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Abstract

Medical image segmentation is a fundamental step in many computer

aided clinical applications, such as tumour detection and quantification, organ

measurement and feature learning, etc. However, manually delineating the

target of interest on medical images (2D and 3D) is highly labour intensive

and time-consuming, even for clinical experts. To address this problem, this

thesis focuses on exploring and developing solutions of interactive and fully

automated methods to achieve efficient and accurate medical image segmen-

tation.

First of all, an interactive semi-automatic segmentation software is de-

veloped for the purpose of efficiently annotating any given medical image in

2D and 3D. By converting the segmentation task into a graph optimisation

problem using Conditional Random Field, the software allows interactive im-

age segmentation using scribbles. It can also suggest the best image slice to

annotate for segmentation refinement in 3D images. Moreover, an “one size

for all” parameter setting is experimentally determined using different image

modalities, dimensionalities and resolutions, hence no parameter adjustment

is required for different unseen medical images. This software can be used for

the segmentation of individual medical images in clinical applications or can be

used as an annotation tool to generate training examples for machine learning

methods. The software can be downloaded from bit.ly/interactive-seg-tool.

The developed interactive image segmentation software is efficient, but

annotating a large amount of images (hundreds or thousands) for fully su-

pervised machine learning to achieve automatic segmentation is still time-

consuming. Therefore, a semi-supervised image segmentation method is de-

veloped to achieve fully automatic segmentation by training on a small number

of annotated images. An ensemble learning based method is proposed, which

is an encoder-decoder based Deep Convolutional Neural Network (DCNN).

It is initially trained using a few annotated training samples. This initially
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trained model is then duplicated as sub-models and improved iteratively using

random subsets of unannotated data with pseudo masks generated from mod-

els trained in the previous iteration. The number of sub-models is gradually

decreased to one in the final iteration. To the best of our knowledge, this is the

first use of ensemble learning and DCNN to achieve semi-supervised learning.

By evaluating it on a public skin lesion segmentation dataset, it outperforms

both the fully supervised learning method using only annotated data and the

state-of-the-art methods using similar pseudo labelling ideas.

In the context of medical image segmentation, many targets of interest

have common geometric shapes across populations (e.g. brain, bone, kidney,

liver, etc.). In this case, deformable image registration (alignment) technique

can be applied to annotate an unseen image by deforming an annotated tem-

plate image. Deep learning methods also advanced the field of image regis-

tration, but many existing methods can only successfully align images with

small deformations. In this thesis, an encoder-decoder DCNN based image

registration method is proposed to deal with large deformations. Specifically,

a multi-resolution encoder is applied across different image scales for feature

extraction. In the decoder, multi-resolution displacement fields are estimated

in each scale and then successively combined to produce the final displace-

ment field for transforming the source image to the target image space. The

method outperforms many other methods on a local 2D dataset and a public

3D dataset with large deformations. More importantly, the method is fur-

ther improved by using segmentation masks to guide the image registration

to focus on specified local regions, which improves the performance of both

segmentation and registration significantly.

Finally, to combine the advantages of both image segmentation and image

registration. A unified framework that combines a DCNN based segmentation

model and the above developed registration model is developed to achieve semi-

supervised learning. Initially, the segmentation model is pre-trained using a
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small number of annotated images, and the registration model is pre-trained

using unsupervised learning of all training images. Subsequently, soft pseudo

masks of unannotated images are generated by the registration model and

segmentation model. The soft Dice loss function is applied to iteratively im-

prove both models using these pseudo labelled images. It is shown that the

proposed framework allows both models to mutually improve each other. This

approach produces excellent segmentation results only using a small number of

annotated images for training, which is better than the segmentation results

produced by each model separately. More importantly, once finished train-

ing, the framework is able to perform both image segmentation and image

registration in high quality.
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Chapter 1

Introduction

Medical image segmentation refers to the process of dividing an image (e.g.

microscopy, mammogram, magnetic resonance imaging, computerised tomog-

raphy, etc.) into regions of interest (ROI). The primary objective of segmenta-

tion is to identify and extract specific areas that are related to specific clinical

tasks (e.g. tumour detection and measurement). This technique offers the ad-

vantage of eliminating redundant information from the image, enabling more

accurate analysis of the image data by focusing solely on specific areas.

Nonetheless, medical image segmentation can be a time-consuming task,

especially when dealing with 3D images. Clinical experts often need to segment

each individual 2D slice of a 3D volume to ensure an accurate segmentation

result. This process can be laborious and demanding, requiring significant

time and effort from the experts.

With the emergence of deep learning, there have been advancements in

medical image segmentation. A well-trained deep learning model can auto-

matically and accurately segment new unseen images. However, achieving

a “well-trained” model typically necessitates a substantial quantity of high-

quality annotated images in the training process. This poses a great challenge,

as it requires collecting a large number of manually annotated dataset from

clinical experts, which is often impossible due to their limited time and highly

demanded expertise. Therefore, the aim of this research work is to develop

1
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efficient and effective medical image segmentation solutions to minimise the

reliance on labour intensive image annotations by human experts.

1.1 Background and Motivation

1.1.1 Manual Segmentation is Time Consuming

To segment a medical image, one of the most accurate methods is manual

segmentation by a human expert. In the last decade, many image segmenta-

tion methods and tools were developed. These include manual segmentation

software (e.g ITK-Snap [10], 3D Slicer [11], etc.) and semi-automatic software

based on active contour [12], level sets [13], etc. Although the fully-manual

segmentation software is able to produce high-quality segmentation results, it

is often extremely time-consuming which easily takes hours for a 3D image.

Meanwhile, semi-automatic segmentation methods normally require an initial

user input, but they do not allow iterative refinement of the segmentation re-

sults if inaccurate. Therefore, interactive image segmentation methods become

a promising solution that allows iterative improvement of the segmentation re-

sults by human inputs.

1.1.2 Challenges in Machine Learning Using Limited

Annotated Data

In practical scenarios, the continuous influx of new data necessitates a time-

consuming and laborious manual segmention process, even with the assistance

of an efficient semi-automatic segmentation method. To alleviate this chal-

lenge, deep learning-based approaches offer a promising solution. By training

deep learning models on existing annotated data, these models can automati-

cally annotate new data. However, training a deep learning model to achieve

satisfactory performance typically requires a fully-supervised learning on a

substantial quantity of high-quality annotated data. Unfortunately, this con-
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siderably escalates the expenses associated with model training. To address

this issue, this thesis focuses on the development of new methods based on

semi-supervised learning, which aims to train a deep learning segmentation

model with acceptable performance using a limited amount of annotated data

in conjunction with a substantial number of unannotated data.

Once some annotated images are produced by using the manual or in-

teractive segmentation tools, there are various ways to train a model by util-

ising both annotated and unannotated images. Consistency regularisation,

generative-based method and pseudo-labelling are commonly used in deep

learning based methods[14].

The teacher-student model, a form of consistency regularisation, involves

training a teacher model on annotated data and guiding the student model to

produce consistent predictions through regularisation techniques [15]. While

this approach is effective for classification tasks, it faces challenges in handling

complex segmentation and is sensitive to the performance of the teacher model.

If the teacher model performs poorly, it can introduce biases and negatively

impact the learning process of the entire model.

Generative models can contribute to semi-supervised learning tasks in

two ways. Firstly, they can be used to augment data by generating annotated

samples, which helps address the issue of unbalanced distribution in annotated

datasets [16]. However, unlike classification tasks where images can be gen-

erated with corresponding labels, synthesising images with correct masks for

segmentation tasks is more challenging. Secondly, a generative model can be

trained on the entire dataset unsupervised for the task of image reconstruc-

tion, and then transfer the learned model to an image segmentation task. The

assumption is that the model learns the underlying data distribution relevant

to the segmentation task. The encoding part of the trained generative model

can serve as a feature extraction module for image segmentation tasks. By

fine-tuning these models using annotated images, their learned features can be

transferred effectively to the image segmentation task [17]. However, there are
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potential drawbacks of this approach. Image reconstruction tasks may result in

information loss, and the limited supervision for segmentation may introduce

bias to the annotated data. In summary, generative models offer potential so-

lutions to semi-supervised learning methods, but synthesising accurate masks

for segmentation is challenging. Training a generative model for image recon-

struction can help capture data distribution, but caution is needed to mitigate

information loss and address the bias introduced by the limited supervision.

Another approach suitable for semi-supervised learning is the pseudo-

labelling method [18], which can be applied to both consistency regularisa-

tion and generative methods. This technique involves training a predictive

model on the annotated training set and using it to assign annotations (labels

or masks) to the unannotated training set based on heuristics or rules mixed

with the annotated data. Although the generated annotations or masks are

often noisy and may not accurately reflect the true annotation, this method

can utilise the unannotated data by providing additional training informa-

tion. Pseudo-labelling allows the model to learn more robust representations

and decision boundaries, potentially improving predictive performance. It is

a flexible approach that can be easily adapted to different domains and tasks.

However, the pseudo-annotations generated from the predictive model can be

noisy or incorrect, as there is no quality control during the annotation pro-

cess. Once a pseudo-annotation is assigned, the model cannot correct errors

by itself, which can lead to perpetually incorrect results. To mitigate these

issues, incorporating regularisation techniques or ensemble methods can help

improve the robustness of the learning process and mitigate the effects of in-

correct pseudo-annotations.

In addition to the three aforementioned semi-supervised approaches, there

is another approach that can be beneficial for medical image segmentation

tasks due to the nature of medical images. Many medical datasets exhibit

similar features and structures, such as wrist MRI, cardiac MRI, brain MRI,

abdominal CT, etc. Moreover, in certain disease diagnoses, multiple medi-
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cal images of the same patient may be available from different time points.

In such cases, image registration, which aligns two or multiple images with

similar structures into a common template space, can be used for the task of

image segmentation. One technique that can be utilised for this purpose is

the spatial transformer network (STN)-based unsupervised image registration

model [9]. This model generates a displacement field for aligning images. By

applying the corresponding displacement field, the mask information from one

image can be transferred to the unannotated image, effectively annotating the

previously unannotated image. Research has shown that incorporating mask-

guided training can further improve the quality of segmentation results [19]

[20]. Building upon this approach, the combination of image registration and

segmentation networks can mutually enhance each other through joint training

[21].

However, the use of image registration networks for image segmentation

is still an area of limited research. To achieve joint training for various types

of data, it is necessary to develop a general image registration network that

can handle both small and large deformations. Similar to the pseudo-labelling

method, the integrated image registration and segmentation approach is sen-

sitive to the quality of pseudo-masks predicted by both models. Therefore,

implementing quality control mechanisms is necessary to ensure the reliability

of this approach.

1.2 Aims and Objectives

Based on the challenges discussed above, the aim of this thesis is to pro-

pose efficient and effective solutions for medical image segmentation, spanning

from data collection to fully automated segmentation models, with a focus

on reducing human labour. This research work achieves this aim through

the implementation of an interactive image segmentation software and two

semi-supervised learning approaches. To successfully accomplish this aim, the
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following specific objectives are addressed:

• To ensure the quality of the deep learning model and alleviate the com-

plexity of segmentation, it is necessary to gather data from the clini-

cal domain and seek input from experts for several segmentation of the

dataset. In order to meet the quality standards and enhance efficiency,

it is imperative to design an interactive segmentation tool for the initial

stage. This tool should enable users to swiftly perform automatic im-

age segmentation based on user prompts. Moreover, it should provide

the functionality for users to easily make corrections to any incorrectly

segmented regions.

• A generic semi-supervised learning framework for various types of med-

ical images. The framework will be capable of learning fully automatic

segmentation by leveraging both annotated and unannotated images.

The objective is to achieve comparable results to fully supervised seg-

mentation models, which rely solely on annotated images.

• As motivated in the background section of this chapter, based on the

characteristics of medical images to achieve a better few-shot learning,

another approach explored in this thesis to achieve semi-supervised im-

age segmentation is the combination of image registration and image

segmentation. Two sub-objectives need to be achieved:

– An unsupervised image registration network that can accurately

align images at both small and large scales for robust image align-

ment purpose. The network is designed to enable learning without

the need of any masks or annotated data. Furthermore, the network

should be capable of enhancing its performance by incorporating

guidance from segmentation masks.

– A joint model that combines image registration and image segmen-

tation networks. The model should be capable of learning from
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a limited number of annotated images to obtain annotation infor-

mation. Moreover, the model is designed to ensure that both the

image registration and segmentation networks progress together in-

stead of regressing together. This means that the model is able to

avoid each network learning incorrect information and ensure their

collaborative advancement.

1.3 Thesis Structure and Key Contributions

This thesis consists of seven chapters, including introduction, literature review,

four technique chapters and conclusions.

In this specific chapter, a concise overview of the background information

is presented to identify research gaps. These gaps are then utilised to define the

aims and objectives of the study. Finally, this chapter wraps up by emphasising

the main contributions made by this research work in the next few paragraphs

of this section.

Chapter 2 provides the literature review focusing on image segmentation,

semi-supervised learning, and image registration. The section dedicated to

image registration emphasised the exploration of research that integrates image

registration and image segmentation, which is relevant to the present study.

Chapter 3 serves as the first technical chapter in this thesis, which presents

an interactive semi-automatic software. This software provides effective anno-

tation of multiple categories for 2D and 3D medical images. Moreover, it

includes an automated recommendation function for annotating the next best

slice in 3D, thereby enhancing efficiency in the segmentation process. Utilising

this tool, clinical experts can easily create annotations and rectify erroneous

segmentation results with a few clicks. The annotations collected from these

experts will be valuable for the subsequent chapters.

Chapter 4 introduces a new semi-supervised deep convolutional neural net-

work (DCNN) based on an ensemble learning approach. Initially, the network
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is trained using a limited number of annotated images. By incorporating a

large set of unannotated images, the model’s performance is greatly enhanced.

This approach enables the construction of a generic automatic segmentation

model even with a dataset that only contains a small number of annotated im-

ages. By employing a pseudo-labelling approach, the framework is adaptable

to various types of data.

Chapter 5 introduces a novel multi-resolution image registration frame-

work designed to accomplish robust deformable image alignment, even for large

deformations. This framework also demonstrates its applicability in the im-

age segmentation task by leveraging registration to segment unseen images.

By incorporating a mask-guided loss term, the registration accuracy within

the masked region shows a significant improvement. This enhancement proves

beneficial in establishing the semi-supervised registration-segmentation frame-

work discussed in chapter 6.

Chapter 6 presents the proposed a semi-supervised registration-segmentation

framework designed for the automated segmentation of medical images. This

framework employs an iterative optimisation process that leverages a pre-

trained segmentation model trained using a limited number of annotated im-

ages and an unsupervised image registration model using all images. By

integrating a segmentation quality assessment block, both the segmentation

model and the registration model undergo iterative improvements, leading to

enhanced performance in both image registration and segmentation.

Chapter 7 draws conclusions for this thesis, providing a comprehensive

summary of the research conducted and the outcomes achieved. It includes

a thorough discussion on the limitations of the current work and proposes

future plans to address these limitations. Additionally, it highlights additional

research conducted during the PhD period, such as medical quality assessment

for classification task and the development of a generative model-based data

augmentation approach for age estimation on brain MRI datasets (combining

image generation and regression techniques).



Chapter 2

Literature Review

2.1 Introduction

This chapter presents a literature review of two key topics that are related to

the research of this thesis: image segmentation and semi-supervised learning.

Additionally, it introduces the background of medical image registration to

support the integration of registration and segmentation framework proposed

in chapter 6. As a brief outline, section 2.2 presents a concise review of im-

age segmentation. Section 2.3 provides an overview of semi-supervised deep

learning methods. Section 2.4 explores the technology and research on medical

image registration that is relevant to this thesis, along with a brief introduc-

tion to the joint model of image registration and segmentation. Lastly, section

2.5 summarises the main findings of this chapter, discusses the limitations of

existing work, and sets the stage for the research conducted in this thesis.

2.2 Image Segmentation

Image segmentation is the process of partitioning a digital image into multiple

image segments based on the semantics of each region [22]. It can simplify the

content of images which is beneficial to image analysis, so, it is widely used in

various fields (e.g. road environment segmentation for self-driving (Fig. 2.1)

9
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Figure 2.1: Road semantic segmentation example. From [1] under CC BY 4.0
license.

Figure 2.2: Image segmentation examples for 3D geographic image. Left: original
3D image. Right: segmentation results (red: walls. yellow: gates. blue: buildings).
From [2] ©2021 IEEE.

Figure 2.3: Medical image segmentation examples from [3] ©2015, Springer In-
ternational Publishing Switzerland. (a) and (c) are the original images, (b) and (d)
are the corresponding segmentation results.

[23] [2], geographic objects segmentation for geographic information system

(Fig. 2.2) [1, 24], lesion segmentation for medical imaging (Fig. 2.3) [3]). This

thesis mainly focuses on the field of medical imaging.

2.2.1 Classical Methods

Manual segmentation is time-consuming and laborious, so automatic segmen-

tation comes into play. Since the 20th century, many classical automatic seg-

mentation methods have been proposed, such as Ostu’s threshold [25], K-
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means clustering [26], histogram-based optimal segmentation [27], edge relax-

ation [28], region growing [29].

More advanced, in some implementations, the image to be segmented is

considered as a graph. User’s annotations serve as a prior knowledge to de-

termine the likelihood of individual pixel belonging to each of the annotated

classes. Together with this prior information, the pixel-wise similarity and

label consistency are normally modelled by Markov random filed or condi-

tional random field (CRF). The image segmentation task is then converted

into an energy optimisation problem over a graph structure. Although exact

inference of such a structure is intractable, a lot of efforts have been made to

develop approximation algorithms, including iterated conditional modes [30],

belief propagation [31], max-flow/min-cut [32] and filter-based inference [33],

in which filter based mean field inference and graph cut are the two most

popular solutions.

Boykov et al. [34] proposed the two mostly used graph cut algorithms:

αβ-swap and α-expansion. In αβ-swap, for a pair of masks α and β, it ex-

changes the annotations between an arbitrary set of pixels annotated α and

another arbitrary set annotated β. The algorithm generates a mask such that

there is no swap move that decreases energy in the predefined graph. The

αβ-swap method works well for a binary graph (two-classes) but difficult to be

extended to multi-class segmentation. Alternatively, α-expansion is suitable

for a multi-class problem. It starts with any mask and runs through all masks

iteratively. For each mask α, it computes an optimal α-expansion move and

accepts the move if the energy decreases. The algorithm is terminated when

there is no expansion move that decreases the energy. Graph cut method has

been applied to interactive image segmentation by Rother et al. [35], called

“grab cut”. In grab cut, users only need to draw a bounding box around

the object of interest, the foreground object is then segmented using graph

cut. The segmentation result can be further refined using additional scribbles.

Grab cut works superbly with minimal user input, but it is limited to binary
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class segmentation and the computational speed is slow in 3D. Kohli et al.

[36] extended the class of energy functions for which the optimal α-expansion

and αβ-swap moves can be computed in polynomial time. However, the infer-

ence speed and memory usage is still inefficient comparing to the mean field

inference method, especially when there are multiple classes in 3D images.

Many methods of mean field approximations in computer vision have been

proposed, such as object class segmentation [37]. The mean field algorithm

approximates the exact distribution P using a distribution Q calculated as a

product of independent marginal by minimising the KL divergence D(Q|P ).

Although the approximation of P as a fully factored distribution is likely to

lose some information in the distribution, this approximation is computation-

ally efficient. Krähenbühl et. al. [33] developed a filter-based method for

performing fast fully connected CRF optimisation, which is the core algorithm

used in chapter 3.

These automatic methods are normally application dependent, which can

not work robustly unless the object of interest has a homogeneous image in-

tensity and well distinguishable from the other image regions. Many of these

methods nowadays are used as a pre-processing step of other more sophisti-

cated methods, such as region of interest extraction for removing redundant in-

formation and initial annotation for weakly supervised machine learning meth-

ods.

2.2.2 Interactive Image Segmentation

Besides the above classical methods, this section provides a brief overview of

popular open-source manual segmentation software. These include both purely

manual segmentation techniques and semi-automatic segmentation methods.

These tools are more commonly used nowadays than the classical methods, as

it ensures the segmentation quality with iterative user interactions.

Many commercial and open-source software offer manual delineations for
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medical images, including line tracing, polynomial curve fitting, area painting,

etc. ITK-Snap [10] is an open-source and widely used tool that is mainly ded-

icated to medical image segmentation. It offers polygon and paintbrush tools

for flexible editing of both 2D and 3D images. Another widely acknowledged

open-source tool is 3D Slicer [11]. It provides manual tools such as area paint-

ing, level tracing and scissors, which are normally used as post-processing to

refine segmentation results using threshold or region growing. These manual

tools offer good quality control but require tremendous time and effort from

the user.

Semi-automatic methods take the advantage of automatic segmentation

and allow users to intervene with the segmentation process. One type of user

interaction is initialisation, such as drawing seeds or bounding boxes inside or

around the target object. Then the seeds or initial contour evolve to the desired

object’s boundary by region growing [38] or minimising an energy function (e.g.

active contour [12], level sets [13], etc.). These methods do not offer post-

segmentation user interactions to further refine the results and the parameter

settings are highly application dependent. Another type of user interaction is

to iteratively improve the segmentation results by adding scribbles to different

classes (e.g grow cut [39], graph cut [34], etc.). At each iteration, the method

propagates these mask to the whole image by optimising an energy function.

This is more or less guaranteed to achieve a satisfactory result with reduced

workload compared to a manual process, which is desirable for medical image

segmentation. These tools are also utilised to provide annotations of a dataset

to train deep learning based methods.

2.2.3 Deep Learning based Methods

More recently, many image segmentation methods have been proposed based

on deep learning techniques. This section introduces several state-of-the-art

deep learning based image segmentation methods.
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Region-CNN Based Models

Figure 2.4: R-CNN overview: Input a image, locate 2000 object candidate
bounding-boxes, and then use CNN to extract the feature from each candidate
bounding-box, then use classification algorithm to classify and recognise the objects
in each candidate bounding-box. From [4] ©2014 IEEE.

In the end of 2013, Girshick et al. [4] proposed one of the first deep learning

based image segmentation network, Regions with Convolutional Neural Net-

work Features (R-CNN). For a given image, the R-CNN segment it through 4

steps (shown in Fig. 2.4): 1) select candidate bounding-boxes using selective

search algorithm. 2) extract features by using trained CNN models. 3) clas-

sify the object in each candidate bounding-boxes. 4) find the tighter bounding

boxes by shrinking the bounding-box to the edge of target using regression

model. The method was evaluated on the PASCAL VOC challenge dataset

[40] and the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

dataset [41] [42], outperform other object detection and image segmentation

methods at the time. However, The selective search algorithm cannot be GPU

accelerated, which reduces the model’s speed. Extracting the features using

CNN for 2000 candidate bounding-boxes is also not efficient. Additionally, due

to the limitation of memory, the model needs to write the image of each can-

didate bounding-box to the hard disk, which slows down the inference speed.

Finally, the whole model is not end-to-end (CNNs extract image features, clas-

sification models predict categories, and regression models find tight boundary

boxes). Each part is trained separately, which is troublesome to organise the

whole structure.
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Figure 2.5: Fast R-CNN overview: An image and multiple regions of interest are
input into the full convolutional network. Each RoI is pooled into a fixed-size feature
map, which is then mapped to feature vectors via the full connection layer. Two
outputs for classification and regression with multi-task loss function achieved end-
to-end training. From [5] ©2015 IEEE.

In the following years, the extensions of R-CNN (Fast R-CNN [5], Faster

R-CNN [43] and Mask R-CNN [6]) fill the deficiency of R-CNN and achieve

remarkable results in the field of object detection and image segmentation. As

shown in Fig. 2.5, instead of send 2000 candidate bounding-boxes to CNN

model in R-CNN, the CNN in Fast R-CNN extracts features from an image

with multiple regions of interest (RoIs). This greatly reduces the training

parameters and significantly improves the training speed. In addition, Fast

R-CNN also combines the two loss functions, object classification and the

boundary box regression into one, so that they share parameters and train

together. It further reduces the number of training parameters, and realises

end-to-end training of object detection and segmentation. Moreover, the Faster

R-CNN introduces the Regions Proposals Networks (RPN) to select candidate

bounding-boxes. A CNN extracts feature maps from input image, the Re-

gions Proposals Networks (RPN) select candidate boxes automatically, then

the classification and regression layers local and segment the object. So far,

R-CNN achieved single-model full-function end-to-end training.

In 2017, He et al. [6] proposed the Mask R-CNN. This method utilises the

previous R-CNN algorithm, combines Faster R-CNN with FCN (described in

next sub-section), and obtains excellent results on instance segmentation tasks.
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Figure 2.6: The framework of Mask R-CNN. From [6] ©2017 IEEE.

As shown in Fig. 2.6, Mask R-CNN has three outputs. The first one is a class

label for each object. The second one is the offset for each bounding-box.

The third one is a pixel-wise mask for each object from FCN. Thus, Mask

R-CNN can predict pixel-wise segmentation results for each instance in the

image. The method outperformed all previous methods on different Common

Object in Context (COCO) challenge.

R-CNN based methods have shown excellent performance in the field of

object detection and achieved good results on instance segmentation tasks,

however, there is still room for improvement in the segmentation of object

details (semantic segmentation).

Fully Convolutional Networks

In 2015, Long et al. [7] proposed Fully Convolutional Network (FCN) which

is one of the first pixel-wise image semantic segmentation method. As shown

in Fig.2.7, different from classical CNN, FCN uses the deconvolutional layer

instead of the fully connected layer + softmax layer after the feature extraction

layers (convolutional layer). The deconvolutional layer up-samples the feature

map of the last convolutional layer to restore it to the same size as the input

image. Finally, pixel by pixel classification is carried out on the up-sampled

feature map, which achieves dense predictions for each pixel. In short, the
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Figure 2.7: Framework of the Fully Convolutional Network. It can efficiently learn
to make dense predictions for per-pixel tasks like semantic segmentation. [7] ©2015
IEEE.

difference between FCN and CNN is that the last fully connected layer of

CNN is replaced by the convolutional layer, and the output is a segmented

image.

However, if the encoder down-samples the image multiple times, direct

amplification of the final feature map back will lead to inaccurate segmenta-

tion results. To overcome this problem, the paper proposes a slightly higher

precision of the mixed amplification structure. It combines multi-resolution

features from coarse to fine. For example, as shown in Fig. 2.8, the lowest pre-

cision output FCN-32s is directly obtained from the final convolutional layer

conv7. A more precise output FCN-16s is obtained by combining the feature

map from pooling layer pool4 and the upsampled convolutional layer conv7.

As with the previous method, the output of FCN-8s combines the output of

pool3, pool4 and conv7 together, achieves improved segmentation precision.

The methods achieved state-of-the-art performance on multiple datasets, in-

cluding PASCAL VOC, NYUDv2 [44], and SIFT Flow [45].
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Figure 2.8: Coarse to fine combination of feature maps for FCN. From [7] ©2017
IEEE.

Encoder-decoder based Models

To further solve the problem of low precision of FCN, the encoder-decoder

based methods were proposed. In 2015, Noh et al. [8] published one of the

first encoder-decoder based semantic segmentation network known as Decon-

vNet. Different from the FCN, an decoder is added to the end of encoder

(shown in Fig. 2.9). Inspired by FCN, the encoder using fully convolutional

layers adopted from VGG-16 [46]. The decoder is a multi-layer deconvolutional

network, which maps the feature vector from encoder to a accurate segmenta-

tion map. In this way, the network is able to generate pixel-wise segmentation

results for a given image. In the same year, Badrinarayana et al. [47] proposed

SegNet which is similar to DeconvNet, but it adds a batch normalisation layer

after each convolutional layer and removes the fully connected layer between

the encoder and the decoder. Both methods achieved remarkable results on

semantic segmentation tasks.

Since then, more and more encoder-decoder structures have been proposed

for segmentation, e.g. RefineNet [48], U-Net [3], GCN [49], etc. With the

development of deep learning techniques, other structures such as attention

mechanisms have been added to encoder-decoder structures to further improve

the accuracy of segmentation, such as Chen’s scale-aware network [50] and

Fu’s dual attention network [51]. In recent years, one of the most cutting-
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Figure 2.9: Deconvolutional semantic segmentation. One of the first encoder-
decoder based semantic segmentation network. The Encoder is adopted from VGG-
16, and the decoder consists with convolutional layer and deconvolutional for up-
sampling. Two fully connected layer is used to connect encoder and decoder. From
[8] ©2017 IEEE.

edge technique of attention mechanism, transformer, has been extended from

Natural Language Processing (NLP) area to Computer Vision (CV) area, and

is widely used in image segmentation tasks. For example, inspired by Vision

Transformer (Vit) [52], Strudel et al. [53] proposed the Segmenter, which uses

a pure transformer structure to encode and decode the image. The method

was evaluated on the challenging ADE20K [54] dataset, and outperformed all

previous works.

2.2.4 Medical Image Segmentation

In medical imaging field, image segmentation is a basic and crucial step for

many biomedical image analysis tasks (e.g. tumour quantification, cell segmen-

tation, organ analysis, etc). Early approaches for medical image segmentation

typically relied on techniques such as edge detection, region growing and tradi-

tional machine learning techniques. These methods have achieved good results

to some extent, but compared to other natural images, medical images tend

to be noisy, blur and low contrast. Hence, medical image segmentation re-

mains one of the most challenging topics in computer vision area. In addition,

the two most commonly used medical images, CT (Computed Tomography)

and MRI (Magnetic Resonance Imaging), are 3D data, which also make the

segmentation more challenging. With the rapid development of deep learning

techniques, convolutional neural networks (CNNs) have been successfully im-
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plemented based on hierarchical feature representation of the images. CNNs

for feature learning provide excellent segmentation results for medical images

due to their insensitivity to image noise, quality, contrast, etc.

These deep learning-based methods are widely used in various areas of

medical image segmentation, including 2D: cell segmentation [55] [56], skin

lesion segmentation [57] [58], retinal vessel segmentation [59] [60], etc., and

3D: cardiac segmentation [61] [62], liver segmentation [63] [64], brain tissue

segmentation [65] [66], tumour segmentation [67] [68] [69], etc.

Figure 2.10: U-net architecture (example for 32x32 pixels in the lowest resolution).
Each blue box corresponds to a multi-channel feature map. The number of channels
is denoted on top of the box. The x-y-size is provided at the lower left edge of the
box. White boxes represent copied feature maps. The arrows denote the different
operations. From [3] ©2015, Springer International Publishing Switzerland.

It is especially worth noting that Ronneberger et al. [3] proposed one of

the most popular medical image segmentation network in 2017, known as U-

net. As shown in Fig. 2.10, U-net was named based on the shape of the model,

which resembles a capital U. Similar to DeconvNet, it has an encoder-decoder

structure. The encoder part down-samples the image with convolutional lay-

ers to extract features, similar to FCN. The decoder part uses deconvolutional
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layers to up-sample the learned feature maps to generate the final pixel-wise

segmentation results. Different from the previous encoder-decoder based meth-

ods, a skip-connection operation from encoder to decoder is added at every

resolution to combine low- and high-resolution feature maps. With this strat-

egy, U-net won the first place in ISBI cell tracking challenge 2015. U-net is also

widely used in other medical image segmentation tasks. It has now become

the benchmark for most medical image segmentation tasks and has inspired

many recent improvements such as 3D U-net [70], V-Net [71], H-DenseUNet

[72], TransUNet [73].

Later, Isensee et al. proposed nnU-Net, also known as “no-new-UNet”,

which incorporates a self-configuring framework for the original U-Nets [74].

nnU-Net is capable of automatically optimising hyper parameters and apply-

ing data augmentation strategies without the need for manual intervention.

The author demonstrated that nnU-Net achieved top rankings in various pub-

lic medical image segmentation challenges, and other researchers have also

consistently ranked highly using this framework in well-known medical seg-

mentation challenges. This dominance showcases the power of U-Net as a

fundamental network for medical image segmentation tasks. Therefore, in this

thesis, all deep learning-based medical image segmentation tasks will utilise

U-Net as the foundational network.

2.3 Semi-supervised Deep Learning

Nowadays, many encoder-decoder based deep convolutional neural networks

(DCNNs) such as U-Net [3] have achieved state-of-the-art performance for im-

age segmentation using fully-supervised learning. However, data annotation is

extremely time-consuming especially for medical imaging where highly skilled

expertise is required. Several methods have been proposed to address this chal-

lenge. Data augmentation is commonly used as an effective solution. A few

studies show that geometric transformations and intensity shifts to increase the
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number of annotated data can achieve better performance than only using the

original annotated data [75]. In this section, another approach is introduced,

deep learning based semi-supervised learning, which uses both annotated and

unannotated data for deep learning model training. By extracting annotation

prediction related information from unannotated data, boost the performance

of predictive models.

Depending on the loss function and model design, semi-supervised learn-

ing can be classified into various types, including consistency regularisation

methods, generative methods, pseudo-labelling methods and graph-based meth-

ods [14] [76]. Based on the relevance of the study, this section will only give a

brief introduction about generative methods, consistency regularisation meth-

ods and pseudo-labelling methods.

2.3.1 Generative Model based Methods

As mentioned above, to ensure effective semi-supervised learning, the model

needs to be able to learn information about the annotation predictions from

the unannotated data. For a generative model, the key task is to learn and

model the real distribution of the training dataset and then generate new data

from this distribution.

In this case, one of the most popular generative models, Generative Ad-

versarial Network (GAN) [77], is widely used to generate data that matches the

real data distribution. A typical GAN is utilised for generating high-quality

images from a random latent vector. It has two parts, a generator G and a

discriminator D. It is trained by optimising the following objective function:

min
G

max
D

Ez [D (G (z))] − Ex [D (x)] (2.1)

where G : z → x is the generator that maps an input noise z to its target

generated image x. D indicates the discriminator that classifies if an image

is real or fake. The generator intends to fool the discriminator by producing
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realistic images, and the discriminator aims to identify the fake ones from the

real images.

To achieve semi-supervised learning, a simple way is to combine the lim-

ited annotated data with synthetic data together to create a combined dataset

to train a fully-supervised model. For example, Maayan et al. [16] proposed a

data augmentation method which enlarges the size and diversity of the train-

ing dataset by adding synthesised images using GAN. It improved the model

performance significantly on a liver lesion classification task. Similarly, Qin

et al. [78] introduced a GAN-based data augmentation method with style-

based GAN architecture. By involving the progressive GAN [79] and the style

control technology from styleGAN [80], it achieved a high resolution and rich

diversity image generation on a small, complex and class-imbalanced public

skin lesion dataset, ISIC 2018 [81] [82]. Then a classification model refines

the pre-trained ResNet50[83] model on both real and synthesised data. The

approach successfully fills in the imbalances of the original data and delivers

remarkable classification results for skin lesion diagnostic tasks.

Generative model based data augmentation has emerged as a promising

approach to support semi-supervised learning. However, the effectiveness of

this method is limited by the quality of the generated images. As a result, an

alternative way to leverage the generative model in semi-supervised learning is

to reuse the discriminator for classification tasks. This approach is based on an

assumption that the generative model learns the transferable data distribution

relevant to the image down-sampling task. In a notable study conducted in

2015, the categorical generative adversarial networks (CatGAN) [84] was pro-

posed by Springenberg, where they integrated the discriminator with a classi-

fication function. They then used a classification loss to make the generator

generating samples uniformly across all categories such that the discriminator

has highly deterministic categories, and make the discriminator classifying the

input samples evenly and accurately. Similarly, the semi-supervised learning

GAN (SGAN) [17] and the improved GAN [85] were also proposed to address
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the semi-supervised learning problem. They modified the output of the dis-

criminator, transforming it from a binary classification of real or fake to a

multi-class classification of [0, 1, 2, ..., K, fake], where K represents the class

labels. The researchers trained this new model using both annotated and

unannotated data, employing two distinct loss functions. The supervised loss

is based on the annotated images and aims to minimise the error in predict-

ing the class labels. On the other hand, the unsupervised loss utilises the

unannotated images to distinguish between real and fake images.

However both the above two approaches are for semi-supervised classifi-

cation tasks, which are difficult to be adopted for image segmentation. The

synthetic method has a high risk to generate unmatched image and mask, and

add segmentation term is much difficult than adding a classification term to

the discriminator. Only a few studies have been conducted on semi-supervised

learning tasks using GANs. One such example is a study by Lahiri et al. (2018)

[86], where the discriminator in GAN was utilised for both image segmentation

and distinguishing between real and generated fake images. By incorporating

annotated images, the segmentation accuracy was improved, while the utilisa-

tion of unannotated images enhanced the discrimination power. However, it is

important to note that this particular method primarily focuses on extracting

global information from the images to enhance the discrimination capabilities,

rather than emphasising the extraction of segmentation-specific information.

2.3.2 Consistency Regularisation-based Methods

Besides the generative model based methods, another well-known method for

semi-supervised learning is to use consistency regularisation. It is based on the

assumption that when a very small realistic perturbation is added to a data,

the class label of that data should not change. For instance, if one creature is

labelled as a “cat” and another creature has the same appearance but the eye

colour is green instead of red, it is reasonable to label this creature to “cat” as
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well rather than being classified as a completely different category, such as a

“dog”. In general, consistency regularisation aims to regularise the model by

enforcing consistency between different representations or predictions derived

from the same input but with different perturbations.

In semi-supervised learning, consistency regularisation is a loss function

that focuses on the unlabelled images. By adding small perturbations to the

unannotated data, the model is expected to produce consistent outputs. In

2015, Rasmus et al. proposed the Ladder network for semi-supervised image

classification by introducing a consistency regularisation loss to the unanno-

tated images [87]. They extended the classification network by adding a noisy

encoder and a denoising decoder. In details, given an input image, denoted

as x, the Ladder Network produces two outputs: a clean prediction y and a

noised output y′. The noised output is generated by injecting Gaussian noise

into each layer of the encoder. The denoising decoder then takes the noisy rep-

resentations from each layer of the encoder as input and reconstructs the orig-

inal input x. To achieve consistency regularisation for the unlabelled images,

the Ladder Network minimises the difference between the original input and

the reconstructed input at each layer. This encourages the model to produce

consistent predictions and learn robust representations. In combination with

a supervised loss computed on the annotated images, this method achieves

remarkable results surpassing those obtained when using annotated images

alone. In subsequent works, Laine and Aila [88] simplified the Ladder Net-

work architecture by replacing the denoising decoder with a generative model.

This modification aimed to streamline the model and reduce its complexity.

They then introduced an alternative version, Temporal Ensembling, that in-

corporated ensemble-based temporal consistency into the model’s predictions,

utilising temporal information to enhance the accuracy of the predictions. It

achieved the state-of-the-art results on various semi-suerpvised learning bench-

marks.

Inspired by the Pi-Model and Temporal Ensembling, the Mean Teacher
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method was proposed by Tarvainen [15]. It adopts a teacher-student structure,

where the teacher model learns from annotated images and instructs the stu-

dent model by employing consistency regularisation. During training, when

provided with the same input, the goal of the student model is to produce

the same predictions as the teacher model. The divergence between the two

models is optimised through a consistency loss function. Evaluation of this

approach on a public classification dataset demonstrates its superior perfor-

mance compared to Temporal Ensembling. Substantially, the Dual Students

model [89] utilises two student models with different initialisation of weights to

mitigate bias and enhance prediction stability in compare to the Mean Teacher

approach.

The teacher-student model is also able to be adapted to the image seg-

mentation tasks. Cui et al. proposed a semi-supervised teacher-student model

for brain lesion segmentation [90]. Similar to the Mean Teacher, the teacher

model is trained on labelled dataset, and the student model learns from both

the real data and the predicted results of the teacher model. Hang et al. also

proposed a similar work but added a local attention to the target region for

left atrium segmentation [91]. Zheng et al. added a random Gaussian noise to

the student model when updating the teacher model to improve the robust-

ness of the network [92]. Luo et al. conducted an investigation where they

employed the Transformer architecture instead of CNN in the teacher-student

model for achieving remarkable results on a public benchmark [93]. However,

in most implementations of the teacher-student model, consistency regulari-

sation is employed by minimising the discrepancy between the predictions of

the teacher model and the student model. This process can be seen as a form

of self-learning, where pseudo-masks are utilised. Moreover, the consistency

regularisation method used for both image classification and image segmenta-

tion tasks is highly sensitive to the annotated dataset. If there is a bias in the

annotated data, it can negatively impact the overall performance of the model

during the learning process.
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2.3.3 Pseudo-labelling Methods

Another effective and widely applicable method for semi-supervised learning

is pseudo-labelling [18]. Essentially, this method involves using a predictive

model to generate pseudo annotations for unannotated data and then train a

model using both the annotated images and the images with pseudo annota-

tions. In this way, the model can learn information from the whole dataset.

However, a major drawback of the pseudo-labelling method is that the model

cannot correct its own errors. If the model overly confidence in its predictions

without acknowledging the potential of inaccuracies, it may result in incorrect

outcomes, and the error is propagated during the training process.

To address this issue, an older training strategy called Co-Training was

proposed [94]. It requires a dataset where each data has two different views.

Two separate models (M1, M2) are trained on the different views. The data

is iteratively added to the other subset based on the model’s confidence on

its predictions. Specifically, in each iteration, if one of the models (e.g. M1)

has a high level of confidence in the predicted result for a sample x, M1

generates a pseudo-label for that sample and is then included in the training

subset of the other model M2. As an improvement, democratic co-learning

was introduced to address the challenge of collecting different views for every

dataset [95]. Instead of relying on different view data, it employs different

learning algorithms and avoids bias through majority voting.

For the image segmentation task, how to evaluate the confidence of the

predicted results and select the valuable pseudo masks are challenging. Instead,

some methods use trusted models to generate pseudo masks. For example, Sun

et al. [96] used a teacher model to generate pseudo masks for the task of liver

segmentation. Filipiak et al. also used a teacher model to generate the pseudo

mask but use bounding boxes and mask scoring to filter out noisy pseudo labels

[97]. Feng et al. [98] [99] pointed out that it is difficult for models to reveal

their own errors. Instead, exploiting inter-model differences between different
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models is the key to locating pseudo-labelling errors. They then proposed the

dynamic mutual training (DMT) which trained two different models mutually

by dynamically re-weighting the loss function. The methods achieved state-

of-the-art performance in both classification tasks and segmentation tasks.

Bai et al. [100] developed a self-learning technique which can correct pseudo

masks through a post-processing approach. A fully supervised model is firstly

trained on annotated data, then pseudo masks are generated for unannotated

data using this model and refined by a fully-connected conditional random field

(CRF). Subsequently, both annotated data and the data with pseudo masks

are used to refine the initial model. This process is repeated until convergence.

Compared to other previously mentioned methods, the pseudo-labelling

technique offers a more straightforward approach for semi-supervised image

segmentation learning. By generating pseudo masks for the unannotated

data and incorporating them into the training process, this method enables

the model to leverage a larger dataset and improve performance in a semi-

supervised setting. However, careful handling of the pseudo masks is essential

to ensure reliable results and mitigate the risk of incorporating erroneous in-

formation into the learning process.

2.4 Medical Image Registration

Image registration is a technique that geometrically transforms one image

(source) to another (target) image’s space, so that the transformed source

image is similar and comparable to the target image. The estimated geometric

transformation and the warped source image can then be utilised for further

analysis. It is a commonly used method in a variety of fields, including med-

ical imaging, remote sensing, computer vision, and robotics. It particularly

plays a very important role and has been widely used in the medical field. For

instance, aligning medical images (e.g. MRI, CT) that captured from different

time points or different subjects for quantitative analysis in disease diagnosis
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and prognosis.

Image registration methods can be broadly categorised into two types:

rigid registration and non-rigid registration. Rigid registration involves a

global match between two images while preserving the original shapes of objec-

tives within the images. This type of registration typically includes operations

such as shifting, rotation, and scaling transformations. On the other hand,

non-rigid registration allows for local deformations, enabling more complex

transformations. It aligns images by utilising a computed deformation field

derived from mathematical models or algorithms.

In medical imaging area, both methods motioned above are widely used.

Specifically, with the property of rigid transformation preserving, rigid regis-

tration are commonly used in alignment of different images of the same patient,

such as aligning images from different modalities (e.g. CT and MRI) and align-

ing images at different time point for the same lesion or organ (e.g. different

cycles of cancer).

2.4.1 Classical Image Registration Methods

Figure 2.11: Diagram of image registration.

Prior to the deep learning era, there are many non-learning-based approaches

proposed by researchers to align two or more images. As illustrated in Fig.

2.11, the traditional image registration methods normally include four steps

[101]: feature detection, feature matching, geometric transformation estima-
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tion and image transformation (warping). There are many popular image

registration methods developed based on this pipeline. For example, intensity-

based methods using sum of squared difference (SSD) [101], normalised cross-

correlation (NCC) [102] and mutual information [103] as the similarity mea-

surements, feature-based method based on scale invariant feature transform

(SIFT) [104], point-based method based on iterative closest point (ICP) algo-

rithm [105], etc.

However, these non-learning-based methods normally require careful pa-

rameter tuning in each application to achieve satisfactory results, and it is

time-consuming to register large images such as 3D medical images. It takes

several minutes or more for the alignment of one pair of images.

2.4.2 Deep Learning-based Image Registration Meth-

ods

Recently, deep learning methods have achieved remarkable performance in su-

pervised learning. It is able to learn the relation between the known input x

and the target result y that aims to predict y for a given x. In image registra-

tion task, the paired source image and target image can be considered as two

inputs x1 and x2 and the geometric transformation is the target y. Therefore,

with a set of given paired x1, x2 and y, a supervised deep learning network can

be trained. Salehi et al. [106] proposed a deep rigid registration method using

this idea. They apply the rigid transformations, including random rotations

and translations, to the source image x1 to get the simulated target image

x2, the transformation metric here is the y in the model training. With joint

losses, mean squared difference and geodesic distance, the method achieved a

remarkable performance in a 3D brain MRI dataset. Instead of rigid trans-

formation, Sun et al. proposed the DVNet [107] which collects a large set of

artificially generated displacement vectors (DVs) by expert. Then a fully con-

volutional neural network (CNN) was trained to estimate the DVs by giving
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paired source and target images. The method is able to produce robust re-

sults on single-modal liver data, and also works well on simulated CT-US data.

However, it did not work on the real CT-US data due to the large appearance

differences between the real and simulated images.

Supervised deep learning image registration methods have greatly changed

and enhanced the accuracy and effectiveness of image registration compared

to the non-learning based techniques. These methods need a training process

that involves using a group of example images and a transformation matri-

ces, which is done offline. When registering new images, the computational

speed is much faster (usually in seconds) compared to the traditional methods,

while still achieving high accuracy. However, it’s difficult to obtain the exact

transformation matrix or displacement field from real data, which poses a new

challenge in training the model without reliable ground truths.

In 2015, Jaderberg et al introduced the spatial transformer network (STN)

[9], which enabled data to be manipulated spatially within the network. The

STN can be easily added to an existing CNN module without altering the

model training process. By using the STN, the model can learn how to deform

or transform images by studying paired source and target images, without

needing an exact transformation measurement as a reference. In detail, a

displacement field is utilised by the STN to warp the source image. The warped

source image is then compared to the target image in order to calculate the

loss that measures the similarity between the two images. Many unsupervised

image registration networks have been developed inspired by the STN.

One popular unsupervised image registration method, presented by Bal-

akrishnan et al, involves a CNN-based approach, named VoxelMorph [19].

The model follows an encoder-decoder structure similar to U-Net, and a STN

is incorporated at the end of the decoder to calculate the deformation field.

They discovered that normalised cross-correlation as the similarity measure

produced robust and reliable results. Additionally, to ensure smooth local

spatial changes in the displacement field, a smoothness term was included in
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the loss function.

However, the smoothness term alone has limited effectiveness in prevent-

ing folding of the displacement field, which can result in incorrect and non-

diffeomorphic registration (invertible mapping). To address this issue, Zhang

et al. proposed an inverse registration network [108]. They employed a fully

convolutional network to align a pair of images (A and B) in both directions,

generating two displacement fields, FAB and FBA. They minimised the differ-

ence between FAB and its inverse field −FAB, as well as between FBA and its

inverse field −FBA, to ensure diffeomorphic registration. Additionally, they

introduced an anti-folding loss to penalise folding pixels/voxels. The method

achieved remarkable results on both Dice coefficients measured based on seg-

mentation masks and the diffeomorphic properties.

In a different approach, Dalca et al. incorporated a vector integration layer

into their FCN model [20], instead of using bidirectional image registration.

They treated the output of the FCN as a stationary field and applied vector

integration multiple times to obtain a diffeomorphic displacement field. By

evaluating their method on a 3D brain dataset, they demonstrated similar

Dice coefficient scores to other state-of-the-art methods, and with significantly

improved diffeomorphic properties.

Based on this foundation, many other methods have been developed to

improve unsupervised image registration. These methods include multi-scale

structural models that use pyramidal structures [109] [110], adversarial-based

method [111], vision transformer-based method [112], etc. These approaches

have contributed to the ongoing progress in the field of unsupervised image

registration.



Chapter 2. Medical Image Registration 33

2.4.3 Combination of Image Registration and Segmen-

tation

The STN-based unsupervised image registration method has the capability

to generate a displacement field as an intermediate variable. This allows for

the estimation of segmentation in an unannotated image. Specifically, given

a source image, a corresponding mask, and an unannotated target image, the

displacement field can be estimated by inputting the paired source and target

images into the unsupervised image registration model. The mask for the tar-

get image can then be obtained by applying the displacement to the mask of

the source image. This approach was applied in VoxelMorph, where the Dice

coefficient was used as an evaluation metric to assess the registration perfor-

mance by comparing the segmented structures between the source and target

images. Furthermore, an extension to VoxelMorph was to incorporate a seg-

mentation loss to enhance the registration learning process [113]. The results

demonstrated that the additional loss improved the Dice scores, indicating

enhanced registration accuracy for structures with segmentation.

In addition to incorporating an additional segmentation loss function,

another approach to address both image registration and segmentation tasks

is through joint training of registration and segmentation networks. Qin et al.

proposed a joint training model for motion estimation and segmentation using

cardiac MRI data [114]. The unsupervised registration branch is employed

to estimate the cardiac motion at different time points for the same patient,

while the segmentation branch shared the same encoder to segment the cardiac

structures in the corresponding time points. The displacement field generated

by the registration branch is then utilised to warp the generated masks from an

unannotated image to the ground truth masks of the target images. The model

is optimised by minimising the similarity between the warped masks and the

ground truths, effectively achieving a semi-supervised segmentation task. The

results demonstrated the benefits of joint training for both the registration and
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segmentation tasks.

Later, Xu et al. [21] introduced a more generic framework called DeepAt-

las for weakly supervised registration and semi-supervised segmentation tasks.

They combined the registration network and segmentation network, connect-

ing them through an anatomy similarity loss. This loss measures the similarity

between the segmentation of the target image and the warped segmentation

of the source image. If either the source image or target image has a known

mask, both models could be updated with the mask guidance. If not, the

loss was set to 0, indicating that the models would not update themselves in

that situation. By testing their model on two public 3D MRI datasets, they

demonstrated significant improvements compared to using a single registration

or segmentation network. Particularly noteworthy was the ability of DeepAtlas

to achieve one-shot learning with remarkable performance by requiring only

one annotated image.

Similarly, Mahapatra et al. conducted joint training of the segmentation

and registration networks [115] and introduced a GAN to enhance the segmen-

tation task. Their method demonstrated good performance on a breast X-ray

dataset. Subsequently, Elmahdy et al. pursued a similar approach by incor-

porating an adversarial discriminator to evaluate the alignment quality of the

registration branch [116]. They observed that the registration branch had a

significant positive impact on the segmentation results. However, they found

that the adversarial term primarily enhanced the performance of the regis-

tration branch and had limited influence on the segmentation branch. To the

best of our knowledge, there has been limited research in the field of combining

registration and segmentation methods.

2.5 Discussion and Conclusions

This chapter provides an overview of the background in image segmentation,

semi-supervised learning, and image registration. For image segmentation,
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classical mathematical-based methods such as region growing and grab cut

are briefly introduced, followed by an overview of important deep learning-

based methods including RNN-based, FCN-based, and encoder-decoder based

approaches. Furthermore, a concise overview of image segmentation in the

medical imaging domain reveals that encoder-decoder based methods are par-

ticularly well-suited for this field. However, supervised deep learning meth-

ods require a large amount of high-quality annotated data. Considering the

limitations of manual image segmentation, an interactive image segmentation

software is developed and described in chapter 3. This software, based on

fully connected CRF, allows users to segment images using scribbles, enabling

efficient segmentation of multiple masks for both 2D and 3D medical images.

The software also includes an automatic recommendation feature for annotat-

ing the next slice in 3D, increasing efficiency and facilitating the collection of

high-quality annotations from clinical experts.

Later, an introduction to semi-supervised learning was provided, high-

lighting three commonly used methods: GAN-based methods, consistency

regularisation-based methods, and pseudo-labelling-based methods. These

methods aim to extract valuable information from unannotated images to

enhance the segmentation task. Among these approaches, self-learning and

pseudo-labelling methods have shown to achieve state-of-the-art results. Ad-

ditionally, ensemble techniques such as random forest, which combine multiple

sub-models, have demonstrated significant contributions to the self-learning

process. Inspired by these two methods, in chapter 4, an ensemble-based semi-

supervised learning framework is proposed. By leveraging this framework and

the interactive image segmentation software presented in chapter 3, we are

able to develop a fully automated image segmentation model with reduced

data annotation efforts from clinical experts.

In line with the objectives of this thesis, the final section of this chapter

is dedicated to image registration. An overview of classical image registra-

tion methods is firstly provided, followed by the review of deep learning-based
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approaches. Early deep learning methods for image registration utilised trans-

formation matrices as the training target based on supervised learning. How-

ever, networks trained with simulated matrices often struggle when applied to

real datasets, and collecting real transformation matrices can be challenging.

The introduction of STN advanced the field, leading to the development of

numerous unsupervised image registration methods based on STN principles.

However, very few methods specifically addressed large-scale deformable image

registration, which is a common scenario in medical image datasets. Moreover,

STN-based methods necessitate constraints on the displacement field to pre-

vent folding, but existing techniques either require additional training (e.g.,

bi-directional alignment) or increased computational complexity (e.g., anti-

folding loss, vector integration, etc.). In chapter 5, a multi-scale diffeomorphic

image registration method is proposed to address these limitations. Further-

more, a key feature of our proposed method is the ability to utilise masks

to guide the alignment process, focusing specifically on selected regions of in-

terest. This enhances the joint registration and segmentation framework in

6.

The final section of this chapter also provided an introduction to the

combination of image registration and segmentation. While there is limited re-

search in this area, it has been shown that joint training of the registration and

segmentation networks can mutually benefit each other. A notable example

is DeepAtlas, which has achieved impressive semi-supervised image segmenta-

tion results, even with just one annotated image. However, it is important to

note that joint learning can be challenging, as one model’s incorrect results

can negatively affect the learning of both models, leading to a deterioration in

performance over time. Therefore, in chapter 6, a novel quality assessment ele-

ment is proposed to the joint image registration and segmentation framework.

It incorporates an automatic evaluation mechanism to assess the quality of

the segmentation results during iterative training. By gradually increasing the

number of pseudo-masks used in training, it prevents the model from learning
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incorrect information. This approach ensures a steady improvement in joint

training, enhancing the overall performance of the model.



Chapter 3

Interactive Medical Image

Segmentation

3.1 Introduction

In this chapter, the developed interactive image segmentation tool is intro-

duced that provides efficient segmentation of multiple classes for both 2D and

3D medical images. The core segmentation method is based on a fast imple-

mentation of the fully connected conditional random field (CRF). The software

also enables automatic recommendation of the next slice to be annotated in

3D, leading to a higher efficiency.

In summary, the key issues with the current interactive segmentation so-

lutions for medical images are three fold. (1) Many image segmentation tools

in computer vision work well in 2D images, but not many of them are ap-

plicable to 3D medical images, where the key barrier is computational time

and effectiveness of user interactions in 3D. (2) Many solutions only focus on

binary image segmentation, while multiple organs are often required to be seg-

mented in medical images. (3) Many generic interactive image segmentation

methods often work well in natural images with rich regional textures, which

may not be directly applicable to medical images where multiple masks need

to be assigned to image regions that have similar intensities. For example,

38
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carpal bone segmentation in the wrist [117]. Moreover, different parameter

settings are normally required for different images. This work aims to produce

a generic medical image segmentation tool that works for both 2D and 3D

images without any prior information or training process, and allows efficient

user interactions.

To achieve the aim and address the aforementioned issues, the key contri-

butions of this work are summarised as follows. (1) A fast CRF solver based

on Gaussian approximation is adopted to achieve fast 2D and 3D image seg-

mentation for multiple masks (up to 10 masks in the current implementation

and can be easily extended.). (2) The software is featured with an automatic

slice recommendation function to suggest the best slice to annotate, result-

ing in greatly improved image segmentation efficiency in 3D. (3) The method

parameters have been optimally tuned, so that an “one size for all” setting

is achieved, meaning no parameter adjustment is required for different med-

ical image segmentation tasks. The developed tool has been evaluated on a

variety of 2D and 3D medical image modalities and applications, in terms of

segmentation accuracy, repeatability and computational time.

The remaining parts of this chapter is organised as follows: Section 3.2

presents the methodology underlying the proposed work. In section 3.3, the

hyper-parameter configuration of the proposed method is presented, along with

an overview of the software’s user interface. Section 3.4 provides the evaluation

results on various 2D and 3D medical image datasets. Finally, section 3.5

concludes the chapter by offering a summary and discussion.

3.2 Methodology

The goal of image segmentation is to annotate every pixel in the image with

one of several predetermined object categories. In this work, it is formulated

as maximum a posterior (MAP) inference in a CRF, which is defined over

pixels in an image. The object classes (categories) are defined interactively by
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the user using scribbles. The CRF is constructed by combining a smoothness

term that maximises the annotation agreement between similar pixels and the

likelihood of each pixel belonging to each of the user defined classes. The CRF

is dynamically changed when more scribbles are added, leading to an iteratively

refined segmentation result. The aim is to minimise the user interactions while

achieving high quality image segmentation.

3.2.1 Fully Connected Conditional Random Field

In this section, the image segmentation task is formulated by CRF optimi-

sation. For an image, the CRF model can be constructed as follows: The

intensities of each pixel, denoted as I = {I1, ..., IN}, capture the pixel values

across all N pixels in the image. The random field X = {X1, ..., XN} indi-

cates possible pixel-wise annotations. The domain of X is defined by a set of

annotations, denoted as L = 0, ..., K − 1, where K signifies the total number

of annotation classes. For a binary class segmentation, K = 2 and L = {0, 1}.

A configuration x represents a possible assignments of annotations for all the

pixels in the image. The ground truth masks, represented as y, are the correct

labels for the image. The goal is to make x as close to y as possible.

To achieve this task, Gibbs distribution are employed to estimate the like-

lihood of different annotation assignments. The Gibbs distribution is defined

as below:

P (X|I) =
1

Z(I)
exp(−E(X|I)) (3.1)

E(X|I) =
∑
c∈CG

ϕc(Xc|I) (3.2)

where P (X|I) and E(X|I) represent the probability and energy of annotation

assignments X for a given image I, respectively. To understand how annota-

tions are related to each other, a graph G = (V,E) is created over the set of

variables X. V and E represent vertices (individual pixels) and edges (connec-

tion between pixels) of the graph, respectively. The connected pixels are then
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split into a set of cliques CG. The potential functions ϕc are used to calculate

the strength of the connections within each clique c. To ensure the annotation

assignments are appropriately balanced, a partition function Z(I) is used to

normalise the distribution.

The Gibbs energy of a configuration x is E(x|I) =
∑

c∈CG
ϕc(xc|I). The

MAP method labels a random field of x∗ that maximises P (x|I). In a fully

connected pairwise CRF model, G is a complete graph defined on X, meaning

that every pair of pixels in the image is connected by an edge. CG includes all

unary (individual pixels) and pairwise (pairs of pixels) cliques. Therefore, the

Gibbs free energy is expressed as:

E(x|I) =
∑
i

ϕu(xi|I) +
∑
i ̸=j

ϕp(xi, xj|I) (3.3)

where i and j are the indices of pixels in I.

The unary term ϕu in Eq. (3.3) is normally computed independently

for each pixel, indicating the probability of each pixel belongs to each of the

classes. The pairwise potential ϕp represents the penalty of assigning labels to

pixel i and j at the same time. In fully connected CRF model, the pairwise

cliques describe all two pairs of random variables. Subsequently, the mean

field theory can be employed to produce an asymptotic solution.

In the implementation, the same pairwise cost ϕp as proposed by Krähenbühl

et al. [33] is used. However, a different unary term ϕu is used, which is de-

scribed in the next section. The pairwise cost consists of two terms that model

the appearance and smoothness between pairs of pixels, expressed as:

ϕp(xi, xj) = [xi ̸= xj]g(i, j) (3.4)

g(i, j) = ω1 exp(−|pi − pj|2

2θ2α
− |Ii − Ij|2

2θ2β
) + ω2 exp(−|pi − pj|2

2θ2γ
) (3.5)

In Eq. (3.4), [xi ̸= xj] is an indicator function that indicates if the two la-

bels at pixel i and j are the same. The first term (i.e. appearance term) in
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g(i, j) encourages nearby pixels (determined by pixel location p) with similar

intensities (denoted as I) to be the same class. The degrees of nearness and

similarity are controlled by the parameters θα and θβ respectively. The sec-

ond term (i.e. smoothness) helps in removing small isolated regions that is

controlled by θγ. ω1 and ω2 are the weights to balance the two terms. The

parameters are determined experimentally using many different modalities of

medical images and reported in section 3.3.1.

3.2.2 Unary Term for Interactive Image Segmentation

The unary term could be modelled by generative models, such as using his-

togram or mixture Gaussian to model the data distributions of different classes.

However, these methods normally require sufficient number of samples to learn.

With limited scribbles of each class, especially in the first few iterations, the

use of generative model is neither accurate nor computationally efficient. Ad-

ditionally, unlike other machine learning (include deep learning) based unary

term modelling methods (e.g. [118] [119]), the proposed method does not

require multiple images of the same object and a pre-training step. In the

proposed method, the unary term in Eq. (3.3) is designed by considering both

the intensity similarity (the first term in Eq. (3.6)) and distance (the second

term in Eq. (3.6)) of a pixel to the scribbles annotated by the user in a simple

Gaussian weighted manner, which is expressed as below.

ϕl
u(i) = λ exp(−0.5(

Ii −ml

σl
1

)2) + (1 − λ) exp(−0.5(
dli
σ2

)2) (3.6)

where ml and σl
1 are the mean and standard deviation of the intensity values

annotated by the user for the lth class respectively. They are calculated and

updated based on the annotated pixels during the user interaction process. The

first term measures the likelihood of a pixel i belonging to class l, resulting

in a probability map Pl. Fig. 3.1 (a) and (b) show an example image and

some user annotations (yellow: foreground; white: background) respectively.
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Fig. 3.1 (c) and (d) are the intensity-based probability maps P0 and P1 for

the background and the foreground respectively. A brighter pixel indicates a

higher probability of belonging to the corresponding class. dli in Eq. (3.6) is the

length of the minimum path between the ith pixel to the nearest labelled pixel

of the lth class, which is calculated as geodesic distance. When calculating the

minimum path, the locations along the path are weighted by the gradient of the

probability image Pl. Therefore, the minimum path is the route that generates

the smallest changes of Pl between two locations. The implementation is based

on geodesic time algorithm [120]. The capture range of the distance measure

is controlled by the parameter σ2. Different from σ1, σ2 is predefined as a

hyper-parameter in table (3.1). Then the Gaussian weighted geodesic distance

(second term in Eq. (3.6)) is computed, as shown in Fig. 3.1 (e) (background)

and Fig. 3.1 (f) (foreground) respectively. λ is used to balance the intensity

term and the distance term. The parameter settings are discussed in section

3.3.1.

Figure 3.1: (a) An example image. (b) User annotation: white-background (l = 0);
yellow-foreground (l = 1). (c) and (d) are the probability maps of background (P0)
and foreground (P1) respectively. (e) and (f) are, respectively, the Gaussian weighted
geodesic distance maps of background and foreground (second term in Eq. (3.6)) with
σ2 = 10 pixels.
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3.2.3 Image Segmentation and Refinement

The above constructed CRF can be solved by mean field theory. Krähenbühl

et. al. [33] developed an iterative filter-based method for performing fast

approximate maximum posterior marginal inference. The number of iterations

is denoted as t. This fully connected CRF optimisation method has not been

applied to interactive image segmentation previously.

In the user annotation process, different class labels are required to be

assigned to different objects of interest. The correct number of class labels is

not required in the first annotation step and more class labels can be added at

any stage of the user interaction. The annotation can be corrected/overwritten

by new labels at the same location. For adjacent objects that share similar

intensities, some scribbles of each class are expected to be drawn close to the

shared boundary. For 3D volume annotation, annotations from different views

are conducted separately but recorded in a single 3D volume. When a voxel

is assigned by multiple labels from different views, the latest assigned label is

used. For 3D images, the fully connected CRF optimisation is performed in

3D.

Fig. 3.2 (a) shows an example image and Fig. 3.2 (b) is the scribbles that

a user annotated. Note that these scribbles were interactively added based on

intermediate segmentation results. The final result based on the annotations

in Fig. 3.2 (b) is shown in Fig. 3.2 (c). As indicated by the white arrows in

Fig. 3.2 (c), there are holes in certain regions and some inaccurately segmented

regions along the boundaries of some organs. The user can keep adding more

scribbles to these inaccurate regions until satisfied. However, it could be a

tedious work to accurately refine these boundaries manually. Alternatively, an

automatic segmentation refinement step was added to help the user in reducing

the number of interactions.

The segmentation refinement is achieved as follows. (1) Replacing the

probability map Gc (first term in Eq. (3.6)) by the output probability map
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Figure 3.2: (a) An example image. (b) User annotation with multiple classes.
(c) Segmentation result before refinement with some inaccurate regions indicated by
white arrows. (d) Segmentation result after automatic refinement.

from the current CRF solution. (2) The geodesic distance map dc in Eq.

(3.6) is then recalculated based on the new Gc. (3) The CRF optimisation is

applied again using the updated unary term, leading to filled holes and refined

boundaries as shown in Fig. 3.2 (d). In the implementation, this refinement

step runs as an extra step on every intermediate result, not only on the final

result. It requires slightly longer computational time, but leads to fewer user

interactions.

3.2.4 Entropy-based Slice Recommendation

For 3D image segmentation, the 3D volume normally contains many slices

(typically more than one hundred) in the three different views (i.e. axial, coro-
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nal and sagittal). In this interactive image segmentation tool, the user is asked

to start the annotation from the middle slice in each of the three views, which

is more likely to contain the object of interest. By only annotating one slice of

any or all of the three views, the tool is able to generate an initial segmentation

result. For other slices which are not annotated by the user, the closer to the

annotated slice the more accurate the segmentation will be. Typically, the user

needs to validate the segmentation result in each slice of all views and correct

the results if not satisfied, which is a time-consuming process. In this software,

the next slice in each of the three views that potentially contains the largest

segmentation error is automatically suggested, based on the calculation of en-

tropy. Entropy has been used as an indication of uncertainty by many research

works (e.g Gal [121]). Hoebel et. al. have reported high correlations between

the uncertainty measures and the corresponding Dice coefficient values [122].

In this case, the entropy H for the 3D volume is calculated as below.

H = −
K−1∑
c=0

Gc log(Gc) (3.7)

where Gc is the probability map for the cth class generated by the CRF opti-

misation. K is the total number of classes. Subsequently, the average entropy

value for each slice in each of the three views is calculated. A larger entropy

value indicates a higher uncertainty of the segmentation result. As the exam-

ple shown in Fig. 3.3, higher entropy values are found at boundaries of the

segmented objects that corresponding to larger segmentation errors (also see

the highlighted regions by the white arrows in the middle image). The slice

that produces the largest average entropy value for each view is suggested to

the user for further annotation. The experiments also show that this slice

recommendation function significantly improved the annotation efficiency, es-

pecially in the first few interactive actions (see section 3.4.5). This function is

an optional feature to the user, where a button in the GUI has to be clicked

every time of requiring a suggestion. Note that the user still needs to validate
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the segmentation result on every slice in each view to ensure a high quality

segmentation output.

Figure 3.3: Images from left to right are an 2D slice of a 3D volume in the CHAOS
dataset, the segmentation result at an intermediate iteration and the corresponding
entropy map. White arrows indicate the image regions with larger segmentation
errors that correspond to larger entropy values.

3.3 Parameter Settings and Graphical User In-

terface

3.3.1 Parameter Settings

The meaning and values for all the hyper parameters described in section 3.2

are listed in table 3.1. The parameter values were determined by evaluating the

software on various 2D and 3D images described in section 3.4.1. In the context

of medical image segmentation, the parameters were optimised in favour of

responding to the user’s annotations to improve the segmentation accuracy

rather than minimising the number of user’s interactions. Hence relatively

smaller values were used for σ2 and λ in Eq. (3.6) to make the tool more

responsive to the user’s annotations. After tuning the parameters, the values

were all fixed for all testing experiments reported in this chapter. As shown in

the graphical user interface in Fig. 3.4, the proposed software does not require

the user to adjust any parameters.
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Table 3.1: Hyper parameter setting.

Symbol Meaning Value
θα Nearness controller for the appear-

ance kernel (Eq.(3.5))
20 (2D & 3D)

θβ Similarity controller for the appear-
ance kernel (Eq.(3.5))

1 (2D & 3D)

θγ Controller for the smoothness kernel
(Eq. (3.5))

1 (2D & 3D)

ω1 Weight of the Gaussian appearance
kernel (Eq. (3.5))

1 (2D & 3D)

ω2 Weight of the smoothness kernel (Eq.
(3.5))

5 (2D & 3D)

σ2 Distance measure controller (Eq.
(3.6))

4 (2D & 3D)

λ Weight for balancing the intensity
term and the distance term (Eq.
(3.6))

0.1 (2D & 3D)

t Number of iterations in CRF optimi-
sation

10 (2D);3 (3D)

3.3.2 Graphical User Interface

The software was implemented in Matlab (version 2020b) and compiled to an

executable file (.exe). The core functions of CRF optimisation were written

in C++. Currently, it only supports Windows operation system and has been

tested on Windows 10. However, the source code is also freely available for

research purpose which can be compiled in other operating systems.

The graphical user interface is shown in Fig. 3.4. The basic functions la-

belled in the figure are briefly described as follows. (1) Load a 2D image to be

segmented with the supporting file formats of .jpg, .tiff, .bmp, .png, DICOM

and .mat. (2) Load a 3D volume (or multiple 2D slices) with the supporting

formats of .mat, DICOM and .nii. (3) Load segmentation result in .mat or .nii

format. (4) Re-sample the 3D volume into isotropic physical unit (mm). (5)

Perform CRF segmentation after user annotation. (6) Enable/disable overlap-

ping the segmented results to the original image. (7) Automatically suggest

the best slice to be annotated for each of the views in 3D. (8) Display the mea-

sured areas (2D) or volume (3D) in physical unit (if unit is known) for each of

the segmented classes. (9) Save the segmented result in the supported formats:
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Figure 3.4: Graphical user interface of the developed software. An example 3D
wrist MRI, in which 10 bones were segmented by the proposed software as indicated
by different colours.

2D (.mat, .png, .bmp and .tiff) and 3D (.mat and .nii). (10) Clear all views

and data. Reset all parameters to the default settings. (11) Exit the software

and clear memory. (12) Information bar that indicates the current status of

calculation. (13) Brief information about the software and user instructions.

(14) Slide bars to change the slices in the corresponding views for 3D volumes.

(15) Crop a smaller region of interest from the input 2D or 3D image in the

corresponding view. (16) A drop down list of labels in the corresponding view

for user annotation. Currently it supports up to 10 foreground classes plus the

background. (17) Enable/disable 3D mesh view of the segmented result for a

3D volume. (18) Tool for manipulation of the 3D mesh model. (19) Image

viewer for displaying and annotating 2D and 3D images. 2D image is displayed

in the top left viewing window. (20) Viewing window for displaying the 3D

mesh model of the segmentation result for a 3D volume.
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3.4 Method Evaluation

3.4.1 Materials

Several medical imaging datasets were used for method evaluation.

Combined (CT-MR) Healthy Abdominal Organ Segmentation dataset

(CHAOS) [123]: the CHAOS challenge aims to segment liver, kidneys and

spleen in the abdominal region in CT and MRI data. The manual annota-

tion process was produced by two teams, both of which include a radiology

expert and an experienced medical image processing scientist. After the man-

ual annotation of both teams, a third radiology expert and another medical

imaging scientist analysed the labels, which were fine-tuned according to the

discussions between annotators and controllers. The CHAOS dataset has high

quality ground truth segmentation masks, hence selected to evaluate the seg-

mentation accuracy of the proposed tool. The CT dataset was acquired from

40 different patients and only has the segmentation mask of liver. The MRI

dataset contains two sequences (i.e. T1- DUAL and T2-SPIR) of 40 patients

from 1.5T MRI scanners. The segmentation of T2-SPIR MRI dataset contains

liver, both kidneys and spleen, which is a more challenging multi-label segmen-

tation task, hence selected as the dataset to evaluate the proposed method.

Wrist CT dataset: this wrist CT dataset was used in [124] that contains

CT image from 25 subjects. Each subject was imaged at five different wrist

poses: neutral and four extreme poses in radial-ulnar and flexion-extension.

The pixel spacing is 0.29mm× 0.29mm with a slice thickness of 0.625mm. It

is a challenging image segmentation task, as 10 bones (i.e. ulnar, radius and

eight carpal bones) are required to be segmented in a small wrist region of the

CT image. All the bones have similar intensity values and in close contact

with each other.

For the purpose of parameter tuning as described in section 3.3.1, a variety

of medical images that cover different imaging modalities and different organs

were obtained from a number of local and public datasets, such as plain wrist
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X-ray image from Chen et al. [125], contrast enhanced breast MRI from [126],

ultrasound breast image from Al-Dhabyani et al. [127], retinal images from

Budai et al. [128]. These images were used as a validation set for parameter

tuning of the proposed method. Some qualitative segmentation results of these

images are presented in section 3.4.6.

3.4.2 Comparison of Local Pair-wise CRF and Fully-

connected CRF

One of the most widely used CRF based optimisation that has been applied to

interactive image segmentation is based on the pair-wise potential of nearest

neighbours [34] (denoted as PwCRF). The performance of PwCRF and the

fully-connected CRF (denoted as FcCRF) was compared, in terms of qual-

itative segmentation accuracy and computational time using the same user

annotations.

The PwCRF implementation is the baseline method implemented by Kohli

et al. [129]. The core PwCRF optimisation using α expansion was imple-

mented in C++ based on the paper [32]. The core FcCRF optimisation us-

ing mean field approximation was adapted from the C++ implementation by

Kamnitsas et al. [130]. The evaluation was performed on the same machine.

The comparison based on a binary class segmentation and a multi-class

segmentation was performed. Images in Fig. 3.5 show the original input

images, user annotations and segmentation results using PwCRF and FcCRF

respectively. It can be seen that the segmentation result of using PwCRF,

especially for the multi-class case, is less accurate at the boundaries of the

objects than the FcCRF method (highlighted by white arrows).

Additionally, using the bottom image of Fig. 3.5, The CRF optimisation

time by varying the number of segmentation classes (i.e. 2, 4, 6 and 7 classes

including background) was compared. As reported in table 3.2, the FcCRF

optimisation time is not highly dependent on the complexity of the annota-
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Figure 3.5: Comparison of local pair-wise CRF (PwCRF) and fully-connected CRF
(FcCRF). Top row: an example of binary class segmentation. Bottom row: an ex-
ample of multiple class segmentation.White arrows indicate inaccurate segmentation
locations.

tion and the number of classes. However, the computational time of PwCRF

using α expansion is highly dependent on the number of classes that increases

significantly when the number of classes increases. Hence the total run time of

FcCRF is much shorter than the PwCRF, especially for a multi-class scenario,

due to a more accurate segmentation result at each iteration (therefore fewer

number of interactions) and shorter optimisation time at each iteration. This is

the main reason that FcCRF is selected in this interactive image segmentation

software.

Table 3.2: Computational time using local pair-wise CRF (PwCRF) and fully-
connected CRF (FcCRF) for segmenting different number of classes for the bottom
image in Fig. 3.5. The time reported is only for CRF optimisation for a fair com-
parison.

Method Binary class 4 Classes 6 Classes 7 Classes
PwCRF 0.15 s 0.84 s 1.56 s 2.24 s
FcCRF 0.41 s 0.47 s 0.63 s 0.65 s

3.4.3 Evaluation on Segmentation Accuracy

Five T2-SPIR MRIs from the CHAOS dataset were randomly selected for

evaluating the segmentation accuracy of a multi-label segmentation task in 3D
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image. Dice coefficient (DC) and average symmetric surface distance (ASSD)

were used as the evaluation metrics. The DC is a widely used measurement

in image segmentation evaluation, which indicates the volume agreement be-

tween the generated segmentation result and the ground truth segmentation

mask (i.e. 0 and 1 indicate the worst and best segmentation results respec-

tively). The ASSD determines the average difference between the surface of

the segmented object and the ground truth segmentation mask in 3D. After

the border voxels of the segmentation output and the ground truth mask are

determined, those voxels that have at least one neighbour from a predefined

neighbourhood that does not belong to the object are collected. For each col-

lected voxel, the closest voxel in the other set is determined and the average

of all these distances derive the ASSD measure (0 mm for a perfect segmen-

tation, max distance of the image for the worst case). The mean ± standard

deviation values of DC and ASSD for the five MRIs are reported in table 3.3.

For interactive image segmentation, the segmentation result is highly de-

pendent on the number of interactions and experience of the annotator. The

results presented in table 3.3 were produced by an annotator without medical

background. In the proposed method, the volume was firstly cropped and re-

sampled to an isotropic volume, and the segmentation was then performed in

3D. The size of the volume was approximately 120×170×120 (the sizes of dif-

ferent volumes are slightly different) with the voxel size of 2mm3. The software

ran on a laptop with an Intel i5-6300U 2.4 GHz processor and 8 GB memory.

The total segmentation time is highly dependent on the size of the volume and

the number of interactions required. The average number of interactions and

time in these experiments were approximately 20 and 25 minutes per volume

respectively. The segmentation accuracy is comparable to the results reported

in the literature [131].

Fig. 3.6 shows the visual result of an example that produced the lowest

mean DC value of the four organs (liver: 0.88; both kidneys: 0.86; spleen:

0.83) in the five segmented volumes. From the 2D slices in Fig. 3.6, it can be
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Table 3.3: Segmentation accuracy of CHAOS dataset for liver, kidney and spleen
segmentation. Mean ± standard deviation values of Dice Coefficient (DC) and
Average Symmetric Surface Distance (ASSD) are reported.

Metrics Liver Left kidney Right kidney Spleen
DC 0.923 ± 0.002 0.906 ± 0.023 0.894 ± 0.018 0.875 ± 0.019
ASSD(mm) 2.504 ± 0.080 1.616 ± 0.388 1.752 ± 0.298 1.623 ± 0.248

seen that the segmentation result using the proposed software (green contours)

is agreed with the ground truth annotation (red contours) in most regions, ex-

cept for the peripheral regions of some organs (e.g. pelvis of kidney). This

disagreement is highly related to the experience and knowledge of the annota-

tor. Technically, higher segmentation accuracy can be achieved by more user

interactions to refine these regions. From the mesh models shown in Fig. 3.6,

it can be seen that the ground truth annotation is performed in a multiple 2D

slice manner, while the proposed method is performed in 3D, which may also

lead to the result discrepancy.

3.4.4 Evaluation on Repeatability and Reliability

To evaluate the repeatability of the interactive image segmentation tool, three

annotators performed image segmentation on the same set of three T2-SPIR

MRIs from the CHAOS dataset. Prior to the experiments, the three annotators

were briefly trained by showing the organs of interest and the corresponding

reference annotation of an independent T2-SPIR image. This helps to minimise

the effects of knowledge discrepancy between the annotators. The annotators

were given sufficient time to complete the segmentation task until they were

satisfied with the segmentation result. Subsequently, the intra-class correlation

coefficient (ICC) [132] was calculated based on the DC values to measure the

performance consistency of different annotators. The average ICC score for all

class labels is 0.7618, which indicates a good agreement (follow the guideline

by Koo et al. [133]) between the segmentation results of different annotators

using the proposed software.

One of the key aims of medical image segmentation is the quantitative
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Figure 3.6: Top row: visual segmentation result in axial view and coronal view
(red: ground truth; green: the proposed method). Bottom row: visual segmentation
results in 3D mesh model of ground truth and segmentation result using the proposed
method (liver: yellow; kidneys: green & blue; spleen: red).

measurement of the region of interest, such as volumes of organs or tumours.

The reliability of the measured volume is crucial for downstream clinical de-

cision making tasks. Here, the wrist CT dataset was used to assess the relia-

bility of the segmentation result produced by the proposed software. A single

annotator performed segmentation of eight carpal bones using the proposed

software on the CT images of three subjects, each contains CT volumes that

were captured at five different wrist poses. The ulnar and radius bones were

also segmented as the reference bones but were not considered for the perfor-

mance evaluation. The assumption is that the measured volumes of the carpal

bones at different wrist poses of the same subject should be the same.

Fig. 3.7 shows the results of the carpal bone segmentation in different

wrist poses of the same subject using the proposed software. The variations

of the measured bone volumes are listed in table 3.4. The Std% value in table
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3.4 is calculated by using the standard deviation of the bone volumes mea-

sured from different poses divided by the corresponding mean bone volumes,

and then averaged across the three subjects. An average of 2-3% of volume

variations in the segmentation results indicates a small error range in measur-

ing the bone volumes. The ICC was also calculated based on the segmented

bone volumes to measure the consistency of the measurements across different

poses. An ICC value of 0.9769 is achieved, which indicates a high consistency

of the bone volumes measured in different wrist poses.

Table 3.4: Percentage of standard deviation for volume of carpal bones segmented
from different poses of the same subject. The carpal bones are: Triquetrum
(Tri), Lunate (Lun), Scaphoid (Sca), Pisiform (Pis), Hamate (Ham), Capitate(Cap),
Trapezoid (Trd) and Trapezium (Trm).

Bones Tri Lun Sca Pis Ham Cap Trd Trm
Std % 2.69 3.05 2.99 2.81 2.11 3.15 1.41 2.41

3.4.5 Evaluation on Efficiency

The high computational efficiency of the fully-connected CRF solution used in

this method has been demonstrated and compared to other CRF optimisation

methods by Krähenbühl et al. [33].

In this section, the efficiency of the proposed slice recommendation func-

tion is firstly demonstrated. One randomly selected T2-SPIR MRI in the

CHAOS dataset was used in this experiment. Two annotators were asked to

segment four organs (liver, two kidneys and spleen) from the same 3D volume

with the same given initial annotation. Each of the annotators performed twice

on the segmentation task, one with and one without using the slice recommen-

dation function. “With the slice recommendation” was performed first, hence

the result of “without slice recommendation” could be slightly better than re-

ality due to the previous familiarisation with the data. Despite this potential

bias, the segmentation quality measured by Dice coefficient (average of the

four organs) from both annotators increased much faster by using the slice

recommendation function, especially in the first few user interactions (shown
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Figure 3.7: Segmentation results of carpal bones in CT volumes of different wrist
poses from the same subject. (A) Neutral (B) Radial-deviation (C) Ulnar-deviation
(D) Flexion (E) Extension.

in Fig. 3.8). This demonstrates the improved segmentation efficiency by using

the proposed slice recommendation function.

Next, the segmentation efficiency of the developed software is compared

to a widely used manual segmentation tool (i.e. 3D Slicer [11]) by drawing

polynomial lines in a slice by slice manner. A single annotator performed

organ segmentation using 3D Slicer and the proposed software on a T2-SPIR
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Figure 3.8: Comparison of segmentation quality (Dice coefficient) with/without
slice recommendation from two annotators.

MRI in the CHAOS dataset. The DC value using 3D slicer for liver, left kidney,

right kidney, and spleen were 0.91, 0.91, 0.89 and 0.88, which achieved similar

performance to the proposed method (refer to table 3.3). However, the time

used in 3D slicer was 50 minutes, which was significantly higher than the time

used in the proposed method (average of 25 minutes).

It is even more challenging in segmenting the wrist CT data. Due to

multiple carpal bones having similar shapes and intensities, it is extremely

difficult to maintain the track of the class labels of different bones during

the slice by slice manual segmentation process. Using 3D slicer, the annotator

made a lot of efforts in checking the slice-wise context to ensure consistent class

labels across different slices. In contrast, the proposed method is performed

in 3D and the whole 3D volume is labelled by only annotating a few slices in

different views. For the wrist CT data, 3D slicer required about 90 minutes to

label a single volume, and the annotator needs to have a good knowledge about

the anatomy of the wrist. The software only took about 30 minutes to segment

the carpal bones. Especially, the proposed software does not require accurate

contour tracing which needs lower concentration level from the annotator.



Chapter 3. Discussion and Conclusions 59

3.4.6 Qualitative Segmentation Results

Besides the above systematic evaluations, some qualitative segmentation re-

sults of using the proposed software on a variety of medical images are pre-

sented in Fig. 3.9, including plain X-ray images for bone segmentation, 3D

contrast enhanced breast MRI for tumour segmentation, breast ultrasound im-

age for tumour segmentation and retinal image for blood vessel, macula and

optical disc segmentation. It can be observed from Fig. 3.9 that the soft-

ware works well for segmenting organs, tumours in any of the given medical

modalities, but failed to segment part of the blood vessels in the retinal im-

age. This type of thin linear structure, which distributed across the whole

image, requires the user annotations to cover the whole image. In this case,

it makes the user annotation extremely challenging and time consuming using

the proposed method. In this example, the user only annotated a very small

portion of the image leading to an unsatisfactory result for part of the blood

vessels. Hence, alternative solutions are strongly recommended if such a lin-

ear structure needs to be segmented. For example, a deep learning method

that handles inaccurate annotations were proposed by Zhang et al. [59] for

segmenting linear structures.

3.5 Discussion and Conclusions

In this chapter, an efficient software using fully connected CRF optimiser to

achieve multi-class 2D and 3D medical image segmentation is presented. Based

on the CRF optimiser, an interactive image segmentation tool for medical

image analysis is developed. This tool does not require parameter tuning for

different image modalities and dimensions. It is also featured with a slice

recommendation function to achieve efficient user interactions for 3D images.

The method has been comprehensively evaluated in terms of segmentation

accuracy, repeatability, reliability and efficiency on different medical imaging

datasets and applications. This method performs well on the segmentation
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Figure 3.9: Qualitative segmentation results of different medical images and appli-
cations. The bones, organs and tumours can be efficiently segmented by the proposed
method. For the retinal image segmentation, it requires tremendous user annotation
efforts to segment the linear structures in the whole image. Hence, it is not recom-
mend to use the proposed method in segmenting thin linear structures.

of regular shaped objects (e.g. organs, bones, tumours, etc.), but it is less

efficient in segmenting thin linear structures, such as blood vessels in retinal

image.

The software is freely available for research purposes. It provides an effec-

tive way to annotate the images in a given new dataset. However, even though

doctors can efficiently and accurately label images using this tool, labelling

a large number of images still requires significant efforts and time. Hence,

in the next chapter, semi-supervised learning method for image segmentation

is explored. This technique allows a machine learning model to achieve au-

tomatic image segmentation by learning from a dataset that contains only a

small number of annotated data.



Chapter 4

Semi-supervised Image

Segmentation Using Model

Ensemble

4.1 Introduction

In the previous chapter, a highly efficient interactive image segmentation tool

was developed, providing an approach to obtain annotated data from human

experts. This tool facilitates the process of acquiring a limited amount of an-

notated data from experts when confronted with a new dataset. By combining

this annotated dataset with a larger amount of unannotated data, a semi-

supervised learning approach can be used to train an automatic segmentation

model.

To establish a generic semi-supervised learning approach for image seg-

mentation, the decision has been made to employ a pseudo-labelling method

that can be easily applied to diverse data types. As outlined in section 2.3.3,

when applied to image segmentation tasks, the pseudo-labelling method re-

quires a strategy to ensure the accuracy of the pseudo segmented mask.

Given this requirement, ensemble learning, a widely used technique in ma-

chine learning [134], was adopted. It is an effective method for rectifying errors

61
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in pseudo predictions. The basic idea of ensemble learning is to train multi-

ple weak decision makers and then combine them to generate a final decision.

Several classical classifiers, including random forests [135], have successfully

employed this idea to achieve state-of-the-art performance prior to the ad-

vent of deep learning methods. A notable example of the benefits of ensemble

learning can be observed in the work of Dolz et al. [136], who proposed a sug-

gestive annotation model for fully supervised infant brain MRI segmentation.

By combining the outputs of 10 CNNs, they achieved state-of-the-art perfor-

mance, showcasing how the weak models within an ensemble framework can

correct each other’s prediction results. However, to the best of our knowledge,

due to the heavy computational load associated with such approaches, no pre-

vious studies have reported the application of ensemble learning and DCNNs

to achieve semi-supervised learning in the field of image segmentation.

A generic semi-supervised image segmentation framework which integrates

an ensemble technique is proposed. Firstly, the initial model is trained using

annotated data and subsequently refined using unannotated data with pseudo

masks. Different from Bai’s method [100], the ensemble technique is used

to reduce the negative influence of poor-quality pseudo masks. The proposed

method was evaluated on a public skin lesion segmentation dataset. The results

show that it outperforms both fully supervised learning method using only

annotated data and Bai’s method [100] by a large margin.

The rest of this chapter is organised as follows: Section 4.2 presents the

methodology and the framework proposed in this work. Section 4.3 intro-

duces the design of the experiments and the evaluation results of the proposed

method on a public dataset. Finally, section 4.4 provides the discussion and

conclusions of this chapter. Some additional works that related to the use of

ensemble techniques are also introduced.
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4.2 Methodology

In this section, the model architecture with an iterative training process is

introduced. Then, the segmentation model structure and training approach to

the initial model trained on all annotated images are given. This is followed

by detailed information on the iterative training process, which demonstrates

how the unannotated data improves the segmentation performance.

4.2.1 Model Architecture

An overview of the framework is illustrated in Fig. 4.1. The proposed frame-

work is an iterative process, where the indices of iterations are represented by

{L0, . . . , Ln}. A well-established encoder-decoder DCNN network (U-net [3])

is used as the basic segmentation method to train an initial model (M0) in L0

using all annotated data, the detailed structure of the network is described in

section 4.2.2.

Figure 4.1: Overview of the proposed framework.

The model is then updated under an ensemble learning process. In detail,

subsequent models from L1 to Ln are trained based on both annotated data

and a total number of N0 unannotated data with pseudo masks generated

from the previous iteration. The pseudo masks are generated using a weighted

combination of outputs from all sub-models. The parameters of sub-models

(M1.1, . . . , M1.S1) in L1 are copied from M0. From L1 onward, the number of
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sub-models is reduced at each iteration and becomes one in the final iteration

(Ln). Sub-models in the current iteration are randomly inherited from the sub-

models of the previous iteration. The number of unannotated images ({N0,

. . . , Nn}) used for training of each sub-model is gradually increased from level

to level, following the rule of Nn = ⌊N0/Sn + 0.5⌋ where ⌊·⌋ indicates the

mathematical floor operation. Finally, Mn trained on all annotated data and

unannotated data with pseudo masks is the final model used for segmenting any

unseen data. More detailed descriptions of the ensemble strategy is presented

in section 4.2.3.

4.2.2 Initial Supervised Segmentation Model

As described in chapter 2, U-net proposed by Ronnebergeret et al. [3] is

a DCNN based encoder-decoder network which has achieved state-of-the-art

performance for many image segmentation tasks in medical applications. Thus,

it serves as the foundational segmentation network in this study.

In detail, the segmentation network in the proposed framework has an

encoder and a decoder that both consist of several layers of feature maps by

applying two 3×3 convolutional operations and one rectified linear unit (relu)

[137] at each layer. In the encoding path, max-pooling with a stride of 2

is performed between two consecutive layers to achieve feature map down-

sampling. Symmetrically, the decoder uses up-convolution to up-sample the

feature map from the previous layer. Additionally, there are skip paths that

concatenate the feature maps from the encoder to the corresponding layers of

the decoder. A 1 × 1 convolution is used in the final decoder layer to convert

the dimension of feature map to the number of classes. Subsequently, the

softmax function is applied to map the activation values at each pixel position

to the range of [0, 1].

The loss function used in this work combines both cross-entropy and Dice

coefficient with equal weights, which outperforms the sole use of cross-entropy
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as suggested by Liu et al. [138]. As a commonly used improvement, the residual

block [83] was also added to the conventional block in the U-net for faster

convergence. A validation dataset is used for determining the termination

point of model training. Detailed parameter settings are provided in section

4.3.2.

4.2.3 Model Improvements Using Unannotated Data

Based on the initial segmentation model, the unannotated data is used to

further improve the model. In detail, the model M0 is used to segment all N0

unannotated data to generate segmentation outputs (probability of each pixel

belonging to each class) which serve as pseudo masks. Then a random sub-set

of these unannotated data with pseudo masks, together with the annotated

data, are used to train a number of sub-models (M1.1,. . . ,M1.S1), which are

called level one models in iteration L1. The initial parameters of these sub-

models are the same and copied from M0. Then S1 sub-models are generated

initially, each with N1 training data. The validation dataset for M0 is also

used in subsequent levels to prevent the sub-models from model overfitting. For

sub-model training from L2 to Ln, the number of sub-models (Sn) is reduced

as follows:

Sn = max(⌊ S1

2n−1
⌋, 1), for n > 1 (4.1)

The whole framework stops training when Sn reaches 1. The training

image contains a number of unannotated data and all annotated data. Hence

the effect of the annotated data is gradually reduced when the number of

unannotated images increases from level to level. This mechanism enables the

model to gradually learn more information from unannotated data without a

sudden performance drop.

From L2 to Ln, the number of sub-models is reduced. They are randomly

selected from the sub-models in the previous level. When all models in a level
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have finished their training, a new set of pseudo masks (Pk, k = 1,. . . , N0)

are generated for all the unannotated data based on a weighted combination

of the output pixel-wise probability map (Mi,k) from all sub-models using:

Pk =
Sn∑
i=1

wiMi,k (4.2)

The weight wi for each sub-model is calculated as follows:

wi =
R∑

j=1

Bj
i,kC

j
k (4.3)

where Bj
i,k is the binary map by applying a threshold of 0.5 to the pixel-wise

probability map generated from the ith sub-model for the kth unannotated

data. Superscript j is the index of pixels in an image that contains a total

of R pixels. Cj
k is the summation of all pixel-wise probability maps generated

from all sub-models for the kth unannotated image. Intuitively, the weight of

the ith sub-model is calculated as the sum of probability values of the combined

outputs from all sub-models within the image region predicted by the ith sub-

model. A larger weight indicates a greater agreement between the individual

prediction of a sub-model and the combined prediction of all sub-models.

The weights of sub-models were scaled to the range of [0.1, 1] using Eq.

(4.4), maximising the distance between the performance of the best and worst

sub-models, and thus introducing effectively a ‘relative reward’ to reward the

best sub-model the most, the worst sub-model the least, and apply a relative

distribution between them.

wi =
wi −min(w)

max(w) −min(w)
× 0.9 + 0.1 (4.4)

Finally, weights are also normalised by dividing the sum of all weights. These

new pseudo masks are used to train the sub models in the next level.

The task of sub-models is to learn features that are potentially different
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from the initial supervised model. The outputs of these sub-models are then

regulated and aggregated by the weighted combination process. These two

processes work interactively to improve the segmentation performance. During

this iterative process from level L2 to Ln, the number of sub-models is decreased

and the number of training images per sub-model is increased. The whole

framework is terminated at level Ln when only one model is trained using all

annotated and unannotated data.

4.3 Method Evaluation

4.3.1 Materials and Experiments

The proposed method was evaluated on “ISIC 2018: Skin Lesion Analysis To-

wards Melanoma Detection” grand challenge dataset [81][82]. It provides 2594

images with manually annotated lesions (binary class). The image was pre-

processed by using zero-mean normalisation (i.e. original intensity subtracted

by the mean image intensity and divided by standard deviation). The original

image size varies, which was resized to 128× 128 to achieve a balance between

computational efficiency and accuracy. The proposed method was also tested

with larger image sizes (e.g. 256 × 256), which did not lead to significantly

better performance but with much longer computational time, as the shapes

of the lesions are not very complicated.

For the proposed method, the dataset was split into a training set and a

test set with ratio of approximately 80%/ 20% (i.e 2094/ 500 images). Within

the training set, the data was further split into a annotated set, an unannotated

set and a validation set that contain 100, 1944 and 50 images respectively.

For comparison, a fully supervised model was trained using only the 100

annotated images (FS-100), and the full set of 2044 annotated images in the

training set (FS-2044). The FS-100 result serves as a baseline to demonstrate

the improvement of the proposed method by including unannotated data. The
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FS-2044 result serves as the upper bound to indicate the best possible perfor-

mance using all training images as annotated data. Bai’s self-training method

[100] as described in section 2.3.3 was also implemented for comparison.

4.3.2 Parameter Settings

For all methods, the basic network structures were the same, which was U-net

with residual block (described in section 4.3.1). It consisted of 5 encoder and

decoder layers respectively. The number of root features was 16 and doubled

at the next layer in the encoder path and halved in the decoder path.

For the proposed method, the initial model was trained using 100 images

for a maximum of 200 epochs with batch size of 10. The learning rate was

0.0001. To prevent over-fitting, a dropout operation with a 25% dropout rate

was applied after each pooling layer. Due to the data size for sub-models

being dynamic, the batch size used for sub-models was 1. For sub-model

training, the maximum number of epochs was 50 and the learning rate was

0.0001. Ensemble learning was found to be capable of reducing bias and avoid

over-fitting, therefore the dropout was not applied for faster convergence. The

training process was stopped early when the loss value of the validation set

was not decreased for 5 consecutive epochs. the number of sub-models in L1

were set as 32, 16 and 8 with 6, 5 and 4 levels respectively. The results showed

that a total number of 5 levels with the number of sub-models 16, 8, 4, 2, and 1

for L1, L2, L3, L4 and L5 achieved the best performance in terms of balancing

the computational time and segmentation accuracy.

Both fully-supervised methods FS-100 and FS-2044 were trained for 200

epochs with a learning rate of 0.0001. No early stopping was used, but a

dropout operation with a 25% dropout rate was applied after every pooling

layer. The batch sizes for FS-100 and FS-2044 were 10 and 28 respectively.

For Bai’s method, the same 100 annotated images as in the proposed

method were used to train an initial model and further refined it by includ-
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ing 1944 unannotated images. Following the paper, the fully-connected CRF

was applied on all pseudo masks in each iteration. After evaluating the CRF

method on the validation set, the CRF parameters were set as w1 = 2, w2 = 1,

σα = 2, σβ = 3, σγ = 5 (refer to [100] for more details). The self-training

optimisation was performed for 3 iterations, with 50 epochs for each iteration.

The proposed method was also experimented with more iterations, but it did

not improve the performance further. Same as FS-2044, the batch size of this

model was 28.

4.3.3 Results

This section reports quantitative results measured by Dice coefficient (DSC),

Intersection over Union (IoU), accuracy, sensitivity, specificity and train time

for performance comparison, as shown in table 4.1. These computations were

conducted on a desktop PC equipped with an Intel Xeon W-2123 CPU operat-

ing at 3.6GHz, alongside a NVIDIA GTX 1070Ti GPU with 8GB of memory.

The implementation of the code was carried out in Python, using the PyTorch

deep learning framework.

Table 4.1: Comparison of the proposed proposed method to the FS-100 and FS-2044
models and Bai’s method. Mean ± standard deviation values are reported.

Method DSC IoU Accuracy Sensitivity Specificity Train time (s)
FS-2044 0.872 ± 0.137 0.793 ± 0.171 0.952 ± 0.072 0.882 ± 0.156 0.974 ± 0.052 5926
FS-100 0.793 ± 0.190 0.693 ± 0.218 0.924 ± 0.103 0.859 ± 0.180 0.956 ± 0.076 2314
Bai’s 0.817 ± 0.189 0.724 ± 0.215 0.933 ± 0.103 0.827 ± 0.203 0.970 ± 0.073 18822
Proposed 0.844 ± 0.156 0.755 ± 0.189 0.939 ± 0.091 0.887 ± 0.159 0.969 ± 0.062 27853

It is seen from table 4.1 that the FS-100 model and FS-2044 model pro-

duced the worst and best results respectively, as expected. Both Bai’s method

and the proposed method achieved better segmentation accuracy than the

baseline FS-100 model, indicating successfully incorporating unannotated data

for model improvement. More importantly, the proposed method is signifi-

cantly (p < 0.001 based on paired t-test) better than Bai’s method in terms

of DSC, IoU and sensitivity measurements. For this dataset, the proposed

method produced the best sensitivity values even better than the FS-2044
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method but slightly lower specificity caused by more false positives.

The proposed method requires the training of a number of sub-models

that leads to longer training time than Bai’s method. Since the sub-models

in earlier iterations (e.g. L1 and L2) only use a few images for training and

the model parameters are inherited from previous models, the learning process

converges rapidly. Hence the training time for the whole process is not tremen-

dously high, particularly compared with a time-consuming manual annotation

process.

Figure 4.2: Five examples of qualitative assessments for different models. The
columns from left to right indicate the input image, ground truth, and four predictions
generated by the FS-100 model, Bai’s method, the proposed model, and the FS-2044
model, respectively.

For qualitative assessment, some example images are shown in Fig. 4.2.

Obviously, Fig. 4.2 (a)-(c) show that both Bai’s method and the proposed

method greatly improved the segmentation accuracy compared with FS-100

method by significantly reducing false positives for the images with high noise

levels. This further proves the conclusion drawn from the quantitative results.
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In Fig. 4.2 (d) and (e), it can be observed that there is minimal noise in the

input images, and even FS-100 model, which is only trained on 100 annotated

images, achieved relatively good segmentation results. This indicates that the

initial model (FS-100) had already learned the general data distribution, but

lacked noise resistance. By comparing it with Fig. 4.2 (a)-(c), this further

confirms that adding unannotated data to the semi-supervised learning model

allows it to extract richer information from the unannotated data, thus im-

proving the noise resistance of the model. In addition, when compared with

the ground truth, Bai’s method excessively reduced the size of the target re-

gions (more false negatives), where as the proposed method detected slightly

larger region (more false positives).

4.4 Discussion and Conclusions

By integrating ensemble learning and DCNN, a generic semi-supervised learn-

ing framework is developed, which enables the improvement of fully supervised

models by incorporating unannotated data. The framework was evaluated on a

publicly available skin lesion dataset, and notable performance improvements

were observed compared to a similar state-of-the-art semi-supervised learning

method. The results demonstrated the superior effectiveness of the proposed

method.

The capability to construct a fully automated medical image segmentation

network for various types of medical image datasets has been achieved by

leveraging the efficient interactive segmentation software developed in chapter

3 and the semi-supervised framework presented in this chapter. This approach

only requires a large dataset and a limited number of annotated masks, which

can be conveniently annotated by clinical experts using the provided interactive

software.

In the next chapter, the focus is on further exploring the semi-supervised

learning approaches for image segmentation. It has been discovered that many
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segmented masks for medical images exhibit common geometric shapes. By

employing image registration techniques, a segmentation mask can be gener-

ated by warping the mask of a template image onto the unannotated image

space. This is achieved by leveraging the transformation information learned

from both the template image and the unannotated image. Moreover, with the

additional information provided by the image registration network, the pseudo-

labelling-based semi-supervised image segmentation network can achieve im-

proved performance with even fewer annotated images [21]. Consequently, the

next chapter (chapter 5) introduces a comprehensive image registration ap-

proach capable of aligning datasets with significant deformations and utilising

masks to guide the network’s focus towards the mask region. The aim is to

establish a joint image segmentation and registration framework as discussed

in chapter 6.



Chapter 5

Mask Guided Image

Registration

5.1 Introduction

This chapter introduces an alternative solution to the semi-supervised method

proposed in chapter 4. The method proposed in this chapter adopts the idea

of image registration. Despite decades of method development in image reg-

istration, some issues remain to be addressed. One of the key challenges is to

cope with large image deformations.

Traditional image registration methods solve the problem of large defor-

mation by multi-resolution strategy. Inspired by this strategy, several multi-

resolution deep learning methods were proposed. Hering et al. [139] proposed

a U-Net [3] based multi-resolution image registration framework. It uses multi-

ple encoder-decoder networks to perform the estimation of displacement fields

in different resolutions. The displacement field is a vector field that character-

izes how each point in an image moves or changes position. These multi-scale

networks are trained step by step from coarse to fine scales. The input of the

higher resolution network is a down-sampled version of the target image and

the warped and up-sampled source image produced by the previous lower reso-

lution network. Mok et al. [109] proposed a Laplacian Pyramid based method

73
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for large deformable image registration. Different from Hering’s method, it

uses several light encoder-decoder networks with skip connections of feature

maps between them. Different networks focus on different image resolutions,

the inputs of a higher resolution network are the source image, the target

image and the up-sampled displacement field from the previous lower resolu-

tion network. The hyper parameters in these multi-resolution sub-networks

need to be tuned and set differently to balance the weights of multiple loss

function terms. Similarly, several U-Net based multi-resolution methods were

proposed that combined feature maps from different resolutions [140] [141]

[110]. Compared to the single-resolution deep learning methods and the tra-

ditional methods, all of these methods achieved significantly better results on

images with large deformations.

Adopting the multi-resolution idea, in this chapter, a multi-resolution

DCNN method for image registration of 2D and 3D medical images is proposed.

Different from the aforementioned existing methods, the proposed method uses

a single encoder to extract features from different image scales, and the decoder

generates displacement fields for different resolutions. Then the displacement

field in the finest scale is estimated by combining the up-sampled displacement

fields from all coarser scales successively. The main contributions of this work

compared to other DCNN methods are summarised as follows. (1) Without

separate encoders for different resolutions, the proposed model uses a single

encoder which is more compact and can be adjusted to different numbers of res-

olutions more flexibility. (2) The proposed method does not require a warped

source image generated from the lower resolution as the input to the higher

resolution layer. Instead, only the displacement field from the lower resolu-

tion is up-sampled and added to a learnable residual displacement field in the

higher resolution, which requires shorter training time. (3) The residual dis-

placement field design enables efficient and effective diffeomorphic deformation

than the commonly used scaling and squaring method. (4) By incorporating a

mask guided loss term, similar to [142] [113], the proposed method enables the
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model to concentrate on the mask area, leading to improved local alignment.

The subsequent sections of this chapter are structured as follows: section

5.2 introduces the architecture of the proposed image registration network

and the methodology used in this study. It also describes the training and

the inference processes of the framework. Section 5.3 provides the details of

the dataset and the experimental design, along with the evaluation results

obtained from both 2D and 3D datasets. Section 5.4 provides the discussion

and conclusions for this chapter. It leads to the method of integrating image

registration and segmentation in the next chapter.

5.2 Methodology

5.2.1 Model Architecture

An overview of the proposed image registration framework is illustrated in

Fig. 5.1. The network consists of an encoder and a decoder, and each has K

levels (L1,. . . ,LK) of scales. Fig. 5.1 is an example framework with 3 levels.

In both the model training and inference processes, pairs of source and target

images are merged into two-channel images, which are subsequently fed into

the network. Each of the key components is introduced below.

Encoder: the encoder extracts multi-resolution features at different scales,

each level of the encoder includes a residual block which consists of two 3×3

convolutional operators (3×3×3 for 3D) with stride of 1. Each of them is

followed by a leaky rectified linear unit (Leaky ReLU) as the activation func-

tion [143]. The input of the residual block [83] is also added to the feature

map learned after the second convolutional operator. A 1×1 (1×1×1 for 3D)

convolutional operator with stride of 2 is applied to down-sample the feature

maps between two consecutive levels.

Decoder: the decoder has the same number of levels as the encoder,

and each level consists of one 3×3 (3×3×3 for 3D) convolutional operator
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Figure 5.1: Overview of the proposed multi-resolution image registration framework
with 3 levels. Pairs of images (source and target) are input to the highest resolution
level (level 3) to train the network. Each level estimates a displacement field (Di),
which is combined with the up-sampled displacement field from the lower level. The
spatial transformer [9] warps the source image (S) to the target image (T ) in each
resolution to obtain a warped image (fD(S)). The whole framework is updated by
optimising the similarity between T and fD(S) with a smoothness term in each level.

with stride of 1 and one 3×3 (3×3×3 for 3D) de-convolutional operator with

stride of 2 as an up-sampling layer. Leaky ReLU is also used after both of

them as the activation function. The connection between the encoder and

the decoder in the lowest level (L1) passes through a 3×3 (3×3×3 for 3D)

convolutional operator followed by a Leaky ReLU. For all other higher levels,

a skip connection is applied to concatenate the feature maps of the encoder to

the decoder in the same level.

Residual Displacement Field: as illustrated in Fig. 5.1, a 3×3 (3×3×3

for 3D) convolutional operator is applied in each level of the decoder to directly

estimate the displacement field (Di) in the corresponding image resolution.

During the model training process, the displacement field Dc1 of the lowest

resolution in level L1 is estimated first. In level L2, the displacement field D2

is calculated through the decoding process in that level. It is then added to the

up-sampled version of Dc1 to form the final displacement field Dc2 for level L2.

To up-sample the displacement field (e.g. Dc1), the size of Dc1 is firstly doubled

using linear interpolation, followed by the scaling of the displacement values

by a factor of 2. The higher levels follow the same procedure to successively
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combine the displacement fields from the previous level. The displacement

field Di at each level can be considered as a residual displacement map, which

shares a similar idea as the residual network. It enables a more efficient learning

process and helps the diffeomorphic deformation as discussed in section 5.2.2.

Spatial Transformer and Image Warping: like most other image reg-

istration networks, the proposed method also employs a spatial transformer

layer [9] to build an unsupervised image registration network. The spatial

transformer layer consists of three main components. The first is the localisa-

tion network, which learns appropriate spatial transformations (i.e. displace-

ment field) and is implemented using convolutional layers in this study. The

second component is the grid generator, which defines the pixel-level mapping

from the input feature map to the transformed feature map based on the es-

timated displacement field of the localisation network. The final component

is the sampler, which performs the feature map transformation using the grid

and employs linear interpolation.

For the implementation of unsupervised image registration, the model

utilises randomly paired images (source image and target image). These im-

ages are input to the encoder and decoder of the network, generating feature

maps. These feature maps are then passed through the localisation network,

resulting in the computation of a displacement field. The displacement field

is subsequently utilised by the grid generator and the sampler to facilitate the

transformation of the source image. This transformation produces a warped

image. The model then proceeds to update its weights iteratively through a

learning process that optimises the similarity between the warped source image

and the target image. The optimisation process can be expressed as follows:

arg min
D

(L(fD(S), T )) (5.1)

where D indicates the displacement field. S and T are the source image and

target image respectively. fD(S) indicates the warped image of warping S
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using the displacement field D. L is the similarity measurement. Additional

loss terms are added in our proposed method, which are described in sections

5.2.3 and 5.2.4.

5.2.2 Diffeomorphic Deformation

Diffeomorphic deformation is a critical property required in image registration.

By estimating a smooth and invertible deformation field, it enables an accurate

alignment of images while preserving the topology and spatial relationships

between anatomical structures. This preservation of spatial relationships is

crucial for obtaining reliable and meaningful registration results, so that image

warping can be inverted using the inverse displacement field.

In some studies [144] [20] [109], the deformation field is treated as a static

velocity field, and diffeomorphic deformation is obtained by adding a scaling

and squaring layer along with multiple interpolations. The scaling and squar-

ing layer [20] is used to calculate the displacement field from the flow field,

providing a diffeomorphic registration. It refines the deformation field by iter-

atively scaling and squaring it t times, resulting in a smoother and invertible

transformation. However, it requires several intermediate steps that is time

consuming.

In the proposed method of this thesis, residual displacement fields are

estimated at multi-level scales. Each of the residual displacement fields at

different level only needs to perform a small deformation. By combining with

the smoothness loss term (section 5.2.3), it helps achieving diffeomorphic reg-

istration without using the scaling and squaring technique. In the experiments

(see section 5.3.3), it is shown that the proposed method is able to produce a

similar diffeomorphic property to the scaling and squaring method in shorter

training time.
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5.2.3 Unsupervised Loss Functions

Given a source image S and a target image T , the objective of image registra-

tion is to transform S so that it can be aligned with T . The transformation

in this case is represented by a displacement field D, which is used to warp

the source image (denoted as fD(S)). The image registration network is then

optimised based on a similarity measurement between the target image and

the warped source image. The global normalised cross correlation (GNCC),

which is used to capture the global deformable information, is commonly used

in medical image registration tasks (e.g. [145]). Local normalised cross cor-

relation (LNCC) is also used in many studies, which focuses on local image

similarities. Both methods are implemented for comparison, and their mathe-

matical expressions are described below.

Lsim = −GNCC(x, y) or Lsim = −LNCC(x, y) (5.2)

GNCC(x, y) =
1

N

∑
p∈Ω

(xp − x)(yp − y)

σxσy

(5.3)

LNCC(x, y) =
1

N

∑
p∈Ω

∑w2

i=1(xpi − xp)(ypi − yp)
2

(
∑w2

i=1(xpi − xp))(
∑w2

i=1(ypi − yp))
(5.4)

where Ω indicates all the pixels (voxels) in the image. N is the total number

of pixels in the images. x and y represent the warped image fD(S) and the

target image T respectively. xp and yp are the intensity values at pixel p in

x and y respectively. x (y) and σx (σy) denote the mean and the standard

deviation of the intensities of x and y. In Eq. (5.4), xp and yp are the mean

image intensities of local regions around pixel (voxel) p : xp = 1
w2

∑w2

i=1 xpi . pi

denotes the ith pixel (voxel) of the w2 (2D) or w3 (3D) local region around p.

Another part of the loss function is a displacement field regularisation

term. A smoothness regularisation loss [113] is calculated from each of the
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(Di), as expressed in Eq. (5.5):

Lsmooth(Di) = ∥▽Di∥ (5.5)

where ▽Di denotes the approximate spatial gradients of displacement Di using

differences between neighbouring pixels (voxels).

The model learns an optimal displacement field by optimising Eq. (5.6).

arg min
D

1

K

K∑
i=1

(Lsim(fDci
(S), T ) + λiLsmooth(Di)) (5.6)

where λi is the weight for the smoothness term on level i, which is used to

balance the two terms. Both the similarity loss Lsim and the smoothness loss

Lsmooth are calculated on all K levels.

5.2.4 Mask Guided Loss Function

Figure 5.2: The mask guided plug-in for the proposed registration model. The mask
(mid-brain) of source image (brain MRI) is transformed into multiple resolutions
using spatial transformer based on the displacement fields at different levels. The
loss function comprises similarities between the mask of target image and the warped
mask at each of the resolutions.

In the context of medical image analysis, it is very common to focus on a small

region of interest (ROI) (e.g. brain stem and cardiac atrium). In the task of
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image registration, a globally aligned image pair does not guarantee a local

optimal alignment. Hence, in the proposed method, the mask of ROI can be

optionally incorporated into the network to guide the image registration to

focus more on the ROI.

As illustrated in Fig. 5.2, a mask guided term is introduced to the multi-

resolution framework during model training. In addition to the image simi-

larity Lsim and smoothness loss Lsmooth, a similarity loss between the warped

mask of the source image and the mask of the target image in each resolu-

tion is applied. In each training iteration, the mask of the source image Smask

is transformed using the displacement fields at different resolutions (Dc1, Dc2,

..., DcK) to produce warped masks (fDc1(Smask), fDc2(Smask), ..., fDcK
(Smask)).

The target mask is then down-sampled to match the corresponding image sizes,

and the final loss is computed as the average of the similarities of all K scales.

To address class imbalance, soft dice loss is used here instead of cross-entropy

loss:

Lmask(x, y) =
1

K

K∑
i=1

2∥x · y∥
∥x∥2 + ∥y∥2

(5.7)

where x, y represent the warped mask fD(Smask) and the target mask Tmask.

Finally, the optimisation term for model training incorporating the mask-

driven loss is represented by Eq. (5.8). The network is then trained based on

a training set that contains random pairs of source and target images, as well

as their corresponding ROI masks as an optional setting.

arg min
D

1

K

K∑
i=1

(Lsim(fDci
(S), T ) + Lmask(fDci

(Smask), Tmask) + λLsmooth(Di))

(5.8)

5.2.5 Model Inference

Once the model is trained, it can be applied to estimate the displacement

fields between new pairs of source and target images. As depicted in Fig.
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5.3, by providing a pair of images, namely a source image S and a target

image T , the model can generate predictions for the displacement field D,

which represents a mapping that transforms the source image S to the target

image T . Consequently, the model can utilise the displacement field to warp

the source image, resulting in a warped source image denoted as fD(S) using

the spatial transformer. Note that, different from the training process, the

mask of the target image is not required in the model inference process. If the

source image includes an annotated mask Smask, the model can also apply the

mapping fD(Smask) to warp it into the target space. The warped mask of the

source image can be considered as the segmentation mask of the target image,

assuming the image registration is sufficiently accurate. The presence of the

mask does not affect the registration result. The network automatically focuses

more on the ROI as learned from the training process. It is demonstrated by

the results presented in the next section.

Figure 5.3: The model inference process of the proposed framework. The regis-
tration model generates a displacement field from a source-target image pair. The
spatial transformer warps the source image using this field, producing a warped im-
age (red route). If a segmentation mask exists, it is also warped using the same
displacement field, generating a predicted segmentation outcome for the target image
(blue route).
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5.3 Method Evaluation

5.3.1 Datasets

The proposed method was evaluated on a widely used public 3D brain MRI

dataset and a more challenging 2D brain MRI dataset collected locally.

The public 3D brain MRI dataset contains 414 T1-weighted brain scans

with 4 manually annotated anatomical regions (i.e. cortex, subcortical gray

matter (SGM), white matter (WM) and cerebrospinal fluid (CSF)) is from

the OASIS dataset [146]. The images were pre-processed by the authors of

HyperMorph [147] using FreeSurfer [148], which include spatial normalisation,

bias-correction and skull-stripping. The size of the images after pre-processing

is 160× 192× 224, and then were further resized to 96× 96× 96 to reduce the

memory consumption and training time. The same pre-processed images were

used consistently for a fair comparison of all methods.

The local 2D brain MRI dataset contains 820 T1-weighted slices with

manually annotated mid-brain as the target of interest. These slices are from

slightly different cross-sectional brain regions of different subjects, and were

acquired by different MRI scanners. Except for resizing the image to 256×256,

no other pre-processing was performed to these images. Very large spatial

differences across different subjects were observed in this dataset which is more

challenging than the 3D brain dataset.

5.3.2 Experimental Methods

The proposed method was compared to one of the most widely used tradi-

tional image registration method Demons [149, 150] and a state-of-the-art deep

learning method VoxelMorph [113]. The official implementation of Demons in

SimpleITK toolkit [151] was used. For VoxelMorph, the published code by

the authors was used with a slight modification to ensure the lowest image

resolution is comparable among all methods for a fair comparison.
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For the 3D dataset, the data was divided into training, validation and test

sets with the ratio of approximately 60%, 5% and 35% (i.e. 244, 20 and 150)

respectively. For the 2D brain dataset, the images were divided into training,

validation and test sets with the ratio of approximately 75%, 5% and 20% (i.e.

600, 40 and 180) respectively.

In the training process, each of the training images was selected as the

target image in turn, and the source image was randomly selected. This ap-

proach enabled randomised pair selection, as well as ensured that the model

learned from a diverse range of image combinations throughout the training

process.

To evaluate all methods, 5 randomly selected images from the test set

were used as the source images, and the remaining test images as the target

images to evaluate the methods. Therefore, there are 725 paired 3D images

and 875 paired 2D images for testing. This ensures all methods were applied

to the same set of paired images for a fair comparison.

Two models MrRegNet-G and MrRegNet-L based on the proposed net-

work, which were trained using GNCC (global) and LNCC (local) as the simi-

larity loss respectively, were tested and compared to Demons and VoxelMorph.

The hyper-parameters were tuned using the validation dataset. The 2D dataset

and 3D dataset had different hyper-parameters as detailed below.

Parameter Settings for 2D Brain Dataset

For both MrRegNet-G and MrRegNet-L, the learning rate was set to 0.001,

and the training epochs was 200. The batchsize was set to 10. The number

of levels was determined based on the image size, resulting in 5 levels. In

the case of MrRegNet-G, the smoothness term weight (λi) varies dynamically

across levels, ranging from 128 to 8 and halved at each level (λ1 = 128, λ2 = 64,

λ3 = 32, λ4 = 16, λ5 = 8). This approach assigned higher weights to lower

resolution levels to enforce higher levels of smoothness in coarse levels. For

MrRegNet-L, the smoothness term weights are the same for all levels, as the
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LNCC prioritises local regions rather than global information, ensuring equal

smoothing weight for each local region. The lowest resolution of the 2D image

is calculated as W/2N−1 × H/2N−1 = 256/25−1 × 256/25−1 = 16 × 16, where

W and H represent the width and height of the 2D image, respectively. In

this case, N was set to 5. Consequently, the local region size w for LNCC

was set to 9 to encompass sufficient information for the lowest resolution,

and the smoothness term weight λ was set to 10. In order to ensure a fair

comparison, the Demons method also adopted the pyramid structure with a

5-level configuration on the 2D dataset, while the other settings remain at the

default values.

The training parameters were tuned for VoxelMorph-G and VoxelMorph-L

using GNCC and LNCC as the similarity loss separately. Similar to MrRegNet,

the learning rate was set to 0.001, and the training was conducted for 200

epochs. The batchsize was also set to 10. After parameter tuning using the

validation set, the weight of the smoothness term was set to 10 for VoxelMorph-

G and 1 for VoxelMorph-L. Specifically, for VoxelMorph-L, the local region size

w for LNCC was set to 9 to ensure a fair comparison to MrRegNet-L.

Furthermore, for the proposed MrRegNet, additional experiments were

conducted to compare the performance of MrRegNet-G-SS and MrRegNet-

L-SS, which include the addition of scaling and squaring layers. All hyper-

parameters remained the same as those without the scaling and squaring layers

(diffeomorphic deformation). In order to achieve diffeomorphic image registra-

tion, the parameter t was set to 5, indicating that the displacement field would

undergo scaling and squaring operations 5 times.

Parameter Settings for 3D Brain Dataset

Only the results of MrRegNet-G was reported on this dataset, as it was ob-

served that MrRegNet-G on 2D dataset produced more reliable image align-

ment results than MrRegNet-L. Additionally, several experiments on multi-

classes are conducted to discover the usage of mask guided loss. In these
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experiments, a learning rate of 0.0001 was set to facilitate smoother training.

The training epochs was 200. The batchsize was set to 1. To ensure that the

lowest resolution was not too small for registration displacement field learning,

a 4-level network structure was employed on an image with size of 96×96×96.

This configuration allowed the lowest resolution of 12× 12× 12 at the deepest

level. Like the experiments conducted on the 2D dataset, the weights assigned

to the smoothness term were dynamic. However, in this case, the weights

ranged from 16 to 2, with λ1 = 16, λ2 = 8, λ3 = 4, and λ4 = 2. Same as the

2D dataset, the Demons employed 4 layers for a fair comparison, the remaining

settings were set as default.

The VoxelMorph-G model was also assessed on this dataset, which used

GNCC as the similarity loss function. The learning rate was set to 0.0001,

the batchsize was set to 1, and the training lasted for 200 epochs, same as the

settings of MrRegNet-G. The weight of the smoothness term was set to 1.

Experiments for Mask Guided Loss and Diffeomorphic Deformation

Besides testing the performance of the proposed MrRegNet model, additional

experiments were conducted to evaluate the advantages provided by the mask

guided loss term. The method is named as MrRegNet(mask). As mentioned

in section 5.3.1, the 2D brain data contains annotations for only one class in

the central region of the brain, while the 3D brain data has annotations of four

classes that are distributed around the whole brain. These two datasets help to

test the proposed method in different scenarios (i.e. binary mask, multi-class

mask, small mask and large mask).

Furthermore, the widely used scaling and squaring method was added to

the proposed model for the purpose of preserving diffeomorphic deformation.

The method is named as MrRegNet-SS. As stated in section 5.2.2, the proposed

network learns a residual displacement field in each scale, which helps to retain

the diffeomorphic property. Hence, this experiment helps to demonstrate the

proposed method can achieve similar diffeomorphic deformation without using
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the time consuming scaling and squaring method.

In combination with the local (-L) and global (-G) similarity measure-

ments, different variants of the proposed network were implemented for com-

parison, including MrRegNet-G, MrRegNet-L, MrRegNet-G(mask), MrRegNet-

L(mask), MrRegNet-G-SS, MrRegNet-L-SS, MrRegNet-G-SS(mask) and MrRegNet-

L-SS(mask). These were compared to VoxelMorph and Demons methods.

Evaluation Metrics

The commonly used evaluation metric, global normalized cross-correlation

(NCC), was used to measure the quality of image registration. It measures

the similarity between the warped source image and the target image. The

value range is between 0 to 1. A higher value indicates greater similarity

between the two images.

Besides, Dice coefficient (DSC) on the annotated anatomical regions be-

tween the warped image and the source image was used to measure the quality

of registration in the masked area [109] [110]. DSC ranges from 0 to 1, where

1 indicates perfect agreement between two masks. The DSC of annotated re-

gions between the source image and the target image before registration was

reported as a baseline.

In addition, the rate of non-positive value of Jacobian determinant ∥JD∥ ≤

0 and standard deviation of Jacobian determinant on the estimated displace-

ment field s(∥JD∥) were also used to measure the quality of the diffeomorphic

property. A lower number of non-positive value in Jacobian determinant indi-

cates a better diffeomorphic property. Smaller standard deviation of Jacobian

determinant indicates the displacement field is smoother and locally invertible.
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5.3.3 Results

2D Brain MRI Data

The quantitative results on the 2D brain dataset are reported in table 5.1.

First of all, without the mask guided term and the scaling and squaring layer,

the proposed methods (MrRegNet-G and MrRegNet-L) outperform all other

methods in terms of GNCC, DSC and s(∥JD∥). Furthermore, when compar-

ing local and global similarity loss terms within the same method, it can be

seen that the local similarity loss (-L) achieved a better DSC than the global

similarity loss (-G) for both VoxelMorph and MrRegNet. This suggests that

without the guidance of a segmentation mask, local similarity performed bet-

ter in local alignment. However, the GNCC values of the -L methods are lower

than the -G methods for both VoxelMorph and MrRegNet, which indicate poor

global alignments using the local similarity loss.

Table 5.1: Quantitative evaluation on 2D dataset. The baseline results are the
measurements before image registration. The results of Demons, VoxelMorph and
MrRegNet are comparied. “-G” and “-L” represent the loss function GNCC and
LNCC respectively. “-SS” indicates the method using scaling and squaring method.
“(mask)” indicates a mask guided loss term was added to the model. The mean
± standard deviation values of global normalized cross-correlation (GNCC), Dice
coefficient (DSC), ratio percentage non-positive value ∥JD∥ ≤ 0 and the standard
deviation of Jacobian determinant s(∥JD∥) are reported for each method. The
reported values are presented as the mean ± standard deviation.

Method GNCC DSC ∥JD∥ ≤ 0 s(∥JD∥)
Baseline 0.39±0.05 0.66±0.15 n/a n/a
Demons 0.75±0.09 0.68±0.17 0.00±0.00 0.22±0.07
VoxelMorph-G 0.77±0.03 0.71±0.14 0.85±0.38 0.37±0.03
VoxelMorph-L 0.60±0.09 0.72±0.16 0.51±0.10 0.33±0.04
MrRegNet-G 0.80±0.03 0.77±0.10 0.01±0.03 0.14±0.02
MrRegNet-L 0.78±0.04 0.80±0.10 0.01±0.03 0.18±0.02

VoxelMorph-G (mask) 0.65±0.04 0.82±0.07 0.05±0.07 0.19±0.01
VoxelMorph-L (mask) 0.50±0.06 0.87±0.07 0.23±0.08 0.22±0.02
MrRegNet-G (mask) 0.76±0.04 0.86±0.06 0.07±0.07 0.17±0.02
MrRegNet-L (mask) 0.73±0.05 0.87±0.08 0.23±0.13 0.21±0.02

MrRegNet-G-SS 0.80±0.03 0.78±0.10 0.01±0.01 0.15±0.03
MrRegNet-L-SS 0.77±0.04 0.79±0.09 0.02±0.04 0.19±0.03
MrRegNet-G-SS (mask) 0.78±0.04 0.86±0.06 0.05±0.07 0.16±0.03
MrRegNet-L-SS (mask) 0.75±0.04 0.85±0.09 0.21±0.14 0.22±0.03



Chapter 5. Method Evaluation 89

Based on the results of the masked versions of both VoxelMorph and

MrRegNet methods in table 5.1, it is seen from the DSC values that the mask-

guidance loss is capable of improving the local alignment in the masked re-

gion. Moreover, when examining the GNCC values, it can be observed that

the mask-guided loss results in reduction of the global registration performance

for all methods. In the case of VoxelMorph, the performance of VoxelMorph-G

(mask) and VoxelMorph-L (mask) show a noticeable decrease (10-13%) from

0.78 to 0.65 and from 0.60 to 0.50 respectively. In contrast, the proposed

methods MrRegNet-L (mask) and MrRegNet-G (mask) achieved a significantly

higher performance in local alignment (5-10% higher DSC values) with a rel-

atively small decrease in global alignment (3-4% lower GNCC values). The

MrRegNet-G (mask) method is preferred in terms of balancing between the

global and local alignments, resulting in GNCC of 0.76 and DSC of 0.86.

Regarding diffeomorphic properties, as evidenced by the absence of non-

positive values and lower standard deviation of the Jacobian determinant show-

ing in table 5.1, without the mask guided term, the proposed method exhibited

superior performance compared to VoxelMorph in maintaining a good diffeo-

morphic property of the displacement field. After adding the mask guided

term, VoxelMorph (mask) achieved similar performance as the proposed Mr-

RegNet (mask). However, it can be observed later from Fig.5.5 that this

improvement was a result of the unsuccessful global alignment of the images,

leading to a reduction in displacement values. For the proposed MrRegNet,

after the inclusion of the mask guided term, when observing the standard de-

viation of Jacobian determinant in table 5.1, it can be concluded that the

smoothness did not noticeably worsen. However, the non-positive value of

Jacobian determinant indicates that due to the increased emphasis on local

region alignment, slightly more folding pixels occurred than without using the

mask-guided term.

Furthermore, table 5.1 also provides the results of the proposed methods

by adding the scaling and squaring layer with t = 5 (-SS). The results indicate
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that incorporating this layer did not significantly improve the performance of

the model in terms of registration accuracy, and there was no notable improve-

ment in the diffeomorphic property. These findings suggest that the proposed

method can achieve diffeomorphic registration effectively without using the

scaling and squaring method.

Follow on the above quantitative analyses, some qualitative analyses of

the results are conducted by visualising some examples.

Fig. 5.4 shows three registration examples by applying Demons, Voxel-

Morph and MrRegNet without the mask guided term. Specifically comparing

row (a) and row (b) of Fig. 5.4, it is evident that while Demons is capable

of handling registration involving significant deformations, it fails to achieve

accurate alignment along the boundary (row (a)) and in detailed regions (top

area of the brain in row (b), indicated by the red arrow). VoxelMorph-G

demonstrates the ability to align images with large deformations, but it re-

sults in a significant pixel folding issue (row (a), top region highlighted by the

red arrow). Moreover, VoxelMorph-L fails to align the source and target im-

ages correctly. In row (c), all the methods produce similar results to register

the images with small deformations. By employing a local similarity loss (-L),

both VoxelMorph and the MrRegNet can focus more on the local region (as

indicated by the blue arrows in row (c)). Overall, Fig. 5.4 demonstrates that

the proposed MrRegNet method is able to achieve consistent performance for

both large and small deformations, which is preferable than the other compared

methods.

Regarding the mask guided term, Fig. 5.5 and Fig. 5.6 show the vi-

sualisation outcomes of an example paired images by applying VoxelMorph

and MrRegNet respectively. By observing the masks and the heatmaps and

grid views of the displacement field, they demonstrate that for both methods,

the inclusion of the mask-guided term results in capturing fine displacements

within the masked mid-brain region, and the generated masks have a more

similar shape to the target mask. This signifies that the model focuses more
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Figure 5.4: Visualisation results of different registration methods without mask
guided loss term on the 2D brain dataset. All methods, except the VoxelMorph-
L (a) and (b), achieved good global alignments. The red arrows in rows (a) and
(b) indicate specific small regions where Demons and VoxelMorph-G exhibited poor
alignment. In row (c), the blue arrows point to the mid-brain region of VoxelMorph-
L and MrRegNet-L, showcasing effective local region alignment. Further details can
be found in Section 5.3.3.

Figure 5.5: The visualisation showcases registration examples of the methods based
on VoxelMorph on a 2D image pair. The first and second rows depict the images and
masks, respectively. The third row presents a heatmap of the estimated displacement
field for each method (the higher the value, the larger the pixel shifts). The fourth
row displays the deformation grids, including the grid before registration, and the
grids of the displacement fields after registration.

on aligning the masked region.

For the VoxelMorph method presented in Fig. 5.5, both VoxelMorph-L
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Figure 5.6: Visualisation of the same example image as shown Fig. 5.5 based on
the proposed MrRegNet. The layout is the same as in Fig. 5.5.

and VoxelMorph-L (mask) show difficulties in handling largely deformed im-

ages. Although VoxelMorph-L (mask) achieved an acceptable alignment in the

mid-brain region due to the mask guided term, its focus remained primarily

on the masked region, resulting in a mis-alignment of the whole brain region.

Furthermore, the heatmaps and grid views exhibit notable discrepancies de-

pending on the chosen loss function, indicating VoxelMorph’s sensitivity to

these settings. In comparison to the proposed method in Fig. 5.6, the dis-

placement fields are also less smoother.

The visualisation of the same example using the proposed method is shown

in Fig. 5.6. Better than VoxelMorph, all the MrRegNet variants achieved ac-

ceptable results. The displacement fields of these methods are similar to each

other and smooth, despite their different loss functions. This indicates bet-

ter robustness and stability of the proposed method than VoxelMorph. The

heatmaps and grid views of MrRegNet-G (mask) and MrRegNet-L (mask)

contain some fine movements in the mid-brain area, indicating the significant

impact of the mask-guided term in aligning local regions. Additionally, it is

observed that MrRegNet-L tends to focus more on the local region compared
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to MrRegNet-G, as expected. However, with the inclusion of the mask-guided

term, MrRegNet-G (mask) is able to prioritise the masked region without sig-

nificantly affecting other areas. However, MrRegNet-L (mask) loses some focus

on the region surrounding the masked region, resulting in poorer registration

performance compared to MrRegNet-G (mask). This finding is consistent with

the conclusion of the quantitative results in table 5.1.

In summary, based on both the quantitative and qualitative analyses, the

proposed method MrRegNet-G (mask) achieved the best performance in terms

of balancing on global alignment, local alignment and diffeomorphic properties.

It also leads to higher quality alignment than other methods (i.e. Demons and

VoxelMorph) on visual inspections.

3D Brain MRI Data

Table 5.2: Quantitative evaluation on 3D dataset. The Baseline, Demons,
VoxelMorph-G, and MrRegNet-G methods remain consistent with those listed in
table 5.1. The addition of “(masks)” indicates the mask guided loss was calcu-
lated on all classes during model training. The Global Normalized Cross-correlation
(GNCC), Dice coefficient (DSC) for each class and the average score, percentage non-
positive value ∥JD∥ ≤ 0 and standard deviation of Jacobian determinant s(∥JD∥)
are reported for each method.

Method GNCC
DSC ∥JD∥ ≤ 0 s(∥JD∥)

Mean Cortex SGM WM CSF
Baseline 0.67±0.14 0.25±0.11 0.26±0.08 0.26±0.16 0.35±0.12 0.11±0.13 n/a n/a
Demons 0.95±0.02 0.62±0.06 0.57±0.05 0.46±0.07 0.72±0.05 0.7510±0.10 0.01±0.01 0.13±0.02
VoxelMorph-G 0.93±0.02 0.55±0.06 0.47±0.04 0.61±0.09 0.64±0.04 0.49±0.15 0.16±0.19 0.20±0.04
MrRegNet-G 0.94±0.02 0.62±0.06 0.51±0.04 0.67±0.08 0.67±0.04 0.62±0.14 0.13±0.09 0.21±0.02

MrRegNet-G (mask) 0.94±0.02 0.67±0.05 0.53±0.04 0.74±0.08 0.70±0.04 0.72 ±0.11 0.43±0.15 0.27±0.02

The quantitative results on the 3D brain dataset with multi-class masks are

shown in table 5.2. As concluded from the experiments on 2D dataset, the

global similarity loss works better with the mask guided loss. Hence, only

Demons, VoxelMorph-G, MrRegNet-G and MrRegNet-G (mask) are compared

for the 3D dataset. By examining the GNCC and mean DSC values, all the

methods achieved good registration results on this dataset. This is due to that

the 3D dataset contains relatively small image deformations compared to the

2D dataset.

Among the compared methods without mask guidance, Demons achieved
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Figure 5.7: 3D mask template showcasing images and masks in axial, sagittal, and
coronal views. Arrows indicate the subcortical gray matter (SGM) region in both the
image and the mask to highlight the intensity variations in the SGM region.

overall the best performance on GNCC, mean DSC and Jacobian determinant

measurements. By looking at the DSC score for each masked brain region in

table 5.2, Demons achieved better results on Cortex, WM and CSF region,

but a worse result on SGM. It is hypothesised that the lower performance

on SGM region is due to the inhomogeneous intensities within the region as

shown in Fig. 5.7, which makes it challenging for non-learning based method

like Demons. In contrast, the deep learning based methods (voxelmorph-G

and MrRegNet-G) are more robust in feature learning to cope with intensity

variations. When comparing VoxelMorph-G and the proposed MrRegNet-G, it

is obvious that MrRegNet-G performed better on all metrics, except a similar

performance on s(∥JD∥).

More importantly, when incorporating the mask guided term into the

proposed method (MrRegNet-G (mask)), it is seen from table 5.2 that while

the overall GNCC measure is similar to Demons (0.94 vs. 0.95), but the mean

DSC value (0.67) is significantly better than all the other methods (≤0.62).
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The smoothness of the displacement field is slightly affected by adding the mask

guidance (s(∥JD∥): from 0.20 to 0.27). The number of folding voxels were

also increased (∥JD∥ ≤ 0: from 0.13 to 0.43), due to the increased movement

on local regions. Unlike the tests on the 2D dataset, the addition of the

mask guided term in this case does not lead to a drop in GNCC measure,

indicating that the model possesses the capability to handle both global and

local deformations when the global deformation is not excessively large.

Visualisation of Displacement Fields

Figure 5.8: An example of registering a source image to a target image using
MrRegNet-G. The heatmaps show the scaled residual displacement fields (D) and
the scaled combined displacement fields (Dc) at different levels (L1, L2, ..., L5),
with resolutions of 162, 322, 642, 1282, and 2562. The values of displacement fields
are resized to 2562 and scaled by 25−K , where K represents the level number. The
warped images are generated by applying the scaled Dc to the source image. The
colour bar indicates the magnitude of pixel shift, with higher values corresponding to
larger shifts. Note that each row of the colour bar has the same values, indicating
consistent pixel shift magnitudes across different scales.

While the s(∥JD∥) and ∥JD∥ ≤ 0 measures can quantify the smoothness

and folding pixels (voxels) of the displacement field, it is also desirable to

visually inspect the displacement fields. Fig. 5.8 shows an example of the

image warping process using the displacement fields obtained from different
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resolutions. By examining the heatmap of the residual displacement field, it is

evident that different resolution levels capture different scales of movements.

Notably, the first three resolutions primarily control large-scale deformations

in different regions, while higher resolutions handle more intricate details, such

as the boundary of the brain.

By combining these resolution-specific displacement fields, the resulting

combined displacement field encompasses deformations across a wide range

of scales, from coarse to fine. This comprehensive approach ensures that all

types of deformations are accounted for in the final result. Furthermore, the

process of combining the displacement fields effectively smooth out the overall

displacement field while preserving its diffeomorphic property.

Computational Time

The computational time is also a key factor when comparing different methods,

hence reported in table 5.3 for both 2D and 3D datasets by applying all com-

pared methods. The computations were performed using a GPU server with

an Intel E5-2620 v4 CPU running at 2.10GHz and a NVIDIA GTX 1080Ti

GPU with 11GB memory. The code was implemented in Python using the

PyTorch deep learning framework.

The table shows that despite a long training time, deep learning-based

methods (VoxelMorph and MrRegNet) have significantly faster inference speeds

compared to the traditional Demons algorithm. Even when executed on a

CPU, these methods surpass Demons by more than 15 times in speed on 3D

data. The acceleration is even more remarkable, exceeding 40 times, for the

2D data. By leveraging GPU acceleration, both VoxelMorph and MrRegNet

achieve inference time of below one second (less than 1/10 of a second for 2D

images).

On both 2D and 3D datasets, the proposed method MrRegNet is approxi-

mately 30% slower in training compared to VoxelMorph. This is attributed to

the utilisation of multi-scale registration and the inclusion of multiple spatial
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Table 5.3: The computational times for different methods on both 2D and 3D were
provided, which includes model training time (GPU), total (per epoch), and infer-
ence time (CPU and GPU). The time is measured in seconds.

Dataset Method Training Time (s)
Inference Time (s)
CPU GPU

2D

Demons n/a 8.39 n/a
VoxelMorph 1309 (6.55) 0.07 0.03
MrRegNet 1713 (8.57) 0.16 0.03
MrRegNet-SS 2288 (11.44) 0.20 0.04

3D
Demons n/a 36.76 n/a
VoxelMorph 27450 (137.25) 1.50 0.34
MrRegNet 36291 (181.46) 2.32 0.45

transformer layers. Therefore, the inference speed of the proposed method is

also slightly slower than VoxelMorph. Furthermore, concerning the MrRegNet-

SS results on the 2D dataset, the utilisation of a scaling and squaring layer

with t = 5 leads to slower training and inference speed. This highlights one

of the advantages of our model: good diffeomorphic performance is achieved

without the requirement of the scaling and squaring layer, thereby maintaining

higher efficiency.

5.4 Discussion and Conclusions

To achieve an end-to-end image registration that is able to cope with large

deformations, a DCNN based multi-resolution registration framework is pro-

posed in this chapter. It learns a residual displacement field in each resolu-

tion. By using a smoothness term of equal weights on all residual displacement

fields, pixels at each resolution only move small distances in their own scales.

This design preserves the properties of diffeomorphic deformation. The evalu-

ation results show that the proposed method can achieve better performance

than the commonly used non-learning-based method Demons and a well-known

learning-based method VoxelMorph on the 2D brain MRI dataset with large

image deformations. The method is also able to achieve high quality registra-

tion results on the 3D brain MRI dataset with multi-class masks.
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Based on comprehensive experimental evaluations, it is concluded that the

proposed MrRegNet-G (mask) is the most preferable method in terms of global

alignment, local alignment and diffeomorphic properties. This is attributed

to the multi-resolution residual displacement field learning and global NCC

similarity measure combined with a mask-guided loss.

Moreover, the proposed image registration model can be utilised as an

image segmentation tool. The segmentation mask of a template image (source

image) can be warped to the target image space using the estimated displace-

ment field. The inclusion of the mask guided loss significantly improves the

registration performance in the masked regions, which can further improve

the segmentation accuracy. Therefore, the next chapter will introduce a novel

semi-supervised segmentation framework by combining both a deep-learning

based segmentation model and the proposed MrRegNet-G (mask). This frame-

work is trained on a small amount of annotated images and a large amount of

unannotated images to iteratively improve the segmentation and registration

models.



Chapter 6

Integrated Image Segmentation

and Registration for

Semi-supervised Learning

6.1 Introduction

In chapter 5, an end-to-end unsupervised image registration framework is pre-

sented, which can be applied to both 2D and 3D images. The framework

estimates a displacement field that warps the source image to the target im-

age. Consequently, this displacement field can also be used for generating a

segmentation mask of the target image by warping the mask of the source

image. By incorporating a mask-guided loss term, the model learning process

is directed to prioritise the masked region, resulting in improved registration

and segmentation performance for that specific area.

In chapter 4, a method based on ensemble techniques is proposed to gen-

erate pseudo-masks, and a semi-supervised image segmentation method is de-

veloped.

Based on the ideas from both chapter 4 and 5, in this chapter, the im-

age registration model (chapter 5) is combined with a CNN-based image seg-

mentation model to produce pseudo-masks of unannotated images, aiming to

99
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simultaneously improve the performance of both models in semi-supervised

learning.

Before the widespread adoption of deep learning, it had been discovered

by researchers that image registration and image segmentation could mutually

enhance the results of both models by providing valuable information to each

other. In 2001, Yezzi et al. introduced the first joint framework for image

registration and segmentation [152], which employed active contours to simul-

taneously segment and register features across multiple images. Subsequently,

several non-learning-based methods were proposed, such as grow-cut based

[153], Bayesian based [154] and Markov random field based [155].

However, all of those methods operate on individual pairs of images, re-

sulting in high computational complexity. In 2019, Xu and Niethammer in-

troduced DeepAtlas, a deep learning-based framework that jointly integrates

image registration and segmentation [21]. They combined the registration net-

work and segmentation network, connecting them with an anatomy similarity

loss that assesses the similarity of the generated masks produced by both mod-

els. Nonetheless, the performance heavily relies on the quality of the labels

generated by each model. A single incorrect result can have adverse effects on

the learning of both models, resulting in a gradual decline in performance over

time.

In this chapter, to address the problem mentioned above, a novel com-

ponent called “soft pseudo-mask generation” is added to the joint image reg-

istration and segmentation framework. It includes an automatic evaluation

mechanism to measure the quality of segmentation results during training.

Similar to DeepAtlas, this framework also enables semi-supervised learning,

where the model is trained using a few annotated data and a large amount

of unannotated data. However, the difference is that the proposed framework

does not train the model using all the unannotated data directly in a single

run. Instead, it refines the segmentation and registration model iteratively. In

each iteration of the training phase, the framework fuses the masks of unanno-
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tated images generated by both models. Each of these fused masks provides a

pixel-wise confidence map to guide improving the performance of both models.

By iteratively training the model using these confidence masks, it prevents the

model from learning incorrect information. This approach ensures a steady

improvement in training and enhances the overall performance of both mod-

els. The proposed framework has been evaluated on a 2D brain MRI dataset.

The results show that this method can significantly improve the performance

of image registration and image segmentation based on very few annotated

images.

The remaining sections of this chapter are organised as follows. Section 6.2

presents the overall architecture of the joint training framework and provides

detailed information on the soft pseudo-mask generation element. Section 6.3

outlines the experimental details, including dataset and experimental settings.

It also shows the results of all the experiments. Finally, Section 6.4 sum-

marises the conclusions drawn from this chapter and provides a discussion of

the findings.

6.2 Methodology

6.2.1 Framework Architecture

Figure 6.1 illustrates the proposed joint training framework for image segmen-

tation and registration. The two models are trained in an iterative manner.

Firstly, the image segmentation model is trained on all annotated images to

create an initial model called “Segmentation model 0”. Same as described in

chapter 5, the image registration model is initially trained on the entire train-

ing dataset, which includes both annotated and unannotated images, using

unsupervised learning without the use of any masks, resulting in “Registration

model 0”. Then, both models generate several candidate pseudo-masks for

each of the unannotated images. The soft pseudo-mask generation component
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Figure 6.1: Overview of the proposed joint training framework for one training it-
eration. The framework consists of three components: Soft pseudo-mask generation,
Segmentation model training, and Registration model training. The Soft pseudo-
mask generation component combined the masks generated by the segmentation and
registration models for unannotated images into soft pseudo-masks. Subsequently,
a new training set is formed by combining annotated images and the unannotated
images with pseudo-masks to refine both the segmentation and registration models.

combines these pseudo-masks for the next iteration of training. Intuitively, the

segmentation model and registration model iteratively improve each other via

the gradually improved psuedo-masks of the unannotated images. Detailed

information of each component is provided below.

Image Segmentation Model

The image segmentation model used in this chapter is a modified version of the

widely used medical image segmentation network, U-net[3]. It uses a multi-

resolution encoder-decoder structure, with 5 levels of resolutions in both the

encoder and decoder. This allows the model to effectively extract features

and generate segmentation predictions for the input image. In our proposed

method, residual blocks are added to the conventional U-net for a more efficient

feature learning and faster model training.

In the encoder, each network level consists of a combination of a residual
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block [83] and a max-pooling layer. The residual block includes two convo-

lutional layers (Conv) with a kernel size of 3 × 3. After each convolutional

layer, there is a batch normalisation layer (BN) [156] and a rectified linear

unit (ReLU) [137]. To achieve deep feature extraction, the first Conv doubles

the number of channels in the feature map (16 for the very beginning Conv

which input is the image itself). The second Conv maintains the same channel

size. As a result, the output feature map have twice the channel size com-

pared to the input feature map. Additionally, to achieve residual learning, the

input feature map of the residual block is added as a residual to the output

feature map of the second BN. Then, the second ReLU is applied. The max-

pooling layer, with a stride of 2, down-samples the feature map output from

the residual block, reducing its size by half. The final high resolution level in

the encoder does not include a max-pooling layer. Instead, the feature map

obtained from the residual block is directly passed to the decoder without any

down-sampling.

In the decoder, each network level consists of a deconvolutional layer (De-

conv) with a 3 × 3 kernel size, followed by a ReLU activation operator, and

a residual block. The deconvolutional layer serves to decode and up-sample

the feature map from the previous layer, resulting in a feature map that is

double the size and has half the number of channels. Next, a skip connection

is applied, where the feature map from the corresponding level in the encoder

is concatenated with the up-sampled feature map in the channel dimension.

The combined feature map is then activated by the ReLU function and passed

to the residual block. The structure of the residual block in the decoder is

similar to that in the encoder, but with a halved channel size instead of dou-

bling it. This ensures that the output feature map matches the desired size

and channel size of the Deconv. Finally, at the end of the decoder (the highest

resolution level), a Conv with a kernel size of 1 is used to adjust the size of

the feature map output from the residual block to match the desired size of

the segmentation mask.



Chapter 6. Methodology 104

Image Registration Model

The image registration model utilised in this chapter is the model proposed in

chapter 5, named MrRegNet-G. This model adopts a multi-resolution structure

of residual displacement field, enabling effective image registration for images

with both small and large deformations. It is designed to conduct image reg-

istration using unsupervised learning. Additionally, the MrRegNet-G (mask)

method leverages the corresponding masks and employs a mask-guided loss to

enhance attention and improve the registration performance specifically within

the masked regions. For more detailed information about the architecture of

MrRegNet-G, please refer to section 5.2.1. It is worth noting that, similar to

chapter 5, the registration models were trained using random paired source

and target images to improve the capability of model generalisation.

Soft Pseudo-masks Generation Block

Besides the above two models, another key component is the soft pseudo-

mask generation block. In DeepAtlas [21], the image segmentation model and

the image registration model are jointly trained, leveraging the pseudo-masks

generated by each other for the unannotated images. However, it is important

to note that this mutual improvement mechanism can potentially lead to sub-

optimal learning outcomes when the generated results are incorrect.

To address this issue, an iterative joint training process is adopted in this

chapter. A soft pseudo-mask generation block is introduced to combine the

pseudo-masks generated by both models at each iteration and produce a final

soft pseudo-mask for each unannotated image. Here “soft” means that instead

of integer labelled mask, the pixel values in the soft mask range between 0 and

1, representing confident scores. This enables the creation of a training set with

pseudo masks specifically tailored for the unannotated images. Subsequently,

this set is used to train both models in the next iteration.

Through this iterative process, the quality of the soft pseudo-masks are
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also improved, mitigating the risk of the image segmentation model and the

image registration model learning incorrect information from inaccurate masks.

6.2.2 Soft Pseudo-mask Generation Strategy

Both the image segmentation and the image registration model have the ability

to generate pseudo-masks by using the initially trained models or the updated

models from the previous iteration. For the image segmentation model, the

pseudo-mask is generated by inputting an unannotated image, and the model

outputs a predicted mask that can be considered as a pseudo-mask. As for the

image registration model, once trained, it can generate a displacement field by

inputting paired source (annotated) and target (unannotated) images. This

displacement field represents the deformation mapping from the source to the

target image. By warping the mask of the source image using this displacement

field, a pseudo-mask for the target image can be generated. The soft pseudo-

mask generation block utilises the pseudo-masks generated by both models to

generate “soft pseudo-masks” that are used to refine the models.

To increase the reliability and quality of the pseudo mask, instead of

generating one mask from each model, a set of pseudo-masks are generated

from each of the segmentation and registration models. The process to achieve

this is illustrated in Fig. 6.2.

For the segmentation model, it applies test time augmentation to each of

the unannotated images. During test time augmentation, each unannotated

image is augmented using a randomly selected augmentation method (i.e. ro-

tation or shift in this case) with random parameters such as rotation angle and

shift distance. The segmentation model then generates a probability map for

each class for the augmented image and transform them back to the original

image space. This process is repeated for a total of N−1 times, resulting in N

probability maps comprising one map for the original image and N − 1 maps

for the augmented images.
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Figure 6.2: Soft pseudo-mask generation by image segmentation and image regis-
tration models for each unannotated image. The image segmentation model generates
N probabilistic pseudo-masks by applying test-time data augmentation. The image
registration model generates a displacement field that represents the mapping from
each template annotated image to the unannotated image. This displacement field is
then used to warp the annotated mask, resulting in a pseudo-mask for the unanno-
tated image. The averaged map of all the 2N pseudo masks is used as the final soft
pseudo mask.

Similarly, for each unannotated image, the image registration model also

generates N masks to ensure a balanced contribution compared to the seg-

mentation model. The image registration model generates the pseudo masks

for the unannotated image by warping the masks of N annotated source im-

ages. This means that by utilising multiple different source images and their

corresponding masks, the model can generate multiple masks for the same

unannotated image.

Finally, 2N pseudo masks are generated for each unannotated image by

both the segmentation model and registration model. The averaged map of all

the 2N pseudo masks is used as the final soft pseudo mask. The value range

of the pseudo mask is between 0 and 1. A higher value indicates a higher
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confidence of a pixel belonging to the assigned class. It can be generalised to

the case of multiple classes: one soft pseudo mask for each class. Specifically,

the image segmentation and the image registration models generate 2N multi-

channel probability maps for an unannotated image. Each channel in the

probability maps corresponds to a specific class, and the pixel value represents

the likelihood that the location belongs to that particular class.

When dealing with medical image segmentation, it is natural to encounter

uncertainty as various plausible segmentation hypotheses can emerge for a

given image. Recent studies [157] [158] have provided evidence that as the

number of independent annotations reaches a specific threshold, the variabil-

ity in segmentation tends to be stabilised. This discovery suggests that if a

sufficiently large group of physicians is involved, they could potentially en-

compass the entire range of possible segmentation. Therefore, the “soft mask”

approach involves the utilisation of multiple pseudo-masks to simulate the an-

notation of a single image by multiple annotators.

6.2.3 Model Training

To train the proposed framework, an iterative training approach is employed

to gradually refine both the segmentation and registration models, as show

in figure 6.1. To start at iteration 0, the segmentation model is trained on

all annotated images as the initial model. On the other hand, the registra-

tion model undergoes unsupervised training on all images without utilising

any masks. These initial models are referred to as pre-trained models. Subse-

quently, the soft pseudo-mask generation block utilises these pre-trained mod-

els to generate a soft pseudo-mask for each of the unannotated images. From

that point onward, the unannotated images with their corresponding pseudo-

masks are combined with the annotated images to form a new training set,

which participates in the training process of the following iteration.

Moving on to the next iteration (iteration 1), the pre-trained models ob-
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tained from the previous iteration (iteration 0) are refined using a smaller

learning rate and a reduced number of training epochs using the new training

set generated from iteration 0. Once both models are updated, the afore-

mentioned steps are repeated to generate a new set of pseudo masks for the

unannotated images to form an updated training set, which is used in the

subsequent iteration.

The loss function for model training is a crucial component of any deep

learning model. In this proposed framework, the utilisation of the soft pseudo

masks for training is the key to successfully improve both models. Conventional

loss functions for segmentation are Dice coefficient and cross entropy, which

are calculated based on integer labelled masks. In contrast, the soft Dice loss

function is utilised here to optimise the models. Additionally, following the

approach outlined in the V-Net [71], squaring is applied to the denominator of

the loss function to create a smoother landscape for faster convergence. The

equation for the soft Dice loss function is expressed as follows:

Ldsc(y
′, y) = 1 −

2
∑Ω

p (y′pyp)∑Ω
p (y′2p) +

∑Ω
p (y2p)

(6.1)

where p indicates the index of pixels in the whole image Ω. y and y′ represent

the annotated mask (or soft pseudo mask) and the predicted probability map,

respectively.

Furthermore, the image registration model integrates a similarity loss and

a smoothness term, following the approach described in chapter 5. Specifically,

the global nearest cross-correlation is employed as the similarity loss, and the

smoothness term is defined by an L2 regularisation term for the displacement

field. The definition of these terms can be found in Eq. (5.3) and Eq. (5.5),

respectively.

In summary, the image segmentation model and registration model are

trained by optimising the subjective functions in Eq. (6.2) and Eq. (6.3)
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respectively.

arg minLdsc(y
′, y) (6.2)

arg min
D

1

K

K∑
i=1

(Lsim(fDi
(xS), xT ) + Ldsc(fDi

(yS), yT ) + λLsmooth(Di)) (6.3)

where D represents the displacement field, and Di denotes the final displace-

ment field at each resolution out of K resolutions. Lgncc and Lsmooth are the

similarity loss and smoothness regularisation loss, respectively. Additionally,

xS and xT indicate the source and target images, while yS and yT represent the

source and target masks, respectively. Moreover, fD(xS) and fD(yS) signify

the warped source image and the warped source mask respectively. The model

is updated by maximising the similarity between the warped source image and

the target image, maximising the soft Dice score between the warped source

mask and the target mask, and minimising the L2 norm of the displacement

field.

6.2.4 Model Inference

After finishing the joint model training, the image segmentation and image

registration models from the final iteration can be used to segment unseen

images. Similar to other methods, the segmentation model has the ability to

directly segment an unseen image. Meanwhile, the image registration model

can utilise any specified or randomly selected annotated images as the source

image, while the unseen image serves as the target image. The estimated

displacement field can be used to map the source image to the target image,

which is then used to warp the source mask to the target space. Consequently,

the warped mask of the source image can be considered as the segmentation

mask for the target image.

A single mask generated from either the segmentation model or the regis-
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tration model may not be sufficiently accurate. One key advantage of the pro-

posed joint framework is that the final mask could be generated by combining

several outputs from both models using the “Soft Pseudo-mask Generation”

component. Following the same process as illustrated in Fig. 6.2, by applying

test time data augmentation to the segmentation model and selecting several

source images for the registration model, a soft pseudo mask can be generated

for a given unseen image. Then, the “argmax” operation is applied to the soft

mask to generate the final combined mask. This combined mask represents

an aggregated decision that takes the advantages of both models, leading to

improved performance compared to using either the segmentation model or

the registration model (see section 6.3.3 for more details).

Moreover, the soft pseudo-mask can serve as a confidence map (as illus-

trated in Fig. 6.3) based on the aggregated decision from multiple outputs.

This pixel-wise confidence map can be utilised for various purposes, such as un-

certainty estimation, segmentation quality assessment, and other downstream

tasks. By analysing the confidence values assigned to each pixel or region in

the pseudo-mask, one can gain insights into the uncertainty associated with

the predictions. This information is valuable for understanding the reliability

of the model’s outputs and can guide decision-making and further analysis.

Figure 6.3 shows an example, including the original image, the corresponding

ground truth mask, the generated soft mask by the trained framework and the

final combined mask by applying argmax to the soft mask.

Figure 6.3: Left to right: an example of an input image, the corresponding ground
truth mask, the heatmap of the soft pseudo-mask and the final combined mask by
applying argmax to the soft mask.
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6.3 Method Evaluation

6.3.1 Dataset

The evaluation of the proposed method was conducted on the same 2D dataset

used in chapter 5. This dataset comprises 2D brain MRI slices from hundreds of

subjects. These images exhibit significant intensity and geometric variations,

as they were from different institutions and different scanners. As a result,

segmenting this dataset poses a considerable challenge.

The dataset consists a total of 820 images, which were divided into training

and test sets using an approximate 80-20% split (i.e., 620 for training and 200

for testing). Furthermore, a small portion (20 images) of the training set was

selected for validation purposes. Therefore, the final distribution of images

resulted in 600 images for training, 20 images for validation, and 200 images

for testing.

Furthermore, in response to the varied image sizes and intensities in this

dataset, pre-processing was applied to the images. Specifically, the images

were resized to 256 × 256 pixels, and their intensities were normalised to the

range of 0 to 1 using min-max normalisation. These pre-processed images were

used consistently in all experiments described in this chapter.

6.3.2 Experimental Design

The main objective of this study is to experimentally evaluate the effectiveness

of the proposed joint training framework for semi-supervised image segmen-

tation. To achieve this, three experiments were conducted. In the few-shot

learning scenario, only five (around 1%) annotated images were utilised, while

for conventional semi-supervised learning, 10% (60) and 30% (180) of the an-

notated images were used, respectively. These experiments aimed to assess

the performance and efficacy of the proposed method under different levels of

annotated data availability.
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To ensure fair comparisons, all experiments utilised the same unsupervised

image registration pre-trained model at iteration 0. Additionally, each exper-

iment using the proposed framework underwent a total of 10 iterations. This

allowed for a closer examination of how the models are evolved and improved

over time. Furthermore, to establish an upper bound, the image registration

and image segmentation models were trained using all available annotated data

in a fully supervised manner. This upper bound served as a reference point,

providing insights into the maximum potential performance achievable with

the given dataset and models.

Parameter Settings

All three joint training models share the same parameter settings for the im-

age segmentation and image registration networks. Specifically, for the image

segmentation network, the learning rate of the pre-trained model in iteration

0 was set to 0.0001, and the number of training epochs was set to 500. In

the subsequent iterations, the learning rate was reduced to 0.00001, and the

training epoch was decreased to 100. The batch size for both models were set

to 5 according to the GPU memory limitations.

For the image registration network, the parameter settings align with

those in chapter 5. The learning rate was set to 0.001, and the training epoch

was set to 200 for the pre-trained model in iteration 0. The weights of the

smoothness term, from the lowest to the highest resolution, were set as follows:

128, 64, 32, 16, and 8. In the remaining iterations, the learning rate was

reduced to 0.0001, and the training epoch was set to 50 for fine-tuning the

network. The weights of the smoothness term remain unchanged.

To expedite the computational process of the soft pseudo-mask generation

block, the number of pseudo-masks generated by each network (N) was set to

5 for all experiments. In cases the model trained on more than 5 annotated

images, the image registration model randomly selects 5 annotated images

as the source images to generate pseudo-masks for each unannotated image.



Chapter 6. Method Evaluation 113

Similarly, the segmentation model generates 5 pseudo-masks, comprising one

segmentation result on the original input image and four segmentation results

on augmented images. As a result, a total of 10 pseudo-masks were produced

from both models for soft pseudo-mask generation.

Furthermore, to ensure a fair comparison, the fully-supervised image seg-

mentation and image registration models share the same parameter settings

as the pre-trained models. These parameter settings and pseudo-mask gen-

eration approach were devised to optimise computational efficiency while still

providing reliable results for the soft pseudo-mask generation process.

6.3.3 Results

Semi-supervised Image Segmentation and Registration Results

The evaluation results of the segmentation and registration model are reported

separately. For image segmentation, the Dice coefficient (DSC) is utilised as

the evaluation metric, which is commonly employed in image segmentation

tasks. As for the image registration model, similar to chapter 5, the overall

and local image registration performance is evaluated using the normalised

cross-correlation (NCC) and Dice coefficient, respectively. However, unlike

chapter 5, this chapter focuses specifically on image segmentation performance,

therefore does not employ the Jacobian determinant as an evaluation metric.

Moreover, the DSC of the combined mask is reported as one of the outputs of

the proposed joint training framework.

Table 6.1 presents the results of the joint training methods. The fully-

supervised image segmentation and image registration (i.e. MrRegNet-G (mask))

models are denoted as “F-100%”, and their results are listed in the same row.

Joint-1%, Joint-10%, Joint-20%, Joint-30%, Joint-40%, Joint-50% and Joint-

60% are the joint models trained using the annotated/unannotated ratios of

1%/99%, 10%/90%, 20%/80%, 30%/70%, 40%/60%, 50%/50% and 60%/40%,

respectively. “B” in table 6.1 refers to the baseline result of each model, which
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Table 6.1: Numerical results for the fully-supervised models and the proposed meth-
ods are presented. The fully-supervised image segmentation and image registration
models are denoted as “F-100%”. The “B” refers to the baseline result of each
model, which corresponds to the performance of the pre-trained model at iteration
0. “–” indicates that the results are the same as Joint-1%B as they use the same
pre-trained model. The DSC values are reported for segmentation models, registra-
tion models and the combined mask, while NCC is used only for the registration
model. The reported values are presented as the mean ± standard deviation.

Method
Segmentation

DSC
Registration Combined Mask

DSCNCC DSC
F-100% 0.93±0.02 0.76±0.04 0.86±0.06 n/a

Joint-1%B 0.58±0.27 0.77±0.04 0.77±0.10 n/a
Joint-1% 0.84±0.05 0.81±0.03 0.83±0.06 0.84±0.05

Joint-10%B 0.83±0.15 – – n/a
Joint-10% 0.86±0.06 0.81±0.03 0.86±0.06 0.87±0.04

Joint-20%B 0.88±0.06 – – n/a
Joint-20% 0.88±0.05 0.80±0.03 0.87±0.05 0.89±0.04

Joint-30%B 0.91±0.03 – – n/a
Joint-30% 0.89±0.04 0.80±0.03 0.87±0.05 0.90±0.03

Joint-40%B 0.91±0.06 – – n/a
Joint-40% 0.91±0.04 0.80±0.03 0.87±0.05 0.91±0.03

Joint-50%B 0.92±0.05 – – n/a
Joint-50% 0.92±0.05 0.80±0.03 0.87±0.05 0.92±0.03

Joint-60%B 0.92±0.03 – – n/a
Joint-60% 0.92±0.03 0.80±0.03 0.86±0.06 0.92±0.03

is the performance of the pre-trained model at iteration 0.

First of all, it can be seen from table 6.1 that the joint model training

can improve the segmentation performance significantly compared to the pre-

trained model when a small amount of annotated images is used. Specifically,

with just 5 (1%) annotated images, a remarkable improvement of the segmen-

tation model is observed, with an increase from 0.58 to 0.84. Similarly, for

Joint-10%, which involves 60 annotated images, there is an improvement of

more than 3%, resulting in a performance increase from 0.83 to 0.86. How-

ever, as the amount of annotated data increases, the performance improvement

of the segmentation model becomes neglectable or even with a slight decrease

(i.e. Joint-30%). It is hypothesised that this phenomenon is due to a reduced

contribution from the unannotated images when the number of annotated im-

ages is sufficiently large. Also, when the performance of the image registration
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model reaches certain level, the quality of the soft pseudo labels can not be

improved further.

Secondly, for the image registration model, it shows a consistent improve-

ment compared to the baseline model in terms of the DSC values. As the

number of annotated data increases, the registration model shows a steady im-

provement, and comparable to the performance of the fully-supervised learn-

ing when more than 10% of annotated data are utilised. Furthermore, the

iteratively trained image registration model achieved a consistent and better

performance than the fully-supervised model using the NCC measure. The

NCC values of all the joint training models are around 0.8, indicating a good

global image alignment. This is even better than the fully supervised learning

method F-100% (0.76). This improvement is contributed by the soft masks for

guiding the image registration’s attention. Instead of using binary masks by

the F-100% method, the joint model ultilises soft masks. It prevents the model

from excessively focusing on the masked region, which leads to an improved

global alignment while still maintaining a good local segmentation quality.

Finally, the combined mask generated from both models achieved the

highest segmentation performance with smaller standard deviation in all tests,

compared to the individual segmentation and registration model. This finding

suggests that the soft pseudo-mask generation block not only helps to improve

the joint model training iteratively, but is also capable of producing a high

quality segmentation result in the model inference process.

Performance Evolution in the Training Process

The train process of the joint model was also monitored by reporting the

segmentation accuracy (DSC value) at each iteration. The DSC values of

the segmentation model, registration model and the combined mask for each

iteration using different percentages of annotated data are plotted in Figure

6.4.

It can be seen that both the image segmentation and registration models
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Figure 6.4: The performance of various methods across different iterations on the
test set. The horizontal axis corresponds to the iteration number, where iteration 0
represents the pre-trained model. The vertical axis represents the evaluation score
for the respective models. The proposed joint training framework is represented as
“Joint”. The notation “-n%” indicates the percentage of the number of annotated
images used for model training. “Seg-100%” and “Reg-100%” indicate the fully-
supervised image segmentation model and the image registration model, respectively.
They are represented by two lines in each plots as baseline.

undergo significant improvements through iterative training for Joint-1% and

Joint-10% models. By increasing the number of annotated data, the perfor-

mance improvement of the segmentation model is less significant. When using

10%(60) and 20%(120) annotated data, the performance improvement is only

observable in the first few joint training iterations. However, when the amount

of annotated data is increased to 30%(180) above, the segmentation model is

no longer improved through joint training. This is due to the number of anno-

tated images are sufficiently large to guide the model training. The registration

models of all cases are consistently improved throughout the training process,

and become stabilised after 8 iterations.

The second row in Fig. 6.5 displays the segmentation performance of the
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combined mask produced by the “soft pseudo mask generation” component .

It is evident that the performance of the combined mask is better than the two

individual models in all test cases. It can also be observed that after reaching

the peak, the changes in DSC remain relatively small in the subsequent itera-

tions, and there is no significant decrease compared to the image segmentation

model. This indicates that the proposed method can effectively combine the

advantages of both models to achieve a robust decision making.

Visualisation of the Soft Pseudo Mask

More qualitative analysis was conducted to observe the improvement of soft

pseudo masks during training. Fig. 6.5 shows a set of generated pseudo masks

generated by both models in different iterations using the Joint-1% model. The

corresponding segmentation outputs from each individual model (segmentation

and registration) are also shown in Fig. 6.5 for comparison.

Figure 6.5: Visualisation results of an image that participated in training as an
unannotated image in Joint-1%. The soft pseudo-masks (Soft), segmentation model
results (Seg) and the registration model results (Reg) at different iterations are pro-
vided. At the bottom, the source image, the source image mask, the target image and
the annotated target image are presented.
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The images in the first column (iteration 0) demonstrate that the pre-

trained segmentation model produces significant errors in the segmentation

result, while the pre-trained registration model (without mask guidance) can

only achieve a coarse alignment in the local region. Furthermore, the soft

pseudo-mask contains a very small region of agreement.

As the training progresses from iteration 1 onward, more pixels in the soft

pseudo-mask become more confident (larger brighter regions indicate larger

overlapped mask regions). The improved soft mask helps both the segmen-

tation and registration models to achieve better performance iteratively. The

joint model is converged quickly at around 7 iterations. The final soft mask can

be used as a confidence map indicating pixel-wise segmentation uncertainty.

Computational Time

In addition to the segmentation quality, it is important to further discuss

the model training and inference time in detail. All the computational time

reported below was using a GPU server an Intel E5-2620 v4 CPU running

at 2.1GHz, and a NVIDIA 1080Ti GPU with 11GB memory. The code was

implemented using the PyTorch deep learning framework in Python.

For the pre-trained segmentation model, the average training time was

about 84 images per second. Due to the variations of the training size, the

training time differs for different data percentages. For 1%(5), 10%(60), 20%(120),

and 30%(180) images, the training time for 500 epochs were 29, 357, 714, 1071

seconds, respectively. In each of the subsequent iterations, a total of 600 images

were trained with 100 epochs, taking approximately 12 minutes per iteration.

Regarding the registration model, both the pre-training and iterative

training models were trained for about 38 pairs of images per second. There-

fore, the time required for the pre-training model to train 200 epochs on all

600 images was approximately 50 minutes. For each of the subsequently it-

erations, the model was trained with 50 epochs, which resulted in about 13

minutes for each iteration. In each iteration, additional time was required for
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soft pseudo-mask generation, which took about 6 minutes for 600 images. In

total, a complete training session for the joint model required about 15 hours.

As for model inference, the prediction time for the segmentation model

per image is about 0.007 seconds, while the prediction time for the registration

model per image is about 0.04 seconds. The final prediction based on the

soft pseudo-mask requires data augmentation and multiple inferences by each

model on the same image, resulting in approximately 0.7 seconds per image.

In summary, although the joint model training takes 15 hours, once the

model is trained, it only takes a fraction of second to produce a segmentation

result.

6.4 Discussion and Conclusions

This chapter has introduced a framework that enables semi-supervised joint

training of an image segmentation model and an image registration model.

The framework adopts an iterative approach, starting with the training of a

segmentation model using a small amount of annotated data, and an unsuper-

vised image registration model trained on both annotated and unannotated

data. Subsequently, the iterative training process involves passing through

a pseudo-mask generation block, which generates soft pseudo-masks used to

refine both models.

The experimental results demonstrate that this approach enables the two

models to mutually improve each other’s performance, achieving accurate im-

age alignment and segmentation even with limited annotated data (1%). No-

tably, the utilisation of the registration method in this framework enhances

the ability to preserve the anatomical structural information. Consequently,

the jointly trained segmentation model also inherits this crucial feature, which

holds significant importance, especially in the domain of medical imaging.

Additionally, the results indicate that the soft pseudo-mask generation

block successfully generates soft pseudo-masks, which are then utilised to refine
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both models. Furthermore, the pseudo-masks generated from both models are

fused together to produce a final segmentation result in the model inference

process. Moreover, the soft mask can be interpreted as a confidence map which

is useful in various downstream tasks, such as quality control, uncertainty

estimation, etc. The performance of the proposed framework could be further

improved by increasing the number of augmented images (segmentation model)

and the number of template source images (registration model) for soft mask

generation.

With this, the technical components of the thesis are concluded, and the

next chapter will provide a summary and discussion of the entire thesis.



Chapter 7

Conclusions and Future Work

This chapter is the last part of the thesis and aims to provide a summary

of the discoveries, contributions, limitations, and potential areas for further

investigations.

7.1 Conclusions and Contributions

As mentioned in chapter 1, the goal of this research work is to create an

efficient image segmentation solution that is completely automated to segment

new images, and with reduced efforts from clinical experts to develop such a

solution. To accomplish this, semi-supervised machine learning strategy was

considered as the main area of interest. A fully automated segmentation model

can be trained by using a small number of annotated data and a large amount

of unannotated data. In order to achieve this goal, the following objectives

were identified:

• Developing an efficient annotation tool that enables experts to annotate

a small number of data samples.

• Developing a method that can be trained using a limited set of anno-

tated images and a substantial amount of unannotated images, aiming

to achieve comparable performance to a fully supervised method.

121
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In chapter 2, a literature review was provided in the context of medical

image segmentation. The advancement from traditional image segmentation

methods to deep learning based methods was discussed, with a particular at-

tention on the widely used U-Net method for medical images. Additionally,

a review of open-source manual software was conducted, revealing that most

existing interactive segmentation software is primarily effective for 2D natural

images and performs poorly when applied to medical images. Furthermore,

many of these software lack the ability to provide multi-label image annota-

tion. The annotation approach employed by several software tools involves

contour labelling and region filling, which is a time-consuming process.

More importantly, an overview of semi-supervised learning methods is

presented, including commonly employed methods such as data augmentation,

consistency regularisation, and pseudo-labelling. It is observed that pseudo-

labelling-based methods can be directly and efficiently applied to image seg-

mentation tasks, although the challenge remains on preventing the model from

learning erroneous information from imperfect pseudo-labels. Furthermore, the

widely used image registration methods in medical images were introduced,

with a focus on its application to the field of medical image segmentation. A

small number of methods that combine image segmentation and image regis-

tration were discussed. It is discovered that image segmentation and image

registration models can benefit each other if they are combined together.

In chapter 3, a CRF-based interactive segmentation software was de-

veloped. This software is capable of performing multi-label segmentation on

both 2D and 3D medical images. Users can easily use this software without a

complicated training process. Additionally, the software allows users to refine

inaccurate segmentation regions to improve accuracy. In the case of 3D data,

segmentation can be performed slice by slice, and users can modify annota-

tions from different views. The software can also recommend the best slice to

annotate based on information entropy, streamlining the segmentation process

and reducing the required time and effort.
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The key contributions of this study can be summarised as below: (1) an

open-source interactive image segmentation software for both 2D and 3D multi-

label medical image segmentation; (2) a novel slice recommendation function

for 3D images to improve segmentation efficiency; (3) “one size for all” pa-

rameter setting for different image modalities and dimensions. This work is

published as a journal paper, and the details can be found in Publication 1.

After addressing the manual annotation challenge, in chapter 4, a semi-

supervised learning framework is proposed, leveraging both annotated and

unannotated data to train the segmentation model. Unlike labels for classifi-

cation and regression problems, image segmentation labels (also called masks)

have a higher level of complexity. Hence, a self-learning and pseudo-labelling

approach is adopted to achieve semi-supervised learning in this proposed method.

The key to effectively using pseudo-labels is controlling their quality. To

achieve this, an ensemble technique is introduced, involving iteratively train-

ing a small set of models to gradually improve the quality of pseudo-masks

and enhance the model performance. Evaluation on a public 2D skin lesion

dataset demonstrates that this method achieves state-of-the-art performance

in semi-supervised image segmentation.

The main contributions of the semi-supervised learning framework are: (1)

a new generic end-to-end semi-supervised learning framework; (2) an effective

ensemble technique to control the quality of pseudo-labels for semi-supervised

image segmentation model training;(3) state-of-the-art performance on a pub-

lic dataset. The paper is published in IEEE-ISBI conference with detailed

information listed in Publication 2.

Chapter 5 explored the use of image registration method to achieve im-

age segmentation. By employing Spatial Transformer Networks (STN), the

model learns the displacement field that maps the source image to the tar-

get image. By warping the mask of the source image using the estimated

displacement field, the mask of the target image can be obtained, serving as

the segmentation result. The existing image registration models have shown
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promising results in medical image analysis. However, very limited research

works achieved good performance on handling large image deformations. To

address this gap, a multi-scale image registration framework inspired by tradi-

tional registration algorithms was introduced in this chapter. The framework

generates a displacement field at each scale, and the finest scale’s displacement

field is calculated by combining up-sampled displacement fields from coarser

scales successively. Experiments were conducted on a challenging local 2D

dataset and a public 3D dataset. The results demonstrated the effectiveness

of this approach in improving registration performance for large image de-

formations while preserving good diffeomorphic properties. Additionally, the

study showed that the use of a mask-guided term effectively enhanced the

registration accuracy in the masked region.

The key contributions of this proposed image registration method are

shown as follows: (1) a versatile trainable image registration framework, which

robustly handles different levels of image deformations; (2) a new residual dis-

placement field learning strategy that preserves good diffeomorphic properties;

(3) a mask-guided loss term that enhances local alignment performance; (4)ef-

fective combination of the global NCC similarity loss and the mask-guided loss

to achieve good image alignment in both global and local image regions.

In chapter 6, a novel semi-supervised learning model is developed by

combining the image segmentation model and the image registration model

proposed in chapter 5. This joint model uses the pseudo-labelling idea, similar

to the method in chapter 4, to achieve iterative model improvement. Unlike

the method in chapter 4, this joint model produces a soft pseudo-mask for

each of the unannotated images, which is generated by both the segmentation

and registration models. The soft pseudo-masks simulate the combination of

multiple physicians’ annotations to achieve more accurate segmentation out-

comes. The two models are subsequently refined using the soft dice as a loss

function. Experimental results on a 2D brain MRI dataset demonstrated that

the joint model achieved significant performance improvements over both indi-
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vidual models, especially when trained with very a small number of annotated

data.

The key contributions of the joint training framework are listed as fol-

lows: (1) a novel integrated image segmentation and registration framework

for semi-supervised medical image segmentation; (2) a pseudo-mask generator

to generate soft masks for unannotated data, which has been proven to be

effective in improving both models iteratively; (3) a novel method to generate

the final segmentation result and an associated confidence map using the soft

mask produced by the joint model.

In conclusion, this thesis presents a pipeline from interactive image an-

notation to fully automatic image segmentation. The pipeline involves two

stages: firstly, employing the software developed in chapter 3 to efficiently an-

notate a subset of the acquired data. Next, one of the semi-supervised methods

described in chapter 4 and chapter 6 can be applied to develop the automatic

segmentation model. The method in chapter 4 is more suitable for the case

of segmenting the targets without a common structure across images (e.g. tu-

mours). The method in chapter 6 is applicable for segmenting objects that

share a common anatomical structure (e.g. bones, organs).

7.2 Limitations and Future Works

This section discusses the limitations of the proposed methods and provides

some ideas on potential future works.

7.2.1 Representative Data Selection for Annotation

Semi-supervised learning is based on a limited number of annotated images.

Therefore, the model performance could be highly dependent on the variety of

the annotated images. For instance, in chapter 4, the pseudo-masks generated

by the pre-trained model can be influenced by the annotated images. If the

annotated images do not adequately represent the data distribution of the ma-
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jority of the population, it can lead to a sub-optimal pseudo-mask generation,

hence limiting the ability of model to learn effectively.

Similarly, in the methods introduced in chapter 5 and chapter 6, the choice

of the source image for the image registration model is also crucial, which can

directly affect the segmentation results. An unrepresentative source image

could result in a poorly warped image and mask. In chapter 6, the pre-trained

segmentation model is also affected by the selected annotated images. How-

ever, in comparison to the method in chapter 4, it is more resilient to handle

this problem by incorporating an unsupervised image registration model.

To enhance the representativeness of the annotated data, as a future

work, an additional pre-processing step can be included in the proposed semi-

supervised learning methods. For the pre-processing step, unsupervised clus-

tering methods can be applied to group the data into meaningful sub-groups.

By balanced sampling of these sub-groups, representative data samples can

be obtained. This approach aims to train the model with more balanced and

unbiased data, consequently reducing bias in the model prediction process.

Following this approach, the semi-supervised model can then incorporate both

the unannotated data and the selected representative samples for model train-

ing.

7.2.2 Theoretical Proof for Diffeomorphic Property in

Image Registration Model

The experiments in chapter 5 shows the proposed multi-resolution image reg-

istration framework is able to preserve the diffeomorphic properties in certain

extent. However, the theoretical proof of why the multi-scale residual dis-

placement field learning can help achieving it was not provided. Therefore, in

future research, it is desirable to study it further from a theoretical point of

view. Furthermore, the study will also explore the potential extension of this

approach to other registration models.
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7.2.3 Ensemble Learning on Medical Image Classifica-

tion Task

The effectiveness of the ensemble technique was demonstrated in chapter 4.

As an experimental research work, an extension of the ensemble technique was

implemented on an image classification task. In detail, an automatic cardiac

MRI quality estimation framework was proposed using ensemble and transfer

learning. In this proposed method, multiple pre-trained models were initialised

and fine-tuned on 2-dimensional image patches sampled from the training data.

In the model inference process, decisions from these models are aggregated to

make a final prediction.

This framework was evaluated on CMRxMotion grand challenge (MICCAI

2022) dataset, which is small, multi-class, and imbalanced. Furthermore, the

final trained model was also evaluated on an independent test set provided by

the CMRxMotion organisers. Our proposed method achieved the classification

accuracy of 72.5% and Cohen’s Kappa of 0.6309. It was ranked the top 1 in

the CMRxMotion grand challenge. More details can be found in Publication

4.

7.2.4 Generative Modelling to Improve Model Training

Semi-supervised learning is an effective solution, when the annotated data is

limited but a large number of unannotated data is available. However, in

certain cases of medical applications, the whole available dataset could be

limited. In this case, generative modelling could be useful to synthesis new

data samples from limited data. A preliminary research work was conducted on

using a GAN-based generative method to enlarge the training dataset. Due to

the complexity of generating effective segmentation labels using GAN models,

the initial experiments were performed on a simpler regression problem where

only numbers are used as the label of images.

A brief description is provided as follows. Brain age estimation based on
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magnetic resonance imaging (MRI) is an active research area in early diagnosis

of some neurodegenerative diseases (e.g. Alzheimer, Parkinson, Huntington,

etc.) for elderly people or brain underdevelopment for the young group. Deep

learning methods have achieved the state-of-the-art performance in many med-

ical image analysis tasks, including brain age estimation. However, the per-

formance and generalisability of the deep learning model are highly dependent

on the quantity and quality of the training data set. Both collecting and

annotating brain MRI data are extremely time consuming. In this work, to

overcome the data scarcity problem, a GAN based image synthesis method

is proposed. Different from the existing GAN-based methods, a task-guided

branch (a regression model for age estimation) is integrated to the end of the

generator in GAN. By adding a task guided loss to the conventional GAN loss,

the learned low dimensional latent space and the synthesised images are more

task specific. It helps to boost the performance of the down-stream task by

combining the synthesised images and real images for model training. The

proposed method was evaluated on a public brain MRI data set for age esti-

mation. The proposed method outperformed (statistically significant) a deep

convolutional neural network based regression model and the GAN-based im-

age synthesis method without the task-guided branch. More importantly, it

enables the identification of age-related brain regions in the image space. The

paper can be found in Publication 3.

7.2.5 Geometry-aware Image Segmentation

Many deep learning-based image segmentation models like U-Net treat each

pixel independently as a pixel-wise classification problem without preserv-

ing any geometric and topological information. The models could generate

anatomically invalid results for medical image analysis. Hence, incorporating

prior shape/geometry information into model learning is highly desirable in

medical image segmentation.
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By visualising the segmentation results produced by the proposed image

registration method in chapter 5 and chapter 6, it is observed that the geomet-

ric property can be preserved using image registration method. This is due to

that the diffeomorphic deformation is able to provide smoothed geometrical

transformation without damaging the original object structure.

However, the results in chapter 6 indicate that the quality of the masks

generated by the registration model is normally worse than those generated

by the image segmentation model. Therefore, enhancing the performance of

the registration model for segmentation tasks is a potential avenue for future

research. Inspired by the pseudo-mask fusion method in chapter 6, one con-

ceivable approach to improve the model results is by employing multiple source

images as templates and combining their results to create the final mask. This

method should be able to significantly improve the quality of the final mask

compared to using a single random source image.

7.2.6 Quality Control

In the field of medical imaging, ensuring the quality of the produced segmenta-

tion masks by automatic segmentation models is of utmost importance due to

the high accuracy requirements in clinical analysis. One popular method for

assessing the quality of segmentation masks is by using confidence maps. The

joint training framework proposed in chapter 6 is capable of providing such

a confidence map for each output, which indicates the agreement of multiple

masks generated from both the image segmentation and image registration

models.

Through examining the correlation between a confidence value generated

from the confidence map and a similarity score (e.g. Dice coefficient) derived

from the predicted masks and the ground truths, it can be determined if the

confidence map can effectively infer the quality of the predicted mask. In

future work, a thorough quantitative analysis is needed to demonstrate the
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feasibility of using the confidence map for quality control purpose.
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Appendix A

List of Abbreviations

2D Two Dimensional
3D Three Dimensional
CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long-Short Term Memory
GAN Generative Adversarial network
FC Fully Connection
FCN Fully Convolutional Network
SVM Support Vector Machine
CRF Conditional Random Fields
DSC Dice coefficient
NCC Normalised Cross Correlation
GNCC Global Normalised Cross Correlation
LNCC Local Normalised Cross Correlation
MAE Mean Absolute Error
MSE Mean Squared Recall
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