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Abstract 

The aim of this study was to develop a real-time indoor equipment usage detection approach 

using the computer vision and deep learning techniques to aid the adjustment of heating, 

ventilation, and air conditioning (HVAC) operations based on the actual demands in office and 

kitchen spaces. This could not only address the issue of under- or over-estimation of the 

building energy consumption but also maintain a comfortable indoor environment for 

occupants by adjusting HVACôs operations based on the intuitive and real-time data.  

The indoor equipment usage detection model was developed and implemented using Python 

and TensorFlow API. This work used AI-enabled cameras as the indoor detection technique 

and locally running trained deep learning algorithms to analyse and take action based on how 

equipment was utilised in the spaces. Experimental tests were carried out in case study office 

and kitchen to assess the detection performance of the developed approach. The results indicate 

that the developed deep learning detection approach could achieve 82.52% accuracy in 

detecting office equipment and 91.42% in detecting kitchen equipment. 

This work also compared the building energy performance of the developed approach with a 

conventional approach such as the use of static heating, cooling, and ventilation operation 

profiles through building energy simulation (BES) and on-site environmental measurement. 

The equipment usage profiles generated by the collected information from deep learning 

detection approach was fed into building energy models to evaluate the impact of using this 

approach in buildings. Simulation and environmental measurement results highlighted that 

following the profiles generated by deep learning detection techniques could make the HVAC 

system adapt to the actual demands to maintain a better indoor environment and essentially 

minimise the energy wastes arising when the supply of the HVAC systems is more than the 

demand.  
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Chapter 1 Introduction  

As a result of the growing population and urbanization, global energy consumption has 

significantly increased, leading to an increase of greenhouse gas emissions. According to the 

Global Status Report for Buildings and Construction published in 2020, the building sector 

consumes up to 35% of global total energy use and produces about 38% of total greenhouse 

gas emissions annually, as shown in Figure 1-1, which is a crucial factor resulting in climate 

change and global warming [1].  

 

Figure 1-1. Global share of buildings and construction final energy and emissions [1]. 

 

Sustainable and energy-efficient solutions have gained more interest among users as a way to 

counter the growing energy use and emissions to mitigate the effects of global climate change. 

The European Commission has established a clear goal of reducing greenhouse gas emissions 

by at least 40% by 2030 and achieving carbon neutrality by 2050 under the Paris Agreement 

[2]. To pay more attention to energy access challenges, other international organisations, such 

as the International Energy Agency (IEA), evaluated future scenarios. IEA developed the 

óSustainable Development Scenarioô and the ó450 Scenarioô, which demonstrated a feasible 

path that ensures the achievement of sustainable and contemporary energy services by 2030 to 

achieve climate goals with the utilization of the current technologies and considerations of 

human health implications [3]. However, due to the effect of COVID-19 resulting in the worst 

energy efficiency in 2020 during the past decade, the improvement rate must be doubled from 

current levels to accomplish the goal of net-zero carbon emission by 2050 [4]. This illustrates 

the significant need for more energy-efficient and sustainable technologies. The UK 
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government has also set a goal of achieving net-zero greenhouse gas emissions by 2050 [5]. 

This substantial decrease in emissions is not unachievable, however, it will necessitate a 

societal shift away from energy-intensive activities and toward low-energy and the 

development of zero-energy technologies. Therefore, new technologies are essential to address 

the design and planning issue of more sustainable buildings to lessen the building energy 

demand.  

Additionally, the demand for better thermal comfort and indoor air quality (IAQ), which 

strongly correlates with the population's health and productivity, is also rapidly growing [6]. 

This is a critical issue as people spend about 80ï90% of their time in indoor spaces at home, in 

offices, or in other types of buildings. Furthermore, during the COVID-19 pandemic, 

occupancy patterns in buildings such as in offices have varied greatly due to social distancing 

requirements, self-isolation, lockdown, and more employees getting accustomed to working 

remotely [7]. Although employees started to return to the office when restrictions were lifted, 

the pandemic has made businesses rethink their workplace strategies, with many moving 

towards flexible workspace models after seeing its benefits [8]. This also means that the design 

and operation of building service systems require rethinking to adapt to the changes in indoor 

spaces. Therefore, the use of new technologies, such as advanced smart control systems, which 

can meet these requirements is a key issue in the design of future building management systems. 

In the building sector, the heating, ventilation, and air-conditioning (HVAC) system is the 

major energy consumer, which takes up about 40% of total energy consumption [9]. Due to the 

growing population and urbanization, the demand for HVAC systems is continuously increased, 

which leads to a larger amount of energy use, especially in regions with a hot climate, such as 

China, due to a huge increase in cooling demands. Since 2010, space cooling, which is the 

fastest-growing end-use in buildings, has increased by more than 20%, as shown in [9]. 

Although HVACs make a substantial contribution to energy consumption, it is estimated that 

around 90% of them do not operate efficiently [10]. Without any action to address their 

efficiency, it can result in significant energy wastage and increased financial expenses, 

especially for space cooling, which is expected to triple by 2050 [11]. Thus, enhancing the 

energy efficiency of HVAC systems stands out as a main strategy for reducing greenhouse gas 

emissions and attaining the energy conservation objectives established by governmental 

authorities. 
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Among all building types, office buildings emerge as prominent energy consumers and 

significant contributors to emissions, often exhibiting a high reliance on HVAC systems 

compared to other types of buildings [12]. On average, HVAC systems in office buildings 

consume from 40% to 50% of the total energy used in the building [13]. This percentage can 

be higher in climates with extreme temperature variations or in older buildings with less 

efficient HVAC systems. This can be attributed to a combination of factors inherent to office 

environments. 

Office buildings typically have a high level of occupancy density, which has gradually elevated 

year by year. A study conducted by the British Council for Offices (BCO) indicated a 

noteworthy reduction of the average office space allocation per desk on a standard floor within 

the UK from approximately 14.8 m2 in 2001 to 9.6 m2 in 2018 [14]. It leads to increased internal 

heat gains and necessitating rigorous ventilation and temperature controls. In addition, office 

buildings are often in use for extended hours, with occupants working during regular business 

hours as well as, at times, even during evenings and weekends. Also, the post-pandemic era 

has precipitated diverse occupancy patterns in office buildings [15]. The prolonged or varied 

occupancy requires continuous climate control. Moreover, offices are filled with electronic 

equipment, such as computers, servers, and copiers, which contribute to elevated heat loads [4]. 

HVAC systems are essential to manage and dissipate this heat to maintain a comfortable 

working environment and prevent equipment overheating. Furthermore, maintaining a 

comfortable indoor environment is crucial in office settings to enhance productivity and 

occupant satisfaction [16]. HVAC systems assume a significant role in the supply of fresh air, 

purification of indoor air from pollutants, and control of humidity levels, thereby enhancing 

overall occupant health and satisfaction.  

It should be noticed that many office buildings incorporate kitchens to offer occupants a 

convenient area for meal, snack, and beverage preparation and storage. This enhances job 

satisfaction by offering a comfortable area for breaks and meals, saves occupants time, and 

increases productivity by reducing distractions and downtime. However, food preparation 

activities can generate substantial heat from cooking equipment, potentially resulting in low 

thermal comfort levels if this excess heat is not adequately dissipated. Additionally, activities 

conducted within these spaces, such as cleaning and cooking, can profoundly affect IAQ in not 

only kitchen spaces but also adjacent office spaces. For instance, the process of cooking 

releases a variety of odours, smoke, and pollutants [17]. Especially, cooking with gas can 

generate combustion byproducts such as carbon monoxide and nitrogen dioxide, substances 
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that may pose serious health risks if not appropriately ventilated [18]. To ensure occupantsô 

health, well-being, and productivity, HVAC systems are employed extensively within kitchens 

to help maintain a comfortable temperature and prevent spread of cooking-related pollutants. 

Therefore, enhancing the energy efficiency of HVAC systems is vital not only to reduce 

avoidable energy consumption but also to align with occupants' actual comfort requirements. 

As one of the techniques for achieving the efficient operation of an HVAC system, the control 

system has a significant contribution to energy use reduction as well as a satisfactory indoor 

environment [19]. Compared with the conventional on/off controls, over 30% of the energy 

could be saved by utilising modern controls of HVAC systems which adjust the operation to 

satisfy the actual requirements while simultaneously providing optimal comfort [20]. In 

addition, according to the data clustered in [21] during building operation periods, there is a 

remarkable difference between designed and actual energy consumption in office buildings, as 

shown in Figure 1-2. This difference may result from an unreasonable prediction of energy use 

values in buildings during the design stage and the excessive waste of energy during the 

operation period [22]. It implies that the current energy modelling methods can not accurately 

stand for the real consumption, and an optimized control system is necessary to improve the 

operation of office buildings. Moreover, great developments have been made in building 

controls on energy optimization and smartness in previous studies. An example of advanced 

technology is an artificial neural network-based model predictive control system which can 

create dynamic temperature set-point profiles by data processing to adapt the operation [23]. 

In terms of current studies, more intelligent designs or technologies for building controls are 

still demanded to achieve smarter buildings and reduce energy demand. 

 

Figure 1-2 Predicted versus actual energy use in office and education buildings [21]. 

0

20

40

60

80

100

120

140

Office Education

M
e

a
n
 a

n
n
u
a

l 
e

n
e

rg
y
 c

o
n
s
u
m

p
ti
o

n
 

(k
W

h
/m

2
/y

e
a

r)

Design heat

Actual heat

Design electricity

Actual electricity



 

6 

 

One of the factors considered in the design of control strategies in the present research is 

equipment used within office buildings, which is an important element affecting energy 

consumption. In office buildings, heat gains are expected to rise significantly with the 

increasing use of equipment demonstrating a considerable energy-saving potential with the 

improvement of equipment usage patterns detection and prediction [24, 25]. Hence, issues with 

air-conditioning in office buildings could become more prevalent as equipment usage and 

external temperatures continue to increase [26] and regulations for envelope insulation and 

windows have become stricter. Moreover, good indoor air quality is essential as people spend 

the majority of their time indoors, where the air could be more polluted than outdoor air [27]. 

Hence, the accurate detection and prediction of equipment usage in offices and kitchens could 

help address these issues by improving the performance of HVAC controls based on the actual 

demands. The information can also be used to control passive strategies such as natural 

ventilation openings which can be adjusted based on the predicted heat gains and cooking 

appliance usage in an occupied space. 

The sensing of occupancy information, such as the number of occupants and distribution in 

space, has been widely investigated in many studies [28, 29]. Several technologies were 

developed for detecting occupants, such as infrared and environmental sensors, radio frequency 

identification, WiFi devices and wearables. Each has its advantage and limitations and has been 

shown to assist control systems and enhance building energy efficiency [30, 31]. However, 

studies on the sensing of equipment usage information are currently limited. Some studies [32, 

33] collected and identified equipment such as computers and printers from the consumption 

data by using smart meters or plug load sensors. Yet, it would be impractical to install smart 

meters on every unit in buildings with a large amount of equipment, i.e., open-plan offices and 

computer rooms. The sensors measuring factors such as carbon dioxide (CO2) levels, 

particulate matter (PM2.5), and volatile organic compounds (VOCs) have been widely used to 

monitor the level of indoor air quality when cooking [34]. These sensors can provide numerical 

measurements of their concentrations, while the sensors' time delay results in the HVAC 

controls' response delay to make timely adjustments accordingly. 

Several studies related the equipment usage with occupants' number and/or behaviour. For 

example, Anand et al. [35] estimated the plug and lighting load by analysing the collected 

occupancy shape and motion data. Similarly, Wang and Ding [36] estimated the equipment 

energy use in multi-occupant office rooms by examining the occupant behaviour. While Gunay 

at el. [37] developed a model to predict equipment load patterns in office spaces using a 
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combination of occupancy data from motion sensors and plug load data. The limitation of this 

method is that the equipment usage profile is obtained by analysing other information rather 

than directly detecting the equipment usage and would require additional sensors. Another 

study [38] developed data-driven models using survey questionnaires to predict equipment 

usage in an office. Although surveys are cost-effective, high-representative, and relatively easy 

to administer, their results are affected by several factors such as the possible inappropriateness 

of the questions, inflexibility , and the lack of time to carry out the survey causing less collected 

samples, which can affect the surveyôs results. The limitations of these approaches impede the 

development of demand-driven control solutions. More developments are essential to allow the 

real-time detection and recognition of equipment information and usage and allow HVAC to 

react dynamically to indoor-outdoor environment changes. 

Unlike other sensors commonly used in the existing studies, cameras can work like human eyes, 

which can detect changes without delay [39]. The use of cameras coupled with vision-based 

occupancy detection and recognition technology has been garnering a lot of interest. The use 

of cameras and computer vision is not exactly new and has been studied for a long time for 

detecting objects. However, the computer vision field has been the subject of increased interest 

due to the increased accessibility to larger computational power and the rise of artificial 

intelligence (AI), specifically the success of deep learning. Deep learning, a subset of machine 

learning (ML) that teaches computers to learn by examples to do complex tasks such as seeing 

and hearing, can achieve accuracy at the human level in object classification, speech 

recognition, vehicle, and pedestrian detection, and so on. Compared with the traditional 

machine learning algorithms which require a domain expert to identify most of the features to 

reduce the complexity of the data, deep learning learns features from data incrementally, 

eliminating the requirement for domain expertise. Also, deep learning can have a better 

performance in terms of object detection with a higher amount of training data. It extracts 

features by itself via various filters to generate feature maps to reduce the data's complexity 

[40]. Its ability to detect objects such as the type, count and location is promising. This 

highlights the potential of further study and development of strategies such as computer vision 

and deep learning that can be implemented into building HVAC systems [41]. 

Many studies have already explored the applications of using computer vision and deep 

learning methods for human beings such as estimation of the number of people [42], emotion 

recognition [43], and clothing [31]. Most studies focused on improving the performance of the 

deep learning model to accurately detect the presence and type of objects in spaces. However, 
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to the authorôs knowledge, little work has attempted to predict the associated heat gains and air 

pollutants from the equipment used in offices and kitchens, which can be utilised to better 

estimate the heating, cooling, and ventilation requirements of a space. For example, when the 

number of equipment being operated in a room is detected to be decreasing in cooling season, 

real-time adjustments to the cooling setpoint can be made to counteract the decrease in heat 

emissions to reduce the cooling energy consumption; when the cooking appliances are detected 

to be operating, the ventilation setpoint will be adjusted accordingly to ensure sufficient 

ventilation to maintain good indoor air quality. There are limited studies on the application of 

such methods in office and kitchen environments, and the detection of multiple equipment 

usage in a given time frame should be explored. 

 

1.1 Aims and Objectives 

The overall aim of this work was to develop a real-time equipment usage detection strategy 

using computer vision and deep learning techniques to optimize the efficiency of HVAC 

systems in office buildings. This will address the issue of under- or over-estimation of the 

building energy consumption and maintain a comfortable and healthy indoor environment for 

occupants by adjusting HVACôs operations based on the intuitive and real-time data. To 

achieve this aim, the main objectives listed below are carried out in this research. 

1. Conduct a comprehensive review of the AI technologies used in the built environment, 

the monitoring of main internal heat gain sources, the state-of-art monitoring methods, 

ML techniques used for collecting and analysing data, and the state-of-art HVAC 

control strategies.  

2. Prototype a novel design of a vision-based detection approach using a deep learning 

algorithm for indoor equipment usage monitoring. 

3. Develop a deep learning-based approach for detecting various types of equipment. The 

deep learning algorithm will be trained and tested with the use of the developed dataset 

containing images of real offices and kitchens. 

4. Deploy the trained equipment usage detector in actual office and kitchen environments 

to investigate its detection and recognition performance. 
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5. Conduct energy modelling by a commercial Building Energy Simulation (BES) tool 

and on-site environmental measurements to investigate the potential effect of the 

developed approach on the energy demand and indoor air quality. 

 

1.2 Research Methodology 

To tackle the issues described above, this research will follow a systematic methodology as 

shown in Figure 1-3. A thorough analysis and comprehensive literature review in related areas 

will be undertaken to identify the problem and motivation and define the objectives of the 

solution. Three major areas of existing literature will be reviewed, including the existing 

monitoring technologies for main internal heat gain sources, ML techniques used for collecting 

and analysing data, and the state-of-art HVAC control strategies in buildings. Following this, 

a prototype of the proposed approach will be designed and developed using computer vision 

and deep learning methods. The performance will be assessed through experimental tests and 

building energy simulation (BES) and optimized accordingly. The development and 

investigation conclusions will be drawn from the feasibility and performance of the proposed 

approach. 

 

Figure 1-3 Workflow for PhD Methodology 
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1.3 Thesis Structure 

The thesis is organised into six chapters. A brief summary of each chapter is listed as followings.  

Chapter 2 introduces the current state of AI technologies in the built environment and compares 

the state-of-the-art occupancy and equipment monitoring methods, ML algorithms for data 

collection and analysis, and existing HVAC control systems. The research gaps are also 

highlighted in this section.  

Chapter 3 presents the framework of the proposed vision-based equipment usage detection 

approach, the details of the development of the framework, and the employed performance 

assessment methods.  

Chapter 4 shows the evaluation of detection and recognition performance including the analysis 

of the training results, initial tests using the still images in the testing dataset, and the 

implementation in the case study office and kitchen. 

Chapter 5 presents the evaluation of the impact of the proposed equipment usage detection 

model on energy performance and indoor environmental conditions through experimental tests 

and building energy simulation carried out in the case study office and kitchen. 

Chapter 6 summarises research findings and identifies potential future works to enhance the 

research and further develop the proposed approach. 
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Chapter 2 Literature Review 

This section provides an overview of the recent AI technologies employed in the built 

environment, a review of existing occupancy and equipment loads detection technologies 

highlighting the strengths and limitations of each technique, the state-of-art ML algorithms 

used to analyse the collected data from detection technologies, and the current demand-based 

HVAC control systems. Moreover, a brief summary of research gaps which would be addressed 

in the present research, is also presented in this section. It should be noted that although the 

aim of this research was to focus on the exploration of equipment usage detection, the studies 

about occupancy detection techniques were also reviewed, as there is a strong correlation 

between occupancy and equipment usage within a space. In addition, there are lack of studies 

on equipment detection while abundant advanced researches on occupancy detection exist, 

which may significantly contribute to the development of equipment detection technology. The 

studies considered were mainly from the year 2012 to 2022 and searched by Google Scholar, 

Scope, ScienceDirect, Institute of Electrical and Electronics Engineers (IEEE) with keywords 

of ñequipment monitoringò, ñoccupancy monitoringò, ñmachine learningò, ñdeep learningò, 

ñHVAC controlò, and so on. 

 

2.1 AI and Built Environment  

AI is a fast-growing technology. So far, it has already exhibited impressive abilities in learning 

and doing many human tasks but with a near zero margin of error. The built environment has 

a huge impact on all aspects of the daily life. Great potential can be explored in the 

digitalization of this industry and the availability of data for smart management and 

optimization on a building scale. Recently the introduction of AI technologies in the built 

environment is gaining tremendous interest mainly in three areas: automation in design and 

construction, smart and embedded technologies to create responsive buildings, and advanced 

facility management, which can reduce the labour-intensive processes and also improve the 

working performance of the systems [44]. It indicates that more efficient procedures, which 

require less human effort to make decisions and solve the arising issues, can be achieved by 

employing AI techniques. As the requirement of a large shift in energy use and the optimal 

energy efficiency for the built environment, learning, monitoring, and prediction for the 

building energy systems significantly rely on AI algorithms and devices in terms of the 
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development of future cities. Therefore, optimized building performance, robust building 

information systems, intelligent building services become attractive and beneficial topics for 

AI technology developments within the building sector. 

 

2.1.1 Applications in Building Performance 

Building performance is the core factor affecting building energy use and the indoor 

environment. Thorough and precise assessment of building performance contributes to early 

and exact solutions during the design, construction, and operation stages of new and existing 

buildings to optimize building energy efficiency and indoor comfort level to enhance human 

comfort and productivity. Currently, computer-based models which are applied on building 

design, construction, operation in the early stages are rapidly developed to assess and optimize 

the building performance. Yahiaoui [45, 46] designed and developed a distributed dynamic 

simulation environment which can be a representation of the Building Automation and Control 

Systems (BACS) architecture by combining MATLAB/Simulink and Environmental Systems 

Performance ï Research (ESP-r) into a network to simulate the real-world operation. It 

provides a cheap and time-saving way to analyse real-time performance and optimize the 

networks of the real control systems.  

As the building industry is one of the most important sectors influencing the quality of life and 

the environment, planners and property developers pay more attention recently during the 

design phase to the life-cycle cost of owning and operating buildings. Therefore, some studies 

focused on the use of AI models and programs in building energy modelling at the early design 

stage to deal with the possible large difference between designed and operational energy use. 

Feng et al. [47] developed an innovative method to combine parametric design and ML 

algorithms to evaluate the buildingôs environmental performance without the use of default 

values or the requirement of knowing the design parametersô probability distributions. In the 

study [48], a back propagation neural network model based on a fuzzy clustering algorithm 

was developed to predict building energy performance, integrated with TRNSYS and 

MATLAB . Singaravel et al. [49] proposed DL techniques to accurately estimate energy 

consumption at the design stage in order to mitigate potential uncertainties and examined that 

DL achieved higher accuracy than a simple artificial neural network (ANN) and faster 

computation speed than building performance simulation. These suggest that the use of AI 

technologies could assist not only the analysis of the building performance but also the 
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provision of design support, such as the impact of design parameters and the technology 

selection, placement, and configuration in the early design stages. 

However, constructing effective building performance models require extensive data. The 

challenge lies in ensuring the quality, quantity, and diversity of data for training artificial AI 

models. There is a critical need for research to bridge the gaps in data availability and to 

different methodologies for handling sparse or noisy data. In addition, it is essential to 

acknowledge that AI models trained on data from a specific building or location might not 

exhibit optimal performance in diverse settings. Addressing this issue requires the development 

of techniques to enhance the transferability and generalizability of AI models across different 

building types, climates, and geographical locations. Moreover, buildings are dynamic systems, 

subject to rapid performance fluctuations due to factors such as occupant behaviour. To 

effectively capture these changes, there is a significant need for the creation of AI models 

capable of real-time adaptation to changing conditions. These models must provide accurate 

predictions under dynamic shifts, making their development essential for the advancement of 

building performance analysis. 

 

2.1.2 Applications in Building Information System 

According to the United Nations [50], 68% of the worldôs population will live in urban areas 

by 2050. The rapid growth of the number of people living in cities, the climate and living 

environment change, and the shortage of natural resources are the main challenges for the built 

environment. Therefore, buildings, public spaces, and the city need to be managed by 

intelligent techniques based on Information and Communication Technology (ICT) and data. 

To assess the quality of the built environment, big data from building models is combined with 

data from sensing devices and questionnaires. By connecting humans, technology, and the built 

environment, building information systems enable better decisions and solutions for the design, 

engineering, and management of the built environment [51]. Today various novel and smart 

technologies have been developed to gather and analyse the information and employed for 

communication, coordination, planning and monitoring during building design and 

construction [52].  

Building Information Management (BIM) is used for improving the innovation and efficiency 

of designing, information management, and planning at different stages of design and project 
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delivery [53]. However, because the models provided by sub-teams in the project are different 

due to the use of various tools or systems, clashes often happen between these models [54]. In 

addition, because of the lack of completeness and accessibility of the information in models, 

AI algorithms cannot effectively exploit the information the models contain [55]. Therefore, 

many studies made efforts to employ ML techniques to identify and cope with the clashes 

between models and systems [56, 57], enhance semantic enrichment to provide inference from 

the raw data for a specific application [58], and generate the representations of information to 

fit the AI applications [59].  

Despite advancements, AI systems still struggle with comprehending the building data, leading 

to research gaps in the development of algorithms capable of contextual understanding. This 

understanding is crucial for enhancing decision-making processes. Additionally, AI model 

training relies on labelled data, necessitating research into automating the labelling process for 

complex building information. Efficient and accurate methods for data labelling are essential. 

Furthermore, real-time data processing is vital for applications such as predictive maintenance 

and energy management in building information systems. Research gaps exist in developing 

AI algorithms for processing streaming data in real-time, ensuring timely insights and 

responses. 

 

2.1.3 Applications in Building Services 

As mentioned before, the building sector is responsible for around 36% of total energy 

consumption. It offers huge potential for savings. People spend about 90% of their lives in 

buildings, and their behaviour can significantly affect this energy consumption. Conventional 

building controls are short of real-time input from occupant preferences and response in the 

most efficient way. With the aim of efficiently providing healthier, safer, and more comfortable 

living and working environments for people with minimal energy use, AI technology is widely 

employed to implement intelligent control strategies for various building facilities and maintain 

the equipment operating maximum efficiency [60].  

Peng et al. [61] proposed an occupancy-prediction-based control strategy using both supervised 

and unsupervised machine learning techniques to acquire occupancy profiles from the data 

collected by various sensors. It could not only satisfy occupantôs comfort demand, but also 

improve the efficiency of the HVAC system and further result in average energy savings of up 
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to 21%. Jia et al. [62] developed a deep reinforcement learning-based framework to optimize 

the building control strategy by following policy gradient with proper expert guidance and 

evaluated the framework via a virtual testbed which combines energy simulation software 

EnergyPlus with a Python environment. As the results showed, a better control performance 

could be achieved by the policy gradient instead of the current best practice control logic that 

the control system resets the supply air temperature setpoints based on the outsider air 

temperature.  

In studies [63, 64], BIM was integrated with machine learning algorithms to measure or 

estimate the predicted mean vote (PMV) or predicted percentage of dissatisfied (PPD) and 

optimize interior thermal comfort accordingly. Results show an up to 33.5% increase achieved 

in thermal comfort. Moreover, according to the reviews of reinforcement learning applications 

in building energy management [65, 66], reinforcement learning approaches are outperformed 

in adjusting the control strategy, managing data, and interacting with humans for autonomous 

building management and could achieve energy savings of more than 20% for complex energy 

management issues.  

While AI is extensively employed to optimize energy usage in buildings, research gaps exist 

in the development of algorithms that can adapt to changing occupancy patterns, weather 

conditions, and equipment efficiency, ensuring continuous energy optimization. In addition, 

there is a need for further research in AI applications aimed at enhancing occupant comfort, 

such as personalized thermal control and lighting. Understanding individual preferences and 

creating AI systems capable of accommodating different occupant needs poses a challenge. 

Moreover, AI applications for building services must prioritize indoor air quality by providing 

proper ventilation, especially in the post-COVID-19 context. Research gaps exist in developing 

AI systems that can effectively monitor and enhance indoor health and safety. 

 

2.1.4 Summary 

As can be seen, the applications of AI technology in the built environment have an extremely 

rapid development such as in building performance, building information systems, and 

building services. In terms of these, numerous review papers evaluated different aspects and 

applications of machine learning in the built environment. Studies [61-65] reviewed the 

applications of machine learning in building energy consumption forecasting. Bourdeau et al. 
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[67] reviewed the data-driven approaches with the analysis of the features of input data and 

evaluated the ML methods for data processing to model and estimate building energy 

consumption. It highlights the requirement of a universal protocol of different data-driven 

approaches to address various problems faced. Khalil et al. [68] reviewed the ML-based data-

driven approaches for energy consumption forecasting from several criteria, including type and 

location of studied buildings, input data components, dataset size, occupancy information and 

its impact, data pre-processing, feature engineering (selection and extraction), temporal 

granularity, and key performance indicator (KPI). It concludes that the lack of high-quality 

data and the availability of datasets is the main reason of low prediction performance. 

Specifically, Amasyali and EI-Gohary [69] evaluated data size and type used in the reviewed 

studies and features selected for algorithm training. Other studies [70, 71] focused on the 

evaluation of different ML algorithms for energy consumption forecasting.  

Considering the use of ML to improve energy performance in the early stage, Machairas et al. 

[72] reviewed the applications of ML combining with building simulation programs which can 

improve building design. In studies [65, 66, 73], the applications of machine learning in 

integration with building energy management systems (BEMS) were reviewed, including 

various ML-based frameworks employed for HVAC design, system optimization and control 

strategies. Results of 10-20% performance improvement were reported by many studies, which 

indicates unlimited potential for improving the efficiency of construction design and 

maintenance and creating sensing, thinking and reactive buildings by using AI solutions, 

especially the innovation in HVAC.  

HVAC systems are the largest energy-consuming loads in buildings, and some of them are still 

operating as fixed systems or programmed for a static environment even though the occupantsô 

behaviour, equipment usage, and weather is dynamic. As a result, approximately 30% of energy 

waste could be generated because of inefficiencies [74]. Inefficient BEMS are also responsible 

for occupant discomfort and the increase of greenhouse gas emissions. A vast potential for 

improvement resides in the way of operation of HVAC systems. In recent years, occupant-

centric improvement and innovation in HVAC have been given more attention. In recent 

studies, various approaches have been proposed to achieve data-driven efficient HVAC 

controls based on occupancy information and equipment loads using machine learning 

techniques [75, 76]. Both energy efficiency and occupant comfort can therefore be improved 

simultaneously. In the next three sections, the current technologies for occupancy and 
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equipment monitoring, data analysis using ML methods, and data-driven control strategies will 

be discussed in detail. 

 

2.2 Occupancy and Equipment Monitoring  Technologies 

Occupancy information and equipment usage within the conditioned space significantly 

influence the energy end-use in buildings. Researchers in the study [77] simulated different 

occupancy schedules within a commercial building, and the results presented a variation of 

from 25% to 68% of energy consumption between the existing fixed schedule and the real 

schedule. Moreover, a simulation of different equipment usage schedules was carried out and 

showed that a variation of from approximately -50% [78] to 68% [77] of energy use could be 

created by comparing the real schedule with the predefined schedule in relevant standards. This 

indicates that the static or ñfixedò schedules are unsuitable for most commercial buildings to 

implement efficient building energy management. In addition, cooking is one of the most 

significant sources of indoor air pollutants. According to study [79], over 98% of English 

houses require controlled ventilation in kitchens to reduce air pollutants due to high airtightness. 

While the lack of monitoring and ventilation in kitchens causes poor indoor air quality, 

affecting peopleôs health and wellbeing. One of the main reasons is the insufficient parametric 

design of kitchen ventilation [80]. Therefore, accurate occupancy and equipment schedule 

modelling based on actual occupancy and equipment-related information is essential. Table 2-1 

provides a summary of common types of occupancy and equipment sensing methods. 

In the following subsections, the definitions of occupancy and equipment information, 

respectively and the discussion of different existing technologies for occupancy and equipment 

information sensing and collection are provided.  
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Table 2-1 A summary of common types of occupancy or equipment monitoring methods. 

Type Sub-type Advantages Disadvantages 

Motion 

sensors 

PIR 

Å Consume less energy 

Å Compact, can be fitted into any 

electronic device 

Å Detect motion in day or dark 

Å Relatively cheaper 

Å Insensitive when people move slowly 

Å Unable to count 

Å Need a direct line of sight, have issues 

in corner areas 

Å Not very sensitive if the room itself is 

warm 

Ultrasonic 

detectors 

Å Can be used in day or dark 

Å Higher sensing distance 

Å Low cost 

Å Easy to implement 

Å Accuracy affected by soft and small 

objects 

Å Very sensitive to changes in the 

temperature 

Å Unable to count 

Pressure 

sensor pads 

Å Can detect the variation of a specific 

location  

Å Intrusive installation 

Å No data is obtained when it is not 

activated 

RF-

based 

sensors 

RFID 

Å Cost-efficient 

Å High speed and accuracy in accessing 

location and counting occupants 

Å Limited range and storage 

Å Interference 

Å Intrusive installation 

Å Security issue 

WiFi 

Å Save the cost of cables 

Å High speed & accuracy in accessing 

location and counting occupants 

Å Signal is affected by the distance, the 

interference walls, and other objects 

Å Drain mobile deviceôs energy 

Å Intrusive installation 

Bluetooth 

Å No interference 

Å Consume less power 

Å Cheaper 

Å Can connect through any obstacles 

Å Security issue 

Å Allow only short-range connection 

Å Devices must be carried 

Room 

climate 

sensors 

Temperature 
Å Relatively cheaper 

Å No interference 

Å Need to be analysed along with data 

from other sensors 

Å Need multiple sensors and connection 

with other sensors to ensure the accuracy 

Å Slow in measurement 

Å Sensitive to building and environmental 

conditions 

 

Relative 

humidity 

Å Relatively cheaper 

Å No interference  

CO2 

Å Relatively cheaper 

Å No interference 

Å Can provide an estimation of 

occupancy count 

VOCs 

Å No interference 

Å Can estimate occupancy count based 

on occupantsô activity 

Particulate 

Matter 

Å No interference 

Å Can identify the existence of the 

activity or device causing air pollution 

Smart 

meter 
 

Å Accurate data readings 

Å No interference 

Å No data is obtained when an occupant 

is not using electricity 

Å Need the combined analysis with other 

sensors to ensure the accuracy 

Camera  

Å Provide high resolution occupancy 

information (presence, location, count, 

activity, identity, track) 

Å Privacy issues 

Å Require a line of sight 

Å Require data processing and expensive 

hardware 

Survey  

Å Provide occupancy preference 

Å Cheap and manageable 

Å Can collect a broad range of data 

Å Hard to collect a large number of data 

Å Survey answer options may result in 

unclear data 
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2.2.1 Occupancy Monitoring 

To define the occupant information, comprehensive occupancy information is commonly used, 

which can be described using six properties as demonstrated in Figure 2-1. Ground truth stands 

for the information provided by direct observation.  

¶ Presence ï provides information to deduce whether the heat gains from occupants are 

required to be considered in a particular thermal zone.  

¶ Counting ï provides information on the number of occupants in a space within the building 

which achieves the feasibility of adjusting space cooling, heating and ventilation operations.  

¶ Activities ï Different physical activities can cause a different body metabolic rate, which 

further affects the sensible and latent heat released from the human body.  

¶ Location ï provides the specific position of the occupant because in most cases more than 

one thermal zone exists in a building.  

¶ Identity ï involves the information on a specific person in a particular zone so as to supply 

a personalized service from comfort systems.  

¶ Tracking ï provides information about the movement of occupants within the building and 

benefits for the design of comfort systems.  

 

Figure 2-1 Properties of occupancy information. 
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Until 2022, indoor occupancy monitoring has gained more attention as the interactions between 

occupants and buildings are strongly correlated with building performance. These properties 

significantly influence building design, operations, and maintenance. In terms of these 

properties, Table 2-2 provides a summary of 40 studies between 2017 and 2022 which 

monitored and collected indoor occupancy information to assist the operation of building 

systems. These studies focused on the development of occupancy detection methods and their 

applications mainly for energy savings, thermal comfort optimization, and anomaly detection.  

The identification of the presence of occupants is the foundation of occupancy monitoring 

which enables the recognition of other occupancy properties. Apart from the presence, 

occupant counting is the most explored property, as the density of occupancy directly affects 

the heating, cooling, and ventilation demands in the spaces. Inaccurate prediction of occupancy 

density can lead to insufficient and inefficient building service system design and operation. 

The study [81] shows that compared to the manual system, a 28.52% - 34.7% energy saving 

was achieved by using the smart system which can automatically adjust the cooling and lighting 

operations based on the occupancy density prediction. 

In terms of thermal comfort, in comparison to fixed setpoint cooling, the occupant-centric 

cooling control based on real-time activity and clothing levels developed by Choi et al. [31] 

achieved a 17% increase in the proportion of votes representing no change in thermal comfort. 

These highlight the significance of accurate detection in occupant counting for energy 

efficiency and human comfort. Some studies explored the recognition of occupantsô activities 

in indoor spaces to assist the smart building controls such as HVAC and lighting to ensure their 

comfort, as the needs of occupants are different when performing different activities [82]. 

Moreover, the recognition of activities can be adapted for appliance usage forecasting [83]. 

Only a few studies focused on the location, identity, and tracking of occupants as they were 

mostly used to enhance the building service control for individuals. Especially for identity and 

tracking, compared to other properties, the detection of them is more personalised and 

complicated, as the detection system needs to first identify the presence and identity of the 

individuals and then monitor their locations to predict their trajectory. This requires the 

detection system to keep memorising the detected individuals and their previous status. In 

terms of these characteristics, the information on location, identity, and tracking are tailored to 

provide particular comfort conditions for fewer occupants in small spaces. Hence, among the 

reviewed studies, these properties were mainly taken into account in domestic buildings or 

private offices.  
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Table 2-2 Summary of studies focusing on indoor occupancy monitoring against six 

properties and monitoring technologies (P: Presence; L: Location; C: Counting; A: Activity; 

I: Identity; T: Tracking). 

References Monitored occupancy 

information  

Monitoring technologies Building 

type 

 P L  C A I  T   

Yang et al., 2022 [84] ã   ã   WiFi (AutoFi) Residential 

Drira and Smith, 2022 [85] ã ã ã  ã ã Vibration sensors Office 

Liang et al., 2022 [86] ã  ã    Infrared and temperature sensors, 

power meter 

Office 

Tan et al., 2022 [87] ã      Temperature, humidity, illuminance 

sensors, camera, microphone 

Residential 

Yoon et al., 2022 [82] ã   ã   Temperature, humidity, CO2, and 

PM2.5 sensors, power meters 

Residential 

Dutta and Roy, 2022 [88] ã  ã    Temperature, humidity, CO2, PM2.5, 

and PM10 sensors 

- 

Dino et al., 2022 [42] ã  ã    Cameras Educational 

Sun et al., 2022 [89] ã  ã    Cameras Educational 

Wagner et al., 2021 [90] ã ã     Temperature sensors Office 

Kampezidou et al., 2021 

[91] 

ã      Temperature and CO2 sensors Residential 

Choi et al., 2021 [31] ã  ã    Cameras Office 

Alishahi et al., 2021 [92] ã  ã    WiFi Academic 

Ding et al., 2021 [93] ã  ã    Camera and surveys Educational 

Jin et al., 2021 [94] ã      PIR sensor, on-site survey Office 

Bock et al., 2020 [83] ã   ã   Motion, temperature and door sensors, 

and pressure sensors on office chairs 

Office 

Tekler et al., 2020 [95] ã ã     Bluetooth Low Energy (BLE) Office 

Wang et al., 2020 [96] ã      Survey Residential 

Meng et al., 2020 [97] ã  ã    Cameras Commercial 

Hou et al., 2020 [98] ã  ã    WiFi Office 

Wei et al., 2019 [99] ã  ã    CO2, temperature, humidity Office 

Simma et al., 2019 [100] ã  ã    WiFi Educational 

Hobson et al., 2019 [101] ã  ã    WiFi, CO2, PIR, Plug meter, light 

meter 

Office 

Roselyn et al., 2019 [81] ã  ã    Thermal sensors and cameras Commercial 

Lee et al., 2019 [102] ã   ã   Survey Residential 

Kim et al., 2019 [103] ã   ã   Camera Exhibition 

Wang et al., 2019 [104] ã  ã    Temperature, humidity, CO2, and 

airflow rate sensors, camera, WiFi 

Office 

Peng et al., 2019 [105], 

2018 [61], 2017 [106] 

ã      Motion sensors, room climate sensors 

(temp, humidity, CO2) 

Office 

Jin et al., 2018 [107] ã  ã    WiFi, IT infrastructure Commercial 

Wang et al., 2018 [108] ã  ã    WiFi Office 

Xu et al., 2018 [109], 2017 

[110] 

ã ã     RFID - 

Zon et al., 2018 [111] ã   ã   WiFi (DeepHare) Residential 

and office 

Zon et al., 2018 [112] ã  ã    WiFi (WiFree) Commercial 

Zon et al., 2017 [113] ã ã ã  ã ã WiFi (WinOSS) Commercial 

Garcia et al., 2017 [114] ã ã     Temperature, luminosity and door 

sensors, power meters, accelerometers, 

Bluetooth 

Residential 

Wang et al., 2017 [115] ã  ã    iBeacon-enabled indoor positioning 

system (IPS) (Bluetooth sensing) 

Commercial 

Capozzoli et al., 2017 [116] ã      Presence sensor (FlexWhere) Office 

Vafeiadis et al., 2017 [117] ã      Energy and water consumption smart 

meters 

Residential 

Das et al., 2017 [118] ã  ã    WiFi, smart meter, water meter Educational 

Zhao et al., 2017 [119] ã ã     IMU sensors, WiFi, humidity sensor, 

illuminance sensor 

Office 
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Figure 2-2 shows the types of buildings to which the occupancy information monitoring was 

applied in the reviewed studies. Office buildings play a dominant role with a proportion of 

approximately 40% as office buildings are a major and growing energy consumer and have 

relatively more people spending a third of the day there, suggesting vast opportunities to 

decrease energy consumption by using energy-efficient methods. Residential buildings are also 

popular due to the higher demand for comfortable indoor environments. Especially after the 

COVID-19 pandemic, studies focusing on residential buildings have gained more attention due 

to the swift effects on workplace culture, meaning that more people are working from home 

compared to the situation before the pandemic. It implies a higher necessity for energy-efficient 

controls for building service systems to reduce energy bills.  

 

Figure 2-2 Studied building types in the reviewed papers. 

 

According to the reviewed studies, all six common types of monitoring technologies listed in 

Table 2-1 were used to collect information in buildings to perform occupancy prediction. These 

technologies are discussed in more detail as follows. 

 

2.2.1.1 Motion sensors 

Motion sensors are commonly employed to identify occupant movement and provide binary 

occupancy information, indicating whether there is an occupant present in a particular space or 

not. Infrared systems (such as passive infrared (PIR)), vibration sensors, chair-mounted 

23%
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pressure sensors, and magnetic-based technologies (such as inertial measurement units (IMUs)) 

are among the various types of motion sensors available. However, despite their widespread 

use, motion sensors have some limitations, particularly with respect to detecting occupancy in 

large spaces with multiple occupants. 

The primary drawback of motion sensors concerns the tracking technique utilized to collect 

occupancy information. For example, PIR sensors rely on variations in temperature patterns 

across the sensor's field of view to detect the presence of an object. Thus, occupants must be 

within the sensor's field of view for accurate occupancy information. For some other types of 

motion sensors, a direct field of view is not required; while they are susceptible to false 

movements, such as occupants walking into other spaces close to the monitored space [120]. 

Therefore, false movements can result in errors in detecting occupants, which can lead to 

spaces being conditioned while they are unoccupied. 

Overall, motion sensors can accurately detect occupancy in single-occupied spaces if installed 

correctly. However, when utilized in multi-occupied or open-plan spaces, motion sensors 

cannot provide high-resolution occupancy information, such as crowd counting, identity, and 

activity [121]. Moreover, the implementation of motion sensors in large spaces requires a 

significant number of sensors, which can be costly compared to RF-based systems [122]. 

 

2.2.1.2 RF-based sensors 

RF-based techniques employ radio frequency to locate an object. It mainly encompasses radio-

frequency identification (RFID), Wi-Fi, and Bluetooth. These systems typically consist of a 

transmitting node, which is typically carried by the user, and a receiving node, which measures 

energy or timing of the response echo from a transmitted signal. Received signal strength 

indicator (RSSI) is the receiving metric employed by many of the RF-based systems. It is 

flexible to deploy and has the ability to provide occupancy information, including presence, 

location, counting, identity and tracking, making them become more popular and being widely 

explored.  

RFID has been widely deployed to predict occupantsô locations due to its simplicity, no on-site 

observation requirements, availability of onboard data storage capacity, affordability, low 

energy use, and high accuracy in location prediction. Figure 2-3 (a) shows the primary design 

of the RFID system which was based on triangulation [123]; while it was not pushed on further 
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development as it depends on the empirical path loss models, which result in less accuracy in 

location prediction. To address this issue, a proximity-based RFID system ï LANDMARC 

[124] was developed, as shown in Figure 2-3 (b). By seeking for the proximity to other active 

tags, the system can predict the targetôs location. Based on the pioneering study of 

LANDMARC, many studies were further developed to enhance its accuracy [109, 110] and 

attempted to use less RFID reference tags [125, 126].  

This system was employed in some studies to perform occupancy monitoring for demand-

driven applications in buildings. Li et al. [127] developed an RFID-based occupancy detection 

system for HVAC system controls, which is capable of detecting and tracking the stationary 

occupants who sit and work at a desk and mobile occupants who move around the building 

throughout the day in various single- and multi-occupant spaces. The system can determine the 

location and the number of occupants in each thermal zone, and the paths taken by occupants. 

At the zone level, the system can achieve an 88% accuracy rate for stationary occupants and 

62% accuracy rate for mobile occupants. However, their research also indicated that RFID 

technology may not be the most effective for occupancy detection in small spaces due to signal 

interference from occupants' tags. Moreover, the placement of reference tags is another crucial 

factor that can significantly impact the accuracy of occupancy detection. In the study [128], 

Zhen et al. implemented an RFID system with multiple active readers and moving tags for 

occupant location estimation to enable demand-driven lighting control. The proposed system 

demonstrated an average accuracy of 93% for mobile occupants.  

Although RFID systems are cost-efficient and provide a solution for efficient building energy 

controls, they were not widely employed due to the limitations of the range and storage capacity. 

There is interference that users must carry the tag to enable successful monitoring. Their 

detection performance depends on internal battery usage, the number of RFID readers, and 

reference tagsô density and orientation. 
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Figure 2-3 Location prediction using RFID methods (a) Trilateration and (b) Proximity based 

[76]. 

 

Wi-Fi have experienced a surge in usage in recent years. The prevalence of Wi-Fi access points 

(APs) and wireless devices in modern buildings has made occupancy information detection 

more efficient, cost-effective, and convenient [129]. Wi-Fi-enabled devices, such as 

smartphones and laptops, enable occupants to connect to Wi-Fi networks, providing a useful 

occupancy indicator for a space. Zou et al. [113] proposed a new Wi-Fi based non-intrusive 

occupancy sensing system (WinOSS) which can infer high-resolution occupancy information 

using existing Wi-Fi infrastructure in commercial buildings. By implementing it in a real-world 

office space, a 98.85% occupancy detection accuracy was achieved. To improve the accuracy 

of occupancy detection, they created a Wi-Fi based device-free counting scheme called WiFree 

[112] and an activity recognition scheme called DeepHare [111] based on WinOSS. The 
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experimental results demonstrated that without human intervention, WiFree could achieve 92.8% 

crowd counting accuracy, and DeepHare could achieve 97.6% activity recognition accuracy.  

Due to its high occupancy resolution and detection accuracy, many studies have employed 

WiFi technologies in building management systems to enable energy-efficient operations. 

Wang et al. [108] introduced an occupancy-based ventilation strategy that utilizes a Wi-Fi 

probe-enabled occupancy monitoring system to detect occupancy profiles. Results showed that 

the detected occupancy number was close to the actual count obtained during a three-day 

experiment in an office for graduate students. This approach led to a reduction in ventilation 

energy use by 44.26% on weekdays and 55.5% on weekend days compared to the ventilation 

strategy with a fixed rate. These show the ability of WiFi-based systems to accurate occupancy 

detection and energy efficiency. While the battery of occupantsô mobile devices can be drained 

heavily due to the frequent WiFi scanning and a large number of Aps scanned. Moreover, the 

data collection is time- and labour-consuming, and the data is affected by the distance, 

interference walls, furniture, and other objects, which lead to changes in the settings of indoor 

spaces. It reduces the validity of occupancy location prediction. 

Because of the widespread adoption of Bluetooth modules in contemporary commercial mobile 

devices, and the development of energy-efficient Bluetooth Low Energy (BLE) technology, 

researchers have increasingly turned to BLE-based occupancy detection applications, 

specifically for presence and counting detection. iBeacon is a widely used BLE technology 

developed by Apple, which allows Beacon to send push notifications to iOS devices within the 

covered range. A solution called BlueSentinel was proposed by Conte et al. [130], which is the 

first approach to utilize iBeacon as an occupancy detection system. By employing occupants' 

mobile devices to collect the data, this system can determine the number of occupants, their 

locations, and identities. The proposed approach was implemented in three laboratories and 

showed an 83% occupancy prediction accuracy. The location of mobile devices and their users 

can be estimated based on the Received Signal Strength Indicators (RSSIs) from a deployment 

of iBeacons in indoor environments. 

Following this, a solution for Android devices was developed by Corna et al. [131]. Shen and 

Newsham [132] also proposed a computer program which enables the presence detection of 

occupants by sensing the signals from their smartphones equipped with Bluetooth when they 

are nearby. Rather than utilizing the raw RSSI data, researchers also opted to extract statistical 

features from the data and utilize them as input for machine learning algorithms, leading to 
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improved accuracy in predicting occupancy levels [133, 134]. Recently, some studies 

combined the BLE-based technology with HVAC systems to provide controls based on the 

occupancy distribution [115, 135]. However, the major drawback of this approach for pervasive 

implementation is the need to deploy additional BLE beacons. In addition, for the BLE-based 

systems mentioned previously, to collect the individualsô occupancy information, these 

individuals need to install an application onto their smartphones, which could make a negative 

impact on their natural behaviour. This can also cause an energy burden for smartphones. These 

reduced the participation rate and therefore resulted in less generality and validity.  

Some recent studies have attempted to reduce the intrusiveness of BLE-based systems. In the 

study [95, 136], a method, which only requires the Bluetooth media access control (MAC) 

address of individualsô devices instead of installing an application onto their devices, was 

proposed to track their movement patterns. It not only reduced the intrusiveness but also 

increased the scalability of the occupancy detection system. Further reduction of the amount of 

labelled data required for training will make the study more scalable. 

 

2.2.1.3 CO2 sensors 

Human respiration produces CO2 as a by-product, which is constantly exhaled and released 

into the air, resulting in a varying concentration of CO2 in a space. Hence, the concentration 

of CO2 in a space can be used as an indirect indicator of occupancy. It can determine if the 

space is occupied or not, as well as the number of occupants and their activity level. CO2 

sensors are capable of measuring the concentration of gases in a given space in parts-per-

million (PPM), making them a widely adopted means of assessing occupancy levels in 

buildings and enabling demand-driven control of HVAC systems. This non-intrusive method 

is also capable of providing an estimate of crowd counting by offering insights into indoor air 

quality. Nassif [137] presented an application of CO2-based occupancy detection for demand-

controlled ventilation in an office building. The results showed that up to 23% energy use 

reduction could be achieved compared with the designed profiles in ASHRAE Standard 62.1.  

Ansanay-Alex [138] developed a simple algorithm which employs indoor CO2 concentrations 

to predict occupancy patterns in an office building. The results implied that the proposed 

method is able to detect the arrivals and departures of occupants working in closed-space 

offices while is not suited for open-space offices, halls or classrooms. According to related 
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studies, the CO2 sensors are seldom used individually for occupancy information detection due 

to the slow and fluctuating rate of gas mixture. The performance of the CO2 sensor can be 

significantly affected by external factors, such as changes in wind speed, the location of the 

sensor, and intermittent opening and closing of doors and windows [139]. Another reason for 

unsuitability for large spaces is that the number of occupants, which is a significant factor in 

the delivery of tailored ventilation in spaces through demand-driven ventilation controls, 

cannot be directly measured by CO2 sensors. The aid of other data from sensors or historical 

databases is required to estimate crowd counting. 

 

2.2.1.4 Power meter 

As people gradually raise their awareness of energy saving, there are a number of portable 

devices offered in the market for measuring and visualizing energy consumption. Some 

occupancy detection methods with the use of power meters were developed to be employed in 

constructions for group-based or individual monitoring recently. Das et al. [118] collected 

electrical energy and water consumption from 76 buildings to estimate tine-grained occupancy 

with the help of data from WiFi devices existing in the buildings. Instead of using total 

electricity use data of the buildings, Milenkovic and Amft [140] measured the power 

consumption of each computer screen in the offices. When the state of appliances changes from 

off to on, the presence of the user was identified through the change in energy use, and the 

number of occupants in the space can then be estimated by clustering the presence information. 

Vafeiadis et al. [117] used smart meters to measure total energy use of the house and also 

individual consumption of the devices mainly used every day to robust the occupancy 

forecasting performance. These studies offered non-intrusive solutions for indoor occupancy 

detection through the analysis of the change in power consumption. However, without the aid 

of other sensors such as environmental sensors, WiFi, and motion sensors, and other data such 

as water consumption, power meters cannot provide high resolution occupancy information. In 

addition, considering deploying in large spaces, itôs costly and impracticable to install power 

meters on every one of the electric appliances. 
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2.2.1.5 Camera 

Image recording devices, such as video cameras, are commonly installed in buildings for 

security reasons. However, there has been increasing interest in utilizing these systems to 

measure occupancy in buildings, as they are non-terminal based and can offer individualized 

functionalities. They have been shown to possess the potential to provide the most detailed 

occupancy information including presence, location, counting, activity, identity, and tracking. 

Vision-based methods are widely employed in construction sites to perform worker activity 

[141], posture [142], tracking [143, 144], and personal protective equipment (PPE) [145] 

recognition to follow up on construction progress and ensure worker safety. 

Many studies also focused on indoor detection. For example, Benezeth et al. [146] developed 

a vision-based method to collect high-resolution occupancy information on the presence, 

activity, and location. Rohrbach et al. [147] proposed a fine-grained detection method which 

enables the detection of 65 cooking activities. Dino et al., 2022 [42] and Sun et al., 2022 [89] 

employed cameras to perform people counting in either large or small indoor spaces to aid 

building energy modelling and energy-efficient building controls. Chahyati et al. [37] 

employed it for indoor people tracking to assist surveillance. Due to its ability to detect high 

resolution occupancy information, many studies attempted to integrate vision-based 

technologies with building energy management system to investigate the potential of energy 

savings in buildings. In [148], the authors developed OPTNet, a wireless network composed 

of multiple imaging devices to predict occupancy in different thermal zones of a building. 

Through experimentation on a test building, the authors were able to demonstrate the potential 

for achieving energy savings of up to 20%. 

Although using cameras can provide high resolution of occupancy information, the application 

of vision-based detection system in indoor spaces to assist building system controls is still at 

an early stage of development and is not widely employed for several reasons. Firstly, image-

based detection methods need a line of sight, which means that cameras need to be placed in 

locations with minimal or no obstructions in order to accurately detect occupancy. Secondly, 

the system requires advanced data processing and costly hardware to provide accurate and 

reliable occupancy information. Finally, privacy is a major concern when it comes to the use 

of image detection systems for occupancy measurement, as cameras capture visual information 

that can reveal personal and sensitive details about occupants. This can lead to privacy 
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violations and can raise ethical and legal issues. As a result, the use of such systems needs to 

be accompanied by strict privacy policies and measures to protect the privacy of occupants. 

 

2.2.1.6 Survey 

Surveys are a common method used by researchers to collect occupant information, either as a 

standalone method or combined with other monitoring technologies. Surveys can provide 

valuable insights into occupant behaviour, preferences, and satisfaction with indoor 

environments. Kavulya and Becerik-Gerber [149] conducted an investigation into the usage 

patterns of office devices in five single-occupied offices through in-person observation to 

understand occupants' behaviour. The study also involved the use of non-intrusive appliance 

load monitoring to monitor energy use of the devices. The findings indicated that energy 

savings of up to 38% could be achieved by turning off the office appliances which were not in 

use. However, the study computed mean values of the results obtained from all offices, and 

therefore did not account for variations in preferences and working schedules of different 

occupants. A stochastic occupancy model was developed by Sun et al. [150] proposed a 

stochastic occupancy model to analyse the occupancy information from an office building. A 

survey, which clustered the information of occupantsô arrival and departure by a magnetic card 

reading machine and the occupant schedule during normal working hours as well as 

information on the probability and duration of overtime work from the questionnaire, was 

carried out on every working day within two months. The collected data from the survey was 

used to generate the actual profiles as the inputs in building energy simulations and also in 

HVAC schedule.  

Purdon et al. [151] developed a model-free algorithm for HVAC control that eliminates the 

need for installing sensors or creating complex occupant comfort models. Occupantsô 

preferences are taken into account by collecting their votes through an application and applying 

to the HVAC system settings accordingly. According to the survey responses, comfort models 

for individual participants were built by defining their comfort limits. The results showed a 

strong relationship between participantsô preferences, indicating the possibility of reaching an 

indoor temperature which can make most occupants comfortable. 

Doing surveys is a cheap and manageable method, and the main benefit of it to cluster 

occupancy information is that it can provide the preferences of occupants. It implies that this 
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method is more effective for the control system designed to satisfy the requirements of a few 

people or in a small space instead of large space. Moreover, several factors can affect the 

accuracy of survey results, including response bias, social desirability bias, question wording, 

and respondent fatigue. Respondents may not provide accurate or honest answers due to factors 

such as boredom, lack of motivation, or memory issues. Therefore, it is important to design 

surveys carefully and take steps to minimize potential sources of bias to improve the accuracy 

of the results. Additionally, the limitations of survey data suggest that it cannot be solely relied 

upon as a source of information and should be complemented by data from other sources. 

 

2.2.1.7 Summary 

Occupancy monitoring has been widely explored and developed with the use of motion, RF-

based, environmental, and vision-based sensors, power meters, and survey. Many studies 

highlighted their ability to provide occupancy information. Most of these methods can estimate 

the presence and number of people in indoor spaces. Specifically, RF-based methods enable 

the prediction of peoplesô location, and vision-based methods can provide all six properties of 

occupancy information.  

However, relying on a single source of data for occupancy detection may result in unreliable 

information. For example, many current sensing technologies, such as motion sensors, do not 

provide high-resolution occupancy information, such as the number of occupants in a space. 

To address this issue, sensor networks are commonly utilized in most studies, which integrate 

various sensing technologies to take advantage of their strengths and deal with their limitations 

when employed alone. They enable the collection of occupancy and environmental information 

from various types of sensors and employ data fusion methods to combine redundant and 

irrelevant input data, extract significant features, and obtain relevant parameters [122].  

Moreover, in comparison to a single type of sensing device, using a multi-sensor network can 

also reduce the intrusiveness and the total number of sensing devices in indoor spaces. Many 

studies proved the enhancement of occupancy detection reliability and robustness with the use 

of multi-sensor networks [104, 152]. To reduce the computational cost for the huge amount of 

data collected from multiple sensors, robust models which can efficiently extract and select 

proper data features should be developed to improve prediction efficiency. It is the trend of the 

future development of indoor occupancy monitoring. 



 

33 

 

2.2.2 Equipment Monitoring 

Similar to occupancy information, equipment information can also be defined using the 

following properties illustrated in Figure 2-4.  

¶ Presence ï Is there any equipment present in spaces? ï This property provides information 

to deduce whether the heat gains from equipment are required to be considered in a 

particular thermal zone. 

¶ Mode ï Is the equipment working or not? ï The equipment generates heat when it is 

working sorely. If 1 and 0 represent it is on and off, respectively, the profile of equipment 

usage is kept updating, and the daily profile can be created.  

¶ Location ï Where is the equipment? Because in most cases, more than one thermal zone 

exists in a commercial office building, this property is crucial, which provides the specific 

position of the equipment. 

¶ Identity ï What is the type of equipment? ï It relates to the load for the equipment because 

different equipment has its specific heat gains releasing to the particular zone.  

¶ Count ï How much equipment are present? ï It provides information on the number of 

different types of equipment in a space within the building, which achieves the feasibility 

of adjusting space cooling operation by actual equipment usage.  

 

Figure 2-4 Properties of equipment information 
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Unlike occupancy detection, only limited studies focused on indoor equipment information 

detection. Table 2-3 provides a review of the common existing equipment information 

detection methods employed in buildings and assesses each against these properties. As 

illustrated, most of the studies focused on the application in office buildings due to the vaster 

number of electric appliances and a longer operating duration. In addition, most of the studies 

only attempted to detect whether there were electric appliances in the space or not, and whether 

theses appliances were operating or not to assist the occupancy prediction. A few studies 

identified the location of the appliances to enable location-aware power management [153, 154] 

or help to forecast the location of the users [36]. By detecting the mode, identity, and counting 

of appliances, more precise load prediction and equipment usage patterns could be obtained 

[36, 37]. 

 

Table 2-3 A summary of studies focusing on indoor equipment monitoring and prediction 

against five properties (P: Presence; M: Mode; L: Location; I: Identity; C: Count). 

References Detected information Detection or prediction 

techniques 

Building 

Type 

 P M L  I  C   

Harle and Hopper 

[153]  

ã ã ã   Power meters Commercial 

Chen et al. [155] ã ã    Power meters Residential 

Mahdavi et al. [156] ã ã   ã Based on occupant 

presence, power meters 

Office 

Milenkovic and Amft 

[140] 

ã ã    Power meters Office 

Auslander et al. [157] ã ã    Power meters Office 

Nguyen and Aiello 

[158] 

ã ã  ã  Based on activities of 

occupants (keyboard and 

mouse activity sensor) 

Office 

Gunay et al. [37]  ã ã  ã ã Survey, power meters Private office 

Lee et al. [154] ã ã ã   Based on occupant 

location 

Residential 

Wang and Ding [36] ã ã ã ã ã Survey, cameras, power 

meters 

Office 

Zhao et al. [32]  ã ã    Smart meters Office 

Wang et al. [159] ã ã    Power meters, cameras, 

WIFI 

Office 

Vafeiadis et al. [117] ã ã    Power and water smart 

meters 

Residential 

Li et al., [25] ã ã    Temperature sensors Office 

Akbar et al. [160] ã ã    Power meters, WIFI Office 
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There are three techniques commonly found in buildings to evaluate equipment usage ï using 

plug-in power meters, carrying out surveys, and analysing clustered occupant information. 

Plug-in power meters are the most frequently used technologies to obtain equipment loads as 

they can directly measure the actual energy consumption of the appliance plugged into a power 

outlet or a group of appliances plugged into a single power board. In addition, according to the 

study [25], the total heat emission from stably operating computers and laptops ranged from 

86% to 92% to electric power. Hence, it can estimate the heat loads from individual or multiple 

appliances. Yet, as mentioned before, when deploying in large spaces with a vast number of 

electric appliances, installing plug-in meters for all the appliances will be costly and 

impracticable and cause difficulty in data monitoring and management. 

In prior studies, some researchers collected equipment information via electric appliance usage 

surveys. Gunay et al. [37] designed an online survey of the usage of office appliances. In this 

study, 203 people working in academia and the public or private sector in an office environment 

participated in the survey. With the help of plug load data, the researchers developed a data-

driven model to accurately forecast the equipment loads. Survey questionnaires for equipment 

utilization, which focused on the utilization habits of various office appliances, created by 

Wang and Ding [36]. Through the combination of the data gathered from cameras and power 

meters, a prediction model of equipment energy consumption was established, and the error 

between the prediction data and the ground truth data is below 5% when applied in the study 

offices. It can be observed that the data from the survey cannot be used alone to carry out 

equipment information prediction. Additional information is required to obtain equipment 

usage patterns and develop equipment load prediction models. 

In the study [161], researchers found a linear relationship between the number of occupants 

and equipment load, and its correlation coefficient is explored to be 68-78% in an office 

building in Philadelphia. It indicates that the behaviour of occupants vitally affects the tasks 

which are needed to be performed by the building systems. For instance, it is highly possible 

that people in office space will use different electrical appliances, which results in an increase 

in internal heat gains and electricity consumption. Therefore, more advanced techniques to 

detect or predict the equipment were developed in terms of the occupantsô information recently. 

In Mahdaviôs research [156], a simplified and stochastic model for equipment load prediction 

was proposed according to the probability of occupantsô presence and the power consumption 

collected from the power meters.  
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Nguyen and Aiello [158] assessed the performance of the proposed technique, which detected 

the activities of occupants and equipment usage by using keyboard and mouse activity sensors. 

Lee et al. [154] measured the electric appliances based on the resident location, which affects 

the operation of the HVAC system so as to design a power management system. Although the 

equipment load is strongly related to occupancy information, this method is still limited due to 

the necessity of the combination with multiple sensors to improve its performance. Moreover, 

itôs an indirect way to obtain the equipment usage pattern, which requires the aid of occupancy 

information. 

 

2.2.3 Summary 

According to the review of studies focusing on occupancy and equipment information 

detection, indoor occupancy detection has been widely explored and applied to buildings to 

enable occupant-centric and energy-efficient building system controls. In comparison, the 

studies on indoor equipment information detection and prediction are limited. Among these 

studies, most of them were employed to assist the occupancy prediction. There are only a few 

studies which established models which can provide comprehensive equipment information for 

the optimal design and performance simulation of building HVAC systems. In addition, the 

equipment monitoring technologies are also conventional and limited, suggesting the 

requirement for the development of novel equipment monitoring methods to enable 

comprehensive information collection. Moreover, equipment is one of the main sources of 

internal heat gains, while only a few works developed methods to measure the real-time heat 

dissipation of electronic equipment and investigated their impact on building energy 

consumption and building management.  

 

2.3 Machine Learning Application on Occupancy and Equipment Detection and 

Prediction 

As a tool of data analysis, machine learning has attracted remarkable attention in recent years 

and has been applied to detect and forecast occupancy and equipment usage with state-of-the-

art accuracy. The typical workflow of machine learning in occupancy and equipment detection 

and prediction, and its frequently used algorithms are illustrated in Figure 2-5. A number of 

raw data (images in the case of this research) from self-collection or online resources are 
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gathered and then pre-processed by using data processing tools. Many iterations during the data 

processing stage are required to ensure to obtain well-prepared data. After inputting the 

prepared data, the learning process implements and iterates to get the best models. By 

deploying the selected models from candidates, the model which is the most suitable for the 

target applications (equipment loads detection in this case) is picked out and finally employed 

in the applications. This procedure is tailored for all types of ML algorithms.  

As demonstrated in Figure 2-5, three main categories of ML algorithms are supervised learning, 

unsupervised learning, and reinforcement learning. Supervised learning infers a function from 

labelled training dataset, which includes the example input-output pairs, to predict a dependent 

variable. In other words, the correct results of input data are known before the training process. 

Supervised learning can be divided into two main classes: regression and classification 

algorithms. However, as DL algorithms can be implemented to both labelled and unlabelled 

data, DL was classified as a special category of supervised learning [162].  

On the contrary, unsupervised learning explores relations among unlabelled input dataset 

which does not have desired output value. Therefore, it is suitable to do clustering tasks which 

investigate the hidden patterns or groups in data. Different from supervised and unsupervised 

learnings, reinforcement learnings allow an intelligent agent to take actions in an environment 

and learn through the feedback from its actions. Hence, it is more suitable for interacting and 

adjusting tasks. While supervised and unsupervised learnings are more tailored for observing 

and predicting. Therefore, this section mainly discusses supervised and unsupervised learning 

methods for processing the data from common indoor monitoring technologies. 
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Figure 2-5 Workflow of machine learning in occupancy and equipment detection and 

prediction and popular algorithms. 

 

More detailed categories for supervised and unsupervised learning methods are discussed as 

followings. Due to the limited research on equipment information detection and prediction, this 

subsection primarily discusses the data processing methods for occupancy information. 

 

2.3.1 Supervised Learning 

In the last decade, many works have used supervised learning techniques to conduct occupancy 

prediction along with heating, cooling, and ventilation loads and comfort level predictions to 

perform building energy consumption forecasting. Table 2-4 lists some example studies in the 

literature which employed supervised learning methods for data analysis including their model 

type, performance evaluation methods, evaluation metrics, and key findings. As mentioned, 

supervised learning includes regression, classification, and deep learning algorithms. Each of 

them has its strengths in processing different properties of occupancy information. More details 

are provided thereafter. 
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Table 2-4 Examples of studies using supervised learning methods for occupancy data 

analysis. 

Ref. Model Type Evaluation Eval. Metric  Key findings 

Chou and 

Bui, 2014 
[163] 

Support vector regression 

(SVR), Ensemble, General 

linear regression, 

Classification and 
regression tree, ANN 

Simulation 
R2, MSE, RMSE, 

MAE, MAPE 

The ensemble approach (SVR +ANN) and 

SVR were the best models for predicting 
heating and cooling load. 

Ryu et al. 

2016 [164] 
Decision Tree Experiment RMSE 

The decision tree model could estimate the 

occupancy state. Depending on the number of 

predictors used, the RMSE ranged between 
0.3673 and 0.2202. 

Song et al. 

2017 [165] 

K-means for building 

energy prediction. 

ANN for end-user group 
prediction. 

Energy and 

occupancy 
dataset 

CV-RMSE 

The prediction accuracy is improved when 

considering diverse occupancy and its 
correlation with energy use. 

Peng et al. 

2017 [106] 

K-nearest neighbour 

(KNN) 

Experiment, 

Application 
Not specified 

Average control accuracy of 88.1%. Energy 

saving of up to 20.3% is achieved with the use 
of demand-driven control. 

Zhang et al. 

2018 [166] 

Nonlinear ML algorithms, 

SVR with nonlinear radial 
basis function (RBF) 

kernel and neural networks 

Experiment MAE, R2, Time 

The nonlinear models performed significantly 

better than the linear models. The neural 
network had the best performance. 

Wang et al. 

2018 [167] 

Combined ANN with an 
ensemble approach 

Simulation R2 
The proposed ensemble model greatly 

improved the forecasting accuracy. 

Wu et al. 

2018 [168] 
Ensemble method Experiment 

R2, RMSE, MAE, 

r 

The proposed ensemble model performed 

better than ANN and SVM. 

Bilous et al. 

2018 [169] 

Multivariate regression 
model 

Simulation 
R2, Fisherôs 

criterion 
The model provided high accuracy predictions 

with R2 of 0.981. 

Wang et al. 

2018 [170] 

KNN, Support vector 
machine (SVM), ANN 

Experiment 
RMSE, MAE, 

MAPE 

The use of multiple sensing data sources 

significantly improved the reliability and 

accuracy of ANN-based models while it 

enhanced the reliability of SVM and KNN. 

Johannesen 

et al., 2019 
[171] 

Random Forest Regressor, 

KNN Regressor and Linear 
Regressor 

Energy load 
dataset 

MAPE 

Random Forest Regressor provides better 

short-term load prediction, and kNN offers 
relatively better long-term load prediction. 

Ciulla and 

DôAmico, 
2019 [172] 

Multiple linear regression Simulation 
R2, MSE, RMSE, 

MAE, MAPE 

Predicted heating, cooling and comprehensive 

energy requirements of a building with a high 
degree of reliability. R2 of 0.9 and the Mean 

Absolute Error and Root Mean Square 
error are lower than 10 kWh/m2 year. 

Xiong and 

Yao, 2021 
[173] 

KNN Experiment Accuracy % 
The KNN-based thermal comfort model with 

1000 sets of training data can have an accuracy 
of 88.31%. 

Liu et al. 

2021 [174] 
Random Forest Simulation R2, RMSE 

The Random Forest model exhibits notable 

advantages in building energy consumption 
prediction compared to SVM 

 

2.3.1.1 Regression algorithms 

Regression algorithms aim to figure out the correlations between independent and dependent 

variables by generating the mapping function so that the new independent input can be mapped 

to the continuous dependent output. Hence, regression algorithms can assist the prediction of 

continuous variables such as the occupancy pattern. Common regression algorithms are linear 

regression, decision tree, KNN, and ensemble learning. 

https://www.sciencedirect.com/topics/engineering/nonlinear-model
https://www.sciencedirect.com/topics/engineering/mean-absolute-error
https://www.sciencedirect.com/topics/engineering/mean-absolute-error
https://www.sciencedirect.com/topics/engineering/root-mean-square-error
https://www.sciencedirect.com/topics/engineering/root-mean-square-error
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Linear regression is a statistical regression method which models a target prediction value 

based on independent variables. This method is generally applied in cases with a less complex 

relationship between the input variables and the output. Linear regression assumes this 

relationship takes a linear form. For instance, the relationship can be expressed as Equation 2.1 

[175]. The objective is then to find the values of — parameters that most closely satisfy the 

training data. 

Ὢὼ — —ὼ —ὼ (2.1) 

where ὼ is the vector of input variables (i.e., the collected occupancy data in the case of this 

study) and Ὢὼ is the prediction value of the output variable. 

In prior research, the input data of the linear regression algorithm was numerical data clustered 

from sensors. Goldstein et al. [176, 177] proposed a prototype model employing linear 

regression method to generate occupantsô schedules based on historical data and then forecast 

occupant behaviour. The results showed that a 1.7% error was made as compared to the real 

schedules when implementing the prediction task. In order to collect spatial information, 

Goldstein et al. [178] extended this method by optimizing the linear regression algorithms. 

Figure 2-6 presented the comparison of simulated and real occupant schedules in different 

meeting rooms and implied a notable inaccuracy with the utilization of this method. Some 

researcher developed linear regression classification (LRC) to implement image recognition. 

Feng and Zhou [179] proposed an iterative linear regression classification (ILRC) algorithm to 

classify and recognize objects and faces. According to the experimental results, although 

compared with other state-of-the-art methods, ILRC achieves the best recognition rates, it is 

quite sensitive to detect the moving objects.  
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Figure 2-6 Predicted and measured probabilities that various meeting rooms are occupied 

[178]. 

 

The decision tree method is a non-parametric approach that can capture complex and nonlinear 

relationships without requiring prior knowledge of the expected complexity of the model. At 

each branch, the decision tree separates the training data using some criteria from their input 

variables in order to maximize the variation in the output variable at each division. A new 

example is sorted by moving down the tree structure according to the values of its input 

variables with its category or value. Typically, the decision tree is frequently employed to 

implement the detection tasks because of its characteristics on input variables. 

In [180], a decision tree was used to investigate the correlation between various types of sensors 

and the accuracy of occupancy detection. Results showed that the accuracy when only using 

motion sensors could reach 97.9% and raised to 98.4% when using multiple motion sensors. 

Capozzoli et al. [116] used a decision tree algorithm as a classifier to obtain a robust 

segmentation of the data set, which contributed to the optimised reconfiguration procedure to 

detect occupancy using indoor environmental data. Ryu and Moon [164] used a decision tree 

model to detect the occupancy at the current state based on energy consumption and 

environmental data. Based on the result, the decision tree model was capable of estimating the 
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occupancy at the current state. Depending on the number of predictors used, the RMSE ranged 

between 0.3673 and 0.2202. These studies implied that this method is well suited to perform 

real-time occupancy detection, especially presence detection. 

As one of the simpler supervised machine learning methods, KNN is a non-parametric machine 

learning algorithm that uses the most similar examples in the training set to make predictions 

for new and unseen data points. The KNN method does not train a generalised model, meaning 

that it can be quick to set up. Based on its input variables, the output value of a new example 

is taken as the mean of the k nearest examples from the training data, where k is a number 

chosen to optimise the fit of the model. As this method works on proximity to previously seen 

examples, it was frequently used to investigate the location and trajectory of occupants.  

Li et al. [127] designed a KNN-based model for the purpose of locating a target. This model 

operates by utilizing the known locations of the target's k nearest neighbouring reference tags 

and subsequently reporting the area of the target through the comparison between the estimated 

location and the boundaries of all spaces. Similarly, Erickson et al. [148] employed the KNN 

as the image processing algorithm to detect transitions. Experimental results demonstrated that 

it achieved a directional accuracy of 94% where the direction is classified correctly divided by 

the total number of transitions. However, in the case of detecting occupantsô counting with a 

limited amount of training data, significant problems may occur as it is unguaranteed that the 

possible number of occupants for all zones can be obtained during the training period. 

Several works used the ensemble learning approach to improve the performance of prediction 

models. It combines the predictions from multiple algorithms to achieve better prediction 

accuracy. Mamidi et al. [181] developed an adaptive multi-agent system to predict occupant 

behaviours according to environmental data and compared the performance of the system 

employing different ML algorithms. Results indicate that the ensemble learning approach 

outperformed multilayer perceptron, gaussian processes, linear regression, and SVM with the 

highest accuracy of 95% and the lowest RMSE value of 0.6. It highlights a good performance 

of ensemble methods in the estimation of the number of occupants. The study [167] proposed 

a one-step-ahead forecasting model based on an ensemble technique for cooling loads, which 

can help tackle the time-lag issues of HVAC control. The results showed that the proposed 

ensemble model greatly improved the forecasting accuracy. However, the work [168] also used 

an ensemble method for thermal perception prediction. The study concluded that it was more 

accurate than ANN and SVM in the prediction of thermal perception according to the collected 



 

43 

 

environmental conditions and outperformed the traditional PMV in terms of thermal sensation 

estimation. 

The reviewed literature emphasized the effectiveness of regression algorithms in providing 

continuous output, enabling precise predictions. Their ability to handle different input features, 

such as sensor data, weather conditions, and occupancy patterns, makes them adaptable for 

modelling complex relationships in building management. This flexibility is crucial for 

accommodating varied data sources. Moreover, certain regression algorithms support 

incremental learning, allowing adaptation to new data without complete retraining, a valuable 

feature in dynamic environments where occupancy patterns and equipment usage change over 

time. Additionally, regression algorithms exhibit computational efficiency, making them 

suitable for real-time applications. 

Nevertheless, there are critical gaps that warrant attention. Research is essential to develop 

regression algorithms capable of real-time adaptation, ensuring accurate predictions under 

varying conditions in buildings. Sparse or noisy building data can impact regression model 

accuracy. Addressing this challenge requires the development of robust regression techniques 

capable of handling incomplete or noisy data effectively, ensuring reliable predictions despite 

imperfect datasets. Large-scale buildings with numerous sensors generate large data volumes, 

necessitating scalable regression algorithms that can handle big data efficiently, delivering 

accurate predictions without compromising computational resources. Furthermore, occupancy 

and equipment patterns may significantly differ between buildings. Exploring transfer learning 

techniques is crucial, enabling the utilization of knowledge from one building's data to enhance 

predictions in another, especially in scenarios with limited training data. 

 

2.3.1.2 Classification algorithms 

Classification algorithms aim to find the functions to divide the dataset into various classes 

according to different parameters. After the computer program is taught by the training data, it 

can categorize the new input data into the classes it has learned. Hence, classification 

algorithms are suitable for performing the prediction of an event occurrence probability. 

Logistic regression is a statistical method which is suitable for regression analysis when the 

dependent variable is binary. This method is generally applied for predictive analysis. The 
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general relationship of input and output variables can be expressed as Equation 2.2 [175]. Then, 

the objective is to find the values of — parameters that satisfy the training data. 

 
(2.2) 

where  Ὣᾀ  is called the logistic function or the sigmoid function. Because g(z) tends 

towards 1 as z Ÿ Ð and g(z) tends towards 0 as z Ÿ -Ð, h(x) is always bounded between 0 and 

1. 

Logistic regression was employed to perform both profile generation and occupancy prediction 

tasks in previous studies. Mamidi et al. [181] used a logistic regression classifier to predict 

future occupancy with the utilization of different combinations of the size of training dataset 

within 100 and 200 days. The results showed that this classifier performed better than 

multilayer perceptron and achieved a 72% accuracy on 100 training size and 75% accuracy on 

200 training size when implementing occupancy prediction 15 minutes in advance.  

Chang and Hong [182] employed logistic regression methods to identify five distinct 

occupancy patterns according to variations in daily occupant presence profiles. Data for the 

study were collected using 200 lighting-switch sensors installed in each cubicle office in open-

plan offices. Recently, kernel-based logistic regression has shown considerable success in 

image recognition. The fr-MKLR (feature relevance in multi-nominal kernel logistic regression) 

approach was proposed by Ouyed and Allili [183] to perform action recognition. By examining 

the approach with different image datasets, the test accuracy ranged from 77.6% to 99.5%. 

Although the results of this approach showed excellent performance, the number of training 

data is a notable issue that is required to be considered. When dealing with large datasets, 

computational time can become a limiting factor. For the typical logistic regression algorithm, 

its output is a probability of being in a positive class so that a threshold is needed to be selected 

to make it a classifier. 

The SVM, based on regularization techniques, is a robust classification system that has 

demonstrated outstanding performance in numerous practical classification tasks. As a 

classification tool, SVMs try to plot a linear boundary between different categories with the 

maximum distance between the training examples and the decision boundary, which can 

produce an enhanced model. With the use of kernels, this method can efficiently learn in 

extremely high dimensional spaces without the need to specify polynomial parameters [184]. 

With the aim of classifying multiple classes, several classifiers can be created for each pair of 
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classes. A simplified case is illustrated in Figure 2-7 , where three label regions A, B and D are 

separated by three SVM classifiers A^B, A^C and B^C [185]. The new input d is classified as 

class A. 

 

Figure 2-7 Illustration of multiclass SVM [185]. 

 

Compared with regression algorithms, SVMs are more frequent to be employed in occupancy 

detection. Ortega et al. [185] utilized non-linear multiclass SVMs to tackle the intricate nature 

of the data obtained from different sensors, for the purpose of accurately detecting user 

occupancy and activities. Compared with other models, the SVM model outperformed in 

detecting occupancy activities and generating daily patterns with an accuracy of over 80%. 

Shih [186] proposed an observation measurement method based on SVM which achieves a 

well-performed detection and tracking of the occupants with the utilization of an image-based 

sensor and a pan-tilt -zoom camera which can be programmed. Figure 2-8 illustrates the results 

of occupant identification and tracking. The colour of the bounding box represents occupantô 

identity, and the red line represents the trajectory generated by connecting the centroid of the 

bounding box. It implies that this method achieved excellent performance on lightweight 

image-based occupant tracking tasks.  
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Figure 2-8 Examples of people trajectory construction with original video frames [87] 

 

While for multi-task image-based detection, itôs difficult to extract expected features, 

especially when the training data becomes larger, because typically SVMs only allow a single 

transformation to combine features. In addition, Wang et al. [140] used environmental data, 

WiFi, and fused data combined with ML to develop an occupancy prediction. Examined with 

an on-site experiment, the results suggest that the neural networks with fused data have the best 

performance, while the SVM model is more suitable with Wi-Fi data.  

As can be seen, classification algorithms offer binary output, making them suitable for tasks 

involving discrete states like occupancy status or equipment operation. This simplicity aids 

decision-making processes, and certain algorithms, such as logistic regression, provide 

probabilistic predictions indicating prediction confidence levels. Additionally, classification 

algorithms operate promptly, enabling real-time decision-making in applications like lighting 

control and HVAC systems, leading to energy savings and efficiency improvements through 

rapid occupancy and equipment detection. 

However, class imbalance is prevalent in occupancy and equipment usage data. Handling 

imbalanced datasets to prevent biased predictions remains challenging, particularly when 

accurate predictions for both classes are essential. Moreover, research gaps exist in developing 

classification algorithms capable of effectively integrating and analysing diverse data for 

occupancy and equipment prediction. Lastly, occupancy and equipment status can change 

rapidly, necessitating research into classification algorithms that can adapt in real-time to these 

changes, ensuring accurate and timely predictions. 
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2.3.1.3 Deep learning algorithms 

Deep learning is a subfield of machine learning which teaches computers to learn by examples 

to do complex tasks such as seeing and hearing. As shown in Figure 2-9, diff erent from other 

machine learning methods, at which the data presented in numerical, categorical, time series 

and text are used as input [187] with the selection of an algorithm as a computational method 

to ñlearnò information directly from data, deep learning interprets data features and their 

relationships using neural networks to form a unique model based on a wider range of data, 

including images, videos, and sounds. To a greater extent, deep learning provides higher 

accuracy than other methods as the feature extraction process is performed automatically from 

raw data. However, deep learning would require more data points to improve its accuracy. 

Several studies have suggested that deep learning surpassed machine learning and other 

learning algorithms in various applications [188]. Common deep learning algorithms are 

convolutional neural network (CNN) and recurrent neural network (RNN). 

 

Figure 2-9 Comparison between typical ML and DL processes. 

 

As many relevant studies showed [189, 190], a deep learning approach with CNN architecture 

is particularly effective for vision tasks. The architecture of a classic CNN is illustrated in 

Figure 2-10. CNN consists of a large number of hidden layers. In each layer, mathematical 

calculations are performed on the input supplied from the previous layer, and the output 

generated in the current layer is treated as an input for the next layer. Unlike the classical neural 

networks with common fully connected layers, CNN includes convolutional layers, which have 

a better performance on the modelling and identification of the spatial correlation of adjacent 

pixels. For a classification task, the network will be pre-trained for the categories (final outputs) 
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because of the significantly expensive training phase. Once the pre-training of the network 

completes, it only takes quite a short time to perform the prediction task efficiently.  

 

Figure 2-10 Simplified DL architecture [191]. 

 

Recently, CNN-based frameworks have rapidly developed and achieved state-of-the-art 

accuracies in image classification and object detection and have also been applied for occupant 

activity detection with high accuracy. Zou et al. [111] proposed a deep learning-based human 

activity recognition scheme (DeepHare) which employed a novel deep learning framework ï 

Autoencoder Long-term Recurrent Convolutional Network (AE-LRCN) and WiFi-enabled IoT 

devices to automatically identify common activities. Experimental results showed that an 

accuracy of 97.6% in activity recognition was achieved by DeepHare.  

Similarly, in [192], authors developed a vision-based technique integrating CNN, SVM, and 

K-means clusters for video analysis. This technique enabled occupancy detection and 

prediction through human head recognition and achieved a 95.3% accuracy with a low 

computing cost of 721ms. In some studies, CNN implements along with other algorithms to 

improve the occupancy prediction accuracy. Feng et al. [193] integrated CNN, and long short-

term memory network (LSTM) to detect binary occupancy patterns from advanced metering 

infrastructure (AMI ) data and achieved a 90% accuracy. Moreover, some attempts focused on 

preserving privacy. For example, Saha [194] proposed a few-shot learning approach, which is 

a CNN method with simpler architecture, to detect indoor occupancy with the use of low-

quality photos. In the study [195], thermal cameras and AlexNet CNN were employed for 

occupancy pattern detection with an accuracy of 98.8%. These highlighted the excellent 

performance of CNN in occupancy detection and prediction, especially for vision-based tasks. 

RNN, or feedback neural network, is another common type of deep learning method. Figure 

2-11 shows the architecture of RNN, in which the output is fed back into the neurons in the 

previous layer as the input of the next output [196]. It is suitable for time-series and other 

sequential data processing. Wang et al. [197] proposed a Markov-based feedback RNN 
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approach for occupantsô presence forecasting using the data collected by the WiFi probe 

technology. Kim et al. [103] proposed a vision-based occupancy estimation model based on 

RNN with LSTM units to perform occupancy prediction in real-time in a large exhibition hall 

to achieve automatic and efficient energy management.  

 

Figure 2-11 RNN architecture [196]. 

 

In the last decade, deep learning has been a significantly popular and developing technology, 

while there is still a vast opportunity to explore the application of deep learning methods on 

detecting and forecasting indoor occupancy and equipment information and the integration 

with building management systems to achieve energy-efficient building controls. As deep 

learning allows several transformations in a row to combine layers and layers of features, by 

working along with computer vision technology, it has the ability to detect all properties of 

indoor occupancy and equipment information via collected images with state-of-the-art 

accuracy. Additionally, deep learning models, especially neural networks with multiple layers, 

can capture intricate patterns and relationships within the data. This capability is valuable for 

capturing nuanced occupancy patterns and equipment usage behaviours that might be 

challenging for traditional algorithms to discern. 

Nevertherless, deep learning algorithms often need vast amounts of labelled data for training, 

posing challenges in building management applications where acquiring such data can be 

difficult. Research gaps persist in the development of techniques for efficient deep learning, 

enabling models to generalize effectively with limited labelled data. Additionally, effectively 

addressing class imbalance with deep learning models to prevent biased predictions also 

remains a research challenge. 
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2.3.2 Unsupervised Learning 

Unsupervised learning is the algorithm which finds patterns from unlabelled data. It is suited 

for applications such as load profiling, detection, diagnostics of problems occurring in 

buildings and occupancy detection [198]. Table 2-5 lists examples of using unsupervised 

learning methods for data analysis for building systems. The growing interest in the internet of 

things (IoT)-enabled buildings and a large volume of data generated by IoT sensors presents 

an opportunity to use unsupervised learning models. For example, training models on very 

large datasets is time and computational resource intensive. One method to overcome this is to 

reduce the number of training samples such as by employing unsupervised learning algorithms 

to pre-treat the training sample sets. This could reduce the number of training samples and also 

avoid noise samples [199]. Another application of unsupervised learning is anomaly detection, 

which can help in making better decisions to reduce energy use wastage and promote energy-

efficient behaviour in buildings. The study [200] proposed a two-step clustering method 

composed of DBSCAN and k-means algorithm for a framework which identifies daily 

electricity usage patterns and detects anomalies in building electricity consumption data. For 

analysing actual building operational data, the use of unsupervised learning is more practical 

since anomaly labels are typically not available.  

Table 2-5 Examples of unsupervised learning models for occupancy data analysis. 

Ref. Model Type Evaluation Eval. Metric  Key findings 

Li et al., 2010 

[199] 

Fuzzy C-mean clustering 

algorithm 

Historical 

data 
MAPE, RMSE 

The clustering technique helped reduce the number 

of training samples and avoid noise samples. 

Mateo et al., 
2013 [201] 

K-means, Fuzzy c-

means, Cumulative 

Hierarchical Tree, 
DBSCAN, K-medoids 

Simulation MAE 
Clustering techniques did not show significant 
improvement for linear or non-linear methods. 

Guo et al., 
2013 [202] 

Hidden Markov Model 

(HMM) and a clustering 
algorithm 

Experiment Not specified 

The method not only identified system faults that 

were modelled within the training process but also 
can be applied for diagnosis. 

Trabelsi et al., 

2013 [203] 

Hidden Markov Model, 

Expectation ï 
Maximization (EM) 

algorithm 

Experiment 
Classification, 

Precision, Recall 

The proposed method achieved a high classification 

rate of 91.4% and competitive with a well-known 
supervised approach. 

Hong et al., 

2015 [204] 

Gaussian mixture model 

with partitional 
clustering 

Building 

sensor 
information 

Classification 

Accuracy % 

The approach is able to achieve more than 92% 

accuracy for type classification. 

Habib et al., 
2016 [205] 

K-Means, Bag of words 

representation with 
hierarchical clustering 

Building 

operational 
data 

Cluster evaluation 

The method can automatically find various patterns 

using as little configuration or field knowledge as 
possible. 

Carreira et al. 

2018 [206] 
K-Means algorithm Simulation CV, STDV 

The k-means algorithm helped optimise the HVAC 

system to minimise energy consumption while 
maintaining user comfort. 

Liu et al., 
2021 [200] 

Two single-step 

clustering based on K-
Means and DBSCAN 

Electricity 

consumptio
n dataset 

Visual comparison, 
Dunn index 

The proposed two single-step clustering method 

outperformed k-means and gaussian mixture model 

in terms of detecting outliers and discovering 
typical electricity usage characteristics. 
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However, for the detection and recognition of occupants in a building, obtaining sufficient 

actual (ground truth) information can sometimes be challenging, and hence several researchers 

have explored unsupervised approaches. For example, the work [133] used an unsupervised 

learning approach for occupancy activity recognition from wearable sensor data. The results 

showed that the proposed method achieved a higher classification rate of 91.4% as compared 

to well-known unsupervised classification approaches and was competitive with well-known 

supervised approaches. Dong et al. [207] investigated the correlations between the number of 

occupants and the collected parameters by applying the feature selection tasks. They found that 

CO2 concentration and sound level are the core parameters for people counting. After inputting 

these parameters to HMM and the other two estimation methods, the results presented that 

HMM outperformed in the prediction of the number of occupants with an average accuracy of 

58%-73%. It suggests that further enhancement is still required for HMM to achieve better 

performance on occupancy prediction. 

The literature indicates that different from supervised learning algorithms, unsupervised 

learning algorithms do not rely on labelled data for training. In occupancy and equipment 

detection, where obtaining labelled data is often challenging and costly, unsupervised 

algorithms can learn patterns and structures from unlabelled data, making them highly relevant 

for real-world applications. Additionally, unsupervised learning algorithms outperform in 

anomaly detection, identifying unusual patterns or behaviours in occupancy and equipment 

data. Moreover, these algorithms can cluster similar data points, aiding in recognizing different 

occupancy and equipment usage patterns across spaces for desired control and optimization 

strategies. 

However, precisely distinguishing anomalies from transient patterns or sensor noise proved 

challenging. Research is needed to advance anomaly detection algorithms, reducing false 

positives and enhancing anomaly prediction accuracy. Secondly, there are research gaps in 

developing self-adaptive unsupervised learning systems capable of evolving with changing 

building dynamics. Lastly, models that effectively handle noisy sensor data without affecting 

the integrity of learned patterns require further development, emphasizing the need for 

continued research in these areas [200]. 
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2.3.3 Summary 

ML methods have been widely explored for rapid building data analysis, accurate formation 

and prediction of occupancy and equipment patterns. They can achieve low rates of prediction 

error and ensure the robustness of the system. As the regression methods forecast continuous 

valued output, it is employed to analyse the numeric data clustered from sensors such as smart 

meters and room climate (temperature, humidity, CO2, etc.) detectors. The classification 

algorithm is used to classify the labelled data obtained from cameras, and RF-based sensors 

according to some parameters. However, research activity on the DL algorithm has 

dramatically increased in recent years as it is able to extract features by itself and achieve higher 

performance with reasonable training time when feeding more data compared with traditional 

ML algorithms. Due to its excellent ability to process images and large-size datasets, itôs 

usually implemented to analyse the data collected by cameras and WIFI to evaluate the number 

and trajectory of occupants.  

Particularly, the interest in applications of computer vision and deep learning has significantly 

increased in recent years. As images and videos have a larger volume of information compared 

with numerical data in some ways, more studies focus on extracting required information from 

images and videos and developing various applications such as object recognition, 

identification, verification, crowd analytics, and character recognition. In terms of these 

applications, many studies proposed several vision-based applications and DL techniques for 

building detection, especially occupancy detection. As using the computer vision method can 

extract high solution occupancy information, there are numerous opportunities for the 

applications of computer vision and deep learning in the built environment, especially to 

achieve a comfortable environment and energy savings simultaneously in the building sector. 

To reach the goal, one of the popular ways is to give buildings the ability to automatically learn 

to optimize the use of heating, cooling, or lighting according to indoor and outdoor conditions 

and provide the proper control strategies. It will result in higher satisfaction of the people as 

well as healthier and intelligent buildings. 

 

2.4 HVAC controls based on indoor environment detection data 

It has been widely acknowledged that HVAC systems represent a significant portion of the 

energy consumed in buildings. Many building energy control systems are designed based on 
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the load schedules predefined by relevant standards. For instance, Figure 2-12 shows a 

recommended office occupancy profile given by ASHRAE Standard 90.1. It is a traditional 

and widely used method for the prediction of internal heat gains to perform predictive control 

for the HVAC system. In Menezesôs study [78], the usage profiles for different equipment in 

four states (transient, strict hours, extended hours and always on) were established based on 

the standards set in CIBSE Guide F and TM54.  

However, for a specific building, it may not be appropriate to apply the typical schedules to the 

control system because different types of construction have different functions and features. 

Moreover, the stochastic and diversified information of the equipment patterns could not be 

reflected by the typical profiles in reality [208]. This can result in the over-conditioning of 

spaces within a building, which leads to excessive energy waste and an uncomfortable indoor 

environment.  

 

Figure 2-12 Office building occupancy profile from ASHRAE Standard 90.1-2004 [209]. 

 

Hence, a large number of studies have focused on improving the efficiency of HVAC systems. 

The studies [210, 211] reviewed applications of advanced control strategies in HVAC systems. 

Apart from increasing the operational efficiency of HVAC systems, there is also a high demand 

for effective integration between HVAC systems and buildings. On the one hand, both HVAC 

systems and buildings are dynamic systems because their performance can be varied with 

weather conditions and time. On the other hand, it could be tricky to deal with coupling effects 

between buildings and HVAC systems, especially when inevitable, likely irregular and 

unpredictable occupantsô behaviours are considered.  
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The aforementioned dilemma can be effectively solved by taking advantage of occupancy-

based controls. When it comes to the control of HVAC systems, occupancy information is 

utilized to determine heat loads, heating and cooling demands, conditioned air distribution, 

optimal temperature setpoints, and system operation duration [127]. Control strategies for 

HVAC systems can be optimized by using the predicted occupancy data, so that significant 

amounts of energy can be saved, leading to a more efficient and cost-effective use of energy. 

For instance, Pang et al. [10] developed occupancy-centric controls to reduce office building 

loads. The occupancy-centric controls adjusted the HVAC temperature setpoint profile based 

on the status of occupants (presence/absence and number). It was estimated that such controls 

could lead to energy savings between 19%-44%.  

Following the same methodologies in [10], the study [212] conducted comprehensive 

simulations for a residential building. They reported that, in certain cases, such controls could 

offer energy savings as high as over 30%. These showed that building energy consumption can 

be reduced by exploiting occupancy-based controls. However, among the selected studies 

which refer to building control systems, none of them has developed the applications of HVAC 

controls based on equipment usage information in buildings. Therefore, only the strategies of 

occupancy-based controls will be investigated in this section.  

To provide a deeper understanding of occupancy-based HVAC control strategies, a comparison 

is presented among various studies that have utilized occupancy information to implement 

HVAC controls in Table 2-6 in terms of the detected information, control methods and the 

resulting energy savings. Occupancy-based controls can be categorized as control based on 

real-time detection of occupancy status and control based on the prediction of occupancy status 

in the near future. It can be seen that more studies chose to develop a control strategy based on 

the forecasting of occupancy status in the near future. Although variation exists between 

different studies, compared with control based on real-time detection, control based on the 

prediction schedule achieved relatively higher percentage energy savings in buildings.  
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Table 2-6 Comparison of studies developing control strategy with the use of indoor 

occupancy information and their energy savings. 

References Occupancy information Control method Energy Savings 

Dong and Lam [213] Presence and count Model predictive control (MPC) based on 

occupancy prediction (HVAC) 

18% (cooling) and 

30% (heating) 

Erickson et al. [214] Presence, location, count Adaptive operation based on occupancy prediction 

(ventilation) 

14% 

Erickson and Cerpa [215] Presence, location, count Occupancy prediction (HVAC) 20% 

Erickson et al. [216] Presence, location, count Occupancy prediction (HVAC) 42% 

Goyal et al. [217] Presence MPC based on real-time occupancy detection and 

prediction (HVAC) 

42-60% 

Goyal et al. [218] Presence MPC based on real-time occupancy detection and 

prediction (HVAC) 

40% 

Purdon et al. [151] Presence, preferences Setpoint based on real-time detection, (HVAC) 60% 

Balaji et al. [219] Presence, location, count, 

identity, preferences 

Setpoint based on real-time detection (HVAC) 18% 

Majumdar et al. [220] Presence, preferences MPC based on occupancy prediction (HVAC) 7-10% 

Gruber et al. [221] Presence MPC and open-loop predictive controller (OLPC) 

based on occupancy prediction (ventilation) 

- 

Foster et al. [222] Presence, count Setpoint based on real-time detection (HVAC) 40% 

Lim et al. [223] Presence, location, activity Adaptive temperature control based on real-time 

detection (HVAC) 

12% 

Capozzoli et al. [116] Presence, count On/off based on optimised schedule (HVAC) 14% 

Wang et al. [115] Presence, count Setpoint based on real-time detection (HVAC) 20% 

Nagarathinam et al. [224] Presence, location, count MPC and PID based on occupancy prediction 

(HVAC) 

12% 

Peng et al. [106] Presence Setpoint control based on occupancy prediction 

(cooling) 

20% 

Peng et al. [61] Presence  Setpoint control based on occupancy prediction 

(cooling) 

7-52% 

Labeodan et al. [120] Presence, location, count Setpoint based on real-time detection (lighting and 

HVAC) 

- 

Nassif [137] Presence, count Setpoint based on real-time detection (ventilation) - 

Kleiminger et al. [225] Presence, location, count Setpoint based on occupancy prediction (heating) 6-17% 

Lu et al. [226] Presence, activity Setpoint based on real-time detection (HVAC) 28% 

Wang et al. [108] Presence, count Real-time detection (ventilation) 24-56% 

Diraco et al. [227] Presence, location, count, 

track 

Setpoint based on occupancy prediction (HVAC) 28% 

Roselyn et al. [81] Presence, count Occupancy prediction (Cooling and lighting) 28.53%-34.7% 

Jin et al. [107] Presence, count Real-time detection (lighting and HVAC) 10.22% 

Wang et al. [96] Presence Adaptive occupancy-driven thermostat control 11%-34% 

Choi et al. [31] Presence, count Occupancy-centric control (HVAC and lighting) 10.2% 

Aftab et al. [228] Presence, count MPC based on real-time detection (HVAC) 30% 

Pang et al. [10, 212] Presence, count Setpoint-based smart thermostat control based on 

occupancy prediction (HVAC) 

19-44% (office) and 

30% (residential) 

 

2.4.1 Control based on real-time occupancy information 

The application of real-time response to occupancy variation in buildings is well developed in 

lighting controls with the utilization of motion sensors to control the power of lighting (on/off) 

[11]. While the development of the control strategies of HVAC systems through building 

energy management systems based on real-time information has been rapidly growing in recent 

years. Lu et al. [75] designed a smart thermostat approach which can turn off the homeôs HVAC 

system automatically according to the current occupied conditions detected by PIR sensors and 
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magnetic reed switches. After evaluating the approach in 9 homes, it demonstrated that this 

approach resulted in a low-cost initial investment and 28% of energy savings on average. This 

control strategy is cheap and easy to operate but it focuses on meeting personal preferences and 

itôs only suitable for residential buildings which has fewer people and energy behaviour than 

commercial buildings.  

In the study [154], authors proposed an adaptive temperature control strategy which used the 

online algorithm they developed to generate and candidate the most tailored occupancy 

schedule for the latest demands based on the real-time occupancy statistics in commercial 

buildings. The real occupancy data of a building used to generate a schedule was obtained from 

the previous study [184]. This strategy reduced up to 12% of energy consumption under the 

acceptable thermal comfort flexibility in the controlled space. Purdon et al. [102] developed a 

data fusion algorithm which iteratively adjusts the temperature to compensate the discomfort 

of occupants by raising or reducing the temperature when itôs too cold or hot for occupants. As 

their result showed, at least 50% reduction in energy consumption could be achieved with 

minimal impact on thermal comfort.  

Unlike using existing data to produce backup schedules, many studies directly employed 

sensing results to change HVAC settings in real time. Foster et al. [153] proposed a web-based 

office control system that consists of various wireless sensor nodes, which collect occupancy 

information, and a control node, which embeds ML algorithms to determine whether to activate 

the HVAC system based on the provided information. Compared with a conventional on-off 

control strategy, this system could save up to 39% of energy for HVAC systems. Similarly, 

Wang et al. [91] also used wireless sensing system (WIFI probe) to detect real-time occupancy 

profiles. While, in this study, the profiles were only applied to optimize energy efficiency for 

the ventilation system. This ventilation strategy was compared with other two common 

conventional strategies in a multi-zone space. The results exhibited that the proposed strategy 

achieved up to 55% energy savings when maintaining indoor air quality in most zones. 

Indeed, adjusting heating, cooling, and ventilation levels based on real-time occupancy data 

can significantly minimize energy wastage in unoccupied or underutilized areas, leading to 

significant energy savings. Real-time occupancy information enables HVAC systems to deliver 

optimal comfort levels precisely where and when needed. It allows these systems to adapt to 

changing occupancy patterns, ensuring dynamic responses to fluctuations in the number of 

occupants. This adaptability proves particularly valuable in buildings with variable occupancy, 
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such as office spaces or conference centres. Additionally, real-time occupancy data offers 

valuable insights into occupant behaviour and building usage patterns. 

Yet, there is a need for research to enhance the reliability of occupancy detection technologies, 

especially in large and complex environments, ensuring accurate and timely data for HVAC 

systems. Additionally, there is a research gap in developing scalable occupancy detection 

technologies capable of handling high volumes of data and supporting real-time control in large, 

complex building environments. Furthermore, research gaps exist in addressing the time lag 

for the HVAC system to achieve the desired climate in buildings based on the real-time changes.  

 

2.4.2 Control based on occupancy prediction 

This control method aims to forecast the future occupancy information of a space to perform 

pre-conditioning in the space to achieve satisfactory levels. It enables spaces to automatically 

maintain comfort levels while occupied and drift away from the comfort levels while 

unoccupied according to the estimation of occupancy status or schedule based on historical or 

current occupancy data. 

Scott et al. [61] developed the PreHeat prediction system to automatically control home heating 

based on occupancy information collected by RFID and motion sensors. The system works in 

two ways: using the Occupied setpoint in the daytime and Sleep setpoint at night when a space 

is occupied, forecasting the upcoming occupied time by analysing the historical and current 

occupancy data when a space is not occupied. They deployed the system in UK and US homes, 

respectively and it showed that in UK homes 8-18% gas usage reduction was obtained while 

in US homes the gas consumption was almost the same as the system was not implemented on 

a per-room basis so that no extra heating saving was generated at different times of day. 

Moreover, this control strategy is tailored for homes instead of office and commercial buildings 

which have more occupants and different energy behaviour.  

Peng et al.  [13] presented an empirical study on reducing the cooling energy demand of an 

office by implementing occupancy prediction controls. An occupancy presence and vacancy 

profiles were obtained from monitoring data, and a K-nearest neighbour model was employed 

to predict occupantsô future presence likelihood and duration. Afterwards, the temperature 

setpoint was set according to the rules specified in the study, which enabled a reduction of 

energy consumption by up to 20.3%. Similar to [13], the work [14] established occupancy-
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prediction controls for chilled beams in office buildings, and the controls offered energy 

savings ranging from 7% to 52%. 

Erickson et al. [68] used the predictive user mobility patterns, which are produced by Gaussian 

and agent-based models with the utilization of occupancy-related data obtained from a wireless 

camera sensor network, to control the ventilation in an adaptive way. Compared with the base-

case outside air control strategy, the proposed strategy results in about 14% energy savings 

according to the energy simulation results. Instead of controlling the ventilation rate only, 

Erickson and Cerpa [65] extended this study so that the proposed strategy has the ability to 

perform both temperature and ventilation controls. Under the promise of maintaining ASHRAE 

building standards, the simulation results show that 20% potential energy savings are presented 

with the implementation of the improved control strategy. In order to increase the energy 

efficiency and assess the actual energy consumption, Erickson et al. [66] optimized the 

occupancy models by using a Markov Chain which can contribute to a faster prediction and 

conditioning when rooms will be possibly occupied. They integrated the models into an actual 

building conditioning system to perform demand-based controls. Compared with the current 

state of the art baseline strategy, the optimized strategy could achieve 42% annual energy 

savings in average.  

Instead of estimating annual energy savings, Dong and Lam [70] investigated the capability of 

the proposed control strategy in heating and cooling seasons, respectively. A nonlinear MPC 

approach of integrated heating and cooling controls according to forecasted occupancy status 

and local weather conditions by using advanced ML methods was illustrated. As the occupantôs 

discomfort was taken into account in this study to be a constraint, the indoor temperature would 

be set in a way by the MPC approach to minimize the energy use and the period that occupants 

feel uncomfortable. It demonstrated that compared with the conventionally scheduled 

temperature setpoints, the proposed approach could reduce 30.1% energy consumption in the 

heating season and 17.8% in the cooling season. Similarly, Majumdar et al. [151] also proposed 

an MPC approach to balance energy and comfort, which restricts unexpected discomfort by 

using the history data of occupants as well as occupancy prediction. They employed motion 

and CO2 sensors to gather data on occupancy over a period of three months for an office and 

a laboratory, and six months for a conference room. The occupancy profiles utilized for 

weekdays and weekends are different. The results presented that 7-10% of energy reduction 

could be achieved by using the proposed predictive control strategy.  
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The literature indicates that predicting occupancy patterns allows HVAC systems to 

proactively adjust before occupants enter or leave a space. Predictive occupancy data can also 

identify heavily occupied areas, enabling pre-emptive adjustment in these zones before peak 

occupancy times, ensuring efficient operation when needed the most. However, occupancy 

patterns in buildings can change dynamically due to events, holidays, or special occasions. 

There is a research gap in improving the algorithms for swiftly predicting the anomaly 

occupancy status. Additionally, research is essential to develop adaptive algorithms that can 

rapidly adjust HVAC settings based on sudden changes in occupancy patterns.  

 

2.4.3 Summary 

The applications of occupancy detection methods to HVAC controls in buildings can be 

roughly described by controls based on real-time occupancy detection or future occupancy 

prediction. In general, controls based on real-time occupancy information can provide faster 

responses due to less computing process duration when the control logical rules are relatively 

simple. Controls based on the prediction of future occupancy provide standby actions for the 

near future status and have the potential for more energy savings. While their logical rules are 

more complex, leading to a higher cost of computational work and slower response.  

The above studies showed that building energy consumption can be reduced by exploiting 

occupancy-based controls. Yet, it should be noted that the requisites of occupancy-based 

controls to meet the actual thermal and ventilation demands are real-time occupancy 

information. The occupancy in real-life can be very irregular, stochastic, and unpredictable and 

in some cases, there will be no occupants. The use of fixed or assumed schedules to operate 

HVAC and other building services can lead to unnecessary energy usage. Hence, occupancy 

sensing is necessary for building controls to respond to the dynamic occupancy loads 

automatically. However, limited studies employed real-time occupancy profiles to select an 

optimal HVAC setpoint. Due to the unavailability of a real-time occupancy profile, some 

studies adopted a predefined occupancy profile instead when optimizing HVAC setpoints.  
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2.5 Summary 

In the past 20 years, the research in the field of detecting and forecasting occupancy information 

using ML algorithms and applications in building controls has remarkable increase. Especially 

in the last decade, the number of related papers is growing rapidly, which implies that more 

data source is available for researchers to do training and testing for the models they are 

developing. Due to the integration of these dimensions, the connection between occupants and 

buildings is closer, which leads to improved and simplified communication between physical 

systems and human beings. In addition, it also contributes to the design and operation of 

efficient systems which reduce the building energy consumption and satisfy the occupantsô 

requirements for a comfortable and healthy indoor environment. Recently, the field of 

equipment load monitoring and prediction has got a lot of interest and started being explored 

in some studies.  

The concept of occupancy and equipment information can encompass various levels of detail. 

As mentioned before, occupancy information consists of occupantsô presence, location, 

counting, activity, identity, and trajectory. Based on the aim of the studies, the selection of the 

types of sensors is different. For instance, studies focusing on detecting occupantsô presence 

demonstrated that motion or CO2 concentration sensors are simpler and more proper. While 

for location and trajectory detection, those trackable or visible technologies are required, such 

as WIFI, Bluetooth and camera. Similarly, equipment information consists of its presence, 

mode, location, identity, and count. Currently, the ways to detect equipment usage only include 

using smart meters and doing a survey on occupants. In general, the goal of collecting 

comprehensive information increases the difficulty of optimizing data collection technologies 

to cluster more required information. In terms of this, a majority of studies used different types 

of sensors or developed multi-sensor networks in order to gather data for a more accurate real-

time profiles or future status forecasting.  

In order to rapidly and accurately generate profiles and predict the future schedule of occupancy 

or equipment, ML algorithms are suitable tools which combine statistical and stochastic 

methods to analyse the collected data. They can achieve low rates of prediction error and ensure 

the robustness of the system. As the regression algorithm forecasts continuous valued output, 

it is employed to analyse the numeric data clustered from sensors such as smart meters and 

room climate (temperature, humidity, CO2, etc.) detectors. Classification algorithm is used to 

classify the labelled data obtained from cameras, RF-based sensors according to some 
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parameters. However, research activity on the DL algorithm has dramatically increased in 

recent years as it is able to extract features by itself and achieve higher performance with 

reasonable training time when feeding more data compared with traditional ML algorithms. 

Because of its excellent ability to process images and large size data, itôs usually implemented 

to analyse the data collected by cameras and WIFI to evaluate the number and trajectory of 

occupants.  

The applications of occupancy detection methods to HVAC controls in buildings can be 

roughly categorized into controls based on real-time detection and future prediction. In general, 

when the control logic rules are relatively simple, the real-time response provides faster 

operation as less computing process is required to implement. While more complex control 

strategy, such as future prediction, has a larger potential for energy savings at the cost of 

computational work. It provides standby actions for the near future status but results in a slower 

response. Therefore, itôs necessary to account for these factors for the future design of building 

controls.  

 

2.6 Research Gap 

This chapter presents a comprehensive review encompassing three key dimensions: monitoring 

technologies for indoor equipment information, machine learning algorithms employed for 

data analysis and future pattern prediction, and their applications in HVAC control systems. A 

critical analysis of existing literature reveals limited methodologies for collecting equipment 

information within office buildings, including the use of plug-in power meters, surveys, and 

clustered occupant information analysis. 

Studies [32, 140, 157] utilized plug-in power meters to estimate heat loads from individual or 

multiple appliances. However, deploying plug-in meters for all appliances in large spaces with 

numerous electric devices proves costly, impractical, and challenging for data monitoring and 

management.  In studies [36, 37], equipment usage information was gathered through surveys, 

offering insights into occupants' preferences. While surveys are cost-effective and relatively 

easy to administer, their results are influenced by factors, including question appropriateness, 

inflexibility, and time constraints, leading to a limited sample collection. Moreover, survey 

data alone is insufficient for predicting equipment usage patterns and developing equipment 

load estimation models, necessitating additional information. Additionally, certain studies [156, 
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158] employed building occupancy information to estimate equipment usage. Although 

equipment load correlates strongly with occupancy data, this method is indirect and remains 

limited, requiring the integration of multiple sensors to enhance its performance. 

The swift progress in computer vision technology has spurred interest in utilizing cameras 

combined with vision-based electric equipment detection and recognition systems. Zhang et al. 

[229] employed the computer vision method and Faster RCNN algorithm to identify computer 

brands and their status in an electric power room, achieving a 91.3% mean average precision 

with the test dataset. However, it is essential to note that this method exhibited proficiency in 

detecting computers only at close distances; its efficacy in identifying computers situated far 

from the camera remains unverified. 

Several research endeavours have explored the dissipation of heat from equipment and the 

detection and prediction of indoor equipment usage magnitude and patterns. Li and Zhang [25, 

230] developed a real-time heat dissipation model for electronic equipment to determine the 

dynamic cooling demand of office buildings by strategically placing temperature sensors on 

the surfaces of computers, laptops, adjacent solid objects, and desks. This approach enabled 

accurate measurement of heat emissions from different equipment types, thereby providing 

invaluable insights for related research. Nonetheless, the practical implementation of deploying 

numerous sensors in office environments for prolonged real-world applications poses 

challenges and impracticalities. 

Other studies such as [156, 159] opted for metering systems to capture plug or MEL data, 

thereby generating equipment usage patterns in office buildings for HVAC controls. These 

methods created highly precise equipment load profiles, therefore guiding HVAC controls 

effectively. However, a conspicuous gap exists in the literature focusing on the prediction of 

associated heat gains and air pollutants from equipment deployed in office and kitchen spaces 

within office buildings. Such predictive information could significantly enhance the accuracy 

of estimations concerning heating, cooling, and ventilation requirements for these specific 

spaces. 

Therefore, according to the review of previous literature, several research gaps have been 

identified as follows: 

1. There are limited monitoring methods to enable the collection of equipment information 

within buildings. 
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2. Only a few studies explored the detection and prediction of the magnitude and profile of 

indoor equipment usage. 

3. Limited studies explored detection of the usage of equipment or appliance in office 

buildings which emits high levels of heat and pollutants such as in kitchen spaces. Further, 

no investigation evaluated the potential of a detection method for equipment to estimate 

the heat dissipation from them and their impact on heating, cooling, and ventilation 

demands. 

4. Only a few studies established models that can provide comprehensive equipment 

information for the optimal design and performance simulation of building HVAC systems 

instead of using typical fixed or static profiles. 

5. The real-time detection of equipment usage in buildings has not yet been applied and 

integrated with building energy management systems. 

 

  



 

64 

 

 

 

 

 

 

 

 

 

 

  

  

CHAPTER 3 EQUIPMENT DETECTION 

AND RECOGNITION 

APPROACH 



 

65 

 

Chapter 3 Equipment Usage Detection and Recognition Approach 

To address the previously mentioned research gaps, a vision-based equipment usage detection 

approach using a deep learning method was proposed to enable real-time equipment usage 

monitoring in indoor spaces. In this chapter, the framework of the proposed approach is 

explained in detail, following the selection of the model implementation platform and base 

deep learning model, the description of architecture, training and testing processes, data 

collection and labelling, and loss functions of the proposed equipment usage detection model. 

This chapter also introduces the methods employed to assess the detection and recognition 

performance and the formation of deep learning-based detection profiles (DLDP) of equipment 

usage. To evaluate the impact of the proposed approach on building energy performance, 

building energy simulations would be employed to model the building energy in a virtual 

environment when using the proposed approach. The selection of the BES tool for this research 

and its theory are also introduced in this chapter. 

 

3.1 Proposed Vision-based Framework 

The proposed approach utilizes computer vision and deep learning techniques to potentially 

achieve efficient energy management and enhance thermal comfort and indoor air quality in 

offices and kitchens by applying a demand-driven control strategy through real-time equipment 

usage detection. Figure 3-1 illustrates the framework of the proposed approach. The detection 

model is implemented in a conditioned space to generate and collect real-time data of 

equipment usage information using an AI-enabled camera. Then, the real-time information will 

be inputted into the building energy management system to adjust the HVAC system operations 

to provide demand-based controls. It can minimize the unnecessary building energy loads and 

increase the usersô satisfaction by providing sufficient interior thermal conditions and air 

quality. In addition, based on the obtained data, equipment usage DLDPs can be generated 

which present the actual usage variation with time. It can contribute to the accurate building 

energy performance assessment by feeding the DLDPs into the energy model and also give an 

insight into the features of the equipment usage pattern in the spaces with different functions. 
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Figure 3-1 Framework of the proposed vision-based approach (Sources: Freepik). 

 

To achieve this aim, the main objectives listed below were carried out in this research. It can 

be separated into two parts ï equipment usage detector preparation (i-iv), and deployment of 

the proposed model for demand-driven control assistance and building energy performance 

assessment (v-vi). 

i. A detection platform was selected to implement the deep learning algorithm to perform 

detection and recognition tasks. 

ii.  A suitable deep learning model was picked as the base model to develop the desired 

equipment usage detector. 
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iii.  A large number of images including various types of office and kitchen equipment 

within different offices and kitchens was collected, labelled, and randomly divided into 

training and testing datasets. 

iv. The model was trained and tested with the processed dataset. This step was iterated to 

be further optimized based on the evaluation of detection performance. 

v. The trained model was deployed in an actual office and kitchen environment to generate 

and cluster the data of equipment usage information using an AI-enabled camera. The 

clustered data could then be inputted into the control system to assist in the adjustment 

of the HVAC operation automatically to enable demand-driven controls. 

vi. To assess the feasibility of the proposed approach and analyse its potential impact on 

building energy use, the data was inputted into a building energy simulation software 

to perform energy modelling of the case study buildings. According to the energy 

performance results, the proposed approachôs ability to optimise HVAC operations and 

effectively manage building energy loads could be evaluated. 

 

3.2 Deep Learning Algorithm  

According to the background gathered from previous studies, the deep learning method is 

suitable for vision tasks, especially CNN models. Hence, this research employed a CNN-based 

model to perform real-time equipment usage detection. CNN consists of a large number of 

hidden layers. In each layer, mathematical calculations are performed on the input supplied 

from the previous layer, and the output generated in the current layer is treated as an input for 

the next layer. Unlike the classical neural networks with fully connected layers, the CNN 

includes convolutional layers, which performs better in modelling and identifying the spatial 

correlation of adjacent pixels. The network is pre-trained for the classes (final outputs) for a 

classification task because of the significantly computationally expensive training phase. Once 

the pre-training of the network completes, it only takes a short time to perform the prediction 

task efficiently. 

This section details the development of the proposed equipment usage detector, including 

platform and base model selection, training and testing process, data collection and labelling, 

and its loss functions. The methods to evaluate the detection performance and the formation of 

the equipment usage profiles are also explained.  

 



 

68 

 

3.2.1 Platform Selection 

In order to select the most suitable platform to deploy and implement the equipment detection 

model, three popular object detection platforms were tried in this research ï AWS DeepLens, 

MATLAB, Python and TensorFlow. A brief introduction of the platforms and the selection of 

the platform and base model are given here.  

3.2.1.1 AWS DeepLens 

AWS DeepLens is a DL-enabled video camera integrating with several AWS ML services. 

Many studies employed this platform to implement various vision-based detection and 

recognition tasks such as real-time plant health assessment [231], facial expression recognition 

[232], face detection [233]. As it is beginner-friendly by providing hands-on tutorials and deep 

learning sample projects, it was the first platform to explore deep learning techniques at the 

beginning of this research. Figure 3-2 shows the DeepLens edge-to-cloud implementation, 

including the main services for object detection and the basic workflow of the DeepLens 

project.  

A CNN model can be trained and validated using the SageMaker service, the development 

environment. It can also import a pre-trained model and implement it directly. Then, the AWS 

Lambda service is used to create a project function which can make inferences of camera video 

frames fed into the model with the collaboration of Rekognition, CloudWatch, and DynamoDB 

services. These are implemented in the cloud. With the use of the AWS DeepLens service, a 

computer vision application project, including the trained model and inference function, can 

be created and run at the edge. As shown in Figure 3-2(b), the camera receiving a video stream 

outputs the device stream, which is not processed, and a project stream, which contains the 

processed frames of the video stream. Therefore, it can perform local inference using the 

deployed models given by the AWS Web Cloud. However, appropriate permissions must be 

granted to access these services, which are costly when more services and longer duration are 

used, especially for data storage. Hence, this platform was not selected as it is not cost-friendly 

for long-term investigation. 
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Figure 3-2 (a) AWS DeepLens edge-to-cloud implementation for object detection, and (b) 

basic AWS DeepLens project workflow [234, 235]. 

 

3.2.1.2 MATLAB  

MATLAB provides a high-performance environment to work with big data, and the Deep 

Learning Toolbox in MATLAB provides a framework to design, train, validate, visualize, and 

implement deep neural networks [236]. The Deep Network Designer application allows users 

to graphically design, analyse, and train the networks. Using the Experiment Manager app, the 

training progress and results can be kept tracked and analysed. It also enables the management 

and comparison between different deep learning experiments. Thus, it was employed to 

perform initial exploration for office equipment usage detection. The details of the initial model 

structure and implementation were demonstrated as follows. 

 

(a) 

(b) 
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3.2.2.2.1 Model Structure 

Figure 3-3 shows the architecture of the network, which is the initial configuration for equipment 

detection. It is composed of three convolutional layers, a fully connected layer and a SoftMax 

layer. The convolutional layers have the function of feature extraction without manual work. The 

fully connected layer classifies the images, and the SoftMax layer plays the role of object 

identification. A generalization with the reduction of spatial size is carried out on the input data 

when the input data goes through the architecture. Finally, the type of office equipment presented 

in each input image is predicted in the SoftMax layer after the fully connected layer. 

 

Figure 3-3 The architecture of CNN equipment detection model with a software layer using 

MATLAB Deep Learning Toolbox 

 

The convolutional layer is the core building block of a CNN. It plays a critical role in feature 

extraction in the model by setting a filter or a convolution kernel. The convolutional layers in this 

structure all have 3×3 image kernels that stride over the whole image, pixel by pixel, to generate 

3D volumes of feature maps. The widths of convolutional layers are 8, 16, and 32, respectively. 

A rectifier called Rectified Linear Unit (ReLU) [237], which is a non-saturated activation function 

used on the matrixes, follows after each convolution operation. ReLU effectively removes the 

negative part to zero and remains the positive part. Without influencing the receptive fields of the 

convolutional layer, it enhances the nonlinear properties of decision function and network. 

Therefore, through the ReLU unit, the expressions of an image can be enriched remarkably. For 

each trained layer, a convolutional operation and ReLU in the forward propagation phase are 

utilized [145]. It can be expressed as:  

ὢ Ὢὡ ὼz ὦ (3.1) 

where f is the activation function, ὦ is the bias for this feature map, ὡ  is the value of the kernel 

connected to the kth feature map. 
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The pooling layer is also a vital aspect of CNN. The pooling layer replaces the output at a certain 

location with a summary statistic of the neighbouring outputs. Also, the spatial size of the input 

array can be decreased. Two popular pooling options are max pooling, which takes the maximum 

values from subarrays of the original input and mean pooling, which takes the mean values. For 

this study, max pooling is employed for all pooling layers because max pooling performs better 

on image datasets than mean pooling [238]. 

To identify the input data, a predictive layer is required to forecast categories and set them at the 

last layer of the CNN architecture usually [239]. The SoftMax function is employed as the 

predictive layer because it is at the forefront of the prediction method [240]. Its output 

demonstrates the probabilities of individual categories of each input. The equation for this function 

is:  

ὖὅȿὼ
ὖὼȿὅ ὖὅ

В ὖὼὅὖὅ

Ὡὼὴ ὥ ὼ

В Ὡὼὴ ὥὼ
 

(3.2) 

where n is the number of classes,  ὖὼȿὅ  is the conditional probability of the sample given class 

r, and ὖὅ  is the prior probability of class. Moreover, ὥ ÌÎ  ὖὼȿὅ ὖὅ . 

The metric used to evaluate the predictions is the multi-class loss function [240] which is also 

known as categorical cross-entropy function expressed as: 

ὰέίί ὸὰὲώ  (3.3) 

where L is the number of images in the test set, ὸ is the indicator that the ith image belongs to 

the jth class, and ώ is the output for image i for class j which is the value from the SoftMax 

function. 

 

3.2.2.2.2 Model Implementation 

After applying adjustments to the mode, the CNN model was trained to enable equipment usage 

detection. Figure 3-4 shows a snapshot of calculation and training accuracy curve. The model 

converged in about 40 epochs and remained reasonably stable, implying that the model learned 

the problem reasonably quick. The achieved training accuracy is exceptional, reaching 99.6% at 

the final epoch, while the loss value reached 0.12 at the end of the training. Average test accuracy 

of 89.3% has been achieved using limited test data only. The test accuracy is lower than the 

training accuracy, which implies an over-fitting occurring in this model. The model has effectively 
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memorised the training set's exact input and output pairs. In order to do so, an over-complex 

decision surface that guarantees the correct classification of each training example has been 

developed. That decision surface includes all the coincidences present in the input data, making 

generalising to new inputs (test data) less efficient. 

 

Figure 3-4 (a) Training accuracy curve and (b) loss curve using MATLAB. 

 

To assess the model performance in the real indoor spaces, two experiments were carried out in 

two different office spaces. The first experiment was conducted to assess the performance along 

with the effect of the viewpoint of the detection camera in the Energy Technologies Building, 

as shown in Figure 3-5(a), located in the Jubilee campus at the University of Nottingham, UK. 

An office with a floor area of 12.8 m2 and a height of 3.2 m on the first floor was selected as the 

test room. Figure 3-5(b) shows the test room's layout and experimental setup. There was only one 

standard computer within this office. A camera connected to a laptop running the trained deep 

learning model through MATLAB was set in the office to perform detection tasks. The camera 

was installed in two different locations in the test room, and the test was conducted for two hours 

(a) 

(b) 
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in each location. With the implementation of the CNN-based model, the equipment usage 

information was gathered to create usage patterns. 

 

Figure 3-5 (a) Outside view of the Energy Technologies Building and (b) test setup in the test 

room for detection with two cameras. 

 

The examples of the representative detection and recognition results are presented in Figure 

3-6. The probability for each class is computed, and the class with the highest probability is 

selected as the outcome. Results present that detection from both locations was accurate, with 

over 80% probability in Location 1 and over 91% in Location 2 in detecting the desired class. 

Figure 3-7 demonstrates the equipment usage patterns for the PC set in the test room, which 

was created based on the two-hour live detection results. It implied that the proposed deep 

learning model coped very well with the detection and recognition task at both viewpoints of 

(a) 

(b) 
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the camera. However, it is evident that in Figure 3-6, the scores gained in Location 2 were 

higher than the score in Test 1, meaning the detection tasks implemented in Location 2 could 

get more accurate results. It suggests that the viewpoint of cameras affected the accuracy of 

equipment detection.  

 

Figure 3-6 Example of detection and recognition results in two different camera positions in 

the test room in Energy Technologies Building. 

Location 1 

Location 2 
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Figure 3-7 Two-hour PC usage patterns at two viewpoints in the test room in Energy 

Technologies Building. 

 

To evaluate the model performance in detecting different equipment, the second test was 

conducted in the Mark Group house in the University Park campus at the University of 

Nottingham. The test was conducted in the open plan office on the ground floor of this building. 

There are six standard computers, a large office printer and a 1.5 KW kettle within this office. 

Example of the representative recognition results for four categories is presented in Figure 3-8. 

As can be seen, the outcome in each case is PC, printer, kettle, and nothing in use with the 

highest prediction score of 0.84, 0.74, 0.86, and 0.94 out of 1, respectively. It implies that the 

proposed model deals very well with the identification task with relatively high accuracy. 

However, the specific angles of view and positions can affect the accuracy of the prediction 

and currently limits the implementation of the detection method. Thus, the current model 

cannot accurately detect features from the input data with new characteristics. In addition, some 

apparent errors exist, including wrong and missed detection during the period when occupants 

were frequently active such as lunchtime. Moreover, when detecting the kettle, many detection 

errors happened as using the kettle is not a long-time activity leading to a higher difficulty to 

identify whether the kettle is in use or not. 

Test 2 

Test 1 



 

76 

 

 

Figure 3-8 Examples of equipment usage detection outputs in the open-plan office in Mark 

Group House. 
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The test results indicate that MATLAB Deep Learning Toolbox has the ability to implement 

equipment usage detection with high accuracy. However, MATLAB is not an open-source 

software which makes it difficult to fix bugs and improve the performance of the program in a 

relatively short time through public collaboration. Moreover, the cost of the license is high for 

users apart from some universities and a few companies who can afford it. In addition, it is 

challenging for web and product development and application design as it cannot create 

application deployment tasks leading to limited functionality. It is also very hard to cross-

compile or convert MATLAB to other language codes. Considering the further development 

of the proposed approach by building it as an application or software to enable the 

implementation of equipment usage detection and prediction and integration of building energy 

management programs to achieve automatic building controls, these issues could cause 

difficulty for the proposed approach to work on different platforms. Furthermore, as it is a 

closed source, it is challenging to address all the errors which needs deep knowledge of 

MATLAB.  

 

3.2.1.3 Python and TensorFlow 

Python is a powerful and general-purpose programming language which is open-source and 

supports cross-platform development. The TensorFlow object detection application 

programming interface (API) is an open-source computer vision framework which enables the 

design and formation of object detection models. It allowed different sizes of images within 

the dataset, meaning resizing is not required for the model training. Figure 3-9 demonstrates 

the workflow of detector formation using Python and TensorFlow object detection API which 

can be summarised in six steps. Firstly, a proper pre-existing model is selected to perform the 

detection task. In order to train a robust detection classifier, at least hundreds of images of the 

desired objects must be collected and then randomly separated into training and testing sets 

with a certain percentage. With the use of LabelImg, the objects of interest within each image 

in both sets are labelled and the data for the train and test images are saved in XML files by 

LabelImg. After converting XML files to TFRecord files and setting up the label map and 

configuration file, the model training could be deployed by using these essential files and then 

a newly trained object detection classifier is created. Finally, this new classifier would be 

implemented via an AI-enable camera in the real office and kitchen spaces to attain desired 

equipment usage information.  
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Figure 3-9 Workflow of detector formation using Python and TensorFlow object detection 

API. 

 

In recent years, the CNN algorithm has been commonly employed to perform classification task 

and object detection. Unlike in classification algorithms identifying the object of interest within 

the image is the only task to be carried out; in object detection algorithms, a bounding box around 

the objects to locate it is also required in most cases. This is difficult to be achieved by building a 

standard convolutional network with a fully connected (FC) layer due to the different length of 

the output layer as the number of occurrences of the desired object within the image is not fixed. 

To cope with this problem, UC Berkeley has developed Region-based CNN (RCNN) by 

combining region proposals with CNNs [241].  

The architecture of the RCNN is shown in Figure 3-10. Due to the success of region proposal 

methods in object detection [242], it can identify multiple objects in the input data by using the 

selective search to extract a remarkable number of bounding-box object regions of interest 

(ROI), then creating region-based features from the pre-trained CNN, and finally classifying 

the objects through SVMs [243]. However, the desired objects may appear in different spatial 

locations and aspect ratios. Therefore, a large number of regions must be selected to detect all the 

objects, which could cause a significantly expensive computation.  

 

Figure 3-10 RCNN architecture [241]. 



 

79 

 

To address these problems, some algorithms based on RCNN have been developed in recent 

years to enhance the accuracy and speed of object detection and recognition. Deep networks 

with spatial pyramid pooling (SPP-Net), as presented in Figure 3-11, propose a spatial pyramid 

pooling layer to remove the restrictions on the network fixed size and perform feature extraction 

[244]. Hence, unlike RCNN which needs to run a convolution layer repeatedly to extract features, 

SPP-Net only requires implementing convolution operation once which reduces implementation 

time.  

 

Figure 3-11 SPP-Net architecture [244]. 

 

Fast RCNN, developed by Microsoft as shown in Figure 3-12, is similar to RCNN while instead 

of inputting RoI to the CNN, Fast RCNN applies the input image to the CNN layer to create a 

convolutional feature map and then use an RoI pooling layer to reshape the region of proposals 

identified from the feature map into a fixed size and feed it into a fully connected layer [245]. 

Compared with RCNN, Fast RCNN runs faster as the convolution operation is performed only 

once for each image rather than feeding a number of region proposals to the CNN every time. 

Both RCNN and Fast RCNN employ selective search to look for the region proposals that need 

to consume quite a long time and further influence the networkôs performance. 
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Figure 3-12 Fast RCNN architecture [245]. 

 

With further evolution, Microsoft developed Faster RCNN, which uses a region proposal 

network (RPN) to generate the region proposals instead of the selective search algorithm [246]. 

Ren et al [247]. Came up with the algorithm and designed the architecture of Faster RCNN 

illustrated in Figure 3-13. Faster RCNN also feeds the input image into the convolution layers to 

generate a convolutional feature map similar to Fast RCNN. Then the region proposals are 

predicted by using an RPN layer and reshaped by an RoI pooling layer. The pooling layer then 

detects the image within the proposed region.  

 

Figure 3-13 Brief architecture of Faster R-CNN [247]. 

 



 

81 

 

Overall, SPP-Net, Fast RCNN, and Faster RCNN all enhance the performance of the RCNN. 

However, according to the comparison of the test-time speed of different CNN-based object 

detection algorithms presented in Figure 3-14, Faster RCNN is much faster than other algorithms, 

which can even be implemented for live object detection. In addition, as the Inception module 

could improve the utilization of the computing resources inside the network, it was used together 

with Faster RCNN to achieve a higher accuracy of the detection task [246]. Therefore, Faster 

RCNN with InceptionV2 was selected as the model for real-time equipment usage detection and 

recognition. 

 

Figure 3-14 Comparison of the test-time speed of different CNN-based detection algorithms 

[248]. 

 

3.2.2 Faster RCNN 

With the consideration of the opportunity of application development in the future, Python and 

TensorFlow Object Detection API was selected as the platform for equipment usage detection 

development and implementation. The Faster RCNN with Inception V2 was selected as the 

base of the real-time equipment usage detection model for the present work. 

Based on Figure 3-9, The workflow of the Faster RCNN detector development and 

optimization is presented in Figure 3-15. It can be separated into two parts ï equipment usage 

detector preparation, and deployment of the proposed model for demand-driven control 

assistance and building energy performance assessment. In the detector preparation part, many 

images, including various types of office and kitchen equipment within different offices and 

kitchens, were collected and randomly divided into training and testing datasets. After labelling 

both the training and testing dataset, the model was trained and tested with the processed dataset 

and further optimized based on the detection and recognition performance evaluation. The 
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detector preparation part process was iterated to improve the deep learning model based on the 

detection performance analysis. In the deployment part, the proposed detection model was 

implemented in actual office and kitchen spaces to generate and cluster the data of equipment 

usage information using an AI-enabled camera. 

 

Figure 3-15 Equipment usage detector development and optimization process. 

 

The following sub-section describes the preparation of the equipment usage detector after the 

selection of the base model, including the model configuration adjustment, training process, 

data collection and labelling, and the loss functions. 

 

3.2.2.1 Training and Testing Process 

Figure 3-16 illustrates the architecture of the Faster RCNN model used in this research. When 

the training started, the parameters of the whole Faster R-CNN model were initialised in the 

first place. Then, a feature map consisting of a large number of regions of interest (ROIs) and 

the features of the input data were extracted by the convolutional layers. The generated ROIs 

were inputted into the RPN network. The proposed region created by the RPN network, and 

the extracted features were used to train the Fast RCNN network. The joint network by 

integrating the RPN and Fast RCNN, enabled faster training, testing, and detection. To carry 

out the training process, a Graphics Processing Unit (GPU) with 2560 CUDA cores, 1607 MHz 

graphics clock, 10 Gbps memory clock, and 8 GB GDDR5X memory was used as GPU to perform 

the implementation of this computationally expensive task. 
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Figure 3-16 The architecture of Faster RCNN with Inception V2 used in this research. 

 

3.2.2.2 Data Collection and Labelling 

To develop an object detector, a large dataset of images, including the desired object(s) and proper 

labelling, are essential and significant for achieving high accuracy and efficiency in object 

detection and recognition. As there is limited dataset of images of different appliances within 

offices and kitchens available in previous and current studies, a dataset including images in 

different views, scales, and illumination was created and collected through the use of Google 

Image and EPIC-KITCHENS-100 dataset, and self-collection within several office and kitchen 

spaces at the Department of Architecture and Built Environment at the University of Nottingham 

by using a camera to improve the diversity of the data. 

Table 3-1 lists the number of images used for training and testing in this research. There were 

1400 images in total in the dataset, where half were images of office spaces, and the rest were 

kitchen spaces. The detection targets in this research were classified into five categories: PC, 

laptop, stove, oven, and toaster. These objects would only be detected when they were in use. 

Hence, to increase the data diversity, the collected images have five main characteristics, including 

(a) equipment ñONò and ñOFFò, (b) being held or operated by people and not being held or 

operated, (c) different number of equipment, (d) various sizes of equipment from the view of the 
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camera, (e) different lighting conditions, (f) being blocked by people or other items and not being 

blocked. This enabled the model to perform detection and recognition tasks under varied situations. 

It should be noted that in the training dataset, there are a few images including no equipment. Thus, 

the model could identify that no one was using these appliances, meaning no heat was released 

from these appliances to the spaces.  

Table 3-1 Number of images used for training and testing 

 
Number of Images 

Training Testing Total 

Office 560 140 700 

Kitchen 560 140 700 

Total 1120 280 1400 

 

According to the rule of thumb, 20% of the images were used for testing, and the rest were used 

for training. Then the dataset was labelled manually by using LabelImg, which is a graphical 

image annotation tool written in Python. LabelImg is able to label object bounding boxes in 

images and creates XML files that describes the objects in the images, which assists in teaching 

the detector to recognise the target objects. In this study, recognising the mode of the appliances, 

which relates to the heat emission and air quality within office and kitchen spaces, is the focus 

instead of just identifying the appliances. Therefore, only the appliances in use were labelled. The 

examples of the collected images and labels for each category are shown in Figure 3-17, and the 

examples of images labelling of office and kitchen spaces with multiple/no appliance(s) in use are 

shown in Figure 3-18.  

To simplify, a monitor, which is turned on, represents a PC in use simultaneously. When labelling 

PCs and laptops, although PC monitors are usually larger than laptop screens, the sizes of them 

from the view of the camera may vary in terms of the apparent distance and angle from which the 

camera views them. Hence, not only the screen but also the frame and keyboard of them were 

included to differentiate them. For the kitchen appliances, the pans and pots with food inside used 

to cook on the stovetop by people, the ovens with lights on and food inside, and the toasters with 

bread inside, were labelled as stove, oven, and toaster in use, respectively. After labelling all the 

images, the XML files of them were employed to create TFRecords which are one of the inputs 

for model training. 
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Figure 3-17 Examples of collected images and labels (Source: self-collected, EPIC-

KITCHENS-100 dataset, and Google Image). 

 

Figure 3-18 Examples of images labelling of office and kitchen spaces with multiple/no 

appliance(s) in use (Source: self-collected, EPIC-KITCHENS-100 dataset, and Google Image). 
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3.2.2.3 Training Loss Function 

To evaluate the training performance of the neural network, loss functions are employed to 

compare the ground truth and predicted outputs to measure how well the network models the 

training data [249]. According to the architecture of the Faster RCNN model, four losses occur 

during the training, including RPN classification loss (when detecting object 

foreground/background), RPN regression loss (when generating and propagating the proposals 

from anchor to ROI), Fast RCNN classification loss (when classifying classes), and Fast RCNN 

regression loss (when extracting features from ROI to bounding box). The total loss can be 

obtained by linearly combining these four losses. When training the network, the losses should 

be minimized to reduce the error between the ground truth and predicted outputs.  

During the training process, the training losses occurred and varied with the number of steps 

of the training. The results of training losses were monitored and collected through 

TensorBoard, which provides the visualization and tooling needed for machine learning 

experimentation. When the total loss is less than 0.05, it suggests that the trained model can 

have a good performance in live detection. The variation of these losses demonstrates the 

training quality. Additionally, the location of the loss can be indicated, which assists an 

improvement of the model architecture. The equations of five loss functions are expressed as 

Equation 3.4 ï 3.11. 

 

The total loss function for the Faster RCNN, which is the liner combination of the Fast RCNN 

loss and RPN loss, is defined as follow: 

ὒ  ‗  ὒz  ‗ ὒz  (3.4) 

Where ‗   and ‗  are the weights for these two layers. They were set to be 1 in this 

research. 

 

The loss function for the RPN layer is defined in [247] as:  

ὒ ὴȟὸ
ρ

ὔ
ὒȟ ὴȟὴᶻ ‗

ρ

ὔ
ὴᶻὒȟ ὸȟὸᶻ (3.5) 

ὒȟ  is classification loss for the RPN layer which detects object foreground and background 

and is defined as follow: 
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ὒȟ ὴȟὴᶻ ὴᶻὰέὫὴ ρ ὴᶻÌÏÇ ρ ὴ  (3.6) 

ὒȟ  is regression loss for the RPN layer which generates and propagates the proposals from 

anchor boxes to ROI and is defined as follow: 

ὒȟ ὸȟὸᶻ ίάέέὸὬ ὸ  ὸᶻ  (3.7) 

Where, Ὥ is the index of an anchor in a mini-batch, ὴ is the predicted probability of anchor Ὥ 

being an object, ὴᶻ is the ground-truth label (if the anchor is positive, ὴᶻ ρ; if the anchor is 

negative, ὴᶻ π), ὸ is a vector standing for the four parameterized coordinates, ὸᶻ is that of 

the ground-truth box associated with a positive anchor, ὔ  and ὔ  are the nominators used 

to normalize the outputs of the ὧὰί and ὶὩὫ layers, ‗ is a parameter employed to balance the 

weights of ὒȟ  and ὒȟ  which was set to be 1 in this research, and ίάέέὸὬ  is a robust 

loss defined as follow: 

ίάέέὸὬ ὼ
πȢυὼ              ὭὪȿὼȿ ρ
ȿὼȿ πȢυ     έὸὬὩὶύὭίὩȟ

 (3.8) 

 

The loss function for the Fast RCNN layer is defined in [245] as:  

ὒ  ὴȟόȟὸȟὺ ὒȟ ὴȟό ‗ό ρὒȟ ὸȟὺ (3.9) 

ὒȟ  is classification loss for the Fast RCNN layer which classifies objects on the data and is 

defined as follow: 

ὒȟ ὴȟό ὰέὫὴ  (3.10) 

ὒȟ  is regression loss for the Fast RCNN layer which extracts features from ROI to the 

bounding box and is defined as follow: 

ὒȟ ὸȟὺ ίάέέὸὬ ὸ ὺ  (3.11) 

Where ὴ is the predicted probability of the sample Ὥ from the output of the RPN layer being 

an object, ό is the ground-truth class,  ὴ  is the predicted probability for the proposed region 

belonging to class ό, ὸ is bounding-box regression offset, ὺ is the ground-truth bounding-box 

regression target, and ‗ is a parameter employed to balance the weights of ὒȟ  and ὒȟ  

which was set to be 1 in this research. 

 



 

88 

 

3.2.3 Performance Assessment Method 

In this study, two methods were employed to assess the detection and recognition performance 

of the proposed model: confusion matrix and IoU metric. This section provides detailed 

descriptions of both performance assessment methods. 

 

3.2.3.1 Confusion Matrix and Evaluation Measures 

To summarize the detection results of the proposed algorithm, a confusion matrix is commonly 

employed to visualize and summarize its performance. A confusion matrix as shown in Figure 

3-19 contains true positive (TP: representing the correctly identified instances when computers 

are on), true negative (TN: representing the correct detection when computers are off), false 

positive (FP: representing the number of instances that computers are predicted to be on while 

they are not, or other stuff within the detection space is wrongly identified as a computer) and 

false negative (FN: representing the number of instances that computers are predicted to be off 

while they are not). Based on the created confusion matrix, accuracy, precision, recall, and F1 

score can be computed, which are the measures frequently used to evaluate the performance of 

the object detection algorithm, which are defined as the Equations 3.12 ï 3.15(3.15) respectively.  

 

Figure 3-19 Confusion matrix 
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Accuracy is the most commonly used metric which measures the number of correct predictions 

verse the total number of predictions. When the distribution of classes in the classification is equal, 

accuracy is a useful metric to show the performance. While, if a class has more data points than 

the others, accuracy is not sufficient to indicate the performance. Hence, precision and recall were 

used to address the potential imbalanced problem in the data. Precision can be seen as a measure 

of exactness or quality, and the higher the value of prevision is, the less the wrong classification 

is. Recall is a measure of completeness or quantity, and the higher the value of recall is, the less 

the missed classification is. However, it is not sufficient to stand for the detection performance 

when precision and recall were used separately. Therefore, with the consideration of a balance 

between these two metrics, F1 score, which is a metric combining the precision and recall metrics, 

was also employed to provide a better evaluation of accuracy. Overall, the confusion matrix 

and evaluation metrics were used to assess both initial testing and real-time detection 

performances. 

 

3.2.3.2 Intersection over Union (IoU)  

In object detection, to identify whether samples are positives or negatives, an IoU threshold is 

necessary, which measures the percentage of overlapping area between the predicted bounding 

box and ground-truth box over the area of union of them as shown in Figure 3-20. The ground-

truth box is applied during the training process. The higher the IoU value is, the higher the 

confidence of correct detection is, suggesting a better detection performance. Hence, the IoU 

value was employed as another method to evaluate the live detection and recognition 

performance in this research. 
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Figure 3-20 Intersection over unio (IoU) definition. 

 

To ensure high confidence in the identification, the IoU value was set to be 60% when 

implementing the trained model for real-time detection, meaning that the model only 

considered the detections which had an IoU value of over 60% with the ground-truth box. 

During the detection, the IoU value of each of the detections was displayed across the bounding 

box as illustrated in Figure 3-21. The average IoU value for each targeted class would be 

attained to assess the accuracy of each class in live detection and recognition. 

 

Figure 3-21 An example of detection response to a PC in use with an IoU value cross the 

bounding box (Source: Google Image). 

 

3.2.4 Deep Learning-based Detection Profile (DLDP) Generation 

During the experiment, when live equipment usage detection employing the trained model was 

implemented, the real-time information on the number of targeted equipment in use was 

gathered and used to form the count-based profile for each type of equipment. An example of 

the formation of count-based profiles is presented in Figure 3-22. It shows the profiles formed 
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from 3 frames. It is important to note that the images captured by the camera are only displayed 

to provide an example of how the approach detects equipment usage. In practice, the camera will 

not take any images or videos during the live detection and recognition. Instead, the model will 

solely generate the count-based profiles which enable the estimation of heat emission from the 

equipment within the detected space. The DLDPs can then be fed into a building energy 

simulation tool for accurate building energy performance analysis or a building energy 

management system to enable a demand-driven control for space heating, cooling, and ventilation 

to improve energy efficiency and the indoor environment. 

 

Figure 3-22 An example of equipment usage detection and the formation of DLDPs. 
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3.3 Evaluation Method for the Impact on Building Energy Performance 

In general, at the design stage, a pre-defined or static equipment usage pattern was used for the 

HVAC system design. While at the operation stage, the usage of equipment is varied and 

unmatched by the pre-defined or static profile. The variation in equipment usage causes the 

thermal and energy performance of the buildings to differ from the designed performance. The 

designed HVAC controls may not be able to meet the actual needs of occupants. The deep 

learning-based detection approach was proposed to detect real-time equipment usage 

information in indoor spaces to assist the HVAC system in providing demand-driven controls. 

Building energy modelling can enable a deeper understanding of the impact of employing this 

approach to detect equipment usage variation on thermal and energy performance and optimize 

the HVAC control strategy accordingly. 

Building simulation is a method, which consists of mathematical models calculated by a 

computer, to assess how different elements of building design perform in the real-world 

conditions illustrated in a virtual environment. By providing and assigning information, such 

as building geometry, envelope materials, weather data, occupancy, equipment, and lighting 

profiles, and so on, simulation results can perform internal thermal and environmental analysis 

and energy consumption estimation. Hence, in this research, building energy modelling would 

be performed by a BES tool to assess the feasibility of the proposed approach and evaluate the 

potential impact of it on building energy and thermal performance by inputted the equipment 

usage profiles generated by the Faster RCNN model into the energy simulation model. 

Integrated Environment Solutions Virtual Environment (IESVE) was selected as the BES tool 

employed in this research as the author had more experience with IESVE and its validation has 

been carried out and demonstrated in detail in the study [250], where IESVE was employed to 

assess the thermal comfort and energy performance of the thermal chairs compared with the 

standard chairs in an office building. The results were validated with data from the literature and 

good agreement was observed between the annual simulation results for heating energy demand 

(9.7% error) and cooling energy demand (7.8% error).  

IESVE performs a dynamic thermal simulation based on the modelling of the heat transfer 

processes between a building and its microclimate. Within the tool the conduction, convection 

and radiation heat transfer processes for each building component or fabric are modelled 

individually and incorporated with the model of the heat gains, air exchange and plant within 
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and around a thermal space or room. The methods and approach used to model these processes 

are summarised here. 

The time-dependent spatial temperature distribution in a solid without internal heat sources is 

given by the partial differential equations:  

ὡ ‗​Ὕ (3-1) 

​Ͻὡ ”ὧ
‬Ὕ

‬ὸ
 

(3-2) 

where T is the temperature, W is the heat flux vector, ɚ is the conductivity, ɟ is the density and 

ὧ is the specific heat capacity.  

The heat storage in air masses or net heat flow into the air masses Q is modelled by the 

following equation: 

ὗ ὧ”ὠ
‬Ὕ

‬ὸ
 

(3-3) 

where V is the air volume, ” is the air density and Ὕ is the air temperature.  

For the discretisation, the tool uses a finite difference approach to the heat diffusion equation 

solution which first replaces the element with a finite number of discrete nodes at which the 

temperature will be calculated. The nodes are distributed within the layers for the modelling of 

the heat transfer and storage characteristics for the selected time step. This choice is based on 

constraints imposed on the Fourier number. Then, the time variable is discretised and a 

combination between explicit and implicit time-stepping scheme is adopted in order to alternate 

nodes of the construction. The convective heat transfer is described by the equation: 

 
(3-4) 

where ὡ  is the heat flux from the air to the surface, Ὕis the mean surface temperature and K 

and n are coefficients. 

The heat transfer rate associated with an air stream entering a space is described by equation: 

 
(3-5) 

where M is the air mass flow rate, Ὕ is the supply air temperature and Ὕ is the room mean air 

temperature. 
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For the interior long-wave radiation, the net radiant exchange between a surface and the rest of 

the enclosure is described by the equation: 

 
(3-6) 

where ὡ  is the net radiative loss from the surface, Ὤ is the surface heat transfer coefficient 

for exchange with the MRT node and Ὕ  is the mean radiant temperature. 

For the exterior long-wave radiation, the net long-wave gain for an external surface of 

inclination ɓ (º) is represented by the following: 

 
(3-7) 

where ‐ is the emissivity of the exterior surface, ὒ ‍ is the long-wave radiation received 

directly from the sky, ὒ ‍ is the long-wave radiation received from the ground and ɡ  is the 

absolute temperature of the exterior surface. The tool calculates the solar flux incident on every 

external building surface at each time-step. 

 

3.4 Summary 

This chapter described the framework of the proposed vision-based equipment usage detection 

approach using a deep learning method to enable real-time equipment usage monitoring in 

indoor spaces. Python and TensorFlow Object Detection API was selected as the equipment 

usage detection development platform. The Faster RCNN with Inception V2 was chosen as the 

base of the real-time equipment usage detection model for this research. The architecture, 

training and testing processes, data collection and labelling, and loss functions of the proposed 

equipment usage detection model were described. Confusion matrix, evaluation metrics, 

including Accuracy, Precision, Recall, and F1 score, and IoU value were employed to assess 

the detection and recognition performance of the proposed model. This chapter also explained 

the generation of deep learning-based detection equipment usage profiles based on the 

collected real-time data. IESVE would be employed to perform building energy simulations to 

evaluate the impact of the proposed approach on building energy performance by inputting the 

deep learning profiles into the model and comparing it with other commonly used profiles. 

It should be noted that the generated profile is intended to be inputted into an actual demand-

driven HVAC control system, however, this is still under development. Moreover, it should be 
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noted that this study is not suggesting eliminating the use of sensors, but rather it can 

complement existing systems to enhance the performance of demand-driven control systems. 

The detection approach can provide equipment usage information quickly, and sensors can 

provide precise measures. Integrating them could ideally achieve fast and accurate controls of 

HVAC systems. This should be evaluated in the future. Additionally, this study not only 

focuses on equipment usage detection, but demonstrates that this could be a possible solution 

to detect other objects.  
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Chapter 4 Evaluation of Detection and Recognition Performance 

The following chapter provides the evaluation of the detection and recognition performance of 

the deep learning-based equipment usage detection model through the analysis of the training 

results, initial tests using the still images in the testing dataset, and the implementation in a real 

office and kitchen spaces. After the training and initial testing, two case study rooms were 

selected to carry out the detection tests and investigate the performance in identifying office 

and kitchen appliances, respectively. Two methods, confusion matrix and IoU value, were 

employed to assess the detection performance in both case studies. The DLDPs showing the 

variation of equipment usage were also outputted from detection implementation in case study 

rooms which can be employed to evaluate the building energy performance and assist the 

building management system. 

 

4.1 Training and Initial Testing 

After completing the preparation process descripted in Section 3.2.3, the proposed equipment 

detection model using the Faster RCNN with the InceptionV2 was trained with the labelled 

training dataset. The training took 100,000 steps in total and around 9.5 hours to complete the 

training. The training losses versus the number of steps of the training using TensorBoard 

which provides the visualization and tooling needed for experimentation was presented in 

Figure 4-1. As shown in the figure, when implementing the training process of the network, the 

total loss was extremely declining in the first 2,000 steps. After that, the total loss value gradually 

decreased and tended to converge. Over 10,000 steps, the total loss value started remaining 

constant by below 0.2 and it went as low as approximately 0.002 at the end of the training, which 

indicated that the error between predicted results and the ground truths was extremely small.  

The variation of the other losses during the training process, including Fast RCNN classification 

loss, Fast RCNN regression loss, RPN classification loss, and RPN regression loss are also 

illustrated in Figure 4-2 ï Figure 4-5. Fast RCNN classification and regression losses occurred 

when classifying objects and extracting features from ROI to the bounding box respectively. The 

trends of box classifier losses were similar to the variation of total loss. While the RPN 

classification and regression losses, which occurred when detecting object foreground and 

background and generating and propagating the proposals from anchor boxes to ROI respectively, 

were below 0.02 during most of the training period. It indicated that the loss mainly happened 
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when the Fast RCNN was classifying the objects in the dataset and extracting features to the 

bounding box. However, the losses converged at 2,000 steps and remained almost constant and 

lower than 0.1 after that, suggesting that no major modification was required for the architecture 

of the model. Overall, an average loss of 0.0820 and a minimum loss of 0.0077 were achieved, 

which meant the model behaves adequately and could be applied in real-time detection and 

recognition application.  

 

Figure 4-1 Total loss versus the number of training steps 

 

 

Figure 4-2 Fast RCNN classification loss versus the number of training steps 
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Figure 4-3 Fast RCNN regression loss versus the number of training steps 

 

 

Figure 4-4 RPN classification loss versus the number of training steps 

 

 

Figure 4-5 RPN regression loss versus the number of training steps 
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During the training, a checkpoint was saved every five minutes and the checkpoint at the highest 

number of steps was utilized to generate the frozen inference graph which contained the equipment 

usage detection classifier after the completion of the training process. By exporting the inference 

graph, the detector could then be used to detect objects on an image, video, or camera feed. 

To assess the initial detection and recognition performance of the trained model, it was tested 

by using the images in the test dataset. As described in Section 3.2.3.2 in Chapter 3, 280 still 

images were fed into the detector for testing. Based on the ground truth by direct observations 

of the test dataset, a total of 310 prediction labels shall be assigned to the test images. Figure 

4-6 presents the test results through the confusion matrix. Results suggested that 296 prediction 

labels were assigned, and 272 of them were correctly assigned to the targeted objects, giving 

an overall detection accuracy of 82.42% calculated by Equations 3.12. It can be observed that 

24 labels were assigned to a wrong object representing the TN value and 34 labels were missing 

representing the FP value, achieving an overall F1 score of 0.9037 computed by Equations 3.15. 

As can be seen in the confusion matrix, the values of each class were not equally distributed, 

suggesting an imbalanced issue with the test data. Hence, the F1 score was employed to evaluate 

the detection accuracy to address the imbalanced class issue.  

 

Figure 4-6 Confusion matrix defining the model performance using the still images in test 

dataset. 
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Based on the confusion matrix and Equations 3.13 ï 3.15, the evaluation measures for overall 

and each class were calculated and listed in Table 4-1. The results indicated that the detector 

had the ability of detecting office and kitchen appliances which achieved an average F1 score 

of 0.9037 in detecting all five appliances, and 0.8923 and 0.9123 in detecting office and kitchen 

appliances respectively. Among them, the detection of the toaster had the highest F1 score with 

the highest recall values, meaning that it had less missed detection in percentage in comparison 

with other classes. This may be attributed to the simplicity of the test images of the toasters. In 

cases where test images contain fewer objects, the detection model can directly recognize the 

target object without being confused by other elements. On the contrary, the detection of the 

laptop had the lowest accuracy with the most wrong and missed detection. It can be attributed 

to both the physical size of laptops and the size of the dataset. Laptops are generally smaller in 

size compared to desktop PCs, making their detection more challenging and resulting in more 

missed detections, as illustrated in the confusion matrix. Owing to the visual similarity between 

PC monitors and laptops and the limited dataset for laptops, some laptops were erroneously 

identified as PCs. 

It should be noticed that the sum of the values in the confusion matrix is more than the number 

of images in the test dataset because the number of appliances in use in each image is different. 

In a few images, no appliance was in use; in the rest of the images, there is at least one appliance 

in use. Overall, the training and testing results suggested that the trained Faster RCNN has the 

ability to perform live detection and recognition task. 

 

Table 4-1 Model performance measures according to the confusion matrix using test dataset. 

 PC Laptop Stove Oven Toaster Overall 

Precision 0.9146 0.8913 0.9158 0.9556 0.9286 0.9220 

Recall 0.8721 0.8200 0.8700 0.9149 0.9630 0.8860 

F1 Score 0.8929 0.8542 0.8923 0.9348 0.9455 0.9037 

 Office Kitchen  

Precision 0.9134 0.9286  

Recall 0.8722 0.8966  

F1 Score 0.8923 0.9123  
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4.2 Detection Experimental Setup and Results 

To evaluate the live detection performance of the trained Faster RCNN detector in the actual 

office and kitchen spaces, the detector was implemented in two case study rooms at the 

University of Nottingham. This section provides the details of the office and kitchen 

experimental setups and detection results including live detection accuracy assessed through 

IoU value and evaluation measures and the generated equipment usage profiles respectively. 

4.2.1 Case Study 1: Office Detection 

4.2.1.1 Experimental Setup 

Case study 1 aimed to assess the office equipment detection performance. The Sustainable 

Research Building was selected as the case study building 1, located at the Department of 

Architecture and Built Environment in the University Park campus at the University of 

Nottingham. Figure 4-7 shows the location and external view of the Sustainable Research 

Building. Itôs a three-storey structure which demonstrates state-of-the-art techniques for 

environmentally responsible and sustainable construction and provides a facility in order to 

conduct research into sustainable and renewable energy systems for the Department of 

Architecture and Built Environment. It achieves a BREEAM rating of excellent. 

 

Figure 4-7 Location and external view of Sustainable Research Building [251]. 
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In order to test the trained model, the open plan office on the first floor of the case study 

building was selected as the test space to conduct the office equipment detection experiment. 

To enable this office as a space to test the developed model, the experimental setup was carried 

out as presented in Figure 4-8. A camera with 1080p resolution and a wide 90-degree field of 

view was installed close to the ceiling in the office space and connected to a computer to 

perform equipment detection using the trained detection model. Within the detectable range, 

there were eight monitors, and each monitor was connected to a desktop computer. It was 

assumed that when the monitor is ON, the connected desktop computer is also running. 

Therefore, the combination of a monitor and a desktop computer was categorised as a PC. In 

order to analyse the detection performance for each PC, the PCs appearing within the detectable 

area were given the names PC1-PC8 from left to right as presented in Figure 4-9. During the 

experiment, the participants behaved as usual in the office, i.e., followed their own working 

schedule. The equipment usage information was gathered for a whole typical workday by a 1-

minute time-lapse interval through the detection model. According to the clustered information, 

the actual daily office equipment usage profile could be created. 
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Figure 4-8 Floor plan and detection setup of the case study office. 

 

 

Figure 4-9 The view from the camera and detected appliances in the case study office. 
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When designing vision-based detection technology, illumination is an important factor to be 

considered. Because of the changing sun direction, different times of the day, weather 

conditions, reflection from bright surfaces, and various obstacles of the light source, the 

illumination conditions of the scene and the appearance of the target might change greatly [267]. 

Therefore, an initial investigation of the impact of illumination levels on detection performance 

was carried out. Twelve scenarios were designed in terms of the different times of the day, 

various daylighting, and artificial lighting conditions. The test under these scenarios was 

conducted in the morning, afternoon, and evening on the same day. In this office, as the most 

common way to control the amount of natural light entering the space, the opening and closing 

curtain represent the high and low natural lighting levels, respectively. Similarly, artificial 

lights on and off represents the high and low indoor illumination levels. The details of these 

scenarios are listed in Table 4-2. An RS PRO IM203 light meter with a measuring range from 

20lx to 200,000lx and an accuracy of ±3% was set on a desk as shown in Figure 4-8, where the 

illumination level may be affected by both natural and artificial lights, to measure and record 

the value of lighting levels during the test periods under different scenarios. 

 

Table 4-2 Details of different detection scenarios. 

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 

Artificial 

lighting 
X X O O X X O O X X O O 

Curtain  X O O X X O O X X O O X 

 Morning Afternoon Evening 

(O = on/opened, X = off/closed) 

 

4.2.1.2 Detection Results 

By using trained Faster RCNN with InspectionV2, the live equipment detection and recognition 

was implemented within the case study office. As no laptop was used during the test, only the 

performance of detecting the PC in use was discussed. Figure 4-10 presents examples of 

detection results including correct detection, wrong detection, and missed detection from the 

application of the trained model in the case study office. Bounding boxes were presented as an 

output of the detection and recognition response and the IoU value was shown above each of 

the boxes. As shown, the model can recognise all the computers in use correctly with a high 
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IoU value. Some errors could be made such as identifying a window or drawer chest as a PC 

and missed detection of some of the PCs. In addition, the bounding boxesô shape and sizes 

varied between each detection interval.  

 

Figure 4-10 Examples of correct detection, wrong detection, and missed detection results 

from the application of the trained model in the case study office. 

 

The detection analysis was based on the performance of the proposed detection approach during 

the experimental test. Figure 4-11 presents the average IoU accuracy (the detection accuracy 

above each bounding box). Individual IoU accuracy for each PC presented within the camera 

detection view was also obtained. As PC7 and PC8 were not used during the whole day, the 

IoU accuracy was not applicable to them. Results show that the equipment detection model 

achieved an average overall IoU accuracy of 92.83% in detecting PC, with the highest IoU 
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accuracy of 93.85% achieved in detecting PC5 and the lowest IoU accuracy of 90.84% in 

detecting PC4. It indicated that the model could identify all computers in use within the 

detected region during the experiment with high overall and individual IoU accuracies of over 

90%. However, when evaluating the IoU accuracy, only the correct detections on targeted 

objects were included, meaning the wrong detections, which identified other objects as the 

targeted object, were not assessable by the IoU value. 

 

Figure 4-11 Average IoU accuracy for each PC and overall IoU accuracy based on the 

displayed bounding box during real-time predictions in the experimental test. 

 

To further evaluate the detection performance, including correct, wrong, and missed detections, 

the confusion matrices of individual detection for each PC and overall detection for the class ñPCò 

are illustrated in Figure 4-12. The confusion matrices assessed the detection performance during 

the predicted working hours, starting once one of the PCs was predicted to be ñONò by the detector 

and ending when PCs were no longer predicted to be ñONò during the test day. Given in the 

following confusion matrices, the number of labelled responses appeared as true positives (top 

left), true negatives (bottom right), false positives (top right) and false negatives (bottom left) 

were displayed in the form of percentage values due to a significant number of responses from 

the model containing the PC usage information during the experimental test. The confusion 

matrix results showed that during the predicted working hours in this case study, PC3 and PC4 

were always ñONò, and PC7 and PC8 were always ñOFFò. The number of true positives and 
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true negatives was more than false positives and false negatives in all cases, meaning the 

detection results were highly consistent with the ground truth.  

 
Figure 4-12 Experimental test results of (a-h) detection performance of each PC, and (i) 

overall PC detection performance evaluated in the form of the confusion matrix based on the 

percentages of labels identified. 

 

True positives and true negatives represent correct detections; false positives and false 

negatives represent wrong detections and missed detections respectively. Based on Figure 4-12, 

the percentage of correct, wrong, and missed detections of PC in use during the predicted 

working hours in the case study office could be obtained as shown in Figure 4-13. It can be 

seen that the proposed model could achieve correct detections for 86.75% of the time and result 

in wrong detections for 0.45% of the time and missed detections for 12.80% of the time. The 
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best performance was attained in detecting PC2, PC7, and PC8 with the correct detections for 

98.44%, 99.33%, and 99.66% of the time among all eight PCs. 

 
Figure 4-13 Percentage of correct, wrong, and missed detections of PC in use during working 

hours in the case study office. 

 

The confusion matrix results displayed in Figure 4-12 for each of the PCs enabled the 

evaluation of the results in the form of the different classification evaluation metrics as shown 

in Table 4-3. An overall F1 score of 0.8252 was achieved. The best performance was achieved 

by PC2 with an F1 score of 0.9744 and the lowest performance was PC4 with an F1 score of 

0.6781. As PC7 and PC8 were predicted as ñOFFò during working hours, according to Equation 
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3.13 ï 3.15 the evaluation metrics could not be attained as TP and FN values were 0. Hence, 

the results in Table 4-3 for the different PC monitors reinforce the evaluation made by IoU 

values and indicate that the majority of the detection response labels were correctly assigned 

to the PCs which were on.  

Table 4-3 Evaluation of the detection performance through common evaluation metrics. 

Class: PC Precision Recall F1 Score 

PC1 0.5522 1.0000 0.7115 

PC2 0.9564 0.9930 0.9744 

PC3 0.8119 1.0000 0.8962 

PC4 0.5129 1.0000 0.6781 

PC5 0.7271 0.9875 0.8376 

PC6 0.8537 0.9439 0.8966 

PC7 - - - 

PC8 - - - 

Overall 0.7096 0.9859 0.8252 

 

It can be observed that a high overall recall value and the lower overall precision value indicates 

that more missed detections were caused by the model implementation, where the PCs were 

detected as ñOFFò or other classes when the monitors were actually ñONò. It was contrary to 

the results of initial testing made in Section 4.1, where the precision value was much higher in 

the initial testing. In addition, there was a discrepancy between individual PC IoU accuracies 

and evaluation metrics. These might be caused by different factors, which made changes in the 

detectable area. 

The changes in illumination levels in the detected space could be one of the main reasons, as 

the camera was sensitive to the lighting conditions. As the detection was implemented for a 

normal workday, the natural lighting was inconstant and uncontrollable, and artificial lighting 

was not operated under a fixed schedule and was only controlled by the people in the space 

based on their real-time lighting requirements. This could cause instability in detection and 

therefore significantly affect the detection performance; however, it demonstrated the realistic 

lighting condition changes in the space and how the detection model adapted to it.  

Moreover, peopleôs behaviour in the space could also be a core factor. When people were 

sitting and working, the detection was more stable compared with the moment when people 
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were walking around, as it resulted in unstable detection and obstacles or blurs on the targeted 

objects. The obstacles also occurred when people were sitting as shown in the examples in 

Figure 4-10, where a part of the PC screen was blocked by peopleôs heads. This could lead to 

a higher possibility of missed detections, making the discrepancy to the initial testing results 

which inputted still images.  

In addition, the PC monitor positioning angle may also have influenced the variation in the 

detection performance achieved between detected PCs. These also implied that there is still a lack 

of diversity in the training data to adapt to all types of indoor environments. Furthermore, the 

camera's resolution could be one of the factors affecting the detection effectiveness. A higher 

resolution can capture more details, making it easier to detect equipment. 1080p, which was used 

in this work, is a good resolution, but higher resolutions such as 4K can provide better results. The 

quality of the camera's lens may influence the clarity of the captured images. Higher-quality lenses 

can reduce distortion and improve image sharpness. 

The equipment detection and recognition results were clustered and utilized to generate the 

equipment usage DLDP as presented in Figure 4-14. The profile provided informative data 

about the amount of equipment in use during the detection period. However, the frequent 

variations of the DLDP indicated the instability of this model. Therefore, further improvements 

are required to enhance the detection performance. Ideally, in order to enable the approach to 

control HVAC systems to operate based on the actual equipment usage information, the profile 

is intended to be inputted into the HVAC control systems directly. Before developing the deep 

learning application for building energy management systems, an assessment of the feasibility 

of the framework by analysing the building energy performance is essential. Therefore, the 

created count-based equipment usage DLDP of the case study office would be used to carry 

out the building energy performance analysis. 
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Figure 4-14 Count-based office equipment usage profiles of a workday generated from the 

application of the trained model in the case study office. 

 

4.2.1.3 Investigation of the impact of Illumination 

Due to the use of cameras, which is a vision-related technology, illumination is a key factor 

affecting the performance of the detection task, which was indicated in the above detection 

results and needed to be considered. To investigate the impact of illumination, twelve scenarios 

were designed in terms of the different time of the day and various daylighting and artificial 

lighting conditions. The representative samples of results for different scenarios are exhibited 

in Figure 4-15. Scenarios 1-4, 5-8 and 9-12 were conducted in the morning, afternoon, and 

evening, respectively. As the results have shown, the trained detection model can identify the 

desired object under different lighting conditions within the detection region with relatively 

high accuracy. However, some obvious mistakes such as missed detection and wrong 

prediction, often occurred. For example, in Scenario 5 the leftmost monitor was not identified. 

Reducing these errors is the next step for model improvement. 

0

2

4

6

8

0
0
:0

0

0
2
:0

0

0
4
:0

0

0
6
:0

0

0
8
:0

0

1
0
:0

0

1
2
:0

0

1
4
:0

0

1
6
:0

0

1
8
:0

0

2
0
:0

0

2
2
:0

0

0
0
:0

0

C
o

u
n
t

Time

PC Laptop



 

113 

 

 

Figure 4-15 Detection under different illumination conditions. 

Scenario 1 Scenario 2 

Scenario 3 Scenario 4 

Scenario 5 Scenario 6 

Scenario 7 Scenario 8 

Scenario 9 Scenario 10 

Scenario 11 Scenario 12 
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In order to compare the illumination levels under different scenarios, the illumination value 

was measured and clustered by a lux meter. Figure 4-16 plots the illumination at the measuring 

point during the test periods under different detection scenarios and time of the day. As the 

source of the artificial lighting was the same throughout the experiment, the illumination 

contributed via artificial lighting was constant. The value of illumination from natural lighting 

is varied at different time. However, it is evident that the illumination levels in the morning 

and afternoon were similar. The main reason may be that the vegetation outside the selected 

office space blocks most of the area of the windows which limits natural light to reach the 

indoor space. Hence, the effect of curtains in this study is not obvious as well. The illumination 

levels at nighttime were lower than at daytime due to the lack of natural lighting. In scenario 9 

and 10, the illumination didnôt drop to near zero as the lighting in another side of the office 

space was still provided to ensure a certain brightness for working.  

 

 

 

Figure 4-16 Illumination levels at the measuring point under 12 scenarios and time of the day. 
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Table 4-4 lists the detection performance under different scenarios. It includes the individual 

values and average values of Precision, Recall and F1 score for all detection scenarios. Based 

on their definitions, Precision and Recall values can indicate the error rate of the wrong 

prediction and missed detection, respectively. As the table presented, the selected model 

achieved a lower average Precision of 0.663 and higher average Recall of 0.917, which means 

that when implementing the detection task, wrong detections were the main errors that occurred. 

F1 score balances these two measures which can sufficiently represent the detection 

performance with one value. The average value of F1 score of 0.746 indicated that the selected 

detection model could handle the equipment detection and recognition task excellently with a 

relatively low error rate. 

Table 4-4 Detection performance under different scenarios 

Scenario Precision Recall F1 score 

1 0.629 0.925 0.706 

2 0.578 0.969 0.696 

3 0.825 0.975 0.874 

4 0.747 0.808 0.764 

5 0.543 1.000 0.699 

6 0.527 0.986 0.669 

7 0.721 1.000 0.823 

8 0.758 0.779 0.761 

9 0.758 1.000 0.853 

10 0.596 0.994 0.732 

11 0.608 0.894 0.705 

12 0.671 0.694 0.672 

Average 0.663 0.917 0.746 

 

By comparing Figure 4-16 and Table 4-4, it can be observed that at daytime, the value of F1 

score is higher when applying sufficient artificial lighting. On the contrary, applying the indoor 

lighting on the detected side at nighttime resulted in the lower values of F1 score. This may be 

caused by the over bright illumination conditions around the desired object because in the 

evening, without the natural light, the illumination level in the whole space decreases, 

increasing the brightness of the light projecting to all the surfaces. This may result in the surface 

adjacent to the monitors being much brighter than usual and further causing the difficulty of 

detection and recognition. While when dimming the indoor lighting on the detected side, the 

background of the detection scene is darker, which makes an obvious contrast between the 

brightness of the background and desired object. It helps the detection model to look for the 

desired object more easily. 
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According to the above analysis, it indicates that different illumination conditions significantly 

affect the performance of the detection task. At daytime, higher illumination levels around the 

object of interest could achieve a better detection performance; while at nighttime, the selected 

model performed better under dimming lighting. In other words, various lighting conditions 

can probably result in the proposed detection model's great or poor detection performance, 

which may further affect the building energy demand estimation. One important way to 

enhance the detection model to adapt to different lighting conditions is to collect sufficient 

training data of various lighting scenarios for the desired objects. 

Although it was an initial investigation, these obtained results could contribute to optimising 

the computer vision equipment detection model and designing future buildings and operation 

strategies. However, further investigation is required and should be carried out using the lights 

with a controllable illumination level and colour temperature at different positions in a chamber 

isolating the other lighting source for evaluation. Before further investigations, the model 

should be optimized to adapt to varied lighting conditions, strong shadows, and reflections. 

 

4.2.2 Case Study 2: Kitchen Detection 

4.2.2.1 Experimental Setup 

To evaluate the performance of the proposed approach on detecting kitchen appliances, the 

model was implemented in the case study building Mark Group House located at the 

Department of Architecture and Built Environment, University of Nottingham. Figure 4-17 

presents the location and external view of Mark Group House. It has two floors and a basement, 

including several office spaces which are currently occupied by staff and postgraduate students. 

The kitchen on the ground floor of this building was selected as the test room as it is connected 

to an open-plan office where six researchers usually work during working hours on weekdays, 

and there is no partition between these two spaces. Because of this, the environmental 

conditions in these two spaces directly influence each other. Therefore, the selected test room 

is suitable for this study to implement the proposed detection model and investigate how 

different ventilation strategies would affect the environmental conditions within both office 

and kitchen spaces when cooking and how the proposed approach would contribute to the 

improvement of energy efficiency and indoor air quality.  
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Figure 4-17 Location and external view of the Mark Group House [252]. 

 

Figure 4-18 shows the setup of the detection test in the kitchen. It has an electric stove with 

four stovetops, an oven, and a toaster which would be used in the tests. A camera connected to 

a computer which implemented the developed Faster RCNN detection model was installed at 

the corner of the room close to the ceiling to enable the capture of the cooking area. The test 

took 45 minutes, including 10-minute pre-cooking, 20-minute cooking, and 15-minute post-

cooking periods. The model performed the detection and recognition task during the whole test.  

 

 

Figure 4-18 Floor plan and detection setup of the kitchen in Mark Group House 
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It should be noted that this experiment aimed to demonstrate the capability and feasibility of 

the proposed approach in real-world implementation; however, due to resource constraints, the 

involvement of human subjects, and environmental impact, this experiment is challenging to 

repeat. In certain experimental scenarios lacking adequate ventilation, there was a notable 

deterioration in indoor air quality. This deterioration led to an exceedingly uncomfortable and 

unhealthy environment for individuals working in the case study building. Moreover, it 

necessitated a considerable duration for pollutant levels to naturally decline to an acceptable 

standard. Balancing concerns related to productivity and health, the requirement for prolonged 

space evacuation to facilitate the repetition of the experiment arose. Nevertheless, logistical 

challenges emerged in aligning everyone's availability within the case study building. 

Furthermore, it is essential to consider that environmental conditions fluctuate daily, posing a 

challenge in maintaining consistent experimental results, even when all variables are rigorously 

controlled across each repetition of the experiment. Therefore, the analysis would rely on the 

results derived from the experiment, in which efforts were made to minimize potential errors. 

 

4.2.2.2 Detection Results 

To evaluate the ability of the model in live detection, the trained Faster RCNN model was 

implemented in the case study kitchen to perform real-time kitchen equipment detection. There 

was one electric stove with four stovetops, one oven, and one toaster in the case study kitchen. 

Figure 4-19 shows examples of correct detection, wrong detection, and missed detection results 

from the application of the trained model in the case study kitchen. It can be observed that the 

model has the ability to recognise all the kitchen appliances in use correctly. However, the 

model could wrongly identify a person as stove or oven in use when the person was close to 

them, or not recognise when the stove or oven were actually used for cooking as shown in 

examples. These were the typical errors occurring during the experimental tests. 
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Figure 4-19 Examples of correct detection, wrong detection, and missed detection results 

from the application of the trained model in the case study kitchen. 

 

According to the IoU value shown above each of the bounding boxes during the experimental 

test, the average IoU accuracy of overall and individual kitchen equipment detection and 

recognition are presented in Figure 4-20. The results showed that the model achieved an 

average IoU kitchen detection accuracy of about 94.01% with individual kitchen equipment 

detection accuracy of about 87.84%, 98.52%, and 95.68% for stove, oven, and toaster in use, 

respectively. It indicated that the proposed model enabled kitchen equipment usage detection 

with a high IoU accuracy. Specifically, the IoU accuracy of detecting the oven achieved the 

highest accuracy because compared with the other appliances, the appearance, location, and 
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positing angle of the oven from the view of the camera were unchanged when cooking. On the 

contrary, as the usage of the stove was predicted by detecting the pan or pot used for cooking 

at the stovetop, the continuously varied appearance and positing angle of the pan or pot from 

the view of the camera caused an unstable detection, giving the lowest IoU accuracy among 

the targeted kitchen appliances. 

 

Figure 4-20 Average IoU accuracy for each kitchen appliance and overall IoU accuracy of 

kitchen appliance detection based on the displayed bounding box during real-time predictions 

in the experimental test. 

 

The confusion matrices of individual and overall kitchen equipment detection were obtained for 

further evaluation of detection performance during the experimental test in the case study office. 

Figure 4-21 shows the confusion matrix results during the whole experimental test duration, 

including pre-cooking, cooking, and post-cooling periods. The number of labelled responses was 

displayed in the form of percentage values because of a significant number of responses from 

the model containing the kitchen equipment usage information. The confusion matrix results 

showed that the number of true positives and true negatives was more than false positives and 

false negatives in all cases, and the percentages of true negatives in all individual detections 

were higher than 50%, meaning all the appliances were used less than half of the time in the 

test. It indicates that the detection results were highly consistent with reality.  
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Figure 4-21 Confusion matrix results of detection of (a) stove, (b) oven, (c) toaster, and (d) 

overall kitchen equipment during the experimental test (45 min). 

 

According to Figure 4-21, the percentage of correct, wrong, and missed detections of kitchen 

equipment in use during the experimental test for 45 minutes in the case study kitchen could 

be obtained as shown in Figure 4-22. Results presented that the proposed model could achieve 

correct detections for 94.66% of the time and cause wrong detections for 1.18% of the time 

and missed detections for 4.16% of the time overall. The percentages of correct detections for 

all targeted cooking appliances were over 90%, suggesting that the model could distinguish 

whether the cooking appliances were ñONò or ñOFFò with a high accuracy. 
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Figure 4-22 Percentage of correct, wrong, and missed detections of kitchen appliances in use 

during the experimental test (45 min) in the case study office. 

 

To assess the detection performance only when the kitchen appliances were used for cooking, the 

confusion matrices of individual and overall kitchen equipment detection were obtained during 

the cooking period in the experiment as illustrated in Figure 4-23. Similar to the results in Figure 

4-21, the number of true positives and true negatives was also more than false positives and 

false negatives in all cases. Yet, the percentages of true positives during the cooking period were 

higher in comparison with the results for the whole test, indicating a match with the ground truth. 

Moreover, Figure 4-24 shows the percentage of correct, wrong, and missed detections of kitchen 

equipment in use during the cooking period for 20 minutes in the experiment. Compared with 

the results in Figure 4-22, during the cooking period, the percentage of correct detections 

declined by about 5% while the percentage of missed detections increased by around 5%, 

suggesting that missed detection was the main reason leading to the decrease in detection 

accuracy. In addition, as can be seen, an increase happened to the percentage of missed 

detections for stove and oven, especially for stove which increased by almost 10%. It suggests 

that there is a potential to further enhance the detection performance by reducing the misses. 
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Figure 4-23 Confusion matrix results of detection of (a) stove, (b) oven, (c) toaster, and (d) 

overall kitchen equipment during the cooking period in the experimental test (20 min). 

 
Figure 4-24 Percentage of correct, wrong, and missed detections of kitchen appliances in use 

during the cooking period in the experimental test (20 min). 
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Based on Figure 4-21 and Figure 4-23, the evaluation metrics for individual and overall kitchen 

equipment usage detection during the entire test and the cooking period only were listed in Table 

4-5. The overall F1 score could reach over 0.9 for both the entire test duration and the cooking 

period. The recall values for overall detection and individual detection for stove and oven were 

lower than precision values, while the toaster detection had the opposite result. It indicated 

more missed detections occurring when detecting stove and oven, and more wrong detections 

in toaster detection, matching the results in Figure 4-22 and Figure 4-24. However, it can be 

observed that in comparison to the results in the cooking period only, the precision and F1 score 

values for the entire test duration were lower. This is because the detection responses in pre-

cooking and post-cooking were either false positives or true negatives as no appliance was used. 

It caused the unchanged number of true positives and false negatives while an increase in the 

number of false positives for the results for the entire test, leading to the same recall values but 

reduced precision and F1 score values according to Equations 3.13 ï 3.15. Overall, the 

evaluation metric results in Table 4-5 for the different kitchen appliances made reinforcement 

to the evaluation made by IoU accuracy and demonstrate an excellent performance of the model 

in detecting kitchen equipment usage. 

  

Table 4-5 Model performance when implemented during the entire test (45 min) and cooking 

period only (20 min). 

Entire Test 

 Stove  Oven Toaster Overall 

Precision 0.9691 0.9839 0.8824 0.9552 

Recall 0.7202 0.9050 0.9574 0.8578 

F1 Score 0.8263 0.9428 0.9184 0.9039 

Cooking Period Only 

 Stove  Oven Toaster Overall 

Precision 0.9752 0.9967 0.9375 0.9787 

Recall 0.7202 0.9050 0.9574 0.8578 

F1 Score 0.8285 0.9487 0.9474 0.9142 

 

To compare the live detection performance with the initial testing results in Table 4-1, the 

results in the cooking period only were employed as the still images for the initial testing were 
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captured when the targeted appliances were used for cooking. It can be observed that the live 

detection performance for the stove was inferior to the initial testing performance due to a large 

decrease in recall value as a result of a significant increase in the number of missed detections. 

The frequent movement of the person could be the main factor as it could cause unstable 

detection, leading to frequent changes in the positioning angle of the pan and blockages from 

the view of the camera. The distance from the stovetop to the camera could be another key 

factor. When labelling the training data, one of the criteria to identify the stove in use was that 

there was food inside the pan or pot which was on a stovetop. As the camera was not close 

enough to enable an explicit detection of the pan with food inside. The illumination level also 

affected its performance as under a low illumination level, the occurrence of shadows reduced 

the brightness of the targeted appliances, including the food inside, making negative impacts 

on detection performance.  

When implementing the real-time detection, a DLDP of equipment usage was generated for 

each class. Figure 4-25 shows the profiles for the stove, oven, and toaster used for cooking 

generated by the results obtained every 5 seconds during the experiment. The red dotted line 

stands for the actual equipment usage situation, and the red solid line represents the DLDP 

identified by the proposed detection model. Comparing the DLDP with the actual situation 

(Ground Truth) within the detected space during the test, some errors occurred apparently. For 

instance, the actual use of the stove happened about two minutes earlier than the moment that 

the model started recognizing the stove in use. This might be caused by the difficulty of 

identifying the ingredients inside the pan and the lack of continuity of detection, suggesting the 

requirements for further improvements to improve the detection accuracy in detecting kitchen 

equipment usage. This could assist the HVAC system in adjusting its operation to make a 

timely response to dynamic variations of the cooking behaviour to enable demand-driven 

heating, cooling, and ventilation controls to improve energy efficiency and the indoor 

environment.  
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Figure 4-25 Kitchen DLDP verse ground truth in Test 5 (0 means OFF, 1 means ON). 

 

4.2.3 Discussion 

The implementation of the trained model in the case study office and kitchen demonstrated a 

good performance in office and kitchen equipment usage detection. The model achieved 

average F1 scores of 0.8252, 0.8285, 0.9487, and 0.9474 in detecting PC, stove, oven, and 

toaster. It indicated a high accuracy of the model in real-time equipment usage detection, 

meaning it can correctly assign the majority of the detection response labels to the targeted 

equipment which is on. It can be observed that according to the case study results, the model 

performed better in kitchen equipment usage detection overall. This may be the result of a more 

constant illumination level and a smaller space in the kitchen leading to a shorter distance from 

the camera to the cooking area. Moreover, compared with the initial testing, the live detection 

could be affected by several factors resulting in a reduction in detection accuracy, especially 

for PC and stove in the case studies.  

Firstly, the illumination level variation in the detected space was one of the main reasons 

affecting the detection performance especially for long-term detection. In Case Study 1, the 

model was implemented in the office employing natural lighting through windows and artificial 

lighting. As the test was carried out for a whole day, the natural lighting level changed over 
































































































































































