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Abstract

The aim of this study was to develop a e indoor equipment usage detection approach
using the computer vision and deep learning techniques to aid the adjustment of heating,
ventilation, and air conditioning (HVAC) operations based on theahdemands in office and
kitchen spaces. This could not only address the issue of-uodewerestimation of the
building energy consumption but also maintain a comfortable indoor environment for

occupants by adjusting Hu\theCandsreabneaataat i ons bas

The indoor equipment usage detection model was developed and implemented using Python
and TensorFlow API. This work used-Ahablel cameras as the indoor detection technique

and locally running trained deep learning algorithmanalyse and take action based on how
equipment was utilised in the spaces. Experimental tests were carried out in case study office
and kitchen to assess the detection performance of the developed approach. The results indicate
that the developed deepataing detection approach could achieve 82.52% accuracy in

detecting office equipment and 91.42% in detecting kitchen equipment.

This work also compared the building energy performance of the developed approach with a
conventional approach such as tee of static heating, cooling, and ventilation operation
profiles through building energy simulation (BES) andsdge environmental measurement.

The equipment usage profiles generated by the collected information from deep learning
detection approach wded into building energy models to evaluate the impact of using this
approach in buildings. Simulation and environmental measurement results highlighted that
following the profiles generated by deep learning detection techniques could make the HVAC
systemadapt to the actual demands to maintain a better indoor environment and essentially
minimise the energy wastes arising when the supply of the HVAC systems is more than the

demand.
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Chapter 1Introduction

As a result of the growing population and urbanization, global energy consumption has
significantly increased, leading to an increase of greenhouse gas emissions. According to the
Global Status Report for Buildings and Cwastion published in 2020, the building sector
consumes up to 35% of global total energy use and produces about 38% of total greenhouse
gas emissions annually, as showrrigure1-1, which is a crucial factor resulting in climate

change and global warmird].
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Figurel-1. Global share of buildings and construction final energy and emigdipns

Sustainable and energyficient solutions have gained more interest among users as a way to
counter the growingnergy use anemissions to mitigatthe effects of global climate change.

The European Commission has established a clear goal of reducing greenhouse gas emissions
by at leas#d0% by 2030 and achieving carbon neutrality by 2050 under the Paris Agreement
[2]. To pay more attention to energy access challenges, other international organisations, such
as the International Energy Agency (IEA), evaluated future scenarios. IEA developed the
60Sustainabl e Devel opment ,&hick demonstratéd adsibe t he
path that ensures the achievement of sustainable and contemporary energy servicetoby 2030
achieve climate goals with the utilization of the current technologies and considerations of
human health implicatior[8]. However due to the effect of COVIEL9 resulting in the worst

energy efficiency in 2020 during the past decade, the improvement rate must be doubled from
current levels to accomplish the goal of-meto carbon emission by 2054). This illustrates

the significant need for more energificient and sustainable technologies. The UK
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government has also set a goal of achievingzeat greenhouse gas emissions by 2850
This substantial decrease emissions is not unachievable, however, it will necessitate a
societal shift away from energgtensive activitiesand toward lowenergy and the
development of zerenergy technologie3herefore, new technologies are essential to address
the design angblanning issue of more sustainable buildings to lessen the building energy

demand

Additionally, the demand for better thermal comfort and indoor air quality (IAQ), which
strongly correlates with the population's health and productivity, is also rapailying [6].

This is a critical issue as people spend abol®8% of their time in indoor spaces at hoime,
offices, or in other types of buildingszurthermore,during the COVID-19 pandemic
occupancy patterns in buildingsch as in offices have varied greatly due to social distancing
requirements, seitolation, lockdown, and more employees getting accustomed to working
remotely[7]. Although employees started to return to the office when restrictions were lifted,
the pandemic has madwrisinesses rethintheir workplace strategies, with many moving
towards flexible workspace models after seeing its benjgfit$his also means that the design
and operation dbuilding servicesystems require rethinking to adapt to the changes in indoor
spacesTherefore, the use of new technologies, such as advanced smart control systems, which

can meet these requiremergsiikey issue in the design of future building management systems.

In the building sector, the heating, ventilation, andcamditioning (HVAC) systems the

major energy consumewrhichtakes up about 40% of total energy consumg®prDue tothe
growingpopulationandurbanizationthe demand for HVAC systems is continuously increased,
which leads to a larger amount of energy use, especially in regions with a hot climate, such as
China, due to a huge increase in cooling demands. Since 2010, space cooling, which is the
fastestgrowing enduse in buildings, has increased by more than 20%, as sho\@j. in
Although HVACs make a substantial contribution to energy consumption, it is estimated that
around 90% of them do not operate efficierjtlp]. Without any action to addregkeir
efficiency, it can result in significant energy wastage and increased financial expenses
especiallyfor space coolingwhichis expected to triple by 209Q1]. Thus,enhancing the

energy efficiency of HVAC systems stands out asaanstrategy for reducing greenhouse gas
emissions and attaining the energy conservation objectives established by governmental

authorities



Among all building types, office buildings emerge asominent energy consumers and
significant contributors to emissions, often exhibiting ighhreliance on HVAC systems
compared to othetypes ofbuildings [12]. On average, HVAC systems in office buildings
consume from 40% t60% of the total energy used in the buildii@]. This percentage can

be higher in climates with extreme temperature variations or in older buildings with less
efficient HYAC systemsThis can be attributed @ combination ofactorsinherentto office

environments.

Office buildings typicallyhavea highlevel of occupancy densitwhichhas gradually elevated

year by yearA study conducted by the British Counhéor Offices (BCO)indicated a
noteworthy reductioof the average office space allocation per desk on a standard floor within
theUK from approximately 14.872in 2001 td9.6m?in 2018[14]. It leadstoincreased internal
heatgainsand necessitating rigorous ventilation and temperature caritt@ddition, dfice
buildings are often in use for extended hours, with occupants working during regular business
hoursas well as, at timegven during evengs and weekend#lso, the postpandemic era

has precipitated diversgcupancypatternsn office buildings[15]. The prolongedor varied
occupancyrequirescontinuous climate controMoreover, dfices are filled with electronic
equipmentsuch agomputers, servers, and copiers, whdohtribute to elevateldeatioads[4].

HVAC systems are essential to manage and dissipate this heat to maintain a comfortable
working environment and prevent equi@nh overheating. Furthermore, maintaining a
comfortable indoor environment is crucial in office settings to enhance productivity and
occupant satisfactiofl6]. HVAC systems assumesggnificantrole in the supply of fresh air,
purification of indoor air from pollutants, and control of humidity levels, thereby enhancing
overall occupant health and satisfaction.

It should be nated that many office buildings incorporate kitchens to offer occtgpan
convenient area for meal, snack, and beverage preparation and sidriagenhances job
satisfaction by offering a comfortable area for breaks and meals, saugsantdime, and
increases productivity by reducing distractions and downtiHmvever,food preparation
activities can generate substantial heat from cooking equipment, potentially resultmag in
thermal comfort levels if this excess heat is not adequately dissipatedionally, activities
conducted within these spaces, such as clgamd cooking, can profoundly affect IAQnot
only kitchen spaces but alswljacent office space&or instance,hte process of cooking
releases a variety afdours smoke, and pollutanfd7]. Especially cooking with gas ca

generate combustion byproducts such as carbon monoxide and nitrogen dioxide, substances
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that may pose serious health risks if not appropriately ventija&JdToensueoc cupant s 6
health,well-being and productivityHVAC systemsareemployedextensively withirkitchens

to help maintain a comfortable temperature paneventspread of cookingelatedpollutants

Therefore, enhancing the energy efficiency of HVAC systems is vital not only to reduce

avadable energy consumption but also to align with occupants' actual comfort requirements

As one of the techniquésr achieving the efficient operation of an HVAC systéne control

system has a significant contribution to energy use reduction as veeBaissfactory indoor
environmen{19]. Compared with the conventional on/off controls, over 30% of the energy
could be saved by utilising modern controls of HYAC systems which adjust the operation to
satisfy the actuatequirements while simultaneously providing optimal comfa@@]. In
addition, according to the data clustered2h] during building operatiomeriods there is a
remarkable difference between ggged and actual energy consumptiowfiice buildings, as

shown inFigure1-2. This difference may result from an unreasonable prediction of ensegy u
values in buildings during the design stage and the excessive waste of energy during the
operation period22]. It implies that the current energy modelling methods can not accurately
stand for the real consumption, and an optimized control system is necessary to improve the
operation ofoffice buildings. Moreover, great developments have been made in building
contwls on energy optimization and smartness in previous studireexample of advanced
technology is an artificial neural netwebased model predictive control system which can
create dynamic temperature-peint profiles by data processing to adapt therafon[23].

In terms of current studies, more intelligent designs or technologies for building controls are

still demanded to achieve smarter buildings and reduce energy demand.
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Figurel-2 Predicted versus actual energy useffice and educatiobuildings[21].
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One of the factors considered in the design of contrategiesin the present research is
equipment usd within office buildings, which is an important element affecting energy
consumption In office buildings, heat gains are expected riee significantly with the
increasing use of equipment demonstrating a considerable eswngy potential with the
improvement of equipment usagatterns detection and predicti@4, 25] Henceissues with
air-conditioning inoffice buildings could become more prevalent as equipment usage and
external temperatures continue to incre@&} and regulations for envelope insulation and
windowshave becomstricter Moreover,good indoor air quality is essentad people spend

the majority of their timéndoors, where the air could be more polluted than outdod2&i:
Hence the accurate detection and prediction of equipment usagféices and kitchensould

help address these issues by improving the performance of H@AitIsbased on the actual
demands The information can alsbe used to control passive strategies such as natural
ventilation openings which can be adjusted based on the predicted heaarghiosoking

appliance usag@ an occupied space.

The sensing of occupancy information, such as the number of occupantstabdtibn in
space, has beenidely investigated in many studig28, 29] Several technologies were
developed for detecting occuparstsch as infrared and environmental sensors, radio frequency
identification, WiFi cevices and wearables. Each has its advantage and limitations &e&¢has
shown to assist control systermnd enhance building energy efficien®0, 31] However,
studies on the sensing of equipment usage information are currently limited. Someg3dies
33] collected and identified equipment such as computers and printers from the consumption
data by using smart etersor plug load sensor¥et, it would be impractical to install smart
meters on every unit in buildings wighlarge amount of equipmene., openplan offices and
computer rooms.The sensors measuring factors such as carbon dioxide (CO2) levels,
patticulate matter (PM2.5), and volatile organic compounds (VOCs) haveAieely used to
monitorthe level of indoor air quality whesooking[34]. These sensors can provide numerical
measurements of their concentrations, witle sensors' time delay results in the HVAC

controls' response delay to make timely adjustments accordingly

Several studies related the equipment usage with occupants’ number and/or beRaviour
example, Anand et aJ35] estimated the plug and lighting load by analysing the collected
occupancy shape and motion dé&amilarly, Wang and Ding36] estimated the equipment
energy use in mukbccupant office roosby examining the occupant behaviowhile Gunay

at el.[37] developed a model to predict equipment load patterns in office spaces using a
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combination of occupancy data from motion sensors and plug loadrtiatiimitation of this
method is that the equipmemsage profile is obtained by analysing other information rather
than directly detecting the equipment usage and would require additional sensors. Another
study [38] developed datdriven models using survey questionnaires tedmt equipment
usage in an office. Although surveys are afétctive high-representativeand relatively easy

to administertheirresults are affected by several facwush as the possible inappropriateness

of thequestionsinflexibility , and theadck of time to carry out the survegusing less collected
sampleswhich can affect h e s ur v.ellyedimitatiors ef thése approaches impede the
development of demardfiven control solutiondMore developments are essential to allow the
reattime detection and recognition of equipment information and usage and allow HVAC to

react dynamically to indw-outdoor environment changes

Unlike other sensors commonly usedhe existing studiesameras can work like human eyes
which can detect changes without deJa9]. The use of cameras coupled with vislmsed
occupancy dtection and recognition technology has been garnering a lot of infEnestise

of cameras and computer vision is not exactly new and has been studied for a long time for
detecting objects. However, the computer vision field has been the subject af@tchaterest

due to the increased accessibility to larger computational power and the rise of artificial
intelligence (Al), specifically the success of deep learning. Deep learning, a subset of machine
learning (ML) that teaches computers to learn by g@tasto do complex tasks such as seeing
and hearing, can achieve accuracy at the human level in object classificgiesth
recognition, vehicle, and pedestrian detection, and so on. Compaviga the traditional
machine learning algorithms which requarelomain expert to identify most of the features to
reduce the complexity of the datdeep learnindearrs features fromdata incrementally,
eliminating the requirement for domain expertigdso, deep learningcan have a better
performance in terms ofbgect detection with a higher amount of training déttaxtracts
features by itself via various filters to generate feature maps to reduce the data's complexity
[40]. Its ability to detect objects such as the type, count and location is promisiisg.
highlights the potential of further study and development of strategies such as computer vision

and deep learning that can be implemented into building HVAC sy$#dis

Many studieshave already explored thepplicationsof using computer vision and deep
learning methodfor human beingsuch asstimation othe number of peoplgl2], emotion
recognition[43], andclothing[31]. Most studies focused on improving the performance of the

deep learning model to accurately detect the presence and type of objects intspaeesr,
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to the authordés knowledge, I|ittle work has a
pollutants from the equipment used in offices and kitchens, which can be utilised to better
estimate the heatingpoling, and ventilatiomequirements of a space. For example, when the
number of equipment being operated in a room is detected to be decraasinling seasqgn

reattime adjustments to the cooling setpoint can be made to counteract the decrease in heat
emissions to reduce the cooling energy consumpiiben the cooking appliances are detected

to be operating, the ventilation setpoint will bejustied accordingly tensure sufficient

ventilation to maintain good indoor air qualifjhere are limited studies on the application of

such methods in officand kitchenenvironmentsandthe detection of multiple equipment

usage in a given time frameahd be explored.

1.1 Aims and Objectives

The overall aim of this work was to develop a f#@le equipment usage detection strategy

using computer vision and deep learning techniques to optimize the efficiency of HVAC
systems in officebuildings This will address the issue of undear overestimation of the

building energy consumption and maintain a comfortable and healthy indoor environment for
occupants by adjusting HVACOGs ofimerdata.iTons ba

achieve this aim, the maobjectives listed below are carried out in this research.

1. Conduct a comprehensive revieftheAl technologies used e built environment
the monitoring of maimternalheatgain sourcesthe stateof-art monitoringmethods,
ML techniques used focollecting and analysing datand thestateof-art HVAC
controlstrategies

2. Prototype a novel design afvision-baseddetection approach using a deep learning
algorithm for indoor equipment usage monitoring.

3. Develop a dep learningbasedapproacHor detecting various types of equipmehhe
deep learning algorithm will be trained and tested with the use of the developed dataset
containing images of real offices and kitchens

4. Deploy thetrained equipment usage detedtoactual officeand kitcherenvironmerd

to investigate itsletection and recognitigrerformance



5. Conductenergy modellingoy a commercial Building Energy Simulation (BES) tool
and onsite environmental measurementsinvestigatethe potential effect of the

developed approaain theenergy demandnd indoor air quality

1.2 Research Methodology

To tacklethe issues described above, this research will follow a systematiwdologyas
shown inFigurel-3. A thorough analysis antbmprehensivéterature review in related areas
will be undertaken to identifthe problem and motivation and define tbbjectives of the
solution. Three mgor areas of existing literature will be revieweadcluding the existing
monitoringtechnologiesor main internal heat gasources, Mltechniques used for collecting
and analysing datand the statef-art HVAC corrol strategies in buildings-ollowing this,

a prototype of thegproposedapproachwill be designed and developeding computer vision
and deep learning method&he performance will be assessed throagperimental tests and
building energy simulation (BS) and optimized accordingly The development and
investigation conclusions will be drawn from the feasibility and performance @fdpesed

necessity of indoor
equipment usage detection

approach
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1.3 Thesis Structure

The thesis isrganised ito six chapters. A brief summary of each chapter is listed as fltsv

Chagper 2introduces the current state of Al technologighebuilt environment andompares
the stateof-the-art occupang and equipmentmonitoring methods ML algorithms fordata
collection and analysisand existing HVAC control system3he research gaps are also

highlighted in this section.

Chapter 3presents the framework of the proposed vidiased equipment usage deteati
approachthe details ofthe development of the framewaqrknd theemployed performance

assessment methods.

Chapter 4howstheevaluation of detection and recognition performance incluthe@nalysis
of the training results, initial tests using thell images in the testing dataset, and the

implementation irthe case studyffice and kitchen

Chapter 5presentghe evaluation of the impact of the proposed equipment usage detection
model on energy performance and indoor environmental conditiongytnegperimentatests
and building energy simulation carried out in the case study office and kitchen.

Chapter6 summarisesesearctindings andidentifies potentialfuture works to enhance the

researcland further develop theroposed approach
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Chapter 2 Literature Review

This section provides an overview of the recent Al technologies employed in the built

environment, a review of existing occupancy and equipment loads detection technologies

highlighting the strengths and limitations of each technique, thedftat® ML algorithms

used to analyse the collected data from detection technologies, and the currentlo@seand

HVAC control systems. Moreover, a brief summary of research gaps whiddbe addressed

in the present research, is also presented in this section. It should be noted that although the

aim of this researctvas to focus on the exploration of equipment usage detection, the studies

about occupancy detection technigwesre also reviewed, as there is a strong correlation

between occupancy and equipment usage within a space. In additiorgréiack of studies

on equipment detection while abundant advanesgarchs on occupancy detectioexist,

which may significantly contribte to the development of equipment detection technology. The

studies considerederemainly from the year 2012 to 2022 and searched by Google Scholar,

Scope, ScienceDirect, Institute of Electrical and Electronics Engineers (IEEE) with keywords

of iequinpomeint ori ngo, Aoccupancy monitoringo,
0

AHVAC control o, and s on

2.1 Al and Built Environment

Al is a fastgrowing technology. So far, it has already exhibited impressive abititlearning

and doing many human tasks but with a near zero margin of error. The built environment has
a huge impact on all aspects of the daily life. Great potential bea explored in the
digitalization of this industry and the availability of data for smart management and
optimization on a building scale. Recently the introduction of Al technologies in the built
environment is gaining tremendous interest mainly inetfeeasautomation in design and
construction, smaind embeddetkchnologiedo create responsive buildingand advanced
facility management, which can reduce thbourintensiveprocesses and also improve the
working performance of the systerf#gl]. It indicates themore efficient procedures, which
require less human effort to make decisions andesbby arising issues, can be achieved by
employingAl techniquesAs the requirement of a large shift in energy use and the optimal
energy efficiency for the built environment, learnimgonitoring, and prediction for the

building energy systems significantly rely on Al algorithms and devices in termiseof t
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development of future citiesTherefore,optimized building performancerobust building
information systemsdntelligentbuilding servicebecome attractive and beneficial topics for

Al technology developments within the building sector.

2.1.1 Applicationsin Building Performance

Building performance is the core factaffecting building energy use anthe indoor
environment Thorough and geciseassessmerndf building performance contributés early
andexact solutionsluring the design, construction, and operation stages of new and existing
buildingsto optimize building energy efficiency and indoor comfort leteeénhancenuman
comfort and productivity. Currently, computieased models which are applied on building
design, construction, operation in the early stages are rapidly developed to assess and optimize
the building performance. Yahiaoj45, 46] designed and developed a distributed dynamic
simulation environment which nde a representation of the Building Automation and Control
Systems (BACS) architecture by combining MATLAB/Simulink and Environmental Systems
Performancel Resarch (ESR) into a network to simulate the reabrld operation. It
provides a cheap and tirsaving way to analyse retme performance and optimize the

networks of the real control systems.

As the building industry is one of the most important seciaftuencing the quality of life and

the environment, planners and property developersnpang attentionrecently during the

design phase to the l#gycle cost of owning and operating buildings. Therefeoee studies
focused on the use of Al modelsdgorogramsn building energynodellingattheearly design

stage tadeal withthe possiblelarge difference betweatesigned and operational energy.use
Feng et al.[47] developed an innovative method to combparametric design and ML
algorithms to evaluate the buildi®agenvironmental performance without the use of default
values or the requirement of knowinétthehe des:s
study [48], a back propagation neural network model based on a fuzzy clustering algorithm
was developed to predict building energy performance, integrated with TRNSYS and
MATLAB . Singaravel et al[49] proposed DL techniques to accurately estimate energy
consumption at the design stage in order to mitigate potential uncertainties and examined that
DL achieved higher accuracy than a simple artificial neural netWaNdN) and faster
computation speed thamilding performance simulationThese suggest that the use of Al

technologies auld assist not only the analysis of the building performance but also the
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provision of design support, such as the impact of design parameters and the technology

selection, placeent, and configuration in the early design stages

However, constructing effective building performance modedgjuire extensive datahe
challenge lies in ensuring the quality, quantity, and diversity of data for training artificial Al
models. There is critical need for research to bridge the gaps in data availability and to
different methodologies for handling sparse or noisy détaaddition, it is essential to
acknowledge that Al models trained on data from a specific building or location might not
exhibit optimal performance in diverse settingddressing this issue requires the development

of techniques to enhance the transferability and generalizability of Al models across different
building types, climates, and geographical locatibfmeover buildings are dynamic systems,
subject to rapid performance fluctuations due to factors such as occupant behaviour. To
effectively capture these changes, there is a significant need for the creation of Al models
capable of realime adaptation to changing mditions. These models must provide accurate
predictions under dynamic shifts, making their development essential for the advancement of
building performance analysis.

2.1.2 Applicationsin Building Information System

According to the United Natior{80],6 8 % of t he worl ddés popul ati o
by 2050. The rapid growth of the number of people living in cities, the climate and living
environment change, and the shortage of natural resources are the mangekldbr the built
environment. Therefore, buildisg public spacesand the city need to be managed by
intelligent techniques based on Information and Communication Technology (ICT) and data.
To assesthe quality of the built environment, big data frooilding models is combined with

data from sensing devices and questionnaires. By connecting huethmslogyandthebuilt
environment, building information systems enable better decisions and solutions for the design,
engineering, and management loé built environmenf51]. Today various novel and smart
technologies have been developed to gather and analyse the information and employed for
communication, coordination, planning and monitoring during building design and

constructior]52].

Building Information Management (BIM) is used for improving the innovation and efficiency

of designing, information management, and planning at different stages of design and project
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delivery[53]. However, because the models provitdgdubteams in the project are different
due to the use of various tools or systems, clashes often happen between theg®#hddels
addition, because of the lack of completeness and accessibility of the information is,mode
Al algorithms cannot effectively exploit the information the models conj&bh Therefore,
many studies made efforte employ ML techniques to identify and cope with the clashes
between models and syste[&6, 57] enhance semantic enrichment to provide inference from
the raw data for a specific applicatifs8], and geneta the representations of information to

fit the Al applicationg59].

Despite advancements, Al systems still struggle with comprehending the building data, leading
to research gaps in the development of algorithms capablent#ixteal understanding. This
understanding is crucial for enhancing decisiaaking processe#dditionally, Al model

training relies on labelled data, necessitating research into automating the labelling process for
complex building informationEfficient and accurate methods for data labelling are essential
Furthermorerealttime data processing is vital for applicatiangh agpredictive maintenance

and energy management in building information systems. Researck)gsips developing

Al algorithms br processing streaming data in rgale, ensuring timely insights and

responses

2.1.3 Applicationsin Building Services

As mentioned before, the building sector is responsible for around 36% of total energy
consumption. It offers hugpotential for savings. People spend about 90% of their lives in
buildings and their behaviour can significantly affect this energy consumption. Conventional
building controls are short of reaime input from occupant preferences and response in the
mostefficient way.With the aim of efficiently providing healthiesafer, andnore comfortable

living and workingenvironmeng for people with minimal energy use, Al technology is widely
employed to implement intelligent control strategies for various bgjl@icilities and maintain

the equipment operating maximum efficiej69].

Peng et al61] proposed an occupangyedictiorbased control strategy using both supervised
and unsupervised machine learning techniques to acquire occupancy profiles from the data
coll ected by various sensor s. It coulsd not

improve the efficiency of the HVAC system and further result in average energy savings of up
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to 21%. Jia et al62] developed a deep reinforcement leardraged framework to optize

the building control strategy by follang policy gradient with proper expert guidance and
evaluated the framework via a virtual testbed which combines energy simulation software
EnergyPlus with a Python environment. As the results showed, a better control performance
could be achieved by thmolicy gradient instead of the current best practice control logic that
the control system resets the supply air temperature setpoints based on the outsider air

temperature.

In studies[63, 64] BIM was integrated wit machine learning algorithm® measure or
estimatethe predicted mean vote (PMV) predicted prcentage otlissatsfied (PPD)and
optimize interior thermal comfoetccordingly Results show anp t033.5% increase achieved

in thermal comfortMoreover, according to the reviewf reinforcementearning applicatios

in building energy managemgob, 66] reinforcement learning approaches @aungperformed

in adjusting the control strategy, managing data, and interacting with hdionangonomous
building management armduld achieve energy savings of more than 20% for complex energy

management issues.

While Al is extensively employed to optimize energy wsagbuildings, research gaps exist

in the development of algorithms that can adapt to changing occupancy patterns, weather
conditions, and equipment efficiency, ensuring continuous energy optimizitiaddition,

there is a need for further researchAinapplications aimed at enhancing occupant comfort,
such as personalized thermal control and lighting. Understanding individual preferences and
creating Al systems capable of accommodating different occupant needs poses a challenge
Moreover Al applications for building services must prioritize indoor air quality by providing
proper ventilation, especially in the pd3DVID-19 context. Research gaps exist in developing

Al systems that can effectively monitor and enhance indoor health and safety.

2.1.4 Summary

As can be seen, the applications of Al technology in the built environment have an extremely
rapid development such as in building performance, building information systems, and
building services. In terms of these, numerous review papers evaluffeeent aspects and
applications of machine learning in the built environmétudies[61-65] reviewed the

applications of machine learning in building energy consumption forecaBigdeau et al.
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[67] reviewed the datdriven approachesvith the analysis of the features of input data and
evaluated theML methodsfor data processingo model and estimate building energy
consumption It highlights the requirement of a universal protoadl different datadriven
approacheto addreswariousproblemsfaced Khalil et al.[68] reviewed theML -baseddata
driven approachdsr energy consumption forecastifrgm several criterigncluding type and
location ofstudiedbuildings,input data componentslataset size, occupancy information and
its impact, datapre-processing, feature engineerirfgelection and extractionfemporal
granularity and key performance indicator (KPH).concludes that the lack diigh-quality
data and the availabilitypf datasetsis the mainreason of low prediction performance.
Specifically, Amasyali and ElGohary[69] evaluated data size and type used in the reviewed
studies and features selected for algorithm train@®ider studies[70, 71] focused on the
evaluation of different ML algorithms for energy consumption forecasting

Consideringhe use of ML to improve energy performance in the early stage, Machairas et al.
[72] reviewedthe applications of Mlcombining withbuilding simulation programshich can
improve building design In studies [65, 66, 73] the applications of machine learning in
integration with building energynanagement systems (BEMS) were reviewed, including
various ML-based frameworks employed for HVAC design, system optimization and control
strategies. Results of ZD% performance improvement were reported by many studies, which
indicates unlimited potentiafor improving the efficiency of construction design and
maintenance and creating sensing, thinking and reactive buildings by using Al solutions,

especially the innovation in HVAC

HVAC systems are the largest enempnsuming loads in buildings, and seof them are still
operating as fixed systems or programmed for
behaviourequipment usage, and weatisatynamic. As a result, approximately 30% of energy

waste could be generated because of inefficieficigsinefficient BEMS are also responsible

for occupant discomfort and the increase of greenhouse gas emissions. A vast potential for
improvement resides in the way of operation of HVAC systems. In recent years, oecupant
certric improvement and innovation in HVAC have been given more attenitionecent

studies various approaches have been proposed to achievalrdaga efficient HVAC

controls based on occupanayformation and equipmentoads using machinelearning
techniqueg75, 76] Both energy efficiency and occupant comfort can therefore be improved

simultaneously In the next three sections, the current technologies for occupancy and
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equipmentnonitoring data analsisusing ML methodsand datedriven control strategies will

be discussed in detalil.

2.2 0ccupancy and EquipmentMonitoring Technologies

Occupancyinformation and equipment usage within the conditioned space significantly
influence the energy engse in buildings. Researcherstire study[77] simulated different
occupancy schedules within a commercial building, and the resultsfaeése variation of

from 25% to 68% of energy consumption between the existing fixed schedutbeamahl
schedule. Moreovepg simulation of different equipment usage schedules was carried out and
showed that a variation of from approximatedp% [78] to 68%][77] of energy use could be
created byomparing the real schedule with the predefined schedule in relevant standards. This
indicates that t he sunhsaitableor nmst corhercialdwldingsste h e d u |
implement efficient building energy management.addition, cooking isone ofthe most
significant source of indoor air pollutantsAccording to study[79], over 98% of English
houses require controlled ventilatiom kitchenso reduceair pollutants due to high airtightness.
While the lack of monitoring andventilation in kitchenscauses poor indoor air quality,
affecting peopl e.iDae ohtleeanhin reasodsthel insuffecient gammetrig
design of kitchen ventilatiof80]. Therefore, accurate occupancy and equipment schedule
modellingbased on actual occupancy and equipanelatted information is essentidlable2-1

provides a summary of common types of occupancy and equipment seesihagls.

In the following subsections, the definitions of occupancy and equipment information,
respectively and the discussion of different existing technologies for occupancy and equipment

information sensing and collection are provided.
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Table2-1 A summary of common types of occupancy or equipm@tiitoringmethods

Type Subtype Advantages Disadvantages
A Consume | ess enA Il nsensitive wher
A Gompact can beA Unable to count
PIR clectronic d%vice ’ A N edirett line of sight, have issues
ADetect motion in day or dark jg corner areas . .
A Relatively chea Not very sensitl
warm
Motion A Can bdayadakd i n A Accuracy affect ¢
sensors . . y . objects
Ultrasonic A Hi gher sensing A inthi
detectors A Low cost very senssintheve i
i temperature
AEasy to implement A Unable to count
. A lntrusive instal
pressure écat%r? n det ectaspedie  x g s dbtainesl wheit is not
P activated
A Ceffisient ALimited range andtorage
RD A High speed ana A | NLCLIEIENTR
location and counting occupants ; .
A Security issue
RF A Save the cost of& Signal is affect
based  WiFi A High speed & ac interference walls, and other objects
Sensors location and counting occupants Abrain mobile dev_lce s energy
A Intrusive instal
A No interferenceg . .
A Consume |l ess po Security lssue
Bluetooth A Al | ow -ranyé cpnnectiom r t
A Cheaper
A can Eonnect thrA Devices must be
TemeratureA Rel atively chea
P A No interference
Relative A Relatively chea
humidity A No interferenceA Need to be anal
A Rel atively chea fromothersensors
Room  CO A No interferenceA Need mul dandqohnectios ¢
climate A Can gnestinaiiod ef with other sensor® ensure the accurac
SeNsors occupancy count A Slow in measur el
A No interferenceA Sen sbuildingwedenvironmental
VOCs A Can esti mat e o c conditions
onoccupantsd acti)
Particulate A No interference
A Can identify th
Matter - . . . .
activity or device causing air pollution
A No is dbtainea whemnoccupant
Smart A Accurate dat a r isnotusinglectricity
meter A No interferenceA Need the combi nc
sensors to ensure the accuracy
A Pr bighiredotutioroccupancy ﬁ Ere : Iéeaor(; y htl ssues
Camera information(presence, location, count A g’me of egh’ d .
activity, identity, track) R e dataprocessing and expensive
' ' hardware
A Provide occupan AHard tocollect alarge number of data
Survey A Cheap and managA Survey answer o0}
A Can coll ect a b uncleardata
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2.2.10ccupancyMonitoring

To define the occupant information, comprehensive occupancy infornatommonly used

which can be described using propertiesas demonstratad Figure2-1. Ground truth stands

for the information provided by direct observation.

T

Presencd provides information to deduce whether the heat gains from occupants are
required to be considered in afpeular thermal zone.

Countingi provides information on the number of occupants in a space within the building
which achieves the feasibility of adjusting space cooling, heating and ventilation ogeration
Activities i Different physical activities cacause a different body metabolic rate, which
further affects the sensible and latent heat releasedtfidhuman body.

Locationi provides the specific position of the occupant because in most cases more than
one thermal zonexistsin a building.

Identityi involves the information on a specific person in a particular zone so as to supply
a personalized service from comfort system

Trackingi provides information about the movement of occupants within the building and
benefit for the design of comfort systems.

Presence Track

A~
V\ 7

Location Ground Truth Identity

© ©

% ..
Count Activity

Walking

Standing
Standing

Figure2-1 Properties of occupandgformation
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Until 2022, indooioccupancy monitoringas gainednore attention athe interactions between
occupants and buildingsre strongly correlated withuilding performanceThese properties
significantly influencebuilding design, operations and maintenanceln terms of these
properties, Table 2-2 provides asummaryof 40 studiesbetween2017 and 2022which
monitored and collectethdoor occupancy informatiorto assist the operation of building
systemsThese studies focused thre development of occupancy detectimethods and their

applicationamainly for energy savingshermal comfort optimizatiorgndanomaly detection

The identification of the qgsenceof occupantss the foundation of occupancy monitoring
which enables the recognition of other occupancy propertiedpart from the presence,
occupant countings the most explored propertgsthe density of occupandajirectly affects
theheating, cooling, and ventilation demaithe spacesnaccurate prediction of occupancy
densitycanlead toinsufficient andinefficient building service system design and operation
The study{81] showsthat comparedo the manual systeng 28.52%- 34.7% energy saving
wasachieved byising the smart systewhich can automaticallgdjug the cooling and lighting
operationdased on the occupancy dengtgdiction

In terms of thermal comforin comparison to fixed setpoint coolinthje occupantentric
cooling control based on redime activity and clothing leveldeveloped byChoi et al.[31]
achieveda 17% increase ithe proportion ofvotes representing no charigehermal comfort
These highlightthe significance of accurate detectiom occupant countingor energy
efficiency anchumancomfort. Somestudiesexploredtherecognition ofo ¢ ¢ u paativities 0
in indoor spaceto assist themart building controlsuch asHVAC and lightingto ensure their
comfort asthe needs of occupangse different when performing different activitig82].
Moreover,the recognition of activities came adpted for appliance usage forecast[8§].
Only a few studies focused alne location,identity, and trackng of occupantsas theywere
mostlyused toenhancehebuilding servicecontrolfor individuals Especiallyfor identity and
tracking, @mparedto other propertiesthe detectionof them is more personalised and
complicated as the detectionsystemneed to first identify thepresenceand identityof the
individuals andthen monitor their locationdo predict th& trajectory. This requiresthe
detection system to keep memorising the detertéividuals and their previous statun
terms of these characteristics, the informatiofogation,identity, and tracking are tailored to
provide particular comfort conditions for fewer occupants in small spHesge among the
reviewed studieshese propertiesiere mainly taken into account domesticbuildings or

privateoffices
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Table2-2 Summary of studies focusing omdooroccupancy monitoring againsix
properties and monitoring technolog{®s Presence; LL.ocation; C: Counig; A: Activity;
I: Identity; T: Trackng).

References Monitored occupancy Monitoring technologies Building
information type
P L C A T
Yang et al., 202234] a a WiFi (AutoFi) Residential
Drira and Smith, 202{B85] a a a 4 Vibration sensors Office
Liang et al., 202286] a a Infraredand temperaturgensors Office
power meter
Tan et al., 202237] a Temperature, humidity, illuminance Residential
sensors, camerajicrophone
Yoon et al., 202282] a a Temperature, humidity, CQ2and Residential
PM2.5sensors, power meters
Dutta and Roy, 202[B8] a a Temperature, humidity, COBRM2.5, -
and PM10 sensors
Dino et al., 202242] a a Cameras Educational
Sun et al., 202189] a a Cameras Educational
Wagner et al., 202[00] a a Temperature sensors Office
Kampezidou et al., 2021 a Temperature and CO2 sensors Residential
[91]
Choi et al., 202131] a a Cameras Office
Alishahi et al., 202192] a a WiFi Academic
Ding et al., 202193] a a Camera and surveys Educational
Jin et al., 202194] a PIR sensor, oite survey Office
Bock et al., 202083] a a Motion, temperature and door sensors Office
and pressure sensors on office chairs
Tekler et al., 202(05] a a Bluetooth Low Energy (BLE) Office
Wang et al., 202(B6] a Survey Residential
Meng et al., 202(97] a a Cameras Commercial
Hou et al., 202098] a a WiFi Office
Wei et al., 201999] a a CO2, temperature, humidity Office
Simma et al., 201pL00] a a WiFi Educational
Hobson et al., 201R01] a a WiFi, CO2, PIR,Plug meter, light Office
meter
Roselyn et al., 2018B1] a a Thermal sensors and cameras Commercial
Lee et al., 2019102] a a Survey Residential
Kim et al., 2019103] a a Camera Exhibition
Wang et al., 2019104] a a Temperature, humidity, CO2, and Office
airflow rate sensors, camera, WiFi
Peng et al., 201A.05], a Motion sensors, room climate sensors Office
2018[61], 2017[106] (temp, humidity, CO2)
Jin et al., 2018107] a a WiFi, IT infrastructure Commercial
Wang et al., 2018108] a a WiFi Office
Xu et al., 2018109], 2017 & & RFID -
[110]
Zon et al., 2018111] a a WiFi (DeepHare) Residential
and office
Zon et al., 2018112] a a WiFi (WiFree) Commercial
Zon et al., 2017113] a a a a  WIFi (WinOSS) Commercial
Garcia et al., 201[114] a a Temperature, luminosity and door Residential
sensors, power meters, acceleromete
Bluetooth
Wang et al., 2017115] a iBeaconenabled indoor positioning Commercial
system (IPS) (Bluetooth sensing)
Capozzoli et al.,, 201[216] & Presence sensor (FlexWhere) Office
Vafeiadis et al., 201[117] a Energy and water consumption smart Residential
meters
Das et al., 2017118] a a WiFi, smart meter, water meter Educational
Zhao et al., 2017119] a a IMU sensorsWiFi, humidity sensor, Office

illuminance sensor
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Figure2-2 shows the types of buildinde which the occupancy informatiomonitoring was
appliedin the reviewed studies. Office buildings play a dominant wotd a proportion of
approximately 8% as office buildings area major and growingenergy consumeaind have
relatively more peoplespendinga third of the daythere suggesting vast opportunities to
decreasenergy consumptioly usingenergyefficientmethodsResidential buildings are also
popular due to the higher demand for comfortable indoor environntespecially after the
COVID-19 pandemic, studies focusing on residential buildimaysgainedmore attention due
to the swift effects on workplace culture, meanihgt more people are working from home
compared to thsituation before the pandemitimplies a higher necessity for energfficient

controls for building service systems to redeoergy bills.

5%
5%

23%
12%

15%

40%

= Residentia® Office »* Commercia’= Educationa= Others= All types

Figure2-2 Studied lilding typesin the reviewed papers.

According to the reviewed studies] sx commontypes ofmonitoringtechnologiedisted in
Table2-1 wereused tacollect informationin buildingsto perform occupancy predictiomhese
technologies are discussedioredetail as follows.

2.2.1.1Motion sensors

Motion sensors are commonly employeddentify occupant movement and provide binary
occupancynformation indicating whethethere isan occupant present in a particular space or
not. Infrared systemgsuch as passive infrared (PIR)jpration sensorschairmounted
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pressure sensors, and magnreasedechnologiegsuch as inertial measurement units (IMUs))
are among the various types of motion sensors available. However, despite their widespread
use,motion sensors have some limitations, particularly with respect to detecting occupancy in

largespacesvith multiple occupants

The primary drawback of motion sensors concerns the tracking technique utilized to collect
occupancyinformation For example, R sensors rely omariationsin temperature patterns
across the sensor's field of view to detect the presence of an object. Thus, occupants must be
within the sensor's field of view for accurate occupancy informaionsome ther types of

motion sens® a direct field of viewis not required; while thewpre susceptible to false
movements, such as occupawtsking into otherspaces close to thmonitored spacgl20].
Therefore, false movements can result in errordetecting occupants, which can lead to

spaces being conditioned while they are unoccupied.

Overall motion sensors can accurately detect occupancy in saogigiedspacesf installed
correctly. However, when utilized imulti-occupied oropenplan spacs, motion sensors
cannotprovide high-resolutionoccupancyinformation such agrowd countingidentity, and
activity [121]. Moreover, the implementation of motion sensors in large spaces requires a
significant number of sensg) which can beostlycompared to Rfbased systend22].

2.2.1.2 RFbased sensors

RFbasedechniquegmployradio frequency to locate an objelttmainly encompassasdio
frequency identification (RFID), Wi, and BluetoothThese systems typically consist of a
transmitting nodewhich is typically carried by the usend a receiving nog&hichmeasure
energy or timing of the response ednom a transmitted signaReceived signal strength
indicator (RSSI) is the receiving metric employed by mahyhe RFbased systemsdt is
flexible to deploy andas the ability to provide occupancy informatiorcluding presence,
location, counhg, identity and tradkg, making thenbemme more populaandbeingwidely

explored

RFID has been widelgeployed o0 pr edi ct o cdoeuqitagintplgiynoloresiteat i on's
observationrequirementsavailability of onboard data storage capacugfordability, low
energyuse,andhigh accuracyin location predictionFigure2-3 (a) shovs the primary design

of theRFID systenwhich was based on triangulatifii?3]; while it was notpushed orfurther
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developmenas it depends on the empal path loss modelsvhich result in less accuracy in
location predictionTo address this issue,paioximity-basedRFID systemi LANDMARC
[124] was developedas shown irFigure2-3 (b). By seeking for the proximityo other active
tags, the system capr edi ct t he tBasedgan tthie spionkeoing astudyfo n .
LANDMARC, many studies weréurther developedo enhancets accuracy{109, 110]and
attempted to use less RFID reference {488, 126]

This system was employed in some studies to perform occupancy monitoridgniand

driven applicationgn buildings.Li et al.[127] developed an RFHbased occupancy detection
systemfor HVAC systemcontrols which is capable of detecting and trackthg stationary
occupants wheait and work at a desknd mobile occupantsvho move around the building
throughout the dai various singleand multioccupant spaces. The system can determine the
locationandthe number of occupants in each thermal zone, and the paths taken bytsccupa
At the zone level, the system can achieve an 88% accuracy rate for stationary occupants and
62% accuracy rate for mobile occupants. However, their research also indicated that RFID
technology may not be the most effective for occupancy detectioreihsgraces due to signal
interference from occupants' talydoreover, the placement of reference tags is another crucial
factor that can significantly impact the accuracy of occupancy detetiidime study[128],

Zhen et alimplementedan RFID system with multiple active readeaad moving tags$or
occupant locatiorstimation tocenable demandriven lighting control.The proposed system

demonstratedn averageccuracyof 93%for mobile occupants

Although RFD systems are cosffficient andprovidea solution for efficientuilding energy
controls they were not widely employetlie to the limitations of the range and storage capacity
There is interference that users must carryttgeto enable successfalonitoring Their
detection performancdependson internal batteryisagethe number of RFID readers, and

ref er e mengty andogentation
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Figure2-3 Location prediction usin@FID methods (a) Trilatettion and (b) Proximity based
[76].

Wi-Fi have experienced a surge in usage in recent years. The prevalenegi aicdéss points

(APs) and wieless devices in modern buildings has made occupafmynation detection

more efficient, coseffective, and convenienfl29]. Wi-Fi-enabled devices, such as
smartphones andptops enable occupants to connecW-Fi networks, providing a useful
occupancy indicator foa spaceZou et al.[113] proposed anew Wi-Fi based notintrusive
occupancysensingsystem (WinOSS) whicbaninfer high-resolutionoccupancy information

using existig Wi-Fi infrastructure in commercial buildings. By implementing it in a-veald

office space a 98.85% occupancy detection accuracy was achieved. To improve the accuracy
of occupancy detection, they created afVbased devicéree counting scheme catl WiFree

[112] and an activity recognition scheme callddeepHare[111] based on WinOSSThe
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experimental results demonstrated thdlhout human interventioWViFreecould achieve 92.8%

crowd counting accuragpnd DeepHare could achie9&.6% activity recognition accuracy

Due to its high occupancy resolutiamd detection accuragymany studies have employed
WiFi technologiesin building management systeno enable energgfficient operations.

Wang et al[108] introduced a occupancybasedventilation strategy that utilizes a Wi
probeenabled occupay monitoringsystem to detect occupancy profilBesultsshowed that

the detected occupancy number was close to the actual count obtained duringdaythree
experiment in a office for graduatestudentsThis approach led to a reduction in ventilation
energyuseby 44.26% on weekdays and 55.5% on weekend daypared tdhe ventilation
strategywith a fixed rate These show the ability of Wifiased systems to accurate occupancy
detection and energy efficiency. While the
heavily due to the frequent WiFi scangiand a large number ofpé scanned. Moreover, the

data collection is timeand labouconsuming, and the data is affected by the distance,
interference walls, furniture, and other objects, which lead to changes in the settings of indoor
spaces. It redusehe validity of occupancy location prediction

Because othe widespread adoption of Bluetooth modules in contemporary commercial mobile
devices, and the development of eneeffycient Bluetooth Low Energy (BLE) technology,
researchers have increasinglyrned to BLEbased occupancy detection applications,
specifically for presence and countidgtection iBeacon is a widely used BLE technology
developed by Apple, which allows Beacon to send push notifications to iOS devices within the
covered rangéA solution called BlueSentinel was proposed by Conte ¢t 30], which is the

first approach to utilize iBeacon as an occupancy detection system. By employing occupants'
mobile devicedo collectthe data, this system can determine the number of occupants, their
locations, and identities. The proposed approach was ineplieed in three laboratories and
showed an 83% occupancy prediction accur@bg. location of mobile devices and their users

can be estimated based on the Received Signal Strength Indicators (RSSIs) from a deployment

of iBeacons in indoor environments.

Following this, a solutiorior Android devicesvas developed by Corna et |@I31]. Shen and
Newsham[132] also propose@ computer program which enablbe presence detection of
occupants by sensinte signals from theismartphones equipped with Bluetoathen they

are nearbyRather than utilizing the raw RSSI data, researchers also opted to extract statistical
features from the data and utilize them gsutnfor machine learning algorithms, leading to
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improved accuracy in predicting occupancy levfl83, 134] Recently, some studies
combinedthe BLEbasedtechnologywith HVAC systemsto providecontrols based on the
occupancy distributiof115, 135] However the major drawback of this approach for pervasive
implementation is the need to deploy additional BLE beadaoreddition, for theBLE-based
systems mentioned previously,o col | ect the individasal s o
individuals need to instadin application onto their smartphones, whiochld makea negative
impact on their natural behaviodihis can also causanenergy burden for smartphon&sese
reduced thearticipation rate and thereforesulted in less generality and validity.

Some recent studies hasgempted to reduce the intrusivenes8LE-based systems. In the
study [95, 136] a methodwhich only requires theBluetoothmedia access control (MAC)
addresso f i ndi vi diostddobinstdllmgy an agpkcation ontioeir devices was
proposedto track their movement patternis.not only reduced the intrusiveness but also
increased the skbility of the occupancy detection systdrurther reduction of the amount of

labelled dataequired for training wilmake thestudymore scalable.

2.2.1.3CO; sensors

Human respiration produces CO2 as apbyduct, which is constantly exhaled and released
into the air, resulting in a varying concentration of CO2 in a spédeece, lhe concentration

of CO2 in a space can be used as an indirect indicator of occuptioagdetermine if the
space is occupied or not, as well as the number of occupants and their activitC@®el.
sensors are capable of measuring the concentration of gases in a given spaceper parts
million (PPM), making them a widely adopted means s$easing occupancy levels in
buildings and enabling demadadiven control of HVAC systems. This namtrusive method

is also capable of providing an estimate@wd couning by offering insights into indoor air
quality. Nassif[137] presented an application of CDased occupancy detection for demand
controlled ventilation in an office buildingrhe results showed that up to 23% eneangg

reductioncould be achieved compared with the designed profiles in ASHRAE Standard 62.1.

AnsanayAlex [138] developed a simple algorithm whieimploysindoor CQ concentrations
to predict occupancypatternsin an office building. The results implied that the proposed
method is able to detect the arrivals and departures of occupants working insgased

offices while is not suited for opespace offices, halls or classrooms. According to related
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studies, lhe CQ@ sensors are seldom used individually for occupancy information detection due
to the slowand fluctuating rate ofjas mixture.The performance of the CO2 sensor can be
significantly affected by external factors, such as changes in wind speed,atienlaf the
sensor, anthtermittent opening and closing of do@nsd windowq139]. Another reasofor
unsuitability for largespacess thatthe number of occupants, which isignificantfactor in

the delivery of tailored ventilation in spaces through dendrien ventilation controls
cannotbedirectly measuredy CO2 sensotsThe aid of other datkom sensors or historical
databaseis required to estimate crowd counting.

2.2.1.4Powver meter

As people gradually raise tineawareness of energy saving, there are a number of portable
devices offered in the market for measuring and visualizing energy consunfptiore
occupancy detection methods with the use of power metersieeetoped to be employed in
constructions folgroup-based or individuamonitoring recently.Das et al.[118] collected
electrical energy and water consumptitom 76 buildings to estimate tirgrained occupancy
with the help of data from WiFi devices existing in the butdinnstead ofusing total
electricity ug data of the buildings, Milenkovic and Amft40] measured theower
consumptiorof each computer screentheoffices. When the state of appliances changes from
off to on, thepresence of the usarasidentified through the change energy usgandthe

number of occupants in the space can then be estimated by clustering the presence information

Vafeiadis et al[117] used smart meters to measut@al energyuseof the house andlso
individual consumptionof the devicesmainly usedevery day torobust the occupancy
forecasting performancé&hese studies offeragbrrintrusive solutionsfor indoor occupancy
detectionthrough the analysis of the charnggower consumptiarHowever,without the aid
of othersensors such &nvironmental sensors, WiFi, and motion sensors, and adteesuch
aswater consumptiarpower meters cannot provide high resolution occupancy information
addition,considering deploying in larggpacs,i t 6 s ¢ onpracticgble gonndtalbower

meters on every one of tleéectricappliances.
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2.2.1.5Camera

Image recording devices, such as video cameras, are commonly installed in buildings for
security reasons. However, there has been increasing interest in utilizing these systems to
measure oagancy in buildings, as they are atamminal based and can offer individualized
functionalities.They have been shown to possess the potential to praok&imost detailed
occupancy informatiomcluding presence, location, couing, activity, identity, and trackg.
Vision-basedmethods are widely employed construction site to perform workegnctivity

[141], posture[142], tracking [143, 144] and personal protective equipment (PPEXA5]
recognitionto follow up on construction progress ametsurevorker safety.

Many studies also focused on indoor detection. For exafpleezeth et a[146] developed

a visionbasedmethodto collect high-resolutionoccupancy information on the presence
activity, and locationRohrbach et al147] proposed dine-grained detection methaghich
enables the detection 66 cooking activitiesDino et al., 202242] and Sun et al., 20289]
employedcameras tgerform people counting either large or smaihdoor spaces to aid
building energy modelling ane@nergyefficient building controls. Chahyati et al. [37]
employed it forindoor people tracking to ast surveillanceDue to its abilityto detecthigh
resolution occupancy informationmnany studiesattempted to integratevisionbased
technologiesvith building energy management system to investigate the potential of energy
savings in buildingsin [148], the authors developed OPTNet, a wireless network composed
of multiple imaging devices to predict occupancy in different therma¢zah a building.
Through experimentation on a test building, the authors were able to demonstrate the potential

for achieving energy savings of up to 20%.

Althoughusingcameras can provide high resolution of occupancy informatierapplication

of vision-baseddetection system imdoor spaces tassist building systemontrokis still at

an early stage of development andas widely employedor several reasons. Firstliynage
baseddetectionmethod needa line of sight, whichmeans that cameras need to be placed in
locations with minimal or no obstructions in order to accurately detect occugeoyndly,

the system requires advanceataprocessing andostly hardware to provide accurate and
reliable occupancy informatioiinally, privacy is a major concern when it comes to the use

of image detection systems for occupancy measurement, as cameras capture visual information

that can reveal personal and sensitive details about occupants. This can lead to privacy
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violations anccan raise ethical and legal issues. As a result, the use of such systems needs to

be accompanied by strict privacy policies and measures to protect the privacy of occupants.

2.2.1.6Survey

Surveys are a common method used by researchers to coltegiant information, either as a
standalone method or combined with other monitoring technologies. Surveys can provide
valuable insights into occupant behaviour, preferences, and satisfaction with indoor
environmentsKavulya and Becerd#Gerber[149] conducted an investigation into the usage
patterns of office devices in five singbecupied offices through iperson observation to
understand occupants' behaviour. The study also involved the use-iotnisive appliance

load monitoring to monitor energy use of the devices. The findings indicated that energy
savings of up to 38% could be achieved by turninghafbffice appliancesvhich werenot in

use. However, the studyomputedmeanvalues of the results obtained from affices, and
thereforedid not account for variations in preferea@nd workingschedules of different
occupants A stochastic occupancy model was developed by Sun ¢15%0] proposed a
stochastic occupancy model analyse the occupanagyormationfrom an office building. A
survey, which clustered the information of o
reading machineand the occupant schedule during normal kg hoursas well as
information on theprobability andduration of overtime workrom the questionnaire, was
carried out on every working day within two months. The collectedfdatathe surveywas

used to generate the actual profiles as the inpubsiiilding energy simulations and also in
HVAC schedule.

Purdon et al[151] developeda modelfree algorithm for HVAC control that eliminates the

need for installing sensors areating complex occupant comfort model@c cupant s o
preferences are taken into accountblecting their votethrough an applicatioand applying

to the HVAC swgtem settings accordinglfccording to the survey responses, comfort models

for individual participantswere builtby defining their comfort limits. The results showed

strong relationshipetweerp ar t i ¢ i p a n tiniéatingthegdsshility areaehsngan

indoortemperaturevhich canmake most occupants comfortable.

Doing surveys is a cheap and manageable method, and the main benefit of it to cluster

occupancy information is that it can provide the preferences of occupants. It implies that this

31



method is more effective for the control system designed to satisfy the requirements of a few
people or in a small space instead of large space. Moresssgral factors can affect the
accuracy of survey results, including response bias, social desyraiak, question wording,

and respondent fatigue. Respondents may not provide accurate or honest answers due to factors
such as boredom, lack of motivation, or memory issues. Therefore, it is important to design
surveys carefully and take steps to minienpotential sources of bias to improve the accuracy

of the resultsAdditionally, the limitations of survey data suggest that it cannot be solely relied
upon as a source of information and should be complemented by data from other sources.

2.2.1.7Summary

Occupary monitoring has been widely explored and developed with the use of motion, RF
based, environmental, and visibased sensors, power meters, and survey. Many studies
highlighted their ability to provide occupancy information. Most of these methods taatest

the presence and number of people in indoor spaces. SpecificalbadeB methods enable

the prediction of plasegrmhethedd cah povidetall sx properdesaf v i s

occupancy informatian

However,relying on a single source o&th for occupancy detection may result in unreliable
information. For example, many current sensing technologies, such as motion sensors, do not
provide high-resolutionoccupancy information, such as the number of occupants in a space.
To address this issysensor networks are commonly utilizednaststudies, which integrate
varioussensingechnologies to take advantage of their strengthslaabwiththeir limitations
whenemployedalone. They enable¢hecollecion of occupancy and environmental information

from various types ofensors ané@émploy data fusioimethod to combine redundant and

irrelevant input dateextractsignificant features, anabtainrelevant parametef$22].

Moreover,in comparison t@ single type of sensing deviagsinga multi-sensor networkan
also reduce the intrusiveness and the total number of sensing devieésor spacesMany
studiesproved theenhancemenif occupancy detection reliability amdbustness with the use
of multi-sensor networkfL04,152]. To reducethe computational cosbr the huge amount of
data collected from multiple sensorepust moded which can efficiently extract and select
proper data featurehould be developed to impropeediction efficiencylt is the trend of the

future development of indoor occupancy monitoring.
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2.2.2EquipmentMonitoring

Similar to occupancynformation, equipment information can also be defined using the

following properties illustrated iRigure2-4.

T

Presencé Is there anyquipment present in spacésPhis property provides information

to deduce whether the heat gains from equipment are required to be considered in a
particular thermal zone.

Mode i Is the equipment working or not? The equipment generates heat when it is
working sorely. If 1 and O represent it is on and off, respectively, the profile of equipment
usage is kept updating, and the daily profile can be created.

Locationi Where is the equipment? Because in most cases, more than one thermal zone
existsin a caonmercial office building, this property is crucial, which provides the specific
position of the equipment.

Identity T What is the type of equipmerit?t relates to the load for the equipment because
different equipment has its specific heat gains relgasinhe particular zone.

Counti How much equipment are preseiit® provides information on the number of
different types of equipment in a space within the buildimigich achieves the feasibility

of adjusting space cooling operation by actual equigirasage.

Presence

A

Mode Ground Truth Count

1
A |
1
1

4
Identity

Figure2-4 Properties of equipmentformation
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Unlike occupancy detectiorgnly limited studies focused on indoequipment information
detection Table 2-3 provides a review of the common existing equipmefibrmation
detectionmethodsemployed in buildings and assesses each against these properties. As
illustrated,most of the studies focused on the application in office buildingstothe vaster
number of electric appliancesida longer operating duratiom addition, most of the studies
only attempted taletect whether there weskectric appliances in trgpace or not, and whether
thesesapplianceswere operating or noto assist the occupangyrediction. A few studies
identified the location of the appliances to enable locadiware power managemghb3, 154]
or help toforecast the location of the us¢s$§]. By detecting the mode, identity, and counting
of appliances, more precise load prediction and equipment usage petigichde obtained
[36, 37]

Table2-3 A summaryof studies focusing oimdoorequipment monitoring and prediction

against five propertie@: Presence; MMode; L: Location; I: Identity; C: Count)

References Detected information Detection or prediction Building

techniques Type
P M L I C

Harle and Hopper a a a Power meters Commercial

[153]

Chen et al[155] a a Power meters Residential

Mahdaviet al.[156] a a a  Based on occupant Office
presence, power meters

Milenkovic and Amft a a Power meters Office

[140]

Auslander et al[157] a a Power meters Office

Nguyen and Aiello a a a Based on activities of Office

[158] occupants (keyboard and
mouse activity sensor)

Gunayet al.[37] a a a a  Survey, power meters Private office

Lee et al[154] a a a Based on occupant Residential
location

Wang and Ding36] a a a a a  Survey, cameras, power Office
meters

Zhao et al[32] a a Smart meters Office

Wang et al[159] a a Power meters, cameras, Office
WIFI

Vafeiadis et al[117] a a Power and water smart  Residential
meters

Li et al.,[25] a a Temperature sensors Office

Akbar et al.[160] a a Power meters, WIFI Office

34



There are three techniques commonly found in buildings to evaluate equipmerit usagge

plug-in power meters, carrying out surveys, and analysing clustered occupant information.
Plugin power meters are the most frequently used technologies to obtament loads as

they can directly measure the actual energy consumption of the appliance plugged into a power
outlet or a group of appliances plugged into a single power board. In addition, according to the
study[25], the toal heat emission from stably operating computers and laptops ranged from
86% to 92% to electric powddence, it can estimate the heat loads from individual or multiple
appliances. Yet, as mentioned before, when deploying in large spaces with a vast number of
electric appliances, installing pkig meters for all the appliances will be costly and

impractiable and cause difficulty in data monitoring and management.

In prior studiessomeresearchers colleatiequipment information vialectricappliance usage
surveys. @nayet al.[37] designed an online survey of the usageffi€® appliances. In this

study, 203 people working in academia and the public or private sector in an office environment
participated in the survey. With the help of plug load data, the researchers developed a data
driven model to accurately forecast gopiipment loads. Survey questionnaires for equipment
utilization, which focused on the utilization habits of various office appliances, created by
Wanrg and Ding[36]. Through the combinatioof the data gathered from cameras and power
meters, a prediction model of equipment energy consumption was established, and the error
between the prediction data and the ground truth data is below 5% when applied in the study
offices. It can be observed th#te data fronthe surveycannotbe used alone toarry out
equipment information predictiorAdditional information is required tobtain equipment

usage patterns and develop equipment load prediction models

In the study[161], researchers found a linear relationship between the number of occupants

and equipment load, and its correlation coefficient is explored to b&8%8in an office

building in Philadelphia. It indicates that the behaviour of occupants vitalgtafthe tasks

which are needed to be performed by the building systems. For instance, it is highly possible
that people in office space will use different electrical appliances, which results in an increase

in internal heat gains and electricity consuroipti Therefore, more advanced techniques to
detector predidhee qui pment were developed in terms of
Il n Mahdav i[166, a singkfiedamdsthchastic model for equipment lpeatliction

was proposed according to the probability of occuggmmessence and the power consumption

collected from the power meters.

35



Nguyen and Aielld158] assessed the performance of the proposed techmiqiah detected

the activities of occupants and equipment usage by using keyboard and mouse activity sensors.
Lee et al[154] measured the electric appliances based on the resident lpgdtioh affects

the operation of the HVAC system so as to design a power management system. Although the
equipment load is strongly related to occupancy information, this method is still limited due to
the necessity of the combination with multiple sensoimprove its performance. Moreover,

it 6s an ftoaobthintheeegquipmentaigage pattewhich requireshe aid ofoccupancy

information

2.2.3Summary

According to the review of studiefocusing on occupancy and equipment information
detection indoor occupancy detectidms been widely exploreghd applied to buildings to
enableoccupantcentric and energyefficient building system controldn comparisonthe
studies a indoor equipmeninformationdetectionand predictiorare limited Among these
studies, most of them were employed to assist the occupancy preditteva.are only a few
studies which established models which can provide comprehensive equipment information for
the optimal design and performance simulation of building HVAC systémaddition,the
equipment monitoring technologieare also conventional andlimited, suggestingthe
requirementfor the development of novel equipment monitoring methoalsenable
comprekensive information collection. Moreoveggquipment is one of the main sources of
internal heat gains, whilenly a few worls developé methods to measutbe reattime heat
dissipation of electronic equipmentnd investigated their impact obuilding energy

consumptiorand buildingmanagement.

2.3Machine Learning Application on Occupancy and Equipment Detection and

Prediction

As a tool of data analysis, machine learning has attracted remarkable attentiontigegacen
andhas been applied to detect and forecast occupancy and equimagavith stateof-the-

art accuracy. Theypicalworkflow of machine learning occupancy and equipment detection
and prediction,andits frequently used algorithms are illustrated=igure 2-5. A number of

raw data (images in the case of this research) froraceldfction or onlie resources are
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gathered and then pprocessed by using data processing tools. Many iterations during the data
processing stage are required to ensure to obtainpneglred data. After inputting the
prepared data, the learning process implements arateiseto get the best models. By
deploying the selected models from candidates, the model which is the most suitable for the
target applications (equipment loads detection in this case) is picked out and finally employed

in the applications. This procedueetailored for all types of ML algorithms.

As demonstrated iRigure2-5, threemain categories of ML algorithms are supervised learning
unsupervised learningnd reinforcement learnin§upervised learning infers a function from
labelled training dataset/hich includes the example inpatitput pairsto predict a deperdt
varialde. In other words, the correct results of input data are known before the training process.
Supervised learning can be divided into two main classes: regression and classification
algorithms. However, as DL algorithms can be implemented to both labaliedndabelled

data, DL was classified as a special category of supervised left6R2]g

On the contrary, unsupervised learning explores relations among unlabelled input dataset
which doesiothave desired output value. Thiene, it is suitable to do clustering tasks which
investigate the hidden patterns or groups in daiféerent from sypervised and unsupervised
learnings, einforcementearnings allow anintelligent agento take actions in an environment

and learn through the feedback from its actidgtence, it is more suitable for interacting and
adjusting tasksWhile supervised and unsupervised learnings are more tailoretderving

and predictingTherefore, thisection mainly discussasipervised and unsupervised learning
methoddor processinghe data from common indoor monitoring technologies
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Figure2-5 Workflow of machine learningh occupancy and equipment detection and

predictionand popular algorithms

More detailed categories faupervised and unsupervised learning mettawdsdiscussed as
followings. Due to the limited research on equipment information detection and prediciso
subsection primarily discusses the data processing methods for occupancy information.

2.3.1 Supervised Learning

In the last decade, many works have used supervised learning techniques toamnghasicy
predictionalong with heating, cooling, and ventilation loads and comfort level predidtions
performbuilding energyconsumptiorforecastingTable2-4 lists some example studigs the
literature which employesupervised learningiethodgor data analysisicludingtheir model
type, performancesvaluation methods, evaluation metriagd key findingsAs mentioned,
supervised learning incledregression, clasfication, and deep learning algorithnigach of
themhasits strengtlsin processing different properties of occupancy informatore details

are provided thereatfter.
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Table2-4 Examples oftudies usingupervised learning methods for occupancy data

analysis.
Ref. Model Type Evaluation Eval. Metric Key findings
Support vector regressior
Chou and | (SVR), Ensemble, Generg R2 MSE. RMSE The ensemble approach (SVR +ANN) and
Bui, 2014 linearregression, Simulation MAE MAPE ! SVR were the best models for predicting
[163] Classification and ’ heating and cooling load.
regression tree, ANN
The decision tree model could estimate thq
Ryu et al. . . occupancy state. Depending on the numbe
2016[164] Decision Tree Experiment RMSE predictors used, the RMSE ranged betwee|
0.3673 and 0.2202.
K- for buildi
Song et al. eT:ragr;Sp?édi;Iiomg Energy and The prgdic_tion accuracy is improved W_hen
2017165 ¢ ¢ occupancy CV-RMSE considering diverse occupancy and its
[165] ANN for enduser group dataset correlation with energy use.
prediction.
. . Average control accuracy of 88.1%. Energy
Peng et al. - . . . . .
20 9 06 K nea(r}(iiln’\(la)lghbour iXpizgg;]t’ Not specified saving of up to 20.3% is achieved with the u
17[106] pp of demanedriven control.
Nonllngar MLa_Igorlthms, Thenonlinear modelperformed significantly
Zhang etal.| SVR with nonlinear radial Experi MAE. R Ti b han the i dels. Th |
2018[166] basis function (RBF) xperiment , R%, Time etter than the linear models. The neura
network had the best performance.
kernel and neural network
Wang etal.| Combined ANN with an Simulation R2 The proposed ensemble model greatly
2018[167] ensemble approach improved the forecasting accuracy.
Wu et al. ) R?, RMSE, MAE, The proposed ensemble model performed
2018[168] Ensemble method Experiment r better than ANNand SVM.
Bilous et al. Multivariate regression Simulation R?, Fishets The model provided high accuracy predictio
2018[169] model criterion with R? of 0.981.
The use of multiple sensing data sources
Wang et al. KNN, Suppot vector Experiment RMSE, MAE, significantly improved the reliability and
2018[170] machine (SVM) ANN P MAPE accuracy of ANNbased models while it
enhanced the reliability of SVM and KNN.
Johannesen Random Forest Regresso Enerav load Random Forest Regressor provides bette
etal, 2019 | KNN Regressor and Linea da?gset MAPE shortterm load prediction, and kNN offers
[171] Regressor relatively better longerm loadprediction.
Predicted heating, cooling and comprehensi
Ciulla and R2 MSE. RMSE. | €neray requirements of a building with a hig|
D&Amico, Multiple linear regression Simulation MAE MAPE ' degree ofeliability. R? of 0.9 and théVlean
2019[172] ’ Absolute ErromndRoot Mean Square
errorare lower tharl 0 k Wedr.m
Xiong and The KNN-based thermal comfort model with
Yao, 2021 KNN Experiment Accuracy % 1000 sets of training data can have an accu
[173] of 88.31%.
Liu et al The Random Forest model exhibits notablé
. Random Forest Simulation R? RMSE advantages in building energy consumptio
2021[174] > 1T
prediction compared to SVM

2.3.1.1Regression algorithms

Regres®n algorithms aim to figure out the correlations between independent and dependent
variables bygenerating the mapping functiso thathe new independent inpcs&in be mapped

to the continuous dependent outgdénce, regression algorithroan assist the prediction of
continuous variablesuch as the occupancy patte@@mmon regression algorithms are éne
regression, decision tree, KNBind ensemble learning.
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Linear regression is statistical regression mettli which models a target prediction value
based on independent variables. This method is generally applied in cases with a less complex
relationship between the input variables and the output. Linear regression assumes this
relationship takes a linear forfaor instance, the relationship can be expressed as EgR4tion

[175]. The objective is then to find the values—gbarameters that most closely satisfy the
training data.

NN — —w — (2.1)

wherewis the vector of input variables (i.e., the collected occupancy data in the case of this

study) andQuw is the prediction value of the output variable.

In prior research, the input datatb&linear regression algorithm was numerical data clustered
from sensors. Goldstein et dll76, 177] proposed a prototype model employing linear
regression method to generate occupantsdé sch
occupant behaviour. The results showedat t#1.7% error was ma@s comparedb the real
schedules when implementing the prediction task. In order to collect spatial information,
Goldstein et al[178] extended this method by optimizing the linear regression algwsith
Figure 2-6 presented the comparison of simulated and real occupant schedules in different
meeting rooms and implied a notable inaccuracy with the utilization of this mebote
researcher developeadhéar regression classification (LRC) to implement image recognition.
Feng and Zho{L79] proposed aiterative linear regression classification (ILRC) algorithm to
classify and recognize objects and faces. According to the experimentas$,resthiough
comparedwith other stateof-the-art methods, ILRC achieves the best recognition rates, it is

guite sensitive to detect the moving objects.
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Figure2-6 Predicted and measured probabilities that various meeting rooms are occupied
[178].

The decision tree method is a Aparametric approach that can capture complex and nonlinear
relationships without requiring prior knowledgéthe expected complexity of the modat.

each branch, the decision tree separates the training data using some criteria from their input
variables in order to maximize the variation in the output variable at each division. A new
example is sorted by mmg down the tree structure according to the values of its input
variables with its category or value. Typicalthe decision tredas frequently employed to

implement the detection tasks because of its characteristics on input variables.

In [180], adecision tre@vas used to investigate the correlation betwegioustypes of sensors

and the accuracy of occupancy detection. Results showed that the accuracy when only using
motion sensacould reach 97.9% and raised to 98.4% when using multiple motion sensors.
Capozzoli et al[116] useda decision treealgorithm as a classifier to obtain a robust
segmentation of the data setich contributed to the optimised reconfiguration procetiure
detect occupancy using indoor environmental dayar and Moor{164] useda decision tree

model to detect the occupancy at the current state based on energy consumption and

environmental data. Based on the result, the decision tree model was capable of estimating the
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occupancy at the current state. Depending on the numberdiétprs used, the RMSE ranged
between 0.3673 and 0.220thesestudies implied that this method is well suitego&sform

reaktime occupancy detectipaspeciallypresence detection

As one of the simpler supervised machine learning metKdds,is a nonparametric machine
learning algorithm that uses the most similar examples in the training set to make predictions
for new and unseen data poirtie KNN method does not train a getisesl model, meaning

that it can be quick to set up. Based on its input variables, the output value of a new example
is taken as the mean of the k nearest examples from the training data, where k is a number
chosen to optimise the fit of the mod&s thismethod works on proximity to previously seen
examples, it was frequently used to investigate the locatiotrajedtoryof occupants.

Li et al.[127] designeda KNN-based model for the purpose of locating a target. This model
operates by utilizing the known locations of the target's k nearest neighbouring reference tags
and subsequently reporting theeaof the targethrough the comparisdretweertheestimaed
locationandthe boundaries of all spac&imilarly, Erickson et al[148] employed the KNN

as the image processing algorithm to detect transitions. Experimental results demonstrated that

it achieved a directional accuragfy94% where the direction is classified correctly divided by

the total number of transitions. However, in the case of detegtngc u pant swthac ount i
limited amount of training data, significant problems may occur as it is unguaranteed that the

possble number of occupants for all zones can be obtained during the training period.

Several works used the ensemble learning approach to improve the performance of prediction
models. It combines the predictions from multiple algorithms to achieve bettactjomed
accuracyMamidi et al.[181] developed amdaptive multiagent systento predict occupant
behavioursaccording to environmental datand compared the performance of the system
employing differentML algorithms Results indicate thahe ensemble learning approach
outperformednultilayer perceptron, gaussian processes, linear regreasid8VM with the
highest accuracy of 95% and tlmsviest RMSE value of 0.& highlights agood performance

of ensemble methoda the estimatiof the number of occupantshe study{167] proposed

a onestepahead forecasting model based on an ensemble technique for ¢oatisgwhich

can help tackle the tirag issues of HVAC control. The results showed that the proposed
ensemble model greatly improved the forecasting accurmyever thework [168] also used

an ensemble method for thernperception prediction. The study concluded that it was more
accurate than ANN and SVM in the prediction of thermal perceptioarding to the collected
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environmental conditionand outperformed the traditional PMV in terms of thermal sensation

estimation.

The reviewed literature emphasized the effectiveness of regression algorithms in providing
continuous output, enabling precise predictions. Their ability to handle different input features,
such as sensor data, weather conditions, and occupatteyns, makes them adaptable for
modelling complex relationships in building management. This flexibility is crucial for
accommodating varied data sources. Moreover, certain regression algorithms support
incremental learning, allowing adaptation to neatedwithout complete retraining, a valuable
feature in dynamic environments where occupancy patterns and equipment usage change over
time. Additionally, regression algorithms exhibit computational efficiency, making them

suitable for reatime applications

Nevertheless, there are critical gaps that warrant attention. Research is essential to develop
regression algorithms capable of réale adaptation, ensuring accurate predictions under
varying conditions in buildings. Sparse or noisy building data impact regression model
accuracy. Addressing this challenge requires the development of robust regression techniques
capable of handling incomplete or noisy data effectively, ensuring reliable predictions despite
imperfect datasets. Larggeale buildiigs with numerous sensors generate large data volumes,
necessitating scalable regression algorithms that can handle big data efficiently, delivering
accurate predictions without compromising computational resources. Furthermore, occupancy
and equipment patns may significantly differ between buildings. Exploring transfer learning
techniques is crucial, enabling the utilization of knowledge from one building's data to enhance

predictions in another, especially in scenarios with limited training data.

2.3.1.2 Classification algorithms

Classification algorithmsim to find the functions tdivide the dataset inteariousclasses

according tdifferent parametergfter the computer program is taught by the training data
can categorize th@ew input data mto the classesit has learnedHence, classification
algorithms are suitabler performing theprediction of an event occurrence probability.

Logistic regression is a statistical methelich is suitablefor regression analysis when the

dependentariable isbinary. This method is generally applied for predictive analy$tse
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general relationship of input and output variables can be expressed as E3@41iéh). Then,

the objetive is to find the values efparameters that satisfy the training data.

1
h =g(0'r)= ——
o(z) = g(0" x) T (2.2
where"Qaa ——is called the logistic function or the sigmoid function. Because g(z) tends

towards 1 as z Y D ane,g (hz)x )t & ndddshetwesem@anddso un
1.

Logistic regression was employed to perform both profile generation and occupancy prediction
tasks in previous studies. Mamidi et @I81] used a logistic regression classifier to predict
future occupancy with the utilization of different combinationgtwé size of training dataset
within 100 and 200 days. The results showed that this claspédormed better than
multilayer perceptron ahachieved a 72% accuracy on 100 training size and 75% accuracy on

200 training size when implementing occupancy prediction 15 minutes in advance.

Chang and Hond182] employed logistic regression methods to identify five inlc$t
occupancy patternaccording tovariations in daily occupant presence profiles. Data for the
study were collected using 200 lightisgitch sensors installed in each cubicle offitepen

plan offices.Recently, kernebased logistic regression hasown considerable success in
image recognition. ThedMMKLR (feature relevance in muiiominal kernel logistic regression)
approactwas proposed by Ouyed and Al[ili83] to perform action recognition. By examining

the approach withlifferent image datasets, the test accuracy ranged from 77.6% to 99.5%.
Although the results of this approach showed excellent performance, the number of training
data is a notable issue thatrequired to be considerewhen dealing with large datasets,
computational time can become a limiting facteor the typical logistic regression algorithm,

its output is a probability of being apositive class so that a threshold is needed to betsdle

to make it a classifier.

The SVM, basedon regularization techniques, is a robust classification system that has
demonstrated outstanding performance in numerous practical classification Aasles.
classification tool, SVMs try to plot a linear boundary between different categories with the
maximum distance between the training examples and the decision bouwndhécit can
produce an enhanced model. With the use of kernels, this method can efficiently learn in
extremelyhigh dimensional spaces without the need to specify polynomial pararnisi4}s

With the aim of classifying multiple classes, several classifiers can be created for each pair of
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classesA simplified case is illustrated iRigure2-7 , where three label regions A, B and D are
separated by three SVM classifiers A”B, A*C and BTL85]. The newinputd is classified as
class A.

A™C

AvsB,d=A
BvsC, d=C
AvsC,d=A

Figure2-7 lllustration of multiclass SVM185].

Comparedvith regression algorithms, SVMs are more frequent to be emplayectupancy

detectionOrtega et al[185] utilized nonlinear multiclass SVMs to tackle the intricate nature

of the data obtained from different sensors, for the purpose of accurately detecting user

occupancy and activitie€Compared with other modelthe SVM model outperformedn
detecting occupancy activities and generating daily patterns with an accfiraegr 80%.
Shih [186] proposedan observation measurememiethod based on SVMhich achieses a
well-performeddetection and tracking of the occupants with the utilization of an kbaged
sensor and a pdiit-zoom cameravhich canbe programmed-igure2-8 illustrates the results
of occupant i1identification and tracking.
identity, and the red line represerntgetrajectory generated by connexithe centroid of the
bounding box. It implies that this method achieved excellent performandightweight

imagebased occupantacking task.
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(b)

Figure2-8 Examples of people trajectory construction with original video frdi®igs

While for multi-task imagebased detection itoés difficult t,o extr
especially when the training data becomes latgggause typically SVMs only allow a single
transformation to combine featurds.addition,Wang et al. [140] used environmental data,

WiFi, and fused data combined with ML to develop an occupancy pratiékamined with

an onsite experiment, the results suggest thahtheal networksvith fused data haethe best

performance, while the SVM model is more suitable withRiMilata.

As can be seg classification algorithms offer binary output, making them suitable for tasks
involving discrete states like occupancy status or equipment operation. This simplicity aids
decisionmaking processes, and certain algorithms, suchogstic regression, provide
probabilistic predictions indicating prediction confidence levels. Additionally, classification
algorithms operatpromptly, enabling reatime decisioamaking in applications like lighting
control and HVAC systems, leading tneggy savings and efficiency improvements through

rapid occupancy and equipment detection.

However, class imbalance is prevalent in occupancy and equipment usage data. Handling
imbalanced datasets to prevent biased predictions remains challenging, grrtistien
accurate predictions for both classes are essential. Moreover, research gaps exist in developing
classification algorithms capable of effectively integrating and analysing diverse data for
occupancy and equipment prediction. Lastly, occupancyeguipbment status can change
rapidly, necessitating research into classification algorithms that can adapttime=td these

changes, ensuring accurate and timely predictions.
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2.3.1.3 Deep learning algorithms

Deep learning is aubfield ofmachine learning which teaches computers to learn by examples

to do complex tasks such as seeing and heaksighown inFigure2-9, diff erent fromother
machine learningnethods at which thedata presented in numerical, categorical, time series
and text are used as inddiB7] with the selection of an algorithm as a computational method
to fAl earno i nf or madedp dearnind interpretd datp fedtures and theirt a
relationships using neural networks to form a unique model based on a wider range of data,
including images, videos, and sounds. To a greater extent, deep learning provides higher
accuracy than other methods as the feature extraction process is performed automatically from
raw data. However, deep learning would require more data points to improve itacgccur
Several studies have suggested that deep learning surpassed machine learning and other
learning algorithms in various applicatiofts88]. Common deep learning algorithms are
convolutional neural network (CNNindrecurrentneural network (RNN)

Typical Machine Learning Process
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Figure2-9 Comparison between typical ML and DL process

As many relevant studies show|d@9, 190] a deep learning approach with CNN architecture

is particularly effective for vision tasks. The architecture of a classic CNN is illusirated
Figure2-10. CNN consists of a large number of hidden layers. In each layer, mathematical
calculations are performed on the input supplied from the previous, kayeérthe output
generated in the current layer is treated as an input for the next layer. Unlike the classical neural
networks with common fully connected layers, CNN includes convolutional |ayieich have

a better performance on the modelling and ifieation of the spatial correlation of adjacent
pixels. For a classification task, the network will be-fppagned for the categories (final outputs)
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because of the significantly expensive training phase. Once tkieapri@ag of the network

completes, ibnly takes quite a short time to perform the prediction task efficiently.

Convolutional Neural Network (CNN) CAR v
Learned Features 935:"" TRUCK X
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Figure2-10 Simplified DL architecturg¢191].

Recently, CNNbased frameworks have rapidly developaad achieved statsf-the-art
accuracies in image classification and object deteetininavealso been applied for occupant
activity detection with high accuracyou et al[111] proposed a deep learnibgsed human
activity recognition scheme (DeepHare) which employed\eldeep learning framework
Autoencoder Longerm Recurrent Convolutional Network (AEHRCN) and WiFienabled l1oT
devices to automatically identify common adtes. Experimental results showed tleat

accuracy oB7.6%in activity recognition was achieved by DeepHare.

Similarly, in [192], authors developed\asion-based techniquimtegrating CNN, SVM, and
K-means clusters for v analysis This technique enaldeoccupancydetection and
prediction through human head recognitioand achieved a 95.3% accuracy with a low
computing cosbtf 721ms.In some studies, CNMnplements along with other algorithms to
improve theoccupancy prediction accuracy. Feng efl#3] integratedCNN, and longshort
term memory network (LSTM}o detect binary occupancy patterns fradvanced metering
infrastucture AMI) dataand achievead 90% accuracyMoreover, some attemptscused on
presering privacy. For exampleSahg194] proposed dew-shot learning approackwhichis

a CNN method with simpler architectutte, detectindoor occupancyvith the use of low
quality photos.In the study [195], thermal cameraand AlexNet CNNwere employedor
occupancy pattermletectionwith an accuracy of 98.8%lhese highlighted the excellent

performance of CNN in occupancy detection and prediction, especially for-biassd tasks.

RNN, or feedback neuraletwork,is anothecommon type of deep learnimgethod.Figure

2-11 shows theaarchitecture of RNN, in which the outpigtfed backinto the neurons in the
previous layeras the input of the next outpit96]. It is suitable for timeseries and other
sequential data processing/ang et al.[197] proposed a Markebased feedback RNN
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approachf o r occupant s06 usingetheedata eolledtenl by theaVEiki probg
technology.Kim et al.[103] proposed avision-basedoccupancyestimationmodelbased on
RNN with LSTM units to perform occupancy predictionreattimein a large exhibition hall

to achieveautomatic and efficient energyanagement

Input layer
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yoeqpaaq

Information flow—
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Figure2-11 RNN architecturg196].

In the last decadeleep learnindnas beera significantly popular and developing technology,
while thereis still a vast opportunity te@xplore the application of deep learning methods
detecting and forecastingdoor occupancy and equipment informatiand the integration
with building manageent systemto achieveenergyefficient building controls As deep
learningallows several transformations in a row to combine layers and layers of febtures,
working along with computer vision technologihas the ability to detect all properties of
indoor occupancy anéquipment information via collected images with stft¢he-art
accuracyAdditionally, deep learning models, especially neural networks with multiple layers,
can capture intricate patterns and relationships within the data. Thlslitgps valuable for
capturing nuanced occupancy patterns and equipment usslgevioursthat might be

challenging for traditional algorithms to discern.

Nevertherless, deep learning algorithms often need vast amounts of labelled data for training,
posirg challenges in building management applications where acquiring such data can be
difficult. Research gaps persist in the development of techniques for efficient deep learning,
enabling models to generalize effectively with limited labelled data. Addilyoredfectively
addressing class imbalance with deep learning models to prevent biased predictions also

remains a research challenge.
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2.3.2 Unsupervised Learning

Unsupervised learninig the algorithmwhich finds patterns from unlabelled datia.is suited

for applications such as load profiling, detecti@liagnostics of problems occurring in
buildings and occupancy detecti¢h98]. Table 2-5 lists examples of using unsupervised
learning methodfor dataanalysisfor building systemsThe growing interest in the internet of
things (IoT}enabled buildings and a large volume of data generated by IoT sensors presents
an opportunity to use unsuperviske@rningmodels. For example, training models on very
large datasets is time and compiatadl resource intensive. One method to overcome this is to
reduce the number of training samples such as by employing unsupervised learning algorithms
to pre-treatthe training sample sets. This could reduce the number of training samples and also
avoid roise samplefl99]. Another application afinsupervised learning anomaly detection,

which can help in making better decisions to reduce energy use wastage and promote energy
efficient behaviour in buildings. The studg200] proposed a twastep clustering method
composd of DBSCAN and kmeans algorithm for a framework which identifies daily
electricity usage patterns and detects anomalies in building electricity consumption data. For
analysing actuabuilding operational data, the use of unsupervised learning is more practical

since anomaly labels are typically not available.

Table2-5 Examples of unsupervised learning modetsoccupancy datanalysis.

Ref. Model Type Evaluation| Eval. Metric Key findings
Li et al, 2010 | Fuzzy Gmean clustering| Historical The clustering technique helped reduce the num
. MAPE, RMSE e ! h
[199] algorithm data of training samples aravoid noise samples.
K-means, Fuzzy-c
Mateo et al. means, Cumulative Simulation MAE Clustering techniques did not show significant
2013[201] Hierarchical Tree, improvement for linear or nelinearmethods.
DBSCAN, K-medoids
Guo et al Hidden Markov Model The method not only identified system faults thg
o (HMM) and a clustering| Experiment Not specified were modelled within the training process but al
2013[202] . . ; h
algorithm can beapplied for diagnosis.
) Hidden Markc_Jv .MOdeI' e The proposed method achieved a high classifica
Trabelsi et al. Expectatiori Experiment Classification, rate of 91.4% ash competitive with a welknown
2013[203] Maximization (EM) P Precision, Recall ' Osu ervisgd approach
algorithm p pp .
Hong et al. Gauvsv?tlﬁ r;)g;mg;ealm ode B:;Iglsr;gr Classification The approach is able to achieve mitran 92%
o e
2015[204] clustering information Accuracy % accuracy for type classification.
. K-Means, Bag of words| Building The method can automatically findrious patterns
Habib et al. : . . . : . ) h .
representation with operational | Cluster evaluation | using as little configuration or field knowledge al
2016[205] h - - ,
hierarchical clustering data possible.
Carreira et al The kmeans algorithm helped optimise the HVA
2018[206] ' K-Means algorithm Simulation CV, STbV system to minimise energy consurpptiwhile
maintaining user comfort.
. - The proposed two singkgtep clusteringnethod
Liu et al, TWQ singlestep Electrlcny Visual comparison, | outperformed kmeansand gaussian mixture modg
clustering based on-K | consumptio ] . . ) . .
2021[200] Dunn index in terms of detecting outliers and discovering
Means and DBSCAN n dataset . L -
typical electricity usage characteristics.
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However, for the detection and recognition of occupants in a building, obtaining sufficient
actual (ground truth) information can sometimes be challenging, and hence several researchers
have explored unsupervised approaches. For example, the work [183rusesupervised
learning approach for occupancy activity recognition from wearable sensor data. The results
showed that the proposed method achieved a higher classification rate of 91.4% as compared
to welkknown unsupervised classification approachesvaas competitive with weknown
supervised approachd3ong et al[207] investigated the correlations between the number of
occupants and the collected parameters by applying the feature selection tasks. They found that
CO: concentration and sound level are tbeeparameters for people counting. After inputting

these parameters to HMM atige other two estimation methods, the results presented that
HMM outperformed irthe prediction of the number of occupants with an averagruracy of

58% 73%. It suggests that further enhancement is still requiredHfdM to achieve better

performanceon occupancy prediction.

The literature indicates that different from supervised learning algorithms, unsupervised
learning algorithms do naely on labelled data for training. In occupancy and equipment
detection, where obtaining labelled data is often challenging and costly, unsupervised
algorithms can learn patterns and structures from unlabelled data, making them highly relevant
for realworld applications. Additionally, unsupervised learning algorithms outperform in
anomaly detection, identifying unusual patterns or behaviours in occupancy and equipment
data. Moreover, these algorithms can cluster similar data points, aiding in recpgifiarent
occupancy and equipment usage patterns across spaces for desired control and optimization

strategies.

However, precisely distinguishing anomalies from transient patterns or sensor noise proved
challenging. Research is needed to advaamamaly detection algorithms, reducing false
positives and enhancing anomaly prediction accuracy. Secondly, there are research gaps in
developing seladaptive unsupervised learning systems capable of evolving with changing
building dynamics. Lastly, modgthat effectively handle noisy sensor data without affecting

the integrity of learned patterns require further development, emphasizing the need for

continued research in these arg0].
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2.3.3 Summary

ML methods have beenidely explored for rapid building data analysis, accurate formation

and prediction of occupancy and equipment patterns. They can achieve low rates of prediction
error and ensure the robustness of the system. As the regression methods forecast continuous
valued output, it is employed to analyse the numeric data clustered from sensors such as smart
meters and room climate (temperature, humidity, CO2, etc.) detectors. The classification
algorithm is used to classify the labelled data obtained from cameth&Famased sensors
according to some parameters. However, research activity on the DL algorithm has
dramatically increased in recent years as it is able to extract features by itself and achieve higher
performance with reasonable training time when feetinge data compared with traditional

ML algorithms. Due to its excellent ability to process images and-laigez e dat aset s
usually implemented to analyse the data collected by cameras and WIFI to evaluate the number

and trajectory of occupants.

Partcularly, the interest in applications of computer vision and deep learning has significantly
increased in recent years. As images and videos have a larger volume of information compared
with numerical data in some ways, more studies focus on extraajaige® information from
images and videos and developing various applications such as object recognition,
identification, verification, crowd analytics, and character recognition. In terms of these
applications, many studies proposed several Wbased pplications and DL techniques for
building detection, especially occupancy detection. As using the computer vision method can
extract high solution occupancy information, there are numerous opportunities for the
applications of computer vision and deeprh@ag in the built environmentespecially to
achieve a comfortable environment and energy savings simultaneously in the building sector.
To reach the goal, one of the popular ways is to give buildings the ability to automatically learn
to optimize the usef heating, cooling, or lighting according to indoor and outdoor conditions
and provide the proper control strategies. It will result in higher satisfaction of the people as
well as healthier and intelligent buildings

2.4HVAC controls based on indoor enviroament detection data

It has been widely acknowledged thd#WAC systems represent a significant portion of the

energy consumed in buildingslany buildingenergycontrol systems are designed based on
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the load schedules predefined by relevatandards For instance Figure 2-12 shows a
recommended office occupancy profile given by ABYE Standard 90.1lt is a traditional

and widely used method for the prediction of internal heat gains to perform predictive control
for the HVAC system. I'Me n e z e s /8], the usage profiles for different equipment in

four states (transient, strict hours, extended hours and always on) were established based on
the standards set @IBSE Guide F and TM54.

However, for a specific building, it may not @epropriate to applthe typical schedules to the
control system because different types of construction have different functions and features.
Moreover, the stochastic and diversified information of the equipment patterns could not be
reflected by the typical profiles inakty [208]. This canresult inthe overconditioning of

spaces within a building, which leadsexcessiveenergywasteandan uncomfortable indoor
environment

Recommended office building occupancy factors by day type
ASHRAE 90.1-2004
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Figure2-12 Office building occupancy profilrom ASHRAE Standard 90.2004[209].

Hence, a large number of studies have focused on improving the efficiency of HVAC systems.
The studie$210, 211]reviewed applications of advanced control strategies in HVAC systems.
Apart from increasing the operational efficiency of HVAC systems, there is also a high demand
for effective integration between HVAC systems and buildi@gsthe one hand, both HVYAC
systems and buildings are dynamic systems because their performance can be varied with
weather conditions and time. On the other hand, it could be tricky to deal with coupling effects

between buildings and HVAC systems, espéciathen inevitable, likely irregular and

unpredictable occupantsdéd behaviours are cons
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The aforementioned dilemma can be effectively solved by taking advantage of oceupancy
based controlsWhen it comes tdhe control of HVAC systems, occupancy infmation is

utilized to determine heat loads, heating and codiegands conditioned aidistribution

optimal temperature setpointend system operation duratiph?7]. Control strategies for

HVAC systems can be optimized lgingthe predictedoccupancy dataso thatsignificant
amounts of energy can be saved, leading to a more efficient arefieasive use oenergy

For instance, Pang et §.0] developed occupanegentric controls to reduce office building

loads. The occupanayentric controls adjusted the HVAC temperature setpoint profile based

on the status of occupants (presence/absence and number). It was estimated that swch control

could lead to energy savings between 199%.

Following the same methodologies [t0], the study[212] conducted comprehensive
simulations for a residential building. They reported that, iragedases, such controls could
offer energy savings as high as over 30¥eseshowed that building energy consumption can
be reduced by exploiting occuparogsed controlsHowever,among the selected studies
which refer to building control systems, nafehem has developed the applicationslgiAC
controk based on equipment usage informaiiomuildings. Therefore, only the strategies of

occupancybased controls will be investigated in this section.

To provide a deeper understanding of occupdrase HVAC control strategies, a comparison

is presented among various studies that have utilized occupancy information to implement
HVAC controlsin Table 2-6 in terms of the detected information, control methods and the
resulting energy savings. Occupa#msed controls can be categorized as control based on
reattime detection of occupancy statusd control based on the prediction of occupancy status

in thenearfuture It can be seen that more studies chose to deaaloptrol strategy based on

the forecastingof occupancy status the near future Although variationexists between
different fudies, compared with control based on #teéak detection, control based on the
prediction schedule achieved relatively higher percentage energy savings in buildings.
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Table2-6 Comparison of studiedevelopingcontrol strategyvith the use of indoor

occupancy informatioand their energy savings

References Occupancy information Control method Energy Savings

Dong and Lanj213] Presence and count Model predictive controlNIPC) based on 18% (cooling) and
occupancy prediction (HVAC) 30% (heating)

Erickson et al[214] Presence, location, count Adaptive operation based on occupancy predictic 14%
(ventilation)

Erickson and Cerp@15] Presence, location, count Occupancy prediction (HVAC) 20%

Erickson et al[216] Presence, location, count Occupancy prediction (HVAC) 42%

Goyal et al[217] Presence MPC based on redime occupancydetectionand 42-60%
prediction(HVAC)

Goyal et al[218] Presence MPC based on redime occupancydetection and  40%
prediction (HVAC)

Purdon et al[151] Presencgpreferences Setpoint based on retine detection, (HVAC) 60%

Balaji et al.[219] Presence, location, count, Setpoint based on retime detectior(HVAC) 18%

identity, preferences

Majumdar et al[220] Presencgpreferences MPC based on occupancy prediction (HVAC) 7-10%

Gruber et al[221] Presence MPC and opetioop predictive controller (OLPC) -
based omccupancy prediction (ventilation)

Foster et al[222] Presencecount Setpoint based on retine detection (HVAC) 40%

Lim et al.[223] Presence, locatigactivity  Adaptivetemperature control based on réale 12%
detection (HVAC)

Capozzoli et alf116] Presencecount On/off based on optimised schedule (HVAC) 14%

Wang et al[115] Presencecount Setpointbased on regime detection (HVAC) 20%

Nagarathinam et gJ224]  Presence, locatigeount MPC and PID based on occupancy prediction 12%
(HVAC)

Peng et al[106] Presence Setpointcontrol based on occupancy prediction  20%
(cooling)

Peng et al[61] Presence Setpointcontrol based on occupancy prediction  7-52%
(cooling)

Labeodan et a[120] Presence, locatigrount Setpoint based oreattime detection (lighting and -
HVAC)

Nassif[137] Presence, count Setpoint based on retine detection (ventilation) -

Kleiminger et al[225] Presencdpcation count Setpoint based on occupancy prediction (heating 6-17%

Lu et al.[226] Presence, activity Setpoint based on retime detection (HVAC) 28%

Wang et al[108] Presence, count Reattime detection (ventilation) 24-56%

Diraco et al[227] Presence, location, count, Setpoint based on occupancy prediction (HVAC) 28%

track

Roselyn et al[81] Presence, count Occupancy predictiorGooling and lighting 28.53%34.7%

Jin et al[107] Presence, count Realttime detection(lighting and HVAC) 10.22%

Wang et al[96] Presence Adaptiveoccupancydriventhermostatontrol 11%34%

Choi et al [31] Presence, count Occupancycentric control (HVAC and lighting) 10.2%

Aftab et al.[228] Presence, count MPC based on redime detection (HVAC) 30%

Pang et al[10, 212] Presence, count Setpointbased smart thermostat control based o1 19-44% (office) and
occupancy prediction (HVAC) 30% (residential)

2.4.1Control based oreattime occupancy information

The application of redime response&o occupancyariation in buildingss well developed in

lighting controls with the tilization of motion sensors tecontrol the power dighting (on/off)

[11]. While the development of the control strategies of HVAC systémmmaigh building

energy management systebased on redime informatiorhas beemapidly growing in recent

yeas.Lu et al.[75] designed amart thermostatpproach which cantumf f t he homed s

systemautomaticallyaccording to the current occupied conditions detected by PIR sensors and
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magnetic reed switches. After evaluating the approach in 9 homes, it demonstrated that this
approach resulted i low-cost initial investmenand 28% of energy savings on average. This

control strategy is cheap and easy to operate but it focuses angpeesonal preferences and

ités only suitable for residential buil di ngs

commercial buildings.

In the study[154], authors proposed an adaptive temperature control strategy which used the
online algorithm they developed to generate and candidate the most tailored occupancy
schedulefor the latest demands based on the-tiea occupancy statistics in commercial
buildings. The real occupancy data of a building used to gerseseltedule was obtained from

the previous studj184]. This strategy reduced up to 12% of energy consumption under the
acceptable thermal comfort flexibility in the controlled sp&gdon et al[10Z developed a

data fusion algorithm which iteratively adjuste ttemperature to compensate the discomfort

of occupants by raising or reducing the temp
their result showed, at least 50% reduction in energy consumption could be achieved with

minimal impact on thermaloenfort.

Unlike using existing data to produce backup schedules, many studies directly employed
sensing results to change HVAC settings in real thoster et al[153 proposed a eb-based

office control system that consists of various wireless sensor nodes, which collect occupancy
information, and a control node, which embeds ML algorithms to determine whether to activate
the HVAC system based on the provided information. Compaitda conventional oroff

control strategy, this system could save up to 39% of energy for HVAC systems. Similarly,
Wang et al[9]1] also used wireless sensing system (WIFI probe) to detedimeabccupancy
profiles. While, in this study, the profiles were only applied to optimize energy efficiency for
the ventilation system. This ventilatiorategy was compared with other two common
conventional strategies in a mudibne space. The results exhibited that the proposed strategy

achieved up to 55% energy savings when maintaining indoor air quality in most zones.

Indeed, adjusting heating, caadj, and ventilation levels based on rgale occupancy data

can significantly minimize energy wastage in unoccupied or underutilized areas, leading to
significant energy savings. Re#@he occupancy information enables HVAC systems to deliver
optimal combrt levels precisely where and when needed. It allows these systems to adapt to
changing occupancy patterns, ensuring dynamic responses to fluctuations in the number of

occupants. This adaptability proves particularly valuable in buildings with variatipaacy,
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such as office spaces or conference centres. Additionallytimealoccupancy data offers

valuable insights into occupant behaviour and building usage patterns.

Yet, there is a need for research to enhance the reliability of occupancy detectiooldgies,
especially in large and complex environments, ensuring accurate and timely data for HVAC
systems.Additionally, there is a research gap developing scalable occupancy detection
technologies capable of handling high volumes of data and gingpegattime control in large,
complex building environmentg.urthermore, research gaps exist in addressingjrtteelag

for the HVAC systento achieve the desired climate in buildings basethereattime changes

2.4.2Control based onccupancyprediction

This control method aims to forecast flaéure occupancy information of a spaceperform
pre-conditioring in the space to achieve satisfactory levitlenablespaces to automatically
maintain comfort levels while occupied and drift away from the comfort levels while
unoccupied according to the estimation of occupancy status or schedule based on historical or

current occupancy data.

Scott et al[61] developed the PreHeat prediction system to automatically control home heating
based on occupancy information collected by RFID and motion sensors. The system works in
two ways: using the Occupied setpoint in the daytime and Sleep setpoint at night when a space
is occupied, forecasting the upcoming occupied time by analysing the historical and current
occupancy data when a space is not occupied. They deployed the sySt€érand US homes,
respectively and it showed that in UK home$&% gas usage reduction was obtained while

in US homes the gas consumption was almost the same as the system was not implemented on
a perroom basis so that no extra heating saving was gewdeed different times of day
Moreover, this control strategy is tailored for homes insteadfice and commercidiuildings

which have more occupants and different energy behaviour.

Peng et al. [13] presented an empirical study on reducing the gaslergy demand of an
office by implementing occupancy prediction controls. An occupancy presence and vacancy
profiles were obtained from monitoring data, and-ad@resheighbourmodel was employed

to predict occupanésfuture presence likelihood and dition. Afterwards, the temperature
setpoint was set according to the rules specified in the study, which enabled a reduction of

energy consumption by up to 20.3%. Similar to [13], the work [14] established occupancy
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prediction controls for chilled beams office buildings, and the controls offered energy

savings ranging from 7% to 52%.

Erickson et al[68] used the predictive user mobility patterns, which are produced by Gaussian
and agenbased models with thdilization of occupancyrelated data obtained from a eliess

camera sensor network, to control the ventilation in an adaptiyeCompared with the base

case outside air control strategy, the proposed strategy results in about 14% energy savings
according to the energy simulation results. Instead of comigothie ventilation rate only
Erickson and Cerpf65] extended this study so that the proposed strategy has the ability to
perform both temperature and ventilation contrdisder the promise of maintaining ASHRAE
building standards, the simulation results show that 20% paltenergy savings are presented

with the implementation of the improved control strategy. In order to increase the energy
efficiency and asss the actual energy consumption, Erickson e{6&l. optimized the
occupancy models by using a Markov Chain which can contribute to a faster prediction and
conditioning when rooms will beossiblyoccupied. They integrated the models into an actual
building conditioning system to perform demavaked controls. @npared with the current

state of the art baseline strategy, the optimized strategy could achieve 42% annual energy

savings in average.

Instead of estimating annual energy savings, Dong and Z@nmvestigated the capability of

the proposed control strategy in heating and cooling seasspgctively. A nonlinear MPC
approach of integrated heating and cooling controtording tdforecaséd occupancy status

and local weather conditions by usirdyanced ML methods was illustrated.tAs1e o ccupant
discomfort was taken into accountlins studyto bea constraint, the indoor temperature would

be set in a way by the MPC approach to minimize the energy use and the period that occupants
feel uncomfotable. It demonstrated that compared with the conventoretheduled
temperature setpoints, the proposed approach could reduce 30.1% energy consumption in the
heating season and 17.8% in the cooling season. Similarly, Majumdddétipalso proposed

an MPC approach to balance@ergy and comfort, which restricts unexpected discomfort by
using the history data of occupants as well as occupancy predithiepemployed motion

and CO2 sensors to gather data on occupancyaoperiod ofthree months forraoffice and

a laboratory, and six months for a conference rodime occupancy profiles utilized for
weekdays and weekends are differétte results presented thall@% of energyreduction

could beachievedoy usingthe proposed predictive control strategy.
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The literdure indicates that predicting occupancy patterns allows HVAC systems to
proactively adjust before occupants enter or leave a space. Predictive occupancy data can also
identify heavily occupied areas, enabling-praptive adjustment in these zones befarakp
occupancy times, ensuring efficient operation when needed the lHaygéver,occupancy
patterns in buildings can change dynamically due to events, holidays, or special occasions.
There is a research gap improving the algorithmdor swiftly predictirg the anomaly
occupancystatus.Additionally, research is essential to develop adaptive algorithms that can
rapidly adjust HVAC settings based on sudden changes in occupancy patterns.

2.4.3Summary

The applicatios of occupancy detectiomethod to HVAC controlsin buildings can be
roughly described by controls based on +téak occupancy detection or future occupancy
prediction. In general, controls based on-teak occupancy information can provide faster
respamses due to less computing process duration when the control logical rules are relatively
simple. Controls based on the prediction of future occupancy provide standby actions for the
near future status and have the potential for more energy savings.théilegical rules are

more complex, leading to a higher cost of computational work and slower response

The above studies showed that building energy consumption can be régueeploiting
occupancybased controls. Yett ishould be noted that the resjites of occupanebpased
controls to meet the actuathermal and ventilation demandse realime occupancy
information. The occupancy in reldfie can be very irregulastochasticand unpredictable and

in some cases, there will be no occupants. Beeaf fixed or assumed schedules to operate
HVAC and other building services can lead to unnecessary energy usage. Hence, occupancy
sensing is necessary for building controls to respond to the dynamic occupancy loads
automatically.However, imited studiesemployed reatime occupancyprofiles to select an

optimal HVAC setpoint Due to the unavailability of a reéime occupancy profilesome

studies adopted a predefineccupancy profilenstead when optimizing HVAGetpoints
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2.5Summary

In the past 20 years, the research in the field of detecting and forecasting occupancy information
using ML algorithms and applications in building controls has remarkable increase. Especially

in the last decade, the number of related papers is growirdiysaphich implies that more

data source is available for researchers to do training and testing for the models they are
developing. Due to the integration of these dimensions, the connection between occupants and
buildings is closer, which leads itmproved andsimplified communication between physical

systems andwuman beingsin addition, it also contributes to the design and operation of
efficient systems which reduce the building
requirements for a comfaile and healthy indoor environment. Recently, the field of
equipment load monitoring and prediction has got a lot of interest and started being explored

in some studies.

The concept of occupancy and equipment informatiorecaompass various levels adtdlil.

As menti oned before, occupancy informati on
counting, activity, identity, anttajectory. Based on the aim of the studies, the selection of the
types of sensors is different. For instance, studies focusingd et ect i ng occupan
demonstrated that motion or CO2 concentration sensors are simpler and more proper. While
for location and trajectory detection, those trackable or visible technologies are required, such
as WIFI, Bluetooth and camera. Simifa equipment information consists of its presence,

mode, location, identity, and count. Currently, the ways to detect equipment usage only include
using smart meters and doing a survey on occupants. In general, the goal of collecting
comprehensive inforation increases the difficulty of optimizing data collection technologies

to cluster more required information. In terms of this, a majority of studies used different types

of sensors or developed mudgnsor networks in order to gather data for a marerate real

time profiles or future status forecasting.

In order to rapidly and accurately generate profiles and predict the future schedule of occupancy
or equipment, ML algorithms are suitable tools which combine statistical and stochastic
methods to aalyse the collected data. They can achieve low rates of prediction error and ensure
the robustness of the system. As the regression algorithm forecasts continuous valued output,
it is employed to analyse the numeric data clustered from sensors such tas\stees and

room climate (temperature, humidity, CO2, etc.) detectors. Classification algorithm is used to

classify the labelled data obtained from cameras;b&ed sensors according to some
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parameters. However, research activity on the DL algorithmdreamatically increased in

recent years as it is able to extract features by itself and achieve higher performance with
reasonable training time when feeding more data compared with traditional ML algorithms.
Because of its excellent ability to processimay and | arge size data, I
to analyse the data collected by cameras and WIFI to evaluate the number and trajectory of

occupants.

The applicatiors of occupancy detectiomethod to HVAC controlsin buildings can be
roughlycategorizednto controsbased on redime detection and future prediction. In general,

when the control logic rules are relatively simple, the-tiea¢ response provides faster
operation as less computing process is required to implement. While more complek contr
strategy, such as future prediction, has a larger potential for energy savings at the cost of
computational work. It provides standby actions for the near future status but results in a slower
response. Therefore, it Gossfonteedubuee slesignyf btildinga c ¢c o u

controls

2.6Research Gap

This chapter presents a comprehensive review encompassing three key dimensions: monitoring
technologies for indoor equipment information, machine learning algorithms employed for
data analysis and future pattern prediction, and their applications in HUAtEbEsystemsA

critical analysis of existing literature reveals limited methodologies for collecting equipment
information within office buildingsincluding the use of plugn power meters, surveys, and

clustered occupant information analysis.

Studieq32, 140,157] utilized plugin power meters to estimate heat loads from individual or
multiple appliances. However, deploying plingmeters for all appliances in large spaces with
numerous electric devicesgves costly, impractical, and challenging for data monitoring and
managementln studieqd36, 37], equipment usage information was gathered through surveys,
offering insights into occupants' preferences. Whileveys are costffective and relatively
easy to administer, their results are influenced by fadtockidingquestion appropriateness,
inflexibility, and time constraints, leading tolimited sample collectionMoreover survey

data alone is insuffient for predicting equipment usage patterns and developing equipment

load estimation models, necessitating additional informa#idditionally, certairstudies[156,
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158] empbyed building occupary information to estimate equipment usagdthough
equipment loadorrelates strongly with occupancy datais method is indirect angmains

limited, requiring the integration of multiple sensors to enhance its performance.

The swift progress in computersion technology has spurred interest in utilizing cameras
combined with visiofbased electric equipment detection and recognition sysirang et al

[229] employedthe computer vision method and Faster RCNN algorithm to identify computer
brands and their status in an electric power room, achieving a 91.3% mean average precision
with the test datasetlowever, it is essential to note that this method exhibited peofiyi in
detecting computers only at close distances; its efficacy in identifying computers situated far

from the camera remains unverified.

Several research endeavours have explored the dissipation of heat from equipment and the
detection and prediction afdoor equipment usage magnitude and pattéiresid Zhand?25,

230] developeda reattime heat dissipation model for electronic equipnmendeterminghe

dynamic cooling demand of office buildingy strategicallyplacing temperature sensors on

the surfaces of computers, laptops, adjacent solid objects, and desks. This approach enabled
accurate measurement of heat emissions fildferent equipment types, thereby providing
invaluable insights for related researclondtheless, the practical implementation of deploying
numerous sensors in office environments for prolonged-wedt applications poses

challenges and impracticalities.

Other sudiessuch ag156, 159]opted for metering systems to capture plug or MEL data,
therebygeneratingequipment usage patterns in office buildings for HVAC controls. These
methodscreatedhighly precise equipment load profilakereforeguiding HVAC controls
effectively. However, @&onspicuous gap exists in the literatémeusing onthe prediction of
associated heat gains and air pollutants from equipment deployed in office and kitchen spaces
within office buildings. Such predictive information could significantly enhance theamcur

of estimationsconcerningheating, cooling, and ventilation requirements for these specific

spaces.

Therefore, according tthe review of previous literature, several research gaps have been

identified as follows:

1. There are limitednonitoring methodsot enable the collection of equipment information

within buildings.
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. Only a few studies explored the detection and prediction of the magnitude and profile of
indoor equipment usage.

. Limited studes explored detection of the usage of equipment or appliamcaffice
buildingswhich emits high levels of heat and pollutants such as in kitsp@cesFurther,

no investigation evaluated the potential of a detection method for equipment to estimate
the heat dissipation from them and their impact on heating, gocdind ventilation
demands.

. Only a few studies established models that can provide comprehensive equipment
information for the optimal design and performance simulation of building HVAC systems
instead of using typical fixed or static profiles.

. The reattime detection of equipment usage in buildings has not yet been applied and
integrated with building energy management systems.
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Chapter 3Equipment UsageDetection andRecognition Approach

To address the previously mentioned research gaps, a-basau equipment usage detection
approach using a deep learning method was proposed to enakieneeabuipment usage
monitoring in indoor spaces. In this chapter, the franrewof the proposed approach
explained in detail, following the selection of the model implementation platform and base
deep learning model, the description of architecture, training and testing processes, data
collection and labelling, and loss functions of the proposed equipmege detection model.
This chapteralso introduces thanethods employed to assess the detection and recognition
performance and the formationagep learningpased detection profild®LDP) of equipment
usage To evaluate the impact of the proposed appnoan building energy performance,
building energy simulations/ould be employedo model thebuilding energy in a virtual
environmentvhen using theroposed approachh€ selection of the BES tofar this research

and its theonare also introducent this chapter

3.1ProposedVision-basedFramework

The proposed approach utilizeemputer vision andleep learning technigs¢o potentially
achieve efficient energy managemenid enhance thermal comfort and indoor air quatity
offices and kitchenby applyinga demanedriven control strategy through reahe equipment

usage detectiorrigure 3-1 illustrates the framework of the proposed approach. The detection
model is implemented in a conditioned space to generate and colletimealata of
equipment usage information using anekiabled camera. Then, the réate information will

be inputted into the building energy management system to adjust the HVAC system operations
to provide demantbased controls. It can minimize the unnecessary building energy loads and
increase the wusersd6 s at nteyiérdherinal oonditidny angairov i d i
quality. In addition, based on the obtained data, equipment [HagBs can be generated
which present the actual usage variation with time. It can contribute to the accurate building
energy performance assessment byifegthe DLDPs into the energy model and also give an

insight into the features of the equipment usage pattern in the spaces with different functions.
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Figure3-1 Framework of the proposedsion-basedapproach(Sources: Freepik)

To achieve this aimthe main objectives listed below were carried out in this reselarchn
be separated intizvo partsi equipment usage detector preparafier), and deployment of
the proposed model for demadttliven control assistance and building energy performance

assessmerfy-vi).

i.  Adetection platform was selected to implement the deep learning algorithm to perform
detection and recognition tasks.

ii. A suitabledeep learning model was picked as the base ntod#tvelop the desired
equipment usage detector.
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iii. A large number of images including various types of office and kitchen equipment
within different offices and kitchens was collect&belled andrandomlydivided into
training and testing dataset

iv.  The model was trained and tested with the processed dathsestep was iterated to

befurther optimized based on the evaluation of detection performance.

v. The trained model wakeployedin an actual officend kitcherenvironmento generate
and cluster the data of equipment usage informatsamgan Al-enablel cameraThe
clustered data could then be inputted into the control system toiashstadjustment
of the HVAC operation aomatically to enable demasttiven controls.

vi.  To assess the feasibility of the proposed approach and analyse its potential impact on
building energy usdhe data was inputted into a building energy simulation software
to perform energy modelling of the eastudy buildings. According to the energy
performance results, the proposed appréaahility to optimise HVAC operations and

effectively manage building energy loads could be evaluated

3.2Deep LearningAlgorithm

According to the backgroungdathered from previous studies, the deep learning method is
suitable for vision tasks, especially CNN models. Hence, this research employediza€&¢N

model to perform redime equipment usage detection. CNN consists of a large number of
hidden layers.rl each layer, mathematical calculations are performed on the input supplied
from the previous layer, and the output generated in the current layer is treated as an input for
the next layer. Unlike the classical neural networks with fully connected lapersNN
includes convolutional layers, which performs better in modelling and identifying the spatial
correlation of adjacent pixels. The network is-peened for the classes (final outputs) for a
classification task because of the significantly compratly expensive training phase. Once

the pretraining of the network completes, it only takes a short time to perform the prediction

task efficiently.

This sectiondetailsthe devdopment of the proposed equipment usage deteictdiuding
platformandbase model selectiotraining and testing process, datalection and labelling,

and its loss function§.hemethods to evaluate the detection performance and the formation of
the equipment usage profilase also explained.
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3.2.1Platform Selection

In order to select the most suitable platforndéployand implementhe equipment detection
model,threepopularobject detectiomplatformsweretried in thisresearchih AWS DeepLens,
MATLAB, Python and TensorFlovh brief introduction of theplatforms andhe selection of

the platform and base modwsk given here.

3.2.1.1AWS Deeplens

AWS DeepLens is a DEenabled video camera integrating wakveralAWS ML services.

Many studies employedhis platform to implementwarious visiorbased detémn and
recognition tasks such esattime plant healtrassessmelfi231], facial expressionecognition

[232], face detectiofi233]. As it is beginneifriendly by providing handsn tutorials and deep
learning sample projects, it was the first platform to explore deep learning techniques at the
beginning of this researclrigure 3-2 shows theDeepLensedgeto-cloud implementation
including the main servicedor object detection anthe basic workflow of the DeeplLens

project

A CNN model can be trained amdlidated using the SageMaker service, the development
environment. It can also import a grained model and implement it directlyhen, the AWS
Lambda service is used to create a project function which can make inferences of camera video
frames fed ima the model with the collaboration of Rekognition, CloudWatch, and DynamoDB
services. These are implemented in the cloud. With the use of the AWS DeeplLens service, a
computer vision application project, including the trained model and inference funetion, c

be created and run at the ed§e shown inFigure3-2(b), the camera receiving video stream
outputs the device stream, which is not processed, and a project streamgavitachs the
processed frames of the video stredrherefore, it can perform local inference using the
deployed models given by the AWS Web Cloud. However, apiateppermissions must be
granted to access these services, which are costly when more services and longer duration are
used, especially for data storage. Hence, this platform was not selected as it isfniencthgt

for long-term investigation.

68



(@)

SageMaker: Train and $3: Simple storage service
validate a CNN model or
import a pre-trained model Rekognition: Easily add
intelligent image and video
nalysi lication
=— . analysis to applications
SageMaker Training/validation data Cloud
fe=1
5 & " Esm
|/AWS Deeplens o AWS
A Deeplens
©] console S
Inference Lambda: H ’ i
: : . Amazon
Object detection oo S e M CouldWatch: Monitoring
function & E - ‘ ; and management service
o Amaon o e
S5 Bucket i

Object

v
. Amazon

S CloudWatch
Detection . "

Recognize objects Lambda function

DynamoDB: Fast and flexible
database service for any scale

(b)
Input Device Output
| | '
[TTTTTTeneesssssesssessnne > (>
A g Device stream
_____ D | | . Model
(== ] ALY
Scene |> _____________________ - )'

Inference Project stream

Lambda function

Figure3-2 (a) AWS DeepLensdgeto-cloudimplementatiorfor object detectionand (b)
basicAWS DeepLengproject workflow[234, 235]

3.2.1.2MATLAB

MATLAB provides a higiperformance environment to work with big daémd theDeep

Learning Toolbox in MATLAB provides frameworko design, train, validate, visualizend
implement deepeural network$236]. The Deep Network Desiger application allows users

to graphically design, analyse, and train the networks. Using the Experiment Manager app, the
training progress and results can be kept tracked and analysed. It also enables the management
and comparison between different ddeprning experiments. Thus, it was employed to
perform initial exploration for office equipment usage detection. The details of the initial model

structure and implementation were demonstrated as follows.
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3.2.22.1 Model Structure
Figure3-3 shows the architecture of the network, which is the initial configuration for equipment
detection. It is composed of three convolutiongkta, a fully connected layer andsaftMax
layer. The convolutional layers have the function of feature extraction without manualiverk.
fully connected layer classifies the images, andSb#Max layer plays the role of object
identification. A genalization with the reduction of spatial size is carried out on the input data
when the input data goes through the architecture. Finally, the type of office equipment presented
in each input image is predicted in theftMaxlayer after the fully connectddyer.

Conv Max pooling Conv Maxpooling  Comv  Max pooling FC

227x227x8 113x113 113x113x16 56x56 56x56x32 28x28 1x1x4
1 A 1

[ Vol Vo |

Input PCmonitor
on

|| | Printer E

: 1““ Kettle

— None

(Image)
Figure3-3 The architecture of CNN equipment detection model with a softwareUaiyey
MATLAB Deep Learning Toolbox

Probability

Xeunjos

The convolutional layer is the core building block of a CNN. It plays a critical role in feature
extraction in the model by setting a filter or a convolution kernel. The convolutional layers in this
structure all have 3x3 image kernels that stride oventiwe image, pixel by pixel, to generate

3D volumes of feature maps. The widths of convolutional layers are 8, 16, and 32, respectively.
A rectifier called Rectified Linear Unit (ReLUB37], which is a norsaturated activatiofunction

used on the matrixefollows after each convolution operatioReLU effectively removes the
negative part to zero and remains the positive part. Without influencing the receptive fields of the
convolutional layer, it enhances the nonlinear prigs of decision function and network.
Therefore, through the ReLU unit, the expressions of an image can be enriched remarkably. For
each trained layer, a convolutional operation and ReLU in the forward propagatioraphase

utilized [145]. It can be expressed as:

D) Qw Zw w (3.0

wheref is theactivation functiongo is the bias for this feature map, is the value of the kernel

connected to the kth feature map.
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The moling layer is also a vital aspect of CNN. The pooling layer replaces the output at a certain
location with a summary statistic of the neighbouring outputs. Also, the spatial sizergiuhe i
array can be decreasdavo popular pooling options are max pooling, which takes the maximum
values from subarrays of the original input and mean pooling, which takes the mean values. For
this study, max pooling is employed for all pooling layers bsganax pooling performs better

on image datasets than mean pod2&§].

To identify the input data, a predictive layer is required to forecast categories and set them at the
last layer of the CNN architecture usualBB9]. The SoftMax function is employed as the
predictive layer because it is at the forefront of the prediction meib4@]. Its output
demonstrates the probabilities of individual categories of each input. The equation for this function
is:
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wherenis the number of classe8, ag s the conditional probability of the sample given class

r,andd 6 is the prior probability of class. Moreovés, 1 T0 o 0 6

The metric used to evaluate the predictions is the 1tlaks loss functim[240] which is also

known as categorical cresatropy function expressed as:
aeii 0a& (3.3

wherelL is the number of images in the test éetis the indicator that thigh image belongs to
the jth class, ando is the output for imagefor classj which is the value from th8oftMax
function.

3.2.2.2.2Model Implementation

After applying adjustments to the mode, the CNN modeltraased to enable equipment usage
detection.Figure 3-4 shows a snapshot of calculation and training accuracy curve. The model
converged in about 40 epochs and remained reasonably stable, implying that the model learned
the problem reasonably qkicThe achieved training accuracy is exceptional, reaching 99.6% at
the final epoch, while the loss value reached 0.12 at the end of the training. Average test accuracy
of 89.3% has been achieved using limited test data only. The test acsulawer tha the

training accuracy, which implies an ovéting occurring in this model. The model has effectively
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memorised the training set's exact input and output pairs. In order to do so, -aorpkex
decision surface that guarantees the correct clasgificat each training example has been
developed. That decision surface includes all the coincidences present in the input data, making

generalising to new inputs (test data) less efficient.
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Figure3-4 (a) Training accuracy curve and (b) loss cursing MATLAB.

To assess the model performance in theinellor spacegwo experiments were carried ot

two different office space3hefirst experimentvasconductedo assess the performaradeng

with the effect of the viewpoint of the detection camarthe Energy Technologies Building,

as shown irFigure 3-5(a), located in the Jubilee campus at the University of Nottingham, UK.
An office with a floor area of 12.87 and a height of 3.2 m on the first flosasselectedasthe

test roomFigure3-5(b) shows the test room's layout and experimental setup. There was only one
standard computer within this office. A camera connected to a laptop running the trained deep
learning model through MATLAB was set in the office to perform detection tasks. The camera

was installed in two different locations in the test room, and the test was conducted for two hours
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in each location. With the implementation of the CGh&ted model, the equipment usage

information was gathered to create usage patterns.
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Figure3-5 (a) Outside view of thé&nergy Technologies Buildingnd(b) testsetup in the test
roomfor detection with two cameras.

The exampls of the representativdetection andecognition results argresented irFigure

3-6. The probability for each class is computed, and the class with the highest probability is
selected as the outcome. Resultsent that detection from both locations was accurate, with
over 80% probability in Location 1 and over 91% in Location 2 in detecting the desired class.
Figure 3-7 demonstrates the equipment usage patterns for the PC set in the test room, which
was created based on ttveo-hour live detection results. It imptighat the proposed deep
learning modetopedvery well with thedetection andecognition taslat both viewpoints of
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the cameraHowever, it is evident that iRigure 3-6, the scores gained irocation 2 were
higher than the sce in Testl, meaningthe detection tasks implementedLiacation2 could
get more accurate results.suggestshat he viewpointof cameras affeet the accuracy of
equipment detection.
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Figure3-6 Example of detection and recognition results in two different camera positions

the test room ifEnergy Technologies Building.
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Figure3-7 Two-hour PC usagpatternsattwo viewpoints in the test room nergy

Technologies Building.

To evaluate the model performance in detecting different equipment, the second test was
conducted in the Mark Group house in tbeiversity Park campus at the University of
Nottingham.Thetestwas conducted in the open plan office on the ground floor of this building
There are six standard computers, a large office printer andkaAL Kettle within this office.
Example of the representative recognition results for four categories is presdfitraes3-8.

As can be seen, the outcome in each case is P@emptkettle, and nothing in use with the
highest prediction score of 0.84, 0.74, 0.86, and 0.94 out of 1, respectively. It implies that the

proposed model deals very well with the identification task with relatively high accuracy.

However, the specific atgs of view and positions can affect the accuracy of the prediction
and currently limits the implementation of the detection method. Thus, the current model
cannot accurately detect features from the input data with new characteristics. In addition, some
apparent errors exist, including wrong and missed detection dilvéngeriod when occupants

were frequently active such as lunchtime. Moreover, when detecting the kettle, many detection
errors happened as using the kettle is not a-tong activity leadig to a higher difficulty to

identify whether the kettle is in use or not
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Figure3-8 Examples of equipment usage detection outiputse operplan office in Mark
Group House.
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The test results indicate that MATLAB Deep Learning Toolbox has the ability to implement
equipment usage detection with high accuracy. However, MATLAB isana@ipensource
softwarewhich makes it difficulto fix bugsand improvehe performance of the program a
relatively shortime through public collaboratiomMoreover, he cost of the license is high for
users apart from some universities and a few companies who can afford it. In addition, it is
challengingfor web andproduct developmenand application desigas it cannot create
application deployment tasksading to imited functionality It is also very hard to cross
compile or convert MATLAB to other language cod€snsidering thdurther development

of the proposed approachy building it as an application or software tnable the
implemenation ofequipment usage detectiand predictiorandintegration of building energy
management prograsrto achieve automatic building controls theseissuescould cause
difficulty for the proposedapproach tavork on different platformsFurthermoregas it isa

closa source, it is challenging to address all the errors which needs deep knowledge of
MATLAB.

3.2.1.3Python and TensorFlow

Pythonis apowerful andgeneralpurpose programming languagdich is openrsource and
supports crossplatform development. The TensorFlow object detectiorapplication
programming interface (API) is an opsaurce computer vision framework which enables the
design and formation of object detection modilsllowed different sizes of images within

the datasetmeaning resizingsinot requiredor the model trainingFigure 3-9 demonstrates

the workflow ofdetector formatiomsingPython andrensorFlow object detection API which

can be summarised in six steps. Firstly, a propeepisting model is selected to pemnn the
detection task. In order to train a robust detection classifier, at least hundreds of images of the
desired objectsnustbe collected and then randomly separated into training and testing sets
with a certain percentage. With the use of Labellmg dibjects of interest within each image

in both sets are labelled and the data for the train and test images are saved in XML files by
Labellmg. After converting XML files to TFRecord files and setting up the label map and
configuration file, the model tiaing could be deployed by using these essential files and then

a newly trained object detection classifiercieaed. Finally, this new classifier would be
implemented via an Aénable camera thereal officeand kitchenspacs to attaindesired

equipment usage information.
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Figure3-9 Workflow of detector formation usingython andrensorFlow object detection
API.

In recent yearghe CNN algorithimhas beermommonly employed to perform classification task

and object detection. Unlike in classification algorithms identifying the object of interest within
the image is the only task to be carried out; in object detection algorithms, a bounding box around
the oljects to locate it is also required in most cases. This is difficult to be achieved by building a
standard convolutional network with a fully connected (FC) layer due to the different length of
the output layer as the number of occurrences of the debijext within the image is not fixed.

To cope with this problemUC Berkeby has developed Regidmased CNN (RCNN) by
combining region proposals with CNI&A1].

The architecture of the RCNN shown inFigure3-10. Due to the success of region proposal
methods in object detecti¢®42], it can identify multiple objects in the input data by using the
selective search to extraatremarkable numberf ®doundingbox objectregions of interest
(ROI), then creating regichased features from the grained CNN, and finally classifying

the oljects through SVM$243]. However,the desired objects may appear in different spatial
locations and aspect ratiGherefore, a large number of regions must be selected to detect all the
objects, which could causesggnificantly expensive computation

R-CNN: Regions with CNN features

T2 = A P
Lid ->{person? yes. |
_______________ CNNiN, :
B ¥ tvmonitor? no.
1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions

Figure3-10 RCNN architectur¢241].
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To address these problensgme algorithms based &®&CNN have been developed in recent
yearsto enhance the accuracy and speed of object detection and recodregpnnetworks

with spatial pyramid pooling (SPRet), as presented iRigure3-11, propose a spatial pyramid
pooling layer to remove the restrictions on the network fixed size and perform feature extraction
[244]. Hence, unlike RCNN which needs to run a convolution layer repeatedly to extract features,
SPRNet only requires implementing convolution operation once wigdhcesmplementation

time.

fully-connected layers (fcg, fc,)

i

fixed-length representation
CE—— T ... ... SR AC—
S — — ' )
b 16x256-d ? 4x256-d t 256-d

spatial pyramid pooling layer

feature maps of conv,
(arbitrary size)

y . .
convolutional layers

mput image

Figure3-11 SPRNet architecturg244].

Fast RCNNdeveloped by Micrast as shown irFigure3-12, is similar to RCNN while instead

of inputting Rol to the CNN, Fast RCNN applies the input image to the CNN layer to create a
convolutional feature map and then use an Rol pooling layest@ape the region of proposals
identified from the feature map into a fixed size and feed it into a fully connected2d$ér
Compaedwith RCNN, Fast RCNN runs faster as the convolution operation is performed only
once for @ach image rather than feeding a number of region proposals to the CNN every time.
Both RCNN and Fast RCNN employ selective search to look for the region proposals that need

to consume quite a long time and further influence the nefapekformance.
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Figure3-12 Fast RCNN architectuf@45].

With further evolution Microsoft developed Faster RCNN, whicises a region proposal
network (RPN) to generate the regioroposals instead of the selective search algof2Ag).

Ren et al[247]. Came up with the algorithm and designed the architecture of Faster RCNN
illustrated inFigure3-13. Faster RCNN also feeds the input image into the convolution layers to
generate a convolutional feature map similar to Fast RCNN. Then the region proposals are

predicted by using an RPN layand reshaped by an Rol pooling layer. The pooling layer then
detects the image within the proposed region

. classifier

propoy / /

[ 4

Region Proposal Network g

feature maps

conv layers /

4
AT 77—
e ——

Figure3-13 Brief architecture of Faster-BNN [247].
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Overall, SPRNet, Fast RCNN, and Faster RCNN all enhance the performance of the RCNN.
However, according to the comparison of the-ties¢ speed of different CNidased object
detection algorithms presentedrigure3-14, Faster RCNN is much faster than other algorithms,
which can even be implemented for live object detectiomddition, as the Inception module
could improve the utilization of the cqmting resources inside the network, it was used together
with Faster RCNN to achieve a higher accuracy of the detectiof2468k Therefore, Faster
RCNN with InceptionV2 was selected as the model fortresd equipment usagdetection and

recognition

R-CNN Test-Time Speed

Fast R-CNN 2.3

Faster R-CNN| 0.2

0 15 30 45

Figure3-14 Comparison of the tesime speed of different CNidased detection algorithms
[248].

3.2.2Faster RCNN

With the consideration of the opportunity of application development in the future, Python and
TensorFlowObject Detection APl was selected as the platform for equipment usage detection
developmentand implementatianThe Faster RCNN with Inception V2 was selected as the

base of the redime equipment usage detection model for the present work.

Based onFigure 3-9, The workflow of the Faster RCNNdetector developmentand
optimizationis presented ifrigure3-15. It can be separated intwo partsi equipment usage
detector preparation, and deployment of the proposed model for demee control
assistance and building energy performance assesdmé#re detector preparation part, many
images, including various types of office and kitchen equipment within different offices and
kitchens, were collected and randomly divided into training and testing datasets. After labelling
both the training anesting dataset, the model was trained and tested with the processed dataset

and further optimized based on the detection and recognition performance evalliagion.
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detector preparation part process was iterated to improve the deep learning model thesed on
detection performance analysia. the deployment part, the proposed detection model was
implemented in actual office and kitchen spaces to generate and cluster the data of equipment
usage information using an #&habled camera
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Dataset (Tmages) Evaluation Measures Live Detection Deep Learning Profile Generation

©

[ LT UL

Equipment Accuracy F1Score
- 1 Typel 98% 0.8128
Labelling ¢—— ype
Type2 92% 0.7924 -

T Live Feed Data
v Testmg set Testlng PC on: 92% ’ l Laptop on: 89% ‘ Stove on: 86% ‘ l Oven on: 96% ‘
Division I_l un (XX
| — E
Training set Training T ( »

Figure3-15 Equipment usage detectdevelopmenand optimizatiorprocess
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The following subsection describes the preparation of the equipment usage detector after the
selection of the base model, including thededoconfiguration adjustment, training process,

data collection and labelling, and the loss functions

3.22.1 Trainingand Testindg’rocess

Figure3-16illustrates the architecture of the Faster RCNN model used in this resédren.

the training startedhe parameters of the whole Faste€CRN model were initialised in the

first place. Then, a feature map consisting of a large numbregins of interest (ROIs) and

the features of the input data were extracted by the convolutional layers. The geRéisted
were inputted into the RPN network. The proposed region created by the RPN network, and
the extracted features were used to train the Fast RCNN network. The joint network by
integrating the RPN and Fast RCNN, enabled faster training, testing, antiotefEo carry

out the training procesa, Graphics Processing Unit (GPU) with 2560 CUDA cores, 1607 MHz
graphics clock, 10 Gbps memory clock, and 8 GB GDDR5X memory was used as GPU to perform
the implementation of this computationally expensive task.
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Figure 3-16 Thearchitectureof Faster RCNN with Inception V@sed in thigesearch.

3.22.2 DataCollection and_abelling

To develop an object detector, a large datafdatages, including the desired objectsyl proper
labelling, are essential and significant for achieving high accuracy and efficiency in object
detection and recognitio\s there is limited datasef images of different appliances within
offices and kitchens available in previous and current studies, a dataset including images in
different views, scales, and illumination was created and collected through the use of Google
Image and EPIKITCHENS-100 datast, and seiltollection within several office and kitchen
spaces at the Department of Architecture and Built Environment at the University of Nottingham
by using a camera to improve the diversity of the.data

Table3-1 lists the mmber of imagesised for training and testing this researchlhere were

1400 images in total in the dataset, where half were images of gfffaeesand the rest were

kitchen spacesThe detection targets in this research were classifiedfii@acategories: PC,

laptop, stove, oven, and toaster. These objectsdwanly be detected when they were in use.

Hence, to increase the data diversity, the collected images have fiveharacteristics, including

(a) equi pment AONO and AOFFO, (b) being hel

operated, (c) differemtumber of equipment, (d) various sizes of equipment from the view of the
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camera(e) different lighting conditions, (f) being blocked by people or other items and not being
blocked. This enabled the model to perform detection and recognition tasksametksiuations.

It should be noted that in the training dataset, there are a few images including no equipment. Thus,
the model could identify that no one was using these appliances, meaning no heat was released

from these appliances to the spaces

Table3-1 Number of imagessed for training and testing

Number of Images
Training Testing Total
Office 560 140 700
Kitchen 560 140 700
Total 1120 280 1400

According to the rule of thumb, 20% of ttreages were used for testing, and the rest were used
for training Then the datasetaslabelled manually by using Labellmghich is a graphical
image annotation tool written in Python. Labellmg is able to label object bounding boxes in
images and creates XML files that describes the objects in the imddels assists in teaching

the detector to recognise ttagetobjects.In this study, recognising the mode of #ppliances
which relates to the heat emissimml air qualitywithin office and kitchen spacgs the focus
instead of just identifying theppliancesTherefore, only thappliancedn use were labelled’he
examples of the collected images and labmi®achcategoryare shown irFigure 3-17, andthe
examples of imagdabelling ofoffice and kitchen spac@sath multiple/no appliance(s) in usee
shown inFigure3-18.

To simplify, a monitor which isturnedon, represerst a PGn usesimultaneousliyWhen labelling
PCs and laptop, although PC monitors aresually larger than laptop screethe sizes of them
from the view othecamera may vary terms othe apparent distance and angle from which the
camera views thm. Hence,not only the screen but also the frame and keybo#rthem were
includedto differentiatethem.For the kitchen appliancebe pans and potgith food inside used

to cookon the stovetopy peoplethe ovens with liglston and food insidgand the toasters with
bread inside, were labelled as stove, oven, and toaster, iresigectively After labelling all the
imagesthe XML files of them were employed to create TFRecardgh are one of the inputs

for model training.
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Figure 3-17 Examples of collectedmages and labe(Source: seltollected EPIG
KITCHENS-100 dataseind Google Image
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One
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Figure3-18 Examples of images labelling of office and kitchen spaatsmultiple/no
appliance(s) in usgsource: seltollected, EPIEKITCHENS-100 dataset, and Google Image
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3.22.3 Training Loss Function

To evaluate the training performance of the neural netwosks functiors are employedto
compare the ground truth and predicted outputaeasure how well the network models the
training datg249]. According to the architecture of the Faster RCNN mddal, losse®ccur
during the training including RPN classification loss when detecting object
foreground/backgroundRPN regression loss (whgenerang and propagatg the proposals
from anchor to ROI), Fast RCNN classification loss (when classifjfagges), and Fast RCNN
regression loss (when extracting features from ROI to bounding bb&)total loss can be
obtained by linearly combining these four los$&ken taining the network, the losses should

be minimized to reduce the error between the ground truth and predicted outputs.

During the training procesthe training lossesccurred and varied with the number of steps

of the training. The results of trainingpsses were monitored and collected through
TensorBoard which provides the visualization and tooling needed for machine learning
experimentationWhen the total loss is less than 0.05, it suggests that the trained model can
have a good performance in lieetection.The variation of these losseemonstrates the
training quality. Additionally,the location of the loss can be indicatedwhich assists an
improvemenbf the model architectur@ he equations ofive loss functions are expressasl
Equation3.47 3.11

The total los$unctionfor theFaster RCNN, whichis the liner combination dheFast RCNN

loss and RPN losss definad as follow:

i 2 2 (3.4

Where_ and_  are the weight$or these two layers. They were set to be 1 in this

research.

The loss function fothe RPN layeris defined in247] as:

n \ B n N Z p \Zn N2
U nho =— Ui nM _=— nNovs OR (3.5

0 j isclassificationloss for the RPN layewhich detecs object foreground and background

andis defined agollow:
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0f nMY NaenQ p N1 1T @ N (3.6
0  isregression loser the RPN layewhich generates and propagates the proposals from

anchor boxes to RQInd isdefined as follow:

O0p o i aé&woO ¢ (3.7
Where, Qs the index of an anchor in a mibatch,) is the predicted probability of anch6X
being an object)” is the grouneruth label (if the anchor is positivg,  p; if the anchor is
negativeyy” ), O is a vector standing for the four paneterized coordinate§, is that of
the grounekruth box associated with a positive anchior, and0  are the nominators used
to normalize the outputs of thedandi ‘Ql&yers,_is a parameter employed to balance the
weights of0 ; and0 ; which was set to be 1 in this researahdi & £ "® Gs a robust

loss defined as follow:

C g e s W s p
i a&Bow s @ £®DI 00 (3.8
The loss function for thEast RCNN layer is defined ifi245] as:
0 nhhmw 0 A _6 pdy oM (3.9

0 p s classification loss for the Fast RCNN layer which classifies objects on the data and is
defined as follow:

0fp N a £NQ (3.10
0  is regression loss for the Fast RCNN layer which extracts features from ROI to the

bounding box and is defined as follow:
Op OhD i a€EROO 0 (3.19)

Wheren is the predicted probability of the samfeEom the output of th RPN layer being
an objectp is the grounetruth class,r is the predicted probability for the proposed region
belonging to class, 0 is boundingbox regression offseb, is the grounetruth boundingbox
regression target, andis a paramer employed to balance the weightsiof and0 j

which was set to be 1 in this research.
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3.2.3Performance Assessment Method

In this studytwo methods were employed to assess the detection and recognition performance
of the proposed modelconfusion matrixand loU metric. This section provides detailed

descriptions oboth performance assessmerdthods.

3.2.3.1 Confusion Matrixand Evaluation Measures

To summarize the detection results of the proposed algosttoonfusion matrix is commonly
employedto visualize and summarizes performanceA confusion matrix as shown igure

3-19 containstrue positive (TP: representing the correctly identified instances when computers
are on), true negative (TN: representing the correct detection when computers are off), false
positve (FP: representing the number of instances that computers are predicted to be on while
they are not, or other stuff within the detection space is wrongly identified as a computer) and
false negative (FN: representing the number of instances that cosnagegaredicted to be off

while they are not). Based on the created confusion matoyracy precision recall and &
scorecan be computedvhich arethe measuregequently used to evaluate therformanceof

the object detection algorithwhich are definedsthe Equations3.121 3.153.15 respectively.

Actual Values

Positive (1) Negative (0)

Positive (1) TP FP

Negative (0) FN TN

Predicted Values

Figure3-19 Confusion matrix

. o~ - “YO YO
OWWOo I W——————, (3.12
0 YO OO0 "OU
. YO

D1 Q& Qi -%—rﬁ) (3.13
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Accuracyis the most commonly used metric whitieasures theumber ofcorrect predictions
verse the total number of predictioghen the distribution of classes in the clsstion is equal,
accuracy is a useful metric to show the performance. While, if a class has more data points than
the others, accuracy is not sufficient to indicate the performbiecee precision and recall were
usedto address the potential imbaladgaoblem in the dat®recision can be seen as a measure
of exactness or qualitgnd thehigherthe value ofprevisionis, the lesghe wrong classification

is. Recall is a measure of completeness or quastitgt the higher the value of recall is, tbgs

the missectlassification isHowever, it is not sufficient to stand for the detection performance
whenprecision and recall were ussdparatelyTherefore, Wth the consideration of a balance
betweerthese two metrig$~ score which is a metric combining the precision and recall metrics,
wasalsoemployed to provide a better evaluationacturacy Overall, the confusion matrix
and evaluation metricsvere ugd to asses$oth initial testing and realime detection

performance.

3.2.3.2Intersection over Union (loV)

In object detectiorto identify whether samples are positives or negatiaesloUthreshold is
necessarywhich measures th@ercentage averlapping arebetweerthepredicted bounding

box and groundruth box over the area of uniofthemas shown ifFigure3-20. The ground

truth box is applied during the training proceske higher the loU valuss, the higher the
confidenceof correct detection is, suggesting a better detection performance. lHents)

value was employed as another method to evaluate the live detection and recognition

performance in this research.
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Figure3-20 Intersection over unidqU) definition.

To ensure highconfidencein the identification the loU value was set to be 608then
implementing the trained moddbr reattime detection meaning that the model only
consideed the detections which kaan loU value of ove60% with the grounetruth box.
During the detectionhtloU value of each of the detections was displayed across the bounding
box as illustrated inFigure 3-21. The average loU valur each targeted classould be

attainedto assess the accuracy of each class in live detextmnecognition

Figure3-21 An example ofletection responde a PC in us&ith an loU value cross the

bounding boxSource: Googlémage)

3.2.4Deep Learningbased DetectioRrofile (DLDP) Generation

During the experiment, when lieguipment usagaetectioremployingthe trained modetas
implemened, the realtime informationon the number oftargeted equipment in useas
gathered and used to form the cehasedprofile for each type of equipmenain example of
the formation of courbased profiles is presentedrigure3-22. It shows the profiles formed
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from 3 frameslit is important to note thahe images captured by the camera are only displayed
to provide an example of how the approach detects equipment urspgacticethe camera will

not take any images or videos during the live detection and recognition. Instead, the model will
solely generate theountbased profilesvhich enable the estimatiaf heat emission from the
equipmentwithin the detected spac&he DLDPs can then beed into a building energy
simulation tool for accurate building energy performance analysmisa building energy
management systemeaable a demandriven controfor space heating, cooling, and ventilation

to improve energy efficiency artdeindoorenvironment.

Live Detection

Office

Kitchen

Frame 3

S e - —— | ——— PC
mm——r ISTOVE
s O)VEN

=== Toaster

Count

Time

) = = = === == - S ——
Frame 1 Frame 2 Frame 3

Figure3-22 An example of equipment usage detection anddhadtion ofDLDPs
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3.3Evaluation Method for the Impact on Building Energy Performance

In general, at the design stagepredefined or static equipment usage pattern was usekleor
HVAC system designWhile at the operation stag¢éhe usage of equipment is varied and
unmatched by the preefined or static profileThe variationin equipment usageauseghe
thermal and energy performance of the builditaggiffer from the designed performandene
designed HVAC controls may nbe able to meet the actual needs of pecis.The deep
learningbased detection approach was proposeddeétect reatime equipment usage
information in indoor spacée assist the HVAC system in providing dematrten controls.
Building energy modellinganenable a deeper understanding ofithpactof employing this
approacho detect equipment usageaiaion on thermal and energy performaaoceloptimize

theHVAC controlstrategy accordingly.

Building simulationis a method which consists of mathematical modekiculatedby a
computer,to assess how different elements of buildosignperform in the realorld
conditiorsiillustrated in a virtual environmerBy providing andassigningnformation such
asbuilding geometry envelope materialsyeather dataoccupancyequipmentand lighting
profiles, and so orsimulation results caperforminternal thermal andnvironmentaanalysis
andenergy consumption estimatiddence, n this researctbuilding energy modelling would
be performed by BES toolto assess thieasibility of the proposed approach analuate the
potentialimpact d it on building energynd thermaperformancey inputted theequipment
usage profilegieneratedby the Faster RCNN mod#ito the energgimulationmodel

Integrated Environment Solutions Virtual Environment (IESME}F selected as the BES tool
employed in this research as the author had more experience with Hef@l\& validatiorhas

been carried out ardemonstrated in detai thestudy [250], wherelESVE was employed to

assess the thermal comfort and energy performance of the thermal chairs compared with the
standard chasrinanoffice building.The results were validated with data from the literature and
good agreement was observed between the annual simulation results for heating energy demand

(9.7% error) and cooling energy demand (7.8% error).

IESVE performsa dynamic termal simulation basedn the modelling of the heat transfer
processes between a building and its microclimate. Within the tool the conduction, convection
and radiation heat transfer processes for each building component or fabric are modelled

individually and incorporated witthe model of the heat gains, air exchange and plant within
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and around a thermal space or rodime methods and approach used to model these processes

are summarised here.

The timedependent spatial temperature distribution in a solid without internatbeates is

given by the partial differential equations:
W Y (3-1)

1Y (3-2)

whereTi s t he temperature, W is t hiasthedeasityahdl ux Vv ¢

o is the specific heat capacity.

The heat storage in air masses or net heat flow into the air m@ssemodelled by the

following equation:

=, 1Y (3-3)
O @ Gy

whereV is the air volume, is the air density anty is the air temperature.

For the discretisation, the tool uses a finite difference approach to the heat diffusion equation
solution which first replaces the element with a finite number of discrete nodes at which the
temperature will be calculated. The nodes are distributed within the layers for the modelling of
the heat transfer and storage characteristics for the selengedtép. This choice is based on
constraints imposed on the Fourier number. Then, the time variable is discretised and a
combination between explicit and implicit tirséepping scheme is adopted in order to alternate

nodes of the construction. The conveetheat transfer is described by the equation
Wys = K(T, - T))" (34

wherew is the heat flux from the air to the surfatés the mean surface temperature Knd

and n are coefficients.

The heat transfer rate associated with an air stream entering a space is described by equation

Q = Mc,(T,~ T,) (3-5)

whereM is the air mass flow ratéYis the supply air temperature aidis the room mean air

temperature.
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For the interior longvave radiation, the net radiant exchange between a surface and the rest of

the enclosure is described by the equation
WI‘I = hr (Ts - T:';fRT) (3-6)

wherew is thenet radiative loss from the surfaé@ is thesurface heat transfer coefficient

for exchange with the MRT no@md”Y is themean radiant temperature

For the exterior longvave radiation, the net longave gain for an external surface of

inclinationb (°) is represented by the following

L'(B) = &[Lsiy (B) + Ly(B) — 0®;] (3-7)

where- is theemissivity of theexterior surfaced T is thelong-wave radiation received
directly from the sky0 f is thelong-wave radiation received from the grousmtlg is the
absolute temperature of the exterior surfa¢e tool calculates the solar flincident on every
external building surface at each tistep.

3.4 Summary

This chapter described the framework of the proposed visagsed equipment usage detection
approach using a deep learning method to enabldimealequipment usage monitoring in
indoor spaces. Python aricensorFlowObject Detection APl was selected as the equipment
usage detection development platform. The Faster RCNN with Inception V2 was chosen as the
base of the redlme equipment usage detection model for this research. Thdeatahe,
training and testing processes, data collection and labelling, and loss functions of the proposed
equipment usage detection model were described. Confusion matrix, evaluation metrics,
including Accuracy, Precision, Recall, and F1 score, and ldubwaere employed to assess

the detection and recognition performance of the proposed model. This chapter also explained
the generation of deep learnibgsed detection equipment usage profiles based on the
collected reatime data. IESVE would be employaaperform building energy simulations to
evaluate the impact of the proposed approach on building energy performance by inputting the

deep learning profiles into the model and comparing it with other commonly used profiles.

It should be noted that theryggrded pofile is intended to be inputted into an actual demand

driven HVAC control system, however, this is still under developméateover, it should be

94



noted that this study is not suggesting eliminating the use of sensors, but rather it can
complement existing systems to enhance the performance of deimagnl control systems.

The detection approach can provide equipment usage information quickly, and sensors can
provide precise measures. Integrating them could ideally achieve fast and accurate controls of
HVAC systems. This should be evaluated in the future. Additionally, this/ statl only

focuses on equipment usage detection, but demonstrates that this could be a possible solution

to detect other objects
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Chapter 4 Evaluation of Detection and RecognitiorPerformance

The following chapter provides the evaluation of the detection and recognition performance of
the deep learninbased equipment usage detection model through the analysis of the training
results, initial tests using the still images in the testing datsgthe implementation in a real
office and kitchen spaces. After the training and initial testing, two case study rooms were
selected to carry out the detection tests and investigate the performance in identifying office
and kitchen appliances, respeetix Two methods, confusion matrix and loU value, were
employed to assess the detection performance in both case stindi€d.DPs showing the
variation ofequipment usageerealsooutputted from detection implementationcase study
rooms which can bemployed to evaluate the building energy performance and assist the

building management system

4.1 Training and Initial Testing

After completing thepreparation process descripted in Section 3.Be88ptoposed equipment
detection model using the Faster RCNN with the InceptionV2 was trained with the labelled
trainingdataset. The training todk)0,000steps in total andround 95 hoursto complete the
training. The training losses versus the number of steps of the training using TensorBoard
which provides the visualization and tooling needed for experimentation was presented in
Figure4-1. As shown in the figurayhen implementing the training process of the network, the
total loss was extremehedliningin the first 2,000 steps. After that, the total loss value gradually
decreased and tended to convei@eer 10,000 steps, the total loss value started remaining
constant by below Rand it went as low as approximately @@t the end of the trainingrhich

indicated thathe error betweempredicted resultand the ground truths wastremdy small.

Thevariation ofthe otherlossesduring the training processicluding Fast RCNNclassification

loss Fast RCNNregression logsRPN classification lossand RPN regression losgre also
illustrated inFigure4-2 1 Figure4-5. Fast RCNNclassifcation and regression losses occurred
whenclassifyingobjects anextracting features from ROI to the bounding box respectivély.

trends of box classifier losses were similar to the variation of total loss. While the RPN
classification and regression losses, which occurred when detetijagt foreground and
background and generating and propagating the proposals from anchor boxes to ROI respectively,

were below 0.02 during most of the training period. It indicated that the loss mainly happened
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when theFast RCNNwas classifying the objects the dataset and extracting features to the
bounding box. However, the losses converged at 2,000 steps and remained almost constant and
lower than 0.1 after that, suggesting thatmajor modificatiorwasrequired for the architecture

of the modelOverall,an average loss 0.0820 and a minimum loss of 0.00W&re achieved

which meant the model behavadequatelyand could be applied in retne detection and

recognitionapplication.
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Figure4-1 Total lossversus the number of training steps

Fast RCNNClassification Loss

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

0 10 20 30 40 50 60 70 80 90 100
Training step Thousands

Figure4-2 Fast RCNNclassification lossersus the number of training steps
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Fast RCNNRegression Loss
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Figure4-3 Fast RCNNregression losgersus the number of training steps
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Figure4-4 RPN classification losgersus the number of training steps
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Figure4-5 RPN regression losgersus the number of training steps
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During the training, a checkpoint was saved every five minutes and the cheekploenhighest
number of stepwasutilized to generatthefrozeninference graph which contained the equipment
usagaletection classifier after the completion of the training pro@sexporting the inference
graph, thaletectorcouldthenbe used to detect objeds an image, video, or camera feed.

To assess the imal detection and recognition performance of the trained model, it was tested
by using the images in the test datasstdescrbedin Section3.2.3.2 inChapter 3280 still
images were fed into thaetectorfor testing Based on thground truthby directobservations

of the test dataset, a total of 310 prediction labels shall be assigned to the testhigages.
4-6 presentshe test results through the confusion maiesults suggested th2@6 prediction
labels were assignednd272 of them were correctly assigned to thegeed objects giving

an overall detection accuracy &2.42%calculatecby Equations3.12 It can beobservedthat

24 labels were agged to a wrong objecepresentinghe TN valueand34 labels were missing
representinghe FPvalug achievingan overall f score of 0.903¢omputed byEquations3.15

As can be seen in the confusion mattine values of each class were not equally distributed
suggesting an imbalanced issue with the test Hatace, the Fscore was employed to evaluate

the detection accurady address the imbalanced class issue

True Class

PC Laptop Stove Oven Toaster None/other

PC

Laptop

Stove

Oven

Predicted Class

Toaster

None

Figure4-6 Confusion matrix defining the model performance using the still images in test
dataset.
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Based on the confusion matrix and Equati®ris8i 3.15 the evaluation measurts overall
andeach class were calculated and listedable4-1. The results indicated that the detector

had the ability of detecting office and kitchen applianebgh achieved an average $core

of 0.9037 in detecting all five appliancesd 0.8923 and 0.9123 in detecting office and kitchen
appliances respectivelpmong them, the detection of the toaster had the highesbiFe with

the highest recall values, meaning that it had less missed detection in percentage in comparison
with other classe3 his may be attributed to the simplicity of the test imagikthe toasterdn

cases where test images contain fewer objdwtsgetection model can directly recognize the
target object without being confused by other elemédsthe contrary, the detection of the
laptop had the lowest accuracy with the most wrong and missed detéat@m be attributed

to both the physicalize of laptops and the size of the dataset. Laptops are generally smaller in
size compared to desktop PCs, making their detection more challenging and resulting in more
missed detections, as illustrated in the confusion matrix. Owing to the visual isyndween

PC monitors and laptops and the limited dataset for laptops, some laptops were erroneously
identified as PCs.

It should be noticed that the sum of the values in the confusion matrix is more than the number
of images in the test dataset becabsenumber of appliances in use in each image is different.

In a few images, no appliance was in use; in the rest of the images, there is at least one appliance
in use. Overall, the training and testing results suggested that the trained Faster RCN has th

ability to perform live detection and recognition task.

Table4-1 Model performance measures according to the confusion matrix using test dataset.

PC Laptop Stove Oven Toaster Overall
Precision 0.9146 0.8913 0.9158 0.9556 0.9286 0.9220
Recall 0.8721 0.8200 0.8700 0.9149 0.9630 0.8860

F1Score 0.8929 0.8542 0.8923 0.9348 0.9455 0.9037

Office Kitchen

Precision 0.9134 0.9286
Recall 0.8722 0.8966
F1 Score 0.8923 0.9123
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4.2 Detection Experimental Setupand Results

To evaluate the live detection performance oftilagned Faster RCNN detector the actual
office and kitchen spaces, the detector was implemeanteédo case study roomat the
University of Nottingham This section provides the details of theffice and kitchen
experimenal setups andletectionresultsincluding live detection accura@ssessed through

loU value ancevaluation measuresd the generated equipment usage prafédspectively.

4.2.1Case Studyl: Office Detection

4.2.1.1 Experimerdl Setup

Case study 1 aimed to assess the office equipment detection perforifam@ustainable
Research Buildingvas selected as the case study buildihdocatedat the Department of
Architecture and Built Environment the University Park campus at the University of
Nottingham Figure 4-7 showsthe locationand external view othe Sustainable Research
Building. | t 6 sstoray strubturee which demonstrates stHtéhe-art techniques for
environmentally responsible and sustainable construction and provides a facility in order to
conduct research into sustable and renewable energy systems for the Department of
Architecture and Built Environment. It achieves a BREEAM rating of excellent.

University/ofy &
Nottingham =5 P lakesi

L

Test room

Figure4-7 Location and externaliew of Sustainable Resear&uilding [251].
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In order to test thérained modelthe open plan officen the first floor of the case study
building was selected as the test space to conducifibe equipment detectioaxperiment.

To enable this office as a space to test the developed model, the experimental setup was carried
outaspresented ifrigure4-8. A camera with 1080p resolution and a wided@@ree field of

view was installed close to the ceiling in the office space and connected to a eéotoput
perform equipment detection using the trained detection model. Within the detectable range,
therewere eight monitors,and each monitowas connectedo a desktop computeit was
assumed that when the monitor @\, the connected desktop computer is also running.
Therefore the combination o& monitor and a desktop computesisgategorised as a P

order to analyse the detection performance for eacthe®Cs appearingithin the detectable

area were givethe names PGIPCS8 from left to rightas presented iRigure4-9. During the
experimentthe participants behaved asual in the office, i.e., folload their own working
scheduleThe equipment usage information was gathered for a whole typical workda$ by
minute timelapse interval through the detection model. According to the clustered information,

the actual dailyffice equipmenusageprofile could be created.

103



5 0 0O w

‘ % — Meter

.f”/|f3«
10

Figure4-8 Floor plan andletectionsetup otthe case study office
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Figure4-9 The view from the camera and detected appliaimct®e case study office.
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When designingision-based detection technology, illumination is an important factor to be
considered. Because of the changing sun direction, different times of the day, weather
conditions, reflection from bright surfaces, and various obstacles of the light source, the
illumination conditions of the scene and the appearance of the target might change greatly [267].
Therefore, an initial investigation of the impact of illumination levels on detection performance
was carried outTwelve scenarios were designed in termshef different times of the day,
various daylighting, and artificial lighting conditions. The test under these scenarios was
conducted in the morning, afternoon, and evening on the same day. In this office, as the most
common way to control the amount otunal light entering the space, the opening and closing
curtain represent the high and low natural lighting levels, respectively. Similarly, artificial
lights on and off represents the high and low indoor illumination levels. The details of these
scenariosre listed inTable4-2. An RS PRO IM203 light meter with a measuring range from
20Ix to 200,000Ix and an accuracy of +3% was set on aadeskown irFigure4-8, where the
illumination level may be affected by both natural and artificial lights, to measure and record

the value of lighting levels during the test periods under different scenarios.

Table4-2 Details of different detection scenarios.

Scenario 1 2 3 4 5 6 7 8 9 10 11 12

Acrtificial

lighting X X @) O X X O O X X O o

Curtain X @] (@] X X @] @] X X @] O X

Morning Afternoon Evening

(O = on/opened, X off/closed)

4.2 .1.2Detection Results

By usingtrained Faster RCNN with InspectionMBe live equipment detection and recognition

was implemented within thease studyffice. As no laptopwasused during the tesbnly the
performanceof detectingthe PC in use wasdiscussedFigure 4-10 presentsexamples of
detection results including correct detection, wrong detection, and missed detection from the
application of the trained model in the case study office. Bounding boxegpvesented as an
output of the detection and recognition response and the loU value was shown above each of
the boxes. As shown, the moaanrecognise all the computers in use correctly with a high
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loU value. Some errors could be made such as idemgifgiwindow or drawer chest a$&
andmissed detection of some of the PG@saddition the bounding boxéshape and sizes

varied between each detection interval.

= Correct Detection :

Figure4-10 Examples of orrectdetectionwrongdetectionandmissed detectioresults

from the application of the trained modelthecase studyffice.

The detection analysis was based on the performance of the proposed detection approach during
the experimental teskigure 4-11 presents the averadeU accuracy(the detection accuracy

above each bounding box). Individual loU accuracy for each PC presented within the camera
detection view was also obtained. As PCd &C8 were not used during the whole day, the

loU accuracy was not applicable to them. Results show that the equipment detection model
achieved an average overall loU accuracy of 92.83% in detecting PC, with the highest loU
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accuracy of 93.85% achieved ietdcting PC5 and the lowest loU accuracy of 90.84% in
detecting PC4. It indicated that the model could identify all computers in use within the
detected region during the experiment with high overall and individual loU accuracies of over
90%. However, whemvaluating the IoU accuracy, only the correct detections on ¢arget
objects were included, meaning the wrong detections, which identified other objects as the

targeedobject, were not assessable by the IoU value.

Average Bounding Box Detection Accuracy

100

95 93.85
< 92.80 92.66 93.42 93.43 92.83
S
o) 90.84
=
©
S 90
)
o

85

80

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 Overall PC

Figure4-11 AverageloU accuracy foeachPCandoverallloU accuracy based on the

displayed bounding boduring realtime predictionsn the experimental test.

To furtherevaluate the detection performaniceluding correct, wrong, anchissed detectian

the onfusion matgesof individuald et ect i on for each PC and over.
are illustrated irfFigure4-12. The confusion matrices assesseddisection performanaguring
thepredictedvorking hoursstartingonceone of the?Cswas predicted to i@ O Nog the detector

and ending when PGvere no longep r e d i ¢ t e d duting thdiestdafi Gien in the
following confusion matges, the number of labelled responses appeared as true positives (top
left), true negatives (bottom right), false positives (top right)fafse negatives (bottom left)

were displayed in the form of percentage values due to a significant number of responses from
the model containing the PC usage information during the experimentaltiestonfusion

matrix resultsshowed thatluring thepredctedworking hous in this case stud?,C3 and PC4
wereal waysam@®ONBC7 and PCB8 .Whe numberndftwa positive8 &l F 0
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true negativesvas more than false positives and false negaiivesl cases, meaninthe

detection results welgghly consistent with the ground truth.

(a) True Class (b) True Class (c) True Class
PC1 TNNone'other PC2 None/other PC3 TNone/other
8 O |1837% | o% & O |3100% | 022% 8 0 0%
o &~ o = o &~
T T T
Zz £ 3 £z
= =
£ § 14.80% T 5| 134% £ 2 |1881% | 0%
Bs E =] g (=T g
= z =
(d) True Class (e) True Class () True Class
PC4 None/other PC3 WNone/other PC6 WNone/other
wr d- vy el wr T
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] o (]
T T T
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= =
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Figure4-12 Experimental testesults of(a-h) detection performance of each R@d (i)
overallPC detection performanevaluated in the form of the confusion nrabased on the

percentages of labels identified.

True positives and true negatives represent correct detections; false positives and false
negatives represent wrong detections and missed detections respdgtisetyorrigure4-12,
the percentage aforrect, wrong, and missed detections of PC in use duringréuicted
working hoursin the case study office could bbtained as shown iRigure 4-13. It can be
seen thatite proposed model could achiex@rect detectionfor 86.75%of thetime andresult

in wrong detections for 0.45% of the time and missed detections for 12808 time. he
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beg performancevasattainedn detecthg PC2, PC7, and PGB8ith the correct detectiorfer
98.44%, 99.33%, and 99.66% of the tiemaong all eight PCs.

PC1 PC2 PC3
022%_  134%

18.81%

PC4 PC5 PCo

0.45% 13329

48.71%

0

Overall

PC7
0.67% \‘/ 0 0.34%

» Correct detection = Wrong detection Missed detection

PC8
0
0.45%

12.80%

Figure4-13 Percentage ofarrect, wrong, and missed detecsaf PC in useduringworking

hoursin the case study office

The confusion matrix results displayed kigure 4-12 for each of the PCs enabled the
evaluation of the results in the form of the different classification evaluation metrics as shown

in Table4-3. An overallF, score of B252was achievedlhe best performance was achieved

by PC2with an F1 score of ®744and the lowest performance wa€4with an F1 score of

0678lAs PC7 and PC8 were predicted as AOFFO du
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3.13i 3.15the evaluation metrics could not be attained as TP and FN values wéade,
the results inTable 4-3 for the different PC monitors reinforce the evaluation maydéoU
values and indicate thathe majority of the detection response labeksre correctly assigned
to the PG which were on.

Table4-3 Evaluation of the detection performartbeoughcommon evaluation metrics.

Class: PC Precision Recall F1 Score
PC1 0.5522 1.0000 0.7115
PC2 0.9564 0.9930 0.9744
PC3 0.8119 1.0000 0.8962
PC4 0.5129 1.0000 0.6781
PC5 0.7271 0.9875 0.8376
PC6 0.8537 0.9439 0.8966
PC7 - - -
PC8 - - -

Overall 0.7096 0.9859 0.8252

It can be observed that a high overall recall valuelagldwer overall precision value indicates

that more missed detections were caused by the model implementation, where the PCs were
detected as AOFFO or other cDBHésebt wiwans thaet
the results of initial testing made in Section 4.1, where the precision value was much higher in

the initial testing. In addition, there wadliscrepancy between individual PC IoU accuracies

and evaluation metrics. These might based by different factors, which made changes in the

detectable area.

The changes in illumination levels in the detected space could be one of the main ssasons
the camera was sensitive to the lighting conditiods the detection was implemented for a
normal workday, the natural lighting was inconstant and uncontrollable, and artificial lighting
was not operated under a fixed schedulewadgonly controlled by the people in the space
based on their redgime lighting requirements. This coutthuse inbility in detection and
thereforesignificantly affect thaletectionperformance; however, it demonstrated the realistic

lighting condition changes in the space and how the detection model adapted to it.

Moreover, god eds behavi our <Sobhe atcorefacoop Wiee peopere | d a l
sitting and workingthe detection wamore stablecompared witithe momentwhen people
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were walkingaround as i resuledin unstable detection arabstacle®r blurs on the targetd
objects.The obstacleslsooccurred when people were sittiag shownn the examples in
Figure4-10, wherea partof the PC screen was blockedjpye o p | e OThis dowdeeatl $o
a higher possibility of missed detectipmsaking the discrepandg the initial testing results

which inputted still images.

In addition the PC monitor positioning angle may also havkiemced the variation in the
detection performance achieved betweetected®Cs. These also impliethat there is stila lack

of diversity in the training data to adapu all types ofindoor environmeist Furthermorethe
camera's resolutiooould beone of thefactorsaffecting the detection effectiveness. A higher
resolution can capture more details, making it easier to aefeigiment1080p which was used

in this work,is a good resolution, but higher resolutisnsh as 4K can provide better results. The
guality of the camera's lens may influence the clarity of the captured images-éightrienses

can reduce distortion and improve image sharpness.

The equipment detection and recognition results were cldsteré utilized to generate the
equipmentusageDLDP as presented iRigure 4-14. The profile provided informative data
about the amount of equipment in use during the detection pétmaever,the frequent
variations of thé&dLDP indicated the instability of this moddlherefore, further improvements

are required to enhance the detection performddeally, in order to enable the approach to
control HVAC systems to operate based on the actual equipment usage information, the profile
is intended to be inputted into th&/AC control systems directly. Before developing the deep
learning application for building energy management systems, an assessment of the feasibility
of the framework by analysing the building energy performance is essential. Therefore, the
createdcountbased equipment usa@d.DP of the case studgffice would beused to carry

out the building energy performance analysis.
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Figure4-14 Countbased office equipmentsageprofilesof a workdaygenerated from the

application of therained modein the case study office.

4.2.13 Investigation of the impact of lllumination

Due to the use of cameras, which is a vigielated technology, illumination is a key factor
affecting the performance ofdhdetection task, which was indicated in the above detection
results and needed to be consideTednvestigate the impact of illumination, twelve scenarios
were designed in terms of the different time of the day and various daylighting and artificial
lighting conditions. The representative samples of results for different scenarios are exhibited
in Figure4-15. Scenarios 4, 58 and 912 were conducted in the morgimfternoon,and
evening, respectively. As the results have shown, the trained detection model can identify the
desired object under different lighting conditions within the detection region with relatively
high accuracy. However, some obvious mistakesh sas missed detection and wrong
prediction, often occurred. For examplesStenario 5 the leftmost monitor was not identified.

Reducing these errors is the next step for model improvement
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Figure4-15 Detection under different illumination conditions
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In order to compare the illumination levels under different scenarios, the illumination value
was measured and clustered by a lux m&igure4-16 plots the illumiration at the measuring

point during the test periods under different detection scenarios and time of the day. As the
source of the artificial lighting was the same throughout the experiment, the illumination
contributed via artificial lighting was constafthe value of illumination from natural lighting

is varied at different time. However, it is evident that the illumination levels in the morning
and afternoon were similar. The main reason may be that the vegetation outside the selected
office space block most of the area of the windows which limits natural light to reach the
indoor space. Hence, the effect of curtains in this study is not obvious as well. The illumination
levels at nighttime were lower than at daytime due to the lack of natural ligintisgenario 9

and 10, the illumination didndét drop to neal

space was still provided to ensure a certain brightness for working.
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o ——Scenario 1
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Figure4-16 lllumination levels at the measuring pourtder 12 scenarios and time of the.day
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Table4-4 lists the detection performance underfaiént scenarios. It includes the individual
values and average values of Precision, Recall asddfe for all detection scenarios. Based

on their definitions, Precision and Recall values can indicate the error rate of the wrong
prediction and missed cdttion, respectively. As the table presented, the selected model
achieved a lower average Precision of 0.663 and higher average Recall of 0.917, which means
that when implementing the detection task, wrong detections were the main errors that occurred.
F1 score balances these two measures which can sufficiently represent the detection
performance with one value. The average value stére of 0.746 indicated that the selected
detection model could handle the equipment detection and recognition task excellently with a

relatively low error rate.

Table4-4 Detection performance under different scenarios

Scenario Precision Recall F1 score
1 0.629 0.925 0.706
2 0.578 0.969 0.696
3 0.825 0.975 0.874
4 0.747 0.808 0.764
5 0.543 1.000 0.699
6 0.527 0.986 0.669
7 0.721 1.000 0.823
8 0.758 0.779 0.761
9 0.758 1.000 0.853
10 0.596 0.994 0.732
11 0.608 0.894 0.705
12 0.671 0.694 0.672

Average 0.663 0.917 0.746

By comparingFigure4-16 and Table4-4, it can be observed that at daytime, the value;of F
score is higher when applying sufficient artificial lighting. On the coptegplying the indoor
lighting on the detected side at nighttime resulted in the lower valuasobfe. This may be
caused by the over bright illumination conditions around the desired object because in the
evening, without the natural light, the illimation level in the whole space decreases,
increasing the brightness of the light projecting to all the surfaces. This may result in the surface
adjacent to the monitors being much brighter than usual and further causing the difficulty of
detection and gnition. While when dimming the indoor lighting on the detected side, the
background of the detection scene is darker, which makes an obvious contrast between the
brightness of the background and desired object. It helps the detection model to Idak for t
desired object more easily.
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According to the above analysisiritlicates that different illumination conditions significantly
affect the performance of the detection task. At daytime, higher illumination levels around the
object of interest could achieve a better detection performance; while at nighttime, the selected
model performed better under dimming lighting. In other words, various lighting conditions
can probably result in the proposed detection model's great or poor detection performance,
which may further affect the building energy demand estimation. One tamporvay to
enhance the detection model to adapt to different lighting conditions is to collect sufficient
training data of various lighting scenarios for the desired objects.

Although it was an initial investigation, these obtained results could comtribudptimising

the computer vision equipment detection model and designing future buildings and operation
strategies. However, further investigation is required and should be carried out using the lights
with a controllable illumination levelnd colour emperature at different positions in a chamber
isolating the other lighting source for evaluation. Before further investigations, the model

should be optimized to adapt to varied lighting conditions, strong shadows, and reflections.

4.2.2Case Study: Kitchen Detection

4.2.2.1 Experimenl Setup

To evaluate the performance of the proposed approadietecting kitchen appliangdabe

model was implemented in the case study buildiMgrk Group House located at the
Department of Architecture and Built Bmanment, University of Nottinghantigure 4-17
presents the location and external viewlairk Group Housdt has two floors and a basement
including several office spaces which are currently occupied by staff and postgraduate students.
The kitchen on the ground floor of this building was selected as the test room as it is connected
to an operplan office where six researchers usually workirdpworking hours on weekdays

and there is no partition between these two spaces. Because of this, the environmental
conditions in these two spaces directly influence each other. Therefore, the selected test room
is suitable for this study to implemeritet proposed detection model and investigate how
different ventilation strategies would affect the environmental conditions within both office
and kitchen spaces when cooking and how the proposed approach would contribute to the

improvement of energy effiency and indoor air quality.
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Figure4-17 Location and external view of tidark Group Hous§252].

Figure4-18 shows the setup of the detecti@stin the kitchenlt has an electristovewith

four stovetopsan ovenanda toastewhich would be used in the tests. A camera connected to
acomputer which implemeatithe developedraster ENN detection model was installed at
the corner of the room close to the ceiling to enable the capture of the cookingharéast
took 45 minutesincluding 18minute precooking, 26minute cooking, and3tminute post

cooking periods. The modeérformed the detection and recognition tdskng the whole test.

| }

Extractor Fan
| Kitchen % —

Private
office 1

Open plan
office

Private
office 2

Meeting
room

Figure4-18 Floor plan and detection setup of the kitcheMark Group House
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It should benoted thathis experiment aimed to demonstrate the capability and feasibility of
the proposed approach in reabrld implementationhowever, due to resource constraints, the
involvement of human subjects, and environmental impact, this experimentlengiag to
repeat.In certain experimental scenarios lacking adequate ventilation, there was a notable
deterioration in indoor air quality. This deterioration led to an exceedingly uncomfortable and
unhealthy environment for individuals working in the caseudy building. Moreover it
necessitated a considerable duration for pollutant levels to naturally decline to an acceptable
standard. Balancing concerns related to productivity and health, the requirement for prolonged
space evacuation to facilitate thepetition of the experiment arodéeverthelesslogistical
challenges emerged in aligning everyone's availability within the case study building.
Furthermoreit is essential to consider that environmental conditions fluctuate daily, posing a
challengem maintaining consistent experimental results, even when all variables are rigorously
controlled across each repetition of the experimEmerefore, tk analysiswould rely on the

results derived from the experiment, in which efforts were made to minputeatial errors

4.2.2.2 Detection Results

To evaluate the ability of the model liwe detection, thdrained Faster RCNNMhodel was
implementedn the case study kitchea performreattime kitchen equipment detectionhere
wasoneelectricstovewith four stovetopsone oven, and one toastethe case study kitchen.
Figure4-19 showsexamples of arrectdetectionwrongdetectionandmissed detectioresults
from the application of the trained modelthe case study kitcheh can be observed thtte
model has the ability to recognise all the kitchen appliances in use corkéailever,the
model could wrongly iderfly a persorasstove or oven in use when the person was close to
them or not recognisevhen the stover oven wereactually used for cookingas shown in

examplesThese were the typical errasscurring during the experimental tests.
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Figure4-19 Examples of correct detection, wrong detection, and missed detection results
from the application of the trained model in the case study kitchen.

According to the loU value shown above each of the bounding boxes theiexperimental

test, the averagdoU accuracy of overaland individual kitchen equipment detection and
recognition arepresentedn Figure 4-20. The results showed that the modehieved an
average loU kitchen detection accuracy of about 94.01% with individual kitchen equipment
detection accuracy of about 87.84%, 98.52%, and 95.68% for stove, oven, and toaster in use
respectively. It indicated that the proposed model enablelekitequipment usage detection

with a high loU accuracy. Specifically, the loU accuracy of detecting the oven achieved the
highest accuracy because compared with the other appliances, the appearance, location, and
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positing angle of the oven from the viewtbé camera were unchanged when cooking. On the
contrary, as the usage of the stove was predicted by detecting the pan or pot used for cooking
at the stovetop, the continuously varied appearance and positing angle of the pan or pot from
the view of the camra caused an unstable detectigiming the lowestioU accuracyamong

the targetdkitchen appliances

Average Bounding Box Detection Accuracy

100.00 98.52
95.68

~  95.00 94.01
S
[}
=
S 9000
- 87.84
o

Stove Oven Toaster Overall

N I I
80.00
Figure4-20 Average loU accuracy for each kitchen appliance and overall IoU acaifracy

kitchen appliace detectiofased on the displayed bounding box duringtiead predictions

in the experimental test.

The confusion matrices of individual and ovekatithen equipmentietectionwere obtained for
further evaluabn of detectiorperformancealuring the experimental test in the case study office
Figure 4-21 shows the confusion matrresultsduring the whole experimental tedtiration
including precooking, cooking, and pesboling periodsThe number of labelled responsessw
displayed in the form of percentage valbesause o significant number of responses from

the model containing thieitchenequipmentusage information. The confusion matrix results
showed thathe number of true positives and true negatives was more than false positives and
false negatives in all casemd the percentageof true negative# all individual detectioa

were higher than 50%, meaning all the appliances wsed less than half of the time in the

test.It indicatesthatthe detection results were highly consistent wtlity.
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Figure4-21 Confusion matrixesults of detection of (a) stove, (b) oven, (c) toaster, and (d)

overall kitcherequipmenduring the experimental test (45 min)

According toFigure4-21, the percentage abrrect, wrong, and missed detections of kitchen

equipment in use during the experimental test for 45 minutes in the case study kitchen could

be obtained as shown igure4-22. Results presented that the proposed model could achieve

correct detections for 94.66% of the time and cause wietections for 1.18% of the time

and missed detections for 4.16% of the time overall. The percentages of correct detections for

all targeted cooking appliances were over 90%, suggesting that the model could distinguish

whet her the «c¢ookQNog oarpwith@Rihaeaumcywer e
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Figure4-22 Percentage of correct, wrong, and missed detections of kitchen appliances in use
during theexperimental test (45 miim the case study office.

To assess the detection performaacly whenthe kitchen appliances wensedfor cooking,the
confusion matcesof individual and overall kitchen equipment detection were obtained during
thecooking period in the experimeas illustrated ifFigure4-23. Similar tothe results irfFigure

4-21, the number of true positives and true negatiwasalsomore than false positives and

false negatives in all casé&et, the percentagof true positivesluringthecooking periodvere

higherin comparison with the results for the whole teslicating a matchith the ground truth.
Moreover Figure4-24 shows the percentageafrrect, wrong, and missed detections of kitchen
equipment in use during the cooking period for 20 mmiuighe experiment. Compared with

the results inFigure 4-22, during the cooking period, the percentage of correct detections
declined by about 5% while the percentage of missed detections increased by around 5%,
suggesting that missed detection was thain reason leading to the decrease in detection
accuracy. In addition, as can be seen, an increase happened to the percentage of missed
detections for stove and oven, especially for stove which increased by almost 10%. It suggests
that therds a potenial to further enhance the detection performanceeldycing the misses
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Figure4-23 Confusion matrix results of detection of (a) stove, (b) oven, (c) toaster, and (d)

overall kitchen equipment during theaking period in the experimental test (20 min).
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Figure4-24 Percentage of correct, wrong, and missed detections of kitchen appliances in use

during the cooking period in the experimental test (20 min).
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Basal onFigure4-21 andFigure4-23, the evalation metricgor individual and overall kitchen
equipment usage detectidaring the entire test arlde cooking period only were listed reble

4-5. Theoverall i scorecould reach over 0.9 fdroththe entire testiurationand the cooking
period The recall value®or overall detection and individual detection for stove and oven were
lower than precisiowalues,while thetoasterdetectionhad theopposite resultlt indicated

more missed detections occurring when detecting stove and oven, andnmogedetections

in toaster detectigmmatching the results iRigure4-22 and Figure 4-24. However, it can be
observed thah comparison to the resultstime cooking period onlythe precision anéh score

values for the entire test duration were lowldris is because the detection responses i pre
cooking and postooking were either false positives or true negatives as no appliance was used
It causedhe unchanged number of true positives and false negatives while an increase in the
number of false gsitives for the result®r the entire testeading tahe same recall values but
reducedprecision andF: score valuesaccording to Equation8.1371 3.15 Overall, the
evaluation metricesults inTable 4-5 for the differentkitchen appliancemadereinforcenent

tothe evaluation made by lodtcuracyand demonstratn excellent performance of the model

in detecting kitchen equipment usage.

Table 4-5 Model performance when implemented durihg entire test45 min) and cooking

periodonly (20 min).

Entire Test

Stove Oven Toaster Overall

Precision 0.9691 0.9839 0.8824 0.9552
Recall 0.7202 0.9050 0.9574 0.8578
F1 Score 0.8263 0.9428 0.9184 0.9039

Cooking Period Only

Stove Oven Toaster Overall

Precision 0.9752 0.9967 0.9375 0.9787
Recall 0.7202 0.9050 0.9574 0.8578
F1 Score 0.8285 0.9487 0.9474 0.9142

To compare thdive detection performanceith the initial testing results ifable 4-1, the

results inthecooking period only were employedtae still imagedor theinitial testingwere
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captured whethe targeted appliances were usedcfmoking.It can be observed thdtelive
detection performance for the stavas inferior to thénitial testing performanceue to darge
decrease in recall valaes a result o& significant increase in the number of misdetections
The frequentmovement of the person could be the main factoit @suld cause unstable
detection leading to frequent changesthe positioning anglef the pan andblockages from
the view of the camerd&he distance from the stovetop to the camera could be anaher k
factor. When labelling the training datane of the criteriao identify the stove in ussasthat
there was food inside the pan or pdtich wason a stovetopAs thecamera wasot close
enough teenable a explicit detectiorof thepan withfood inside The illumination levehlso
affectedits performanceas undemnlow illumination leve| the occurrence of shadoweduced
the brightness of the targetadpliancesincluding thefood inside making negative impacts

ondetection performance.

When implementing the retime detectiona DLDP of equipment usageas generatedor
each classFigure4-25 shows the profiles for thstowe, oven, and toastersed for cooking
generated by theesults obtaine@very 5 secondduring the experimenfhe reddotted line
stands for thectual equipment usage situation, and thesadd line represents theLDP
identified by the proposedetectionmodel. Comparing theDLDP with the actual situation
(Ground Truth)within the detected space during the test, some errors oceynpadentt. For
instancethe actualuse ofthe stove happeneabout two minutes earli¢han themoment that
the modelstared recognizingthe stove in useThis might be caused by the difficulty of
identifying the ingredients inside the pamd the lack o€ontinuity of detectionsuggesing the
requirementgor further improvements tomprovethe detectioraccuracy in detecting kitchen
equipment usageThis could assist the HVAC systeim adjusing its operation to make a
timely response to dynamic variations of tt@oking behaviour to enable demadiven
heathg, cooling, and ventilation controls to improemergy efficiency andhe indoor

environment.
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Figure4-25 Kitchen DLDP verseground truthin Test 5(0 means OFF, 1 means ON)

4.2.3 Discussion

Theimplementation of the trained model in the case study office and kitchen demonstrated a
good performance in office and kitchen equipment usage detedtien.model achieved
averageF; scores of 0.8252 0.8285, 0.9487, and 0.947d detecting PCstove, ova, and
toaster It indicated a high accuracyf the modelin reattime equipment usage detection
meaningit can correctlyassignthe majority of the detection response labels totingeted
equipmentwvhichis on. It can be observed thatcording to the case study results, the model
performed better in kitchen equipment usage detection overall. This may be the resudtef a
constant illumination level andsanaller space in the kitchen leading to a shorter distance from
the camera tthe cooking areaVloreover,comparedvith the initial testingthe live detection
could be affected by several factors resulting in a reductioletection accuragyespecially

for PC and stoven thecase studies

Firstly, the illumination levelvariationin the detected spaceas one of the main reasons
affecting the detection performanespeciallyfor long-term detection In Case Study 1, the
model was implementad the office employingatural lighting through windows and artificial

lighting. As the test was carried out for a whole day, rlaéural lightinglevel changed over
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