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Abstract

This thesis explores the automation of the analysis of scalar-tensor theories at sub-
atomic scales. For this, we make use of the fact that, when appended to the Standard
Model, these theories can be expressed as standard gravity plus a Beyond the Stan-
dard Model theory. Therefore, studying the modifications that scalar-tensor theories
have on a matter sector in this description requires the use of quantum field theory.

For this, we first investigate the origin of long-range interactions (fifth forces) in
scalar-tensor theories of gravity both working in the Einstein and the Jordan-frames.
We focus on theories of Brans-Dicke type in which an additional scalar field is
coupled directly to the Ricci scalar of General Relativity. In our exploration of the
Jordan frame calculation, we find that a specific gauge choice called scalar-harmonic
gauge is convenient to perform a consistent linearization of the gravitational sector in
the weak-field limit, which gives rise to a kinetic mixing between the non-minimally
coupled scalar field and the graviton. It is through this mixing that a fifth force can
arise between matter fields. We are then able to compute the matrix elements for
fifth-force exchanges obtaining frame-independent results. Moreover, we also show
the pivotal role that sources of explicit scale symmetry breaking in the matter sector
play in admitting fifth-force couplings.

Irrespectively of the selected frame, we find the calculation to be very time-consuming
and model dependent, motivating the development of computational tools for these
derivations. The ability to represent perturbative expansions of interacting quantum
field theories in terms of simple diagrammatic rules has revolutionized calculations
in particle physics (and elsewhere). Moreover, these rules are readily automated, a
process that has catalysed the rise of symbolic algebra packages. However, in the
case of extended theories of gravity, such as scalar-tensor theories, it is necessary to
precondition the Lagrangian to apply this automation or, at the very least, to take
advantage of existing software pipelines.

In this context, we present the Mathematica package FeynMG, which works in con-
junction with the well-known package FeynRules. FeynMG takes as inputs the
FeynRules model file for a non-gravitational theory and a user-supplied gravita-
tional Lagrangian. FeynMG provides functionality that inserts the minimal gravi-
tational couplings of the degrees of freedom specified in the model file, determines
the couplings of the additional tensor and scalar degrees of freedom (the metric
and the scalar field from the gravitational sector), and preconditions the resulting
Lagrangian so that it can be passed to FeynRules, either directly or by outputting
an updated FeynRules model file. The Feynman rules can then be determined and
output through FeynRules, using existing universal output formats and interfaces
to other analysis packages, such as MadGraph. Therefore, in combination with these
additional analysis packages, FeynMG will make possible to test for modifications to
the Standard Model due to scalar-tensor theories in particle colliders.
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convention commonly used by existing particle physics software packages. We use
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when including gravity, the gravitational and gauge covariant derivatives are denoted

by ∇; and an update to the general and gauge covariant derivative that is useful for

scalar-tensor theories of Brans-Dicke type is represented by D. We work in natural

units, but do not set Newton’s gravitational constant to unity.
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Chapter 1

Introduction

The leading framework to describe the physics of our Universe is currently provided

by two different theories (or formalisms), each applicable in their respective regimes.

Both work at a high level of detail, but operate on different energy scales: At large

scales we have General Relativity (GR) with ΛCDM, while the physics of the small

scales is best described by quantum field theory (QFT) and the Standard Model

(SM) of particle physics.

As is well known, the biggest problem in physics comes from the fact that these

two theories are difficult to reconcile, as the Standard Model of particle physics does

not provide all the ingredients needed for a microscopic basis of the cosmological

model. However, even within their own scales, there are still many unknowns and

theoretical challenges that the theories, or their respective models, cannot fully

explain. In order to understand some of these limitations of the framework, we

will first give a brief introduction to both theories, stating their main features and

aspects.

General Relativity describes the gravitational interactions between matter by

introducing a dynamical spacetime, defined by the metric gµν . The action used in
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ΛCDM to generate these interactions is the so-called Einstein-Hilbert action:

SEH =
∫

d4x
√

−g
[
−M2

Pl
2 R − Λ

]
, (1.1)

where we have defined g to be the determinant of the metric and MPl is the Planck

mass, determining the strength of the gravitational interactions. Additionally, we

have included the Cosmological Constant, Λ, which may account for the current

accelerated expansion of the Universe, and the Ricci scalar, R, contributing to the

kinetic energy term for gravity.

In order to arrive at a metric expression of the Ricci scalar, we first need to

define the Riemann tensor, as they are very closely related. Formally, the Riemann

tensor measures the curvature of the spacetime, and it is defined by its operation

on a vector field by

Rρ
µσνY

µ = ∇σ∇νY
ρ − ∇ν∇σY

ρ, (1.2)

where ∇µ is the gravitational covariant derivative, used to protect diffeomorphism

invariance in the action. There are multiple choices for this covariant derivative, but

the most common is the one satisfying the metricity condition, ∇µgρσ = 0. In this

case, when applied on a vector field, it is defined by

∇µYν = ∂µYν + ΓρµνYρ, (1.3)

where ∂µ = ∂/∂xµ and

Γρµν = 1
2g

ρλ (∂µgλν + ∂νgµλ − ∂λgµν) (1.4)

are the Christoffel symbols. Therefore, substituting this expression for the covariant

2



1. Introduction

derivative into the Riemann curvature tensor in Eq. (1.2), we obtain

Rρ
µσν = ∂σΓρνµ − ∂νΓρσµ + ΓρσλΓλνµ − ΓρνλΓλσµ. (1.5)

From this, the Ricci tensor, Rµν , is defined by taking a contraction of the first and

third index of the Riemann tensor, such as Rρ
µρν = Rµν . This already takes us to

the definition of the Ricci scalar as the trace of the Ricci tensor, R ≡ gµνRµν .

Once we have a metric definition for the Ricci scalar, we can vary the action

with respect to the metric to find the equations of motion of the system. In this

way, appending a matter sector Sm[gµν ] to the Eintein-Hilbert action in Eq. (1.1),

we obtain

Rµν − 1
2gµνR + 1

M2
Pl

Λgµν = 1
M2

Pl
Tµν (1.6)

commonly called the Einstein field equations, where

Tµν = −2 1√
−g

δSm

δgµν
(1.7)

is the energy-momentum tensor of the matter action (for a review, see Ref. [3] or

any other classic GR textbook.). From this derivation we can already see that the

gravitational interaction of matter is related to the curvature of the spacetime; in the

words of J. A. Wheeler: spacetime tells matter how to move; matter tells spacetime

how to curve [4]. This specific action with the addition of Cold Dark Matter adds

up to the ΛCDM model of cosmology, which has been extremely successful when

describing the physics of our Universe through cosmological observations.

Quantum field theory arises from the unification of Einstein’s theory of special

relativity and quantum mechanics. In simple terms, the main objects of study in this

theory are fields that interact with each other, and, once quantized, their excitations

give rise to the known fundamental particles. When describing the Universe we live
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in, the set of fields and interactions that explain the experimental phenomenology

are encoded in the Standard Model, whose underlying set of symmetries is defined by

the gauge group SU(3)×SU(2)×U(1) [5]. In this model, the fields are conveniently

split into the strong interactions, described by quantum-chromodynamics, and the

electro-weak sector, whose symmetries are broken by the Higgs mechanism. In this

way, the Standard Model is able to explain the electromagnetic interaction as well

as the strong and weak nuclear forces, and was completed by the discovery of the

Higgs boson in 2012 [6].

Even so, there are many open questions about the Standard Model, starting

with the fact that the structure of the Higgs potential remains to be probed exper-

imentally [7–14]. Similarly, the origin of the observed neutrino masses [15] is still

unknown, requiring an extension to the Standard Model. Moreover, since neutri-

nos are electrically neutral, it should be possible for them to be either Majorana or

Dirac fermions. In both cases, this would have strong associated implications on the

Standard Model [16]: For Majorana fermions, lepton number conservation would

be violated unless protected by an additional symmetry, while for Dirac neutrinos,

one would have to worry about such accidental symmetries arising in the Standard

Model. Other problems related to the naturalness of the Standard Model include

the large difference between the Higgs and the Planck mass, the so-called hierarchy

problem, or the extremally small neutron electric dipole moment, related to the

Strong-CP problem. Furthermore, we can add recent tensions in experimental tests

that may lead to a mismatch between theory and experiment, such as the anoma-

lous magnetic moment of the muon [17]. To address all these different existing open

problems, many extensions and modifications of the Standard Model have been pro-

posed, known collectively as Beyond Standard Model (BSM) theories (for a review

on this topic, see Ref. [18]).

General Relativity also has open problems involving naturalness issues. In
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1. Introduction

chronological order, to explain the initial conditions of our Universe after the Big

Bang, the most accepted explanation introduces an early inflationary period (a pe-

riod of accelerated expansion of the scale factor) to flatten any initial curvature and

produce the quantum fluctuations that would later seed the formation of structure

in the Universe. With regard to inflation, we do not know the exact physics that

took place during this period of time, including whether inflation describes it at

all [19, 20]. In addition, although through many measurements we have a good

understanding of where dark matter is located and how it has behaved throughout

the history of the Universe, we are still far away from understanding its origin and

nature. To these unknowns we can add the cosmological constant problem [21, 22],

which when calculated using the ground state vacuum energy of the Standard Model

is off by ∼ 120 orders of magnitude. Combining these three aspects of cosmology,

we find the high energies from inflation must fade away fast enough to allow for a

reheating period (leading to the standard early radiation domination) before both

dark matter and the cosmological constant dominate the energy content of the Uni-

verse at the same time, creating another problem called the coincidence problem [23].

There are also current tensions on different observations in cosmology, such as the

Hubble tension [24], where the measured value for the expansion rate of the Uni-

verse using nearby galaxies [25] does not match the theoretical value derived from

the Cosmic Microwave Background [26].

When suggesting possible solutions to the mentioned limitations of ΛCDM, the

usual direction is to choose a model that can solve both cosmological and Standard

Model problems. For example, the axion field [27] arises naturally from the Peccei-

Quinn solution to the Strong-CP problem [28–30], but its ultra-light mass also makes

it a very good candidate for fuzzy dark matter [31]. Similarly, some extensions

of the axion can address the hierarchy problem, for example via the relaxation

mechanism [32], in which the Higgs mass is controlled by the vacuum expectation
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value of an axion-like field. Furthermore, the addition of an extra scalar field can

explain the expansion of the Universe through Quintessence [33, 34] or K-Essence [35,

36] models, having also a possible connection with the Hubble tension [24, 37].

In this thesis, we will focus on a different type of naturalness problem in General

Relativity that goes beyond the ΛCDM model, and this is the choice for the gravita-

tional action. In this way, although the Einstein-Hilbert action from Eq. (1.1) is the

standard choice when model-building theories of gravity, there may be other choices

that can lead to consistent and physically interesting phenomena. Now, when build-

ing new theories of gravity, one might think that there are as many options to choose

from as one can imagine. However, depending on the assumptions and symmetries

we impose on the system, these choices will be very constrained.

The most reasonable set of assumptions is given by Lovelock’s theorem [38, 39],

which reduces notably our freedom when creating a gravitational sector. This theo-

rem states the following: In 4-D the only divergence-free rank-2 tensor constructed

from only the metric gµν and its derivatives up to second order, and preserving dif-

feomorphism invariance, is the Einstein tensor with a cosmological constant term.

Therefore, given any 4-dimensional gravitational two-form, Lµν , appearing in our

equations of motion and satisfying the following conditions:

i) Lµν = Lµν(gαβ, ∂σgαβ, ∂σ∂ρgαβ);

ii) ∇µL
µν = 0,

it will necessarily be defined as

Lµν = aGµν + bgµν , (1.8)

where a and b are constants and Gµν = Rµν − 1
2gµνR is the Einstein tensor. As we

can see, this equation has a very close resemblance with Einstein’s field equations
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1. Introduction

in Eq. (1.6), where Lµν ∝ T µν . Therefore, in terms of the action, this implies that

any such terms satisfying those conditions will always be produced by varying the

Einstein-Hilbert action with respect to the metric.

The nice thing, however, about Lovelock’s theorem is that it also gives us the

formula to produce modified theories of gravity. For example, we may do it by

increasing the number of spacetime dimensions, as with Kaluza-Klein or braneworld

models [40]; by including higher order derivatives of the metric; by considering non-

local terms [41], such as inverse d’Alembertian operators acting on the Ricci scalar

(i.e., 2−1R = (∇µ∇µ)−1R); or even by using emergent theories of gravity that

are not directly derived by varying the action with respect to the metric, such as

those where the dynamics of the system depend on the entropy of the Universe [42].

However, one of the main options for modified theories of gravity are those that

retain Lovelock’s assumptions, but allow for the inclusion of additional degrees of

freedom in the gravitational sector.

In particular, we will work on scalar-tensor theories [43], which couple a scalar

degree of freedom to the curvature objects in the action, and can lead to modifica-

tions of the matter sector with strengths that need not be Planck-suppressed. Since

any inclusion of a scalar field into the action can also be studied from the perspective

of particle physics, we will pay special attention to the description of these theories

as Beyond the Standard Model physics.

1.1 Scalar-tensor theories: A natural extension

for gravity

When considering scalar-tensor theories of gravity, it is important to emphasize

that we are still working within the formalism of General Relativity, since we have
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1.1. Scalar-tensor theories: A natural extension for gravity

a metric and the equations of motion are derived from the action. For example,

their main motivation is usually their close connection with string theory, as such

couplings in the gravitational action appear when compactifying the extra dimen-

sions [44]. However, such theories arise more generally, as we expect them to emerge

from any theory that aims to describe the physics at ultra-high energy scales, where

additional couplings to curvature will occur.

In particular, any interacting quantum field theory, such as the Standard Model,

is only defined up to a particular energy scale, with loop corrections and renormaliza-

tion of couplings creating different effective theories. Therefore, without symmetries

to prevent it, any quantum field theory containing both gravity and a scalar field

should lead to couplings between these two fields at higher scales [45–47]. This can

be illustrated as

∫
Λ0

d4x
√

−g[aR+1
2∂µφ∂

µφ] →
∫

Λ1
d4x

√
−g[a′R+F (φ)R+bR2+B(φ)

2 ∂µφ∂
µφ+. . . ],

(1.9)

where Λ0 and Λ1 correspond to the cut-off energy scales, F (φ) and B(φ) are generic

functions of the scalar field φ, {a, a′, b} are constants, and we have omitted in the

ellipsis all possible couplings between the scalar field and gravity allowed by the

symmetries of GR. However, we do not need to worry about the generation of the

infinite number of possible operators, since we can always reduce the number of

terms by imposing necessary assumptions, as in Lovelock’s theorem. In this way,

considering only up to second-order derivatives in the equations of motion and in 4-

dimensional spacetime, the most generic ghost-free scalar-tensor theory is described

by Horndeski’s theory [48, 49], defined via

SH =
∫

d4x
√

−g [L2 + L3 + L4 + L5] (1.10)

8



1. Introduction

where the Lagrangian densities are given by

L2 = G2(φ,X) (1.11)

L3 = G3(φ,X)2φ (1.12)

L4 = G4(φ,X)R +G4,X(φ,X)
[
(2φ)2 − (∇µ∇νφ)2

]
(1.13)

L5 = G5(φ,X)Gµν∇µ∇νφ

− 1
6G5,X(φ,X)

[
(2φ)3 − 32φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3

]
, (1.14)

where Gi(φ,X) are generic functions of the scalar field φ and its canonical kinetic

term X = 1
2∂µφ∂

µφ, and Gi,X = ∂Gi/∂X. These types of direct couplings of the

scalar field to the curvature terms are called non-minimal, as opposed to the usual

minimal couplings of a quantum field theory in a curved background. Additionally,

one can further extend these constraints to build more generic scalar-tensor theories,

examples are beyond Horndeski [50, 51] and DHOST [52, 53] theories.

In this thesis, we will focus on the simplest scalar-tensor theory, called the Brans-

Dicke theory [54], building up our intuition such that our results can be extended

to the full family of Horndeski theory and beyond. In this model, the dynamical

scalar field is set to replace the Planck mass, and in its generic form is described by

setting

G2(φ,X) =Z(φ)X − U(φ) G4(φ,X) =F (φ), (1.15)

with vanishing G3(φ,X) and G5(φ,X). The action then takes the following form:

S =
∫

d4x
√

−g
[
−F (φ)

2 R + 1
2Z(φ)∂µφ∂µφ− U(φ)

]
+ Sm[gµν ]. (1.16)

Therefore, the real scalar field, φ, is subject to the self-interaction potential U(φ)

and coupled non-minimally to the Ricci scalar R through the function F (φ). From a
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1.1. Scalar-tensor theories: A natural extension for gravity

phenomenological perspective, this model can be thought of as an Einstein-Hilbert

action with a time-varying Planck mass, such that ⟨F (φ)⟩ = M2
Pl (where the brakets

refer to the expectation value of the argument). Notice that the field φ is not or, at

least, does not appear to be canonically normalized, by virtue of the function Z(φ)

included in its kinetic term. In fact, additional contributions to the kinetic energy

of the field φ arise through the coupling to the scalar curvature.

1.1.1 Modifications to the dynamics of the matter sector

As one might expect, the modification of gravity will lead to new interactions in

the matter sector when compared to the usual Einstein-Hilbert action. However,

as we will show throughout this thesis, we can treat these modifications as being

independent of gravity itself, making it possible to isolate them into a Beyond the

Standard Model-like description. Therefore, appending a modified theory of gravity

to the Standard Model would be equivalent to a BSM theory plus standard gravity.

In this section, we will demonstrate that this conversion is possible by working

directly with the classical action. For the Brans-Dicke example from Eq. (1.16),

there are two ways the Beyond Standard Model description can be obtained:

Going to the Einstein frame: We can make a Weyl rescaling of the metric

to remove the non-minimal gravitational coupling of the field φ to the Ricci

scalar, taking us to the so-called Einstein frame.

For the Brans-Dicke action in Eq. (1.16), we just need to perform the following

Weyl rescaling

gµν → M̃2
Pl

F (φ) g̃µν , gµν →F (φ)
M̃2

Pl
g̃µν . (1.17)

where g̃µν and M̃Pl are the metric and Planck mass defined in the Einstein
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1. Introduction

frame, respectively. Making use of these transformation rules in the Ricci

scalar dependent term, we obtain

√
−gF (φ)

2 R →
√

−g̃
(
M̃2

Pl
2 R̃ − 3M̃2

PlF
′(φ)2

4F (φ)2 g̃µν∂µφ∂νφ

)
. (1.18)

Therefore, the whole action in the Einstein frame is given by

S =
∫

d4x
√

−g̃
[
−M̃2

Pl
2 R + M̃2

Pl
2

[
Z(φ)
F (φ) + 3F ′(φ)2

2F (φ)2

]
g̃µν∂µφ∂νφ− M̃4

Pl
F (φ)2U(φ)

]

+Sm

[
M̃2

Pl
F (φ) g̃µν

]
, (1.19)

in which we can see that the modifications of gravity appear directly in the

matter action through the minimal couplings to gravity, while recovering an

Einstein-Hilbert gravitational sector. Thus, this theory is equivalent to a BSM

theory. In this way, the ability to make Weyl rescalings of the metric and so-

called disformal transformations [55–58] of the form

gµν → A(φ)g̃µν +B(φ)∂µφ∂νφ, (1.20)

allows us to make connections between scalar-tensor theories of gravity and

gauge-singlet, scalar extensions of the Standard Model of particle physics,

such as Higgs- or neutrino-portal theories [59–66], as we will demonstrate in

Chapter 2. However, as will be shown below, the Einstein frame calculation

has limitations when considering full-generic scalar-tensor theories, motivating

the use of the Jordan frame.

Staying in the Jordan frame: We can continue in the Jordan frame (where

the curvature couplings are manifest), by analyzing how the metric degrees of

freedom mediate interactions between the field φ and our would-be Standard

Model fields.
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1.1. Scalar-tensor theories: A natural extension for gravity

From a classical field theory standpoint, this requires us to study the equations

of motion of the system. For the Brans-Dicke action in Eq. (1.16), they are

given by

1
2F (φ)Gµν + ∇µ∇νF (φ) − gµν2F (φ) = 1

2T
(m)
µν + 1

2T
(φ)
µν (1.21)

Z(φ)2φ+ 1
2Z

′(φ)∂µφ∂νφ+ U ′(φ)+F
′(φ)
2 R = 0, (1.22)

where the first equation corresponds to the Einstein field equations of the

modified gravitational action, and

T (m)
µν = −2 1√

−g
δSm

δgµν
(1.23)

is the energy-momentum tensor of the matter fields. In this way, the energy-

momentum tensor for the φ field is given by

T (φ)
µν = −Z(φ)∂µφ∂νφ+ gµν

(1
2Z(φ)∂σφ∂σφ− U(φ)

)
. (1.24)

Now, looking at these equations, the only reason why we assume that gravity

in the Jordan frame is modified is because the left-hand side of the Einstein

field equations, containing the gravitational sector, has extra dependencies

on the non-minimally coupled field. However, we can trivially rearrange the

expression such that the modifications on gravity appear in the right-hand side

of the equation, such as

Gµν = 2
F (φ)

(1
2T

(m)
µν + 1

2T
(φ)
µν − ∇µ∇νF (φ) + gµν2F (φ)

)
. (1.25)

In this way, the system now looks like a Beyond the Standard Model theory

with an Einstein-Hilbert gravitational action. Furthermore, to eliminate the
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1. Introduction

dependence on the Ricci scalar in the equations of motion of the φ field in

Eq. (1.22), we can just substitute in the trace of Eq. (1.25). In this way, we

obtain

Z(φ)2φ+ 1
2Z

′(φ)∂µφ∂µφ− U ′(φ) + F ′(φ)
F (φ)

(
T µµ

(m) + T µµ
(φ) + 32F (φ)

)
= 0,

(1.26)

where we find that the coupling of the extra degree of freedom depends on

the trace of the energy momentum of the matter fields, which will play an

important role in Chapter 3. Finally, considering Eqs. (1.25) and (1.26), we

find that there is not a hint of a modified gravitational sector in the equations

of motion.

Independently of the frame, we should always find the same observables.1 Although

going to the Einstein frame is the most common choice, we will pay special attention

to performing all the calculations in the Jordan frame. The merits of dealing with

scalar-tensor theories in the Jordan frame are threefold:

1. In the presence of additional non-minimal gravitational couplings, for exam-

ple, Rµν∇µ∇νφ (as arises in the Horndeski class of scalar-tensor theories in

Eq. (1.10)), the Weyl rescaling of the metric from Eq. (1.17) (or more gener-

ally a disformal transformation of the metric in Eq. (1.20)) may not be able

to remove all non-minimal couplings simultaneously. In these cases, we may

not be able to transform into an Einstein frame and will have little choice but

to continue in the Jordan frame, working with non-minimal interactions with

gravity.

2. As discussed at the beginning of this section, in an interacting quantum field
1There are multiple proofs of this statement in classical physics, for example, see Ref. [67]. How-

ever, interpreting the anomalies arising from quantum field theory when performing the conformal
transformation is still an open problem in physics [68, 69].
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1.2. Implications and constraints on scalar-tensor theories

theory, the Einstein frame may exist only at a particular energy scale, with loop

corrections and the renormalization of couplings regenerating Jordan frame-

like interactions.

3. The conformal transformation to the Einstein frame, and the subsequent field

redefinitions needed to bring the theory as close to being canonically normal-

ized as possible (notwithstanding any curvature of the field-space metric) must

be performed on a model-by-model basis and may not be easily automated.

Thus far, we have chosen to isolate the non-minimally coupled field, φ, from the

matter sector. This is a widely accepted choice, which is present since the definition

of what is called the prototypical Brans-Dicke theory [54], defined by

S =
∫

d4x
√

−g
[
−φ

2R + w(φ)
2φ ∂µφ∂

µφ− U(φ)
]

+ Sm[gµν ], (1.27)

where ω(φ) is usually taken to be constant. However, it is possible to include

additional couplings between φ and the Standard Model, at the expense of breaking

the Weak Equivalence Principle [43]. Popular examples of such models include

those in which the Higgs is non-minimally coupled to gravity, as is required in Higgs

inflation or the Higgs-dilaton theory [70–84]. Therein, both the Higgs field and

an additional gauge-singlet scalar are non-minimally coupled to the Ricci scalar, a

model that will play an important role in Chapter 3.

Independently of the specific couplings, however, we can already infer from

Eqs. (1.21) and (1.22) that the matter sector will be sensitive (in most cases) to the

modifications of the gravitational sector. Moreover, depending on the exact form

of these new interactions, we expect them to have implications on a wide range of

scales, both for GR and QFT. In the next section, we will give a brief description

of some of the main tests and subsequent constraints imposed on these theories.
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1. Introduction

1.2 Implications and constraints on scalar-tensor

theories

When considering modifications due to extensions of gravity, the thing that comes

to mind are the possible existence of long-range interactions, commonly referred to

in cosmology as fifth forces. However, as we will see in this section, the increasing

complementarity of high precision data from cosmological observations and high

energy physics experiments makes it possible to test for deviations from standard

gravity that probe different phenomena complementary to long-range interactions.

In what follows, we provide a brief description of some of the main constraints

and expected effects that these models may have at different scales in our Universe:

• Cosmological scale tests:

The main constraints on cosmological scales are not only directly given by fifth forces

themselves, but also by the evolution of the gravitational coupling strength, given

by the Planck mass, MPl. As we mentioned earlier, one model that produces a time-

varying Planck mass was the generic Brans-Dicke theory in Eq. (1.16), since this

parameter is produced by the vacuum expectation value (vev) of the scalar field φ

via ⟨F (φ)⟩ = M2
Pl. In this way, in Ref. [85], the authors analysed the implications of

a prototype Brans-Dicke theory (Eq. (1.27)) on the Cosmic Microwave Background

(CMB). This is a very good place to test modified theories of gravity because of

the excellent agreement between ΛCDM and the CMB power spectrum. For this

particular model, they found that the Brans-Dicke parameter ω is constrained to

ω > 890, and also an upper bound on the time evolution of the Planck Mass of

ṀPl/MPl ∼ 10−13/year, where ṀPl = dM
dt

.

In addition, a modified theory of gravity will affect the natural expansion of

the Universe. We have already mentioned that scalar field dynamics can lead to an
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1.2. Implications and constraints on scalar-tensor theories

accelerated expansion of the Universe through models such as Quintessence [33, 34]

or K-Essence [35, 36], which can be thought of as scalar-tensor theories without a

non-minimal coupling to gravity (i.e., setting G4 = 0 and G5 = 0 in Eq. (1.10)).

However, focusing on the Brans-Dicke theory from Eq. (1.16), the non-trivial cou-

pling of the scalar field to the trace of the energy-momentum tensor in Eq. (1.26)

will have important implications for the dynamics of this scalar field. In particular,

as described in Refs. [86, 87], every time a matter field becomes non-relativistic due

to the expansion of the Universe, the scalar field gets an influx of kinetic energy that

increases temporarily the sound horizon of the Universe. In this paper, the authors

relate these peaks to the possible Hubble tension [24], although they require the

presence of heavy sterile neutrinos.

• Compact object tests:

The modification of gravity can also affect the formation of compact objects, such

as black holes or neutron stars, and their interaction. In terms of the formation of

these objects, the non-minimal coupling of the extra scalar degree of freedom can

lead to what are known as tachyonic instabilities. They get their name from the

fact that the metric solutions for these objects derived from standard gravity are no

longer stable, leading to tachyonic-like perturbations of the field when expanding

the fields around these solutions. This is a very active area of research, where

the modification of the standard gravity solutions due to non-minimal couplings

to scalar fields is called spontaneous scalarization [88]. The first such model was

the Damour-Esposito-Farèse (DEF) model [89], which has been tightly constrained

by pulsar timing techniques [90]. Although this effect does not take place for all

scalar-tensor theories, such as for the generic Brans-Dicke theory from Eq. (1.16),

it occurs for a wide variety within the Horndeski theory, including those involving

the Gauss-Bonet tensor [91], Gµν = R2 − 4RµνRµν + RµνρσRµνρσ. However, even in
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the models in which scalarization is not present, the accretion disk around compact

objects can lead to big deviations from standard General Relativity because of the

effect that the high energy densities have in the non-minimally coupled field’s profile

(i.e., see Eq. (1.31)) [92]. Thus, although the astrophysical signatures of most of the

extensions of the DEF model are still being developed, the tachyonic instability

usually leads to large scalar field amplitudes near very massive objects, which could

lead to important signatures in future observations [88].

However, the main source of constraints from these objects comes from the ra-

diation they emit. For example, one of the most important observations came from

the detection of gravitational waves generated by the neutron star merger event

GW170817/GRB170817A [93]. The key aspect of this event is the simultaneous

emission of gravitational and electromagnetic radiation from the collision, which

allowed us to place very tight constraints on the speed of gravity, cT , given by

−3 · 10−15 ≤ cT/c − 1 ≤ 7 · 10−16. For Horndeski theories producing the late time

accelerated expansion of the Universe (i.e., the scalar field is the dominant compo-

nent of dark energy), the tensor speed defined in an expanding FLRW-Universe is

given by [94]
c2
T

c2 = G4 −XG5,φ − φ̈G5,φ

G4 − 2XG4,φ +XG5,φ − φ̇HXG5,X
(1.28)

where H is the Hubble parameter indicating the speed of expansion of the Universe.

Therefore, the observational requirement cT = c reduces the original Horndeski

action definition in Eq. (1.10) to the following simplified form

L(c)
H = G4(φ)R +G2(φ,X) −G3(φ,X)2φ. (1.29)

Therefore, it admits non-minimal couplings to the Ricci scalar that do not depend

on a kinetic coupling to φ, such as Quintessence, K-essence and generic Brans-Dicke

theories, Eq. (1.16). It is important to point out that these mentioned bounds do
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1.2. Implications and constraints on scalar-tensor theories

not apply to subdominant Horndeski theories in our Universe, allowing for a less

constrained set of Gi functions [95]. For a full study of the validity of other modified

theories of gravity, see Refs. [96, 97].

• Solar System tests:

Solar system tests have historically been the main source of observational tests of

gravity, going all the way back to Newton’s theory of gravitation through the confir-

mation of Kepler’s laws, up to Einstein’s theory of gravity predicting the precession

of Mercury’s orbit and the deflection of light by the Sun. Similar experiments are

currently being carried out to further constrain the nature of the gravitational in-

teraction, focusing on different aspects than modified gravity.

First, since all the planets orbit the Sun (and therefore are in free fall), the Solar

System is the perfect laboratory for studying violations of the equivalence principles.

In particular, it is possible to impose tight constraints on the Strong Equivalence

Principle (SEP), which states that all laws of physics should be independent of

location and velocity (i.e., spacetime is locally flat), implying an equality between

the gravitational and inertial masses on free-falling bodies. This affects any modified

theory of gravity introducing long-range forces [43], including the generic Brans-

Dicke theory, as they would change the effective value for the gravitational mass of

an object. Thus, using the Earth and the Moon as test objects, it is possible to

measure any SEP deviation with lunar laser ranging experiments, finding a ratio

between gravitational and inertial mass of ∆(MG/MI) = (−2.0 ± 2.0) · 10−13 [98].

Moreover, these experiments also help us to constrain the evolution of the non-

minimally coupled field φ through its dependence on MPl, setting the rate of change

of the gravitational constant at ṀPl/MPl = (−2 ± 7) · 10−13/year [99], in agreement

with the previously mentioned result from the CMB.

Second, by measuring the frequency shift of photons as they travel large dis-
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tances through the Solar System, we can directly test for modifications on the grav-

itational potential because of the non-minimal coupling of φ to the curvature created

by the Sun. This experiment, which has placed the tightest constraints yet on pos-

sible modifications of gravity, was carried out by the Cassini spacecraft, which was

set to send and receive radio wave signals on its way to Saturn. For the prototypical

Brans-Dicke theory, these observations constrain the ω parameter to be bounded by

ω > 40, 000 [100, 101].

• Laboratory tests:

Perhaps one of the most famous tests of gravity is the Cavendish experiment, which

was the first laboratory experiment that measured the gravitational force between

two lead spheres. This provided the first accurate value for the gravitational con-

stant.

In this line of work, there have been numerous improvements of similar exper-

iments that test the nature of gravity at very small scales, each finding perfect

agreement with Newton’s inverse square law at ranges > 52.6µm [102] and with

masses down to (90.7 ± 0.1)mg [103]. In addition, the Eöt-Wash Group uses

torsion-balance experiments which, when their results are combined with the lu-

nar laser ranging measurements [98], give an allowed deviation from the SEP no

more than 0.04% [104]. In Figure 1.1, we show the existing bounds on Yukawa-type

modifications to Newton’s Law of the form

V (r) = Gm1m2

r

(
1 + αe−r/λ

)
, (1.30)

where α is a coupling constant and λ corresponds to the Compton wavelength for

the mediating field. From these experiments, we can constrain a wide class of

modified theories of gravity as any deviation from Newton’s law introduced through

a Yukawa-type coupling will have this specific form, as will be shown in Chapter 3
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1.2. Implications and constraints on scalar-tensor theories

Figure 1.1: Figure reproduced from Ref. [102], where torsion-balance experiments are used to
constrain Yukawa-type modifications to Newton’s law. These constraints can be avoided either by
increasing the mass of the field or decreasing the coupling constant. We can see that the Eöt-Wash
experiments impose the tightest bounds on the parameter space; for a detailed description of all the
different lines and experiments in the plot, see Ref. [102].

when considering the generic Brans-Dicke theory from Eq. (1.16). In particular, we

find that fifth forces require a high mass for the non-minimally coupled field (as

λ ∝ m−1
φ ) or/and a weak coupling to matter to satisfy the constraints.

Another experimental probe of modified gravity is provided by atom interferom-

etry experiments [105, 106], which test for new forces acting on individual atoms.

These experiments are similar to the double-slit experiment, but the different paths

are determined by whether an atom absorbs a photon or not. If it does, that atom

absorbs the photon’s momentum and is given an upward velocity, being later re-

combined with the other atoms as it falls back down. Since there is a probability

that the atoms will absorb the photon, they will be in a superposition of states

in the absence of observation depending on the path taken. In the detector, the

interference between the states can be used to infer the acceleration experienced by

the excited atom and thus constrain its gravitational interaction with the Earth.

These and future experiments, such as the AION project [107], can be used to con-
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strain (or ideally detect) dark energy, ultra-light dark matter and modified theories

of gravity [108–110], among others.

In particular, we can see that Solar System and laboratory scale tests impose

the tightest constraints on any deviation from standard gravity. However, some

modified theories of gravity present so-called screening mechanisms, which naturally

lead to the suppression of their fifth forces in high density backgrounds (such as the

Solar System) without requiring fine tuning of the model parameters. In the next

subsection, we will demonstrate these mechanisms by focusing on the chameleon,

leaving the subnuclear tests of scalar-tensor theories for Chapter 1.3.

1.2.1 Screening mechanisms: The chameleon field

So far we have assumed the non-minimally coupled field propagates in a spatially

homogeneous and empty background, with the exception of the spontaneous scalar-

ization process. Although this effect was only described in the surroundings of very

massive compact objects, similar physics contribute to screening mechanisms that

may lead to vanishing fifth forces within the Solar System.

The relation between the fifth forces and the local density of the matter sector

can be seen directly from the equations of motion. Recalling Eq (1.26), we obtained

the following equation of motion for the non-minimally coupled field

Z(φ)2φ+ 1
2Z

′(φ)∂µφ∂µφ−U ′(φ) + F ′(φ)
F (φ)

(
T µµ

(m) + T µµ
(φ) + 32F (φ)

)
= 0, (1.31)

which has a clear dependence on the background distribution of the matter fields

through the trace of the energy-momentum tensor T µµ (m). There are multiple screen-

ing mechanisms that take advantage of this coupling to suppress the fifth forces. In

this section, we will focus on the chameleon mechanism [109, 111, 112], in which the

scalar field’s effective mass depends on the local density, affecting the interactions
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1.2. Implications and constraints on scalar-tensor theories

mediated by this field.

Although this model is usually defined in the Einstein frame, here we will show

its effect working directly in the Jordan frame [113]. The Chameleon action is based

on the prototypical Brans-Dicke action from Eq. (1.27), defined as

S =
∫

d4x
√

−g
[
−φ

2R + w

2φ∂µφ∂
µφ− Uch(φ)

]
+ Sm[gµν ]. (1.32)

where w is treated as a constant, and the generic Chameleon potential is defined as

Uch(φ) = Λ4+n

φn
, (1.33)

where Λ is a coupling constant not related to the cosmological constant. Substituting

this model’s parameters into Eq. (1.31), we find the equations of motion for this case

are
3 + 2w

2 2φ = φU ′
ch(φ) − 2Uch(φ) +

T µµ
(m)

2 . (1.34)

Here, we can see that the right-hand side can be treated as an effective potential

that will depend on the matter density background. In this way, we can define the

simple Klein-Gordon equation

2φ− Ũ ′
ch(φ) = 0, (1.35)

with

Ũ ′
ch(φ) = 2

3 + 2w

φU ′
ch(φ) − 2Uch(φ) +

T µµ
(m)

2

 . (1.36)

Perturbing this field about the local minimum, such that φ → φ+φ̄(ρ), this equation

can be represented as

2φ− m̂2
φ(ρ)2φ = 0, (1.37)
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where

m̂2
φ(ρ)2 = n(n+ 2) 1

n
ρ

n+1
n

(2Λn+4)n+1
n

(1.38)

is the effective mass of the non-minimally coupled field, and we have assumed

T µµ
(m) = ρ to be the energy density of the matter fields. Notice that the allowed

limits of the exponent n for this equation differ from the ones in the literature as

we carried out the calculation directly in the Jordan frame, instead of going to the

Einstein frame, meaning that the original definition of the potentials differ by the

rescaling of the action. From this, we can calculate the Yukawa potential just by

solving for φ in Eq. (1.37). After some algebra, we find

V5(r) = − 1
4πr

M2

M2
Pl
e−m̂(ρ)r, (1.39)

where M is a constant mass scale. Thus, substituting in the value for the chameleon

field’s mass in Eq. (1.38), we see that fifth forces will be suppressed in high-density

backgrounds, and so naturally satisfying bounds such as those in Figure 1.1. In this

derivation, we assumed ρ to be very slowly varying in space. However, obtaining

a precise estimate of the screening profile of the field in realistic regions, such as

galaxies, clusters or cosmic voids [114], is an active area of research.

Other screening mechanisms also take advantage of the coupling to the energy-

momentum tensor of the matter fields to suppress the fifth forces in high-density

regimes. However, they differ from the chameleon mechanism by the fact that they

do not increase the mass of the scalar field to do so. For example, the symmetron

mechanism [115, 116] uses a double-well potential that sets ω → ∞ in Eq. (1.27)

in high-density regimes. Before canonically normalizing the non-minimally coupled

field, this limit for ω freezes the scalar field, recovering a standard Einstein-Hilbert

action. However, in terms of the Yukawa potential in Eq. (1.39), the ω → ∞

limit is equivalent to a suppression of the coupling constant to matter (i.e., taking
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M → 0). Another example is the Vainshtein mechanism [117–119], which takes

place in massive theories of gravity, such as dRGT [120, 121]. In these theories, the

non-linear self-couplings of gravity become important in high density backgrounds,

eliminating any modification to the dynamics of the matter sector.

In summary, screening mechanisms allow for certain scalar-tensor theories to

have effects on cosmological scales while suppressing any modification to standard

gravity in local environments. For recent reviews on experimental and observational

constraints on screened fifth forces, see Refs. [122, 123]. In the next section, we

will explore the possibility of further constraining extensions of gravity by studying

them on subatomic scales, where some processes exist that can be used to see through

screening mechanisms.

1.3 Testing scalar-tensor theories in particle physics

Previously in Chapter 1.1.1 we described how the effect of a modified gravity on the

matter sector can be expressed in terms of a Beyond the Standard Model theory.

As such, we may also set constraints by directly studying the effects that the extra

scalar field φ has on particle physics, thus testing scalar-tensor theories of gravity

using subatomic scale experiments.

In recent years, there have been many proposals with different implications

that extended theories of gravity would have on these tiny scales. For example, in

Ref. [124], the authors consider the effect that chameleons (the associated particle

with the chameleon field) produced in the Sun by strong magnetic fields would have

on dark matter detectors such as the XENON1T [125, 126], finding that for a wide

range of masses they could detect chameleons. It is important to clarify that most

dark matter experiments testing for new couplings to the photon are in principle

not viable for the generic Brans-Dicke theory [Eq. (1.16)], including the chameleon
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Figure 1.2: Examples for modifications due to BSM physics in a Møller scattering. On
the left, we can see that the new physics (φ) introduces a new channel mediated by the
additional scalar. On the right, the new field only appears through a modification to the
vertices, such that, while all the internal lines (hidden in the blob) are SM fields, the
modifications lead to an extra particle being produced in the final state, producing missing
energy signals.

field presented in Chapter 1.2.1. This is because for these models the coupling to

the matter sector depends on the trace of its energy-momentum tensor, which clas-

sically vanishes for the photon2 (and also for any scale invariant quantity, as we

will show at the end of Chapter 2.2). However, any scalar-tensor theory connected

to the Einstein frame through disformal transformations of the form of Eq. (1.20),

as considered in Ref. [124], has a non-vanishing coupling to gauge fields. Further-

more, the non-minimally coupled field could affect some of the experiments used to

measure fundamental properties of the Standard Model particles. For example, the

chameleon field may affect the measured magnetic moment of fermions [128] (linking

it to the Fermilab (g-2) experiment [17]) or shift the energy levels of light atoms,

such as hydrogen or muonium [129].

However, when studying modifications of the Standard Model through BSM

theories, the most definitive way to test for them is to study their effect in particle

colliders [130, 131]. When considering scalar-tensor theories, we do not expect them

to generate direct evidence for the extra scalar field, as it cannot interact with a

detector due to its neutrality. However, there are still ways to infer its existence

indirectly from the data [132, 133]. Depending on the role that the extra field plays

in the scattering process, we can distinguish two different types of signatures:

2However, such interactions can arise through quantum anomalies [127].
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Internal line: These processes correspond to those in which the extra field

appears as a virtual particle (i.e., as a mediator), providing a new channel of

interaction through which Standard Model particles can interact. Therefore,

such BSM interactions would have an impact on the resonances of the differ-

ential cross sections of the Standard Model scattering amplitudes, which is an

active field of study of the LHC [134]. In Figure 1.2, we show an example of

such a modification in a Møller scattering (e− + e− → e− + e−), which in the

non-relativistic limit would lead to a Yukawa potential of the form of the one

obtained in Eq. (1.39).

External line: In this case, the additional field of the BSM theory is only

present in the final particle excitation states, while all interactions (and hence

virtual lines) are mediated by Standard Model fields. This corresponds to

a modification on the external vertices of the scattering amplitude. As an

example, we can consider an extension of the Møller scattering mentioned

above, where an extra particle is produced in the final state, such as (e− +

e− → e− + e− + φ). Since the extra scalar particle will not be detected,

such processes would indicate a mismatch between the incoming and outgoing

total energy and momentum. Finding modifications of the Standard Model

through these processes requires very precise theoretical predictions, and is

common practice when testing for supersymmetric particles [135] and dark

matter candidates [136]. In addition, depending on the mass of the scalar

field, once the extra particle has been produced, it may later decay into other

Standard Model particles that may be detected. These are called long-lived

particles, and are the main object of study for the FASER detector [137] in

CERN.

In a real process we expect both types of modification to occur simultaneously.

However, while the chameleon type of screening mechanism would affect the inter-
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nal lines (as the effective mass contributes to the field’s propagator), it would not

modify the interaction couplings with the Standard Model. Therefore, the described

missing energy signals would not be screened by chameleon mechanisms, given that

the effective mass of the produced particle in the final state would not affect the

scattering amplitude itself. Similar arguments can be applied to Higgs-portal theo-

ries [138, 139].

In this thesis, we will focus on formalising and automating the process of study-

ing scalar-tensor theories in particle colliders (although our work will be also bene-

ficial for many areas of subatomic tests). In order to calculate the exact amplitudes

resulting from scattering processes (such as those in Figure 1.2), we must first ob-

tain the exact modifications and new interactions appearing in the Standard Model

Lagrangian by using quantum field theory. So far, such calculations for testing mod-

ified gravity effects at colliders have already been considered, but using simplified

models that focus on reduced sectors of the Standard Model [140–142]. We are

still lacking a systematic approach that allows us to test the implications of any

scalar-tensor theory on the whole Standard Model.

Notice that, even without modifications of the gravitational sector, generating

accurate predictions involving the whole Standard Model is computationally de-

manding. Therefore, to automate these types of calculations, we introduce FeynMG [2],

a Mathematica package that, working within the environment of FeynRules [143],

helps the user to perform all the necessary algebra to obtain the BSM description

from any scalar-tensor theory. Furthermore, being within FeynRules makes possi-

ble the connection of scalar-tensor theories with the rest of particle phenomenology

software analysis packages, allowing the user to obtain precise predictions of the

modifications on the Standard Model at colliders. Furthermore, once the Lagrangian

for the BSM description of a scalar-tensor theory is obtained, we can also use the-

oretical arguments to test the consistency of the model, such as checking whether
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unitarity and causality are maintained [144].

Outline

This thesis is intended to be both explicit and pedagogical. As such, we begin in

Chapter 2 with a review of how to separate the mixing between gravity and the

additional scalar field, and so obtain the Lagrangian for the BSM description of the

scalar-tensor theory, working both in the Einstein and the Jordan frames. In this

calculation, we will pay special attention to identifying the relationship between the

scale invariance of the matter sector and the subsequent modifications due to the

extension of gravity. Then, in Chapter 3, we consider the long-range modifications

to the Møller scattering due to the modification of gravity. For that, we obtain the

Yukawa potential in the non-relativistic limit, concentrating on systems where the

scale symmetry is broken either explicitly or dynamically. Finally, in Chapter 4,

after describing the state of the art for using symbolic algebra to do particle phe-

nomenology, we present FeynMG [2] with detailed examples on its main functions

and routines. Our conclusions are presented in Chapter 5. Additional details are

provided in the Appendices.
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Chapter 2

Scalar-tensor theories as BSM

physics

When considering extensions of the Standard Model using particle theory, we are

used to working directly in Minkowski spacetime since the corrections from gravity

are highly suppressed. However, throughout this chapter, we will make the case that

even a Minkowski quantum field theory that is solely minimally coupled to gravity

can give rise to new interactions with additional scalar fields that are non-minimally

coupled to the scalar curvature of the gravity sector.

In this way, once the BSM description is obtained, the new dynamics appearing

in the matter sector because of the modification of gravity can be calculated by

using field theory to compute scattering amplitudes. For simplicity, we will work

with a toy model of QED plus a real scalar prototype of the Higgs sector, such that

our arguments extend to fields with spins 0, 1/2 and 1. Generalizing to a complex

scalar field that is charged under U(1) would be a technical complication that does

not add to the main points that we wish to illustrate below. The action of this
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model in Minkowski spacetime is given by

Sm =
∫

d4x
[
−1

4F
µνFµν + 1

2∂µϕ∂
µϕ

+ iψ̄γµDµψ − yψ̄ϕψ − V (ϕ)
]
, (2.1)

where we have introduced a would-be Higgs field ϕ, a Dirac fermion ψ, which will

later be chosen as a proxy for the electron, and the U(1) gauge field Aµ, which

corresponds to the photon, with its usual field-strength tensor Fµν = ∂µAν − ∂νAµ.

Notice that the potential for the ϕ field, V (ϕ), is not specified at this stage. We will

keep it generic until the next section, in which we will show that the potential new

interactions will be sensitive to the exact form of this function.

The Dirac fermion is charged under U(1), and it is minimally coupled to the

photon field via the gauge covariant derivative

Dµψ = ∂µψ + iqAµψ, (2.2)

where q is the would-be electromagnetic coupling.

Before analyzing the interactions induced by extending the gravitational sec-

tor beyond the usual Einstein-Hilbert action, we first need to insert all the minimal

gravitational couplings that have so far been ignored by working in Minkowski space-

time. This means that, for every pair of contracted Lorentz indices, we must include

a factor of the metric gµν . Additionally, for every γ matrix appearing in the Dirac

Lagrangian, we must include a vierbein eµa , which satisfies ηabeµaeνb = gµν , where ηab

is the flat spacetime metric. (We remind the reader that the flat-space indices of the

vierbein are raised and lowered with the flat-space metric.) The latter is necessary

since the algebra of the γ matrices is defined with respect to the Minkowski metric,

i.e., {γa, γb} = 2ηab; the vierbeins relate the curved and flat, tangent spaces. By
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2. Scalar-tensor theories as BSM physics

this means, we obtain the minimally coupled action

Sm[gµν ] =
∫

d4x
√

−g
[
−1

4g
αµgβνFαβFµν + 1

2g
µν∂µΦ∂νΦ

+ iψ̄eµaγ
a∇µψ − yψ̄Φψ − V (Φ)

]
, (2.3)

where we have also included a factor of √
−g in the spacetime volume element.

Herein, the Minkowski gauge covariant derivative has been promoted to the general

covariant derivative.

For scalar fields, the gravitational covariant derivative just trivially reduces to a

partial derivative, such that ∇µΦ → ∂µΦ. However, when acting on a covector Yρ,

the covariant derivative takes the form

∇µYν = ∂µYν − ΓρµνYρ, (2.4)

where Γρµν = 1
2g

ρλ(∂µgλν + ∂νgµλ − ∂λgµν) are the Christoffel symbols introduced

in Chapter 1. So far, this definition for the covariant derivative has been chosen

such that ∇ρgµν = 0, which ensures that the connection vanishes in the absence

of a gravitational force, but it can take many other forms. For instance, we will

later introduce a different choice that will be more convenient for the specific case

of Brans-Dicke theories [1]. However, it does not matter which definition one uses

in this action, given that the following property will always hold

Fµν = ∇µAν − ∇νAµ = ∂µAν − ∂νAµ, (2.5)

since the curvature-dependent terms are symmetric under the permutation of µ

and ν. Finally, the covariant derivative acting on a fermion field, including the
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dependence on the gauge field, is given by

∇µψ = ∂µψ + iqAµψ − i

2Ωµψ, (2.6)

where

Ωµ = (Γab)µSab (2.7)

is the spin connection, crucial for keeping the fermionic kinetic energy Hermitian

and scale-invariant on curved backgrounds. The latter is defined by

(Γab)µ = eaαe
β
bΓαµβ + eaα∂µe

α
b , where Sab = i

4[γa, γb]. (2.8)

We can now proceed to append the gravitational sector. For this, we will choose

the generic Brans-Dicke action from Eq. (1.16), for which we obtain

S =
∫

d4x
√

−g
[
−F (φ)

2 R + 1
2Z(φ)gµν∂µφ∂νφ

− 1
4g

αµgβνFαβFµν + 1
2g

µν∂µΦ∂νΦ

+ iψ̄eµaγ
a∂µψ + 1

2 ψ̄e
µ
aγ

aΩµψ

− qψ̄eµaγ
aAµψ − yψ̄Φψ − U(Φ, φ)

]
, (2.9)

where the potentials for φ and Φ have been absorbed into U(Φ, φ) to account for

possible interactions between the scalar fields. However, even in the case where there

is not an explicit coupling between the scalar fields, we will find that new interactions

of this kind might appear in the Beyond the Standard Model description.

In this chapter, we will show this in two different ways. First by performing

a Weyl transformation to the Einstein frame, in which the modifications to the

gravitational sector will be present on the matter Lagrangian, leaving a canonical

Einstein-Hilbert gravitational sector. Then, we will replicate the calculation working
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2. Scalar-tensor theories as BSM physics

directly in the Jordan frame, where we will have to perturb the modified theory of

gravity around Minkowski spacetime.

2.1 Weyl transforming to the Einstein frame

This method consists of a redefinition of the curvature-dependent objects (i,e,. the

Weyl transformation from Eq. (1.17)) such that the resulting gravitational action

does not present any non-minimal couplings. For the Lagrangian defined in Eq. (2.9),

this transformation will take the following form

gµν → M̃2
Pl

F (φ) g̃µν , gµν →F (φ)
M̃2

Pl
g̃µν , (2.10a)

eaµ → M̃Pl√
F (φ)

ẽaµ, eµa →

√
F (φ)
M̃Pl

ẽµa , (2.10b)

where g̃µν , ẽµa and M̃Pl are the metric, vierbein and Planck mass defined in the

Einstein frame, respectively. To get through the algebra, the following two trans-

formations will be useful:

√
−gF (φ)

2 R →
√

−g̃
(
M̃2

Pl
2 R̃ − 3M̃2

PlF
′(φ)2

4F (φ)2 g̃µν∂µφ∂νφ

)
, (2.11a)

eµaγ
aΩµ →

√
φ

M̃Pl
ẽµaγ

a

(
Ω̃µ − 3i

2
F ′(φ)
F (φ) ∂µφ

)
, (2.11b)

where F ′(φ) = ∂F (φ)/∂φ and all the curvature-dependent quantities with a tilde

are built with the Einstein-frame metric g̃µν or vierbein ẽµa .
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2.1. Weyl transforming to the Einstein frame

Applying the transformations in Eq. (2.10) to the Jordan-frame action, we obtain

S =
∫

d4x
√

−g̃
[
−M̃2

Pl
2 R + M̃2

Pl
2

[
Z(φ)
F (φ) + 3F ′(φ)2

2F (φ)2

]
g̃µν∂µφ∂νφ

− 1
4 g̃

αµg̃βνFαβFµν + M̃2
Pl

2F (φ) g̃
µν∂µΦ∂νΦ − q

M̃3
Pl

F (φ)3/2 ψ̄ẽ
µ
aγ

aAµψ

+ i
M̃3

Pl
F (φ)3/2 ψ̄ẽ

µ
aγ

a∂µψ + 1
2

M̃3
Pl

F (φ)3/2 ψ̄ẽ
µ
aγ

aψ

(
Ω̃µ − 3i

2
F ′(φ)
F (φ) ∂µφ

)

− M̃4
Pl

F (φ)2

(
yψ̄Φψ + U(Φ, φ)

) ]
, (2.12)

wherein we have recovered a canonical Einstein-Hilbert term for the gravitational

action. However, all the couplings of the Brans-Dicke scalar arising from the modi-

fication of gravity now appear explicitly in the matter Lagrangian. Notice, in par-

ticular, that most of the kinetic energies of the fields are not canonically normalized

due to these new couplings.

As a starting point, one can canonically normalize the field φ by solving the

integral

χ̃(φ) ≡ M̃Pl

∫ φ

φ0
dφ̂

√√√√Z(φ̂)
F (φ̂) + 3F ′(φ̂)2

2F (φ̂)2 , (2.13)

where φ0 is taken to be zero without loss of generality. For the rest of the fields, we

rescale them according to their classical scaling dimension, i.e.,

ψ →

√√√√ F̃ (χ̃)3/2

M̃3
Pl

ψ̃, Φ →

√
F̃ (χ̃)
M̃Pl

Φ̃, (2.14)

where F̃ (χ̃) ≡ F (φ). With this, the Lagrangian takes the following form:

L = − M̃2
Pl

2 R + 1
2 g̃

µν∂µχ̃∂νχ̃− 1
4 g̃

αµg̃βνFαβFµν

+ i ¯̃ψẽµaγa∇̃µψ̃ + 1
2 g̃

µν∂µΦ̃∂νΦ̃ − y ¯̃ψΦ̃ψ̃ − M̃4
Pl

F̃ (χ̃)2
Ũ(Φ̃, χ̃)

+ 1
2
F̃ ′(χ̃)
F̃ (χ̃)

Φ̃g̃µν∂µΦ̃∂νχ̃+ 1
8

(
F̃ ′(χ̃)
F̃ (χ̃)

)2

Φ̃2g̃µν∂µχ̃∂νχ̃, (2.15)
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2. Scalar-tensor theories as BSM physics

where Ũ(Φ̃, χ̃) ≡ U(Φ, φ), F̃ ′(χ̃) = ∂F̃ (χ̃)/∂χ̃ and, for simplicity, we have regrouped

the covariant derivative,

∇̃µψ̃ = ∂µψ̃ + iqAµψ̃ − i

2Ω̃µψ̃. (2.16)

Thus, one of the main inconveniences of working in the Einstein frame is that it

loses the simplicity of the Lagrangian defined in the Jordan frame. This is because

the Weyl transformation and the redefinition of the fields introduces factors of F̃ (χ̃)

throughout the Lagrangian, which, in regimes where we can make a series expansion

of F̃ (χ̃), will introduce infinite towers of operators that involve the SM fields and

increasing powers of the scalar field χ̃.

Let us now draw our attention to the potential term for the would-be Higgs

field, Φ̃. As we can see, the rescaling from Eq. (2.14) introduces a factor of
√
F̃ (χ̃)

on each Φ-dependent term. However, this dependence on F̃ (χ̃) is exactly inversely

proportional to the prefactor of Ũ(Φ̃, χ̃) in the second line of Eq. (2.15), which arose

from the Weyl transformation. Therefore, depending on our choice for the potential,

this rescaling might lead to a total cancellation of this coupling between χ̃ and Φ̃.

For instance, let’s study the case for the well-known Higgs-like double-well potential

V (Φ) = −1
2µ

2Φ̃2 + λ

4!Φ̃
4 − 3

2
µ4

λ
, (2.17)

where we can see that the constant term ensures that the vacuum has zero energy

density in the symmetry-broken phase. This function will transform under the Weyl

transformation and Eq. (2.14) into

M̃4
Pl

F̃ (χ̃)2
V


√
F̃ (χ̃)
M̃Pl

Φ̃
 = −1

2µ
2 M̃

2
Pl

F̃ (χ̃)
Φ̃2 + λ

4!Φ̃
4 − 3

2
µ4

λ

M̃4
Pl

F̃ (χ̃)2
, (2.18)

so that only the quartic term, λΦ̃2/4!, stays invariant.
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2.2. Staying in the Jordan frame

At this point, we can already make an important observation: The couplings

between the SM fields and the scalar field χ̃ arise only through the scalar kinetic

terms and terms with dimensionful parameters, i.e., those terms that are not invari-

ant under Weyl transformations. Thus, for the Standard Model (illustrated already

by the toy model described here with the double-well potential from Eq. (2.17)), the

modifications to the dynamics from the new scalar field χ̃ are, in the Einstein frame,

communicated by the Higgs sector, both via kinetic and mass mixings. However,

new interactions arising through kinetic mixings when these involve a field with non-

zero mass are suppressed due to the additional momentum dependence (∝ q2) that

occurs for each insertion into the matrix element of the kinetic mixing operator. As

a result, the mass mixing will provide the dominant fifth force. In this way, there

are strong parallels between the Brans-Dicke-type scalar-tensor theories and Higgs

portal theories (see Ref. [138]).

Even if the original matter Lagrangian is only minimally coupled to gravity in

the Jordan frame, there can be experimentally testable modifications to the force

laws that depend on the dynamics of the new scalar field that need not be Planck

suppressed. However, before calculating the exact form of these modifications, we

will first replicate the transformation of a scalar-tensor theory into its equivalent

BSM description by working directly in the Jordan frame.

2.2 Staying in the Jordan frame

In this frame, the modifications to the interactions between the fields of the matter

sector arise through the modified gravitational sector itself, so we proceed by per-

turbing the metric around a flat spacetime [145–147]. Expanding the metric up to
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2. Scalar-tensor theories as BSM physics

leading order in perturbations corresponds to

gµν = ηµν + hµν , (2.19a)

gµν = ηµν − hµν + . . . , (2.19b)

where ηµν is the usual flat spacetime metric and hµν is the perturbation in the metric,

which, once quantized, corresponds to the graviton. The higher order terms in the

expansion of gµν are necessary to satisfy gµνgνρ = δρµ to all orders.

Note that, although quantum field theory and General Relativity cannot be

reconciled, it is possible to quantize gravity as long as we work in the gravitational

weak-field limit, where we can ignore the infinite tower of higher order terms that

lead to the non-renormalization of gravity. In this way, we arrive at the following

weak-field expansions:

√
−g(1) ≈ 1 + 1

2ηµνh
µν , (2.20a)

Γµ(1)
αβ = 1

2η
µλ(∂αhλβ + ∂βhαλ − ∂λhαβ), (2.20b)

R(1)
µν = 1

2 (∂ρ∂µhνρ + ∂ρ∂νhµρ − 2hµν − ∂µ∂νh) , (2.20c)

R(2)
µν = 1

2h
ρσ∂µ∂νhρσ − hρσ∂µ∂(νhρ)σ + 1

4∂µh
ρσ∂νhρσ

+ ∂σhρν∂[σhρ]µ + 1
2∂σ(hσρ∂ρhµν) − 1

4∂
ρh∂ρhµν

− (∂σhσρ − 1
2∂

ρh)∂(µhν)ρ, (2.20d)

where the exponent in parenthesis shows the order in the metric fluctuations h, and

we have used the following index symmetrization and antisymmetrization notation

h(µν) =1
2(hµν + hνµ)

h[µν] =1
2(hµν − hνµ). (2.21)

37



2.2. Staying in the Jordan frame

For completeness, we will first show how to perturb around a Minkowski back-

ground the standard Einstein-Hilbert gravitational action, so that we can later com-

pare it with the Brans-Dicke case. Starting with

SEH =
∫

d4x
√

−g
[
−M2

Pl
2 R

]
, (2.22)

and perturbing up to second order in hµν , we find

LEH = M2
Pl

2

(1
4∂ρhµν∂

ρhµν − 1
4∂µh∂

µh+ 1
2∂

µhµν∂
νh− 1

2∂
µhµρ∂νh

νρ
)
. (2.23)

We can see that the Ricci scalar corresponds to the kinetic energy source for the

graviton, and its non-kinetic interactions will be given by the minimal couplings of

the matter sector to gravity. It still remains to fix a gauge, and one choice is the

harmonic gauge, which satisfies the following condition:

∇µ∇µ = ∂µ∂
µ → gµνΓρµν = 0. (2.24)

As for any quantum field theory, one cannot directly substitute this constraint into

the Lagrangian, as this would eliminate all possible off-shell effects. In order to

consistently introduce a gauge-fixing condition into the Lagrangian we need to add

a term to the action that encodes the desired constraint in its equations of motion.

For the harmonic gauge in Eq. (2.24), the best choice for such a term (which preserves

the Lorentz invariance of the action) is

LGF = M2
Pl

4 ξgµνΓµΓν , (2.25)

where Γµ = gαβΓµαβ and the prefactor is chosen such that the effects of this term are

of the order of the Ricci scalar. Herein, ξ is a constant Lagrange multiplier that is

introduced so that, when varying the action with respect to it, we obtain the desired
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2. Scalar-tensor theories as BSM physics

gauge constraint in the equations of motion. However, we will set ξ = 1 without

loss of generality.

Adding the gauge fixing term to the Einstein-Hilbert action in Eq. (2.22) and

perturbing gravity up to second order hµν leads to the familiar Fierz-Pauli La-

grangian [145], given by

LFP = M2
Pl

4

(1
2∂ρhµν∂

ρhµν − 1
4∂µh∂

µh
)
, (2.26)

which needs to be canonically normalized by rescaling the graviton via hµν →

(2/MPl)hµν .

Lets now turn our attention to the gravitational sector for Brans-Dicke-type

theories [Eq. (1.16)], with action

SG =
∫

d4x
√

−g
[
−F (φ)

2 R

]
. (2.27)

Linearizing gravity, we obtain the following expansion up to second order in hµν :

LG =F (φ)
2

(1
4∂ρhµν∂

ρhµν − 1
4∂µh∂

µh+ 1
2∂

µhµν∂
νh− 1

2∂
µhµρ∂νh

νρ
)

− F ′(φ)
4 ∂µφ∂

µh+ F ′(φ)
2 ∂µφ∂νh

µν . (2.28)

We can see that the modification of gravity has not only replaced M2
Pl → F (φ) in

the linearized Eintein-Hilbert action from Eq. (2.23), but it has also introduced two

new kinetic interaction terms between h and φ that vanished in the standard gravity

case since they were total derivatives.

Now, as for the Einstein-Hilbert action, we need to gauge-fix this linearized

theory in Eq. (2.28). At first glance, it is already clear that the harmonic gauge

choice from Eq. (2.26) will not take us to the Fierz-Pauli-like kinetic energy for the
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2.2. Staying in the Jordan frame

modified spin-2 degree of freedom. The most straightforward way of solving this

issue is to also make the replacement M2
Pl → F (φ) to the harmonic gauge itself.

However, in this calculation, we will use a different gauge that will be proven to

be convenient for the calculations in the Jordan frame [see below Eq. (2.33)]: one

that maps to the harmonic gauge when performing the Weyl transformation to the

Einstein frame.1 This can be achieved by redefining the covariant derivative such

that its action on a covector Yν is as follows:

DµYν = ∂µYν − ΓρµνYρ − Cρ
µνYρ, (2.29)

where

Cρ
µν = F ′(φ)

2F (φ)(δρµ∂νφ+ δρν∂µφ− gµν∂
ρφ). (2.30)

This modified covariant derivative will map to ∇µ when going to the Einstein frame

and satisfies the identity Dρ(F (φ)gµν) = 0 while preserving diffeomorphism invari-

ance in the action, as shown in Ref. [1, 69, 148, 149]. We can then define a scalar-

harmonic gauge condition in terms of the new covariant derivative, namely

DµDµ = ∂µ∂µ → gµνΓρµν − F ′(φ)
F (φ) ∂

ρφ = 0. (2.31)

Following the same steps as for the Einstein-Hilbert action, we can introduce this

condition into the system by adding the following term into the Lagrangian:

Lgf = F (φ)
4 ξgαβ

[
gµνΓαµν − F ′(φ)

F (φ) ∂
αφ

] [
gσρΓβσρ − F ′(φ)

F (φ) ∂
βφ

]
. (2.32)

where once again ξ is a Lagrange multiplier that will generate the scalar-harmonic

gauge constraint in the equations of motion when perturbing the action with respect

1This argument can also be applied when gauge fixing other fields, making them conformally
invariant (and so avoiding the modifications from entering through the gauge fixing term). See
Appendix A for a demonstration of working with the U(1) gauge field.
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2. Scalar-tensor theories as BSM physics

to it.

It is important to point out that this is not the first time this gauge has been

used. For instance, it is mentioned in its linearized form by Fuji and Maeda [43] and

used in a number of papers where the authors employ the frame-covariant Vilkovisky-

DeWitt approach [47, 69, 148–150], which, by making the appropriate set of field

redefinitions, an explicit frame invariance is achieved within the action that can

be undone once a frame is chosen. However, here, unlike in previous papers, we

introduce the gauge fixing term at the action level, using its complete metric form,

which allows us to perturb consistently to higher orders in the fluctuations.

Inserting this gauge fixing term (Eq. (2.32)) into the full Brans-Dicke action

defined in Eq. (2.9), we obtain the following Lagrangian after linearizing up to first

order in 1/
√
F (φ) (noting that M2

Pl = ⟨F (φ)⟩):

L =F (φ)
4

[1
2∂ρhµν∂

ρhµν − 1
4∂µh∂

µh
]

− F ′(φ)
4 ∂µh∂

µφ

−1
2

[
Z(φ) + F ′(φ)

2F (φ)

2]
∂µφ∂

µφ− U(φ) + 1
2h

µνTµν + Lm[ηµν ], (2.33)

where Tµν is the matter energy-momentum tensor as defined in Eq. (1.7).

Herein, we have recovered the usual kinetic energy terms of the graviton, as they

appear in the Fierz-Pauli Lagrangian in Eq. (2.26), with the exception that non-

minimal couplings to the field φ appear through the overall factor of F (φ). One

of the benefits of the scalar-harmonic gauge (Eq. (2.32)) is that it has eliminated

the kinetic interaction between φ and the non-traced graviton (i.e., the last term

on Eq. (2.28)), which will turn out to be very convenient when diagonalizing this

kinetic mixing. However, the price to pay is that it has also introduced an additional

term that contributes to the kinetic energy of the field φ, which can be canonically

41



2.2. Staying in the Jordan frame

normalized by defining

χ(φ) =
∫ φ

φ0
dφ̂

√√√√Z(φ̂) + F ′(φ̂)2

2F (φ̂) , (2.34)

where φ0 is again taken to be zero without loss of generality. Doing so leads to the

Lagrangian

L = F̂ (χ)
4

(1
2∂ρhµν∂

ρhµν − 1
4∂µh∂

µh
)

− F̂ ′(χ)
4 ∂µχ∂

µh

−1
4FµνF

µν + 1
2∂µχ∂

µχ+ 1
2∂µϕ∂

µϕ

+iψ̄γµ∂µψ − qψ̄γµAµψ − yψ̄ϕψ

+1
2µ

2ϕ2 − λ

4!ϕ
4 − 3µ4

2λ − Û(χ) + 1
2hµνT

µν

]
+ · · · , (2.35)

where F̂ (χ) ≡ F (φ), F̂ ′(χ) = ∂F̂ (χ)/∂χ and Û(χ) ≡ U(φ).

Now, there is only the graviton left to canonically normalize, since it is still non-

minimally coupled to the function F̂ (χ). However, as noted previously, the potential

Û(χ) must lead to a non-vanishing vacuum expectation value for χ at late times so

that the theory mimics Einstein gravity.2 With this in mind, we shift χ → χ + vχ

to obtain

L = F̂ (vχ)
4

(1
2∂ρhµν∂

ρhµν − 1
4∂µh∂

µh
)

− F̂ ′(vχ)
4 ∂µχ∂

µh

−1
4FµνF

µν + 1
2∂µχ∂

µχ+ 1
2∂µϕ∂

µϕ

+iψ̄γµ∂µψ − qψ̄γµAµψ − yψ̄ϕψ

+1
2µ

2ϕ2 − λ

4!ϕ
4 − 3µ4

2λ − Û(χ+ vχ) + 1
2hµνT

µν + · · · , (2.36)

where higher-order terms in the interactions between χ and hµν have been omitted

2We might expect vχ to be evolving on cosmological timescales, but these timescales are long
compared to the those relevant for elementary particle interactions.
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2. Scalar-tensor theories as BSM physics

Figure 2.1: Series of diagrams contributing to the fifth force between two fermions,
and arising from the kinetic mixing between the graviton hµν , and the scalar field χ. In
these diagrams, the straight solid lines correspond to fermions, the double wavy lines to
gravitons, the dashed line to the non-minimally coupled field and the boxes a kinetic mixing
oscillation. Additionally, the ellipsis represents the series summing over all insertions of
the kinetic mixing.

in the ellipsis. Therefore, modification of gravity leads to a kinetic mixing between

the trace of the graviton h and the χ field; the last term in the first line.

In contrast to the Einstein frame, the main contribution to the fifth-force cou-

pling, as analyzed in the Jordan frame, is via the kinetic mixing and not a mass

mixing, as illustrated in Figure 2.1 (see Ref. [1]). This comes from the fact that

the graviton propagator (∝ 1/q2) cancels the momentum dependence of the mixing

vertex (∝ q2) in every oscillation between the field φ and the graviton, such that,

unlike the case of a massive field, there is no additional momentum suppression in

the non-relativistic limit. Although it is already viable to work with the kinetic

mixing present in the Lagrangian, we can remove it by the following transformation

of the graviton and χ field:3

hµν → 2
MPl

hµν + 1
MPl

F̂ ′(vχ)√
M2

Pl + F̂ ′(vχ)2
σηµν , (2.37a)

χ → − 1√
1 +

(
F̂ ′(vχ)
MPl

)2
σ, (2.37b)

where F̂ (vχ) = M2
Pl has been substituted and σ corresponds to the canonically

normalized scalar field. This amounts to a perturbative implementation of the Weyl

3This transformation can be calculated in multiple ways. In Ref. [1], this was achieved by
solving the system of equations that left the action diagonalized. Alternatively, in Appendix B, we
show how to achieve this directly by transforming the kinetic matrix.
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2.2. Staying in the Jordan frame

transformation, as is clear when one considers the resulting Lagrangian

L =1
2∂ρhµν∂

ρhµν − 1
4∂µh∂

µh− 1
4FµνF

µν

+iψ̄γµ∂µψ − qψ̄γµAµψ − yψ̄ϕψ − Û(χ(σ) + vχ)

+1
2∂µσ∂

µσ + 1
2∂µϕ∂

µϕ+ 1
2µ

2ϕ2 − λ

4!ϕ
4 − 3µ4

2λ

+ 1
MPl

hµνT
µν + 1

2MPl

F̂ ′(vχ)√
M2

Pl + F̂ ′(vχ)2
σT µµ + · · · , (2.38)

where T µµ is the trace of the matter energy-momentum tensor. Using the definition

from Eq. (1.7), we obtain

T µµ = −2√
−g

δS

δgµν
gµν , (2.39)

which vanishes for scale-invariant sectors. To understand this, let us consider a

generic action Ŝ that presents a symmetry under conformal transformations of the

form

gµν → eΩgµν . (2.40)

In this way, the variation of Ŝ with respect to this transformation is

δŜ =
∫ δŜ

δgµν
δgµν =

∫ δŜ

δgµν
Ωgµν = 0, (2.41)

where we have made the infinitesimal expansion of eΩ ≈ 1+Ω+O(Ω2). Therefore, for

any generic Ω, this equality can only be satisfied by a traceless δŜ/δgµν . Substituting

this result into Eq. (2.39) we can deduce that for any scale-invariant sector, the trace

of the energy-momentum tensor vanishes.

Therefore, noticing that the new interactions in Eq. (2.38) depend on the trace of

the energy-momentum tensor of the interacting particles, we obtain that the σ field

will not couple to scale-invariant sectors [82], agreeing with our Einstein frame result.

Since the only explicit scale breaking term in the Standard Model is the mass of
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2. Scalar-tensor theories as BSM physics

the Higgs, we can express Brans-Dicke gravity equivalently as Higgs portal theories.

However, notice that to obtain this result we used the equations of motion, meaning

that it only holds classically. In this way, quantum effects may be able to introduce

modifications on the type of couplings arising in the matter sector, for example by

breaking the scale invariance spontaneously a la Coleman-Weinberg [151] or through

conformal anomalies [152].
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Chapter 3

Fifth forces and dynamical scale

symmetry breaking

In Chapter 2, we focused on establishing the field transformations and redefinitions

that are needed to express a generic Brans-Dicke scalar-tensor theory as a Beyond

the Standard Model theory. In the process, we showed that the dynamics arising

from this type of modification of gravity only couple to scale-dependent sectors.

This brings us to the following dilemma: As illustrated by the SM toy model

example from Chapter 2.1 in which we considered the usual Higgs double-well po-

tential, the scale-breaking terms are the ones allowing the fermions to acquire a

Yukawa mass (and also introducing the new dynamics in the matter sector). There-

fore, it might seem that it is not possible to both have massive fermionic fields while

avoiding new interactions in the matter sector.

However, as with any symmetry, there can be different sources of scale breaking

in a given theory, such as via quantum effects [151] or the dynamical emergence of

scales. In this chapter, we will focus on the latter case, showing how it is possible

to avoid new dynamics in the matter sector, while allowing for massive fermions.

46



3. Fifth forces and dynamical scale symmetry breaking

3.1 Introduction to dynamically broken scale sym-

metries

The only term in the potential for the would-be Higgs field, Φ̃, that did not couple

to the additional scalar χ̃ was λ
4!Φ̃

4. This is because its scaling dimension agrees

with the dimension of the space-time, canceling the contribution from the conformal

transformation after redefining the fields as in Eq. (3.26). In this way, we should not

expect the generation of new couplings in a potential built uniquely from quartic

scalar terms, leaving any scattering process unmodified by the Brans-Dicke-type

extension of gravity.

A generalized proof for this was given in Ref. [82], where the authors introduce

the most generic multi-scalar action

S =
∫
d4x

√
−g

[
−1

2

N∑
i=1

αiφ
2
iR + 1

2

N∑
i=1

∂µφi∂
µφi −W (φ⃗) + LF{ψ, φ1}

]
, (3.1)

with αi being dimensionless constants that allow for non-minimal couplings between

the scalar fields, φi, and gravity. The potential W (φ⃗) contains the following possible

interactions between the scalar fields:

W (φ⃗) =
N∑
i=1

N∑
j=1

φ2
iWijφ

2
j , (3.2)

which are weighted by the dimensionless matrix Wij. Additionally, LF{ψ, φ1} en-

codes the fermionic sector of the action, such that

LF{ψ, φ1} = ψ̄iγµ∇µψ − yψ̄φ1ψ, (3.3)

where

∇µψ = ∂µψ − i

2Ωµψ (3.4)
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3.1. Introduction to dynamically broken scale symmetries

contains the spin connection. We have chosen, without loss of generality, φ1 to

give mass to the fermion after the would-be Higgs undergoes spontaneous symmetry

breaking.

We can easily see that, since all the operators in W are dimensionless, the

whole matter action is scale invariant. Therefore, from Noether’s theorem, there

should be a conserved current from this continuous Weyl symmetry of the theory.

A straightforward way of finding this conserved current is by deriving the equations

of motion of the theory. After varying the action with respect to the matter fields

and the metric, we find

□φi−αiφiR −Wφi
− yψ̄ψ = 0, (3.5a)

γµ∇µψ − yφ1ψ = 0, (3.5b)

−
N∑
i=1

αiφ
2
iR =

N∑
i=1

[(6αi − 1) ∂µφi∂µφi + 6αiφi□φi] + 4W + T µµ {ψ}, (3.5c)

where Wφi
= ∂W/∂φi, and

T µµ {ψ} = ψ̄γµ∇µψ − 4
(
ψ̄γµ∇µψ − yψ̄φ1ψ

)
(3.6)

is the trace of the energy-momentum tensor for the fermionic sector. Substituting

Eq. (3.5b) into Eq. (3.6), it simplifies into

T µµ {ψ} = yψ̄φ1ψ. (3.7)

Thus, substituting each of the field equations into the Einstein’s equation we get

N∑
i=1

[φiWφi
− φi□φi] =

N∑
i=1

[(6αi − 1) ∂µφi∂µφi + 6αiφi□φi] + 4W. (3.8)
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3. Fifth forces and dynamical scale symmetry breaking

Then, given that ∑N
i=1 φiWφi

= 4W , we finally get

N∑
i=1

[(6αi − 1) ∂µφi∂µφi + (6αi − 1)φi□φi] = 0, (3.9)

which can be easily rearranged into a conservation law of the form ∂µK
µ = 0, where

Kµ = ∂µK corresponds to the Noether’s current, with

K = 1
2

N∑
i=1

(1 − 6αi)φ2
i . (3.10)

Moreover, once we include the expansion of the Universe, the Hubble friction will

slow down the scalar fields, such that K ends up in a constant value K → K0,

constraining the fields to lie on the ellipse given by Eq. (3.10) (and so leading to a

vanishing Noether’s current). This leads to a classical scale symmetry breaking in

the theory, given that at least one of the scalar fields has obtained a non-vanishing

vev. Since the scale appears indirectly through the stabilization of the fields, we will

refer to this as dynamical scale breaking.1

From Goldstone’s theorem, when a continuous symmetry is broken, a massless

mode is generated in the theory. In this case, it will correspond to a massless scalar

field, σ, that will introduce the long-range interactions we referred to as fifth forces

in Chapter 1.1.1. Such long-range forces arising from the additional scalar fields in

scalar-tensor theories cannot, in principle, be avoided without screening mechanisms,

and they will be the main focus of this section.

However, as anticipated in Chapter 2, the classical scale symmetry from Eq. (3.1)

will make this massless mode decouple from the rest of the fields. To show this, we

1Although in the literature this mechanism of scale breaking is commonly known as spontaneous
scale symmetry breaking [153], we use the term ‘dynamical’ to differentiate it from the spontaneous
scale symmetry breaking à la Coleman-Weinberg through field self-interactions [151].
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3.1. Introduction to dynamically broken scale symmetries

can always perform the following generic field redefinitions

φi = e− σ
f φ̃i (3.11)

ψ = e− 3σ
2f ψ̃ (3.12)

gµν = e2 σ
f g̃µν (3.13)

which is nothing but going to the Einstein frame of this theory (with respect to the

σ field), as we did in Chapter 2.1. In this frame, φ̃i are constrained to lie on the

ellipse given by

K̄ = 1
2

N∑
i=1

(1 − 6αi) φ̂2
i = f 2 (3.14)

where f 2 is a constant. With this, after some algebra, the action transforms to

S =
∫
d4x

√
−g̃

[
−1

2

N∑
i

αiφ̃
2
i R̃ + 1

2

N∑
i

∂µφ̃i∂
µφ̃i (3.15)

+ 1
f 2 K̄∂µσ∂

µσ + 1
f
∂µσ∂

µK̄ −W (φ⃗) + LF{ψ̃, φ̃1}
]
. (3.16)

where the tilded quantities are built with the Einstein frame’s metric, g̃µν , and

vierbeins, ẽµa , and

LF{ψ̃, φ̃1} = ¯̃ψiγµ∇̃µψ̃ − y ¯̃ψφ̃1ψ̃ (3.17)

has stayed invariant through the re-scaling. Moreover, the massless mode couples

to the rest of the fields only through K̄-dependent terms. Thus, given that K̄ = f 2

is constant, the cross terms between σ and φ̃i will vanish on-shell, showing the

decoupling from the matter fields. We can see that, after the transformation, we are

still left with non-minimal couplings to the Ricci scalar. However, as they correspond

to massive degrees of freedom, their effect on any non-relativistic potentials will be

exponentially suppressed, producing negligible deviations from any test of gravity.

We can already see the positive aspects of such models: The dynamical breaking
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3. Fifth forces and dynamical scale symmetry breaking

of the scale symmetry leads to a suppression of the fifth forces while presenting

non-vanishing vevs for the scalar fields. Therefore, they will still provide a Yukawa

mass to the fermion.

One of the most well-studied of such models is the Higgs-dilaton [70–84], in

which the non-minimally coupled field is the would-be Higgs field. In this way, the

action is defined by

SHD =
∫
d4x

√
−g

[
−1

2
(
ξφφ

2 + ξΦΦ2
)
R + 1

2∂µΦ∂νΦ + 1
2∂µφ∂

νφ

− λ

4

(
Φ2 − α

λ
φ2
)2

− βφ4 + LF{ψ̃,Φ}
]
,

(3.18)

where the set of parameters {ξφ, ξΦ, λ, α, β} are constant and the fermionic sector,

LF{ψ̃,Φ}, has the same form as in Eq. (3.3) with ϕ1 → Φ. Notice that, since all

the terms in the potential are dimensionless, the same arguments described above

hold, leading to the suppression of additional long-range interactions.

3.1.1 Combined scale symmetry breakings

As stated before, dynamical scale breakings have been widely studied mainly through

the Higgs-Dilaton models, and extensive literature covers its cosmological and phe-

nomenological implications [70–84]. However, the mid-point between both kinds of

scale symmetry breaking (explicit and dynamical) has not yet been fully explored.

For that reason, in this chapter, we will consider a model in which the scale sym-

metry is broken both explicitly and dynamically.

Starting from the gravitational sector, we will now specialize to the Brans-Dicke

theory [54], whose Jordan-frame action is

S =
∫

d4x
√

−g
[
−φ

2R + ω(φ)
2φ gµν∂µφ∂νφ

]
+ Sm[gµν , {ψ}], (3.19)
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3.1. Introduction to dynamically broken scale symmetries

where we will take ω(φ) = ω to be a dimensionless constant. For the matter content,

a good choice is the model introduced in Ref. [138], which introduces a new scalar

field (Θ) into the system to allow for dynamical scale symmetry breaking. Written

in terms of the Jordan-frame metric gµν , the scalar sector extends to

SSB =
∫

d4x
√

−g
[1
2g

µν∂µΦ∂νΦ + 1
2g

µν∂µΘ∂νΘ + ψ̄eµaγ
a∂µψ − yψ̄Φψ

−U(Φ,Θ) + 1
2µ

2
θ

M̃2
Pl
φ

Θ2 − λθ
4! Θ4 − 3

2
µ4
θ

λθ

M̃4
Pl
φ2

]
, (3.20)

where

U(Φ,Θ) = λ

4!

(
Φ2 − β

λ
Θ2
)2

− 1
2µ

2
(

Φ2 − β

λ
Θ2
)

+ 3
2
µ4

λ
. (3.21)

Notice that this is not the most general potential allowed by the imposed symmetries,

as our aim is only to study the emergence of fifth forces in models where the scale

breaking takes place both dynamically and explicitly, as we will see below. In this

way, the matter sector still contains the would-be Higgs field Φ that gives mass to the

fermion ψ through a Yukawa interaction, plus the additional Θ field that has been

introduced so that we can move smoothly between two scenarios of scale breaking.

Furthermore, the specific choice of the potential is such between the Θ and φ fields

has been tuned so that these fields do not have a mass mixing in the Einstein frame

[see, e.g., Eq. (3.30) below], while also allowing us to establish a hierarchy between

the masses of the three physical modes (see Ref. [138]).

Independent of the non-minimally coupled field φ and its dynamics, the two

limiting cases for scale breaking are the following:

Pure explicit breaking (prototype SM Higgs sector) β → 0: In the limit

in which β → 0, the mixings between Φ and Θ vanish, decoupling Θ from the

matter Lagrangian. We are then left with the following potential in the Jordan
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3. Fifth forces and dynamical scale symmetry breaking

frame [Eq. (3.21)]:

U(Φ,Θ) = λ

4!Φ
4 − 1

2µ
2Φ2 + 3

2
µ4

λ
, (3.22)

which is just the prototype of the SM Higgs potential. As shown earlier, the term

quadratic in Φ provides an explicit source of scale breaking through the dimensionful

mass parameter µ. It is this term that plays the key role in allowing fifth forces to

couple to the fermion field ψ. Although the constant term also seems to break

the scale invariance, it is essential to cancel the vacuum energy density of the Higgs

potential when perturbing around its minima. For instance, the absence of this term

would change the background from a Minkowski to a de Sitter spacetime, leading

to effective mass terms for both the graviton and the non-minimally coupled field

when perturbing gravity.

Pure dynamical scale breaking (prototype Higgs-dilaton model) µ → 0:

In this limit, all the sources of explicit scale breaking vanish from U(Φ,Θ), leaving

a scale-invariant potential. We therefore do not expect the conformal field φ to

couple to this potential in the Einstein frame, leaving the fermionic sector free of

fifth forces. The potential is reduced to

U(Φ,Θ) = λ

4!

(
Φ2 − β

λ
Θ2
)2

, (3.23)

which is analogous to the Higgs-dilaton potential from Eq. (3.18). In those scenar-

ios, however, both Φ and Θ are non-minimally coupled to the Ricci scalar in the

Jordan frame (and the dilaton is the light degree of freedom with the potential to

mediate long-range forces), whereas we will take only the additional field φ to be

non-minimally coupled.

In this chapter, making use of the Møller scattering (e− + e− → e− + e−) for

simplicity, we will calculate the possible modifications to its Yukawa potential due
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3.2. Going to the Einstein frame

to fifth forces. For that, we will make use of and extend both methods introduced in

Chapter 2: First, we will calculate the Yukawa potential in the Einstein frame and

then replicate the calculation in the Jordan frame. In the process, we will focus on

how the fifth forces turn on and off depending on the scale-breaking limit we take.

3.2 Going to the Einstein frame

Let us now turn our attention to an explicit calculation of the Einstein frame de-

scription for this model. First, we need to express the matter action in terms of the

Einstein-frame metric g̃µν . To do so, we must perform the conformal transformation

defined previously in Eq. (2.10), which for the combined scale symmetry breaking

model from Eq. (3.19) implies

gµν →M̃2
Pl
φ
g̃µν , gµν → φ

M̃2
Pl
g̃µν , (3.24a)

eµa →M̃Pl√
φ
ẽµa , eaµ →

√
φ

M̃Pl
ẽaµ. (3.24b)

This transformation takes us to the following Einstein-frame description of the action

S =
∫

d4x
√

−g̃
[
−M̃2

Pl
2 R̃ + φ3/2

M̃3
Pl
ẽµaγ

aψ̄i∂µψ + 1
2
M̃3

Pl
φ3/2 ψ̄ẽ

µ
aγ

aψ

(
Ω̃µ − 3i

2
1
φ
∂µφ

)

+ M̃2
Pl(2ω + 3)

4φ2 gµν∂µφ∂νφ+ 1
2
φ

M̃2
Pl
g̃µν∂µΦ∂νΦ + 1

2
φ

M̃2
Pl
g̃µν∂µΘ∂νΘ+

−y φ
2

M̃4
Pl
ψ̄Φψ − φ2

M̃4
Pl
U(Φ,Θ) + 1

2
φ

M̃2
Pl
µ2
θΘ2 − λθ

4!
φ2

M̃4
Pl

Θ4 − 3
2
µ4
θ

λθ

]
, (3.25)

where we remind the reader that every tilded quantity is built with the Einstein-

frame metric, g̃µν , and vierbein, ẽµa . Following the same steps as in Chapter 2.1,

to leave the matter sector as close to being canonically normalized as possible, we

54



3. Fifth forces and dynamical scale symmetry breaking

redefine the fields according to their classical scaling dimensions, such that

ϕ̃ ≡
√
φ

M̃Pl
Φ, θ̃ ≡

√
φ

M̃Pl
Θ, ψ̃ ≡ φ3/4

M̃
3/2
Pl

ψ. (3.26)

Additionally, the φ field can be canonically normalized through

φ = M̃2
Pl exp

[
2 χ̃
M̃

]
. (3.27)

Herein, we have defined

M̃2 = 2(2ω + 3)M̃2
Pl. (3.28)

It then follows that the Einstein-frame matter sector is

L̃m =1
2 g̃

µν∂µϕ̃∂νϕ̃− ϕ̃

M̃
g̃µν∂µϕ̃∂νχ̃+ ϕ̃2

2M̃2
g̃µν∂µχ̃∂νχ̃

+1
2 g̃

µν∂µθ̃∂ν θ̃ − θ̃

M̃
g̃µν∂µθ̃∂νχ̃+ θ̃2

2M̃2
g̃µν∂µχ̃∂νχ̃

−Ũ(ϕ̃, θ̃, χ̃) + ¯̃ψi /̃∇ψ̃ − y ¯̃ψϕ̃ψ̃ − 1
2µ

2
θθ̃

2 + λθ
4! θ̃

4 + 3
2
µ4
θ

λθ
, (3.29)

where ∇̃ corresponds to the pure gravitational covariant derivative of the fermionic

field, containing the spin connection, and

Ũ(ϕ̃, θ̃, χ̃) = λ

4!

(
ϕ̃2 − β

λ
θ̃2
)2

− 1
2µ

2
(
ϕ̃2 − β

λ
θ̃2
)

exp
[
2 χ̃
M̃

]

+3
2
µ4

λ
exp

[
4 χ̃
M̃

]
. (3.30)

Thus, we can see that the redefinitions from Eq. (3.26) eliminate all the couplings of

χ̃ in the fermionic sector and in the pure Θ potential from the last line of Eq. (3.29).

However, the same does not apply to Ũ(ϕ̃, θ̃, χ̃), since it contains dimensionful pa-

rameters. Moreover, as explained earlier in Chapter 3.1, the only terms coupling to

χ̃ in the Einstein frame are the ones that break the scale symmetry explicitly.
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3.2. Going to the Einstein frame

After including the original kinetic energy term for χ̃ from Eq. (3.25), the non-

gravitational part of the Einstein-frame Lagrangian can be written up to first order

in M̃−1 as

L̃ =1
2 g̃

µν∂µχ̃∂νχ̃+ 1
2 g̃

µν∂µϕ̃∂νϕ̃− ϕ̃

M̃
g̃µν∂µϕ̃∂νχ̃

+1
2 g̃

µν∂µθ̃∂ν θ̃ − θ̃

M̃
g̃µν∂µθ̃∂νχ̃− Ũ(ϕ̃, θ̃, χ̃)

+ ¯̃ψi /̃∇ψ̃ − y ¯̃ψϕ̃ψ̃ − 1
2µ

2
θθ̃

2 + λθ
4! θ̃

4 + 3
2
µ4
θ

λθ
· · · , (3.31)

where

Ũ(ϕ̃, θ̃, χ̃) = λ

4!

(
ϕ̃2 − β

λ
θ̃2
)2

− 1
2µ

2
(
ϕ̃2 − β

λ
θ̃2
)(

1 + 2 χ̃
M̃

)

+3
2
µ4

λ

(
1 + 4 χ̃

M̃

)
. (3.32)

The fields acquire the vevs:

vϕ̃ = ±
(

6µ2 + βv2
θ̃

λ

)1/2

, vθ̃ = ±′
(

6µ2
θ

λθ

)1/2

, vχ = 0, (3.33)

where the ′ indicates that the choice of sign for the two non-vanishing vevs is inde-

pendent. Expanding the scalar fields around their vevs (ϕ̃ → vϕ̃ + ϕ̃, θ̃ → vθ̃ + θ̃

and χ̃ → vχ̃ + χ̃) will introduce both kinetic and mass mixings of ϕ̃ and θ̃ with χ̃.

However, as explained in Chapter 2.1, the mass mixing will provide the dominant

fifth force, given by the operator

L̃ ⊃ αMϕ̃χ̃ = −2µ2 vϕ̃
M̃
ϕ̃χ̃. (3.34)

Thus, as illustrated in Figure 3.1, when two fermions interact via their Yukawa

coupling and exchange a would-be Higgs boson (ϕ̃) in the t channel, there are two

contributions to the central potential: a short-range interaction due to the heavy
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3. Fifth forces and dynamical scale symmetry breaking

Figure 3.1: Diagrammatic representation of the infinite series of diagrams contributing
to the Møller scattering in the Einstein frame.

• Fermion-fermion-ϕ̃ interaction

= −iy

• Mass mixing

= iαM

• χ̃ field propagator

= i

k2

• ϕ̃ field propagator

= i

k2 −m2
ϕ̃

Figure 3.2: Feynman rules necessary for the Møller scattering in Figure 3.1.

mode (the Higgs boson) and a long-range interaction due to the light mode (the

light, additional scalar boson), corresponding to the fifth forces, see Ref. [138].

3.2.1 Møller scattering

We proceed by considering the scalar contributions to the Møller scattering (e−e− →

e−e−) for our fermion ψ. These arise from the series of diagrams shown in Fig. 3.1.

The external fermions couple only to the would-be Higgs field, represented by a

continuous line, which then oscillates into a χ̃ particle (dashed line) via the mass

mixing term from the effective Lagrangian [Eq. (3.34)]. The ellipsis represents the

infinite series of insertions of the mass mixing.
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3.2. Going to the Einstein frame

The resulting matrix element is given by

iM
(
e−e− → e−e−

)
⊃ ū (p1, s1) (−iy)u (p3, s3)

×

− i

t+m2
ϕ̃

 ∞∑
n=0

(iαM)2n

− i

t+m2
ϕ̃

n (− i

t

)n
× ū (p2, s2) (−iy)u (p4, s4) . (3.35)

Since we assume the scattering fermions to be distinguishable, we need only consider

the t-channel exchange, where t = −(p1 − p3)2 is the usual Mandelstam variable.

Also, u(p, s) and ū(p, s) are respectively the Dirac four-spinor and its Dirac conju-

gate, with spin projection s.

To extract the non-relativistic potential, we take t = Q2 (where Q is the ex-

change momentum), and the contribution to the Yukawa potential is

Ṽ (r) = −y2
∫ d3Q

(2π)3 e
iQ·x Q2

Q2
(
Q2 +m2

ϕ̃

)
− α2

M
≈ − y2

4π

1 − α2
M
m4
ϕ̃

 e−mhr

r
− y2

4π
α2

M
m4
ϕ̃

1
r
,

(3.36)

where mh is the mass of the would-be Higgs boson and the potential has been

expanded to leading order in α2
M. Plugging in αM, as extracted from Eq. (3.34),

we can distinguish two different contributions to the Yukawa potential: one strong

but short-ranged interaction, corresponding to the Higgs field, and one weak but

long-ranged contribution corresponding to the fifth forces. Isolating this fifth-force

contribution, we find

Ṽ5(r) = − 1
4πr

m2
e

M̃2
Pl2(2ω + 3)

4µ4

m4
ϕ̃

, (3.37)

where we have chosen the fermions to represent electrons with mass me. Notice

that, since the fifth-force mediator is massless, the potential has a similar form to

the usual Newtonian gravitational potential.
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3. Fifth forces and dynamical scale symmetry breaking

To study how the different mechanisms of scale breaking affect the modification

to the Yukawa potential [Eq. (3.37)], we need only recall that the mass of the ϕ̃ field

is given by

m2
ϕ̃ = 2µ2 +

βv2
θ̃

3 . (3.38)

From this, we can distinguish the two extreme cases:

Pure explicit scale breaking (SM toy model) β → 0: In this limit, the mass

of the ϕ̃ field reduces to

m2
ϕ̃ = 2µ2, (3.39)

agreeing with the numerator of the fraction in the potential (3.37). Hence, the

modification to the Yukawa potential becomes independent of the Higgs mass, and

we find

Ṽ5(r) = − 1
4πr

m2
e

M̃2
Pl2(2ω + 3)

. (3.40)

Such a contribution to the non-relativistic potential can lead to significant deviations

in the inferred gravitational force. As mentioned in Chapter 1, the most stringent

constraint at Solar System scales is given by the Cassini spacecraft [100], setting

a bound on ω ≫ 40, 000. Bounds at cosmological scales are less stringent2, such

as those based on Cosmic Microwave Background data from Planck [85], which are

consistent with ω > 692 at the 99% confidence level. Therefore, in the absence of

any screening mechanism, we can see that in the case of pure explicit scale breaking

it is necessary to fine tune the value of ω to achieve an agreement with experiments.

Pure dynamical scale breaking (Higgs-dilaton model) µ → 0: In this case,

the numerator of the modified Yukawa potential [Eq. (3.37)] tends to zero, whereas
2Even though Solar System scale tests are more constraining than cosmological ones, they are

more affected by higher-order terms, making it possible to avoid the bounds through screening
mechanisms.
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3.3. Staying in the Jordan frame

the denominator tends to

m2
ϕ̃ =

βv2
θ̃

3 . (3.41)

Hence, even though classically scale-invariant theories might break the scale sym-

metry dynamically, the fifth forces still do not couple to the fermionic sector. It is

important to remark that the vev of the would-be Higgs field ϕ̃ field [Eq. (3.33)]

does not vanish in the limit µ → 0, such that the mass-generation mechanism for

the elementary fermions is preserved (with me = yvϕ̃). More generally, we see that

the fifth-force coupling is proportional to the ratio µ/mϕ̃, such that we can suppress

fifth forces by combining explicit and dynamical scale-breaking mechanisms [138].

For this tree-level example, the transformation to the Einstein frame and the

subsequent calculation of the matrix elements were easily tractable. This may not

be the case, in general, however. In the next section, we will describe in detail

how we can proceed directly in the Jordan frame (or Jordan-like frames), without

performing the conformal transformation and subsequent field rescalings.

3.3 Staying in the Jordan frame

Having derived the general expression for the Lagrangian up to second order in the

metric fluctuations for the Brans-Dicke-type scalar-tensor theories in Chapter 2.2,

we now turn our attention to see how the fifth forces arise from the kinetic mixings

between the graviton and the non-minimally coupled field φ. We will show that the

results agree with those obtained previously in the Einstein frame.

We remind the reader that the Jordan-frame action corresponding to Eq. (3.19),
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3. Fifth forces and dynamical scale symmetry breaking

with a matter sector given by Eqs. (3.20) and (3.21), is

S =
∫

d4x
√

−g
[

− φ

2R + L′
gf + ω(φ)

2φ gµν∂µφ∂νφ+ 1
2g

µν∂µΦ∂νΦ

−1
2g

µν∂µΘ∂νΘ + 1
2µ

2
θ

φ

M̃Pl
Θ2 − λθ

4! Θ4 − 3
2
µ4
θ

λθ

φ2

M̃2
Pl

+ψ̄i /∇ψ − yψ̄Φψ − U(Φ,Θ)
]
, (3.42)

where U is given by

U(Φ,Θ) = λ

4!

(
Φ2 − β

λ
Θ2
)2

− 1
2µ

2
(

Φ2 − β

λ
Θ2
)

+ 3
2
µ4

λ
. (3.43)

We now proceed to linearize the Lagrangian, making use of the results from the

preceding chapter. Using the scalar-harmonic gauge condition from Eq. (2.32), we

thus find

L =φ4

(1
2∂ρhµν∂

ρhµν − 1
4∂µh∂

µh
)

+ 1
2

2ω + 1
2φ ∂µφ∂

µφ+ 1
2∂µΦ∂µΦ

−1
4∂µh∂

µφ− U(Φ,Θ) + 1
2∂µΘ∂µΘ + 1

2µ
2
θ

φ

M̃Pl
Θ2 − λθ

4! Θ4 − 3
2
µ4
θ

λθ

φ2

M̃2
Pl

+1
2h

µνTµν + ψ̄i/∂ψ − yψ̄Φψ + · · · , (3.44)

where the ellipsis indicates terms higher than second order in hµν . The φ field can

be canonically normalized via

φ = χ2

2(2ω + 1) . (3.45)

Therefore, we are now just left with the non-canonical graviton kinetic energy terms.

To solve this issue, we just need to linearize around the background solution for χ,

namely vχ. To do so, we assume the background value of χ to vary very slowly

compared to the interaction time. After some algebra, we obtain the following vevs
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3.3. Staying in the Jordan frame

for the scalar fields

v2
Φ = 6µ2 + βvΘ

2

λ
, v2

χ = λθM̃
′2

6µ2
θ

v2
Θ, (3.46)

where

M̃ ′2 = M̃2
Pl2(2ω + 1). (3.47)

We can see that the system is open because vΘ is indeterminate, which is an artefact

of the specific choice of the scale-invariant sector of the potential. However, as in

Chapter 3.1, the vacuum expectation values will end up taking an arbitrary constant

value due to the Hubble friction acting on the evolution of the fields. Expanding now

the scalar fields in Eq. (3.44) around their vevs (such as Φ → Φ + vΦ, Θ → Θ + vΘ

and χ → χ+ vχ), leads to

L =
v2
χ

8(2ω + 1)

[1
2∂ρhµν∂

ρhµν − 1
4∂µh∂

µh
]

+ 1
2∂µΘ∂µΘ + 1

2∂µΦ∂µΦ

+1
2∂µχ∂

µχ− vχ
4(2ω + 1)∂µh∂

µχ− V (Φ,Θ, χ)

+ 1
MPl

hµνTµν + ψ̄i
↔
/∂ψ − yvΦψ̄ψ − yψ̄Φψ + · · · . (3.48)

As expected, the fermion obtains a non-vanishing mass via the vev of the Φ field

in the Yukawa coupling. The potential terms are defined within V (Φ,Θ, χ) for

simplicity; considering just up to second-order in the interactions of the shifted

scalar fields, we obtain

V (Φ,Θ, χ) =m
2
Φ

2 Φ2 + m2
Θ

2 Θ2 +
m2
χ

2 χ2

−AmΦΦΘ −BmχΘχ,
(3.49)
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3. Fifth forces and dynamical scale symmetry breaking

where

m2
Φ = λv2

Φ
3 , m2

Θ = β2

2λv
2
Θ + µ2

θ

M̃ ′2
v2
χ, m2

χ = µ2
θ

M̃ ′2
v2

Θ, (3.50a)

A2 = β2

2λv
2
Θ, B2 = µ2

θ

M̃ ′2
v2
χ. (3.50b)

Thus, canonically normalizing the graviton now just means making the replacement

hµν → 2hµν/MPl, where

M2
Pl =

v2
χ

2(2ω + 1) , (3.51)

so that the Lagrangian takes the form

L =1
4∂µh∂

µh− 1
2∂ρhµν∂

ρhµν + 1
2∂µΘ∂µΘ + 1

2∂µΦ∂µΦ

+1
2∂µχ∂

µχ+ vχ
4(2ω + 1)∂µh∂

µχ− V (Φ,Θ, χ)

+ 1
MPl

hµνTµν + ψ̄i
↔
/∂ψ − yvΦψ̄ψ − yψ̄Φψ + · · · . (3.52)

Note that MPl is the effective gravitational coupling in the Jordan frame, while the

M̃Pl parameter appearing in the potential V (Φ,Θ, χ) in Eq. (3.49) is the one defined

in the Einstein frame. Even though they belong to different frames, the conformal

transformations appear to have forced them into the same Lagrangian. However, as

we will see, this is not the case as the M̃2
Pl dependence cancels out, leading to a final

result in terms of M2
Pl, as expected.

3.3.1 Diagonalizing the mass matrix

Although in the original matter sector we did not include explicit mass mixing

between the scalar fields, the expansion around the fields’ background led to the po-

tential in Eq. (3.49), where the three scalars not only present non-vanishing masses,

but also mass mixing terms. Although, a priori, this gives the impression that there
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3.3. Staying in the Jordan frame

are no long-range interactions in the system, we know that the dynamical break-

ing of the scale symmetry must have created a massless Goldstone mode that will

mediate the fifth forces (as seen in Chapter 3.1).

To isolate this massless mode, we will need to diagonalize the mass matrix of

the theory, which is given by

m2 =


m2

Φ −AmΦ 0

−AmΦ m2
Θ −Bmχ

0 −Bmχ m2
χ

 . (3.53)

After the diagonalization, we thus obtain a new set of fields (corresponding to the

eigenvectors) ϕ, θ and σ, whose squared mass eigenvalues are

m2
ϕ,θ =

m2
Φ +m2

Θ +m2
χ ±

√
(−m2

Φ − A2 +B2 +m2
χ)2 + 4A2B2

2 , m2
σ = 0,

(3.54)

wherein we see the anticipated massless mode σ. As discussed in Chapter 3.1, this

massless field corresponds to the Goldstone mode arising from the dynamical scale

symmetry breaking. Although it may seem counterintuitive that the generation of

the massless mode holds even when there is an explicit scale-breaking term in the

potential (i.e., when µ ̸= 0), this occurs because the χ dependent terms are always

scale-invariant in this model, generating dynamically its vev (even when β → 0, as

found in Refs. [1, 138]). Had the scale symmetries been explicitly broken in the χ

sector (e.g., via the inclusion of a cosmological constant), we would find that the

massless mode would not be present except in the limit µ → 0, where the scale

symmetry is recovered in the Φ sector.

To determine how the original fields depend on these three modes, we need to

find the eigenvectors of the mass matrix (3.53). After some algebra, we can show
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3. Fifth forces and dynamical scale symmetry breaking

that

ϕ = Nϕ


βvΘvΦ

3(m2
Φ−C+D)

1
µ2

θvΘvχ

M̃ ′2(m2
χ−C+D)

 θ = Nθ


βvΘvΦ

3(m2
Φ−C−D)

1
µ2

θvΘvχ

M̃ ′2(m2
χ−C−D)

 σ = Nσ


βvΘ
λvΦ

1
vχ

vΘ

 , (3.55)

where Nϕ, Nθ and Nσ are normalization factors, and

C =
m2

Φ +m2
Θ +m2

χ

2 , D =

√
(−m2

Φ − A2 +B2 +m2
χ)2 + 4A2B2

2 . (3.56)

For the fifth-force contribution to the Møller scattering, we need only expand

the χ and Φ fields in terms of the massless eigenmode, since they are the only ones

coupling to the fermion and graviton directly. The relevant expansions take the

forms

χ = a

Nϕ

ϕ+ b

Nθ

θ + c

Nσ

σ, Φ = a′

Nϕ

ϕ+ b′

Nθ

θ + c′

Nσ

σ, (3.57)

where {a, b, ...} are constant coefficients. Since we are interested in the massless

mode, we only need to determine c and c′, and, after some algebra, we have

c = θ3 − ϕ3

(θ1 − ϕ1)(σ3 − ϕ3) + (σ1 − ϕ1)(ϕ3 − θ3)
, (3.58a)

c′ = − θ1 − ϕ1

(θ1 − ϕ1)(σ3 − ϕ3) + (σ1 − ϕ1)(ϕ3 − θ3)
, (3.58b)

where the subscripts refer to each component of the eigenvectors defined in Eq. (3.55),

without the corresponding normalizing factor N{ϕ,θ,σ}. We are now in a position to

derive an expression for the effective Lagrangian in terms of the massless mode and

subsequently calculate its contribution to the Møller scattering.
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3.3. Staying in the Jordan frame

3.3.2 Møller scattering

After diagonalizing the mass terms in the Lagrangian, we have found all the different

ways that the long-range fifth forces can couple to the matter fields. From the

linearization of scalar-tensor gravity, the fifth forces arise through the kinetic mixing

between the graviton and the σ field. In addition, after diagonalizing the mass terms,

a new coupling between the massless mode and the fermion field appears as a result

of their Yukawa interaction with the Φ field.

The terms in the Lagrangian relevant to the fifth force are as follows:

LJF =1
2∂ρhµν∂

ρhµν − 1
4∂µh∂

µh+ 1
2∂µσ∂

µσ

− cN−1
σ√

2(2ω + 1)
∂µh∂

µσ − yc′N−1
σ ψ̄σψ + 1

MPl
hµνTµν + . . . , (3.59)

which will introduce long-range fifth forces to the Møller scattering through four

distinct Feynman diagrams shown in Fig. 3.3. It is possible to calculate the matrix

element for this process directly by calculating the Feynman rules for this Lagrangian

and adding up the infinite series created by each diagram. However, it is more

convenient to diagonalize the kinetic mixing between the scalar field σ and the trace

of the graviton, h, such that the new dynamics are isolated from the gravitational

interaction. In this chapter, we will take the latter approach for efficiency, although

a full evaluation of the diagrams in Figure 3.3 can be found in Appendix C.

In Chapter 2.2, we already performed a diagonalization of a kinetic mixing with

gravity, so we won’t go through the details again this time. However, we remind the

reader that a detailed derivation of the necessary transformations can be found in
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3. Fifth forces and dynamical scale symmetry breaking

Figure 3.3: The diagrams that contribute to the Møller scattering in the Jordan frame.

Appendix B. For the specific Lagrangian in Eq. (3.59), we obtain

hµν →hµν + cN−1
σ√

2(2ω + 1 + 2cN−1
σ )

σηµν , (3.60a)

χ → −

√
2(2ω + 1)√

2(2ω + 1 + 2cN−1
σ )

σ. (3.60b)

Recalling that MPl = vχ/
√

2(2ω + 1), we obtain the following diagonalized La-

grangian

LJF =1
2∂ρhµν∂

ρhµν − 1
4∂µh∂

µh+ 1
2∂µσ∂

µσ

+ yvχc
′N−1

σ

MPl

√
2(2ω + 1 + 2cN−1

σ )
ψ̄σψ

+ 1
MPl

cN−1
σ√

2(2ω + 1 + 2cN−1
σ )

σT µµ + . . . , (3.61)

where once again we have just focused on the relevant terms for the long-range fifth

forces. Therefore, to compute the matrix element for the Møller scattering, we just

need to compute the Feynman diagram from Figure 3.4. Considering the Feynman

rules from Figure 3.5, we obtain
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3.3. Staying in the Jordan frame

Figure 3.4: Diagram for the fifth force modification to the Møller scattering in the Jordan
frame after diagonalizing the kinetic mixing between the additional scalar field and the
graviton.

• Fermion-fermion-σ interaction

= i
(yc′vχ + cτµµ )

cMPl

√
2(2ω + 3)

; where τµµ = 1
2
(
8me − 3(/q + /p)

)

• σ field propagator: = i

k2

Figure 3.5: Feynman rules for the diagonalized Lagrangian [Eq. (3.61)], where /p = pµγ
µ,

and γµ are the gamma matrices. To a good approximation, we can take cN−1
σ ≈ 1, since

M̃ ≫ 1.
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iM = ū(p1, s1) (iαK)u(p3, s3)
(

− i

t

)
ū(p2, s2) (iαK)u(p4, s4), (3.62)

where, as before, t = −(p1 − p3)2, u(p, s) and ū(p, s) are respectively the Dirac

four-spinor and its Dirac conjugate, with spin projection s. Note that, for clarity,

we have isolated each vertex and propagator with parentheses. For convenience, we

have also defined the parameter

αK =
(yc′vχ + cτµµ )

cMPl

√
2(2ω + 3)

. (3.63)

Working in the non-relativistic limit and choosing the fermions to represent electrons

with mass me, such that pµ ∼ qµ ≈ (me, 0⃗), the spinors satisfy

ū(p, s)u(q, s′) = 2meδss′

ū(p, s)γµu(q, s′) = 2meδµ0δss′ ,

(3.64)

in which case, using the expression for τµµ extracted from Fig. 3.5, we have

ū(p, s)τµµu(q, s′) = 2m2
eδss′ . (3.65)

Inserting this result into Eq. (3.63), we obtain

ū(p, s)αKu(q, s′) = 2m2
e (γ + 1)

MPl

√
2(2ω + 3)

δss′ , (3.66)

where we have defined γ = (vχc′)/(vΦc) and used m2
e = yvΦ. The matrix element

then reduces to

M = 4m4
e (γ + 1)2

2M2
Plt(2ω + 3)δs1s3δs2s4. (3.67)

As for the Einstein frame, to extract the non-relativistic potential, we take

t = Q2 (where Q is the exchange momentum), and the contribution to the Yukawa
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potential is

V5(r) = − 1
M2

Pl

m2
e (γ + 1)2

2(2ω + 3)

∫ d3Q
(2π)3 e

iQ·x 1
Q2 = − 1

4πr
m2
e (γ + 1)2

M2
Pl2(2ω + 3) . (3.68)

After some algebra, we can show that

γ = c′vχ
cvΦ

= −βv2
Θ

λv2
Φ
, (3.69)

and, using the fact that v2
Θ = (λv2

Φ −6µ2)/β, we obtain the following final expression

V5(r) = − 1
4πr

m2
e

M2
Pl2(2ω + 3)

4µ4

m4
Φ
, (3.70)

where we recall that

m2
Φ = 2µ2 + βv2

Θ
3 . (3.71)

This is in perfect agreement with the result in the Einstein frame3 [Eq. (3.37)].

Notice therefore that we also find that the fifth force vanishes in the absence of

explicit scale breaking (µ → 0), as we did in the Einstein frame.

3.4 Going beyond toy models: Should we get some

help?

So far, we have studied the fifth forces that can arise in scalar-tensor theories of

gravity by considering the tree-level matrix elements working both in the Einstein

and the Jordan frame. For this, using field-theory techniques, we calculated the
3Since conformal transformations modify the rulers used to measure distances, we must compare

dimensionless quantities, which are unaffected by coordinate transformations. This could, e.g., be
the ratio of the fifth-force potential to the standard Newtonian potential. This is to say that the
expressions for the potentials should match but with M̃Pl for the Einstein frame and MPl for the
Jordan frame.
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3. Fifth forces and dynamical scale symmetry breaking

Beyond Standard Model description of Brans-Dicke theories of gravity.

Depending on the frame of choice, we find that the new dynamics due to the

modification of gravity have a different origin. In the Einstein frame, they couple to

all scale-invariant quantities, meaning that for the Standard Model, they will leak

through the Higgs field. Similar results can also be obtained working directly in

the Jordan frame, where the trace of the graviton mixes with the non-minimally

coupled scalar field. This implies that the fifth forces will exclusively depend on

the trace of the energy-momentum tensor, which vanishes for scale-invariant terms.

Moreover, we also studied this relation between scale breaking and the fifth force

strength by considering a more complicated scale-breaking mechanism in which the

scale invariance is broken both explicitly and dynamically.

Throughout this calculation, we have seen that working in the Jordan frame

requires us to linearize the gravitational sector and to diagonalize the fields, while

in the Einstein frame, we had to perform the Weyl transformation and various

rescalings of the matter fields, losing the simplicity of the original action in the

process. For the specific models considered in this thesis, the resulting fifth forces

were always weaker than the gravitational interaction. However, this might not be

the case for more generic scalar-tensor theories, for which calculating the equivalent

BSM description will be considerably more difficult.

Additionally, we have consistently ignored all modifications to the dynamics of

the matter sector that did not categorize into fifth forces (i.e., any coupling to kinetic

terms or second-order interactions). Considering all these non-trivial operators for

the Standard Model would be an impossible task to do by hand on a model-by-model

basis. Thus, whichever approach we take, the overall message of this section is not

a discussion on which frame is best for calculations, as it is a matter of preference,

but the fact that deriving Feynman rules for scalar-tensor theories is a tedious and

time-consuming task, even for the simplest models.
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This begs for a tool that helps us automate this process so that it can be ap-

plied beyond toy models. In the rest of this thesis, we will introduce FeynMG, a

Mathematica package that efficiently helps the user to perform the necessary ma-

nipulations to express any scalar-tensor theories as their equivalent BSM theory,

tracking all the new interactions appearing in a given matter sector.
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Chapter 4

FeynMG: Using symbolic algebra to

study scalar-tensor theories

Using computational assistance to study the implications of modified gravity is a

common practice due to the complex nature of these theories. The most common line

of programming is to numerically solve Einstein’s equations, which has been used to

simulate phenomena such as screening effects on cosmic voids [114], modifications

to black hole dynamics [154], gravitational waves [155] or galaxy clusters [156, 157],

among others. However, since we aim to automate the manipulation and interpre-

tation of a Lagrangian, it will be best to use functional languages.

In this context, Mathematica stands out as the best programming language, in

which fields can be represented by functions and the inbuilt replacement rules allow

us to do symbolic algebra. There are already packages built to deal with the complex

tensor algebra that arises in General Relativity. xAct [158] is perhaps the most well-

known package, having already been followed by multiple compatible packages that

allow the study of gravity in different cosmological scenarios. In particular, the

package xIST/COPPER [159] extends xAct for general scalar-tensor theories, and it

was used in Ref. [160] to calculate the effect of modified gravity on cosmological
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perturbations.

Additionally, the utilization of Mathematica for understanding Lagrangians and

performing phenomenological analysis is not an original idea, and this is precisely

the main purpose of the renowned package FeynRules [143], whose original aim

was to derive the Feynman rules from any given Lagrangian (allowing a consis-

tent study of the Standard Model and BSM theories). However, such was the

impact of this package that it led to the creation of high-energy physics analysis

software that takes the output from FeynRules to do phenomenology associated

with any given Lagrangian. Considering also previously existing packages that

are also compatible with FeynRules, we highlight CalcHep/CompHEP [161, 162],

FeynArts [163], FeynCalc [164], FormCalc [165], MadGraph [166, 167], Sherpa [168],

Whizard/Omega [169] and ASperge [170].

Therefore, using and expanding the functionality provided by FeynRules, we

present FeynMG1 [2], a Mathematica package that helps the user to derive the

BSM description from any scalar-tensor theory, allowing their definition within

FeynRules. This, in combination with the just-mentioned software analysis pack-

ages, makes it possible to study the particle phenomenology arising from these kinds

of modifications of gravity. In this sense, FeynMG extends FeynRules as xIST/COPPER

extends xAct.

This chapter is structured as follows: In Section 4.1, we will introduce the

current state of the art for using symbolic algebra to do field theory, and highlight

what are the main problems we have to consider when building FeynMG. Then, we

will focus on building up our intuition on FeynMG in Section 4.2. For this, we will

demonstrate with a brief set of examples some of the basic functions introduced by

FeynMG. Finally, in Section 4.3, we will present the more sophisticated routines by

replicating the calculations shown in Chapters 2 and 3, where we will also show the
1The full available package can be found in here.
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compatibility with other software analysis packages.

4.1 State of the art

FeynRules’ well-deserved success can be attributed to the fact that using Mathema-

tica to properly handle the different fields and parameters, while keeping track of

the different algebras is a challenging task. For this, FeynRules uses as an input

what is known as a “model file", which is a ".fr" document that contains all the

information about the defined gauge groups, parameters, fields (or classes, as they

call it) and Lagrangians. For an extensive description on how to build these files,

see Ref. [143].

All of this together, allows FeynRules to understand the Lagrangian as our sci-

entific convention dictates, but with an efficiency that only a computer can achieve.

In return, for FeynRules to correctly evaluate a given Lagrangian, it needs the

following two conditions to be satisfied:

1. The Lagrangian must be in a flat spacetime background, and

2. All fields must be canonically normalized, and both kinetic and mass matrices

must be diagonal. 2

It is important to point out that FeynRules will not crash in the event of a

violation of either of these two conditions. Instead, when generating the Feynman

rules or producing the output for other software analysis packages, FeynRules will

only consider terms of higher order than quadratic and assume that all fields are

canonically normalized. Thus, it ignores any information about mass and kinetic
2There is an exception with mass mixings, in which FeynRules evaluates them correctly as long

as they are properly specified in the model file. However, this is not usually the case for our type
of calculations.
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mixing matrices, which may lead to incorrect evaluation of any phenomena. There-

fore, it is necessary to ensure the satisfaction of both conditions to obtain accurate

results.

In this way, we encounter the main problem when trying to extend FeynRules to

scalar-tensor theories, as these theories are classically formulated within the frame-

work of General Relativity, making it inconsistent to take the flat spacetime limit

right away in the classical action. However, here is where the benefits of the BSM

description become apparent. By using this approach, the modified Lagrangian sat-

isfies both conditions, allowing us to use the functionality of FeynRules to study

the phenomenological implications of scalar-tensor theories.

The challenge, however, lies in extracting the BSM theory from the modified the-

ory of gravity, while accurately accounting for the various new couplings appearing

in the matter sector. As seen previously, dealing with this requires linearization of

the extended gravitational sector, transformations of the metric, expansion around

non-trivial vacuum configurations, the diagonalization of kinetic and mass mixings,

and the truncation of infinite series of operators [1, 138].

Doing this is the aim of FeynMG [2], which provides the functionality to imple-

ment the minimal gravitational couplings to the Lagrangian and append any desired

extended gravitational sector. Then, FeynMG linearizes gravity and performs the nec-

essary redefinitions to the fields such that the BSM description is obtained and thus

both mentioned conditions are satisfied. Once this is achieved, the generated model

can be processed using the existing FeynRules package and its interfaces.

In what follows, we will provide a number of examples, some simple and some

advanced, to show how to use FeynMG and in what situations each function must

be used. Although we will be working with specific models, the functions presented

apply to any type of Lagrangian, making them generic to any scalar-tensor theory
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of choice. Moreover, these examples will allow us to check the validity of the code

against our analytical understanding, as we will point out throughout the rest of

this Chapter.

4.2 The basics of FeynMG

FeynMG has dependencies on FeynRules, so both packages need to be loaded into

Mathematica to make use of FeynMG. This can be done by running

In[1]:= << FeynRules`;

<< FeynMG`;

within the appropriate working directory (set via SetDirectory[]). The next step

is then to load a model file that is compatible with FeynRules using the FeynRules

function LoadModel[].

We aim to make the code as easy to use as possible without losing the generality

in the model files and desired gravitational actions. For that, FeynMG provides a wide

functionality that will help the user to get the classical Lagrangian to the point in

which it can be consistently understood and used by FeynRules. In this section, we

will present some of the basic functions, so that we gradually build up intuition for

FeynMG before diving into more sophisticated routines with generic examples. For

clarity, each family of functions will be presented in a separate subsection.

4.2.1 InsertCurv: Inserting minimal couplings to gravity

Following the steps from Chapter 2, the first thing to do is to ensure that all the

minimal couplings to gravity in the matter sector are properly incorporated. In

FeynMG, this can be easily achieved by manually introducing the metric or vierbeins
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using the functions gUp, gDown, vierUp and vierDown, in which the suffixes "Up"

and "Down" refer to the position (upper- or lower-indices) of the Lorentzian indices

in the curvature objects. Similarly, it is possible to add gravitational covariant

derivatives by using CovDev.

Due to the extensive FeynRules usage, many users may already have created

model files that contain a high number of terms in them, making it a tedious task to

manually add every gravitational coupling where necessary. To address this, FeynMG

introduces a function called InsertCurv[], allowing to use an action defined in flat

spacetime as an input, and so reuse a FeynRules model file without modifying it.

For this, InsertCurv inserts a metric gµν or vierbein eµa, as appropriate, at every

pair of contracted indices and promotes partial derivatives to covariant derivatives.

As an example, we will consider the following subset of terms from a flat-spacetime

Lagrangian:

I1 = 1
2∂µϕ∂

µϕ− 1
4∂

µAµ∂
νAν − eAµγ

µψ̄ψ, (4.1)

where ϕ, Aµ and ψ are a generic set of scalar, U(1) gauge and fermionic fields,

respectively. Commonly, we would expand it into

I1 = 1
2g

µν∂µϕ∂νϕ− 1
4g

µσgνρ∂σAµ∂ρAν − eAµγ
aeµaψ̄ψ, (4.2)

where we have not specified the Jacobian prefactor, √
−g, because the standard input

in FeynMG’s functions is the Lagrangian density. However, unless explicitly specified

otherwise, this term will be automatically taken into account when applying any

function to a given Lagrangian. Using FeynMG, this operation is satisfied via

In[2]:= InsertCurv[I1]

Out[2]=
1
2
∂a2[phi]∂mu[phi]gUp[a2,mu] -

1
4

DGrav
nu[Aa3]DGrav

a4[Amu]

gUp[a3,mu] gUp[a4,nu] - e Amu
_

psii1,i2.psij1,i2γv1
i1,j1 VUp[mu,v1]
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agreeing exactly with Eq. (4.2). Looking closely at the last term, corresponding

to the usual electromagnetic interaction, we find multiple indices associated to the

fermionic field. These indices correspond to the spin and generation of the fermionic

fields. To consistently track these distinct indices, FeynRules allows us to specify

them using the function Index[X,Y], where Y represents the index and X denotes the

type (either Spin, Generation or Lorentz, in this context). Thus, it is worth noting

that InsertCurv only considers and expands Lorentzian indices, those written as

Index[Lorentz,Y].

Furthermore, notice that the covariant derivative only operates on the gauge

field and has not been expanded in terms of the metric. This deliberate choice is for

later convenience, allowing the user to choose the modified covariant derivative from

Eq. (2.29), which can only be constructed once the gravitational sector is appended.

Similarly, had we considered a fermionic kinetic energy term in our previous example,

InsertCurv would conveniently insert the spin connection as follows:

In[3]:= InsertCurv[barpsi.del[psi,Index[Lorentz,mu]]

Out[3]=
_

psii1,i2.∂mu[psij1,i2] γi1,j1
v2 VUp[mu,v2] + .....

+
1
8

i ∂mu[VUp[d1,c1]]
_

psii1,i2.psij1,i2 VDown[c2,c1]

VUp[mu,v3] γc2.γd1.γv3
i1,j1

where the ellipsis contains the rest of the terms inside the spin connection. Readers

might wonder why we opted not to keep the spin connection as a generic term,

similar to the covariant derivative of the gauge field. In this case, the kinetic energy

for the fermion is scale invariant, meaning that there is no need for a modified spin

connection since any new dynamics would not couple to this sector. However, it is

still possible to use a different choice for the spin connection by manually making

the necessary replacement.
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4.2.2 AddParameter/AddScalar: Creating a gravitational sec-

tor

After incorporating all the necessary minimal curvature dependencies into the La-

grangian, the next step is to append a gravitational action, wherein, e.g., the Ricci

scalar can be specified using RScalar (see Appendix D.1 for the list of defined

curvature objects).

Given the available set of curvature objects, it now becomes possible to define

any kind of scalar-tensor theory by including non-minimal couplings to any scalar

present in the model file. However, as is the case for FeynRules, it is necessary

to identify any set of new fields and parameters in the model file before loading it.

In order to stick to the principle of reusing old model files, FeynMG provides two

additional functions, AddScalar[] and AddParameter[]. These functions allow

the user to properly define new scalar fields and parameters, respectively, once the

package is running, providing complete freedom when creating the gravitational

sector.

As an example, let’s consider that the user wants to define a new massless scalar

field, S1, with a vanishing decay width, and a new parameter cx, with a value

of 0.5 eV and an InteractionOrder of {MG,2} (this will be important later for

compatibility with MadGraph [166]).3 The user can do this by using

In[4]:= AddScalar[S1];

We can verify that these functions are properly defined within FeynRules by

checking if they appear in the loaded list of fields and parameters. This is done as

follows

In[5]:= M$Parametters[[-1]]
3See Appendix D.8 for the available options on these functions.
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Out[5]= {cx=={ParameterType→Internal, Value→0.5,

InteractionOrder→{MG,2}}}

{S[N]=={ClassName→S1,SelfConjugate→True,Mass→{MS1,0},

Width→{WS1,0},

PropagatorLabel→S1,PropagatorType→D,PropagatorArrow→None,

ParticleName→S1,FullName→S1}}

where the N in S[N] refers to the total number of scalar fields in the theory. Once the

variables have been properly defined, they can be treated consistently by FeynRules

and FeynMG. One way to see this is using the following functions:

In[6]:= numQ[cx]

Out[6]= True

meaning that FeynRules ensures that cx is number-like (meaning that its derivative

vanishes), and

In[7]:= {FieldQ[S1],ScalarFieldQ[S1],FermionQ[S1]}

Out[7]= {True,True,FermionQ[S1]}

which shows that it will be treated as a scalar field, and not like a fermionic field.

This is crucial since certain routines should only apply to the scalar fields (such as

vev calculations and expansions).

4.2.3 ToEinsteinFrame/LinearizeGravity: Going to the Ein-

stein frame or staying in the Jordan frame

The most common way to deal with the particular case of Brans-Dicke gravity

is to perform a Weyl transformation (see Eq. (1.17)) such that the gravitational
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sector is of Einstein-Hilbert form and the matter action is instead dressed with

additional scalar interactions. This is implemented in FeynMG by the function

ToEinsteinFrame, for which, as an example, we will demonstrate its action on

the following simple Lagrangian:

I2 = −χ2

2 R + w

2 g
µν∂µχ∂νχ− 1

4g
µσgνρ∇σAµ∇ρAν , (4.3)

where we have introduced a Brans-Dicke type theory with a non-minimally coupled

scalar field, χ, and a Weyl invariant gauge fixing term for a U(1) gauge field, Aµ.

The physical consistency of this Lagrangian is not important in this example, as our

focus lies on the effect of the conformal transformation on I2. As already covered

in Chapter 2, this Lagrangian in the Einstein frame is transformed into

Ĩ2 = −M̃2
Pl

2 R̃ + (2w + 3)M̃2
Pl

4χ2 g̃µν∂µχ∂νχ− 1
4 g̃

µσg̃νρ∇̃σAµ∇̃ρAν , (4.4)

where once again every tilded quantity is constructed with the Einstein frame metric,

g̃µν . After all fields and parameters are properly defined in the model file, we may

replicate this operation using FeynMG by running

In[8]:=
~
I2=ToEinsteinFrame[I2]

Out[8]= -
1
2

M2
plRSc +

M2
pl w ∂mu[chi]∂nu[chi] gUp[mu,nu]

2chi2

+
3M2

pl ∂mu[chi]∂nu[chi] gUp[mu,nu]
4chi2

-
1
4

DGrav
a1[Amu]DGrav

a2[Anu]gUp[a1,mu]gUp[a2,nu]

where we can see that FeynMG has identified the non-minimal coupling and rescaled

the whole action by applying the corresponding set of transformation rules on every

gravitational object present in the Lagrangian. In the process, it has also introduced

the Einstein frame’s Planck mass Mpl, which is automatically added and treated

as a constant parameter (i.e., FeynMG has directly executed AddParameter[Mpl]).
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Notice that we have not included the √
−g factor in the Lagrangian; this is because,

for simplicity, FeynMG always assumes this term to be present, although it could

be omitted using the option {Jacobian->0ff}. At this point, all gravitational

contributions to the Lagrangian can be ignored by running

In[9]:= GravityOff[I2]

Out[9]=
M2

pl w ∂mu[chi]∂mu[chi]
2chi2 +

3M2
pl ∂mu[chi]∂mu[chi]

4chi2

-
1
4
∂mu[Amu]∂nu[Anu]

which imposes the set of rules {hµν → 0, hµν → 0}, so that the modifications can be

directly studied as a BSM theory.

More general scalar-tensor theories may not have an Einstein frame, forcing us

to stay in the Jordan frame and proceed by linearizing gravity. This is implemented

by the function LinearizeGravity, where the gravitational sector is expanded up

to second order, generating the kinetic energy for the graviton, and the matter sector

gets expanded up to linear order in the interactions with the metric perturbation

hµν . Since providing a brief and simple example for this routine is not feasible,

we will dedicate Chapter 4.3 to explain in detail this specific process of linearising

gravity and canonically normalizing the gravitational sector.

4.2.4 CanonScalar/MassDiagMG/KineticDiagMG: Canonicalizing

the scalar sector

So far, the mentioned functions address the first of the FeynRules conditions (stated

on Page 75), allowing for the creation of a scalar-tensor theory Lagrangian and the

expansion around a flat spacetime background. However, the second condition is yet

to be satisfied by these kinds of models, as most fields still need to be canonically

normalized. In this section, we will show how to achieve canonical normalization for
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scalar fields using FeynMG, leaving the case for the graviton for Chapter 4.3.

Independent of our choice of frame, we encounter that the non-minimally cou-

pled field becomes non-canonical due to either the conformal transformation to the

Einstein frame or by the linearization of gravity in the Jordan frame. For scalar

fields, the canonical normalization is implemented by the function CanonScalar,

which will find and normalize the lowest-order derivative term of every field. In the

case where the lowest order is too complicated, one can use the in-built Mathematica

function Series to perform a series expansion up to the required order term. As an

example, let’s consider the following Lagrangian in flat space

I3 = 3
χ
∂µχ∂

µχ+ 3
ϕ
∂µϕ∂

µϕ+ ϕ2 + χϕ. (4.5)

At first glance, it might appear that this Lagrangian presents a mass mixing between

the scalar fields. However, for this to be true, we first need to canonically normalize

the scalar fields. This is achieved by running

In[10]:= CanonScalar[I3]

Out[10]=
chi2 phi2

576
+

phi4

576
+

1
2
∂mu[chi]2 +

1
2
∂mu[phi]2

where it is now apparent that there is no mass or kinetic mixing between the scalar

fields. However, if there were any mixing, MassDiagMG and KineticDiagMG can

be used to diagonalize the scalar field masses and kinetic energies, respectively.

Consider the following Lagrangian that includes an explicit kinetic mixing

I4 = 1
2∂µχ∂

µχ+ 1
2∂µϕ∂

µϕ+ 1
2∂µχ∂

µϕ− 3ϕ2 − 1
2χ

2 (4.6)

FeynMG will diagonalize the kinetix matrix via

In[11]:= I5=KineticDiagMG[I4]
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Out[11]= -
7 chi2

6
-

5 chi phi√
3

-
7 phi2

2
+

1
2
∂mu[chi]2 +

1
2
∂mu[phi]2

Now, we can observe that the kinetic diagonalization has introduced a mass

mixing due to the transformation we just applied, which also affects the mass matrix.

This can be solved by running the following function

In[12]:= MassDiagMG[I5]

Out[12]= -
7 chi2

3
-

√
31 chi2

3
-

7 phi2

3
+

√
31 phi2

3
+

1
2
∂mu[chi]2 +

1
2
∂mu[phi]2

Note that while the transformations to the kinetic matrix affected the diagonal-

ized mass matrix of the theory, the opposite is not true, since a diagonalized and

canonical kinetic matrix is proportional to the identity matrix.

FeynMG uses a similar procedure for KineticDiagMG and MassDiagMG. First, it

isolates the quadratic couplings in the Lagrangian and extracts the kinetic/mass

matrix for the theory. Then, it calculates the eigenvectors of the corresponding

matrix and applies the subsequent rules on the existing fields so that the resulting

kinetic and mass matrices in the Lagrangian are diagonal. Thus, using this set of

functions the user can manipulate the scalar sector to leave it canonically normalized

and diagonalized, such that it can be consistently evaluated by FeynRules functions.

In cases where the expressions are too long and for which it might be challenging to

determine whether the scalar fields are canonically normalized, FeynMG introduces

the following checking functions: CheckCanonScalar, CheckKineticMatrix and

CheckMassMatrix.4

4.2.5 IndexSimplify: Introducing Einstein’s index notation

When dealing with tensor algebra, we are used to working with Einstein’s index no-

tation, for which the following identity holds: AµAµ = AρA
ρ. However, Mathematica

4See Appendix D.6 for a brief description on these functions.
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will treat both terms AµAµ and AρA
ρ as distinct, since their indices are not repre-

sented by the same variable. A simple example for that may be that

I6 = AσA
σ∂µA

ν∂νA
µ − AρA

ρ∂αA
β∂βA

α, (4.7)

trivially cancels due to the fact that repeated indices get summed over. However,

Mathematica will just output

In[13]:= I6

Out[13]= AσAσ∂µAν∂νAµ-AρAρ∂αAβ∂βAα

This problem appears when linearizing gravity, as it leads to an overly complicated

and long expression filled with repeated terms. The good news, however, is that

these expressions will simplify when performing any phenomenological calculation

since the software automatically performs the explicit summation over repeated

indices. Nevertheless, reducing the length of the expressions can still be important

for the simplicity and efficiency of the output.

To address this issue, FeynMG introduces the function IndexSimplify, which

tackles the problem by replacing indices term by term from a given set of indices.

By applying this function on I3, we obtain

In[14]:= IndexSimplify[I6]

Out[14]= 0

To understand what exactly occurs when using IndexSimplify, let’s consider

the scenario where we have two indexed terms that are not equivalent, such as

I7 = AσA
σ∂µA

ν∂νA
µ + ∂ρχ∂

ρχ. (4.8)

86



4. FeynMG: Using symbolic algebra to study scalar-tensor theories

Then, IndexSimplify replaces every Lorentz-index in all the terms using the same

set of unique variables, such that

In[15]:= IndexSimplify[I7]

Out[15]= AMG1AMG1∂MG2AMG3∂MG3AMG2+∂MG1chi∂MG1chi

We can see that if both terms were equivalent, they would get the same set of

indices and thus combine. Additionally, we can also choose which set of indices

IndexSimplify uses as a substitution. This can be done by specifying

In[16]:= IndexSimplify[I7, {a,b}]

Out[16]= AaAa∂bAMG1∂MG1Ab+∂achi∂achi

where we can see that once the provided indices run out, FeynMG automatically uses

unique variables (MG1 in this case). IndexSimplify uses Mathematica’s automatic

alphabetical ordering of products of functions, so that similar terms are always

ordered the same. However, even in the case where a subset of terms in a Lagrangian

don’t add up perfectly or cancel, this function would still have improved the efficiency

of the code by simplifying the expression. Furthermore, as mentioned above, once

any Lagrangian is used to perform a phenomenological calculation, the software

automatically performs the summation over repeated indices, leading to an explicit

cancellation of the repeated terms.

In the next section, we will see how this function is crucial for simplifying the

linearized gravitational action, recovering the usual Fierz-Pauli terms and noticeably

optimizing the time consumption of any further operation on the Lagrangian.

4.2.6 GiveMpl/InsertMpl: Finding the strength of gravity

In scalar-tensor theories, it is important to track the effective Planck mass of the

theory due to the possible constraints that it imposes on a given model. For this,
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FeynMG presents GiveMpl, a function that automatically infers the value of this

parameter from any given Lagrangian. Before showing the usage of this function,

let us recall how the Planck mass can be extracted in the different stages of the

calculations shown in Chapters 2 and 3.

For the classical action, the effective Planck mass will always be trivially inferred

via the constant prefactor of the Ricci scalar in the gravitational action. For the

following theory:

I8 = −(a+ bχ)2

2 R + 1
2g

µν∂µχ∂νχ+ 1
2g

µν∂µϕ∂νϕ, (4.9)

the effective Planck mass will be defined as MPl = a + bvχ, where vχ is the vac-

uum expectation value for the χ scalar field. However, when considering linearized

theories of modified gravity, the Ricci scalar might not be as traceable as in the

non-perturbed theory. For example, for the action described above, we would find

the following Lagrangian

I9 =(a+ bvχ)2

4

(1
2∂µhσρ∂

µhσρ − 1
4∂µh∂

µh
)

− b(a+ bvχ)
2 ∂µh∂

µχ

+ 1 + 2b2

2 ∂µχ∂
µχ+ 1

2∂µϕ∂
µϕ+ 1

2hµνT
µν , (4.10)

where, for this model,

T µν = ∂µχ∂νχ+ ∂µϕ∂νϕ− 1
2η

µν(∂µχ∂µχ+ ∂µϕ∂µϕ). (4.11)

In this case, we will have to locate the Fierz-Pauli terms, corresponding to the first

term of Eq. (4.10), in order to trace the Ricci scalar, and so the effective Planck

mass. If the graviton is not yet canonically normalized, the constant prefactor to

the graviton’s kinetic energy will be the Planck mass squared. However, if the

graviton has already been canonically normalized, notice that the action will take
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the following form:

I10 =1
2∂µhσρ∂

µhσρ − 1
4∂µh∂

µh− b∂µh∂
µχ

+ 1 + 2b2

2 ∂µχ∂
µχ+ 1

2∂µϕ∂
µϕ+ 1

(a+ bvχ)hµνT
µν , (4.12)

and so we will have to extract the effective Planck mass from the energy-momentum

prefactor.

Therefore, using GiveMpl, FeynMG will be able to recognize each of the cases

(I5,I6 or I7), and extract the effective Planck mass, making it usable at any point

in the calculation. Moreover, using the function InsertMpl, it will both calculate

the effective MPl from the action and substitute it into the expression. Using the

same cases as before, we can see that for the non-perturbed action, it trivially

replaces

In[17]:= InsertMpl[I8]

Out[17]= Using the values defined in the parameter and mass classes, the

effective value for Mpl in this Lagrangian is a + b vevchi GeV.

It can be changed by modifying the Model File obtained after

using OutputModelMG.

-
1
2

Mpl
2 RSc +

1
2
∂mu[chi]2 +

1
2
∂mu[phi]2

Similarly, if the linearized theory is not canonically normalized, it will track the

Planck mass from the Fierz-Pauli kinetic terms and replace

In[18]:= InsertMpl[I9]

Out[18]= Using the values defined in the parameter and mass classes, the

effective value for Mpl in this Lagrangian is a + b vevchi GeV.

It can be changed by modifying the Model File obtained after

using OutputModelMG.
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1
2
∂mu[chi]2 + b2∂mu[chi]2 +

1
8

Mpl
2∂rho[hmu,nu]2 -

1
2

b Mpl∂mu[chi]∂mu[h]

-
1
16

Mpl
2∂rho[h]∂rho[h] + ... +

1
4
∂mu[phi]2h

Finally, once the graviton is canonically normalized, FeynMG will trace the prefactor

of the graviton interaction to the energy-momentum tensor, leading to

In[19]:= InsertMpl[I10]

Out[19]= Using the values defined in the parameter and mass classes, the

effective value for Mpl in this Lagrangian is a + b vevchi GeV.

It can be changed by modifying the Model File obtained after

using OutputModelMG.

1
2
∂mu[chi]2 + b2∂mu[chi]2 +

1
8
∂rho[hmu,nu]2 - b∂mu[chi]∂mu[h]

-
1
4
∂rho[h]∂rho[h] + ... +

1
2Mpl

∂mu[phi]2h

As expected, for the same theory we find the same effective MPl at different

stages of the calculation, which serves as a direct proof of the validity of the function.

4.3 Advanced FeynMG routines and examples

In this guide through FeynMG, there are some key routines that cannot be fully

demonstrated with basic examples. These functions primarily address the canonical

normalization of the graviton kinetic energy. However, before diving into the more

complicated examples, let us provide a brief overview of the functions that will play

an important role.

Depending upon the gravitational action, we might need to expand the scalar

fields around their vacuum expectation values. This is possible using VevExpand,

which first calculates all the possible values for the vevs, and then shifts all the fields

around the user’s chosen branch of solutions. Once the graviton kinetic energy has a
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constant prefactor, we can then use CanonGravity, leaving all the fields canonically

normalized with derivative interactions.

When proceeding in the Jordan frame, as we saw in the last section, the domi-

nant modifications to the dynamics arise through kinetic mixing between the addi-

tional scalar field and the trace of the graviton (cf., e.g., Figure 2.1). The function

GravKinMixing will calculate and substitute into the Lagrangian the field redefini-

tions that diagonalizes this kinetic mixing, i.e., the equivalent of Eq. (2.37). With

this, the Lagrangian should be in a form ready to be used by FeynRules.

Finally, linearizing gravity and manipulating the Lagrangian into a form amenable

to FeynRules can take significant computing time for extensive or complicated mod-

els. So that this process does not need to be repeated each time, the user can use

the function OutputModelMG to create a new model file from the final form of the

Lagrangian produced by FeynMG, which includes all the information about the re-

defined fields, the parameters of the extended model and the effective Lagrangian

itself. This model file can then be used directly in FeynRules without the need to

rerun the routines implemented by FeynMG.

In this section, we will combine all the functions mentioned thus far to offer

a complete demonstration of how to use FeynMG to perform the manipulations de-

scribed in the preceding chapters. In Appendix D, we provide a summary of the

tools provided by FeynMG.
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4.3.1 Example 1: Defining a gravitational action and trans-

forming to the Einstein Frame

Throughout this section, we will work with the same Lagrangian from Eq. (2.9),

whose matter sector is defined via

LQED = − 1
4FµνF

µν + 1
2∂µϕ∂

µϕ− α∂µAµ∂
νAν

+ iψ̄γµ∂µψ − qψ̄γµAµψ − yψ̄ϕψ

+ 1
2µ

2ϕ2 − λ

4!ϕ
4 − 3µ4

2λ , (4.13)

where we have substituted a double-well potential for the would-be Higgs field and

introduced a generic covariant gauge-fixing term for the U(1) gauge field.

The first thing to do is to introduce the minimal gravitational couplings of this

matter Lagrangian. This amounts to inserting metrics or vierbeins, as appropriate,

for each pair of contracted indies, and promoting all partial derivatives to covariant

ones. To implement this in FeynMG, we run

In[20]:= LCurv=InsertCurv[LQED]

Out[20]= -
3µ4

2 lam
+
µ2 phi2

2
-

lam phi4

24
- y phi

_
psii1,i2psii1,i2

+
1
2
∂a2[phi]∂mu[phi]gUp[a2,mu] -

1
4

DGrav
nu[Aa3]DGrav

a4[Amu]

gUp[a3,mu] gUp[a4,nu] + ..... - e Amu
_

psii1,i2.psij1,i2γi1,j1
v1

VUp[mu,v1] + i
_

psii1,i2.∂mu[psij1,i2] γi1,j1
v2 VUp[mu,v2]

+
1
8

i ∂mu[VUp[d1,c1]]
_

psii1,i2.psij1,i2 VDown[c2,c1]

VUp[mu,v3] γc2.γd1.γv3
i1,j1 + .....

We remind that gUp[a,b] and gDown[a,b] are upper- and lower-indexed met-

rics, respectively, VUp[a,b] and VDown[a,b] are upper- and lower-indexed vierbeins,

respectively, and DGrav
a[] is the gravitational covariant derivative.
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Since the expressions can be long, we will show only the main sections of the

output that motivate the next step in the calculation and represent the rest of the

terms by ellipses.

For this example, we will introduce a Brans-Dicke gravitational sector of the

form of Eq. (1.16), such that

S =
∫

d4x
√

−g
[
−χ

2R + ω

2χg
µν∂µχ∂νχ+ 1

2µ
2
χχ− λχ

4! χ
2 −

3µ4
χ

2λχ
+ LCurv

]
, (4.14)

where the χ field should not be confused with the one defined in Eq. (2.34). Be-

fore defining the gravitational part of the Lagrangian within FeynMG, we need to

give appropriate attributes to the additional field χ and the additional parameters

({ω, µχ, λχ}). In principle, these can be directly added by updating the model file

itself (which should be done before loading it into FeynRules). However, we will

use the FeynMG functions AddScalar[] and AddParameter[],5 which allow the new

scalar fields and parameters to be defined after the model file has been loaded into

FeynRules. For the specific case of Eq. (4.14), we need to execute the following:

In[21]:= AddScalar[chi];

AddParameter[muC];

AddParameter[lamC];

AddParameter[w];

The full Lagrangian can then be defined via

In[22]:= LJordan= LCurv - chi RScalar/2 + (w/(2chi))

gUp[Index[Lorentz,mu],Index[Lorentz,nu]]

del[chi,Index[Lorentz,mu]] del[chi,Index[Lorentz,nu]]

+ (muC^2chi)/2 - (lamC(chi^2))/(4!)

- (3muC^4)/(2 lamC);
5For more information on these functions, see Chapter 4.2.2.
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In the case of Brans-Dicke-type scalar-tensor theories, it may be convenient to

transform to the Einstein frame (see Chapter 2.1). This is achieved in FeynMG by

executing

In[23]:= LEinstein=ToEinsteinFrame[LJordan]

Out[23]= -
1
24

lamC M4
pl +

M4
pl muC2

2 chi
+ ..... -

1
2

M2
plRSc -

M4
pl y phi

_
psii1,i2psii1,i2

chi2

+
3 M2

pl ∂a1[chi]∂mu[chi]gUp[a1,mu]
4chi2 +

M2
pl w ∂a1[chi]∂mu[chi]gUp[a1,mu]

2chi2

+ ..... -α DGrav
a3[Amu]DGrav

a4[Anu] gUp[a3,mu] gUp[a4,nu] -
e M3

pl Amu

chi3/2

_
psii1,i2.psij1,i2γi1,j1

v1 VUp[mu,v1] +
i M3

pl

chi3/2

_
psii1,i2.∂mu[psij1,i2]

γi1,j1
v2 VUp[mu,v2] + ..... +

iM3
pl

16chi5/2 ∂d2[chi]
_

psii1,i2.psij1,i2

VDown[c2,mu] VUp[d3,d2] VUp[mu,v3] γv3.γd3.γc2
i1,j1

The output agrees with the result from Eq. (2.12), including the last term,

which comes from the fermion spin-connection [Eq. (2.11)]. As mentioned before,

the Jacobian factor √
−g is assumed in the calculation (although it can be omitted

by specifying the option {Jacobian→→→Off}, see Appendix D.2 for further details).

The gravitational sector is now of canonical Einstein-Hilbert form, and we can take

the flat-spacetime (Minkowski) limit by calling

In[24]:= GravityOff[LEinstein]

Out[24]= -
1
24

lamC M4
pl +

M4
pl muC2

2 chi
+ ..... +

M2
pl w ∂mu[chi]2

2chi2 +
3 M2

pl ∂mu[chi]2

4chi2

+
M2

pl ∂mu[phi]2

2chi
+

1
2
∂a3[Aa4]∂a4[Aa3] - .....

wherein the couplings of the additional scalar field to the matter fields are manifest.

The remaining fields are, however, not canonically normalized, which can be used to

check the validity of FeynMG as follows: According to the calculations in Chapter 2.1,

in the Einstein frame we expect different couplings to χ in each term depending on

the number of metrics or vierbeins that it contains. Therefore, with this in mind,
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we can test whether both the introduction of the minimal couplings to gravity with

InsertGravity[] and the conformal transformations are correct, since we only need

to compare the minimal couplings in a term with its corresponding coupling to χ.

However, further manipulations are still needed to make the Lagrangian compatible

with FeynRules. These are the focus of the next subsection, in which we will repeat

the calculation working directly in the Jordan frame.

4.3.2 Example 2: Brans-Dicke theory for FeynRules in the

Jordan frame

The calculation in the Jordan frame repeats the same steps as in Section 4.3.1 up to

and including In[22], starting with loading a model file. We then insert the curvature

dependence using InsertCurv[] with the Lagrangian as the argument and provide

a gravitational sector for the theory. The next step is to expand the metric about

a flat spacetime background. This can be done by using LinearizeGravity[],

which expands every gravitational object in terms of the metric, and then, following

the same steps as in Chapters 2 and 3, replaces every metric and vierbein by their

linearized form (e.g., gµν → ηµν + hµν) around Minkowski background up to the

desired order. Acting on LJordan (defined previously in In[22]), we obtain,

In[25]:= E1=LinearizeGravity[LJordan,{SHGauge->On,UpdDevs->On}]

Out[25]= -
chi2 lamC

24
+ ..... +

1
4
∂λ1[chi]∂b1[hb1,λ1] -

1
8

chi ∂mu1[hb1,λ1]2

-
1
8

chi ∂λ1[hb1,λ2]2+ .....

where the provided {SHGauge->On} option specifies that the scalar-harmonic gauge

from Eq. (2.32) is automatically determined and appends it to the Lagrangian,

depending on the specific coupling function F (φ). Additionally, {UpdDevs->On}

updates all covariant derivatives to the modified form from Eq. (2.29). As for the

Einstein-frame transformation in Section 4.3.1, the Jacobian √
−g has been included

95



4.3. Advanced FeynMG routines and examples

when linearizing gravity by default, but it can be omitted using {Jacobian→→→Off}

(see Appendix D.3).

As we can see in Out[25], we have repeated terms since Mathematica does not

use Einstein’s index notation, for which two repeated indices are summed over.

Consequently, various terms in the output will be equivalent, differing only in their

index labels (e.g., AµAµ = AρA
ρ). As introduced in Section 4.2.1, in order to force

Mathematica to combine these terms, we have to use the same set of indices for all

the terms. This problem is solved by the function IndexSimplify:

In[26]:= E2=IndexSimplify[E1,{mu,nu,rho}]

Out[26]= ..... -α AmuAnu CMod[chi]{1}mu
rho,rho CMod[chi]{1}nu

MG1,MG1 +
∂mu[chi]2

4 chi

+
w ∂mu[chi]2

2 chi
+

1
2
∂mu[phi]2 -

1
2
∂nu[Amu]2 + ..... +

1
8

chi ∂rho[hmu,nu]2

+ ..... -
1
4
∂mu[chi] ∂mu[h] + ..... -

1
16

chi ∂mu[h]2+ .....

The optional argument {mu,nu,rho} allows the user to choose a set of n indices

from which the first n replacements will be chosen. The output of E2 contains

significantly fewer terms than E1. As expected, this function is able to reproduce the

standard gravity result, producing the Fierz-Pauli terms for the graviton. Moreover,

E2 already contains the same graviton kinetic energy and the kinetic mixing between

its trace and the scalar field chi that we found in Eq. (3.44) for chi → φ..

Notice the appearance of CMod terms in the linearized Lagrangian. As pointed

out when linearizing gravity in In[25], we updated the covariant derivatives in the

Lagrangian to their modified forms by specifying the option {UpdDevs->0n}. This

choice is the source of these CMod terms in the linearized Lagrangian, and they

correspond to the modification of the Christoffel symbols (see Eq. (2.30))

Cρ
µν = F ′(φ)

2F (φ)(δρµ∂νφ+ δρν∂µφ− gµν∂
ρφ), (4.15)
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where the F ′(φ)
2F (φ) prefactor will have to be expanded in terms of φ. Once this expansion

is truncated at some order in φ, we can no longer make a non-linear redefinition

of the φ field (such as φ → φ2), since the ignored higher-order terms will give

contributions at lower orders. To avoid this problem, CMod won’t be expanded until

all the kinetic energies of the scalar fields have been made canonical.

We can check that the kinetic energies appearing in E2 are not canonically

normalized by running

In[27]:= CheckCanonScalar[E2]

Out[27]=
(1+2 w) ∂mu[chi]2

4 chi
+

1
2
∂mu[phi]2

There are one or more non-canonical kinetic energies.

Use CanonScalar.

As the output indicates, we can execute

In[28]:= E3=CanonScalar[E2]

Out[28]= ..... +
chi4 lamC
96(1+2w)2 +

chi2 muC2

4(1+2w)2 + ..... +
chi2 muC2w
2(1+2w)2 + ..... +

1
2
∂mu[chi]2

-
4αAmuAnu ∂mu[chi]∂nu[chi]

v2
chi

+
1
2
∂mu[phi]2 + ..... +

chi2 ∂rho[hmu,nu]2

16(1+2 w)

+ ..... -
chi ∂mu[chi] ∂mu[h]

4(1+2w)
+ .....-

chi2 ∂mu[h]2

32(1+2w)2 -
chi2w ∂mu[h]2

16(1+2w)2

+ .....

The kinetic energies of the scalar fields are now canonically normalized, leading

to the expansion of every CMod[] (where present). This expansion is performed in

terms of the scalar field chi, where vchi is a placeholder for its vacuum expectation

value.

At this stage, the kinetic energy of the graviton is composed of multiple terms.

These could be simplified by means of Mathematica’s FullSimplify command, but
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this will often prove time-consuming, and it is not necessary, except for aesthetic

reasons. From here, the only thing left to do is to canonically normalize the graviton

kinetic energy. To this end, we need to perturb the fields around their vevs, so the

graviton kinetic energy acquires a constant prefactor. This can be achieved by

running

In[29]:= E4=VevExpand[E3]

{
1 ==

{
vchi→vchi,vphi→vphi

}
, 2 ==

{
vchi→-

2
√

3
√

muC2 + 2 muC2w√
lamC

,vphi→0
}

,

..... , 7 ==
{

vchi→-
2

√
3

√
muC2 + 2 muC2w√

lamC
,vphi→

√
6µ√
lam

}
, .....

}

Out[30]= -µ2phi2 -
√

lamµ phi3
√

6
+ ..... -

chi3
√

lamC muC
4

√
3 (1+2w)3/2 + .....

+
1
2
∂mu[chi]2 -

α lamC AmuAnu ∂mu[chi]∂nu[chi]
3 muC2(1+ 2w)

+
1
2
∂mu[phi]2

+ ..... +
3 muC2∂rho[hmu,nu]2

4 lamC
+ ..... +

√
3 muC ∂mu[chi]∂mu[h]

2
√

lamC
√

1+2 w
+ .....

Note that this function calculates and displays all the extrema in the potential,

with the additional option of leaving the Lagrangian with the vevs undefined (option

1). Since there may be multiple minima, the function allows the user to choose which

vev (or set of vevs) will be used by a dialogue window prompt (in this case, we choose

option 7). Notice that the vchi dependence already present from the expansion of

the CMod functions has also been replaced by the user-selected vev in E4.

Once we have a constant prefactor to the graviton kinetic energy, we can canon-

ically normalize it, using

In[31]:= E5=CanonGrav[E4]

Out[31]= -µ2phi2 -
√

lamµ phi3
√

6
+ ..... -

chi3
√

lamC muC
4

√
3 (1+2w)3/2 + ..... +

1
2
∂mu[chi]2

-
α lamC AmuAnu ∂mu[chi]∂nu[chi]

3 muC2(1+ 2w)
+

1
2
∂mu[phi]2 + ..... +

1
2
∂rho[hmu,nu]2

+ ..... -
∂mu[chi]∂mu[h]√

2
√

1+2 w
+ ..... -

1
4
∂mu[h]2 + .....
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We have recovered the usual canonically normalized Fierz-Pauli kinetic energy terms

from Eq. (2.26). We also see the expected kinetic mixing between the scalar field

and the graviton, which can be identified by executing

In[32]:= CheckGravityMixing[E5]

Out[32]= -
∂mu[chi]∂mu[h]√

2 + 4 w

There are kinetic mixing terms for gravity.

Use GravKinMixing.

The final manipulation is to diagonalize this kinetic mixing. This can be achieved

by running )

In[33]:= E6=GravKinMixing[E5,{OutSimplify->On}]

Out[33]= -µ2phi2 -
√

lamµ phi3
√

6
+ ..... +

1
2
∂mu[chi]2 + .....

+
1
2
∂mu[phi]2 -

chi
√

lamC ∂mu[phi]2

2
√

3 muC
√

3 + 2w
+.....+

1
2
∂rho[hmu,nu]2

+ ..... -
1
4
∂mu[h]2 +..... -

√
6µ y

_
psii1,i2.psii1,i2√

lam

+ ..... +
2

√
2 chi y

√
lamCµ

_
psii1,i2.psii1,i2√

lam muC
√

3 + 2w
- .....

-
i
√

3 chi
√

lamC
_

psii1,i2.∂mu[psij1,i2] γmu
i1,j1

2 muC
√

3 + 2 w
+ .....

which first identifies the kinetic mixings between the graviton with one or mul-

tiple scalar fields to define the kinetic matrix, and then diagonalizes it following

the steps shown in Appendix B. Herein, the argument {OutSimplify->On} applies

FullSimplify[] up to quadratic terms, so that the kinetic energy terms appear

explicitly canonicalized. Note that this simplification is not a prerequisite to further

processing of the output with FeynRules.

As seen in Chapter 4.2.6, FeynMG can extract the effective MPl at any point

in the calculations (before or after linearizing gravity or canonically normalizing
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the kinetic energies). For example, for the diagonalized Lagrangian from Out[33]

(corresponding to E6), we obtain

In[34]:= GiveMpl[E6]

Out[34]= Using the values defined in the parameter and mass classes, the

effective value for Mpl in this Lagrangian is Sqrt[6] GeV.

It can be changed by modifying the Model File obtained after

using OutputModelMG.

-
√

6 muC√
lamC

The effective value for the Planck mass in the inputted Lagrangian is automatically

calculated and printed using the defined values of the loaded parameters. In this

case, since both parameters {muC,lamC} were defined using AddParameter[] in

In[21] and no value was specified in the options6, they were set by default to 1.

Moreover, we can substitute the calculated value for MPl into the Lagrangian by

calling

In[35]:= E7=InsertMpl[E6]

Out[35]= Using the values defined in the parameter and mass classes, the

effective value for Mpl in this Lagrangian is Sqrt[6] GeV.

It can be changed by modifying the Model File obtained after

using OutputModelMG.

-µ2phi2 -
√

lamµ phi3
√

6
+ ..... +

1
2
∂mu[chi]2 + .....

+
1
2
∂mu[phi]2 -

chi ∂mu[phi]2
√

2 Mpl
√

3 + 2w
+ ..... +

1
2
∂rho[hmu,nu]2

+ ..... -
1
4
∂mu[h]2 + ..... -

√
6µ y

_
psii1,i2.psii1,i2√

lam

+ ..... +
4

√
3 chiµ y

_
psii1,i2.psii1,i2√

lam Mpl
√

3 + 2w
- ..... + i

_
psii1,i2.∂mu[psij1,i2] γmu

i1,j1

6In Chapter 4.2.2, we showed that, when using AddParameter[], the value of the parameter
can be specified using the option Value→X

100



4. FeynMG: Using symbolic algebra to study scalar-tensor theories

-
3 i chi

_
psii1,i2.∂mu[psij1,i2] γmu

i1,j1√
2 Mpl

√
3 + 2w

- .....

This function also automatically adds MPl to the list of defined parameters, with

its corresponding value (
√

6 GeV for this specific case) and InteractionOrder→-1.

Notice that a Yukawa coupling between the fermion fields and the chi field has

appeared in the fourth line, as expected. However, a closer look at this term shows

that the coupling constant is four times larger than the result mψ/
√

2M2
Pl(2 + 3w)

from Chapter 3.3.2. This is because of the last term in the expression, which will

also contribute to the tree-level interactions between the fermion and the scalar field,

leading then to the same results as in Chapter 3.3.2.

Finally, we can get the BSM description of our modified theory of gravity by

ignoring all the couplings to gravity. As in the Einstein frame in In[24], this can be

done by calling

In[36]:= E8=GravityOff[E7]

Out[36]= -µ2phi2 -
√

lamµ phi3
√

6
+ ..... +

1
2
∂mu[chi]2 + ..... +

1
2
∂mu[phi]2

-
chi ∂mu[phi]2
√

2 Mpl
√

3 + 2w
+ ..... -

√
6µ y

_
psii1,i2.psii1,i2√

lam
+ .....

+
4

√
3 chiµ y

_
psii1,i2.psii1,i2√

lam Mpl
√

3 + 2w
+ i

_
psii1,i2.∂mu[psij1,i2] γmu

i1,j1

-
3 i chi

_
psii1,i2.∂mu[psij1,i2] γmu

i1,j1√
2 Mpl

√
3 + 2w

- .....

At this point, all the interactions up to second order in the fields have been canon-

ically normalized and diagonalized, so there are no kinetic or mass mixings. There-

fore, the updated Lagrangian for the matter fields with the additional scalar field

couplings is now in a form that can be processed further by FeynRules and com-

patible packages for phenomenological studies.
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4.3.3 Example 3: Outputting a model file

FeynMG allows the user to create a new model file with the Lagrangian of their

choice, in which all the introduced particles (such as the graviton and additional

scalar fields) and new parameters (such as MPl) will be incorporated and properly

defined.7 This can be done by running

In[37]:= OutputModelMG["Oldmodelfile.fr", "Newmodelfile.fr", Lagrangian];

where "Oldmodelfile.fr" is the name of the original FeynRules model file that

the user loaded, "Newmodelfile.fr" is the chosen name of the new model file, and

Lagrangian is the final Lagrangian, as prepared with FeynMG.

The upgraded model file can be read directly into FeynRules without needing

to load or rerun FeynMG. Starting a new session on Mathematica (or quitting the

kernel using Quit[]), we can load the outputted model just by running

In[38]:= << FeynRules`

LoadModel["Newmodelfile.fr"];

In this way, we recover all the fields and parameters defined previously, plus the chosen

Lagrangian which is now saved in a function called L. Had we used E8 from Out[36], we

would find

In[39]:= L

Out[39]= -µ2phi2 -
√

lamµ phi3
√

6
+ ..... +

1
2
∂mu[chi]2 + ..... +

1
2
∂mu[phi]2

-
chi ∂mu[phi]2
√

2 Mpl
√

3 + 2w
+ ..... -

√
6µ y

_
psii1,i2.psii1,i2√

lam
+ .....

+
4

√
3 chiµ y

_
psii1,i2.psii1,i2√

lam Mpl
√

3 + 2w
+ i

_
psii1,i2.∂mu[psij1,i2] γmu

i1,j1

-
3 i chi

_
psii1,i2.∂mu[psij1,i2] γmu

i1,j1√
2 Mpl

√
3 + 2w

- .....

taking us back to where we left it before logging off Mathematica (or quitting the kernels).
7New particles and parameters created using AddScalar[] and AddParameter[] will also be

added, see Appendix D.8 for more information.
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4.3.4 Example 4: Feynman rules and diagrams for Brans-

Dicke theories

A positive aspect of working within FeynRules is that its inbuilt functions can be directly

applied to any output model produced by FeynMG. Thus, with the Lagrangian from Out[39]

already in its canonical form, we will focus in this subsection on this compatibility using

FeynRules and MadGraph [166, 167].

It is important to point out that the manipulation of the Lagrangian into its canon-

ical form may introduce some inconsistencies in the model file. For example, the mass

of the non-minimally coupled field will generally differ from the value initially specified

with AddScalar[]. Fortunately, we can verify the consistency of the model file within

FeynRules just by running

In[40]:= CheckMassSpectrum[L]

Neglecting all terms with more than 2 particles.

All mass terms are diagonal.

Getting mass spectrum.

Checking for less than 0.1% agreement with model file values.

Out[40]//TableForm=

Particle Analytic value Numerical value Model-file value

phi
√

2µ2 125. 125.

chi

√
muC2

3 + 2w
0.447214 0. Discrepancy!

e
√

6µ y√
lam

0.000511 0.000511

where we can see that there is a mismatch between the model file and the Lagrangian. To

solve the discrepancy, we just need to change the mass of the chi field by directly editing

the model file. In addition, we also recommend to amend the value for the Planck mass,

as it may differ from the one calculated and inserted by InsertMpl[], which was obtained

using the rest of the parameters’ values. For example, in Out[35], we found MPl =
√

6 Gev,
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4.3. Advanced FeynMG routines and examples

which is in clear discrepancy with the real value for the Planck mass.8

Once all the fields and parameters are correctly defined, we can proceed with study-

ing the phenomenology of the model. One of the most straightforward applications

of FeynRules is calculating the Feynman rules of a given Lagrangian. For this, using

FeynmanRules on a Lagrangian will provide us its complete set of Feynman rules, such as

In[41]:= FeynmanRules[L]

Starting Feynman rule calculation.

Expanding the Lagrangian...

Collecting the different structures that enter the vertex.

14 possible nonzero vertices have been found →→→

starting the computation: 14 / 14.

14 vertices obtained.

Out[41]= {{{{phi,1},{phi,2},{phi,3}},-i
√

6
√

lamµ} , ... ,

{{{
_

psi,1},{psi,2},{chi,3}},
4 i

√
3µ y δs1,s2√

lam Mpl
√

3+2w
-

3 i γ.p2s1,s2√
2 Mpl

√
3+2w

+
3 i γ.p3s1,s2√
2 Mpl

√
3+2w

} , ... , {{{
_

psi,1},{psi,2},{A,3}},-i e γs1,s2
µ3}}

In this example, we have highlighted a few terms, including the Yukawa coupling of

χ with the fermions and the usual QED interaction, but the function will display all the

different allowed interactions by the Lagrangian L. To interpret the output, notice that

every element of the list is composed of an array with two list elements: the first specifies

the fields taking part in the corresponding Feynman rule, which is given in the second

element. Notice that the fields are numbered to keep track of the indices within the rules.

One of the best tests for FeynMG comes from this function, since it allows us to study

directly the couplings of the fifth forces to the matter Lagrangian. In particular, aside

from the aforementioned Yukawa coupling to the fermions, we find that there is no net

interaction of the gauge field with χ. In order to obtain this result, we had to update

all covariant derivatives as specified in In[25], keep track of the arising CMod terms, and

correctly evaluate the diagonalization of the kinetic mixing between the graviton and χ,
8See below Out[34] for a discussion on the origin of this discrepancy.
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4. FeynMG: Using symbolic algebra to study scalar-tensor theories

which lead to the cancellation of fifth forces shown in Appendix A. All this together shows

that the different routines within FeynMG work in combination, allowing us to perform

complicated calculations with confidence.

Given the set of rules, the natural step forward is to consider the new Feynman

diagrams that can be constructed due to the modification of gravity. There are two main

approaches to tackle this with FeynRules: either using FeynArts [163] or MadGraph [166,

167]. While it is true that FeynArts allows for the calculation of loop diagrams, which

can be further evaluated using FeynCalc or FormCalc, here we will use MadGraph. This

is because MadGraph not only allows for the computation of the Feynman rules, but can

be further used to calculate the cross-sections for any given process, making it a valuable

tool for our purposes, since it serves as a connection between our examples and collider

data.

To use MadGraph, we will need to export a ".UFO" (Universal FeynRules Output) file

from FeynRules (for more information, see Ref. [143, 171]). This can be done by running

the following command

In[42]:= WriteUFO[L]

--- Universal FeynRules Output (UFO) v 1.1 ---

Starting Feynman rule calculation.

...

Computing the squared matrix elements relevant for the 1→→→2 decays:

...

Done!

which will generate the desired ".UFO" file in the last designated directory (for brevity,

we have omitted multiple lines of printed text in the ellipsis). The next step is to load

the file into MadGraph, which will allow us to compute all the different diagrams for a

given process.9 In this example, we will concentrate on the extension of Møller scattering

considered in Chapter 3, where in addition to the two incoming and outgoing electrons, a
9In this thesis, the focus lies on the motivation and usage of FeynMG, rather than on the details

of doing phenomenology with MadGraph. For a comprehensive introduction, see Refs. [166, 172].
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4.3. Advanced FeynMG routines and examples

photon and a chi particle are produced in the outer state (i.e., e−+e− → e−+e−+Aµ+χ).

As introduced in Chapter 1.3, such processes would lead to missing energy signals at

particle colliders due to the neutrality of the external scalar, and can avoid chameleon

type of screening mechanisms. To obtain the full list of diagrams, we write:

where the WEIGHTED option specifies the number of interactions in the entire diagram.

As we can see, the large number of different consistent events makes it impractical for

a human to manually evaluate them all. Furthermore, MadGraph can display all distinct

Feynman diagrams just by running

A subset of the generated diagrams is displayed in Figure 4.1. It is worth noting the

efficiency of the code, which has successfully generated a total of 212 diagrams in just

∼ 0.45 seconds. From here on, one can keep using the functionality of MadGraph to

calculate the cross-sections from this process or employ other software analysis tools to

test and compare modified theories of gravity against experimental data. Alternatively,

one can also choose to stay at the Lagrangian level, and study the consistency of the

theory using quantum field theory techniques.
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4. FeynMG: Using symbolic algebra to study scalar-tensor theories

Figure 4.1: Sample of Feynman diagrams appearing due to the modification of gravity. They
represent a process with two incoming electrons (e−) and two outgoing electrons with an addi-
tional photon (a) and a chi particle, corresponding to the non-minimally coupled field. These
diagrams have been generated by MadGraph after using both FeynRules and FeynMG to generate the
Lagrangian.
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Chapter 5

Conclusion and outlooks

In this thesis, we began with a review on the main open questions and naturalness issues

with respect to the Standard Models of particle physics and cosmology. Among these, we

have focused on the possibility of having a different gravitational sector other than the

Einstein-Hilbert action, in which an extra scalar degree of freedom non-minimally couples

to curvature objects, forming so-called scalar-tensor theories.

Perhaps one of the most characteristic features of these theories are the screening

mechanisms, for which they experience a suppression of their effect on matter in high

density regimes. As we have shown in Chapter 1, screening mechanisms thus allow these

theories to avoid the tightest constraints from Solar System and laboratory scales. How-

ever, it is possible to see through some of these mechanisms by studying their effect on

particle physics, via what are known as missing energy signals. For a consistent calculation

of these scattering processes, it is necessary to work with quantum field theory. To do

this, we can take advantage of another feature of these theories, which is that they can be

described as Beyond the Standard Model theories.

Therefore, in Chapter 2, we have demonstrated how to consistently derive this BSM

description from a scalar-tensor theory with a toy model for QED+Higgs using quantum

field theory. We proceeded both working in the Einstein frame, by performing the ap-

propriate Weyl transformation to the fields, and staying in the Jordan frame, where we
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5. Conclusion and outlooks

had to work with linearized gravity. In the course of the calculation, we found that the

modifications of the matter sector arise in the Einstein frame through a mass mixing with

the would-be Higgs field, while in the Jordan frame they arise through a kinetic mixing

with gravity itself. To solve this kinetic mixing, it was convenient to use a special gauge

fixing choice, called the scalar-harmonic gauge. Furthermore, in both frames, we found

that, at least classically, the new dynamics on the matter sector couples exclusively to

the scale-dependant terms, making the modifications to the Standard Model equivalent to

Higgs-portal theories.

In Chapter 3, we further explored the relationship between scale breaking and fifth-

force strengths by considering two different sources of scale breaking. The first was via

an explicit scale-invariant parameter in the action, coming from the would-be Higgs field

mass, while the second was a dynamical breaking through the stabilization of multiple

coupled scalar fields, which has a close connection with Higgs-Dilaton models. We thus

obtained the Yukawa potential for the long-range interactions, specifically for the Møller

scattering (e− + e− → e− + e−), and found that the fifth forces vanish when the scale

symmetry is dynamically broken. Apart from the interesting results regarding the scale

breaking mechanisms, this calculation motivated the need for computational assistance to

predict the full implications of scalar-tensor theories for the whole Standard Model.

To this end, in Chapter 4, we introduced the Mathematica package FeynMG, which

can manipulate scalar-tensor theories of gravity into a format that can be processed by

Feyn-Rules, and thus be connected to the rest of the available analysis software pipelines.

After giving a detailed description of the state of the art in using symbolic algebra to do

quantum field theory, we provided a number of examples. Some of these examples were

dedicated to specific functions, while others replicated calculations of the type described

in Chapter 2 and 3. We concluded this chapter by showing the compatibility of FeynMG

and FeynRules with analysis software packages that allow to perform phenomenological

studies on scalar-tensor theories of gravity. In particular, we used MadGraph to generate

212 diagrams for an extension of the Møller scattering where a photon and the extra non-

minimally coupled field are produced in the final state: the kind of diagrams that would
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lead to missing energy signals at colliders. The most surprising aspect of this calculation

was that we were able to produce all these diagrams in less than a half of a second,

demonstrating the key element that FeynMG will be in exploring scalar-tensor theories in

particle colliders.

The main extension of this work would be to consider a generic scalar-tensor theory

and test for its implications for the whole Standard Model using data from colliders, for

example by generating the cross-sections using MadGraph. However, since FeynMG provides

the user with a Lagrangian form for the BSM description of a scalar-tensor theory, we can

proceed in different directions when studying its phenomenology. For example, we can

consider quantum effects, which allows us to calculate loop corrections in String Theory

due its aforementioned relation to modified gravity, or test thermal corrections, which

may have important implications in the early universe. Similarly, given the mass range

and the nature of the extra scalar field, we also find similarities with axion-like particles.

In future work, we would like to explore the physics arising from the couplings between

these two fields, and whether some relation can be established to the coincidence problem

mentioned in Chapter 1.

In conclusion, we are reaching a point where cosmology and particle theory can be

studied simultaneously through their effect on each other’s scale. It is important to note

that, apart from the discovery of quantum field theory itself, the best advance in the devel-

opment of the Standard Model of particle physics has been the use of computational tools.

In this way, FeynMG extends this progress to scalar-tensor theories, which, once combined

with additional packages, will make it possible to test for modifications of gravity with all

the collider data already available. This widens an existing path for phenomenology so far

hampered by very long, time-consuming and algorithmic calculations, presenting a bright

future for testing scalar-tensor theories at subatomic scales.
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Appendix A

Modified covariant derivative and

U(1) Feynman gauge

In Chapter 2.2, we described an update to the covariant derivative in the Jordan frame,

based on Ref. [1], that proves convenient for Brans-Dicke-type theories with only a non-

minimal coupling to the Ricci scalar. This modified covariant derivative Dµ reduces to

the usual ∇µ when Weyl transformed to the Einstein frame, and is given by

DµYν = ∇µYν − CρµνYρ, (A.1)

where

Cρµν = 1
2φ(δρµ∂νφ+ δρν∂µφ− gµν∂

ρφ). (A.2)

It allows us to define the so-called scalar-harmonic gauge, which maps to the usual har-

monic gauge in the Einstein frame.

We can proceed similarly with other gauge fixing terms, such as the one for the U(1)

gauge field. For instance, defined in the Einstein frame where gravity is canonical, the

Feynman gauge fixing action takes the following form:

S ⊃
∫
d4x

√
−g̃ g̃µν g̃σρ∇̃µAν∇̃σAρ, (A.3)
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where all the tilded objects are built with the Einstein frame metric g̃µν . On transforming

to the Jordan frame, we would find that the gauge fixing term has to be written as

S ⊃
∫
d4x

√
−g gµνgσρDµAνDσAρ, (A.4)

where the covariant derivatives have transformed to their modified forms from (A.1), which

will introduce new couplings between the gauge field Aµ and the scalar field that appears

in the Weyl rescaling of the metric. These new couplings are encoded in the Cρµν terms.

In what follows, we will show that these new interactions are those that ensure there are

no interactions between the scalar field and the gauge field at dimension four, as we would

expect from general arguments based on Weyl invariance.

Let us first define the object ∆λµν via

1
2g

ρλ∆λµν = Γρµν + Cρµν , (A.5)

where we have taken the common factor of the upper-indexed metric so the result can

be generalized to any order of its expansion in hµν . For the case of Brans-Dicke theory

(Eq. (1.16)) with a coupling function F (φ), we find

∆λµν = ∂µgλν + ∂νgµλ − ∂λgµν + F ′(φ)
F (φ) (gλν∂µφ+ gµλ∂νφ− gµν∂λφ), (A.6)

which reduces to

∆λµν = ∂µhλν + ∂νhµλ − ∂λhµν + F ′(φ)
F (φ) (ηλν∂µφ+ ηµλ∂νφ− ηµν∂λφ), (A.7)

on perturbing the metric around a flat background (Eq. (2.19)). After canonically nor-

malizing the φ field through the redefinition from Eq. (2.34), i.e.,

χ(φ) =
∫ φ

0
dφ̂
√
Z(φ̂) + F ′(φ̂)2

2F (φ̂) , (A.8)
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A. Modified covariant derivative and U(1) Feynman gauge

this leads to

∆λµν = ∂µhλν + ∂νhµλ − ∂λhµν + F̂ ′(χ)
F̂ (χ)

(ηλν∂µχ+ ηµλ∂νχ− ηµν∂λχ), (A.9)

where we have defined F̂ (χ) ≡ F (φ) and F̂ ′(χ) ≡ ∂F̂ (χ)/∂χ. As described in Chapter

2.2, we now expand the scalar field around its vev, so that the graviton can also be

canonically normalized (see Eq. (2.36), where the kinetic mixing between the graviton and

χ is manifest). At this point, ∆λµν has the form

∆λµν =∂µhλν + ∂νhµλ − ∂λhµν

+ F̂ ′(vχ)
F̂ (vχ) + χF̂ ′(vχ)

(ηλν∂µχ+ ηµλ∂νχ− ηµν∂λχ). (A.10)

The kinetic mixing between the graviton and the scalar can be removed (see Eq.(2.37))

by means of the transformations in Eq. (2.37). With this, we obtain Eq. (2.38) and

∆λµν = 2
MPl

(
∂µhλν + ∂νhµλ − ∂λhµν

)
+ 1
MPl

F̂ ′(vχ)√
M2

Pl + F̂ ′(vχ)2
(ηλν∂µσ + ηµλ∂νσ − ηµν∂λσ)

− F̂ ′(vχ)

F̂ ′(vχ)σ +MPl

√
M2

Pl + F̂ ′(vχ)2
(ηλν∂µσ + ηµλ∂νσ − ηµν∂λσ), (A.11)

where F̂ (vχ) = M2
Pl has been substituted and σ corresponds to the canonically normalized

additional scalar field. We can now expand the denominator in the third line up to first

order in M−1
Pl to give

∆λµν = 2
MPl

(∂µhλν + ∂νhµλ − ∂λhµν) , (A.12)

showing a perfect cancellation of the couplings to the additional scalar. Thus, after diag-

onalizing, the covariant derivative takes the following form

DµAν = ∂µAν − 2
MPl

ΓρµνAρ, (A.13)
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which is nothing but the standard covariant derivative ∇µAν from Einstein gravity. This is

as we would expect, since the diagonalization is essentially a perturbative implementation

of the Weyl transformation to the Einstein frame.

We can obtain the same result without diagonalizing and instead summing over all

insertions of the graviton-scalar kinetic mixing. Our calculations have shown that the

following two series of diagrams cancel with each other:

+ = 0,

where the ellipsis contains the sum over the infinite series of insertions of mixings (where

zero kinetic mixing is also included for the diagram on the right). Similarly, from the

diagrams above, we can calculate the incoming graviton amplitude by inserting an addi-

tional kinetic mixing to the left of the χ propagators. Thus, we find that all the diagrams

containing kinetic mixings will end up cancelling each other, leaving just the diagram with

no kinetic mixings. Diagrammatically, this implies that

+ = ,

which corresponds to the Feynman diagram for the coupling between the gauge field and

gravity through the usual Chistoffel symbols.

In either case, we see that the role of the additional terms arising from Cρµν in the up-

dated covariant derivatives is to maintain the Weyl invariance of the Maxwell Lagrangian

(at dimension four) once gauge fixing terms are included in the Jordan frame.
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Appendix B

Diagonalizing graviton-scalar

kinetic mixing

A convenient way to eliminate all the kinetic mixings is to find the matrix transformation

that diagonalizes the kinetic terms. However, creating a kinetic mixing matrix between 2-

forms (the graviton) and scalar fields is not straightforward. In this appendix, we describe

a method for determining the transformation and diagonalizing the kinetic terms.

The main obstacle is that the graviton kinetic term contains both hµν and its trace

h. For example, we might have a Lagrangian of the form

L = 1
2∂ρhµν∂

ρhµν − 1
4∂ρh∂

ρh− C∂ρh∂
ρχ+ 1

2∂ρχ∂
ρχ, (B.1)

where both the graviton and the scalar field have already been canonically normalized,

but there remains a kinetic mixing proportional to C (which for the calculation from

Chapter 2.2 corresponds to C = F̂ (vχ)/4).

Since the graviton has two kinetic terms, it is unclear how to construct a matrix that

encapsulates all the kinetic couplings between distinct fields. Therefore, we proceed by

redefining hµν so that its kinetic energy contains only one term. To do so, we perform an
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analytic continuation of the graviton into the complex plane, redefining

hµν → h̃µν − 1
4(1 + i)h̃ηµν . (B.2)

This transformation will allow us to easily define a kinetic matrix for our Lagrangian.

Once it is diagonalized, we just need to reverse this redefinition. Substituting Eq. (B.2)

into Eq. (B.1), we obtain

L = 1
2∂ρh̃µν∂

ρh̃µν + Ci∂ρh̃∂
ρχ+ 1

2∂ρχ∂
ρχ, (B.3)

which contains only one kinetic energy term for the graviton. The kinetic matrix is then

defined straightforwardly as

K =

 1
2 iC2

iC2
1
8

 , (B.4)

with partial derivatives of the fields collected into the vector

Fρµν =

 ∂ρh̃µν

ηµν∂ρχ

 , (B.5)

such that the Lagrangian Eq. (B.1) can be written in the form L = (F ρµν)TKFρµν , where

T denotes matrix transposition.

We want a transformation W of the matrix K such that

WTKW =

1
2 0

0 1
8

 . (B.6)

The transformations for the fields are as follows:

(F ρµν)TKFρµν = (F ρµνW−1W )TKWW−1Fρµν = (F̃ ρµν)TWTKWF̃ρµν , (B.7)

since, by defining F̃ρµν = W−1Fρµν , we would get a Lagrangian free of kinetic mixings.
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For the generic kinetic mixing, where K is defined by Eq. (B.4), the transformation

matrix is

W =

1 −1√
1+4C2

0 −iC√
1+4C2

 . (B.8)

The scalar fields transform through Fρµν = WF̃ρµν and therefore

h̃µν → h̃µν − iC√
1 + 4C2

σηµν , (B.9a)

χ → −1√
1 + 4C2

σ. (B.9b)

Undoing the complexification in Eq. (B.2), we obtain the transformations of the original

fields that diagonalize the kinetic terms:

hµν → hµν + C√
1 + 4C2

σηµν , (B.10a)

χ → −1√
1 + 4C2

σ. (B.10b)

For the specific case of the Lagrangian in Out[32] from Chapter 4.3.2, for which C =

1/
√

2 + 4ω, we get

hµν → hµν + 1√
2(2ω + 3)

σηµν , (B.11a)

χ → −
√

2ω + 1√
2ω + 3

σ. (B.11b)
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Appendix C

Evaluation of Feynman diagrams

with a kinetic mixing with gravity

In Chapter 3.3, we calculated the modification to the Yukawa potential for the Møller

scattering in the Jordan frame. In the process, we decided that for simplicity, it would

be best to diagonalize the kinetic mixing between the graviton and the non-minimally

coupled field (Eq. (3.60)), such that the fifth forces could be isolated from the gravita-

tional interaction. Nevertheless, in this appendix, we will repeat this calculation without

performing the diagonalization of the kinetic matrix, showing an agreement between both

procedures.

As introduced in Eq. (3.59), the terms in the Lagrangian relevant to the fifth force

are as follows:

LJF =1
2∂ρhµν∂

ρhµν − 1
4∂µh∂

µh+ 1
2η

µν∂µσ∂νσ

− cN−1
σ√

2(2ω + 1)
ηµν∂µh∂νσ − yc′N−1

σ ψ̄σψ + 1
MPl

hµνTµν + Lm(ηµν), (C.1)

which will introduce long range fifth forces to the Møller scattering through four distinct

Feynman diagrams shown in Fig. C.1.

Since the structure of all the diagrams is very similar, we will describe only the con-
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C. Evaluation of Feynman diagrams with a kinetic mixing with gravity

Figure C.1: The diagrams that contribute to the Møller scattering in the Jordan frame.

• Graviton propagator [147]

= iP µνσρ

k2

P µνσρ = 1
2 (ηµσηνρ + ηνσηµρ − ηµνηρσ)

• σ field propagator

= i

k2

• Kinetic mixing

= −i ηµνk
2√

2(2ω + 1)

• Gravitational interaction [173]

= i
ηµντµν
MPl

τµν = 1
4
[
(p+ q)µγν + γµ(p+ q)ν − 2ηµν

(
/q + /p− 2me

)]

• Fermion-fermion-σ interaction

= i
yc′vχ

cMPl

√
2(2ω + 3)

Figure C.2: Feynman rules for the Lagrangian (Eq. (C.1)) with an explicitly broken
scale symmetry, where γµ are the gamma matrices. To a good approximation, we can take
cN−1

σ ≈ 1, since M̃ ≫ 1.
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tribution from Fig. 3.3(a) in detail. The matrix element for this process is

iM(a) = ū(p1, s1)
(
i
τµν
MPl

)
u(p3, s3)

(
−iP

µνab

t

)
(iηabαKt)

(
− i

t

)

×
[ ∞∑
n=0

(iαKt)n
(

− iηcdP
cdefηef
t

)n
(iαKt)n

(
− i

t

)n]

× (iαKηght)
(

− iP ghσρ

t

)
ū(p2, s2)

(
i
τσρ
MPl

)
u(p4, s4), (C.2)

where, as before, t = −(p1 −p3)2, u(p, s) and ū(p, s) are respectively the Dirac four-spinor

and its Dirac conjugate, with spin projection s. Note that, for clarity, we have isolated

each vertex and propagator with parentheses. For convenience, we have also defined the

parameter

αK = 1√
2(2ω + 1)

. (C.3)

Equation (C.2) can be simplified by making use of the following identities for Pµνσρ:

ηµνP
µνσρ = −ησρ, ηµνP

µνσρησρ = −4, (C.4)

and we find that we only have vertices involving the trace of τµν , as we would have expected

from Eq. (3.61).

Working in the non-relativistic limit and choosing the fermions to represent electrons

with mass me, such that pµ ∼ qµ ≈ (me, 0⃗), the spinors satisfy

ū(p, s)γµu(q, s′) = 2meδµ0δss′ , (C.5)

in which case, using the expression for τ = ηµντµν extracted from Fig. C.2, we have

ū(p, s)τu(q, s′) = −2m2
e. (C.6)

The matrix element then reduces to

M(a) = 1
M2

Pl

4m4
eα

2
K

t

[ ∞∑
n=0

(
−4α2

K
1
t

)n]
δs1s3δs2s4 = 1

M2
Pl

4m4
eα

2
K

(1 + 4α2
K)t

δs1s3δs2s4 . (C.7)
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C. Evaluation of Feynman diagrams with a kinetic mixing with gravity

To extract the non-relativistic potential, we take t = Q2 (where Q is the exchange

momentum), and the contribution to the Yukawa potential is

V(a)(r) = − 1
M2

Pl

m2
e

(4 + α−2
K )

∫ d3Q
(2π)3 e

iQ·x 1
Q2 = − 1

4πr
m2
e

M2
Pl2(2ω + 3)

. (C.8)

The contributions from the remaining processes in Fig. 3.3 are

V(b)(r) =V(c)(r) = − 1
4πr

(
c′vχ
cvΦ

)
m2
e

M2
Pl2(2ω + 3)

, (C.9a)

V(d)(r) = − 1
4πr

(
c′vχ
cvΦ

)2 m2
e

M2
Pl2(2ω + 3)

, (C.9b)

and the sum of all the contributions to the Yukawa potential is

V5(r) = − m2
e

4πrM2
Pl

(
1 + vχγ

vΦ

)2

2(2ω + 3) . (C.10)

After some algebra, we can show that

γ = c′

c
= − βv2

Θ
λvχvΦ

, (C.11)

and, using the fact that v2
Θ = (λv2

Φ − 6µ2)/β, we obtain the following final expression

V5(r) = − 1
4πr

m2
e

M2
Pl2(2ω + 3)

4µ4

m4
Φ
, (C.12)

where we recall that

m2
Φ = 2µ2 + βv2

Θ
3 . (C.13)

As we can see, this result perfectly agrees with both the Einstein-frame calculation

from Eq. (3.37) and the diagonalized Jordan-frame calculation in Eq. (3.70)
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Appendix D

Functions of FeynMG

D.1 Curvature building blocks

gUp[i1,i2] — Spacetime metric with raised indices, which must be specified as

Lorentz, i.e., gUp[Index[Lorentz, i1],Index[Lorentz, i2]] leads to an upper-indexed

metric gi1i2. For more information on the function Index, see FeynRules manual [143].

gDown[i1,i2] — Spacetime metric with lowered indices, which must be specified

as Lorentz, i.e., gDown[Index[Lorentz, i1],Index[Lorentz, i2]] leads to an upper-

indexed metric gi1i2.

eta[i1, i2] — Flat spacetime metric ηi1i2. The indices must be Lorentzian, such

that eta[Index[Lorentz,i1],Index[Lorentz,i2]]. The specification of lower or upper

indices is not necessary in this case, since FeynRules does not make that distinction.

Sqrtg — Square root of minus the determinant of the metric, corresponding to the

Jacobian factor,
√

−g, of the volume element. By default it is assumed as a prefactor to

any Lagrangian.
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VUp[mu,a] — Upper indexed vierbein eµa. Indices must be Lorentzian, such that

VUp[Index[Lorentz,mu],Index[Lorentz,a]].

VDown[mu,a] — Lower indexed vierbein eµa. Indices must be Lorentzian, such that

VDown[Index[Lorentz,mu],Index[Lorentz,a]].

CovDev[A,mu] — Gravitational covariant derivative. As in General Relativity, it will

take a different form depending on which object it is acting on (i.e., a spinor, scalar or

vector field).

ChrisSym[a,b,c] — Christoffel symbols Γabc of General Relativity.

RiemannTensor[a,b,c,d] — Riemann curvature tensor (4-form). It will appear in

the Lagrangian as Rabcd until the function ExpandGravity is applied.

RicciTensor[a,b] — Ricci tensor (2-form). It will appear as Rab in the Lagrangian

until the function ExpandGravity is applied.

RScalar — Ricci scalar. It will appear in the Lagrangian as RSc until the function

ExpandGravity is applied.

SHGauge[F] — Generalization of the harmonic gauge — the scalar-harmonic gauge [1],

see Eq. (2.32) — for Brans-Dicke theories with a curvature term of the form LG =

−
√

−gFR/2. It reduces to the usual harmonic gauge for the Einstein-Hilbert action with

F = M2
Pl.

CheckMetric[L] — Tests whether every pair of indices in a Lagrangian L is con-

tracted with a metric.
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D.2. Metric transformations

InsertMetric[L] — Takes a Lagrangian L and at every pair of contracted indices

inserts an upper indexed metric gµν . Useful for adapting FeynRules model files for use in

FeynMG.

InsertDevs[L] — Upgrades all partial derivatives of vector and fermion fields to

covariant derivatives. Useful for adapting FeynRules model files for used in FeynMG.

InsertCurv[L] — Applies both InsertMetric and InsertCurv to the Lagrangian

L. Useful for adapting FeynRules Model Files for used in FeynMG.

D.2 Metric transformations

ToEinsteinFrame[L, Opts] — Performs a Weyl transformation of the Lagrangian L

to the Einstein frame, in the case of Brans-Dicke-type scalar-tensor theories. By specifying

the options (Opts), the user can turn off the default inclusion of the Jacobian
√

−g, using

{Jacobian→Off}.

WeylTransform[L,w] — Performs a Weyl transformation of a Lagrangian L, such

that the metric transforms as gµν → w2gµν and gµν → w−2gµν and the vierbeins as

eaµ → weaµ and eµa → w−1eµa .

GravityOff[L] Takes the Minkowski limit for all curvature objects and eliminates all

gravitational perturbations (graviton) in a Lagrangian L.
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D.3 Expansion tools

LinearizeGravity[L,Opts] — Linearizes gravity around a flat background metric

up to second order in the gravitational sector and first order in the matter sector of a

Lagrangian L. By specifying the options (Opts), the gravitational sector can be linearized

up to third order using {Grav3pt→On} and the matter sector up to second order using

{Matter2nd→On}. The user can turn off the default inclusion of the Jacobian
√

−g, us-

ing {Jacobian→Off}. Moreover, for Brans-Dicke gravitational sectors, one can choose

to automatically use the scalar-harmonic gauge (SHGauge) using {SHGauge→ On}, and

update the rest of the covariant derivatives into their modified form from Eq. (2.29) using

{UpdDevs→ On}.

ExpandGravity[L] — Expands all the gravitational objects, such as the Ricci scalar,

Ricci tensor or Riemann tensor in terms of the metric.

ExpandCMod[L] — Expands the CMod (modification of the covariant derivatives) in

terms of the scalar degree of freedom. This function will be automatically applied once

all the scalar fields are canonically normalized.

Orderh[L,n] — Truncates a Lagrangian L up to the n-th order in the perturbation

of the metric perturbation ha,b.

OrderSimplify[L,n] — Applies the Mathematica function FullSimplify to all the

terms in a Lagrangian L of n-th order or lower in the fields.

IndexSimplify[L,{i1,i2,...}] — Replaces the Lorentz indices of all the terms of

a Lagrangian L so that equivalent terms can be combined. The second argument allows

the user to specify a set of indices from which the replacements will be chosen.

125



D.4. Tools for canonicalizing fields

IndexChange[L,{i1,i2,...}] — Replaces the Lorentz indices of a Lagrangian L se-

quentially from the set of indices {i1,i2,...}.

D.4 Tools for canonicalizing fields

CanonScalar[L] — Canonically normalizes the leading kinetic energy terms of the

scalar fields of the Lagrangian L.

CanonGrav[L] — Canonically normalizes the graviton kinetic energy, assuming that

the kinetic terms have a constant prefactor.

MassDiagMG[L] — Diagonalizes the scalar field mass matrix of the Lagrangian L.

KineticDiagMG[L,n] — Diagonalizes the kinetic energies of the scalar fields of the

Lagrangian L.

GravKinMixing[L] — Diagonalizes the kinetic mixings between the trace of the gravi-

ton and the scalar fields of the Lagrangian L.

D.5 Vacuum expectation values

VevExtract[L, Opts] — Solves for the vacuum expectation values of the real scalar

fields in the Lagrangian L. By specifying the options {Fields→ {p1,p2,...}}, the user

can choose which fields to expand around their vevs.

VevExpand[L] — Expands and solves for the vacuum expectation values of the real

scalar fields in the Lagrangian L. The function will output all the different solutions and
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a dialogue window will prompt the user to select a set of vevs for substitution into the

Lagrangian. By specifying the options {Solution→n} and {Fields→{p1,p2,...}}, the

user can choose the n-th solution and the fields to be expanded directly.

D.6 Checking functions

CheckCanonScalar[L] — Finds the leading scalar field kinetic energy terms in the

Lagrangian L and tests whether they are canonically normalized.

CheckMassMatrix[L] — Extracts the mass matrix for the scalar fields of the La-

grangian L and checks if it is diagonalized.

CheckKineticMatrix[L] — Extracts the kinetic energy matrix for the scalar fields

of the Lagrangian L and checks if it is diagonalized.

CheckGravityMixing[L] — Checks whether there is any kinetic mixing between the

trace of the graviton h and a scalar field.

D.7 Effective Planck mass

GiveMpl[L] — Extracts the effective MPl from the Lagrangian L. It can be used at

any stage of the calculation (before or after linearizing gravity or canonically normalizing

the kinetic energies).

InsertMpl[L] — Extracts and inserts the effective MPl of the Lagrangian L. It can

be used at any stage of the calculation (before or after linearizing gravity or canonically
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D.8. Output model file

normalizing the kinetic energies).

D.8 Output model file

AddScalar[P,Opts] — Adds a new massless scalar field named P into the loaded set

of fields, such that it can be recognized by FeynRules. Within the options (Opts), the

user can choose the mass and width of the associated particle by including {Mass→X} or

{Width→X}, respectively.

AddParameter[P,Opts] — Adds a new parameter named P into the loaded set of

parameters, such that it can be recognized by FeynRules. Within the options (Opts), the

user can choose its value by including {Value→X} or its interaction order by including

{InteractionOrder→X} (where X is set to 1 by default).

OutputModelMG[OldF,NewF,L,Opts] — Creates a new model file named NewF from an

original FeynRules model file OldF. The new model file will contain the same defined fields

and parameters as the original file, with the addition of all the new particles and param-

eters created using AddScalar and AddParameter, together with the Lagrangian (L), the

graviton (hµν) and Planck mass (MPl). By specifying the option {UpdateMass→True},

the masses of all scalar fields will be updated.
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