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Abstract

For the past few decades, gravity and early Universe analogue simulators have been
used to experimentally replicate elusive processes and predictions of Quantum Field
Theory (QFT) occurring on classical backgrounds of General Relativity using acces-
sible physical systems, such as ultracold atoms, optical devices, and fluid surfaces.
The analogies are typically devised by mapping the dynamics of small excitations on
the analogue systems to the linear evolution of quantum fields on curved spacetimes.
However, the territory of more intricate, interacting QFT problems remains largely
unexplored by analogue simulations. This thesis extends the premises of gravity sim-
ulators on classical and quantum fluid interfaces to include non-linear processes and
discusses suitable measurement schemes required for their development and experi-
mental implementation.

We derive an effective field-theoretical description of the interfacial dynamics between
two classical or quantum fluids. Our formalism can be used to systematically include
non-linear terms in an effective Lagrangian for the interfacial height disturbances. This
approach allows us to devise simulations for gravitational scenarios where scattering
and decays are relevant, such as in the early Universe, and for fundamental phenomena
of QFT in curved spacetimes (QFTCS). We then present a proof-of-principle non-
linear Effective Field Theory (EFT) simulator in a classical liquid-liquid interface built
to investigate the dynamical features of post-inflationary preheating. In this system,
we show that suitable experimental control and repetition with a precise and accurate
interfacial reconstruction enables the characterisation of the EFT through statistical
measures, as previously realised in quantum simulators using Bose gases.

In our gravity simulators, the core physical observable is the interfacial height and mea-
suring it is the utmost requirement for conducting experiments. Accordingly, we detail
existing detection schemes and introduce a novel method based on Digital Holography.
The latter is designed to reconstruct changes in the spatial profile of the interfacial
height with unprecedented resolution and potential for applications at both room and
low-temperature setups. Expanding on these measurement schemes, we generalise
the particle detector concept in QFTCS to an analogue simulator. We specialise in
a localised laser probe and consider its effective interaction with the analogue height
field in thin films of superfluid helium-4. With this setup, we propose an experiment
to extract the observer dependence in the response of a detector probing a thermal
analogue field, in line with the circular-motion, finite-temperature Unruh effect.

Our experimental results show that liquid-liquid and liquid-gas interfaces, classical or
not, hold great promise for analogue simulations tackling non-equilibrium gravitational
scenarios and emulating fundamental aspects of QFTCS. Our work builds on the solid
foundation laid by previous analogue black-hole and early Universe simulators to offer
the stepping stones for a new generation of experiments using classical and quantum
fluids that we anticipate will dive deeper into fundamental physics questions.
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Chapter 1

Introduction

At the interface between General Relativity (GR) and Quantum Field Theory (QFT),
two of the most significant physical theories of the 20th century, lies Quantum Field
Theory in Curved Spacetimes (QFTCS), which, in the words of Birrell and Davies [5],
may be regarded as “an approximation to an as yet inaccessible theory of quantum
gravity.” In QFTCS, quantum fields propagate on a classical spacetime background
that is a solution of Einstein’s field equations. Regardless of its intermediate-theory
status, QFTCS presents us with a variety of intriguing and mesmerising results, such
as Hawking radiation and the Unruh effect, pointing towards the complexity of the
interplay between QFT and GR. These physical processes are expected to occur in
scenarios where direct experimentation is unfeasible, limiting empirical verification
to purely observational evidence, if any. Accordingly, despite recent experimental
proposals, e.g. [6], the predictions of the field remain largely untested and empirically
unverified.

In an attempt to shed light on this issue and bring insights to the field, analogue
gravity simulators [7, 8] appeared as candidates to mimic these processes emerging
in QFTCS using accessible physical systems. These simulators for gravity and the early
Universe are nowadays valuable tools for investigating elusive phenomena in possibly
unreachable scenarios [9]. In general, the analogies are created by describing small
excitations on the simulator through an Effective Field Theory (EFT), which, in turn,
can be mapped to the dynamics of quantum fields propagating on flat or curved
spacetimes of GR. Building on the similarities and equivalences between the simulator
and the target system, various spacetime geometries can be engineered and analogue
experiments devised with them.

Since the beginning of analogue gravity, with the publication of Unruh’s seminal
article "Experimental Black Hole Evaporation?" [10] in 1981, the field experienced a
remarkable surge in progress. Unruh’s proposal of acoustic hydrodynamical analogues
of black hole horizons and their evaporation [11, 12] inspired further development in
many directions. Four decades later, the field has grown considerably and produced
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significant results that nowadays resonate amongst several areas in Physics [7, 9]. The
role of analogue simulators as testing grounds for field theories has been solidified
by experimental verification in various domains, such as ultra-cold atoms, fluids, and
optical systems. Analogue gravity has come a long way from its beginnings and now
encompasses increasingly complex physical systems. We now present a brief overview
of its history, in line with the timeline definitions of Field [13], and background literature
discussions of Jacquet et al. [9] and Almeida and Jacquet [14].

1.1 Analogue gravity: a historical prelude

Initially, Unruh established in [10] an analogy between two seemingly distant theoretical
frameworks, namely fluid dynamics and QFTCS. In the former, the author considered
linearised acoustic excitations on a background transonic fluid flow, i.e., a flow with
subsonic and supersonic regions [15]. Unruh then showed that the dynamical equations
determining the evolution of sound waves in this flow type correspond to those of
massless scalar fields propagating on a black hole spacetime geometry, where the speed
of light is replaced by the speed of sound in the fluid. In other words, the transition
region between subsonic and supersonic flows would emulate a black hole horizon for
sound waves, i.e., a dumb hole. Unruh’s work set the tone for the subsequent theory
era of analogue gravity [13], which lasted until 2008 when the first experimental
implementations followed.

During this period of intensive theoretical efforts, a community with diverse back-
ground expertise developed a series of possible analogue setups and speculations on
their experimental viability. Notably, the field welcomed major contributions in the
early 2000s. Schützhold and Unruh [16] were the first to propose using surface-wave
dynamics on fluid flows as the framework for emulating various analogue black-hole
geometries. Around the same time, Novello et al. [17] assembled a collection of stud-
ies on analogue simulators for gravity and cosmology in condensed-matter systems,
including the challenges and particularities of implementing them in Bose-Einstein
condensates (BECs), superfluids and optical setups. Soon after [17], Volovik and
Press [18] discoursed about the creation of entire analogue universes using a quantum
liquid, superfluid 3He.

Throughout its theory era (1981-2008, [13]), analogue gravity spontaneously turned
its focus to simulating Hawking radiation and finding its footprint on analogue hori-
zons [9]. In this context, Almeida and Jacquet [14] remark that a more general notion
of Hawking radiation, denoting a class of scattering Hawking-like processes around
effective horizons, were collectively referred to by the umbrella-term Hawking effect.
This expectation of observing the Hawking effect and identifying its essential fea-
tures [19] culminated with the first experimental implementations of analogue gravity
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in 2008. These inaugurate what Field [13] calls the experimental era, which primarily
concentrated on detecting the Hawking effect in (1+1)-dimensional analogue black
holes, with few exceptions [20–22].

Early in 2008, Philbin et al. [23] reported the first analogue horizon using pulsed
light in an optical fibre. A few months later, Rousseaux et al. [24] showed that surface
waves on a transcritical open-channel water flow could also emulate an effective one-
dimensional horizon. Later, in a similar setup, Weinfurtner et al. [25] registered in 2011
the observation of the stimulated Hawking spectrum. The following decade brought
up several contributions to the field, again focused on consolidating the theoretical
predictions and generalising the conditions for the Hawking effect around arbitrary
horizons. These included experiments not only in new systems, such as bulk crys-
tals [26], BECs [27, 28] and polariton superfluids [29], but also novel key results in
open-channel flows [30] and optical fibres [31–33].

This experimental era of analogue gravity pushed it to become an empirically driven
field, with steady theoretical support along the way, e.g., see [14] and references
therein. While analogue experiments on the Hawking effect continue to this day [34–
39], 2017 marked a turning point in the field. In that year, Torres et al. [40] presented
the first analogue rotating black hole in a hydrodynamical system, registering the
amplification of surface waves upon scattering through a “draining bathtub” vortex
flow. Their results agree with the picture of superradiance around rotating black holes,
as proposed by Zel’Dovich [41, 42] in his semi-classical generalisation of the Penrose
process [43]. Later on, Braidotti et al. [44] observed the phenomenon by creating a
vortex flow on a fluid of light.

By adding an extra spatial dimension to the analogy, Torres et al. [40] opened a
new avenue for the investigation of (2+1)-dimensional effective geometries, as seen in
the experiments that followed [44–47]. However, Field [13] notes that the year 2017
marked a shift not only in the experimental trends but also in the interests of the
involved community, which perhaps started using these analogue simulators “not to
provide confirmation for the existence of an astrophysical phenomenon like Hawking
radiation, but to detect more generalised phenomena and/or to explore the behaviour
of the analogue systems.” In reference to the transition and emergence of these new
research goals, Almeida and Jacquet [14] label this period as the autonomous phase
of analogue gravity.

Over the past few years, this autonomous phase has been recording steady progress
in the study mentioned above of (1+1) and (2+1)-dimensional analogue black holes.
However, a new line of investigation centred around simulating early Universe scenarios
has gained momentum. Many experiments appeared in the context of condensed
matter, primarily using ultracold systems. Pioneered by the early work of Hung et al.
[22], in 2013, Eckel et al. [48] re-ignited this research branch in 2018, followed by
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several others [49–53]. This consistent branching-out of the field over the past two
decades speaks for its versatility and potential in exploring as yet uncharted territories
in the physics of the simulators and the target astrophysical systems.

Despite the philosophical controversy surrounding the limitations and validity of the
results in the field, see e.g. [13, 14, 54–56], it is now clear that the agenda of the
research programme has extrapolated its original purpose of finding confirmation for
astrophysical phenomena. Instead, Almeida and Jacquet [14] argue that: “It may also
be that analogue gravity will be proved useful to discover new field theoretic effects,
although only time will settle the matter. These new trends in the field have grown in
strength at different paces as theoretical work is becoming more and more driven by
experiments. It inspires a reassessment of the role and application of analogue gravity
in quantum field theory research.”

Analogue gravity no longer purely concerns a pursuit of analogies with QFTCS
around black hole geometries. Instead, it currently takes a multi-faceted and inter-
disciplinary pace, in effect simulating general aspects of target systems with possible
astrophysical origins. Accordingly, in this thesis, we shall adopt a slight change in
nomenclature, as put forward by Weinfurtner [57], referring to the systems in ana-
logue gravity as gravity or early Universe simulators. Furthermore, we argue that these
systems are EFT simulators, as, in practice, they can be used for the open-ended
exploration of whole sets of field theories that may or may not have direct astrophys-
ical counterparts. We end this discussion by stressing that our historical recollection
of analogue gravity is certainly not exhaustive, and we refer the interested reader
to [7–9, 13, 14] for in-depth presentations.

1.2 Effective Field Theory simulators

In physics, it is common to encounter situations where a comprehensive theoreti-
cal framework is not yet available to explain a phenomenon. Effective Field Theories
(EFTs) [58] have become an invaluable tool in such scenarios, offering a practical ap-
proach to understanding physical systems at different scales while more fundamental
theories develop. EFTs provide a systematic method for modelling interactions and phe-
nomena that occur at specific energy or distance scales without requiring a complete
understanding of the underlying microscopic dynamics. This adaptable framework
simplifies calculations and allows accurate predictions and insights into experimental
outcomes. Historical examples [59], such as Fermi’s theory of weak interactions and
the chiral perturbation theory in Quantum Chromodynamics (QCD), demonstrate the
effectiveness of EFTs in successfully describing and predicting experimental results
before more encompassing theories were established. Although the application do-
main of EFTs is usually that of quantum theories, classical physics may also benefit



Chapter 1. Effective Field Theory simulators 5

from its techniques. Some notable examples include the non-relativistic approximation
of GR [59] and the effective relativistic description of hydrodynamics [60, 61].

In the context of this thesis, we borrow the terminology and refer to the emergent
field theories in accessible physical systems as EFTs. In analogue simulators, they result
from suitable reductions and approximations of the dimensions and degrees of freedom
of an underlying theory. When thinking of mathematical equivalences, e.g. [10, 16],
they must further recover an effective relativistic field theory embedded in a suitable
spacetime geometry, which may have astrophysical relevance [7, 17, 18]. Conversely,
the EFT may describe the generalised dynamics of a physical phenomenon, for instance,
extrapolating mathematical analogies to include dispersive and dissipative aspects [62–
64]. Since EFTs result from the coarse-graining of a possibly unknown microscopic
theory, the outcomes of the effective description are independent of the underlying
properties of the system. Hence, they may present themselves as universal in a set
of compatible physical settings [58, 65]. Accordingly, this effective approach becomes
a powerful tool for investigating phenomena or dynamical features appearing across
different systems whose theoretical frameworks are impractical or overly intricate for
calculating emerging effects.

These fundamental aspects of EFTs played a central role in developing quantum
simulators in condensed matter systems [66]. In parallel with the early experimental age
of analogue gravity, the idea of realising such quantum simulations became a tangible
possibility, as reviewed by Bloch et al. [67]. Similarly to gravity analogues, ultracold-
atom systems can be used to devise effective free-particle or interacting Hamiltonians
that simulate the many-body dynamics of less experimentally viable quantum systems.
Indeed, Schweigler et al. [68] showed that the statistical machinery of EFTs, particularly
through correlation functions of order higher than two, could be used to experimentally
characterise the dynamics and interactions of the collective degrees of freedom in a
one-dimensional condensate. Their approach is capable of informing the essential
features of the system while avoiding the intricate and, sometimes, impractical task of
completely determining complex many-body states. Zache et al. [69] further display a
systematic procedure for this experimental characterisation via equal-time correlations
of interacting EFTs arising in quantum many-body systems. As expected from an
effective framework, the authors argue that the microscopic details of the system will
not impact the quantum simulations of the emerging QFT.

An empirically driven, field-theoretical approach to quantum many-body systems
offers the possibility of simulating problems that cannot be calculated with current
theoretical and computational techniques [69]. Following this argument, various ex-
periments using ultracold-atom systems have been tackling poorly understood and
challenging non-equilibrium processes through quantum simulations. Some remark-
able examples using out-of-equilibrium Bose gases are noteworthy, as they include the
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observation of universal self-similar scaling [70–73], akin to turbulence cascades, and
the extraction of the irreducible two- and four-point vertex correlators of a quantum
effective action in strongly interacting far-from-equilibrium samples [74]. The authors
in [70, 71, 73] further note that these processes are also relevant in early Universe
scenarios. Hence, the programme of quantum simulators could be extended to tackle
these settings, intersecting with the domain of analogue gravity simulators in this
way [57].

The aforementioned success of quantum simulators in systematically approaching
non-equilibrium physics raises the question: Can analogue simulators be used for in-
vestigating the dynamical effects of out-of-equilibrium and interacting QFTs in astro-
physical and cosmological settings? Weinfurtner [57] ponders that recent early-universe
simulators in ultracold-atom systems [51, 53] indicate a positive answer to this ques-
tion, and argues that a new goal for gravity simulators as a whole would be “to venture
beyond what we can calculate.” The latter statement refers to problems that cannot
be exactly solved with available theoretical frameworks or numerically simulated on a
computer. One notable example of such a problem in cosmology is that of false vac-
uum decay [75], a conceptual model for the origin of our Universe before the Big Bang
through phase transitions of a relativistic field in a metastable state. Experimental pro-
posals of analogue quantum simulators for this process have recently appeared [76, 77]
exploiting interacting EFTs emerging in BECs. As contemplated by Weinfurtner [57],
these experiments - if feasible - offer a prospect of valuable phenomenological input
to narrow down the relevant dynamical features and further improve the model in
cosmology.

When developing both quantum simulators in condensed matter and gravity simula-
tors in various systems, we identify some common and crucial features and advantages.
Firstly, it is essential to understand the limitations of the emergent EFT. To achieve
this, we need to create a theoretical framework that captures the dynamics of the
target system while recognising the validity of its description. Additionally, we must
ensure repeatability and control in the experiments. By maintaining strict control over
the experimental parameters, we can guarantee consistency, reproducibility, and the
use of the statistical machinery of EFTs. Moreover, we need detection methods that
can accurately measure and precisely resolve physical observables. Finally, a tunable
parameter space in the experimental setup allows us to explore various regimes of
the EFT systematically and simulate gravity and early Universe target scenarios with
them.
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1.3 A new generation of simulators on fluid inter-
faces

As presented in our historical prelude, Unruh’s original proposal [10] involving acoustic
horizons in fluids paved the way for the inception of analogue gravity. However, the
experimental implementation of Unruh’s concept presented a practical challenge. In
many liquids, the speed of sound is typically of the order of hundreds of metres per
second [15], rendering the creation and control of acoustic horizons through transonic
fluid flows experimentally impractical. Furthermore, detecting bulk excitations within
these fast-moving liquids would present significant technical difficulties. Building on
these ideas, Schützhold and Unruh [16] introduced a novel approach by considering sur-
face waves on background fluid flows. As previously discussed, this shift in perspective
opened the door to analogue black-hole experiments in fluids replicating the Hawking
effect, superradiance, and quasi-normal ringdown. These pioneering results highlighted
the adaptability of fluid interfaces in simulating various astrophysical scenarios.

In analogue simulators using classical hydrodynamical systems, viscous dissipation
may overwhelm the dynamics and hinder the observation of the target phenomenon.
Conversely, quantum fluids, such as liquid helium-3 and helium-4, display similar EFT
descriptions as their classical counterparts but offer alternative simulation settings
with negligible viscosity. Recently, Švančara et al. [78] used superfluid helium-4 to
experimentally verify the creation of a macroscopic analogue rotating black hole with
quantised vorticity. Their work is yet another example of the broad range of possibilities
in using both classical and quantum fluid interfaces as gravity simulators.

A wide range of fluids, each with unique physical and chemical properties, are readily
available, presenting a natural opportunity for open-ended empirical exploration of
analogue scenarios. Elaborating on this prospect, Fifer et al. [79] propose an early
Universe simulator that uses two immiscible, weakly magnetised liquids. They show
that the interfacial dynamics could emulate inflationary scenarios when the two-fluid
sample is placed in strong magnetic field gradients. The authors suggest using a
small and closed sample cell to precisely control the setup and prevent evaporation
and contamination of the interface, thereby ensuring consistency and repeatability of
the fluid experiment. These features would allow the use of field-theoretical statistical
tools to analyse the results and characterise the effective dynamics simulating inflation.
However, like other fluid analogues, Fifer et al. [79] primarily focused on mimicking
and generalising non-interacting QFTs around the backgrounds of GR under the real
conditions of an experiment.

Instead, our work expands on the solid foundation of previous analogue gravity
experiments and proposals to develop EFT simulations on fluids for problems and sce-
narios that, so far, have only been implemented in Bose gases, as previously presented.



Chapter 1. A new generation of simulators on fluid interfaces 8

We seize the non-linearities inherent in fluid dynamics to devise the first interacting
field theory simulators on liquid-liquid and liquid-gas interfaces. These are unique
and adaptable platforms for probing the robustness of fundamental phenomena in the
presence of non-idealised features, such as dispersion and dissipation. In contrast
with ultracold-atom systems, continuous monitoring and measurement of the sam-
ples are readily available in fluid experiments, allowing the direct observation of the
onset of non-linearities and their subsequent evolution. We use these properties to
experimentally simulate post-inflationary dynamical features of the early Universe on
a liquid-liquid interface.

The characterisation of the interacting interfacial dynamics in fluid simulators is
ultimately limited by the detection methods employed in experiments. We examine
this aspect in our work, presenting the current standard schemes and noting that they
cannot resolve the initial state of the interface. Under non-equilibrium conditions,
the connection between the initial and final states of a system is still not fully un-
derstood [80]. Hence, aiming at future experiments that track the entire dynamical
evolution of the EFT, we develop a novel detection technique capable of measuring
nanometric fluctuations in fluid surfaces. The methods presented here reconstruct an
entire spatial region of the interface through snapshots of the sample and are applicable
in both room and low-temperature setups.

Despite the useful aspects of our measurement schemes, we require a different type
of detection for the prospect of investigating the particle detectors concept in QFTCS.
For that, we propose using a localised laser detector, as put forward by Gooding
et al. [81], to measure quasi-particle surface excitations (third sound) in thin films
of superfluid helium-4, which are analogous to a massless Klein-Gordon (KG) field
in Minkowski spacetime. In essence, an effective interaction term arises between the
probing (laser) and analogue (interfacial height) fields, allowing a generalised definition
of a continuous particle detector. We use this correspondence to examine the difference
between the responses of circularly accelerated and inertial detectors as an analogy
to the Unruh effect [82]. However, a crucial difference appears in our simulator in
comparison with the standard formulation of the Unruh effect: the analogue field is
at a thermal state determined by the non-zero temperature of the superfluid helium
sample. This deviation required further development of the QFT description supporting
the proposal to account for the thermality of the analogue field in helium [83].

In the gravity simulators discussed in this thesis, we show that a solid grasp of
the relevant EFT allows one to examine beyond the correspondence with the target
scenario to quantify deviations from the idealised phenomenon. In our early Universe
experimental simulations, we understand the validity and limitations of the effective
description, which we use to study a non-equilibrium, post-inflationary process while
considering the inherent dissipative and dispersive properties of the simulator. On the
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other hand, the accelerated observer proposal in superfluid helium displays a deviation
that leads to an extension of the underlying assumptions of the target process, possibly
revealing entirely new features of the Unruh effect. Going hand-in-hand with these
theoretical aspects, we argue that the precision and accuracy of extracting the simu-
lated field dynamics are central to the characterisation and further refinement of the
emergent EFT. In the following chapters, we will detail the development and prospects
of this new generation of simulators in classical and quantum fluid interfaces.

1.4 Outline

This thesis will display the theoretical, experimental and phenomenological develop-
ment of new kinds of interacting field theory simulators using the emergent dynamics
of liquid-liquid and liquid-gas interfaces. Based on the discussion presented above, the
chapters are divided as follows.

In Chapter 2, we systematically derive a generalised EFT from the interfacial dy-
namics between two fluids. Initially, we lay down the properties and assumptions of the
underlying simulator, defining our concept of two-fluid systems and the approximations
required to effectively operate with them. We then consider setups of fluids in closed
sample cells in the absence of background stationary flows. From the equations of
motion governing each fluid, we follow the literature in Fluid Dynamics to derive a La-
grangian description of the inviscid interfacial dynamics, allowing for non-linear terms.
This formulation defines our EFT for the height disturbances at the two-fluid interface,
which we use to examine approximate cases that simulate QFTCS settings, as usually
carried out in analogue gravity. Understanding the limitations of our derivation in
accounting for realistic and non-idealised aspects of the physical system at hand, we
finally discuss their inclusion in the effective description by modifying the EFT and its
equations of motion accordingly.

We then move to experimental investigations in Chapter 3, where we detail the cre-
ation and implementation of a non-linear EFT simulator for non-equilibrium processes
in the early Universe using a biphasic liquid system. Our chosen target is a post-
inflationary thermalisation model in cosmology known as preheating. Our discussion
starts with an overview of the role of non-equilibrium conditions in the early Universe,
motivating our choice of target process. We then apply the theoretical framework
derived in Chapter 2 to argue that driving Faraday instabilities on the two-fluid sys-
tem can emulate dynamical aspects of an interacting field theory. Next, we present
the experimental setup, its implementation and the methods used for acquiring and
processing data. The results are then discussed and interpreted under the lenses of
preheating dynamics, showing that its key aspects are captured by our non-linear EFT
simulator. We finally reason that our experiments are a proof-of-principle for the use
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of fluid simulators for examining dynamical features of non-equilibrium phenomena in
the early Universe.

In Chapter 4, we present detection methods used for measuring the profile of fluid
interfaces, which is naturally required for the experimental development of EFTs whose
observable is the interfacial height. After a brief summary of existing fluid profilome-
try methods, we specialise to two cases. We first introduce a widely-known technique
referred to as Schlieren Fourier Transform Profilometry (FTP), focusing on the numer-
ical pipeline and its adaptation to the setup presented in Chapter 3. Our discussion
then turns to a novel method, which we developed based on Digital Holography (DH)
and the digital reconstruction procedure of FTP. We present the experimental setup
and the supporting interferometric theory, followed by the new analysis using statistical
methods or catered data acquisition. In conclusion, we display experimental results
supporting the method.

Chapter 5 extends our EFT simulators into the domain of quantum fluids with an
experimental proposal for probing observer dependence between particle detectors. We
begin with a short discussion on the target scenario in QFTCS, where inertial and ac-
celerated observers are known to disagree on the particle content of empty space, a
phenomenon known as the Unruh effect. We then move to the underlying system:
thin films of superfluid helium-4. The linearised dynamics of small surface fluctu-
ations on the film, or third sound, is examined under the scope of the Lagrangian
formulation of Chapter 2, revealing an emergent EFT of third-sound quasi-particles,
akin to massless scalar fields in Minkowski spacetime. We then introduce a different
type of non-linearity to define a quasi-particle detector through an effective interac-
tion between a laser field and the superfluid sample. Finally, we show that moving
the detector along a circular trajectory yields an acceleration-dependent signal. We
conclude by presenting the proposed experimental setup and estimating the expected
outcomes.

1.5 Statement of Originality

This thesis is a result of my own work, done in collaboration with members of the
research group and other academic partners, in and out of the University of Notting-
ham. Below, I disclaim the related publications and contributions to the work in each
chapter.

• Chapter 2 is based on [1]. I initially extended the non-linear Lagrangian formal-
ism from the work of Miles [84, 85] to two-fluid interfaces. With other group
members, we improved the description and included capillary effects. I adapted
the linear damping model in [86] and [87, 88] to the annular geometry.
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• Chapter 3 is based on [2], the outcome of lasting efforts of almost ten people,
relying on the technical support team of the School of Physics & Astronomy to
build the experiment. I actively participated in the experimental implementation
of the current design and data acquisition, prepared the biphasic liquid samples,
and conducted the digital reconstruction and subsequent analysis.

• Chapter 4 is partially based on [3] and the interface reconstruction scheme em-
ployed in the experiment of Chapter 3. The latter is extended and adapted from
the work of Wildeman [89]. In the portion related to [3], my contributions were in
developing the acquisition and processing pipelines and analysing and interpret-
ing results. August Geelmuyden, Silke Weinfurtner and I disclose as inventors
the UK Patent Application Number GB2214343.2, filed by The University of
Nottingham and partly related to [3].

• Chapter 5 is based on [4]. This work also results from an extended collabora-
tion. I implemented the numerical calculations and contributed to mapping the
QFT and EFT descriptions, the estimates of experimental parameters, and the
interpretation of results.

https://www.ipo.gov.uk/p-ipsum/Case/ApplicationNumber/GB2214343.2
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Chapter 2

Effective Field Theories on fluid
interfaces

The present chapter contains a systematic description of the analytical methods used
for obtaining an emerging Effective Field Theory (EFT) from the underlying interfacial
dynamics between two fluids. Initially, a series of simplifying assumptions are made to
derive a generalised model for the non-linear, inviscid evolution of interfacial modes.
From there, we discuss the possible gravitational and early Universe scenarios where our
derived EFT can be used. Finally, we conclude with a discussion on the challenges of
modifying the EFT to include more realistic features, such as dissipation and boundary
effects, which are relevant to the experimental setups considered in this thesis. Some
of the contents of this chapter were extracted from, or based on, the work “Non-linear
effective field theory simulators in two-fluid interfaces” [1] carried out in collaboration
with Cameron R. D. Bunney and Silke Weinfurtner.

2.1 Two-fluid systems: properties and assumptions

We begin by defining our understanding of two-fluid systems, their assumed features
and the approximations adopted throughout. Generally, the model presented herein
applies to any set of two immiscible, homogeneous fluids in incompressible and viscous
motion, either liquids or gases, whose dynamics are described by the Navier-Stokes
equations [90]. In certain limits, our formalism also applies to liquid helium films.
Unless otherwise stated, we will disregard stationary background flow velocities, such
as the bathtub vortex and the open channel flow, both successfully used in previous
experiments simulating black hole (BH) phenomena [25, 40, 47, 91–93]. Instead, we
concentrate on closed systems with rigid boundaries, where interfacial waves arise from
noise sources [4] or external forcing [2, 79]. We stress that, when necessary, we may
approximate the theory or add to the assumptions to discuss specific cases. A brief
description of the required properties follows below.

13
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2.1.1 Immiscibility

The requirement of immiscibility allows us to define the concept of an interface be-
tween the two media. We adopt a coarse-grained view of the molecular motion that
dictates the smooth transition between both fluids in such a way that an effective
two-dimensional description of this region arises. However, as we will use in Chap-
ter 3, by including a macroscopic depiction of the interface, which is valid when its
roughness is negligible compared to the characteristic scales of the system [94], the
microscopic dynamics still plays a role and may be incorporated by means of stochas-
tic fluctuations [90, 95, 96]. Accordingly, the two-dimensional interface between two
fluids is never at rest but instead is constantly displaying the random interplay of the
underlying molecular forces [94, 97].

2.1.2 Homogeneity

A homogeneous fluid is one that admits no local changes in its density ρ. Hence,
the density is uniform throughout its volume, i.e., ρ(x) ≡ ρ. In most experimental
applications where our discussion applies, especially in the case of classical fluids,
this condition is readily satisfied by working with uncontaminated samples of pure
liquids or homogeneous mixtures of liquids at fixed temperatures. This also includes
liquid Helium-4, where two fluid phases (normal and superfluid) coexist below the
superfluid transition temperature (lambda-point), as described by Landau’s two-fluid
model [98, 99], the resulting mixture can be treated as homogeneous.

2.1.3 Incompressibility

Although incompressibility is a familiar assumption in the context of fluid dynamics,
it may always be interpreted as a condition on the flow velocity relative to the speed
of sound in the medium. In fact, fluids are generally compressible, but for those
with low compressibility coefficients, such as water, oils and most liquid solvents, the
speed of sound is considerably large, especially when compared to gases [90]. As
mentioned in Chapter 1, the speed of propagation of surface waves and the flow
velocities achievable in a laboratory are typically a few orders of magnitude smaller
than the speed of sound in the same media. Thus, for such flows, the ratio between
the typical flow and sound speeds, or the Mach number, is much smaller than one [15],
and they can be regarded as incompressible. Since our treatment in this thesis focuses
on interfacial instead of bulk phenomena, as originally proposed by W. Unruh [10],
incompressible flows will be the theoretical backdrop for the analogue simulators in
fluids discussed here.
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2.1.4 Viscosity

In fluid dynamics, viscosity can greatly complicate the analytical study of fluids through
the Navier-Stokes equations at various regimes of Reynolds number 1, from creeping to
turbulent flows [15, 98]. Similar to compressibility, viscosity is ubiquitous to liquids and
gases, but it may be neglected depending on the specific properties of the flow at hand.
White claims that “when a flow is both frictionless and irrotational, pleasant things
happen” [15]. The author refers to the study of potential flows, which simplify the
dynamical equations describing the bulk motion of the fluids by disregarding viscosity
and vorticity. Under these conditions, the former can be accounted for by considering
a thin viscous layer adjoining the boundaries of the fluid container [90]. These are
called boundary layers, and their thickness is proportional to the square root of the
kinematic viscosity ν [100], which is defined as the ratio between (dynamic) viscosity µ
and density ρ of the fluid. The flow velocity within them admits a description in terms
of rotational components, whose contributions are only non-negligible in the vicinity
of the boundaries. In practice, the appropriate choice of fluids with low viscosity can
result in the desired and pleasant mathematical modelling benefits of a potential flow2.
For most of the following content, we will treat inviscid flows and, later on, correct
for dissipative (viscous) effects.

2.1.5 Capillarity

As stated in subsection 2.1.1, we are restricted to a set of two immiscible fluids,
which allows an interface to be identified [94]. Such interfaces are free to deform and
change their shape, but in a way that minimises their surface energy [97]. Surface (or
interfacial) tension σ provides a measure of the amount of energy necessary to change
the interface by one unit of area. As its name indicates, it does not appear in the
bulk equations of motion of fluids but through appropriately set boundary conditions
at a fluid-fluid interface. In liquid analogue simulators, it usually modifies the linear
dispersion of waves with a “superluminal” or free-particle term [16], which dominates
for small wavelengths, i.e., in the order of the typical length where surface tension
and gravity forces are comparable, known as the capillary length. As we will discuss
in Chapter 3, capillary effects can hardly be neglected in experiments. Viscosity and
capillarity may lead to the appearance of non-negligible curvature of the interface
(meniscus) around solid walls. The effect of menisci cannot be readily accounted

1The Reynolds number Re is a dimensionless quantity used to characterise viscous flows, e.g., it
is used to quantitatively identify the transition between laminar and turbulent flows. It is typically
defined as Re = ρuL/µ, where u is the flow speed, L is a characteristic length scale of the system,
and ρ and µ are the density and viscosity of the fluid.

2An appropriate choice of common liquid samples implicitly requires that they are Newtonian
fluids, for which an externally applied shear stress linearly results in a strain rate in the fluid. In this
case, their constant proportionality coefficient is denoted by (dynamic) viscosity coefficient µ.
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Figure 2.1: (Left) Illustration of an example basin with cylindrical geometry enclosing two
immiscible fluids. A vertical plane (shaded red) slices the cell across its diameter. (Right)
Depiction of the rectangular cross-section of the cylindrical two-fluid cell. Solid lines indicate
rigid boundaries S̄B. Top and bottom plates at z = hj act as horizontal boundaries S̄H,j .
Vertical walls are shown by S̄V,l. The interface is indicated by the surface Γ = 0 (solid blue
curve).

for in the modelling, reinforcing the importance of empirically testing the EFT to
examine their relevance. Additionally, the dramatically varying interfacial tension due
to potential contaminants and surfactants at the interface may hinder repeatability in
preparing fluid samples and reproducibility of experimental results [94].

2.2 Fluid-fluid interfacial dynamics: the setup

We can now turn to the description of the emerging dynamics at the interface between
two fluids enclosed in a basin (or fluid cell), both satisfying the assumptions presented
in Section 2.1. We allow the geometry of the cell to be arbitrary in the direction per-
pendicular to the vertical coordinate z, which is aligned with the constant acceleration
of gravity on Earth, g0 = −g0ẑ. The horizontal cross-section of the basin has area Σ
and is mapped by a set of two-dimensional coordinates x = (x, y) orthogonal to the
vertical direction (ẑ). A depiction of an example fluid cell with cylindrical geometry is
shown in Figure 2.1.

For our proposed closed system, in the absence of a stationary background flow,
the time-averaged interface is static and located at z = 0. One has the option of
inducing motion on the fluid cell through an arbitrary external forcing, which induces
an acceleration F (t) = F0(t)ẑ + F̃ (t), with F̃ · ẑ = 0. This results in a horizontal
acceleration F̃ (t) and a combined vertical acceleration g(t) = −(g0 − F0(t))ẑ ≡
−g(t)ẑ, which can generate waves on the interface with disturbed height ξ(t,x) and
parametrised by a surface Γ(t,x, z) = z − ξ(t,x) = 0 (see Figure 2.1). The top and
bottom lids of the cell (S̄H1 and S̄H2), respectively at z = h2 and z = h1 = −|h1|,
vertically confine the denser fluid phase (denoted 1) and the lighter one (denoted 2),
both with uniform densities ρ1 and ρ2 < ρ1, respectively. The volume of each fluid is
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then Vj = |hj|Σ.
In accordance with the continuity equation [90], incompressibility requires that the

velocity uj of fluid j is divergenceless, i.e.,

Dρj
Dt

+ (∇ · uj) ρj = 0 =⇒ ∇ · uj = 0. (2.1)

Here, the flow’s material derivative reads Dρj

Dt
= ∂ρj

∂t
+ uj · ∇. With no further as-

sumptions, the solutions to the equation above can be written in terms of Helmholtz
decomposed velocity fields, i.e., they are formed of irrotational (potential) and rota-
tional components [101], as follows,

uj = ∇ϕj + Uj, (2.2)

with Uj = ∇ × Aj
3. Thus, the potential ϕj must fulfil

∇2ϕj = 0, in Vj, (2.3)

and Equation 2.1 is identically satisfied by Uj. In line with Prandtl’s boundary layer
theory assumptions [90, 100, 102], we expect that the rotational components of the
velocity fields are only non-negligible in a thin viscous layer around the solid boundaries
of the basin.

Before turning to the equations of motion for the velocity fields, we must specify the
appropriate set of boundary conditions for our system. A condition of impenetrability
on all rigid (non-porous) boundaries S̄B (see Figure 2.1) requires that the velocity
vanishes along their outwardly directed normal unit vectors n̂B, that is,

n̂B · uj|S̄B
= 0 ⇒ n̂B · ∇ϕj|S̄B

= − n̂B · Uj|S̄B
. (2.4)

Additionally, as conventionally assumed when considering viscous flows [90, 103], we
impose the no-slip condition on all rigid boundaries, i.e., the fluids cling to the walls
of the basin due to viscosity4. In other words, the velocity components tangential to
the boundaries must vanish, hence, according to Equation 2.2,

n̂B × uj|S̄B
= 0 ⇒ n̂B × ∇ϕj|S̄B

= − n̂B × Uj|S̄B
. (2.5)

At the interface Γ = 0, we further require that the particles in the fluid are advected
3Since the divergence of the curl is zero, this choice is always justified.
4We note that this choice of boundary condition, although widely accepted, may not always be

guaranteed in an experimental setup around the contact line between an interface and the boundaries,
see [104, 105] and references therein for an in-depth discussion. In fact, the physical and chemical
properties of the walls determine the validity of this assumption, and it is not uncommon to observe
a degree of slipping when interfacial waves are large enough.
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by the flow [90, 101]. The previous statement is usually referred to as the kinematic
boundary condition at the moving interface, and it translates into stating that fluid
particles on the interface remain part of it and move along the flow. Hence, the
advection condition over the parametric surface Γ is

DΓ
Dt

≡ ∂Γ
∂t

+ uj · ∇Γ = 0, on Γ = 0. (2.6)

It is worth remarking that the equation above constitutes two equations, one in each
fluid j, and, by noting that ∇Γ = ẑ − ∇ξ, it expands to

∂ξ

∂t
= ∂ϕj

∂z
− ∇ϕj · ∇ξ + Uj,z − Uj · ∇ξ, on z = ξ(t,x), (2.7)

where Uj,z denotes the z−component of the rotational velocity Uj.
We now examine the bulk motion of each fluid, which is governed by a set of

Navier-Stokes equations, as follows,

ρj

[
∂uj
∂t

+ (uj · ∇)uj
]

= ∇· ↔
πj +fj, (2.8)

where ↔
πj and fj are the stress tensor and an externally applied force density on fluid

j [90, 106]. The former encompasses both viscous and static (pressure) stresses within
the fluid and is given by

↔
πj= −pj1 + µj

(
∇uj + (∇uj)T

)
, (2.9)

where pj and µj are the pressure and dynamic viscosity in fluid j, and (∇uj)T denotes
the transpose of the tensor field obtained from the vector gradient of the velocity uj

(see Appendix A). The identity matrix is denoted 1, and the last term in Equation 2.9
may be expressed in terms of the strain rate tensor ↔

ε j= 1
2

(
∇uj + (∇uj)T

)
.

In the presence of interfacial tension and viscosity, when the fluid phases are in
motion, stress appears at the interface. These conditions can be modelled by examining
the behaviour of the stress tensor across the interface, which results in the following
stress balance equation [100]5

n̂Γ· ↔
π1

∣∣∣
Γ=0−

− n̂Γ· ↔
π2

∣∣∣
Γ=0+

= −n̂Γ (σ∇ · n̂Γ) , (2.10)

5Equation 2.10 is obtained by assuming a uniform interfacial tension coefficient σ across the
interface. Spatial gradients on σ(x) introduce tangential stress, and the right-hand-side of the
equation gets corrected by −∇σ(x).
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where n̂Γ is the normal unit vector at the interface defined as

n̂Γ = ∇Γ
|∇Γ|

= ẑ − ∇ξ√
1 + |∇ξ|2

. (2.11)

From Equation 2.10, we can obtain a jump condition for the normal stress on the
interface and a continuity condition for the tangential stress, which, respectively, read

n̂Γ ·
(↔

π1

∣∣∣
Γ=0−

− ↔
π2

∣∣∣
Γ=0+

)
· n̂Γ = −σ∇ · n̂Γ, (2.12)

n̂Γ ·
(↔

π1

∣∣∣
Γ=0−

− ↔
π2

∣∣∣
Γ=0+

)
× n̂Γ = 0. (2.13)

The complete formulae of both conditions in terms of the velocity components and
pressures are shown in Appendix A.

Provided with the equations presented in the current section, we will now specialise
to two particular regimes. The first concerns the inviscid non-linear evolution of inter-
facial waves in the presence of an arbitrary vertical forcing term, i.e., F (t) = F0(t)ẑ
and F̃ = 0. In the second, we will examine the relaxation of standing waves in the
absence of external forcing to derive a linear model for the damping of the interfacial
modes in a specific geometry of the fluid cell.

2.3 Non-linear inviscid interfacial dynamics

In the following discussion, we will consider the dynamical evolution of the fluid-fluid
interface through an inviscid flow generated by an external vertical forcing applied
on the fluid cell. The flow will be entirely described by the velocity potentials in
each fluid, ϕ1 and ϕ2, and the viscous (boundary-layer) components U1 and U2 will
be assumed negligible. The combined time-dependent acceleration g(t) discussed
above enters Equation 2.8 as a conservative field upon the following identification:
fj = −∇ (ρjg(t)z).

For negligible viscosities, the normal stress condition at the interface (2.12) reduces
to the Young-Laplace law [97], which states that the pressure difference across the
interface is proportional to its surface curvature, i.e.,

− (p1|Γ=0− − p2|Γ=0+) = −σ∇ · n̂Γ = −σ∇ ·
(

∇Γ
|∇Γ|

)
= σ∇ ·

 ∇ξ√
1 + |∇ξ|2

 ,
(2.14)

where σ denotes the interfacial-tension coefficient between the two fluids. By comput-
ing the difference between the Navier-Stokes equations (2.8) in each fluid, evaluating
it at the interface and simplifying with the assumptions above, we obtain the fol-
lowing set of equations determining the inviscid, non-linear dynamics of the interface
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(see Appendix A for derivation):

∇2ϕj = 0, in Vj, (2.15a)

n̂B · ∇ϕj|S̄B
= 0, on S̄B, (2.15b)

∂ξ

∂t
= ∂ϕj

∂z
− ∇ϕj · ∇ξ, on z = ξ(t,x), (2.15c)[

∂

∂t
(ρ1ϕ1 − ρ2ϕ2) + ρ1

2 (∇ϕ1)2 − ρ2

2 (∇ϕ2)2
]
z=ξ

+ (ρ1 − ρ2)g(t)ξ − σ∇ ·

 ∇ξ√
1 + |∇ξ|2

 = 0, on z = ξ(t,x). (2.15d)

The equations above determine the non-linear interfacial dynamics in the absence
of viscous dissipation. In the following discussion, we will use them as a reference in
order to express the dynamical evolution in terms of a variational problem. Ultimately,
we shall obtain a Lagrangian formulation of the dynamics in terms of the interfacial
height ξ, which is our primary observable in this description.

2.3.1 Variational approach to the kinematic boundary-value
problem

The set of equations (2.15a), (2.15b) and (2.15c) comprises a kinematic boundary-
value problem, which may be derived by requiring the stationarity of the following
action functional [84, 101],

Ij = (−1)j+1

2Σ

˚
Vj

(∇ϕj)2 dΣ dz − 1
Σ

¨ 1
|∇Γ|

∂ξ

∂t
ϕj|z=ξ dΣ, (2.16)

where dΣ ≡ d2x is the area element of the horizontal cross-section and is such that
Σ =

˜
dΣ. In [1] (and in Appendix A), the variation of action Ij with respect to ϕj

is shown to recover the appropriate set of kinematic boundary-value equations.
In [84], Miles seems to have missed the curvature denominator |∇Γ| in Equa-

tion 2.16, but according to the derivation of Serrin [101] for the Dirichlet problem,
this term is necessary to recover Equation 2.15c without the need of any approxima-
tions or perturbative expansions. We will show that this term contributes to quartic
nonlinearities, leaving Miles’s results consistent since the author focuses on cubic ones
in [84]. The fluid-relative sign in front of the first integral is necessary to recover
the appropriate Equation 2.15c in the upper phase, fluid 2, where the normal at the
interface is opposite to that of fluid 1.

We now consider Laplace’s equation (2.15a) with boundary conditions (2.15b) on
the geometry of the fluid cell. It admits discretised solutions {ψj,a(x, z)}a on each
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fluid j and the symmetry of the basin allows us to decouple these eigenfunctions
into vertical fj,a(z) and horizontal χa(x) components. Thus, we decompose them as
ψj,a(x, z) = χa(x)fj,a(z), with

fj,a(z) = cosh[ka(z − hj)]
cosh(kahj)

, (2.17)

for ka such that

(
∇2 + k2

a

)
χa(x) = 0, with n̂ · ∇χa|∂Σ = 0, (2.18)

where χa(x) are spatial eigenfunctions of the horizontal Laplacian, and we leave im-
plicit that ∇ ≡ ∇x. We construct the z−component in (2.17) to identically satisfy
the boundary conditions at the top and bottom lids of the cell, namely ∂zϕj(t,x, z =
hj) = 0. We further require that the set of functions {χa}a is orthonormal on the
cross-section Σ, i.e., ¨

dΣ χa(x)χb(x) = Σδab. (2.19)

We can now express the velocity potentials in the basis of orthonormal spatial
eigenfunctions χa(x) with coefficients given by time-dependent generalised coordinates
ϕj,a(t) multiplied by the respective fj,a(z), as follows,

ϕj(t,x, z) =
∑
a

ϕj,a(t)fj,a(z)χa(x) =
∑
a

ϕj,a(t)ψj,a(x, z). (2.20)

We further assume that a decomposition in the basis of χa(x) also applies to the
height fluctuations ξ(t,x), i.e.,

ξ(t,x) =
∑
a

ξa(t)χa(x). (2.21)

Along these lines, we choose a representation of the generalised coordinates ξa and
ϕj,a as column vectors of infinite dimension, namely Φj ≡ {ϕj,a} and Ξ ≡ {ξa}, and
for the basis vector, X ≡ {χa}.

In vector notation, we may express equations (2.20) and (2.21) in terms of a dot
product of vectors, e.g., ξ(t,x) = ΞTX, where ΞT denotes the transpose of Ξ. Then,
the action functional in (2.16) reads

Ij = 1
2Φ

T
j KjΦj − 1

2Ξ̇
TDjΦj, (2.22)

where Kj ≡
[
k(j)
ab

]
and Dj ≡

[
d(j)
ab

]
are two square matrices defined in terms of

integrals of products of χa, ψa and ξa, given explicitly in Section A.3 of Appendix A. An
underlying assumption permeates the derivation of these terms. Namely, we consider
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interfacial height fluctuations ξ(t,x) much smaller than the depth of both fluids, i.e.,
|ξ| ≪ |hj|. Hence, we perturbatively expand all appropriate quantities in powers of a
small parameter δj ≡

∣∣∣ ξ
hj

∣∣∣ ≪ 1, keeping contributions up to second-order in δj.
The variation of the action Ij with respect to Φj (see Section A.3 in Appendix A)

results in the kinematic boundary condition (2.15c) in matrix notation, as follows,

Φj = K−1
j DT

j Ξ̇ ≡ LjΞ̇, (2.23)

where K−1
j denotes the inverse of the symmetric matrix Kj and DT

j is the transpose of
Dj. In Equation A.34 of Appendix A, we show the exact form of the combined square
matrix Lj ≡

[
l(j)ab
]
. Consistently, to a leading-order approximation, the equation above

recovers the linearised dynamics result (cf. [106]), i.e.,

ξ̇a = ka tanh(ka|h1|)ϕ1,a = −ka tanh(ka|h2|)ϕ2,a. (2.24)

Finally, we note that Equation 2.23 maps the time-variations of the interfacial height
modes ξ̇a into velocity potential modes ϕj,a at the interface. The dependence of l(j)ab on
the modes ξa (see Equation A.34) allows us to interpret Equation 2.23 as the nonlinear
generalisation of Equation 2.24.

2.3.2 Lagrangian formulation

As previously discussed, equations (2.15c) and (2.15d) dictate the dynamics of the
interfacial modes between the two fluids. Luke [107] established a widely used varia-
tional principle to recover these equations of motion. In his approach, a Lagrangian is
obtained from the integrated fluid pressures pj over their own volumes Vj. However,
here we follow the method of Miles [84, 85], where the kinetic and potential energies
of the fluids at play are considered instead. We construct a Lagrangian from their
difference using the spectral decomposition in equations (2.20) and (2.21), and their
respective matrix representations. As shown in [84, 85], we expect the results of this
approach to correspond to a decomposition of Equation 2.15d in terms of interfacial
modes ξa, followed by a perturbative expansion of it for small parameter δj =

∣∣∣ ξ
hj

∣∣∣ and
small slopes |∇ξ|2 ≪ 1.

We begin defining the kinetic energy Tj of fluid j from its velocity field (cf. §10
of [108]), and employing relation (2.23) to express it in terms of the interfacial height
modes ξa, as follows,

Tj
Σ = ρj

2Σ

˚
Vj

dΣdz |uj|2 = (−1)j+1

2 ρjΦ
T
j KjΦj = (−1)j+1

2 ρjΞ̇
TLT

j KjLjΞ̇,

(2.25)
where we used the definition of Kj (see Equation A.24). We further define a new
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matrix that conveniently simplifies the equations, as follows,

LT
j KjLj = Dj(K−1

j )TKjLj = DjLj ≡ Aj.

Its exact form is given in Equation A.35 of Appendix A. Accordingly, the total kinetic
energy of the fluids read

T

Σ = 1
2Ξ̇

T (ρ1A1 − ρ2A2) Ξ̇. (2.26)

Additionally, we must consider the potential energy V , which can be obtained from
the effective gravitational energy, ρjg(t)z, integrated over deformations ξ(t,x) of the
resting interface at z = 0, and the surface energy term as a result of the non-vanishing
interfacial tension σ. Hence, the energy reads (cf. §10, §265 of [108])

V

Σ = 1
2Σ

¨
dΣ

[
(ρ1 − ρ2) g(t)ξ2 + 2σ (|∇Γ| − 1)

]
= 1

2Σ

¨
dΣ

[
(ρ1 − ρ2) g(t)ξ2 + σ

(
|∇ξ|2 − 1

4 |∇ξ|4 + · · ·
)]
.

(2.27)

The above definition for the potential energy V is such that it vanishes in the absence
of interfacial waves ξ(t,x), and can be understood as a change in the total potential
energy of the fluids due to changes on the interface. The quartic (last) term in
(2.27) will introduce additional non-linear contributions to the Lagrangian and may be
expressed in the spectral decomposition (2.21) as

1
4Σ

¨
dΣ |∇ξ|4 ≡ 1

4
∑
a,b,c,d

Babcdξaξbξcξd, (2.28)

where Babcd are coefficients computed from products of ∇χa and defined in Equa-
tion A.37 of Appendix A.

Finally, with both the kinetic and potential energies at hand, we can define the
complete Lagrangian that determines the dynamics of the interfacial height modes ξa,
as follows

L

Σ = 1
2
∑
a

(
ρ1

kaT1,a
+ ρ2

kaT2,a

)(
ξ̇2
a − ω2

a(t)ξ2
a

)
+ 1

2
∑
a,b,c

(
ρ1A(1)

cab − ρ2A(2)
cab

)
ξcξ̇aξ̇b

+ 1
4
∑
a,b,c,d

[(
ρ1A(1)

cdab + ρ2A(2)
cdab

)
ξ̇aξ̇b + σ

2 Babcdξaξb

]
ξcξd, (2.29)

where
ω2
a(t) = (ρ1 − ρ2)g(t) + σk2

a

ρ1 coth(ka|h1|) + ρ2 coth(ka|h2|)
ka, (2.30)

and Tj,a ≡ tanh(ka|hj|). We note that the dispersion relation for an interfacial mode



Chapter 2. EFT simulators in ideal cases 24

ξa in linear dynamics becomes time-dependent and is given by the frequency ωa(t)
(cf. [106]). When varied with respect to ξa, the Lagrangian (2.29) results in the non-
linear equations of motion for the interface in the presence of external vertical forcing
F0(t), which is contained within the effective gravity term g(t) = g0 − F0(t).

We will later show through an example scenario that the coefficients A(j)
cab and A(j)

cdab

in (2.29) may be understood as momentum conservation constraints. In other words,
a given primary ξa mode with spatial wavenumber ka will interact with other modes
with a “strength” given by these non-linear coefficients, similar to the conservation
rules in vertices of Quantum Field Theory (QFT) [109]. On the other hand, in our
systems of interest, the boundaries introduce finite-size effects, resulting in a discrete
spectrum of wavenumbers ka, further restraining the available interactions.

2.4 EFT simulators in ideal cases

In the particular case of both phases with the same depth, i.e., h2 = |h1| ≡ h0, and in
the absence of external forcing, so that F0(t) ≡ 0, we can write the dispersion (2.30)
as follows,

|ωa| = c

h0

√
(1 + ℓ2

ck
2
a) kah0 tanh(kah0), with ℓc ≡

√
σ

(ρ1 − ρ2)g0
. (2.31)

Here, ℓc is called the capillary length, and c ≡
√
A12 g0h0 is the speed of long-

wavelength gravity interfacial waves, with the Atwood number [15] given by A12 ≡
(ρ1 − ρ2)/(ρ1 + ρ2). The form of the dispersion above is convenient because it
highlights the limiting behaviours relevant to our discussion, and we depict them
in Figure 2.2. In the long-wavelength regime, the interfacial modes have wavelengths
much longer than the depth h0 of the fluids, hence they are usually referred to as
“shallow-water” waves [90, 100]. Accordingly, it holds that kah0 ≪ 1 and we can use
the small argument approximation for the hyperbolic tangent in the equation above,
tanh(kah0) ≈ kah0. For appropriate conditions where h0 ≫ ℓc, and thus kaℓc ≪ 1,
the quadratic term in the dispersion (2.31) can be neglected, and the waves are said to
be gravity waves, i.e., the action of gravity determines their dynamics. The dispersion
of such waves is then linear, ωa = cka, and they propagate with speed c. Conversely,
in the short-wavelength limit, where kah0 ≫ 1, we have tanh(kah0) ≈ 1, and the
dispersion acquires a cubic term inside the square root. For high enough wavenumbers
for which kaℓc ≫ 1, this term prevails and gives the characteristic capillary dispersion
scaling k3/2 [90] (see Figure 2.2).

When considering a free surface (ρ1 ≫ ρ2, ρ2 → 0), Schützhold and Unruh showed
in [16] that the equations of motion for long-wavelength surface waves are mathemat-
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Figure 2.2: Depiction of interfacial wave dispersion (2.31) (thick, solid black line). The
trend of linear dispersion ω ∼ k is shown by the dotted red line, while that of short-
wavelength gravity-capillary dispersion ω ∼

√
(1 + ℓ2ck

2)k is displayed by the dashed blue
line. Arrows indicate their asymptotic behaviours for small and large wavenumber k. The
domains of validity of both approximations are shown by the red (gravity waves) and blue
(capillary waves) shaded regions.

ically equivalent to the dynamics of a massless Klein-Gordon (KG) field on an effective
(2 + 1)−dimensional spacetime. Their work opened an avenue for the development of
gravity and early Universe simulators on fluid interfaces, and, building up on their work,
we discuss now some limiting cases of the equations derived in Section 2.2, wherein
one finds similar mathematical equivalences. Throughout this section, unless otherwise
stated, we keep the assumption that both fluids have the same depth and consider
long-wavelength gravity waves, such that their wavenumbers ka satisfy kah0 ≪ 1 and
kaℓc ≪ 1.

2.4.1 Analogue massless scalar field in flat spacetime

Under the above conditions, we see that the dispersion relation (2.31) reads

ωa = cka, (2.32)

a linear dispersion relation as in Quantum Field Theory (QFT). Further, with the
decomposition (2.21), the modes ξa satisfy to leading order the following equation of
motion

ξ̈a + c2k2
aξa = 0 ⇔ 1

c2∂
2
t ξ − ∇2ξ = 0. (2.33)

This corresponds to the dynamical evolution of a massless KG field in a (2 + 1)−
dimensional Minkowski spacetime with an effective speed of light c =

√
A12 g0h0.
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For systems where the top phase is a gas or vapour, we can take ρ1 ≫ ρ2, so that
the Atwood number A12 tends to unity, resulting in an EFT for surface waves on an
inviscid fluid [16]. We will discuss this case in more detail in Chapter 5, where this
correspondence is used for simulating quantum processes that can take place on flat
spacetimes, such as the Unruh effect [82], on a static and homogeneous superfluid
helium free surface, as proposed in [4, 83].

2.4.2 A simulator for inflationary cosmology

In the presence of arbitrary external forcing F0(t) ̸= 0, the linearisation of the equations
in Section 2.3 for small interfacial wave amplitudes and negligible capillary effects
allows us to identify ϕ1|z=ξ = − ϕ2|z=ξ = ϕ0 at the interface. We now promote this
interfacial velocity potential ϕ0 to the main field, such that Equation 2.15d reads

(ρ1 + ρ2)
∂

∂t
ϕ0 + (ρ1 − ρ2)g(t)ξ = 0. (2.34)

With the decompositions (2.20) and (2.21) at the interface, the spatial eigenfunctions
ψj,a(x, ξ) reduce to χa(x) to leading order. Hence, the equation above becomes

∑
a

(
ϕ̇0,a + A12 g(t)ξa(t)

)
χa(x) = 0,

=⇒ ϕ̇0,a + A12 g(t)ξa(t) = 0. (2.35)

Differentiating (2.35) with respect to time yields

ϕ̈0,a(t) + A12 ġ(t)ξa(t) + A12 g(t)ξ̇a(t) = 0. (2.36)

We want to examine the dynamics of the modes ϕ0,a and, thus, remove any in-
stances of ξa. First, we note that the linearised kinematic condition (2.7) yields
ξ̇(t) = ka tanh(kah0)ϕ0,a = (h0k

2
a)ϕ0,a in the long-wavelength limit. Second, (2.35)

can be rearranged as ξa = −ϕ̇0,a/(A12 g(t)). With both these expressions, our scalar
field ϕ0 satisfies the following equation of motion

ϕ̈0,a − ġ(t)
g(t) ϕ̇0,a + A12 g(t)h0k

2
aϕ0,a = 0. (2.37)

At this stage, we note that, with the following identifications, ω2
a(t) = c2

(
1 − F0(t)

g0

)
k2
a

and a−2 ≡
(
1 − F0(t)

g0

)
, and by relabelling the mode number from a to d to avoid

confusion, the equation above can be rewritten as:

ϕ̈0,d − ġ(t)
g(t) ϕ̇0,d + ω2

d(t)ϕ0,d = 0, (2.38a)
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c−2ϕ̈0,d + 2c−2 ȧ(t)
a(t) ϕ̇0,d + k2

d

a2(t)ϕ0,d = 0, (2.38b)

where c =
√
A12 g0h0 is the speed of propagation of long-wavelength waves.

Let us briefly consider a massive scalar field in a (2 + 1)−dimensional Friedmann –
Lemaître – Robertson – Walker (FLRW) spacetime [5, 110], described by the following
metric and Lagrangian density, respectively,

ds2 = gµνdxµdxν = −c2dt2 + a2(t)dx2, (2.39a)

L = −1
2

√
−g

(
∇µϕ∇µϕ+ (mc)2ϕ2

)
, (2.39b)

where g = det gµν . The stationary variation of (2.39b) with respect to ϕ results in

2ϕ− (mc)2ϕ = 0, (2.40)

which for the metric above reduces to

c−2ϕ̈+ 2c−2 ȧ

a
ϕ̇− 1

a2 ∇2ϕ+ (mc)2ϕ = 0. (2.41)

Note that, because of the (2 + 1)−dimensional spacetime, a factor of two in the term
2 ȧ
a
ϕ̇ appears.
We can now establish a connection between equations (2.38b) and (2.41), which

allows us to interpret the former as the equation of motion of a massless, minimally
coupled scalar field in an effective (2 + 1)−dimensional FLRW spacetime spectrally
decomposed as ϕ(t, x) = ∑

d ϕd(t)χd(x), with (∇2 + k2
d)χd = 0. However, this math-

ematical equivalence relies on the shallow-water approximation in the simulator. For
arbitrary wavelengths, the analogue scale factor a(t) would instead depend on the
spatial wavenumber k, i.e., a(t) → ak(t), which is characteristic of a rainbow uni-
verse [79, 111]. As in the case of [79], the effective scale factor a(t) can be modulated
by appropriately choosing the external forcing F0(t), allowing this correspondence to
be used in investigating the evolution of analogue scalar fields in inflationary scenarios.

As a final comment on this case, we note that Equation 2.35 provides an inter-
pretation of the field ξ as the conjugate momentum of the analogue field ϕ0 at the
interface. Under the present assumptions, we obtained the relation ξ̇d = (h0k

2
d)ϕ0,d,

which upon differentiation yields

ξ̈d = h0k
2
dϕ̇0,d. (2.42)
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By using (2.35), we find again the equation of motion for the modes ξd,

ξ̈d + c2 k2
d

a2(t)ξd = 0. (2.43)

In contrast with (2.33), the equation above describes the dynamics of the conjugate
momentum of the analogue relativistic field ϕ0 in an effective FLRW spacetime with
the speed of light replaced by the long-wavelength speed c. Whereas (2.33) is the
equation of motion of the analogue scalar field ξ in a Minkowski metric with an
effective speed of light given by the speed of interfacial wave propagation. These
various interpretations showcase the flexibility of using two-fluid systems in devising
analogue scenarios relevant, for example, in the context of cosmology.

2.4.3 Nonlinear EFT simulator

In the following, we will specialise in the case of a harmonic external forcing F (t) =
F0 cos(Ωt)6, for which the equation of motion of the modes ξa (2.43) reads

ξ̈a + k2
ac

2
(

1 − F0

g0
cos(Ωt)

)
ξa = 0 (2.44a)

⇒ 1
c̃2 ξ̈a +

(
k2
a + λ2k2

aF0 sin2(ω0t)
)
ξa = 0, (2.44b)

where we identified Ω ≡ 2ω0, c̃2 ≡ A12 (g0 − F0)h0 and λ2 ≡ 2/(g0 − F0). Similar
to (2.33), the equation above when F0 = 0 may be understood as that of a massless KG
field propagating on a (2 + 1)−dimensional Minkowski spacetime, but now with an
effective speed of light c̃. We note that the analogue field ξ interacts with a spatially
uniform mechanical forcing Φ2(t) through a derivative coupling in a potential of the
form −1

2λ
2Φ2 (∇ξ)2. Upon identifying Φ(t) ≡

√
F0 sin(ω0t), Equation 2.44b follows

readily.
Equation 2.44a has the standard form of the Mathieu equation [112, 113], which

is known to yield exponentially unstable solutions in time in various fields in physics,
from fluid dynamics [106, 114] and engineering [115, 116] to models of the early
Universe [117, 118]. Generally, when systems manifest these particular solutions, they
are referred to as undergoing parametric amplification or resonance. In fluid interfaces,
the resonant modes are specifically called Faraday instabilities in reference to Faraday’s
foremost contributions to their understanding [114]. Along the lines of our previous
discussion, we can establish a parallel between our EFT for interfacial waves and
models for the thermalisation of the early Universe after inflation. In particular, we
now discuss the case of slow-roll inflation [119].

6Here, we implicitly require that F0 < g0, i.e., the amplitude of the external oscillating acceleration
must not overcome Earth’s gravitational acceleration g0.
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V (φ)

φ

Slow-roll
Inflation

reheating

Figure 2.3: Illustration of the conceptual picture of slow-roll inflation. The classical
evolution of the inflaton field φ is represented by the red ball. As inflation ends, reheating
starts, and the field parametrically oscillates around the minimum of its potential and slowly
loses its kinetic energy through parametric resonance and the subsequent decay into matter
ψ−particles (yellow waves). Inspired by [120].

In the context of cosmology, chaotic inflation models [119] predict that a scalar field
φ, commonly known as the inflaton, is subjected to a slow-roll potential V (φ), and
sources inflation on a spatially homogeneous and isotropic spacetime (FLRW geome-
try) characterised by a scale factor a(t) and Hubble parameter H ≡ ȧ/a. Throughout
this process, the inflationary expansion of the Universe determines the classical back-
ground evolution of the scalar field. Eventually, as inflation concludes, the inflaton
transitions from the potential-dominated region and enters a phase of oscillations
around the global minimum of V (φ), initiating the reheating process. We examine the
interaction between the inflaton φ and a massless bosonic field ψ coupled through the
interaction potential −1

2λφ
2ψ2. A depiction of this picture is shown in Figure 2.3.

At the end of inflation, slow-roll models assume that the inflaton would then oscillate
around a minimum of the potential V (φ), which we consider here to be quadratic,
i.e., 1

2m
2
φφ

2. It then follows that the classical evolution of the field is well approx-
imated by φ(t) ≈ Φ(t) sin(mφt), where Φ(t) is a nearly constant amplitude. In
this kinetic-dominated regime, the energy of the inflaton is transferred to the matter
fields ψ through their interaction, resulting in the following equation of motion for ψk
modes [117, 120]

ψ̈k + 3Hψ̇k +
(

k2

a2(t) + λ2φ2(t)
)
ψk = 0. (2.45)

In that period, the spacetime is usually regarded as a nearly Minkowski metric with
a(t) ∼ 1 and ȧ(t) ∼ 0 [119]. Hence, the Hubble-friction term in the equation above
becomes negligible and the modes evolve according to

ψ̈k +
(
k2 + λ2Φ2 sin2(mφt)

)
ψk = 0 (2.46a)
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⇒ ψ̈k +
(
k2 + 1

2λ
2Φ2 − 1

2λ
2Φ2 cos(2mφt)

)
ψk = 0, (2.46b)

recovering again a Mathieu-type equation as in (2.44).
Unstable solutions of the Mathieu equation appear in instability bands in the fre-

quency domain [112], which requires that, for wavenumbers k inside them, their modes
ψk experience parametric resonance and evolve as

ψk(t) ∝ exp(µkmφt), (2.47)

where µk are known as Floquet coefficients [113]. In the initial stages of reheating,
when the inflaton oscillation amplitude Φ is still large, and hence λ2Φ2 is large, a broad
band of k-modes undergoes parametric amplification, which characterises the so-called
preheating stage [117]. This unstable evolution leads to an explosive production of
ψ−particles with exponentially growing occupation number density nk, i.e., nk ∝
exp(2µkmφt). Preheating results in a far-from-equilibrium state, where elementary
particle decays dominate, bringing on succeeding stages of reheating and, ultimately,
the required thermalisation of the early Universe [119].

Given the equivalence between equations (2.44) and (2.46b), we can now conceive a
simulator of the non-trivial interacting features of preheating using parametrically ex-
cited Faraday instabilities. Within the approximations and assumptions of this section,
the Lagrangian (2.29) to second-order in small amplitudes ξa reads

L

Σ =

L(0)︷ ︸︸ ︷
ρ1 + ρ2

2h0

∑
a

1
k2
a

(
ξ̇2
a − ω2

a(t)ξ2
a

)
+ ρ1 − ρ2

2
∑
a,b,c

A(0)
cabξcξ̇aξ̇b + ρ1 + ρ2

4
∑
a,b,c,d

A(0)
cdabξ̇aξ̇bξcξd︸ ︷︷ ︸

L(1)

, (2.48)

with ω2
a(t) = (A12 g(t)h0)k2

a. We denote the quadratic Lagrangian by L(0) and
higher-order terms by L(1). The Euler-Lagrange equations for a mode ξa result in
a non-linear equation of motion, which reduces to (2.44a) to leading order. It is
worth noting that the equations obtained from the Lagrangian above are only valid
for long-wavelength gravity waves, in this way restricting the available wavenumbers
of this approximate dynamics. A more general picture should include the complete
dispersion to allow for arbitrary wavenumbers, as we will discuss in Chapter 3. Still,
we can devise a scenario where a low-wavenumber interfacial mode is parametrically
amplified and evolves dominantly with respect to the others. Its exponentially growing
amplitude triggers the cubic and quartic interactions in Equation 2.48, hence exciting
other modes.
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Within this framework, in addition to the correspondence between the interfacial
height ξ and a KG field on a flat spacetime, the emerging EFT, as described by
Lagrangian (2.48), can be employed to examine the onset of interactions in a simulator
for preheating and the initial phases of thermalisation in the early Universe [2]. We
must note, however, that the boundary conditions (2.4) imposed on the field ξ limit
the values of ka to those that fit the geometry of the fluid cell. In other words, the
confined interface of our proposed system can only accommodate a reduced density
of states ξa.

We now illustrate the implications of this discretisation through an example case.
Consider a fluid cell with a rectangular cross-section with sides ℓ0 and ℓ0/α, i.e.,
(x, y) ∈ [0, ℓ0] × [0, ℓ0/α] and Σ = ℓ2

0/α. The quantity α can assume any positive
real value and represents the horizontal aspect ratio of the fluid cell. In this geometry,
the spatial eigenfunctions χa(x) satisfying (2.18) read

χa(x, y) = 2 cos
(
πmax

ℓ0

)
cos

(
παnay

ℓ0

)
, (2.49)

where ma, na ∈ N ∪ {0} such that m2
a + (αna)2 = Na > 0. The corresponding

eigenvalues of χa(x) are ka =
√
Naπ
ℓ0

. By labelling the unique pair of non-negative
integers (ma, na) with a counter a, we can uniquely identify interfacial modes ξa(t)
with a non-degenerate spectrum and wavevector ka = π

ℓ0
(max̂ + αnaŷ). In the case

of squared cross-section, in which α = 1, a degeneracy arises from the invariance of
√
Na under the action (ma, na) 7→ (na,ma); see [1] for a discussion of this particular

case. In this configuration, long-wavelength waves must satisfy
√
Na ≪ ℓ0

πh0
, which is

attainable in setups with large vertical to horizontal aspect ratio ℓ0/h0.
We can use χa of the form (2.49) to compute the coefficients A(0)

cab and A(0)
cdab

in Section A.3, from what we find

A(0)
cab ∝ δmc,|ma±mb| δnc,|na±nb|, (2.50a)

A(0)
cdab ∝ δ|mc±ma|,|md±mb| δ|nc±na|,|nd±nb|, (2.50b)

where δab is the Kronecker delta. Equations (2.50) act as conservation rules for the
Lagrangian (2.48). The delta relations above reduce the modes contributing to the
summations in L(1) and effectively restrict those appearing in the cubic and quartic
terms. For instance, the cubic constraint requires that a mode with wavenumber kc can
only interact with wavenumbers ka and kb, if mc = |ma±mb| and nc = |na±nb|. We
illustrate this process using the mode with the longest wavelengths in both directions
in Figure 2.4. We can further draw a comparison between our interacting EFT
and QFT, as the deltas in equations (2.50) are equivalent to vertex conservation rules
in the latter.
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(1, 1)

(1, 2)

(0, 3)

Figure 2.4: Depiction of a possible interfacial mode decay for (mc, nc) = (1, 1) into
(ma, na) = (1, 2) and (mb, nb) = (0, 3) through a cubic interaction. The blue surfaces
show the interface height for these modes with arbitrary amplitudes. The bounding boxes
denote the boundaries of a fluid cell with aspect ratio α = 2, and a thin rectangular contour
indicates the resting interface position. It is straightforward to check that these modes
satisfy the conservation rule (2.50a).

Finally, at the level of equations of motion, an interfacial mode ξa(t) evolves non-
linearly according to

ξ̈a + ω2
a(t)ξa + 2h0k

2
a

ρ1 + ρ2

[
d

dt

(
∂L(1)

∂ξ̇a

)
− ∂L(1)

∂ξa

]
= 0, (2.51)

where L(1) corresponds to cubic and higher-order terms in the Lagrangian (2.48). As
proposed in [2], by appropriately selecting a dominant mode, it is possible to streamline
this equation to retain solely terms arising from quartic interactions in the Lagrangian.
Consequently, one can simulate models resembling ϕ4 particle decay scenarios during
reheating. In a broader sense, the formalism presented herein provides an avenue to
explore the dynamical features of interacting field theories.

2.5 EFT modifications for more realistic features

In the previous sections, a series of assumptions discussed in Section 2.1 were adopted
in order to obtain the EFT presented and employ it in analogue scenarios. It should
not come as a surprise, however, that in our target systems, a plethora of other
physical phenomena may play a role in the dynamics of the interface. This could be
understood as a collateral outcome for using the intricate framework of fluid dynamics
to devise EFT simulators, with the understanding that, as the name suggests, the
effective description may fall short in accounting for certain aspects of the underlying
physics. Regardless, informed by experimental observations and theoretical predictions
in the background literature, we venture into improving our model for at least some of
these more realistic features. Throughout, we keep in mind that experimental results
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will ultimately ascertain the adequacy of our EFT in accurately describing the system
while discerning the core underlying concepts.

In the previous section, we never specified the initial conditions for the equations of
motion derived. Unless a well-defined initial state is imprinted on the interface through
a prior process, such as parametric resonance, sloshing or a mechanical wave generator,
one could postulate that the interface is initially at rest, i.e., ξ = 0 and ξ̇ = 0. However,
in our discussions in subsection 2.1.1 and subsection 2.1.5, we argued that the effective
coarse-graining of the interface does not eliminate the underlying microscopic dynamics
but instead allows us to treat the macroscopic surface as a fluctuating object [90,
94, 97]. These random variations from an equilibrium "rest" (and flat) state may
be understood by means of the fluctuation-dissipation theorem [121]. The inherent
viscous properties of fluids in equilibrium, which naturally dissipate their energy, are in
detailed balance with inter-molecular fluctuations.

Several authors have investigated the characteristic spectrum of these surface fluc-
tuations with thermal origin in fluids, see e.g. [90, 95, 96, 122–124]. Simulations [96,
125, 126] and experiments [127–129] have confirmed the suitability and accuracy of
these models in describing the high-frequency, short-wavelength (> 1 kHz) end of
the surface spectrum, where waves are strongly damped. Unfortunately, for experi-
ments interested in the low-frequency, long-wavelength range, thermality may not be
the primary source of fluctuations and the models mentioned above become unfit for
predicting the behaviour of fluid surfaces. In fact, it is well-known that laboratory en-
vironments tend to display non-negligible noise levels, especially at lower frequencies.
These may come from various unpredictable sources, such as street traffic, machinery,
and building resonance. This wide variety of contributing environmental factors adds
to the challenge of modelling the fluctuating interface in the regimes of interest to our
proposed simulators.

Our chosen approach is to incorporate the microscopic features of the interface
through an experimentally informed model, which we discuss further in Chapter 3,
compensating for the lack of a satisfactory theoretical description. We assume that
the two-fluid interface is flat and at rest on average, i.e., ⟨ξ⟩ = 0 and

〈
ξ̇
〉

= 0, and
we leave the mean ⟨·⟩ purposefully unspecified, as it can be taken over long times
or over a statistical ensemble. Further, we incorporate the fluctuating nature of the
interface by promoting all its modes ξa to central random variables with non-vanishing
variance ⟨ξ2

a⟩ ≠ 0, which, along with their distribution, should be directly inferred from
observations. In practice, we modify the equations of motion for the interfacial modes
to include a stochastic noise term ηa [121], which, to linear order, sources them as
follows

ξ̈a + 2γaξ̇a + ω2
a(t)ξa = ηa. (2.52)
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Note the inclusion of linear damping γa to the equation above. Even in the absence
of other environmental noise sources, dissipation continuously acts as a noise source
by means of the fluctuation-dissipation theorem. Thus, we acknowledge its contribu-
tion through a linear damping term, which we now discuss in the framework of fluid
dynamics.

Miles notes in [84] that the Lagrangian formulation presented in subsection 2.3.2
can be appropriately modified to include a linear damping term through Rayleigh’s
dissipation function [130], as follows,

Q0 =
∑
a

(ρ1 coth(ka|h1|) + ρ2 coth(ka|h2|)) γaξ̇2
a. (2.53)

It modifies the Euler-Lagrange equations of a mode ξa with an extra term,

d
dt

(
∂L

∂ξ̇a

)
− ∂L

∂ξa
= −∂Q0

∂ξ̇a
, (2.54)

where L is the Lagrangian (2.29). Extensive literature on fluid dynamics has tackled
the problem of obtaining an experimentally compatible formula for the damping of
free-surface waves in cylindrical and rectangular basins [86–88, 131–138]. More re-
cently [87, 88], authors have extended previous models to understand the effects of
dissipation in slightly viscous two-fluid interfaces within systems with boundaries7.

We follow an ad-hoc approach to dissipation as proposed in [86] with modifications
to account for the liquid-liquid interface. In the method of Case and Parkinson [86],
the mechanical energy balance is examined, and it requires that the variation in time
of the total mechanical energy (i.e., kinetic and potential energies) corresponds to the
total rate of dissipation in the fluids [108]. In the case of two liquids, the balance
equation reads [87]

d
dt (T1 + T2 + V ) = −2

∑
j=1,2

µj

¨
Vj

dVj
↔
ε j:

↔
ε j ≡ −2

∑
j=1,2

Fj, (2.55)

where Tj and V are the kinetic and potential energies, as in equations (2.25) and (2.27),
respectively. The term on the right-hand side of the above equation contains the
contraction of the strain rate tensor in each fluid, defined as ↔

ε j:
↔
ε j≡ εj,klεj,lk. The

left-hand side of Equation 2.55 can be expressed in terms of interfacial modes using the
formalism of the previous section, approximated to leading order in ξa (linear dynam-
ics). Therefore, the damping rates can be estimated by assuming an unstable decay
of standing waves on the interface and comparing both sides of the Equation 2.55.

As we will later show, computing the Fj integrals of both fluids using solely the linear

7Practically, we are referring to fluids with kinematic viscosities in the range of few mm s−1, such
as most liquid solvents [15].
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Ī

S̄V1
S̄V2

z = h1

z = h2

z = 0

S̄H1

S̄H2

ρ1, ν1

ρ2, ν2

V1

V2

r = r1 r = r2

Figure 2.5: (Left) Illustration of an annular-cylinder basin or a cylindrical shell. (Right)
Depiction of the rectangular cross-section of the two-fluid cell. Solid lines indicate rigid
boundaries S̄B. Top and bottom plates at z = hj = (−1)j |hj | act as horizontal boundaries
S̄Hj . Vertical walls at r = rs are shown by S̄Vs , for s = 1, 2. The average resting interface
at z = 0 is indicated by Ī.

potential flow solutions of Section 2.3 results in the so-called interior damping rate (see
e.g. [106]), which informs us of the dissipation in the body of the liquids [90]. However,
it is consistently shown in the literature that the formula for interior damping falls short
in matching experimentally extracted damping rates, especially in the case of small
cylindrical basins [86, 87, 133–135]. This known discrepancy motivates a modification
of the inviscid potential solutions through the inclusion of small rotational viscous
contributions, which would remain valid for liquids with small kinematic viscosities.
We will now restrict the discussion to the damping of interfacial waves forming on
cylindrical geometries, which will be relevant to the content of Chapter 3. Along the
lines of [86, 87], we will revise the underlying ideas behind them and extend the analysis
to liquid-liquid interfaces in an annular geometry, where the inner cylinder introduces
an extra boundary damping term.

2.5.1 Damping of standing interfacial waves in cylindrical ge-
ometries

Our derivation in this section will extend the most recent results for linear damping in
liquid-liquid interfaces in cylindrical basins presented in [87], which is in itself based
on [86]. For that, we consider an annular two-fluid cell (see Figure 2.5) with inner
and outer radii r1 and r2, respectively, satisfying all the properties required in Sec-
tion 2.2. The main assumption underlying the following discussion is that the flows
of both fluids are well described by a linear approximation of the inviscid theory pre-
sented in Section 2.3 in the absence of external forcing, corrected by small viscous
contributions included through rotational velocity components.

We employ the aforementioned assumption of standing waves on the interface to
examine the behaviour of a single mode at frequency ωa and damped at rate γa.
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Within the premise of low-viscosity fluids, the damping is a priori assumed to be
much smaller than the typical frequency, i.e., γa ≪ ωa, subject to later verification.
Momentarily, we treat the velocities and interfacial height as complex fields, keeping
in mind that these observables are real-valued and taking their absolute values when
computing the energies in Equation 2.55. Provided that the potential flow satisfies
the set of equations (2.15) to leading order in small interfacial height fluctuations ξ
(see Appendix A), it follows that the single mode evolution for some initial interfacial
amplitude ξa reads

ξ(t, r, θ) = χa(r, θ)ξae−iωat−γat, (2.56a)

ϕj(t, r, θ, z) = i(−1)jωa − iγa
ka

cosh [ka(z − hj)]
sinh(ka|hj|)

χa(r, θ)ξae−iωat−γat,(2.56b)

and
χa(r, θ) =

√
ΣNaRa(r) cos(maθ), (2.56c)

with Σ = π(r2
2 − r2

1) and

Ra(r) = Y ′
ma

(kar1) Jma (kar) − J ′
ma

(kar1)Yma (kar) , (2.56d)

where ka are the zeros of R′
a(r2) = 0, and [139]

N−2
a = 2

πk2
a

(1 − m2
a

k2
ar

2
2

)(
J ′
ma

(kar1)
J ′
ma

(kar2)

)2

−
(

1 − m2
a

k2
ar

2
1

) . (2.56e)

In this cylindrical geometry, an interfacial mode here labelled by a is instead charac-
terised by a unique pair of integers, namely the azimuthal mode ma and the order na
of the zero ka.

Having the exact linear inviscid solutions above, we can turn to the viscous cor-
rections, which we assume to be non-negligible only around thin boundary layers of
thickness ℓj =

√
νj/|ωa| in each fluid [90, 100]. In these conditions, the rotational

components Uj must approximately satisfy the following equations:

(2.1) =⇒ ∇ · Uj = 0, in Vj, (2.57a)

(2.4) =⇒ n̂B · Uj|S̄B
= 0, on S̄B, (2.57b)

(2.5) =⇒ n̂B × Uj|S̄B
= − n̂B × ∇ϕj|S̄B

, on S̄B, (2.57c)

(2.7) =⇒ Uj,z|z=0 = 0, on Ī , (2.57d)

(2.13) =⇒ µ1 ∂z (n̂Γ × U1)|z=0 = µ2 ∂z (n̂Γ × U2)|z=0 , on Ī , (2.57e)

(2.8) =⇒ −i sgn(ωa)Uj = ℓ2
j∇2Uj. (2.57f)

We further note that the velocities of both fluids are continuous across the inter-
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face [106] and, thus, their tangential components match, i.e.,

(n̂Γ × u1)|z=0 = (n̂Γ × u2)|z=0 , on Ī . (2.57g)

Since these velocities should only contribute around the viscous boundary layers, it is
convenient to operate with a new set of dimensionless coordinates ζj,B, which span
along the direction of the normal vectors n̂B of the boundaries and the interface,
increasing towards the inside of the fluids. We define them as follows,

ζj,B =


(−1)j(hj − z)/ℓj, near S̄Hj

(−1)s(rs − r)/ℓj, near S̄Vs

(−1)jz/ℓj, near Ī

. (2.58)

We note that, since the ℓj’s are assumed small compared to the dimensions of the
basin, the set of normal coordinates above is of order unity around the boundary layers
and rapidly scales to infinity far from the walls.

Using equations (2.57) and this new set of coordinates, one can show that the
boundary layer velocities around solid boundaries S̄B are well approximated by (see Ap-
pendix A for derivation)

Uj,B = − ∇∥B
ϕj
∣∣∣
S̄B

exp (−∆ζj,B) , (2.59)

where ∆ = 1−i sgn(ωa)√
2 . ∇∥B

denotes the gradient vector on tangential coordinates
of the rigid boundary S̄B, and it is then clear that Uj,B does not have a component
along the normal n̂B to leading order, as required by Equation 2.57c. Similarly, at the
interface Ī,

Uj,I = (−1)j 1
ρj

√
νj

(
1

ρ1
√
ν1

+ 1
ρ2

√
ν2

)−1

∇x (ϕ1 − ϕ2)z=0 exp (−∆ζj,I) . (2.60)

Again, the term ∇x, denoting the gradient on the x horizontal coordinates, indicates
that Uj,I does not have a component along the normal of the interface to leading
order, as required by (2.57d).

With all pieces of the problem set, we can go back to the mechanical energy balance
equation (2.55). The left-hand side can be computed from the equations for both
kinetic and potential energies ((2.25) and (2.27)), and reduces to

d
dt (T1 + T2 + V ) = −2γa

(
ρ1

T1,a
+ ρ2

T2,a

)
ω2
a

ka
Σ |ξa|2 e−2γat. (2.61)

On the other hand, the dissipation integrals 2Fj can be simplified by expanding the
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contraction ↔
ε j:

↔
ε j to recover the usual form of Lamb’s dissipation integrals (see [108],

§329). The integrals effectively reduce to two terms: the first approximately reads

2Fj,r = ρjνj
∑
B

˚
δVj,B

dVj |∇ × Uj,B|2 , (2.62a)

where the summation over B indicates contributions from the boundary layer compo-
nents around S̄Hj

, S̄Vs and Ī, which are relevant inside small volumes δVj,B near the
boundaries due to the rapid exponential decays in the velocities. The second term is
a surface integral over all the boundaries of each fluid’s volume, but it can be shown
to reduce to a single contribution at the interface, given by

2Fj,I = 4(−1)jρjνj
¨
Ī

dΣ
[
∂ϕj
∂z

∇x · (∇xϕj + Uj,I)
]
z=0

. (2.62b)

Lengthy but straightforward computations of all integrals above follow in line with
§D in [87]. By comparing the integration results with (2.61), we find that the total
damping can be written in terms of the contributions of each energy dissipation term,
as follows

γa = γa,int + γa,I + γa,H + γa,V , (2.63a)

where each component is given below:

γa,int The interior damping γa,int is the simplest of terms, as it can be derived from
the inviscid solution alone, see, e.g., equation (4.20) in [106], where the authors
obtain the same formula using the time-averaged rate of dissipation of Landau
& Lifshitz [90] in §25. Herreman et al. note in [87], however, that an extra
boundary layer contribution appears in the same order at liquid-liquid interfaces,
in contrast with the results of Case & Parkinson for a free-surface [86]. We
then separate this damping into two terms γa,intinv and γa,intBL obtained from
Equation 2.62b,

γa,intinv = 2ρ1ν1 coth(ka|h1|) + ρ2ν2 coth(ka|h2|)
ρ1 coth(ka|h1|) + ρ2 coth(ka|h2|)

k2
a, (2.63b)

γa,intBL = −2


√
ν1 + √

ν2
1

ρ1
√
ν1

+ 1
ρ2

√
ν2

 coth(ka|h1|) + coth(ka|h2|)
ρ1 coth(ka|h1|) + ρ2 coth(ka|h2|)

k2
a.

(2.63c)

Although these are considered higher-order terms, scaling with ℓ2
j or νj, it is

worth keeping them because the inviscid component γa,intinv provides a base-
line comparison for boundary-layer corrections, as it is the only non-vanishing
dissipation term for irrotational interfacial (and surface) waves [90, 106, 108].
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γa,I At the interface, the boundary layer velocity applied to Equation 2.62a results
in the leading contribution,

γa,I =

√
|ωa|ka
2
√

2

(
1

ρ1
√
ν1

+ 1
ρ2

√
ν2

)−1 (coth(ka|h1|) + coth(ka|h2|))2

ρ1 coth(ka|h1|) + ρ2 coth(ka|h2|)
(2.63d)

This damping dominates at order ℓj or √
νj and does not exist to leading order

for free-surface waves, as in [86] and [134].

γa,H The horizontal solid walls also display boundary-layer contributions obtained from
Equation 2.62a and the damping reads

γa,H =

√
|ωa|ka
2
√

2

ρ1
√
ν1

sinh2(ka|h1|)
+ ρ2

√
ν2

sinh2(ka|h2|)
ρ1 coth(ka|h1|) + ρ2 coth(ka|h2|)

. (2.63e)

This term also dominates over interior damping, as it scales with ℓj or √
νj.

γa,V Finally, at vertical solid walls, we find again from Equation 2.62a a term at order
ℓj or √

νj at each boundary at r1 and r2, as follows,

γa,V =

√
|ωa|

4
√

2
∑
s=1,2

πrsN
2
aR

2
a(rs)

(
ρ1

√
ν1G1,a(rs) + ρ2

√
ν2G2,a(rs)

)
ρ1 coth(ka|h1|) + ρ2 coth(ka|h2|)

, (2.63f)

with

Gj,a(rs) =
(

1 + m2
a

k2
ar

2
s

)
coth(ka|hj|) −

(
1 − m2

a

k2
ar

2
s

)
ka|hj|

sinh2(ka|hj|)
.

Out of the presented formulae, this is the only one sensitive to the horizontal
geometry of the basin. In fact, regardless of the shape of the cell’s cross-section,
equations (2.63b), (2.63c), (2.63d) and (2.63e) recover the results in [87], cf.
equations (2.66) and (D19). Equation 2.63f is also valid for a regular cylinder
and recovers the results of [87] by appropriately modifying Ra and Na to a
cylinder of radius r2 and taking r1 → 0.

To illustrate the qualitative behaviour of this model for damping, we consider an
example set of fluids with typical physical properties shown in Figure 2.6. As noted
in [87], the damping is minimum when both phases have the same depth, i.e., h2 =
−h1 = h0. Hence, we specialise in this case to numerically evaluate and confirm our
assumptions. Figure 2.6(a) verifies that the interior damping may represent a small
fraction of the total, especially for low wavenumbers. As expected, deep-water waves,
with kah0 ≫ 1, experience not only more interior damping but more damping in
general, as evidenced in Figure 2.6(b). This statement is surprisingly valid also for the
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Figure 2.6: Depiction of damping model of equations (2.63) in annular geometry for the first
70 wavenumbers of azimuthal numbers from 0 to 5. Different colours reference the azimuthal
numbers m, and each circle denotes the n−th order eigenvalue, i.e., ka is the na−th zero of
the equation R′

ma
(r2) = 0. The higher wavenumbers are densely populated and thus visually

overlap for different m′s in the plots. In (a), we display the ratio of the interior damping
γint with the total γa of each mode ka. In (b), the ratio of the total damping γa with
the corresponding dispersion frequency ωa of each mode ka. In both panels, the quantities
are shown as functions of the dimensionless product kah0. For both plots, we choose
the following illustrative values: ρ1 = 1200 kg m−3, ρ2 = 900 kg m−3, ν1 = 3 mm2 s−1,
ν2 = 2 mm2 s−1, σ = 5 mN m−1, r2 = 2r1 = 4 cm, and h2 = −h1 = h0 = 5 mm.

first few shallow-water modes that fit the geometry, i.e., ka with ma = 0, 1, 2 and na =
0, 1. This is a known property of surface waves in small basins [86, 131, 136], and it can
be understood in terms of the boundary layer thickness ℓa ∝ 1/√ωa, which is larger for
lower frequencies. In this picture, long wavelengths will experience more damping from
their low-frequency flow around the boundaries (kah0 ≪ 1 in Figure 2.6), whereas short
wavelengths tend to be damped by the bulk motion of the fluids since their decreasingly
thin boundary layers have less influence on their motion (kah0 ≫ 1 in Figure 2.6).
In the chosen range of wavenumbers, Figure 2.6(b) shows that the assumption of
perturbatively small damping compared to the frequency of a mode, i.e., γa/ωa ≪ 1,
seems to hold comfortably.
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2.6 Remarks and overview

In the present Chapter, we discussed the theoretical framework behind the construction
of EFT simulators using fluid interfaces. We defined the properties and assumptions
essential for this development. Working with a series of convenient approximations,
we derived a Lagrangian model entirely described by height and velocity variations at
the two-fluid interface. Limiting cases of our model can then be used to devise various
simulators for gravitational scenarios, as discussed in Section 2.4. We recovered previ-
ously proposed linear simulators for flat [4] and cosmological [79] spacetimes and built
upon them to lay the groundwork for investigating interacting field theories. Never-
theless, one must be aware that the assumptions required for some of the derivations
in sections 2.2 and 2.4 may be overly restrictive, or even unattainable, in experimental
realisations. Appropriate modifications of the formalism can improve the description
of the underlying physical system used as a simulator and, in turn, reveal novel aspects
of the emerging EFT.

We specifically note that the results presented here are valid for systems where
the contact angle along the contact line between the fluid-fluid interface and the
solid walls is approximately 90◦. However, capillarity is a ubiquitous property of flu-
ids, and the meniscus forming at the edges of the interface can hardly be ignored.
In particular, a curved meniscus with a velocity-dependent contact angle causes a
consistent deviation between observed damping rates and theoretical predictions not
accounting for capillarity, as thoroughly observed in standard references in the field,
e.g., [86, 132, 136, 140–142], but also more recently in [143–148]. Many of the meth-
ods employed in modifying the theory accordingly are strongly phenomenological and
numerical, and cannot yield formulas for damping such as those presented in subsec-
tion 2.5.1 and derived in [87]. In certain cases, specific fluids and materials for the
basin can be used to reduce the formation of a meniscus. For instance, this was the
case in [87, 88, 149], for which a capillary-free dissipation model for low-frequency
modes recovered the observed damping with good accuracy. We note, however, that
it is not always possible to fine-tune the system to reduce the meniscus, and we must
accept the limitations of analytically predicting the damping in such conditions.
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Chapter 3

A non-linear EFT simulator:
experimental investigations

We build upon one of the cases discussed in Section 2.4 of Chapter 2 and devise a
hydrodynamical experiment to simulate interacting field theories. In the following, we
will describe a non-linear Effective Field Theory (EFT) simulator on a liquid-liquid in-
terface. Our proposed target system is a theory for the post-inflationary thermalisation
of the early Universe, known as preheating, previously discussed in subsection 2.4.3.
We will detail the underlying physical phenomenon that appears in both the simulator
and the target, namely parametric instabilities, which we describe through the EFT
model derived in Chapter 2. The experimental implementation and methods are then
presented, followed by a discussion of the results. The contents of this chapter are
based on the preprint “Primary thermalisation mechanism of early universe observed
from Faraday-wave scattering on liquid-liquid interfaces.” [2], the fruit of a long collab-
oration with Zack Fifer, August Geelmuyden, Sebastian Erne, Anastasios Avgoustidis,
Richard J A Hill, and Silke Weinfurtner.

3.1 Non-equilibrium conditions in the early Universe

Experimental evidence indicates that the Universe is homogeneous, isotropic, flat, and
continuously expanding [119]. However, the precise connection between the initial
singularity of the Big Bang and the observed Universe remains unclear. Inflationary
scenarios are at the centre of the significant efforts of modern cosmology in understand-
ing this link. During inflation, gravity acts as a repulsive force, causing the Universe to
undergo accelerated expansion. Several inflationary models exist, with varying levels
of complexity and degrees of freedom. A simple model involves a scalar field, known
as the inflaton, whose classical evolution of its macroscopic condensate recovers an
appropriate equation of state to source inflation. For suitable choices of potential,

43
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the field evolves slowly in a potential-dominated era while driving inflation. As the
potential energy of the inflaton is converted into kinetic energy, inflation ends, and
the field oscillates around the minimum of its potential. The end of inflation leaves a
cold and empty universe, very different from the thermal Universe filled with matter
that we see today. Hence, the inflationary evolution necessitates a subsequent process
of reheating [117].

Mukhanov argues that the “theory of reheating is far from complete (...) [and] the
overall picture of inflaton decay depends crucially on the underlying particle physics
theory beyond the Standard Model” [119]. The author then reasons that our interest
should be in the final outcome of it, that is, a thermal Friedman Universe with the
large-scale structures seen in the present. Investigating toy models for reheating can
provide insights into the intermediate stages between inflation and the thermal Uni-
verse observed today. During the early phases of reheating, the oscillating inflaton field
parametrically amplifies its quantum fluctuations and other coupled matter fields, re-
sulting in an explosive production of particles known as preheating [150]. This process
exhibits an initial exponential growth of the occupation numbers in a low-momentum
region, called the primary band, followed by a secondary amplification period with
higher momentum modes growing at even larger rates [151].

Upon the completion of preheating, a far-from-equilibrium state is established and
eventually thermalises, completing the reheating period. However, this thermalisation
process results in the loss of significant information about the initial conditions that led
to it. Thus, understanding the role of out-of-equilibrium processes in the early Universe
may shed light on its initial structure. This necessitates a comprehensive description
of the time evolution of Quantum Field Theory (QFT), which cannot be achieved
using standard perturbative solution methods based on early and late-time asymp-
totic behaviours or small deviations from equilibrium [80]. The statistical machinery
of EFTs, particularly through the characterisation and evolution of arbitrary-order cor-
relation functions, offers a tool to systematically study these out-of-equilibrium states,
as demonstrated in pioneering work on ultra-cold atoms systems [67–69].

Preheating represents one example of the wide-ranging far-from-equilibrium pro-
cesses that exist in nature, encompassing phenomena such as turbulence in fluids,
the formation of storms and the growth of snowflakes [152]. As discussed in Chap-
ter 1, these systems have been out of the scope of classical experimental analogues
for gravity and cosmology, and only recently appeared in quantum simulators, e.g.,
see [71, 73, 74]. Here, we extend the premise of these analogues, and instead of con-
centrating efforts on operating in a linear regime, we devise and build an experiment
that seizes the non-linear dynamics inherent to interfacial waves in fluids to simulate
aspects of quantum fields placed in nonequilibrium configurations. With the non-
linear EFT presented in subsection 2.4.3, we create a primary instability through the



Chapter 3. Effective model for interfacial instabilities 45

external parametric driving of the fluid interface and show that certain interfacial modes
experience an effective interaction Lagrangian [109], whose onset of non-linearities is
investigated. By repeatedly running the experiment, we form a statistical ensemble of
the observable, the interfacial height ξ, which allows us to use the methods introduced
in [68, 69] for Bose-Einstein condensates (BECs) to validate the EFT of interfacial
mode-mode interactions in our system.

3.2 Effective model for interfacial instabilities

The investigation of surface instabilities in liquids induced by an external vibration
source has a long history, tracing back to Faraday’s pioneering work in 1831 when he
first observed it in a water-filled cylindrical glass [114]. Faraday discovered that the
unstable surface waves oscillate at half the frequency of the external driver, a phe-
nomenon known as parametric resonance. This behaviour has since been extensively
studied and identified in a wide range of physical systems [153], and can be respon-
sible for dramatic events, such as the collapse of bridges [115], the rolling of ships at
sea [116], and the thermalisation of our Universe 13.8 billion years ago [117, 118, 150].

In general, when a periodic forcing with frequency ωd acts on these systems, their
spectral response exhibits unstable resonance bands at specific frequencies [112].
These unstable bands occur at integer multiples of ω0 ≡ ωd/2 and, within them, para-
metric amplification happens at a common exponential rate. However, the dominant
growth appears at ω0, the so-called primary instability. As the amplitudes increase,
non-linear effects may become significant and restrict the amplification process. As
briefly discussed in Chapter 2, the interface between two fluids subjected to a vertical
oscillatory acceleration is no different to Faraday’s original system and thus undergoes
parametric resonance [106].

We showed in subsection 2.4.3 that the interfacial dynamics of a vertically oscillating
two-fluid system recovers the Mathieu equation [112], which is a particular form of
a more general set of periodically driven equations, or Hill’s equations [113]. Here,
we keep the assumptions that both fluids have the same depth and sinusoidal forcing
acts on the sample cell, but now we allow modes with arbitrary wavelengths and linear
damping. Hence, the linear evolution of interfacial modes ξa is described by

ξ̈a + 2γaξ̇a + ω2
a(t)ξa = 0. (3.1)

with
ω2
a(t) = (ρ1 − ρ2)g(t) + σk2

a

ρ1 + ρ2
ka tanh(kah0). (3.2)

Although less familiar, the equation above is also of the Mathieu form, given that
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g(t) = g0 − F0 cos(ωdt). See Section A.4 in Appendix A for variable definitions that
reduce it to the standard dimensionless form of the Mathieu equation [112, 113].

3.2.1 Floquet analysis

A general approach to Hill’s equations, and thus Mathieu equations as well, is through
Floquet’s theorem [112, 113], which states that they admit two solutions of the form
ξ±(t) = exp(±(λ + iβ)t)ζ(t), where (λ + iβ) are complex Floquet exponents, and
ζ are periodic functions with period 2π/ωd, as a consequence of the periodicity of
F0(t). The two solutions correspond to positive and negative real parts of the Floquet
exponents, and their response is said to be harmonic if β = ±ωd, or subharmonic if
β = ±ωd/2. In both cases, this analysis predicts that, for a fixed driving amplitude
F0, some of the available interfacial ka-modes experience an unstable evolution, i.e.,
they display exponential growth or decay. If we write the periodic component ζ(t) as
a Fourier series with constant coefficients {ζn}, i.e., ζ(t) = ∑

n ζn exp (inωdt), then
the exponentially unstable solution can be written as follows,

ξa =
∞∑

n=−∞
ζa,n exp

(
λat+ in

ωd

2 t
)

, with λa > 0. (3.3)

By applying this form to Equation 3.1, one obtains an eigenvalue problem, whose
eigenvectors are given by the amplitudes {ζa,n}n and the eigenvalues are λa [106, 112].
See Section B.1 in Appendix B for the derivation and discussion of the numerical
procedure. In the following, we employ the definition ωd ≡ 2ω0, and refer to ω0 as
the primary instability frequency.

Before turning to the analysis of solutions (3.3), we briefly revise the geometrical
traits of our system. As in our derivation for a damping model in subsection 2.5.1,
we consider that the two immiscible fluids are confined in an annular cylinder basin.
This geometry suggests that interfacial modes can be decomposed on the basis of
spatial eigenfunctions χa(r, θ) of the 2D Laplacian on the annular disk with Neumann
boundary conditions at vertical walls r = r1 and r = r2, given in Equation 2.56c.
The θ−dependence in the modes is labelled by an integer ma, the azimuthal number,
ranging from −∞ to ∞. Intuitively, it corresponds to the number of troughs and crests
in a standing wave in the angular direction. Additionally, the zeros obtained from the
first derivative of the radial component Ra(r) at the boundaries yield the wavenumber
ka of the mode. Another nonnegative integer label applies in this case: the order na
of the zero corresponding to ka. As in the case of Bessel functions, na indicates the
number of times the radial function Ra(r) crosses zero in the interval r1 ≤ r ≤ r2.
Because the pair of numbers (ma, ka) is unique [139], we can also uniquely label the
interfacial annular modes by (ma, na), i.e., their numbers of azimuthal peaks and radial
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nodes, respectively. In the following, we use the label a to indicate general modes and
the pair (ma, na) when referring to specific mode numbers.

In Figure 3.1, we show the numerical results of the Floquet instability analysis with
the fluid, mechanical and geometrical properties characteristic of the experiment that
we will present in the next section (see Table 3.1). The typical form of instability charts
is shown in panels (a) and (b), cf. [112], with solid lines denoting the critical amplitudes
F0 with respect to gravity g0 where modes ka can cross between the unstable (shaded)
and stable evolution bands. We say the modes undergo parametric resonance (or
instability or amplification) in the shaded regions. As expected from Equation 3.3, we
observe in Figure 3.1 instability bands around all integer multiples of half the driving
frequency, ω0, and their corresponding wavenumbers. We also note that the width
of these resonance regions decreases as the frequency increases. Indeed, a general
result of Floquet analysis is decreasingly small instability coefficients for increasing
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Figure 3.1: In (a) and (b), we display the instability charts for the critical forcing amplitudes
F0/g0 as a function of the wavenumber and frequency of the modes, respectively. Inside
the shaded yellow regions, the modes experience unstable evolution. Solid yellow lines
denote the transition to the stable regions with increasing damping, with the innermost line
having the stronger damping. The lowest outermost curves have no damping and serve
as a boundary between the stability domains. The average amplitude of the experiment
F0 = 0.352(5)g0 = 3.45(5) m s−2 is shown by the horizontal shaded line. Its intersection
with the outermost instability curves creates a band, which we represent by a shaded grey
vertical region in all panels. For reference, panels (c) and (d) have the estimated discretised
spectrum of wavenumbers ka and corresponding frequencies ωa of the azimuthal modes ma

in the spatial eigenfunctions χa(r, θ). The lines in (c) and (d) connect wavenumbers ka
with constant order na, starting from zero. In (e) and (f), the instability coefficients λa for
F0 = 0.352(5)g0 in the case without damping (yellow line) and with the damping model γa
of subsection 2.5.1. Coloured squares highlight the predicted unstable modes in the presence
of damping.
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frequencies [112].
This chart has two critical features in its application to our system. First, for a fixed

forcing F0, damping effectively narrows the instability bands. It also shifts their centres
towards higher momenta, as seen by the higher yellow curves crossing the purple line
of constant acceleration. Another perspective is that when considering two modes
with similar wavenumbers ka ∼ kb but with different damping rates, the one more
damped needs a higher forcing amplitude F0 than the less damped one. This concept
has been observed in experiments, e.g., [106, 154]. The second feature concerns the
reduced density of states in our system. As discussed in Chapter 2, the confined
geometry of the basin enforces a discretisation of the eigenvalues of the 2D Laplacian,
i.e., the solutions χa(r, θ) as in Equation 2.18, through boundary conditions at the
walls. For higher momenta, we observed in Figure 2.6, and here in Figure 3.1(c-d), the
interfacial wavenumbers ka are densely packed and increasingly close to each other.
However, the modes are coarsely spaced for lower ka. This coarsening at low momenta
results in fewer modes fitting inside the most prominent instability bands, i.e., those
at lower frequencies. Hence, in our context, a broader instability band centred around
low momenta will not necessarily entail a broad band of modes undergoing parametric
amplification, as it would be in a system without boundaries and with a continuous
spectrum.

Finally, we stress that the lines of constant damping are merely for conceptual rigour.
In reality, the modes present varying damping rates according to their wavenumbers,
as discussed in subsection 2.5.1. Hence, even inside a narrow frequency resonance
band, modes may dampen at different rates. We depict this variation in Figure 3.1(e-
f), where the Floquet instability coefficients λa were computed using the average
forcing amplitude of the experimental setup. We first disregarded any dissipation (yel-
low crosses) and observed that, in the first resonance band, the modes (ma, na) =
{(3, 1), (4, 1), (5, 1), (6, 0), (7, 0), (8, 0)} display positive coefficients λa, and hence
should undergo exponential growth in the absence of damping. Also, in the second
band, for azimuthal numbers ma < 12, the modes (ma, na) = {(6, 4), (7, 4), (8, 4)}
were unstable. Conversely, when using the damping model of Equation 2.63 (red
crosses and coloured squares), we noted a strong suppression of the instabilities in
higher wavenumbers. In fact, the only remaining unstable modes were (ma, na) =
{(3, 1), (4, 1), (7, 0), (8, 0)}.

From the results in Figure 3.1(e-f), we see that the modes (4, 1) and (7, 0) sit
very close to each other in the centre of the primary instability band with predicted
wavenumbers k4,1 ≃ (2π)0.35 cm−1 and k7,0 ≃ (2π)0.34 cm−1, respectively. Their
amplification rates λa, however, are not exactly the same, especially when damping is
present. In the absence of damping (yellow crosses in Figure 3.1(e-f)), their estimated
rates are λ4,1 ≃ 1.61 s−1 and λ7,0 ≃ 1.62 s−1. The damping model in Equation 2.63
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predicts decay rates for these modes of γ4,1 ≃ 0.92 s−1 and γ7,0 ≃ 0.88 s−1, and hence
their instability rates reduce to λ4,1 ≃ 0.70 s−1 and λ7,0 ≃ 0.74 s−1 (red and dark blue
squares in Figure 3.1). Quantitatively, this means that if both interfacial modes have
the same amplitude as the driver starts, after 100 cycles of oscillation, the amplitude
of the mode (7, 0) will be approximately 2.13 times larger than that of (4, 1). In
practice, due to the fluctuating character of the interface, as introduced in Chapter 2,
we will see that the modes will not start from the same initial state amplitude, and
it is possible to explore conditions where the unstable evolution of one of the modes
dominates over the others.

3.2.2 Dominant and subdominant non-linear instabilities

Within the assumptions of this chapter, the interfacial evolution of the modes is de-
termined by the truncated non-linear Lagrangian (2.29), which reduces to

L

Σ = 1
2
∑
a

ρ1 + ρ2

ka tanh(kah0)
(
ξ̇2
a − ω2

a(t)ξ2
a

)
+ 1

2
∑
a,b,c

(ρ1 − ρ2) Acabξcξ̇aξ̇b

+ 1
4
∑
a,b,c,d

[
(ρ1 + ρ2) Acdabξ̇aξ̇b + σ

2 Babcdξaξb

]
ξcξd, (3.4)

with coefficients

Acab = Ccab

(
1 + k2

c − k2
a − k2

b

2kakb tanh(kah0) tanh(kbh0)

)
, (3.5a)

Acdab = −ka tanh(kah0) + kb tanh(kbh0)
kakb tanh(kah0) tanh(kbh0)

(Dabcd + Dcdab)

+1
2
∑
e

(k2
e + k2

a − k2
c )(k2

e + k2
b − k2

d)
kaTj,akbTj,bkeTj,e

CcaeCdeb , (3.5b)

and Raleigh’s dissipation function [130]

Q0

Σ =
∑
a

ρ1 + ρ2

tanh(kah0)
γaξ̇

2
a. (3.5c)

We stress that the Lagrangian above implicitly entails that, in the infinite discretised
spectrum of interfacial waves, the evolution of a single mode is intertwined with the
dynamics of infinitely many others. This unveils the inherent complexity of interacting
systems, and such an impractical aspect of a non-linear description is what motivates
us to approach it from an even more approximate perspective. We then limit this
endless intricacy to the study of dominant-subdominant counterparts of the interfacial
dynamics, as proposed in [155, 156]. Following the final discussion of the previous
section, we now devise a scenario where, in a set of interfacial modes {ξa} undergoing
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parametric resonance, one of them, ξD, grows dominantly over the others. Specifically,
we require the amplitude of the latter to be at least one order of magnitude (10 times)
larger than that of the former ones, i.e., |ξD| ≫ |ξa|, for a ̸= D.

As argued in the example of subsection 2.4.3, the coefficients Acab, Acdab and
Bcdab act as momentum conservation constraints. As shown in their definitions above
and in Equation A.37, they are proportional to integrals of products of the spatial
functions χa(r, θ) over the horizontal cross-section of the basin. For instance, the
cubic coefficient Ccab reads

Ccab = 1
Σ

¨
dr rdθχcχaχb ∝

ˆ π

−π
dθ cos(mcθ) cos(mbθ) cos(maθ) ∝ δmc,±|ma±mb|.

(3.6)
Thus, similarly to Equation 2.50 for the rectangular basin, in cylindrical geometries,
the following constraints apply,

Acab ∝ δmc,±|ma±mb|, (3.7a)

Acdab,Bcdab ∝ δ±mc±md,±ma±mb
. (3.7b)

Note, however, that no explicit restrictions on the second mode number na, and hence
ka, appear, in contrast with the rectangular symmetry. In the cylindrical case, the
coefficients satisfying the delta relations above have to be computed numerically, and
their values will determine the constraints on the wavenumbers.

In the presence of the dominant mode ξD, we now consider that the self-interaction
of the remaining modes ξa is negligible compared to ξD. Hence, from the Euler-
Lagrange equations for the system above, one finds the corresponding equations of
motion for an arbitrary mode ξa, including ξD itself, which read

ξ̈a + 2γaξ̇a + ω2
a(t)ξa

+ 1
2A12ka tanh(kah0)

[
(2ADDa − AaDD) ξ̇2

D + 2ADDaξDξ̈D
]

+ 1
2ka tanh(kah0)

[
(2ADDDa − AaDDD) ξDξ̇2

D + ADDDaξ
2
Dξ̈D

]
− 1

2
σ

ρ1 + ρ2
ka tanh(kah0)BDDDaξ

3
D ≃ ηa(t), (3.8)

where A12 = (ρ1 − ρ2)/(ρ1 + ρ2) is the Atwood number. We have included a new
quantity ηa(t), which is a stochastic noise term as discussed in Chapter 2. It encom-
passes the coarse-graining of the microscopic dynamics, which is dominated by random
molecular motion, resulting in a jittering interface. We note two interesting cases of
the equation above, which we analyse through a generic formula for the dynamics of
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ξa given by

ξ̈a + (2γa + γ̃a[ξ]) ξ̇a +
(
ω2
a(t) + δ̃a[ξ]

)
ξa = ηa(t) + η̃a[ξ], (3.9)

with nonlinear damping γ̃a[ξ], frequency detuning δ̃a[ξ] and source η̃a[ξ] terms appro-
priately identified in each case.

First, since the amplitude of the dominant mode grows larger than all others, it is
reasonable to consider that its evolution is not influenced by the remaining interfacial
modes. Naturally, this assumption can only be valid as long as their amplitudes are
not comparable to the dominant one. Hence, by disregarding its interaction with other
modes, ξD will approximately satisfy Equation 3.9 upon identifying a ≡ D and with
the following nonlinear terms

γ̃D[ξ] ≈ −γDkD tanh(kDh0)ÃDξ
2
D, (3.10a)

δ̃D[ξ] ≈ 1
2kD tanh(kDh0)

[
ÃD(ξ̇2

D − ω2
D(t)ξ2

D) − σ

ρ1 + ρ2
B̃Dξ

2
D

]
, (3.10b)

η̃D[ξ] ≈ 0, (3.10c)

where ÃD ≡ ADDDD and B̃D ≡ BDDDD. As Miles points out in [85], the equation of a
single self-interacting and dominant interfacial mode resembles that of a parametrically
forced and viscously damped pendulum in weakly nonlinear motion, with an effective
length proportional to k−1

D coth(kDh0). The fluid system, however, offers the possibility
of interaction between the various pendulum-like interfacial modes.

In the second case, we consider a mode ξa whose azimuthal number is the same as
that of the dominant, i.e., ma ≡ mD. Thus, the quadratic terms in Equation 3.8 will
vanish unless mD = 0 by virtue of the angular conservation conditions Equation 3.7,
i.e., ADDa,AaDD ∝ δmD,±|mD±mD| ≡ 0, for mD ̸= 0. In our discussion, we do not
consider the case of an axisymmetric (m = 0) dominant mode, i.e., mD ̸= 0, as it is the
only one interacting with itself at cubic order in the Lagrangian, and thus experiences
stronger non-linear frequency detuning and damping, even for small amplitudes [154].
Under these conditions, the dynamical evolution of a subdominant mode ξa follows
from Equation 3.9, with non-linear coefficients given by

γ̃a[ξ] ≈ 0, (3.11a)

δ̃a[ξ] ≈ 0, (3.11b)

η̃a[ξ] ≈ 1
2ka tanh(kah0)

ADDDaξDξ̈D + (2ADDDa − AaDDD)ξ̇2
D

− σ

ρ1 + ρ2
BDDDaξ

2
D

. (3.11c)
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The equations above indicate that the dominant mode sources the motion of ξa through
η̃a. We also note that the infinitely many discretised matrix components Acdab and
Bcdab reduced to the three elements shown above, i.e., ADDDa, AaDDD and BDDDa.

The predictions of the models presented in this section, both for the instability and
non-linear analysis, will be put in contrast with experimental observations later in this
chapter. We will also discuss how some of the non-idealised aspects of our experiment
that are not accounted for in the modelling appear. Regardless of the limitations
of piecing together an EFT and comparing it to an experiment, we will show that
dynamical features of the target system may still be observed under the scope of the
proposed EFT. In the following section, we discuss the experiment that allowed us to
empirically verify these statements and validate the theory through statistical methods.

3.3 Experimental setup and methods

A general view of the setup is depicted in Figure 3.2. A fluid sample cell (1) contain-
ing two immiscible liquids is placed on a shaking platform suspended by four springs
and guided by four metal rods with pneumatic air bearings (4). Compressed air flows
through the bearings, allowing the platform to move virtually frictionless and compos-
ing a spring-mass system forced by a voice-coil actuator (3). The rods, springs and
the actuator’s coil base are firmly attached to an outer metal frame, placed on an ac-
tive noise-cancelling table. These components form the mechanical vibration system
that oscillates the fluid cell. Independently connected to the outer frame, an array
of 225 densely packed red LEDs (2) illuminates the sample from below. Their light
goes through the glass windows of the cell and the fluids, reflects from a 45◦ mounted
mirror (5), and finally reaches a camera (6) in the distance. These components form
our imaging system.

A static checkerboard pattern sits on the light source and is imaged by the camera.
As waves form at the two-fluid interface, the images of the pattern are distorted
in a way that allows us to reconstruct its 3D profile through a modified detection
scheme that we will discuss later in this section and in Chapter 4. Experimental
control and acquisition were done through a centralised script interfacing with a data
acquisition card1, allowing for the automated and synchronised repetition of individual
runs. In Figure 3.3, we illustrate the timeline of 1500 realisations in one experiment and
the pipeline of acquisition and analysis. The associated datasets will be presented and
explored throughout this chapter. In the following, we discuss the different components
of the experimental design and the technical methods used for running the experiment,
acquiring data and processing it.

1National Instruments DAQ PCIeX card
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Figure 3.2: Illustrative schematics of the experimental setup, with dashed rectangles
indicating its main components. (1) Annular cylinder two-fluid sample cell. (2) Back-
lighting LED array with a checkerboard pattern on top. (3) Voice-coil actuator used for
driving the spring-mass system. (4) Springs attached to the outer frame and lower vibration
plate, which is allowed to move vertically due to pneumatic air bearings guided by vertical
rods. (5) 45-degree slanted mirror for imaging the sample. (6) Camera used for recording
the interface from a large distance.
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Figure 3.3: Overview of the experimental acquisition and processing pipelines. Columns
from left to right: (First) Portrayal of the 50-hour long timeline of 1500 runs with approx-
imately 120 seconds each. (Second) Typical acceleration profile F (t) of the sample cell
during a repetition, with an initial resting time of 6 seconds (turquoise region), followed by
160 oscillations of the platform plus the decay period, resulting in 35 seconds of vibration
and relaxation of the system (maroon region). Finally, the sample is allowed to rest for a
dead time of 80 seconds (grey region). (Third) Depiction of the acquired array of frames
with images of the two-fluid interface at a rate of 100 frames per second during the first
two sections of each repetition. (Fourth) The first 600 images are used to create a time-
averaged reference of the resting interface, shown in the lower turquoise square. In each
repetition, a dim LED indicator was turned on with the actuator to signal the start of the
driving period, allowing for synchronising the images with the acceleration data. The sub-
sequent 3500 frames where the indicator appears are then individually compared with the
reference. A sample image of the driven interface is shown in the top maroon square. (Last)
Three-dimensional profile of the two-fluid interface obtained from the sample and reference
images after digital processing.
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3.3.1 Vibration platform and mechanical performance

In order to evaluate and monitor the mechanical performance of the vibration platform,
three-axis acceleration measurements were acquired over time from an accelerometer
mounted to the fluid cell plate. We denote the forcing that the actuator produced on
the fluid cell by F (t) and decompose it into a vertical amplitude, F0(t), and a compo-
nent in the horizontal direction, F̃ (t), with amplitude F̃r ≡ |F̃ |. A sample measure-
ment of F (t) is shown in Figure 3.4, where we see in panel (a) that F0(t) displays the
typical transient envelope of a driven damped oscillator around resonance [157, 158].
After a few seconds of driving, the vertical acceleration reaches a steady sinusoidal
state F0(t) ≈ F0 cos(ωdt), with approximately constant amplitude F0 and frequency
ωd. Once the actuator turns off at 26 seconds, the system dampens back to its resting
position, granting F0(t) with a characteristic exponential decay tail.

Since the maximum sinusoidal response happens around the resonance, we find it by
sweeping through various driving frequencies until a maximum steady-state oscillation
amplitude F0 is reached. We can extract it from the measured quantity F0(t) by
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Figure 3.4: (Top left) Depiction of the forcing acceleration vector F̃ with an exaggerated
deviation from the z−direction. Typical acceleration profiles measured in an example exper-
imental run in the vertical and horizontal directions are shown in (a) and (b), respectively,
with matching colours as the vectors on the left. In (c), we display the frequency spectrum
of each component over a window between 5 and 26 seconds relative to the onset of the
drive at t = 0 obtained from the Fourier transform in time, Ft[F ]. The fundamental res-
onance frequency of the oscillation was at 6.07 Hz, coinciding with the dominant spectral
component.
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computing its Fourier transform in time, Ft[F0](ω), and examining its spectrum, where
an amplitude peak should appear around the oscillation frequency. In Figure 3.4(c),
the Fourier spectrum of all three acceleration components is shown. As expected, the
most prominent peak appears at ωd = (2π)6.07 Hz, and its amplitude corresponds to
that of the steady-state oscillation, i.e., F0 = |Ft[F0](ωd)|. A similar analysis applies
to the oscillation amplitudes of horizontal components.

We evaluated the quality and performance of our bespoke vibration platform through
two measures. First, we required that the oscillating acceleration exhibited a steady-
state profile as sinusoidal as possible, i.e., the Total Harmonic Distortion (THD) of
the oscillator was minimal. The THD of a signal is defined as the ratio between its
amplitude accumulated over all harmonics and that of the fundamental frequency [159,
160], i.e.,

THD =

√∑
n≥2 A2

nωf

Aωf

, (3.12)

where Anωf
denotes the signal amplitude of the n−th harmonic of the fundamental

frequency ωf . This quantity measures to what degree a signal deviates from an exact
sinusoidal profile. Hence, for sine or cosine waves, the THD is zero, whereas, for
instance, a periodic rectangular wave has THD ≈ 48.4% [159]. In our system, the
amplitudes Anωf

are obtained from the Fourier spectrum of the acceleration through
the procedure described before (peaks in Figure 3.4(c)).

Second, to keep proximity with the theory presented in Chapter 2, we needed to
confine the motion of the sample cell to the vertical direction, i.e., reduce the hori-
zontal components of the acceleration F (t). For that, the outer frame was built on
adjustable levelling feet, which, together with accelerometer measurements, enabled
its alignment with respect to the z−direction, i.e., the axis of gravity. Following in-
dustry standards [161], we measured the deviation of F (t) from ẑ by the cross-axis
ratio,

racc = F̃r
F0
, (3.13)

i.e., the ratio between the horizontal and vertical oscillation amplitudes at the driving
frequency.

For all 1500 repetitions during the experiment, both measures and the vertical am-
plitude F0 are shown in Figure 3.5. In panel (d), we also display the measured ambient
temperature for reference. In panel (b), we observe a consistent distribution of the
cross-axis ratio racc, which averaged to 0.396%±0.004%. These values are way better
than the industry standard of 10% [161] in our frequency range and comparable to
those in [162], reassuring the performance quality of our vibration platform in reduc-
ing cross-axis motion. Similarly, the THD in panel (c) averaged to 1.34% ± 0.008%
(cf. [162]), reinforcing that the steady oscillation profile throughout the entire exper-
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Figure 3.5: Mechanical performance measures of the vibration platform over 1500 reali-
sations during approximately 50 hours. All measures were computed with values extracted
during the steady-state region of the oscillations, and each marker corresponds to one repeti-
tion. In (a), we show the evolution over the experiment of the vertical acceleration amplitude
F0 extracted from the fundamental frequency at 6.07 Hz. Similarly, (b) and (c) respectively
display the cross-axis ratio racc of (3.13) and total harmonic distortion (THD) of (3.12).
The ambient temperature T throughout the experiment is shown in (d) for reference. In all
panels, the shaded regions indicate the uncertainty of the respective quantities.

iment is indeed close to an ideal sinusoidal one. Both quantities indicate that the
acceleration of the vibration platform in the steady-state region can be well approx-
imated by F (t) = F0 cos(ωdt)ẑ. Finally, we note that a clear trend appears in the
driving amplitude F0 (see Figure 3.5(a)), which we could also identify in the am-
bient temperature (Figure 3.5(d)). However, this evident correlation between these
two quantities does not seem to have affected the cross-axis motion or the harmonic
quality of the vibration system. Additionally, regardless of its trend, the amplitudes
throughout the experiment remained within ±1.5% of the average 3.45 m s−2. As we
will later discuss, these variations in the acceleration amplitudes did not result in any
dramatic deviation from the expected interfacial dynamics. Accordingly, the desired
qualitative behaviour persisted throughout the repetitions, and quantitative deviations
were accounted for when using the theoretical model.

3.3.2 Sample cell, biphasic solution and their properties

The two liquids were completely sealed in a custom closed annular cylinder basin with
depth 2h0 = 35 mm, as in Figure 2.5. The inner and outer cylinders of the sample
cell, with radii r1 = 20 mm and r2 = 40 mm, were machined from solid nylon, and the
transparent top and bottom windows were machined from transparent polycarbonate.
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In order to precisely control the relative fluid depths and ensure an uncontaminated
sample cell, the basin was filled using threaded Luer lock [163] adapters and precision
syringes. This procedure also prevented air bubbles from appearing while ensuring an
unpolluted interface.

When selecting the fluids used in this setup, some considerations were neces-
sary to guarantee that the assumptions in Chapter 2 were, at least partially, ful-
filled. The condition of immiscibility is readily satisfied by many binary fluid systems,
e.g. [88, 164, 165], with varying degrees of interfacial tension and viscosity. We chose
a biphasic solution consisting of an ethanol-water (organic) phase as the upper fluid
and a potassium carbonate (aqueous) phase as the lower fluid [166]. The homoge-
neous mixture between water and aliphatic alcohols, such as ethanol, can undergo
phase separation through a process called salting out, where an inorganic salt, such as
potassium carbonate, is added to the mixture. The high ionic strength of the dissolved
salt pushes alcohol molecules away from their hydrogen-bonded water molecules. The
solution eventually reaches a liquid-liquid equilibrium, where the salt concentration is
negligible in the organic phase and similarly for the alcohol in the aqueous phase.

Since the water molecules are highly soluble in both solutions, the interface between
them is smeared and largely dependent on the concentrations of each component. Fol-
lowing the procedure described in [166], we observed a visible interface in a solution
prepared with the concentration in line 2 of Table 1 in [166]. Accordingly, each kilo-
gram of the biphasic solution was prepared with 310 g of ethanol (Fisher Chemical:
E/0600DF/15), 540 g of distilled water (Gibco™ 15230001), and 150 g of anhydrous
potassium carbonate (Fisher Chemical: P/4080/60). The preparation is done in con-
trolled conditions to prevent contaminants in the bulk of each phase and deposits at
their interface. The dissolution of the salt in the ethanol-water mixture is exothermic
and raises the temperature of the solutions from room temperature (20 ◦C) to approx-
imately 30 ◦C. Thus, the final biphasic solution was allowed to settle for several hours
to cool down before samples were taken from the lower and upper phases to fill the
sample cell.

For reference, some physical properties of both phases are shown in Table 3.1 with
their estimated uncertainties. The densities ρj were measured using density bottles
(BRAND® BLAUBRAND®: BR43328), and their kinematic viscosities νj, using a U-
tube viscometer (Poulten Selfe™: 1619/02) for low-viscosity fluids. The interfacial
tension σ between the liquids was estimated using the pendant drop method [167].
Finally, a digital refractometer (Kern: ORF) was used to measure the refractive indices
nj of each phase.
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Table 3.1: Measured fluid properties (ρj : density; νj : kinematic viscosity; nj : optical
density or refractive index; σ: interfacial tension of the liquid-liquid interface) with their
uncertainty at 20 ◦C. The index j = (1, 2) labels the separate fluid phases.

Property Fluid 1 (lower phase) Fluid 2 (upper phase)

ρj [kg m−3] 1276(10) 907(7)

νj [mm2 s−1] 2.35(3) 3.28(1)

nj [ ] 1.385(2) 1.364(2)

σ [mN m−1] 2.5(5)

3.3.3 Imaging system and detection scheme

To reconstruct the profile of the two-fluid interface, we employed a variant of the
two-dimensional Fourier Transform Profilometry [89], adapted to the particularities of
our setup. A brief presentation of the literature underlying this method will be given
in Chapter 4, while here we discuss its implementation in our setup. As shown in Fig-
ure 3.2, a camera (Phantom® VEO 640) is placed at a distance of 1.5 m from the
slanted mirror, hence effectively sitting 1.8 m away from the light source, imaging a
region of approximately 10 cm by 10 cm. This large aspect ratio between the pattern-
camera distance and the field of view prevents optical distortions and aberrations in
the digital images of the setup, which is a requirement of the method [168]. A bespoke
array of bright red LEDs allows for enough light to go through the semi-transparent
checkerboard pattern and reach the camera. This condition is also important, as the
method is sensitive to the contrast between dark and bright spots of the pattern [169].
The colour of the LEDs was appropriately chosen to match the peak response wave-
length of the camera sensor.

We note the periodicity of the checkerboard reference pattern in Figure 3.3 and
express its image I0 as follows [89],

I0(x) = Re {exp (ik1 · x + ik2 · x)} , (3.14a)

where k1 and k2 are wavevectors identifying the spatial frequencies of the pattern in
the horizontal and vertical directions of the image, whose pixel coordinates are x. As
the basin oscillates, waves appear on the two-fluid interface and, from the top view
of the cell, cause the pattern to appear distorted, as in Figure 3.3. We interpret this
distortion as a modulation in the phase of an image It, as follows,

It(x) = Re {exp (ik1 · (x + δx) + ik2 · (x + δx))} , (3.14b)
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where δx denotes an apparent shift in the pattern position caused by the curved inter-
face. We will detail in Chapter 4 how this shift can be extracted from the modulated
frame It by digitally processing it in comparison with the reference I0. Additionally, we
will show that it can then be approximately related to the gradient of the interfacial
height change ξ(t,x) by [168]

δx ≈ −hp
(

1 − n2

n1

)
∇ξ, (3.14c)

where nj is the refractive index of fluid layer j, and hp is the apparent distance between
the background pattern and the interface given by hp = h0 + n1dp + ℓwn1/nw, with
dp the physical distance between the pattern and the bottom of the cell, and ℓw

and nw are the thickness and refractive index of the bottom window. We further
note that our setup requires a modification of the standard method [89, 168]: as the
sample platform oscillates, the pattern-basin distance dp becomes time-dependent. We
compute it approximately from the acceleration data through dp(t) ≈ d0 − F0(t)/ω2

d,
where d0 is the pattern-basin average resting position.

This detection scheme effectively yields the difference between the interfacial height
ξ at the time of the target frame and at the reference time (see subsection 4.2.3
for details). In our setup, at each repetition, we obtain the latter by averaging the
first 600 images acquired before the actuator starts driving the system, as illustrated
in Figure 3.3. The advantage of this approach against using a single-image reference
is twofold. First, it averages out the detection noise of the camera sensor, effectively
reducing the overall noise of the reference image. Second, it averages out modulations
in individual images caused by small fluctuations of the undisturbed interface, creating
a virtually flat interfacial height reference.

In the present dataset, the images have a square aspect ratio of 1024 by 1024
pixels. The high-contrast images combined with the careful alignment of the imaging
system allow us to determine the centres and radii of the inner and outer cylinders with
precision down to one pixel. If alignment is appropriately performed, the centres of
both cylinders should coincide in the image. With the physical size difference between
inner and outer radii, we determined that one pixel corresponds to ℓpx = 86.6(6) µm.
This value can then be used as a scale conversion between the digitally extracted
apparent spatial shift δxpx, given in pixel units, and the physical shift δx, given in
length units, that can be used in Equation 3.14c to recover the physical interfacial
height ξ.
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3.3.4 Data Analysis and spectral decomposition

With the methods above, we could reconstruct the three-dimensional profile of the
two-fluid interface with respect to its averaged undisturbed position at z = 0 for each
repetition of the experiment, as in the last column of Figure 3.3. The output of the
numerical reconstruction of the nth run of the experiment was an array corresponding
to the interfacial height changes ξ(t,x) in cartesian coordinates x = (x, y) of the
image grid. Given the geometry of the fluid cell, we interpolated the height array into
a grid of polar coordinates x = (r, θ) defined in between the cylindrical walls, effectively
carrying out a coordinate transformation of ξ. In this transformation (x, y) → (r, θ),
the cartesian grid with N ×N elements and coordinates Xj = j/ℓpx and Yl = l/ℓpx,
for j, l ∈ (0, 1, · · ·N − 1), was mapped into another grid with Nr × Nθ elements
and coordinates Rj = r1 + (r2 − r1)j/(Nr − 1) and Θl = π (−1 + 2l/(Nθ − 1)), for
j ∈ (0, 1, · · ·Nr − 1) and l ∈ (0, 1, · · ·Nθ − 1). For the experiment presented here,
N = 1024, Nr = 200 and Nθ = 128. As previously mentioned, the interfacial height
was reconstructed throughout the driving period of the repetitions, with duration
T0 = 35 s. Image acquisition was performed at 100 frames per second, resulting in a
total of Nt = 3500 frames per experimental run. After the coordinate transformation,
the n−th repetition had an associated array with digitally reconstructed height field
Ξn[i, j, l] = ξ(n)(Ti, Rj,Θl), for j ∈ (0, 1, · · ·Nr − 1), l ∈ (0, 1, · · ·Nθ − 1) and the
time array Ti = iT0/(Nt − 1), with i ∈ (0, 1, · · ·Nt − 1).

The spectral decomposition of the real-valued interfacial height ξ(t, r, θ) may be
written in our model as

ξ(t, r, θ) = Re
√

Σ
∑

m,n≥0
NmnRmn(r)ξmn(t)eimθ

 , (3.15)

where we adopted the azimuthal and radial-node numbers m and n of the cylin-
drical mode-decomposition as labels for the interfacial modes. Now, the gener-
alised coordinates ξmn are complex-valued, hence the real part in the equation above.
The equation does not correspond exactly to what can be extracted from experi-
mental data but serves as a reference to the quantities we want to obtain from
it. Our analysis pipeline starts with the reconstructed height of a single repetition
ξR(t, r, θ) in correspondence with ξ above. First, we fix the time and radial compo-
nents and perform a Discrete Fourier Transform (DFT) [160], implemented through
the Fast Fourier Transform (FFT) algorithm [170], in the angular direction, denoted
ξR,m(t, r) ≡ Fθ[ξR(t, r, θ)](t, r,m). Since ξR is a real-valued signal, its DFT is sym-
metric, i.e., even in the azimuthal numbers, ξR,m = ξR,−m [160]. Thus, it suffices
to consider only one of the branches in the spectrum, which we chose to be m ≥ 0.
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Accordingly, the decomposition of the reconstruction reads

ξR(t, r, θ) = Re
∑
m≥0

ξR,m(t, r)eimθ
 , (3.16a)

where ξR,m are complex-valued Fourier coefficients.
For the second step of the analysis, we inspect the time-frequency spectrum of a

single azimuthal amplitude ξR,m at fixed radii. A time DFT of this quantity yields its
Fourier decomposition as follows,

ξR,m(t, r) =
∑
ω

ξ̃R,m(ω, r)e−iωt, (3.16b)

in the discrete set of Nt frequencies ω in the interval 2π(Nt/T0) × [ − 1/2, 1/2) [160].
At each radial point, the amplitude ξ̃R,m(ω, r) informs us of the frequency con-
tent of each azimuthal mode in the duration of one repetition. It is also possi-
ble to build a root mean squared (RMS) quantity with it, defined by the average
|ξ̃R,m|r(ω) =

√
⟨|ξ̃R,m|2⟩r, where ⟨·⟩r denotes the average over the radial coordinate.

Another way of investigating the time-frequency dependence of azimuthal waves is
through a spectrogram, or scaleogram, of the signal [171]. It consists of a represen-
tation of the frequency spectrum as it varies with time and is particularly useful for
signals whose frequencies themselves or their amplitudes change over time. We opt to
do this procedure by employing continuous wavelets [171], which, in essence, work as
a moving band-pass window in the Fourier domain centred around specific frequencies
(scales), thus mapping their variations over time. In other words, the outcome of this
analysis is a time-dependent envelope bm,ω(t, r) around ω satisfying

ξR,m(t, r) =
∑
ω>0

(
bm,ω(t, r)e−iωt + bm,−ω(t, r)eiωt

)

=⇒ ξR = Re
 ∑
ω>0,m≥0

(
bm,ω(t, r)e−i(ωt−mθ) + bm,−ω(t, r)ei(ωt+mθ)

) . (3.16c)

As defined above, the instantaneous amplitudes bm,±ω are in analogy with quasi-particle
amplitudes in QFT and denote counter-clockwise (positive frequency) and clockwise
(negative frequency) propagating waves. In this sense, Equation 3.16c simply states
that a standing azimuthal wave ξm may be decomposed as two interfering waves
propagating in opposite directions.

The equations above constitute the core of our data analysis, which allowed us to
extract the theoretically relevant quantities from the experimental reconstruction. We
should note that the radial dependence has not yet been considered, but it will play
a role in the later discussions of the results section. By comparing equations (3.16)
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with Equation 3.15, we expect that quantities bm,ω may be approximated by

bm,ω(t, r) ∝
∑
n≥0

b̃m,ωmn(t)Rmn(r)δωmn,ω, (3.17)

for some undetermined instantaneous amplitudes b̃m,ω(t), and the Kronecker delta
restricts the (m,n) modes whose dispersion frequency ωmn are close to ω. This is an
approximation in the sense that, as previously discussed, the existence of a meniscus
with vertical walls and viscous boundary layers at the interface result in a deviation
from the theoretically modelled profile in terms of cylindrical Bessel functions satisfying
Neumann boundary conditions. Nonetheless, the overall trend of the radial wave should
resemble that of Rmn(r) and hence display an oscillatory behaviour within the slice
r1 < r < r2. Thus, we opted to examine the radial dependence through the Fourier
transform, i.e., Fr[bmn(t, r)](t, kr). It should be stressed that the spectrum obtained
from this operation is only indicative of the typical wavelengths in the signal, and the
radial wavenumber kr does not equal the mode wavenumber kmn. We argue, however,
that this analysis can be used to draw qualitative conclusions from the data in the
absence of a more refined digital decomposition in terms of radial eigenfunctions.

3.3.5 Statistical measures

The fluctuating stochastic behaviour of the two-fluid interface will inevitably cause
variations between the 1500 repetitions. Due to the intermolecular interactions at
the interface, this feature would persist even in an idealised situation where all noise
sources are eliminated, and experimental parameters are kept constant. Hence, the set
of reconstructed interfacial height profiles composes a statistical ensemble of randomly
distributed variables. The various amplitudes obtained from the spectral decomposition
of the measured quantity, as described above, can also be treated in a similar fashion.
Along the lines of our EFT, we propose utilising the statistical machinery commonly
employed in field theories to our setup. In particular, we operate with two-point
functions and the factorisation of higher-order correlation functions [121].

Let {Xi} be a set of randomly distributed variables forming a statistical ensemble,
which could correspond in our system to a set of azimuthal mode amplitudes ξm or
envelopes bm,ω. We denote ensemble averages by ⟨·⟩ and define the statistical moment,
or full correlation function, of a subset of N variables X = (X1, . . . , XN) as

G(N)(X) = ⟨X1 · · ·XN⟩. (3.18)

If the components of the vector X are all random independent variables amongst
them, this quantity has the distinguishable property of completely factorising in terms
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of products of lower order moments G(N ′), with N ′ < N [121]. In quantum systems,
the components of X may be the mode amplitudes of a quantum field or a collection
of quantum many-body states. Hence, in these cases, factorising correlation functions
indicate independent degrees of freedom and thus the absence of interactions between
them [109, 172]. Further, quantum Gaussian states, and more generally, Gaussian
ensembles of independent random variables, are fully characterised by their mean and
variance. In other words, they are fully characterised by their first two moments
G(1)(X) and G(2)(X), so all higher-order correlations G(N)(X), for N > 2, can be
entirely factorised in terms of G(1)(X) and G(2)(X). For a quantum system, this is
equivalent to applying the Wick decomposition [172].

In more general conditions, where interactions play a role, the evolution of the
random variables X is tainted by non-linearities in their equations of motion, such
as in our system, ultimately breaking their statistical independence. Hence, the full
correlation functions G(N) can be decomposed into [121, 172]

G(N)(X) = ⟨X1 · · ·XN⟩c + ⟨X1 · · ·XN⟩d ≡ G(N)
c (X) +G

(N)
d (X). (3.19)

Here, we have employed the notation of quantum systems, where the first term G(N)
c

denotes the connected part of the correlation functions, also called statistical cu-
mulants. In QFT, G(N)

c corresponds to the contributions from connected Feynman
diagrams, hence the name, with N external lines which cannot be broken down into
two-point correlators. Thus, we refer to the second term G

(N)
d as the disconnected

correlation function, i.e., the component that can be fully factorised in terms of corre-
lation functions with order N ′ < N . There exists no simple formula for the cumulants
at all orders N , but they can be computed recursively from the cumulant generating
function, see §2.7 of [121].

It is possible to show that Gaussian ensembles have vanishing cumulants for N >

2 [121]. For a scalar normally distributed variable X, the mean µ and variance σ2

of its distribution are identically given by the first and second statistical cumulants,
G(1)

c (X) = ⟨X⟩ ≡ µ and G(2)
c (X) = ⟨X2⟩ − ⟨X⟩⟨X⟩ ≡ σ2, respectively. In fact,

Marcinkiewicz shows that a scalar random variable has all its cumulants of order N > 2
vanishing if, and only if, it is normally distributed; otherwise, it must have an arbitrary
non-Gaussian distribution with an infinite number of nonzero cumulants [173]. This
property of cumulants is in direct contrast with moments of arbitrary order, which are
not expected to vanish, even for normally distributed random variables. Notably, since
G(N)

c = G(N) − G
(N)
d contains moments of all orders N ′ ≤ N , there is little to be

learned from G(N+1)
c if its predecessor G(N)

c provides sufficient information about the
distribution. For this reason, Gardiner argues that “higher-order cumulants contain
information of decreasing significance, unlike higher-order moments” [121].
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Given the useful properties of cumulants in characterising statistical distributions, we
use them to define a measure of non-Gaussianity, in line with the work of Schweigler et
al. in a 1D BEC [68]. We choose to operate with the ensemble of experimentally dis-
tributed instantaneous complex amplitudes bm,ω of a given azimuthal mode m around
a frequency ω, and define our measure from their self-correlation functions at order N
as follows,

M (2N)
m,ω (t, r) ≡ G(N)

c (|bm,ω|2)
G(N) (|bm,ω|2) =

〈(
b∗
m,ωbm,ω

)N〉
c〈(

b∗
m,ωbm,ω

)N〉 . (3.20)

Here, we compute the correlation of order N > 1 with the squared absolute values
|bm,ω|2 to ensure that the measure above is real-valued.

Since the numerator (cumulant) vanishes if the correlation functions fully factorise,
the quantity should be zero upon the null hypothesis, which requires that the complex
degrees of freedom bm,ω are normally distributed around zero. In this sense, M (2N)

m,ω

provides a quantitative indicator for the deviation of the measured distribution of bm,ω
from a featureless Gaussian. We further note that the measure M (2N)

m,ω varies in time
and radius, as shown in Equation 3.20. This allows us to track the distributional
properties of the ensemble of repetitions of bm,ω(t, r) as the system evolves. In partic-
ular, regardless of the initial amplitude distribution and its corresponding factorisation
M (2N)

m,ω , the linear evolution of bm,ω, entirely independent of other interfacial modes,
requires its distributional properties not to change over time. Otherwise, in the pres-
ence of non-linear interactions, these degrees of freedom are not independent random
variables anymore and hence develop connected correlation functions between them.
This automatically changes the distributional properties of the modes bm,ω, which, in
turn, alters the value of our measure M (2N)

m,ω . Consequently, we can study the onset of
non-linearities in our system through the dynamics of a single mode by examining the
time evolution of its factorisation measure M (2N)

m,ω .

3.4 Results

Following the discussion of the previous section, we now present the observations and
results of the experiment previously introduced. We begin by scrutinising a single sam-
ple run to gain intuition over the interfacial dynamics at play before extending certain
conclusions to the ensemble of repetitions. For this example repetition, Figure 3.6 de-
picts the data analysis pipeline of subsection 3.3.4. The interpolated interfacial height
in cylindrical coordinates reconstructed from the experiment is shown in Figure 3.6(a)
for a fixed time frame near the stopping of the driving. Along the angular (horizontal)
direction, we observe a clear sinusoidal signal with four troughs and crests, consistent
with an azimuthal mode number of four, i.e., m = 4. Perpendicularly in the radial
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(vertical) direction, the waves appear to cross zero once, which is, in turn, compatible
with the radial order number one, i.e., n = 1. This inspection hints that the dominant
mode is (m,n) = (4, 1), with predicted wavenumber k41 = (2π)0.35 cm−1.

Initially, we examine the Fourier coefficients of the decomposition into azimuthal
modes (3.16a) through their root-mean-squared values over all radii, as defined in the
previous section. Their time evolution is shown for the first ten azimuthal numbers
in Figure 3.6(b). As expected from the visual inspection of panel (a), ξm=4 reaches
the largest amplitudes during the experimental repetition, displaying an evident un-
stable growth. It is also clear that the azimuthal numbers 7 and 8 become unstable,
which is in agreement with the prediction from Floquet analysis of the linear model
(see Figure 3.1). However, to confidently state that these modes are undergoing para-
metric amplification, we must examine the characteristic frequencies, if any, where the
instabilities happen. We also observed a consistent presence of m = 1, referred to
as the sloshing mode [135], and it appears due to the horizontal cross-axis motion of
the sample cell, albeit reduced to under 0.5% (see Figure 3.5(b)). In our analysis, we
disregard contributions from the azimuthally symmetric mode m = 0, or the average
of ξ in θ, as it is overwhelmed by the vertical displacement of the basin.

Complementarily, Figure 3.6(c) displays the radial RMS of the time Fourier trans-
formed amplitudes ξ̃m, representing the frequency spectrum of the modes ξm. Around
the primary frequency ω0, corresponding to half the driving frequency ωd, the azimuthal
numbers m = 4, 7, and 8 appear with amplitudes several orders of magnitude larger
than the noise background at ∼ 0.5 µm, confirming that they undergo parametric
amplification. The frequency content of m = 1 is spread through many frequen-
cies, with a stronger presence at the driving frequency 2ω0, again consistent with the
dynamics of sloshing resonance [135]. We further note that all azimuthal modes Fig-
ure 3.6(c) display a faint but non-vanishing contribution around 2ω0, which is likely due
to the harmonic creation of waves by the meniscus at the vertical walls, as observed
in [146, 174].

Finally, the last quantity of our analysis process is the time-dependent envelope
bm,ω(t) of an azimuthal number m around a frequency ω. We show the radial RMS
of these amplitudes around the positive primary frequency ω0 in Figure 3.6(d). There
are three distinct sets of modes based on the predictions of the Floquet analysis
for linear dynamics in subsection 3.2.1. First, we distinguish the dominant mode
(m,n) = (4, 1) (solid maroon line), which evidently displays a log-linear growth until
the driver shuts down, indicating an unstable evolution of the form ∝ exp(λ4,1t), as
anticipated for a parametrically excited wave as in Equation 3.3. Second, the dashed
lines in Figure 3.6 specify the other modes that appeared under the primary resonance
band in the instability chart of Figure 3.1. By the time the external driving stops,
all of these modes are at least one order of magnitude smaller than the dominant
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Figure 3.6: Overview of the data analysis pipeline. In (a), a representative time frame t0 of
the reconstructed interfacial height ξ(t0, r, θ) in cylindrical coordinates for a single repetition.
Dotted horizontal lines indicate the regions where the meniscus between the interface and
the vertical walls appear. The fixed radius r0 = 22.5 mm used in a subsequent analysis is
displayed by the dashed horizontal line. In (b) and (c), we show the radial RMS of the
Fourier coefficients |ξm|r(t) and |ξ̃m|r(ω), as defined in equations (3.16), for the first ten
non-zero azimuthal modes. The instant where the external driver stops is indicated by the
vertical dashed line in (b) and (d). The horizontal axis of (c) is given in multiples of the
primary frequency ω0 = (2π)3.035 Hz. In (d), we show the radial RMS of the time-varying
amplitudes bm,ω around the positive branch of the primary frequency +ω0. The legend
indicates the corresponding azimuthal numbers m and orders n to each curve. In the three
last panels, the amplitude scales are logarithmic.
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(4, 1) mode. Within them, the log-linear growth of the curves for (8, 0), (7, 0) and
(5, 1) suggests that they are also amplified in an exponential fashion, with the former
two reaching amplitudes more than three times larger than the remaining modes.
Conversely, (6, 0) and (3, 1) display inconsistent growth, not necessarily compatible
with that of parametric instabilities. This behaviour is shared with the third set of
modes in Figure 3.6, shown as dotted lines. In particular, we observe the sloshing wave
(1, 1) increasing inconsistently, likely due to interactions with its dominant resonance
at 2ω0.

Generally, the picture we draw from Figure 3.6 for the evolution of individual modes is
consistent with the following description of the collective interfacial dynamics. As one
or more modes undergo parametric instability and increase in amplitude, some of the
infinitely many terms in the non-linear Lagrangian (2.48) may become non-negligible.
Thus, modes outside resonance bands may also experience an unstable evolution due to
interactions with parametrically resonant ones, sometimes several orders of magnitude
larger. Naturally, this is due to happen at all frequencies and wavenumbers, eventually
reaching a stage where the exponential amplification of the primary instabilities cannot
be sustained. It is, however, impractical to map and describe all interactions between
interfacial modes. Given that the behaviour demonstrated in Figure 3.6 consistently
appeared throughout all 1500 repetitions, we then restrict our investigation to the
nonlinear dynamics of the azimuthal mode m = 4. We note that, although the other
modes predicted in subsection 3.2.1 were also excited, m = 4 dominates, likely due to
the initial random fluctuations of the interface, which might have been larger for this
mode than for others.

3.4.1 Unstable evolution of the dominant mode

Around the primary resonance band at ω0, the evolution of the dominant mode is
encapsulated in the time-dependent envelope b4,ω0 . The standing waves of the dom-
inant mode m = 4 can be seen by the four crests on the interface in Figure 3.7(d).
Their instantaneous amplitudes corresponding to the counter-clockwise waves are dis-
played in logarithmic scale in Figure 3.7(f) for all 1500 experimental repetitions (in
light blue), and two qualitatively distinct realisations are highlighted to stress dis-
tinguishable stages of the evolution. Initially, the noise level (in dark green) of our
detection method overwhelms the signal until the instabilities emerge out of it between
10 and 17 seconds. A consistent log-linear amplification trend (blue) appears in all
repetitions, displaying exponential growth rates throughout. After the external driving
is shut down, the mode envelopes of all runs are seen to follow a log-linear decay
trend (in maroon), consistent with viscous exponential damping. Some repetitions
quickly transition to the final damping stage (orange), while others reach a critical
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amplitude and saturate, see the upper curve in Figure 3.7(f). The bounded unstable
growth appearing in the latter case is inconsistent with a single-mode linear evolution,
as presented in subsection 3.2.1, and, instead, indicates that the energy continuously
provided by the driving actuator is being scattered into other modes in the system.
This behaviour has been observed in various experiments and is the core principle
behind non-linear Faraday instabilities, see, e.g. [156, 175–180].

From the mode amplitudes in Figure 3.7(f), we extracted the slopes in the growth
(blue) and decay (maroon) regions by performing linear fits of the log-linear trends in
each. We label the fitted amplification and damping rates by the azimuthal and order
numbers of the dominant mode, (4, 1), as λ4,1 and γ4,1, respectively. In Figure 3.8,
we display their results for the 1500 repetitions along with the monitored values of
the driving amplitude F0 and the ambient temperature T . As observed in Figure 3.5,
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Figure 3.7: In (a), an illustrative depiction of the driving setup previously explained is
shown. A typical profile of the measured vertical acceleration F0(t) over time appears in
(b). In (c), we portray the geometry of the fluid cell with the experimentally reconstructed
interface. Three rendered snapshots in time of the observed interfacial waves are shown in
(d). In (e), the cross-section of the fluid cell in (c): at fixed azimuthal angle θ0 depicting
the interfacial height z = ξ(t, r, θ0) in comparison with the horizontal walls at ±h0. The
dashed, vertical lines indicate the radii where the steep curvature of the menisci between the
interface and the vertical walls at r1 and r2 decreases the sensitivity of the detection method.
In (f), instantaneous amplitudes bm,ω0 in logarithmic scale of the dominant azimuthal mode
m = 4, at the primary resonance frequency ω0, for 1500 repetitions (light blue) at fixed
radius r0 = 24mm. Out of the ensemble of repetitions, two qualitatively distinct runs are
highlighted in bold with coloured regions showing different parts of the dynamics: (dark
green) detection method noise floor, (turquoise) log-linear unstable growth, (orange) tran-
sition from amplification-dominated to damping-dominated dynamics and (red) log-linear
unstable decay. The difference in the two realisations is due to random variations between
their initial states.
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an evident correlation between some of the quantities and the ambient temperature
appears. In panel (c), we observe a drift between the driving amplitude and temper-
ature around 3.44 m s−2 and 25 ◦C, likely due to the various thermal responses of the
mechanical components of the vibration system (springs, actuator, metal bolts, etc.).
However, this behaviour seems to modulate an overall linear relation over the observed
ranges.

Similarly, the damping rates γ4,1 in Figure 3.8(b) and (g) display a clear inverse
correlation with the ambient temperature, which we attribute to a change in the tem-
perature of the fluid sample. The dissipation model (2.63) presented in subsection 2.5.1
shows the direct dependence of the damping rate with the kinematic viscosities and
densities of the liquid phases, and both properties manifestly scale inversely propor-
tional to temperature [15]. In our experiment, it is unlikely that the densities varied
so drastically to explain the reduction of almost 6% in damping over an increase of
only 3 ◦C, whereas the kinematic viscosities may have reduced more significantly. Us-
ing reference values for solutions with similar concentrations [181, 182], we estimate
that, by increasing the temperature of the biphasic sample from 20 ◦C to 25 ◦C, their
densities ρj would reduce by less than 0.2%, while their kinematic viscosities νj would
reduce as much as 10%. Interfacial tension only enters the damping formula indirectly
through the dispersion frequency of the mode, and a similar analysis leads us to expect
a negligible variation over this temperature range, as for the density2. An in-depth
study of the rheological properties of the two-fluid system would be necessary to con-
fidently explain the observed variations, but we consider it to be out of the scope of
this thesis. In addition, this study underlines the need for precise temperature control
in hydrodynamical experiments.

While the damping rates evidently scale with the measured temperature, the ampli-
fication rate λ4,1 does not display this behaviour in Figure 3.8(a). Instead, we observe
a stronger correlation with the vertical driving amplitude F0, particularly around 25 ◦C,
where the driver exhibits a hysteresis (see panel (c)). Besides, in Figure 3.8(f), the
distribution of λ4,1 over the duration of the experiment could not be as well explained
by the temperature variations as the other quantities presented. These observations
are in agreement with the statement of Kumar & Tuckerman [106] that for small
damping, γmn ≪ ωmn, and small waves (linear evolution), Faraday instabilities are
well described by a linearly damped Mathieu equation [156]. In this case, the overall

2For these estimates, we are considering that the two phases are purely formed by solutions of
potassium carbonate-water and ethanol-water. We are also disregarding changes in the triphasic
liquid-liquid equilibrium between the components, see [183] for experimental results. As a reference,
when the temperature of pure water (see Appendix A of [15]) is raised from 20 ◦C to 30 ◦C, its density
ρ reduces by approximately 0.2%, while its kinematic viscosity ν reduces by 20%. We could not find
references for the interfacial tension between the liquid phases. However, for biphasic solutions of
water and 1-butanol [184], whose interfacial tension is similar to that of our system, the referred
increase in temperature of 5 ◦C causes variations of less than 1% in the measured interfacial tension.
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Figure 3.8: Panels (a), (b) and (c) display the fitted growth and decay rates, and the
vertical acceleration of the cell as functions of the measured environmental temperature.
In (d), the measured amplitudes of the vertical driver acceleration F0 throughout each
repetition are shown. Panel (e) displays the average environmental temperature near the
platform during each run. In (f) and (g), the fitted exponential amplification and decay rates
for the azimuthal number m = 4 around ω0, λ (blue dots) and γ (red dots), respectively,
by the elapsed time since the first experimental run. Their respective average values with
one standard deviation are ⟨λ4,1⟩ = 0.536(9) s−1 and ⟨γ4,1⟩ = 1.084(12) s−1. The shaded
regions indicate the uncertainty in the measured or fitted values. At the right-hand side of
panels (d) to (g), we display the histograms of their quantities.

mode amplification rate λmn can be approximated by the difference between an inviscid
rate αmn, obtained from the undamped Mathieu equation, and the damping rate γmn,
i.e., λmn ≈ αmn − γmn. Kovacic et al. [112] show that for small external forcing, as in
our experiment, the instability rate αmn scales linearly with F0, i.e., αmn ∝ F0. Since
the latter reduces with temperature, F0 ∝ −T , then the former also does αmn ∝ −T .
Accordingly, with the unverified assumption that αmn and γmn exhibit similar tem-
perature dependence, we postulate that, by computing their difference, the resulting
temperature scaling of λmn is ultimately reduced, as observed in the experiment for
the dominant mode (m,n) = (4, 1).

It should be noted that, even when accounting for the above-mentioned variations
of up to ±5% in the kinematic viscosity values due to temperature, the damping
model introduced in subsection 2.5.1 falls short in recovering the observed rates.
For the dominant mode, the empirical average damping (with one standard devia-
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tion uncertainty) was γ(E)
4,1 = 1.084(12) s−1(see Figure 3.8), with an overall variation

through all runs of ±∆γ(E)
4,1 = ±0.03 s−1. Conversely, the model in Equation 2.63,

yields γ(M)
4,1 = 0.898 s−1 with uncertainty of ±∆γ(M)

4,1 = ±0.044 s−1, hence about 17%
smaller than the observed rate, on average. As discussed in Chapter 2, this discrep-
ancy has been observed extensively in the background literature (see e.g. [147] and
references therein) and is expected from the presence of a meniscus between the two-
fluid interface and the vertical walls. For instance, experimental results include [146],
where the authors identify an “empirical factor” attributed to capillarity around the
walls and that multiplies their theoretical model by 1.25. Regardless, by following
an experimentally-informed approach and using the observed damping rates γ4,1 and
forcing amplitudes F0 in the linear Floquet analysis of subsection 3.2.1, we obtain an
average amplification rate λ(M)

4,1 = 0.528(15) s−1, which is in good agreement with the
observed one, λ(E)

4,1 = 0.536(9) s−1.
We stress that the results presented here illustrate the aforementioned complexity of

modelling and carrying out experiments with fluid systems. Nonetheless, the inspection
of appropriately monitored quantities allows us to identify theoretical predictions that
are reproduced in an experiment, as well as possible limitations of the description.
Ultimately, we now comprehend that the variations observed in the experiment, mainly
due to temperature changes, do not hinder the effect of Faraday resonance and can
be properly modelled through a phenomenological strategy. Along these lines, we can
transfer the knowledge gathered in this study of the linear evolution through Floquet
analysis to now investigate the onset of non-linearities in our system, as implied by the
saturation of the dominant mode envelopes in Figure 3.7(f).

3.4.2 Self-interacting dynamics and secondary instabilities

Continuing our examination of the dominant mode through the instantaneous ampli-
tudes b4,ω0 shown in Figure 3.7(f), we now inspect their ensemble distributions at four
phases of the experimental repetitions in Figure 3.9(a). In the first stage, we observe
normally distributed amplitudes (at 7 seconds) as expected from white detection noise.
As the driving continues, at later times, they develop more intricate, non-Gaussian dis-
tributions. The experimental self-correlation functionG(2)(|b4,ω0|) = ⟨|b4,ω0|2⟩ is shown
in Figure 3.9(b) by the dark solid line. Using the nonlinear model of Equation 3.10 for
a self-interacting dominant mode, we have simulated the ensemble of repetitions using
the observed damping rates and measured acceleration profiles with the fluid proper-
ties of Table 3.1, see Section B.2 in Appendix B. For the numerical solutions of the
equations of motion, we chose a random initial state sampled from the experimental
normalised distribution during the linear regime (between 12 and 20 seconds). Hence,
the only free parameter was the standard deviation of this initial distribution, which
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Figure 3.9: In (a), we exhibit the ensemble distributions of the real part of the amplitudes
bm,ω0(t, r0) of the m = 4 mode at four different times (vertical dotted lines): the noise-floor
(dark grey), the log-linear unstable growth (light blue), the non-linear period (yellow) and
the decay (maroon). The second-order self-correlation function ⟨|b4,ω0 |2⟩ for the experiment
(dark grey) and the numerical simulation (maroon) are shown in (b). Panels (c) and (d)
depict the statistical measures M (2N)

m,ω for N = 2, 3 computed from experimental data (dark
grey) and simulations (maroon), with bootstrapped bands of one standard deviation.

was appropriately chosen so that the simulated self-correlation ⟨|b4,ω0|2⟩ was in best
agreement with the experimental one.

The maroon dashed curve in Figure 3.9(b) displays the self-correlation function for
these numerical results. The overlap between experimental and simulated curves con-
firms that our effective nonlinear model appropriately recovers the average dominant
mode evolution. As discussed in subsection 3.3.5, the presence of interactions modifies
the distributional properties of the ensemble over time. To characterise the deviation
from a featureless Gaussian and identify the onset of non-linearities, we employ the
measures of non-Gaussianity defined in Equation 3.20. In Figure 3.9(c) and (d), solid
dark lines show M (2N)

m,ω for the mode m = 4, around the primary resonance frequency
ω0, at orders N = 2 and N = 3. In the white noise-dominated region, before 8 sec-
onds, the correlations can be fully factorised, and, as expected, the measure vanishes.
We incorporate this feature in our simulated mode through a Gaussian noise floor
added to the numerical results, which are shown by the maroon curves in all panels
of Figure 3.9.
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As the signal emerges from the background noise in the repetitions, all curves
gradually increase and stabilize at a non-zero value, indicating an initial distribution
of interfacial waves that is not Gaussian. Between 10 and 21 seconds, the ensem-
ble shows the expected linear evolution at small amplitudes. However, at around 22
seconds, some repetitions in Figure 3.7(f) reach a critical amplitude, causing abrupt
changes in both measures. This deviation suggests a departure from a linear evolution,
which should preserve the distribution. Before the time indicated by the yellow dashed
line in Figure 3.9, the simulated and experimental curves match for M (4)

m,ω and M (6)
m,ω

within the 1σ-confidence intervals (shaded regions). Conversely, in the non-linear re-
gion, both non-Gaussianity measures display a small quantitative discrepancy between
simulation and experiment. Our model, however, shows that the self-interaction of the
dominant parametrically amplified mode is a prevailing source of nonlinearity. Were the
external driving to continue for longer, the interface would form stationary patterns,
as commonly observed in experimental studies of nonlinear Faraday resonance [175–
177]. Here, we investigate the onset of these nonlinearities prior to the saturation of
the amplitudes. In this regime, the dominant parametrically unstable mode scatters
into a limited number of modes, leading to the growth of secondary instabilities with
higher wavenumber. This feature is at the centre of a correspondence with preheating
dynamics in the early Universe, which we explore now.

Going beyond self-interactions, we showed in subsection 3.2.2 that a dominant
primary Faraday instability, here ξ4,1 with wavenumber k0 ≡ k4,1 ≈ (2π)0.35 cm−1,
can source the dynamics of a secondary mode ξ4,n, with wavenumber k1 ≡ k4,n,
through the equation of motion (3.9) with non-linear terms (3.11). At the level of
the Lagrangian, they correspond to terms proportional to ξ4,nξ4,1ξ̇

2
4,1 and ξ2

4,1ξ̇4,1ξ̇4,n

with nonvanishing coefficients. In this case, the only remaining degree of freedom
is the order n of the wavenumber k1. Hence, accompanying the primary instability
(m,n) = (4, 1)(solid dark line in Figure 3.10(a)), we observe the growth of a secondary
mode (m,n) = (4, 7) with k1 ≈ (2π)1.77 cm−1 at the 3ω0-resonance band (dashed
dark line). These quantities are displayed in Figure 3.10(a) as the radial Fourier
transform b̃4,ω(t, kr) as in Equation 3.17 of the instantaneous amplitudes b4,ω(t, r),
with radial wave-number kr.

As displayed in Figure 3.10(a) for a sample repetition, our numerical model (maroon
lines) accurately captures the non-linear features of the observed mode-mode inter-
action between primaries (solid lines) and secondaries (dashed lines). Equation 3.11
shows that the primary instability sources the equations of motion of the secondary
mode with cubic terms. Since the primary evolves as ξ4,1 ∼ exp (λ4,1t− iω0t), its cubic
sourcing scales as ∼ exp (3λ4,1t− 3iω0t), and hence the secondary mode around the
frequency 3ω0 should become unstable with amplification rate ∼ 3λ4,1. We extract the
slopes (plotted as light blue lines) for the simulated primary λ(M)

0 and secondary λ(M)
1
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Figure 3.10: Radially Fourier transformed instantaneous amplitudes, b̃4,ω(t, kr), at various
ω and kr, of experimentally reconstructed (dark lines) and simulated (red lines) data are
shown in (a). The primary instabilities with wavenumber k0 around ω0 are displayed as
solid lines, and the secondary instabilities with wavenumber k1 around 3ω0 are depicted
by dashed lines. Solid light blue lines indicate the log-linear fit of the growth region of
the simulated |b̃4,ω0(t, k0)| and |b̃4,3ω0(t, k1)|, with growth rates λ0 = 0.52 s−1 and λ1 =
1.48 s−1 ≈ 2.85λ0, respectively, verifying the 3 : 1 ratio predicted by preheating mechanism
(see main text for details). Panels (b) and (c) show the radial spectra of the experimental
amplitudes b̃4,3ω0(t, kr) for all realisations at two different times, matching the colours of
the dotted vertical lines in (a). Darker lines show the ensemble average of the quantities
in both panels. The horizontal axis of (b) and (c) follow the resolution of the numerical
Fourier transform. Hence the values of k0/(2π) ≈ 0.35 cm−1 and k1/(2π) ≈ 1.77 cm−1 are
approximated by the closest binned value, i.e., kr,0 ∼ 0.5 cm−1 and kr,1 ∼ 2 cm−1.

instabilities, obtaining the ratio λ(M)
1 /λ

(M)
0 = 2.85 for the run displayed in Figure 3.10,

and then for the entire simulated ensemble, for which we obtain
〈
λ

(M)
1 /λ

(M)
0

〉
= 3.06.

In the experimental data, the secondary instability at 3ω0 (dark-blue dashed curve)
in Figure 3.10(a) results from an overlap between a harmonic of the primary mode
with low k0 and the secondary with high k1, whose radial spectrum cannot be sepa-
rated. Thus, when examining the slope of the experimental amplitude b̃4,3ω0(t, k1), we
observe a contribution from the primary growth λ0 to the pure secondary instability
with rate λ1, which should follow the simulated model (maroon dashed curve). The
relative contribution of the modes depends on their random initial state and hence
varies between experimental repetitions. The outcome of this mode superposition
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is a modulated secondary growth that cannot be reliably compared with the slopes
extracted from our model.

As outlined in subsection 3.2.2, our effective description of the interfacial dynamics
in our system qualifies it as an analogue simulator for mode-mode scattering through
quartic interactions and, as such, offers a platform to experimentally investigate aspects
of preheating models. Similar to our quartic non-linear terms in the EFT Lagrangian,
Berges & Serreau [151] investigate a model for preheating as presented in subsec-
tion 2.4.3 but with a ψ4-type interaction in the Lagrangian of the matter field ψ. By
using approximate analytical and numerical techniques, they identify a signature of pre-
heating as the decay of modes amplified through the primary resonance into secondary
instabilities. Particularly, the latter is predicted to appear with an integer multiple of
the frequency and slope of the former. From the discussion above, we see that this
feature appears in the simulations of our non-linear model but is not as evident in the
empirical data, and more experiments are needed to confirm this feature, showing the
same difficulty in observing the modelled amplification rates for the BEC simulator
discussed in [185]. Nevertheless, as predicted for preheating models in BECs [186],
in Figure 3.10(b) and (c) the qualitative picture of this early-Universe process emerges.
We observe the broadening of the primary resonance at k0 and subsequent occupation
of secondary instabilities through the scattering to higher wavenumber modes k1.

3.5 Summary and discussion

Based on the theoretical model of Chapter 2, we presented the experimental investiga-
tion of a non-linear EFT for the interfacial dynamics between two immiscible liquids.
We presented the setup that allowed a consistent repetition of 1500 runs with fixed
specifications in a well-controlled environment. By monitoring the mechanical perfor-
mance and the ambient temperature, we have quantitatively established the reliability
of the repetitions. In particular, a dependence between the response of the mechan-
ical oscillator and temperature was identified (Figure 3.5), seemingly affecting only
the amplitude of the acceleration but not the cross-axis motion and Total Harmonic
Distortion (THD), both of which were well-within or better than the accepted indus-
try standards. Despite the observed changes, the measured vertical acceleration varied
within ±1.5% of its average, which in no way hindered the formation of Faraday waves
on the interface.

With continuous image acquisition during each repetition, we could reconstruct the
time evolution of interfacial height changes ξ with enough resolution to observe wave
amplification spanning over three orders of magnitude, from micro to millimetres. With
an appropriate spectral decomposition of the data, we distinguished the unstable evolu-
tion of individual azimuthal modes around the primary resonance band (Figure 3.6). A
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dominant interfacial wave appeared invariably in all repetitions with azimuthal number
m = 4 and amplitudes at least 10 times larger than the remaining modes. Focusing
on the evolution of the dominant mode, the amplification and damping rates were ex-
tracted by fitting the log-linear behaviour of the instantaneous amplitude b4,ω0 during
the growth and decay periods. Once again, the laboratory temperature was seen to
correlate with damping but not so clearly with the amplification rates (Figure 3.8).
We argued that the variations in the former are consistent with thermally-induced
changes in the physical properties of the fluids, particularly the viscosities. Further,
linear Floquet analysis was used to offer an explanation for the overall insensitivity of
the fitted amplification rates with temperature.

Using the experimentally extracted decay rates for the dominant mode, we found
that the damping model presented in Chapter 2 underestimated the observed damping
by about 17%. Supported by previous experimental studies reporting this discrepancy,
we concluded that it was likely due to capillary effects around the vertical walls, which
were not accounted for by the model, as stated in Chapter 2. We leave the inclusion of
these effects for future work through, e.g., the semi-analytical and numerical approach
presented in [147]. From the experimental side, different liquids could be used to
create the biphasic sample, e.g. [87, 187], and reduce boundary-layer damping at low
frequencies. It should be noted, however, that to reduce the formation of a meniscus
around the contact line and hence suppress its dissipation, it is not enough to simply
change the set of two fluids used but also consider their interaction with the vertical
walls. For instance, the roughness of the material of the basin plays a dramatic role
in the reduction of dissipation through capillary-viscous boundary layers [94, 97].

Once it was clear that the 1500 repetitions displayed consistent behaviour, we ex-
amined the distributional properties of the ensemble of measured instantaneous am-
plitudes of the dominant mode. For that, we used higher-order correlation functions
to compute measures of non-Gaussianity using experimental and simulated amplitudes
(Figure 3.9). The latter was obtained from a numerical ensemble evolving accord-
ing to the self-interacting nonlinear dynamics of the dominant mode. The agreement
between empirical and theoretical measures shows that our approximate non-linear
model successfully describes the evolution of the primary instability. Additionally, it
confirms that the statistical machinery employed here can be utilised in characterising
the emerging EFT throughout the entire evolution of the ensemble.

Finally, we strengthened the conceptual connection with the target scenario, pre-
heating, by investigating the appearance of secondary instabilities through the decay
of the dominant mode (Figure 3.10). In our system, this feature of preheating dy-
namics appeared through the growth in occupation of a higher-wavenumber mode at
three times the primary frequency. Complementarily, the reduced quartic Lagrangian
obtained in our model was shown to reproduce this behaviour in the evolution of the
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secondary mode. Our findings are in agreement with the preheating scenario put for-
ward by Berges & Serreau [151] and other theoretical analogue preheating proposals
in ultra-cold atoms [185, 188].

The results presented here show that features of inflationary preheating can be ob-
served by parametrically driving nonlinearities in a strongly interacting and damped
system and can be directly related to the underlying field-theoretical model of inter-
actions. We consider this approach an initial step in the characterisation of EFTs in
classical simulators, where the entire time evolution of the system is available, and the
onset of nonlinearities can be investigated, limited only by detection precision and data
analysis uncertainty. Ultimately, motivated by perhaps elusive theoretical models, our
expectation is that more experimental simulators tackle the challenges of understand-
ing far-from-equilibrium scenarios in both classical, as in here, and quantum systems,
as in [71, 73, 74]. In this process, their results may be used to improve the model and
learn more about the nonlinear physics of the simulator.

For fluid dynamics, we maintain that experimental studies of surface and interfa-
cial phenomena may benefit from the statistical machinery and conceptual intuition
of EFTs. With appropriate detection schemes, one could examine the complexity of
the stochastic interfacial dynamics emerging from the coarse-graining of the molecular
theory. In the context of nonlinear Faraday instabilities, although being a 200-year-
old field, the study of specific interaction channels and pattern formation could be
improved through the data analysis and modelling tools presented here.
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Chapter 4

Detection methods for fluid
profilometry

In previous chapters, we showed that interfacial height fluctuations in classical and
quantum fluids play a central role in devising Effective Field Theory (EFT) simulators
for gravity and the early Universe. Accordingly, the experimental realisation of these
analogues in fluids relies on measuring the 3D profile of the interface and monitor-
ing its time evolution. Here, we first review the application of a standard method
of digital reconstruction of fluid interfaces, which was employed in the experimental
setup discussed in Chapter 3. Later, we present a novel reconstruction scheme based
on Digital Holography (DH), designed to operate at room temperature and below,
envisioning future experiments using superfluid helium. The contents of this Chapter
regarding digital holography are based on the work “Multiplexed digital holography
for fluid surface profilometry” [3], developed with August Geelmuyden, Sreelekshmi C.
Ajithkumar, Anthony J. Kent, and Silke Weinfurtner.

4.1 Fluid profilometry methods

The study of interfacial phenomena and surface flows in fluids requires advanced de-
tection schemes that can reveal the intricacies of these systems. Over the past few
decades, many of these methods have emerged, driven by significant advancements in
computer vision and the need for efficient profilometry techniques in automated pro-
duction lines. Currently, widely-employed object profilometry methods [189] include
correlating images taken from slightly different angles, analysing the deformations of
periodic patterns and time-of-flight imaging. Many of these have been adapted for
applications in fluid samples, see, e.g., [190] for a modern review of techniques for free-
surface flow measurements. We note, in particular, the Schlieren Fourier Transform
Profilometry (FTP) proposed by Wildeman [89], which became known for its optimal
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computational performance and straightforward experimental implementation, being
extensively applied in the past few years. By placing a periodic pattern on the back-
ground of a transparent fluid sample, this method circumvents the main issue with
pattern projection techniques in fluids [191, 192]: the liquid must often be contam-
inated with an opaque or fluorescent dye, potentially changing its physicochemical
properties, as reported in [193]. Here, we will review the main aspects of this tech-
nique relevant to its implementation in the setup of Chapter 3 and refer to its references
for a comprehensive discussion.

Despite the advantages of Schlieren FTP, its application is limited by the size and
spatial frequency of the physical periodic pattern under the sample and the imaging
system, for instance, requiring specific lighting of the background and suitable opti-
cal access and camera-lens combinations [190]. Practically, this technique may not
be appropriate for studies seeking to resolve nanometric fluid profile measurements,
such as for thin films of superfluid helium or surface fluctuations in liquids at room
temperature. Envisioning future analogue simulators using fluid samples at smaller
scales and/or lower temperatures, we devise a new optical detection scheme that
combines digital processing aspects of FTP with a digital holographic experimental
setup. In parallel with the aforementioned profilometry methods, Digital Hologra-
phy (DH) has been a powerful tool in the context of microscopy and topography of
nanostructures [194, 195]. Building upon its principles, we will show that multiple
interference fringe patterns can be generated, and the numerical procedure employed
in Schlieren FTP for analysing periodic signals can be used to digitally reconstruct the
profile of a fluid surface.

4.2 Schlieren Fourier Transform profilometry

Fourier Transform Profilometry (FTP) was first proposed by Takeda & Mutoh [191] as
a technique for digitally reconstructing the three-dimensional profile of reflective ob-
jects. In its original formulation, the method involved projecting a periodic pattern on
the target sample, whose surface profile variations would deform the projected fringes.
A camera displaced from the projector by a known distance would then acquire snap-
shots of the system. By comparing these images with an undeformed reference fringe
pattern, Takeda & Mutoh showed it was possible to recover the shape of the object.
The appeal of their method was in its straightforward analysis and the ingenuity in
noting that the periodic images appear as isolated signals in the spatial-frequency do-
main (SFD). Hence, from the Fourier transformed snapshots of reference and deformed
patterns, one could retrieve the profile of the object, hence the name FTP.

Naturally, the technique expanded into an entire field of its own, with extensive
theoretical and computational developments, see [196] and references therein. The
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applications of FTP eventually reached the domain of fluid dynamics, with the recon-
struction of free-surface waves on fluids, notably in the work of Cobelli et al. [192]. In
the same year, Moisy et al. [168] extended the principles of synthetic Schlieren imag-
ing (SSI) [197] for the same purposes. In their method, a random backdrop pattern
is placed under a fluid sample, where waves appear on the free surface. A Schlieren
image1 is then synthetically generated by digitally contrasting a distorted image of the
sample with an undistorted one, similar to the procedure in FTP.

More recently, Wildeman [89] proposed a merged approach between FTP and SSI,
which the author calls Fast-Checkerboard Demodulation (FCD), and we refer to it
as Schlieren FTP. Wildeman maintains the experimental configuration of SSI, where
a camera placed at a known distance from the sample records a pattern under the
fluid, as shown in Figure 3.2 for the experimental setup of Chapter 3. However, the
author proposes replacing the random dot pattern typically used in SSI with a periodic
checkerboard backdrop reminiscent of the fringe-pattern projection in FTP. In general,
the intensity profile of this undisturbed checkboard pattern reads

I0(r) = C0 + C1 [cos(k1 · r) + cos(k2 · r)] , (4.1)

where r denotes the horizontal coordinate along the pattern, k1 and k2 are two distinct
spatial wavevectors determining the repetition frequency of the pattern in direct space,
and C0 and C1 are two arbitrary intensities. In Chapter 3, the horizontal coordinate
is denoted by x instead of r to avoid confusion with the radial coordinate r of the
basin’s geometry. We also used an alternative periodic pattern formula for clarity in the
discussion of subsection 3.3.3. Nevertheless, the following discussion applies generally
to any spatially periodic pattern, as discussed in [89].

From the point of view of the camera, when surface waves appear in the fluid sample,
the pattern is disturbed and effectively shifted. These deformations can be represented
by a horizontal apparent-displacement field δ(r). The essence of SSI and FTP is in
noting that the intensity of the disturbed pattern I(r) is given by a displaced view of
the reference I0(r), i.e., I(r) = I0 (r + δ(r)). Hence, the first step of these methods
is to quantitatively retrieve δ(r). Then, this displacement field needs to be related to
the physical deformations on the surface of the sample.

In practice, images of the pattern are discretised intensity maps of Equation 4.1 and
are often not exactly periodic. Thus, their Fourier transform is likely to include digital
processing features, such as harmonics or aliasing [160]. Accordingly, a more realistic
representation of the image Y(r) of a disturbed pattern I(r) in terms of a harmonic

1Schlieren imaging [198, 199] refers to a visualisation technique for density changes or bulk flows
in fluid samples, such as air and inhomogeneous liquids. The images typically display dark or bright
streaks where sudden changes happen in the flow, as for shock waves when a bullet moves through
air. Hence the name Schlieren, which translates to streaks, in German.
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series would be

Y(r) =
∑
p,q

Ap,q exp[i(pk1 + qk2) · (r + δ(r))] ≡ Y0(r + δ), (4.2)

where p, q are integer counters, and the amplitudes Ap,q must satisfy A∗
−p,−q = Ap,q,

since Y is real-valued. Here, we see that the displacement field δ(r) acts as frequency
modulation (FM) around specific carrier frequencies km ∈ (pk1 + qk2), analogous
to FM radio transmission [89]. An alternative perspective comes by noting that the
signal gm(r) of a carrier km in Equation 4.2 may be expressed as a planar phase km · r
modulated by a spatially-varying phase ϕm(r), i.e,

gm(r) = Am exp[ikm · r + ϕm(r)]. (4.3)

Clearly, the following correspondence applies: ϕm = km · δ = km,xδx + km,yδy, with
km = km,xx̂ + km,yŷ and δ = δxx̂ + δyŷ. Hence, to recover both components of δ,
we need the phases ϕm of two (misaligned km × km′ ̸= 0) carrier frequencies in the
least.

In the particular cases of km = k1 and km′ = k2, we obtain a 2 × 2 system of
equations relating the phase modulations ϕ1 and ϕ2 around these carriers with the
components of δ. By inverting it, we find the latter as

δx(r) = k2yϕ1(r) − k1yϕ2(r)
k1xk2y − k1yk2x

, (4.4a)

δy(r) = k2xϕ1(r) − k1xϕ2(r)
k1yk2x − k1xk2y

. (4.4b)

With the equation above, it is possible to obtain the displacement field from two
observed phases. In what follows, we will discuss the numerical procedure, called
Fourier demodulation [169], for digital recovery of these phases from distorted images
of a periodic pattern. We will then present the implementation of this Schlieren FTP
method to the two-fluid system of Chapter 3, focusing on how the displacement field
δ relates to the interfacial profile ξ.

4.2.1 Fourier demodulation and phase recovery

We parametrise an image Y of the pattern as a map of intensity evaluated in the grid
of pixels labelled by positive integers (i, j), with positions rij = (xi, yj). Hence, the
image is denoted Y = (Yij) ≡ I(rij) and, similarly, for the phase, ϕ(m)

ij = ϕm(rij). The
planar phases km · r in Equation 4.2 appear in the Fourier spectrum of Yij as localised
intensity peaks centred at the carrier frequencies km, i.e., F [exp(ikm · r)](k) ∝ δ(k −
km). Provided with some function Gm(k) that is non-vanishing around the carrier
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frequency km only, we define a Fourier filter Fm ≡ F−1Gm(k)F around the peak at
km. Depending on the properties of Gm(k), the filter should allow us to isolate a
signal of the form (4.3), i.e.,

gm(r) = Ameikm·r+ϕm(r) ≃ Fm[Y](r) =
{
F−1[Gm] ∗ Y

}
(r). (4.5)

In the above equation, we noted that the filtered image Fm[Y] can be regarded as a
convolution of the inverse Fourier transform of the function Gm and the image Y. In
other words, the degree to which the filtered image Fm[Y] retrieves the ideal signal
gm depends not only on the form of Gm(k) in spatial-frequency domain (SFD), but
also on its response in direct space, given by F−1[Gm](r).

It is shown in [200] that the best choice of Gm to reduce errors induced by digital
filtering is a finite impulse response (FIR) filter [160]. That is, the function Gm and
its inverse Fourier transform F−1[Gm] both have negligible gain outside a finite region
in SFD and direct space2. Accordingly, our choice of function Gm(k) is such that it is
1 inside a disk |k − km| ≤ kc,m, for some spatial frequency cutoff kc,m, and smoothly
goes to zero within the interval kc,m < |k − km| < 1.1 kc,m. To isolate the signals of
the peaks, we must appropriately select the size of the filters Gm(k), given by kc,m, so
they do not overlap [89]. In our method, based on the neighbouring noise background
of a peak at km and its distance to others, we select a cutoff kc,m large enough so
that as many of its modulations as possible are within Gm without intersecting with
suitable filters around other peaks. It should be noted that the size of the filter in SFD,
determined by kc,m, also delimits the maximum wavenumber that can be resolved in
the reconstructed phase ϕm [191], i.e., |∇ϕm(r)| ≲ kc,m.

Finally, with a suitable choice of filter, we select a filtered reference image (Y0)ij,
i.e., Fm[Y0]ij, to recover the phase variations ∆ϕ(m)

ij with respect to it. The outcome
is then:

∆ϕ(m)
ij = Im {log [(Fm[Y ]ij)(Fm[Y0]ij)∗]} . (4.6)

Numerically, this equation will only yield values between −π and π. Thus, if the change
in phase ∆ϕ(m)

ij is larger than one period of 2π, then a phase unwrapping algorithm,
such as that of [202], is required. One way to avoid the issue of phase wrappings is
to consider changes in phase from some reference time t0 to the time t in question. If
the position of the carrier does not drift from t0 to t, i.e. km(t0) = km(t), then, the
reconstructed phase difference reads ∆ϕ(m)

ij ≡ ϕ
(m)
ij (t) − ϕ

(m)
ij (t0).

2For instance, a common non-FIR filter used in image processing is a tophat, defined as Πm(k) =
Θ(kc,m −|k−km|), i.e., it is 1 for |k−km| < kc,m, and zero elsewhere. Its inverse Fourier transform
is given by F−1[Πm] ∝ exp(ikm · r)J1(kc,m|r|)/|r|, which extends over all direct space. Hence,
a convolution with this function integrates over contributions from all values of r, brought by the
infinite response of the Bessel function J1(kc,m|r|). Instead, to avoid this issue, an FIR filter can be
appropriately constructed to approximate the ideal tophat response in SFD while keeping a negligible
gain outside a finite region in direct space, e.g., through the Remez algorithm [201].
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Given a sequence of images {Yij(tn)}Nn=1 taken at equidistant times spaced by
a fixed δt ≡ tn+1 − tn, there are two canonical choices for the reference time t0.
First, one may choose t0 as a constant reference, e.g. the first camera frame. We
shall refer to this approach as the absolute reconstruction. Alternatively, one can
choose the previous image as the reference, i.e. t0 = t − δt. We shall refer to this
approach as the relative reconstruction. Lastly, we shall refer to the full reconstructed
phase ϕ(m)

ij using a synthetic reference image of a plane wave exp(ikm · r), e.g., a
digitally generated checkerboard pattern, as synthetic reconstruction, which is always
determined up to a global phase wrapping value ℓm. These digital phase recovery
procedures are general and independent of the experimental method used to generate
a periodic signal. In Chapter 3, we employed an absolute reconstruction using an initial
reference, as detailed in subsection 3.3.3. In Section 4.3, we will show the usage of
the relative reconstruction in a different type of setup.

4.2.2 Implementation in the two-fluid system

As briefly introduced in subsection 3.3.3 of Chapter 3, we employed the Schlieren FTP
method discussed above as a detection of interfacial waves between two liquid phases.
With the procedure of the previous section, we can digitally reconstruct the phases
around the carrier frequencies of a disturbed pattern and, in turn, use Equation 4.4
to compute the displacement field δ. In the following, we use the properties of the
experimental implementation of Chapter 3 to adapt the results of Moisy et al. [168]
for the relation between δ and the interfacial height ξ. A depiction of the setup is
shown in Figure 4.1, with the interface located at z = ξ(t, r).

Moisy et al. [168] detail the long derivation of the displacement field δ in the case of
waves on a free surface in a single fluid, i.e., without an upper phase and top window,
in comparison to our setup. They showed that the displacement is proportional to the
gradient of the surface profile ξ and can be well approximated by

δ = h̃∇ξ, with
(
h̃
)−1

=
(

1 − n2

n1

)−1
h−1
p −H−1 > 0, (4.7)

where hp = h0 + n1dp + ℓwn1/nw is the apparent pattern-surface distance, and H is
the pattern-camera distance. We argue, however, that their results can be adapted to
our system. It is straightforward to see that, in our setup (see values in Figure 4.1),
H ≫ (1 − n2/n1)hp and, thus, h̃ ≃ (1 − n2/n1)hp.

Under the conditions of our system, the light rays leaving the checkerboard pattern,
going through the sample, and reaching the camera, must exit the fluid surface almost
exactly parallel to the vertical axis. By combining this large camera-pattern distance
with a telecentric lens-camera configuration, this condition is enhanced, and virtu-
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Figure 4.1: Ray tracing of Schlieren FTP method in two-fluid system of Chapter 3. Dis-
tances and angles are not to scale and are mere depictions of the model. The refracting
trajectories of two indicative light rays originating at the checkerboard pattern are shown.
Ray A exits the top window parallel to the vertical axis z, while Ray B leaves at an angle. For
a camera placed at H = 1.8 m from the pattern, only type-A rays reach the camera, which
images an effective displacement δx of the pattern along the x−direction. A checkerboard
pattern sits at a time-dependent distance dp(t) = d0 −F0(t)/ω2

d from the bottom lid of the
two-fluid cell, with d0 = 10 cm. Inside the basin, the deformed interface Γ = z − ξ(t, r) is
indicated by a blue line. A dashed line shows the average resting interface at z = 0. Both
liquid phases have an average depth of h0 = 17.5 mm, and the denser and lighter fluids
have refractive indices n1 = 1.385 and n2 = 1.364, respectively. The top and bottom lids
have thickness ℓw = 6 mm and are made of a transparent material with refractive index
nw = 1.51. The surrounding medium is air, with refractive index n0 = 1.

ally all light reaching the camera sensor comes from rays parallel to the optical axis.
Accordingly, in our setup, only rays of type A in Figure 4.1 would contribute to the
distorted view of the pattern, while light rays of type B, leaving the top window at an
angle, would never reach the camera sensor. In other words, a distorted image of our
setup can be well approximated by rays that exit the interface parallel to the z−axis.
Hence, the light rays cross the top window of the cell along its vertically-directed
normal n̂w = ẑ, and refraction there can be neglected altogether. Consequently, this
configuration is effectively equivalent to that of Moisy et al. [168] for free surface
waves, and Equation 4.7 can be used in our experiment.



Chapter 4. Schlieren Fourier Transform profilometry 86

4.2.3 Numerical reconstruction of the interface

In the previous sections, we showed the procedure to recover the phases modulating the
carrier frequencies of the checkerboard pattern and their relation to the displacement
field through Equation 4.4. We also presented how the latter relates to the gradient of
the interfacial height between the two fluids in our experimental setup of Chapter 3.
Hence, if correctly inverted, Equation 4.7 should yield a digital reconstruction of the
interfacial profile ξ. For this inversion, we employ a straightforward algebraic operation
in SFD, as in [203], by first taking the divergence of Equation 4.7 and, then, computing
the Fourier transform. That is,

F [∇ · δ] = F
[
∇ ·

(
h̃∇ξ

)]
=⇒ 0 = F [∇2ξ] − 1

h̃
F [∇ · δ] = −|k|2F [ξ] − 1

h̃
(−ik) · F [δ]

=⇒ ξ = 1
h̃

F−1
[

(ik) · F [δ]
|k|2

]
. (4.8)

The equation above provides a systematic mapping between the apparent displacement
field and the interfacial height profile. It should be noted that Equation 4.7 is insensitive
to spatially homogeneous changes in ξ over time. If the interface shifts by a constant
amount, ξ(t, r) → ξ0(t) + ξ(t, r), its gradient remains the same since ∇ξ0(t) ≡ 0.
Hence, the displacement δ is not affected by ξ0(t), and Equation 4.8 cannot retrieve
this constant shift.

In summary, the numerical procedure for the reconstruction of the interface for the
setup discussed in Chapter 3 is carried out as follows:

1. Reference and target images, Y0 and Y, respectively, are obtained from the
experiment.

2. Using the reference, the two misaligned carrier frequencies k1 and k2 are iden-
tified in the Fourier domain (SFD) by their intensity peaks, and spectral filters
G1(k) and G2(k) are respectively defined to isolate the signals of each carrier
peak. The final image filters are then computed Fm = F−1GmF , for m = 1, 2
labelling the carriers.

3. Two reference signals as in Equation 4.3 are then computed by filtering Y0, i.e.,
g0,m(r) = Fm[Y0], for m = 1, 2.

4. Step 3 is repeated with the target image Y to compute the modulated filtered
signals gm(r) = Fm[Y].

5. The phases ϕm modulating the carriers are recovered using the numerical equiv-
alent of Equation 4.6, given by ϕm = unwrap(angle(gm g∗

0,m)), where the



Chapter 4. Digital Holographic profilometry 87

function angle numerically evaluates the phase of the input between −π and
π, while unwrap performs the spatial unwrapping of the retrieved phase.

6. The vector components of the apparent spatial displacement δ are computed
from Equation 4.4 using the phases ϕ1 and ϕ2 obtained in step 5, and the values
of k1 and k2 determined in step 2.

7. Finally, the interfacial height profile ξ is obtained by the integration procedure
of Equation 4.8 using the displacement δ computed in 6.

4.3 Digital Holographic profilometry

In 1948, Gabor [204] introduced the revolutionary concept of holography in optics,
marking a significant milestone in the field of imaging and three-dimensional visual-
isation. Through diffraction theory, Gabor’s breakthrough allowed the complete re-
construction of optical wavefronts and the extraction of three-dimensional information
from two-dimensional holograms [205, 206]. Later on, with the invention and devel-
opment of computer processors and CCD cameras, digital holography (DH) emerged
with methods for digitally reconstructing holograms, retrieving phase and amplitude
information from images obtained from interferometric setups [207, 208]. Rapidly
evolving technological advances led to subsequent innovations, such as quantitative
phase measurements through off-axis DH, as put forward by Cuche et al. [209]. In off-
axis DH, the reference and probe arms of an interferometric setup, e.g. Michelson or
Mach-Zender, are purposefully misaligned to generate a linear fringe pattern carrying
information on the profile of the sample imaged by the probe arm.

Over the past decades, the field of digital holography gained momentum, and its ap-
plications as a metrology tool now extend over a broad range of areas, from the study of
living organisms in micro-biology to the profile inspection of nano-materials [194, 195].
One of the key recent developments in DH is the concept of multiplexing; see [210] for
a comprehensive review. Multiplexed DH relies on simultaneously recording multiple
holograms from the same sample by modifying or adding optical components according
to the desired application. This was shown to effectively increase the storage capacity
of holograms [211–213] and improve their reconstruction performance [214, 215] and
resolution [216]. We note, however, that applications of off-axis multiplexed digital
holography to fluid measurement are scarce, especially outside the realm of microscopy.

Here, we develop a method for reconstructing the profile of fluid surfaces evolving
in time by extending fluid profilometry and off-axis DH multiplexing techniques. In
a Michelson interferometry setup, when one arm probes a liquid sample, the result-
ing hologram becomes a superposition of multiple interference patterns, each having
phases proportional to the liquid surface profile. In our specific configuration, the
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fluid acts as a cavity, generating multiplexed holograms. This study introduces a sys-
tematic approach to extracting the fluid surface profile from the modulations on the
carrier peaks within each pattern. As for the Fast-Checkerboard Demodulation (FCD)
method, these carrier peaks can be distinctly identified within the spatial frequency
domain. Through intentional off-axis adjustments of the beam paths, we effectively en-
hance the separation of these carriers in the frequency domain. We can recover slight
variations on the fluid surface with a digital reconstruction of their phase changes
between consecutive time frames.

We consider a Michelson interferometer, as commonly employed in off-axis Digital
Holography (DH), shown in Figure 4.2. In this configuration, a beam splitter divides
an input laser beam with wavelength λ into two arms after it has been expanded to
the required width. A reference is created by reflecting one of the arms from a mirror
(Mr), while the other probes the fluid sample. This probe beam partially reflects
from the fluid surface and a mirror placed under it (Mb). To create a variety of
linear interference patterns, we employ the general off-axis DH procedure of slightly
misaligning the reference with respect to the probe arm. As the beams recombine
in the beam-splitter, their resulting interferograms (or holograms) are captured by a
digital camera (C). Since this setup exploits the partial reflections from a sample,
it can be referred to as DH reflectometry, as discussed in [217, 218] for the profile
reconstruction of semi-transparent wafers. In the following, we briefly examine the
relations between the height profile of the sample and the fringe patterns that appear
due to the optical path differences among the different components of the probing
beam.

4.3.1 Phase shifts and fluid height profile

We first examine the various rays types present in the setup of Figure 4.2 and their
optical paths as they travel through an air-fluid interface at z = h(t, r). Consider a ray
that originates at an initial height z = H, with a transverse horizontal coordinate r,
and progresses down towards the fluid. Upon reaching the interface, the ray undergoes
partial transmission and partial reflection, and we refer to it as an F -type ray. The
transmitted ray proceeds through the fluid and arrives at a submerged plane mirror Mb

situated at the bottom of the basin. This arrangement results in the fluid interface
and the mirror working as a cavity, producing an assortment of partially reflected rays,
denoted as Bj and labelled by the number j of internal reflections within the fluid (see
depiction in Figure 4.2). The probe arm — comprising F and Bj rays — merges at
the beam-splitter with the reference arm R, originating from the reflection off mirror
Mr. This combination generates a beam featuring four families of interferograms:
RF , RBj, FBj, and BℓBj. For any given ray pair AB, their phase difference ΦAB =
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Mr

Mb

B1 B2F

R
L

BEBS

C

Figure 4.2: General schematics of proposed setup. A laser source (L) emits a collimated
beam that expands to the desired diameter by passing through a Beam Expander (BE). A
Beam Splitter (BS) divides the beam into two, namely a probe going through the fluid sample
and a reference (R), both reflecting from adjustable mirrors (M). The reflected trajectories
recombine in the beam splitter, and the resulting beam is captured by a camera (C). In the
illustration, the multiple beams reflected from the fluid surface (F ) and the probe mirror
(B1, B2) contribute to the multiple interference peaks discussed in subsection 4.3.1. [3]

ΦA − ΦB is directly proportional to their optical path differences. The camera C
captures this combined beam, generating an image Y = (Yij), which portrays the
total intensity profile of all the interferograms at positive integer pixel positions (i, j).
It is assumed that all phase differences ΦAB exhibit minor modulations ϕ(AB)(t, r)
around a stationary planar phase kAB · r. That is, ΦAB(t, r) = ϕ(AB)(t, r) + kAB · r,
so that

Yij = Y0

1 +
∑
AB
A ̸=B

AAB exp
(
ikAB · rij + iϕ

(AB)
ij

) , (4.9)

where Y0 is an arbitrary average intensity, and the amplitudes AAB are given below
and, like the phases, result from propagating the electromagnetic waves through the
media and computing their combined intensities [217, 219]. Naturally, the image Y
is real-valued and, thus, for each pair AB in the summation of Equation 4.9, there is
a conjugate BA, for which kBA = −kAB, ABA = AAB and ϕ

(BA)
ij = ϕ

(AB)
ij . In the

context of digital holography, kBA is referred to as the twin signal of kAB.
We assume that the incident beam has its optical axis perpendicular to the plane of

the fluid interface and can reflect off three surfaces: the reference and bottom mirrors,
and the surface of the sample. Now, if both mirrors are slightly tilted with respect to
the incident optical axis ẑ, then their normal unit vectors mb and mr are such that
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mb · r̂ ≪ 1 and mr · r̂ ≪ 1. For small surface slopes, i.e., |∇h| ≪ 1, it follows that
the phase differences carried by each family of holograms read

ΦRF = 2k0n1 (h+ mr · r + ∆H) , (4.10a)

ΦRBj
= 2k0[(n1 − jn2)h+ (n1mr − jn2mb) · r + n1∆H], (4.10b)

ΦFBj
= 2k0n2[jh+ jmb · r], (4.10c)

ΦBℓBj
= 2k0n2[(ℓ− j)h+ (ℓ− j)mb · r], (4.10d)

where ∆H ≡ HR −H is the arm length difference between the reference HR and the
probe H beams, and k0 ≡ 2π/λ is the laser wavenumber. Here, n1 and n2 denote
the refractive indices of the surrounding medium (e.g., air) and the fluid, respectively.
The relative amplitudes corresponding to each family of interferograms read

ARF = A0 r21, (4.11a)

ARBj
= A0 (1 − r2

21)r
j−1
21 , (4.11b)

AFBj
= A0 (1 − r2

21)r
j
21, (4.11c)

ABℓBj
= A0 (1 − r2

21)2rℓ+j−2
21 , (4.11d)

where r21 = n2−n1
n1+n2

is the reflection coefficient between the two media, and A0 denotes
a common constant amplitude prefactor. The phases (4.10) and amplitudes (4.11)
above agree with those derived in [217]. We refer to [220] for a complete discussion
and derivation of these equations in general configurations.

By comparing the phases in Equation 4.10 with Equation 4.9, it follows that the
planar phases kAB ·r are proportional to mb·r and mr ·r. Hence, when the mirrors have
a non-vanishing tilt in their normal vectors mr and mb, the resulting image Yij captured
by the camera will follow Equation 4.9 and exhibit a collection of distinguishable fringe
patterns with spatial repetition frequency given by the various kAB vectors. We will
soon describe a process to numerically simulate the image using Equation 4.9, and an
example frame of this procedure is shown in panel (a) of Figure 4.3. We denote the
two-dimensional Fourier transform of the image Y as Ŷ = F [Y], which we use to
inspect the SFD containing the spectrum of holograms. For reference, the SFD of the
simulated image in Figure 4.3(a) is given in panel (b) of the same figure. Equation 4.10
also reveals how the interfacial height h(t, r) acts as a modulation signal around the
spatial carrier kAB of all holographic families AB. Hence, variations δϕAB in the phase
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of a carrier due to changes δh on the fluid interface are given by

(
δϕAB
2π

)
= 2αAB

(
δh

λ

)
, αAB =


n1, for AB = RF ;

j n2, for AB = FBj;

n1 − j n2, for AB = RBj.

(4.12)

The dimensionless phase-prefactors αAB above relate the observed phase modulations
with the interfacial height changes and have distinct values for each family of inter-
ferograms AB.

Suppose the various holograms can be individually resolved in an intensity map of
the form (4.10). In that case, we may refer to the resulting image as a Multiplexed
Off-axis Digital Holography signal [211]. In this context, multiplexing implies that
individual interferograms simultaneously measuring the same sample can be combined
within a single snapshot of intensity due to their separation in SFD. While existing
digital holography techniques have leveraged the multitude of rays arising from partial
reflection, known as Digital Holographic Reflectometry [217, 218], a key distinction
emerges in comparison to the approach outlined here. Introducing a tilt of the sub-
merged mirror permits the arbitrary separation and isolation of off-axis holograms from
the same group of partially reflected rays. Capitalising on this property, a straightfor-
ward Michelson interferometer (see Figure 4.2) enables simultaneous and autonomous
surface measurements via the multiplexing process. Essentially, our approach presents
an extension of digital holographic reflectometry by incorporating off-axis multiplexing
principles without requiring additional optical components. Due to the mirror tilts,
distinct holograms will capture marginally shifted regions of the fluid interface. Con-
sequently, the reconstructed profile hAB for a hologram AB relates to the real fluid
surface profile h through hAB(t, r) = h(t, r + δAB), where δAB represents a spatial
displacement linked to the physical tilt between rays A and B (see Figure 4.3).

4.3.2 Numerical phase-tracing and simulated holograms

As with the previous detection method, we can assess the proposed model through
a numerical simulation emulating the outcome of an experimental acquisition. The
algorithm executes the iterative propagation of a mesh of rays through a mathematical
model of the configuration in Figure 4.2. In this simulation, we define the two mirrors
as inclined planes at z = −mb · r and z = −mr · r while parametrising the interface
z = h(t, r) using an analytic function h(t, r). The input beam is described as a bundle
of rays initially propagating parallel to each other towards the sample and reference
mirror from an initial position defined as a Cartesian mesh. Each ray in the mesh is
then propagated until it intersects a surface, either a mirror or the fluid interface. At
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Figure 4.3: In (a), we display a numerically simulated intensity image Y with an inset of
the fringe patterns (white dashed rectangle). A white line on the lower-left corner depicts
a length of 2 mm. The spatial Fourier transform Ŷ of Y is shown in (b), where the
brightness of each pixel is proportional to the logarithmic amplitude log |Ŷ|. As expected
from the real-valued image Y , its Fourier spectrum in (b) is symmetric on the wavevector
k, i.e., |Ŷ|(−k) = |Ŷ|(k). White lines are drawn to illustrate the carrier frequencies for the
holograms RB1, RF , FB1 and RB2 of order +1 in line with Equation 4.10. In (c) − (f),
we show the phase differences δϕ(AB) between two consecutive time frames for the four
hologram types AB with a shared colour bar. The visibly correlated spatial dependence of
the phases is proportional to the change in fluid height δh(r) by Equation 4.12. Spatial slices
of the phases at y = 0 (white dashed lines) in (c) − (f) are shown in (g) already converted
to height variations δh using the prefactors αAB. The black line indicates the ground-truth
height change δh used to generate the simulation. The spatial displacement between the
reconstructed curves and the ground truth confirms the expected shift due to the relative
tilts between the sample and reference mirrors. The simulated image has 1024 × 1024 pixels
with size 16.8 µm by 16.8 µm and the resolution in Fourier space is δk = 0.06 mm−1.

the latter, the rays satisfy the Fresnel boundary conditions, which are used to separate
them into reflected and transmitted components [219]. The refracted rays are then
reflected by the bottom mirror and return to the interface, where the process repeats.
The wave amplitudes are appropriately modified by the reflection and transmission
coefficients between the media, while the phases acquire contributions proportional
to the travelled distance. Finally, the returning rays are collected at the detector
plane at z = H within a defined number of iterations Ni. By adding all the rays
and interpolating them to the original Cartesian mesh, we are left with the combined
intensity for ray types R,F, and {Bj}. From the final intensity profile, we generate a
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synthetic image of the form (4.9). This iterative loop for spatial ray tracing can be
evolved in time at intervals δt to obtain a set of consecutive frames equally spaced in
time. The outcome of this process, which yields the change in interfacial height profile
δh(t0, r) = h(t0, r) − h(t0 − δt, r) between two consecutive times of standing waves
in a square basin, is showcased in Figure 4.3.

4.3.3 Peak identification and prefactor estimates

In line with the previous detection method, the digital recovery of phases from our setup
is done through the canonical approach of Fourier Demodulation [191]. In the context
of digital holography, it receives the name Angular Method [221] in reference to the
retrieved angular phase. Here, for all practical purposes, the demodulation procedure
is the same as described in subsection 4.2.1 for the checkerboard pattern. The only
striking difference is the existence of several carrier peaks instead of just two. The
numerical simulation shows that the families of holograms AB will have corresponding
intensity peaks in the Fourier domain around carrier frequencies kAB. Following the
notation of subsection 4.2.1, we conveniently label each peak in the spectrum by
an integer m and refer to the phase obtained from its modulation as ∆ϕ(m)

ij , given
by Equation 4.6. We also stress that, despite the same digital recovery procedure, the
phase in the digital holographic setup is directly proportional to interfacial height h
profile, as per Equation 4.12. Whereas, for the FTP configuration, it is proportional
to the spatial gradient of the height.

In order to consistently apply the phase-to-height relations in Equation 4.12, we must
know to which family a peak belongs before converting its phase into the interfacial
profile. We discuss here two distinct approaches that can be used for peak identification
and prefactor estimation. The first involves an experimental procedure relevant dur-
ing data acquisition and will be elaborated upon when discussing experimental results
in Section 4.3.4. In cases where manipulating the experimental setup is neither feasible
nor desirable, the second method may be employed. This alternative procedure relies
on a statistical tool known as Principal Component Analysis (PCA) [222, 223]. We
demonstrated that if a reconstructed phase ϕ(m)

ij (t) can effectively capture changes in
the surface height h(rij, t), it can be expressed as ϕ(m) = 2k0αmh. Under this assump-
tion, the experimentally obtained phases ϕ(m)

ij (t) from a collection of M holograms
must scale proportionally to the fluid height profile h(t, rij), as in Equation 4.12. In
vector notation, we can represent this relationship as

Φ = (2k0h)α, (4.13)

where Φ =
(
ϕ(0), . . . , ϕ(M−1)

)
denotes a vector comprising M reconstructed phases,

and α = (α0, . . . , αM−1) represents a vector of phase-prefactors αm following Equa-
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tion 4.12. Naturally, this relation is anticipated to be affected by noise and processing
errors, which originate from the reconstruction process alone and do not faithfully
represent the real fluid surface profile h.

For simplicity, in the following, we consider the spatial average of the phases, denoted
ϕ(m)(t) ≡ ⟨ϕ(m)

ij (t, rij)⟩ij. In this case, the phase-vector Φ(t) in Equation 4.13 is a
function of time only. To apply the PCA [223], we must first make sense of the
statistical problem at hand. Given the set of M experimentally obtained phases Φ(t),
we wish to find a function f(t) that maximally correlates with the time evolution of
the components in Φ(t). For that, we compute the eigenvalues λa and corresponding
eigenvectors va of the M×M time-averaged covariance matrix of Φ(t) with elements
Cℓm, i.e., Cℓmva,ℓ = λava,m. The elements of the matrix are given by

Cℓm =
〈(
ϕ(ℓ) − ⟨ϕ(ℓ)⟩t

) (
ϕ(m) − ⟨ϕ(m)⟩t

)〉
t
, (4.14)

where ⟨·⟩t denotes the average in time. It follows from the PCA that the principal
component of the covariance matrix, i.e., the eigenvector vp with eigenvalue λp much
larger than all others, is such that Φ = λ0f(t)vp, for some undetermined constant
λ0. From Equation 4.13, we see that f(t) = 2k0h(t) and α = λ0vp. Accordingly,
the time evolution of the height h(t) could be expressed in terms of a phase ϕ(m)(t)
through the m−th component of vp, denoted v(m)

p , as

h(t) = ϕ(m)(t)
2k0λ0v

(m)
p

. (4.15)

Here, the phases can be obtained from the experiment, and the principal component
from the PCA, while the only undetermined quantity is λ0. We can specify the latter
if one of the components of α is previously known, so that λ0 = αm/v

(m)
p .

Finally, we introduce the normalised eigenvalue of the principal component vp,

sgp ≡ λp∑
a λa

. (4.16)

This quantity is a measure of how well the time evolution of the phases in Φ(t) can be
represented by a single quantity h(t) along the direction of vp [222]. We refer to sgp as
the confidence of the PCA, and it assumes values between 0 and 1. If sgp = 1, then all
variations in the data Φ fall along the principal component vp, whereas, for sgp = 0,
the data does not correlate with vp. Provided that the multiplexed holograms and
their respective phases are indeed described by the model of Equation 4.10, then PCA
could be used to obtain the phase prefactors αm and, ultimately, the change in height
from the principal component.
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4.3.4 Experimental results

We employ the configuration shown in Figure 4.2 as a surface profilometer for liquid
samples over a circular area. Our setup uses a diode-pumped solid-state laser source
with wavelength 532 nm and power of 1 mW. The beam expander augments the
circular beam to a diameter of approximately 18 mm. A liquid sample fills a square
basin of side 84 mm with a 2" mirror at its bottom and is placed 30 mm below the
beam splitter. Multiple interferograms are generated by setting the probe and reference
beams in off-axis alignment. The resulting intensity images as in Equation 4.9 are
acquired over time using an area-scan camera3. Images are acquired at either 1024 ×
1024 or 1536 × 1536 pixels4. With the method outlined in subsection 4.2.1, we can
reconstruct the phases of the holograms available. This provides information on the
fluctuations of the fluid surface caused by various factors such as vibrational noise,
thermal effects, and external disturbances. In this study, we obtained data from a
setup placed on a noise-isolating optical table.

Fluid surface profile

Figure 4.4(a) shows an example frame Y acquired in an experiment, and its spa-
tial Fourier transform F [Y] is displayed in Figure 4.4(b). Compared to the simulation
in Figure 4.3, the empirical image contains many new features coming from the imper-
fect spatial profile of the expanded beam, specular reflections, and other experimental
aspects not accounted for in our idealised simulation. They invariably taint the spec-
trum of the image, which also displays extra peaks from partial reflections at the optical
components, mainly the beam-splitter. To assist in the identification of the relevant
holographic peaks, we developed a graphical user interface that provides a live view of
the SFD and allows for the real-time viewing of the reconstructed phase and interfer-
ograms. When the reference beam is blocked, the FBj family holograms are the only
remaining peaks, as they are generated by interference between the probe mirror and
the fluid surface reflections. From Equation 4.11, we infer that the most prominent
peak in the Fourier space is always the RB1, while the brightest hologram in the FBj

family can be labelled as FB1. Adjustments in the reference mirror alone keep the
positions of FBj fixed, while adjustments in the probe mirror leave the position of
RF unaffected. This method enables the preliminary identification and labelling of
the prominent peaks in the spatial-frequency domain of experimental data.

Once the peaks have been identified, their phase prefactors should follow Equa-
tion 4.12 and, hence, changes in the liquid surface δh(t, r) can be computed with

3Basler acA2040-120um (12 bits, grayscale CMOS sensor) attached to fixed focal length lenses
(Tuss Vision LV5028, 50 mm) with 0.3x effective magnification.

4The direct space equivalent pixel size is 11.2 µm.
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the reconstructed phases. In Figure 4.4(c-f), the height change of the order of just
a few nanometres between two consecutive frames 12.5 ms apart is shown. This is
done by computing the difference in phase between the two frames through the rela-
tive reconstruction, i.e., effectively computing δh(t, r) ≡ h(t, r) − h(t − δt, r). As a
result, any spatial features in those phases not varying or slowly varying in time, such
as aberrations and speckles, are eliminated or reduced upon subtraction. Panels (c-f)
in Figure 4.4 are ordered by decreasing peak intensity, with RB1 being the bright-
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Figure 4.4: In (a), an acquired sample image frame with 1536 × 1536 pixels with a white
line indicating a length of 2 mm. The spatial-frequency domain of the image is shown in (b),
with the four main peaks labelled by the procedure described in the text. Their reconstructed
height changes, δh(t, r) ≡ h(t, r) − h(t − δt, r), are shown in (c) − (f) using the inferred
prefactors of (4.12). The white dashed line in (c)−(f) corresponds to a diameter of 15.5 mm.
In (g), we display a horizontal slice of δh for all labelled peaks. The shaded regions indicate
the root mean square (RMS) deviation from the average reconstruction, δh = 1

4
∑
AB δhAB,

of the four interferograms given by RMSAB =
√

⟨|δhAB − δh|2⟩r. (h) − (k) show the time
evolution of the height changes retrieved from the RB1 peak, with δt = 12.5 ms. In (b),
the spatial-frequency resolution is δk = 0.06 mm−1, and the frequency cutoffs used in the
filters of each peak are kc,RB1 = 33δk, kc,RF = 23δk, kc,FB1 = 23δk and kc,RB2 = 23δk.
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est and RB2 being the faintest. All four independent reconstructions show the same
surface profile, but the reconstruction quality varies among the peaks. RB2 has low
intensity and is more likely to be affected by background noise, resulting in a noisier
reconstruction, as seen in Figure 4.4(f). All curves in panel (g), depicting horizontal
slices of the reconstructions, qualitatively and quantitatively recover the same interface
with various degrees of noise. Although small, we see that the spatial shift introduced
by the relative tilts between the sample and reference mirrors persists. The time evo-
lution of four consecutive frames of the height change δhRB1(t, r) reconstructed from
the RB1 peak is shown in panels (h)-(k) of Figure 4.4. The seemingly periodic signal
showcased here is consistent with the eigenmodes of the square sample basin used in
the experiment.

Depth change in fluids

Digital holography enables the monitoring of dynamic changes in the probe arm with
nanometric scale resolution, as shown above. We offer now an alternative analysis for
identifying peaks through data processing of acquired images. Here, our modelling is
used to evaluate the time evolution of the average fluid depth relative to a reference
time. In demonstrating the potential application of our methods in noisy environments,
where careful alignment cannot be guaranteed, the reference and sample mirrors were
coarsely aligned for the experiments discussed in what follows. Due to digital artefacts
present in the acquired data – such as repeated peaks, aliasing, and spatial Fourier
harmonics and folding [224] – not all peaks will appear in the SFD or be identified in
the process.

To examine the depth change of the sample, we first note that it is directly propor-
tional to the spatial average of the phases. That is, ⟨δh(t, r)⟩r ∝ ⟨δϕ(m)(t, r)⟩r for a
peak m. Since the spatial profile of the interface causes spatial modulations around an
average phase, by looking at the complex value of the Fourier transform at the peak po-
sition, Am(t) ≡ F [Y](km), we can infer ⟨ϕ(m)(r, t)⟩r. By establishing an image refer-
ence Y0 at t0 = t−δt, we can obtain the approximate change in the spatially-averaged
phase of a hologramm at time t by ⟨ϕ(m)(t, r)⟩r ≃ Im{log[F [Y](km)(F [Y0](km))∗]}.
By applying this alternative phase recovery procedure to all available peaks in the
Fourier spectrum, we can compute the change in spatially averaged phases. With
the PCA of subsection 4.3.3, we may identify the phase prefactors that result in the
appropriate change of fluid depth over time. In the following case studies, the complex-
valued peak amplitudes Am(t) are normalized by the brightest peak at the first frame
(t = 0), denoted A0(t = 0), and represented by Ãm(t) ≡ |Am(t)|/|A0(t = 0)|. The
holograms are numbered according to their time-averaged normalised intensities, de-
noted ⟨Ãm⟩t, with hologram m = 0 corresponding to RB1 and its prefactor identified
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as α0 = λ0∆n, for ∆n = n2 − n1. The largest label m refers to the dimmest peak,
i.e., with the smallest average intensity.

Controlled change in volume We devised an experiment to verify the ability of
our setup to monitor changes in the depth of a water sample. We injected a known
volume dV and independently reconstructed the corresponding phase shifts dϕ(AB),
which should follow from Equation 4.12, i.e.,

dϕ(AB) = dV
2k0αABA

. (4.17)

Here, the cross-section area A of the basin was 70.6(2) cm2. The spatially-averaged
height ⟨h(t, r)⟩r obtained from the reconstructed phases is then compared with the
predicted volume change. A syringe system attached to a remote-controlled stepper
motor was used to steadily change the water level in the basin. Figure 4.5 (d) and
(e) display the phase change for different holograms over 130 seconds and the rate of
change in fluid volume, respectively.

By performing the PCA in time, we found that most of the reconstructed phases
consistently correlated with a principal component with confidence of sgp = 97.40%.
In Figure 4.5(c), we show the resulting phase prefactors αm normalised by the first,
α0. The RMS deviation of the reconstructed depth change ⟨hm(t, r)⟩r of a peak m
from the averaged result h(t) =

(∑M−1
m=0 ⟨hm(t, r)⟩r

)
/M was used as a measure of

uncertainty for the prefactors αm (error bars in Figure 4.5(c)). The first, and brightest
peak (see Figure 4.5(b)), should correspond to RB1. Hence, its computed prefactor
is α0 = λ0∆n, with ∆n = n2 − n1, as per Equation 4.12. The holograms numbered
1, 8, 14, and 16 have similar prefactors to α0, indicating that they sample the same
height change as RB1, and could be identified as Fourier foldings of RB1. Holograms
2, 3, 4, and 15, with prefactors 2α0, are artefacts of digital processing and consistent
with the first harmonics of the RB1 peak and its repetitions. We could not confidently
identify peak 12 in our model. Holograms with prefactors smaller than α0 are shown
in grey in Figure 4.5(c), and are not used in the analysis of panel (d), as they are not
well correlated to the depth change ⟨h(t, r)⟩r.

Evaporation Rates We now present a study of the evaporation rates of liquids.
We let the sample basin sit for 15 minutes on a noise-isolating table in a controlled
laboratory environment, where air currents and temperature variations were negligible.
With the same analysis procedure as in Figure 4.5, we performed the PCA in time
for data acquired in water and isopropanol (C3H7OH). Their results are condensed
in Figure 4.6i and Figure 4.6ii, respectively. Panels (b) in Figure 4.6 display the
overlapping reconstructed depth change ⟨h(t, r)⟩r over time for selected peaks in panel
(a). The height change is measured with respect to the initial time t = 0. For the
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Figure 4.5: In (a), half of the SFD (ky > 0) is shown for a sample image with 1024 × 1024
pixels and spatial frequency resolution δk ≃ 0.09 mm−1. We label the peaks from m = 0
to m = 19 based on their intensities, as described in the text, and display their time-
averaged relative intensities ⟨Ãm(t)⟩t in (b). Error bars indicate the standard deviations of
Ãm(t). The estimated prefactors αm for each peak obtained from the temporal PCA with
97.40% confidence are shown in (c), normalised by the prefactor of the strongest peak, α0.
On the right-hand side of (c), we indicate the expected positions of the refractive indices
corresponding to the prefactors in (4.12), and ∆n ≡ n2 − n1. The phase changes retrieved
from the identified peaks are displayed in (d). In (e), the blue line indicates the average
volume change calculated from the reconstructed phases and the shaded region indicates
the standard deviation. The dotted line shows the volume measurement done by tracking
the movement of the syringe. The results are obtained from 7800 frames, acquired at 60
frames per second.

water sample in Figure 4.6i, the PCA confidence was sgp = 99.94%, confirming that
an overall depth change trend highly correlates to all phases. Similarly, data for the
isopropanol sample in Figure 4.6ii showed a PCA confidence of 99.25%.

As previously, panel (d) in Figure 4.6i and Figure 4.6ii show the phase-prefactors
αm normalised by α0. Similarly to Figure 4.5, the first peak m = 0 can be identified
as RB1, and hence α0 = λ0∆n in both samples. For water, holograms 1, 3, 7, 11, 13,
and 16 display the same prefactor as RB1 and are likely repetitions of this peak. The
largest prefactors appear for holograms 17 and 19, with their normalised prefactors
staying close to n2/∆n. Hence, they are candidates for the FB1 family. Hologram
18 has normalised prefactor αm/α0 ≃ n1/∆n and is a candidate for an RF peak.
The grey points in Figure 4.6i(d) correspond to peaks whose phases weakly correlate
with the overall depth change. We are unable to classify them within our model and
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〈Ã
m
〉 t (c)

0

5

α
m
/α

0 (d)

0 2 4 6 8 10 12 14 16 18

Hologram index m

0.81

0.82

E
R

[µ
m

/m
in

]

(e)

10−4 10−2 100
F [Y] [arb. unit]

∆n
2∆n
n1

n2

(i) Evaporation study in water. For this data set, 1800 images of 1024×1024 pixels were acquired
at 2 frames per second. The SFD resolution in (a) is δk ≃ 0.09 mm−1. The average evaporation
rate observed is 0.8159(2) µm min−1, and the sample temperature was at 20.8(2) ◦C. The refractive
index of water is n2 = 1.333 [225].
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(ii) Evaporation study in isopropanol. For this data set, 9000 images of 1536 × 1536 pixels were
acquired at 10 frames per second. The SFD resolution in (a) is δk ≃ 0.06 mm−1. The average
evaporation rate observed is 5.720(1) µm min−1, and the sample temperature was at 23.2(2) ◦C.
The refractive index of isopropanol is n2 = 1.377 [226].

Figure 4.6: Panels (a) show the SFD of a sample image. In (b), we display the reconstructed
depth changes for the various peaks and the dotted line gives their average trend. The
time-averaged relative intensities ⟨Ãm(t)⟩t of all the labelled peaks are shown in (c). The
peak identification and prefactor estimates from the PCA in time are given in (d). Here,
∆n ≡ n2 −n1. In (e), we show the evaporation rates estimated from the slope of linear fits
of the depth changes in (b). The average evaporation rate is indicated by the dotted line.
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their contribution can be disregarded. We can draw similar conclusions from the data
acquired with the isopropanol sample.

Finally, we compare the average evaporation rates observed in our experiment with
references for liquid evaporation in controlled conditions. Hisatake et al. [227, 228]
register water evaporation rates in the range of 0.6−1.2 µm min−1, for low air-current
speeds and similar ambient temperatures and sample surface area. We obtained an
average of 0.8159(2) µm min−1, which is well within the expected. For isopropanol,
Mackay and van Wesenbeeck [229] observe rates in the range of 5 − 6 µm min−1,
which again encompasses our average evaporation rate of 5.720(1) µm min−1. The
uncertainty of the empirical evaporation rates in Figure 4.6 does not account for the
systematic error in the reference values of refractive indices and should be understood
as the uncertainty in reconstructing the rate of change in optical path length from
several holograms. Ultimately, these results confirm that the PCA is a useful tool for
peak identification when labelling them during acquisition is not possible. Even without
careful alignment and with an intricate and densely populated Fourier spectrum (as
in Figure 4.6(a)), our proposed analysis still managed to recover the time variations
in the surface of the fluids.

4.4 Summary and discussion

In this chapter, we discussed two detection schemes for the profilometry of fluid in-
terfaces and surfaces. The first, which we referred to as Schlieren Fourier Transform
Profilometry (FTP) [89], is considered one of the standard modern methods for free-
surface measurements, and we used it in the experiment presented in Chapter 3. Here,
we reviewed the underlying principles of this technique and argued it could be adapted
for measurements of a two-fluid interface in a closed sample cell with the suitable
configuration of the imaging system. We further discussed a general process for phase
recovery from images of distorted checkerboard patterns, in line with the Fourier de-
modulation put forward by Takeda & Mutoh [169].

The second detection method used a Michelson interferometer to create a sensor
for surface waves in fluids using multiplexed DH. We showed that a straightforward
optical configuration combined with a data analysis based on FTP can reconstruct
nanometric height variations. Additionally, we showed the potential application of this
method in monitoring over time the depth of the fluid, in contrast with Schlieren FTP,
which is insensitive to changes in the spatial average of the interface. In comparison
with the latter method, whose application in Chapter 3 showed a lower bound in the
order of micrometres, our DH profilometry shows an improvement of three orders of
magnitude, with a lower bound around nanometres. One could utilise this digital
holographic sensor to investigate the dynamics of fluid flows and the dispersion of
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interfacial waves at scales inaccessible by conventional detection methods, such as
Schlieren FTP.



Chapter 5

Observer dependence in EFT
simulators: experimental proposal

We now move to another Effective Field Theory (EFT) introduced in Section 2.4,
namely an analogue massless scalar field in a (2 + 1)−dimensional Minkowski space-
time. Here, we present an experimental proposal to probe one of the most fundamental
predictions at the confluence between quantum physics and relativity, known as the
Unruh effect, concerning the disjoint perception that inertial and non-inertial observers
have of the quantum vacuum. By using a laser beam as a sensor of surface modes on
superfluid helium-4, we show that this aspect of observer-dependent detector response
can be measured in an experimental setup. We begin with a brief introduction of the
Unruh effect and how our proposed simulator addresses the experimental challenges
in detecting it. This is followed by the theoretical modelling supporting the proposal
and a discussion on a possible experimental setup, with estimates for the empirical ob-
servables. This chapter is based on the preprint “Third sound detectors in accelerated
motion” [4], written in collaboration with Cameron R D Bunney, Steffen Biermann,
August Geelmuyden, Cisco Gooding, Grégoire Ithier, Xavier Rojas, Jorma Louko, and
Silke Weinfurtner.

5.1 Inertial vs accelerated observers in Minkowski
spacetime

Quantum Field Theory in Curved Spacetimes (QFTCS) [5] features a hall of intricate
and elusive outcomes, such as the Unruh effect, Hawking radiation and gravitational
backreaction, to cite a few. Many of these revolve around the ambiguity of defining a
vacuum state of the underlying quantum fields in curved spacetimes. This is in contrast
to Minkowski spacetime, where Poincaré invariance enjoyed by inertial observers allows
for a unique definition of creation and annihilation operators for positive and negative
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energy states [230]. Inevitably, the aforementioned ambiguity implies the lack of a
unifying interpretation of the physical concept of a particle. This statement, however,
is not restricted to curved spacetimes and may appear as well in Minkowski spacetime,
as in the notable result of the Unruh effect [82].

In a nutshell, the Unruh effect anticipates that inertial and accelerated observers
in flat spacetime perceive the particle content of the quantum vacuum differently.
Naturally, to make sense of this assertion, the concept of a particle must be properly
defined. This issue is resolved by introducing two-level particle detectors of a quantum
field, known as Unruh-DeWitt detectors [5], such that we may interpret a particle
as what makes them tick. With this setup, the energy gap between the ground and
excited states of the two-level system is given by ℏω, and the detector transitions as
field quanta are absorbed and emitted at this frequency. Unruh showed that an observer
in linear motion with constant acceleration a carrying an Unruh-DeWitt detector would
see it transition between states with a probability rate p(ω) such that [82]

p(ω) ∝ ℏω
exp (2πωc/a) − 1 , (5.1)

where c is the speed of light in free space. The surprising side of this result comes
by noting that this same transition rate would appear had the detector stood at rest
immersed in a thermal bath at the so-called Unruh temperature

TU = ℏa
2πckB

, (5.2)

where kB is the Boltzmann constant. Accordingly, from this outcome, it follows the
interpretation that “a uniformly accelerated observer will ’see’ thermal radiation even
though the field is in the vacuum state and, as far as inertial observers are concerned,
no particles are detected whatever” [5].

Despite its undeniable importance, the Unruh effect remains undetected, as its ex-
perimental observation encounters two significant challenges. Firstly, the acceleration
prefactor ℏ/(2πckB) in Equation 5.2 is of the order 10−21 K s2 m−1. Consequently, the
realisation of prohibitively large accelerations required for an appreciable temperature
poses a technical obstacle. Secondly, and more fundamentally, the precise properties
of the quantum vacuum state are essential but have yet to be fully explored. These
properties serve to unify the perception of all non-accelerating observers travelling at
any constant velocity. However, when the initial state differs from the quantum vac-
uum state, for example, in the form of a thermal state, the agreement among inertial
observers is damaged by a Doppler-shifted spectrum determined by their respective
velocities [83].

Here, we devise a quantum EFT simulator to address these two experimental imped-
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iments with the goal of identifying observer dependence in the response of a detector.
In line with the discussion of Chapter 2, we show that at the interface between thin-film
superfluid helium-4 and helium vapour emerges a quantum EFT for long-wavelength
interfacial perturbations, known as third sound [231]. Albeit low, the non-zero tem-
perature of the helium sample allows us to scan a range of background thermal states,
each with corresponding acceleration temperatures in line with Equation 5.2. Given
this initial thermality, the theoretical framework put forward by Bunney & Louko [83]
can then be used to distinguish between the inertial (Doppler) and acceleration (Un-
ruh) signatures. Instead of two-level detectors, we build upon a previous proposal for
ultracold atoms systems [81, 232], where it is shown that a laser acts as a continuous
detector from which an acceleration-dependent signal can be extracted. By moving a
localised beam on a circular trajectory through the sample, we construct an accelerated
detector of third-sound quasi-particles.

5.2 Third sound on thin films of superfluid helium-4

The concept of superfluidity dates back to 1938 when Kapitza discovered the phe-
nomenon [233], describing it as the property that liquid helium-4 develops below 2.17 K
by flowing through narrow capillaries or gaps with what the author calls “abnormally
low viscosity”. This critical temperature, referred to as the λ−point, characterises a
second-order phase transition into a state also known as helium II, with remarkable
properties where quantum effects may become noticeable. Our current theoretical
understanding of the dynamics of superfluid helium is itself an EFT attributed to Lan-
dau [98]. With a coarse-grained prescription of the microscopic theory, heavily based
on the available experimental results at that time, Landau develops a set of effective
hydrodynamical equations describing the macroscopic motion of liquid helium below
the λ−point. This phenomenological model relies on regarding the fluid as a mixture of
normal and superfluid components. We emphasise, however, that the previous state-
ment cannot be interpreted by means of a chemical mixture of species or substances,
as treated in Chapters 2 and 3. Ultimately, the particles of liquid helium cannot be
really separated into two types, and Landau’s description refers to two possible fluid
motions, the superfluid and normal ones.

Landau’s two-fluid model has been extensively discussed in the literature, e.g. [90,
234, 235], and a few of its underlying concepts are central to our discussion here.
Specifically, in this context, the normal flow is assumed to be well-described by the
Navier-Stokes equations (see Equation 2.8) with fluid quantities labelled by a sub-index
n, i.e., vn, pn, ρn, νn. We particularly note that a non-zero but small kinematic
viscosity νn is attributed to the normal component [99]. Conversely, the superfluid
component is inviscid and irrotational, ∇ × vx, so its velocity may be written as
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vs = ∇ϕs, for some velocity potential ϕs. Its properties are similarly labelled by a
sub-index s, i.e., vs, ps, ρs. The total density ρ of the liquid is also assumed to be
the sum of each component, ρ = ρn + ρs. While ρ weakly depends on temperature,
ρs and ρn independently relate strongly with temperature [99].

The incompressible flow of helium II decouples to two ordinary motions, namely
that of an ideal (superfluid) and of a viscous (normal) fluid. On the other hand, the
fluid flow of liquid helium may also be treated as compressible, and the propagation of
sound waves can be considered, see e.g., §131 in [90]. With the standard procedure of
linearising the hydrodynamical equations of motion for perturbations in the bulk, the
usual sound waves arising from density-pressure oscillations appear, and the superfluid
and normal components move in phase. Additionally, another sound-like type of wave
inherent to superfluidity can be identified to leading order, with the components moving
with opposite phases. In this case, in contrast with ordinary sound waves, pressure
oscillations are negligible, and instead, the opposing superfluid and normal flows allow
the propagation of temperature oscillations, which are referred to as second sound
waves. As the temperature of helium II approaches the λ-point and the fraction of
the superfluid component reduces, the speed of the second sound rapidly goes to zero.
Accordingly, although the ordinary first sound persists above the λ-point, second sound
waves only propagate if a superfluid flow exists.

Beyond first and second sounds, Atkins [231] suggests that a third sound exists
in thin films of helium II. For this case, we recall the discussion of subsection 2.5.1,
where we examined the dynamics of slightly viscous, enclosed fluids. Similarly, we
consider a film of superfluid helium-4 with depth h0 coating a flat substrate at the
bottom of a closed basin and the interface z = ξ(t,x) forming with the vapour phase
enclosed. As required for viscous flows, the normal component must satisfy a no-slip
boundary condition at the horizontal base. Hence, if the basin is at rest, we expect
its flow velocity vn to vanish within thin viscous boundary layers around solid walls. If
we then consider surface waves propagating in liquid helium with a frequency ω, the
boundary-layer thickness, or penetration depth of the wave [231], is ℓn ≡

√
νn/ω, as

defined in Chapter 2.
A classical viscous fluid film with depth such that h0 ≪ ℓn cannot encounter waves

propagating on its surface, as they will be heavily damped by the viscous adherence with
the walls. On the other hand, helium II can sustain such waves through superfluidity.
In this case, the normal (viscous) component remains clamped to the substrate, as
required by the no-slip condition, while a superfluid flow forms on the layers above,
allowing waves to propagate at the interface [236–238]. For typical values of kinematic
viscosity νn ∼ 1 × 10−8 m2 s−1 [99] and for frequencies around 1 kHz, the penetration
depth is such that ℓn ≳ 1 µm, increasing in value for lower frequencies. Hence, the
condition h0 ≪ ℓn can be readily achieved for films with submicron thickness, which
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are well within the current technological standards [239]. For much higher frequencies
or for thicker films, we rapidly leave the long-wavelength, third-sound regime, and
damping may become non-negligible [240].

Let us now consider the dynamics of surface waves appearing on thin films of he-
lium II. In the following, we use the notation introduced in Chapter 2 unless otherwise
defined. The free surface of the film is located at z = ξ(t,x), and its substrate
is at z = −h0. We first note that, as mentioned above, third sound is a type
of long-wavelength interfacial perturbation similar to shallow-water waves in classi-
cal fluids (see Chapter 2). For the latter, however, the restoring force is gravity
−g0ẑ, whereas, for the former, the forces that create the film dominate, particu-
larly the strong intermolecular attraction between helium atoms and the substrate
compounds due to van der Waals interactions [231]. Under these conditions, an-
other heavily phenomenological description applies to the form of the potential en-
ergy density UvdW (x, z) of these interactions, with experimental evidence suggesting
UvdW (z) ≃ −αvdW (z + h0)−3 for films of tenths of nanometers in thickness, see
e.g. [241–243]. The van der Waals coefficient αvdW , with dimensions m5 s−2, can
only be determined experimentally and varies with the material used for the substrate
at z = −h0. The resulting force density entering the equations of motion of the
superfluid flow is then fvdW = −ρ∇UvdW (z) ≡ −fvdW ẑ, with

fvdW = 3ραvdW
(z + h0)4 ≡ 3ρg0

(
κ0

z + h0

)4
, (5.3)

and κ0 is defined as a characteristic length scale of the van der Waals interaction. At
the average interface at z = 0, this force adds up to that of gravity, −ρg0ẑ, and the
liquid experiences an effective acceleration g given by

g ≡ g0

(
1 + 3

(
κ0

h0

)4
)
. (5.4)

From the equation above, we see that, for thin films such that h0 ≪ κ0, the second
term rapidly dominates and the effective gravity is well described by g ≈ 3αvdWh−4

0 .
In the following derivations for the equations of motion of third sound, some as-

sumptions apply. We consider saturated films formed by coating a substrate immersed
or protruding from a larger liquid helium sample under saturated vapour pressure,
hence the name. These are typically thicker than 100 atomic layers, with h0 ≳ 10 nm,
and a hydrodynamical treatment of the incompressible flow applies for the frequen-
cies and wavelengths considered here [237, 244]. We also operate at temperatures
well below the λ-point, under 500 mK, for which the superfluid component domi-
nates over the normal. For reference, for temperatures beneath 1 K, the superfluid
density corresponds to more than 98% of the density of helium II [234, 245], i.e.,
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ρs/ρ > 0.98, rapidly approaching 100% at even lower temperatures. Additionally, at
these temperatures, the saturated vapour pressure is approximately zero [99]. Hence,
the mean-free path between atoms in the vapour becomes so large that the hydro-
dynamical description is no longer applicable, and the equations for the film and the
vapour decouple [239, 246], as for water and air. Accordingly, pressure gradients and
evaporation-recondensation on the free surface are negligible [246]. Finally, we assume
the experiment can be maintained in an isothermal state, in which the low-frequency
wave propagation does not lead to heat transfer, and temperature gradients can also
be neglected.

Conservation of mass within the film-vapour system and the equation of motion for
the superfluid flow can be linearised in the regime described above for small height
disturbances ξ(t,x) [231, 237, 239], as follows,

ρ
∂ξ

∂t
+ ρsh0∇ · vs|z=0 + Jvapm = 0 , (5.5)

∂vs
∂t

∣∣∣∣∣
z=0

+ g∇ξ − σ

ρ
∇(∇2ξ) + 1

ρ
∇p− s∇T = 0 , (5.6)

where Jvapm is the rate of change in mass at the film-vapour interface per unit area, s
is the average entropy of the film, and p and T are the pressure and temperature at
the film interface, respectively. Now, using the aforementioned assumptions, we may
neglect pressure and temperature gradients, i.e., ∇p ≈ 0 and ∇T ≈ 0, respectively,
as well as changes in mass at the interface, i.e., Jvapm ≈ 0. By denoting the superfluid
velocity potential ϕs evaluated at the interface by ϕ, i.e., ϕ ≡ ϕs|z=0, and writing
vs|z=0 = ∇ϕ, with the previous approximations, we find

∂ξ

∂t
= − h0∇2ϕ , (5.7)

∂ϕ

∂t
= − gξ + σ

ρ
∇2ξ , (5.8)

where we used that ρs ≈ ρ for the temperatures considered here.
Equations (5.7) and (5.8) can be rewritten to return two separate equations for ϕ

and ξ. It can be readily shown that the resulting equation of motion is the same for
both fields and, for the observable ξ, it reads

− 1
h0g

∂2ξ

∂t2
+ ∇2ξ − σ

gρ
∇2(∇2ξ) = 0 . (5.9)

This is the wave equation for the third sound. As in Chapter 2, it can be further simpli-
fied by noting that the interfacial height ξ can be decomposed into spatial eigenfunc-
tions χa(x) satisfying the Helmholtz equation (2.18) with generalised time-dependent
coordinates ξa(t), i.e., ξ = ∑

a ξaχa. Hence, from the equation above, it follows that
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the mode amplitudes ξa propagate in harmonic motion with a frequency given by the
dispersion relation,

ωa =
√
gh0 (1 + ℓ2

ck
2
a) ka, (5.10)

with ℓc =
√
σ/(ρg), the capillary length of helium II, as in Equation 2.31 in Section 2.4

for shallow-water, gravity-capillary waves. We then restrict our analysis to interfacial
modes ξa with long enough wavelengths so that ℓ2

ck
2
a ≪ 1, i.e., interfacial modes out

of the capillary regime. Thus, for thin films where the van der Waals forces dominate
over gravity, the third-sound wave speed of propagation is well approximated by

c3 = ωa
ka

≈
√

3αvdW
h3

0
. (5.11)

We note that, in contrast with the speed of shallow-water gravity waves, c0 =
√
g0h0,

the speed of third sound reduces with increasing film thickness until h0 ∼ κ0, for which
gravity and van der Waals accelerations are comparable, reaching the limit of c0 for
h0 ≫ κ0.

5.2.1 Analogue relativistic field in Minkowski spacetime

As presented in Section 2.4, with the approximations adopted above, the interfacial
height ξ of thin-film helium II in the third-sound regime corresponds to a massless Klein-
Gordon (KG) field in a (2 + 1)−dimensional Minkowski spacetime. Its effective La-
grangian density can then be written as

L3 = 1
2ρh0

(∂ξ
∂t

)2

− c2
3 |∇ξ|2

 . (5.12)

Conversely, we consider an alternative scenario where the fundamental analogue scalar
field is given by the velocity potential ϕ at the interface, while the interfacial height
ξ acts as the canonically conjugate momentum of ϕ. In this case, the effective La-
grangian for the fundamental field reads

L = 1
2ρh0

( 1
c3

∂ϕ

∂t

)2

− |∇ϕ|2
 . (5.13)

By noting that Equation 5.8 reduces to ∂tϕ = −gξ and that c2
3 = gh0 under the

current (long-wavelength) approximations, we can define the conjugate momentum of
ϕ, denoted π, as

π = ∂L
∂(∂tϕ) = ρh0

c2
3

∂ϕ

∂t
= −ρgh0

c2
3
ξ = −ρξ. (5.14)
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Hence, as anticipated, ξ is proportional to the conjugate momentum of the field ϕ in
our derived EFT with Hamiltonian density

H = 1
2ρ
[
h0 |∇ϕ|2 + gξ2

]
, (5.15)

with the first and second terms corresponding to kinetic and potential energies per
unit area of the interface.

In certain regimes, it is known that third sound waves behave as quantised quasi-
particles [247–249]. Accordingly, we follow with a quantisation of the effective fields
by requiring the canonical commutation relations [ϕ(t,x), ρξ(t,x′)] = −iℏδ(x −
x′) [109]. By promoting mode amplitudes bk to quasi-particle annihilation-creation
operators satisfying [bk, b†

k′ ] = δk,k′ , we may expand the field and its conjugate as
follows

ϕ(t,x) = g√
2Σ

∑
k

Ak
ωk

(
bke−i(ωkt−k·x) + h.c.

)
, (5.16a)

ξ(t,x) = −i√
2Σ

∑
k

Ak
(
bke−i(ωkt−k·x) − h.c.

)
, (5.16b)

with k = |k| and ωk = c3k,

Ak =
(
ℏωk
ρg

)1/2

, (5.17)

and Σ is the horizontal cross-section area of the average interface. Here, the summa-
tions are performed over all allowed wavevectors k of the discretised interfacial modes,
and the mode functions are normalised according to the standard Klein-Gordon (KG)
scalar product [5], given by

(f1, f2) = −i
ˆ
d2x [f1(x)∂tf ∗

2 (x) − f ∗
2 (x)∂tf1(x)] , (5.18)

for two solutions f1 and f2 of the (2 + 1)−dimensional massless KG equation.
We can reconnect the prescription above to an analogue (2+1)−dimensional Quan-

tum Field Theory (QFT) by comparing the Lagrangian (5.13) with that of a quantised
massless scalar field φ with effective speed of light c3 given by

LQFT = 1
2ℏ

2

( 1
c3

∂φ

∂t

)2

− |∇φ|2
 . (5.19)

It then follows that the hydrodynamical and quantum field theoretical fields can be
mapped into each other by the relation

ϕ(t,x) =
√
ℏ2g

ρc2
3
φ(t,x). (5.20)
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Later, we shall use the theoretical matching above to relate the results of an Unruh-
DeWitt detector of φ particles in circular motion to a continuous detector of ϕ quasi-
particles. Here, we derived this correspondence by treating both the analogue field ϕ
and the effective field φ as quantised objects, but we will later examine how observables
related to them behave in classical configurations.

5.3 Continuous quasi-particle laser detectors

In line with the proposal in [81] for cold-atom systems, we move now to build a
simplified model for a continuous third-sound waves detector using an electromagnetic
field instead of a two-level, Unruh-DeWitt detector. In the following, we consider that
a laser field with a Gaussian (TEM00) intensity profile travels through a thin film of
helium II with its optical axis aligned with the z−direction, and, hence, perpendicular
to the sample plane. We also require that the beam width at its intersection with
the interface is much smaller than the characteristic dimensions of the sample and
experimental parameters, in effect allowing us to regard the interaction between the
laser and the superfluid as point-like. This condition will be further discussed in the
section with experimental estimates.

We parametrise the electromagnetic field with a fixed polarisation ê1 using a vector
potential A in the Coulomb gauge (∇ · A = 0) given by A(t, z) = A(t, z) ê1, with

A(t, z) = A0 cos (ωLt− kLz + ψ(t, z)) . (5.21)

Here, ωL is the optical frequency of the laser light, while kL is its wavenumber in the
medium, i.e., kL = 2πn/λL ≡ nk0, where n is the refractive index in the medium
and λL is the laser wavelength in vacuum, given by λL = 2π/k0 = 2πc/ωL, with c

the speed of light in vacuum. In the equation above, we assumed that the amplitude
A0 is approximately constant. This is justified for small interface gradients, ∇ξ ≪
1, such that the beam is not deflected as it goes through the sample. We also
neglect changes in amplitude caused by reflection at the interface or absorption in
the bulk of liquid helium, which can be treated as a dilute gas, so n ≈ 1, to a good
approximation [99, 219]. Ultimately, we allow the laser phase to fluctuate around
the expected phase shift caused by changes in refractive index and parametrise these
fluctuations by ψ(t, z).

Let us now consider a control volume around the sample of liquid helium-4 and its
surroundings, spanning in the vertical direction from z = −h0 to a reference height
z = z0 above the interface at z = ξ(t,x). Inside the helium sample (−h0 < z ≤ ξ),
the refractive index is assumed to be a constant n for the fixed laser wavelength and
one outside the liquid medium. Accordingly, the dielectric constant ϵr equals n2 inside
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helium and one outside, and we may write it as

ϵr(t,x, z) = n2 [Θ(z + h0) − Θ (z − ξ(t,x))] + [Θ (z − ξ(t,x)) − Θ(z − z0)] ,
(5.22)

where Θ(·) denotes the the step-function. Under these conditions, the action functional
of the electromagnetic field reads [247, 250]

SEM =
ˆ

dtd2x

ˆ z0

−h0

dz 1
2µ0

ϵr(t,x, z)
c2

(
∂A(t, z)
∂t

)2

−
(
∂A(t, z)
∂z

)2
 . (5.23)

This functional can be conveniently separated into two components, SEM = S0 +
Sint, with S0 including the free electromagnetic field Lagrangian in vacuum and Sint
denoting an interaction term with the dielectric medium, liquid helium in our case.
These actions are given by

S0 =
ˆ

dtd2x

ˆ z0

−h0

dz 1
2µ0

 1
c2

(
∂A(t, z)
∂t

)2

−
(
∂A(t, z)
∂z

)2
 , (5.24a)

Sint =
ˆ

dtd2x

ˆ ξ(t,x)

−h0

dz 1
2µ0

n2 − 1
c2

(
∂A(t, z)
∂t

)2
 . (5.24b)

We can now use the ansatz in Equation 5.21 to linearise the actions (5.24). It should
be noted that, for the free field in S0, kL ≡ k0, i.e., the refractive index is one. In
the following, we operate with time-averaged actions over the short period of typical
optical frequencies ωL. Hence, the time average components will be ⟨(∂tA)2⟩1/ωL

=
A2

0(ωL + ∂tψ)2/2 and ⟨(∂zA)2⟩1/ωL
= A2

0(kL + ∂zψ)2/2. The terms linear in ∂tψ and
∂zψ do not contribute to the free action S0, as we assume the phase fluctuations ψ to
be prescribed at the boundaries of the control volume and time. On the other hand,
for the interacting part Sint, the phase ψ may be time-dependent at the interface
z = ξ and, hence, the linear terms contribute. The linearised time-averaged actions
then read

S̄0 =
ˆ

dtd2x

ˆ z0

−h0

dz A2
0

4µ0

 1
c2

(
∂ψ(t, z)
∂t

)2

−
(
∂ψ(t, z)
∂z

)2
 , (5.25a)

S̄int =
ˆ

dtd2x

ˆ ξ(t,x)

−h0

dz A2
0

4µ0

n2 − 1
c2

(
∂ψ(t, z)
∂t

+ ωL

)2
 . (5.25b)

The variation of the action S̄0 results in the wave equation in vacuum for ψ(t, z)
over the entire control volume. Conversely, the interaction action is only valid over
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the helium sample volume, and its variation reads

δS̄int =
ˆ

dtd2x

ˆ ξ(t,x)

−h0

dz A2
0

2µ0

n2 − 1
c2

(
∂ψ

∂t
+ ωL

)
∂δψ

∂t

=
ˆ

dtd2x

ˆ ξ(t,x)

−h0

dz A2
0

2µ0

n2 − 1
c2

[
∂

∂t

(
∂ψ

∂t
δψ + ωLδψ

)
− ∂2ψ

∂t2
δψ

]

=
ˆ

dtd2x
A2

0
2µ0

1 − n2

c2

 ∂ψ
∂t

∣∣∣∣∣
z=ξ

+ ωL

 ∂ξ

∂t
δψ|z=ξ +

ˆ ξ(t,x)

−h0

dz ∂
2ψ

∂t2
δψ


=
ˆ

dtd2x

ˆ z0

−h0

dz A2
0

2µ0

1 − n2

c2

[(
∂ψ

∂t
+ ωL

)
∂ξ

∂t
δ(z − ξ) + ∂2ψ

∂t2
Θ(ξ − z)

]
δψ.

(5.26)

In the derivation above, between the second and third lines, we used the Leibniz integral
rule1 and boundary terms were taken to vanish throughout. The last line is written
as a variation over the entire control volume and can be appropriately combined with
the variation of the free action, δS̄0. We note that the phase fluctuation ψ is assumed
to vary slowly, and its time derivative may be disregarded when compared to optical
frequencies at the level of equations of motion, i.e., ∂tψ ≪ ωL in the last line. For the
interfacial height perturbations ξ considered here, the following approximation holds
δ(z − ξ) ≈ δ(z).

So far, we have ignored the x−coordinates in the Lagrangians and integrated them
over the entire horizontal cross-section of the control volume. However, as stated
above, the interaction between the laser beam and the superfluid sample is point-like
along a trajectory x = X(t) that may vary in time. To localise the interaction to the
position x = X(t), we will introduce a delta function δ(x − X(t)) inside the action,
resulting in ∂tξ(t,x) = ∂tξ(t,X(t)). Finally, in the superfluid volume, the equations
of motion for the phase fluctuations ψ(t, z) read

−n2

c2
∂2ψ

∂t2
+ ∂2ψ

∂z2 = k0
n2 − 1
c

∂ξ(t,X(t))
∂t

δ(z). (5.27)

The solution to the equation above can be separated into two contributions. The
first solves the homogeneous problem and is denoted ψ0(t, z), while the particular
solution can be obtained using the Green’s function for the 1D wave equation, given
by G(t, z) = c

2nΘ(t− n|z|/c). The resulting solution is then

ψ(t, z) = ψ0(t, z) − n2 − 1
2n k0ξ(τ,X(τ)), (5.28)

1Upon using the Leibniz integral rule, a total derivative in time remains and is integrated over
time inside the varied action δS̄int. The resulting terms are then evaluated at the boundaries of the
time integration, where δψ is prescribed and vanishes.
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where τ = t−n|z|/c. Under the dilute gas approximation, which applies well to liquid
helium in the visible and near-infrared spectra, the refractive index may be written as
n = 1 + ε, with ε ≪ 1. Hence, the prefactor (n2 − 1)/(2n) in the equation above, to
leading order in ε, is (n2 − 1)/(2n) ≈ ε = n − 1, which gives the known phase shift
obtained from a change of ξ in the optical path length at the interface [219].

Equation 5.28 shows that third-sound interfacial fluctuations are transduced into
the phase field of the laser along its trajectory x = X(t) intersecting the superfluid
sample. In other words, the one-dimensional laser phase field ψ(t, z) is subject to
an interaction with the two-dimensional field ξ(t,x) confined to the interface. The
effective Lagrangian describing this process can be inferred from the action Sint and
reads (cf. [81])

Lint = − A2
0

2µ0
k0
n2 − 1
c

∂ψ(t, 0)
∂t

ξ (t,X(t)) . (5.29)

In our analogue model, the laser phase field ψ encompasses the quantum fluctuations of
the free electromagnetic field around a semi-classical coherent state. In this depiction,
the analogue probing field ψ is in a ground state |0⟩ representing the coherent phase
state. Upon interaction with the height field ξ, which is in a thermal state |β⟩T
characterised by the temperature T of the helium sample, the phase field transitions to
states |1ω̄⟩, given by |1ω̄⟩ = a†

ω̄ |0⟩, where a†
ω̄ are the creation operators at frequencies

ω̄ in the mode expansion of ψ [81, 82]. Similar to Equation 5.16a, the phase field at
the interaction point can be written as,

ψ(t, 0) ∝
ˆ dω̄√

ω̄

(
aω̄e−iω̄t + h.c.

)
. (5.30)

Using first-order time-dependent perturbation theory, we can compute the transition
amplitude for the interaction resulting in the creation of a single third-sound quasi-
particle |1k⟩ of momentum k from the thermal state |β⟩T . The amplitude reads

cω̄,k ∝
ˆ

dt ⟨1ω̄| ∂tψ(t, 0) |0⟩ ⟨1k| ξ(t,X(t)) |β⟩T

∝
√
ω̄

ˆ
dt eiω̄t ⟨1k| ξ(t,X(t)) |β⟩T . (5.31)

By summing over all possible final states |1k⟩ of the height field ξ, one finds the
transition rate of this continuous detector at a frequency ω̄ [81, 232], as follows

Γ(ω̄) =
∑
k

|cω̄,k|2

∝ ω̄

ˆ
dt
ˆ

dt′ e−iω̄(t−t′)∑
k

T ⟨β|ξ(t,X(t)) |1k⟩ ⟨1k| ξ(t′,X(t′)) |β⟩T

≡ ω̄

ˆ
dt
ˆ

dt′ e−iω̄(t−t′)WT (t, t′) = ω̄

ˆ
ds e−iω̄sWT (s), (5.32)
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where WT (s) is the thermal Wightman function at temperature T for the field ξ

evaluated at the the trajectory X(t),

WT (s) =
〈
ξ(s,X(s))ξ(0,X(0))

〉
T
, (5.33)

corresponding to the unequal time and space two-point correlation function. The form
of Equation 5.32 was obtained by assuming the trajectory is stationary, so WT (t, t′) =
WT (t − t′, 0) ≡ WT (s), and the integration is performed over all times from −∞ to
∞.

By recalling that the field ξ is the canonically conjugate momentum of the funda-
mental field ϕ at the interface, i.e., ξ = ∂tϕ/g, it follows that

WT (s) = 1
g2

〈
∂tϕ(s,X(s))∂tϕ(0,X(0))

〉
T

= ℏ2

ρgc2
3

〈
∂tφ(s,X(s))∂tφ(0,X(0))

〉
T
.

(5.34)
In the equation above, we used the matching (5.20) between the hydrodynamical field
ϕ and the analogue QFT field φ to express the Wightman function of ξ in terms of
that of an analogue KG field in (2 + 1)−dimensional Minkowski spacetime. The latter
case was examined in [83], where the authors discuss several aspects of the analogue
Unruh effect for detectors in circular motion immersed in a thermal bath in 2 + 1
dimensions. We will soon use their results to draw a parallel with our proposed setup.

5.3.1 Detector along circular trajectory

By treating the laser phase field as a continuous detector of third-sound quasi-particles
in a thermal bath at temperature T , we may define its spectral response function, or
susceptibility, as [5]

Fξ(ω;T ) =
ˆ

ds e−iωsWT (s) = ℏ2

ρgc2
3
F(ω;T ). (5.35)

Here, the response function F(ω;T ) of the analogue scalar field φ corresponds to
that developed in [83]. In line with their work, let us consider that the laser beam is
point-like at the interface and moves in a circular trajectory with radius R and angular
frequency Ω. Hence, the interaction point is parametrised by the curve X(t) =
(R cos(Ωt), R sin(Ωt)). Bunney & Louko show in [83] that the response function of
the analogue field detector reads

F(ω;T ) = 1
2
ω2

ℏ
∑

m>ω/Ω
J2
m

((
m− ω

Ω

)
v

c3

)
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+ 1
2
ω2

ℏ

 ∑
m>ω/Ω

J2
m

((
m− ω

Ω

)
v
c3

)
eℏ(mΩ−ω)/kBT − 1 +

∑
m>−ω/Ω

J2
m

((
m+ ω

Ω

)
v
c3

)
eℏ(mΩ+ω)/kBT − 1

 . (5.36)

In the second line of the equation above, we see the clear footprint of thermality of
third-sound modes through the Bose distribution, which is inherently dependent on
the sample temperature T . Conversely, the first line shows a vacuum contribution,
independent of T . We also note the implicit dependence of the response on the
acceleration through the angular frequency Ω, i.e., a = Ω2R.

Bunney & Louko also record that a detector moving in linear inertial motion, say at
constant velocity v, will experience a Doppler-shifted response, denoted FLin, given by

FLin(ω;T ) = 1
2
ω2

ℏ

[
γsΘ (−ω) + γs

π

ˆ π/2

−π/2

dθ
e
γ2

s (1+ v
c3

sin θ)ℏ|ω|/kBT − 1

]
, (5.37)

where γs = (1 − v2/c2
3)−1/2 is the Lorentz factor. Again, the first term inside the

brackets corresponds to the inertial vacuum contribution, which is the only remaining
term when T = 0 [251]. It is related to the de-excitation rate of the two-level
Unruh-DeWitt detector, which is expected to occur regardless of the temperature [5].
The authors show that one can obtain Equation 5.37 by considering a limiting case
of Equation 5.36 in which the velocity v is kept fixed, while the radius R is taken
to infinity and the angular velocity Ω to zero. We can use the formula above to
conceptually distinguish between accelerated and inertial signals and quantitatively
isolate them by defining a measure of their difference, as follows

∆Fξ(ω;T ) = Fξ(ω;T ) − Fξ,Lin(ω;T ) (5.38)

In the following section, we will employ it in the discussion of the experimental proposal
and its expected output signal.

From Equation 5.37, we can infer the response of a static continuous detector
interacting with the height field ξ in a thermal bath. By taking v = 0 and γs = 1, we
see that

Fξ,v=0(ω;T ) = ℏω2

2ρgc2
3

[
Θ (−ω) + 1

eℏ|ω|/kBT − 1

]
. (5.39)

In the previous derivations, we implicitly assumed that the quantisation of third-sound
modes was justified, which would be valid for ℏ|ω| ≳ kBT . However, we will see that
the typical operation temperatures for the helium sample and the linear dispersive band
limit ℓ2

ck
2 ≪ 1 could practically restrict our analysis to a regime where kBT ≫ ℏ|ω|.

This condition suggests a classical treatment of the response functions presented here.
For the purpose of building intuition on this regime, we follow the standard approach
in Quantum Mechanics of keeping leading order terms in ℏ, which is treated as a
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negligible quantity in this classical limit, i.e., ℏ → 0 [252]. Accordingly, the high
ambient temperature case of Equation 5.39 reads

Fξ,v=0(ω;T ) ≈ |ω|kBT
2ρgc2

3
+ O(ℏ), (5.40)

where we used
1

eℏ|ω|/kBT − 1 ≈ kBT

ℏ|ω|
, for kBT ≫ ℏ|ω|. (5.41)

The response function above agrees with the expectation of a fluctuating hydrody-
namic interface by means of a fluctuation-dissipation relation at temperature T and
frequencies below the capillary band [95, 96].

A similar analysis of this high-temperature regime applies to Fξ and Fξ,Lin at arbi-
trary velocities v, in which cases both vacuum contributions in (5.36) and (5.37) can
be neglected as they are of order ℏ. Nevertheless, to a leading order approximation, the
accelerated and inertial response functions have non-vanishing contributions explicitly
depending on a and v, respectively. Hence, we find that the formulas derived in [83]
can be suitably adapted to our proposed setup to identify the signature of acceleration
dependence in the detector response, in contrast with the Doppler-shifted signal of an
inertial detector. Finally, they can be adequately applied even for finite temperatures
of the helium sample, which can be realised in a laboratory. Our proposal for such an
experiment is shown below.

5.4 Experimental proposal and estimates

With the theoretical framework of our proposal laid down in the previous sections,
we will now discuss a candidate for an experimental setup to measure the observer
dependence in a detector response. A depiction of it is shown in Figure 5.1, with a
description of the core components required for an optical Mach-Zender interferometric
configuration. Naturally, the liquid helium-4 sample shown in the drawing must be
prepared in a low-temperature setting. Accordingly, in a cryostat with capacity for
temperatures below 1 K, a sample cell containing a bulk volume of helium II will be
used to conduct the experiment. Inside it, a small quartz platform protrudes from the
bottom and is coated by a fine layer of helium II, forming a superfluid thin-film. The
van der Waals interaction coefficient between helium-4 and a quartz substrate was
measured in [240], and yields a characteristic length scale of κ0 ≃ 717 nm. When
operating at saturated-vapour conditions, a typical film thickness within experimental
reach lies in the order of h0 = 100 nm [240, 249, 253]. Hence, the thin-film condition
for third-sound waves, h0 ≪ κ0, is satisfied.

Typical physical properties of liquid helium-4 at 500 mK and our choices of exper-
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Figure 5.1: An input laser beam with a Gaussian profile is separated into two arms, namely
a target and a reference, in a beam splitter (BS). An appropriate deflector-lens configuration
steers the target beam on a circular trajectory through the superfluid helium sample with the
optical axis perpendicular to the fluid surface. After the sample, a lens-collector combination,
followed by a series of mirrors, brings the beam back to a static path and leads it to a second
beam splitter (BS), where the target and reference arms are combined and interfere. The
resulting beams are detected at two photodiodes (PD1) and (PD2). [4]

imental parameters are shown in Table 5.1. Below this temperature, these properties
display very little variation. Hence, we use them as reference values and refer to [99] for
the exact temperature dependence. For these values, the speed of propagation of third-
sound modes in Equation 5.11 is c3 ≈ 8.8 cm s−1. We also see that the capillary length
is ℓc ≈ 5.8 µm, which provides the characteristic wavenumber kc ∼ 1/ℓc at which the
surface modes enter the dispersive gravity-capillary regime, ω2 = c2

3(1 + ℓ2
ck

2)k2. The
linear dispersion frequency of this transition is given by ωc = c3kc ≈ (2π)2415 Hz.
We thus require that the detector must probe modes with frequencies ω ≪ ωc so the
analogy with a massless scalar field in flat spacetime remains valid.

The quartz substrate of the sample cell allows optical access, so the laser beam can
interact with the thin-film of superfluid helium. To minimise optical absorption by the
sample [254], we choose to operate with a laser in the near-infrared, λL = 700 nm, and
with low power, P = 500 µW. We further assume that the beam can be focused on the
interface to a spot with diameter 2r0 = 10 µm with appropriate optical components
outside the cryostat2. A beam deflector moves the interaction spot of the target beam

2We expect that the beam focused at the sample will spread over the Rayleigh range - possibly
much larger than the thin-film thickness - around its waist [219], where its width is minimum, and
its profile is ideally Gaussian. Although experimentally challenging, we hope to optimally align the
focus point at the thin-film interface, hence keeping the desired assumptions.



Chapter 5. Experimental proposal and estimates 119

Table 5.1: Physical properties of Helium-4 at T = 500 mK [99] (ρ: density; n: optical
density or refractive index; σ: surface tension) and experimental parameters (αvdW : van der
Waals coefficient; h0: thin-film average depth). The effective gravitational acceleration g,
the third-sound speed of propagation c3 and the capillary length ℓc are also given for the
chosen film depth. The van der Waals coefficient is given for a quartz substrate [240].

Property Value at T = 500 mK Parameter Value at T = 500 mK

ρ [kg m−3] 145 h0 [nm] 100

n [ ] 1.025 g [m s−2] 77.8 × 103

σ [mN m−1] 0.379 c3 [cm s−1] 8.8

αvdW [m5 s−2] 2.6 × 10−24 ℓc [µm] 5.8

on a circular trajectory at the interface. Bunney & Louko show in [83] that the effect
of acceleration on the response of the detector is enhanced at "relativistic" speeds,
i.e., v → c3. For that, we choose a fixed rotation speed of v = 0.95c3 with trajectory
radii R ranging from 20 − 100 µm, corresponding to angular frequencies Ω/(2π) in
the approximate range of 133 − 665 Hz, which are well within achievable mechanical
or electro-optical rotations.

At this point, it is clear that the order of the typical frequencies in our proposed
system will lie in the range of 100 Hz to 1 kHz. Following our discussion of the previous
section, quantisation of non-capillary third-sound interfacial modes, ℏω > kBT , would
require a superfluid sample at temperatures lower than 0.05 µK for modes in the
kilohertz range, which is generally out of the current technological capabilities of a
few millikelvins [248, 249]. In the following estimates, we will consider temperatures
between 1 µK and 1 K, which ensures the validity of our assumptions from Section 5.2.

5.4.1 Estimated detection readout and signal-to-noise ratio

For the purposes of this discussion, we only require that a suitable detection scheme,
such as phase-referenced homodyne photodetection [255, 256], outputs a time se-
ries signal from which laser phase field correlations can be extracted, particularly the
autocorrelation function [121, 160]

Cψ(t) = ⟨ψ(t)ψ(0)⟩ . (5.42)

The expectation value above is left purposefully undefined as it could refer to a quan-
tum expectation value of the field from the signal of the photodetectors followed by
an experimental average over multiple realisations or the autocorrelation computed
with the time-delayed average [160] of the classically extracted phase from an ensem-
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ble of experiments. By appropriately referencing the phase, one can extract a phase
shift ψS acquired at the interface z = 0 upon interaction with the height field ξ, as
in Equation 5.28. If all possible measurement noise sources have been suppressed, the
extracted laser phase is limited by quantum fluctuations only, i.e. shot-noise [255],
which we denote by δψSN . Reduction of this noise can be achieved by increasing the
laser power, but one must be conscious of the amount of heat transferred to the fluid
cell, which could lead to significant temperature changes or even the complete evap-
oration of the helium film. Accordingly, the shot-noise limited phase field extracted
from the experiment should read

ψ(t) = ψS(t) + δψSN(t). (5.43)

From Equation 5.28, we note that the phase shift ψS at the interface is evaluated
at the trajectory X(t). However, in the experimental setup, the laser beam is focused
at the interface, so its Gaussian intensity profile has a waist of 2r0 at the interaction
point. This property can be included in our model by noting that the phase couples
with an effectively averaged height field ξ̄(t,X(t)) at the interaction point, i.e.,

ξ̄(t,X(t)) = 1
2πr2

0

ˆ
d2x e

− |x−X(t)|2

2r2
0 ξ(t,x)

= −i√
2Σ

∑
k

e− 1
2 r

2
0k

2
Ak

(
bke−i(ωkt−k·X(t)) − h.c.

)
, (5.44)

where we used the decomposition of the field ξ in Equation 5.16b. Here, we see that the
Gaussian profile of the beam effectively depletes the contribution of high-momentum
modes of the probed height field. The equation above confirms the intuitive statement
that the laser beam cannot detect interfacial modes whose wavelengths are smaller
than its width 2r0. In fact, wavenumbers as large as kmax = 2π/(2r0) contribute as
little as 0.7% to the spectrum of the measured height field ξ̄. Accordingly, we argue
that, for the long-wavelengths considered in the analogue scenario, the approximation
ξ̄(t,X(t)) ≈ ξ(t,X(t)) is justified.

Under the approximations above, it follows that the phase shift relates to the height
field by ψS(t) ≈ (n2 − 1)k0/2 ξ(t,X(t)), as per Equation 5.28, and the phase auto-
correlation function extracted from the experiment should read

Cψ(t) ≈ (n2 − 1)2k2
0

4 WT (t) + σ2
SNδ(t), (5.45)

where WT (t) is the autocorrelation of the height field ξ, or the Wightman function,
as defined in Equation 5.33, and σ2

SN = ℏωL/P is the variance of shot-noise induced
phase fluctuations on the laser with integrated power P [81]. Here, we assumed that
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the phase noise δψSN is Gaussian and uncorrelated with the thermal excitations of the
interfacial field ξ.

In order to relate the measured quantity with the response function of the analogue
field detector, we inspect the time Fourier transform of Cψ, known as the power
spectral density (PSD), and defined as

Sψ(ω) =
ˆ

ds Cψ(s)e−iωt. (5.46)

From Equation 5.45, we can relate the quantity above with the response function of
the height field Fξ, which is in turn related to that of the analogue relativistic field
by Equation 5.35. Hence, the PSD of the phase fluctuations reads

Sψ(ω) = κF(ω;T ) + σ2
SN , (5.47)

with F as defined in Equation 5.36 and the constant κ is given by

κ = (n2 − 1)2k2
0ℏ2

4ρgc2
3

. (5.48)

The PSD above shows a direct relation between the expected readout of an experiment
and the response function of a field detector in circular motion. This confirms that
an acceleration dependence is embedded in the measured signal, and thus this system
could be used to probe the analogue of the Unruh effect in 2 + 1 dimensions. On the
other hand, as mentioned in subsection 5.3.1, we want to distinguish the acceleration-
dependent signal from the Doppler-shifted one related to the relative motion of the
detector with speed v in the sample’s thermal bath. As discussed in subsection 5.3.1,
the former is isolated in the response FLin of a detector in linear inertial motion with
constant speed v.

Unfortunately, the finite size of the sample prohibits an empirical measurement of a
laser detector moving in a stationary linear trajectory, which would rapidly extrapolate
the size of the probed system. We circumvent the issue of obtaining this linear response
from an experiment by noting that F(ω;T ) and FLin(ω;T ) share the same high-
frequency ω ≫ Ω behaviour [83]. In other words, a third-sound mode with frequency
ωk ≫ Ω = v/R will have a wavelength 1/k ≪ (c3/v)R. Hence, high-frequency,
short-wavelength modes will experience the interaction with the laser along a circle
with a virtually infinite radius, i.e., a straight line. This intuitive description is in line
with the mathematical asymptotic analysis put forward in [83]. Here, we focus on the
numerical confirmation of this statement by considering a circular trajectory with radius
R = 60 µm in a helium II sample at temperature T = 10 mK. Using formulas (5.36)
and (5.37), we compute the response functions for the circular motion with frequency
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Figure 5.2: In (a), we show the ratio between the circular motion response function F
in Equation 5.36 and the linear motion one FLin as in Equation 5.37. Panel (b) displays the
ratio of response to shot-noise variance for both circular and linear motions. The inset in (b)
shows that at low frequencies, the responses disagree as expected from deviation from unity
in the ratio of panel (a). A dashed vertical line indicates the rotation frequency Ω/(2π) in
both panels.

Ω = v/R ≈ (2π)222 Hz and the linear motion with speed v, respectively. We stress
that v = 0.95c3 is the same for both detectors. The numerical results are shown
in Figure 5.2.

The discrepancies between the circular and linear responses for frequencies around
the angular velocity Ω observed in Figure 5.2 are precisely the behaviour we want to
observe in our system. We also note that the linear response FLin is linear in ω for
the low frequencies, hence the trend of the circular response F at higher ω can be
extrapolated to infer the form of FLin at lower ones. Accordingly, from an experimental
measurement of Sψ, and thus F , we can infer FLin and build the difference measure
in Equation 5.38. We then define the difference PSD Sδ(ω), as follows

Sδ(ω) ≡ Sψ(ω) −
(
κFLin(ω;T ) + σ2

sn

)
= κ∆F(ω;T ). (5.49)

The above measure vanishes if the circular and linear responses agree, as expected
for frequencies much higher than Ω, and it admits values greater or smaller than zero
when an acceleration dependence exists.

In our ideal scenario in which all noise sources have been eliminated, and the mea-
surement is limited only by fluctuations in the laser phase with variance σ2

SN , we
propose another quantitative measure to evaluate the feasibility of measuring Sδ in an
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Figure 5.3: SNR (5.50) for N = 105 realizations with a bandwidth of B = 1. Superfluid
temperature T = 10 mK, orbital speed v = 0.95c3, orbital radius R as shown; the laser
trajectory angular frequency and acceleration are determined in terms of these quantities by
Ω = v/R and a = v2/R. The horizontal axis is the frequency. (a) Heatmap of computed
SNR for orbital radii 20 µm ≤ R ≤ 100 µm. The horizontal colorbar indicates the magnitude
of the SNR. Dashed black curve is the orbital radius R for varying angular frequencies Ω
with fixed v = ΩR. Purple, blue and dark red dotted lines are lines of constant radii, whose
SNRs are displayed in (b). (b) Profile of computed SNR for constant radial slices in (a).
Vertical black dashed lines represent orbital angular frequencies for R = 40 µm (far right),
60 µm, and 80 µm (far left). [4]

experiment. We use the following signal-to-noise ratio (SNR) [81]

SNR =
√

N B
2

Sδ(ω)

σ2
sn

√
1 + 2Sδ(ω)

σ2
sn

+ 2S
2
δ

(ω)
σ4

sn

, (5.50)

where N is the number of experimental realisations, and B is the dimensionless analysis
bandwidth given in multiples of the measurement bandwidth Bm (in hertz). This
measure follows from generalising the total variance of the measured signal when
averaged over the spectral analysis bandwidth BBm for an ensemble of N repetitions,
see [81] for derivation. Here, we assume that the measurement bandwidth of the
spectral analyser or final filter used matches half of the capillary band frequency, i.e.,
Bm = ωc/2 ≈ (2π)1200 Hz. We further consider that the spectral analysis can be
done over the entire measurement bandwidth, so B = 1 in the following.

The SNR measure as defined in Equation 5.50 must be above one to indicate that
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Figure 5.4: SNR (5.50) for N = 105 realizations with a bandwidth of B = 1. Orbital radius
R = 60µm, speed v = 0.95c3, frequency on the horizontal axis as in Figure 5.3. Dashed
vertical black line shows the orbital angular frequency Ω. (a) Heatmap of computed SNR
for superfluid at temperatures 1 µK ≤ T ≤ 1 K. Purple, blue and dark red dotted lines are
lines of constant superfluid temperature, whose SNRs are displayed in (b). (b) Profile of
computed SNR for constant temperature slices in (a). [4]

the acceleration-dependent signal Sδ can be observed out of the noise level σ2
SN in

a set of repeated experiments. We illustrate the use of the proposed quantifier by
numerically estimating its value in a range of possible experimental parameters. We
first consider that the helium sample is kept at a fixed temperature T = 10 mK, and
compute the SNR for a range of orbital accelerations a by varying the trajectory radius,
as shown in Figure 5.3. For the fixed velocity v = 0.95c3, as the radius decreases, the
acceleration a = v2R−1 increases and, with it, the acceleration-dependent signal, as
seen in panel (a) of Figure 5.3. This observation generalises the concept behind the
Unruh effect, which anticipates that the temperature experienced by the detector as it
travels through empty space at zero temperature should increase with its acceleration.

A core aspect of our system is the non-zero temperature bath, where the analogue
relativistic field is immersed in. To evaluate the influence of the sample’s tempera-
ture on the SNR, we fix the trajectory radius to R = 60 µm and, instead, vary the
temperature of the thin film of superfluid helium. As mentioned before, we choose a
range of operating temperatures within the current technological standards for helium-
4 cryostats, namely T between 1 µK and 1 K. With these parameters, the numerical



Chapter 5. Summary and discussion 125

estimates for the SNR are shown in Figure 5.4. One striking feature appears in this
result: the acceleration-dependent signal increases as the sample’s temperature rises.
Bunney & Louko [83] argue, however, that the detector probing a fixed energy scale
(small range of ω) observes an effective reduction in temperature, which is then inter-
preted as a "colder" thermal bath. They further show that this effect gets enhanced
as the ambient (sample) temperature increases. As the authors put it: “where there
is little, the Unruh effect gives; and where there is plenty, the Unruh effect takes.”

5.5 Summary and discussion

Supported by the theoretical modelling presented here, we proposed an experiment
that displays an analogue of the circular-motion Unruh effect on the vapour-liquid
interface of thin-film superfluid helium-4. In this configuration, a laser serves as a
continuous probing field, effectively acting as a local detector of surface fluctuations.
Our setup enables the sampling of the superfluid interface along an accelerated trajec-
tory, particularly a circular path. With a suitable choice of experimental parameters,
surface modes are within the third-sound regime, where they behave as an effective
relativistic field. As the laser phase interacts with this field, the information about the
accelerations along the circular trajectory is carried by the detector response function,
which can, in turn, be extracted from correlations in the measured signal.

We further examined a signal-to-noise quantifier with the intent of isolating accel-
eration dependence in the response. Using a range of viable experimental parameters,
we numerically estimated the SNR (5.50) for various temperatures and orbital radii,
as shown in Figures 5.3 and 5.4. It is important to reiterate that the initial state in
our helium-4 setup is thermal, markedly distinct from the vacuum state featured in
conventional textbook descriptions of the Unruh effect. Despite this distinction, our
results bring two significant conclusions. We first noted that SNR scales proportionally
with the acceleration of the detector, confirming the intuition brought from the stan-
dard Unruh effect. Second, we have observed that not only an acceleration-dependent
signal persists in the presence of background thermality in the probed field, but it also
increases with the temperature of the superfluid sample.

It is worth noting that the experimental proposal relied on an entirely novel the-
oretical framework for quantum field detectors in (2+1) dimensions immersed in a
thermal bath [83] and for continuous local field detectors as an alternative to the
usual two-level Unruh-DeWitt detectors [251]. The estimates presented here consider
a "high-temperature" limit, kBT ≫ ℏω, of these more general descriptions. Neverthe-
less, it is possible to increase the propagation speed of third-sound modes by reducing
the film thickness, which could potentially allow for the investigation of high enough
frequencies, kBT ≲ ℏω, so that third-sound quantisation might be visible.
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Chapter 6

Conclusion

In this thesis, we have established new kinds of interacting field theory simulators on
liquid-liquid and liquid-gas interfaces, tackling problems that, so far, have only been
simulated in Bose gases [70–74]. We initially motivated our work with recent devel-
opments in quantum simulators and analogue gravity, seeking to extend the research
programme to explore generalised Effective Field Theories (EFTs), not necessarily
linear ones, that we cannot exactly calculate or numerically simulate. Given the his-
torical relevance and practical versatility of experiments on fluid surfaces, we derived
an effective theoretical framework for interfacial dynamics. We then used it to devise
proof-of-principle experimental setups to emulate and examine fundamental aspects of
the emergent field theories and their counterparts in Quantum Field Theory in Curved
Spacetimes (QFTCS).

Our empirical investigations showed that the interface between two classical liquids
can be the stage for simulations of non-equilibrium dynamics in the early Universe. The
effective field-theoretical description supporting our findings can be directly transferred
to quantum liquids, such as helium-3 and helium-4. Indeed, the experimental simulator
recently reported in [78] systematically explores, in line with our work, the EFT emerg-
ing from the surface dynamics of a vortex flow in superfluid helium-4. Foreseeing this
new generation of experiments on classical and quantum fluid interfaces, we briefly
reviewed and presented detection methods for reconstructing entire spatial regions of
the fluid interfacial height, the central observable of our EFTs. Complementarily, by
considering a local detector built from an effective interaction between a laser and
superfluid helium-4, we opened a new path for studying the fundamental principle of
observer dependence in QFTCS as predicted by the Unruh effect. In the following, we
briefly review our main results and offer outlooks on future avenues of research.

In Chapter 2, we have discussed the theoretical framework for constructing EFT
simulators using fluid interfaces. This description was further used in the following
chapters to specialise to scalar field theories in cosmological scenarios and flat space-
time. Our discussion on including non-idealised features in the formulation reveals the
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critical advantage of this process: the model can be iteratively improved to better
describe the underlying physical system while keeping the field-theoretical framework.
This approach extrapolates the standard treatment of analogue gravity, relying on
exact mathematical equivalences between the target and the simulator. Instead, it
permits a systematic analysis of the impact that realistic experimental features have
on the emergent dynamics of the EFT. In turn, an element of robustness appears
in investigating the target process idealised in astrophysical settings. After all, if a
phenomenon prediction can “survive” the various intricacies of different systems, such
as dissipation and dispersion, it might have something more fundamental to it worth
delving into.

Building on these previous statements, our results in Chapter 3 speak for the con-
vergence of two somewhat unrelated theories - the cosmological model of preheating
and the evolution of non-linear Faraday waves - through the dynamical similarities
in their field-theoretical descriptions. As an initial step, we used statistical measures
to characterise the emergent EFT and demonstrate the efficacy of our approximate
non-linear model in accurately recovering the evolution of the primary instability. We
further established a conceptual relation to the preheating scenario by investigating
secondary instabilities resulting from the decay of the dominant mode. Our findings
highlight that the key non-linear dynamical features of the astrophysical theory can be
observed in a strongly interacting and damped system, reinforcing the robustness of
the phenomena in line with our statement above. Moreover, we note that the two-
fluid interface hosts infinitely many modes fitting the basin, and our EFT predicts that
just as many interaction “channels” are available. This offers a powerful platform to
investigate the time evolution of more intricate interacting scenarios that numerical
simulations of an approximate EFT would struggle to replicate.

The developments of Chapter 3 illustrate the need for precise and accurate recon-
struction of the interfacial height in order to obtain a trustworthy characterisation
of the emergent EFT. Accordingly, we presented two detection schemes in Chapter 4,
also envisioning further experimental analogue simulations in fluid interfaces. The first,
Schilieren Fourier Transform Profilometry (FTP), is primarily limited by the spatial fre-
quency of the periodic pattern and the imaging system only. Despite being successfully
used in the experiments of Chapter 3 and resolving wave amplitudes from micro to
millimetres, we could not observe the interface departing its stochastic initial state, as
that is expected to happen way below our lower resolution bound. In this sense, the
second method, Digital Holography (DH) profilometry, may help future studies by al-
lowing the reconstruction of the entire dynamical evolution of the interface. With this,
we could examine the influence, if any, of the initial state on the non-linear behaviour
at later times, which is a known problem in far-from-equilibrium field theories.

Expanding on the reconstruction methods of Chapter 4 covering a region of the
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sample, we employed local analogue field detectors in Chapter 5. The proposed exper-
iment would simulate a different type of interacting field theory, touching the concept
of particle detectors in QFTCS. The third-sound quasi-particles in helium-II are anal-
ogous to a free massless scalar field in (2+1)-dimensional Minkowski space. However,
in defining a quasi-particle detector, we had to establish an effective interaction term
between the probing and analogue fields. This was critical for the mapping between
the EFT and the target Quantum Field Theory (QFT). Leveraging the measurement
system and the analogue correspondence, our experimental proposal would be the first
to observe the acceleration dependence in detector response, in line with the Unruh
effect, but in the presence of background thermality.

Conceiving such a setup whose sample is always at a finite temperature requires
considering a thermal state instead of the quantum vacuum in the relevant QFT.
In other words, the theory of the target scenario had to be suitably extended to
the experimental requirements of the simulator, even revealing novel aspects of the
circular-motion Unruh effect, as presented by Bunney and Louko [83]. Accordingly,
besides the relevance of the potential observation of the phenomenon, this proposal
represents a prime instance of the symbiotic relation between the physics of the target
and the simulator, even at an early conceptual and developmental stage.

We argue that two factors ultimately determine the utility and efficacy of gravity and
early Universe simulators. Firstly, a thorough understanding of the EFT, extending be-
yond the description of the analogical framework, is needed. This comprehension must
encompass an ability to quantitatively assess potential deviations and ascertain whether
they can be translated into relevant and interesting features of non-equilibrium and
fundamental processes. This was shown through the development of the general EFT
in fluid interfaces, the experimental investigations of our preheating dynamics simula-
tions, and the proposal of empirical observation of the analogue Unruh effect.

Secondly, the refinement and optimisation of gravity simulators for broader appli-
cations require precisely extracting the dynamics of the simulated field. In turn, this
entails a comprehensive characterisation of the emergent EFT and its suitability in
describing empirical data. Our measurement schemes, both for interfacial reconstruc-
tion over a spatial region and for local detection of surface waves, were devised to
facilitate the development of gravity simulators in fluids. Ultimately, these two facets
of analogue simulations are interconnected. Hence, future developments should be
guided by a comprehensive theoretical description of the underlying physics governing
the simulation, as well as enhanced experimental control mechanisms and detection
methods.

In light of the discussion above, future work should concentrate on applying the
framework of interacting field theories developed here to challenging QFTCS prob-
lems, building on the proof-of-principle experiment and proposal presented in this
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thesis. Our results of Chapter 3 indicate that a classical liquid-liquid interface can
be appropriately used for early Universe simulations. However, a question remains on
what relevant aspects of non-equilibrium dynamics can be observed in a classical setup
in contrast with quantum simulators in condensed matter. One route for answering
this question would be to conduct experiments in the two-fluid system of Chapter 3
to investigate universal behaviour in the late-time non-linear interfacial dynamics us-
ing our effective field-theoretical description. The results could then be compared to
previous experiments in Bose gases [70–72], allowing differences and similarities to be
drawn.

Following with early Universe simulators, due to its abnormally low viscosity, thin
films of superfluid helium could be used for mimicking the inflationary expansion of the
Universe with enough e-folds to observe mode freezing way before interfacial waves
are viscously damped, similar to the proposal of Fifer et al. [79] for magnetised liq-
uids. For such an experiment, the DH profilometry method developed in Chapter 4
would be of great use as it could be readily implemented in low-temperature setups.
Overlapping with the proposal in Chapter 5, the method should be employed in recon-
structing the spectrum of third sound waves on thin films of helium-II, which can then
be used as input for numerical studies to be compared with the experiment. At low
frequencies, the holographic measurement would serve as a benchmark for develop-
ing the phase-referenced laser detector required for the experimental implementation
suggested in Chapter 5.

As we look forward, it is evident that the combination of theoretical advances and
experimental innovations in fluid interfaces holds great promise for analogue gravity.
The compelling opportunity of experimentally simulating EFTs with astrophysical ori-
gins in the presence of intricate real-world conditions leaves us optimistic about future
research prospects. Our work builds on the solid foundation laid by previous analogue
black-hole and early Universe simulators to offer the stepping stones for a new gener-
ation of experiments on classical and quantum fluid interfaces that we anticipate will
dive deeper into fundamental physics questions.



Appendix A

Fluid-fluid interfacial dynamics:
derivations and useful formulae

This appendix condenses a series of derivations and useful formulae relevant to all
chapters but primarily to the model presented in Chapter 2. Some of these are based
off [1] and standard textbook references in Fluid Dynamics [15, 90, 100, 108].

A.1 Limits of Navier-Stokes equations

Here, we discuss the approximate limits of the Navier-Stokes equations (2.8) and some
of their solutions relevant to the conditions and setup of Section 2.2.

A.1.1 Stress Balance condition

Following the Helmholtz decomposition of Equation 2.2, the normal stress condition
at the interface (2.12) reads

n̂Γ ·
(↔

π1

∣∣∣
Γ=0−

− ↔
π2

∣∣∣
Γ=0+

)
· n̂Γ = − (p1|Γ=0− − p2|Γ=0+)

+ 2
|∇Γ|

[
µ1ε1,zz|Γ=0− −µ2ε2,zz|Γ=0+ − (2ẑ−∇ξ) ·

(
µ1

↔
ε 1 |Γ=0− − µ2

↔
ε 2 |Γ=0+

)
·∇ξ

]
= −σ∇ · n̂Γ, (A.1)

where |∇Γ| =
√

1 + |∇ξ|2, ↔
ε j denotes the strain rate tensor of fluid j, and εj,kl its

components in the (kl) directions. Similarly, the tangential stress condition reads

µ1n̂Γ ·
(↔

ε 1

∣∣∣
Γ=0−

)
× n̂Γ = µ2n̂Γ ·

(↔
ε 2

∣∣∣
Γ=0+

)
× n̂Γ. (A.2)

We note that the normal stress condition recovers the usual Young-Laplace law [97] in
the absence of viscosity and non-linearities. Under the same conditions, the tangential
stress equation vanishes, indicating the continuity of tangential components across the
interface.
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A.1.2 Non-linear inviscid regime

By disregarding any viscous components of the velocity, i.e., setting Uj ≡ 0, in
equations (2.4) and (2.7), we directly obtain (2.15b) and (2.15c). To derive equa-
tion (2.15d), we first note that the convective term of the Navier-Stokes equation (2.8)
can be re-expressed as follows

(uj · ∇)uj = 1
2∇|uj|2 − uj × (∇ × uj) = ∇

(1
2 |∇ϕj|2

)
, (A.3)

where we used that the curl of a gradient vanishes. The divergence of the stress tensor
↔
ε j reads

∇· ↔
ε j= −∇pj + µj∇2uj = −∇pj + µj ∇2∇ϕj︸ ︷︷ ︸

∇(∇2ϕj)=0

= −∇pj. (A.4)

Equation 2.8 can then be written as

∇
[
ρj
∂ϕj
∂t

+ 1
2 |∇ϕj|2 + ρjg(t)z + pj

]
= 0, (A.5)

from which we recover Bernoulli’s equation in both fluids

ρj
∂ϕj
∂t

+ 1
2 |∇ϕj|2 + ρjg(t)z + pj = const. (A.6)

By evaluating this equation at the interface Γ = z − ξ(t,x) = 0 in each fluid and
computing their difference, we obtain (2.15d).

A.1.3 Linear, slightly viscous regime

For linearised perturbations of the Navier-Stokes equations (2.8) in the presence of
small viscosities in both fluids, we may describe the linear dynamics in terms of inviscid
(irrotational) solutions ∇ϕj with small viscous (solenoidal or rotational) corrections
Uj relevant around the boundary layers at solid walls and the interface [90]. In the
absence of external forcing, we assume that the velocity potentials satisfy the linearised
Bernoulli’s equation, which evaluates to the following at the interface,

∂

∂t
(ρ1ϕ1 − ρ2ϕ2)

∣∣∣∣∣
z=0

+ (ρ1 − ρ2)g0ξ − σ∇2ξ = 0. (A.7)

Additionally, it follows from Equation 2.8 that the Stokes’ boundary layer velocities
Uj satisfy

∂Uj

∂t
− νj∇2Uj = 0. (A.8)

Under these assumptions, the kinematic boundary condition at the interface (2.7)
for the inviscid solution reads

∂ξ

∂t
= ∂ϕ1

∂z

∣∣∣∣∣
z=0

= ∂ϕ2

∂z

∣∣∣∣∣
z=0

. (A.9)
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From this equation, by employing the spectral decompositions for ϕj and ξ in equa-
tions (2.20) and (2.21), we recover a map between the interfacial modes ξa and ϕj,a
in Equation 2.24. Accordingly, Equation 2.56 follows directly from this relation. For
the rotational velocities Uj, the kinematic boundary condition yields Equation 2.57d
and the remaining constraints are given in Equation 2.57.

Around rigid walls and the interface, Equation 2.57b and Equation 2.57d require
that the solenoidal velocities must vanish along the direction of the normal and, thus,
are always tangential to the boundaries. In line with [86], we write the boundary layer
velocities around a rigid wall S̄B as

Uj,B = − ∇∥B
ϕj
∣∣∣
S̄B

F (ζj,B), (A.10)

where ∇∥B
denotes the gradient along the tangential coordinates of S̄B, and ζj,B is the

dimensionless coordinate in the direction of the normal n̂B, as given in Equation 2.58.
It follows that the velocity above satisfies the no-slip condition (2.57c) identically if
F (ζj,B = 0) = 1.

Now, the only remaining component of the rotational velocity to be determined is
F . For that, we must solve the equation of motion Equation 2.57f with boundary
condition F (ζj,B = 0) = 1 and requiring the Stokes form, i.e., Uj,B must vanish
rapidly far from the boundary, so F → 0, as ζj,B → ∞. Hence the solution follows,

ℓ2
j∇2Uj,B = ℓ2

j

(
∇2

∥B
+ ∂2

∂n2
B

)
Uj,B =

(
ℓ2
j∇2

∥B
+ ∂2

∂ζ2
j,B

)
Uj,B = −i sgn(ωa)Uj,B

=⇒ 0 =
(
ℓ2
j∇2

∥B
+ ∂2

∂ζ2
j,B

+ i sgn(ωa)
)
Uj,B ≈

(
∂2

∂ζ2
j,B

+ i sgn(ωa)
)
Uj,B

=⇒
(

∂2

∂ζ2
j,B

+ i sgn(ωa)
)
F (ζj,B) = 0

=⇒ F (ζj,B) = e−∆ζj,B , for ∆ = 1 − i sgn(ωa)√
2

. (A.11)

Here, in the first line, nB stands for the dimensionful coordinate along the direction of
the normal n̂B and related to ζj,B through Equation 2.58. In the second line, we only
kept leading order terms of the small boundary layer thickness ℓj. With the function
F above applied to (A.10), one recovers the leading order solution in Equation 2.59.

At the interface Ī, two boundary layers effectively form, one in each fluid. From
the boundary conditions (2.57d) and (2.57e), it is still reasonable to assume that the
solenoidal velocity Uj,I is separable and depends on the dimensionless coordinates ζj,I
though the same function F (ζj,I) as Uj,B in Equation 2.59. Hence, we write the
ansatz for the interfacial boundary layer velocity in each fluid as

Uj,I = Wj(x)F (ζj,I), (A.12)

where Wj are vector functions depending only on the horizontal coordinates of the
interface x and with no vertical component, i.e., ẑ · Wj = 0. These functions can be
found by solving the continuity conditions (2.57e) and (2.57g) at the interface, i.e.,

∇xϕ1|z=0 + W1 = ∇xϕ2|z=0 + W2, (A.13)
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ρ1ν1
∂

∂z
(W1(x)F (ζ1,I))z=0 = ρ2ν2

∂

∂z
(W2(x)F (ζ2,I))z=0 . (A.14)

The solutions of this system yield

Wj(x) = (−1)j 1
ρj

√
νj

(
1

ρ1
√
ν1

+ 1
ρ2

√
ν2

)−1

∇x (ϕ1 − ϕ2)z=0 , (A.15)

which recovers Equation 2.60.

A.2 Variation of the kinematic boundary action

We consider the action defined in equation (2.16),

Ij = (−1)j+1

2Σ

˚
Vj

(∇ϕj)2 dΣ dz − 1
Σ

¨ 1
|∇Γ|

∂ξ

∂t
ϕj|z=ξ dΣ

= (−1)j+1

2Σ

¨
dΣ(−1)j+1

ˆ ξ

hj

dz (∇ϕj)2 − 1
Σ

¨ 1
|∇Γ|

∂ξ

∂t
ϕj|z=ξ dΣ.

(A.16)

The variation of the action with respect to ϕj is then given by

δIj = (−1)j+1

Σ

˚
Vj

dΣdz ∇ϕj · ∇(δϕj) − 1
Σ

¨
dΣ 1

|∇Γ|
∂ξ

∂t
δϕj|z=ξ

= (−1)j+1

Σ

˚
Vj

dΣdz
[
∇ · (δϕj∇ϕj) − δϕj∇2ϕj

]
− 1

Σ

¨
dΣ 1

|∇Γ|
∂ξ

∂t
δϕj|z=ξ

= (−1)j
Σ

˚
Vj

dΣdz
(
∇2ϕj

)
δϕj + (−1)j+1

Σ

‹
∂Vj

dSn̂ [(n̂ · ∇ϕj) δϕj]∂Vj

− 1
Σ

¨
dΣ 1

|∇Γ|
∂ξ

∂t
δϕj|z=ξ .

(A.17)
The vector n̂ denotes all outwardly directed normal unit vectors of the boundaries ∂Vj
of volume Vj of each fluid with Sn̂ their respective area element. We distinguish the
boundaries into rigid ones, S̄, and the moving interface at Γ = 0. For the latter, the
outwardly directed normal n̂Γ,j of each fluid can be written as n̂Γ,j = (−1)j+1n̂Γ =
(−1)j+1∇Γ/|∇Γ|, i.e., the interface’s normal points upwards in fluid 1 and downwards
in 2. Hence, the variation of the action results in

δIj = (−1)j
Σ

˚
Vj

dΣdz
(
∇2ϕj

)
δϕj + (−1)j+1

Σ

¨
S̄

dSn̂ [(n̂ · ∇ϕj) δϕj]∂Vj

+ 1
Σ

¨
dΣ 1

|∇Γ|

[
∇Γ · ∇ϕj − ∂ξ

∂t

]
z=ξ

δϕj|z=ξ. (A.18)

Hence, by imposing δIj = 0, we see that the integrals in the equation above respec-
tively recover Laplace’s equation (2.3) for ϕj, the no-penetration conditions (2.4) at
rigid boundaries, and the kinematic condition (2.7) at the interface.



Chapter A. Matrices, their integral coefficients and useful relations 135

A.3 Matrices, their integral coefficients and useful
relations

By comparing equation (2.22) with (2.16), we can obtain the form of the Kj and Dj

matrices. The matrix coefficients of Dj, denoted d(j)
ab , are defined by

d(j)
ab = 1

Σ

¨
dΣ χaχb√

1 + |∇ξ|2
cosh[kb(ξ − hj)]

cosh(kbhj)
. (A.19)

This definition indicates that Dj is an asymmetric, dimensionless, square matrix. Under
the assumption that |ξ| ≪ |hj|, we may right the hyperbolic cosines above as

cosh[kb(ξ − hj)]
cosh(kbhj)

= 1 + (−1)j+1Tj,bkbξ + 1
2k

2
bξ

2 + · · · , (A.20)

with Tj,a ≡ tanh(ka|hj|) and we used hj = (−1)j|hj|. We must also account for
the square root in the denominator of equation (A.19), which for small slopes of the
interface, i.e., |∇ξ| ≪ 1, reads

1√
1 + |∇ξ|2

= 1 − 1
2 |∇ξ|2 + · · · = 1 − 1

2
∑
c,d

∇χc · ∇χdξcξd + · · · . (A.21)

From the equation above and (2.21), we see that

d(j)
ab = δab + (−1)j+1kbTj,b

∑
c

Ccabξc + 1
2
∑
c,d

(
k2
bCcdab − Dabcd

)
ξcξd + · · · , (A.22)

with

Ccab = 1
Σ

¨
dΣ χcχaχb, (A.23a)

Ccdab = 1
Σ

¨
dΣ χcχdχaχb, (A.23b)

and
Dabcd = 1

Σ

¨
dΣ χaχb∇χc · ∇χd . (A.23c)

Similarly, the matrix coefficients of Kj, denoted k(j)
ab , are defined by

k(j)
ab = (−1)j+1

Σ

˚
Vj

dΣdz ∇ψa · ∇ψb = 1
Σ

ˆ ξ

hj

dz
¨

dΣ ∇ψa · ∇ψb. (A.24)

It is worth noting that in fluid 2 the integration in z should span from ξ to h2, hence
requiring a negative sign, which cancels off the sign in equation (2.16). Kj is also a
square matrix, but symmetric in its entries and with the dimension of inverse length.
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By using the definitions in the main text, the equation above expands to

k(j)
ab = sech(ka|hj|)

Σ cosh(kb|hj|)

ˆ ξ

hj

dz
¨

dΣ
{

∇χa · ∇χb cosh[ka(z − hj)] cosh[kb(z − hj)]

+ kakbχaχb sinh[ka(z − hj)] sinh[kb(z − hj)]
}
,

(A.25)
and upon integration of the z−components, reduces to

k(j)
ab = 1

2Σ

¨
dΣ

{
K(j,+)
ab + K(j,−)

ab

}
, (A.26)

with

K(j,±)
ab = sech(ka|hj|)

cosh(kb|hj|)
sinh[(ka ± kb)(ξ − hj)]

ka ± kb

{
∇χa · ∇χb ± kakbχaχb

}
. (A.27)

And again, under the assumption that |ξ| ≪ |hj|, we find that

sinh[(ka ± kb)(ξ − hj)]
ka ± kb

= (−1)j+1 sinh[(ka ± kb)|hj|]
ka ± kb

+ ξ cosh[(ka ± kb)|hj|]

+ (−1)j+1

2 (ka ± kb)ξ2 sinh[(ka ± kb)|hj|] + · · · ,
(A.28)

which leads to

K(j,±)
ab = (−1)j+1Tj,a ± Tj,b

ka ± kb

{
∇χa · ∇χb ± kakbχaχb

}
+ (1 ± Tj,aTj,b)

∑
c

ξc

{
χc∇χa · ∇χb ± kakbχcχaχb

}

+ (−1)j+1

2 (ka ± kb)(Tj,a ± Tj,b)
∑
c,d

ξcξd

{
χcχd∇χa · ∇χb ± kakbχcχdχaχb

}
+ · · · .

(A.29)

By rearranging terms and defining new auxiliary integral coefficients, we find that
the matrix coefficients k(j)

ab up to second-order in ξ simplify to

k(j)
ab =(−1)j+1kaTj,aδab +

∑
c

(Dcab + kaTj,akbTj,bCcab)ξc

+ (−1)j+1

2
∑
c,d

[
(kaTj,a + kbTj,b)Dcdab + (k2

akbTj,b + k2
bkaTj,a)Ccdab

]
ξcξd + · · · ,

(A.30)
with

Dcab = 1
Σ

¨
dΣ χc∇χa · ∇χb and Dcdab = 1

Σ

¨
dΣ χcχd∇χa · ∇χb . (A.31)

In deriving the equations above, one should note that the boundary condition on rigid
boundaries (2.18) is required when setting boundary terms in the integrals to zero.
Thus, if those conditions change, one should account for that when re-deriving the
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form of the matrix elements k(j)
ab . We also note that matrix Kj in equation (A.30)

agrees with the result from Miles [84] for the fluid j = 1, however, matrix Dj in
equation (A.22) diverges from that of Miles by a term proportional to Dabcd.

To obtain the Lj matrix coefficients, we must first compute the inverse of Kj, which
can be done by employing a matrix inversion identity (e.g., the Woodbury identity) or
computing each term of the inverse perturbatively for a given small parameter. We opt
for the latter and suppose that there exists a square matrix Fj such that FjKj = I,
where I is the identity matrix, and hence Fj ≡ (K−1

j )T. Similar to equation (A.30),
we may write the matrix coefficient of Fj, denoted f(j)

ab , as a series expansion in powers
of ξa, as follows,

f(j)
ab = f(j,0)

ab +
∑
c

f(j,1)
abc ξc +

∑
c,d

f(j,2)
abcd ξcξd + · · · . (A.32)

By solving the equality ∑c f(j)
ac k(j)

cb = δab up to second order in ξa, we find

f(j)
ab = (−1)j+1

kaTj,a
δab −

∑
c

(
Dcab

kaTj,akbTj,b
+ Ccab

)
ξc

+ (−1)j 1
2kaTj,akbTj,b

∑
c,d

[
(kaTj,a + kbTj,b)Dcdab + (k2

akbTj,b + k2
bkaTj,a)Ccdab

]
ξcξd

− (−1)j
∑
c,d,e

(Dcae + kaTj,akeTj,eCcae)(Ddeb + keTj,ekbTj,bCdeb)
kaTj,akbTj,bkeTj,e

ξcξd + · · · . (A.33)

Finally, the matrix elements l(j)ab can be found by computing l(j)ab = ∑
c f(j)
ac d(j)

bc , which
results in

l(j)ab =(−1)j+1

kaTj,a
δab −

∑
c

Dcab

kaTj,akbTj,b
ξc

+ (−1)j+1∑
c,d

[
− kb

2Tj,b
Ccdab − kaTj,a + kbTj,b

2kaTj,akbTj,b
Dcdab − 1

2kaTj,a
Dabcd

+
∑
e

Ddeb

kaTj,akbTj,bkeTj,e
(Dcae + kaTj,akeTj,eCcae)

]
ξcξd + · · · .

(A.34)
The elements A(j)

ab of matrix Aj may be computed in a similar way as Lj and Fj

by defining it from the series expansion in powers of ξa, i.e.,

A(j)
ab = (−1)j+1A(j,0)

ab +
∑
c

A(j)
cabξc + 1

2(−1)j+1∑
c,d

A(j)
cdabξcξd + · · · , (A.35)

with

A(j,0)
ab = 1

kaTj,a
δab , (A.36a)

A(j)
cab = Ccab − Dcab

kaTj,akbTj,b
, (A.36b)

A(j)
cdab = −kaTj,a + kbTj,b

kaTj,akbTj,b
(Dabcd + Dcdab) + 2

∑
e

DcaeDdeb

kaTj,akbTj,bkeTj,e
. (A.36c)
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And the integral coefficient Babcd is given by

Babcd = 1
Σ

¨
dΣ (∇χa · ∇χb) (∇χc · ∇χd) . (A.37)

A.4 Mathieu equation in the two-fluid system
In the setup of Chapter 3, the linear evolution of interfacial modes ξa in the presence
of an external forcing of the form F0(t) = F0 cos(ωdt) is given by Equation 3.1, which
we re-write as follows,

ξ̈a + 2γaξ̇a + A12g0

(
1 + ℓ2

ck
2
a − F0

g0
cos(ωdt)

)
ka tanh(kah0)ξa = 0, (A.38)

where A12 = (ρ1 − ρ2)/(ρ1 + ρ2) is the dimensionless Atwood number, γa is the linear
damping of the mode, and ℓc =

√
σ/(ρ1 − ρ2)g0 is the capillary length. We now

employ the following variable definitions

ω2
a = A12g0(1 + ℓ2

ck
2
a)ka tanh(kah0), (A.39a)

F 2
a = A12F0ka tanh(kah0), (A.39b)
τ = ωdt, (A.39c)

c = 2γa
ωd

, (A.39d)

δ =
(
ωa
ωd

)2
, (A.39e)

ϵ =
(
Fa
ωd

)2
. (A.39f)

The set of dimensionless variables (τ, c, δ, ϵ) allows us to write Equation A.38 as in Ko-
vacic et al. [112] (cf. equation (45) in [112]), i.e.,

ẍ+ cẋ+ (δ + ϵ cos τ)x = 0, (A.40)

where the dots denote differentiation with respect to τ , and x(τ) ≡ ξa(τ/ωd).
For the typical experimental parameters of Chapter 3, some of the dimensionless

coefficients of the dominant mode (m,n) = (4, 1) are small, c4,1 ≈ 0.06 ≪ 1 and
ϵ4,1 ≈ 0.09 ≪ 1. In such conditions, Kovacic et al. [112] solve the damped Mathieu
equation perturbatively to find that the first instability band is centred around δ = 1/4
and has transition boundaries to stable solutions at δ± given by

δ± = 1
4 ± 1

2
√
ϵ2 − c2. (A.41)

The authors also compute the approximate value of the dimensionless Floquet coef-
ficient λ̄ = λ/ωd of the slow time exponential envelope exp(λ̄ϵτ). The approximate
dimensionful coefficient λ at the centre of the first resonance band (δ = 1/4) is given
by

λ ≈ −ωdc

2 + ωdϵ

2 = F 2
a

2ωd
− γa. (A.42)



Appendix B

Numerical Methods

B.1 Determination of Floquet coefficients and in-
stability bands

The equation of motion for the two-fluid interfacial dynamics approximately reduces
to the Mathieu equation for the linear evolution, which in its dimensionless form, reads

ẍ+ cẋ+ (δ + ϵ cos τ)x = 0. (A.40)

We perform the stability analysis of our system by numerically solving the system of
equations obtained from Floquet’s theorem applied to the equation above. The forcing
term is periodic with period 2π, and we look for unstable solutions of the Floquet form,
as in Equation 3.3,

x(τ) =
∑
n

An exp
(
λτ + i

n

2 τ
)
. (B.1)

By applying this form to the Mathieu equation and balancing terms in the summation
accordingly, one finds that Equation A.40 reduces to

∑
n

e(λτ+in
2 τ)

[
MnAn + ϵ

2An−2 + ϵ

2An+2

]
= 0, (B.2a)

with
Mn ≡

(
λ+ in

2

)2
+ c

(
λ+ in

2

)
+ δ. (B.2b)

In Equation B.2a, each term of the summation must vanish independently, resulting
in a system of quadratic equations in λ for each n, as follows,

λ2An + (in+ c)λAn +
(
δ − n2

4 + icn

2

)
An + ϵ

2(An−2 + An+2) = 0. (B.3)

We then define the column vector of coefficients A given by

A = (. . . , A−1, A0, A1, . . . )T , (B.4)

and represent the system of equations above in matrix notation as follows,(
λ2I + λD + K

)
A = 0, (B.5a)

139
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where I is the identity matrix, and D and K are diagonal and tridiagonal matrices,
respectively, given by

D = diag (. . . , c− in, . . . , c− i, c, c+ i, . . . , c+ in, . . . ) , (B.5b)

and

K =



. . . . . . . . . . . . . . . . . .

0 ϵ
2 0 κ−n 0 ϵ

2 0
. . . . . . . . . . . . . . . . . . . . .

0 ϵ
2 0 κ0 0 ϵ

2 0
. . . . . . . . . . . . . . . . . . . . .

0 ϵ
2 0 κn 0 ϵ

2 0
. . . . . . . . . . . . . . . . . . . . .



, (B.5c)

with κn ≡ δ− n2

4 + icn
2 . When truncated for numerical implementation at an integer N

such that |n| ≤ N , D and K are square matrices with (2N + 1) × (2N + 1) elements.
The quadratic eigenvalue problem in Equation B.5a can be further simplified for

numerical convenience by noting that it can be written as a generalised eigenvalue
problem, as follows, 0 I

K D

( A

λA

)
= λ

I 0

0 −I

( A

λA

)
. (B.6)

Both block matrices on each side have (4N + 2) × (4N + 2) elements when the
numerical truncation is implemented, and we denote the one on the right-hand side
as B. The latter is an idempotent matrix, and hence its inverse is given by

B ≡

I 0

0 −I

 = B−1, (B.7)

and the generalised eigenvalue problem reduces to a simple one, as follows, 0 I

−K −D

( A

λA

)
= λ

(
A

λA

)
. (B.8)

The system in Equation B.8 can be readily diagonalised with any standard numerical
package, such as NumPy or Scipy. Numerical performance is improved by employing
any package optimised for sparse matrices, such as the block matrix above. The real
part of the eigenvalues λ in Equation B.8 determines the unstable growth of the mode
considered in obtaining Equation A.40. We recall that the dimensionless coefficients
c, δ and ϵ are, in fact, mode-dependent. The truncation error is rapidly suppressed
for N > 10, and by looping over different values of c, δ and ϵ, one can obtain a map
of Floquet coefficients λ.



Chapter B. Simulations of non-linear evolution 141

The instability bands are traced by transition curves where the unstable evolution
becomes stable, that is when λ = 0. For fixed values of damping c and forcing
amplitude ϵ, we can determine the stiffness parameters δ for which Equation B.3 is
satisfied with λ = 0. In other words, we write another eigenvalue problem as follows,

K|δ=0 A = −δA. (B.9)

Another option is to solve a generalised eigenvalue problem by fixing δ instead and
determining ϵ, i.e.,

K|ϵ=0 A = −ϵ K|ϵ=1,δ=0A. (B.10)

By solving any of these systems, one can trace the instability transition curves shown
in Chapter 3. The matrices above have (2N + 1)2 elements, four times less than the
block matrices for the Floquet coefficients λ.

B.2 Simulations of non-linear evolution
For the numerical simulations of the non-linear evolution in Chapter 3 given by

ξ̈a + (2γa + γ̃a[ξ]) ξ̇a +
(
ω2
a(t) + δ̃a[ξ]

)
ξa = ηa(t) + η̃a[ξ], (3.9)

we employed a fourth-order Runge-Kutta (RK) step solver. In the following discussion,
we drop the sub-index a denoting the mode label and define the solution vector as

X ≡
(
ξa

ξ̇a

)
. (B.11)

The non-linear terms will be denoted as implicit functions of the vector X and are
given by the appropriate formulas in Chapter 3. The system above can be written in
matrix notation as follows

dX
dt =

 1 0

−
(
ω2(t) + δ̃[X]

)
− (2γ + γ̃[X])

X +

 0

η(t) + η̃[X]

 ≡ f (X(t), t) .

(B.12)
The vector function f is the input for the numerical solver, and the initial value at t = 0
of the solution X is set to 0. The evolution is triggered by the stochastic noise term
η(t), which we sample from a central distribution estimated from the experimental
data, as explained in Chapter 3.

We consider the numerical solver evolves from an initial time t = 0 with Nt steps
equally spaced in time with duration h each. We then use the fourth-order RK method
to compute the slope approximations up to the fourth order at some time t0, as follows,

k1 = f (X(t0), t0) ,

k2 = f
(
X(t0) + h

2k1, t0 + h
2

)
,

k3 = f
(
X(t0) + h

2k2, t0 + h
2

)
,

k4 = f (X(t0) + hk3, t0 + h) .

(B.13)

We then estimate the solution at t0 + h by using the weighted average of the slopes,



Chapter B. Simulations of non-linear evolution 142

given by
k0 = 1

6 (k1 + 2k2 + 2k3 + k4) . (B.14)

Hence, the approximate solution after the step is

X(t0 + h) ≈ X(t0) + k0h. (B.15)

We stress again that, at each RK step, the random stochastic function η is sampled,
effectively sourcing the evolution despite the initial being identically zero. The sim-
ulations for the primary mode only have contributions from the stochastic term as η̃
vanishes. On the other hand, the secondary mode is sourced both by the random noise
and by the evolution of the primary appearing through η̃.
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