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Abstract

Inflammatory processes in the airway lead to altered extracellular matrix

(ECM) and increased airway smooth muscle (ASM), which is responsible

for the rapid contraction of asthmatic airways during exacerbations. In-

creased ASM contributes substantially to the thickening of airways (airway

remodelling), and a higher likelihood of experiencing potentially fatal at-

tacks. In culture, ASM cells exhibit changes in shape and contractile ability

between a spindle-shaped contractile phenotype and a more rounded pro-

liferative phenotype with synthetic properties capable of depositing ECM.

The link between phenotype switching and corresponding changes in struc-

ture, function and relative bio-mechanical abilities in vivo is unclear, but

key in understanding remodelling. The aim of this project is to combine in

silico and in vitro techniques in order to develop models that contribute to

the identification of key mechanisms involved in airway remodelling and

provide a framework for predicting dynamic mechanical changes in airway

tissue.

We first summarise and extend our previously developed ODE model ac-

counting for ASM phenotype and ECM changes triggered by environmen-

tal stimuli, based on a newly discovered pathway of remodelling (Chapter

2). Bifurcation analysis of this model identifies a mechanism by which ir-

reversible increases in ECM and ASM mass could occur, given a particular

parameter range. We therefore develop two novel experimental serum de-

privation protocols using cultured human ASM and microscopy to more

accurately quantify the cell phenotype switching rates, as these are the pa-

rameters to which the model is most sensitive (Chapter 3). Our experimen-

tal results suggest that ASM contractility is increased and that there are

structural changes in ASM cells upon switching to a contractile phenotype.
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Using this temporal data, we demonstrate the use of a Bayesian inference

approach to estimate model parameters and inform future experimental de-

sign (Chapter 4).

We then extend this work through the development of a new bio-mechanical

vertex-based cell model represented by a network of damped springs and

contractile elements, in combination with spatial traction force microscopy

data, to investigate changes in mechanical properties of the altered tissue

(Chapter 5). We incorporate a physical and functional change in contrac-

tile cells and find that the model replicates the elongation, stress and strain

properties that we would expect of this cell phenotype. In order to repli-

cate the ASM phenotype switching that we initiate experimentally through

serum deprivation, we then further develop this model by adding the ran-

dom switching of cell phenotypes over the simulation period. This allows

us to explore the hypothesis that the mechanical environment of ASM cells

and their neighbours drives changes in the structure and function of the

tissue, and hence is key in the phenotype switching process (Chapter 6).

The vertex-based bio-mechanical model is also used to test the impact of

simulating an asthmatic exacerbation and, much like with the ODE model,

results show a mechanism by which long-term changes to ASM cells could

occur (Chapter 7). Having tested the impact of a single exacerbation event

in isolation, we then mimic the full traction force microscopy experimental

protocol using this model and appropriate cell numbers. We find that the

model qualitatively agrees well with the dynamics displayed in the experi-

mental results. This computational framework could be exploited to inves-

tigate whether cell signalling changes the alignment of internal contractile

machinery (increases cell elongation) first, which then drives phenotype

change, or vice versa. Understanding more about these processes and their

impact on asthma development is key for the ultimate aim of finding new
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therapeutic targets. This and other scope for future work is discussed in

Chapter 8.
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1
I N T R O D U C T I O N

In this chapter we begin by first describing the biological context of this

project including the key hallmarks of asthma (Section 1.1), the main char-

acteristics of airway smooth muscle (ASM) cells (Section 1.2.1), the role of

extracellular matrix (ECM) (Section 1.2.2), and the recent discovery of a

signalling pathway of airway remodelling involving the activation of the

enzyme Matrix Metalloproteinase-1 (MMP-1) (Section 1.3). We follow this

by explaining the use of in vitro experimentation (Section 1.4) in particular

the techniques of Immunocytochemistry (Section 1.4.1) and Traction Force

Microscopy (TFM) (Section 1.4.2), that we use in Chapter 3. We also explore

the literature for mathematical models of airway dynamics (Section 1.5). We

detail examples of both continuum models and cell-based models, the two

formulations we use to develop models in this project. Finally, we give an

overview of the content and structure of this thesis (Section 1.6).

1.1 asthma , exacerbations and airway remodelling

Asthma is a chronic lung disease that affects approximately 5.4 million peo-

ple in the UK. Around 200,000 of these people are severely affected by this

disease, experiencing frequent exacerbations and hospitalisation, with sig-

nificant burden to the NHS. Furthermore, severe asthma often co-occurs

with a further collection of lung conditions: chronic obstructive pulmonary

disease (COPD). Although asthma is not always seen as being a serious dis-
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1.1 asthma , exacerbations and airway remodelling

ease, in the UK there are an average of three deaths each day as a direct

impact of asthma [4, 48]. No prevention strategies or cure have yet been

identified for asthma, in part because its pathogenesis is not yet fully under-

stood. Treatment only addresses the symptoms and is based on combining

regular corticosteroid inhalation (to reduce inflammation), bronchodilators

(to reopen airways during an exacerbation) and environmental controls (to

reduce exposure to triggers) [48]. Many researchers are currently working

to enhance both the diagnosis and treatment methods, and to ultimately

find a cure [4].

Asthma is characterised by inflammation, airway hyper-responsiveness and

airway remodelling (described in more detail below), which account for

occurrences of wheezing and loss of breath. Asthma patients experience

recurrent exacerbations (or asthma attacks) in which their airways are nar-

rowed as an effect of contraction of ASM. Exacerbations occur in response to

triggers including aero-allergens such as dust mites and histamine-inducing

pollen [49]. While these stimuli are non-pathogenic, in asthmatic airways

they result in an aberrant immune response. Exposure to allergens first re-

sults in the endocytosis of any allergens by antigen presenting cells (APCs).

This then leads to the activation of Th2 (T-helper 2) cells and the produc-

tion of the allergy antibody IgE [54]. Further exposure to the allergen elicits

an acute inflammatory response, increasing the number of inflammatory

cells such as eosinophils and basophils. IgE activates mast cells resident in

the airway tissue, causing their de-granulation and the release of mediators

such as histamines, proteases and cytokines, as well as many growth factors

[48, 17]. These inflammatory mediators act as contractile agonists, causing

the ASM cells lining the airways to contract, and so eliciting acute constric-

tion of the airways [54].

The lungs of an asthmatic are dysfunctional in that they exhibit a significant

increase in the responsiveness of contracting airways. This rapid contrac-
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1.1 asthma , exacerbations and airway remodelling

tion of the airways occurs at much lower doses of contractile agonist and

is known as hyper-responsiveness [54]. ASM causes this contraction and

hence the cells that make up this tissue exhibit both hypersensitivity, such

that there is an increase in response to a smaller stimuli, and hyperactivity,

where the contractile force produced in reaction to any stimuli increases

[39].

The accumulation of mediators released from immune cells during inflam-

mation promotes airway remodelling. Examples of such mediators are

transforming growth factor beta (TGF-β) and mast cell tryptase, which both

induce remodelling through a range of mechanisms, including ECM syn-

thesis [54]. It is thought that the process of airway remodelling begins in

patients early in life and is irreversible. Remodelling progresses through

each exacerbation event, leading to the advancement of the disease and can

eventually cause severe breathing difficulties [56]. A remodelled airway is

characterised by epithelial desquamation (shedding of the airway epithelial

cell layer), hyperplasia of goblet cells (increases in the number of cells which

secrete mucus) and increases in reticular basement membrane (RBM) thick-

ness, together with increases in the amount of ECM and ASM [49, 56, 79].

The differences between a healthy airway and a remodelled airway of a se-

vere asthmatic patient are shown in Figure 1.1. The overall thickening of

the airway wall during remodelling is associated with an increase in hyper-

responsiveness. In this project we focus on the increase in ASM mass and

the changes in ECM, as well as the mechanisms underlying airway remod-

elling.
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1.2 airway components

Figure 1.1: Cross-sectional image of a stained healthy airway (left) and a

remodelled airway of a severe asthmatic patient (right). This

is an open sourced image taken from [79]. The characteristics

labelled in bold are focused on the most in this thesis.

1.2 airway components

1.2.1 Airway Smooth Muscle

Smooth muscle cells contract in response to many extracellular messengers,

therefore accounting for the overall changes in constriction and relaxation

of the airways. ASM is a component of the airway that plays a major role

in airway remodelling in asthma (shown in Figure 1.1). As mentioned in

Section 1.1, asthmatic ASM recruits inflammatory cells, is hyper-responsive

and is affected by airway remodelling, hence is involved in all three of the

major characteristics of asthma [39]. With multiple exacerbations over an

extended length of time, there is a change in the amount of, and function

of, ASM cells. Specifically, there is an increase in ASM mass, which not

only contributes to the thickening of the airway wall tissue (and respective
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1.2 airway components

narrowing of the airway lumen) but also increases the rate at which the

airways contract, thereby creating a positive feedback loop. ASM cells are

hence responsible for and impacted by airway remodelling [39].

ASM cells can be thought of as existing somewhere on a spectrum between

two phenotypes, a proliferative or synthetic phenotype that is able to un-

dergo cell division and a contractile phenotype that has a higher contractile

ability. In vivo, smooth muscle cells have been found to exist normally in

a state towards the contractile end of the spectrum, switching to a state

towards the proliferative end of the spectrum only during cell division. Fur-

thermore, these phenotypes also differ in their morphology, organisation

and protein content [30, 31, 84]. Contractile ASM cells are seen to be elon-

gated and spindle-shaped, with a parallel alignment of actin filaments in the

circumferential direction. This organisation is highly regulated by the ECM

structure, since ECM components play an important role in force transfer

between ASM cells [16, 3]. Contractile markers such as calponin, desmin,

sm-alpha-actin and sm-MHC are found to be up to 75% higher in cells of the

contractile phenotype compared to those of the proliferative phenotype [30].

When ASM cells are cultured for experimental use, the addition of serum

in the growth medium drives them to a proliferative phenotype. Chang

et al. [16], found that vascular smooth muscle cells, when driven to their

proliferative phenotype in culture, lose their parallel actin filament organi-

sation and the fibres become more randomly distributed. This phenotype is

hence recognised by its less elongated, broader and flatter morphology, as

well as increased proliferation as measured by proliferation markers (such

as Ki67 and PCNA) [32]. The difference in the shape and actin alignment

of these cell phenotypes can be seen in Figure 1.2. It has been shown that if

cultured cells undergo an extended period of serum deprivation (up to 19

days), this allows at least a sub-population of these cells to switch back to

having the shortening ability, morphology and protein constituents of an in

vivo contractile phenotype [30].
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1.2 airway components

Figure 1.2: Schematics illustrating (a) differences in the cell shape of prolif-

erative ASM cells (left) and contractile ASM cells (right) [31] and

(b) differences in the alignment of actin filaments in proliferative

ASM cells (left) and contractile ASM cells (right).

1.2.2 Extracellular Matrix

Another structure that is highly relevant in the process of airway remod-

elling is the extracellular matrix (ECM). The ECM forms an elaborate net-

work that provide cells with both structure and ability to signal through

the cooperation of adhesion receptors [77]. ECM is laid down by ASM cells

and therefore an increase in ASM mass through remodelling, results in a

corresponding increase in ECM. The ECM of an asthmatic patient differs

from a healthy ECM in its structure and amount [69]. There are significant

differences in the quantities of several proteins; fibronectin, lumican, colla-

gen I II and V and tenasin C are found in higher quantities, whereas elastin

and collagen IV are found in lower quantities in asthmatic ECM [45]. This

altered ECM profile has a crucial impact on ASM cell function, including

both higher migration and proliferation of ASM cells [45]. Higher amounts

of collagen and fibronectin also lead to enhanced synthetic function [15]

and differences in contractile capacity [1]. These differences in ASM cells in
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1.3 mmp-1 associated signalling pathway of airway remodelling

turn increase bronchial hyper-responsiveness and, therefore, the likelihood

of an exacerbation [56]. Additionally, Freyer et al. [25] discovered that ASM

cells are more resistant to apoptosis as a result of a survival signal released

to them from interacting ECM and β1-integrins. They found that the pro-

teins that are more abundant in the remodelled ECM are most important

in the production of this signal. They therefore conclude that asthmatic

ASM growth is partially explained by this strong signal produced by the

altered ECM, and that the increase in ASM cells leads to further production

of ECM and hence a cycle which eventually results in the remodelling of

the airways.

1.3 mmp-1 associated signalling pathway of airway remod-

elling

In this section we describe the findings of Naveed et al. [56], that provide

new insights on the role of the enzyme Matrix Metalloproteinase-1 (MMP-1)

in the remodelling of ECM in an ASM bundle. Naveed et al. [56] discov-

ered that MMP-1 (which is secreted by ASM cells) is activated by mast cell

tryptase, an enzyme released by inflammatory mast cells. In addition, it

was found that there is more MMP-1 in the airways of asthmatic patients

compared to healthy controls. Under the inflammatory conditions present

during an exacerbation, it was demonstrated that there is an increase in the

number of mast cells in the airway, and therefore more mast cell tryptase

present for the activation of pro-MMP-1 (the inactivated form of MMP-1).

Naveed et al. also showed that an exacerbation led to a significant increase in

active MMP-1. This active form of MMP-1 changes the structure of the ECM

into the altered pro-proliferative form described in Section 1.1. It was con-

firmed that activated MMP-1 is the factor driving the pro-proliferative form

of ECM via the following observations: directly adding activated MMP-1 to

ECM led to increased proliferative ability, and silencing MMP-1 no longer

led to increased proliferative ability. Activated MMP-1 has also been shown
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1.3 mmp-1 associated signalling pathway of airway remodelling

to enhance ASM proliferation in several other papers [66, 67]. The altered

ECM contains a substrate which promotes the proliferative form of ASM,

hence resulting in a significant increase in the size of the total ASM cell

population. Furthermore, it was shown that there is a strong association

between the expression of activated MMP-1 and the reduction of airway cal-

ibre [56].

These discoveries can be summarised as follows:

• MMP-1 is more highly expressed in the airways of asthmatic patients

than in healthy controls,

• MMP-1 is activated by mast cell tryptase during exacerbations,

• Active MMP-1 remodels ECM to a pro-proliferative form which en-

hances remodelling.

The evidence for the these discoveries was first obtained through in vitro

studies and was later confirmed in human airways using asthmatic and con-

trol groups [56]. The findings listed above illustrate an important pathway

of airway remodelling that results in the changes in ECM and ASM struc-

ture and function that we have discussed. This pathway (encapsulated in

the diagram in Figure 1.3) is the basis of a mathematical model that we have

previously developed (Appendix A), which is summarised and extended in

Chapter 2. We choose to explore this pathway because it has not previously

been studied and it could teach us more about the process of airway remod-

elling. Ultimately, preventing interactions between certain components of

an ASM bundle, for example mast cells and ASM derived products such as

pro-MMP-1, could reduce airway remodelling and therefore asthma severity

[56].
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1.3 mmp-1 associated signalling pathway of airway remodelling

Figure 1.3: Schematic diagram summarising the MMP-1 associated sig-

nalling pathway of airway remodelling [56]. The diagram shows

the interaction of mast cell mediators (released during an exac-

erbation) with pro-MMP-1, leading to the activation of MMP-1

and therefore the alteration of the ECM structure. This results in

an increase in ASM tissue mass in the remodelled airway. This

schematic is edited from [56].
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1.4 in vitro experimentation

1.4 in vitro experimentation

In vitro is defined as taking place outside of a living organism, such as in the

process of tissue or cell culture. Cell culture is used widely to simplify the

disease system and gain an understanding of interactions between specific

components. In this section, we discuss the process of in vitro cell culture as

well as the advantages and disadvantages of in vitro experimentation com-

pared to in vivo experiments in asthma. We then go on to describe two

examples of experimental methods that we make use of later in this project

(Chapter 3).

While in vivo (“within the living”) experiments are common in analysing the

mechanisms involved in asthma, these studies have significant limitations.

Animal models that are often used to learn about asthma include mice, rats,

cats, dogs and primates, although none of these animals are known to nat-

urally develop this disease. Where therapeutics have been developed based

on a new understanding of the immune pathways using animal models, few

of these pass clinical trials due to lack of efficacy for the human disease. A

mouse, for example, is different to a human in its anatomy, physiology and

immunology. Mice are small, quadrupeds, unable to cough and do not have

bronchodilatory nerves, all of which make translating experimental findings

to fit the human disease extremely difficult. Additionally, we have already

seen that mast cells are important in the immune response (Section 1.1), but

mice and human mast cells release different mediators when activated [7].

Finally, the ethical implications involved with these in vivo experiments are

extensive and the replacement, reduction and refinement (3Rs) of animal

models are encouraged [70].

Access to human airway tissue through a bronchoscopy has enabled in

vitro studies of asthmatic mechanisms. The protocol we use in this project

for human smooth muscle cell culture is described in detail in Appendix
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1.4 in vitro experimentation

B.1. Briefly, the cells are grown in sterile conditions in flasks containing

Dulbecco’s Modified Eagle Medium (DMEM), a liquid which supports the

growth and survival of the cells. Fetal Bovine Serum (FBS) is also added to

this medium as a source of growth factors. Cells are incubated at 37◦C for

optimal growth. When a flask is 70-90% confluent (proportion of surface

covered with cells), the cells are passaged. Passaging involves splitting the

population of cells into several different flasks such that they have room to

keep growing. In isolating these cells and growing them in culture, we are

able to reduce the complexity of the system and test interactions between

specific components. A comparison of the responses between primary hu-

man asthmatic and non-asthmatic cells in culture allows the exploration of

pathways which could contribute to disease progression. In vitro experimen-

tation is also fast and relatively inexpensive. Disadvantages of this method,

however, include differences in gene expressions compared to in vivo cells

and a lack of interactions between different cell types. Primary cells can also

lose certain characteristics or become senescent at high passage numbers [7].

1.4.1 Immunocytochemistry

Immunocytochemistry is a technique that is widely used in the literature in

order to identify protein expression and localisation within cultured cells.

This process involves the use of immunoglobulins, more commonly know

as antibodies. Antibodies are Y shaped proteins made up of a variable

region called the Fab portion and a constant region called the Fc portion

(Figure 1.4). Cells are fixed such that they are preserved in their current

state without any further biochemical reactions occurring. This means that

antibodies are able to access intracellular structures in their current state

in order to detect antigens. The fixed cells are then initially exposed to a

primary antibody. The Fab portion of this primary antibody will bind to

the protein or antigen of interest within the cell. Once bound, the complex

is detected through the use of a secondary antibody which binds to the Fc
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1.4 in vitro experimentation

portion and is labelled with a fluorescent marker [13]. The cells can then be

imaged using a fluorescent microscope.

Figure 1.4: Immunoglobulin G (IgG) antibody, with the Fab and Fc portions

labelled. Taken from [13].

1.4.2 Traction Force Microscopy

ASM cells exert tractions on their surroundings when they contract. While

these forces are generally not directly accessible in experimentation, traction

force microscopy (TFM) is a technique that measures these tractions through

the displacement of fluorescent beads that are embedded at the surface of an

underlying gel substrate to which the cells are adhered. This gel substrate

acts as a gauge for the amount of strain, since the forces that the cells exert

are able to deform the gel in an amount proportional to the applied force,

and this is realised through the movement of fluorescent markers (Figure

1.5). The gel also has known material properties and can be approximated

as being a semi-infinite solid [14, 71].

The displacements are measured through the comparison of images taken

of the plates (using confocal microscopy) before and after the addition of a

contractile agonist, compared to a reference image in which the cells have
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1.4 in vitro experimentation

Figure 1.5: Schematic representation of TFM theory. This shows gel defor-

mation and therefore bead displacement due to the contraction

of an adherent cell. Taken from [71].

been detached. In following the displacement of individual beads between

these images, a substrate displacement field can be produced with spatial

resolution based on the density of fluorescent markers [61]. The tractions

are calculated from these displacement field data using Fourier transform

traction cytometry (FTTC), a method described by Butler et al. in [14] and

summarised as follows. The Green’s function, with 2 × 2 matrix tensor

K = K (‖r− r’‖) at a point r due to a force exerted at point r’, is used to map

tractions to displacements. Displacements u(r) are given by u(r) = K ⊗ T,

where ⊗ denotes integration over r’ and T is the traction vector at r’. Invert-

ing this equation (so that tractions can be obtained from displacements) is

difficult since K is not diagonal in real space and tractions at a single point

can cause displacements at several different points. K is diagonal in Fourier

space, however, and hence the FTTC method is used. The Faltung theorem

states that the Fourier transform of a convolution (the integral defining the

area of overlap between a function and the spatial reverse of another func-

tion) is the product of the Fourier transforms of the respective functions con-

volved. This theorem is used to find the forward problem ũ(k) = K̃ (k)T̃(k),

where k is a wave vector and Fourier transforms are denoted by a tilde bar.
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1.5 existing airway mathematical models

Here, as required, K̃ is diagonal and so the solution is readily calculated as

follows:

T = FT−12 (K̃−1ũ) (1.1)

where FT−12 is the 2D inverse Fourier transform [14]. In order to use this

equation, an explicit formula for K (r) is found in Fourier space (see [14] for

further details). Furthermore, the total strain energy (U) exerted by the cells

to cause the displacement of beads seen is given as

U =
1

2

∫
T(r) · u(r)dxdy , (1.2)

for a point r in the 2D coordinate system (x , y). The above process for find-

ing the displacement field and corresponding traction map given fluores-

cent images is undertaken computationally in MATLAB. The displacements

are found using a cross-correlation function followed by calculation of cor-

responding tractions using Equation (1.1) as described above. An example

of a phase-contrast image of a single cell and the corresponding fluorescent

bead image, displacement field and traction map are shown in Figure 1.6

[14].

1.5 existing airway mathematical models

As discussed in Section 1.4, there are many limitations to both in vivo and

in vitro experimentation in asthma research. These issues highlight the un-

certainty in the value of these methods of experimentation alone, and hence

the need for more combinations with in silico solutions that are risk free,

cheaper and faster (given a fully validated model) [49]. Such models are

also useful for determining mechanisms and predicting future outcomes.

Here, we discuss some previous mathematical models of the airways, focus-

ing in particular on a model by Chernyavsky et al. [17] and its extension

by Hill et al. [33], since these models take into account the inflammation
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1.5 existing airway mathematical models

Figure 1.6: Phase-contrast image (a), fluorescent bead image (b), bead dis-

placement field (c) and cell traction field (d) of a single human

ASM cell using TFM. The magnitude and directions of displace-

ments and tractions are represented by arrows in (c) and (d) re-

spectively. Images taken from [14].
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1.5 existing airway mathematical models

involved in an asthmatic exacerbation and its effect on the accumulation of

ASM mass.

There have been relatively few attempts to develop mathematical models

for asthmatic airway remodelling. Until fairly recently, the majority of air-

way models have focussed on expiratory airflow interacting with structural

properties, for example as in [47]. The Hai-Murphy cross bridge model

[29], was the first model of smooth muscle contraction to include the “latch

state” (described below). Muscle contraction is fuelled by actin-activated

myosin adenosinetriphosphatase (ATPase) activity. This activity occurs as

an effect of phosphorlylation of the 20-kDa myosin light chain and results in

cross-bridge cycling between actin and myosin filaments, generating force.

The maintenance of a steady state, with reduced levels of this phosphoryla-

tion (and therefore cross-bridge cycling); is known as the “latch state”. The

model developed by Hai et al. [29], is made up of four differential equations

that describe the kinetics of this contractile force development in smooth

muscle. This model is the basis of many other cross-bridge models in the

study of contracting airways.

In the past 20 years, there has been a rise in the number of models to predict

functional changes in the airways as an impact of ASM contraction. In 2008,

Wang et al. [81] published a model based on the Hai-Murphy cross bridge

model, which explores the effect of changes in calcium concentrations on the

contraction of ASM cells and airway hyper-responsiveness. These molecu-

lar level dynamics were later incorporated in a multiscale model to examine

the impact of hyper-responsiveness on the lung as a whole [63]. Brook

et al. [11] also present a model that focuses on the mechanics of airways

through development of an elastic axisymmetric model that considers the

amount of connective tissue relative to ASM and the resultant contractile

forces produced. Results from this model agree well with data from exper-

imentation of agonist-induced contraction of lung slices. The model allows
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for predictions of the contractile force distributions through varying layers

of the airway wall. Furthermore, this model shows the increase in ASM

mass through remodelling as well as the resulting increase in the hetero-

geneity of local stress patterns. This is the first model which incorporates

the changes in the airway response as an effect of cellular events and struc-

tural remodelling by considering associations between local stress and the

proliferation of ASM cells [11]. While we go on to discuss some specific

models in more detail, we are aware that there are many asthma models

not discussed in this thesis and we recommend that the interested reader

take a look at the review by Irons et al. [37].

1.5.1 Continuum Models

We now discuss an ODE model developed by Chernyavsky et al. [17] and

a mechanical continuation of this model by Hill et al. [33] using partial dif-

ferential equations (PDEs). Some of the modelling ideas presented in these

studies were previously used to develop our own ODE model (Appendix

A), which we summarise and extend in Chapter 2.

In 2014, Chernyavsky et al. [17] developed an ODE model which examines

specifically the impact of inflammation on the accumulation of ASM mass.

This model uses the assumption that ASM cells can exist in two different

phenotypes, proliferative or contractile (non-proliferative), p(t) and c(t) re-

spectively (as seen in Section 1.2.1). The model states that contractile ASM

cells can switch to the proliferative phenotype with an associated rate λcp,

and visa versa with the rate λpc (see Figure 1.7). Only the p population pro-

liferates and it does so logistically, with a rate λp and carrying capacity V . It

is assumed that the switching rate λpc is much faster than the proliferation

rate λp, hence the cells only exist in a state p for a short length of time. Cel-

lular apoptosis is only associated with the c population. This occurs with
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1.5 existing airway mathematical models

a rate λa which is assumed to be significantly slower than the proliferation

rate. As illustrated in Figure 1.7, another variable µ(t) accounts for the in-

flammation involved in an exacerbation and this variable modifies the value

of the switching rate from phenotype c to p: λcp. The system of ODEs for

this model is given below [17]:

dp

dt
= λpp

(
1− p + c

V

)
− λpcp + λcpc , (1.3)

dc

dt
= λpcp − (λcp + λa)c , (1.4)

dµ

dt
= −λd µ + af (t;w), (1.5)

where

f (t;w) = ∑
i

δ(t − ti ), w =
1

E [ti+1 − ti ]
. (1.6)

In Equation (1.5), λd is the resolution rate of the inflammation and a rep-

resents the magnitude of each peak in inflammation given by the function

f (t;w), an environmental stimulus. An exacerbation occurs at a time ti and

w gives the rate of recurrence for these events [17].

This model predicts that the increase in the number of ASM cells is reliant

on the normalised parameters representing inflammation magnitude, fre-

quency and resolution rate. The latter of these is shown to be the parameter

of the highest importance in airway remodelling. This is due to the fact that

slow resolution can lead to a build-up of inflammation from previous ex-

acerbation events, thereby producing a larger impact on total ASM growth.

Furthermore, results of this model show that the primary goal of research

efforts should be to increase this resolution speed in asthmatic patients be-

fore decreasing frequency and magnitude of exacerbation events [17].

Hill et al. [33], combine the above ODE model with a finite-thickness con-

tinuum based mechanical model which accounts for cell level contractile
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1.5 existing airway mathematical models

Figure 1.7: Schematic representation of the ASM growth model developed

by Chernyavsky et al. taken from [17], showing the interactions

between the three variables c , p and µ and the relevance of the

environmental stimulus f (t).

Figure 1.8: Assessing ASM growth as a function of inflammation resolution

rate and inflammation magnitude (a) or frequency (b) using the

model developed by Chernyavsky et al. [17]. This is used to pre-

dict which parameters have the highest impact on the increase in

ASM mass during airway remodelling. Image taken from [17].
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1.5 existing airway mathematical models

force [35] and further extends this combination to include two-way feed-

back between the structural change in the remodelled airway and the con-

sequential mechanochemical impact. In this, the airway is represented by

a two-layered cylinder (an inner layer of the sub-epithelial basement mem-

brane and an outer layer of ASM). Initially the system is assumed to lie in

its stress-free resting configuration (κ0) with inner, interface and outer radii

given by R1, Rint and R2 respectively, and the location of a particle denoted

by X . The growth of the airway wall leads to a different configuration (κg )

where the position of the particle previously at X is now ξ(X , t). This grown

configuration results in an airway wall deformation into a stressed state (κ)

with inner, interface and outer radii given by r1, rint and r2 respectively and

the particle previously positioned at ξ is now given by X (ξ). The mapping

between the grown and stressed position is given by the elastic deformation

gradient tensor F as follows:

F = diag

[
∂r

∂ξ
,
r

ξ
, λz

]
. (1.7)

The mechanical tissue response is then modelled through the additive de-

coupling of the Cauchy stress tensors. As in the previous model [17], vari-

ables in this model include proliferative and contractile ASM cells, however

here ECM is another variable and the mechanical responses of each of these

variables are de-coupled. The system is challenged by events f (t), resulting

in the increase in both inflammatory cells and contractile agonists. Hence

the model has a variable µ, which describes the inflammatory status of the

airway given by Equation (1.5) above, where f (t) is given by a series of

time dependent Gaussian peaks. The contractile agonist (k) induces con-

traction of ASM and therefore stress in the airway wall; k evolves under the

following equation:

dk

dt
= ak f (t)− cdkk + akµ + ac τH(τ), (1.8)

where ak is the magnitude of agonist added, cdk is the agonist decay rate,

aku is the rate of agonist activation by inflammatory cells and ac is the rate
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at which agonist is released as a result of the local fibre tensile stress τ (with

Heaviside step function H). τ additionally drives the switch in ASM phe-

notype previously seen (Figure 1.7) along with µ . ECM turnover evolves

through synthesis by proliferative ASM cells, modification by mediators re-

leased by inflammatory cells and decay. A schematic of the biochemical

mechanisms in this system is shown in Figure 1.9. Considering both the

change in local density of each variable over time (as function of ξ) and

the assumption that each variable is thought of as being intrinsically in-

compressible, gives the mass balance equation for the growth of each layer

of the airway [33].

Results from this model show that stresses in airway wall tissue, as an im-

pact of challenges of inflammation and contractile agonist, create a mechan-

otransductive feedback loop. ASM cells contract in the presence of an ago-

nist, leading to the generation of mechanical stress which further drives the

release of contraction inducing mediators. Hill et al. [33] therefore found

that an increase in hyper-responsiveness to an agonist gives more remod-

elling, bronchoconstriction and a chronic presence of contractile agonist.

1.5.2 Cell-based Models

The ability to quantify mechanical forces exerted by cells (such as described

in Section 1.4.2) has led to the development of many numerical approaches

which incorporate interactions between the cells that make up a tissue.

While many models of tissue development are continuum based, these mod-

els assume homogeneity across the tissue and rely on averages over areas

typically larger than a cell, so can not easily capture cell level effects. More-

over, a system must contain a large number of cells to justify the use of this

method. Discrete, cell-based approaches are therefore often more realistic

when modelling mechanics such as cell-cell adhesion [24].
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Figure 1.9: Schematic representation of the biochemical mechanisms in the

model developed by Hill et al., taken from [33].
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Initially, lattice based models were developed, in which cells are represented

by points on a grid such as in [64]. In these, movement is restricted to grid

points and incorporating cell division is difficult without breaking connec-

tions between cells. Lattice-free models allow the continuous movement of

cells within the domain and so can more easily incorporate proliferation

of cells. Off-lattice models are used extensively in order to model pro-

cesses such as wound healing, tissue growth, collective cell motility and

cell-substrate interactions [74]. Most of the literature focuses on using these

methods to describe epithelial cells, which are closely packed in a mono-

layer. These models are often formulated in one of two ways; cell-centred

models or vertex-based models [24, 53].

For vertex-based models and some cell-centred models, cells are modelled

as polygons of varying shape created through the formulation of a Voronoi

tessellation and the corresponding Delaunay triangulation. A set a points

are first chosen to represent the cell centres, these are called generating

points. A Voronoi tessellation [78] (shown by the black lines in Figure 1.10)

creates the polygons by drawing lines to divide the plane into regions so

that every coordinate in a certain region is closest to the same generating

point, located somewhere inside of that region. These lines, which each

bisect two such generating points, become the boundaries or edges of each

cell within the population. The locations where these lines meet are equidis-

tant from three or more points. This defines a cell vertex, where the degree

of the vertex is given by the number of edges that come together [19]. It has

been shown that Voronoi domains describe cultured epithelial cells packed

into a sheet or monolayer reasonably well, through comparisons with pho-

tographs of cells in plates [36].

The Delaunay triangulation (red lines in Figure 1.10) is then used to give

the connections between cell-centres of neighbouring cells. This is found

through the dual of the Voronoi tessellation. The dual is a formulation
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where the cell centres become vertices that are connected if the cells of the

Voronoi tessellation share an edge. The Delaunay triangulation is unique

and each vertex of the corresponding Voronoi tessellation is distinct and so

will all have a degree of three (as opposed to the degenerate case, where

vertices coincide leading to vertices with a higher degree).

Figure 1.10: Cellular network created by generator points (black circles),

a Voronoi tessellation of these points (black lines), the corre-

sponding Delaunay triangulation (red lines) and an enlarged

convex hull (blue border).

A Voronoi tessellation will always contain some infinitely large faces, since

points that are on the boundary will never be enclosed by a Voronoi edge.

This issue is typically solved by closing the cells using the convex hull of all

generator points. The convex hull is the smallest set which contains all these

points and is also convex. If this set is enlarged so that our definitions of

cell centres and cell edges still apply, this can be used to define a boundary

for our simulated monolayer (blue line in Figure 1.10).
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Cell-centred Model

An early model of the cell-centred type was developed by Meineke et al.

[50] and describes epithelial cells in the mouse intestinal crypt. The cells in

this model are represented by convex polygons formed using a Voronoi tes-

sellation and the corresponding Delaunay triangulation as described above.

In this cell-centred model, the triangulation generates a network connecting

neighbouring cell centres, the edges of which are damped linear springs

that each have a constant resting length r0. Each cell centre moves as a re-

sult of local elastic forces. The total force acting on a cell is therefore the

sum of all the forces from the springs connected to neighbouring cells. A

force balance is then calculated using Newton’s Second law leading to the

displacement of cell centres.

For a cell α, the position of its centre (one of the points used to generate the

network of polygons) is denoted

rα(t) = (xα(t), yα(t)) (1.9)

at a given time t, and thus the force exerted on cell α by a neighbouring cell

β is

fαβ = k

(
1− r0
| rαβ |

)
rαβ, (1.10)

where k is the spring constant and rαβ = rβ − rα. This means that if we

consider a small time interval ∆t, the displacement of the cell centre is

given by

rα(t + ∆t) = rα(t) +
Fα(t)∆t

γ
, (1.11)

where γ is a damping constant and

Fα = ∑
β∈Ni

fαβ (1.12)

for all neighbours, Nα, of each cell α.
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Following each displacement in positions of cell centres, Meineke et al. re-

triangulate to dynamically evolve the system such that the shape of each

cell is always purely dependent on the distance between its centre and that

of its neighbours. This approach easily allows for variation in the cell num-

ber through cell proliferation or death [50]. There are some issues with this

approach, however, including that following re-meshing, the cell edges are

redefined and so their neighbours and polygonal class can change signifi-

cantly between single time steps. This is not very biologically realistic and

does not consider the high importance of cell-cell junctional mechanics.

Vertex-based Models

In contrast to this approach, vertex-based models are able to represent cell-

cell junctional mechanics, which are imperative in defining the properties

of cell monolayers [53]. The mesh of polygons representing cells in a vertex

model is formed in the same way as in the cell-centred model (Figure 1.10);

however, the tessellation (not the triangulation), now represents the spring

network. The network springs therefore join the vertices of each cell and

hence represent the cell edges. The majority of vertex-based formulations

in the literature use the assumption that cells are displaced as an effect of

mechanical forces and that this movement is over-damped. The position of

a vertex ri is hence given by

ηi
dri

dt
= Fi , (1.13)

for vertex i , with drag coefficient ηi [24]. There are several methods that can

be used to define Fi but for the purpose of this project we review the well

established model used by Staddon et al. [74]. Here, cells are assumed to

have a mechanical energy E as follows:

E =
1

2 ∑
α

K (Aα − A0)
2 +

1

2 ∑
α

T (Pα − P0)
2, (1.14)
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where K is the cell stiffness (assumed the same for all cells), Aα is the area

of a given cell α and A0 is the target area. The first term in E therefore

represents the incompressibility of cells. The second term characterises the

contractility of the cell cortex, where T is the constant of elasticity, Pα is the

perimeter of a given cell and P0 is the target perimeter obtained given all

springs at resting length [74]. Fi can be calculated directly from E using the

fact that Fi = −∇iE , where ∇iE = ∇E |r=ri [24].

Vertex-based Model Evolution

The network of springs is constantly aiming for the arrangement where the

springs are at their resting length and hence in the lowest energy state. To

implement this energy minimisation in our model we first explored using

the Matlab function fminsearch, which starts at a given estimate of the so-

lution x0 and looks for the local minimum x using the Nelder-Mead simplex

algorithm [57].

Figures 1.11 and 1.12 show the issues that arise when using this approach.

Figure 1.11 shows a simple test case using a single triangle with zero, one

or two fixed vertices, while Figure 1.12 shows an example of a minimisation

for four connected polygons with none of the vertices fixed. We can see in

both cases that there can be a significant displacement of the whole shape

using this method, particularly in the examples where no vertices are fixed.

While in cellular monolayers, we would not consider vertices to be fixed, we

would consider that cells are all connected to one another thus providing

additional constraints on their movements. We also notice that, so long as

the energy is minimised based on the given resting quantities, there are no

constraints on the resultant shape that is produced using this method and

so this could lead to cells in our model becoming overlapped or concave.
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Figure 1.11: Energy minimisation from the blue triangle to the yellow trian-

gle given L̃0 = 3 and Ã0 = 0.433, using fminsearch in Matlab.

The triangle in (a) has two fixed vertices, in (b) has one fixed

vertex and in (c) has no fixed vertices.

Figure 1.12: Energy minimisation from (a) to (b) using fminsearch in Mat-

lab. Self intersecting and overlapping cells result.
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We instead choose to implement a more gradual evolution in cell vertex

positions over time. This can be calculated by numerically solving Equation

(1.13) using a forward Euler discretization to give the following [24]:

ri (t + δt) = ri (t) +
δt

ηi
Fi (t), (1.15)

which we go on to derive for our specific model in Chapter 5.

In recent work by Nestor-Bergmann et al. [58], a vertex-based approach

is used to investigate the association between an epithelial cell’s morphol-

ogy and the mechanical properties of the tissue. This is done through the

exploration of the alignment of both stress and shape tensors. By fitting

parameters of the model to experimental data using Xenopus embroyonic

tissue, the model shows how the mechanics of the system can create meso-

scopic patterns of cell shape [58].

Vertex-based Model Operations

Vertex-based models are also able to represent cellular events such as pro-

liferation and apoptosis. Below we note some operations commonly used

to to put mechanisms like this into place and to maintain a monolayer of

non-intersecting cells, each with the realistic polygonal shape.

It is assumed that when cell division occurs, the cell is split into two equally

sized areas. The dividing edge passes directly through the centroid of the

cell and ends at the cell perimeter on either side, where new vertices are

placed (Figure 1.13) [10, 24]. A T1 swap (Figure 1.14(a–b)) is an operation

which rearranges edges when two vertices are too close to each other (given

a minimum threshold distance). This entails moving these vertices to be a

length of dsep = ksepdmin apart, where ksep is a separation ratio and dmin and

dsep are the distances between the vertices before and after being separated

respectively. T1 swaps ensure that vertices are always contained in exactly
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three elements (cells) when not on the boundary and that all cells keep their

polygonal shape. T2 swaps are then put in place to remove cells that have

become triangular (through the application of several T1 swaps) and are

smaller than a certain area threshold (Figure 1.14(c–d)). This operation ac-

counts for cell apoptosis [24, 55].

Figure 1.13: Operation for cell division in a vertex-based model. The single

cell shown in (a) divides to form two cells with an equal area

in (b). Taken from [24].

Figure 1.14: T1 and T2 swap operations in a vertex-based model. The edge

separating cells A and C is < dmin (a) therefore a new edge is

created between cells B and D with length dsep (b). A small tri-

angular element (c) is removed so that every vertex is contained

in three elements (d). Taken from [24].

Hybrid Cell-based Model

A hybrid model has additionally been developed by Mosaffa et al. [53] to

include cell–cell interactions between both cell centres and cell junctions.

A difference in this model compared to other cell-based models is that a

Barycentric tessellation is used, where vertices are formed at the barycentre
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of each triangle in the Delaunay triangulation. This is to ensure that vertices

stay within the triangles, and so cells do not overlap. An energy minimisa-

tion is once again used. However, here it includes the total energy of both

the nodal (cell centres) and vertex networks. This hybrid method allows the

separate regulation of properties of cell interiors and cell boundaries [53].

1.6 thesis overview and structure

Our goal is to use in vitro and in silico techniques in complement to im-

prove our understanding of structural and functional changes in the ASM

of remodelled asthmatic airways. We have previously developed an ODE

model accounting for ASM phenotype and ECM changes triggered by envi-

ronmental stimuli (Appendix A). In Chapter 2, we start with a summary of

important insights obtained from that model, including the illustration of

a mechanism of airway remodelling identified through a post-stimulation

irreversible increase in ASM mass. We then add some further biological

accuracy to the model and find that the model is most sensitive to changes

in the parameters associated with ASM phenotype switching rates.

In Chapter 3, we aim to more accurately quantify phenotype switching

rates through the design and undertaking of two novel experimental pro-

tocols using Human ASM cells. In both experiments, the phenotype switch

(from proliferative to contractile) is initiated though the long-term removal

of serum. Experiment 1 uses immunocytochemistry to track changes in

fluorescence of stains for both proliferative and contractile markers at dif-

ferent time points throughout this period. Experiment 2 uses TFM to track

the change in the contractile force exerted by cells pre and post stimulation

at different time points throughout this period. The data collected from

these experiments allows us to infer the proportion of each phenotype out

of the whole cell population at each time point. Using this along with a

reduced version of the ODE model (to match the experimental protocol),
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1.6 thesis overview and structure

we undertake a least squares fit for parameter values associated with phe-

notype switching. There is a lack of accuracy in this fit, however, as a result

of a small number of time points. In Chapter 4 therefore, we use a Bayesian

statistical approach to find the optimal number of experimental time points

and repeats needed so that future results will provide sufficient data to give

an accurate and robust model fit.

In Chapters 5–7, we develop and test a vertex-based bio-mechanical model

of an ASM cell monolayer with the aim of both replicating TFM spatial-

temporal results and exploring how phenotype-associated changes in cell

shape and mechanics combine to influence cell population dynamics. Chap-

ter 5 introduces the vertex-based modelling approach and time dependent

network evolution that we implement. Cell phenotypes are incorporated

into the model through assigning cells with differences in their shape and

contractile machinery. In Chapter 6, we extend the model to account for ran-

dom phenotype switching over the simulation period (to match the period

of serum deprivation within experiments). This allows us to explore the

hypothesis that ASM cell shape change is driven by the mechanical environ-

ment and is key in the phenotype switching process. In Chapter 7, we use

our model to investigate the population dynamics following a contractile

stimulus by considering three test cases involving different conditions. The

test case in Section 7.4 mimics our TFM experimental protocol (described in

Section 3.2) so that we can qualitatively compare results.

We summarise our main findings and conclusions in Chapter 8, and discuss

the scope for future work.
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2
O D E M O D E L O F M M P - 1 A S S O C I AT E D R E M O D E L L I N G

As discussed in Section 1.5, mathematical models enable us to explore path-

ways, determine mechanisms and make future predictions about a system

in question. When compared to experimental approaches, they have the

advantage of being risk free, cheap and fast (given a fully validated model).

In this chapter, we first summarise our previously developed (Appendix

A) ODE model of a specific pathway of airway remodelling involving the

enzyme Matrix Metalloproteinase-1 (MMP-1), including the most significant

results from this previous study (Section 2.1). In Section 2.2, we then extend

the model to add further biological realism and to learn more about the

mechanisms involved in this pathway of airway remodelling. Insights from

the model discussed in this chapter provide the motivation for the focus

of the rest of this thesis, with the ultimate goal to find ways to reduce

remodelling and therefore asthma severity.

2.1 summary of a previously developed ode model

We previously developed an ODE model based on the findings from Naveed

et al. [56] of a pathway of airway remodelling involving MMP-1 (Appendix

A). The main results from this paper, described in more detail in Section 1.3,

include:

33



2.1 summary of a previously developed ode model

1. Asthmatic patients produce more MMP-1 than healthy controls,

2. MMP-1 (produced by ASM cells) is activated by mast cell tryptase

during an exacerbation,

3. Active MMP-1 alters ECM (including the protein structure and quan-

tity) leading to higher ASM proliferation and therefore enhanced air-

way remodelling.

This information is summarised in the diagram in Figure 1.3 and, along with

modelling ideas from Chernyavsky et al.[17] (discussed in Section 1.5.1),

was the basis of our previous model formulation. As described fully in

Appendix A, the mathematical model was therefore formulated based on

the following four steps, with the letter representing each of our model

variables given in brackets.

1. The increase in mast cell tryptase (Y ) during the inflammation in-

volved in an exacerbation event,

2. The activation of pro MMP-1 (M) by mast cell tryptase,

3. The effect of active MMP-1 (Q) on altering the ECM (E ),

4. The impact that the altered ECM (A) has on the switching rate of ASM

cells from a contractile (C ) to a proliferative (P) phenotype, the rate of

ASM proliferation and the survival of ASM cells.

A schematic diagram of this pathway is shown in Figure 2.1 and the respec-

tive parameter descriptions are given in Figure 2.2.
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2.1 summary of a previously developed ode model

Figure 2.1: Schematic representation of the model formulation showing the

interactions between all 7 variables in this system, as well as

the impact of the environmental stimulus zS(t;w), which ac-

counts for the inflammation involved in an exacerbation event.

Thick solid arrows represent a variable being converted to an-

other variable, thin solid arrows represent baseline productions

and degradations, arrows with a flat head represent inhibition

and dashed lines show variables that enhance the production of

other variables without being lost themselves.
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2.1 summary of a previously developed ode model

Figure 2.2: Descriptions of the parameters in the dimensional system based

on the schematic in Figure 2.1.

Using the schematic diagram in Figure 2.1, a system of seven ODEs was

constructed, using mass action and Hill functions to describe the activation
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2.1 summary of a previously developed ode model

and binding of components in the pathway. The model in dimensionless

form is:

dy

dT
= ẑS(T ;w)− K1y , (2.1)

dm

dT
= K2σ1p + K3σ2c − j1

(
yn

φ1 + yn

)
m− K4m+ ψ1, (2.2)

dq

dT
= j1σ3

(
yn

φ1 + yn

)
m− K5q, (2.3)

de

dT
= K6σ4p + K7σ5c − j2

(
qn

φ2 + qn

)
e − K8e + ψ2, (2.4)

da

dT
= j2σ6

(
qn

φ2 + qn

)
e − K9a, (2.5)

dc

dT
= σ7p + j5σ7

(
pn

φ5 + pn

)
p − K10c − j3

(
an

φ3 + an

)
c − K13c

− j6

(
1

1 + en

φ6

)
 1

1 + an+1

φ7


 c ,

(2.6)

dp

dT
= K10σ8c + j3σ8

(
an

φ3 + an

)
c − p − j5

(
pn

φ5 + pn

)
p

+ p

(
K12 + j4

(
an

φ4 + an

))(
1− p + σ8c

σ9

)
+ ψ3,

(2.7)

where we have non-dimensionalised using the scalings t = T
kPC

and X = xX̄ ,

where x represents each variable and X̄ represents the corresponding scal-

ing constant. Here, lower case letters represent the dimensionless variables

and an upper case T is used for dimensionless time (see Appendix A for

full details). We explore the occurrence of an asthmatic exacerbation in this

model through the addition of an environmental time dependant stimulus

ẑS(T ;w) which, as discussed in Section 1.1, leads to an increase in mast cell

tryptase. This is modelled using a Gaussian function as follows:

S(T ;w) = ∑
i

exp (−σ(T − Ti )
2/2), (2.8)

where σ = 0.01 and each exacerbation event has a magnitude of ẑ and a

recurrence time of 1/w , as shown in Figure 2.3. Dimensionless parameter
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2.1 summary of a previously developed ode model

descriptions and values are given in Appendix A. These values were as-

signed using order of magnitude estimates where possible, based on data

from [56] and other literature.

Figure 2.3: Dynamics of the environmental stimulus ẑS(T ;w) over time us-

ing Equation 2.1 with i = 2. ẑ = 50 for the first stimulation at

T1 = 300 and ẑ = 20 for the second stimulation at T2 = 900.

A parameter sensitivity analysis found that the model is most sensitive to

changes in the values of the dimensionless parameters K13, K12 and K10

(Figure 2.4). These parameters represent: the rate of apoptosis of c cells rel-

ative to the switching rate from p to c , the proliferation rate relative to the

switching rate from p to c and the switching rate from c to p relative to the

switching rate from p to c , respectively. The phenotype switching rates, in

particular from p to c , are therefore important to accurately quantify. Bifur-

cation analysis for these parameters and the steady state of different model

variables showed regions of bistability. An example of this, illustrating the

change in the steady state of c when varying parameter K12 is shown in

Figure 2.5.
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2.1 summary of a previously developed ode model

Figure 2.4: Bar graph showing the sensitivity of each of the steady states of

the model given by Equations (2.1-2.7) to a 0.1% change in the

parameter values K1 − K13. These sensitivities were calculated

using COPASI.

Figure 2.5: Bifurcation diagram for the steady state c∗ as the parameter K12

is altered, using the model given by Equations (2.1-2.7). The

other parameters remain as stated in the parameter tables of Ap-

pendix A. The red solid line represents a stable steady state and

the dashed line an unstable steady state. Saddle-node bifurca-

tions can be seen, where LP represents the limit point.
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2.1 summary of a previously developed ode model

Figure 2.6 shows a time course simulation with an exacerbation at T = 5

(simulated through a time dependant stimulus that increases y ). We see that

immediately following the increase in y there is a large and rapid increase

in q, a and p, as well as a much smaller increase in m, e and c . The density

of all variables then remains at a temporary pathological steady state until

y has decayed to zero, where q, a and p then rapidly decline back to zero,

while m, e and c rapidly increase. As the density of q, a and p reaches zero,

the density of m, e and c begins to decline until they saturate at their new,

larger steady state.

Figure 2.6: Time course simulations using the system of ODEs

given by Equations (2.1-2.7) with initial conditions

[y0,m0, q0, e0, a0, c0, p0] = [1, 1, 1, 1, 1, 1, 1] and no further

stimulus (blue) and with a single stimulus ẑS(T ;w) at T = 5

with ẑ = 10 (orange). Parameters remain as stated in the

parameter tables of Appendix A except for K12 = 0.25.

The model hence shows a change in steady state resulting in an increase

in both ECM and total ASM mass, which is consistent with the literature

on airway remodelling. Analysis of this ODE model therefore suggests a

possible mechanism by which the irreversible remodelling of airways in
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2.2 ode model developments

severe asthmatics may occur. With a more accurate model of this type, the

results could be used to help prevent the critical rate at which bistability

occurs from being reached.

2.2 ode model developments

In this section, we now further develop the ODE model previously con-

structed and explored in Appendix A, as summarised above. In this model,

the steady states of the pathological variables (mast cell tryptase, active

MMP-1 and altered ECM) always return to zero, even if there has been an

input which has caused a change in the steady state of the other variables.

In exploring the biological literature further, however, it is found that mast

cell tryptase has a constant baseline production rate in asthmatic patients,

which increases during an exacerbation [86]. Healthy controls also have a

baseline production rate of mast cell tryptase in their airways, though this

is significantly lower. We therefore add this baseline production value to

Equation 2.1 of the ODE model as follows:

dy

dT
= ẑS(T ;w)− K1y + ψ4. (2.9)

Using this equation along with the rest of the system of ODEs which re-

main as stated in Equations (2.2-2.7), we undertake a bifurcation analysis

once again. In doing so for the change in the steady state of c when varying

parameter K12 (Figure 2.7), we can see that for a certain range values of K12,

there are now three stable steady states.
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2.2 ode model developments

Figure 2.7: Bifurcation diagram for the steady state c∗ as parameter K12

varies in the developed model given by Equation (2.9) and Equa-

tions (2.2-2.7). The solid red line represents a stable steady state

and the dashed red line an unstable steady state. The blue

dashed line shows a parameter set with K12 = 0.15, where three

stable and two unstable steady states can be seen. In the simu-

lations of Figure 2.8, three different initial conditions are used:

c0 = 1 (a; plus no stimulus), c0 = 145 (b; plus no stimulus) and

c0 = 1 (a; with a single stimulus).

As before, we also simulate a time course with the addition of an environ-

mental stimulus to model the impact of an asthmatic exacerbation (Figure

2.8). We find that, if the initial conditions are such that the system begins

sufficiently close to the intermediate stable steady state and so tends to this

state without an external stimulus, an exacerbation would drive the system

to the highest stable steady state. If the system begins sufficiently close

to the lower stable steady state, however, the exacerbation again drives the

system to this highest stable steady state, rather than first increasing to the

intermediate steady state.
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2.2 ode model developments

Figure 2.8: Time course simulations of the developed model given by

Equation (2.9) and Equations (2.2-2.7) with initial conditions

[y0,m0, q0, e0, a0, c0, p0] = [1, 1, 1, 1, 1, 1, 1] (point (a) in Figure

2.7) and no further stimulus (blue), [y0,m0, q0, e0, a0, c0, p0] =

[1, 1, 1, 1, 1, 145, 1] (point (b) in Figure 2.7) and no further stimu-

lus (blue dashed) and [y0,m0, q0, e0, a0, c0, p0] = [1, 1, 1, 1, 1, 1, 1]

(point (a) in Figure 2.7) with the single exacerbation input

ẑS(t;w) at T1 = 1 with ẑ = 5 (orange). Parameter values are

as before except for K12 = 0.15 and ψ4 = 0.01.

Upon exploring the impact of some small changes in parameter values as a

result of new insights from the literature [17], namely K13 = ε4 (previously

ε3), j3 = 1 (previously 10) and φi = 100n for all values of i (previously 10n),

we find some interesting limit cycle behaviour. Figure 2.9 shows bifurcation

diagrams for the parameter values ψ4, K1 and K4. We see that, for the lowest

values of the parameter, there is a single stable steady state. A Hopf bifur-

cation then occurs such that the steady state becomes unstable and stable

limit cycles surround it. There is then another Hopf bifurcation to end the

limit cycle behaviour and return to a stable steady state again. We observe

this behaviour in the time course simulations shown in Figure 2.10. While
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2.3 summary

(a) (b) (c)

Figure 2.9: Bifurcation diagrams using the developed model given by Equa-

tion (2.9) and Equations (2.2-2.7) for the variable c as parameters

ψ4 (a), K1 (b) and K3 (c) are altered. Parameters remain as stated

in the parameter tables of Appendix A except for K13 = ε4, j3 = 1

and φi = 100n for all i as discussed above. The red solid line

represents a stable steady state until the Hopf bifurcation (H),

where this state becomes unstable and stable limit cycles arise as

seen in blue. (a) shows the full orbits while (b) and (c) just show

the minimum and maximum values of these cycles.

there has been no experimental evidence that cycles in the quantity of each

variable occurs like this in the airways, it could be that the period of these

oscillations are so small that experimental measurements are not taken fre-

quently enough to notice this behaviour. One could explore this further

by collecting more experimental data and performing a more comprehen-

sive bifurcation analysis on this model in order to deem if this behaviour is

relevant.

2.3 summary

This chapter first gave a recap of an ODE model that we previously devel-

oped (Appendix A) for an MMP-1 activated pathway of airway remodelling

in asthma patients. This model showed bistability so that, for a certain range

of parameter values, an asthmatic exacerbation event leads to a change in
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2.3 summary

Figure 2.10: Time course simulations of the developed model given by

Equation (2.9) and Equations (2.2-2.7) with initial conditions

[y0,m0, q0, e0, a0, c0, p0] = [5, 20, 0, 500, 0, 500, 20] and no further

stimulus. Parameters remain as stated in the parameter tables

of Appendix A except for K13 = ε4, j3 = 1 and φi = 100n for

all i as discussed above, as well as ψ4 = 0.02 (determined from

Figure 2.9 in order to observe limit cycle behaviour).

steady state resulting in an increase in both ECM and total ASM mass. The

model therefore illustrates a mechanism of asthmatic airway remodelling.

We then developed this model to add further biological realism. In doing

so, we maintain the observation of this mechanism of remodelling for some

parameter set, as well as finding some interesting possibilities of limit cycle

behaviour.

This model, however, cannot reliably inform us about this system without

us first accurately quantifying any rate parameters that we use. We use

the model results from this chapter therefore, to tell us which of these pa-

rameters are most important to determine accurately, and then design ex-

periments with this aim. We go forward with this project using modelling
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2.3 summary

and experimentation in complement to ultimately develop an accurate tool

which could be used to identify new therapeutic targets.
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3
I N V I T R O E X P E R I M E N T S O F A I RWAY S M O O T H M U S C L E

P H E N O T Y P E S W I T C H I N G

In the previous chapter, we developed an ODE model for the occurrence of

an asthmatic exacerbation triggered by an environmental stimulus. Bifurca-

tion analysis of this theoretical model found a mechanism by which airway

remodelling (irreversible increases in ECM and total ASM mass), could oc-

cur. In Section 2.1, we identified the parameters to which the model is most

sensitive: the switching rates of ASM cell phenotypes, and in particular

that from a proliferative to contractile phenotype (kpc ). Little is currently

known about how this change in cell phenotype occurs in vivo; however, as

described in Section 1.2.1, we know that the phenotypes have differences

in their morphology, organisation (alignment of actin filaments) and quanti-

ties of certain proteins, as well as their ability to contract, synthesise proteins

or proliferate. We also have evidence that, when cells undergo a long pe-

riod of serum withdrawal in vitro, a sub-population of these cells display

the increased contractile (shortening) ability, morphology and protein con-

stituents of an in vivo contractile phenotype [30].

In this chapter, we design and undertake in vitro experiments to accurately

quantify the switching rate parameters, by using serum withdrawal to initi-

ate a switch in phenotype, and then measuring the resultant rate of change

of various quantities. Primary human airway smooth muscle (HASM) cells

of asthmatic patients and healthy controls were used in these experiments.
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in vitro experiments of airway smooth muscle phenotype switching

Bronchial tissue was obtained through biopsy during flexible bronchoscopies

performed by Shams-un-nisa Naveed (Division of Respiratory Medicine,

University of Nottingham). This tissue was then used for the culture of

the ASM cells [56] that we have grown and used in the following experi-

ments.

We have designed two novel experimental protocols that focus on different

aspects of this phenotype switch initiated through the long term removal

of serum. In the first experiment we use immunocytochemistry to track the

presence of certain protein markers within the cells over a period of serum

deprivation (Section 3.1). In this experiment, we measure both the num-

ber of cells undergoing cell division (through proliferation markers and a

cell counting algorithm) and the changes in actin filament alignment. In

the second experiment, we measure the direct change in contractile force

exerted by the cells over a period of serum deprivation (Section 3.2). Using

the results of both experiments, we quantify the change in numbers of con-

tractile and proliferative cells over time after the switch is initiated. Using

these data, we use a least squares method to fit parameter values for the

switching rate kpc and the proliferation rate kp to a simplified version of

our ODE model from Chapter 2 (Section 3.3), such that the model matches

the experimental protocol. Table 1 summarises the experiments discussed

in this Chapter.
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in vitro experiments of airway smooth muscle phenotype switching

Ex
pe

ri
m

en
t

nu
m

be
r

Ex
pe

ri
m

en
ta

lt
ec

hn
iq

ue
Br

ie
f

de
sc

ri
pt

io
n

M
ai

n
re

su
lt

s
M

od
el

ap
pl

ic
at

io
n

1
Im

m
un

oc
yt

oc
he

m
is

tr
y

U
si

ng
st

ai
ns

to
tr

ac
k

ch
an

ge
s

in
ce

ll

nu
m

be
rs

(a
m

ea
su

re
of

pr
ol

if
er

at
io

n)

an
d

ac
ti

n
al

ig
nm

en
t

(a
m

ea
su

re
of

co
nt

ra
ct

ili
ty

)
at

di
ff

er
en

t
ti

m
e

po
in

ts

ov
er

a
pe

ri
od

of
se

ru
m

de
pr

iv
at

io
n.

A
4
-f

ol
d

in
-

cr
ea

se
in

an
is

ot
ro

py

ov
er

th
e

pe
-

ri
od

of
se

ru
m

de
pr

iv
at

io
n.

R
es

ul
ts

us
ed

to
in

-

fe
r

pr
op

or
ti

on
of

ea
ch

A
SM

ph
en

o-

ty
pe

at
ea

ch
ti

m
e

po
in

t.

2
Tr

ac
ti

on
Fo

rc
e

M
ic

ro
sc

op
y

Tr
ac

ki
ng

ch
an

ge
s

in
co

nt
ra

ct
ile

fo
rc

es

ex
er

te
d

be
fo

re
an

d
af

te
r

st
im

ul
a-

ti
on

w
it

h
hi

st
am

in
e

at
di

ff
er

en
t

ti
m

e

po
in

ts
ov

er
a

pe
ri

od
of

se
ru

m
de

pr
iv

a-

ti
on

(t
hr

ou
gh

th
e

di
sp

la
ce

m
en

t
of

flu
-

or
es

ce
nt

be
ad

s)
.

H
is

ta
m

in
e

in
du

ce
d

co
nt

ra
ct

io
n

in
cr

ea
se

d
w

it
h

ce
ll

cu
lt

ur
e

ti
m

e.

R
es

ul
ts

us
ed

to
in

-

fe
r

pr
op

or
ti

on
of

ea
ch

A
SM

ph
en

o-

ty
pe

at
ea

ch
ti

m
e

po
in

t.

Ta
bl

e
1

:S
um

m
ar

y
of

th
e

in
vi

tr
o

ex
pe

ri
m

en
ts

de
sc

ri
be

d
in

C
ha

pt
er

3
in

cl
ud

in
g

th
e

m
ai

n
re

su
lt

s
an

d
ho

w
th

ey
ca

n
he

lp
to

in
fo

rm
ou

r
m

at
he

m
at

ic
al

m
od

el
s.

49



3.1 experiment 1 : immunocytochemistry

3.1 experiment 1 : immunocytochemistry

3.1.1 Aims and Objectives

As described in Section 1.4.1, immunocytochemistry is a technique which

allows us to see specific proteins through the binding of an antibody which

is labelled with a coloured stain. We chose four fluorescent stains: DAPI,

Phalloidin, anti-Ki67 and anti-PCNA (examples of their effect are shown

in Figure 3.1). DAPI stains all nuclear material with blue fluorescence al-

lowing us to calculate the total number of cells in the image. Phalloidin

(coloured red) binds to actin filaments. This stain allows us to identify elon-

gated contractile cells through identification of their strongly anisotropic

actin filaments. Finally both anti-Ki67 and anti-PCNA (coloured green) are

antibodies that are expressed highly in cells that are undergoing prolifera-

tion. To initiate the phenotypic switch, we culture the HASM cells in serum-

rich media (that causes cells take on a proliferative phenotype) and then

remove serum from the media and leave for 0, 5, 7, 11 and 14 days before

fixation. We fix the cells at each of these time points such that they are no

longer alive but large molecules like antibodies are still able to find intracel-

lular antigens [51]. We use the method of immunocytochemistry detailed

below to quantify the potential change in phenotype by measuring levels

of proliferation and anisotropy of actin filaments. The hypothesis is that

serum-deprivation of the cells will lead to an increase in alignment of actin

filaments and a relative decrease in proliferation as the cells switch from a

proliferative to a contractile phenotype.

3.1.2 Materials

• Cultured HASM cells in Dulbecco’s Modified Eagles’s Medium (DMEM)

+10% Foetal Bovine Serum (FBS)
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3.1 experiment 1 : immunocytochemistry

Figure 3.1: Examples of all four fluorescent stains used for the confocal

microscopy in Experiment 1, (a) DAPI (nuclear stain), (b) anti-

PCNA and (c) anti-Ki67 (both proliferation stains) and (d) Phal-

loidin (stain for actin filaments).

• Trypsin

• Polylysine coated chamber slides

• Phosphate-buffered saline (PBS)

• 4% formaldehyde (methanol free)

• 0.1% Triton X-100 in PBS

• Phalloidin-iFluor 555 Reagent - Cytopainter working solution (1µl of

1000X conjugate stock solution in 1ml of PBS +1% Bovine Serum Al-

bumin)

• Ki67 (8D5) Mouse mAb (#9449)
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3.1 experiment 1 : immunocytochemistry

• Alexa Fluor 488 goat anti-mouse secondary antibody

• 100% methanol

• Anti-PCNA PC10 (ab29)

• Vectormount DAPI mounting media

• Clear nail varnish

3.1.3 Experimental Method

This experiment was undertaken with the help of Dr Christopher Philp, Dr

Debbie Clements, Dr Marlies Fischer and Dr Charlotte Billington (Centre for

Respiratory Research, University of Nottingham). HASM cells from three

healthy and five asthmatic donors were recovered in flasks with DMEM

+10% FBS for two days. At this point the cells were trypsinised, spun down

with a trypsin inhibitor and re-suspended in different amounts of media

depending on the confluence of each flask and the required confluence for

staining purposes. 500µl of the cell suspension from each donor was plated

in duplicate in five different eight-well, polylysine-treated, chamber slides

(since there are five time points). Four extra slides were also plated as con-

trols which were kept in serum throughout the experimental time period.

Two days after plating these cells, we fixed and stained each set of donor

cells at time point t0 and removed the serum from the remaining slides (ex-

cept controls). The remaining slides for each set of donor cells were then

fixed at t1 = day 5, t2 = day 7, t3 = day 11 and t4 = day 14 respectively. The

fixation and staining protocol was as follows.

To allow fixation, the media was first aspirated and the cells were washed

three times with PBS. The slides were then fixed and stained in two different

ways, since during test experimental runs it was found that both the Phal-

loidin and Ki67 stains require formaldehyde fixation, however PCNA works
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best when fixed in methanol. For the slides that require formaldehyde fixa-

tion, wells were covered with 4% formaldehyde for 15 minutes, then washed

three times with PBS. Following this, these slides were permeablised with

0.1% Triton X in PBS for 10 minutes before a further three washes in PBS.

Slides were then blocked in pre-made 2.5% goat serum for 20 minutes be-

fore another three washes with PBS. 100µl of the Phalloidin working solu-

tion was then added to each well before wrapping in foil and incubating

at room temperature for 60 minutes. The slides were then washed in PBS

three times. 200µl per well of a 1/1000 dilution of primary anti-Ki67 anti-

body was then added to the slides which were then left overnight at 4
◦C.

The following day, we washed three times with PBS then added 250µl of

secondary antibody to each well and left for 30 minutes. We washed a final

three times with PBS then removed the chambers using a chamber slide key

and any silicon that was stuck round the edge using tweezers. Five drops of

aqueous mounting media with DAPI was added to the wells and the slide

was slowly sealed with a cover slip. Once the mounting media had set, we

sealed the edges of the cover slip with nail varnish. We could then observe

the cells using a confocal microscope at Ex/Em = 493/517 nm for Phalloidin,

495/519 nm for anti-Ki67 antibody and 358/461 nm for DAPI. For the slides

that required methanol fixation, these were submerged in methanol at -20
◦C

for 10 minutes then washed three times with PBS. Slides were then blocked

in pre-made 2.5% goat serum for 20 minutes before another three washes

with PBS. We then added 200µl per well of 0.25mg/ml primary anti-PCNA

antibody diluted in 10% goat serum and left in a dark box in the fridge

overnight. The antibody was then taken off and the slides were washed

with PBS three times before adding 250µl of secondary antibody to each

well and leaving for 30 minutes. We then washed a final three times with

PBS, removed the chambers, mounted with DAPI and imaged as above.

The protocol described above is the result of many optimisation steps. Tests

were first done using different types of chamber slides, different densities
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3.1 experiment 1 : immunocytochemistry

of cells per well, different combinations of fixation methods, different types

of antibody and antibody dilutions and the use of secondary stains. These

tests were also undertaken on both cells in serum and not in serum. Further

details of this experimental optimisation process are given in Appendix B.2.

3.1.4 Image Analysis Methods

The protocol above generated hundreds of images. Analysis of these im-

ages required the counting of nuclei (for both DAPI and proliferative stains)

and the measurement of the alignment of actin filaments stained with phal-

loidin. In order to do the former of these tasks efficiently, we developed a

code in MATLAB in order to run through all the images and count nuclei

automatically. This code works by reading through a file containing all the

images and following the steps described in Algorithm 2.

This algorithm gave the number of nuclei in each image, along with each

corresponding altered image showing which nuclei had been counted by

their red outline. Variability in background noise meant that some nuclei

were subjective in their positivity (i.e. showed some fluorescence but the sig-

nal was weak). We know that these nuclei are not counted by the algorithm

since their perimeter is not outlined in red in the resultant altered image.

Any images that have variability in background noise were therefore deter-

mined by an unusually low count; those not counted automatically were

then manually added to the count. An example of an image before and

after this process is shown in Figure 3.2. We divide the cell number by the

area in order to obtain a cellular density per mm2 for each image.

Anisotropy of actin filaments is measured using the FibrilTool in the image

analysis program ImageJ, as described in [9]. This tool calculates the local
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3.1 experiment 1 : immunocytochemistry

Figure 3.2: DAPI Stained HASM cells. (a) shows an area of DAPI stained

cells obtained using confocal microscopy and (b) is the result

of processing, where the image has been binarized for counting

using thresholding (i.e. up to step 9 in Algorithm 2).
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3.1 experiment 1 : immunocytochemistry

Algorithm 2: Nuclei counting method used on images in MATLAB

1. Read in image

2. Gray scale if colour image

3. Adjust the contrast

4. Remove objects on the border

5. Adaptively filter in order to reduce noise

6. Make the image binary

7. Fill in any holes

8. Remove connected points with fewer than 20 pixels

9. Overlay a red image of the perimeter pixels of each object remaining

10. Count the objects

nematic tensor n = t̂ ⊗ t̂ where nx ,x = t̂2x ,nx ,y = ny ,x = t̂x t̂y ,ny ,y = t̂2y and t̂

is the unit vector which is tangent to the fibres, defined as follows:

t̂ = (t̂x , t̂y ) =
(∂I/∂y ,−∂I/∂x)√
(∂I/∂x)2 + (∂I/∂y)2

, (3.1)

with I (x , y) representing the pixel intensity at position (x , y). The nematic

tensor over the region of interest is denoted < n > and is given by the aver-

age of n (over the region of interest, which is given by the whole image area

in our case). The eigenvector of < n > corresponding to the largest eigen-

value then tells us the average orientation of the fibres. Similarly, the differ-

ence between the eigenvalues of this region gives us a measure of anisotropy.

We therefore obtain a value of alignment between zero and one; zero being

completely randomly aligned or isotropic (as in the proliferative phenotype)

and one being strongly anisotropic (as they are when spindle-shaped and

contractile). The output of the calculation above is shown in the image as
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3.1 experiment 1 : immunocytochemistry

a line segment where the angle of this line is the average orientation of the

fibres and the length of the line is proportional to the anisotropy score [9].

Figure 3.3 shows an example output using the FibrilTool on a image of cells

in serum (Figure 3.3a) and without serum (Figure 3.3b) where the line seg-

ment is coloured green. As hypothesised, we see that the actin filaments

of the cells in serum are randomly aligned and so have a small anistropy,

whereas the cells that have been serum deprived show high anisotropy in

their actin filaments.

Figure 3.3: Phalloidin stained HASM cells. (a) shows the low anisotropy of

actin filaments in cells in serum (represented by a single short

green line) while (b) shows the high anisotropy of actin filaments

in cells that have been serum deprived (represented by a single

long green line in the direction of the average orientation of the

fibres).
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3.1 experiment 1 : immunocytochemistry

3.1.5 Results

The average density of all the cells (DAPI stained nuclei) per well, over the

14 day period of serum deprivation, is shown in Figure 3.4(a). We note

that, while some cells continue to proliferate at day 5 giving a higher pop-

ulation at day 7, after this point the proliferation stops and the population

size remains the same. At day 14 there is a drop in population size; this

may be due to cell contact inhibition and apoptosis. Figure 3.4(b) illustrates

the change in average anisotropy of actin filaments over the same time pe-

riod. We see a strong (4-fold) increase in anisotropy over the 14 days. The

results from the proliferation stains anti-PCNA and anti-Ki67 both showed

approximately every cell as positive for proliferation at day 0 when serum

was present and after the serum was removed this either dropped to zero

or displayed just a few positive nuclei at day 5 and then dropped to zero for

the remaining time points.

For the purpose of finding the rate of phenotype switching, we instead

use the fact that we know the change in total population size S over time

(via total cell density) and S = c + p. We can also infer the change in

the size of the population c over time using the anisotropy data. To do

this, we assume that when we obtain the highest value of anisotropy the

cells are fully contractile at this point (since we observe almost fully parallel

fibres when looking at the image by eye) and we normalise with respect to

this highest value. This then gives us the proportion of the cells that are

contractile at each time point. Using this and the value of S at each time

point, we can infer the corresponding density of proliferative cells (p =

S − c).
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3.2 experiment 2 : traction force microscopy

Figure 3.4: Immunocytochemistry results. (a) shows the change in aver-

age cell density over time using the DAPI counts, where a one-

way ANOVA test gave an ANOVA coefficient of 0.2609 and a p-

value of 0.9007. (b) shows the change in anisotropy of cell fibres

over time using the phalloidin stained images, where a one-way

ANOVA test gave an ANOVA coefficient of 9.201 and a p-value

of < 0.0001. Error bars show standard error. As described above,

the cell density results gives us c + p (the whole population) and

the anisotropy results give a measure for c out of this total cell

population.

3.2 experiment 2 : traction force microscopy

3.2.1 Aims and Objectives

Experiment 1 allowed us to infer the rate of change of the populations c

and p via changes in cell morphology and organisation as well as protein

content. With this next experiment we aim to measure contractility directly

using a technique called Traction Force Microscopy (TFM). As described in

Section 1.4.2, TFM uses specially designed 96 well plates with a gel sub-

strate of known material properties seeded with fluorescent beads such that
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3.2 experiment 2 : traction force microscopy

the traction forces exerted by the cells on the substrate can be determined

using the displacements of these beads [59]. We use this approach to mea-

sure the contractile force generated by serum-deprived HASM cells when

stimulated with a contractile agonist (histamine). For this experiment I trav-

elled to Boston USA to work in the laboratory of Dr Ramaswamy Krishnan

at Harvard Medical School. Here we developed an experimental protocol

based on their optimised protocol of TFM. We measured the contractility of

cells before and after the contractile agonist is added (day 0) then remove

the serum and repeat this process on day 3, day 7 and day 10. The hy-

pothesis is that the longer the cells are serum-deprived, the more will have

switched to their contractile phenotype. Thus when a stimulus is added

they would be expected to display greater contraction.

Upon activation, mast cells resident in the airway release several media-

tors (discussed in Section 1.1), an example of which is mast cell tryptase,

an important variable in our original ODE model described in Chapter 2.

We therefore additionally wished to observe the impact of activated mast

cells as well as inactivated mast cells (as a control where mediators are not

released) on the switching rate and contractility of the ASM cells in serum-

deprived media. Mast cell supernatant is the fluid which remains on top of

the cell pellet after centrifuging and it contains all soluble factors released

by the dividing cells. We hypothesise that the addition of activated mast cell

supernatant will enhance the switching rate, generating greater contractile

force earlier in the time period of serum deprivation. The addition of inac-

tivated mast cell supernantant as a control should, in theory, have the same

effect as the study where no mast cell supernatant was added. The method

for collecting both the activated and inactivated mast cell supernatant is

given in Appendix B.3.
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3.2.2 Materials

• Cultured confluent flask of HASM cells

• DMEM F-12 media + penicillin streptomycin + anti-fungal agent +

glutamine + calcium with either 10% FBS or ITS

• 0.25% Trypsin

• 300 Pascal TFM plate

• 1M HEPES Buffer

• Sanpah powder

• DMSO

• Advanced Biomatrix Pure Col diluted to 0.05mg/ml in PBS

• PBS

• 10mM histamine

• 10mM methacholine (MCH)

• Buffer RLT (Qiagen)

3.2.3 Experimental Method

This experiment was undertaken with the help of Sumati Ram-Mohan (De-

partment of Emergency Medicine, Harvard University). We used a bespoke

glass bottomed plate with NuSil based gel substrates miniaturised in the

bottom, seeded with fluorescent beads and functionalised with collagen (for

details on how this is made see [85]). We chose a plate of stiffness 300Pa

and cleaned the plate using 70% ethanol (once cleaned, the rest of the pro-

tocol was undertaken in sterile conditions). We added 40ml of 0.1M HEPES

buffer into a universal, then added 100mg of SANPAH to 2ml DMSO and
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3.2 experiment 2 : traction force microscopy

added 160µl of this to the HEPES buffer. This solution was transferred to

the plate such that it covered the surface of each well. The plate and lid

were then placed under UV light for approximately 20 minutes in order to

sterilise. We then removed the SANPAH solution without touching the bot-

tom of the wells. 40ml of PBS was added to 650µl of collagen and then we

transferred 200µl of this to each well. The lid was then replaced and the

plate was left at 4
◦C for 48 hours.

When plating the cells, we first removed the collagen from the plate and

discarded. We replaced this with 200µl of ITS media per well and incubated

for 30 minutes. This media was removed and the cells were transferred

from a confluent T75 flask to the plate, making sure that there were approx-

imately 22,000 cells per well (we counted the number of cells in 10µl using

a haemocytometer and then calculated how much IT media was needed to

re-suspend the cell pellet for 85 wells). 200µl of this cell suspension was

then added to each well before incubating over night.

The imaging process then began, whereby baseline (pre-treatment) and post-

treatment images were taken on days 0, 3, 7 and 10 as described below. We

imaged using an inverted Leica microscope with a heat chamber and mo-

torized stage. The plate fit tightly into the insert on the stage such that the

positions remained the same at each time-point. We imaged at 10× magnifi-

cation for optimal bead size. A region of interest close to the centre of each

well was chosen (traction is altered near the edges) with replicates per well

non-overlapping. The rest of the process ran automatically, taking both flu-

orescent bead images and phase contrast images of the monolayer for each

position in each well. After the baseline images were collected, treatments

were prepared. A 10× dilution of histamine and methacholine were made,

sterile filtered and added to their corresponding rows of wells (on top of the

media already present). The same amount of extra media was added to the

wells that were not treated as a vehicle control. We waited for 30 minutes
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and then repeated the imaging process above to obtain post stimulation im-

ages. After imaging, we washed out the treatments with media. For the

addition of mast cell supernatant, we needed 25% supernatant in media,

and as usual 200µl was added to each well. This was applied to designated

columns of wells after the imaging on days 0, 3 and 7.

At the final time point, after baseline and post-treatment images were taken,

we did one more round of imaging to obtain a reference image without cells

present. For this, we removed the contents of the plate and added 100µl of

lysis buffer (buffer RLT) to each well before imaging once again.

3.2.4 Image Analysis Method

The many images collected during this experiment were compared to their

reference image and analysed using a custom made program developed

by Butler et al. [14] in Matlab, to produce images of the bead displacement

maps and traction maps for each well. Figure 3.5 shows examples of all four

images that we obtained for each position, at each time point, before and

after stimulation. A text file was also created with the values of root mean

squared traction (RMST), contractile moment (CM) and strain energy. The

displacement map was computed from a comparison of the bead images

throughout the experiment with a reference image taken at the end after

lysing the cells. Using this, the traction map was computed using the con-

strained Fourier transform traction microscopy method for a cell monolayer

(as described in Section 1.4.2) [42, 85]. In the results section below, we show

the strain energy of the basal forces (before stimulation) and the histamine

induced contraction (after stimulation) over the period of serum depriva-

tion, where the data for histamine induced contraction has been normalised

with respect to the basal force for that region of interest.

63



3.2 experiment 2 : traction force microscopy

Figure 3.5: TFM Images of HASM monolayer: (a) A phase contrast cell im-

age, (b) a fluorescent bead image, (c) a displacement map (the

magnitude and direction of displacements are represented by

arrows in the x , y plane) and (d) a traction force map (the mag-

nitude and direction of tractions are shown by arrows), all ob-

tained using TFM at Dr Krishnan’s lab, Harvard Medical School.
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3.2.5 Results

While much of this protocol has been pre-optimised [43], we found that

when using these particular HASM cells, the response to histamine was

much larger than that to MCh. We also found that we can plate directly

into serum-free media and that most of the cells survived the disruption

involved in the treatment and imaging process over a long 10 day period.

The first result from this experiment is that basal HASM cell force decreased

with cell culture time while histamine-induced contraction increased with

culture time (Figure 3.6). We hence see that long term serum deprivation re-

laxes cells and that there is a greater effect of a contractile agonist. This is an

important result that is consistent with the switch in phenotype from a pro-

liferative cell population to a contractile one, with corresponding changes

in protein content. We can therefore use the trend in basal traction forces as

a measure of our variable p and the trend in histamine induced contraction

as a measure of our variable c .
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Figure 3.6: TFM results (no mast cell media). (a) shows the changes in cell

basal forces over time in serum-deprived IT media, where a one-

way ANOVA test gave an ANOVA coefficient of 0.724 and a p-

value of 0.5403. (b) shows the changes in histamine induced

contractile forces over time (with the agonist value normalised to

baseline) in serum-deprived IT media, where a one-way ANOVA

test gave an ANOVA coefficient of 4.382 and a p-value of 0.0111.

Error bars show standard error.

The results for the activated mast cell supernatant experiment (Figure 3.7)

showed that, while basal force did not decrease, histamine-induced contrac-

tion substantially increased over time with the activated mast cell super-

natant. This may be explained by the impact that mast cell tryptase has

on the activation of MMP-1 and the subsequent processing of the ECM as

described in [56] (the pathway on which we based our ODE model devel-

opment in Appendix A as described in Chapter 2). The fact that histamine-

induced contraction in the activated mast cell media is higher than that

without, also confirms the importance of mast cell tryptase in airway re-

modelling (Section 1.1) and further validates the results from [69] showing

MMP-1 modulated promotion of ASM contraction. Cells in the control mast

cell media (Figure 3.8) showed a similar trend in basal forces over time; how-
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ever, there was little change in the histamine-induced contraction through-

out.

Figure 3.7: TFM results (activated mast cell media). (a) shows the changes

in cell basal forces over time in activated MC media, where a

one-way ANOVA test gave an ANOVA coefficient of 10.01 and

a p-value of 0.0003. (b) shows the changes in histamine induced

contractile forces over time (with the agonist value normalised

to baseline) in activated MC media, where a one-way ANOVA

test gave an ANOVA coefficient of 8.66 and a p-value of 0.0007.

Error bars show standard error.

3.3 model reduction

Since the focus is on finding values for the ASM phenotype switching rates,

these experiments do not account for the full remodelling pathway in Chap-

ter 2. We therefore need to simplify the ODE model such that it matches

the experimental system. In both experiment 1 and 2 (without mast cell

media), we assume that only two subpopulations of ASM cells are present,

and that there is no ECM deposition over this time scale. We reduce the

model to just two variables c and p, where a p cell is able to switch to a c
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Figure 3.8: TFM results (inactivated mast cell media). (a) shows the changes

in cell basal forces over time in inactivated MC media, where a

one-way ANOVA test gave an ANOVA coefficient of 1.308 and

a p-value of 0.2995. (b) shows the changes in histamine induced

contractile forces over time (with the agonist value normalised

to baseline) in inactivated MC media, where a one-way ANOVA

test gave an ANOVA coefficient of 0.4115 and a p-value of 0.7465.

Error bars show standard error.

68



3.3 model reduction

cell (at rate kpc ) and proliferate (at rate kp). We once again assume that the

ASM cell apoptosis rate (kca) is negligible. Here, the ASM switching rate

from a contractile to a proliferative phenotype (kcp) is additionally assumed

to be negligible since cells only switch to a proliferative phenotype in the

presence of serum, which is removed during these experiments. The system

is therefore reduced to the following:

dc

dt
= kpcp, (3.2)

dp

dt
= kpp − kpcp, (3.3)

For experiment 2, where activated/inactivated mast cell supernatant is added

to the cell media, we need to add mast cell supernatant as another variable

M in addition to the two ASM cell subpopulations in the reduced model

above. This variable is represented as a Gaussian time dependent input

(since we added more supernatant to the media after imaging on days 0, 3

and 5) of magnitude β/uM and with some decay rate kma as follows:

dM

dt
=

β

uM
e
−(t−t1)2

u2
M +

β

uM
e
−(t−t2)2

u2
M +

β

uM
e
−(t−t3)2

u2
M − kmaM , (3.4)

where t1, t2 and t3 are the days supernatant was added. uM controls the time

interval over which the bulk of M from each supernatant addition enters the

media. A smaller value of uM reduces this time interval; here we assume

u2M = 0.5. As Equation (3.4) is decoupled from Equation (3.2) and Equation

(3.3), we are able integrate to solve for M . Since we assume that the rates kp

and kpc are both functions of M , the equations for c and p are re-expressed

as

dc

dt
=

(
k̂pc +

JpcM
n1

α +Mn1

)
p − kcpc , (3.5)

dp

dt
= kcpc −

(
k̂pc +

JpcM
n1

α +Mn1

)
p +

(
k̂p +

JpM
n2

α +Mn2

)
p, (3.6)

where, (as in Chapter 2) we use Hill functions to describe the binding of

variables with k̂i as the baseline rate, Ji as the maximum rate, α the threshold

at which M has an effect and Hill coefficients n1 = 8, n2 = 4 (under the
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assumption that the change in rate kpc with larger M is more sudden than

the change in kp) .

3.3.1 Least Squares Fit

We now have two sets of experimental data for which we have measures

of the values of c and p at each time point, plus a reduced model for c

and p to match these experiments. We can therefore use a least squares

estimate in order to fit parameters to the simplified model. A non-linear

least squares solver in Matlab (lsqcurvefit) is used for this purpose. In

doing this for experiment 1 (described in Section 3.1), we obtain the results

shown in Figure 3.9, with values for kp and kpc given in Table 2. Although

the fit looks reasonable for the behaviour of c(t) for the few points we have,

it is likely that extra data points would alter the fit significantly. Note that

the curves of Figure 3.9 are not straight lines, although they appear to be

for the time period shown.
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Figure 3.9: Least squares fit of the model given by Equations (3.2) and (3.3)

(coloured lines) to data collected in experiment 1 and given in

Figure 3.4 (coloured circles). The parameters being fitted are kp

and kpc .
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Results of fitting the model to the data collected in experiment 2 (described

in Section 3.2), without mast cell supernatant, are shown in Figure 3.10(a)

with values for kp and kpc given in Table 2. Again, the model fit is reasonable

for the data that we have but is likely to be modified if more data were

available.

Figure 3.10: Least squares fit of the model given by Equations (3.2) and (3.3)

(coloured lines) to data collected in experiment 2 and given in

Figure 3.6 (coloured circles). The parameters being fitted are kp

and kpc .

Finally the fit for the data with inactivated and activated mast cell super-

natant added is shown in Figure 3.11(a) and 3.11(b) respectively. This sys-

tem has a larger number of unknown parameters; however, results from

fitting kp and kpc in the experiment without mast cell media (Figure 3.10) al-

low us to set these parameters as known. The fit to the data obtained when

inactivated mast cell supernatant was used gives values of kma, kcp, Jpc and

Jp, as indicated in Table 2. We can then use the values obtained from the

inactivated supernatant fit as known values for the fit to the activated mast

cell data to obtain fits for the parameter values Jpc and Jp, as indicated in

Table 2.
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Figure 3.11: Least squares fit of the model given by equations (3.5) and (3.6)

(coloured lines) to data collected in experiment 2 (coloured cir-

cles). (a) shows the fit for the data collected using inactivated

mast cell supernatant (Figure 3.8). (b) shows the fit for the data

collected using activated mast cell supernatant (Figure 3.7).
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Parameter val-

ues given least

square fit

Fit to Exp1

(Figure 3.9)

Fit to Exp 2

(Figure 3.10(a))

Fit to Exp 2

with inacti-

vated mast cell

media (Figure

3.11(a))

Fit to Exp 2

with activated

mast cell me-

dia (Figure

3.11(b))

kp 0.02659 0.00268 0.00268 0.00268

kpc 0.04722 0.06134 0.06134 0.06134

kma - - 0.001 0.001

kcp - - 0.05692 0.05692

Jp - - 0.36223 1.13671

Jpc - - 0 0.09472

Table 2: Summary of parameter values obtained in each of the model fits of

Section 3.3.1.

3.4 summary

We began this chapter by proposing two novel in vitro experimental pro-

tocols that can be used to measure the switching rate from a proliferative

phenotype (p) to a contractile phenotype (c) in human airway smooth mus-

cle cells.

In the first experiment (Section 3.1), immunocytochemistry was used to

quantify this rate through measuring the levels of both cell proliferation

and alignment of actin filaments, over a period of serum deprivation. The

results from this experiment (Section 3.1.5), showed that anisotropy of actin

filaments (a measure of contractility) increased four-fold over the length of

the experiment. We also found that, while there were few positive markers

for proliferation after day 0, we were able to measure the change in average
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total cell density over the 14 days through counting DAPI stained nuclei.

In the second experiment (Section 3.2), we applied traction force microscopy

in order to measure the contractility of serum-deprived human airway smooth

muscle cells when stimulated with a contractile agonist. We also undertook

this process with cells incubated in mast cell medium. It was found that

basal forces decreased with cell culture time, while histamine-induced con-

traction increased over time (Section 3.2.5). Furthermore, when cells were

exposed to activated mast cell supernatant, this increase in contractile force

was even more substantial.

The results from these experiments allowed us to quantify c and p at dif-

ferent time points. These values were then used in a least squares estimate

to fit parameters to a simplified version of our ODE model from Chapter 2,

such that it matches our experimental systems (Section 3.3). However, since

we obtained data for very few time points, we are were unable to get a reli-

able fit. In the next chapter, therefore, we demonstrate the use of a Bayesian

parameter estimation on simulated data, in order to optimise the reliability

of further experiments.
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B AY E S I A N PA R A M E T E R E S T I M AT I O N U S I N G M C M C

In Chapter 3, we designed and undertook two novel experiments with the

aim of more accurately quantifying phenotype switching rates, the parame-

ters for which the ODE model of Chapter 2 was most sensitive to changes.

While we were then able to use a least squares estimate to fit parameters to

a simplified version of the ODE model that matches the experimental pro-

tocol, having data at only a few time points within our experiment meant

that the model was prone to over-fitting. This means that the model could

be highly accurate for the specific data collected in the one experiment for

which the model was trained; however if the experiment was repeated or

new time points were collected, the model would be unlikely to fit the new

data points (an over-fit model will not generalise well).

It would, therefore, be useful to have an understanding of the minimum

number of repeats and time points needed to obtain a reliable and robust

model fit. This would enable us to inform the design of our future experi-

ments in terms of the optimal number of repeats and time points required

to ensure model accuracy while still maintaining the logistic feasibility of

the experiment. Our Traction Force Microscopy experiment, for example,

can easily be adjusted to increase the number of repeats (since there are 96

wells to fill per plate of cells). However, it is more difficult to increase the

number of time points, as taking measurements is a time consuming process

that puts the cells at further risk with each additional time point. By using
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4.1 theory of bayesian statistics

a Bayesian statistical approach, we can obtain distributions for the optimal

parameters based on n data points, rather than just point-estimates as in

the least squares method. Bayesian methods also differ from the frequentist

point-estimate approach in that they allow quantification of uncertainty for

a given parameter set rather than fixed quantities.

In this chapter, we first explain the theory behind Bayesian statistics and

why it is a useful technique for this purpose (Section 4.1). We go on to

detail the reasons behind using an Markov Chain Monte Carlo (MCMC)

method and the steps taken to do this (Section 4.2). In Section 4.3, we ap-

ply these processes to our simplified model (Equations (3.2) and (3.3)) and

explore the impact of increasing the number of experimental time points

on the distribution produced. We also modify our method to an adaptive

Metropolis-Hastings approach in order to improve the mixing of random pa-

rameter guesses and, therefore, increase the speed of convergence. We use

our data collected in both the Immunocytochemisty (experiment 1, Section

3.1) and Traction Force Microscopy (experiment 2, Section 3.2) experiments

to find the set of parameter values that best represents these observed data.

In Section 4.4, we consider both additional experimental time points and

repeats in order to find the combination that best fits the data, while con-

sidering the practical feasibility of running these experiments. I thank Prof.

Gary Mirams (School of Mathematical Sciences, University of Nottingham)

for his help with the Bayesian theory in this Chapter.

4.1 theory of bayesian statistics

While ODEs are a common method for modelling biological systems, rate

parameters are seldom known or easily measured, hence parameter estima-

tion techniques like Bayesian inference are crucial. Bayesian inference is

based on the idea that, when an event occurs, there is usually some prior

probability for how this happened and that, after further exploration of the
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4.1 theory of bayesian statistics

possibilities, this probability is updated. When we consider both the prior

probability distribution and the new information about the probabilities of

this event occurring (the data), we can obtain an updated or posterior dis-

tribution, which tells us the probabilities for a set of model parameters [44].

As such, for m parameters, we aim to find the region in m dimensional space

that gives the highest likelihood of obtaining the data we observed. When

this distribution is relatively narrow, the parameters that result in the peak

of this posterior distribution are deemed to give the best fit.

Bayes rule [6] for calculating the posterior distribution is given by the fol-

lowing:

P(θ|data) = P(data|θ)P(θ)
P(data)

(4.1)

where θ is some parameter set that is being explored for a model. Here,

P(θ|data) is the posterior distribution, P(data|θ) is the likelihood, P(θ) is

the prior and P(data) is a normalisation term. Since θ is unknown, the

prior distribution is based on this uncertainty before we collect any data.

The posterior distribution, which tells us the probability of θ given some

observed data, then tells us if a certain set of parameters for a model is a

good fit for the data. Since P(data) does not depend on θ, we can consider

that

P(θ|data) ∝ P(data|θ)P(θ). (4.2)

We consider P(data|θ) as the likelihood of observing the given data for vary-

ing θ. Note that we use likelihood and not probability, as probability would

refer to the possibility of the data varying as opposed to θ varying, which

is of interest to us [47, 40].
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A common and sensible distribution to consider for the likelihood is a Gaus-

sian distribution N(µ, σ2) as follows [21, 75]:

L = P(data|µ, σ2) =

(
1√

2πσ2
e
− (data−µ)2

2σ2

)(
1√

2πσ2
e
− (data−µ)2

2σ2

)
... (4.3)

=
1

(
√

2πσ2)n
e
− 1

2σ2
∑d

i=1(data−µ)2
, (4.4)

where d is given by the number of experimental time points multiplied

by the number of experimental repeats. Given a uniform prior, which is

sensible to use without prior knowledge of θ, the posterior probability is

proportional to the likelihood.

In a non-Bayesian framework, we could find the maximum likelihood since

this tells us the most probable estimate for θ. However, in the Bayesian

framework, it is the posterior distribution for the parameters that is of in-

terest. The mean of the posterior distribution tends to the value of the

maximum likelihood estimation for large d . The precision is given by the

reciprocal of the variance. With large d , the precision of a posterior distri-

bution tends to d/σ2 [44].

4.2 markov chain monte carlo (mcmc) method

In Section 3.3.1, we used a least squares estimate to fit parameters to a re-

duced version of our ODE model. We note; however, that this approach is

limited due to the small number of data points. In order to use the Bayesian

approach, we first need to increase the size of our data set by simulating

additional data. We do this by adding noise from a Gaussian distribution

(with mean µ = 0 and a standard deviation of σ) to our reduced ODE model

(Equations (3.2) and (3.3)). Since we have more than one unknown param-

eter, it would be extremely difficult to compute the shape of the posterior

78



4.3 applying the mcmc method to our model parameter inference

distribution analytically. We instead estimate this shape through repeating

a process with randomly generated numbers. In applying a Markov Chain

Monte Carlo (MCMC) method [52], we follow a memoryless sequence of

events given by set probabilities. While for few iterations this process does

not provide us with accurate information (particularly if the starting point

is far from the area of convergence), over a long time the distribution of

parameter choices will converge to an average region with the highest likeli-

hood. Sampling from the posterior distribution in this way, and then using

statistics (such as the mean and variance), provides a good representation

of the actual distribution.

Algorithm 3 describes the steps that we take to apply the MCMC technique

[52, 12] using the additional simulated data. We use a uniform prior such

that any positive value of θ is equally likely, since we assume no prior knowl-

edge of these rate parameters. The first 50% of the total number of iterations

are considered as “burn in” and are not included as samples of the posterior

distribution.

4.3 applying the mcmc method to our model parameter in-

ference

We first validate this MCMC method by testing that we see the expected

convergence around our chosen parameters, as well as a change in the dis-

tribution given an increase in the number of time points. Applying this al-

gorithm to our model governed by Equations (3.2) and (3.3) with kpc = 0.04

and kp = 0.02, we obtain the histograms and contour plots seen in Figures

4.1 and 4.2, respectively. Here, we have simulated a single experimental

repeat using a given number of time points (n) in order to assess the impact

that the number of time points alone has on the distribution of parameter

estimates. We see that as n increases, the distribution gets tighter around

the values kpc = 0.04 and kp = 0.02. In Figure 4.1, we note that this change
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4.3 applying the mcmc method to our model parameter inference

Algorithm 3: MCMC method

1. Pick a random set of values for the parameters (θcurrent).

2. Choose a new set of parameters (θcandidate) by sampling from a

Gaussian distribution centered at the previous guess of the parameter

value (i.e. θcurrent).

3. Given that they are positive, θcandidate has a probability of

a = P(θcandidate |data)/P(θcurrent |data) for being chosen as the

parameter which gives the better fit.

4. Compare a against b, a generated uniform random number between

0 and 1. If b > a then keep θcurrent as it is. If a ≥ b then θcandidate will

become the new θcurrent (the bigger P(θcandidate |data), the more

probable it is that it will be selected as the better parameter

candidate).

5. Repeat for several iterations or until the parameter values converge

around their “best fit”. We know that convergence has been reached

when the trace plots (parameter value against iteration number) look

like they are randomly scattered around a single stable value

(however the more iterations taken, the more accurate the posterior

distribution will be).
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4.3 applying the mcmc method to our model parameter inference

in distribution is significant between n = 2 and n = 10, but that the differ-

ence between n = 10 and n = 20 is small. Considering this, and the fact that

this experimental technique is time consuming, we would say that n = 10 is

a sufficient number of time points in order to get an accurate parameter fit

for this 14 day experiment.
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Figure 4.1: Histograms of the posterior distributions generated using the

MCMC method for parameter values kpc (a) and kp (b). These

results are based on simulated data from the model given by

Equations (3.2) and (3.3) with kpc = 0.04, kp = 0.02 and random

noise with µ = 0 and σ = 0.001.
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Figure 4.2: Contours showing the likelihood that the model is a good fit

to the data given the combination of parameter values for kpc

and kp using the MCMC approach with n = 5 (a), n = 10 (b)

and n = 20 (c). These results are based on simulated data from

the model given by Equations (3.2) and (3.3) with kpc = 0.04,

kp = 0.02 and random noise with µ = 0 and σ = 0.001. The

colour bar indicates the likelihood, yellow being very likely and

blue being very unlikely.

In addition to our model rate parameters, we are also interested in fitting

the value for σ, the standard deviation of our noise for the simulated data.

Knowing this would give us an idea about the number of experimental

repeats required to give a reliable model fit. We therefore add σ as another

parameter within the parameter set θ, so that it is also updated at each

iteration of the MCMC process. When simulating this; however (Figure

4.3), the values of σ are not well mixed, meaning it takes a high number of

iterations to converge around our chosen σ. This may be because, in this

three-dimensional parameter space (θ = (kpc , kp, σ)), there could be more

than one local maxima that are not close to the global maximum. In the

following, we therefore consider adaptations of MCMC algorithms in order

to improve this mixing property.
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Figure 4.3: Trace plots showing the change in estimated values of kpc , kp

and σ using the MCMC approach over 10000 iterations. These

results are based on simulated data from the model given by

Equations (3.2) and (3.3) with kpc = 0.04, kp = 0.02 and random

noise with µ = 0 and σ = 5. This plot shows that σ is not mixing

well.

4.3.1 Adaptive Covariance MCMC

An adaptive Metropolis-Hastings algorithm [28] can be used to alter the way

in which the candidate values for θ (step 2 in Algorithm 3) are proposed,

such that the proposal distribution is skewed according to the percentage

of candidate values that have been accepted, and where these values are in

the state space. This can therefore give a faster convergence to the distribu-

tion around the chosen θ. We first run the algorithm as before for 1000× dp

iterations, where dp is our number of parameters (the dimension of θ), in

order to do a wider search before narrowing this down. Since good mixing

corresponds to the percentage of proposed candidate values for θ that are

accepted as the new θcurrent , the algorithm aims to maintain a “good accep-

tance rate” by changing the distances of each θcandidate from θcurrent [28, 38].
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4.3 applying the mcmc method to our model parameter inference

To implement this, the distribution used to sample our θcandidate remains

Gaussian, but now has an adaptive covariance that takes into consideration

the previous values of θcurrent through a scaling term based on the propor-

tion of proposed θcandidate values that have been accepted (as in Algorithm 1

of [38]). For example, if the acceptance rate is too low, the scaling term will

shrink the covariance so that the distribution used to choose θcandidate will

be closer to θcurrent . If the acceptance rate is too high, then the scaling term

will enlarge the covariance so that the distribution used to choose θcandidate

will be further away from θcurrent [28, 38]. The scaling value is altered in

each iteration to maintain an optimal acceptance rate, found by Roberts et

al. [68] to be 23.4% (Corollary 1.2 in [68]).

The results of applying the adaptive covariance method are shown in Fig-

ures 4.4 and 4.5. As seen in the trace plots of Figure 4.4, the values of all

parameters kpc , kp and σ are now well mixed. Since we are using simulated

data, we can check that the MCMC is working properly by ensuring that

the mean of each parameter from the posterior distributions matches the

parameter values used to generate the simulated data. In the case of Figure

4.5, our data is simulated using the values kpc = 0.04, kp = 0.02 and σ = 10.

We can see that the algorithm is working well since these numbers are (or

are close to) the mean value of their respective distribution. Given a small

value for σ in the simulated data and many experimental time points (n

large), the distribution once again tightens around the mean of our given

parameter values. This is shown in Figure 4.6 for increasing values of n.

Given real experimental data, we can use this method to find the variance

of the data from the model fit. We can then determine the number of times

this experiment should be repeated in order for the model to give a reliable

representation (Section 4.4).
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Figure 4.4: Trace plots showing the change in the estimated values of kpc ,

kp and σ using an adaptive covariance MCMC approach over

50000 iterations. These results are based on simulated data from

the model given by Equations (3.2) and (3.3), with kpc = 0.04,

kp = 0.02 and random noise with µ = 0 and σ = 10. This plot

shows that all parameters are now mixing well.
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Figure 4.5: Histograms of the posterior distribution for θ = (kpc , kp, σ) with

n = 10 using the adaptive covariance MCMC approach. These

results are based on simulated data from the model given by

Equations (3.2) and (3.3), with kpc = 0.04, kp = 0.02 and random

noise with µ = 0 and σ = 10.
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Figure 4.6: Histograms of the posterior distributions for for θ = (kpc , kp, σ)

with n = 5 (black), n = 10 (blue) and n = 20 (yellow) using the

adaptive covariance MCMC approach. These results are based

on simulated data from the model given by Equations (3.2) and

(3.3), with kpc = 0.04, kp = 0.02 and random noise with µ = 0

and σ = 0.1.

4.3.2 Using our Experimental Data

Having validated the MCMC method with an adaptive covariance, we now

use it to find the optimal parameter values (including the variance σ) of our

own experimental data (for both experiment 1 and 2). A summary of these

results, which are discussed separately below, is given in Table 3.
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4.3 applying the mcmc method to our model parameter inference

θ
Posterior Distribution

Mean for Exp 1

Posterior Distribution

Mean for Exp 2

kpc 0.0497 0.0768

kp 0.0267 0.023

σ 17.4105 0.2294

Table 3: Summary of parameter values obtained using Bayesian parameter

estimations in Section 4.3.2.

Data from Experiment 1

Results of applying this method with the data obtained in experiment 1

are shown in Figure 4.7 with the mean value of each of these distributions

given as kpc = 0.0497, kp = 0.0267 and σ = 17.4105. Using these three

values to now simulate more realistic time points, we obtain the posterior

distributions shown in Figure 4.8 for varying n. As before, the distribution

tightens around the most accurate parameter value as n increases. Although

n = 10, once again, gives an accurate enough distribution mean for kpc and

kp, the mean for the σ distribution remains large until n = 50.
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Figure 4.7: Histograms of the posterior distributions for θ = (kpc , kp, σ) with

n = 5 using the adaptive covariance MCMC approach. These

results are based on the model given by Equations (3.2) and (3.3)

with our data set obtained in experiment 1 and shown in Figure

3.4.
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Figure 4.8: Histograms of the posterior distributions for for θ = (kpc , kp, σ)

with n = 5, n = 10, n = 20, n = 50 and n = 100 using the

adaptive covariance MCMC approach. These results are based

on simulations using the model given by Equations (3.2) and

(3.3) with the parameters given as the mean of the distributions

shown in Figure 4.7 (kpc = 0.0497, kp = 0.0267 and σ = 17.4105).
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4.3 applying the mcmc method to our model parameter inference

Data from Experiment 2

Using this method with the data obtained in experiment 2 (without any

mast cell supernatant), gives the results shown in Figure 4.9 with kpc =

0.0768, kp = 0.023 and σ = 0.2294 as the mean of each posterior distribution.

Once again, using these values to simulate more data, we can see the impact

of increasing the number of time points n in Figure 4.10. In this case, n = 20

gives a significantly more accurate value for kp compared to when n = 10.
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Figure 4.9: Histograms of the posterior distributions for θ = (kpc , kp, σ) with

n = 4 using the adaptive covariance MCMC approach. These

results are based on the model given by Equations (3.2) and (3.3)

with our data set obtained in experiment 2 and shown in Figure

3.6.
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Figure 4.10: Histograms of the posterior distributions for θ = (kpc , kp, σ)

with n = 4, n = 10, n = 20, n = 50 and n = 100 using the

adaptive covariance MCMC approach. These results are based

on simulations using the model given by Equations (3.2) and

(3.3) with the parameters given as the mean of the distributions

shown in Figure 4.9 (kpc = 0.0768, kp = 0.023 and σ = 0.2294).

4.4 optimal combination of experimental time points and re-

peats

In Section 4.3, we saw that increasing the number of time points to 10 or 20

significantly improves the model fit. However, given that this may be logisti-

cally infeasible, potential improvements could be made through increasing

the number of experimental repeats either instead of, or in addition to, in-

creasing the number of time points. Repeats are essential when conducting

experiments in order to ensure reproducibility of results. We follow the

same method as in Section 4.3.2; however, this time the data is simulated j

times for each value of n (so that j × n = d the total number of data points).

In addition to this, we repeat the whole process of simulating this single ex-

periment given each combination of time points and repeats, 10 times. We
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4.4 optimal combination of experimental time points and repeats

average the resulting statistics in order to learn about the average experi-

mental run under each combination.

We first demonstrate how the histogram of the posterior distribution tight-

ens around the true parameter value as the number of repeats is increased

from 1 (a), to 10 (b), for σ = 0.1 (Figure 4.11), σ = 1 (Figure 4.12) and

σ = 10 (Figure 4.13). With an increase in σ, we see that there is an increase

in the variability around the true parameters and that the resultant statistics

lose accuracy. As previously seen (Section 4.3.2), these figures also show

the decrease in distribution width with an increase in the number of time

points taken; this is illustrated through the different coloured histograms

from blue (3 time points) through to yellow (10 time points).

Figure 4.11: Histograms for the posterior distributions of θ = (kpc , kp, σ)

where true values are given by kpc = 0.04, kp = 0.02 and σ = 0.1

with 1 repeat (a) and 10 repeats (b). Histograms of different

colours were simulated given different numbers of time points,

where the back most (blue) histogram was made with 3 time

points and each of the histograms in front of this were made

using 1 extra time point per colour, the front most (yellow) his-

togram using 10 time points.
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Figure 4.12: Histograms for the posterior distributions of θ = (kpc , kp, σ)

where true inputted values are given by kpc = 0.04, kp = 0.02

and σ = 1 with 1 repeat (a) and 10 repeats (b). Histograms

of different colours were simulated given different numbers of

time points, where the back most (blue) histogram was made

with 3 time points and each of the histograms in front of this

were made using 1 extra time point per colour, the front most

(yellow) histogram using 10 time points.
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Figure 4.13: Histograms for the posterior distributions of θ = (kpc , kp, σ)

where true inputted values are given by kpc = 0.04, kp = 0.02

and σ = 10 with 1 repeat (a) and 10 repeats (b). Histograms

of different colours were simulated given different numbers of

time points, where the back most (blue) histogram was made

with 3 time points and each of the histograms in front of this

were made using 1 extra time point per colour, the front most

(yellow) histogram using 10 time points.

Figure 4.14 shows the difference between a simulation of the variable c with

the parameters including σ given by the results of the Bayesian inference

(blue) compared to their true values (red), with 3 time points and 1 repeat

(a) and with 10 time points and 10 repeats (b). Here σ = 15 for the purpose

of visualising the difference (σ needs to be fairly large to see this by eye).

As seen, the simulation using the parameters obtained from the inference is

more similar to the simulation using the true values when a higher number

of both time points and repeats are used. Decreasing either the number of

repeats or time points decreases this accuracy, however this is difficult to

see by eye.
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4.4 optimal combination of experimental time points and repeats

Figure 4.14: Simulated data from the model given by Equations (3.2) and

(3.3) with random noise using true parameter values with σ =

15 (red) and parameters given through the inference (blue) with

3 time points and 1 repeat (a) compared to 10 time points and

10 repeats (b).

Finally, we show heat maps for the size of the IQR and the variance of the

posterior distributions, given each combination of number of repeats and

time points. Figure 4.15 shows the aforementioned statistics for the param-

eters kp and kpc , while Figure 4.16 shows the results for the inferred values

of σ. Within each of these figures, we display results for σ = 0.1 (a and c)

and σ = 10 (b and d). As expected, each of these figures show a gradual

decrease in IQR/variance diagonally across the heat map from the highest

IQR/variance when we have the smallest number of time points and re-

peats, to the lowest for the largest number of time points and repeats. We

can also see that increasing the number of repeats improves the accuracy

of the inferred distribution more quickly than by increasing the number of

time points. Figure 4.15 (a and b), showing the IQR of parameter values

kp and kpc , illustrates that for a small number of repeats (i.e. one or two),

increasing the number of time points only improves the accuracy of the in-

ference until a certain point (i.e even for a large number of time points, the

IQR is still high).
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Figure 4.15: Heat maps showing the change in the IQR of the posterior dis-

tributions for parameters kp and kpc with σ = 0.1 (a) and σ = 10

(b) and the change in the variance of the posterior with σ = 0.1

(c) and σ = 10 (d), given different combinations of the number

of experimental time points and experimental repeats.
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Figure 4.16: Heat maps showing the change in the IQR of the posterior dis-

tribution for σ with σ = 0.1 (a) and σ = 10 (b) and the change

in the variance of the posterior with σ = 0.1 (c) and σ = 10

(d), given different combinations of the number of experimen-

tal time points and experimental repeats.
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Furthermore, the analysis completed in this section can be used to decide

on an optimal combination of experimental time points and experimental

repeats to get a good model fit, and hence improve future experimental

design. Although a large number of time points and repeats are always

preferable (i.e. 10 time points and 10 repeats), this isn’t always feasible for

experimental protocols. In particular, collecting data at many time points

can be very time consuming, and in the case of the TFM protocol, each extra

time point puts the cells more at risk of infection. Instead, we can see that a

reasonable accuracy can still be realised by collecting data at, for example, 5

time points but with 10 repeats (since a 96 well plate leaves room for many

repeats).

4.5 summary

In fitting parameters to a reduced version of our ODE model using our own

experimental data (Chapter 3), we find that we do not have enough experi-

mental time points for a reliable fit, as it is likely that we would over-fit to

the few data points we have. In this chapter, therefore, we use a Bayesian sta-

tistical approach to obtain distributions for the optimal parameter based on

n data points. We generate synthetic data using our model equations, then

use a Markov Chain Monte Carlo (MCMC) method to assess the impact of

the number of experimental time points on the distribution of parameter

estimates. When simulating this in a three-dimensional parameter space

(θ = (kpc , kp, σ)), however, we obtain poor mixing. To decrease the number

of iterations before convergence, we improve this mixing property using an

adaptive Metropolis-Hastings algorithm [28].

Having tested this method, we first use it to find the optimal parameter

values for the data obtained in both experiment 1 and 2 (Table 3). In doing

this, we also show that the posterior distributions tighten around the true
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parameter value as the number of time points increases. When exploring

the impact of changing the number of repeats, we find that a larger σ gives

a higher variability in the distributions around the true parameter. Finally,

we investigate the accuracy of posterior distributions given different com-

binations of time points and repeats. We show that increasing the number

of repeats improves the accuracy of the inferred distribution more quickly

than by increasing the number of time points. These results can be used to

optimise experimental protocols so that the resultant data can be used to

more accurately inform mathematical models.
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5
C E L L V E RT E X M O D E L : D E V E L O P M E N T A N D T E S T I N G

Our previous chapters concentrated on the temporal changes that occur dur-

ing airway remodelling, with a focus on the function of ASM cells and the

impact of an altered ECM. This involved conducting novel time course ex-

periments in vitro using human ASM cells (Chapter 3), the results of which

allowed us to quantify rate parameters in our ODE model (Chapter 2). The

experimental results presented in Chapter 3 showed that, as the cells switch

to a contractile phenotype, there is a change in the alignment of actin fila-

ments (Figure 5.1) as well as an increase in the contractile force produced in

response to an agonist (Figure 5.2). We used these data to fit parameters to

the ODE model by inferring the spatially-averaged proportion of each cell

phenotype over time. Bayesian analysis of a reduced version of the model

then allowed us to determine the optimal number of experimental time

points and repeats for future experiments (Chapter 4). The experiments un-

dertaken using TFM (Section 3.2), however, also provided spatial-temporal

data for the corresponding contractile forces involved.

In the current chapter, therefore, we extend our modelling of ASM to con-

sider spatio-temporal aspects. In particular, we develop a biomechanical

vertex-based model of the ASM monolayer in which cells are represented

by a network of damped linear springs. We assume that cell shape changes

are a result of local forces produced by cell-cell interaction and elasticity as

well as phenotype switching and active contraction. This new model allows
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us to simulate the TFM protocol (Section 3.2), with the corresponding ASM

phenotype switching over the period of serum deprivation, as well as the

response to a time-dependent addition of contractile agonist. Using this, we

explore how the changes in cell shape and circularity align with the prin-

ciple axis of stress, the impact this has on the force exerted by cells during

ASM cell contraction and the resultant tissue-level properties that emerge

from these processes.

Figure 5.1: Reminder of the main results from experiment 1 using immuno-

cytochemistry (presented in Section 3.1.5). Bar graphs showing

(a) the change in average cell density over time using the nuclei

stain counts (p-value of 0.9007) and (b) the change in anisotropy

of cell fibres over time using the phalloidin stained images (p-

value of < 0.0001). Phalloidin stained images (c) before and (d)

after serum deprivation, where the length of the green line is

proportional to the size of the anisotropy score.
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Figure 5.2: Reminder of the main results from experiment 2 using traction

force microscopy (presented in Section 3.2.5). Bar graphs show-

ing (a) changes in cell basal forces over time (p-value of 0.5403)

and (b) changes in histamine induced contractile forces over time

(p-value of 0.0111), both in serum deprived IT media. (c) shows

a schematic representation of the TFM theory [71], where a cell

contracts and displaces beads in the gel.
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In this chapter we develop and test this new vertex-based model and briefly

discuss its suitability for modelling ASM monolayers, such as those in our

TFM experimental protocol. We start by introducing the lattice-free model

set up used to represent the cell layer in each well of the TFM plate. We

focus on lattice free models since we want to model continuous changes

in the monolayer structure and we introduce vertex-model transitions to

ensure the network remains biologically reasonable throughout the simu-

lation. We evolve this network of cells such that the total energy in the

system is continually being minimised. We then incorporate the different

cellular phenotypes through differences in both cell shape and contractile

ability (Section 5.1). In Section 5.2, we describe the implementation of this

model in Matlab. We then analyse the simulated model mechanics at both

the cellular and tissue level. To illustrate the impact that a contractile pheno-

type has on the local forces and dynamics within an ASM cell population,

we first test a population with a small number of contractile cells and no

switching (Section 5.3).

5.1 modelling approach

In this section, we will describe: the basic set-up of our vertex-based cell

model, the incorporation of an energy minimisation across the cellular net-

work, the addition of phenotypic characteristics, and the measures we use

to test and analyse simulated results.

As described in Section 1.5.2, an off-lattice framework is more biologically

realistic than a lattice based model, since cell motion is not limited to the dis-

crete spatial positions defined by a lattice. In an active network or cell-based

model, cells can be represented by convex polygons (since concave polygons

are less biologically realistic and lead to self intersecting cells with overlap-

ping edges), where neighbouring cells share edges. We build our network of

polygons from a set of randomly assigned generator points using a Voronoi
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tessellation, described in detail in Section 1.5.2. This formulation is used

widely in the literature for vertex-based cell models [5, 8, 46]. These mod-

els usually represent a confluent cell monolayer where there are no spaces

between cells, as in our experimental protocol. By representing cell edges

as damped linear springs and incorporating contractile machinery for cells

of the associated phenotype, we are able to use this model framework to

simulate the mechanics of ASM cell populations.

5.1.1 Simple Vertex Model

When time-stepping cell-centred models, one needs to re-define network

edges between every time step (as discussed in 1.5.2). To avoid this and

instead involve junctional mechanics within the cell layer, we choose to de-

velop a vertex-based cell model. We therefore consider the balance of forces

at each cell vertex using the Voronoi cell edges as our set of linear springs.

We then have a network of N vertices joined by straight edges where cells

that are neighbours share an edge.

A vertex-based approach allows gradual and continuous changes in cell

shape as a direct result of the forces from neighbouring cells. In using this

method, the cells remain connected in the same way (no re-meshing occurs)

and so do not change their polygonal class unless a change is actively im-

plemented under certain conditions. This represents a more biologically

realistic monolayer compared to the cell-centred model, since tracking ver-

tices and edges (rather than just cell centres) allows for the implementation

of the effects of active forces at cell-cell junctions [5].

Following Nestor-Bergmann et al. [58], we describe the vertex-based cell

network as follows: A cell α has Zα vertices, a perimeter Lα, an area of Aα,

an anticlockwise tangent ti
α from vertex i and a corresponding unit outward
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normal ni
α as shown in Figure 5.3. Cell centre and vertex locations are de-

noted Rα and Ri
α respectively. The force generated by cell α on vertex i is

denoted fi
α and the net force on each vertex Fi is given by the sum of the

forces generated from the three cells surrounding that vertex.

Figure 5.3: Representation of the geometry of the three cells, α, α′ and α′′,

which surround vertex i . Their cell centres are denoted Rα, Rα′

and Rα′′ Vertex i of cell α has an anticlockwise tangent given by

ti
α and outward normal of ni

α.

The majority of vertex-based models in the literature are used for epithe-

lial cell monolayers, which are commonly represented by densely packed

hexagonal cells for animal tissues, since this is the shape that is most often

observed in microscopy [18, 23, 26]. While there is no specific evidence for

this in ASM monolayers, hexagons still provide a reasonable approximation

to confluent cells in general and so we adopt this strategy.

To represent intracellular structures and contractile machinery, we addition-

ally incorporate internal springs for each cell in our model set up. These

internal springs connect all cell centres with each of their vertices.

104



5.1 modelling approach

5.1.2 Transitions

Certain operations or transitions are widely used in the literature of ver-

tex models in order to allow the evolution of a system while maintaining a

monolayer of non-intersecting cells, each with the realistic polygonal shape.

We chose to incorporate a so-called T1 transition for these reasons.

A T1 transition occurs if any cell edge becomes smaller than some dmin in

length. This operation rearranges edges when two vertices are too close to

each other (given a minimum threshold distance). The vertices are moved

to be a length of dsep = ksepdmin apart, where ksep is a separation ratio and

dmin and dsep are the distances between the vertices before and after being

separated respectively. A change in connectivity also occurs as seen in Fig-

ure 5.4. Out of the four cells involved, the two that originally contained

both of the vertices in question lose one of them each and so their polyg-

onal class decreases by one, while the other two cells involved gain these

vertices. The T1 swaps ensure that vertices are always contained in exactly

three cells when not on the boundary of the confluent cell layer, and that all

cells keep their convex polygonal shape rather than self intersecting [24].

For some parameter regimes, transition problems arise such as repeated T1

flipping loops (where a transition keeps occurring back and forth for the

same two small edges). To prevent this from happening, the separation

edge is increased in length on each successive transition of that edge.

5.1.3 Energy Minimisation

Our cellular monolayer simulation without forcing (i.e. through an exacer-

bation as later discussed in Chapter 7) is essentially an optimization prob-

lem in that the network of springs is constantly aiming for the arrangement
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Figure 5.4: Four simulated cells undergoing a T1 Transition from (a) to (b).

with the lowest energy (its equilibrium position). In our case, this would be

the formulation with all cells at their resting perimeter length L̃0, internal

spring lengths and area size Ã0 (values are chosen such that this is possi-

ble). Since the cells are connected, however, and exert forces on one another

when they move, this theoretical equilibrium may not be attainable. It is

likely, therefore, that the system will evolve towards the theoretical equilib-

rium, but never reach it (as would occur in a biological monolayer).

The force of each spring is calculated using Hooke’s law. In its most simple

form, this is

F = −Kx , (5.1)

where F is the magnitude of the force, K is the spring constant and x is

the extension. The elastic potential energy stored in the spring can then be

calculated as the area under the force-extension curve as

E = −
∫ x

0
F dx =

1

2
Kx2. (5.2)

For our system, we consider the resting quantities for both cellular area and

perimeter and so the energy for each cell α is found as follows

Ẽα =
1

2
K̃ (Ãα − Ã0)

2 +
1

2
Γ̃(L̃α − L̃0)

2. (5.3)
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where K̃ is a constant for cell stiffness, Γ̃ is a perimeter spring constant for

contractility and tildes denote dimensional variables.

Time Dependent Method

When using the fminsearch function in Matlab to implement this energy

minimisation (discussed in Section 1.5.2), cells often end up overlapping.

In order to prevent this from happening, we instead minimise the energy

gradually using the time dependent method for evolving systems used by

Nestor-Bergmann et al. in [58]. Here, they consider the resting perimeter of

each cell L0 to be governed by parameters Γ̃ and Λ̃, which tune the contractile

strength and effective preferred cell perimeter respectively. Using L̃0 =

−Λ̃/2Γ̃, Equation (5.3) therefore becomes

Ẽα =
1

2
K̃ (Ãα − Ã0)

2 +
1

2
Γ̃L̃2α +

1

2
Λ̃L̃α +

Λ̃2

8Γ̃
, (5.4)

where K̃ remains the cell stiffness and tildes denote dimensional variables.

This equation includes contributions from the bulk compressibility of the

cell (given a resting area Ã0) as well as cytoskeletal contractility. We non

dimensionalise through scaling lengths with
√

Ã0 using

Ãα = Ã0Aα, L̃α =

√
Ã0Lα, Ẽ = K̃ Ã0E (5.5)

to obtain

Eα =
1

2
K (Aα − 1)2 +

1

2
ΓL2α +

1

2
ΛLα + Ω, (5.6)

where

Γ =
Γ̃

K̃ Ã0
, Λ =

Λ̃

K̃ Ã0

3
2

, Ω =
Λ̃2

8K̃ Γ̃Ã2
0

. (5.7)

Differentiating the vectorised version of Equation (5.2), we obtain F = −∇E .

We therefore take the gradient of Equation (5.6) term by term (as fully de-

rived in Equations (3.8 – 3.11) of [58]) to obtain the force for cell α at vertex

i as

fα
i = Tαqα

i − Pαpα
i , (5.8)
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where Tα = Γ(Lα − L0) and Pα = Aα − 1 are the respective cell tension and

pressure, and qi
α and pi

α are the respective cell inward and bulk compres-

sion force directions.

We now need to consider the contributions to this force from both cell edges

and internal springs of all three cells surrounding each vertex in our mono-

layer (not just α). The resulting force fj is the sum of each of these contribu-

tions

fj = t(Tα + Tα′′) + t′(Tα′ + Tα) + t′′(Tα′′ + Tα′) (5.9)

+ t(T α + T α′′) + t′(T α′ + T α) + t′′(T α′′ + T α′)

+
1

2
[n(Pα − Pα′′) + n′(Pα′ − Pα) + n′′(Pα′′ − Pα′)],

where t and n are the anticlockwise tangent and outward normal for each

cell (as seen in Figure 5.3) and overlined measures represent those contri-

butions from internal springs. The factor of 1
2 occurs since the force due to

pressure is split between the two vertices sharing each edge.

Finally, we know that the net force at each vertex Fj is made up of fj minus

the drag force on the displacement of that vertex (given as a function of

area compared to polygonal class for each of the three surrounding cells) as

follows

Fj = fj −
(
Aα

Zα
+

Aα′

Zα′
+

Aα′′

Zα′′

)
Ṙj

, (5.10)

where Ṙj is the change in position of vertex j over time. Since the system

evolves through balancing forces to reduce the energy, F = 0 at equilibrium

and so each iteration of the vertex position Rj
t+1 is determined using

Rj
t+1 = Rj

t + h
fj

(
Aα
Zα

+
Aα′
Zα′

+
Aα′′
Zα′′

) , (5.11)

for some small time step h [58].
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5.1.4 Cell Phenotypes

As in the ODE model of Chapter 2, we account for differences in the cell

function and (in this case) cell shape, via the cell phenotype.

Cell Shapes

We saw in Chapter 1, and again in the immunocytochemistry experiment

of Chapter 3, that ASM cell phenotypes have different morphologies. As

described in Chapter 1, when ASM cells are cultured for experimental use,

the addition of serum in the growth medium drives them to a proliferative

phenotype, recognised by their less elongated, broader and flatter morphol-

ogy [16, 32]. Contractile ASM cells, in contrast, are elongated and spindle-

shaped, with a parallel alignment of actin filaments [16] (as shown in Figure

5.1) when the cells are in situ. We incorporate this elongation in our model

by changing the resting lengths of internal springs based on the cellular

phenotype. In a proliferative cell type, we set the resting lengths of these

internal springs to be equal; however, under a switch to a contractile phe-

notype, the resting lengths of the internal springs in one randomly decided

orientation are extended and the resting lengths for the remaining internal

springs of that cell are reduced. Consequently, the resting areas of contrac-

tile cells are also different to proliferative cells, based on the calculation of

area when considering a cell with resting edge lengths and resting internal

spring lengths as just described. Figure 5.5 illustrates the impact that this

would have on the cell shape.

Contractile Machinery

Contractile cells contain both actin and myosin contractile proteins. Phos-

phorylation of myosin allows myosin heads to attach to actin, enabling the

sliding motion of these filaments causing the cells to shorten, and thus gen-

erate muscle contraction (see Chapter 1). We use an adaptation of the Hill

model [34], one of the earliest and simplest muscle modelling approaches,

109



5.1 modelling approach

Figure 5.5: Diagram showing the way that different phenotypes are mod-

elled in the vertex-based simulations. We start with regu-

lar hexagons to represent proliferative cells where the resting

lengths of internal springs are all the same (purple lines in left

cell). We then switch to a more elongated shape when a cell

becomes contractile, where resting lengths of internal springs

(purple lines in right cell) are longer in a given direction and

shorter in all other directions.

to represent this contractile muscle machinery. The Hill model is based

on the empirical observation that, when a muscle with a constant load con-

tracts, the relationship between the force (or load) and the velocity of muscle

shortening can be represented by the following force-velocity equation:

(Fc + a)v = −b(Fc − F0). (5.12)

In this equation, Fc and F0 represent the contractile force and force at zero

velocity (isometric force) respectively, while v is the muscle shortening ve-

locity, and a and b are constants that are based on the fit of the force-velocity

curve to experimental data. Here, we incorporate this relationship to model

the contractile elements within an ASM cell after it switches from a prolif-

erative to a contractile phenotype. We assume that the contractile element

acts in parallel with elastic elements, as illustrated in Figure 5.6. This means

that the length change of the cell is the same for both elastic and contractile

elements and the total tension (T ) is the sum of the forces produced by the

two elements as follows

T = Fc + Fe , (5.13)
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Figure 5.6: Schematic of the parallel elastic and contractile elements that we

incorporate into cell internal springs using the Hill model [34].

The total tension (T ) is separated into the contributions from

contractile force (Fc ) and elastic force (Fe), and the length of the

muscle machinery (in our case an internal spring) is given by L.

where

Fe = k(L− L0) (5.14)

is the force of the elastic element given by Hooke’s law.

The change in muscle length over time is determined by re-arranging Equa-

tion (5.12) and using Fc = T − Fe , based on Equation (5.13), to obtain

dL

dt
= −v =

b(T − Fe − F0)

T − Fe + a
. (5.15)

Contractile machinery is therefore incorporated into our model by consider-

ing that the internal springs of contractile cells change length according to

Equation (5.15). Since we are able to calculate the change in the length of

internal springs, we can re-arrange Equation (5.15) to find the tension of an

internal spring as follows

T = Fe +
bF0 +

dL
dt a

b− dL
dt

, (5.16)

where once again, overlined measures represent contributions from an inter-

nal spring. Equation (5.16) is used to calculate the tensions of the internal

springs for vertex j in each of the three cells surrounding that vertex (T α,
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T α′ and T α′′), as used in Equation (5.9) in order to determine the net force

at each vertex.

5.1.5 Cellular Measures

In order to analyse the dynamics of individual cells within an ASM cell

layer, we first need to define several measures that will give an indication

of the cell shape and stability to deformation based on surrounding forces

and resting quantities.

Shape

Cell shape is important in this study since there is a significant difference

in shape between each phenotype. It is therefore prudent to explore how

a cell of each phenotype changes in shape and the impact this may have

on neighbouring cells. We measure the circularity (c) of a cell α using the

following equation:

cα =
4πAα

L2α
∈ [0, 1] (5.17)

where Aα and Lα are the area and perimeter of a cell respectively. This would

give cα = 1 for a perfect circle.

Square cells would result in a low measure of circularity using Equation

(5.17), even though they are not an elongated shape (as one would assume

when this measure is low). In order to address this flaw in measuring

circularity, we additionally introduce a measure of elongation (e) of cell

α as follows:

eα =
Major principle axis length
Minor principle axis length

, (5.18)

using the regionprops function in Matlab, where the major axis length gives

the longest diameter, and the minor axis length gives the shortest diameter

for a given cell. The higher the value, the more elongated the cell (and again

a value of eα = 1 represents a non-elongated cell).
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Stress and Strain

In order to quantify cell deformation in a form that could be incorporated

into macroscale models of tissue mechanics, we measure cell stress and

strain. These are calculated for each cell using the following equations:

Stress =
∑N

j=0 F
j
α

Aα
, (5.19)

Strain =
Aα − A0

A0
, (5.20)

where the resting area A0 is different for each phenotype (since we assume

that an elongated contractile cell has a smaller area than a flat, round prolif-

erative cell).

Stress Tensors

While our measure of stress in Equation (5.19) only considers the force at

each vertex along with the cell area, we also consider the stress tensor of

each cell in order to incorporate the impact of cellular shape on cell stress

measures. To calculate the stress tensor, we must first define the effective

cell pressure Peff
α for each cell as follows (for this analysis refer to Section

3.3 of [58]):

Peff
α = Pα +

TαLα

2Aα
. (5.21)

A cell (α) experiences net tension when the effective cell pressure is greater

than zero and otherwise experiences net compression.
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The stress tensor of a cell (σα) is also derived following the method in Section

3.3 of [58] and by considering the stress over each cell as uniform. This is

calculated as

σα = −Peff
α I + TαJα −

1

2
Ṡα, (5.22)

where

Jα =
1

Aα

(1

2
LαI −

Zα−1
∑
i=0

l iαt̂
i
α ⊗ t̂ i

α

)
(5.23)

is the contribution to the cell stress resulting from asymmetries in cell shape

(given that l iα is the length of an edge between vertex i and i + 1 for cell α)

and

Sα =
1

Zα

Zα−1
∑
i=0

Ri
α ⊗Ri

α. (5.24)

is the cell shape tensor [58].

5.1.6 Tissue-level Mechanics

The properties of the cell population or tissue as a whole are important

in understanding the dynamics that lead to a remodelled airway. Under-

standing how the distribution of different phenotypes impacts the cellular

layer as a whole is also clearly important when considering the impact of

an asthmatic exacerbation, as we later go on to do. To characterise the tis-

sue mechanical properties, and in particular how these are altered by the

proportions and patterns of the tissue phenotype make-up, we consider

the stress-strain curve. Experimentally, stress-strain curves are measured

through stretching a tissue by differing amounts and measuring the re-

sponse. How we implement this in our simulated tissue is described in

Section 5.2.5 below.
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5.2 numerical implementation

We first randomly or manually input a set of generating points. We then use

the Voronoin function to tessellate these points. The output of this is a 2xN

matrix of all N vertex 2D coordinates as well as a cell array where each cell

contains a list of vertex matrix indices; the order in which they are listed

tells us their anticlockwise connectivity. We disregard the ‘open’ Voronoi

cells on the boundary of the monolayer (by removing these cells from the

simulated tissue area) and so the cells on the outside of the resultant sim-

ulation have closed boundaries without the need for an enlarged convex

hull. All simulations and other associated computations are implemented

in Matlab.

5.2.1 Boundary Conditions

We impose periodic or Dirichlet boundary conditions depending on the fo-

cus of the specific test simulation. In most cases, we implement periodic

boundary conditions to reduce edge effects such that our relatively small

cell population produces dynamics that approximate the bulk ASM tissue.

A simple way to impose periodic boundary conditions in this model is to

first repeat our Voronoi seeding four times and choose the central region (a

box of width w ) as seen in Figure 5.7. This ensures that duplicate polygons

are found on the boundaries of our chosen region. Vertices on the boundary

are then coupled such that any vertex displacement also occurs to the corre-

sponding vertex on the opposite boundary. Two examples of this can been

seen in Figure 5.7 (black/white vertex found also on opposite boundary).

For specific test problems, such as in determining a stress-strain curve for

simulated tissue (Section 5.2.5), we instead simulate stretching a tissue by

displacing the vertices on the boundary of our chosen region and then fixing

the positions of these outermost vertices (Dirichlet boundary conditions).
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Figure 5.7: To implement periodic boundary conditions, we repeat the tes-

sellation four times and then choose the box in the centre for

our monolayer. Since the vertex geometry is repeated, we cou-

ple the boundary vertices and, upon removing vertices that are

not contained in the box, the remaining monolayer has periodic

boundary conditions.

5.2.2 Initial Conditions

In order to match our experimental protocol (described in Section 3.2), which

begins with a full population of the proliferative phenotype, we begin with

a population of regular hexagons and then perturb the vertex positions uni-

formly at random via αi → αi + εγ where γ ∼ U(0, 1) and ε = 0.5. All cells

will then have near equal internal spring resting lengths and therefore a

high circularity (which fits with the rounded morphology of this phenotype

as discussed in Section 1.2.1).
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5.2.3 Time-stepping

To calculate the change in vertex positions over time (using the method in

Section 5.1.3), we calculate the net force at each vertex using Equation (5.9)

and update the positions of vertices using Equation (5.11) with a small time

step of h = 0.001 and parameters as in Table 4. Each time a vertex position

is updated, it must be checked that all cells remain convex. This is done by

using the inpolygon function along with vector geometry to move any point

which makes a cell concave. T1 transitions (described in Section 5.1.2) are

also implemented using the parameters dmin and dsep, quantified in Table 4.

Parameter Value Description

L̃0 3.4641 Resting length of cell perimeter

Ã0 0.8660 Resting cell area

K̃ 0.6 Cell stiffness

˜Kint 0.4 Stiffness of internal springs

Λ̃ 0.15 Tunes cell contractile strength

dmin 0.05 Minimum cell edge length before a T1 transition

dsep 0.25 New edge length following a T1 transition

Table 4: Parameter values used in the energy minimisation and T1 transi-

tions.

5.2.4 Cell Phenotypes

As described in Section 5.1.4, a contractile cell starts with the same shape as

a proliferative cell, but is elongated in a randomly determined orientation

over time based on the increase of internal resting spring lengths. To do

this, a single internal spring (between the cell centre and one of the vertices)
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is first chosen uniformly at random. If the cell has an even number of ver-

tices, the opposite internal spring is also chosen and their resting lengths

are extended by Lext . Should the cell have an odd number of vertices, the

orientation of elongation is again decided randomly between the two op-

posite internal springs to the internal spring chosen first. With any change

in resting length of internal springs, the resting area is also changed corre-

spondingly. The effect of the contractile machinery is incorporated using the

Hill force-velocity relationship described in Section 5.1.4. The parameters

associated with these changes can be found in Table 5.

Parameter Value Description

Lext 0.3 Extension in internal spring resting lengths

Ac0 0.2512 Resting area of elongated contractile cell

F0 3 Isometric force (Hill model)

a 0.001 Tunes force velocity curve (Hill model)

b 0.001 Tunes force velocity curve (Hill model)

Table 5: Parameter values used in changing the shape of contractile cells

and for incorporating the Hill Model to represent the cells internal

contractile machinery.

5.2.5 Stress-strain Curve

To determine the stress-strain curve of ASM using our model, we simulate

stretching our tissue by different amounts and, each time, measure the av-

erage cell stress and strain at the resultant equilibrium state. We simulate

stretching the tissue by displacing the outermost vertices in the direction

normal to the boundary, and fixing them at these new positions (as dis-

cussed in Section 5.2.1) to represent a sustained load. We then let the sys-

tem relax to the new stretched equilibrium using the method described in
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Section 5.1.3. We determine that this state has been reached when the av-

erage displacement of vertices for a given time step is < 0.0001 (i.e. when

there is little to no further displacement of vertices within the system). Fi-

nally, we measure the average cell stress and strain across the tissue. This

process is repeated with incremental increases in the distance of the vertex

displacements (s) and therefore extent of the stretch, and the average cell

stress and strain is recorded each time. We use this method to explore the

impact of contractile population size and distribution in the tissue on the

resultant stress-strain curve.

5.3 results

5.3.1 Energy Minimisation

Figure 5.8 shows that, when evolving the system in the time dependant

manner discussed in this chapter, the cellular network slowly relaxes toward

its minimum energy state over time and cells refrain from self intersection or

overlapping during this time (as opposed to when using the Matlab function

fminsearch in Figure 1.12).

5.3.2 Cellular Measures

We start this analysis by testing that individual simulated contractile cells

within a proliferative population exhibit the structural and functional dy-

namics that we would expect for their phenotype based on literature and

our TFM experimental findings. We therefore initialise 100 proliferative

cells (as described in Section 5.2.2) and then “turn on” the contractile ma-

chinery and contractile-associated resting lengths of just four of these cells

(that are widely spread-out), before simulating the population evolution

over time. This means that the proliferative cells begin close to (but not
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Figure 5.8: Vertex model (a) before and (b) after a time dependent energy

minimisation on a small population of simulated cells, where

black areas in (b) show the area initially occupied by the cells (as

in (a)). Vertices are displaced using Equation (5.11).

at) their resting equilibrium state, while the contractile cells begin far from

their equilibrium. We then measure the changes in cell circularity, elonga-

tion, stress and strain over the period of evolution. Our measures are taken

for each contractile cell individually as well as the average of the contractile

and proliferative populations (Figures 5.9 and 5.10).

Figure 5.9(a) shows the simulated population at the start and end of the sim-

ulation period. The contractile cells are coloured light blue, yellow, green

and pink, as are their respective data points in Figures 5.9(b,c) and 5.10. We

can see in Figure 5.9(a) that contractile cells are indeed elongated at t = 1.72

and that the proliferative cells (particularly those that neighbour the contrac-

tile cells) become less regular to allow for this.

Circularity and Elongation

As expected, Figure 5.9(b,c) shows that there is a significant decrease in

contractile cell circularity over time as well as a corresponding increase in

120



5.3 results

Figure 5.9: (a) Simulated ASM population before (t = 0) and after (t =

1.72) an energy minimisation, where each cell is represented by a

white border and contains red internal springs. The proliferative

cells are coloured dark blue and the remaining four coloured

cells spread throughout this population are contractile. (b) Cell

circularity (calculated using Equation (5.17)) and (c) elongation

(found using Equation (5.18)) for each of the four contractile cells

over this time period, as well as an average of the contractile (red)

and proliferative (blue) populations.
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elongation. The variability in individual contractile cells can be explained

by the impact of transitions (discussed in Section 5.1.2) as the cells evolve

towards their resting state. The circularity and elongation of proliferative

cells on the other hand, varies only slightly throughout this period and, as

can be observed in Figure 5.9(a), the changes are more significant when the

cells in question neighbour contractile cells.

Stress and Strain

It can be seen in Figure 5.10(a) that, contractile cells experience higher stress

than proliferative cells throughout the simulation. The average stress of the

contractile population appears to decrease at the start of the simulation as

the cells begin to elongate, however, there is large variability in average cell

stress over the simulation period given this small population of contractile

cells. The stress state of the proliferative population on the other hand, does

not change significantly throughout the simulation. Moreover, the average

stress of proliferative cells remains above zero since the system is unable

to reach equilibrium. Figure 5.10(b) shows that the strain of proliferative

cells remains at approximately zero throughout, and only rises slightly to

allow for the changes in contractile cell shapes. As described above, con-

tractile cells begin the simulation with a more rounded shape far from their

equilibrium state, but as they elongate, the strain they are under decreases

respectively.

5.3.3 Tissue Measures

Stress - Strain curve

We determine the stress-strain curve, using the method described in Section

5.2.5, for five different tissue types as follow.

tissue type 1 : has only 5 contractile cells that are spread out among a

proliferative population (Figure 5.11(a)).
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Figure 5.10: (a) Cell stress (calculated using Equation (5.19)) and (b) cell

strain (found using Equation (5.20)) for each of the four con-

tractile cells over the time period of Figure 5.9, as well as an

average of the contractile (red) and proliferative (blue) popula-

tions.

tissue type 2 : has a larger proportion of 12 contractile cells that are simi-

larly spread out within the proliferative population (Figure 5.11(b)).

tissue type 3 : has a still larger proportion of 17 contractile cells that are

similarly spread out within the proliferative population Figure 5.11(c)).

tissue type 4 : is similar to Tissue type 2 in that it also has 12 contractile

cells, but this time they are bunched in the centre of the proliferative

tissue (Figure 5.11(d)).
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tissue type 5 : has a large proportion of contractile cells surrounding a

population of 12 proliferative cells bunched in the tissue centre (Figure

5.11(e)).

Each of the Figures 5.11(a–e) are shown at the stage where the outer ver-

tices are first displaced, before the tissue has relaxed to a new equilibrium.

As previously mentioned (Section 5.2.5), the corresponding stress-strain re-

sponse curves (Figures 5.12 and 5.13) are the responses to deformation once

at their new stretched equilibrium.

The average and variance of the stress and strain for each of the tissue types

1−3 following relaxation after differing lengths of tissue stretch (s = 0.2− 2)

is shown in Figure 5.12(a–f) for each phenotype population separately (con-

tractile in red and proliferative in blue). When comparing the changes for

contractile and proliferative population stress (Figure 5.12(a, c and e respec-

tively) and strain between tissue types 1–3 (Figure 5.12(b, d and f respec-

tively), we find that there are few significant differences. One difference,

however, is that the stress of the contractile population of tissue type 3 (Fig-

ure 5.12(e)) following a stretch of 0.6 < s < 2 is significantly higher and

has a larger range than that of tissue types 1 and 2. On the other hand,

this difference in contractile stress does not appear to have an impact on the

contractile strain (Figure 5.12(f)).

Figure 5.12(g) shows the stress-strain curve for each of the tissue types 1

(green), 2 (cyan) and 3 (pink), where the contractile population is spread

out but the proportion of contractile cells differs. We can see that this differ-

ence in the proportion of contractile cells has a larger impact on the tissue

properties for higher values of stress and strain. While the curves for tis-

sue types 1 and 2 (green and cyan) look approximately linear, the curve for

tissue type 3 (pink) shows non-linear features, suggesting some amount of

strain-softening.
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Figure 5.11: Five different simulated, non-periodic ASM tissue types shown

after having been stretched but before relaxation to equilib-

rium. Contractile cells are coloured red and proliferative cells

are blue.

The average and variance of the stress and strain for each of the tissue

types 4 and 5 following relaxation after differing lengths of tissue stretch
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Figure 5.12: (a–f) Stress (left column) and strain (right column) as functions

of stretch for the contractile (red) and proliferative (blue) popu-

lations of tissue types 1–3 (where shaded regions represent the

variance); (g) stress-strain curves for each tissue type 1–3.
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Figure 5.13: (a–d) Stress (left column) and strain (right column) as functions

of stretch for the contractile (red) and proliferative (blue) popu-

lations of tissue types 4 and 5 (where shaded regions represent

the variance); (e) stress-strain curves for each tissue type 4 and

5.

(s = 0.2− 2) is shown in Figure 5.13(a–d). In this case, however, there are

very large differences in the stress and strain associated with each tissue

type. For tissue type 4, both the range and average of cell stress values is

high for low stretch lengths, but decreases to near zero once s > 1 (Fig-
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ure 5.13(a)). For tissue type 5, contractile cell stress (average and variance)

continues to increase as stretch is increased (Figure 5.13(c)). These trends

in contractile cell value ranges are repeated for strain, though their average

values remain fairly constant (Figure 5.13(b and d)).

Figure 5.13(e) shows the stress-strain curve for each of the tissue types 4

(orange) and 5 (purple), where there are 12 cells from each population re-

spectively grouped in the centre of the tissue surrounded by the other phe-

notype. We see that this difference alters the tissue properties dramatically.

Tissue type 5 exhibits a strain stiffening property, as seen by the sharp in-

crease in stress with increasing strain (at larger deformations). In vivo, such

stiffening is required for the alteration of ECM during mechanical deforma-

tion and is therefore important in order to maintain the structural support

within the tissue [76]. Tissue type 4, however, seems to plateau such that

there is an increasing strain, yet little to no change in the stress of the tissue.

Most cells reside in a contractile phenotype when in vivo (unlike the cells

in our in vitro experiments, which switch to the contractile phenotype only

when serum is removed) and so exploring the properties of tissue type 5 is

more relevant for understanding in vivo tissue.

We finally compare tissue types 2 and 4 (Figure 5.14) which both contain 12

contractile cells but are distributed throughout the tissue in different ways

(spread out and gathered in the centre respectively). In this, we can see more

clearly the impact of cell phenotype distribution throughout tissues and the

impact this has on tissue properties. Interestingly, we see that the stress

goes down in tissue type 4. The phenotype and corresponding location of

cells within the tissue impacts their ability to rearrange and could therefore

contribute to this observation. When the tissue stretch is small, the outer

proliferative cells rearrange slightly, but the average cell stress remains high

as cellular rearrangement is difficult for the contractile cells that are gath-

ered in the centre of the tissue. As stretch increases, more contractile cells
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Figure 5.14: Stress-strain curve for 12 contractile cells distributed within a

proliferative population in different ways (spread out for tissue

type 2 and gathered in the centre for tissue type 4).

are able to rearrange to relieve stress and so the average cell stress reduces.

Given that the variability is high for proliferative cells (Figure 5.13(a)), a few

highly stressed cells may be dominating.

5.4 summary

In this chapter we have developed a new cell-based model of the mechanics

of ASM cells in a monolayer. We represent cells as polygons formulated

from a set of points using a Voronoi tessellation. We have chosen to use this

vertex-based formulation in order to represent conveniently the interaction

of cells at their boundaries. A shape and functional change associated with

a switch in phenotype is modelled through the elongation of cells that have

changed to a contractile phenotype, as well as the operation of contractile

machinery contained within internal springs. A time dependent method

of force balance and simulation is used, where we track the movements of
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vertices based on the net force from its three surrounding cells.

To test this model, we explore the changes in both cellular and tissue mea-

sures for a small number of contractile cells in a largely proliferative popu-

lation. We find that our model shows the increase in elongation/decrease in

circularity of the contractile population over this simulated time period, as

we would expect for contractile cells that have just switched from a prolif-

erative phenotype. We also see an expected decrease in contractile strain as

these cells elongate and a variable, non-zero stress. The proliferative popula-

tion remains fairly constant throughout since all cells begin with a rounded,

proliferative cell-like shape. Finally, stress-strain curves for different tissue

types illustrate the impact that the distribution of contractile cells within a

population has on the resulting non-linear mechanical properties of a tissue.
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6
C E L L V E RT E X M O D E L : P H E N O T Y P E S W I T C H I N G

In this chapter, we further develop the vertex model presented in Chapter

5 by including the additional dynamics of ASM cell phenotype switching

over a period of serum deprivation, in order to replicate the TFM experi-

mental results. As in the population-level reduced ODE model of Chapter

3 (Section 3.3), the simulation time period is based on an experimental pro-

tocol in which in vitro ASM cells are deprived of serum. Thus, we expect

that a sub-population of the initially fully proliferative cell population will

gradually switch to the contractile phenotype over this period of serum de-

privation. In Chapter 5 we demonstrated changes in the shape and mechan-

ical properties of individual contractile cells in a proliferative population

(Section 5.3.2), as well as the impact of different contractile population sizes

and placements on stress-strain curves when stretching the simulated tissue

(Section 5.3.3). Here we extend the model to capture the more biologically

realistic dynamics of a randomly and continuously changing cellular popu-

lation through the inclusion of phenotype switching.

We incorporate random phenotype switching over time (Section 6.2.1) and

analyse the simulated results at both the cell level (Section 6.3.1) and the

population level (Section 6.3.2). This allows us to explore our hypothesis

that the mechanical environment of ASM cells and their neighbours drives

changes in their structure and function, and hence is key in the phenotype

131



6.1 modelling approach

switching process.

We also explore the existence, length and cellular make-up of force chains

throughout the population (Section 6.3.3). This is important as it gives an in-

dication of the impact of emerging contractile populations on long distance

mechanical communication across the tissue.

6.1 modelling approach

6.1.1 Stochastic Effects

In our previously developed ODE model (Appendix A) which was extended

in Chapter 2, we considered the deterministic change in ASM density and

in other airway components over time. While the ODE approach was ap-

propriate for modelling the average behaviour of a large number of cells,

it does not account for the effects of interactions between individual cells.

To include phenotype switching in our vertex-based model (developed in

Chapter 5) therefore, we use a method that includes randomness when de-

ciding on whether a switching event occurs for a given cell.

To ensure a dynamic equilibrium in which an in vitro serum-deprived pop-

ulation of cells consists of a small sub-population of contractile cells, both

proliferative to contractile and contractile to proliferative switching rates

have to be included. The latter is assumed to be very small; however, since

the cells are serum deprived.

To accommodate for realistic phenotype switching rates, we assume the

switching rate from contractile to proliferative is a function of the extent

of cell elongation (i.e. it is less likely that a more elongated contractile cell

will switch back to being proliferative). This represents the corresponding

functional changes that occur in a contractile cell as it elongates, such as an
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increase in quantities of contractile proteins and caveolae (as discussed in

Section 1.2.1).

6.1.2 Cell-based and Population-based Measures

Model results in this chapter are quantified via the cellular measures (cir-

cularity, elongation, effective cell pressure, stress and strain) described in

Section 5.1.5. Results from this model also give an indication of the dynam-

ics of the cellular populations making up ASM tissues. This is important

in order to gauge the impact that the contractile sub-populations have on

the tissue as a whole, including the rearrangement of cells and the extent

of mechanical communication between cells across the tissue. In view of

this we introduce several new tissue measures as follows, and illustrated in

Figure 6.1.

Bundles

We define bundles of contractile cells as groups of cells with more than three

contractile cells neighbouring each other (as seen in Figure 6.1(a)).

Paths

Paths are found within bundles. These are defined to be chains of contractile

cells connecting the cells in the bundle that are the furthest away (based on

distances between cell-centres) as seen in Figure 6.1(b).

Force Chains

Bundles and paths of contractile cells within the ASM cell population, and

the alignment of these cells, gives an indication of the rearrangement in-

volved across the tissue over this period of serum deprivation. We also,

however, aim to explore the mechanical communication throughout the tis-

sue. The forces produced by cells regulate behaviours at the sub-cellular,
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Figure 6.1: Schematics showing (a) two ASM bundles (outlined in yellow

and green) and (b) three ASM paths (shown by yellow, orange

and green lines between the cells furthest apart within the bun-

dle, highlighted by a black centre).

cellular and tissue-level, and so are vital for many biological processes [82].

In order to measure the distance at which forces are transmitted across the

tissue, and whether the size of the contractile cell population impacts this,

we use the well defined notion of force chains (FCs). FCs represent chain-

like groups of connected cells that exhibit a higher than average magnitude

of stress [60].

6.2 numerical implementation

6.2.1 Random Phenotype Switching

Based on the mechanisms incorporated into the ODE model discussed in

Chapter 2, we first consider all the possible events that could occur for an

ASM cell, namely: a proliferative cell divides, a contractile cell undergoes

apoptosis, a proliferative cell switches to a contractile cell or a contractile

cell switches to a proliferative cell. In an ODE setting, the change in density
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of proliferative and contractile ASM cells respectively over time is described

as follows:

dp

dt
= kcpc − kpcp + kpp, (6.1)

dc

dt
= kpcp − kcpc − kcac . (6.2)

with rates kij , as in Chapter 2.

In our vertex-based cell model, however, we make the assumption that cell

apoptosis (kca) is negligible, as in the reduced model of Chapter 3. For sim-

plicity, with the focus being on the switching of cellular phenotypes during

serum deprivation, we also assume that kp is negligible. As described in

Section 6.1.1, to obtain a dynamic equilibrium in which an in vitro serum-

deprived population of cells consists of a small sub-population of contractile

cells, we assume switching of ASM cells can occur in both directions. The

possible events that could occur at each time-step, therefore, are either a

proliferative cell switches to a contractile cell, or vice versa.

For each time step h for which we update the vertex positions (Equation

5.11), we first randomly choose a cell and then randomly choose the event

that could occur for any given cell based on its current phenotype. For ex-

ample, if the cell is proliferative, the cell could either switch to a contractile

phenotype or stay in the proliferative phenotype. A given cell switches from

a phenotype x to phenotype y with a transition probability given by αx→y

as follows:

αp→c = kpcp, (6.3)

αc→p = kcpc . (6.4)

As mentioned in Section 6.1.1, we model the switching rate kcp as a decreas-

ing function of cell elongation. Here, we once again define elongation (e)

as the ratio of the major axis length to the minor axis length, using the
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regionprops function in Matlab. The modified transition probability for

this switching event is then given as follows:

αc→p =
kcp

e15
c . (6.5)

6.2.2 Initial Conditions

Simulations in this chapter begin with a fully proliferative population of

100 cells, to mimic the experimental protocol in which we assume that all of

the cells in media containing serum are proliferative. Parameters remain as

stated in Tables 4 and 5 with the addition of switching rates kcp = 0.1 and

kpc = 0.005, unless stated otherwise.

6.2.3 Bundles

We classify bundles using the following method:

1. For each contractile cell, create a group that consists of that cell and

any of its neighbours that are also contractile (for Figure 6.2, groups

are: [1 2 3], [2 1 3 4 5], [3 1 2 4], [4 3 2 5] and [5 2 4]).

2. Once a group has been identified for each contractile cell that also has

contractile neighbours, compare groups and combine any that overlap

(all the groups in Figure 6.2 overlap: [1 2 3 2 1 3 4 5 3 1 2 4 4 3 2 5 5 2

4]).

3. We then remove any repeated cells from each group (without repeats,

the group in Figure 6.2 becomes: [1 2 3 4 5]) and, if the size of the

group is still larger than 3 cells, it is classed as a bundle (group [1 2 3

4 5] in Figure 6.2 is a bundle).

We measure the alignment of cells within a contractile bundle by calculating

the angle of the shape tensor axis, measured anticlockwise from the horizon-
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Figure 6.2: Defining a contractile bundle: through following the steps for

defining a bundle, we find that contractile cells 1-5 indeed make

up a bundle.

tal axis passing through the cell centre, and tracking the average variance

between these angles. Since the arithmetic variance is not appropriate for

angles, it is convenient to use the Kuramoto order parameter V = |Z | as a

measure of coherence where

Z =
1

N

∣∣∣∣∣
N

∑
n=1

e iθn

∣∣∣∣∣ , (6.6)

and θn is the angle in question. This gives us a value for the order parameter

V of all the angles in a bundle of N cells, where V = 1 means that the angles

are completely aligned and V = 0 means they are completely unaligned.

6.2.4 Paths

We classify paths using the following method. For each bundle, we first

find the contractile cells that are the furthest away from one another (based

on distances between cell centres); these cells are the path ends (for Figure

6.3, these are cells 1 and 6). For a randomly chosen path end, we add a

neighbouring cell to the path if:

1. It is also contractile
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2. It is not already part of the path

3. It only has one neighbour that is already a member of the path.

For Figure 6.3, the path is [1,2,4,5,6] or equivalently [6,5,4,2,1]. This method

could result in several paths per bundle (as seen in Figure 6.1(b)); however,

we choose to only measure the alignment of cells within the shortest path

(measured by the distance between the cell centres of the path ends) for

each bundle.

Figure 6.3: Defining a contractile path: through following the steps for

defining a path, we find that contractile cells [1,2,4,5,6] make

up the longest path.

6.2.5 Force Chains

Following the algorithm for Force Chains (FCs) defined by Peters et al. [60],

we first find all cells that exhibit a stress tensor magnitude that is strictly

larger than the average of the cell population as a whole (for Figure 6.4,

these are cells 1–6, outlined in yellow). We then randomly choose a chain

starter from one of these cells. For this example, we choose cell number 1

of Figure 6.4. Any neighbour of cell 1 is added to the chain if:
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1. It has a larger than average stress tensor magnitude (defined in Chap-

ter 5, illustrated by cells with a yellow outline in Figure 6.4). In this

example, only cell number 2 satisfies this constraint.

2. The direction of the stress tensor (shown as a thick black line for each

cell 1-6 in Figure 6.4) lies between θ degrees of the angle of the line

between their centre and the centre of the previous cell in the chain

(shown as a thin yellow line between cell centres in Figure 6.4). In this

example, the direction of the stress tensor of cell 2 is within θ = π/4

degrees of the direction of the line between the centres of cells 1 and

2, hence cell 2 satisfies this constraint.

3. The direction of the stress tensor of the previous cell in the chain lies

between θ degrees of the angle of the the line between their centre and

the centre of the previous cell in the chain (as in (2) but reversed). In

this example, the direction of the stress tensor of cell 1 is also within

θ = π/4 degrees of the direction of the line between the centres of

cells 1 and 2, cell 2 is therefore added to the chain.

For Figure 6.4, there is a force chain between cells [1,2,3,5]. Cell 4 has no

neighbours that have a larger than average stress tensor magnitude so is,

therefore, not included in a force chain. Although cell 6 neighbours cell

5, both angles referred to in criteria two and three above are larger than

θ = π/4 degrees and so this cell is not added to the force chain.

6.3 results

6.3.1 Cellular measures

To demonstrate the impact of the phenotype-associated cell shape change

on the mechanics and alignment of cells, we first explore changes in the

cellular pressures and the internal angle distributions for a population of
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Figure 6.4: Defining a force chain: by following the steps for defining a force

chain, we find that cells [1,2,3,5] make up the only force chain in

this example.

cells. We simulate the vertex model developed in Chapter 5 (with periodic

boundary conditions as discussed in Section 5.2.1 and initial conditions de-

scribed in Section 6.2.2) and measure these metrics over the period of serum

deprivation, for the populations we refer to as Tissue 1 and Tissue 2. Tissues

1 and 2 only differ by the initial random perturbation that was discussed in

Section 5.2.2; i.e. the two tissues are two random instantiations. Over the

period of serum deprivation, a sub-population of cells switch from a pro-

liferative to contractile phenotype with associated cell shape changes, as in

the TFM experiment.

Figure 6.5 illustrates the cellular shapes and positions that make up Tissues

1 and 2 before (Figure 6.5(a,c)) and after (Figure 6.5(b,d)) this time period.

We observe that the simulated cells become much less rounded and more

aligned following the serum deprivation (Figure 6.5(b,d)). There is also a

significant reduction in the number of cells that are under net compression

(green cells) and a corresponding increase in the number of cells that exhibit

net tension (yellow cells). The cells that remain in a state of net compres-

sion, however, seem to be located in small groups or hot-spots. Under closer

inspection, we observe that the axis of elongation (as seen by the alignment
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of red internal springs) tends to align with that of cell neighbours.

Figure 6.5: Simulated ASM cell monolayers using the vertex-based mod-

elling approach with time dependent evolution. The structure

of (a,b) Tissue 1 and (c,d) Tissue 2 (two random instantiations

that do not differ otherwise) can be seen before (left column)

and after (right column) a period of serum deprivation, under

switching rates kpc = 0.01 and kcp = 0.00001 and with an inter-

nal spring extension of Lext = 0.8. Cells under net compression

are shown in green, while cells with net tension are yellow.

In Figure 6.6 we illustrate our hypothesis that for a population of predomi-

nantly proliferative cells (before serum deprivation), most cells are rounded

and so the distribution of angles between adjacent vertices measured at

the centre of each cell will be centred on 60
◦. As more cells switch to an

elongated contractile phenotype, we expect the angle distribution to evolve

(potentially to a bi-modal distribution). In our simulated results (Figure

141



6.3 results

6.7), the initial distribution of angles (Figure 6.7(a,c)) looks like a Gaussian

distribution with a mean of approximately 60
◦ in both Tissues 1 and 2. The

distributions of these angles are then modified after the period of serum

deprivation (Figure 6.7(b,d)). After serum deprivation, the angles have a

higher variance and therefore a wider distribution that is consistent with

our hypothesis, suggesting that more elongated cells are likely present.

Figure 6.6: Diagram showing the way that proliferative cells (left) and con-

tractile cells (right) are modelled in the vertex-based simulations;

distributions of labelled angles are reported in Figure 6.7.

Figure 6.7: Distributions of all angles in each of the Tissues 1 and 2 de-

scribed by Figure 6.6 before (a,c) and after (b,d) serum depriva-

tion under switching rates kpc = 0.01 and kcp = 0.00001 and

with an internal spring extension of Lext = 0.8.
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Next we simulate four random instantiations in order to measure the mean

and variance of cell circularity and elongation (defined in Chapter 5) across

phenotype populations at each time point. The results of the four instan-

tiations are pooled in Figure 6.8. These clearly show that the proliferative

population of cells change little in both mean circularity (Figure 6.8(a)) and

mean elongation (Figure 6.8(b)) over this time period, with a small variance

in their cell shapes across the tissue (most are fairly circular and not very

elongated). The contractile cells, on the other hand, become more elongated

and less circular over time on average, but have a much larger variance in

cell shapes throughout their populations.

Figure 6.8: Change in the mean and variance of contractile (red) and prolif-

erative (blue) cell circularity (a) and elongation (b) over time for

four random instantiations of the simulated model developed in

Chapter 5 with kcp = 0.05 and kpc = 0.005.

6.3.2 Tissue measures

In this section, we explore the changes in proportions and patterns of each

cellular phenotype within the tissue over time and how this impacts cellular

alignment.
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Bundles

We track the average bundle size and alignment score over time, as cells

switch phenotype with the corresponding shape and functional changes.

We then plot an average alignment score over all bundles at each time point.

Figure 6.9 shows these results for two different instantiations of simulated

tissue (a) and (b). These examples show a clear increasing trend in cell

alignment within contractile bundles after t = 0.05. This also fits with our

observations of cell level elongation and angle distributions.

Figure 6.9: Average bundle alignment scores over time for two random in-

stantiations of the simulated model developed in Chapter 5 with

kcp = 0.05 and kpc = 0.005.

Paths

Although we are able to identify paths that travel through the whole sim-

ulated population (as in Figure 6.10), on analysis of the alignment within

these paths, we find no evidence to indicate that the cells within paths be-

come more aligned over time. In addition to exploring the alignment of

cells within the path as a whole, we also analyse the pairwise alignment

between neighbours within the path, and obtain similar results. We believe

that this is due to the fact that, contractile cells do not remain contractile
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long enough for the mechanical changes to occur before switching back to

the proliferative phenotype.

Figure 6.10: Simulated tissue, where phenotype switching has resulted in a

long path of contractile cells. The shape tensor of cells in the

chosen path are shown by a black line through each cell centre.

6.3.3 Force Chains

When analysing the make up of FCs we find that, although the lengths of

FCs vary throughout the simulation, there is no significant trend in their

length change over time (Figure 6.11(b)). We also demonstrate that the cells

that make up these chains are mainly contractile (Figure 6.11(a)), thereby

supporting the hypothesis that contractile cells cooperate in transmitting

forces over long distances in tissues. In Figure 6.11(c), we can see that

the most frequently observed FCs consist of just two contractile neighbours

and, as both the FC length increases and the proportion of contractile cells

decreases, the frequency with which they appear declines. This is likely a

consequence of the switching rates that allow the saturation to a steady state
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with a mixed population (hence contractile cells may not remain contractile

long enough to reach their new resting state).

Figure 6.11: Force chain data plotted for every 10th time point over the sim-

ulation period. (a) The total number of cells in any FC at each

time point and the proportion of those that are proliferative

(blue) or contractile (red), (b) the average and variance in FC

length at each time point, and (c) the corresponding total fre-

quencies of each combination of these chain characteristics over

the simulated time period, depicted by circles whose areas are

proportional to frequency.
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6.4 summary

ASM cell phenotype switching is incorporated into the vertex model in or-

der to mimic cells in the experimental serum deprivation period. In the

cellular results, we see a clear reduction in circularity, increase in elonga-

tion and an associated change in the distributions of cell internal angles

throughout the period of serum deprivation. We also observe a reduction

in the proportion of cells that experience net compression, with the few re-

maining compressed cells occurring in clumps.

In exploring tissue measures, we find that the cells within bundles align

with one another during serum deprivation however this is not the case for

paths that make up bundles or for pairs of contractile cells alone. We do,

however, find long paths of contractile cells that traverse the whole cell layer.

Finally, in our analysis of force chains across the tissue, we find that the ma-

jority of cells that make up these chains are contractile, the most frequent

being made of just a contractile pair of cells.

While these simulations are set up to mimic experimental protocols, future

work would consider accounting for more in vivo behaviour, in which longer

force chains may arise more frequently. These simulations additionally do

not account for the impact of contractile agonist, which will be explored in

the next chapter.
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7
C E L L V E RT E X M O D E L : S I M U L AT I N G A S T H M AT I C

E X A C E R B AT I O N S

Following the development and testing of our mechanical vertex-based model

for an ASM cell monolayer (Chapter 5), which was then further developed to

incorporate cell phenotype switching (Chapter 6), we now use this model

to simulate the impact of an asthmatic exacerbation. By illustrating the

changes in cell and tissue properties during and post exacerbation, we aim

to learn more about the mechanisms underlying multicellular mechanics

that may occur in vivo.

In this chapter, we first discuss the modelling approach used to simulate

an exacerbation. We then test this by investigating the impact of exacer-

bations on three different test cases: (i) a fixed ASM population (i.e. no

phenotype switching); (ii) a toy model of a whole small airway surrounded

by ASM cells without phenotype switching, and (iii) an ASM population

undergoing phenotype switching. The final test case allows us to undertake

a qualitative comparison of the simulated results to our TFM experimental

data (discussed in Chapter 3).

7.1 modelling approach and implementation

As previously described (Chapter 1), an exacerbation is caused by the recog-

nition of an allergen in the airway, leading to the de-granulation of mast
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cells which release contractile mediators like histamine. These mediators

act as a stimulus which contributes to the generation of a contractile force

in ASM cells.

For simplicity, we assume that increased contractile force can be represented

by an increase in the isometric force F0 in Equation 5.12 (the effect of this

is shown in Figure 7.1(a)). During the time period of increased stimulus

(where A ≤ t ≤ B), we therefore assume that F0 is a time-dependent func-

tion represented by

F0(t) = α + β((H(t − A)−H(t − B)), (7.1)

where H(t) is the Heaviside function, α is the baseline value of F0 and β is

the amount by which F0 increases (Figure 7.1(b)). This will affect the load

acting on each cell and hence the overall mechanical stress/strain.

Figure 7.1: Schematics to show (a) the force velocity relationship given an

increase in F0 and (b) the change in F0 for an increased stimulus

in the period A ≤ t ≤ B .

7.2 effect of exacerbation in a fixed population

In the first test case, we simulate an asthmatic exacerbation in a mixed

population of contractile and proliferative ASM cells that do not undergo

phenotype switching. As in previous simulations, all cells begin as regular
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hexagons that have been randomly perturbed such that each cell has near

equal internal spring resting lengths and, therefore, a high circularity (as

described in Section 5.2.2). While the population is fixed (so no phenotype

switching will occur), the cells assigned as contractile in this simulation will

need to elongate for their internal springs to reach their resting state.

We use a population with a small number of contractile cells (just 4 out of

a total population of 100 cells), such that we are able to explore changes

in individual contractile cells. The exacerbation is then simulated between

2 ≤ t ≤ 3, hence F0 increases by 20 during this period (shown by Figure

7.1(b) with A = 2,B = 3, α = 3 and β = 20). We then measure the cellular

circularity, elongation, stress and strain of each of these contractile cells

(Figure 7.2).

7.2.1 Results

In the initial period (prior to exacerbation), the contractile cells within the

population undergo a significant initial decrease in circularity (Figure 7.2(a))

and increase in elongation (Figure 7.2(b)), as expected. During this time, we

can also see that the average cell stress (Figure 7.2(c)) and strain (Figure

7.2(d)) of the contractile population are higher than that of the proliferative

population (which is close to zero). Furthermore, the strain of the con-

tractile population decreases, while the stress of the contractile population

varies in a non-monotonic fashion as the cells rearrange during this process.

During the exacerbation period, we see a large change in the cellular dy-

namics of the contractile population. The circularity stops decreasing and

instead increases before levelling off (Figure 7.2(a)), while the elongation

similarly stops increasing and instead decreases before levelling off (Figure

7.2(b)); both circularity and elongation appear to have reached a new equi-

librium. These results are consistent with the expectation that elongated
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contractile cells would shorten (and hence become more circular) under a

contractile stimulus.

During this period of exacerbation, we can also see that the average cell

stress of the contractile population has an initial large jump to a high level

of stress (Figure 7.2(c)). The average stress then decreases throughout the

period, returning to a similar level to that before the exacerbation was ini-

tiated. The average stress in the proliferative population follows a similar

trend (albeit at lower levels) because of the altered load transmitted from

contractile cells to neighbouring proliferative cells. The average contractile

cell strain (Figure 7.2(d)), however, only gradually increases during this pe-

riod.

After the contractile stimulus is removed (when t > 3), we see an initial

small increase in circularity of contractile cells before a larger period of de-

crease, and then finally levelling off at approximately t = 3.5 (Figure 7.2(a)).

The initial increase in circularity could be explained as an impact of our

modelling choices, given that the direction of elongation is set (upon alloca-

tion as a contractile phenotype) and so the cell may need to move through

a more rounded state before elongating in the given direction. Since the

shape change of each of these cells has an effect on their neighbours and

consequently the cell network as a whole, each of the contractile cells seem

to reach the point at which they level off at around the same time (t = 3.5).

Looking at the change in elongation after the contractile stimulus is re-

moved, the contractile cells begin elongating once again, though at a slower

rate than before the exacerbation (Figure 7.2(b)). The average stress and

strain of contractile cells (Figure 7.2(c,d)) undergo a small change immedi-

ately after the stimulus is removed (for the same reason as for the initial

increase in circularity discussed above). Both then stay fairly constant for

the remaining period of the simulation, at a value significantly higher than
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Figure 7.2: Simulation of the vertex-based model with no switching and an

increase in stimulus to give F0 = 23 between 2 ≤ t ≤ 3 (Figure

7.1(b) with A = 2,B = 3, α = 3 and β = 20). Results are shown

for (a) circularity, (b) elongation, (c) stress and (d) strain of four

individual contractile cells (marked in yellow, light blue, green

and pink), as well as the average for a contractile (red) and pro-

liferative (blue) population. Parameters are as in Table 4 except

for the following: K̃ = 0.5, ˜Kint = 0.5, a = 0.01.

for the average of the proliferative population, as before.

The discontinuous parts of Figure 7.2 that occur for t < 2 (before the stim-

ulus increases) or t > 3 (when the stimulus has been removed) are a result

of the T1 transitions (discussed in Section 5.1.2).

7.3 mimicking the contraction of a small airway

We next simulate an asthmatic exacerbation in a toy model of a small air-

way. We do this by forming a hole in our network where no cells exist; this

represents the lumen of a small airway. We then assign the cells directly
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adjacent to this hole to be of the contractile phenotype in order to mimic

airway contractility, and the rest of the cells to be passive non-specific tissue

(modelled in the same way as we do for proliferative ASM cells). As usual,

all cells begin as regular hexagons that have been randomly perturbed. We

therefore expect the contractile cells to elongate as they approach an equi-

librium, until the exacerbation is initiated leading to an increase in F0 by 20

at time 0.2 ≤ t ≤ 0.3 (shown by Figure 7.1(b) with A = 0.2,B = 0.3, α = 3

and β = 20), where we then expect to see their contraction. The time period

for this exacerbation is for a smaller value of t than in our previous simula-

tion. This is because, when a contractile cell is surrounded by proliferative

cells (like those in Section 7.2), the proliferative cells reorganise over time

to allow for contractile cell changes. Here, however, all contractile cells are

connected and so are likely unable to evolve to their resting state. We there-

fore simulate the exacerbation at an earlier time, when the displacement of

cells is already negligible.

7.3.1 Results

We observe changes in the shape of contractile cells at time points t = 0

(Figure 7.3(a)), t = 0.19 (immediately prior to exacerbation; Figure 7.3(b)),

t = 0.23 (during the exacerbation period; Figure 7.3(c)) and t = 0.35 (after

the exacerbation; Figure 7.3(d)). The most significant change in the shapes

of contractile cells occurs between time points t = 0.19 and t = 0.23, which

coincides with the initiation of the exacerbation at t = 0.2. We measure

the lumen area and plot it as a function of time in Figure 7.4; we observe

a significant decrease in area that we would expect during an exacerbation.

Interestingly, the lumen area remains at this new, slightly smaller area even

when the exacerbation has ended. This could be due to the rearrangement

of the contractile cells adjacent to the lumen as the cells change shape (pos-

sibly undergoing transitions) during the exacerbation.
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Figure 7.3: Toy vertex-based model of a small airway at (a) t = 0 days, (b)

t = 0.19 days, (c) t = 0.23 days and (d) t = 0.35 days, where the

exacerbation with an increase in F0 by 20 occurs at 0.2 ≤ t ≤ 0.3.

Parameters are as in Table 4 except for K̃ = 0.4.

Figure 7.4: Area of the lumen in the toy airway model simulated in Figure

7.3 with an exacerbation at 0.2 ≤ t ≤ 0.3.
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7.4 mimicking the effect of serum-deprivation on forces in

asm monolayers

Finally, we simulate a monolayer of ASM cells to mimic our experimental

protocol from Section 3.2. This enables us to qualitatively compare simu-

lated results to our experimental data. As mentioned at the beginning of

Chapter 5, the development of a vertex-based model was motivated by the

availability of spatial-temporal data for contractile forces that was collected

during the TFM experiment (developed to characterise phenotype switch-

ing of ASM sub-populations during serum deprivation) but not required

for the earlier ODE model. The TFM protocol involved imaging cells before

and after the addition of a contractile stimulus on days 0, 3, 7 and 10 during

a 10 day period of serum deprivation. An example of these results at each

experimental time-point for a given image frame can be seen in Figure 7.5.

We note that these images are only presented for illustrative purposes, to in-

dicate how spatial aspects are represented in the data. The images in Figure

7.5 also show artefactual behaviour at the edges (due to the use of Fourier

analysis when calculating tractions [14]), that should be disregarded in any

analysis.

Now that we have developed a vertex-based model with phenotype switch-

ing, and tested the impact of an exacerbation for fixed populations, here

we simulate a population with phenotype switching to match the switching

initiated by serum deprivation in the experimental protocol.

Experimentally, confluent monolayers of ASM cells contain approximately

22,000 cells per well (given a well size of approximately 113mm2) in the 96

well plates used in TFM. Given that the imaging area in this experiment is

732mm2 = 0.5358mm2, we can estimate that there are approximately 105

cells within each image frame. We therefore simulate a population of 100

ASM cells that are initially all proliferative as described in Section 5.2.2.
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Figure 7.5: TFM experimental results showing heat-maps for the spatial

changes in strain energy before (left column) and after (right

column) the addition of the contractile stimulus at serum depri-

vation time points (a-b) day 0, (c-d) day 3, (e-f) day 7 and (g-h)

day 10. The full experimental protocol and averaged results are

shown in Section 3.2.

Phenotype switching is initiated from the start given that the serum was

removed at day 0 in the experiment.
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We impose switching rates of kcp = 0.0001, kpc = 0.004 to account for serum

deprivation. These rates are chosen to create a sub-population of contrac-

tile cells within our simulation period, without all cells switching to the

contractile phenotype, and with contractile cells remaining contractile long

enough to elongate (hence kcp is kept small). The time points of histamine

additions are then chosen to illustrate the impact of stimulation at differ-

ent points within the switching period from a fully proliferative population

to a population of both proliferative and contractile cells, as in the experi-

mental protocol. We therefore simulate histamine additions at t = 0− 0.014,

t = 0.086− 0.1, t = 0.152− 0.166 and t = 0.214− 0.216. Each addition is rep-

resented by an increase in F0 by 8 during these periods. We then measure

the spatial-temporal changes in strain energy as a measure of contractile

force as well as the changes in the average circularity, elongation, stress and

strain of each population over time. We recall that we measure strain as the

relative difference between a cells area and its resting area, whereas strain

energy in the experimental protocol is calculated using the displacement

field and Fourier transform traction cytometry (described in Section 1.4.2).

7.4.1 Results

Figure 7.6 shows heat-maps for the spatial changes in strain energy before

and after each of the four simulated histamine additions, where contrac-

tile cells are marked with a red outline. We first note that Figure 7.6(a)

shows a fully proliferative population at t = 0, therefore the high strain

values are likely due to the initial random configuration of cells not having

had sufficient time to reorganise towards their resting state. The number

of contractile cells is shown to increase over time from 4 in Figure 7.6(b),

to 33 in Figure 7.6(h). We see throughout that hotspots of both particu-

larly high strain energy (cells with an area much larger than their resting

area, shown in yellow) and particularly low strain energy (cells with an area

much smaller than their resting area, shown in dark blue) coincide with the
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contractile phenotype. We also see that it is these areas of larger magni-

tude that change the most during a histamine addition, with their strain

energy values becoming more extreme afterwards. The strain of these areas

seems to tend towards their pre-stimulated value during periods without

histamine, but a combination of the changes to cell shape and the addition

of new contractile cells results in a reorganised tissue following each his-

tamine addition.

We now qualitatively compare our simulated results (Figure 7.6) to our ex-

perimental data (for which one image area can be seen in Figure 7.5), re-

membering that the artefactual behaviour at the edge of the field in the

experimental results should be disregarded. We see that both sets of heat-

maps display variable levels of low-magnitude strain across the simulation

or image area, with a few small hotspots of strain energy with a larger

magnitude. We also find that, for experimental results after day 0 (Figure

7.5(c–h)) and for simulated results up to histamine addition three (Figure

7.6(a–f)), each successive histamine addition results in a larger area of high

strain energy. The strain energy after a histamine addition in Figure 7.6(h)

is similar to that of Figure 7.6(f), possibly due to the fact that there is a much

smaller increase in the number of contractile cells compared to between Fig-

ure 7.6(b–d) or between Figure 7.6(d–f).

In the averaged temporal experimental results, we found that basal forces

decreased with cell culture time while histamine-induced traction force in-

creased with culture time (Section 3.2.3). While our simulated results (Fig-

ure 7.6) indeed show an agonist-induced increase in energy over time, we

do not see the decrease in basal forces over time, possibly due to contractile

cells not having enough time after switching to relax to their altered resting

state. The lack of time post stimulation was due to wanting to explore the

impact of stimulation throughout the phenotype switching process. Wait-

ing too long post-stimulation would mean that the contractile population
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Figure 7.6: Heat-maps for strain energy of a simulated phenotype switch-

ing ASM population before and after four separate histamine

additions at t = 0− 0.014 (pink block), t = 0.086− 0.1 (green

block), t = 0.152− 0.166 (purple block) and t = 0.214− 0.216

(orange block). Contractile cells are shown by their red outline.

Here, h = 0.002 and parameters are as in Table 4 except for

kcp = 0.0001 and kpc = 0.004. F0 increases by 8 during each

histamine addition.

would grow too large. We can, however, see this result for our fixed popu-
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lation in Figure 7.2(d).

Figure 7.7 shows changes in the average circularity (Figure 7.7(a)), elon-

gation (Figure 7.7(b)), stress (Figure 7.7(c)), and strain (Figure 7.7(d)) over

time, for the ASM cell population shown in Figure 7.6. The average values

for the contractile population are shown in red and the proliferative popu-

lation are in blue. The time period of each histamine addition is marked

by the coloured block: pink for histamine addition one at t = 0 − 0.014,

green for histamine addition two at t = 0.086− 0.1, purple for histamine

addition three at t = 0.152− 0.166 and orange for histamine addition four

at t = 0.214− 0.216. As expected, the contractile agonist has a larger im-

pact on the contractile population, the proliferative population only being

affected through the re-adjustment of the entire monolayer to account for

the load generated by the shortening contractile cells. Below we discuss

changes to the contractile population in this simulation.

The first histamine addition (shown by the pink block) occurs at t = 0 in

order to match experimental protocol. We see that average circularity in-

creases (Figure 7.7(a)) and average elongation decreases (Figure 7.7(b)) dur-

ing this period, as consistent with the results of the fixed population during

stimulation (Figure 7.2(a,b)). During the other three histamine additions

however, there is a rapid decrease in the average ASM cell circularity and

increase in the average ASM cell elongation. Using videos to improve our

understanding of why this happens, we pose that this could be due to con-

tractile cells rapidly contracting along their axis of elongation but, in still

needing to evolve toward their resting state, cells are forced to elongate in

the direction perpendicular to their designated angle of elongation. More-

over, this could be the reason why basal forces do not appear to decrease

over time in Figure 7.6; since cells would need extra time to re-elongate in

their initially assigned direction, perpendicular to their elongation during

a histamine addition. Further work would aim to investigate the change in
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Figure 7.7: Average circularity (a), elongation (b), stress (c), and strain

(d) for the contractile (red) and proliferative (blue) populations

shown in Figure 7.6. Coloured blocks indicate the four time

points during serum deprivation that histamine is added and

match the four time points shown in Figure 7.6. Here, h = 0.002

and parameters are as in Table 4 except for kcp = 0.0001 and

kpc = 0.004. F0 increases by 8 during each histamine addition.

cell area distribution during contraction experimentally and implement a

modelling approach to mimic this.

Immediately after the removal of histamine, average circularity increases

and average elongation decreases. Following histamine additions two (green)

and three (purple), the average circularity seems to level off at a value lower

than its previous equilibrium prior to stimulation and the average elonga-

tion seems to level off at a value higher than its previous equilibrium prior

to stimulation. Following histamine addition four (orange), both average

circularity and elongation return to a value similar to that of before this
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stimulation. This could be a result of the shorter period of stimulation.

Figure 7.7(c) shows that the average contractile ASM cell stress increases

significantly immediately after the addition of histamine (except for in his-

tamine addition one), then gradually decreases towards its pre-stimulation

value during the period of histamine addition and continues to decrease

towards this value post stimulation. Each successive histamine addition

one–four results in a larger immediate increase in average stress, however,

the stress seems to return to the same equilibrium after the removal of his-

tamine each time.

Figure 7.7(d) shows that a histamine addition leads to a significant increase

in the average contractile cell strain after a small delay. Following histamine

addition one, the average contractile strain first returns to a value similar to

that of the proliferative population (close to zero), before decreasing below

zero due to contractile cells having a smaller area than their resting state.

A higher magnitude of strain can therefore be seen in contractile cells com-

pared to proliferative cells throughout. Following histamine additions two,

three and four, the strain returns to this negative average strain.

Similarly to the observed changes in lumen area (Figure 7.4), the results of

Figures 7.6 and 7.7 suggest a possibly irreversible cell rearrangement which

could contribute to asthma pathology. This is because both measures of

cell elongation do not return fully to their pre-exacerbation level after each

exacerbation, hence each successive exacerbation results in a population

with less circular, more elongated contractile cells, that will exert a larger

force during contraction.
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7.5 summary

In this chapter, we use the vertex-based ASM model developed in Chapters

5 and 6 to explore the changes in cellular dynamics during and after the sim-

ulation of an asthmatic exacerbation. Three test cases are used in order to

investigate the cellular and population dynamics under different conditions.

In the first test case, we simulate a population of ASM cells with a small

proportion of these having just switched to a contractile phenotype. The

simulation then runs with no further phenotype switching so that the con-

tractile cells are able to elongate towards their resting state without the

possibility of switching again. During the exacerbation we see a signifi-

cant increase in circularity, and decrease in elongation, of contractile cells.

The average strain of contractile cells also increases during the exacerbation.

In the second test case, we simulate a toy model of a small airway where a

hole in the network of cells represents the lumen of an airway. The results

show that the lumen area decreases during an exacerbation and remains at

the new, slightly smaller area even when the stimulus has been removed.

This result shows a possible mechanism of tissue remodelling.

In the final test case, we mimic our TFM experimental protocol from Chap-

ter 3 in order to simulate results that we can qualitatively compare to the

spatial-temporal results obtained in this experiment. We see similarities in

the distribution of strain energy across the monolayer (variable low levels

with hotspots of high magnitude strain) and both experimental and simu-

lated results show an increase in strain magnitude in these hotspots follow-

ing histamine addition, as well as some evidence of increases in stimulus

induced contraction with each successive exacerbation. Finally, by observ-

ing the average circularity, elongation, stress and strain of the simulated cell

populations in this test case, we see changes to the contractile population
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equilibrium following a histamine addition for several of these measures,

further evidencing the existence of tissue remodelling.
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8
C O N C L U S I O N S

In this thesis, we have used in vitro and in silico techniques in complement to

learn about mechanisms of airway remodelling in asthma. In culture, ASM

cells exhibit changes in cell shape and contractile ability between a spindle-

shaped contractile phenotype and a more rounded proliferative phenotype

with synthetic properties. The link between phenotype switching and corre-

sponding changes in structure, function and relative biomechanical abilities

in vivo is currently unclear, but is key to understanding remodelling. Our

aim was to develop both mathematical models and novel in vitro experimen-

tal protocols, to combine their insights, and to use them to understand the

role of ASM phenotype switching in the thickening of the airways responsi-

ble for fatal attacks in severe asthmatics. To our knowledge this work is the

first to model the specific pathway of remodelling discovered by Naveed et

al [56], uses novel experiments designed specifically based on model results,

and presents the only vertex-based model for ASM cells with phenotype spe-

cific dynamics including active contraction. In Section 8.1, we summarise

the main findings of this work. Section 8.2 then discusses areas of interest

for future work.

8.1 summary of main findings

In Chapter 1 we reviewed the literature surrounding asthma (in particular

asthmatic airway remodelling), the in vitro experimentation methods that
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we go on to use in Chapter 3, and previous mathematical modelling tech-

niques (either that explore airway remodelling or that we use for this pur-

pose). Mathematical models in combination with in vitro methods allows for

a deeper exploration of the mechanisms involved, as well as the ability to

make predictions about the future dynamics of a system. There have been

relatively few attempts at modelling asthmatic airway remodelling and a

very small number that consider ASM phenotypes. Those that do, show an

increase in ASM mass over time that is consistent with airway remodelling

and this is often reliant on parameters relating to agonistic/inflammatory

magnitude and resolution [17, 33]. We finally found that cell-based models

enable the incorporation of cellular forces into models and are used widely

to explore mechanical properties of epithelial tissues [24, 53]. While several

methods have been developed, we found vertex-based models to best rep-

resent the properties of cellular monolayers as a whole including cell–cell

functional mechanics [53, 58].

Chapter 2 was an extension of my Masters Dissertation (Appendix A), in

which we developed an ODE model based on a newly discovered pathway

of airway remodelling involving the activation of MMP-1. We first recapitu-

lated the formulation, analysis and main results from that work (Section 2.1).

The main findings of this project include the discovery of a mechanism of

remodelling (through model bifurcation analysis, Figure 2.5) and the iden-

tification of the phenotype switching rates as the most important model

parameters to accurately quantify (through parameter sensitivity analysis,

Figure 2.4). We went on to develop this model to improve the biological

realism and undertook further analyses to explore system dynamics follow-

ing the addition of an exacerbation stimulus (Section 2.2). We maintained

the observation of this mechanism of remodelling for some parameter set,

as well as finding some interesting possibilities of limit cycle behaviour.
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In Chapter 3, we used the results from Chapter 2 to inform the design of

two novel in vitro experimental protocols that aimed to quantify phenotype

switching rates in ASM cells. Both experiments used serum deprivation

as a way of initiating a switch in human ASM cell phenotype in culture,

from proliferative to contractile. In experiment 1 (Section 3.1), immunocy-

tochemistry was used to measure the change in cell numbers (as a measure

of proliferation) and the actin alignment (as a measure of contractility) over

the period of serum deprivation. The results of this experiment (Figure 3.4)

showed a four-fold increase in anisotropy over the period of serum depriva-

tion and, along with total cell counts, were used to infer the proportion of

each phenotype at each of our experimental time points.

In experiment 2 (Section 3.2), we measured contractility directly using trac-

tion force microscopy at different time points within the period of serum

deprivation. This work was undertaken at Harvard Medical School with

the help of Dr Ramaswamy Krishnan. We found that basal HASM cell force

decreased with cell culture time, while histamine-induced contraction in-

creased with culture time (Figure 3.6). This is consistent with the switch

from a proliferative to a contractile population, and this data is again used

as a measure of the proportion of each phenotype out of the whole popu-

lation over time. We additionally explored the impact of adding activated

mast cell supernatant to certain wells within this experiment, the results of

which (Figure 3.7) further confirmed the importance of mast cell tryptase

in airway remodelling, as discussed in Section 1.3 and incorporated in our

ODE model. Following both experiments, the ODE model from Chapter 2

was reduced to match the experimental system and this enabled us to fit

parameters to our data using a least squares method (Section 3.3.1).

Since experiments 1 and 2 contained relatively few time points, a Bayesian

statistical analysis was undertaken in Chapter 4, with the aim of optimising

further experiments for fitting parameters to our respective models. In order
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to utilise the Bayesian approach, we first synthesised data using our reduced

ODE model. We then used a Markov Chain Monte Carlo (MCMC) method

to assess the impact of the number of time points on the distribution of pa-

rameter estimates. We show that the posterior distributions tighten around

the true parameter value as the number of time points increases. When un-

dertaking this analysis to assess the impact of the number of experimental

repeats (by fitting an additional parameter representing the standard devia-

tion of the noise of our simulated data), we found poor mixing and a need

for a much higher number of iterations before converging. We hence went

forward using an adaptive covariance to improve mixing. The optimised

method was used to find parameter values for experimental data from both

our experiments, as summarised in Table 3. It was also used to show that

the same accuracy can be realised by collecting data at slightly fewer time

points but with a larger number of repeats (which is more practical for these

experimental protocols, Section 4.4).

In Chapter 5, we made use of the spatial-temporal data for contractile forces

obtained during experiment 2 (Section 3.2), by developing a bio-mechanical

cell-based model of the ASM mono-layer. A vertex-based approach was cho-

sen due to it best representing important cell–cell junctional mechanics. Our

cellular network of damped linear springs (where each cell is represented by

a polygon), was created using a Voronoi tessellation and maintained as bio-

logically reasonable though transitions (Section 5.1). We incorporated ASM

cell phenotypes in this model through assigning differences in their shape

and contractile machinery (Section 5.1.4). Simulations of this model for a

population comprising of a small number of contractile cells in a largely

proliferative population, showed that contractile cell elongation increases

(Figure 5.9) and strain decreases (Figure 5.10) during the period of simu-

lation. We also plotted stress-strain curves for different phenotypic tissue

make-ups and found that the resulting non-linear mechanical properties of

a tissue can be significantly effected by the size and distribution of a con-
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tractile population.

In Chapter 6, we further developed our vertex model to match our experi-

mental protocol by adding the process of gradual cell phenotype switching

over the simulation period (representing the experimental time period for

which the cells were deprived of serum), with rates chosen such that we

obtained a small contractile sub-population. Upon evolving initial popula-

tions of 100 proliferative cells, we found that there was a reduction in the

proportion of cells that experienced net compression over the simulation

period (in which cell phenotypes were switching), with the few remaining

compressed cells found together in clumps.

In Section 6.3.2, we explored the changes in tissue-level measures (including

bundles, paths and force chains) in order to test our hypothesis that the me-

chanical environment of ASM cells and their neighbours drives changes in

their structure and function, and hence is key in the phenotype switching

process. Over the simulation period representing serum deprivation, we

found: cellular alignment within bundles (Figure 6.9), paths of contractile

cells that traverse the whole tissue (Figure 6.10) and that the phenotypic

make-up of force chains is mainly contractile (with the most frequent being

pairs of contractile cells, Figure 6.11). These results give an important indi-

cation of the impact of phenotype switching on long distance mechanical

communication within ASM tissue.

Finally, in Chapter 7, we used the vertex-based model developed and tested

in Chapters 5 and 6 to investigate the impact of an asthmatic exacerbation

on the dynamics of the simulated ASM tissue, and illustrated how this com-

pares to the results obtained in the TFM experiment of Chapter 3. We un-

dertook three test cases to explore the population dynamics following an

exacerbation under different tissue conditions. The first test (Section 7.2)

consisted of a fixed population of mixed phenotype and showed that the
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elongation of contractile cells (that occurs during serum deprivation) is re-

versed during the addition of a contractile stimulus (as they contract) but

then continues following a short delay after the removal of the stimulus. In

the second test case (Section 7.3), we simulated an exacerbation on a toy

model of a whole airway and found a resultant decrease in the area of the

airway lumen, which interesting remained after the removal of the stimulus

(much like the results from our ODE model as seen in Figure 2.6).

In the final test case (Section 7.4), we simulated the model under conditions

that mimicked the TFM experimental protocol, and found similarities be-

tween simulated and experimental results in both the distribution of strain

energy across the monolayer as well as the increase in stimulus induced

contraction with each successive exacerbation (Figure 7.6). We additionally

found further evidence of tissue remodelling through changes in cell shape

that compounded after each successive exacerbation rather than reversing

upon the removal of the contractile stimulus (Figure 7.7).

8.2 scope for future work

The results presented in this thesis suggests several directions for future

work in this area. We conclude by discussing the scope for future work in-

cluding: additional experimentation, further model analysis and validation,

and model extensions.

8.2.1 Additional experimentation

Firstly, the Bayesian statistical analysis undertaken in Chapter 4, resulted

in our knowledge of the optimal combination of experimental time points

and repeats for a run of each of our experimental protocols in order to best
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fit parameters to our ODE model while retaining practical feasibility. Fur-

ther experimentation could make use of this information to more accurately

quantify ASM phenotype switching rates in general, without over-fitting

the model to a single experimental run. Furthermore, following the TFM

experiment of Chapter 3 (experiment 2, Section 3.2), discussions with Dr Ra-

maswamy Krishnan and his team at Harvard Medical school involved sev-

eral potential alterations to the protocol to optimise their ability to inform

mathematical models. Examples include: collecting explicit cell numbers,

using ISOproterenol to test if cells are contractile before the addition of an

agonist and doing measurements for both collagen and fibronectin ligands

to explore focal adhesion-based signalling.

In experiment 2 of Chapter 3 (Section 3.2), we explored the impact of the ad-

dition of activated (and inactivated) mast cell media, based on the presence

of activated mast cells in the signalling pathway [56] used to develop the

ODE model discussed in Chapter 2. While we found that activated mast cell

supernatant led to an increase in histamine induced ASM contraction over

the period of serum deprivation (agreeing with our ODE model formula-

tion, Section 2.1), the experiment does not provide us with any information

about the signalling steps between mast cell activation and ASM contrac-

tion. Interesting additional experiments would therefore include exploring

the intermediate steps of the signalling pathway used to develop our ODE

model, including MMP-1 activation and structural changes to ECM. The

first of these additions could be incorporated relatively easily by adding an

MMP-1 inhibitor to some of the mast cell supernatant treated wells.

Another hypothesis gained as a result of our TFM experimental data that

could be tested using additional TFM experimentation, is: as we deprive

ASM cells of serum (and therefore initiate the switch to a contractile pheno-

type), there is more cooperation between inter-cellular stresses and that this

cooperation is enhanced further with activated mast cell media.
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8.2.2 Further model analysis and validation

In Section 2.2, we extend our ODE model to include a baseline production

value of mast cell tryptase. This results in the observation of three steady

states for a certain range of parameter values. Following the simulation of

a time course with the addition of an exacerbation (Figure 2.8), we find that

the system is driven to the higher steady state following the addition of

the stimulus, irrespective of which of the two lower steady states it begins

sufficiently close to. We predict, however, that there may be a parameter

space in which an exacerbation would drive the system beginning at the

lower steady state to the intermediate state for which a further exacerba-

tion would then result in the system reaching the highest state. This would

be more representative of the gradual airway remodelling process. Further

analysis of this model could use two-parameter bifurcation diagrams to ex-

plore the parameter space further, in order to discover such behaviour.

Our vertex-based model, developed and tested in Chapters 5-7, provides

a framework that can be exploited in many different ways to learn more

about ASM cell interactions and the impact of phenotype switching. For ex-

ample, it could be used to explore whether cell signalling changes the shape

and function of cells which then drives the phenotype change, or whether

the change in phenotype is what initiates these changes (an important ques-

tion that is left unanswered by experimentation alone). Another example

would be to use the model to further explore cell patterning and orientation

to find how the global structure of the monolayer affects the rate of con-

traction. Moreover, combining this model with other multiscale approaches

could give a wider insight on the impact of changes in ASM cell structure

and function on whole airway mechanics.

While the vertex-based model is currently useful for exploring the mech-

anistic behaviour of ASM cell monolayers during serum deprivation and
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upon stimulation with a contractile agonist, the model would require fur-

ther validation to be used for any of its predictive capabilities. A good place

to begin with this validation would be to undertake parameter-fitting and

uncertainty-quantification using TFM data, in order to fit mechanical model

parameters.

8.2.3 Model extensions

There are a plethora of avenues for the extension of this vertex model, many

of which expand on the models physiological detail. Based on the signalling

pathway of airway remodelling discussed in this thesis and used to develop

our ODE model discussed in Chapter 2, it would be useful to incorporate

into the model the presence of mast cell tryptase, MMP-1 and ECM and

impact of their activated/altered forms. The first of these is particularly

significant considering the availability of TFM data for cells in media with

activated mast cell supernatant (Figure 3.7). Under the inclusion of ECM in

this model, the model could be exploited to learn more about ASM-ECM

connections [62] in a remodelled airway and how this impacts the contrac-

tile force produced during an exacerbation.

173



B I B L I O G R A P H Y

[1] An, S.S., Kim, J., Ahn, K., Trepat, X., Drake, K.J., Kumar, S., Ling, G.,

Purington, C., Rangasamy, T., Kensler, T.W. and Mitzner, W., 2009. Cell

stiffness, contractile stress and the role of extracellular matrix. Biochem-

ical and biophysical research communications, 382(4), pp.697-703.

[2] Andersen, C.L., Jensen, J.L. and Ørntoft, T.F., 2004. Normalization of

real-time quantitative reverse transcription-PCR data: a model-based

variance estimation approach to identify genes suited for normaliza-

tion, applied to bladder and colon cancer data sets. Cancer research,

64(15), pp.5245-5250.

[3] Araujo, B.B., Dolhnikoff, M., Silva, L.F., Elliot, J., Lindeman, J.H.N.,

Ferreira, D.S., Mulder, A., Gomes, H.A., Fernezlian, S.M., James, A.

and Mauad, T., 2008. Extracellular matrix components and regulators

in the airway smooth muscle in asthma. European Respiratory Journal,

32(1), pp.61-69.

[4] Asthma, U.K., Slipping through the net. The real-

ity facing patients with difficult and severe asthma,

2018. [Online]. [Accessed 4 March 2023]. Available from:

https://www.asthma.org.uk/6fc29048/globalassets/get-

involved/external-affairs-campaigns/publications/severe-asthma-

report/auk-severe-asthma-gh-final.pdf

[5] Barton, D.L., Henkes, S., Weijer, C.J. and Sknepnek, R., 2017. Active ver-

tex model for cell-resolution description of epithelial tissue mechanics.

PLoS computational biology, 13(6), p.e1005569.

174



Bibliography

[6] Bayes, T., 1763. LII. An essay towards solving a problem in the doctrine

of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price,

in a letter to John Canton, AMFR S. Philosophical transactions of the Royal

Society of London, (53), pp.370-418.

[7] Blume, C. and Davies, D.E., 2013. In vitro and ex vivo models of hu-

man asthma. �European Journal of Pharmaceutics and Biopharmaceu-

tics, 84(2), pp.394-400.

[8] Bock, M., Tyagi, A.K., Kreft, J.U. and Alt, W., 2010. Generalized voronoi

tessellation as a model of two-dimensional cell tissue dynamics. Bul-

letin of mathematical biology, 72(7), pp.1696-1731.

[9] Boudaoud, A., Burian, A., Borowska-Wykręt, D., Uyttewaal, M., Wrza-
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Abstract

This project studies the airway remodelling involved in the chronic lung disease of

asthma. We formulate and refine a mathematical model to represent the complete sig-

nalling pathway from asthmatic exacerbation event to remodelled airway. The model at

each of its stages is analysed to find steady states, stability and bifurcation behaviour.

Our final refined model suggests a possible mechanism by which the irreversible remod-

elling of airways occurs. We are also able to identify possible therapeutic targets through

blocking interactions between variables in the system.
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1 Introduction

The lung disease of asthma is often not considered to be a serious condition, but hav-

ing asthma creates a lifetime burden which can become life threatening if not treated

properly. The key hallmarks of asthma are airway inflammation, hyper-responsiveness

(rapid narrowing of the airways in response to a low dose of stimulus) and remodelling.

Airway remodelling involves several irreversible changes to the structure of airway smooth

muscle (ASM) bundles including increases in both extracellular matrix (ECM) and total

ASM mass. New information suggests that the pathway that leads to this process in-

volves the activation of Matrix Metalloproteinase-1 (MMP-1) by the inflammatory mast

cell tryptase. Uncertainty in the value of in vivo experiments alone to gain insight into

airway remodelling has given the need for in silico techniques, however, very few of these

currently exist. The aim of this project therefore, is to generate a mathematical model

for airway remodelling in asthma which incorporates the biological discoveries concerning

the involvement of MMP-1. By developing a model for a complete signalling pathway

from exacerbation event to remodelled airway, we can investigate the dynamics of all the

interactions in the system and use this to find possible therapeutic targets. In doing this,

we develop a model that shows the mechanism by which an asthmatic exacerbation could

lead to an irreversible change in the structure of an airway.

Section 2 begins by explaining the biological context of this work. The pathology

involved in the disease asthma is described, in particular the process of airway remodelling.

The recent discoveries regarding the involvement of MMP-1 in the pathway that leads to

remodelling are also discussed. Section 3 first briefly looks at a few previous mathematical

models for changes to the airways and then goes on to explain in detail a particular model

on ASM growth developed by Chernyavsky et al [6]. In section 4 we formulate the basis

of the model which is refined throughout this paper. The system of ordinary differential

equations is non-dimensionalised and parameter values are asigned to the dimensionless

system based on order of magnitude estimates and by using data from Naveed et al [16].

We consider the model under 3 situations; the case of a healthy control, the case of an

asthmatic patient who has not recently experienced an asthmatic exacerbation event and

the case of an asthmatic patient who is undergoing an exacerbation event. This model
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is simulated in each of these cases using Matlab and we examine the dynamics of each

of the time courses. We also analytically calculate the steady states of this system and

determine their stability. Section 5 then makes the first refinement to the model in order to

include a variable switching rate between proliferative and contractile ASM phenotypes.

We again simulate this model and find the number of steady states, this time using a

numerical technique. In section 6, a further refinement is made to the model to include

inhibition of ASM apoptosis as an affect of the survival signal produced by ECM. We

use parameter sensitivity anaylsis here in order to find appropriate parameters for use in

bifurcation diagrams produced with XPP. When adding pathology to this model, we see a

change in steady state. Section 7 interprets the results obtained in the context of airway

remodelling in asthma and compares these to the conclusions made by Chernyavsky et al

[6]. Here we additionally critically evaluate our models and suggest some possible further

work. Finally, in section 8 we draw together our conclusions.

2 Biological Background

Asthma is a chronic lung disease that affects approximately 5.4 million people across the

UK. The majority of asthma patients have moderate cases that are easily diagnosed and

managed, however 250,000 people in the UK are severely affected by this disease, and

this severity often co-occurs with another collection of lung diseases; chronic obstructive

pulmonary disease (COPD) [2, 13]. Though in the public mind asthma is not always

seen as being a serious disease, for severe asthma patients, doing simple daily tasks like

walking to the shops can leave them fighting for breath and in the UK there is an average

of 3 deaths each day as a direct impact of asthma [2]. No prevention strategies have yet

been identified for this disease. Treatment is based on combining regular corticosteroid

inhalation (to reduce inflammation), bronchodilators (to reopen airways during an attack)

and environmental controls [13]. Many researchers are currently working to enhance both

diagnosis and treatment techniques, and to ultimately find a cure [2].

In this section we first give an introduction into the pathology behind this disease;

specifically the process of airway remodelling and what this means for the patient. We

then review some recent evidence regarding the activation of an enzyme involved in this
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remodelling process and how this new knowledge could lead to the possibilities of new

drug targets.

2.1 Asthma Pathology

There is no one way to define asthma; this disease is instead often characterised by many

processes that occur in the airways of patients, which account for their well-known occur-

rences of wheezing and loss of breath. Asthma patients experience recurrent exacerbations

in which their airways are narrowed as an effect of contraction of ASM. Exacerbations

may occur in response to aero-allergens such as dust mites and histamine inducing pollen

[14]. When the allergen is recognised an acute inflammatory response is induced, bringing

inflammatory cells such as mast cells, eosinophils, macrophages and T-helper cells to the

area. These cells release mediators such as histamines, proteases and cytokines as well

as many growth factors, which in turn leads to the structural remodelling of the airways

[13, 6].

2.2 Airway Remodelling

The accumulation of all the changes to the airways, as a result of the inflammation

involved in asthma exacerbations, leads to airway remodelling. It is thought that the

process begins in patients early in life and is irreversible. Remodelling progresses through

each exacerbation event leading to the advancement of the disease and can eventually

cause severe breathing difficulties [16].

A remodelled airway is characterised by epithelial desquamation (shedding of the

airway epithelial layer), hyperplasia of goblet cells (increases in the quantity of cells which

secrete mucus) and increases in reticular basement membrane (RBM) thickness, together

with increases in the amount of ECM and the amount of ASM [14, 16]. The differences

between a healthy airway and a remodelled airway of a severe asthma patient is shown in

Figure 1. In particular, the image highlights the increase in ASM mass and the thickening

of the RBM in the asthmatic airway [20].

The ECM from an asthma patient differs from a healthy ECM critically in its structure

and amount [18]. Specifically, there are significant changes in the quantities of several
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proteins; there are increases in proteins such as fibronectin, lumican, collagen I II and

V and tenasin C whereas elastin and collagen IV are reduced [10]. This altered ECM

profile has a crucial impact on ASM cell function. It has been shown that this altered

ECM gives both higher migration and proliferation of ASM cells [10]. Rises in collagen

and fibronectin specifically, also leads to enhances in synthetic function [4] and changes

in contractile capacity [1]. These changes in ASM cells in turn increases bronchial hyper

responsiveness and the likelihood of airway obstruction causing exacerbations to be more

threatening [16].

Figure 1: Cross-sectional image of a stained normal healthy airway (left) and a remodelled

airway of a severe asthma patient (right). The blue staining shows the difference in amount

of goblet cells in the epithelial (Ep) layer. Differences in the thickness of RBM and amount

of ASM can also be seen. This image is open sourced and was taken from [20].
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2.3 Matrix Metalloproteinase-1

In this section we describe the findings of Naveed et al [16], which provides new information

on the role of an enzyme called Matrix Metalloproteinase-1 (MMP-1) in the remodelling

of ECM in the ASM bundle. It was descovered that MMP-1, which is made by ASM

cells, is activated by tryptase; an enzyme that is released from inflammatory mast cells.

Naveed et al [16] used enzyme-linked immunosorbent assays (ELISAs) and western blots

of bronchial washings from asthmatic patients and controls to find that there is more

MMP-1 in the airways of asthmatics compared to controls. Additionally, under the in-

flammatory conditions present during an asthma exacerbation, airway mast cells increase

in quantity, hence there is more mast cell tryptase present for activation of pro MMP-1

(the inactivated form of the enzyme). This was tested by inoculating asthma patients

with rhinovirus in order to stimulate an exacerbation. It was shown that an exacerbation

led to a significant increase in active MMP-1. The active form of MMP-1 changes the

structure of the ECM into its altered proproliferative form described in section 2.2. This

was found using treatments of active mast cell supernatants on ECM samples. This al-

tered ECM now contains a substrate which promotes the proliferative form of ASM hence

giving a significant rise in the overall ASM cell population. Furthermore, it was shown

that the enzyme kinetics of MMP-1 increases within an exacerbation event and that there

is a strong association between the expression of activated MMP-1 and the reduction of

airway calibre [16].

This evidence was first obtained in in vitro studies and was later confirmed in human

airways using asthma and control groups. This knowledge can henceforth be used to

further research in airway remodelling. Ultimately it may be shown that preventing

interactions between certain cells within an ASM bundle, for example mast cells and

ASM derived products like pro MMP-1, could lessen remodelling of airways and therefore

asthma severity [16].
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3 Mathematical Background

While there have been several hopeful drug treatments for prevention of disease develop-

ment through airway remodelling, which have proved successful when tested on animals,

none of these have been appropriate for human use. These issues bring out the uncer-

tainty in the value of in vivo experimentation alone in this area and the need for more

combinations with in silico solutions such as mathematical modelling [14].

In this section, we discuss some previous mathematical models of the airways, focussing

in particular on a model by Chernyavsky et al [6] that takes into account the inflammation

involved in an asthma exacerbation and its effect on accumulation of ASM mass.

3.1 Previous Airway Mathematical Models

There have been few attempts to develop mathematical models for airway remodelling.

Until fairly recently, the majority of airway models have focussed on expiratory airflow

interacting with its structural properties, for example as in [11]. In the past decade

however, there has been an increase in the number of models to predict functional changes

in the airways as an effect of ASM contraction. In 2008, Wang et al [21] published a model

based on the Hai-Murphy cross bridge model which looks at the effect of changes in calcium

concentration on contraction of ASM cells and therefore airway hyper-responsiveness.

These molecular level dynamics where later incorporated in a multiscale model in order

to examine the impact of hyper-responsiveness on the lung as a whole [17]. Another

model focusses on the mechanics of airways [3]; in particular ASM cells, through the

use of a continuum method that considers the amount of connective tissue relative to

ASM. Results from this model agree well with data from experimentation on lung slices

and show the increase in ASM by remodelling and the resulting increase in heterogeneity

of local stress patterns. This is the first model which incorporates the changes in the

airway response as an effect of cellular events and structural remodelling by considering

associations between local stress and proliferation of ASM cells.
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3.2 Model of ASM Cell Growth in Asthma

In 2014, Chernyavsky et al developed a model which examines specifically the impact of

the inflammation involved in asthma exacerbations on the accumulation of ASM mass.

This model assumes that ASM cells can be of two different phenotypes, proliferative

or contractile (non-proliferative). These phenotypes are hence used as variables in the

system, p(t) and c(t) respectively, in order to model their change in quantities over time.

Contractile ASM can switch to proliferative with the associated rate λcp and visa versa

with the rate λpc (see Fig. 2). Only the p population proliferates and here, it does so

logistically, with a rate λp and maximum quantity V . It is assumed that the switching

rate λpc is much faster than the proliferation rate λp hence the cells are only in state p for

a short amount of time. Only the c population degrades, so the p cells must switch back

to being in the c state for their degradation. This occurs with a rate λa which is taken

to be significantly slower than the proliferation rate. The system of ordinary differential

equations (ODEs) for this model is given below [6]:

dp

dt
= λpp

(
1− p+ c

V

)
− λpcp+ λcpc, (3.1)

dc

dt
= λpcp− (λcp + λa)c. (3.2)

As can be seen in the schematic in Figure 2, the system also has another variable µ(t).

µ takes into account the inflammation involved in an exacerbation event for an asthmatic

patient and modifies the value of the switching rate from state c to p: λcp. The equation

for the change in µ over time is as follows [6]:

dµ

dt
= −λdµ+ af(t;w), f(t;w) =

∑

i

δ(t− ti), w =
1

E [ti+1 − ti]
(3.3)

Where λd is the degradation rate of the inflammation and a is a parameter that

represents the magnitude of each peak in inflammation given by the function f(t;w), an

environmental stimulus. An exacerbation occurs at each time ti and w gives the rate of

recurrence of these events [6].

There are three outcomes of an exacerbation event depending on the value of µ relative

to two different thresholds. This therefore leads to three corresponding values of λcp. If
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Figure 2: Schematic representation of the ASM growth model made by Chernyavsky et

al, showing the interactions between the three varaibles c, p and µ and the relavance of

the environmental stimulus f(t). This image was taken from the open access article; [6].

µ is below the first threshold, λcp is slower than both the rate of proliferation and the

opposite switching rate but faster than the apoptosis rate of ASM cells. If µ is in between

the two threshold values, λcp increases to approximately the same rate as λp but is still

smaller than λpc. For the highest values of µ above both threshold values, λcp rises

further so that it is approximately the same as λpc, the fastest rate. Each of these three

possibilities give a different modelling outcome which corresponds to the diagnosis of a

patient being healthy, having mild asthma or having severe asthma respectively [6].

This model predicts that the increase in quantities of ASM cells is fundamentally

reliant on the normalised parameters: a/(”lower threshold of µ”), w/λp and λd/λp which

gives the rate of inflammation resolution. The latter of these is shown to be the parameter

of highest importance in remodelling. This is because slow resolution leads to a build-

up of inflammation from previous events giving a bigger impact on total ASM growth.

Furthermore, results of this model show that the primary goal should be to increase

this resolution speed in asthma patients before decreasing frequency and magnitude of

exacerbation events [6].
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4 Model 1: Role of MMP-1 in alteration of ECM and

ASM accumulation

In this project, we develop an ODE model in order to simulate the dynamics of an

ASM bundle in both a normal and an asthmatic airway over time, where an external

input at given times represents an inflammatory exacerbation. We base part of this new

mathematical model on ideas proposed by Chernyavsky et al [6], but we also include a

significant number of new variables and parameters to account for the advancement in

biological knowledge in this area. The model in [6], while including an effect of inflam-

mation directly on the rate of switching between contractile and proliferative ASM cells,

does not account for the pathway that leads to this change in rate directly. We therefore

develop a model to give a more complete signalling pathway from exacerbation event to

ASM growth. By including new information relating to the airway remodelling process,

the hope is to learn more about effects of different interactions in the system and to

ultimately find an interaction that, when blocked, halts further remodelling.

4.1 Model Formulation

To our knowledge, the model we develop is the first one to incorporate MMP-1 activa-

tion and its impact on airway remodelling as discussed in section 2.3. This model must

therefore include:

1. The increase in mast cell tryptase as an effect of an exacerbation event,

2. The activation of MMP-1 by mast cell tryptase,

3. The effect of active MMP-1 on altering the ECM,

4. The impact that the altered ECM has on the switching rate from contractile to

proliferative ASM cells and on the rate of proliferation.

To do this, we first decided that there are 7 significant variables in this system; mast

cell tryptase (Y ), inactivated (pro) MMP-1 (M), activated MMP-1 (Q), ECM (E), altered

ECM of asthmatic airways (A), contractile ASM (C) and proliferative ASM (P ). As in
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[6], we consider the 2 different states of ASM cells, contractile and proliferative, as being

separate variables. It has been shown using western blots that changes in these variables

are inversely related to the expression of one another [7]. We also consider the exacerbation

event to be an environmental stimulus as a function of time.

The interactions between the variables in this system were then considered and a

signalling network was formulated to show their impact on one another, as shown in

Figure 3. Pro MMP-1 is produced by both proliferative and contractile ASM cells with a

rate kPM and kCM respectively. Mast cell tryptase is assumed to have an environmental

input S(t;w) during an exacerbation event due to the sharp increase in inflammatory cells

that this causes. When mast cell tryptase is present, it binds to MMP-1 in order for this

to be activated with a rate kMQ(Y ). ECM is also produced by ASM cells with rates kPE

and kCM . Active MMP-1 binds to ECM which leads to it changing into its altered form

with a rate kEA(Q); this altered ECM has a significant impact on ASM function. Altered

ECM both increases the rate kCP (A) for switching from the contractile to proliferative

state and increases the proliferation rate kP (A). As in [6], proliferative ASM cells also

switch back to contractile, here with a rate kPC . Pro MMP-1, ECM and proliferative

ASM all have small amounts of baseline production through variables not included in this

model. These are given by λM , λE and λP respectively. Each variable (i) additionally

exhibits apoptosis or decay with a rate kia, except for proliferative ASM cells which revert

back to their contractile form before degrading. Full tables of the parameter descriptions

can be found in Appendix 1.

4.2 System of ODEs

To generate the system of ODE’s, we make use of the theory of mass action and use Hill

functions to describe threshold and saturation effects. Mass action kinetics are used when

describing the activation of a single variable as this chemical reaction occurs with a rate

proportional to the quantity of the inactivated species [5]. To describe the binding of vari-

ables, which in this model lead to many of these chemical reactions, we use Hill functions.

This is because binding of ligands and receptors are known to follow a saturating curve

which commonly has a sigmoidal shape [19]. An assumption made in formulating this
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Figure 3: A schematic representation of the new model, showing all 7 variables within an

ASM bundle and their interactions with one another, as well as the impact of an environ-

mental stimulus zS(t;w) which accounts for the inflammation involved in an exacerbation

event. Solid thick black lines represent a variable being converted to another variable,

solid thin black lines represent baseline productions and degradations, and dashed lines

show variables that enhance production of other variables without being lost themselves.

system of equations is that the variable p grows logistically where, as in [6], V represents

the maximum possible size of population p.
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The system of 7 ODEs is hence formulated as follows:

dY

dt
= zS(t;w)− kY aY, (4.1)

dM

dt
= kPMP + kCMC − kMQ(Y )M − kMaM + λM , (4.2)

dQ

dt
= kMQ(Y )M − kQaQ, (4.3)

dE

dt
= kPEP + kCEC − kEA(Q)E − kCaE + λE, (4.4)

dA

dt
= kEA(Q)E − kAaA, (4.5)

dC

dt
= kPCP − kCP (A)C − kCaC, (4.6)

dP

dt
= kCP (A)C − kPCP + kP (A)P

(
1− P + C

V

)
+ λP . (4.7)

where

kMQ(Y ) =
JMQY

n

µ+ Y n
,

kEA(Q) =
JEAQ

n

γ +Qn
,

kCP (A) = k̂CP +
JCPA

n

β + An
,

kP (A) = k̂P +
JPA

n

α + An
.

(4.8)

and

S(t;w) =
∑

i

δ(t− ti) (4.9)

The stimulus of the system is given by the function S(t;w). This function models the

effect of an asthma patients’ exacerbation event which leads to an inflammatory response

and therefore a corresponding increase in mast cell tryptase of magnitude z. δ represents

the delta dirac function and ti is the time of each exacerbation event. This time dependant

input will be discussed in more detail in section 4.9.

Equations (4.8) all include Hill functions. JMQ, JEA, JCP and JP represent the maxi-

mum respective rates of these functions, α, β, γ and µ give the switching values at which

the rate is at half of its maximum and n is the common Hill coefficient. The existence of

baseline values k̂CP and k̂P mean that there is still some rate of switching from C to P

and some non-zero proliferation rate even when no altered ECM is present. It is assumed

however, that there is no activation of pro MMP-1 without any mast cell tryptase and
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no alteration of ECM without any active MMP-1. An example of the dynamics of the

function kMQ(Y ) with different values of the Hill coefficient can be seen in Figure 4. As

can be seen, the higher the Hill coefficient, the steeper the switch is from the original rate

to its maximum value.

Figure 4: Graph showing the rate of MMP-1 activation as a function of mast cell tryptase

(kMQ(Y )) for different Hill coefficients. Here we set the maximum rate JMP = 100 and

the switching value at which the rate kMQ(Y ) is at half of its maximum µ = 1500n. We

then look at the dynamics of this rate function for different Hill coefficients: n = 2 (blue

curve), n = 4 (red curve) and n = 6 (orange curve).

We first look at the non-pathological case, whereby S(t;w) = 0, in order to see how an

asthma patients’ airway, without having had a exacerbation, compares to that of a healthy

control and ultimately, to that of the pathological case. We also use no stimulus originally,

in order to check that the model gives biologically sensible predictions of variables at the

steady state. We therefore begin by non-dimensionalising the system and then discuss

the assigning of parameter values for both the case of an asthmatic patient and a healthy

control. We numerically simulate this model using Matlab to examine the dynamics of the

time course. Steady states of the model are calculated and we determine their stability

followed by a bifurcation analysis in order to see if this stability ever changes. Finally we

will add in the pathology of an exacerbation event and see how this affects the dynamics

of the system.
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4.3 Non-Dimensionalisation

We non-dimensionalise the system of equations 4.1-4.8, without stimulus, using lower case

letters to show the dimensionless variables and an upper case T to represent dimensionless

time. Each variable, x say, is therefore non-dimensionalised using X = xX̄, where X̄ is a

scaling constant. Time is scaled with what is assumed to be the fastest rate in the system:

the switching rate from proliferative to contractile ASM cells, hence we use t = T
kPC

. New

dimensionless parameters K1 −K12, σ1 − σ9, j1 − j4, φ1 − φ4 and ψ1 − ψ3 are introduced

to represent dimensionless groupings as shown in Tables 1 - 3. The non-pathological

dimensionless equations are therefore as follows:

dy

dT
= −K1y, (4.10)

dm

dT
= K2σ1p+K3σ2c− j1

(
yn

φ1 + yn

)
m−K4m+ ψ1, (4.11)

dq

dT
= j1σ3

(
yn

φ1 + yn

)
m−K5q, (4.12)

de

dT
= K6σ4p+K7σ5c− j2

(
qn

φ2 + qn

)
e−K8e+ ψ2, (4.13)

da

dT
= j2σ6

(
qn

φ2 + qn

)
e−K9a, (4.14)

dc

dT
= σ7p−K10c− j3

(
an

φ3 + an

)
c−K11c, (4.15)

dp

dT
= K10σ8c+ j3σ8

(
an

φ3 + an

)
c− p+ p(K12 + j4

(
an

φ4 + an

)
)

(
1− p+ σ8c

σ9

)
+ ψ3.

(4.16)

4.4 Parameter Values

Estimated dimensionless parameter values are given in Tables 1 - 3 for both an asthmatic

patient and a healthy control. These values were assigned using order of magnitude

estimations where possible, based on data from [16]. Some parameters were difficult

to quantify, however, due to little data being available, hence theoretical estimates are

given. As can be seen in Table 1, normalised dimensionless value K3 is set to be very

small compared to other parameters. This is because pro MMP-1 is mainly produced

as an effect of the pathology, through the altered ECM creating more proliferative ASM

cells. We also assign a relatively large value for the normalised apoptosis rate of active
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MMP-1 (K5) which is significantly faster than the degradation of altered ECM. The ASM

apoptosis rate (kCa), base rate of change k̂CP and the base proliferation rate k̂P without

any disease are very small compared to the rate kPC hence K10, K11 and K12 are small.

These estimations were based on the literature-based and estimated parameter values in

Table 1 of [6].

Table 1: Dimensionless parameters shown in terms of their dimensional parameter group-

ings plus their reference values for an asthmatic patient and for a healthy control for

the system of equations 4.10-4.16. Y, Q and A are zero in the healthy case hence rates

involving them are not applicable.

4.4.1 Differences between an Asthmatic and a Healthy Airway

The system of ODEs remains the same for both an asthma patient and a healthy con-

trol, however, the dimensionless parameter values and initial conditions vary significantly.

Firstly, it is assumed that values of mast cell typtase, active MMP-1 and altered ECM are

very small in comparison to the other variables in the system for a healthy individual, so

their initial conditions are all taken as zero for simplicity. This means that any parameters

involved in Hill functions are no longer applicable as all of them are functions of variables

that are zero in the healthy case. In a Western blot conducted by Naveed at al [16], no
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Table 2: Dimensionless parameters shown in terms of their dimensional parameter group-

ings plus their reference values for an asthmatic patient and for a healthy control for the

system of equations 4.10-4.16.

MMP-1 activity was found in control subjects without asthma. Any small amounts of

active MMP-1 that is found in healthy airways, acts as a collagenase in order to help

break down ECM and so is included into the ECM degradation term. It was also found

that pro MMP-1 is significantly higher in asthmatics than in healthy controls therefore its

production rates (kCM , kPM) are smaller, its baseline production value (ψ1) is assumed

zero and the degradation rate (kMa) is faster in the healthy case. Quantities of ECM

and contractile ASM are similar between the two cases but both are slightly higher in

the asthmatic case to account for the thicker basement membrane and larger total ASM

population of asthmatics respectively. Finally, the quantity of proliferative ASM cells is

higher in asthmatics hence the baseline value (ψ3) is taken to be zero and the switching

rate kPC is taken as being faster in the healthy case. As the latter is the parameter that

the majority of other parameter values are scaled by when non-dimensionalising, these

dimensionless variables are all an order of magnitude smaller in the healthy case. Values

for σ’s additionally take into account the approximate difference in magnitudes between

variables in each case.
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Table 3: Dimensionless parameters shown in terms of their dimensional parameter group-

ings plus their reference values for an asthmatic patient and for a healthy control for the

system of equations 4.10-4.16. All values involved in Hill functions (j’s and φ’s) are not

applicable for the healthy case as are always functions of variables that are zero.

4.5 Numerical Simulations

We numerically simulate the system of equations 4.10-4.16, for both a healthy and an

asthmatic case, using the ode45 solver in Matlab. The healthy and asthmatic cases are

as described in section 4.4.1, where an asthmatic case is that of a patient who is not

currently exhibiting an exacerbation. The results of this can be seen in Figures 5 and

6 respectively. We can see that, in the healthy case of Figure 5, mast cell tryptase,

active MMP-1 and altered ECM remain at zero throughout. The number of pro MMP-1s

instantly jumps to approximately half of their initial amount and then gradually declines

to their steady state value of 3.4 over a remodelled time scale of about T = 1000. ECM

and contractile smooth muscle populations both start with a significantly higher initial

amount and hence are seen to smoothly decrease until reaching their steady states, which

again, are a lot higher than the other variables due to these populations dominating in

an ASM bundle. Proliferative smooth muscle initially jumps up to approximately 1.75 of

its starting amount, overshooting its steady state, then declines gradually, like the other
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variables, until reaching steady state.

In comparison, when looking at the asthmatic case of Figure 6, we consider a system

that begins with a small amount of mast cell tryptase that may be in the airway, whether

this be still present from a previous exacerbation event or just using the fact that asth-

matics in general have a higher number of mast cells in the airway. This means that pro

MMP-1 is able to be converted to active MMP-1. Hence we can see that pro MMP-1

remains approximately constant until a remodelled time of about T = 120, while in that

time, active MMP-1 instantly jumps to 100 and then quickly declines back to zero. When

active MMP-1 is back to being zero, pro MMP-1 then rises quickly to its steady state

which is significantly higher than that of the healthy case. As active MMP-1 is instantly

fairly high in quantity, this means that ECM is able to be converted into altered ECM.

We can therefore see that, after a short lag, altered ECM also increases significantly and

then declines back to zero before reaching T = 100. In this time, normal ECM decreases

to nearly zero and then increases quickly to its steady state, which is slightly higher than

that of the healthy case, once altered ECM is back to zero. Similarly, as altered ECM

becomes non-zero, this means that it can have the effect of both increasing the change

from contractile to proliferative ASM and increasing the amount of proliferation. This

can be seen as the proliferative population jumps to about 250 straight away and remains

there until about T = 120 and in that time, the contractile population jumps to and

stays at nearly zero. After this time, there is a small peak in the proliferative population

followed by a fast decay so that it reaches its steady state before T = 200. This steady

state is again higher than that of the healthy case. While the proliferative population

declines to its steady state, the contractile population increases to theirs.
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Figure 5: Matlab simulation for the change in each variable of the dimensionless system

over time for a healthy control subject with inital conditions [y0,m0, q0, e0, a0, c0, p0] =

[0, 10, 0, 500, 0, 500, 20], parameters as in Tables 1 - 3 and the Hill coefficient n = 4.
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Figure 6: Matlab simulation for the change in each variable of the dimensionless sys-

tem over time for an asthmatic patient with initial conditions [y0,m0, q0, e0, a0, c0, p0] =

[5, 20, 0, 500, 0, 500, 20] and no further stimulus. Parameters are as in Tables 1 - 3 and the

Hill coefficient n = 4.

While all previous and future simulations use a Hill coefficient of n = 4, we briefly

look at the results of a time course where a much higher Hill coefficient of n = 15 is used.

The results for this, for the asthmatic case are shown in Figure 7. As can be seen, there

is a much smaller affect of the mast cell tryptase on active MMP-1 and therefore altered

ECM and ASM growth. This means that pro MMP-1 and normal ECM only increase to

their steady states and both contractile and proliferative ASM populations look to remain

constant at their steady state values throughout.
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Figure 7: High Hill coefficient: Matlab simulation for the change in each variable of

the dimensionless system over time for an asthmatic patient with initial conditions

[y0,m0, q0, e0, a0, c0, p0] = [5, 20, 0, 500, 0, 500, 20] and no further stimulus. Parameters

are as in Tables 1 - 3 and here, the Hill coefficient n = 15.

4.6 Steady States

The steady states of this system are determined by setting each time derivative of the non-

dimensional system (equations 4.10-4.16) to equal zero. It is found that y∗ = q∗ = a∗ = 0

at the steady state always. The steady states of the remaining variables are as follows:

m∗ =
K2σ1p

∗ +K3σ2c
∗ + ψ1

K4

, (4.17)

e∗ =
K6σ4p

∗ +K7σ5c
∗ + ψ2

K8

, (4.18)

c∗ =
σ7p

∗

K10 +K11

, (4.19)
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where, with use of the quadratic formula,

p∗± =

(
σ7σ8σ9K10 + σ9K12(K10 +K11)− σ9(K10 +K11)

±
((
σ7σ8σ9K10 + σ9K12(K10 +K11)− σ9(K10 +K11)

)2

+ 4σ9ψ3(K2
10K12 +K2

11K12 + 2K10K11K12 + σ7σ8K12(K10 +K11)

) 1
2

)

(
2K12(K10 +K11 + σ7σ8)

)−1

.

(4.20)

Due to the fact that all the parameter values are positive, when looking at the quadratic

equation (−b±
√
b2−4ac

2a
) for p∗, 4ac is always negative no matter the values of parameters.

This means that the quantity under the square root is always positive. The roots of this

equation therefore are always real and
√
b2 − 4ac > b. Hence irrespective of whether b is

positive or negative, there is always one positive steady state for p∗ and one negative one.

If p∗ is positive (or negative), m∗, e∗ and c∗ will also be positive (or negative).

With the parameter values as described in Tables 1 - 3, we get the steady state values

as follows. For the healthy case, y∗ = 0, m∗ = 3.4, q∗ = 0, e∗ = 334.4, a∗ = 0, c∗ = 334.1

and p∗ = 25.1 is the positive steady state. For the asthmatic case, y∗ = 0, m∗ = 54.2,

q∗ = 0, e∗ = 510.4, a∗ = 0, c∗ = 506.9 and p∗ = 33.8 is the positive steady state. We

are only interested in the positive steady states as the negative ones represent biologically

impossible outcomes. Though in the asthmatic case, there are some initial quantities

of mast cell typtase, active MMP-1 and altered ECM, without further stimulus these

variables eventually decay to zero.

4.7 Stability Analysis

Linear stability of the steady states is found by obtaining the Jacobian matrix and hence

the eigenvalues of the system for each steady state. The Jacobian evaluated at the steady

state (y,m, q, e, a, c, p) = (0,m∗, 0, e∗, 0, c∗, p∗) is given below:
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J =




−K1 0 0 0 0 0 0

0 −K4 0 0 0 K3σ2 K2σ1

0 0 −K5 0 0 0 0

0 0 0 −K8 0 K7σ5 K6σ4

0 0 0 0 −K9 0 0

0 0 0 0 0 −(K10 +K11) σ7

0 0 0 0 0 (K10σ8 − K12σ8p∗

σ9
) (−1 +K12 − 2K12p∗

σ9
− K12σ8c∗

σ9
)




This directly gives the eigenvalues λ1 = −K1, λ2 = −K4, λ3 = −K5, λ4 = −K8, λ5 =

−K9. λ6 and λ7 can then be calculated from the following characteristic equation:

(
−(K10+K11)−λ

)(
−1+K12−

2K12p
∗

σ9

−K12σ8c
∗

σ9

−λ
)
−(K10σ7σ8−

K12σ7σ8p
∗

σ9

) = 0, (4.21)

which gives the quadratic equation:

λ2 + λ(K10 +K11 + 1−K12 +
2K12p

∗

σ9

+
K12σ8c

∗

σ9

)

+ (K10 +K11)(1−K12 +
2K12p

∗

σ9

+
K12σ8c

∗

σ9

)− (K10σ7σ8 −
K12σ7σ8p

∗

σ9

) = 0

(4.22)

From this quadratic, we find that λ6 and λ7 are both always negative for any positive

value of p∗ (and therefore c∗), hence the positive steady state is always stable. We can

see this by looking again at the quadratic formula with use on equation 4.22, where

−b+
√
b2−4ac

2a
= λ+ and −b−

√
b2−4ac

2a
= λ−. We vary parameters that are likely to affect the

stability of the positive steady state and look at the sign of λ+ and λ−. Results for

the effect of varying the parameters K10 (baseline switching rate from C to P relative

to the switching rate back to C from P ) and K12 (baseline proliferation rate relative to

the switching rate from P to C) can be seen in Figures 8 and 9 respectively. We can

hence see that for any value of these parameters up to 50 (with other parameters fixed

as in Tables 1 - 3), we get both eigenvalues as being negative. This is because, though

there are negative multiples of parameter values in this quadratic, we find that both b

and c from the quadratic formula are always positive here (and a = 1). If we increase the
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negative parameter values relative to the others in this equation, this leads to a subsequent

increase in the positive values due to the change in the steady state values p∗ and c∗. This

means we always have −b±
√
b2−4c

2
where b is positive and b >

√
b2 − 4ac, hence giving

a negative value for both λ+ (λ6) and λ− (λ7). We have already shown that λ1-λ5 are

always negative therefore all eigenvalues are negative and so the steady state is stable.

In the non-biological case where p∗ and c∗ are both negative however, there is always at

least one positive eigenvalue hence this steady state is unstable.

Figure 8: λ+ = −b+
√
b2−4ac

2a
(left) and λ− = −b−

√
b2−4ac

2a
(right) for the characteristic equa-

tion 4.22 as a function of K10. Both λ+ and λ− are always negative for these values of

K10.
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Figure 9: λ+ = −b+
√
b2−4ac

2a
(left) and λ− = −b−

√
b2−4ac

2a
(right) for the characteristic equa-

tion 4.22 as a function of K12. Both λ+ and λ− are always negative for these values of

K12. The abrupt change in these curves at K12 = 40 occurs as, at that point, b2 < 4ac

so the eigenvalues become complex, however matlab continues to only plot the real parts.

These complex eigenvalues mean that the solution becomes ocsillatory but the real parts

remain negative so that the steady state is still always stable.

4.8 Bifurcation Analysis

We can also see that the positive steady state of the system always remains stable through

producing bifurcation diagrams using XPP. Looking at [6], as described in section 3.2,

resolution rate was shown to have a significant impact on airway remodelling. We may

therefore expect that the parameters involved in this (here this includes the decay rate of

mast cell tryptase and the ASM proliferation rate), might have an impact on the steady

state value. A bifurcation diagram for the change in c∗ as K11 is varied, is shown in Figure

10 and that for the change in p∗ as a function of K12, is illustrated in Figure 11. The

remaining parameters in these figures were kept as the values for the asthmatic case as

shown in Tables 1-3. As can be seen, both of these steady states remain stable throughout.

These diagrams also show, however, that increasing these parameters decreases the steady

state value for the amount of c and p ASM cells. We could therefore use this is order to

find an optimal value for these rates so that we get a lower, more healthy amount of ASM

cells for an asthmatic patient at steady state.
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Figure 10: Bifurcation diagram for the

variable c as parameter K11 is altered.

The other parameters remain as stated

in Tables 1-3 for the asthmatic case. The

red line represents a stable steady state.

Figure 11: Bifurcation diagram for the

variable p as parameter K12 is altered.

The other parameters remain as stated

in Tables 1-3 for the asthmatic case. The

red line represents a stable steady state.

4.9 Pathology

We now add in the stimulus to the model, S(t;w), to represent each asthmatic exacerba-

tion event. This, therefore, only ever occurs for an asthmatic patient; there is never any

stimulus for the model of a healthy control. We non-dimensionalise as before, giving us

the dimensionless system as in equations 4.10-4.16 but with equation 4.10, for the change

in mast cell tryptase over time, now given as:

dy

dT
= ẑS(t;w)−K1y, (4.23)

where ẑ is the dimensionless parameter given by

ẑ =
z

KPC Ȳ
. (4.24)

As mentioned in section 2.1, when an allergen is recognised in the airway of an asthma

patient, an acute inflammatory response occurs almost instantaneously leading to an

influx of mast cells (as well as other inflammatory cells). This is called an exacerbation.

Like in [6], we choose to model this environmental time dependent stimulus, ẑS(t;w),

using a Gaussian function to represent each event. This can be seen in Figure 12, where
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exacerbation events occur with with a magnitude of ẑ and a recurrence time of 1
w

. The

individual events are taken to be given by

S(t;w) =
∑

i

exp (−σ(t− ti)2/2) (4.25)

where σ = 0.01.

Figure 12: Dynamics of the environmental stimulus taken to represent the influx of inflam-

matory cells to the airway during an asthmatic exacerbation. Here the function ẑS(t;w)

is simulated over time using equation 4.9 with i = 2. ẑ = 50 for the first event at t1 = 300

and ẑ = 20 in the second event at t2 = 900.

The red curves in Figures 13 and 14 then illustrate the impact that this environmental

stimulus has on the dynamics of the variable y. Here, we are assuming that the quantity

of mast cell tryptase (y) is directly proportional to the amount of mast cells present, which

increases significantly under the inflammatory response involved in an exacerbation event.

4.9.1 Numerical Simulation

We simulate this model in Matlab in the same way as the non-pathological case, but here

with a stimulus as described in Figure 12. The time course is shown in Figure 13. We can

see that this looks incredibly different to the simulations that were done for the system
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without pathology, by comparing it with Figure 6. Where in the non-pathological case

there are smooth changes, here the graphs look very sporadic. The two peaks in mast

cell tryptase can be seen as subsequent increases in active MMP-1, altered ECM and

proliferative ASM and equivalent decreases in pro MMP-1, normal ECM and contractile

ASM. While the second, smaller peak in mast cell tryptase can be seen as a small increase

in active MMP-1, this increase is not enough to create another peak in altered ECM and

hence proliferative ASM. If the pathological variables (y, q and a) have enough time to

decay to zero between exacerbation events, then the non-pathological variables quickly

increase to approximately their steady state value before they have to decrease again to

allow increases in the pathological variables.

In Figure 14, we test the impact of reducing resolution speed, as investigated in [6],

on the dynamics of y and hence the other variables in the system. We can see from this

that a reduction in resolution speed, as an affect of reducing the decay rate of y, leads to

a build up of mast cell tryptase. This build up means that the non-pathological variables

(m, e and c) rapidly decline to near zero, while the pathological variables (q, a and p)

jump to a higher value where they remain untill the pathology is removed. Chernyavsky

et al [6] have shown that this build up in inflammatory cells can then result in an increase

in total ASM growth.
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Figure 13: Top (red): Dynamics of y when stimulated using the input as modelled in

Figure 12. Bottom (blue): Simulation of the change in each of the other variables in

the dimensionless system over time, as an impact of the change in y. This is for an

asthmatic patient with initial conditions [y0,m0, q0, e0, a0, c0, p0] = [5, 20, 0, 500, 0, 500, 20].

Parameter values are as in Tables 1 - 3 with a Hill coefficient of n = 4.
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Figure 14: Top (red): Dynamics of y with a slow resolution speed due to a reduction

in the decay rate of y to K1 = 0.0025. Here, y again has the input ẑS(t;w), which is

simulated over time using equation 4.9 with i = 3. Again, ẑ = 50 for the first event

at t1 = 300 and ẑ = 20 in the second event at t2 = 900 but here there is a further

event of ẑ = 20 at t3 = 1100. A build up of y can be seen. Bottom (blue): Simulation

of the change in each of the other variables in the dimensionless system over time, as

an impact of the change in y. This is for an asthmatic patient with initial conditions

[y0,m0, q0, e0, a0, c0, p0] = [5, 20, 0, 500, 0, 500, 20]. Parameter values are as in Tables 1 - 3

with a Hill coefficient of n = 4.
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4.9.2 Steady States

Adding the pathology of an exacerbation event to an asthmatic time course does not

have an impact on the steady state of the system. This is because, once the stimulus is

removed, y will eventually decay to zero as before, and so we obtain the same steady state

for large T . We could, however, consider there to be a pathological, temporary steady

state of which the variables tend to for a given magnitude of inflammation ẑ. This can be

seen in Figure 13, for variables e, a, c and p for a time around T = 1000 and, more clearly,

in Figure 14 for T = 1000− 3000. We can therefore see that a slow resolution speed gives

the temporary pathological steady state for longer. If the environmental input for this

pathology is sustained, then these values act as a steady state for each variable during

this time.

5 Model 2: Variable switching rate between prolifer-

ative and contractile ASM populations

We now make our first refinement to Model 1 in order to make the system more biologically

realistic by adding a variable switching rate between proliferative and contractile ASM

populations. Ultimately by making this alteration, we want to find out if more positive

steady states exist, and if a change in a parameter value could lead to a change in stability

to generate a new stable steady state. Knowing this information means that, if changing

a particular parameter value gives a steady state where the quantities of variables are

similar to that of the healthy case, we could target this respective parameter to induce

this change in asthmatic patients.

5.1 Model Formulation

The model remains similar to Model 1 in most aspects but in order to refine it we now

assume that the switching rate from P to C is not constant but a function of the amount

of P . This can be seen in a zoom of the new schematic in Figure 15 where the rest of

the signalling network remains as in Figure 3. While there is a significant amount of
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research behind the switching of ASM cells from a contractile to a proliferative phenotype

in response to growth factors produced by altered asthmatic ECM in vitro, there is less

information about the switch back to their original contractile state from being prolifer-

ative. In both cases, it is not known whether this type of switching occurs in vivo. Here,

we assume that the rate at which this switch occurs increases with an increase in quantity

of the proliferative population up until a point where the rate increases no further. As

before, where we used Hill functions to represent the binding of molecules leading to a

change in rate kMQ(Y ), kEA(Q) and so on, we now introduce the function kPC(P ) as

follows.

kPC(P ) = k̂PC +
JPCP

n

ζ + P n
. (5.1)

Here, k̂PC is taken as being the same as kPC from the previous model, JPC is the

maximum rate of switching from P to C and ζ is the switching point at which the rate is

at half of its maximum. Hence the dimensional equations 4.1-4.5 from the original system

of Model 1 remain the same but 4.6 and 4.7 are altered to the following:

dC

dt
= kPC(P )P − kCP (A)C − kCaC, (5.2)

dP

dt
= kCP (A)C − kPC(P )P + kP (A)P

(
1− P + C

V

)
+ λP . (5.3)

We can non-dimensionalise these equations and the rest of the system as before using

t = T

k̂PC
, C = cC̄ and P = pP̄ . The dimensionless system therefore comprises of equations

4.10-4.14 whereby the dimensionless parameters are now relative to the rate k̂PC , and

equations for the change in c and p as seen below.

dc

dT
= σ7p+ j5σ7

(
pn

φ5 + pn

)
p−K10c− j3

(
an

φ3 + an

)
c−K11c, (5.4)

dp

dT
= K10σ8c+ j3σ8

(
an

φ3 + an

)
c− p− j5σ7

(
pn

φ5 + pn

)
p

+ p(K12 + j4

(
an

φ4 + an

)
)

(
1− p+ σ8c

σ9

)
+ ψ3,

(5.5)

where j5 = JPC

k̂PC
and φ5 = ζ

P̄n .
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Figure 15: Zoom of the model schematic as shown in Figure 3 with the added alteration

for Model 2 shown. The parts of the signalling network not shown are the same as in

Model 1.

5.2 Numerical Simulation

We simulate Model 2 over time, as we did with Model 1, in order to compare the dynamics

of each of the variables in the system for an asthmatic patient, and to see if this refined

model better represents the time course we would expect (see Fig.16 for Model 2 as

compared to Fig.6 for Model 1). All parameter values for the Model 2 simulation are

the same as in Tables 1-3 and as described, the only difference from Model 1 is that the

switching rate from p to c is now a function of p. The dynamics of y are therefore identical

to that of Model 1. We notice however, that quantitatively, there is an approximate 10 fold

increase in the steady state values of m, e and c and a 2 fold increase in p when comparing

them to Model 1, whereas the values of q and a remain similar to those of Model 1. There

is little to no data available on the relative quantities of these non-pathological variables

(m, e and c) to the pathological variables (q, a and p), hence it is currently difficult to

know which of Model 1 and Model 2 are the most realistic in this regard. Qualitatively,

the time courses are very similar, except, where in Model 1 the variables m, e and c begin

37



low and then quickly increase to their steady state once the pathological variables are

zero, in Model 2, they increase towards their steady state but then decrease again before

increasing to saturate at their steady state.

Figure 16: Matlab simulation for the change in each variable of Model 2 over time for an

asthmatic patient with initial conditions [y0,m0, q0, e0, a0, c0, p0] = [5, 20, 0, 500, 0, 500, 20]

and no further stimulus. Parameter values are as in Tables 1 - 3.

5.3 Steady States

When looking at the steady states of this model, we again get y∗ = q∗ = a∗ = 0. We also

get m∗ and e∗ as in equations 4.17 and 4.18, where now,

c∗ =
σ7p

∗ + j5σ7

(
pn

φ5+pn

)
p∗

K10 +K11

, (5.6)

and p∗ is found to satisfy the (n+ 2) degree polynomial shown below.
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pn+2(K12(σ7σ8 +K10 +K11 + σ7σ8j5)

+ pn+1((K10 +K11)σ9 −K10σ7σ8σ9(1 + j5)− (K10 +K11)(K12σ9 + j5σ9))

+ pn(ψ3(K10 +K11)) + p2(K12(σ7σ8φ5 + φ5(K10 +K11)

+ p(φ5σ9(−K10σ7σ8K10K12 −K11K12 +K10 +K11)

+ ψ3φ5(K10 +K11) = 0

(5.7)

5.3.1 Hypersurface Analysis

As it would be difficult to find p∗ analytically as we did previously, here we instead gain

an understanding of steady states by looking at the qualitative nature of the nullclines

of the system. By rearranging the nullcline equations for dc
dt

= 0 and dp
dt

= 0, we can find

equations for the respective hypersurfaces given below:

c =
p
(
σ7 + j5σ7

(
pn

φ5+pn

) )

K10 +K11

(5.8)

c =
−K12p

2 + p(K12σ9 − σ9 − j5σ9

(
pn

φ5+pn

)
) + ψ3

σ8(K12p−K10σ9)
(5.9)

As these two equations given for c are both in terms of p only, we can simulate their

dynamics for varying values of parameters and the two curves will cross at any steady

state values. We did this for a number of parameters that are likely to affect the nature

of these hypersurfaces the most (using equations 5.8 and 5.9). Equation 5.8 for c is linear

looking. Equation 5.9 tends to infinity when p = K10σ9
K12

hence varying the parameters that

affect this is a good place to start. We also consider which rates would have the biggest

impact biologically, for example, we would expect that the apoptosis rate K11 would have

a big effect. Examples of these graphs are shown in Figure 17, where we vary parameters

K10, K12 and j5 while keeping all the other parameters fixed for both K11 = 0.01 and

K11 = 0.1. This Figure shows that for each of these combinations of parameters, the two

nullclines only ever cross at zero and one positive steady state value. Hypersurfaces for

e and m are both linear and in terms of p and c only, hence their steady states follow to

give only one positive steady state value for the system.
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Figure 17: Graphs showing the two c nullclines in terms of p as in equations 5.8 (as shown

by the red lines) and 5.9 (as shown by the blue lines). The left hand column of graphs

shows simulations with K11 = 0.01 and the right hand coloumn has K11 = 0.1. Within

each graph we also alter a single parameter; K10 in the top two graphs, K12 in the middle

two and j5 in the bottom pair. These changes are shown by plotting the new nullclines

for each change in value. When altering K10 and j5, both the nullclines change, however,

only the blue c nullcine is altered for a change in K12. Each of the corresponding red and

blue curves cross eachother at the steady states. This only occurs at zero and one other

positive state.
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As this system, again, only gives one positive steady state, this means that we are

unable to use Model 2 to gain an insight into possible changes that can be made in order

to alter the system so that it tends to a more healthy steady state value. It also means

that when we add pathology to the system from an environmental input, as we did in

section 4.9 with Model 1, as soon as the external stimulus is removed, the system will

tend back to the only steady state.

6 Model 3: Inhibition of ASM apoptosis

We will now make a further refinement to the model to add some complexity which makes

the system even more biologically realistic. Though the amount of ASM cells in an ASM

bundle is determined by both the division and apoptosis of these cells, the models so

far have concentrated only on the effect that the altered ECM has on the proliferative

capacity of ASM cells. We now consider the additional effect of altered ECM on change

in apoptosis rates of smooth muscle cells in asthmatic airways.

Freyer et al [8] have investigated the impact that ECM has on the survival or relative

apoptosis of ASM cells. It was discovered that ASM cells are robust to apoptosis as a

result of a survival signal released to them from interacting ECM and β1-integrins. They

additionally found that the proteins that are more abundant in the altered ECM, as a

result of the airway remodelling explained in 2.2, are important in the production of this

signal. For example, it was found that adding fibronectin to cells that can not produce

any matrix proteins alone, creates this survival signal, and blocking the recognition site of

fibronectin, destroys it. As mentioned previously, fibronectin (and other proteins involved

in the production of this signal) increases in an altered ECM of an ASM bundle and so this

survival signal is enhanced in an asthmatic airway. Freyer et al [8] therefore conclude that

asthmatic ASM growth is partially explained by this strong signal produced by altered

ECM, and that this increase in ASM cells leads to further production of ECM and hence a

cycle which eventually leads to the narrowing of the airways. This has also been confirmed

in vivo, as it has been shown that both rises in proliferation and decreases in apoptosis

of ASM cells occur in an infected Brown Norway rat model [12].
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6.1 Model Formulation

We therefore incorporate this survival signal into our model to create Model 3. We do

this by adding some inhibition to the model (Models 1 and 2 only exhibit activation).

Increasing the survival of ASM cells, in turn, means reducing their apoptosis. This means

that, in this model, apoptosis of C is inhibited by both E and A, with a rate kCa(E,A).

This can be seen in a zoom of the full model schematic as seen in Figure 18, where the

switching rate from P to C and the rest of the signalling network remains as in Model 2

(as described in section 5). Looking at this schematic, we can see a clear positive feedback

loop. This occurs as the inhibition of ASM apoptosis by ECM leads to growth of ASM

and, in turn, further production of ECM. We set kCa(E,A) to be another Hill function

but this time, one that decreases from its maximum at a rate depending on the values of

both E and A as shown in the equation below:

kCa(E,A) = k̂Ca + (JCa − k̂Ca)
(

1

1 + En

ω

)(
1

1 + An+1

υ

)
(6.1)

Here, k̂Ca represents the very low rate of apoptosis that occurs when both E and A

are at their maximum and so (JCa − k̂Ca) is the maximum rate of ASM cell death which

occurs when E and A are both negligible. ω and υ are the switching parameters at which

the apoptosis rate, as a function of E and A respectively, is at half of its maximum. As

can be seen, A has a higher Hill coefficient and so its switching gradient is more steep

(as we saw in Figure 4). The dimensional equations 4.1-4.5 for the change in Y,M,Q,E

and A from the original system of Model 1 therefore remain the same, equation 5.3 for P

stays as in Model 2 and 5.2 for C is altered to the following:

dC

dt
= kPC(P )P − kCP (A)C − kCa(E,A)C. (6.2)

Non-dimensionalising, we get

dc

dT
=σ7p+ j5σ7

(
pn

φ5 + pn

)
p−K10c− j3

(
an

φ3 + an

)
c−K13c

− j6

(
1

1 + en

φ6

)(
1

1 + an+1

φ7

)
c,

(6.3)

42



where K13 = k̂Ca

k̂PC
, j6 = (JCa−k̂Ca)

k̂PC
, φ6 = ω

Ēn and φ7 = υ
Ān+1 are dimensionless constants.

Figure 18: Zoom of the model schematic as shown in Figure 3 with the added alterations

for Models 2 and 3 shown. The parts of the signalling network not shown are the same

as in Model 1.

6.2 Numerical Simulation

We simulate Model 3, as shown in Figure 19 and compare the results of this to the

dynamics seen previously in Model 1 and Model 2. The dynamics of the time course for

Model 3 can be seen to be extremely similar to that of Model 2, the difference being

that the variables m, e and c increase to their steady state values (after the pathological

variables have decayed to zero) much more slowly than in Model 2. The steady state

value, at which these variables eventually saturate, is again significantly higher than in

the previous model.
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Figure 19: Matlab simulation for the change in each variable of Model 3 over time for an

asthmatic patient with initial conditions [y0,m0, q0, e0, a0, c0, p0] = [5, 20, 0, 500, 0, 500, 20]

and no further stimulus. Parameter values are as in Tables 1 - 3.

6.3 Parameter Sensitivity Analysis

We perform a parameter sensitivity analysis using COPASI in order to find the parameters

that the steady state of the system is most sensitive to, and hence those that are likely

to lead to bifurcations. We want to identify any bifurcations in order to determine if

adding pathology to the system could change the stable steady state to being of a more

unhealthy value, as we would expect. This information could also be used in order to find

the rates that are most suitable to be targeted in any therapies as, just a small change in

these parameter values, gives a big change in the dynamics of the system. Additionally, in

the formulation of this model, parameter values were assigned using order of magnitude

estimates, but their actual values are mostly unknown. Sensitivity analysis can therefore
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tell us the importance of knowing accurate values of certain parameters or if estimates

are sufficient. COPASI calculates this analysis using the finite differences method [15]. A

delta factor value of 0.001 is used here so that the sensitivities we see are the percentage

change in the steady state value for a 0.1% change in parameter value. The sensitivity

of the steady state to the rates K1 −K13 can be seen in Figure 20. It is clear from this

bar chart that K12 and K13 are the most sensitive parameters. The percentage change

in steady states as an affect of changing these parameters may be so large due to the

fact that the parameter baseline values are very small. This means that any percentage

changes for these parameters get amplified. We therefore conduct our bifurcation analysis

with a focus on these parameters.

Figure 20: Bar graph showing the sensitivity of the steady state to a 0.1% change in

parameter values of K1 −K13. Sensistivities were calculated using COPASI.
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6.4 Bifurcation Analysis

In this section we analyse the bifurcation behaviour in Model 3 by varying sensitive pa-

rameters using XPP. In doing this, we observe multiple saddle node bifurcations, whereby

two steady states collide and disappear at a limit point (LP). Figure 21 shows the change

in c when varying K10. It can be seen that there are two saddle node bifurcations, one

with negative c for very small values of K10 and the other with a positive value of c that

increases as K10 increases. For the system to be biologically relevant however, we see

that K10 needs to be greater than approximately 0.0005. In between the positive and

negative saddle nodes, the stable steady state which cannot be seen in Figure 21 is ex-

tremely negative and so is also irrelevant in our analysis. Figure 22 shows the change in

p when varying K13. Here, we again see two saddle nodes bifurcations, this time with the

irrelevant (negative) branch being for higher values of K13. Similarly, in between the two

saddle nodes we find a very negative stable steady state that isn’t shown in the figure.

Figure 21: Bifurcation diagram for the variable c as parameter K10 is altered in Model 3.

The other parameters remain as stated in Tables 1-3 for the asthmatic case. The red line

represents a stable steady state and the black line an unstable steady state. Saddle-node

bifurcations can be seen.
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Figure 22: Bifurcation diagram for the variable p as parameter K13 is altered in Model 3.

The other parameters remain as stated in Tables 1-3 for the asthmatic case. The red line

represents a stable steady state and the black line an unstable steady state. Saddle-node

bifurcations can be seen.

Figure 23 illustrates the change in p when varying K12. We can see that, while again

there are two saddle node bifurcations, here these saddle nodes overlap so that for a region

between K12 ≈ 0.78 and K12 ≈ 1.17, there are four steady states (two stable and two

unstable). Figure 24 shows this more clearly, by zooming in on the area at which the

stable steady states overlap. It can be seen that, for K12 < 0.78, there are just 2 steady

states with the stable steady state higher than the unstable one. For 0.78 < K12 < 1

two more steady states arise; a new higher stable steady state and an unstable steady

state in between this and the original stable steady state. When K12 = 1, the unstable

steady state from the top branch crosses the two lower steady states and at the same

time, the stable and unstable parts of this lower branch cross over. This means that for

1 < K12 < 1.17, the two stable steady states are still separated by an unstable steady state

with an additional unstable steady state below. When K12 ≈ 1.17, the two original steady

states coalesce and disappear at their LP so that only the other two steady states remain.

We can also see that for K12 = 0.8013 and K12 = 0.782, Hopf bifurcations (HB) occur

for the two higher steady states. This suggests that these steady states have a complex
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conjugate pair of eigenvalues which, at this point, change to being only imaginary. The

stable steady state therefore becomes unstable and limit cycles arise. The two unstable

steady states then collide at their LP where K12 = 0.78 and disappear. Furthermore, using

Figure 23, we can see that hysteresis occurs. This is because if K12 began low and was

increased, the stable steady state would stay on its original lower branch until reaching

its LP and jumping up to the higher stable steady state. If K12 began high and was

decreased however, the stable steady state would stay on the upper branch until reaching

its LP and jumping down to the lower stable steady state. These are two different paths,

thus for the region of K12 with two possible steady states, its state depends on its history.

Figure 23: Bifurcation diagram for the variable p as parameter K12 is altered in Model 3.

The other parameters remain as stated in Tables 1-3 for the asthmatic case. The red line

represents a stable steady state and the black line an unstable steady state. Limit points

(LP) of saddle node bifurcations and Hopf bifurcations (HB) can be seen.
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Figure 24: Zoom of Figure 23 to show the dynamics at the point where K12 = 1 and the

unstable steady state (black) of the upper branch crosses the stable (red) and unstable

steady states of the lower branch.

In Figure 25 we can see the same range ofK12 values, where we now look at their impact

on the value of variable c. Just as with p, for the small region between K12 ≈ 0.78 and

K12 ≈ 1.17, there is bistability of c. We see again the LP’s of each saddle node bifurcation

and two HB’s this time on the lower branch. The stable part of the lower branch becomes

negative before the HB occurs however, so that this is biologically irrelevant. The same

bifurcation behaviour also occurs for the variables e and m as can be seen in Figures 26

and 27 respectively.
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Figure 25: Bifurcation diagram for the variable c as parameter K12 is altered in Model 3.

The other parameters remain as stated in Tables 1-3 for the asthmatic case. The red line

represents a stable steady state and the black line an unstable steady state. Limit points

(LP) of saddle node bifurcations and Hopf bifurcations (HB) can be seen.
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Figure 26: Bifurcation diagram for the variable e as parameter K12 is altered in Model 3.

The other parameters remain as stated in Tables 1-3 for the asthmatic case. The red line

represents a stable steady state and the black line an unstable steady state. Limit points

(LP) of saddle node bifurcations and Hopf bifurcations (HB) can be seen.
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Figure 27: Bifurcation diagram for the variable m as parameter K12 is altered in Model

3. The other parameters remain as stated in Tables 1-3 for the asthmatic case. The red

line represents a stable steady state and the black line an unstable steady state. Limit

points (LP) of saddle node bifurcations and Hopf bifurcations (HB) can be seen.

As the range of K12 for which there are two positive steady states is only small in

Figures 23-27, we undertake a two parameter bifurcation analysis in order to find a com-

bination of parameter values for which this region is widened. It would also be interesting

to find out if there is a point at which the two saddle nodes coalesce. We do this by grab-

bing the LP’s in XPP and continuing them in a two parameter space as seen in Figure 28

with K10 being varied as well as K12. From this we can see that for 0 < K10 < 0.042 and

0 < K12 < 2.2, there are two limit points of K12 for each value of K10. At K10 ≈ 0.00338

and K12 ≈ 0.61064 the two LP’s coalesce, however this occurs at such a precise value that

it is unable to be found in a one parameter bifurcation diagram with XPP. Using Figure

28 we are able to see that the largest vertical distance between LP’s for a given value of

K10 occurs at K10 ≈ 0.025. When using this value for K10 in a one parameter bifurcation

diagram for c against K12 as before, we obtain the wider region of bistability we were

looking to find (see Fig.29).

52



Figure 28: Two parameter bifurcation diagram: continuation of the saddle node limit

point for varying K10 and K12.

Figure 29: Widened region of bistability: Bifurcation diagram for the variable c as pa-

rameter K12 is altered in Model 3 with K10 = 0.025. The other parameters remain as

stated in Tables 1-3 for the asthmatic case. The red line represents a stable steady state

and the black line an unstable steady state.
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6.5 Pathology

In this section we look at the results of the simulation of Model 3 when adding in the

pathology of an asthmatic exacerbation event as we did for Model 1 in section 4.9. Looking

at the bifurcation diagrams from the previous section, we know that for a particular range

of values for K12, there are two positive stable steady states separated by an unstable

steady state. Henceforth, we now use a value for K12 within this region for all simulations.

Using Figure 29, we can see that if we begin a time simulation with initial conditions such

that the value of c is below the unstable steady state, then the system will tend to the lower

stable steady state of c (see Fig.30). We now add the stimulus of a single exacerbation

event of magnitude ẑ = 50 at a time of T = 300 and examine the dynamics of the time

course, as well as the values of the steady states.

Figure 31 shows the impact of this exacerbation event. As noticed when adding

pathology to Model 1, the pathological variables q and a increase rapidly in response to

an increase in y and remain at a temporary pathological steady state until y has decayed to

zero, where they then rapidly decline back to zero. Unlike in the time course simulations

we have previously seen however, here, due to the initial conditions being so low, the

non-pathological variables m, e and c also rapidly increase at T = 300 though this is

by a smaller amount than the pathological variables. When the pathological variables

begin to decline, the non-pathological variables increase further, but as the pathological

variables reach zero, the non-pathological variables begin to decline until they saturate

at their steady state. The steady state of the pathological case, even when the pathology

is removed, is different to the steady state of the non-pathological case. This is because,

looking back at Figure 29, once the pathology has pushed c above the unstable steady

state, it is then in a new attractor region for the higher stable steady state and so this is

where it remains.

It is clear that the values of the variables we test here are fairly biologically unre-

alistic. For example, all variables are at very low values and the amount of p at the

non-pathological steady state is higher than that of other other variables (which is un-

likely). However, here we have shown the mechanism by which an asthmatic exacerbation

can lead to an irreversible change in the airways. Model 3 shows that, when an exacer-
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bation occurs, the steady states for m, e and c increase. These increases coincide with

research on airway remodelling which tells us that exacerbations can lead to an increase

in levels of MMP-1, ECM and total ASM mass.

Figure 30: Matlab simulation for the change in each variable of Model 3 over time for an

asthmatic patient with initial conditions [y0,m0, q0, e0, a0, c0, p0] = [1, 1, 1, 10, 1, 10, 1] and

no further stimulus. Parameter values are as in Tables 1 - 3 except here K12 = 1.158.

The Hill coefficient n = 4.

When testing different magnitudes of exacerbation events (ẑ), it was found that any

non-zero magnitude was enough stimulus to enable this change in steady state. All values

of magnitude therefore gave the same steady state values, because once the variables

have increased enough such that their value is above their unstable steady state, they are

now in the basin of attraction for the only other stable steady state. This suggests that,

although the exacerbation event leads to remodelling, the severity of the event has no

impact on the amount of remodelling that occurs.
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Figure 31: Matlab simulation for the change in each variable of Model 3 over time for an

asthmatic patient with initial conditions [y0,m0, q0, e0, a0, c0, p0] = [1, 1, 1, 10, 1, 10, 1] and

the single exacerbation input ẑS(t;w) at t1 = 300 with ẑ = 50. Parameter values are as

in Tables 1 - 3 except here K12 = 1.158. The Hill coefficient n = 4.

As the knowledge on the involvement of MMP-1 in the pathway that leads to airway

remodelling is fairly new, there is very little data available in literature of which to compare

our results to. The only data that is able to be compared to our results therefore, is taken

from Naveed et al [16]. We can see that, in our results for Model 3, the steady state for pro

MMP-1 is 3.9 fold greater after the exacerbation event (see Fig.32). This is exactly the

same as the fold difference obtained by Naveed et al [16] for the change in mean MMP-1

activity after inoculating patients with a virus in order to simulate an exacerbation event.

Hence, though here we are only considering pro MMP-1 (as at the steady state of this

model, active MMP-1 is zero) it could be thought that there is an equivalent increase

in overall MMP-1 quantities. Naveed et al [16] also show that, when both control and
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Figure 32: Difference between steady state values before and after an exacerbation event

using Model 3.

asthmatic ASM is treated with active mast cell supernatants, there is respective 0.73 and

0.78 fold increase in the ASM cell numbers. In our Model 3, there is a 5.13 fold increase in

total ASM mass (c+p) at the steady state after an exacerbation event. Hence our results,

while showing an increase in total ASM mass as expected, are giving a much larger affect

of pathology then this data suggests.

7 Discussion

We started this project with the aim of generating and developing a mathematical model

for airway remodelling in asthma which incorporates recent biological discoveries concern-

ing the involvement of MMP-1. Our original model (Model 1) was formulated based on

a signalling network we put together using data from Naveed et al [16]. This data was

also used to assign sensible values for parameters in the system. Using Model 1, we were

able to compare the dynamics of a time simulation for a healthy control and an asthmatic

patient. It was found that there are only two steady states in this model; a positive one

which is always stable and a biologically irrelevant negative one which is always unstable.

An exacerbation event was considered as the pathology that can be added to the system

as an input, which is a function of time. Having already found that there is only one
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positive steady state and that this is always stable, it was not a surprise to find that

while the pathology gave a temporary pathological steady state which was of a more ”un-

healthy” value, as soon as the stimulus was removed, the system went back to the original

steady state. Based on the research conducted in asthma and airway remodelling, it can

be assumed that, while this model shows some of the dynamics we would expect, it is

unrealistic for the model to only have one positive steady state, as this would suggest that

the airways of asthmatic patients do not change in the long term. This also means that

a change in resolution speed, as investigated in [6], would indeed have a bigger impact

on ASM growth during an exacerbation, but would have no longer term effects. In doing

our analysis on Model 1 however, we found that increasing the relative rate of baseline

ASM apoptosis and proliferation to the switching rate from a proliferative to a contractile

phenotype, significantly decreases the amount of contractile and proliferate ASM cells

respectively. Hence if we could increase these rates to an optimal value, we could change

the number of ASM cells for an asthmatic patient to a lower and so more healthy amount.

Model 2 was then developed as a refinement to Model 1 to include a variable switching

rate between proliferative and contractile ASM phenotypes based on the amount of pro-

liferative ASM mass. Hypersurface analysis was undertaken in order to find any steady

states due to this model being less analytically tractable than Model 1. It is found that,

even when varying parameters that would be expected to have a large impact on the

system, for example those involved in resolution speed, there are only ever steady states

at zero and one positive value. This means that again, when stimulus is added to the

model, as soon as mast cell tryptase has decayed back to zero, the system returns to its

only positive stable steady state. Hence this model is also unable to show the results we

would expect for airway remodelling.

In Model 3, we made a further refinement to the original model by adding inhibition

of ASM apoptosis to account for the survival signal released by normal and altered ECM.

Through performing parameter sensitivity analysis, we found the parameters that most

affect the steady state values of the system and hence use these to look for bifurcations

in the model. The parameters which impact the steady state the most are those for

the baseline ASM proliferation rate and the baseline ASM apoptosis rate, both non-
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dimensionalised relative to the switching rate from a proliferative to contractile ASM

phenotype. As the former is an important parameter involved in resolution speed, as

discussed in [6], our results therefore agree with the conclusion made by Chernyavsky et

al [6] that parameters involved in resolution speed are the most important in remodelling.

Several saddle node bifurcations were found including a critical region where, for a small

range of parameter values, there is bistability. A two parameter bifurcation diagram

enabled us to widen this region of bistability as well as finding a point at which the two

saddle node limit points coalesce. When simulating time courses for Model 3 with the

the value of this parameter (the baseline ASM proliferation rate relative to the switching

rate from a proliferative to contractile ASM phenotype) within this critical region, we

can see a change in the steady state of the system after pathology is added. This gives

a possible representation of the sort of mechanism involved in airway remodelling which

leads to an irreversible change in airway structure. The impact of the exacerbation event

on the steady states includes an increase in pro MMP-1, normal ECM and contractile

ASM. While little data is available to compare our results to, increases in these variables

agrees with the general consensus in literature that airway remodelling in asthma leads

to an increase in ECM and total ASM mass.

An unexpected result given in Model 3 however, is that after pathology is added, the

new steady state for the proliferative ASM phenotype is actually lower than the steady

state before the exacerbation occurs. We have been unable to find any data to quantify the

changes in these sub-populations of ASM, hence, though we believe it to be unlikely for

the proliferative ASM population to decrease after pathology is added, we only consider

the ASM population as a whole in which there is indeed an overall increase as expected.

We also observe that, in our model, the magnitude of exacerbation events are irrelevant

to the size of the new steady state. This is because, there is only one other positive stable

steady state, and the pathology only needs to push the value of each variable above the

respective unstable steady state for the system to be attracted to the new higher steady

state. This tells us that the severity of exacerbation events has no impact on the amount

of remodelling that occurs in the airway as an affect of this. Again, there is little data to

tell us if exacerbation severity impacts the amount of remodelling that occurs after each
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event, however, the model developed by Chernyavsky et al [6] predicts that the amount of

increased ASM mass is indeed influenced by inflammation magnitude as well as resolution.

Overall, using all our models, we can see that blocking several interactions between

variables could give us possible therapeutic solutions to prevent airway remodelling. Dis-

rupting the signals between mast cell tryptase and pro MMP-1, active MMP-1 and ECM

and altered ECM and ASM, could halt the remodelling at any of these respective stages

of the pathway. For example, if we were to block mast cell tryptase from activating pro

MMP-1, then ECM is unable to be altered and so ASM mass will not increase. Doing

this could therefore reduce the overall disease severity.

For further work, we would make yet another refinement to the model developed in this

project by adding in a baseline value of mast cell tryptase. This would make the model

more biologically realistic as data suggests that, while being significantly lower amounts

than in asthmatics, controls also have some mast cell tryptase and active MMP-1 in their

ASM bundles. Naveed et al [16] find total MMP-1 levels of approximately 0.25ng/ml in

controls as compared to aproximately 1.6ng/ml in asthmatics. This alteration would have

a significant impact on the dynamics of the system. This is because, at steady state, mast

cell tryptase would become non-zero and hence so would active MMP-1 and altered ECM.

As these variables are involved in the Hill functions in this model, this therefore suggests

the strong likely-hood of multiple positive steady states arising as well as interesting

bifurcation behaviour. This model refinement to ignore the previous assumption that

healthy values of mast cell tryptase are insignificant, would also mean that we could then

more easily compare fold differences in data to the results of the model steady states

between a normal and an asthmatic case, or before and after an exacerbation event. Data

from [16] shows that active MMP-1 has a 3.9 fold increase after the patient has been

stimulated with rhinovirus. This is something that we are unable to accurately compare

to the results of our current model as active MMP-1 will always return to zero however,

with this further work, we will be able to gain a better insight into the validity of the

model.

All three models we have developed are formulated based on several assumptions. One
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of these is that all the changes that are occurring are uniform in space. It has been found

however that migration of ASM cells could be a contributing factor which leads to the

accumulation of ASM mass in a particular ASM bundle. Hirst et al [9] hypothesise that,

just as vascular smooth muscle (VSM) cell migration has found to lead to an increased

VSM mass in atherosclerosis, migration of ASM cells could give the increased ASM mass

we see in asthma. It is also possible that cells such as myofibroblasts which surround

the ASM bundles could migrate into the bundles and, at the same time, change their

phenotype to be similar to that of ASM and so contribute to their total mass. Additionally,

while our work has been based on the assumption that proliferative cell types increase

as an effect of pathology, some studies have found that there is no observable increase in

these proliferation markers in ASM cells [9].

8 Conclusions

This project has led to several conclusions. Firstly, it is evident that more mathematical

models are needed as tools for predicting airway remodelling in order to find possible drug

targets. This would reduce the need for as many in vivo experiments. In order to do this

however, we first need more data to base these models on, in particular, more knowledge on

the structural changes that occur after each exacerbation event in terms of the changes in

quantities of each of the variables in the system. Secondly, we conclude that while Models

1 and 2 show possible realistic dynamics in time simulations, they do not account for

the irreversible changes involved in airway remodelling. Our third model, however, shows

the mechanism by which exacerbation events could lead to airway remodelling. Results

from this model agree with the hypotheses from literature that the airway remodelling

involved in asthma gives structural changes to ASM bundles, including increases in the

amount of ECM and total ASM. With a more accurate model of this type, for example

one with baseline values of mast cell tryptase and spatial aspects included, one could use

the results of the model to make sure that the critical rate in which bistability occurs, is

never reached. This would mean that after an exacerbation event has occurred, the airway

will just return to its previous state. Finally it is clear that disrupting the interactions

between the variables in this system, in particular that of mast cell tryptase and pro
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MPP-1, could give a possible therapeutic target in order to halt remodelling.
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Appendices

Parameters

Table 4: Descriptions of the parameters in the original dimensional system (equations

4.1-4.7).
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B
E X P E R I M E N TA L M E T H O D S

b.1 cell culture protocol

The below describes the common process of culturing HASM cells which is

used in this project in order to undertake the experiments in Chapter 3.

b.1.1 Materials

• Primary HASM cells

• Dulbecco’s Modified Eagle Medium (DMEM) with 10% Fetal Bovine

Serum (FBS)

• Trypsin

• Dimethyl sulfoxide (DMSO)

b.1.2 Method

HASM cells are thawed and transferred to a universal containing 10ml of

warmed media (containing 10% FBS). This is then centrifuged at 200g for

5 minutes at room temperature. The media is then aspirated, leaving just

the cell pellet in the tube. 10ml of fresh media is then added to the uni-

versal making sure to disrupt the pellet and this cell suspension is then
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B.2 experiment 1 : optimisation steps

transferred to a T75 flask. This is then incubated at 37
◦C. The media in

the flask is changed every 2-3 days or when it has changed colour/contains

debris (aspirate media and replace with 10ml of new warmed media). The

cells are passaged when a flask is 70-90% confluent. To do this, we aspirate

the media from the flask and replace with 10ml of trypsin. Once we observe

the cells becoming detached from the flask, we agitate the flask to detach

the cells that are still stuck and then transfer this cell suspension to a uni-

versal containing 10ml of fresh media. We spin this in the centrifuge using

a speed of 200g for 5 minutes and then aspirate the media leaving just the

cell pellet. The pellet is re-suspended in 20ml of warmed media and this is

disrupted evenly into 4 fresh flasks. Finally we add an extra 5ml of media

to each flask so that they all contain 10ml in total and place these in the

incubator to grow. In order to freeze a confluent flask of cells, repeat the

process of passaging cells above until we have the pellet of cells. We then

add 1ml of freezing media (1/10 DMSO in FBS) making sure that the pellet

is dispersed, and transfer this to a cryovial to freeze at -80
◦C.

b.2 experiment 1 : optimisation steps

1. Chamber slides.

We found that healthy cells would stick to each other and not glass

hence polylysine coated chamber slides were used going forward.

2. Cell densities.

Cell densities of 3000, 6000, 12000 and 24000 cells per well were ini-

tially tested and it was found that somewhere in the middle of this

range was best (3000 was not dense enough and 24000 was too dense).

3. Antibody dilutions.

PCNA antibody dilutions of 0.25mg/ml, 0.5mg/ml, 0.75mg/ml and

1mg/ml were tested as well as controls for secondary only and no

antibody. Since there was little difference, 0.25mg/ml was used going
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B.2 experiment 1 : optimisation steps

forward. Ki67 dilutions of 1/400, 1/600, 1/800 and 1/1000 were also

tested and again 1/1000 was adequate for our use.

4. Phalloidin V Anti-Actin, α -Smooth Muscle - Cy3
TM antibody

It was found that phalloidin gave a much stronger signal.

5. Fixation methods.

3 different fixation methods were tested on cells in serum. (1) Fix in

4% formaldehyde (FA) for 10 minutes, permeabilise with 0.1% Triton

X-100 in PBS, block. (2) Fix in 1% FA for 10 minutes, rinse with PBS,

fix in 100% methanol in the freezer for 10 minutes, don’t permeabilise,

block. (3) Fix in 100% methanol in the freezer for 10 minutes, don’t

permeabilise, block. The results can be seen in Figure B.1. It was

found that method (1) gave the strongest signal for phalloidin but no

signal for the antibodies and method (3) gave the strongest signal for

the antibodies but the phalloidin was sequested in the nucleus. We

therefore chose to separate the two stains onto different slides that can

be fixed using the corresponding optimal method.
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B.2 experiment 1 : optimisation steps

Figure B.1: Fixation method optimisation. Each box is stained as labeled

with formaldehyde fixation (top), formaldehyde and methanol

fixation (middle) and methanol only fixation (bottom).
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B.3 experiment 2 : mast cell activation protocol

b.3 experiment 2 : mast cell activation protocol

Experiment 2 in Section 3.2 requires the collection of activated and inacti-

vated mast cell supernatant as follows (this method was provided by Roya

Babaei-Jadidi, Division of Respiratory Medicine, University of Nottingham).

Mast cells differ from ASM cells in that they are suspension cells and do not

stick to the bottom of the flask in a monolayer.

b.3.1 Materials

• HMC-1 cells

• Phorbol 12-myristate 13-acetate (PMA)

• Calcium ionophore (A23187)

• Complete media (IMDM + 1% pen/strep + 1% glutamine plus 10%

FBS when serum present)

b.3.2 Method

HMC-1 cells were recovered in 2 flasks with complete medium and 10%

FBS for 1-2 days. We then removed the serum for 1 day. Since HMC-1s are

suspension cells, to change the media we had to centrifuge at 100g for 5

minutes and then resuspend in the new serum free media. After the serum

had been removed for 1 day, we added 50ng/ml PMA and 25ng/ml cal-

cium ionophore to only the flask that was being activated and left for 16

hours. After this, we spun down both the activated and non-activated cell

suspensions at 1200rmp for 5 minutes to pellet the cells. The activated su-

pernatant was then sterile-filtered and aliquoted into cryovials to be frozen

at -80. For the control supernatant, 50ng/ml PMA and 25ng/ml calcium
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B.3 experiment 2 : mast cell activation protocol

ionophore were added to the inactivated media (with no cells) before being

sterile-filtered and aliquoted as above.
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