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Abstract

Medical image segmentation is a fundamental step in many computer
aided clinical applications, such as tumour detection and quantification, organ
measurement and feature learning, etc. However, manually delineating the
target of interest on medical images (2D and 3D) is highly labour intensive
and time-consuming, even for clinical experts. To address this problem, this
thesis focuses on exploring and developing solutions of interactive and fully
automated methods to achieve efficient and accurate medical image segmen-

tation.

First of all, an interactive semi-automatic segmentation software is de-
veloped for the purpose of efficiently annotating any given medical image in
2D and 3D. By converting the segmentation task into a graph optimisation
problem using Conditional Random Field, the software allows interactive im-
age segmentation using scribbles. It can also suggest the best image slice to
annotate for segmentation refinement in 3D images. Moreover, an “one size
for all” parameter setting is experimentally determined using different image
modalities, dimensionalities and resolutions, hence no parameter adjustment
is required for different unseen medical images. This software can be used for
the segmentation of individual medical images in clinical applications or can be
used as an annotation tool to generate training examples for machine learning

methods. The software can be downloaded from bit.ly /interactive-seg-tool.

The developed interactive image segmentation software is efficient, but
annotating a large amount of images (hundreds or thousands) for fully su-
pervised machine learning to achieve automatic segmentation is still time-
consuming. Therefore, a semi-supervised image segmentation method is de-
veloped to achieve fully automatic segmentation by training on a small number
of annotated images. An ensemble learning based method is proposed, which
is an encoder-decoder based Deep Convolutional Neural Network (DCNN).

It is initially trained using a few annotated training samples. This initially



trained model is then duplicated as sub-models and improved iteratively using
random subsets of unannotated data with pseudo masks generated from mod-
els trained in the previous iteration. The number of sub-models is gradually
decreased to one in the final iteration. To the best of our knowledge, this is the
first use of ensemble learning and DCNN to achieve semi-supervised learning.
By evaluating it on a public skin lesion segmentation dataset, it outperforms
both the fully supervised learning method using only annotated data and the

state-of-the-art methods using similar pseudo labelling ideas.

In the context of medical image segmentation, many targets of interest
have common geometric shapes across populations (e.g. brain, bone, kidney,
liver, etc.). In this case, deformable image registration (alignment) technique
can be applied to annotate an unseen image by deforming an annotated tem-
plate image. Deep learning methods also advanced the field of image regis-
tration, but many existing methods can only successfully align images with
small deformations. In this thesis, an encoder-decoder DCNN based image
registration method is proposed to deal with large deformations. Specifically,
a multi-resolution encoder is applied across different image scales for feature
extraction. In the decoder, multi-resolution displacement fields are estimated
in each scale and then successively combined to produce the final displace-
ment field for transforming the source image to the target image space. The
method outperforms many other methods on a local 2D dataset and a public
3D dataset with large deformations. More importantly, the method is fur-
ther improved by using segmentation masks to guide the image registration
to focus on specified local regions, which improves the performance of both

segmentation and registration significantly.

Finally, to combine the advantages of both image segmentation and image
registration. A unified framework that combines a DCNN based segmentation
model and the above developed registration model is developed to achieve semi-

supervised learning. Initially, the segmentation model is pre-trained using a
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small number of annotated images, and the registration model is pre-trained
using unsupervised learning of all training images. Subsequently, soft pseudo
masks of unannotated images are generated by the registration model and
segmentation model. The soft Dice loss function is applied to iteratively im-
prove both models using these pseudo labelled images. It is shown that the
proposed framework allows both models to mutually improve each other. This
approach produces excellent segmentation results only using a small number of
annotated images for training, which is better than the segmentation results
produced by each model separately. More importantly, once finished train-
ing, the framework is able to perform both image segmentation and image

registration in high quality.
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The vertical axis represents the evaluation score for the respec-
tive models. The proposed joint training framework is repre-
sented as “Joint”. The notation “n%” indicates the percentage
of the number of annotated images used for model training.
“Seg-100%” and “Reg-100%" indicate the fully-supervised im-
age segmentation model and the image registration model, re-
spectively. They are represented by two lines in each plots as
baseline. . . . . . ..
Visualisation results of an image that participated in training
as an unannotated image in Joint-1%. The soft pseudo-masks
(Soft), segmentation model results (Seg) and the registration
model results (Reg) at different iterations are provided. At the
bottom, the source image, the source image mask, the target

image and the annotated target image are presented. . . . . ..
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Chapter 1

Introduction

Medical image segmentation refers to the process of dividing an image (e.g.
microscopy, mammogram, magnetic resonance imaging, computerised tomog-
raphy, etc.) into regions of interest (ROI). The primary objective of segmenta-
tion is to identify and extract specific areas that are related to specific clinical
tasks (e.g. tumour detection and measurement). This technique offers the ad-
vantage of eliminating redundant information from the image, enabling more
accurate analysis of the image data by focusing solely on specific areas.

Nonetheless, medical image segmentation can be a time-consuming task,
especially when dealing with 3D images. Clinical experts often need to segment
each individual 2D slice of a 3D volume to ensure an accurate segmentation
result. This process can be laborious and demanding, requiring significant
time and effort from the experts.

With the emergence of deep learning, there have been advancements in
medical image segmentation. A well-trained deep learning model can auto-
matically and accurately segment new unseen images. However, achieving
a “well-trained” model typically necessitates a substantial quantity of high-
quality annotated images in the training process. This poses a great challenge,
as it requires collecting a large number of manually annotated dataset from
clinical experts, which is often impossible due to their limited time and highly

demanded expertise. Therefore, the aim of this research work is to develop
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efficient and effective medical image segmentation solutions to minimise the

reliance on labour intensive image annotations by human experts.

1.1 Background and Motivation

1.1.1 Manual Segmentation is Time Consuming

To segment a medical image, one of the most accurate methods is manual
segmentation by a human expert. In the last decade, many image segmenta-
tion methods and tools were developed. These include manual segmentation
software (e.g ITK-Snap [10], 3D Slicer [11], etc.) and semi-automatic software
based on active contour [12], level sets [13], etc. Although the fully-manual
segmentation software is able to produce high-quality segmentation results, it
is often extremely time-consuming which easily takes hours for a 3D image.
Meanwhile, semi-automatic segmentation methods normally require an initial
user input, but they do not allow iterative refinement of the segmentation re-
sults if inaccurate. Therefore, interactive image segmentation methods become
a promising solution that allows iterative improvement of the segmentation re-

sults by human inputs.

1.1.2 Challenges in Machine Learning Using Limited

Annotated Data

In practical scenarios, the continuous influx of new data necessitates a time-
consuming and laborious manual segmention process, even with the assistance
of an efficient semi-automatic segmentation method. To alleviate this chal-
lenge, deep learning-based approaches offer a promising solution. By training
deep learning models on existing annotated data, these models can automati-
cally annotate new data. However, training a deep learning model to achieve
satisfactory performance typically requires a fully-supervised learning on a

substantial quantity of high-quality annotated data. Unfortunately, this con-
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siderably escalates the expenses associated with model training. To address
this issue, this thesis focuses on the development of new methods based on
semi-supervised learning, which aims to train a deep learning segmentation
model with acceptable performance using a limited amount of annotated data
in conjunction with a substantial number of unannotated data.

Once some annotated images are produced by using the manual or in-
teractive segmentation tools, there are various ways to train a model by util-
ising both annotated and unannotated images. Consistency regularisation,
generative-based method and pseudo-labelling are commonly used in deep
learning based methods[14].

The teacher-student model, a form of consistency regularisation, involves
training a teacher model on annotated data and guiding the student model to
produce consistent predictions through regularisation techniques [15]. While
this approach is effective for classification tasks, it faces challenges in handling
complex segmentation and is sensitive to the performance of the teacher model.
If the teacher model performs poorly, it can introduce biases and negatively
impact the learning process of the entire model.

Generative models can contribute to semi-supervised learning tasks in
two ways. Firstly, they can be used to augment data by generating annotated
samples, which helps address the issue of unbalanced distribution in annotated
datasets [16]. However, unlike classification tasks where images can be gen-
erated with corresponding labels, synthesising images with correct masks for
segmentation tasks is more challenging. Secondly, a generative model can be
trained on the entire dataset unsupervised for the task of image reconstruc-
tion, and then transfer the learned model to an image segmentation task. The
assumption is that the model learns the underlying data distribution relevant
to the segmentation task. The encoding part of the trained generative model
can serve as a feature extraction module for image segmentation tasks. By
fine-tuning these models using annotated images, their learned features can be

transferred effectively to the image segmentation task [17]. However, there are
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potential drawbacks of this approach. Image reconstruction tasks may result in
information loss, and the limited supervision for segmentation may introduce
bias to the annotated data. In summary, generative models offer potential so-
lutions to semi-supervised learning methods, but synthesising accurate masks
for segmentation is challenging. Training a generative model for image recon-
struction can help capture data distribution, but caution is needed to mitigate
information loss and address the bias introduced by the limited supervision.

Another approach suitable for semi-supervised learning is the pseudo-
labelling method [18], which can be applied to both consistency regularisa-
tion and generative methods. This technique involves training a predictive
model on the annotated training set and using it to assign annotations (labels
or masks) to the unannotated training set based on heuristics or rules mixed
with the annotated data. Although the generated annotations or masks are
often noisy and may not accurately reflect the true annotation, this method
can utilise the unannotated data by providing additional training informa-
tion. Pseudo-labelling allows the model to learn more robust representations
and decision boundaries, potentially improving predictive performance. It is
a flexible approach that can be easily adapted to different domains and tasks.
However, the pseudo-annotations generated from the predictive model can be
noisy or incorrect, as there is no quality control during the annotation pro-
cess. Once a pseudo-annotation is assigned, the model cannot correct errors
by itself, which can lead to perpetually incorrect results. To mitigate these
issues, incorporating regularisation techniques or ensemble methods can help
improve the robustness of the learning process and mitigate the effects of in-
correct pseudo-annotations.

In addition to the three aforementioned semi-supervised approaches, there
is another approach that can be beneficial for medical image segmentation
tasks due to the nature of medical images. Many medical datasets exhibit
similar features and structures, such as wrist MRI, cardiac MRI, brain MRI,

abdominal CT, etc. Moreover, in certain disease diagnoses, multiple medi-



Chapter 1. Aims and Objectives 5

cal images of the same patient may be available from different time points.
In such cases, image registration, which aligns two or multiple images with
similar structures into a common template space, can be used for the task of
image segmentation. One technique that can be utilised for this purpose is
the spatial transformer network (STN)-based unsupervised image registration
model [9]. This model generates a displacement field for aligning images. By
applying the corresponding displacement field, the mask information from one
image can be transferred to the unannotated image, effectively annotating the
previously unannotated image. Research has shown that incorporating mask-
guided training can further improve the quality of segmentation results [19]
[20]. Building upon this approach, the combination of image registration and
segmentation networks can mutually enhance each other through joint training
21].

However, the use of image registration networks for image segmentation
is still an area of limited research. To achieve joint training for various types
of data, it is necessary to develop a general image registration network that
can handle both small and large deformations. Similar to the pseudo-labelling
method, the integrated image registration and segmentation approach is sen-
sitive to the quality of pseudo-masks predicted by both models. Therefore,
implementing quality control mechanisms is necessary to ensure the reliability

of this approach.

1.2 Aims and Objectives

Based on the challenges discussed above, the aim of this thesis is to pro-
pose efficient and effective solutions for medical image segmentation, spanning
from data collection to fully automated segmentation models, with a focus
on reducing human labour. This research work achieves this aim through
the implementation of an interactive image segmentation software and two

semi-supervised learning approaches. To successfully accomplish this aim, the
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following specific objectives are addressed:

e To ensure the quality of the deep learning model and alleviate the com-
plexity of segmentation, it is necessary to gather data from the clini-
cal domain and seek input from experts for several segmentation of the
dataset. In order to meet the quality standards and enhance efficiency,
it is imperative to design an interactive segmentation tool for the initial
stage. This tool should enable users to swiftly perform automatic im-
age segmentation based on user prompts. Moreover, it should provide
the functionality for users to easily make corrections to any incorrectly

segmented regions.

e A generic semi-supervised learning framework for various types of med-
ical images. The framework will be capable of learning fully automatic
segmentation by leveraging both annotated and unannotated images.
The objective is to achieve comparable results to fully supervised seg-

mentation models, which rely solely on annotated images.

e As motivated in the background section of this chapter, based on the
characteristics of medical images to achieve a better few-shot learning,
another approach explored in this thesis to achieve semi-supervised im-
age segmentation is the combination of image registration and image

segmentation. Two sub-objectives need to be achieved:

— An unsupervised image registration network that can accurately
align images at both small and large scales for robust image align-
ment purpose. The network is designed to enable learning without
the need of any masks or annotated data. Furthermore, the network
should be capable of enhancing its performance by incorporating

guidance from segmentation masks.

— A joint model that combines image registration and image segmen-

tation networks. The model should be capable of learning from
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a limited number of annotated images to obtain annotation infor-
mation. Moreover, the model is designed to ensure that both the
image registration and segmentation networks progress together in-
stead of regressing together. This means that the model is able to
avoid each network learning incorrect information and ensure their

collaborative advancement.

1.3 Thesis Structure and Key Contributions

This thesis consists of seven chapters, including introduction, literature review,
four technique chapters and conclusions.

In this specific chapter, a concise overview of the background information
is presented to identify research gaps. These gaps are then utilised to define the
aims and objectives of the study. Finally, this chapter wraps up by emphasising
the main contributions made by this research work in the next few paragraphs
of this section.

Chapter 2 provides the literature review focusing on image segmentation,
semi-supervised learning, and image registration. The section dedicated to
image registration emphasised the exploration of research that integrates image
registration and image segmentation, which is relevant to the present study.

Chapter 3 serves as the first technical chapter in this thesis, which presents
an interactive semi-automatic software. This software provides effective anno-
tation of multiple categories for 2D and 3D medical images. Moreover, it
includes an automated recommendation function for annotating the next best
slice in 3D, thereby enhancing efficiency in the segmentation process. Utilising
this tool, clinical experts can easily create annotations and rectify erroneous
segmentation results with a few clicks. The annotations collected from these
experts will be valuable for the subsequent chapters.

Chapter 4 introduces a new semi-supervised deep convolutional neural net-

work (DCNN) based on an ensemble learning approach. Initially, the network
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is trained using a limited number of annotated images. By incorporating a
large set of unannotated images, the model’s performance is greatly enhanced.
This approach enables the construction of a generic automatic segmentation
model even with a dataset that only contains a small number of annotated im-
ages. By employing a pseudo-labelling approach, the framework is adaptable
to various types of data.

Chapter 5 introduces a novel multi-resolution image registration frame-
work designed to accomplish robust deformable image alignment, even for large
deformations. This framework also demonstrates its applicability in the im-
age segmentation task by leveraging registration to segment unseen images.
By incorporating a mask-guided loss term, the registration accuracy within
the masked region shows a significant improvement. This enhancement proves
beneficial in establishing the semi-supervised registration-segmentation frame-
work discussed in chapter 6.

Chapter 6 presents the proposed a semi-supervised registration-segmentation
framework designed for the automated segmentation of medical images. This
framework employs an iterative optimisation process that leverages a pre-
trained segmentation model trained using a limited number of annotated im-
ages and an unsupervised image registration model using all images. By
integrating a segmentation quality assessment block, both the segmentation
model and the registration model undergo iterative improvements, leading to
enhanced performance in both image registration and segmentation.

Chapter 7 draws conclusions for this thesis, providing a comprehensive
summary of the research conducted and the outcomes achieved. It includes
a thorough discussion on the limitations of the current work and proposes
future plans to address these limitations. Additionally, it highlights additional
research conducted during the PhD period, such as medical quality assessment
for classification task and the development of a generative model-based data
augmentation approach for age estimation on brain MRI datasets (combining

image generation and regression techniques).



Chapter 2

Literature Review

2.1 Introduction

This chapter presents a literature review of two key topics that are related to
the research of this thesis: image segmentation and semi-supervised learning.
Additionally, it introduces the background of medical image registration to
support the integration of registration and segmentation framework proposed
in chapter 6. As a brief outline, section 2.2 presents a concise review of im-
age segmentation. Section 2.3 provides an overview of semi-supervised deep
learning methods. Section 2.4 explores the technology and research on medical
image registration that is relevant to this thesis, along with a brief introduc-
tion to the joint model of image registration and segmentation. Lastly, section
2.5 summarises the main findings of this chapter, discusses the limitations of

existing work, and sets the stage for the research conducted in this thesis.

2.2 Image Segmentation

Image segmentation is the process of partitioning a digital image into multiple
image segments based on the semantics of each region [22]. It can simplify the
content of images which is beneficial to image analysis, so, it is widely used in

various fields (e.g. road environment segmentation for self-driving (Fig. 2.1)

9
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Input image Label image

Figure 2.1: Road semantic segmentation example. From [I] under CC BY 4.0
license.

M sunomcs

Figure 2.2: Image segmentation examples for 3D geographic image. Left: original
3D image. Right: segmentation results (red: walls. yellow: gates. blue: buildings).
From [2] ©2021 IEEE.

Figure 2.3: Medical image segmentation examples from [3] ©2015, Springer In-
ternational Publishing Switzerland. (a) and (c) are the original images, (b) and (d)
are the corresponding segmentation results.

[23] [2], geographic objects segmentation for geographic information system
(Fig. 2.2) [1, 21], lesion segmentation for medical imaging (Fig. 2.3) [3]). This

thesis mainly focuses on the field of medical imaging.

2.2.1 Classical Methods

Manual segmentation is time-consuming and laborious, so automatic segmen-
tation comes into play. Since the 20th century, many classical automatic seg-

mentation methods have been proposed, such as Ostu’s threshold [25], K-
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means clustering [20], histogram-based optimal segmentation [27], edge relax-
ation [28], region growing [29].

More advanced, in some implementations, the image to be segmented is
considered as a graph. User’s annotations serve as a prior knowledge to de-
termine the likelihood of individual pixel belonging to each of the annotated
classes. Together with this prior information, the pixel-wise similarity and
label consistency are normally modelled by Markov random filed or condi-
tional random field (CRF). The image segmentation task is then converted
into an energy optimisation problem over a graph structure. Although exact
inference of such a structure is intractable, a lot of efforts have been made to
develop approximation algorithms, including iterated conditional modes [30],
belief propagation [31], max-flow/min-cut [32] and filter-based inference [33],
in which filter based mean field inference and graph cut are the two most
popular solutions.

Boykov et al. [34] proposed the two mostly used graph cut algorithms:
af-swap and a-expansion. In af-swap, for a pair of masks « and [, it ex-
changes the annotations between an arbitrary set of pixels annotated o and
another arbitrary set annotated 5. The algorithm generates a mask such that
there is no swap move that decreases energy in the predefined graph. The
af-swap method works well for a binary graph (two-classes) but difficult to be
extended to multi-class segmentation. Alternatively, a-expansion is suitable
for a multi-class problem. It starts with any mask and runs through all masks
iteratively. For each mask «, it computes an optimal a-expansion move and
accepts the move if the energy decreases. The algorithm is terminated when
there is no expansion move that decreases the energy. Graph cut method has
been applied to interactive image segmentation by Rother et al. [35], called
“grab cut”. In grab cut, users only need to draw a bounding box around
the object of interest, the foreground object is then segmented using graph
cut. The segmentation result can be further refined using additional scribbles.

Grab cut works superbly with minimal user input, but it is limited to binary
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class segmentation and the computational speed is slow in 3D. Kohli et al.
[30] extended the class of energy functions for which the optimal a-expansion
and af-swap moves can be computed in polynomial time. However, the infer-
ence speed and memory usage is still inefficient comparing to the mean field
inference method, especially when there are multiple classes in 3D images.

Many methods of mean field approximations in computer vision have been
proposed, such as object class segmentation [37]. The mean field algorithm
approximates the exact distribution P using a distribution ) calculated as a
product of independent marginal by minimising the KL divergence D(Q|P).
Although the approximation of P as a fully factored distribution is likely to
lose some information in the distribution, this approximation is computation-
ally efficient. Krahenbiihl et. al. [33] developed a filter-based method for
performing fast fully connected CRF optimisation, which is the core algorithm
used in chapter 3.

These automatic methods are normally application dependent, which can
not work robustly unless the object of interest has a homogeneous image in-
tensity and well distinguishable from the other image regions. Many of these
methods nowadays are used as a pre-processing step of other more sophisti-
cated methods, such as region of interest extraction for removing redundant in-
formation and initial annotation for weakly supervised machine learning meth-

ods.

2.2.2 Interactive Image Segmentation

Besides the above classical methods, this section provides a brief overview of
popular open-source manual segmentation software. These include both purely
manual segmentation techniques and semi-automatic segmentation methods.
These tools are more commonly used nowadays than the classical methods, as
it ensures the segmentation quality with iterative user interactions.

Many commercial and open-source software offer manual delineations for
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medical images, including line tracing, polynomial curve fitting, area painting,
etc. ITK-Snap [10] is an open-source and widely used tool that is mainly ded-
icated to medical image segmentation. It offers polygon and paintbrush tools
for flexible editing of both 2D and 3D images. Another widely acknowledged
open-source tool is 3D Slicer [1 1]. It provides manual tools such as area paint-
ing, level tracing and scissors, which are normally used as post-processing to
refine segmentation results using threshold or region growing. These manual
tools offer good quality control but require tremendous time and effort from
the user.

Semi-automatic methods take the advantage of automatic segmentation
and allow users to intervene with the segmentation process. One type of user
interaction is initialisation, such as drawing seeds or bounding boxes inside or
around the target object. Then the seeds or initial contour evolve to the desired
object’s boundary by region growing [38] or minimising an energy function (e.g.
active contour [12], level sets [13], etc.). These methods do not offer post-
segmentation user interactions to further refine the results and the parameter
settings are highly application dependent. Another type of user interaction is
to iteratively improve the segmentation results by adding scribbles to different
classes (e.g grow cut [39], graph cut [31], etc.). At each iteration, the method
propagates these mask to the whole image by optimising an energy function.
This is more or less guaranteed to achieve a satisfactory result with reduced
workload compared to a manual process, which is desirable for medical image
segmentation. These tools are also utilised to provide annotations of a dataset

to train deep learning based methods.

2.2.3 Deep Learning based Methods

More recently, many image segmentation methods have been proposed based
on deep learning techniques. This section introduces several state-of-the-art

deep learning based image segmentation methods.
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Region-CNN Based Models

R-CNN: Regtons wzth CNN features
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1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

Figure 2.4: R-CNN overview: Input a image, locate 2000 object candidate
bounding-bozes, and then use CNN to extract the feature from each candidate
bounding-box, then use classification algorithm to classify and recognise the objects
in each candidate bounding-box. From [/] ©)2014 IEEE.

In the end of 2013, Girshick et al. [1] proposed one of the first deep learning
based image segmentation network, Regions with Convolutional Neural Net-
work Features (R-CNN). For a given image, the R-CNN segment it through 4
steps (shown in Fig. 2.4): 1) select candidate bounding-boxes using selective
search algorithm. 2) extract features by using trained CNN models. 3) clas-
sify the object in each candidate bounding-boxes. 4) find the tighter bounding
boxes by shrinking the bounding-box to the edge of target using regression
model. The method was evaluated on the PASCAL VOC challenge dataset
[10] and the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
dataset [11] [12], outperform other object detection and image segmentation
methods at the time. However, The selective search algorithm cannot be GPU
accelerated, which reduces the model’s speed. Extracting the features using
CNN for 2000 candidate bounding-boxes is also not efficient. Additionally, due
to the limitation of memory, the model needs to write the image of each can-
didate bounding-box to the hard disk, which slows down the inference speed.
Finally, the whole model is not end-to-end (CNNs extract image features, clas-
sification models predict categories, and regression models find tight boundary
boxes). Each part is trained separately, which is troublesome to organise the

whole structure.
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Figure 2.5: Fast R-CNN overview: An image and multiple regions of interest are
input into the full convolutional network. Fach Rol is pooled into a fixed-size feature
map, which is then mapped to feature vectors via the full connection layer. Two
outputs for classification and regression with multi-task loss function achieved end-
to-end training. From [5] ©)2015 IEEE.

In the following years, the extensions of R-CNN (Fast R-CNN [5], Faster
R-CNN [13] and Mask R-CNN [0]) fill the deficiency of R-CNN and achieve
remarkable results in the field of object detection and image segmentation. As
shown in Fig. 2.5, instead of send 2000 candidate bounding-boxes to CNN
model in R-CNN, the CNN in Fast R-CNN extracts features from an image
with multiple regions of interest (Rols). This greatly reduces the training
parameters and significantly improves the training speed. In addition, Fast
R-CNN also combines the two loss functions, object classification and the
boundary box regression into one, so that they share parameters and train
together. It further reduces the number of training parameters, and realises
end-to-end training of object detection and segmentation. Moreover, the Faster
R-CNN introduces the Regions Proposals Networks (RPN) to select candidate
bounding-boxes. A CNN extracts feature maps from input image, the Re-
gions Proposals Networks (RPN) select candidate boxes automatically, then
the classification and regression layers local and segment the object. So far,
R-CNN achieved single-model full-function end-to-end training.

In 2017, He et al. [6] proposed the Mask R-CNN. This method utilises the
previous R-CNN algorithm, combines Faster R-CNN with FCN (described in

next sub-section), and obtains excellent results on instance segmentation tasks.
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Figure 2.6: The framework of Mask R-CNN. From [0] ©)2017 IEEE.

As shown in Fig. 2.6, Mask R-CNN has three outputs. The first one is a class
label for each object. The second one is the offset for each bounding-box.
The third one is a pixel-wise mask for each object from FCN. Thus, Mask
R-CNN can predict pixel-wise segmentation results for each instance in the
image. The method outperformed all previous methods on different Common
Object in Context (COCO) challenge.

R-CNN based methods have shown excellent performance in the field of
object detection and achieved good results on instance segmentation tasks,
however, there is still room for improvement in the segmentation of object

details (semantic segmentation).

Fully Convolutional Networks

In 2015, Long et al. [7] proposed Fully Convolutional Network (FCN) which
is one of the first pixel-wise image semantic segmentation method. As shown
in Fig.2.7, different from classical CNN, FCN uses the deconvolutional layer
instead of the fully connected layer + softmax layer after the feature extraction
layers (convolutional layer). The deconvolutional layer up-samples the feature
map of the last convolutional layer to restore it to the same size as the input
image. Finally, pixel by pixel classification is carried out on the up-sampled

feature map, which achieves dense predictions for each pixel. In short, the
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Figure 2.7: Framework of the Fully Convolutional Network. It can efficiently learn
to make dense predictions for per-pizel tasks like semantic segmentation. [7] ©)2015
IEEE.

difference between FCN and CNN is that the last fully connected layer of
CNN is replaced by the convolutional layer, and the output is a segmented
image.

However, if the encoder down-samples the image multiple times, direct
amplification of the final feature map back will lead to inaccurate segmenta-
tion results. To overcome this problem, the paper proposes a slightly higher
precision of the mixed amplification structure. It combines multi-resolution
features from coarse to fine. For example, as shown in Fig. 2.8, the lowest pre-
cision output FCN-32s is directly obtained from the final convolutional layer
conv7. A more precise output FCN-16s is obtained by combining the feature
map from pooling layer pool4d and the upsampled convolutional layer conv?.
As with the previous method, the output of FCN-8s combines the output of
pool3, poold and conv7 together, achieves improved segmentation precision.

The methods achieved state-of-the-art performance on multiple datasets, in-

cluding PASCAL VOC, NYUDv2 [11], and SIFT Flow [15].
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Figure 2.8: Coarse to fine combination of feature maps for FCN. From [7] ©2017
IEEE.

Encoder-decoder based Models

To further solve the problem of low precision of FCN, the encoder-decoder
based methods were proposed. In 2015, Noh et al. [3] published one of the
first encoder-decoder based semantic segmentation network known as Decon-
vNet. Different from the FCN, an decoder is added to the end of encoder
(shown in Fig. 2.9). Inspired by FCN, the encoder using fully convolutional
layers adopted from VGG-16 [16]. The decoder is a multi-layer deconvolutional
network, which maps the feature vector from encoder to a accurate segmenta-
tion map. In this way, the network is able to generate pixel-wise segmentation
results for a given image. In the same year, Badrinarayana et al. [17] proposed
SegNet which is similar to DeconvNet, but it adds a batch normalisation layer
after each convolutional layer and removes the fully connected layer between
the encoder and the decoder. Both methods achieved remarkable results on
semantic segmentation tasks.

Since then, more and more encoder-decoder structures have been proposed
for segmentation, e.g. RefineNet [18], U-Net [3], GCN [19], etc. With the
development of deep learning techniques, other structures such as attention
mechanisms have been added to encoder-decoder structures to further improve
the accuracy of segmentation, such as Chen’s scale-aware network [50] and

Fu’s dual attention network [51]. In recent years, one of the most cutting-
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Figure 2.9: Deconvolutional semantic segmentation. One of the first encoder-
decoder based semantic segmentation network. The Encoder is adopted from VGG-
16, and the decoder consists with convolutional layer and deconvolutional for up-

sampling. Two fully connected layer is used to connect encoder and decoder. From
[8] ©2017 IEEE.

edge technique of attention mechanism, transformer, has been extended from
Natural Language Processing (NLP) area to Computer Vision (CV) area, and
is widely used in image segmentation tasks. For example, inspired by Vision
Transformer (Vit) [52], Strudel et al. [53] proposed the Segmenter, which uses
a pure transformer structure to encode and decode the image. The method
was evaluated on the challenging ADE20K [54] dataset, and outperformed all

previous works.

2.2.4 Medical Image Segmentation

In medical imaging field, image segmentation is a basic and crucial step for
many biomedical image analysis tasks (e.g. tumour quantification, cell segmen-
tation, organ analysis, etc). Early approaches for medical image segmentation
typically relied on techniques such as edge detection, region growing and tradi-
tional machine learning techniques. These methods have achieved good results
to some extent, but compared to other natural images, medical images tend
to be noisy, blur and low contrast. Hence, medical image segmentation re-
mains one of the most challenging topics in computer vision area. In addition,
the two most commonly used medical images, CT (Computed Tomography)
and MRI (Magnetic Resonance Imaging), are 3D data, which also make the
segmentation more challenging. With the rapid development of deep learning

techniques, convolutional neural networks (CNNs) have been successfully im-
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plemented based on hierarchical feature representation of the images. CNNs
for feature learning provide excellent segmentation results for medical images
due to their insensitivity to image noise, quality, contrast, etc.

These deep learning-based methods are widely used in various areas of
medical image segmentation, including 2D: cell segmentation [55] [50], skin
lesion segmentation [57] [58], retinal vessel segmentation [59] [60], etc., and
3D: cardiac segmentation [01] [62], liver segmentation [63] [64], brain tissue

segmentation [65] [66], tumour segmentation [67] [68] [69], etc.
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Figure 2.10: U-net architecture (example for 3232 pizels in the lowest resolution).
FEach blue box corresponds to a multi-channel feature map. The number of channels
is denoted on top of the box. The z-y-size is provided at the lower left edge of the
box. White boxes represent copied feature maps. The arrows denote the different
operations. From [3] ©)2015, Springer International Publishing Switzerland.

It is especially worth noting that Ronneberger et al. [3] proposed one of
the most popular medical image segmentation network in 2017, known as U-
net. As shown in Fig. 2.10, U-net was named based on the shape of the model,
which resembles a capital U. Similar to DeconvNet, it has an encoder-decoder
structure. The encoder part down-samples the image with convolutional lay-

ers to extract features, similar to FCN. The decoder part uses deconvolutional
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layers to up-sample the learned feature maps to generate the final pixel-wise
segmentation results. Different from the previous encoder-decoder based meth-
ods, a skip-connection operation from encoder to decoder is added at every
resolution to combine low- and high-resolution feature maps. With this strat-
egy, U-net won the first place in ISBI cell tracking challenge 2015. U-net is also
widely used in other medical image segmentation tasks. It has now become
the benchmark for most medical image segmentation tasks and has inspired
many recent improvements such as 3D U-net [70], V-Net [71], H-DenseUNet
[72], TransUNet [73].

Later, Isensee et al. proposed nnU-Net, also known as “no-new-UNet”,
which incorporates a self-configuring framework for the original U-Nets [74].
nnU-Net is capable of automatically optimising hyper parameters and apply-
ing data augmentation strategies without the need for manual intervention.
The author demonstrated that nnU-Net achieved top rankings in various pub-
lic medical image segmentation challenges, and other researchers have also
consistently ranked highly using this framework in well-known medical seg-
mentation challenges. This dominance showcases the power of U-Net as a
fundamental network for medical image segmentation tasks. Therefore, in this
thesis, all deep learning-based medical image segmentation tasks will utilise

U-Net as the foundational network.

2.3 Semi-supervised Deep Learning

Nowadays, many encoder-decoder based deep convolutional neural networks
(DCNNs) such as U-Net [3] have achieved state-of-the-art performance for im-
age segmentation using fully-supervised learning. However, data annotation is
extremely time-consuming especially for medical imaging where highly skilled
expertise is required. Several methods have been proposed to address this chal-
lenge. Data augmentation is commonly used as an effective solution. A few

studies show that geometric transformations and intensity shifts to increase the
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number of annotated data can achieve better performance than only using the
original annotated data [75]. In this section, another approach is introduced,
deep learning based semi-supervised learning, which uses both annotated and
unannotated data for deep learning model training. By extracting annotation
prediction related information from unannotated data, boost the performance
of predictive models.

Depending on the loss function and model design, semi-supervised learn-
ing can be classified into various types, including consistency regularisation
methods, generative methods, pseudo-labelling methods and graph-based meth-
ods [14] [76]. Based on the relevance of the study, this section will only give a
brief introduction about generative methods, consistency regularisation meth-

ods and pseudo-labelling methods.

2.3.1 Generative Model based Methods

As mentioned above, to ensure effective semi-supervised learning, the model
needs to be able to learn information about the annotation predictions from
the unannotated data. For a generative model, the key task is to learn and
model the real distribution of the training dataset and then generate new data
from this distribution.

In this case, one of the most popular generative models, Generative Ad-
versarial Network (GAN) [77], is widely used to generate data that matches the
real data distribution. A typical GAN is utilised for generating high-quality
images from a random latent vector. It has two parts, a generator G and a

discriminator D. It is trained by optimising the following objective function:
mén max E.[D(G(2))] — E; [D (2)] (2.1)

where G : z — =z is the generator that maps an input noise z to its target
generated image x. D indicates the discriminator that classifies if an image

is real or fake. The generator intends to fool the discriminator by producing
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realistic images, and the discriminator aims to identify the fake ones from the
real images.

To achieve semi-supervised learning, a simple way is to combine the lim-
ited annotated data with synthetic data together to create a combined dataset
to train a fully-supervised model. For example, Maayan et al. [16] proposed a
data augmentation method which enlarges the size and diversity of the train-
ing dataset by adding synthesised images using GAN. It improved the model
performance significantly on a liver lesion classification task. Similarly, Qin
et al. [78] introduced a GAN-based data augmentation method with style-
based GAN architecture. By involving the progressive GAN [79] and the style
control technology from styleGAN [30], it achieved a high resolution and rich
diversity image generation on a small, complex and class-imbalanced public
skin lesion dataset, ISIC 2018 [$1] [82]. Then a classification model refines
the pre-trained ResNet50[%3] model on both real and synthesised data. The
approach successfully fills in the imbalances of the original data and delivers
remarkable classification results for skin lesion diagnostic tasks.

Generative model based data augmentation has emerged as a promising
approach to support semi-supervised learning. However, the effectiveness of
this method is limited by the quality of the generated images. As a result, an
alternative way to leverage the generative model in semi-supervised learning is
to reuse the discriminator for classification tasks. This approach is based on an
assumption that the generative model learns the transferable data distribution
relevant to the image down-sampling task. In a notable study conducted in
2015, the categorical generative adversarial networks (CatGAN) [31] was pro-
posed by Springenberg, where they integrated the discriminator with a classi-
fication function. They then used a classification loss to make the generator
generating samples uniformly across all categories such that the discriminator
has highly deterministic categories, and make the discriminator classifying the
input samples evenly and accurately. Similarly, the semi-supervised learning

GAN (SGAN) [17] and the improved GAN [25] were also proposed to address
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the semi-supervised learning problem. They modified the output of the dis-
criminator, transforming it from a binary classification of real or fake to a
multi-class classification of [0, 1,2, ..., K, fake], where K represents the class
labels. The researchers trained this new model using both annotated and
unannotated data, employing two distinct loss functions. The supervised loss
is based on the annotated images and aims to minimise the error in predict-
ing the class labels. On the other hand, the unsupervised loss utilises the
unannotated images to distinguish between real and fake images.

However both the above two approaches are for semi-supervised classifi-
cation tasks, which are difficult to be adopted for image segmentation. The
synthetic method has a high risk to generate unmatched image and mask, and
add segmentation term is much difficult than adding a classification term to
the discriminator. Only a few studies have been conducted on semi-supervised
learning tasks using GANs. One such example is a study by Lahiri et al. (2018)
[80], where the discriminator in GAN was utilised for both image segmentation
and distinguishing between real and generated fake images. By incorporating
annotated images, the segmentation accuracy was improved, while the utilisa-
tion of unannotated images enhanced the discrimination power. However, it is
important to note that this particular method primarily focuses on extracting
global information from the images to enhance the discrimination capabilities,

rather than emphasising the extraction of segmentation-specific information.

2.3.2 Consistency Regularisation-based Methods

Besides the generative model based methods, another well-known method for
semi-supervised learning is to use consistency regularisation. It is based on the
assumption that when a very small realistic perturbation is added to a data,
the class label of that data should not change. For instance, if one creature is
labelled as a “cat” and another creature has the same appearance but the eye

colour is green instead of red, it is reasonable to label this creature to “cat” as
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well rather than being classified as a completely different category, such as a
“dog”. In general, consistency regularisation aims to regularise the model by
enforcing consistency between different representations or predictions derived
from the same input but with different perturbations.

In semi-supervised learning, consistency regularisation is a loss function
that focuses on the unlabelled images. By adding small perturbations to the
unannotated data, the model is expected to produce consistent outputs. In
2015, Rasmus et al. proposed the Ladder network for semi-supervised image
classification by introducing a consistency regularisation loss to the unanno-
tated images [387]. They extended the classification network by adding a noisy
encoder and a denoising decoder. In details, given an input image, denoted
as x, the Ladder Network produces two outputs: a clean prediction y and a
noised output y’. The noised output is generated by injecting Gaussian noise
into each layer of the encoder. The denoising decoder then takes the noisy rep-
resentations from each layer of the encoder as input and reconstructs the orig-
inal input z. To achieve consistency regularisation for the unlabelled images,
the Ladder Network minimises the difference between the original input and
the reconstructed input at each layer. This encourages the model to produce
consistent predictions and learn robust representations. In combination with
a supervised loss computed on the annotated images, this method achieves
remarkable results surpassing those obtained when using annotated images
alone. In subsequent works, Laine and Aila [33] simplified the Ladder Net-
work architecture by replacing the denoising decoder with a generative model.
This modification aimed to streamline the model and reduce its complexity.
They then introduced an alternative version, Temporal Ensembling, that in-
corporated ensemble-based temporal consistency into the model’s predictions,
utilising temporal information to enhance the accuracy of the predictions. It
achieved the state-of-the-art results on various semi-suerpvised learning bench-
marks.

Inspired by the Pi-Model and Temporal Ensembling, the Mean Teacher
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method was proposed by Tarvainen [15]. It adopts a teacher-student structure,
where the teacher model learns from annotated images and instructs the stu-
dent model by employing consistency regularisation. During training, when
provided with the same input, the goal of the student model is to produce
the same predictions as the teacher model. The divergence between the two
models is optimised through a consistency loss function. Evaluation of this
approach on a public classification dataset demonstrates its superior perfor-
mance compared to Temporal Ensembling. Substantially, the Dual Students
model [39] utilises two student models with different initialisation of weights to
mitigate bias and enhance prediction stability in compare to the Mean Teacher
approach.

The teacher-student model is also able to be adapted to the image seg-
mentation tasks. Cui et al. proposed a semi-supervised teacher-student model
for brain lesion segmentation [90]. Similar to the Mean Teacher, the teacher
model is trained on labelled dataset, and the student model learns from both
the real data and the predicted results of the teacher model. Hang et al. also
proposed a similar work but added a local attention to the target region for
left atrium segmentation [91]. Zheng et al. added a random Gaussian noise to
the student model when updating the teacher model to improve the robust-
ness of the network [92]. Luo et al. conducted an investigation where they
employed the Transformer architecture instead of CNN in the teacher-student
model for achieving remarkable results on a public benchmark [93]. However,
in most implementations of the teacher-student model, consistency regulari-
sation is employed by minimising the discrepancy between the predictions of
the teacher model and the student model. This process can be seen as a form
of self-learning, where pseudo-masks are utilised. Moreover, the consistency
regularisation method used for both image classification and image segmenta-
tion tasks is highly sensitive to the annotated dataset. If there is a bias in the
annotated data, it can negatively impact the overall performance of the model

during the learning process.
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2.3.3 Pseudo-labelling Methods

Another effective and widely applicable method for semi-supervised learning
is pseudo-labelling [18]. Essentially, this method involves using a predictive
model to generate pseudo annotations for unannotated data and then train a
model using both the annotated images and the images with pseudo annota-
tions. In this way, the model can learn information from the whole dataset.
However, a major drawback of the pseudo-labelling method is that the model
cannot correct its own errors. If the model overly confidence in its predictions
without acknowledging the potential of inaccuracies, it may result in incorrect
outcomes, and the error is propagated during the training process.

To address this issue, an older training strategy called Co-Training was
proposed [91]. Tt requires a dataset where each data has two different views.
Two separate models (M1, M2) are trained on the different views. The data
is iteratively added to the other subset based on the model’s confidence on
its predictions. Specifically, in each iteration, if one of the models (e.g. M1)
has a high level of confidence in the predicted result for a sample z, M1
generates a pseudo-label for that sample and is then included in the training
subset of the other model M2. As an improvement, democratic co-learning
was introduced to address the challenge of collecting different views for every
dataset [95]. Instead of relying on different view data, it employs different
learning algorithms and avoids bias through majority voting.

For the image segmentation task, how to evaluate the confidence of the
predicted results and select the valuable pseudo masks are challenging. Instead,
some methods use trusted models to generate pseudo masks. For example, Sun
et al. [96] used a teacher model to generate pseudo masks for the task of liver
segmentation. Filipiak et al. also used a teacher model to generate the pseudo
mask but use bounding boxes and mask scoring to filter out noisy pseudo labels
[97]. Feng et al. [98] [99] pointed out that it is difficult for models to reveal

their own errors. Instead, exploiting inter-model differences between different
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models is the key to locating pseudo-labelling errors. They then proposed the
dynamic mutual training (DMT) which trained two different models mutually
by dynamically re-weighting the loss function. The methods achieved state-
of-the-art performance in both classification tasks and segmentation tasks.
Bai et al. [100] developed a self-learning technique which can correct pseudo
masks through a post-processing approach. A fully supervised model is firstly
trained on annotated data, then pseudo masks are generated for unannotated
data using this model and refined by a fully-connected conditional random field
(CRF). Subsequently, both annotated data and the data with pseudo masks
are used to refine the initial model. This process is repeated until convergence.

Compared to other previously mentioned methods, the pseudo-labelling
technique offers a more straightforward approach for semi-supervised image
segmentation learning. By generating pseudo masks for the unannotated
data and incorporating them into the training process, this method enables
the model to leverage a larger dataset and improve performance in a semi-
supervised setting. However, careful handling of the pseudo masks is essential
to ensure reliable results and mitigate the risk of incorporating erroneous in-

formation into the learning process.

2.4 Medical Image Registration

Image registration is a technique that geometrically transforms one image
(source) to another (target) image’s space, so that the transformed source
image is similar and comparable to the target image. The estimated geometric
transformation and the warped source image can then be utilised for further
analysis. It is a commonly used method in a variety of fields, including med-
ical imaging, remote sensing, computer vision, and robotics. It particularly
plays a very important role and has been widely used in the medical field. For
instance, aligning medical images (e.g. MRI, CT) that captured from different

time points or different subjects for quantitative analysis in disease diagnosis
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and prognosis.

Image registration methods can be broadly categorised into two types:
rigid registration and non-rigid registration. Rigid registration involves a
global match between two images while preserving the original shapes of objec-
tives within the images. This type of registration typically includes operations
such as shifting, rotation, and scaling transformations. On the other hand,
non-rigid registration allows for local deformations, enabling more complex
transformations. It aligns images by utilising a computed deformation field
derived from mathematical models or algorithms.

In medical imaging area, both methods motioned above are widely used.
Specifically, with the property of rigid transformation preserving, rigid regis-
tration are commonly used in alignment of different images of the same patient,
such as aligning images from different modalities (e.g. CT and MRI) and align-
ing images at different time point for the same lesion or organ (e.g. different

cycles of cancer).

2.4.1 Classical Image Registration Methods

_—

Feature
Detection
Feature X Yi
Matching Geometrlc X, Y, 1 Image
Transformation Transformation
Estimation

Feature
Detection

Target Image

Figure 2.11: Diagram of image registration.

Prior to the deep learning era, there are many non-learning-based approaches
proposed by researchers to align two or more images. As illustrated in Fig.
2.11, the traditional image registration methods normally include four steps

[101]: feature detection, feature matching, geometric transformation estima-
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tion and image transformation (warping). There are many popular image
registration methods developed based on this pipeline. For example, intensity-
based methods using sum of squared difference (SSD) [101], normalised cross-
correlation (NCC) [102] and mutual information [103] as the similarity mea-
surements, feature-based method based on scale invariant feature transform
(SIFT) [L04], point-based method based on iterative closest point (ICP) algo-
rithm [105], etc.

However, these non-learning-based methods normally require careful pa-
rameter tuning in each application to achieve satisfactory results, and it is
time-consuming to register large images such as 3D medical images. It takes

several minutes or more for the alignment of one pair of images.

2.4.2 Deep Learning-based Image Registration Meth-

ods

Recently, deep learning methods have achieved remarkable performance in su-
pervised learning. It is able to learn the relation between the known input x
and the target result y that aims to predict y for a given x. In image registra-
tion task, the paired source image and target image can be considered as two
inputs x; and x5 and the geometric transformation is the target y. Therefore,
with a set of given paired x1, x5 and y, a supervised deep learning network can
be trained. Salehi et al. [106] proposed a deep rigid registration method using
this idea. They apply the rigid transformations, including random rotations
and translations, to the source image x; to get the simulated target image
x4y, the transformation metric here is the y in the model training. With joint
losses, mean squared difference and geodesic distance, the method achieved a
remarkable performance in a 3D brain MRI dataset. Instead of rigid trans-
formation, Sun et al. proposed the DVNet [107] which collects a large set of
artificially generated displacement vectors (DVs) by expert. Then a fully con-

volutional neural network (CNN) was trained to estimate the DVs by giving
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paired source and target images. The method is able to produce robust re-
sults on single-modal liver data, and also works well on simulated CT-US data.
However, it did not work on the real CT-US data due to the large appearance
differences between the real and simulated images.

Supervised deep learning image registration methods have greatly changed
and enhanced the accuracy and effectiveness of image registration compared
to the non-learning based techniques. These methods need a training process
that involves using a group of example images and a transformation matri-
ces, which is done offline. When registering new images, the computational
speed is much faster (usually in seconds) compared to the traditional methods,
while still achieving high accuracy. However, it’s difficult to obtain the exact
transformation matrix or displacement field from real data, which poses a new
challenge in training the model without reliable ground truths.

In 2015, Jaderberg et al introduced the spatial transformer network (STN)
[9], which enabled data to be manipulated spatially within the network. The
STN can be easily added to an existing CNN module without altering the
model training process. By using the STN, the model can learn how to deform
or transform images by studying paired source and target images, without
needing an exact transformation measurement as a reference. In detail, a
displacement field is utilised by the STN to warp the source image. The warped
source image is then compared to the target image in order to calculate the
loss that measures the similarity between the two images. Many unsupervised
image registration networks have been developed inspired by the STN.

One popular unsupervised image registration method, presented by Bal-
akrishnan et al, involves a CNN-based approach, named VoxelMorph [19].
The model follows an encoder-decoder structure similar to U-Net, and a STN
is incorporated at the end of the decoder to calculate the deformation field.
They discovered that normalised cross-correlation as the similarity measure
produced robust and reliable results. Additionally, to ensure smooth local

spatial changes in the displacement field, a smoothness term was included in
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the loss function.

However, the smoothness term alone has limited effectiveness in prevent-
ing folding of the displacement field, which can result in incorrect and non-
diffeomorphic registration (invertible mapping). To address this issue, Zhang
et al. proposed an inverse registration network [108]. They employed a fully
convolutional network to align a pair of images (A and B) in both directions,
generating two displacement fields, Fl4p and Fg4. They minimised the differ-
ence between F,p and its inverse field —Fs g, as well as between Fpy and its
inverse field —Fpgy, to ensure diffeomorphic registration. Additionally, they
introduced an anti-folding loss to penalise folding pixels/voxels. The method
achieved remarkable results on both Dice coefficients measured based on seg-
mentation masks and the diffeomorphic properties.

In a different approach, Dalca et al. incorporated a vector integration layer
into their FCN model [20], instead of using bidirectional image registration.
They treated the output of the FCN as a stationary field and applied vector
integration multiple times to obtain a diffeomorphic displacement field. By
evaluating their method on a 3D brain dataset, they demonstrated similar
Dice coefficient scores to other state-of-the-art methods, and with significantly
improved diffeomorphic properties.

Based on this foundation, many other methods have been developed to
improve unsupervised image registration. These methods include multi-scale
structural models that use pyramidal structures [109] [110], adversarial-based
method [111], vision transformer-based method [I12], etc. These approaches
have contributed to the ongoing progress in the field of unsupervised image

registration.
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2.4.3 Combination of Image Registration and Segmen-

tation

The STN-based unsupervised image registration method has the capability
to generate a displacement field as an intermediate variable. This allows for
the estimation of segmentation in an unannotated image. Specifically, given
a source image, a corresponding mask, and an unannotated target image, the
displacement field can be estimated by inputting the paired source and target
images into the unsupervised image registration model. The mask for the tar-
get image can then be obtained by applying the displacement to the mask of
the source image. This approach was applied in VoxelMorph, where the Dice
coefficient was used as an evaluation metric to assess the registration perfor-
mance by comparing the segmented structures between the source and target
images. Furthermore, an extension to VoxelMorph was to incorporate a seg-
mentation loss to enhance the registration learning process [113]. The results
demonstrated that the additional loss improved the Dice scores, indicating
enhanced registration accuracy for structures with segmentation.

In addition to incorporating an additional segmentation loss function,
another approach to address both image registration and segmentation tasks
is through joint training of registration and segmentation networks. Qin et al.
proposed a joint training model for motion estimation and segmentation using
cardiac MRI data [l 11]. The unsupervised registration branch is employed
to estimate the cardiac motion at different time points for the same patient,
while the segmentation branch shared the same encoder to segment the cardiac
structures in the corresponding time points. The displacement field generated
by the registration branch is then utilised to warp the generated masks from an
unannotated image to the ground truth masks of the target images. The model
is optimised by minimising the similarity between the warped masks and the
ground truths, effectively achieving a semi-supervised segmentation task. The

results demonstrated the benefits of joint training for both the registration and
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segmentation tasks.

Later, Xu et al. [21] introduced a more generic framework called DeepAt-
las for weakly supervised registration and semi-supervised segmentation tasks.
They combined the registration network and segmentation network, connect-
ing them through an anatomy similarity loss. This loss measures the similarity
between the segmentation of the target image and the warped segmentation
of the source image. If either the source image or target image has a known
mask, both models could be updated with the mask guidance. If not, the
loss was set to 0, indicating that the models would not update themselves in
that situation. By testing their model on two public 3D MRI datasets, they
demonstrated significant improvements compared to using a single registration
or segmentation network. Particularly noteworthy was the ability of DeepAtlas
to achieve one-shot learning with remarkable performance by requiring only
one annotated image.

Similarly, Mahapatra et al. conducted joint training of the segmentation
and registration networks [115] and introduced a GAN to enhance the segmen-
tation task. Their method demonstrated good performance on a breast X-ray
dataset. Subsequently, Elmahdy et al. pursued a similar approach by incor-
porating an adversarial discriminator to evaluate the alignment quality of the
registration branch [116]. They observed that the registration branch had a
significant positive impact on the segmentation results. However, they found
that the adversarial term primarily enhanced the performance of the regis-
tration branch and had limited influence on the segmentation branch. To the
best of our knowledge, there has been limited research in the field of combining

registration and segmentation methods.

2.5 Discussion and Conclusions

This chapter provides an overview of the background in image segmentation,

semi-supervised learning, and image registration. For image segmentation,
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classical mathematical-based methods such as region growing and grab cut
are briefly introduced, followed by an overview of important deep learning-
based methods including RNN-based, FCN-based, and encoder-decoder based
approaches. Furthermore, a concise overview of image segmentation in the
medical imaging domain reveals that encoder-decoder based methods are par-
ticularly well-suited for this field. However, supervised deep learning meth-
ods require a large amount of high-quality annotated data. Considering the
limitations of manual image segmentation, an interactive image segmentation
software is developed and described in chapter 3. This software, based on
fully connected CRF, allows users to segment images using scribbles, enabling
efficient segmentation of multiple masks for both 2D and 3D medical images.
The software also includes an automatic recommendation feature for annotat-
ing the next slice in 3D, increasing efficiency and facilitating the collection of
high-quality annotations from clinical experts.

Later, an introduction to semi-supervised learning was provided, high-
lighting three commonly used methods: GAN-based methods, consistency
regularisation-based methods, and pseudo-labelling-based methods. These
methods aim to extract valuable information from unannotated images to
enhance the segmentation task. Among these approaches, self-learning and
pseudo-labelling methods have shown to achieve state-of-the-art results. Ad-
ditionally, ensemble techniques such as random forest, which combine multiple
sub-models, have demonstrated significant contributions to the self-learning
process. Inspired by these two methods, in chapter 4, an ensemble-based semi-
supervised learning framework is proposed. By leveraging this framework and
the interactive ima