown with the equivolume layers, column

profile change labels and vein mask overlaid onto the PSIR for a single subject.

Figure 4.39 shows that columns within the top 25% of most changed profiles

overlap more with the vein mask than the middle 50% or bottom 25% of columns.

6.9 ± 1.0% of the Top 25% region overlaps with the vein mask, compared to

4.0± 0.5% for the Middle 50% region and the 4.7± 0.9% for the Bottom 25%

region.
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Figure 4.39: The percentage of each classified region that overlaps with the vein

mask within V1 averaged over all nine subjects. Error bars show the standard

error on the mean.

Obvious large veins were excluded during the manual correction of the GM

mask before layer analysis but it is likely that veins are still present in the

regions. Figure 4.39 shows that as expected, the majority of remaining veins are

within the columns where the profiles are changed the most by the deveining

process, this perhaps suggests that the deconvolution deveining method is

working as required. Whilst it is clear that only a small percentage of overlap

occurs even in the columns with the highest change in gradient (top 25%),

if these are removed to try and remove the effect from large vessels and the

layer profile is recalculated using the ‘Global Mean’ method (Section 4.7.3.3)

then the resultant profile shown in Figure 4.40 is seen for the example subject

investigated in this chapter. It can be seen for this subject this has a minimal

effect.
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Figure 4.40: The layer profiles from the V1 region for a single subject ‘Uncor-

rected’ (a) and ‘Deveined’ (b). Blue indicates the profile including all available

columns, Orange shows the profile resulting from excluding the columns with

the highest change in profile gradient (top 25%). Error bars show the standard

error on the mean (SEM) for the mean β-weight of each cortical depth.

Figure 4.40a shows that when excluding the top 25% of columns with the

most changed profiles the uncorrected profile gradient is similar to the gradient

profile containing all the columns. For the deveined profile shown in Figure

4.40b the signal in the superficial depths increases for the profile with the

excluded top 25% of columns compared to the profile containing all columns

but the overall shape of the profiles are the same. The effect of excluding the

top 25% of columns with the most changed profiles impacted the layer profile

shape differently for each subject (see Appendix B.2).

4.8 Discussion

The aim of this chapter was to develop methods to analyse layer-dependent 7 T

EEG-fMRI data collected using a 3D GE-EPI readout with a view to assess

the origins of human alpha oscillations. The acquired data were novel with the

only other previous layer-dependent EEG-fMRI data being acquired at 3 T [1].
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The analysis pipeline required precise motion correction and coregistration

to align functional and structural data, the formation of EEG-fMRI regressors

to find alpha-BOLD correlations, accurate segmentation and manual corrections

to define the boundaries of the GM, and a GLM to define regions containing

alpha-BOLD correlation, as well as a method for correcting the draining vein

effect seen in GE-BOLD layer data. Multiple method options were assessed at

different stages of the pipeline to understand their impact on the final layer

profile, and to define the pipeline to be applied in Chapter 5.

In summary, the chosen pipeline is as follows and is shown in Figure 4.7.

Motion correction and coregistration of the fMRI data are performed with a

single concatenated transformation matrix, followed by B0 distortion correction

to align the functional and structural data. The EEG alpha power timecourses

are convolved at 500 Hz with a HRF and downsampled to form regressors for

the fixed effects GLM. Retinotopic mapping is used to define ROIs for visual

regions V1, V2 and V3 with the assistance of an anatomical atlas for each

subject. The retinotopy and EEG-fMRI structural data are coregistered and the

resulting transform is applied to the V1, V2 and V3 ROIs which are upsampled

and manually corrected.

The structural data are tissue segmented and upsampled for manual correc-

tion (avoiding large veins where possible) and labelling of the GM boundaries

within the V1, V2 and V3 ROIs. The equivolume layers are calculated and

4,000 columns are generated across the GM ribbon. The columns within V1, V2

and V3 are filtered for those containing significant alpha-BOLD correlation and

denoised using a threshold equal to 5% of maximum value in that visual region.

The β-weights within the remaining columns are then deveined in LayNii using

the spatial deconvolution leakage model using the default value λ = 0.2. The

uncorrected and deveined layer profiles are then calculated from the mean of

the positive β-weights within each layer using the ‘Unmatched’ and ‘Global

Mean’ method.
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4.8. Discussion

The methods in this chapter have been developed with aim of applying them

to layer dependent 7 T EEG-fMRI data to answer the question ‘What is the

origin of the EEG Alpha signal?’. At the time of writing this thesis, we know

of only one other layer dependent EEG-fMRI study for which two papers have

been published [1, 86]. There is no standard pipeline for analysing such data.

Table 4.8 compares the key chosen steps in our analysis pipeline against similar

studies. The criteria for selection were papers published: 1) on layer dependent

fMRI since 2018, 2) using only GE-BOLD and 3) focusing on the primary visual

cortex.

Previous studies often use separate transforms when registering the fMRI

timeseries with only four using a single combined transformation matrix [170–

173]. 10 out of 13 studies use retinotopic mapping to functionally define ROIs

of the primary visual cortex, with the remaining three using a brain atlas [172,

174] or labels from Freesurfer [159].

Some of the key differences in our chosen pipeline are: 1) the denoising

threshold of the data – four other studies have implemented a denoising method

using either the R2 fit value from Population Receptive Field (pRF) mapping

[175–177] or coherence level from the pRF mapping [171], 2) the use of an explicit

vein mask, with some other studies using a minimum EPI signal threshold to

achieve a similar effect, 3) deveining using deconvolution – only two other studies

have implemented this [176, 177] with most studies relying on the difference

between two task-based stimulus conditions.

A number of previous studies have used a method to select a subset of the

data to be used for the layer dependent profiles, most choosing to select the

voxels/vertices with the top N z-stats or t-stats.

From the comparison to other literature it can be seen that our analysis

pipeline provides bespoke methods for layer dependent EEG-fMRI data with

some overlap with prior work. Chapter 5 follows which applies the analysis

pipeline to the full dataset.
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4.8.
D

iscussion

Paper Registration Visual

ROI

Denoising Choice of Voxels Deveining λ

Scheeringa

et al 2016

Separate Retinotopic

mapping

N/A Top 10% of nodes

based on T-stat

Exclude top 25% of T-

stats

N/A

Fracasso et

al 2018

One combined

transform

Retinotopic

mapping

N/A Median T-stat >2 &

GM thickness within

2.5–97.5 percentiles

Three linear gradient

groups

N/A

Klein et al

2018

One combined

transform

Retinotopic

mapping

Coherence

<25th per-

centile

12.5–87.5 percentile

eccentricity

N/A N/A

Gau et al

2020

One combined

transform

Atlas N/A N/A Median β-weight &

Condition difference

N/A

Bergmann et

al 2019

Separate

transforms

Retinotopic

mapping

R2 pRF fit &

mean BOLD

signal thresh-

old

R2 threshold & pro-

jected

SVM. Superficial sen-

sitivity vs Deeper

specificity trade-off

N/A

Zaretskaya

et al 2020

Separate

transforms

Atlas N/A <7.5◦ eccentricity

from Benson atlas

Difference in condi-

tions

N/A
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4.8.
D

iscussion

Paper Registration Visual

ROI

Denoising Choice of Voxels Deveining λ

Vizioli et al

2020

Separate

transforms

Retinotopic

mapping

N/A N/A SVM. Difference in

conditions

N/A

Navarro et al

2021

One combined

transform

Retinotopic

mapping

N/A Structural/Functional

alignment threshold

Difference in condi-

tions

N/A

Marquadt et

al 2018

Separate

transforms

Retinotopic

mapping

R2 pRF fit &

mean EPI sig-

nal threshold

N/A Deconvolution Weights from

Markuerkiaga

et al 2016

Marquadt et

al 2020

Separate

transforms

Retinotopic

mapping

R2 pRF fit &

mean EPI sig-

nal threshold

Top 1,000 max z-

stats columns

Deconvolution Weights from

Markuerkiaga

et al 2016

Aitken et al

2020

Separate

transforms

Freesurfer

label

N/A Localiser GLM activa-

tion mask & top 500

T-Stats mask

Reallocate ROIs so

even contribution

across layers

N/A

van Mourik

et al 2021

Separate

transforms

Retinotopic

mapping

N/A Top 600 activated ver-

tices

N/A N/A
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4.8.
D

iscussion

Paper Registration Visual

ROI

Denoising Choice of Voxels Deveining λ

Haarsma et

al 2022

Separate

transforms

Freesurfer

label

N/A Localiser GLM activa-

tion mask & top 500

T-Stats mask

Difference in condi-

tions

N/A

Table 4.1: A summary of the key analysis methods in related literature using GE-BOLD layer-fMRI in the primary visual cortex

since 2018. The analysis steps relate to the methods I have assessed throughout this chapter.
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Chapter 5

Assessing the origins of alpha

oscillations
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Abstract

Despite alpha oscillations playing a key role in cognition and brain func-

tion, the mechanisms generating these oscillations are poorly understood

[45, 46, 70, 79–81]. Current work to investigate alpha generation is pre-

dominantly conducted on animals with intracranial LFP recordings. To

translate these types of studies into human research there is a need to

develop non-invasive methods to assess laminar alpha oscillations. In this

chapter, layer dependent 7 T EEG-fMRI is used to address the question

‘What is the origin of the EEG alpha signal?’. The analysis pipeline opti-

mised in Chapter 4 was implemented on 7 T EEG-fMRI data from ten

healthy subjects during an eyes open, eyes closed paradigm. EEG alpha

power timecourses were used to form regressors for the GLM analysis of

the fMRI data to provide alpha-specific activation maps spatially specific

to the grey matter of the primary visual cortex. Spatial deconvolution

was implemented to ‘devein’ the alpha-BOLD layer profiles to correct for

the known draining vein effect in GE-BOLD data [166–168, 180, 181].

After ‘deveining’, the mean layer profile across visual areas V1–3 across

the subjects showed a dip in the middle cortical depths. This dip was

contrary to the hypothesised generation of the alpha through bottom-up

thalamocortical loops and suggested that EEG alpha is generated during

top-down, feedback processing where corticocortical alpha is projected

from higher brain regions and terminates in layers outside of layer IV.

However, that is not stay that alpha is not driven by feed forward, bottom-

up processing as it has been shown previously that prolonged, unchanging

visual stimuli can result in layer profiles that are dominated by the deep

and superficial layers [182].

This work was presented as a talk at the ISMRM UHF Workshop Lisbon

2022 ‘Laminar layer 7 T fMRI-EEG reveals human alpha oscillations are

predominately from superficial and deep layers’; a digital poster at ISMRM

2022 ‘Laminar layer 7 T fMRI-EEG reveals human alpha oscillations are

predominately from superficial and deep layers’; and a poster at OHBM
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2022, Glasgow ‘Layer 7 T fMRI-EEG: human alpha oscillations originate

from visual cortex superficial and deep layers’.
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5.1. Introduction

5.1 Introduction

Alpha oscillations have been detectable in humans for many decades [9] and

have been studied extensively in neuroscience and psychology. Modulations in

alpha power have been linked to a range of cognitive tasks such as working

memory [183], sensory perception [184] and motor control [185]. Despite alpha

oscillations playing a key role in cognition and brain function, their generation

mechanisms are poorly understood. As described in Section 3.3.1, opinions are

divided between alpha being driven by bottom-up processes, top-down processes,

or a combination of both.

To differentiate between top-down or bottom-up processing pathways and

their role in alpha generation, methods are required that can measure alpha

oscillations on a laminar level [46, 186, 187]. The vast majority of work

investigating the origins of alpha oscillations has been conducted on animal

models using invasive intracranial Current Source Density (CSD) and local field

potential (LFP) recordings. In recent primate studies using LFP recordings, it

has been shown that alpha activity in the primary visual cortex (V1) is highest

in cortical layers IVC and VI, and is reduced across all cortical layers when

attention is increased [187, 188]. In contrast to this, Buffalo et al studied LFP

coherence across cortical depths in visual regions V1, V2 and V4 and found

that the strongest alpha band coherence was in the deep cortical layers (layers

V & VI) and that coherence and LFP power reduced during visual attention.

These findings are important for improved understanding of alpha oscillations,

but use techniques that are unsuitable for use in human neuroscience in healthy

people as they are incredibly invasive and have limited spatial coverage.

Additionally, when measuring alpha oscillations using LFPs for intracranial

EEG (icEEG), the reference electrode is in such close proximity to the measuring

site that any global changes in alpha oscillations are experienced equally by both

electrodes. This is in contrast to alpha measured on the scalp with EEG which

can have a global reference, therefore detecting the global changes in alpha.
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5.1. Introduction

This more complete measure of alpha highlights the importance of assessing

alpha using scalp EEG measures rather than from LFP icEEG.

To investigate the origins and functional significance of alpha oscillations in

humans, a non-invasive method is needed to relate EEG alpha measured from

the scalp to neuronal signals across the cortical depths. Chapter 3, outlined that

fMRI BOLD contrast provides an indirect measure of neuronal activity and has

been shown to correlate with alpha power [103]. In recent years, seminal work at

7 T has shown that the modulation of BOLD responses across the cortical layers

can be measured to provide information on feedforward and feedback signalling

mechanisms [77]. Therefore, combining EEG with layer BOLD fMRI at 7 T

will provide a novel technique to study the localisation of neuronal activity and

investigate the organisation and neural pathways of the human brain.

Previous work by Scheeringa et al [1, 86] details the acquisition and analysis

of layer dependent simultaneous EEG-fMRI acquired at 3 T. The relationship

between EEG alpha, beta and gamma oscillations and the BOLD response

across different cortical layers during an attention task was investigated and it

was found that alpha-band EEG power is negatively correlated to the BOLD

response in both deep and superficial layers. Additionally, beta-band power was

found to be negatively correlated to the BOLD response in the deep layers and

gamma-band power was positively correlated to the superficial layers BOLD

signal.

Following this work, moving to 7 T from 3 T [1] will provide increased sensi-

tivity to changes across layers [87], which will be advantageous in investigating

the source of the alpha signal. An understanding of the generating mechanisms

of the alpha signal will provide the opportunity to use alpha oscillations as a

biomarker for the efficacy of the attention system in attention disorders such as

Attention Deficit Hyperactivity Disorder (ADHD). This work aims to lay the

foundation for future studies on information processing and EEG-fMRI laminar

measures.
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5.2. Assessing EEG data quality

In Chapter 4, an analysis pipeline was developed for layer analysis over large

ROIs to study EEG-fMRI measures. Here this pipeline is applied across a group

of subjects with the aim of answering the question ‘What is the origin of the

EEG Alpha signal?’. In this Chapter, the analysis pipeline that was developed

in Chapter 4 is applied to data from ten subjects, and layer results combined

across subjects to study the origin of the alpha signal. Figure 4.6 summarises

the different elements of the pipeline.

5.2 Assessing EEG data quality

The acquisition of EEG simultaneously with fMRI data at 7 T is especially

challenging due to the large gradient, pulse and movement artefacts in the

data caused by the high magnetic field [139]. Artefact correction did not form

part of this PhD thesis, but for this chapter I did assess the quality of the

cleaned EEG alpha timecourses for each subject. These were then to be used

to generate model BOLD responses of the fMRI data for each subject in a fixed

effects general linear model (GLM). Modulation of each individual’s EEG alpha

power was assessed by performing a Fourier transform on the EEG timecourse

collected during the eyes open and eyes closed periods, and comparing the

resulting frequency power spectrum for each subject. Figure 5.1 shows the eyes

open and eyes closed EEG spectra for each of the ten subjects.

Spectra of Subjects 3 – 9 show a noticeable increase in power in the alpha

frequency range of 8 – 13 Hz for the eyes closed to eyes open periods confirming

that alpha power has been modulated during the stimuli. Subject 1 shows a

dramatic increase in power on eyes closed compared to eyes closed, indicating a

strong modulation of alpha power. Subjects 2 and 10 show little to no difference

in alpha power between eyes open and eyes closed periods.

To further assess the EEG data quality, all EEG-fMRI runs for each subject

were concatenated and compared with a box car of the eyes open, eyes closed

stimulus timings, as shown in Figure 5.2.
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ssessing
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data
quality

#1 #2 #3 #4

#5 #6 #7 #8

#9 #10

Figure 5.1: The EEG power spectrum from the Fourier transform of the EEG alpha power timecourse from the VE at the peak

alpha power location during the eyes open (green) and eyes closed (yellow) periods, shown for each of the ten subjects. Subject

numbers are denoted on the top left of each subplot.

130



5.2.
A

ssessing
E

E
G

data
quality

Figure 5.2: All runs (separated with black dashes) of the EEG alpha power timecourse from the VE at the peak alpha power

location during the eyes open, eyes closed stimulus concatenated together (blue), with the stimulus timing box car overlaid (red),

shown for each of the 10 subjects. For the stimulus, periods of eyes open are denoted by a value of 1 and periods of eyes closed

are denoted by value of 0. Subject numbers are denoted in the top left of each subplot. The first run for Subject 7 was excluded

from further analyses as there was a ∼80 s period at the end of this run where the signal had been replaced with the mean value

from the location of the VE
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5.3. EEG alpha HRF Convolution

For most subjects there can be seen to be a periodic pattern in the EEG

alpha power that matched the timing of the 30 s eyes open 30 s eyes closed

stimulus across most runs. An increase in EEG alpha power is seen during eyes

closed periods compared to eyes open.

Subject 10 from this point onwards was excluded from further analyses, due

to both the high noise level across all experimental runs, as shown in Figure

5.2, and the lack of alpha power modulation, as shown in Figure 5.1.

5.3 EEG alpha HRF Convolution

Figure 5.3 shows the result of the convolution of the EEG data with the HRF

using the method described in Section 4.4.1 for each run for the remaining nine

subjects (Subject 1 – 9). The plots show there was considerable variability

in the alpha response across runs and subjects, as would be expected due to

the spontaneous nature of the alpha band response. Each of these timecourses

were used as regressors for GLMs to identify where in the visual cortex BOLD

responses negatively correlated with the alpha signal (see Section 5.5)
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5.4. Subject-specific Retinotopy
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Figure 5.3: Each run of the ‘eyes open/eyes closed’ task for each of the nine

subjects. The model paradigm derived from the preprocessed EEG data was

convolved with a standard HRF at 500 Hz with a double gamma function (time

to-peak = 6 s) and then downsampled to the volume TR. The number in the top

left of each subplot denotes the subject.

5.4 Subject-specific Retinotopy

Retinotopy is commonly used to functionally define subject specific ROIs of

the visual cortex. As shown in Chapter 4, it is the most common method for

definition of the visual ROIs in studies using GE-BOLD layer fMRI in the

primary visual cortex (Table 4.8). Here we show the results from implementing
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5.4. Subject-specific Retinotopy

standard retinotopic mapping methods (Section 4.4.4) on data for Subjects 1 –

9.

Figure 5.4 shows the cortical flat patches of the phase from the rotating

wedges stimulus for each of the nine subjects, with the manually defined

(informed by the Benson atlas) boundaries for V1, V2 and V3 overlaid. The

rotating wedges phase maps were used to highlight the boundaries between

each primary visual region.
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Figure 5.4: Retinotopic maps for Subjects 1 – 9 showing the phase flat map

from the rotating wedges stimulus for the left and right hemisphere of the brain.

Manually defined ROIs V1, V2 and V3 are overlaid in white.

Figure 5.5 shows the cortical flat patches of the phase from the expand-

ing/contracting annuli stimulus for the same nine subjects, with the manually

defined (informed by the Benson atlas) boundaries for V1, V2 and V3 overlaid

in white. The expanding/contracting rings phase maps were used to identify

the location of the fovea and the extent of each of the primary visual regions.
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5.4. Subject-specific Retinotopy
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Figure 5.5: Retinotopic maps for Subjects 1 – 9 showing the phase flat map

from the expanding/contracting annuli stimulus for the left and right hemisphere

of the brain. Manually defined ROIs V1, V2 and V3 are overlaid in white.

It was possible to define V1, V2 and V3 for eight of the nine subjects

manually from the reversals in the phase of the data using the Benson atlas only

as a guide. The data quality for Subject 6 was too poor to define boundaries

manually, so for this subject the definitions from the Benson atlas for V1, V2

and V3 ROIs were used. It was known that Subject 6 had a visual impairment

(astigmatism) and this was the most likely cause for the poor quality of the

retinotopy data [189]. After transformation from surface to volume space the

visual ROIs were aligned to the functional data. The resulting ROIs for V1–3

are shown in Figure 5.6 for Subjects 1 – 9.
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5.4. Subject-specific Retinotopy

Figure 5.6: Primary visual regions V1 (red), V2 (blue) and V3 (green), as

defined from the retinotopy, after being transformed into the native space of

the functional EEG-fMRI data and upsampled to 0.175 mm isotropic spatial

resolution. Results are shown in the coronal (top) and axial (bottom) view for

each subject overlaid onto the partial head PSIR acquired during the functional

EEG-fMRI scan session.

The final upsampled ROIs for each subject covered the calcarine sulcus

and surrounding areas and there was no overlap between V1, V2 or V3. The

extent of the ROIs defined using subject specific retinotopy were notably smaller

compared to the Benson atlas which was used for Subject 6. This is likely to

be due to the restricted visual FOV for subjects during the retinotopy visual

stimuli due to the narrow bore of the 7 T scanner. In addition, Figure 5.6

shows the large inter-subject variability in the extent of each of the visual

regions, demonstrating the value of performing subject specific retinotopy for

the definition of V1–V3. The final upsampled ROIs for each of the subjects was
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5.5. EEG-fMRI fixed effects General Linear Model (GLM)

then used to define the region in which the cortical layers and columns were

calculated (see Section 5.6).

5.5 EEG-fMRI fixed effects General Linear

Model (GLM)

A key challenge to the development of the analysis pipeline was the combination

of the EEG and fMRI data. The chosen method was to model the BOLD

response using the EEG alpha power timecourse convolved with a HRF which

formed regressors to input into a fixed-effects GLM (see Section 4.10). This

section compares the results of using the three different regressor inputs to the

GLM analysis: 1) A boxcar of the stimulus timing of eyes open/closed convolved

with a HRF, 2) The EEG alpha power timecourse regressors, and 3) Both the

boxcar and EEG alpha power regressors with the EEG orthogonalised to the

boxcar.

5.5.1 GLM using a Boxcar

Figures 5.7a and Figure 5.7b show the results of the GLM analysis (single slice

shown for each subject), using a convolved boxcar to model the alpha-BOLD

response for the positive contrast and negative contrast respectively. The boxcar

was set to match the expected alpha power changes: with eyes open periods

set to a value of 0, and eyes closed periods set to a value of 1. The z-stat

maps are overlaid on the partial head PSIR for each of the 9 subjects. The

positive contrast z-stat maps of the boxcar GLM (Figure 5.7a) show very sparse

activation in the primary visual cortex across all subjects except for Subject

6. We believe subject six incorrectly followed the stimulus and had their eyes

open when they should have been closed and vice versa. Subjects 2 and 3 show

some activation in areas outside of the primary visual cortex.
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5.5. EEG-fMRI fixed effects General Linear Model (GLM)

For the negative contrast z-stat maps of the boxcar GLM (Figure 5.7b),

it can be seen that Subjects 2, 3, 4, 5, 7 and 9 all show significant negative

correlation of the convolved boxcar regressors with the BOLD response localised

to the visual cortex and spatially specific to the grey matter. Due to their

inverted responses to the stimulus prompts Subject 6 shows no activation in

the primary visual cortex.

(a) Positive contrast z-stat map.

(b) Negative contrast z-stat map.

Figure 5.7: The z-stat maps resulting from the fixed effects GLM analysis over

all runs for each subject using a boxcar of the stimulus timings convolved with

a double gamma HRF as a regressor shown for (a) positive contrast and (b)

negative contrast. z-stats are thresholded at z < −2.3 averaged over all runs,

and cluster corrected, p < 0.05. Results are shown for a single slice for each

subject.
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5.5. EEG-fMRI fixed effects General Linear Model (GLM)

Alpha oscillations are known to negatively correlate with the BOLD response

so this result was expected, but it is important to also note the effect of non-

alpha related brain activation due to visual stimulation. Thus using the boxcar

regressor results in brain activation maps that may not be specific to the

timings of the changes in alpha power. The next section looks at using the

EEG regressors as modulations of the alpha-BOLD response.

5.5.2 GLM using EEG alpha regressors

Figure 5.8 shows the negative z-stat maps obtained using the EEG alpha power

timecourses to model the alpha-BOLD response. These maps show activation

that is more closely related to the timings of the alpha oscillations than a simple

boxcar. All nine subjects show significant negative activation in the primary

visual cortex that is spatially specific to the grey matter, with subjects 2, 3,

4, 5, 6, 7 and 9 all showing widespread activation. Note that the use of the

EEG regressors has negated the incorrect timings of Subject 6 opening and

closing their eyes and results in significant activation similar to that of the other

subjects.
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5.5. EEG-fMRI fixed effects General Linear Model (GLM)

Figure 5.8: The negative contrast z-stat map resulting from the fixed effects

GLM using the EEG alpha power timecourse convolved with a double gamma

HRF as a regressor overlaid on the PSIR for each subject. A fixed effects

analysis over all runs for each subject. z-stat maps are thresholded to z < −2.3

and cluster corrected p < 0.05. Results are shown for a single slice for each

subject.

5.5.3 GLM using Regressor Orthogonalisation of boxcar

and EEG regressors

To uncouple the BOLD activation due to simply opening and closing the eyes,

and alpha-specific BOLD changes, the boxcar regressors were input into a

fixed effects GLM with the EEG alpha regressors orthogonalised to them. By

orthogonalising the regressors to one another they no longer share any descrip-

tive variability. The corresponding z-stat maps for the orthogonalised EEG

regressors are shown in Figures 5.9aa and 5.9ab with thresholds of z < −1.5

and z < −2.3 respectively. The threshold of z < −1.5 was also considered as

the orthogonalisation of the regressors resulted in lower correlation between the

modelled BOLD response and the data. Reassuringly the orthogonalised activa-

tion maps show the same pattern as seen in Figure 5.8. After orthogonalising to

remove the large "step changes" in alpha power induced by the eyes open and
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5.5. EEG-fMRI fixed effects General Linear Model (GLM)

closed the z-stat threshold did need to be reduced to −1.5 from −2.3 to reveal

the activation pattern. This is to be expected as the modulations induced by

the change from eyes open to closed was far larger than alpha changes during

each of the eye open/closed periods as can be seen from Figure 5.2.

(a) z-stat map with a threshold of z < −1.5

(b) z-stat map with a threshold of z < −2.3

Figure 5.9: The z-stat map resulting from the fixed effects GLM analysis over

all runs for each subject using a convolved boxcar as the first regressor and the

orthogonalised EEG alpha regressor as the second regressor thresholded at (a)

z < −1.5 and (b) z < −2.3, and cluster corrected (p < 0.05). The orthogonalised

alpha regressor response is shown here overlaid on the PSIR for a single slice

for each subject.

Going forward, the z-stat maps from the non-orthogonalised EEG regressors

are primarily used for calculation of the layer profiles. A comparison of the
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5.5. EEG-fMRI fixed effects General Linear Model (GLM)

layer profiles resulting from each regressor type will be shown at the end of this

chapter in Section 5.7.

5.5.4 Timecourse analysis

A model free approach was considered to find areas of alpha-BOLD correlation.

The mean fMRI timecourse from all voxels in V1, V2 or V3 was compared to the

EEG alpha power regressors to look for modulations that match the expected

alpha activation. It was found that for most subjects there was no discernible

modulation in the mean fMRI timecourse across the visual regions V1, V2 or

V3 and so a model free approach would be ineffective (see Appendix C.1).

In addition, the timecourses were also used to look at inter trial variability

[190], the regressors formed from the EEG alpha power timecourse were com-

pared with the fMRI timecourse of significantly correlated voxels (z < −2.3)

within each visual region. As expected the regressors and mean fMRI time-

courses were visually anti-correlated for all subjects. There was little variability

between trials for the HRF modelled using the EEG alpha power timecourse

for subjects 1, 3, 4, 8 and 9. There was a noticeable reduction in the regressor

amplitude for later trials, likely due to habituation. When plotting the fMRI

response for each trial against the corresponding EEG alpha power regressor

all subjects except for subjects 1 and 4 showed a negative correlation between

EEG alpha power regressor amplitude and fMRI response. Notably, Subject 1

had a very strong alpha power response and very weak BOLD responses which

might explain the lack of negative correlation for this subject.

On visual inspection, the variability in the trials of the mean fMRI timecourse

was greater for visual regions V2 and V3 compared to V1. Earlier trials had a

shape that was more consistent with the expected BOLD response.
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5.6 Defining layers and columns from structural

scans

Another key challenge for this dataset was the alignment and segmentation

of the structural data to create high quality GM boundary definitions. These

boundary definitions were used for 1) the definition of cortical layers and 2)

definition of cortical columns, as described in Section 4.6.

5.6.1 Layers

Figure 5.10 shows the results of the tissue segmentation, upsampling and manual

correction of the PSIR structural data to result in six equivolume modelled

layers for the 9 subjects. It should be noted that, on visual inspection, the most

accurate areas are the areas corresponding to V1, V2 and V3 as defined by the

retinotopic mapping as these were focused on during the manual correction of

the grey matter and boundary definitions.
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Figure 5.10: The six cortical layers modelled using the equivolume approach shown for an example single slice for each subject.
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5.6.2 Columns

Figure 5.11 shows, for a given slice, the calculated cortical columns before

filtering the columns for areas of alpha-BOLD activation, with 4000 columns

over the entire cortical area for each of the nine subjects. Following assessment

of column numbers in Chapter 4 Section 4.6.5, it was chosen to use 4000 columns.

This was found to give the best chance of having β-weights in every layer for

the ‘deveining’ of the data and the layer profile calculations.
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Figure 5.11: The 4000 cortical columns calculated across the whole GM ribbon shown for an example single slice for each subject.

146



5.7. Layer Profiles

5.7 Layer Profiles

By combining the functional and structural data, layer profiles can be calculated

to show the variation of alpha-BOLD signal across cortical depths in the primary

visual cortex. Figure 5.12 shows a) uncorrected and b) deveined profiles for the

GLM using the EEG alpha power regressor with deveining implemented using

deconvolution, as described in Section 4.30. This first analysis is performed

without applying a 5% noise threshold to the data and not excluding the top 25%

of columns with the most changed profiles. The uncorrected profiles in Figure

5.12a show the well documented increase in signal towards the pial surface due

to draining veins seen in GE-BOLD data. After deveining (Figure 5.12b using

the spatial deconvolution method there is a slight dip in the middle depths.

There is some variance in profile shape between subjects but all subjects except

for Subjects 1, 5 and 6 exhibit a ‘U’ shaped profile dipping in the middle depths.

From a repeated measures ANOVA it was found that there was a significant

trend (p = 0.027) across the cortical depths. Post-hoc t-tests revealed this is

driven by cortical depths 4 (p = 0.02) and 5 (p = 0.01) being significantly lower

than depth 6 and depth 3 being significantly (p = 0.01) lower than depth 1.
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Figure 5.12: Layer profiles resulting from analysis without applying a 5% noise

threshold to the data and not excluding the top 25% of columns with the most

changed profiles. The weighted average over V1–3 of the variation in normalised

β-weights over cortical depths for a) uncorrected layer profiles and b) deveined

layer profiles. Individual subject profiles are shown with the mean over all

subjects in black. Each subjects responses are normalised to the mean β-weight

at depth 1 (CSF boundary) from before deveining. Error bars showing the

standard error over subjects. CSF = cerebrospinal fluid; WM = white matter.

Figure 5.14 shows the layer profiles after implementing the optimal analysis

methods described in Chapter 4. The analysis included using a 5% noise

threshold, and excluding the top 25% of most change profiles. The deveined

profiles shown in Figure 5.13 are shown as the average of all subjects for each

visual ROI of V1, V2 and V3. Since the layer profiles for each visual region of

V1, V2 and V3 exhibit no clear differences. The profiles were combined using

a weighted average determined from the amount of activated cortical columns

in each of the visual regions for the final layer profiles. The final layer profiles

across V1–3 after deveining (Figure 5.14) using the optimal deconvolution

method outlined in Chapter 4. This is shown for each subject. It can be seen

that there is a dip in the response in the middle depths with cortical depths 4

and 5 being lower than depths 1 – 3 and 6. There is some variance in profile
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shape between subjects but all subjects, except for Subject 6, have a ’U’ shaped

profile dipping in the middle depths. From a repeated measures ANOVA it was

found that there was a significant trend (p = 0.017) across the cortical depths.

Post-hoc t-tests revealed this is driven by cortical depths 3 (p = 0.01) and 4 (p

= 0.01) being significantly lower than depth 1, and depth 5 being significantly

(p = 0.01) lower than depth 6.

Figure 5.13: Layer profiles resulting from using the optimal analysis pipeline

developed in Chapter 4. The variation in normalised β-weights over cortical

depths for V1, V2 and V3 separately after deveining. Layer profiles averaged over

subjects; error bars show the standard error over subjects. CSF = cerebrospinal

fluid; WM = white matter.
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Figure 5.14: Layer profiles resulting from using the optimal analysis pipeline

developed in Chapter 4. The weighted average over V1–3 of the variation in

normalised β-weights over layers for deveined layer profiles. Individual subject

profiles are shown with the mean over all subjects in black. Each subjects

responses are normalised to the mean β-weight at depth 1 (CSF boundary) from

before deveining. Error bars showing the standard error over subjects. CSF =

cerebrospinal fluid; WM = white matter.

In Figure 5.15 layer profiles for the ‘deveined’ GE-BOLD for each regressor

type outlined in Section 5.5 are shown. Each profile shows a similar ‘U’ shape,

exhibiting a dip in the middle cortical depths. The dip for the boxcar regressor

layer profile is slightly skewed towards the CSF boundary (cortical depth 1)

compared to the the EEG and orthogonalised EEG regressors. From a repeated

measures ANOVA on the orthogonalised EEG regressors layer profiles it was

found that there was a significant trend (p = 0.017 for z-stat< −1.5 and p

= 0.012 for z-stat< −2.3) across the cortical depths. Post-hoc t-tests for the

orthogonalised EEG regressor (z-stat< −1.5) revealed this is driven by cortical

depths 4 (p = 0.02) and 5 (p = 0.01) being significantly lower than depth 6

and depth 3 being significantly (p = 0.01) lower than depth 1. Post-hoc t-tests

150



5.8. Discussion

for the orthogonalised EEG regressor (z-stat< −2.3) revealed this is driven by

cortical depths 4 (p = 0.02) and 5 (p = 0.01) being significantly lower than

depth 6, and depths 3 (p = 0.01) and 4 (p = 0.02) being significantly lower

than depth 1.

Figure 5.15: The variation in the GE-BOLD signal across cortical depths

normalised to the CSF and averaged across V1–3 using different regressors in

the GLM. Profiles for each regressor are given after deveining. Red lines show

the profiles resulting from using the EEG informed regressors for the fixed effects

GLM and the blue line shows the profile resulting from using a HRF convolved

boxcar. Dashed lines show the results of orthogonalising the regressors with

respect to one another for the fixed effects GLM.

5.8 Discussion

A novel layer-dependent EEG-fMRI dataset acquired using 3D GE-BOLD at

7 T during an eyes open/closed task was analysed using the bespoke pipeline

developed in Chapter 4. The aim was to address the question ‘What is the

origin of the EEG alpha signal?’.
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First, the EEG data were successfully used to create regressors for use in the

GLM analysis of the fMRI data. Data from nine of the ten subjects scanned

could be used for subsequent analysis. One subject, Subject 10, was excluded

due to poor EEG data quality. The fMRI data were accurately registered and

aligned to the structural data. Alpha-BOLD correlations were calculated using

regressors modelled from the EEG alpha power timecourse, as well as a boxcar,

and orthogonalised boxcar and EEG regressors in a fixed effects GLM. The

alpha-BOLD signals were negatively correlated, and spatially specific to the

grey matter of the primary visual cortex, with the majority of subjects showing

a good extent of activation. A separate retinotopic mapping scan was used to

functionally define the visual areas V1, V2 and V3 for eight out of the remaining

nine subjects, for one the Benson atlas was used. These subject specific visual

ROIs aided the preparation of the structural data which were segmented and

manually corrected to successfully define six cortical layers and 4000 cortical

columns for all nine subjects.

Alpha-BOLD correlations across cortical depths were then calculated to

assess which layers alpha oscillations were predominantly generated in, with

cortical depths containing higher mean GLM β-weights corresponding to layers

with higher alpha oscillation activity. The initial uncorrected profiles for all

subjects showed the expected increase in signal towards the pial surface known

as the draining vein effect. After correcting for this, using spatial deconvolution,

a dip in the middle cortical depths is visible in the mean layer profile of all

subjects across visual regions V1–3. A dip in the middle cortical depths is seen

in the layer profiles resulting from using three different regressor types modelled

from the EEG alpha power timecourse, a boxcar, or the orthogonalised boxcar

and EEG regressors. By orthogonalising the boxcar and EEG regressors the

shared descriptive variability is removed and hence the remaining variation in

alpha-BOLD correlation across the layers is specific to alpha oscillation and not

any other factors.
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A dip in the middle cortical depths indicates that the BOLD signal was

least well correlated with the EEG alpha regressors in the middle layers. This

suggests that the middle layers are not the sole origin of the alpha signal and

instead it can originate from deep and superficial layers. The superficial and

deep layers, correspond to top-down, feedback processing [80]. The recruitment

of top-down processing generates corticocortical alpha which predominantly

terminates outside of layer IV [4]. This is contrary to what was hypothesised

in Chapter 3, where it was stated that opening and closing the eyes would

recruit bottom-up processing with thalamocortical feedforward alpha mostly

terminating in layer IV [191, 192]. However, this result does align with the

findings of van Kerkoerle et al in which they found that the alpha layer profile

for a sustained visual stimuli was dominated by the deeper and superficial layers

[182]. As our stimulus consisted of long 30 s periods of eyes open or eyes closed

we could expect our alpha-BOLD layer profiles to exhibit a similar shape.

As the EEG signal is thought to result from dendritic PSPs in pyramidal

neurons, one might expect that the EEG signal would be weighted by the

cytoarchitecture of the cortical layers (see Section 3.3), with layers containing

more pyramidal cells more likely to contribute to the detected EEG signals,

therefore making certain layer profile shapes more likely. However, pyramidal

neurons are present in all cortical layers except for layer I and pyramidal

dendrites project away from the cell bodies and can synapse in other layers or

regions of the cortex [193]. Therefore, the distribution of pyramidal cell bodies

does not necessarily weight the EEG response. If the EEG signal is weighted to

specific layers, CSD measures from depth electrodes (LFPs) would only receive

currents in specific layers, but different layer profile shapes have been shown for

EEG oscillatory responses in different frequency bands [46, 101].

Scheeringa et al also observed alpha-BOLD correlations in the deeper and

superficial layers, however this was detected during a visual attention task which

is known to be a top-down process and so alpha generation is expected from

corticocortical loops terminating in layers outside of layer IV.
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5.8.1 Limitations

One of the biggest challenges with this dataset was using the partial head PSIR

acquired on the two surface array coils for the segmentation of the GM and

the following modelling of the cortical layers. The two surface array coils were

used to enable high SENSE acceleration factors in both the phase and slice

encode directions for the 3D-EPI functional acquisitions in order to achieve a

reasonable TR at sub-millimetre resolution. As such the surface coils provided

high sensitivity for where they were placed (over the visual cortex) but the areas

further from the coils were far noisier. The spatially varying noise was an issue

when segmenting the PSIR into WM, GM and CSF, resulting in patchy tissues

masks that required more manual editing, adding more time onto a very time

consuming task. Alternatively, the 32 channel volume coil could have been used

to acquire the data but to achieve the same spatial and temporal resolution

there would be a significant drop in tSNR in the functional data as well as a

large increase in the g-factor with the acceleration factors in the phase and

slice direction resulting in spatially inhomogeneous noise amplification. This

may be overcome by new advanced post-processing methods such as NORDIC

[110] which are explored in Chapter 6 and may allow high resolution data with

sufficient tSNR using a whole head RF coil.

An important element of a layer-fMRI study is having the best alignment

between the structural and functional data. Functional EPI data are distorted

due to B0 field inhomogeneities and the low bandwidth in the phase encode

direction causing frequency shifts, therefore pixel shifts, in the signal. It is

possible to use either B0 distortion correction or non-linear registrations to

correct for these pixel shifts so that the functional and structural data are in the

same ‘image’ space. But these come with compromises: 1) Applying additional

registration transforms to the data is undesirable as it increases blurring and

2) using B0 distortion correction is challenging as it requires an accurate B0

field map and doesn’t account for changes in B0 over time. To overcome these
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issues, it is now possible to acquire T1 mapping data with a 3D-EPI readout

that matches the distortions of the 3D-EPI functional data [10], giving the

option to segment the GM in native functional space. In Chapter 6 3D-IR-EPI

T1 mapping data are acquired to assess GM segmentation for VASO layer fMRI

measures.

Another limitation was the limited FOV available to the subjects during

the retinotopic mapping stimuli. This was due to the bore size of the 7 T MRI

scanner being long and narrow limiting the visual angle. This resulted in the

extent of the subject specific definitions of the visual ROIs being smaller than

those of the Benson atlas.

The largest limiting factor of the data presented here is the removal of

the draining vein effect from the GE-BOLD data using spatial deconvolution.

The draining vein effect is a well documented artefact in layer fMRI profiles

and there are multiple models describing it [166, 168, 169, 194]. ‘Deveining’

the GE-BOLD data using these models is challenging as it is dependent on

excellent alignment between functional and structural data, a high quality GM

segmentation, and a good estimation of CBV from the data. There is currently

no gold standard so it is difficult to know if the GE-BOLD layer profile after

‘deveining’ is matching the true neuronal profile. There are multiple methods

beside deconvolution available for implementation in LAYNII, however these

methods do not produce layer profiles that agree with one another. To address

the disparity on layer profile shapes resulting from different deveining methods

a non-BOLD contrast could be acquired, such as vascular space occupancy

(VASO), which isn’t sensitive to the draining vein effect and so should be a more

accurate measure of the underlying neuronal signals. To test the viability of

acquiring GE-BOLD data and implementing ‘deveining’ to achieve layer profiles

closer to the true neuronal signals, VASO and GE-BOLD were acquired during

a finger-tapping motor task and their layer profiles compared in Chapter 6.
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Chapter 6

Denoising for the improved study

of VASO and BOLD layer fMRI

156



Abstract

Vascular Space Occupancy (VASO) is an fMRI contrast that is becoming a

popular alternative to Gradient-Echo Blood Oxygenation Level Dependent

(GE-BOLD) contrast. As it is a T1 based contrast, VASO does not suffer

from the draining vein effect and therefore has better spatial specificity

compared to GE-BOLD. However, VASO sequences have an inherently

lower sensitivity than BOLD and hence a lower tSNR, making high

spatial resolution acquisitions challenging. The recent development of

NOise Reduction with DIstribution Corrected (NORDIC) PCA denoising

enables significant gains in previously tSNR limited fMRI acquisitions. In

this chapter, first the implementation of NORDIC as a tool to improve the

tSNR of fMRI acquisitions is assessed. A high resolution VASO sequence

is then optimised to measure layer-specific activation in the motor cortex

at 7 T to compare the VASO depth profiles with GE-BOLD depth profiles

following deveining. A motor task was selected as the hand knob region

is good for bench marking layer-fMRI methods due its consistent folding

pattern, it has a larger cortical thickness and a known layer activation

profile. A finger-tapping paradigm was performed in 10 healthy volunteers

to measure activation across the cortical depths. Significant activation

was measured in the hand knob region of the motor cortex for both the

BOLD and VASO contrast for all subjects. The mean BOLD profile

exhibited the expected increase in activation towards the pial surface.

The mean VASO profile consisted of a peak in the middle cortical depths,

whilst the mean deveined BOLD layer profile was consistent with the

VASO profile for depths 1–4 but diverged for depths 5 and 6. Finally, the

implementation of NORDIC PCA on structural 3D IR-EPI T1 mapping

data is assessed. A small improvement in the fit is shown, reflected by

increases in R2 and narrowing of the FWHM of the GM and WM peaks.

Greater improvements were seen for the WM which has greater thermal

noise compared to the GM. The improvements were small but showed

promise for the application of this to higher resolution T1 mapping data
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for the anatomical definition of layers where the contribution of thermal

noise is greater.
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6.1 Introduction

Vascular Space Occupancy (VASO) is an image contrast, first described over

20 years ago [195], that is sensitive to changes in total cerebral blood volume

(CBV). VASO leverages the difference in T1 relaxation time of blood and tissue

to measure the changes in extravascular signals during brain activation. The

changes in CBV due to vasodilation following neuronal activation are highly

localised to the surrounding tissue, providing excellent spatial specificity. The

greater signal localisation of VASO compared to the gradient echo (GE) BOLD

signal, which suffers from spatial blurring due to the T ∗
2 effect from draining

veins and thus larger signal at the pial surface (see Chapter 3), provides a

good argument for VASO to be used for layer-dependent fMRI. This chapter

will outline the testing of NORDIC PCA denoising for BOLD data before the

implementation on VASO data, this is followed by the development of a high

resolution VASO sequence which is used for a comparison of GE-BOLD and

VASO for a layer-dependent motor fMRI study at 7 T. The chapter concludes

with an assessment of the application of NORDIC to structural T1 mapping

data.

6.1.1 The Origin of VASO Contrast

VASO is an inversion recovery sequence that uses specific inversion timings

such that the signal from the blood is nulled and the modulated signal from

the tissue is retained. VASO was initially described by Lu et al in 2003 [195]

who was investigating the extravascular contributions to the BOLD signal but

unexpectedly observed a decrease in signal during activation. This provided

a technique that was sensitive to CBV without the need for contrast agents,

but that had much lower CNR compared to BOLD. At 7 T, the T1 of blood is

∼2100 ms [13, 196] and the T1 of tissue is ∼1950 ms [11, 12]. The convergence

of the T1 of blood and tissue when moving to higher field strengths reduces

the CNR of VASO posing further challenges for layer-fMRI VASO. Venous
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and arterial blood have similar T1 [195] relaxation times so an optimised TI

should achieve near-complete nulling of all blood and give the best estimation

of total blood volume. After a non-selective inversion pulse, the null point – the

time at which the magnetisation crosses zero differs for blood and tissue due

to their differences in T1, see Figure 6.2. The VASO signal is acquired at the

null point using a single shot, either a 2D-EPI with a 90◦ RF pulse per slice or

a 3D-EPI using a train of RF pulses to excite a volume. Figure 6.1 describes

the change in the magnetisation of blood and grey matter in a single voxel

during a VASO acquisition. Initially the magnetisation, Mz, of blood and grey

matter are inverted (Figure 6.1b), after an inversion time, TI1, the blood Mz is

zero and is therefore nulled (Figure 6.1c) while the tissue signal has recovered

quicker and is beyond the null point. During brain activation, the vessels in the

capillary bed dilate, causing an increase in CBV. An increase in CBV means

that there is a larger volume of nulled blood in the voxel that therefore does

not contribute to the detected MR signal (Figure 6.1d), therefore the VASO

signal decreases upon brain activation.
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Figure 6.1: Schematic showing the change in the magnetisation, Mz, in a voxel

during a VASO acquisition. b) Mz of the blood and grey matter is inverted. c)

After inversion time TI1, Mz recovers faster for grey matter than blood and the

MR signal from the blood is nulled. d) The brain tissue is at rest and the blood

is nulled e) Upon activation the blood vessels dilate, the increased CBV results

in an overall decrease in the detected MR signal.

Due to the T ∗
2 decay there is only a short window to acquire the signal,

therefore it is challenging to acquire EPI images with large coverage and high

spatial resolution in reasonable time. VASO sensitivity can be improved by

using a higher field strength, which yields higher SNR, however this comes with

additional challenges. As field strength increases, the T1 of blood and tissue

converge, reducing the tissue-blood signal difference received from the tissue

at the nulling point for a non-selective VASO slab. In addition to this, the

BOLD signal increases at higher field strength, enhancing the need for BOLD

correction. Another challenge specifically for VASO acquisitions collected with

high spatial resolution or large brain coverage is the change in intensity in the

VASO signal across the readout due to the T1 decay over long readout trains.

For a 2D-EPI readout this will result in altered VASO sensitivity across each

slice in the volume. For a 3D-EPI readout the VASO sensitivity will be constant

over a volume but the flip angle for each segment in the readout in the image

needs to be carefully adjusted to achieve constant magnetisation else blurring
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occurs in the image. Gai et al used Variable Flip Angles (VFAs) for a 3D-EPI

ASL acquisition [197], and showed that by using a range of flip angles across

the 3D-EPI RF pulses the magnetisation of the grey matter can be maintained

constant over the readout train, resulting in a reduced point spread function

(PSF) for the acquired EPI data.

0M
z

time

VASO
3D-EPI

12 slices

13 shots

Readout duration

TI10 TI2

Slice selective
α = 180° BOLD

3D-EPI

TR

VASO
2D-EPI

TI10 TI2

BOLD
2D-EPI

TR

Figure 6.2: VASO pulse sequence diagram. The first readout at TI1 acquires

blood-nulled VASO data and the second readout at TI2 acquires BOLD weighted

data that can be used to correct the VASO data for T ∗
2 dependence. Shown is

a 3D-EPI readout with 13 shots and a variable flip angle (top) and a 2D-EPI

readout with 13 shots and a constant flip angle (middle). The recovery of the

longitudinal magnetistation following a RF inversion pulse simulated for 7 T.

Simulated using a T1 of 2100 ms of blood and a T1 of 1800 ms for grey matter

and an inversion efficiency of 0.75.
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Advances in the VASO sequence have been implemented to improve func-

tional sensitivity. Work on cats at 9.4 T by Jin and Kim [198] proposed the

use of a slice specific inversion at the start of the VASO sequence meaning

that after each image acquisition the slab would be filled with fresh blood,

hence replacing the steady-state blood magnetisation and increasing signal.

Implementing slab inversion VASO (SI-VASO) improved CNR by an order of

magnitude compared to the original VASO sequence. This study was also one

of the first layer-dependent VASO studies to be performed.

In 2013, Huber et al further addressed the issues VASO has at high field

strengths. Building on the SI-VASO method of Jin and Kim, they maximised

the tissue magnetisation at the nulling point by applying multiple RF excitation

pulses to saturate the tissue signal shortly before the slab inversion [199]. This

results in the tissue magnetisation recovering to a larger magnitude before

the blood nulling point and therefore a larger signal. Additionally, the period

during which the RF excitation pulses are applied can be used to acquire BOLD

contrast data which can then be later used to correct the BOLD contamination

of the VASO signal. This sequence was termed slice saturation slab inversion

VASO (SS-SI-VASO).

6.1.1.1 Correction of BOLD contamination in the VASO signal

As T ∗
2 changes with activation, it is important to factor out signal changes due to

T ∗
2 changes from the VASO signal so that what remains is solely proportional to

changes in CBV. This correction is achieved by normalising the signal acquired

at the blood nulling point (TI1), Sn, to the signal acquired at blood-not-nulled

readout (TI2), Snn. When the not-nulled image is acquired at TI2 the relative

longitudinal magnetisation, Mz, of the GM and blood are very similar, therefore

it is assumed the Mz of parenchyma (blood and tissue), Mz,GM,n, is constant

and independent of brain activation. It assumed that at high field strengths

the T ∗
2 of parenchyma and extravascular tissue are equal so after division, the

effects of T ∗
2 and hence the BOLD response are cancelled out.
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Sn

Snn

=
Mz,GM,n exp

(
− TE

T ∗
2,GM

)
Mz,par,nn exp

(
− TE

T ∗
2,par

) ≈ Mz,GM,n

const
∼ 1− CBV (6.1)

It is important to note that this division method only corrects for the

extravascular contributions to the BOLD signal change which accounts for 90%

of the total BOLD signal change at 7 T [200].

6.1.2 Applications of VASO

In recent years, the development of VASO has continued, predominantly focusing

on validation and comparison to layer-dependent BOLD fMRI methods. As a

result it is gaining popularity as a technique for layer-dependent fMRI studies.

Seminal work by Huber et al compared the VASO and BOLD signal across

cortical depths in humans during a finger-tapping task at 7 T [116]. The

expected double peak pattern of neuronal activity in M1 of the motor cortex

was seen for the VASO data but not for the BOLD data, this was compared to

layer profiles from animal models seen in the literature. This work highlighted

the specificity and reproducibility of VASO CBV measures and also its lower

sensitivity to draining veins compared to GE-BOLD.

Further comparisons of BOLD and VASO have been conducted to take

advantage of VASOs greater spatial specificity compared to BOLD. Oliveira

et al used VASO-fMRI at 7 T to assess digit representations resulting from

BOLD and VASO contrasts during a finger-tapping task [201]. They found

that VASO-CBV measures resulted in less overlap between digit representations

than BOLD and that other selectivity measures were also improved.

Layer-dependent VASO fMRI has also been applied to a patient group

with focal hand dystonia [202]. This work found that for dystonia affected

hemispheres there is a breakdown in ordered digit representations in the primary

somatosensory cortex. The layer analysis revealed that in dystonia affected

primary motor cortices there was increased fMRI activity in layers II and III
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(associated with cortico-cortical input) compared to relatively weaker activity

in layers V and VI (associated with output).

The application of layer-dependent VASO to neuroscience has mostly con-

sisted of tasks that stimulate the primary motor, somatosensory or visual cortex.

Recent work on the human somatosensory cortex at 7 T by Yu et al investigated

laminar activation during sensory input and predictive feedback using VASO

[203]. They found that during sensory input, the middle layers showed the

highest activation while prediction inputs led to higher activity in the superficial

and deep layers being observed. These findings agreed with the previously

hypothesised thalamic feedforward processing during sensory input and the

cortico-cortical feedback processing during predictive processing.

6.2 Implementation of NORDIC denoising

Observing layer dependent signals is challenging due to the inherently low

signal-to-noise ratio (SNR) of the MR acquisitions used (BOLD, ASL, VASO),

when pushing to high spatial resolution. There are a number of pre-processing

stages that can be used to improve the effective image SNR of the imaging

data, but it is important to do so without compromising the temporal SNR

and spatial resolution of the data. Spatial smoothing is a tried and tested way

to increase SNR, however for high spatial resolution layer-specific fMRI data

this would be detrimental, as in this situation spatial localisation of signals is

paramount [204].

Multiple methods have been developed which aim to increase SNR by

denoising using principle component analysis (PCA) [205–207]. Currently a

popular method is the Marchenko-Pastur PCA (MP-PCA) [208]. This method

implements a local patch based PCA on the magnitude MR data. A threshold

for the singular value decomposition components is calculated analytically using

random matrix theory by using the tail of the spectrum of singular values. The
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threshold leads to the removal of the components that have little contribution

to the variance of the data.

In 2021 Moeller et al. proposed a new method known as NOise Reduction

with DIstribution Corrected (NORDIC) PCA [110] has been published which

builds on MP-PCA. This provides a data driven approach for the thresholding

of the singular values. This has been shown to provide impressive improvements

in image SNR for diffusion [110] MRI and temporal SNR for functional MRI

[111] data. It is important to note that the noise in MR magnitude images is

not Gaussian but Rician or non-central χ2 distributed [209], as shown in Figure

6.3a, therefore the effectiveness of noise reduction techniques that are based on

Gaussian assumptions are reduced.

Figure 6.3: Histograms showing the distribution of pixel intensity values in the

noise scan of an MRI dataset. The (a) magnitude data clearly shows a non-

Gaussian, non-zero mean distribution, whereas the (b) real and (c) imaginary

components of the complex data have zero-mean Gaussian distributions.

NORDIC PCA is a method that ensures the removed noise components are

independent and are identically distributed as zero-mean Gaussians by using the

complex data. With these constraints, an objective parameter-free threshold can

be calculated which results in the removal of noise that is indistinguishable from

Gaussian noise. NORDIC PCA requires both magnitude and phase data to be

acquired along with a noise scan collected with no RF. The NORDIC analysis

pipeline prepares the MRI data using the following steps: (1) Combining the

magnitude and phase MR data to construct complex real and imaginary data
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in which the noise distribution is zero-mean Gaussian (as shown in Figure

6.3b and 6.3c); (2) Mapping the spatially varying noise to spatially uniform

noise using the parallel imaging g-factor; and (3) Calculating the threshold for

singular values explicitly from the noise spectrum of the MRI data. In terms

of fMRI data, NORDIC should be effective at removing thermal noise but not

physiological noise from the timeseries.

The next sections outline work on implementing NORDIC on BOLD data

collected on a 7 T Philips Achieva MR scanner.

6.2.1 Implementation of NORDIC on Philips data

As a first test, the 3D-EPI protocol used in Chapter 4 (with the two 16-channel

receive surface coils) was acquired at rest for 40 dynamics + 1 noise scan using

the 32-channel NOVA receive head coil with high SENSE factors in both the

phase and slice (P&S) directions with a TR of 3.8 s. Acquiring this data on the

32-channel NOVA receive head coil rather than the receive surface coils hugely

reduced the image (and temporal) SNR and the high SENSE factors would

result in large g-factor noise amplification, thus testing the limits of NORDIC.

NORDIC was available online on GitHub (https://github.com/SteenMo

eller/NORDIC_Raw) to download and implement in MATLAB. The NORDIC

code provided options to run with or without phase data, with or without a

noise dynamic and the patch size for the local PCA data could also be set.

Upon inspection of the 3D-EPI data, after applying NORDIC denoising using

the magnitude and phase date, including a noise dynamic and the default patch

size, it was clear that NORDIC had failed and removed the majority of the

signal in the image. Until this point in time, NORDIC had been developed

and tested on data from Siemens scanners, but not Philips data. It was likely

that the differences in handling the data acquired on the different vendors were

causing these issues, and so this was discussed with the developer (Dr Steen

Moeller).
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On closer inspection, the issue with the Philips data was found to result

from irregularities in the calculation of the g-factor within NORDIC. This led

to the threshold calculated from the noise spectrum being far too high and

the majority of PCA components being removed from the data. Despite the

Philips data being collected with a large dynamic range of 2×105, the noise

scan of this data had a poor dynamic range, with only ∼50 unique values with

large steps between each value, as shown in Figure 6.4. NORDIC had been

developed such that it expected continuous integer values from 0 to 4096, as

is generated by Siemens scanners, so the large steps in the Philips data were

causing NORDIC to fail.
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Figure 6.4: Plots showing a) a single dynamic of the the 0.8 mm isotropic

3D-EPI data for the signal (a.i) and the noise dynamic (a.ii), and b) pixel value

versus pixel index for the signal (b.i) and the noise (b.ii) acquired using the

32-channel NOVA receive head coil. It was found that NORDIC failed to correct

this dataset, leading to the loss of the majority of the signal from the image.

The issue of poor dynamic range was solved by changing the Scan Control

Parameter (SCP), ‘SNR Maxima’ on the Philips system. The initial 3D-EPI

acquisition was acquired with a default SCP of ‘SNR Maxima’ of 600 which

gave a large step size, and could not be corrected. By changing the ‘SNR

Maxima’ SCP to 100 and collecting a new dataset this increased the number

of unique noise values. This is shown for a more standard 1.5 mm isotropic

2D-EPI dataset in Figure 6.5. For this dataset, the number of unique signal

values in the image data increased from 298 for ‘SNR Maxima = 600’ to 1726

for ‘SNR Maxima = 100’. The number of unique noise values increased from
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38 for ‘SNR Maxima = 600’ to 134 for ‘SNR Maxima = 100’. The large steps

between values that caused NORDIC to fail were corrected for in the NORDIC

code by dividing the input data by the step size between the values. In addition,

the SCP ‘Noise Clip Factor’ was also changed from the default value of 1.15 to

0.01 to ensure the data was not tightly clipped to remove background noise.

Figure 6.5: Pixel value versus pixel index for the (a) signal and (b) noise for

the 1.5 mm isotropic 2D-EPI data acquired with ‘SNR Maxima’ set to (i) 600

and (ii) 100.

6.2.2 Testing NORDIC implementation in different SNR

regimes

A small pilot study was then run to test the adaptations to the NORDIC code

and setting of the SCPs. For this, 2D-EPI datasets (spatial resolution of 1.5 mm

isotropic and SENSE 2) were acquired at a range of flip angles (FA) to adjust

170



6.2. Implementation of NORDIC denoising

the image SNR in a defined way. By deliberately acquiring low FA data that is

dominated by thermal noise, as opposed to physiological noise, we could imitate

the thermal noise dominated regime of high spatial resolution fMRI. Functional

finger-tapping task data were acquired to assess the impact of NORDIC PCA

on the image and temporal SNR, and the detection of the BOLD response.

6.2.2.1 Methods

A simple left hand finger-tapping paradigm was designed to induce brain

activation in the motor cortex. The subject lay supine in the scanner bore and

viewed a projector screen with prism glasses. The subject was prompted to

‘TAP’ or ‘REST’ by commands displayed on the projector screen. Each run

began with a 20 s ‘REST’ period followed by ten blocks of 10 s ‘TAP’, 20 s

‘REST’ (see Figure 6.6).

Paradigm:

1 run = 6 min 20s

Rest

Tap

20 s 10 s 20 s

×10

Figure 6.6: Finger-tapping paradigm used to stimulate the motor cortex.

2D gradient echo EPI (GE-EPI) data were collected during the finger-

tapping task using the 32-channel receive NOVA head coil. Sequence parameters

comprised 1.5 mm isotropic resolution, TE/TR = 27/2000 ms, matrix size

128 × 126, no multiband, SENSE 2 (reconstructed matrix = 128 × 128), 24

slices in an axial orientation. Datasets were collected at a range of flip angles

of 5◦, 10◦, 20◦, 40◦, 60◦, 80◦ to change the image SNR of the acquisition. A

single scan consisted of 161 volumes with the final volume being a noise scan

collected with no RF and no gradients, resulting in a scan duration of 5 min 22

s. For the acquisitions the SCPs of ‘SNR Maxima’ and ‘SNR clip factor’ were
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set to 100 and 0.01 respectively and both the magnitude and phase data were

saved. NORDIC correction was then applied to each of the datasets. The iSNR,

variance and tSNR across volumes were computed pre- and post- NORDIC.

iSNR was calculated by dividing the mean of all the magnitude dynamics by

the mean of a patch of background signal outside the brain and corrected for

the Rician distribution of MR noise by multiplying by 0.655 [210]. tSNR was

calculated by dividing the mean of all dynamics by the standard deviation

across dynamics.

The 2D GE-EPI data were motion corrected (FSL FLIRT) and input into

a fixed-effects GLM. Regressors for the GLM were calculated using a boxcar

of the stimulus convolved with a double gamma HRF (time-to-peak of 6 s).

The GLM produced z-stat maps which were thresholded at z > 3.1 and cluster

corrected (p < 0.05). A small ROI covering the hand knob region of the motor

cortex in the right hemisphere was hand drawn to assess changes in z-stats

pre- and post- NORDIC. Within this ROI the mean and maximum z-stat was

calculated and the number of voxels with z > 3.1 were counted.

6.2.2.2 Results

Figure 6.7 shows the iSNR pre- and post- NORDIC across each of the flip angles.

Increases in iSNR post NORDIC are seen for all flip angles, with the higher

FA data (80◦, 30◦, 20◦) having a greater absolute increase in iSNR than the

lower FA data (10◦, 5◦, 2◦). The increases in iSNR are seen in the GM and near

the surface of the brain. For fMRI studies, a key measure is the change in the

variance across volumes, and the resultant tSNR.

Figure 6.8 shows a map of the variance in the signal over time for each flip

angle pre- (Figure 6.8a) and post- (Figure 6.8b) NORDIC correction. For the

FA 5◦ data, before NORDIC there is a high variance across the entire brain,

indicating a dominance of thermal noise. After NORDIC, the regions of high

variance are localised to the cortical GM, indicating the removal of thermal

noise and that physiological noise is now the dominant source of variance. For
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higher flip angles, pre- NORDIC high variance is mostly localised to the cortical

GM with less evidence of thermal noise throughout the WM. Post NORDIC,

the high variance due to physiological noise is still present in the GM but there

is a reduction in variance across the WM, indicating a reduction in thermal

noise.

Figure 6.9 shows the tSNR, pre- and post- NORDIC for each of the flip

angles. Increases in tSNR post NORDIC are seen for each of the flip angles,

with the lower FA data (2◦, 5◦, 10◦) showing a greater increase than the higher

FA data (20◦, 30◦, 80◦), as was seen in the variance maps above in Figure 6.8.

As expected, the increases in tSNR are seen predominantly in the WM and are

greatest towards the centre of the brain.

Figure 6.10 shows the z-stat maps from the fixed effects GLM in response to

a finger-tapping task pre- and post- NORDIC for each FA. Increases in activation

are seen post-NORDIC for all FAs. Higher FA (above the thermal noise limit) z-

stat maps see little improvement when inspected visually, in keeping with lower

gains of tSNR, whilst the lower FA data see notable improvements, especially

the 5◦ and 2◦ flip angles.
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Figure 6.7: iSNR for a subset of the 2D-EPI 1.5 mm isotropic slices covering the motor cortex. Data shown for each flip

angle (FA) pre- (left) and post- (right) NORDIC correction.
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Figure 6.8: Temporal variance for a subset of the 2D-EPI 1.5 mm isotropic slices covering the motor cortex shown for

each flip angle (FA) pre- (left) and post- (right) NORDIC.
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Figure 6.9: tSNR for a subset of 2D-EPI 1.5 mm isotropic slices covering the motor cortex shown for each flip angle

(FA) pre (left) and post (right) NORDIC.
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Figure 6.10: z-stat maps from the GLM analysis with a z > 3.1 threshold, and cluster corrected, p < 0.05, overlaid on

the mean 2D GE-EPI image for a subset of slices covering the motor cortex shown for each flip angle (FA) pre- and post-

NORDIC.177
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Figure 6.11 shows the quantitative improvements in the z-stat maps from

Figure 6.10. Figure 6.11a shows the hand drawn ROI in the motor cortex used

to compare the maximum, mean and extent of z-stats between the different

FA scans. Figure 6.11b shows the increase in mean z-stat in the motor cortex

ROI post NORDIC, with a greater increase for FA 2◦, 5◦ and 10◦ than FA 20◦,

30◦ and 80◦. A similar finding can be seen for the maximum z-stat within the

ROI (shown in Figure 6.11c) with the lower FA having much higher maximum

z-stats after NORDIC than before. The spatial extent of the z-stats over the

z > 3.1 threshold also increases to a greater extent for the lower FA than the

higher FA, with FA 80◦ showing no increase in spatial extent between pre- and

post- NORDIC.

Figure 6.11: Quantitative fMRI metrics in the motor ROI pre- and post-

NORDIC. Data is shown for: a) Mean z-stat b) Maximum z-stat and c) Spatial

extent of z > 3.1 across flip angles.
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Figure 6.12 shows the impact of NORDIC on the timecourse of the voxels

within the ROI in Figure 6.11. Looking at the mean timecourse within the

ROI, the highest similarity between the pre and post NORDIC data is seen

for the 80◦ and 30◦ flip angles. Despite the fact the timecourses have been

calculated by averaging across multiple voxels, there are still notable differences

in the timecourses for the 2◦ and 5◦ flip angle data. For the lower flip angles the

temporal variance in the timecourse is visibly reduced post NORDIC and the

timecourses look very similar to the 30◦ and 80◦ timecourses. Importantly, the

integrity of the denoised timecourses for the higher flip angles has not be effected.

That it is to say that NORDIC appears not to be removing physiological signal

of interest. However, it would be good to conduct further timecourse analysis

[211] to assess this in future.
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Figure 6.12: Mean timecourse as percentage change from baseline from the

motor ROI pre- (blue) and post- (orange) NORDIC shown for all flip angles.

6.2.2.3 Discussion

It has been shown that for 1.5 mm isotropic 2D GE-EPI data collected with

a low FA, a regime where thermal noise dominates, after NORDIC correction

there is a large reduction in temporal variance across the entire brain. The

largest reductions in temporal variance are seen in the white matter. Areas of

remaining high variance arise due to physiological noise localised to the GM.

At higher FAs, where physiological noise is dominant, there is little reduction
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in variance seen in the GM but a small reduction is seen in the WM, again

indicating that thermal noise is being removed.

When applying NORDIC PCA to the 1.5 mm isotropic GE-BOLD fMRI

data acquired at a range of FAs, the resulting activation maps are seen to

increase in both z-stat and spatial extent for low FAs where the data is in the

high thermal noise regime, but little to no change is seen for higher FAs which

have far less thermal noise. Reduction in the temporal variance for the lower

FAs can be seen when visually inspecting the mean timecourse from within

theROI. For the higher FAs with less thermal noise there is little difference

between the timecourse pre- and post- NORDIC which also indicates that

NORDIC is not removing any physiological signal of interest. The increase in

temporal SNR from implementing NORDIC and the resultant improvement in

the BOLD z-stat maps opens up opportunities to acquire data at higher spatial

resolution that was previously heavily SNR limited due to thermal noise. The

improvements for this Philips data are in agreement with those previously seen

with Siemens data [111] and therefore confirms that NORDIC PCA denoising

can be applied to our data going forward.

6.2.3 NORDIC implementation for high resolution 2D

and 3D-EPI

To achieve higher spatial resolution with suitable coverage of the region of

interest whilst maintaining a TR that is suitable for capturing the BOLD

response, techniques such as 2D-EPI multiband imaging and 3D-EPI, SENSE

and Halfscan (HS) are often required [20, 21]. But these can have implications

on how well NORDIC denoising performs and the resultant corrected data. MB

and SENSE lead to increases in the g-factor, whilst scans using HS acquire

a reduced percentage of the phase data. Both the g-factor and phase data

are important components of the NORDIC PCA method. The next section
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investigates how NORDIC performs when implemented on sequences using

3D-EPI and 2D-EPI with multiband and the trade off of SENSE and halfscan.

6.2.3.1 Methods

Three datasets were acquired over the visual cortex with 1 mm isotropic spatial

resolution using the 32-channel receive NOVA head coil: (1) 3D-EPI with

sequence parameters: 1 mm isotropic resolution, TE/TR/TRvol = 32/76/4600

ms, constant FA of 28◦, matrix size 148× 148, SENSE 2.5× 2.5 (reconstructed

matrix = 224× 224), no HS, 36 slices in an axial orientation. Here the 3D-EPI

are acquired with a constant FA so the signal reaches a steady state over the long

TR, maintaining a good point spread function (PSF), (2) 2D-EPI with sequence

parameters: 1 mm isotropic resolution, TE/TR = 30/2000 ms, constant FA of

75◦, matrix size 148× 145, MB 2, SENSE 3 (reconstructed matrix = 160× 160),

no HS, 36 slices in an axial orientation; (3) 2D-EPI with sequence parameters:

1 mm isotropic resolution, TE/TR = 28/2000 ms, constant FA of 75◦, matrix

size 148× 146, MB 2, SENSE 2.5 (reconstructed matrix = 160× 160), HS 0.8,

36 slices in an axial orientation. Each dataset consisted of 41 volumes with the

final volume being a noise scan collected with no RF and no gradients. Both

the magnitude and phase data were saved, and the SCPs of ‘SNR Maxima’

and ‘SNR clip factor’ were set to 100 and 0.01 respectively. A summary of

the acquisitions is shown in Table 6.1. In this context, the readout duration is

defined as the time taken to acquire the stack of slices as illustrated in Figure

6.14a.
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Acquisition Resolution FOV SENSE Slices MB HS

Readout

duration

(ms)

3D-EPI 1 mm iso 224×224 2.5× 2.5 36 NA none 1000

2D-EPI 1 mm iso 160×160 3 36 2 none 1000

2D-EPI 1 mm iso 160×160 2 36 2 0.8 1000

Table 6.1: A summary of the EPI data acquired to assess the impact of 2D MB,

and 3D-EPI SENSE, and HS on NORDIC PCA denoising.

The tSNR for each sequence was calculated pre- and post- NORDIC. In

addition, the g-factor map calculated by NORDIC to spatially normalise the

noise scan was inspected.

6.2.3.2 Results

Figure 6.13 shows the tSNR pre- and post- NORDIC alongside the g-factor map

for each acquisition. Prior to NORDIC the 3D-EPI data has the highest tSNR.

All acquisitions show an increase in tSNR after NORDIC, with the largest

increase seen for the 2D-EPI data without HS. The 3D-EPI data has SENSE

acceleration in both the phase and slice direction resulting in a high acceleration

factor, a high g-factor region and area of lower tSNR in the central axial slices

of the acquisition. As expected, the 2D-EPI with HS 0.8 has a lower g-factor

map magnitude than SENSE factor of 3 no HS. Note for these 2D-EPI MB2

acquisitions the g-factor maps exhibit a larger g-factor magnitude in the top

half of slices compared to the bottom half.
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Figure 6.13: tSNR maps pre- (left) and post- (middle) NORDIC for a subset of slices for the 3D-EPI (top), 2D-EPI without

HS (middle) and 2D-EPI with HS (bottom) acquisitions. The g-factor calculated by NORDIC is shown for a subset of slices

in the right column.
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6.2.3.3 Discussion

NORDIC can remove thermal noise and improve the tSNR of high resolution

fMRI data acquired with both 2D and 3D EPI readouts with different image

acceleration factors. The g-factor map for the 3D-EPI scheme with SENSE

2.5× 2.5 highlighted a region where there was a reduction in tSNR in the data,

suggesting that the SENSE acceleration was too high and impacting data quality.

For both the 2D-EPI acquisitions, the g-factor maps had a higher magnitude in

the top half of slices, this is likely to be due to the use of a MB factor of 2 and

there not being sufficient spacing between the two slice stacks with the number

of slices and a thickness of 1 mm. Having the two stacks so close together

results in ghosting of one stack onto the other. This data illustrates these are

important considerations before performing a study. The remainder of this

chapter uses a 3D-EPI acquisition optimised for use in a VASO layer-specific

fMRI experiment.

6.3 Implementation of 1 mm VASO for layer

fMRI

Layer dependent fMRI using GE-BOLD acquisitions suffers from signal blurring

towards the pial surface due to draining veins (see Chapter 4 and 5) and the

resulting layer profiles are dependent on the accuracy of the models used to cor-

rect the data. To achieve higher specificity of the fMRI signal a VASO sequence

can be acquired. This section outlines the development and optimisation of a

VASO sequence for use in layer-dependent fMRI. Figure 6.14 shows the VASO

scheme comprising an initial slice selective inversion followed by a variable flip

angle 3D-EPI VASO readout at TI1 (set to the blood-nulling time), followed by

a second variable flip angle 3D-EPI readout at TI2, with a final delay before

the next slice selective inversion.
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Figure 6.14: a) VASO pulse sequence diagram. The first 3D-EPI readout at

TI1 acquires blood-nulled VASO data and the second 3D-EPI readout at TI2

acquires BOLD weighted data that can be used to correct the VASO data for T∗
2

dependence. The typical parameters are TI1 = 1050 ms, TI2 = 2400 ms, and

a volume TR of 5000 ms. b) A comparison of a phantom image acquired with

a variable flip angle 3D-EPI compared to constant flip angle 3D-EPI readout

which leads to blurring. The phantom contained agar quadrants of differing T1.
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6.3.1 Comparison of VASO sequences

First the implementation of NORDIC was assessed on a 1.5 mm isotropic

VASO-ASL-BOLD sequence [212] including an additional pair of readouts with

a non-selective inversion to enable the calculation of a CBV and CBF contrasts.

This sequence had been developed prior to this PhD. A motor task is used

for the testing throughout this chapter and was selected for the layer-fMRI

BOLD and VASO comparison as the hand knob region is good for benchmarking

layer-fMRI methods due to its consistent folding pattern, its larger cortical

thickness and having a known layer activation. Specifically at 7 T, the transmit

head coil has limited coverage of lower brain regions for the inversion slab used

in the VASO sequence. By acquiring in the motor cortex it is easier to achieve

a uniform non-selective inversion. VASO data were collected during a simple

finger tapping task consisting of 6 blocks of 18 s ‘ON’ 36 s ‘OFF’. A VASO-

ASL-BOLD sequence was acquired with a 3D-EPI variable flip angle (VFA)

readout with sequence parameters as follows: 1.4 × 1.4 × 1.5 mm resolution,

TE/TR = 37/18 ms, TRvolume = 6 s, with 13 segments with variable FAs (18◦,

19◦, 20◦, 22◦, 24◦, 26◦, 28◦, 33◦, 35◦, 39◦, 41◦, 52◦, 90◦) to maintain a steady

state and reduce blurring, matrix size 104 × 101, SENSE 2.5 (reconstructed

matrix = 112× 112), no HS, 12 slices in an axial orientation. The additional

aCBV and CBF contrasts of the VASO-ASL-BOLD sequence were dropped

moving forwards as the additional repeat of the sequence with a non-selective

inversion on alternate volumes requires a TR that is two times longer than a

typical VASO sequence.

Following this, the optimum VASO sequence parameters to allow a 1 mm

isotropic spatial resolution to be achieved were investigated. When increasing

the in-plane spatial resolution or increasing the slice coverage, the readout

duration (shown in Figure 6.14) increases, resulting in one of two things: 1)

If the volume TR is kept constant, the temporal spacing between the VASO

readout and BOLD readout (∆TI readout) is reduced, as a result there is
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less time for the signal to recover after the VASO readout leading to reduced

BOLD CNR or, 2) If the gap between the VASO and BOLD readouts (∆TI

readout), is kept constant this comes at the expense of increasing the volume

TR. Here, when optimising the VASO sequence, the temporal spacing between

the VASO and BOLD readouts (∆TI readout) was kept constant at 1450 ms.

To counteract the increase in volume TR, increasing the SENSE acceleration

factor and halfscan factor were employed to reduce the readout duration. A

variety of combinations of stack size, SENSE factor and halfscan were used to

optimise the VASO sequence, which was constrained to provide good coverage

of the motor cortex, a volume TR of ∼ 5 seconds, and minimal artefacts.

Three sequences were considered, as outlined in Table 6.2. All sequences

were acquired at 1 mm isotropic resolution with a FOV of 154 × 154 and a

TE of 20 ms, using a VFA 3D-EPI readout, with FAs of (18◦, 19◦, 20◦, 22◦,

24◦, 26◦, 28◦, 33◦, 35◦, 39◦, 41◦, 52◦, 90◦) across 13 segments for the 12 slice

acquisitions, and FAs of (15◦, 16◦, 17◦, 18◦, 19◦, 19◦, 20◦, 21◦, 22◦, 23◦, 24◦,

26◦, 28◦, 30◦, 32◦, 36◦, 41◦, 50◦, 90◦) across the 19 segments for the 18 slice

acquisition. Each sequence was first acquired on a phantom, before testing on

a head. All sequences were tested with a stack of 12 or 18 slices, except for

Sequence 1 which could only be collected with 12 slices within the required

volume TR of < 5 s.

Sequence SENSE HS
TE

(ms)

Readout duration (ms) Dynamic

TR (ms)12 slices 18 slices

1 2.5 none 40 1057 1604 4800/6000

2 2.5 0.75 20 798 1225 4200/5050

3 3 0.75 19 700 1120 4000/4800

Table 6.2: Summary of each of the 1 mm isotropic VASO sequences considered

during the optimisation.
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6.3. Implementation of 1 mm VASO for layer fMRI

6.3.1.1 Analysis of VASO sequences

Each readout of the 1.5 mm isotropic VASO data were denoised using NORDIC

PCA. The VASO data were corrected for BOLD T∗
2 contamination by dividing

each volume by the corresponding BOLD volume. tSNR maps for both the

BOLD and corrected VASO, were calculated by dividing the temporal mean of

all volumes by the temporal standard deviation over all volumes. The VASO

and BOLD data were each input into a fixed effects GLM. The BOLD data were

input with regressors modelled using a standard HRF convolved with a boxcar

of the stimulus timings. The VASO data used the same model design but a

negative contrast was assessed as the VASO signal decreases on activation. The

mean of the timecourses from significantly correlated (z > 3.1) voxels within

the the activation mask was calculated for the BOLD and BOLD corrected

VASO data. The mean timecourses were highpass filtered and converted into %

signal change in order to compare BOLD and VASO timecourses.

6.3.2 Results of VASO sequences

Results of the ∼1.5 mm isotropic resolution VASO tests are shown in Figures

6.15 & 6.16. tSNR was used to assess the data quality and the effect of using

NORDIC PCA on the data. Pre-NORDIC the mean tSNR for the BOLD

signal was 19.5 and for the VASO signal was 16.3. Post-NORDIC the tSNR

maps visually show an increase across the brain. Quantitatively their mean

tSNR values also increase with a BOLD tSNR of 20.5 and VASO tSNR of

18.7. At this 1.5 mm resolution a small gain in activation is seen in the z-

stat maps post-NORDIC. Figure 6.16 shows the mean timecourse of all voxels

with significant correlations (z > 3.1) for the BOLD and VASO data pre- and

post- NORDIC. The BOLD timecourse has a % signal change of ∼10% during

the stimuli compared to ∼3% for the VASO. As expected, the VASO signal

is anti-correlated to the BOLD signal and reduces during brain activation.

NORDIC denoising has marginally improved the BOLD timecourse, resulting in
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6.3. Implementation of 1 mm VASO for layer fMRI

a larger % signal change in the timecourse. There are no visible improvements

post-NORDIC for the VASO timecourse.
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6.3. Implementation of 1 mm VASO for layer fMRI

Figure 6.16: The mean timecourse as % signal change from the significantly

correlated voxels (z > 3.1) for the pre- and post-NORDIC 3D-EPI BOLD and

BOLD corrected VASO data.

Figure 6.17 shows the 1 mm isotropic VASO sequence on a quadrant phantom

of differing T1 for VASO Sequence 1 (Table 6.2). The image intensity can be

seen to be uniform across all slices, good contrast between each compartment

of the phantom, and no large distortions or artefacts, although there is some

ringing artefacts visible due to SENSE. For a stack of 12 slices the volume TR

is 4.8 s, however on increasing the stack coverage to 18 slices the volume TR

increased to 6 s, too long for our desired applications. Thus Sequence 1 was

only considered for the initial scans on phantoms, and was ruled out from this

point on due to the long volume TR for the 18 slice coverage.

a)

T1 phantom

b)

Figure 6.17: a) Phantom with agar quadrants of differing T1 used to evaluate

sequences. b) The signal from the VASO readout the parameters for Sequence 1

in Table 6.2. Data acquired for 12 slices, SENSE 2.5, no HS and a TE of 40

ms. Red arrows indicate an examples of SENSE ringing artefacts.

192



6.3. Implementation of 1 mm VASO for layer fMRI

Figure 6.18 shows the VASO signal for Sequences 2 and 3 (Table 6.2). After

introducing a HS factor of 0.75, on visual inspection the image quality has

not been effected. There are still some areas with SENSE artefacts, these are

reduced in the 18 slice acquisitions. Figure 6.19 shows the VASO signal for

Sequence 2 and 3 for the 12 and 18 slice acquisitions. The data quality between

SENSE 2.5 and 3 is visually comparable. Image intensity is uniform across all

slices except for the first and last slices of the acquisitions. Figure 6.20 shows

the in-vivo signal for the corresponding BOLD readout for Sequence 2 and 3

for 12 and 18 slice acquisitions. The data quality between SENSE 2.5 and 3 is

visually comparable. Image intensity is uniform across all slices except for the

first and last slices of the acquisitions. A SENSE artefact can be seen in the

lower right corner of most slices (red arrows) for both the SENSE 2.5 (Sequence

2) and SENSE 3 (Sequence 3) acquisitions, which is reduced for the 18 slice

acquisition compared to the 12 slice acquisition.
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Figure 6.18: The VASO signal for the Sequences 2 (a) and 3 (b) from Table 6.2 shown for 12 (i) and 18 (ii) slice acquisitions of

a phantom.
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Figure 6.19: The signal of the VASO readout for Sequence 2 (a) and 3 (b) from Table 6.2 shown for (i) 12 and (ii) 18 slice

acquisitions of the brain.
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Figure 6.20: The signal for the BOLD readout for Sequences 2 (a) and 3 (b) from Table 6.2 shown for (i) 12 and (ii) 18 slice

acquisitions of the brain. Red arrows indicate examples of a SENSE artefact.
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6.3. Implementation of 1 mm VASO for layer fMRI

Sequence 3 (SENSE 3, HS 0.75, 18 slices) was therefore selected for use

in a layer dependent fMRI VASO study on the motor cortex as this provided

suitable image quality, a TE of 20 ms, and good coverage, in a TR of < 5 s.

6.3.3 Optimisation of TI1 for 1 mm VASO

After optimising the sequence the next step was to assess sensitivity to the

functional changes in the VASO signal. The sensitivity to the VASO signal is

dependent on how well the blood signal has been nulled compared to the grey

matter, and so it is important that TI1 is optimised to match the required blood

nulling point. The initial acquisition acquired at 1.5 mm isotropic resolution used

a TI1 of 1050 ms but the contrast for the blooding nulling point shifts dependent

on the 3D-EPI readout time and the recovery. To determine the optimal TI1

value for the 1 mm VASO sequence, a simple finger-tapping experiment was

run on a single subject using Sequence 3 and altering the TI1 across a range of

values (TI1 = 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450 ms). The subject

lay supine in the scanner bore and viewed a projector screen with prism glasses.

The subject was prompted to ‘TAP’ or ‘REST’ on the projector screen. Each

run began with a 20 s ‘REST’ period followed by six blocks of 40 s ‘TAP’, 20 s

‘REST’. This resulted in one run of a given TI, consisting of 76 dynamics + 1

noise dynamic for use with NORDIC, taking 6 min 20 s to collect. The full set

of TI1 values were acquired sequentially over 3 scan sessions starting with 1100

ms.

NORDIC PCA denoising was applied to the VASO data and BOLD data

which were then motion corrected (FSL, FLIRT) and each dynamic of the

VASO data was divided by the corresponding BOLD dynamic, to correct for

the BOLD contamination of the VASO signal [199]. The VASO and BOLD

data were each input into a fixed effects GLM. The BOLD data were input

with regressors modelled using a standard HRF convolved with a boxcar of the

stimulus timings. The VASO data used the same model design but a negative
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6.3. Implementation of 1 mm VASO for layer fMRI

contrast was assessed as the VASO signal decreases on activation. Both GLMs

were run with the motion parameters included as nuisance regressors.

Figure 6.21 shows the results from the fixed effects GLM for the VASO data

collected across a range of TI1 values, shown for a) Pre-NORDIC denoising

and b) Post-NORDIC denoising. Upon visual inspection the shorter TIs, TI1

of 1100 and 1150 ms show a greater extent of activation in the motor cortex

compared to compared to TI1 of 1200 and 1250 ms. The z-stat maps for the

longest TIs (TI1 = 1300, 1350, 1400 and 1450 ms) are not shown as there was

no significant activation in the motor cortex for these data at z>2.3. Figure

6.22 shows the corresponding results from the fixed effects GLM of the BOLD

data for the VASO sequence. As expected, there is little difference in the extent

and magnitude of the z-stat maps for each of the TI1 values, with all showing a

strong activation in the motor cortex. The denoised BOLD data shows greater

BOLD responses. Comparing Figure 6.22b to 6.22a, NORDIC has improved

both the extent and magnitude of the z-stat maps for all TIs.
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Figure 6.21: z-stat maps from the fixed effects GLM of the VASO signal for a range inversion times (TI1 = 1100, 1150, 1200,

1250 ms) overlaid on a subset of slices of the mean BOLD corrected VASO timeseries. Data shown for a) pre-NORDIC denoising

and b) post-NORDIC denoising. z-stat maps are thresholded to z > 2.3 and cluster corrected p < 0.05.
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Figure 6.22: z-stat maps from the fixed effects GLM of the BOLD signal for a range inversion times (TI1 = 1100, 1150, 1200, 1250

ms) overlaid on a subset of slices of the mean BOLD timeseries. Data shown for a) pre-NORDIC denoising and b)post-NORDIC

denoising. z-stat maps are thresholded to z > 3.1 and cluster corrected p < 0.05.
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6.4. High resolution VASO for layer dependent measures in the motor cortex

The z-stat maps indicated the best sensitivity to the VASO signal for TI1

= 1100 ms and TI1 = 1150 ms with each also giving a strong BOLD response.

The optimal TI1 for the VASO readout of 1150 ms was taken forward to study

layer dependent responses in the motor cortex in the next section.

6.4 High resolution VASO for layer dependent

measures in the motor cortex

6.4.1 Methods

This study was conducted with approval from the local ethics committee and

complied with the Code of Ethics of the World Medical Association (Declaration

of Helsinki). 10 healthy volunteers (1 female) with a mean age 26.7±3.8 years

participated in this study. Each subject gave written, informed consent before

participation.

6.4.1.1 Experimental Paradigm

A simple finger-tapping paradigm was designed to induce brain activation in the

motor cortex. Subjects lay supine in the scanner bore and viewed a projector

screen with prism glasses. Subjects were prompted to ‘TAP’ or ‘REST’ on the

projector screen. Each run began with a 20 s ‘REST’ period followed by six

blocks of 40 s ‘TAP’, 20 s ‘REST’ (see Figure 6.23). Four runs were acquired

per subject. Before entering the scanner subjects were directed to tap each

finger to the thumb sequentially, starting with the second digit and moving to

the fifth digit and returning back to the second digit on both hands during each

‘TAP’ period.
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6.4. High resolution VASO for layer dependent measures in the motor cortex

Paradigm:

1 run = 6 min 20s

Rest

Tap

20 s 20 s 40 s

×6

Figure 6.23: Finger-tapping paradigm used to stimulate the somatosensory

cortex.

6.4.1.2 Data Acquisition

All MRI data were acquired on a 7 T Phillips Achieva MR scanner (Phillips

Medical Systems, Best, Netherlands) using a 32-channel volume transmit/receive

coil (Nova Medical, Wilmington, USA).

VASO data: Data were collected using a 32-channel receive/transmit coil

using a 3D-EPI VFA VASO sequence with (Sequence 3 Table 6.2) with: 1

mm isotropic resolution, TE/TR = 19/52 ms, FA = 15− 90◦, TRvolume = 5 s,

TI1=1150 ms, TI1=3720 ms, BW in EPI frequency = 1023 Hz, acquired matrix

size 156×153 (AP×RL), SENSE 3 (AP) (reconstructed matrix = 320×320), HS

= 0.75, 18 slices in an axial orientation. A single scan consisted of 77 volumes,

with the final volume being a noise dynamic, resulting in a scan duration of ∼6

minutes. Four functional scans were acquired for each subject. The functional

runs were acquired sequentially, following the survey scans and B0-field map.

Resting State BOLD (rsBOLD): This was acquired to be used as a measure

for the Amplitude of Low Frequency Fluctuations (ALFF), an estimate of CBVv

used for the deveining of the functional BOLD data (see Chapter 4, Section

4.7). The rsBOLD data were acquired using a 3D GE-EPI sequence with: 1

mm isotropic resolution, TE/TR = 19/52 ms, FA = 15− 90◦, TRvolume = 1.5 s,

BW in EPI frequency = 1245.0 Hz, acquired matrix size 156×153 (AP×RL),

SENSE 3 (AP) (reconstructed matrix = 320× 320), Halfscan = 0.75, 18 slices
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6.4. High resolution VASO for layer dependent measures in the motor cortex

in an axial orientation. A single scan consisted of 100 volumes, with the final

volume being a noise dynamic. This resulted in a scan duration of ∼2.5 minutes.

Prior to the fMRI acquisition, a B0-field map was acquired (TR = 20 ms,

TE = 5.92 ms, ∆TE = 1 ms, 4 mm isotropic resolution, 64×64 matrix, 40

slices, FA = 25◦, SENSE factor 2) for local image-based (IB) shimming over the

region of interest for the fMRI data acquisition to limit field perturbations in

B0. A B0-field map was then collected using the same shims as used for local

IB shimming such that this could be later used for distortion correction of the

VASO 3D-EPI fMRI dataset.

Anatomical data: Scans were collected for the creation of a vein mask

using a Fast Low Angle Shot (FLASH) sequence with: 0.5 × 0.5 × 1 mm

acquired resolution (reconstructed to 0.48 × 0.48 × 1 mm), 308×308 matrix,

TE/TR = 20/564 ms, 32 slices, SENSE: 2 (RL), MB: 2. For GM segmentation,

a phase-sensitive inversion recovery (PSIR) sequence was acquired [141]: 0.7

× 0.7 × 1 mm acquired resolution (reconstructed to 0.47 × 0.47 × 1 mm),

320×320 matrix, TI = 725/2150 ms, TE/TR = 2.8/6.3 ms, 158 slices, SENSE: 3

(RL). In addition, a T1 mapping dataset with distortions and geometry matched

to the VASO data, were acquired using a 3D IR-EPI sequence with 1 mm

isotropic resolution (TE = 18 ms, EPI factor = 51, 15 shots, TI = [0, 100, 200,

300, 400, 500, 600, 700, 900, 1100, 1400, 1900, 2900, 3900 ms], field-of-view

(FOV) = 154 (AP) × 154 (RL) × 18 (FH), SENSE = 3 (AP)). The final shot

was acquired as a noise scan for NORDIC denoising prior to T1 mapping (see

Section 6.5).

6.4.1.3 fMRI Processing

The VASO and corresponding BOLD images were each motion corrected using

the same method as described in Chapter 4 Section 4.4.2. In brief, the motion

transformation matrices between and within runs for the correction of all

VASO volumes to the central dynamic of the entire session were concatenated

and applied in a single step. Following this, each dynamic of the VASO
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data was divided by the corresponding BOLD dynamic, to correct for BOLD

contamination of the VASO signal [199]. Unlike the data in Chapter 4, it was

decided to keep the functional data in its native space and warp the structural

data to the functional space as this reduces the number of times the data is

resampled and hence the amount of blurring [3].

The functional VASO and BOLD responses were modelled. A single model

for the BOLD response, was created using a boxcar of the stimulus timecourse

convolved with a haemodyanmic response function (HRF) (double gamma,

time-to-peak of 6s). The VASO data used the same model but a negative

contrast was used as VASO signal decreases with brain activation. No time

shifts were implemented for the BOLD and VASO models as the stimulus had

very long ‘on’ and ‘off’ periods. The effect of a 2.5 s delay between the BOLD

and VASO readouts during a 40 s ‘on’ period would be negligible.

At the first-level, for each run, the main effect of the VASO responses

regressor and motion parameters as regressors of no interest were modelled in a

GLM (FEAT, FSL). For each subject the average response was calculated across

all runs using a second-level fixed-effects analysis to produce the z-stat map

across all runs per subject. A threshold of |z| = 2.3 was applied to all z-stats

and cluster correction (p < 0.05) performed. The main effect of the BOLD

responses regressor and motion parameters as regressors of no interest were

modelled in a GLM (FEAT, FSL). For each subject the average response was

calculated across all runs using a second-level fixed-effects analysis to produce

the z-stat map across all runs per subject. A threshold of |z| = 3.1 was applied

to all z-stats and cluster correction (p < 0.05) performed.

In preparation for the layer analysis, both the thresholded z-stats maps and

non-thresholded z-stats maps for the VASO and BOLD were upsampled to

0.175 mm isotropic resolution using spline interpolation [3]. To counteract the

slight smoothing from spline interpolation, a threshold of |z| = 2.3 and |z| = 3.1

were applied to the VASO and BOLD z-stats.
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6.4. High resolution VASO for layer dependent measures in the motor cortex

The rsBOLD data were motion corrected and coregistered to the 2nd VASO

BOLD functional run (FSL FLIRT). The ALFF was calculated using Analysis

of Functional NeuroImages (AFNI) (3dRSFC) with a frequency range of 0.01–

0.08 Hz. In preparation for the layer analysis, the resulting ALFF map was

upsampled to 0.175 mm isotropic resolution using spline interpolation.

6.4.1.4 Structural Processing

The PSIR data, comprising magnitude and phase images at two delays (TI

= 725 ms/TI = 2150 ms), were combined to form a field-bias corrected PSIR

image. A brain mask was generated using the same method used in Chapter

4. Brain extraction on the PSIR data was performed by taking the magnitude

image acquired at TI = 2168 ms from the PSIR dataset and skull stripping

using BET2 in FSL [146]. The resultant image then underwent two erosion

iterations using FSL, and was viewed in FSLeyes, and any manual correction of

the brain mask performed.
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Figure 6.24: A single central slice of the 3D T1 mapping acquisition from one

subject shown for the 15 dynamics across a range of inversions times (TI) of

100 – 3900 ms and the final noise scan. This data is used to fit to a T1 map

(see Section 6.5.2).

For T1 mapping, first the polarity of the magnitude data shown in Figure

6.24 was corrected using the phase data. A T1 map was computed by fitting the

data to an inversion recovery curve. The T1 maps (Figure 6.25) were originally

generated to be used to segment the GM ribbon in the same space as the

functional VASO data. After segmentation into four tissue types, a GM binary

mask was created from the partial volume effect (PVE) GM map. However, the

binary GM mask was not of sufficient quality to be used to assess layers with

the VASO data. As the T1 mapping data consisted of 14 shots at a range of

TIs, these provided multiple contrasts that could be used for the registration of

the PSIR to the VASO data as an alternative.
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Figure 6.25: 1 mm isotropic T1 map generated following NORDIC denoising of

the data. 18 axial slices shown for an example subject.
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The 13th shot of the T1 data was similar in contrast to the 2nd PSIR

magnitude image (TI = 2150 ms) and the 14th shot of the T1 data (TI = 3900

ms) was most similar to the temporal mean image of the 2nd run of the VASO

functional data, to which all the functional runs were motion corrected to for

all subjects. Therefore, these T1 shots were used to transform the field-bias

corrected PSIR into the same space as the VASO data. This first involved a

linear transform to move the PSIR as close as possible to the VASO data, then

a non-linear warp was performed for the final alignment. All transforms were

applied using spline interpolation and the final transformation matrices were

combined and applied as one transform to minimise blurring. The registration

is described below and shown in Figure 6.26.

The 13th shot of the T1 data (TI = 2900 ms) was registered to the 2nd PSIR

magnitude image (TI = 2150 ms) using a rigid body transform (FSL, FLIRT).

The 14th shot of the T1 data (TI = 3900 ms) was registered to the mean image

of the 2nd VASO functional run using an affine transform (FSL, FLIRT). The

inverse of the rigid body transformation matrix was concatenated with the

affine transformation matrix to create a combined linear transformation matrix

and then applied to the 2nd PSIR magnitude image (TI = 725 ms) to move it

as close as possible to the VASO data. The affine transformation matrix was

also applied to the computed T1 map for later alignment of the FLASH data.

The resulting PSIR from the linear transform was then warped to the mean

image of the 2nd VASO functional run (Advanced Normalisation Tools (ANTs),

antsRegistrationSyN) and the non-linear warp field saved. Finally the linear

transformation matrix and the non-linear warp field were combined and applied

to the field-bias corrected PSIR data in one step.
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Figure 6.26: Schematic detailing the linear and non-linear registration of the

structural data to the functional VASO data.

The warped PSIR data, now in VASO space, was upsampled to 0.175 mm

isotropic in-plane and 1 mm through-plane resolution using spline interpolation

was segmented into three tissue types (FSL FAST), the GM binary mask was

created from the partial volume effect (PVE) GM map. The GM mask was

visually inspected and cropped to a region of interest (ROI) that contained

the hand knob region – manually identified by its distinctive Ω or ϵ shape for
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each subject. The cropped GM mask was then overlaid onto the warped PSIR

and the mean image of the BOLD corrected VASO data and edited manually

in itk-SNAP. The final GM mask was then upsampled to 0.175 mm isotropic

using spline interpolation and the blocky shape through slices was smoothed

using in house code implemented in Python. A labelled ‘rim’ file was then

produced using in house code that labelled the CSF/GM boundary with ‘1’,

the GM/WM boundary with ‘2’ and the GM ribbon with ‘3’. The rim file

was used to generate 6 cortical layers using the equivolume approach (LayNii

LN2_LAYERS; see also Chapter 4, Section 4.6.1). Subsequently, the ‘mid GM’

output from LN2_LAYERS was used to generate 300 columns across the GM in

the hand knob region (LayNii, LN2_COLUMNS).

The FLASH data were bias field corrected (SPM) and brain extracted (FSL

BET) before being registered to the subjects VASO-registered T1 map using

non-linear registration (ANTs, antsRegistrationSyN). The FLASH data were

upsampled to 0.175 mm isotropic using spline interpolation. To create a vein

mask, an upper threshold of 2000 was applied to each subjects registered FLASH

data, any value above 2000 was set to 0 and anything below was set to 1.

6.4.1.5 Layer profiles

Any columns that contained veins, defined from the FLASH vein mask, were

removed. The remaining columns within the cropped GM mask were used as

the ROI for the calculation of the layer profiles and the deveining of the BOLD

data. The unthresholded z-stats from the BOLD data were deveined using

the spatial deconvolution method (LayNii, LN2_DEVEIN) [169], see Chapter 4

Section 4.7. The layer profiles were calculated for uncorrected BOLD, deveined

corrected BOLD and VASO by taking the mean of the unthresholded z-stats in

each layer within the column ROI.
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6.4.2 Results

Figure 6.27 shows the z-stats for VASO (z < −2.3) and BOLD (z > 3.1) within

a defined ROI of the motor cortex. There is significant activation in the hand

knob region of the motor cortex across all subjects for both VASO and BOLD

contrasts. As expected, the BOLD contrast z-stats have larger magnitudes

in the superficial layers of the grey matter, due to the draining vein effect,

and a larger spatial extent compared to VASO. The largest VASO z-stats are

predominantly in the middle layers of the grey matter. For Subjects 1, 2, 3, 4,

9 and 10 a double peak pattern is visible across the GM in the BOLD z-stat

images [116]. The double peak pattern represents a peak in the superficial layers

corresponding to cortical input and a peak in the deep layers corresponding to

cortical output to the spinal cord for the movement to executed.

Figure 6.28 shows the BOLD, corrected BOLD and VASO layer profiles

for each of the 10 subjects. The BOLD profile for all 10 subjects exhibits the

expected increase in activation towards the pial surface due to the draining vein

effect. The VASO profile for Subjects 1 – 7 exhibit a single peak shape, with

the middle cortical depths 3 and 4 having a higher mean z-stat than the deeper

and superficial depths. The VASO profiles for Subjects 8, 9 and 10 show an

increase towards the pial surface, however the slope of the profile is less than

that of the BOLD profile. The corrected BOLD profiles exhibit an increase

from the CSF towards the WM for Subjects 1 – 5. For Subject 6 the corrected

BOLD exhibits a single peak shape, which peaks at depth 5, and for Subject 9

the corrected BOLD exhibits a single peak at depths 2 and 3.
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Figure 6.27: z-stat maps from the fixed effects GLM of the VASO and BOLD

data. Overlaid on the mean BOLD corrected VASO image in the hand knob

ROI. z-stat maps are thresholded at z > 3.1 for BOLD and z < −2.3 for VASO,

and cluster corrected p < 0.05. Data shown for both hemispheres for all subjects.
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Figure 6.28: Layer profiles resulting from the mean unthresholded z-stat from

each equivolume layer for BOLD, VASO and BOLD corrected using spatial

deconvolution deveining.
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Figure 6.29 shows the mean profile over all subjects for the BOLD, corrected

BOLD and VASO. The BOLD profiles shows a linear increase from the WM

towards the pial surface (CSF), highlighting the draining vein effect in the

GE-BOLD data. The mean VASO profile shows a peak in the middle cortical

depths, depth 2 is significantly higher than depth 1 (p < 0.001); Depth 3 higher

than depths 1 (p < 0.001), 5 (p < 0.016) and 6 (p < 0.002); Depth 4 higher

than depths 5 (p < 0.001) and 6 (p < 0.001); and depth 5 being higher than

depth 6 (p < 0.001). The corrected BOLD mean profile shows a slope from the

CSF/GM boundary (depth 1) towards the GM/WM boundary (depth 6).

Figure 6.29: Layer profile for BOLD, corrected BOLD and VASO. Data shows

mean over all subjects, and errorbars show SEM over subjects.

6.4.3 Discussion

An optimised 1 mm isotropic 3D-EPI VASO sequence has been used to measure

layer-specific activation in the motor cortex during a finger-tapping task. The

z-stat maps for both BOLD and VASO show significant activation in the hand

knob region in the motor cortex. BOLD data yielded higher z-stats and a

larger spatial extent than VASO, with higher activation being detected in the

superficial layers compared to the deeper layers. The higher specificity of VASO
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resulted in the peak activation being in the middle layers. In some subjects, a

double peak/stripe pattern was seen in the z-stat maps of the BOLD data, this

was not visible for the VASO data.

The VASO profiles for seven subjects showed a single peak pattern, with

activation peaking in the middle depths. The same profile shape for both the

BOLD and VASO data was seen in the layer profiles calculated from the mean

across all subjects.

The expected shape of the VASO layer profile is a double peak pattern, as

shown in Figure 6.30 taken from Huber et al 2015, thought to correspond to

increased activity in the thalamocortical input layer V, in addition to increased

activity in corticocortical input layers II and III. The grey shaded area in Figure

6.30 corresponds to the cortical GM region which is equivalent to the cortical

depths 1 – 6 in Figure 6.29.

Figure 6.30: BOLD and VASO signal in M1 of the motor cortex. Showing an

increase in signal at the pial surface for BOLD and a double peak in the VASO

data [116].

The mostly likely explanation as to why only a single peak was seen in our

data is that the resolution is too coarse, and so the two peaks merge into a

single peak. In addition, the double peak pattern generated by finger to thumb

pinching is located on the anterior side of the hand knob region [213, 214] and
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the handknob ROIs used in this analysis covered both the anterior and posterior

regions. Double peaks/stripes were seen in the BOLD z-stat maps of some

subjects, but were no longer prominent in the layer profiles after averaging over

the entire handknob ROI.

The BOLD profile corrected using spatial deconvolution was compared with

the VASO profile. The resultant corrected BOLD profiles for five subjects

showed an increase in signal from the CSF to WM, suggesting over correction

of the profiles, as also seen in Chapter 4, Section 4.7.3.5. Two subjects had

profiles that presented a peak in activity in the middle depths, similar to the

shape of the VASO profile.

When comparing the mean layer profiles across subjects, the VASO and

corrected BOLD profiles exhibit a similar shape from cortical depths 1–4, but

diverge from depth 5, with the corrected BOLD continuing to increase towards

the GM/WM boundary at depth 6 and the VASO profile decreasing towards

depth 6. In Chapter 4 it was suggested that the deveining processing may over-

correct the GE-BOLD data, resulting in a profile that linearly increases from

the GM/CSF boundary towards the GM/WM boundary. In fact it may actually

be the case that the deeper layers are being under-corrected and remaining

too high after deveining. Currently, the VASO layer profiles provide the best

description of the expected cortical layer activity, but with further exploration

of deveining parameters and strategies it could become viable to solely acquire

GE-BOLD data. Using GE-BOLD contrast for layer-fMRI would allow the use

of shorter TRs as only a single readout is required per volume and no inversion

times are needed. Alternatively, higher spatial resolution GE-BOLD data could

be acquired using the TRs currently used to acquire VASO layer-fMRI data.

6.4.4 Future Work

In future work, the VASO sequence will be optimised further to achieve sub-

millimetre spatial resolution. This can be achieved by increasing the SENSE

acceleration factor or increasing the level of Halfscan applied (i.e. reducing
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the amount of k-space data acquired), which would enable the acquisition of

higher spatial resolution within the same TR. Additionally, the delay between

the VASO readout and BOLD readout (∆TI readout) can be reduced allowing

for longer readouts to acquire higher spatial resolution. Reducing ∆TI readout

will reduce the SNR of the measured BOLD response this should not be an

issue as the BOLD data from the 1 mm isotropic VASO sequence were not SNR

limited.

This will provide more voxels across the cortical depths to study the represen-

tation of the underlying neuronal activity. For tasks where temporal resolution

is not of importance the spatial resolution can be significantly increased by

implementing multishot 3D-EPI acquisitions at the expense of an increased

volume TR e.g <0.5 mm with 2 shots which doubles volume TR.

Further work is needed to validate and optimise the deveining of GE-BOLD

data such that the BOLD activation layer profile matches the VASO layer

profile. GE-BOLD would provide greater sensitivity than VASO, combating

the lower tSNR, if the draining vein effect could be accurately corrected for.

It should be noted that the development and implementation of VASO

reaches further than fMRI studies, but can also be used to study glioma tumor

detection and grading [215, 216], as an alternative to contrast based gadolinium

methods.

6.5 NORDIC implementation for T1 mapping

structural measures

The final section assesses if any gains are made by also applying NORDIC

to T1 mapping data. High-resolution T1 mapping of the human brain can be

used to measure myelination to assess changes during brain development [217],

characterise demyelination in clinical conditions [218], and perform in-vivo

cortical parcellation [219]. However, high resolution T1 mapping can become

SNR limited. For example, whole brain 2D measures which provide improved
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point-spread function but lower SNR than 3D schemes [10], or for high resolution

partial brain 3D T1 mapping schemes used to provide structural measures with

the same coverage and distortions as functional data, such as when using

vascular-space-occupancy (VASO) for layer evaluation [203, 220, 221]. NORDIC

PCA denoising provides substantial SNR improvements for fMRI, VASO and

diffusion data [110, 111]. Here the benefit of applying NORDIC PCA denoising

to the 3D-EPI T1 mapping dataset is evaluated.

6.5.1 Aim

To determine whether NORDIC results in a reduction in noise across the TIs

of T1 mapping acquisitions leading to improved fitting, and more precise T1

measures in brain tissue. Improvements of using NORDIC PCA denoising were

assessed for each subject by calculating improvement to the fit and interrogating

the GM and WM peak heights and FWHM of the T1 map tissue types.

6.5.2 Methods

3D T1 mapping data were collected on ten subjects acquired with a 3D IR-EPI

as described in in Section 6.4.1.2. NORDIC correction was applied to the

magnitude and phase data (MATLAB, Mathworks) using a 5× 5× 5 patch size.

To compute T1-maps, the polarity of the magnitude data was first corrected

using the phase data, and T1 values were fit to an inversion recovery.

M = M0

(
1− 2 exp

(
− t

T1

))
(6.2)

where M is the longitudinal magnetisation, M0 is the initial magnetisation, and

t is the inversion time.

To assess improvements from applying NORDIC denoising to the T1 mapping

the following metrics were assessed: T1 difference map, R2 difference map and

GM/WM peak full width half maximum (FWHM). The corrected T1 maps were

subtracted from the uncorrected T1 maps to calculate the T1 difference map,
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and similarly the difference in the coefficent of determination, R2, from the T1

fit was determined by subtracting the R2 maps.

Figure 6.31: Segmentation of T1 map using FSL FAST. Showing GM (left) and

WM (right)

The uncorrected T1 maps were segmented into grey matter, white matter

and CSF masks using FSL FAST [134]; these were used as ROIs to compare the

T1 and R2 differences. The T1 values in the GM, WM and CSF were plotted as

histograms with 300 bins in the range 0 - 5000. The height and FWHM of the

GM and WM peak was calculated using MATLAB findpeaks.

6.5.3 Results

Figure 6.32 shows the difference in T1 map data pre- and post-NORDIC. There

are localised T1 differences across all subjects, with greater T1 differences in the

WM, as shown in Figure 6.32a and b. The majority of T1 differences for the

WM are in the range 0 – 15 ms and for the GM 0 – 12 ms. Figure 6.32c and d

shows the distribution of R2 from the T1 fitting. There is a small improvement

of R2 across the brain with the T1 fit improving more in the WM than in the

GM. There is an increase in R2 around the outside/surface of the brain but this

is an artefact and isn’t considered when calculating R2 improvements in the

GM and WM. Data that has been denoised using NORDIC before fitting leads

to a larger number of voxels with higher R2 values, indicating that the T1 fit
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has improved. Shown in Table 6.3 the mean R2 percentage improvement across

the WM is 0.18±0.07% and for the GM it is 0.14±0.08%.

a) b)

c) d)

Figure 6.32: a) The difference in the 1 mm isotropic 3D-EPI T1 values calculated

from subtracting the T1 map generated from the original data from the T1 map

generated following NORDIC denoising of the data. b) Histograms of T1 values

for data with and without NORDIC denoising. Data shown for an example

subject. c) Difference in R2 map shown across all 18 slices for a single subject.

d) Distribution of R2 values from the T1 fitting using the orginal data (red) and

the NORDIC denoised data (blue), shown for a single subject.
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Subject
R2

% Difference
Pre-NORDIC Post-NORDIC

1
GM 0.9891 0.9909 0.18

WM 0.9864 0.9888 0.25

2
GM 0.9694 0.9721 0.28

WM 0.9749 0.9776 0.28

3
GM 0.9931 0.9939 0.08

WM 0.9910 0.9922 0.12

4
GM 0.9936 0.9946 0.09

WM 0.9926 0.9939 0.13

5
GM 0.9943 0.9955 0.12

WM 0.9918 0.9935 0.18

6
GM 0.9888 0.9898 0.10

WM 0.9890 0.9904 0.15

7
GM 0.9796 0.9825 0.29

WM 0.9744 0.9770 0.27

8
GM 0.9903 0.9910 0.07

WM 0.9822 0.9836 0.14

9
GM 0.9821 0.9832 0.12

WM 0.9765 0.9782 0.18

10
GM 0.9971 0.9976 0.05

WM 0.9961 0.9968 0.07

Group
GM 0.9878 0.9891 0.14±0.08

WM 0.9855 0.9872 0.18±0.07

Table 6.3: Mean R2 values in the GM and WM from the T1 fitting of original

and NORDIC denoised data.

Figure 6.33 shows the T1 values from within the WM and GM showing

sharper peaks for the T 1 data after NORDIC, with the WM peak sharpened
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more than the GM peak. Table 6.4 shows the peak FWHM for GM and WM

for each subject. The mean WM peak FWHM reduced by 7.4±5.8% and the

mean GM peak FWHM reduced by 3.0±1.0%.

(a) GM (b) WM

Figure 6.33: GM and WM peak pre/post NORDIC
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Subject
Peak FWHM

% Difference
Pre-NORDIC Post-NORDIC

1
GM 590. 574 2.80

WM 425 398 6.4

2
GM 458 447 2.4

WM 669 650 2.8

3
GM 591 575 2.6

WM 293 256 12.8

4
GM 593 579 2.4

WM 360 327 9.3

5
GM 585 561 4.0

WM 271 217 19.7

6
GM 510 495 3.0

WM 389 375 3.6

7
GM 609 601 1.4

WM 385 362 6.0

8
GM 628 614 2.1

WM 432 422 2.3

9
GM 523 501 4.3

WM 523 521 0.5

10
GM 488 466 4.5

WM 347 311 10.3

Group
GM 557 541 3.0 ± 1.0

WM 410 384 7.4 ± 5.8

Table 6.4: FWHM of GM/WM peaks pre- and post- NORDIC denoising.

223



6.6. Conclusion

6.5.4 Discussion

The improvement in T1 maps can also be seen in the increase in R2 from the T1

fitting, with the percentage improvement of R2 being greater for WM than GM.

The largest differences were seen in the sharpening of the histogram peaks for

T1 values in the GM and WM (Table 6.4). The reduction in the FWHM for

both the GM and WM peak represents better tissue delineation, useful when

using segmentation tools. These differences are all reasonably small, but do

indicate some benefits to implementing NORDIC on T1 mapping data. For

this assessment the acquired data were 1 mm isotropic, and at this resolution

the data were not in the SNR limited regime. For future layer studies with

sub-millimeter resolutions the benefits of NORDIC will be more apparent.

6.6 Conclusion

This Chapter has shown that NORDIC PCA is an effective denoising method

for BOLD, VASO and T1 mapping data which are dominated by thermal noise.

For optimal implementation of NORDIC, care should be taken when acquiring

data with high SENSE acceleration factors and/or a high degree of HS [211] as

these impact the g-factor and phase of the data which are key components for

NORDIC denoising. In addition, the acquired noise dynamic must contain a

high enough number of unique noise values so that NORDIC can calculate an

accurate estimate of the noise floor from the data.

A VASO sequence was optimised for the acquisition of layer-specific measures

during a motor task at 1 mm isotropic resolution. This was used to acquire data

on 10 subjects during a finger-tapping task. The data were analysed to produce

mean layer profiles across subjects for BOLD, ‘deveined’ corrected BOLD and

VASO. The BOLD layer profile exhibited the well documented increase in

activation towards the pial surface due to the draining vein effect. The VASO

profile exhibited a peak in the middle cortical depths, likely due to insufficient
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resolution to distinguish the expected double peak. The corrected BOLD profile

shape was similar to the VASO profile for cortical depths 1–4 but diverged at

depths 5–6, suggesting that deveining was under-correcting in deeper layers

rather than over-correcting in superficial layers, as was suggested in Chapter 4.

Further work is needed to increase the spatial resolution of the VASO sequence

to acquire sub-millimetre resolution. In addition, further comparisons between

VASO and corrected GE-BOLD are needed to validate the ‘deveining’ method.

Finally, NORDIC PCA was implemented on T1 mapping data with matched

geometry to VASO to assess if it can improve structural measures for layer

definition. Improvements were seen in R2, indicating a better fit for the T1

values, and narrowing of the FWHM for the GM and WM peaks. Greater

improvements in R2 and FWHM were seen for WM compared to GM. The

improvements were small but indicate that acquisitions with higher spatial

resolution for improved layer segmentation, would see greater improvements.
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Chapter 7

Conclusion

7.1 Key Findings

The work in this thesis has developed methods for the analysis and interrogation

of layer-specific EEG-fMRI data (Chapters 4 and 5), and the acquisition of layer-

specific VASO-BOLD measures, together with the assessment of the ‘deveining’

method for correcting layer-specific GE-BOLD data.

In Chapter 4 a pipeline was developed for the analysis of previously acquired

layer-dependent simultaneous 7 T EEG-fMRI data using a high resolution

gradient echo 3D-EPI readout in response to an eyes open eyes closed task. The

EEG and fMRI data were combined by calculating the regressors for use in the

fMRI GLM by convolving the EEG alpha power timecourse with a standard

HRF. The 3D-EPI fMRI data were distortion corrected to match the structural

space and then motion corrected and coregistered using a single combined

transformation to minimise blurring, optimising the alignment between the

structural and functional data. Subject specific ROIs for V1, V2 and V3 were

generated using retinotopic mapping. The structural data were then segmented

and manually corrected to create a grey matter mask that was used to calculate

six equivolume layers and 4000 cortical columns. Alpha-BOLD correlations were

calculated by inputting the fMRI data into a fixed effects GLM with the EEG
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regressors. The areas of interest were determined by selecting columns within

visual areas V1, V2 and V3 that contained significant negative alpha-BOLD

correlations. The initial layer profiles from these areas exhibited an increase in

alpha-BOLD correlation towards the pial surface, resulting from the draining

vein effect caused by ascending veins blurring the BOLD signal towards the

cortical surface. Linear scaling, CBV scaling, linear regression and spatial

deconvolution were all assessed for ‘deveining’ the GE-BOLD data to produce

layer profiles. It was concluded that spatial deconvolution was the preferred

method due to it being the most physiologically grounded model, taking into

account baseline CBF measures estimated from the amplitude of low frequency

fluctuations (ALFF) of the GE-BOLD fMRI data. In addition to the deveining

methods, multiple analysis steps were assessed to determine the impact they

had on the final layer profile shape. The steps considered were: the level of

noise thresholding for the alpha-BOLD β-weights, the size of the columns used

for region selection and ‘deveining’ of the GE-BOLD data, the ‘λ’ parameter for

‘deveining’, orthogonalisation of regressors for the GLM, and finally the method

of layer profile calculation. A threshold of 5% was used to denoise the data as

this provided a compromise of removing voxels deemed to be noise but keep a

large percentage of the voxels containing negative alpha-BOLD correlations. For

the column size, it was found that 4000 columns should be used to reduce the

amount of column layers containing no alpha-BOLD correlation data. Columns

containing empty layers impacted the deveining calculation as the model works

by subtracting previous layer contributions from the current layer, so reducing

the number of empty layers results in better deveining. The default value for

‘λ’ was used as each subjects CBF in the visual cortex was not considered to

be abnormal. Finally, the layer profiles were calculated using the ‘Unmatched’

with the ‘Global mean’ method (Section 4.7.3.3).

Chapter 5 details the application of the optimal pipeline developed in Chapter

4 to EEG-fMRI layer data collected in 10 healthy subjects, with the aim of

improving the understanding of the origins of human alpha oscillations. The
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variation in alpha-BOLD correlation across cortical depths was assessed across

subjects. As expected, the uncorrected GE-BOLD data showed alpha-BOLD

correlations that increased towards the pial surface. Following ‘deveining’ using

spatial deconvolution it was found that there was a significant dip in cortical

depths 4 and 5 in the mean layer profile across V1, V2 and V3 over all subjects.

This dip was similar when different GLM regressors were used, with the ‘EEG

only’ regressor being skewed more towards the white matter (WM) surface

compared to the ‘orthogonalised EEG’ regressor profile. This indicates that the

orthogonalised EEG and boxcar regressors in the pipeline would be the most

effective for analysing layer-specific EEG-fMRI data.

The alpha-BOLD layer profile dipping in the middle layers suggests cortico-

cortical sources of alpha oscillations during the eyes open eyes closed paradigm.

Alpha oscillations terminating in layers outside of layer IV of the cortex indicates

top-down processing, which is contrary to the hypothesis that alpha oscillations

are generated via thalamocortical mechanisms during an eyes open eyes closed

task. However, our findings do agree with those seen in monkeys during a

sustained visual stimulus [182]. The conclusions from Chapter 5 highlighted

the need for further validation of deveining methods, which led to the work

conducted in Chapter 6.

Chapter 6 first focuses on the denoising of high resolution BOLD and VASO

data, for comparison of layer-specific profiles for VASO activation and ‘deveined’

BOLD activation. The relatively new denoising method of NORDIC PCA was

assessed and implemented on high resolution 2D-EPI BOLD data collected

at a range of flip angles to study a range of image and temporal SNR values.

This was followed by the application to a VASO finger-tapping task to study

layer profiles of VASO and BOLD. A 1 mm isotropic resolution VASO sequence

was optimised for use in a finger-tapping task in the motor cortex. NORDIC

is shown to be a helpful tool for the denoising of data that has high thermal

noise, leading to improvements in image and temporal SNR of high resolution

functional data. Layer-specific VASO-BOLD data were acquired on 10 healthy
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subjects during a finger-tapping task and data were analysed using parts of the

pipeline developed in Chapter 4. A key difference was the generation of the

cortical layers in native VASO space. Significant VASO and BOLD activation

was seen in the handknob region of the motor cortex for all 10 subjects, with

some BOLD z-stat maps showing a double peak pattern across the cortex. The

resulting mean layer profiles over all subjects were compared. The uncorrected

BOLD profiles exhibited the expected increase towards the pial surface. The

VASO profiles showed a single peak in the middle cortical depths, however

the expected double peak was not seen. This is most likely due to the spatial

resolution of the data being too coarse, causing the peaks to merge together.

The corrected ‘deveined’ BOLD exhibited a profile shape similar to the VASO

profile for cortical depths 1 – 4 but the profiles diverge for depths 5 and 6. This

is potentially due to an under correction of the BOLD data in the deeper layers.

Finally, NORDIC is applied to T1 mapping data to assess the improvements

for layer specific structural measures. A small improvement was seen in both

the wellness of fit R2 and the FWHM of the grey matter and white matter

peaks, with white matter showing more improvement due to its higher level

of thermal noise. It was concluded that NORDIC improvements would be

greater for higher resolution T1 mapping data. It is recommended that a noise

dynamic should be acquired and both the magnitude and phase data saved

when performing T1 mapping so that NORDIC denoising can be implemented

on the complex data. Further investigation on the optimal NORDIC patch size

for T1 mapping data is needed. In addition, 3D-EPI-IR T1 mapping data will

provide structural measures with the same distortions as the functional BOLD

and VASO data so that grey matter masks can be generated in the native

functional space. This would avoid the spatial smoothing that is introduced by

coregistering and warping the functional and structural data to each other.
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7.2 Future Directions

In future the pipeline developed for layer-specific EEG-fMRI could be used

to study EEG alpha oscillations during more complex paradigms to further

advance our understanding of alpha generating mechanisms [183, 222, 223].

The application of NORDIC to high resolution VASO data provided good

tSNR so that layer specific activation could be seen. Going forwards, layer

specific EEG-fMRI could be performed using the VASO-BOLD sequence. This

would remove the prior limitation of having to correct for the draining vein

effect and also provide improved spatial localisation. If it can be approved

from a safety perspective at 7 T, layer-specific EEG-fMRI using VASO-BOLD

will also give further insight into the coupling between electrophysiological

brain activity and the corresponding haemodynamics. Additionally, the 1 mm

VASO sequence will be optimised further with the use of multishot 3D-EPI

readouts explored for use in high resolution studies, for example to study layer

alpha-BOLD and alpha-CBV correlations to uncover whether alpha oscillations

are strictly attentional. Finally, further work is needed to validate the spatial

deconvolution deveining method, by comparing different implementations of

the model.

Work has also been conducted to assess the feasibility of layer-fMRI at 3 T

[224, 225]. Protocols have been developed for both VASO [225] and GE-BOLD

[224] that can be implemented in conjunction with NORDIC denoising to

improve the heavily SNR limited data. Acquiring layer EEG-fMRI at 3T would

greatly improve the quality of the EEG data as amplitude of motion artefacts

and pulse artefacts would reduce due to the lower B0 field strength. In addition,

motion artefacts can be further reduced by using EEG caps with carbon wire

loops enabling improved artefact removal [226]. With improved EEG data

quality it may be possible to look at other frequency bands such as beta [49,

56, 58] or gamma [46, 59, 60] and their relationship with the haemodynamics

of the brain on a laminar level. Layer EEG-fMRI at 3 T would enable wider
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spread adoption of these methods as 3 T scanners are more readily available

and the challenges of EEG-fMRI at 7T [139] would be circumvented.

Other MR techniques such as Diffusion Weighted (DW) fMRI [227], line

scanning [228], or Direct Imaging of Neuronal Activity (DIANA) [229] could be

considered in future to measure neuronal activity. DW-fMRI aims to measure

neuronal activity via a decrease in the apparent diffusion coefficient upon

activation corresponding to the swelling of cortical cells [230]. To date, DW-

fMRI remains controversial [231] and has not been widely adopted. On the other

hand, line scanning is a popular method for high temporal resolution imaging

across the cortical layers [228, 232, 233]. Line scanning acquisitions enable TRs

on the order of ∼100 ms by removing the need for phase encoding gradients that

would typically be present in a 2D-EPI acquisition for example. This results in

the signal from the 2D plane collapsing down to solely the frequency encode

direction. Therefore, the acquisition requires saturation pulses to null as much

signal from outside the imaged line as possible. Line scanning is suitable for

measuring layer activation from a predetermined, specific area of the cortex, for

example sections of the hand knob in M1 or S1. Line scanning would be difficult

to implement when activation is more disperse and less spatially predictable as

was shown to be the case for alpha-BOLD correlations in Chapter 5. Finally,

DIANA [229] is a technique similar to line scanning which aims to directly

measure neuronal activity (via changes in T1) at a temporal resolution of 5 ms.

This is achieved by repeatedly acquiring a line of k-space during 1 trial of the

stimulus, then repeatedly acquiring the next line of k-space during the next

trial of the stimulus and so forth. However, DIANA remains controversial due

to limited understanding of the physiological underpinnings of the neuronal cell

changes that give rise to the MR signal change and there are a growing number

of questions about the reproducibility of the methods [234].
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Appendix A

Denoising β-weights

A.1 Determining the Noise Threshold of the

β-weights

Individual subject results for the composition of positive and negative β-weights

in each column following the application of different levels of noise thresholds.

Figures A.1 to A.8 correspond to the results for subjects 2 – 9.
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A.1. Determining the Noise Threshold of the β-weights

Figure A.1: Histograms showing the percentage of (a-c) positive β-weight voxels

that are over the threshold within each column, and (d-f) negative β-weight

voxels that are over the threshold within each column for Subject 2.

Figure A.2: Histograms showing the percentage of (a-c) positive β-weight voxels

that are over the threshold within each column, and (d-f) negative β-weight

voxels that are over the threshold within each column Subject 3.

262



A.1. Determining the Noise Threshold of the β-weights

Figure A.3: Histograms showing the percentage of (a-c) positive β-weight voxels

that are over the threshold within each column, and (d-f) negative β-weight

voxels that are over the threshold within each column Subject 4.

Figure A.4: Histograms showing the percentage of (a-c) positive β-weight voxels

that are over the threshold within each column, and (d-f) negative β-weight

voxels that are over the threshold within each column Subject 5.
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A.1. Determining the Noise Threshold of the β-weights

Figure A.5: Histograms showing the percentage of (a-c) positive β-weight voxels

that are over the threshold within each column, and (d-f) negative β-weight

voxels that are over the threshold within each column Subject 6.

Figure A.6: Histograms showing the percentage of (a-c) positive β-weight voxels

that are over the threshold within each column, and (d-f) negative β-weight

voxels that are over the threshold within each column Subject 7.
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A.1. Determining the Noise Threshold of the β-weights

Figure A.7: Histograms showing the percentage of (a-c) positive β-weight voxels

that are over the threshold within each column, and (d-f) negative β-weight

voxels that are over the threshold within each column Subject 8.

Figure A.8: Histograms showing the percentage of (a-c) positive β-weight voxels

that are over the threshold within each column, and (d-f) negative β-weight

voxels that are over the threshold within each column Subject 9.
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A.1. Determining the Noise Threshold of the β-weights

Individual subject results for the percentage of voxels that fell below the

5% of the maximum β-weight threshold within each of the six cortical layers.

Figures A.9 to A.17 correspond to the results for Subjects 1 – 9. Visually all

subjects show a 3:1 ratio of positively to negatively correlated voxels below the

threshold per layer. This holds true even for Subject 8 showed a reduced %

of both positive and negative voxels below the threshold due to their reduced

response. The reduced response can be seen in Figure 5.8 where the fewest

significant negatively correlated voxels of all subjects are evident.

Figure A.9: The distribution across layers for β-weights below the 5% threshold

for positive β-weights (a) and negative β-weights (b) across cortical depths for

Subject 1.
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A.1. Determining the Noise Threshold of the β-weights

Figure A.10: The distribution across layers for β-weights below the 5% threshold

for positive β-weights (a) and negative β-weights (b) for Subject 2.

Figure A.11: The distribution across layers for β-weights below the 5% threshold

for positive β-weights (a) and negative β-weights (b) for Subject 3.
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A.1. Determining the Noise Threshold of the β-weights

Figure A.12: The distribution across layers for β-weights below the 5% threshold

for positive β-weights (a) and negative β-weights (b) for Subject 4.

Figure A.13: The distribution across layers for β-weights below the 5% threshold

for positive β-weights (a) and negative β-weights (b) for Subject 5.
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A.1. Determining the Noise Threshold of the β-weights

Figure A.14: The distribution across layers for β-weights below the 5% threshold

for positive β-weights (a) and negative β-weights (b) for Subject 6.

Figure A.15: The distribution across layers for β-weights below the 5% threshold

for positive β-weights (a) and negative β-weights (b) for Subject 7.
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A.1. Determining the Noise Threshold of the β-weights

Figure A.16: The distribution across layers for β-weights below the 5% threshold

for positive β-weights (a) and negative β-weights (b) for Subject 8.

Figure A.17: The distribution across layers for β-weights below the 5% threshold

for positive β-weights (a) and negative β-weights (b) for Subject 9.
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Appendix B

Vein masks

B.1 Masking the veins from the fMRI data

Veins were easily identified as areas of low signal intensity in the functional

3D-EPI data and once masked they could be used to study the impact of

‘deveining’ on the layer fMRI data. Figure B.1 shows an example axial and

coronal slice of the vein mask calculated by thresholding the central 3D-EPI

functional run, using the methods described in Section 4.7.3.5 overlaid for each

subject on their individual PSIR.
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B.2. Effect of veins on layer profiles

Figure B.1: Vein mask (red) calculated by thresholding the central functional

3D-EPI run of the session overlaid onto the PSIR shown axially and coronally

for each subject.

B.2 Effect of veins on layer profiles

Individual subject results showing a comparison of layer profiles including all

columns or layer profiles excluding the top 25% of most most change columns

profiles for (a) uncorrected and (b) deveined data. Figures B.2 to B.9 correspond

to the results for subjects 2 – 9.
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B.2. Effect of veins on layer profiles

Figure B.2: The layer profiles from the V1 region for Subject 2 ‘Uncorrected’

(a) and ‘Deveined’ (b). Blue indicates the profile including all available columns,

Orange shows the profile resulting from excluding the columns with the highest

change in profile gradient (top 25%). Error bars show the standard error on the

mean (SEM) for the mean β-weight of each cortical depth.

Figure B.3: The layer profiles from the V1 region for Subject 3 ‘Uncorrected’

(a) and ‘Deveined’ (b). Blue indicates the profile including all available columns,

Orange shows the profile resulting from excluding the columns with the highest

change in profile gradient (top 25%). Error bars show the standard error on the

mean (SEM) for the mean β-weight of each cortical depth.
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B.2. Effect of veins on layer profiles

Figure B.4: The layer profiles from the V1 region for Subject 4 ‘Uncorrected’

(a) and ‘Deveined’ (b). Blue indicates the profile including all available columns,

Orange shows the profile resulting from excluding the columns with the highest

change in profile gradient (top 25%). Error bars show the standard error on the

mean (SEM) for the mean β-weight of each cortical depth.

Figure B.5: The layer profiles from the V1 region for Subject 5 ‘Uncorrected’

(a) and ‘Deveined’ (b). Blue indicates the profile including all available columns,

Orange shows the profile resulting from excluding the columns with the highest

change in profile gradient (top 25%). Error bars show the standard error on the

mean (SEM) for the mean β-weight of each cortical depth.
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B.2. Effect of veins on layer profiles

Figure B.6: The layer profiles from the V1 region for Subject 6 ‘Uncorrected’

(a) and ‘Deveined’ (b). Blue indicates the profile including all available columns,

Orange shows the profile resulting from excluding the columns with the highest

change in profile gradient (top 25%). Error bars show the standard error on the

mean (SEM) for the mean β-weight of each cortical depth.

Figure B.7: The layer profiles from the V1 region for Subject 7 ‘Uncorrected’

(a) and ‘Deveined’ (b). Blue indicates the profile including all available columns,

Orange shows the profile resulting from excluding the columns with the highest

change in profile gradient (top 25%). Error bars show the standard error on the

mean (SEM) for the mean β-weight of each cortical depth.
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B.2. Effect of veins on layer profiles

Figure B.8: The layer profiles from the V1 region for Subject 8 ‘Uncorrected’

(a) and ‘Deveined’ (b). Blue indicates the profile including all available columns,

Orange shows the profile resulting from excluding the columns with the highest

change in profile gradient (top 25%). Error bars show the standard error on the

mean (SEM) for the mean β-weight of each cortical depth.

Figure B.9: The layer profiles from the V1 region for Subject 9 ‘Uncorrected’

(a) and ‘Deveined’ (b). Blue indicates the profile including all available columns,

Orange shows the profile resulting from excluding the columns with the highest

change in profile gradient (top 25%). Error bars show the standard error on the

mean (SEM) for the mean β-weight of each cortical depth.
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Appendix C

Timecourse analysis

C.1 Comparison of the EEG alpha power and

fMRI BOLD response

Individual subject results showing a comparison of (a) the EEG alpha regressor

convolved with a standard double gamma HRF and (b) the mean timecourse

from the voxels in the V1 ROI (blue), the significant negatively correlated

voxels from the GLM using the EEG alpha power timecourse convolved with

with a standard double gamma HRF as regressors (orange) and the significant

negatively correlated voxels from the GLM using a boxcar convolved with with

a standard double gamma HRF as regressors (yellow). Figures C.1 to C.27

correspond to the results for V1, V2 and V3 for in order for each subject 1 – 9.

The variation in BOLD response driven by EEG alpha power on a trial

by trial basis is shown in Figure C.28. The mean timecourse of significant

negatively correlated (z < −2.3) fMRI voxels within V1 is plotted against the

EEG alpha power regressor for each corresponding trial period.
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C.1. Comparison of the EEG alpha power and fMRI BOLD response
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Figure C.1: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V1 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 1.
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C.1. Comparison of the EEG alpha power and fMRI BOLD response
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Figure C.2: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V2 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 1.
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C.1. Comparison of the EEG alpha power and fMRI BOLD response
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Figure C.3: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V3 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 1.
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C.1. Comparison of the EEG alpha power and fMRI BOLD response
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Figure C.4: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V1 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 2.
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C.1. Comparison of the EEG alpha power and fMRI BOLD response
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Figure C.5: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V2 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 2.
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C.1. Comparison of the EEG alpha power and fMRI BOLD response
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Figure C.6: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V3 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 2.
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C.1. Comparison of the EEG alpha power and fMRI BOLD response
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Figure C.7: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V1 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 3.
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C.1. Comparison of the EEG alpha power and fMRI BOLD response
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Figure C.8: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V2 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 3.
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C.1. Comparison of the EEG alpha power and fMRI BOLD response
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Figure C.9: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V3 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 3.
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C.1. Comparison of the EEG alpha power and fMRI BOLD response
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Figure C.10: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V1 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 4.
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C.1. Comparison of the EEG alpha power and fMRI BOLD response
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Figure C.11: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V2 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 4.
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C.1. Comparison of the EEG alpha power and fMRI BOLD response
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Figure C.12: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V3 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 4.
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C.1. Comparison of the EEG alpha power and fMRI BOLD response
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Figure C.13: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V1 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 5.
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C.1. Comparison of the EEG alpha power and fMRI BOLD response
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Figure C.14: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V2 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 5.
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C.1. Comparison of the EEG alpha power and fMRI BOLD response
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Figure C.15: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V3 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 5.
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C.1. Comparison of the EEG alpha power and fMRI BOLD response
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Figure C.16: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V1 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 6.
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C.1. Comparison of the EEG alpha power and fMRI BOLD response
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Figure C.17: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V2 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 6.
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Figure C.18: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V3 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 6.
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Figure C.19: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V1 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 7.
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Figure C.20: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V2 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 3.
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Figure C.21: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V3 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 7.
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Figure C.22: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V1 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 8.
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Figure C.23: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V2 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 8.
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Figure C.24: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V3 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 8.
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Figure C.25: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V1 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 9.
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Figure C.26: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V2 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 9.
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Figure C.27: Comparison of a) the EEG alpha power informed regressors and b)

the fMRI timecourse from all voxels in V3 (blue), significant negatively correlated

voxels (z < −2.3) when using the EEG regressors (orange) and significant

negatively correlated voxels (z < −2.3) when using the boxcar regressors (yellow).

In brackets are the number of voxels that are contributing to each mean timecourse

plotted. c) Shows the regressors from a) (blue) split into single eyes open/closed

periods (∼ 65s) and ranked from largest response to smallest response. The

corresponding fMRI period is shown next to it in orange. The numbers in bold

correspond to the response numbers in a). Shown for Subject 9.
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Figure C.28: The mean fMRI response from significant voxels (z < −2.3) within V1 for each trial plotted against the EEG alpha

power regressor amplitude during the corresponding time period. The subject number is indicated in the top left of each plot.305
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