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Abstract

In this thesis, we develop and analyse two multiphase, moving boundary models

representing the evolution of biological tissue. The first model considers a description

of engineered tissue growth, whereas the second describes solid tumour growth. The

objective of this work is to characterise the effects of tissue mechanics, cell growth

and nutrient limitation on various tissue structures. Additionally, we aim to derive

novel mathematical results that can be applied to a wider class of mathematical

models.

In the first part of this thesis, we derive a multiphase model representing the

development of tissue in vitro in a porous scaffold. We consider a cell, extra-cellular

liquid and a rigid scaffold phase, and adopt Darcy’s law to relate the velocity of

the cell and liquid phases with their respective pressures. We reduce the model

to a nonlinear reaction—diffusion equation for the cell phase, coupled to a mov-

ing boundary condition for the tissue edge. Numerical simulations reveal that the

reduced model admits various regimes for the evolution of the tissue. Employing

travelling-wave and asymptotic analysis, we characterise these regimes in terms of

parameters related to cellular growth and motion.

The second part of this thesis provides some novel numerical and asymptotic

analyses of the multiphase tumour growth model developed in Byrne et al. (2002).

We first employ the model of Byrne et al. (2002) to investigate the initial develop-

ment of a suspension of nutrient-rich in vitro tumour cells. Numerical simulations

indicate that both travelling-wave and patterned solutions can be obtained, the lat-

ter corresponding to multiple regions of high cell density separated by regions of

low cell density. A stability analysis of these travelling-wave solutions provides us

with criteria for the occurrence of patterned solutions. After this, the model of

Byrne et al. (2002) is revisited, and is employed to investigate the effects of nutrient

limitation and tissue mechanics on a solid tumour in the avascular stage of growth.
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Chapter 1

Introduction

Understanding the complex mechanisms that underpin tissue growth is fundamental

to the development of regenerative medicine and treatment for diseases such as can-

cer. In this thesis, we develop and analyse two multiphase models representing the

evolution of biological tissue. The first considers a description of engineered tissue

growth, whereas the second describes tumour growth. Before this, we provide an

overview of engineered tissue and tumour growth and highlight various mathemat-

ical models which have been used to investigate these processes. Additionally, we

outline a derivation of the conservation of mass equations which are used through-

out this work. We conclude this chapter by highlighting our key objectives and

providing a framework for the remainder of this thesis.

1.1 An overview of tissue engineering

In vitro tissue engineering is a form of regenerative medicine which often involves

seeding cells into a porous bio-engineered scaffold to allow for nutrient transport,

structural support and a means for cell signalling activity (Chan and Leong, 2008a).

Subject to the correct environment and growth factors, the cells will develop into

a functional biological tissue (termed construct) that can be used to restore and

regenerate damaged tissues. Employing contributions from an assortment of scien-

tific fields, tissue engineering is considered an interdisciplinary practice that has the

1
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potential to benefit a substantial proportion of the global population suffering from

devastating soft tissue, bone and whole organ diseases (Dzobo et al., 2018). Whilst

the field of tissue engineering is rich in both theoretical and experimental knowledge,

numerous limitations including a lack of understanding regarding the processes by

which cells assemble into tissues means that viable replacement constructs are only

available in a minority of cases.

Tissue engineering, broadly speaking, consists of two main practices: in vitro

(within the glass) and in vivo (within the living). In vitro tissue engineering, which

is the biological focus in chapter two of this thesis, often involves cultivating a

sample of healthy cells until a viable tissue construct is developed. These cells can

be implanted into a porous tissue engineering scaffold (see figure 1.1) and cultured

in a bio-reactor, which mimic the relevant in vivo environment and promote cell

differentiation by providing a means for nutrient transport and chemical and physical

stimuli (Plunkett and O’Brien, 2018). We will examine in vitro tissue engineering

in more depth in subsection 1.1.1. On the other hand, in vivo tissue engineering

often involves seeding a degradable scaffold with cells and then implanting it within

the recipient in place of the damaged tissue. This procedure necessitates that the

host colonise, vascularise, and integrate the implanted scaffold with the surrounding

tissue. If the scaffold cannot be initially implanted in situ of the damaged tissue,

it is implanted in some other location, where it is colonised by cells, harvested and

re-implanted in situ. See McCullen et al. (2011) for examples of this process relating

to musculo-skeletal tissue engineering.

The first successful generation of a skin substitute using tissue engineering tech-

niques was produced in the 1970s, as a result of a partnership between the Mas-

sachusetts Institute of Technology and the Massachusetts general hospital Vacanti

(2006). Approximately thirty years later, a group of surgeons replaced a patient’s

windpipe with one that was cultured from their own cells, becoming the first tissue

engineered whole organ to be transplanted (Fletcher, 2008). More recently, the field

of tissue engineering has enjoyed many other successes; for example, the generation,
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Figure 1.1: Scan of a poly-l-lactic acid scaffold taken from Ma (2004)

replacement and longevity of engineered bones and bronchial tubes derived from the

recipients’ cells (Sato et al., 2008; Petite et al., 2000; Schimming and Schmelzeisen,

2010). However, a shortage in the supply of donor tissue creates a demand on the

field to make engineered tissue routinely clinically available (Levitt, 2015).

Tissue constructs cultured via tissue engineering techniques can also be used

to improve concepts in pharmaceutical research such as experimental drug therapy

(Jensen et al., 2018b). For instance, neural cells can be cultured in vitro to examine

the efficacy of different drugs used to treat neurodegenerative diseases such as trau-

matic brain injury and Alzheimer’s disease; see Jensen et al. (2018a) for a review.

Tissue constructs can also be used to study human disease progression and monitor

the way in which these tissues respond to medical treatment.

In vitro tissue engineering employs a wide range of methods to culture a small

population of cells into a tissue construct. For example, multi-cellular spheroids,

used as experimental models of tumours, are often cultured using scaffold-free meth-

ods, whereby cells are suspended in a nutrient rich fluid and self-assemble into

spheroids. Cells can also be cultured within a porous bio-scaffold, which aims to

replicate the in vivo environment by providing structural support for cell attach-

ment and proliferation, for example (Chan and Leong, 2008b). To promote these
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biological processes, porous bio-scaffolds must adhere to an array of essential at-

tributes, some of which we now briefly outline, based on the reviews by Chan and

Leong (2008b) and O’Brien (2011).

To encourage cell growth in a scaffold, its architecture should be porous and

well-interconnected, allowing the transport of nutrient and waste, as well as cell

signalling and migration. Furthermore, the scaffold porosity must be large enough

to allow cell migration within the scaffold, but small enough both to promote optimal

cell-scaffold attachment and to enable the scaffold to possess mechanical properties

such as tensile strength. Without sufficient mechanical integrity, cell types which

exert traction forces, such as muscle cells, can display deficient proliferation and

morphological tendencies (Discher et al., 2005). The bio-materials used to fabricate

the scaffold must also be compatible with cellular components. Especially in the

case of in vivo tissue engineering, the scaffold must elicit a minimal immune response

from the host to prevent, for example, an inflammatory response (O’Brien, 2011).

In view of these arguments, it is not surprising that a range of scaffold pore sizes

has been suggested which depend on cell type; for example, Murphy et al. (2010)

indicates that a mean pore size of 325 µm is optimal for bone tissue engineering.

1.1.1 In vitro tissue engineering

We now provide a brief overview of how in vitro tissue engineering seeks to cultivate

a small population of donor cells into a tissue construct.

The initial acquisition of donor cells required to cultivate a tissue construct can

be made using a diverse range of techniques (Zakrzewski et al., 2019). In some cases,

pertaining to stem cell acquisition for example, a donor must undergo surgery in

which cells are harvested from bone marrow. This is an invasive and painful pro-

cedure and has led researchers to consider alternative sources. For example, stem

cells can also be isolated from adipose tissue, which is a plentiful and readily avail-

able source, and the procedures involved in their acquisition are not associated with
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patient discomfort (Rad et al., 2017). Another non-invasive method of obtaining

stem cells is via the donor bloodstream. One limitation associated with donor cell

acquisition occurs when attempting to acquire a sufficiently large and healthy pop-

ulation of cells to implant within a scaffold. This can be especially challenging if the

tissue from which they are obtained is aged or diseased; for example, it is difficult

to acquire cardiac cells from a patient who has recently suffered from a heart attack

(Ikada, 2006). This limitation can be overcome by expanding a small population of

healthy cells via a culture to an appropriate size for transplantation; however, this

can be time-consuming and expensive (Ikada, 2006).

After this initial population of cells have been acquired , they are seeded into

a porous bio-scaffold. There are numerous methods for accomplishing this, and

we now briefly discuss the salient features of passive and dynamic seeding, based

on the review in Villasante and Vunjak-Novakovic (2015). Passive seeding is a

straightforward approach which involves the placement of cells onto the scaffold

exterior, whereby gravitational force subsequently enables their penetration into

the scaffold interior. One limitation of this approach arises when cells are unable

to fully penetrate the scaffold, which can result in a non-uniform distribution of

tissue; however, this can sometimes be overcome by coating the scaffold with a

biological glue such as fibrin which enhances cell motility (Park and Woo, 2018).

Dynamic seeding is a more intricate approach than static seeding. One type of

dynamic seeding is rotational seeding, where a suspension of cells are implanted in

the center of a scaffold which is then rotated, so that further cell penetration is

achieved via centrifugal force. Although dynamic seeding via rotation can improve

the cell distribution within a scaffold in comparison to passive seeding, it can have

an adverse effect cell structure and can be time-consuming.

When an initial population of cells have been adequately distributed throughout

a scaffold, a bioreactor can be used to provide them with chemical and mechanical

regulatory signals required for cell differentiation, proliferation and other processes

(Zhao et al., 2016). A commonly used bioreactor is the stirred-tank, within which
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a seeded scaffold is suspended in a mixture that is stirred using mechanical blades.

Fresh mixture containing bio-chemicals and growth factors is supplied at the top of

the stirred-tank reactor, and spent nutrient and waste is filtered through the bottom.

One limitation of these bioreactors arises when the fresh medium is not well-stirred

throughout the tank. This can be resolved by increasing the speed at which the the

mixture is stirred; however, this can generate excessive shear forces that can have an

adverse effect on cell morphology and proliferation. Perfusion bioreactors are also

frequently employed and involve continuously passing nutrient through a chamber

containing a scaffold at its centre.

1.2 An overview of tumour growth

Cancer is a term used to describe a group of diseases occurring when abnormal cells

divide uncontrollably, often spreading to other parts of the body. As the second

leading cause of death worldwide, cancer has a significant impact on the health

of individuals and their families. Cancer also has a significant financial impact

on society and families, particularly in developing nations where access to cancer

treatment and prevention is limited and expensive (Shah et al., 2019).

A tumour is characterised by an abnormal mass of tissue that develops when

cells divide more frequently or die less frequently than they should (Patel, 2020).

Benign tumours are non-invasive, remain local to the site at which they first de-

veloped and often asymptomatic. Although benign tumours are not typically life

threatening, they may need to be surgically or cosmetically removed if they interfere

with bodily functions or cause discomfort. Some examples of benign tumours in-

clude warts and lipomas, which are characterised by a soft fatty lump that can form

between skin and muscle. Malignant (cancerous) tumours possess uncontrollably di-

viding cells. Unlike benign tumours, malignant tumours can rapidly grow and have

the potential to spread throughout the body (Patel, 2020). Carcinomas, the most

prevalent type of malignancies (McDaniel et al., 2020), account for approximately
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85% of all diagnoses and results from the growth of mutated epithelial tissue cells,

found on the outer lining of organs like the skin or kidneys. Sarcomas, on the other

hand, are less common and develop from cells in connective tissue like muscle or

tendons.

Medical intervention can often decrease the invasive potential of a malignant

tumour or entirely eradicate it, whilst minimising damage to surrounding healthy

tissue. In many cases, different types of treatment are used in conjunction to improve

their overall effectiveness (Mokhtari et al., 2017). The most common treatment

for solid tumours is surgery, whose aim is to remove a large volume of tumour.

Radiotherapy is another widely used treatment option, involving the localised use

of high-energy radiation to destroy or slow the growth of cancer cells. Radiation

can either be directed at a tumour via external beams, or by internal radiation

which involves placing a radioactive source inside the body near the tumour (Wang

et al., 2019). Another treatment is chemotherapy, whereby drugs provided orally

or intravenously kill cancer cells. Unlike surgery or radiotherapy, chemotherapy is

systemic and travels throughout the body before localising toward cancerous cells.

This can elicit a number of prolonged side effects including hair loss, nausea and a

weakened immune system. As well as intervention, prevention also plays a pivotal

part of cancer management in a population.

1.2.1 The in vivo tumour growth process

The formation of a solid, cancerous tumour is a complex and multi-step process,

and we now highlight the salient features of its development.

The initiation of tumour development describes the stage whereby the DNA

of cells are irreversibly damaged or mutated. This can arise by exposure to exter-

nal factors such as radiation, bacterial infection and carcinogens, or naturally, via

an incorrect DNA replication or hereditary predispositions (Teimouri et al., 2019).

These abnormalities can affect genes responsible for regulating processes such as cell
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Figure 1.2: Cross-section of a stained tumour spheroid from Monazzam et al. (2005).

division and motility, resulting in behaviours such as sustained proliferation or a re-

sistance to apoptosis (programmed cell death). Consequently, damaged or mutated

cells can initiate the formation of a solid tumour mass.

In the earliest stages of growth, the tumour is sufficiently small that all cells are

adequately nourished by nutrient obtained from the surrounding tissue by diffusion.

As the tumour grows, a limited amount of nutrient enters the core due to its con-

sumption by cells in the tumour rim. As such, the tumour interior contains dormant

cells which are in a reversible state of growth arrest (Ruksha, 2019), surrounded by

a layer of proliferating cells. A prolonged absence of nutrients from the core elicits

cell death and consequently a necrotic core, this surrounded by a layer of dormant

and then proliferating cells. Tumours in this stage of development are classified as

avascular and their growth saturates toward a size not typically exceeding 2 mm3

(Folkman, 1990). In figure 1.2, a cross-section of a tumour spheroid is provided,

which highlights the three-layer structure of an avascular tumour.

Although avascular tumours can remain benign, complications can arise when
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their malnourished cells release agents stimulating the development of blood vessels

into the tumour, a process known as angiogensis or vascularisation (Fam et al., 2003).

These blood vessels provide a new supply of nutrient to tumour cells, promoting

tumour expansion beyond the typical avascular saturation size of 2 mm3. These new

blood vessels formed by angiogensis also provide a means for metastasis, whereby

tumour cells enter the blood stream, spread through the body and initiate the

formation of secondary tumours.

1.2.2 in vitro tumour modelling

The effect that cancer has on the global population encourages vigorous scientific

research into its treatment and prevention. One such treatment method described

above are chemotherapy medications, which undergo evaluation on in vitro tumour

cultures to assess their toxicity and effectiveness prior to in vivo screening. In

addition to pharmaceutical research, scientists use in vitro tumour models to obtain

a more comprehensive understanding of the in vivo tumour micro-environment and

the complex mechanisms involved in cancer growth (Katt et al., 2016).

In vitro tumour growth can be achieved using a number of cell culturing meth-

ods, each with varying levels of complexity. Monolayer cultures are considered to

be a straightforward and inexpensive approach, which involves the growth of a shal-

low layer of cells on an artificial substrate. This monolayer environment provides

a homogeneous nutrient distribution and thus mainly consists of proliferating cells

(Edmondson et al., 2014). Another cell culture are multicellular tumour spheroids,

which often closely resemble the three-layer structure of an in vivo avascular tumour

(see figure 1.2 and the prior subsection). As such, multicellular spheroids can better

replicate in vivo responses to therapeutic agents than monolayer cultures (Shield

et al., 2014). However, both of these models lack a vascular network, which limits

their ability to provide any significant insight into the mechanisms giving rise to

angiogenesis.
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1.3 Mathematical background of tissue growth mod-
els

Extensive scientific research has been undertaken to understand the complex mech-

anisms underlying tissue growth. In this section, we examine various mathematical

models which have been used to investigate aspects of tissue engineering and tumour

growth.

1.3.1 Microscopic modelling

Some authors adopt a microscale approach toward tissue modeling, which can take

the form of cellular automaton systems that seek to model interactions between

a large number of individual cells (Vitvitsky, 2014; Lehotzky and Zupanc, 2019;

Youssef, 2015). These systems are most often represented by a two- or three-

dimensional grid partitioned into discrete elements, where each element represents a

different tissue constituent; for example, extra-cellular liquid or a tissue cell. From

an initial state, each element evolves based on a set of rules and the occupation of

its neighbouring elements. For example, if the element is occupied by a cell then it

can divide via mitosis, but not if all of the neighbouring elements are also occupied

by cells. Whilst automaton systems can track the behaviour of individual cells, they

can become computationally infeasible for tissue-scale simulations (Ermentrout and

Edelstein-Keshet, 1993).

Of particular relevance to in vitro tissue engineering, Chung et al. (2010) de-

veloped an automaton model representing cellular motility within a porous scaffold,

and shows that increased motility enhances cell proliferation. In this model, cells

migrate via a random walk; when two cell elements collide, a rule is imposed re-

quiring they remain stationary for a period of time. This mechanism represents the

contact behaviour observed in colliding connective tissue cells (Lackie, 1986) and

was responsible for localised cellular aggregation in the model. This model also con-

siders the effects of a nutrient via a continuum reaction-diffusion equation, which is
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represented on a lattice.

The effects of an avascular tumour receiving chemotherapy treatment at differ-

ent intervention times and concentrations is considered via a probabilistic cellular

automaton model in Pourhasanzade and Sabzpoushan (2019), In this model, the dis-

crete elements are distinguished between six different cell types which capture the

salient structure of avascular tumour growth. The chemotherapeutic effects on tu-

mour cells are modelled via three mechanisms: cell death, reduced probability of cell

proliferation and a reduced tumour carrying capacity. The relative importance of

an early intervention time over drug concentration is highlighted in Pourhasanzade

and Sabzpoushan (2019) by including the development of untreatable immune cells.

A review of microscale approaches to model tumour growth via cellular automata

is provided in Boonderick et al. (2010) and Macnamara (2021).

1.3.2 Ordinary differential equation modelling

In contrast to discrete systems, some authors adopt ordinary differential equation

(ODE) models to understand how various biological tissues develops.

Some of the earliest ODE models of tissue and tumour growth employ a single

equation to model a population of cells; see Murphy et al. (2016) for a review. One

such model is given by
dy

dt
= λy, (1.1)

where y(t) represents the number of cells and λ is the growth rate. Solving this

ODE indicates exponential growth of a population for positive λ. This characterises

the earliest stages of tumour growth, where all cells are adequently provided with

nutrient via diffusion from the surrounding vasculature. Whilst single ODE models

can capture salient features of tissue growth with a small number of parameters,

they can be considered over-simplified in comparison to other mathematical models

(Sachs et al., 2001). Additionally, Murphy et al. (2016) notes that, although single

ODE models of tumour growth can exhibit a good agreement with experimental
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data, they often provide an inaccurate prediction of any large-time behaviour.

A more complicated system of ODEs are developed in de Pillis et al. (2006),

which model the evolution of a tumour cell population in response to concentrations

of a chemo- and immuno-therapeutic drug. By identifying the stability properties

of the model equilibria, conditions for tumour growth or extinction are identified in

terms of parameters related to drug therapy. Additionally, the equilibrium repre-

senting tumour growth is shown to be unconditionally stable in the presence of one

drug-treatment, a combination of both treatments being required for tumour extinc-

tion. This highlights the need for simultaneous use of immuno- and chemo-therapies

to prevent a relapse in tumour growth post-treatment.

In Lemon et al. (2009), a system of ODEs are developed which describe the

vascularisation of a porous tissue engineering scaffold. A number of variables are

considered, two of which represent the density of healthy cells and capillaries. Anal-

ogous to de Pillis et al. (2006), Lemon et al. (2009) employs a stability analysis to

determine the extent to which the tissue structure will vascularise. It is shown that

cell death arising from inefficient vascularisation can be overcome by seeding the

scaffold with an appropriate density of vascular cells.

1.3.3 Continuum partial differential equation modelling

In contrast to ODE models, continuum models of tissue growth can track the spatial

evolution of tissue constituents by employing systems of partial differential equa-

tions. Whilst continuum models cannot track individual cells, they can be derived

by imposing up-scaling techniques, such as volume averaging or homogenisation,

on equations that govern cellular behaviour at a microscopic level (see section 1.4).

These continuum models may be exploited via relevant mathematical techniques to

determine relationships between parameters and model behaviours.

Some of the earliest continuum mathematics models of tissue growth examine
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the diffusive nature of substances moving through cells in order to investigate how

physiological processes such as oxygen transport and waste disposal affect tumour

growth (Hill, 1928; Thomlinson and Gray, 1955; Burton, 1966). For example, the

study by Greenspan (1972) models the principal structure of an avascular tumour by

incorporating the effects of a diffusive nutrient and a growth inhibitor. More recent

studies analyse how cells migrate within a tumour in response to various stimuli

(McElwain and Pettet, 1993; Thompson and Byrne, 1999). For example, Pettet

et al. (2001) determines how the concentration of nutrient present at the tumour

edge affects the migration of cancer cells in different regions of the tumour.

In Ward and King (1997), a system of partial differential equations are derived

to track the behaviour of living and dead cells in a tumour spheroid, whereby the

volume exchange between the two cell species drives the velocity field within the

tumour. In contrast to Greenspan (1972), Ward and King (1997) captures the ini-

tial exponential and then linear growth phases of the spheroid edge without making

a priori assumptions about the spheroid structure. Expressions for these growth

phases are obtained analytically via an asymptotic analysis motivated by consider-

ation of experimental parameter values. One limitation of the model developed in

Ward and King (1997) is the absence of eventual stalling of the spheroid edge, which

is subsequently addressed in Ward and King (1999) by incorporating mechanisms

representing the leakage and consumption of cellular material.

1.3.4 Multiphase modelling

Some authors adopt a multiphase approach to model the growth of a solid tumour

or a tissue construct (O’Dea et al., 2010; Tosin and Preziosi, 2010; Sciumè et al.,

2013). In contrast to some continuum approaches which model tissue as a homo-

geneous mass, such as Greenspan (1972), multiphase models allow the interaction

of different tissue constituents, and have been proposed to be a more natural mod-

elling framework for studying solid tumour and tissue growth than existing theories
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(Byrne et al., 2002).

For example, Byrne et al. (2002) developed a multiphase model which describes

the interaction between a motile cell and a inviscid liquid phase in an avascular tu-

mour; a detailed analysis of this model is provided in Breward et al. (2002), and

the cell phase in this model exhibits either travelling waves which propagate with

constant speed or a steady state, both of which are in agreement with experimental

observations. By neglecting viscous effects, the model of Byrne et al. (2002) re-

duces to a system of reaction-diffusion equations, where the diffusivity arises from a

mechanism representing cell motility. This provides a physical interpretation of the

diffusivity, which contrasts many other reaction-diffusion models of tumour growth

(Gattenby and Gawlinski, 1996), where ad hoc assumptions regarding cellular diffu-

sion are made. We note that a novel analysis of the model developed in Byrne et al.

(2002) is presented in chapters 3 and 4 of this thesis.

In Lemon et al. (2006), a multiphase moving boundary model of in vitro tissue

growth is developed and considers an arbitrary number of tissue constituents, i.e.

phases, each of which is governed by a mass and momentum balance equation.

Constitutive assumptions are defined representing cell growth and pressures arising

from cell-cell and cell-scaffold interactions. Attention of this model is then restricted

to an application of in vitro tissue engineering by considering the evolution of three

phases representing motile cells, an extra-cellular liquid and a porous scaffold. This

reduced model is used to investigate how mechanical pressures within growing tissue

influence the aggregation or dispersion of cells in a scaffold, and the existence of

these regimes are expressed in terms of the governing parameters. Lemon and King

(2007a) examine travelling-wave solutions of the three-phase model formulated in

Lemon et al. (2006), and find that in certain limits, the tissue propagates through

the scaffold at a constant speed as either a forward or backward travelling wave,

dependent on parameter values.

The three-phase model formulated in Lemon et al. (2006) is extended in Lemon
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and King (2007b) to investigate the effects of nutrient limitation on in vitro engi-

neered tissue. This was achieved by incorporating a concentration of nutrient at the

tissue edge which diffuses inward toward the scaffold core. Solutions of this model

indicate that net cell growth occurs only in a thin proliferating rim at the tissue

edge. Further into the scaffold interior, an inadequate concentration of nutrient re-

sults in a necrotic core. In Lemon and King (2007b), it was shown that reducing the

value of the cell-liquid drag increased cell motility, and hence mitigated the effects

of nutrient depletion.

In Green et al. (2009a), a multiphase description representing the in vitro ag-

gregation of liver cells is considered, comprising a cell phase and an extra-cellular

liquid phase. The density and displacement of an extra-cellular matrix on which the

cells were initially seeded is also considered. In contrast to Lemon et al. (2006) and

Lemon and King (2007a), the effects of cell mitosis and apoptosis were neglected in

Green et al. (2009a), due to the time-scale of cell aggregation being much shorter

than that of cell proliferation. Solutions of the model developed in Green et al.

(2009a) exhibit patterned solutions representing localised cell aggregates, whereby

cells form distinct regions of high-cell density that are separated by regions of zero

cell density. The results in Green et al. (2009a) suggest that the cell-matrix adhesion

strength should be reduced to promote the formation of larger aggregates.

1.4 Averaged mass transfer equations for two-phase
flow

Although microscopic modelling approaches can track the behaviour of cells, they

contain microscale detail and can become computationally infeasible for tissue-scale

simulations. In order to obtain equations that do not contain the precise details of

the flow, an averaging process is exploited to relate microscopic equations to their

continuum-based counterparts. In this section, we outline the method by which

equations that govern the flow of two microscopic phases can be spatially averaged
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so that each phase is well-defined everywhere in the material. In particular, we de-

rive the continuum conservation of mass equation from its microscopic counterpart,

which will be used to describe the transfer of mass between different constituents in

the following chapters.

1.4.1 Definitions and identities

We assume that each microscopic phase can be treated as a continuum, so that the

conservation of mass equation adequately describes its motion. This equation is

∂ρk

∂t
+ ∇ · (ρkvk) = 0, (1.2)

where ρk(x, t) is the density of the microscopic phase k ∈ {1, 2} and vk(x, t) is the

corresponding velocity field. The interface between the two phases is denoted by

∂V.

Before averaging (1.2), we state some definitions and results which are impor-

tant for the averaging procedure. Given a microscopic variable f(x, t), we define

its volume average as

⟨f⟩ = 1
V

∫
V

f dV (1.3)

where V is a closed and continuous control volume. This volume averaging operator

has the properties 〈
∂f

∂t

〉
= ∂

∂t
⟨f⟩, ⟨∇f⟩ = ∇⟨f⟩. (1.4)

These relations are known as Leibniz’s and Gauss’s rule respectively, and are rig-

orously derived in Drew and Passman (1998) with respect to the volume averaging

operator from (1.3).

It is instructive to isolate each phase from the whole material, V. To do this,

we define the indicator function

Ik(x, t) =


1 if x is in phase k at time t,

0 otherwise.

(1.5)
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The proportion of the volume occupied by phase k within V is defined as αk = ⟨Ik⟩

and shall be referred to as the volume fraction of phase k.

The quantities ∇Ik and ∂Ik/∂t will feature in the averaging of (1.2), and satisfy

the identities (Drew and Passman, 1998; Drew, 1983),

∇Ik = nkδ(x − xi, t), (1.6)

∂Ik

∂t
= −vi · ∇Ik, (1.7)

where nk is the unit normal pointing into the region within V occupied by phase k,

δ is the Dirac delta function and xi, vi ∈ ∂V. Following Drew and Passman (1998)

and Drew (1983), we now describe an approach to derive the first identity.

Since the quantity ∇Ik does not exist in a classical sense, we first multiply it

by a sufficiently smooth test function ϕ(x, t) which has compact support over space

and time, and then integrate by parts to obtain

∫
V ×R+

0

ϕ∇Ik dV dt =
∫
R+

0

[
Ikϕ

∣∣∣∣∣
V

−
∫

V
Ik∇ϕ dV

]
dt (1.8)

= −
∫

Vk×R+
0

∇ϕ dV dt, (1.9)

where Vk is the domain occupied by phase k, R+
0 = [0, ∞) and the first term on

the right hand-side of (1.8) is zero by definition of ϕ. By applying the divergence

theorem to (1.9), we find that

∫
Vk×R+

0

∇ϕ dV dt =
∫

∂V ×R+
0

nkϕ ∂V dt (1.10)

=
∫

V ×R+
0

nkδ(x − xi, t)ϕ dV dt, (1.11)

Finally, equating (1.11) with the left hand-side of (1.8), we obtain

∇Ik = nkδ(x − xi, t). (1.12)
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1.4.2 Averaged conservation of mass equation

Using the definitions and identities stated in the prior subsection, we now average

(1.2). Multiplying (1.2) by Ik and exploiting the product rule, we obtain

∂

∂t
(ρkIk) + ∇ · (ρkvkIk) = ρk

(
∂Ik

∂t
+ vk · ∇Ik

)
. (1.13)

Averaging this equation via (1.3) and appealing to the identities from (1.6) and (1.7)

we obtain

∂

∂t
⟨ρkIk⟩ + ∇ · ⟨ρkvkIk⟩ =

〈
ρknk(vk − vi)δ(x − xi, t)

〉
. (1.14)

The term on the right hand-side of (1.14) represents the inter-facial mass transfer

between each phase, i.e., when the velocity on the interface is non-zero, (vk−vi) ̸= 0,

then mass is transferred into the other phase via nkδ(x − xi, t). Following Drew

(1983), we define the phasic and mass-weighted average for the quantity f(x, t) as

f̃ = ⟨Ikf⟩
αk

, f̂ = ⟨Ikρkf⟩
αkρ̃k

. (1.15)

Combining these with (1.14), we obtain the macroscopic averaged conservation of

mass equation:
∂

∂t
(αkρ̃k) + ∇ · (αkρ̃kv̂k) = Γk, (1.16)

where Γk is equal to the right-hand side of (1.14).

1.5 Thesis objectives and structure

In this thesis, we present and analyse multiphase, moving boundary models of tissue

growth. We aim to analyse the effects of tissue mechanics, cell growth and nutrient

limitation on various tissue structures, and obtain novel mathematical results that

can be applied to a wide class of mathematical models.

In chapter 2, we derive a multiphase, moving boundary model to represent the

development of tissue in vitro in a porous tissue engineering scaffold. We consider a
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cell, extra-cellular liquid and a rigid scaffold phase, and adopt Darcy’s law to relate

the velocity of the cell and liquid phases to their respective pressures. Cell–cell and

cell–scaffold interactions which can drive cellular motion are accounted for by util-

ising relevant constitutive assumptions for the pressure in the cell phase. We reduce

the model to a nonlinear reaction–diffusion equation for the cell phase, coupled to

a moving boundary condition for the tissue edge, the diffusivity being dependent

on the cell and scaffold volume fractions, cell and liquid viscosities and parameters

that relate to cellular motion. Numerical simulations reveal that the reduced model

admits three regimes for the evolution of the tissue edge at large time: linear, log-

arithmic and stationary. Employing travelling-wave and asymptotic analysis, we

characterise these regimes in terms of parameters related to cellular production and

motion. The results of our investigation allow us to suggest optimal values for the

governing parameters, so as to stimulate tissue growth in an engineering scaffold.

Following this, in chapter 3, we analyse the multiphase, moving boundary model

of tumour growth developed in Byrne et al. (2002). We consider the evolution of

a motile, viscous cell phase and an inviscid extracellular liquid phase. We assume

that nutrient is abundantly distributed throughout the tumour, which is physically

relevant when considering the initial growth of a suspension of in vitro tumour cells

(Byrne et al., 2002). In contrast to the work presented in chapter 2, the velocity of

the cell and liquid phases are related to their respective pressures via momentum

balance equations. As such, the reduced mathematical model complexity increases

and comprises two partial differential equations that govern the cell volume fraction

and the cell velocity, together with a moving boundary condition for the tumour

edge. Numerical simulations of the model indicate that patterned solutions can

be obtained, which correspond to multiple regions of high cell density separated

by regions of low cell density. In other parameter regimes, solutions of the model

can develop into a forward- or backward-moving travelling wave, corresponding to

tumour growth or extinction, respectively. A travelling-wave analysis allows us to

find the corresponding wave speed, as well as criteria for the growth or extinction
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of the tumour. Furthermore, a stability analysis of these travelling-wave solutions

provides us with criteria for the occurrence of patterned solutions. We also discuss

how the initial cell distribution, as well as parameters related to cellular motion and

cell-liquid drag, control the qualitative features of patterned solutions.

In chapter 4 we revisit the multiphase model of tumour growth developed in

Byrne et al. (2002); however, in contrast to chapter 3, we now assume the presence

of a single diffusive concentration of nutrient within the tumour. As such, the model

consists of three partial differential equations governing the cell volume fraction, cell

velocity and nutrient concentration, in addition to a moving boundary condition for

the tumour edge. Via numerical simulations, we observe the emergence of forward-

moving travelling-wave solutions that agree with the qualitative structure of the in

vitro tumour spheroid presented in figure 1.2. A numerical and asymptotic anal-

ysis of the travelling-wave ordinary differential equations allow us to quantify the

tumour structure in terms of parameters related to nutrient distribution and tissue

mechanics. In other parameter regimes, the position of the tumour boundary decays

exponentially toward zero, which corresponds to tumour extinction. A bifurcation

analysis allows us to establish conditions for which these extinction-type solutions

are observed.

We conclude and discuss the work presented in this thesis in chapter 5, and

highlight a number of possible extensions.



Chapter 2

Travelling-Wave and Asymptotic
Analysis of a Multiphase Moving
Boundary model of Engineered
Tissue Growth

2.1 Introduction

In this chapter, we develop and analyse a continuum multiphase model that repre-

sents the development of tissue in vitro in an artificial scaffold. In our model, we aim

to capture key features of tissue growth and extinction whilst developing a tractable

formulation. In particular, we consider a porous flow description comprising a tis-

sue cell phase, extra-cellular liquid phase and a scaffold phase, the former two being

modelled as incompressible fluids and the latter as an inert solid. The velocity of

the cell and liquid phases are related to their respective pressures via Darcy’s law.

Tissue mechanics are accounted for by considering relevant constitutive assumptions

in a similar fashion to those presented in Lemon et al. (2006) and Lemon and King

(2007a). The model is reduced to a reaction-diffusion equation for the cell phase

and a moving boundary condition for the tissue edge, after which travelling-wave,

asymptotic and numerical methods are employed to deduce the resulting solution

behaviour.

This chapter is constructed as follows. In Section 2.2, we formulate and subse-

21
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quently reduce and non-dimensionalise the model. In Section 2.3, we present numer-

ical solutions to the reduced model, which reveal three regimes for the evolution of

the tissue edge at large time: linear, logarithmic and stationary. These numerical so-

lutions motivate the travelling-wave and asymptotic analyses conducted in Sections

2.4 and 2.5. In Section 2.6, we draw some conclusions regarding the behaviour of the

model and interpret the mathematical results in terms of the biological application.

2.2 Model development

We construct a multiphase model to describe the growth of a nutrient rich tissue

within a porous tissue engineering scaffold. For simplicity, we formulate the model

in a one-dimensional Cartesian geometry. The model consists of three phases: two

of which are fluid phases denoted by n(x, t) and w(x, t), and represent the volume

fraction of cells and extra-cellular liquid, respectively. A rigid, non-degradable scaf-

fold with uniform volume fraction s is the third phase and remains constant, the

porosity of the scaffold hence being given by 1 − s. Cell growth and death occur via

mass transfer between n and w. The phases satisfy the no voids volume constraint:

n + w + s = 1. (2.1)

The velocity fields vn(x, t) and vw(x, t), and pressures pn(x, t) and pw(x, t), are

associated with the phases n and w accordingly. The spatial domain of the tissue

evolves over time due to cellular motion, so we track it with a moving boundary,

x = L(t). In the subsections that follow, we state equations that govern mass transfer

between n and w, as well as provide constitutive assumptions for vn, vw, pn and pw

suitable to describe tissue growth in a scaffold. We state necessary initial and

boundary conditions for the variables and the moving boundary L(t), and simplify

and non-dimensionalise the model.
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2.2.1 Governing equations

We assume that cells proliferate and assemble daughter cells from the available

liquid, and that when cells die, they decompose and dissolve into the liquid phase.

In view of these processes, it is reasonable to follow Lemon et al. (2006), Byrne et al.

(2002), Breward et al. (2002) and Preziosi and Tosin (2003) (and many others) and

assume the densities of n and w to be equal. Following these assumptions, the mass

transfer equations can be represented as

∂n

∂t
+ ∂

∂x
(nvn) = Γ(n, w) and ∂w

∂t
+ ∂

∂x
(wvw) = −Γ(n, w), (2.2)

where Γ is the net rate of cell proliferation. Adding the equations from (2.2) results

in the overall conservation of mass condition

∂

∂x
[nvn + (1 − n − s)vw] = 0, (2.3)

where (2.1) has been used to eliminate the time derivative and to replace w with

1 − n − s.

Noting that n and w are modelled as fluids and s as a porous scaffold, we take

the interphase drags to be dominated by those with the scaffold and neglect that

between the tissue and liquid. In view of this, we apply Darcy’s law to relate the

velocity of the cell and liquid phases to their respective pressures. Following King

and Franks (2004) and Eyles et al. (2019), we take

vn = − K

µn(n, w)
∂pn

∂x
and vw = − K

µw(n, w)
∂pw

∂x
, (2.4)

where µn and µw represent the viscosity of the cell and liquid phases and K is the

permeability of the scaffold.

Remaining consistent with Lemon et al. (2006) and Lemon and King (2007a,b),

we relate the cellular and extra-cellular liquid pressures via

pn = pw + Σ(n, s), (2.5)
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where Σ represents extra pressures that arise due to cell-cell and cell-scaffold interac-

tions. Since the scaffold is assumed to be inert and of uniform porosity, we suppress

the dependence Σ has on s from hereon for brevity. We note that combining (2.5)

with the relations from (2.4) allows the elimination of pn and pw and provides

vn = µw

µn

vw − K

µn

∂Σ
∂x

. (2.6)

2.2.2 Initial and boundary conditions

Assuming the tissue to be symmetric about its centre (x = 0), we take

vn(x, t) = vw(x, t) = 0 at x = 0. (2.7)

Naturally, the cell volume fraction is identically zero at the edge of the tissue:

n(x, t) = 0 at x = L(t). (2.8)

The moving boundary L(t) moves with the cell velocity, hence

dL(t)
dt

= vn(L(t), t). (2.9)

The initial distribution of n and tissue boundary position respectively are denoted

by

n(x, 0) = n0(x) and L(0) = L0. (2.10)

2.2.3 Model reduction

We reduce the model to a reaction-diffusion equation and a moving boundary con-

dition. Integrating (2.3) and applying the boundary conditions from (2.7) provides

vn = −Φ(n)∂n

∂x
, where Φ = K(1 − n − s)

µn(1 − n − s) + µwn

dΣ
dn

. (2.11)
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Here, we note µn and µw are assumed to be independent of n for simplicity. Substi-

tuting (2.11) into the first of (2.2) provides the reaction-diffusion equation:

∂n

∂t
= ∂

∂x

(
nΦ(n)∂n

∂x

)
+ Γ(n, w). (2.12)

Combining (2.9) with (2.11) provides the moving boundary condition:

dL

dt
= −Φ(0)∂n

∂x
(L(t), t), (2.13)

where the boundary condition from (2.8) provides Φ(n) = Φ(0) at x = L(t). Finally,

(2.11) implies the boundary condition on vn from (2.7) becomes

Φ(n)∂n

∂x
= 0 at x = 0. (2.14)

2.2.4 Constitutive assumptions

We now define constitutive assumptions for Γ and Σ that are suitable to describe

tissue growth in a rigid scaffold. We assume that daughter cells are constructed via

mitosis using the available liquid, and that when cells die via apoptosis they dissolve

into the liquid. Thus, we take

Γ(n) = rmn(1 − n − s) − ran, (2.15)

where rm and ra are the positive constant rates of cell mitosis and apoptosis, and

(2.1) is used to replace w with 1 − n − s.

Following Lemon et al. (2006) and Lemon and King (2007a,b), an appropriate

expression for Σ(n) is

Σ(n) = δnn2

(1 − n − s) + νn︸ ︷︷ ︸
cell-cell interactions

+ δssn

(1 − n − s) − χs︸ ︷︷ ︸
cell-scaffold interactions

, (2.16)

for ν ∈ R and positive constants δn, δs and χ. The first term in (2.16) represents

repulsive forces exerted between the cells at high volume fractions, as characterised

by the singularity at n = 1 − s. The second term represents the propensity for cells
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to disperse or aggregate, with ν taking a positive or negative value accordingly. The

third term represents repulsive forces that occur due to cell-scaffold interactions,

whilst the fourth describes attractive forces between the cells and scaffold. For

simplicity, we take δ := δn = δs. We note that Φ(n) must be strictly positive

to prevent negative diffusion in (2.12) and nonlinear degeneracy in (2.13). This is

achieved when ν > 0, which is henceforth assumed. Physically, this corresponds to

a tendency for cells to spread through the scaffold (Lemon et al., 2006).

2.2.5 Non-dimensionalisation

We non-dimensionalise (2.12), (2.13) and the initial and boundary conditions from

(2.8), (2.10) and (2.14). By introducing the dimensionless variables

t̂ = rmt, x̂ =
√

rm

Φ(0)x, L̂ =
√

rm

Φ(0)L, (2.17)

the following dimensionless model results:

∂n

∂t̂
= ∂

∂x̂

(
nϕ(n)∂n

∂x̂

)
+ n(κ − n), 0 < x̂ < L̂, (2.18)

dL̂

dt̂
= −∂n

∂x̂
(L̂, t̂ ), (2.19)

ϕ(n)∂n

∂x̂

∣∣∣∣∣
x̂=0

= 0, n(L̂, t̂ ) = 0, L̂(0) = L̂0, n(x̂, 0) = n0(x̂), (2.20)

where κ = 1 − s − ra/rm and L̂0 = L0

√
rm/Φ(0). We also have

ϕ(n) = Φ(n)
Φ(0) = (1 − s)(1 − n − s)

(η(1 − s) + s)(1 + (µ − 1)n − s)

[
(1 − s)

(1 − n − s)2 + η − 1
]

(2.21)

where η = ν/δ and µ = µw/µn. In the following, we dispense with the hat notation

for clarity.

The parameter κ is shown in subsequent sections to be of crucial importance to

the qualitative features of the model solutions. Physically, κ represents the difference

between the scaffold porosity and the ratio between the cell death and growth rates.
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We note that the scaffold permeability parameter K, as seen in (2.11), is not present

in the non-dimensional model (2.18)–(2.20). However, the scalings selected in (2.17)

imply that the dimensional tissue boundary position increases with the scaffold

permeability.

2.2.6 Linear stability analysis and parameter values

A linear stability analysis around the spatially-uniform steady states of (2.18), n∞ =

0, κ, provides insight into the dependence of the model behaviour on κ and ϕ(n).

Neglecting the influence of the moving boundary condition on the stability of (2.18),

we linearise on a semi-infinite domain. We substitute n = n∞ + ε exp(iγx + λt)

into (2.18) for a perturbation wave number γ and growth rate λ where ε ≪ 1.

Considering terms of O(ε) only, the growth rate for perturbations of wave length

2π/γ is

λ = −n∞
[
γ2ϕ(n∞) + 2

]
+ κ. (2.22)

Since ϕ(n) is assumed to be positive for any n, the steady state n∞ = κ is stable for

all κ > 0. For n∞ = 0, we have λ = κ which indicates stability when κ < 0. In view

of this, we are primarily motivated to investigate (2.18)–(2.20) for different values

of κ, though variations in s, µ, and η will also be considered in part so as to deduce

their optimal values for the stimulation of tissue growth.

Unless otherwise stated, we take µ = η = 1 and we adopt the initial conditions

n0(x) = ω(1 − x2) and L0 = 1, (2.23)

so that ω denotes the cell volume fraction at x = 0. Following Lemon and King

(2007a,b), and unless otherwise stated, we set s = 0.2 and ω = 0.03, the former

corresponding to a scaffold with a porosity of 0.8 and is consistent with the experi-

mental study presented in Malda et al. (2004).
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2.3 Numerical results

We present and discuss the numerical solutions for n(x, t) and L(t) from the PDE

system (2.18)–(2.20), paying separate attention to the cases κ > 0, κ < 0 and κ = 0.

2.3.1 Numerical methods

For numerical convenience, we fix the moving boundary by introducing the variable

transform ξ = x/L(t) so that ξ ∈ [0, 1]. By the chain rule we have,

∂

∂t
7→ ∂

∂t
− ξ

L

dL

dt

∂

∂ξ
and ∂

∂x
7→ 1

L

∂

∂ξ
, (2.24)

which means (2.18)–(2.20) become

∂n

∂t
= ξ

L

dL

dt

∂n

∂ξ
+ 1

L2
∂

∂ξ

(
nϕ(n)∂n

∂ξ

)
+ n(κ − n), 0 < ξ < 1, (2.25)

dL

dt
= − 1

L

∂n

∂ξ
(1, t), (2.26)

∂n

∂ξ
(0, t) = 0, n(1, t) = 0, L(0) = L0, n(ξ, 0) = n0(ξ). (2.27)

We numerically integrate (2.25) and (2.26) by discretising first and second or-

der spatial derivatives using second order finite differences. Upwind finite differ-

ences were used for the second term of (2.25). Temporal derivatives are numerically

integrated by utilising ode23s in MATLAB. Specifically, we partition ξ ∈ [0, 1] uni-

formly so that ξi = i∆ξ for i = 0, . . . , N, where ∆ξ = 1/N and N +1 is the number

of spatial nodes and denote ni = n(ξi, t). The finite difference scheme corresponding
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to (2.25)–(2.27) is given by

∂n

∂t
= ξi

L

dL

dt
· ni+1 − ni

∆ξ
+ niϕ(ni)

(L)2 · ni+1 − 2ni + ni−1

(∆ξ)2 (2.28)

+ niϕ
′(ni) + ϕ(ni)

(L)2 ·
(

ni+1 − ni−1

2∆ξ

)2

+ ni(κ − ni), (2.29)

dL

dt
= − 1

L
· 3nN − 4nN−1 + nN−2

2∆ξ
, (2.30)

n0 = −4n1

3 + n2

3 , nN = 0, L(0) = L0, n(ξi, 0) = n0(ξi), (2.31)

where ′ ≡ d/dn.

2.3.2 Results

For κ = 0.3, as seen in Figure 2.1(a, b), we observe semi-infinite travelling waves

in n and linear growth in L after a period of transient growth from their initial

states. For κ = 0, as seen in Figure 2.1(c), we observe n decaying from the initial

data. Figure 2.1(d) shows unbounded growth in L. The inset shows L(t) and the

function ln(t)/
√

2 − 1 plotted against ln(t), from which we conclude that L grows

logarithmically at large time. For κ = −0.3, as seen in Figure 2.1(e), we observe

that n decays from the initial data more quickly than for κ = 0. The initial growth

of L shown in Figure 2.1(f) occurs due to the diffusion of n from the initial state;

however, we observe the eventual formation of a steady state. Numerical simulations

that are not included here suggest that travelling-wave and steady-state behaviour

is exhibited by (2.18)–(2.20) for all κ > 0 and κ < 0, respectively.

Clearly, the case in which κ > 0 corresponds to effective tissue growth. This

motivates a travelling-wave analysis of (2.18)–(2.20) for κ > 0 which is presented in

Section 2.4 where we express the speed of the tissue edge in terms of the governing

parameters. In Section 2.5, asymptotic solutions for n and L are found when 0 <

κ ≪ 1, so that the cell distribution and tissue speed are explicitly available. Whilst

the case κ < 0 results in tissue decay, an asymptotic analysis of (2.18)–(2.20) for this
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case is presented in Section 2.5. Overall, the results in this section suggest that κ > 0

must hold for tissue growth to occur, thus suggesting that tissue engineers should

ensure that the porosity of the scaffold is at least larger than the ratio between the

rate of cell death and growth.

2.4 Travelling-wave analysis for κ > 0

Figures 2.1(a,b) indicate the emergence of semi-infinite travelling waves of constant

speed for κ > 0. In light of this, we assume that for sufficiently large time, L ∼ ct

where c is the constant wave speed at which the tissue edge moves. In this section, we

employ travelling-wave analysis to obtain the wave speed c in terms of the governing

parameters when κ > 0.

2.4.1 Formulation

We transform (2.18)–(2.20) via the travelling-wave coordinates z = x − L ∼ x − ct

where z ∈ (−∞, 0]. Setting n(x − ct) = n(z), we obtain

−c
dn

dz
= d

dz

(
nϕ(n)dn

dz

)
+ n(κ − n), (2.32)

n(0) = 0, c = −dn

dz

∣∣∣∣∣
z=0

, lim
z→−∞

n(z) = κ, lim
z→−∞

ϕ(n)dn

dz
= 0. (2.33)

Following Fadai and Simpson (2020) and Fadai (2021) , we define

q(z) = ϕ(n)dn

dz
. (2.34)

Multiplying (2.32) by ϕ(n) and re-writing the conditions from (2.33) in terms of

q(z), we obtain

nϕ(n)dq

dz
= −q(c + q) − ϕ(n)n(κ − n), (2.35)

n(0) = 0, q(0) = −c, lim
z→−∞

n(z) = κ, lim
z→−∞

q(z) = 0. (2.36)
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Figure 2.1: Numerical solutions of the system of PDEs from (2.18)–(2.20). The green lines
in (a, c, e) represent the initial conditions n0(x) from (2.23), whereas the black lines represent n
for different values of t. The black arrows point in the direction of increasing time. The dashed
red line in (d) is given by ln(t)/

√
2 − 1 and highlights the logarithmic growth of L at large time.

Parameter values: L0 = µ = η = 1, ω = 0.03 and s = 0.2
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Here, we note the second boundary condition from (2.33) transforms into the second

of (2.36) because ϕ(0) = 1. Dividing (2.35) by (2.34) we have

dq

dn
= −q(c + q) + n(κ − n)ϕ(n)

qn
, (2.37)

q(κ) = 0, q(0) = −c. (2.38)

Using the shooting method to find the heteroclinic connection q(n) that connects

(n, q) = (κ, 0) to (0, −c), we can determine a numerical approximation of the wave

speed in terms of the governing parameters κ, s, µ and η.

2.4.2 Shooting method

We now formulate a numerical shooting method to find the wave speed c, as stated

in Section 2.4. To do this, we send trajectories of q(n) from (κ, 0) to find a trajec-

tory that connects to (0, −c). Computationally, it is more straightforward to shoot

trajectories forwards as opposed to backwards, and we hence introduce the change

of variable X = κ − n and obtain

dq

dX
= q(c + q) + X(κ − X)ϕ(κ − X)

q(κ − X) , (2.39)

q(0) = 0, q(κ) = −c. (2.40)

Noting that the end points are computationally singular, we use q(ζ) = −ζ and

q(κ − ζ) = −c where 0 < ζ ≪ 1 is some user-defined tolerance. We employ the

discrepancy function

E(c) = q c (κ − ζ) + c, (2.41)

where q c (κ − ζ) is the solution to (2.39) evaluated at X = κ − ζ for a trial wave

speed c. Equation (2.39) is numerically integrated with ode23s in MATLAB with

the initial condition q(ζ) = −ζ. Using fzero in MATLAB to find the zero of E(c),

the wave speed c and the corresponding heteroclinic trajectory q(X) is determined.

In the formulation above, the initial condition q(ζ) = −ζ is used for simplicity;

however, a more appropriate initial condition at X = ζ representing q(0) = 0 is



Chapter 2. Travelling-wave analysis for κ > 0 33

found via an asymptotic analysis of (2.39) for q, X ≪ 1. In these limits, (2.39)

provides

κq
dq

dX
∼ cq + κXϕ(κ). (2.42)

The asymptotic solution of this equation at X = ζ, and hence appropriate initial

condition representing q(0) = 0 is therefore given by

q(ζ) ∼
c +

√
c2 + 4κϕ(κ)

2κ
ζ, (2.43)

for ζ ≪ 1. In the following subsection, we present results using the initial condition

q(ζ) = −ζ for simplicity, given that the error in q(X) and corresponding wave speed

c obtained is insignificant compared to using the initial condition from (2.43).

2.4.3 Results

In Figure 2.2(a,b), the solid black line represents the relationships c(κ) and c(s)

respectively when (2.37) and (2.38) is approximated by the shooting method. The

dashed green line represents these wave speeds when obtained by numerically solv-

ing (2.18)–(2.20), and computing c by evaluating dL/dt at large time. In view of

the close agreement between these two approaches to computing c, we henceforth

concentrate on solutions provided by (2.37) and (2.38) for simplicity.

The results presented in Figure 2.2 suggest that larger κ and smaller s increase

the speed at which the tissue front grows, and since κ = 1 − s − ra/rm, this further

corresponds to minimising ra and maximising rm and the porosity of the scaffold.

In Figure 2.3(a, b) we present the wave speeds c(µ, η) for κ = 0.3 and κ = 0.7,

respectively. These results suggest that, for a fixed value of κ, the wave speed is

maximised when µ, η → 0. Physically, this corresponds to the case where the viscos-

ity of the cells is much greater than the viscosity of the liquid, and where repulsive

forces exerted due to cell-cell and cell-scaffold interactions at high cell volume frac-

tions dominate inter-cellular forces that give rise to cell dispersal. Furthermore,

Figure 2.3(a, b) indicates that the dependence c has on µ is weaker for κ = 0.3 than
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Figure 2.2: Numerical solutions for the wave speeds c(κ) and c(s). The solid black and
dashed green lines represent approximations sought by numerically solving (2.37) and (2.38) us-
ing a shooting method and the system from (2.18)–(2.20), respectively. Parameter values for (a):
µ = η = L0 = 1, s = 0.2 and ω = 0.03. Parameter values for (b): µ = η = L0 = 1, ra/rm = 0.2
and ω = 0.03

κ = 0.7. This suggests that for smaller κ, cell-cell and cell-scaffold interactions which

can drive cellular motion are more prominent in controlling the wave speed than the

cell and liquid viscosities. Additionally, and in agreement with Figure 2.2(a), Figure

2.3 indicates that the wave speed increases as κ increases.

2.5 Asymptotic analysis for |κ| ≪ 1

In this section, we construct asymptotic solutions for n(x, t) and L(t) for |κ| ≪ 1

when t ≫ 1. Since scaffold porosity is an experimentally readily-controllable pa-

rameter (in contrast to cell growth and death), the analysis in this section when

κ = 1 − s − ra/rm > 0 can be associated to the case in which the scaffold porosity

is low and tissue growth is successful, so that 0 < κ ≪ 1.

The numerical results in Figures 2.1(c, e) indicate that n ≪ 1 holds for κ < 0

when t ≫ 1. Furthermore, given that max{n} = κ when κ > 0, n ≪ 1 is also

expected when 0 < κ ≪ 1 for sufficiently large time. We therefore have ϕ(n) ∼

ϕ(0) = 1 when |κ| ≪ 1, so that (2.18) becomes

∂n

∂t
= ∂

∂x

(
n

∂n

∂x

)
+ n(κ − n), 0 < x < L(t), (2.44)
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(a) (b)

Figure 2.3: Numerical solutions for the wave speeds c(µ, η) for κ = 0.3 and κ = 0.7 sought
by numerically solving (2.37) and (2.38) using a shooting method. s = 0.2 was used for both
sub-figures. We note that the colour axes are different in each sub-figure.

for κ = 0 and |κ| ≪ 1.

To aid the subsequent asymptotic analysis, we seek equations related to (2.44)

and the moving boundary condition from (2.19) which are independent of κ, via the

similarity reductions

T = f(t), n = g(T )N(x, T ). (2.45)

By the chain and product rule of differentiation, (2.45) provides

∂

∂t
7→ ∂

∂T

df

dt
,

∂n

∂t
= df

dt

[
g(T )∂N

∂T
+ N

dg

dT

]
. (2.46)

In view of this, (2.44) and (2.19) provide, upon grouping like terms,

df

dt
g(T )∂N

∂T
+
[

df

dt

dg

dT
− κg(T )

]
N = g2(T ) ∂

∂x

(
N

∂N

∂x

)
− g2(T )N2, (2.47)

df

dt

dL

dT
= −g(T )∂N

∂x
(L, T ). (2.48)

We eliminate the term in the square brackets from (2.47), and then subsequently

eliminate f ′(t) and g(T ) from (2.47) and (2.48), by enforcing that

df

dt

dg

dT
− κg(T ) = 0,

df

dt
= g(T ), (2.49)



Chapter 2. Asymptotic analysis for |κ| ≪ 1 36

the solution of which is given by

g(T ) = κT + C1, f(t) = C2e
κt − C1

κ
. (2.50)

We enforce the desirable properties that T = 0 and N = n when t = 0 by satisfying

f(0) = 0 and g(0) = 1, the solution of which provides C1 = 1 and C2 = 1/κ. In

summary, by noting that g(t) = eκt, and introducing the variables n = eκtN(x, T )

and T = (eκt − 1)/κ, (2.44) and (2.19) are simplified to

∂N

∂T
= ∂

∂x

(
N

∂N

∂x

)
− N2, 0 < x < L(T ), (2.51)

dL

dT
= −∂N

∂x
(L, T ), (2.52)

which are independent of κ, as desired.

To analyse the behaviour of (2.51), we follow Newman (1980) and adopt the

ansatz

N = A(T ) − B(T ) cosh(λx), (2.53)

for some constant λ, wherein 0 < B < A ≪ 1. Imposing N(L, T ) = 0 on (2.53), we

obtain

L(T ) = λ−1 cosh−1
(

A

B

)
. (2.54)

Substituting (2.53) into (2.51), we obtain

dA

dT
− dB

dT
cosh(λx) = −A2 − λ2B2 + 3ABλ2 cosh(λx) +

(
λ2 − 1

2

)
cosh2(λx), (2.55)

whereby choosing λ = 1/
√

2 and equating like terms yields

dA

dT
= −A2 − B2

2 ,
dB

dT
= −3AB

2 . (2.56)

In this section, initial conditions for N and L are chosen to satisfy (2.53) and (2.54)

when T = 0 – i.e.,

N(x, 0) = A0 − B0 cosh
(

x√
2

)
, L(0) = L0 (2.57)

where A(0) = A0, B(0) = B0 and hence L0 =
√

2 cosh−1(A0/B0).
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2.5.1 Implicit solutions for N(x, T ) and L(T )

Implicit solutions for N and L are found by using the system of ODEs from (2.56)

and expressing (2.54) as
A

B
= cosh

(
x√
2

)
, (2.58)

from which the large-time solutions for N and L can be deduced. First, we compute

A(B) by dividing the first from (2.56) by the second to obtain

dA

dB
= 2A2 + B2

3AB
, (2.59)

the solution of which is

A(B) = B
√

1 + C3B−2/3, C3 = A2
0 − B2

0

B
4/3
0

. (2.60)

Then, substituting this into the second from (2.56) and solving for B(T ), we obtain

K
√

K2 + 1 − sinh−1(K) = C
3/2
3 T + C4, K(T ) =

√
C3

B1/3 , (2.61)

where C4 is a constant of integration. Combining the second of (2.61) with (2.60),

we obtain

K(T ) =

√√√√(A

B

)2

− 1. (2.62)

Combining (2.62) with (2.61), and exploiting (2.58) we obtain an implicit solu-

tion for L(T )

sinh(
√

2L) −
√

2L = αT + β, (2.63)

where α = 2B−2
0 (A2

0 − B2
0)3/2 and β = sinh(

√
2L0) −

√
2L0. An implicit solution for

N can be found by first writing (2.53) as

N(x, T ) = B

[
A

B
− cosh

(
x√
2

)]
= B

[
cosh

(
L√
2

)
− cosh

(
x√
2

)]
(2.64)

where (2.58) has been used to re-write the A/B term. A result for B(T ) is found

by equating the second from (2.61) with (2.62) and using (2.58). We find that

B(T ) = α

2 csch3
(

L√
2

)
, (2.65)
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so that (2.64) becomes

N(x, T ) = α

2 csch3
(

L√
2

)[
cosh

(
L√
2

)
− cosh

(
x√
2

)]
. (2.66)

2.5.2 Large-time behaviour of N(x, T ) and L(T )

We now deduce the large-T behaviour of N(x, T ) and L(T ), from which the large-

time behaviour of n(x, t) and L(t) when |κ| ≪ 1 can subsequently be determined.

Guided by the numerical results from Figure 2.1(d), the evolution of L satisfies

L ≫ L0 for sufficiently large T , so we have from (2.63) that

e
√

2L

2 −
√

2L = αT + O(1), (2.67)

which is then inverted to give

L(T ) ∼ ln(2αT )√
2

(
1 + 1

αT

)
(2.68)

for T ≫ 1. Equation (2.66) and the leading-order term in the above expansion are

used to find the following large-T approximation for N :

N(x, T ) ∼ T −1 −
√

2
α

cosh
(

x√
2

)
T −3/2. (2.69)

We now exploit (2.69) and (2.68) to deduce the large-time behaviour of n(x, t) and

L(t) when |κ| ≪ 1.

2.5.3 Large-time behaviour of n(x, t) and L(t)

When 0 < κ ≪ 1, then n(x, t) takes the form of a travelling wave of constant speed

and L ≫ L0 for t ≫ 1. In contrast, when κ < 0, the numerical results in Figure

2.1(f) suggest that L → L∞ as t → ∞ for some finite constant L∞. In general, a

large-time solution for L is unavailable given that L∞ ≫ L0 does not necessarily

hold when t ≫ 1; however, when |κ| ≪ 1, then t = T to leading order at t = O(1),

and L evolves according to (2.68) until t = O(1/|κ|). Therefore, since L ≫ L0 when
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|κ| ≪ 1 and t ≫ 1, (2.68) becomes

L ∼ 1√
2

ln
(

2α(eκt − 1)
κ

)(
1 + κ

α(eκt − 1)

)
(2.70)

for |κ| ≪ 1 and t ≫ 1. Equation (2.70) implies that L ∼ κt/
√

2 when 0 < κ ≪ 1

and t ≫ 1. Therefore, travelling waves propagate with speed c ∼ κ/
√

2 when 0 <

κ ≪ 1, this being in agreement with the numerical results from Figure 2.2(a). For

0 < κ ≪ 1, (2.70) also indicates that the growth of the tissue edge is logarithmic

until t = O(1/κ) and linear thereafter. If tissue growth is successful, this suggests

the formation of travelling waves with constant speed is delayed when the scaffold

porosity is low. When κ < 0, the exponential terms from (2.70) are negligible as

t → ∞ and we obtain

L∞ ∼ 1√
2

ln
(

2α

|κ|

)(
1 + |κ|

α

)
(2.71)

when κ < 0 and |κ| ≪ 1.

The leading order logarithmic terms in (2.70) and (2.66) are used to find the

following large-time approximations for n when |κ| ≪ 1 :

n ∼ κ −
√

2κ3

α
cosh

(
x√
2

)
e−κt/2 for 0 < κ ≪ 1, (2.72)

n ∼ |κ|e−|κ|t

1 − e−|κ|t

[
1 −

√√√√ 2|κ|
α(1 − e−|κ|t) cosh

(
x√
2

)]
for κ < 0 & |κ| ≪ 1.

(2.73)

We note that (2.70) and (2.72) hold for κ = O(1) if µ ≪ 1 and η ≫ 1 because

L ≫ L0 and ϕ(n) ∼ 1 in this case. Furthermore, for κ < 0 and |κ| = O(1), then

(2.66) suggests that n = O(eκt) at large time since L∞ = O(L0). In Figures 2.4 and

2.5, we compare the numerical solution for n and L when obtained by numerically

solving the PDE system from (2.18)–(2.20) for κ = 0.001 and κ = −0.001 against

their respective asymptotic solutions from (2.72), (2.73) and (2.70). Overall, an

excellent agreement between the numerical and asymptotic solutions is observed.

The large-T behaviour for N and L characterised by (2.68) and (2.69), and hence the

asymptotic approximations from this sub-section, are only valid for initial conditions
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Figure 2.4: Numerical solution (solid black line) of the PDE system from (2.18)–(2.20) vs
asymptotic solution (dashed green line) from (2.72) and (2.70) for n (a) and L (b) for κ = 0.001.
Solutions for n are presented on t ∈ [6000, 10000] at intervals of 1000. Initial conditions for the
numerical simulations were chosen to satisfy (2.53) and (2.54). Parameter values: µ = η = 1, s =
0.2, A0 = 0.05 and B0 = 0.01

that satisfy (2.53) and (2.54). We now show that solutions of (2.51) and (2.44)

converge to solutions similar to that of (2.68) and (2.69) for a wider class of initial

data.

2.5.4 Convergence of asymptotic solutions

Since the choice of initial cell distribution within the scaffold is likely to vary sub-

stantially in practice, it is important to determine the large-T behaviour of N and L

for a wider class of initial data, such as those from (2.23). The asymptotic behaviour

of (2.51) as T → ∞ comprises an interior layer near the interface within which the

similarity reduction N ∼ T −1f(θ) holds where θ = x − L and L = b ln(T ), so that

f(θ) satisfies

−b
df

dθ
= d

dθ

(
f

df

dθ

)
+ f(1 − f). (2.74)

Following familiar arguments to that of the Porous Fisher Equation (Aaronson, 1980;

Murray, 2002), although we emphasise that N is not a travelling wave of the usual

form, the solution to (2.74) is given by

f = 1 − eθ/
√

2, b = 1√
2

. (2.75)
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Figure 2.5: Numerical solution (solid black line) of the PDE system from (2.18)–(2.20) vs
asymptotic solution (dashed green line) from (2.73) and (2.70) for n (a) and L (b) for κ = −0.001.
Solutions for n are presented on t ∈ [8000, 10000] at intervals of 500. Initial conditions for the
numerical simulations were chosen to satisfy (2.53) and (2.54). Parameter values: µ = η = 1, s =
0.2, A0 = 0.05 and B0 = 0.01

For x = O(1), setting

N = T −1 + G(x, T ) (2.76)

implies that
∂G

∂T
= T −1 ∂2G

∂x2 − 2T −1G, (2.77)

the solution to which that matches into the exponential terms in (2.75), and hence

the corresponding term in the interior layer, is given by

G = −m cosh
(

x√
2

)
T −3/2 (2.78)

for some unknown constant m, and this dominates the asymptotic behaviour of

(2.77) as T → ∞. Therefore, (2.76) becomes

N ∼ T −1 − m cosh
(

x√
2

)
T −3/2 (2.79)

where m depends on the initial data. Since N(L, t) = 0, (2.79) implies that

L ∼
√

2 cosh−1
(√

T

m

)
∼ 1√

2
ln
(

4T

m2

)
(2.80)

for T ≫ 1. By comparing (2.79) and (2.69), we see that the asymptotic structure is

retained despite the initial cell distribution for large T. In addition, (2.80) suggests

that the choice of initial cell distribution does not affect the speed at which the tissue
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Figure 2.6: Numerical solution (solid black line) of the PDE system from (2.51) and (2.44)
vs asymptotic solution (dashed red line) from (2.79) and (2.80) for n and L for different initial
conditions N(x, 0) and L0 = 1. Solutions for n are presented on T ∈ [6000, 10000] at intervals
of 1000. The values of m in (a) and (b) are selected to provide a good agreement between the
asymptotic and numerical solutions.

edge moves for large T , but does affect the position of the tissue boundary. We note

that if N(x, 0) is chosen to satisfy (2.53), then (2.69) indicates that m =
√

2/α.

In Figure 2.6, we compare the numerical solutions for N and L when obtain by

numerically solving the PDE system from (2.51) and (2.44) against the asymptotic

solutions from (2.79) and (2.80) for two choices of N(x, 0) and L0 = 1. The value

of L0 was found by solving N(L0, 0) = 0. For both N(x, 0), we are able to choose

an m that provides excellent agreement between the numerical and asymptotic so-

lutions. We note that the large-time behaviour for n(x, t) and L(t) when κ = 0

can be extracted directly from (2.79) and (2.80) given that N = n when κ = 0 and

limκ→0 T = t. This justifies the numerical results observed Figure 1(c, d).

2.6 Conclusions

In this chapter, we present a multiphase model to represent the development of

tissue in vitro within a porous tissue engineering scaffold. We consider a tissue cell

phase, extra-cellular liquid phase and a scaffold phase, and adopt Darcy’s law to

relate the velocity of the cell and liquid phases to their respective pressures. The
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model includes mechanisms to represent cell growth and death, and pressures that

arise from cell-cell and cell-scaffold interactions. We employ a moving boundary,

x = L(t), to track the speed at which the tissue edge propagates through the scaf-

fold. We reduce the model to a nonlinear reaction-diffusion equation for the cell

volume fraction, n(x, t), and a moving boundary condition for the tissue edge. The

diffusivity of the reaction-diffusion equation is dependent on the cell and scaffold

volume fractions; cell and liquid viscosities, and pressures that arise from cell-cell

and cell-scaffold interactions. Non-dimensionalisation of the model shows that the

tissue boundary position increases with the scaffold permeability, and exposes im-

portant dimensionless groupings. One such grouping, κ, that describes the difference

between the scaffold porosity and the ratio between the cell death and growth rates

is of crucial importance to the qualitative features of the cell phase evolution. The

model admits three regimes for the evolution of the cell volume fraction and the

moving boundary, based on the sign of κ. Employing travelling-wave and asymp-

totic analysis, we characterise these regimes in terms of κ and parameters related

to cellular motion.

The case in which κ > 0 corresponds to the successful growth of tissue, which

suggests that tissue engineers should ensure that the porosity of the scaffold is at

least larger than the ratio between the rate of cell death and growth. For κ > 0,

we show that the cell volume fraction, n(x, t), spreads through the scaffold as a

semi-infinite travelling wave with constant speed, emerging from the steady state

n = κ. Employing travelling-wave analysis, we accurately compute the wave speed

(i.e., the speed at which the tissue edge moves through the scaffold) as a function

of the governing parameters. We find that the wave speed is greatest when the rate

of apoptosis is negligible in comparison to that of mitosis and when repulsive forces

exerted due to cell-cell and cell-scaffold interactions at high cell volume fractions

dominate inter-cellular forces that give rise to cell dispersal. We also find that the

wave speed increases as the scaffold porosity increases; however, we note that the

cells will require a sufficient amount of scaffold on which to attach, so an upper bound
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on the porosity is to be expected. Furthermore, we deduce that for smaller values

of κ, and hence scaffolds with small porosities, cell-cell and cell-scaffold interactions

which can drive cellular motion are more prominent in controlling the wave speed

than the cell and liquid viscosities.

For |κ| ≪ 1, we employ asymptotic analysis to find explicit solutions for n

and L. Since scaffold porosity is a readily-controllable parameter (in contrast to cell

growth and death), the analysis in this section when κ = 1 − s − ra/rm > 0 can

be associated to the case in which the scaffold porosity is low and tissue growth

is successful, so that 0 < κ ≪ 1. When |κ| ≪ 1, the growth of the tissue edge is

logarithmic until t = O(1/κ) and linear thereafter, thus suggesting the formation

of travelling waves with constant speed is delayed as κ → 0+, and hence when the

scaffold porosity is low. For κ < 0, we deduce that the cell volume fraction decays

exponentially with rate κ at large time, with the moving boundary tending towards

a steady state. For κ < 0 and |κ| ≪ 1, the evolution of the L is shown to be

logarithmic until t = O(1/κ) and approaches a steady state thereafter, the value of

which is found explicitly and related to κ and the initial conditions employed in the

model. For |κ| ≪ 1, we also demonstrated that the choice of initial cell distribution

does not affect the eventual distribution of cells within the scaffold, nor the speed

at which the tissue edge moves, but does affect the position of the tissue boundary.

The model developed in this chapter, while tractable and simplified, highlights

some important results that may provide a basis for optimising in vitro growth and

culture conditions. For instance, we find that tissue growth only occurs when the

scaffold porosity is larger than the ratio between the rate of cell death and growth.

Consequently, we advise that tissue engineers consider utilising scaffolds with the

maximum available pore space, bearing in mind that there is an upper limit to

allow for proper cell-scaffold attachment. Furthermore, our findings indicate that

the growth rate of the tissue is quickest when the cellular viscosity is larger than that

of the liquid. To optimize growth conditions, it is therefore advisable to minimize

the viscosity of the growth medium. Moreover, if feasible, it is advantageous to
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select a cell line with a higher viscosity.

For a functional tissue construct to develop within a scaffold, cells must be ex-

posed to the correct environment and stimulated with growth factors such as oxygen.

There must also be a sufficient amount of scaffold on which the cells can adhere.

Whilst key features of tissue growth such as cell mitosis, apoptosis and motion are

included in this chapter, concepts such as environmental pressures, cellular adhe-

sion, and nutrient supply have not been considered. Therefore, following Lemon

and King (2007a), a natural extension of this work would include examining the

influence that nutrient limitation has on cell growth. We leave these extensions for

future consideration.



Chapter 3

Pattern Formation and Travelling
Waves in a Multiphase Moving
Boundary Model of Tumour
Growth

3.1 Introduction

In this chapter, we analyse patterned and travelling-wave solutions of the multiphase,

moving boundary model developed in Byrne et al. (2002). This model describes solid

tumour growth, and considers the evolution of a motile, viscous cell phase and an

inviscid extra-cellular liquid phase, both of which are modelled as incompressible

fluids. Tissue mechanics, cellular growth and a mechanism to represent cell-liquid

drag are accounted for by considering relevant constitutive assumptions in a similar

fashion to those in Byrne et al. (2002) and Breward et al. (2002).

The tumour growth model of Byrne et al. (2002) analysed in this and the

subsequent chapter consists of mass and momentum balance equations, and are

similar to those derived in Lemon et al. (2006) which describe tissue engineering.

In contrast to the model of Byrne et al. (2002), the model of Lemon et al. (2006)

has been analysed extensively in the context of travelling waves (Lemon and King,

2007a) and nutrient limitation (Lemon and King, 2007b) – this provides a motivation

for switching application from tissue engineering (see chapter 2) to tumour growth.

46
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Following King and Franks (2004), we assume that nutrient is abundantly dis-

tributed throughout the tumour. In the context of in vivo tumour growth, this

assumption is physically relevant where the tumour is in the initial stage of growth

and all cells are adequately nourished (Franks and King, 2003). This nutrient-rich

assumption is also appropriate when considering the initial growth of a suspension

of in vitro tumour cells (Byrne et al., 2002). Whilst the model developed in Byrne

et al. (2002) pertains to both in vivo and in vitro tumour growth, we emphasise that

the mathematical results obtained in its analysis can be applied to a wider class of

multiphase tissue growth models, such as that in Lemon and King (2007a).

The chapter is constructed as follows. In section 3.2, the model from Byrne

et al. (2002) is stated and subsequently simplified and non-dimensionalised. Follow-

ing this, some exemplar numerical solutions of the model are presented in section

3.3, which exhibit patterned solutions and forward- and backward-moving travelling

waves. In section 3.4, a travelling-wave analysis is presented. This allows us to

find the speed of travelling waves, as well as criteria for the growth or extinction of

the tumour. We also present a stability analysis of these travelling-wave solutions

in section 3.4 and thereby obtain criteria for when patterned solutions can occur.

In section 3.5, we neglect the effect of the moving tumour edge and determine the

stability of a spatially-uniform steady state. A comparison between the results of

the travelling-wave and spatially-uniform stability analysis allows us to suggest that

the moving boundary does not contribute to the formation of spatial patterns. In

section 3.6, we examine the qualitative features of patterned solutions. We find

that the initial cell distribution and the value of the cell-liquid drag have a more

significant effect on the features of patterns, in comparison to the strength of forces

generated by cellular motion. In section 3.7, we briefly discuss and analyse a param-

eter regime substantiated by experimental data in which the model can be reduced

to a system of nonlinear ordinary differential equations. Finally, in section 3.8, we

discuss the behaviour of the model and highlight the mathematical and biological

results obtained in its analysis.
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3.2 Model development

In this section, we state the two-phase model developed in Byrne et al. (2002) which

describes the growth of a solid tumour. Following King and Franks (2004), we as-

sume that nutrient is abundantly distributed throughout the tumour; see section 3.1

for a discussion regarding the biological relevance of this assumption. For simplicity,

we formulate the model in a one-dimensional Cartesian geometry.

The tumour model of Byrne et al. (2002) consists of two phases, denoted by

n(x, t) and w(x, t), that represent the volume fraction of cells and extracellular

liquid, respectively. These phases satisfy the no-voids volume constraint

n + w = 1. (3.1)

The velocity fields vn(x, t) and vw(x, t), pressures pn(x, t) and pw(x, t) and stress

tensors σn(x, t) and σw(x, t) are associated with the phases n and w, accordingly.

We model the cell and liquid phases as viscous and inviscid fluids, respectively. The

spatial domain of the tumour evolves over time due to cellular motion, so the volume

fractions n and w evolve on the moving domain 0 ≤ x ≤ L(t), where x = 0 and

x = L(t) denote the tumour core and tumour edge, respectively. The model is

developed by considering mass and momentum balances for each phase, assuming

that the phases are incompressible with equal density, and by neglecting inertial

effects.

3.2.1 Governing equations

As in section 2.2.1, we assume that cells assemble daughter cells from the available

liquid, and that when cells die, they decompose and dissolve into the liquid phase.

In view of these processes, we assume the densities of n and w to be equal, so that

the mass transfer equations can be represented as

∂n

∂t
+ ∂

∂x
(nvn) = Γ(n, w) and ∂w

∂t
+ ∂

∂x
(wvw) = −Γ(n, w), (3.2)
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where Γ is the net rate of cell proliferation. Adding the equations from (3.2) results

in the overall conservation of mass condition

∂

∂x
[nvn + (1 − n)vw] = 0, (3.3)

where (3.1) has been used to eliminate the time derivative and to replace w with

1 − n.

To develop momentum balance equations, we follow Breward et al. (2002) and

assume that the Reynolds number corresponding to the flow is Re ≈ 10−2, so that

inertial effects may be neglected. Furthermore, we assume that momentum due to

mass transfer is negligible and that no external forces act on the tumour. Follow-

ing these assumptions, the momentum balance equations are merely force balance

equations given by

∂

∂x
(nσn) + Fnw = 0,

∂

∂x
(wσw) + Fwn = 0, (3.4)

where Fnw describe the forces exerted on the cells by the liquid, and vice versa. By

Newton’s second law we have Fnw = −Fwn, which means the sum of the conditions

from (3.4) provides
∂

∂x
(nσn + (1 − n)σw) = 0, (3.5)

where (3.1) has been used to replace w with 1 − n. Remaining consistent with

Breward et al. (2002) and Byrne et al. (2002), we relate the cellular and extra-

cellular liquid pressures via

pn = pw + Σ(n), (3.6)

where Σ represents extra pressures that arise due to cell-cell interactions.

3.2.2 Constitutive assumptions

We now define constitutive assumptions for σn, σw, Fwn, Σ and Γ that are suitable

to describe tumour growth. As noted above, we assume that the cell and liquid

phases are both incompressible, and are viscous and inviscid fluids, respectively. In



Chapter 3. Model development 50

view of this, we set

σn = −pn + µ
∂vn

∂x
, σw = −pw, (3.7)

where µ represents the viscosity of the cell phase. We assume that Fwn consists of

contributions due to pressure and drag, so that

Fwn = pw
∂w

∂x
+ χnw(vn − vw), (3.8)

where χ represents the value of the interphase drag between the cells and the liquid.

We note that the first term of (3.8) describes forces exerted by phase n on phase w,

the factor of ∂w
∂x

is necessary to counter interfacial stress arising from the first term

in the second equation from (3.7), i.e. the stress generated by the passive liquid

phase w coming into contact with itself.

We assume that daughter cells are constructed via mitosis using the available

liquid, and that when cells die via apoptosis they dissolve into the liquid. Thus, we

take

Γ(n) = rmn(1 − n) − ran, (3.9)

where rm and ra are the positive constant rates of cell mitosis and apoptosis, and

(3.1) is used to replace w with 1 − n.

Following Byrne et al. (2002) and Green et al. (2009b), an appropriate expres-

sion for Σ(n) is

Σ(n) = τ
n(n − ϕ)
(1 − n) , (3.10)

where 0 < ϕ < 1 is the natural packing density of the cells and τ represents the

cells’ affinity for the natural packing density Breward et al. (2002). When n > ϕ, the

cells’ membranes experience stress, and the cells will repel each other to relieve it.

This repulsion becomes large as the available space for the cells decreases, which is

reflected in the singularity at n = 1. When n < ϕ, the cells will attract one another,

due to their filopodia coming into contact (Breward et al., 2002). Necessarily, we

have Σ(0) = 0.



Chapter 3. Model development 51

3.2.3 Initial and boundary conditions

Assuming the tissue to be symmetric about its centre (x = 0), we take

vn(x, t) = vw(x, t) = 0 at x = 0. (3.11)

At the moving boundary, we follow Breward et al. (2002) and allow the free passage

of the liquid, so that

pw(x, t) = 0 at x = L(t). (3.12)

Furthermore, we assume that the tumour edge is stress free, so that σn(L(t), t) = 0.

In view of this, a combination of (3.7), (3.6) and (3.12) provides

µ
∂vn

∂x
= Σ(n) at x = L(t). (3.13)

The moving boundary L(t) moves with the cell velocity, hence

dL(t)
dt

= vn(L(t), t). (3.14)

The initial distribution of n and tissue boundary position respectively are denoted

by

n(x, 0) = ni(x) and L(0) = L0. (3.15)

Various choices for ni(x) are made throughout the chapter.

3.2.4 Model reduction

We now combine and simplify some of the equations discussed in this chapter. Inte-

grating (3.3) with respect to x and then imposing the first two boundary conditions

from (3.11) we obtain

vn = −1 − n

n
vw. (3.16)

Substituting the relations from (3.7) into (3.5), integrating with respect to x and

using the boundary conditions from (3.12) and (3.13), we obtain

pw = µn
∂vn

∂x
− nΣ(n). (3.17)
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Now, substituting (3.8), (3.16) and (3.17) into the first of (3.4) provides

µ
∂

∂x

(
n

∂vn

∂x

)
− ∂

∂x

[
nΣ(n)

]
− χ

nvn

1 − n
= 0. (3.18)

3.2.5 Non-dimensionalisation

We non-dimensionalise the reduced model, namely the first from (3.2), (3.18), the

first from (3.11), (3.13), (3.14) and (3.15). By introducing the dimensionless vari-

ables

t̂ = τ

µ
t, x̂ = x

L0
v̂n = µ

τL0
vn, L̂ = L

L0
, (3.19)

the following dimensionless model results:

∂n

∂t̂
+ ∂

∂x̂
(nv̂n) = Γ̂(n), 0 < x̂ < L̂, (3.20)

∂

∂x̂

(
n

∂v̂n

∂x̂

)
− ∂

∂x̂

[
nΣ̂(n)

]
− κ

nv̂n

1 − n
= 0, 0 < x̂ < L̂, (3.21)

dL̂

dt̂
= v̂n(L̂, t̂), (3.22)

∂v̂n

∂x̂

∣∣∣∣∣
x̂=L̂

= Σ̂(n)
∣∣∣∣∣
x̂=L̂

, v̂n(0, t̂) = 0, n(x̂, 0) = ni(x̂), L̂(0) = 1, (3.23)

where

Γ̂(n) = r̂mn(1 − n) − r̂an, Σ̂(n) = Σ(n)
τ

, (3.24)

and r̂m = rmµ/τ, r̂a = raµ/τ and κ = χL2
0/µ. In the proceeding, we dispense with

the hat notation for clarity.

Throughout this chapter, we assume that ra < rm so that there is net cell

growth. As shown in Byrne et al. (2002) and Breward et al. (2002), combining

(3.20), (3.22) and the first from (3.23) at x = L(t) provides the autonomous ordinary

differential equation (ODE) for n along characteristic curves of x = L(t) :

dnL

dt
= Γ(nL) − nLΣ(nL), (3.25)

where nL = n(L, t), so that if rm > ra, then nL ∼ n∞ for sufficiently large time,
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where Γ(n∞) − n∞Σ(n∞) = 0. In subsequent large-time analysis, we may therefore

replace the first boundary condition from (3.23) with

n = n∞ or ∂vn

∂x
= Σ(n∞) at x = L(t). (3.26)

3.3 Numerical results

To illustrate the behaviour of the model from (3.20)–(3.23), we present and discuss

some numerical solutions on the moving domain 0 ≤ x ≤ L(t).

3.3.1 Numerical methods

To obtain numerical solutions of (3.20)–(3.23), we fix the moving boundary by

scaling x with L(t) as ξ = x/L(t), so that ξ ∈ [0, 1], and the model becomes

∂n

∂t
= 1

L

∂n

∂ξ

(
ξ

dL

dt
− vn

)
− n

L

∂vn

∂ξ
+ Γ(n), (3.27)

1
L2

∂

∂ξ

(
n

∂vn

∂ξ

)
− 1

L

∂

∂ξ

[
nΣ(n)] − κ

nvn

1 − n
= 0, (3.28)

dL(t)
dt

= vn(1, t). (3.29)

1
L

∂vn

∂ξ
(1, t) = Σ(n)

∣∣∣∣∣
ξ = 1

, vn(0, t) = 0, n(ξ, 0) = ni(ξ), L(0) = 1.

(3.30)

We spatially discretise (3.27) and (3.28) using finite differences. Upwind or down-

wind finite differences are used for the first term on the right-hand side of (3.27),

the direction of which is determined by the sign of the quantity in the brackets. The

equations from (3.27) and (3.29) are then numerically integrated in time using the

function ode23s in MATLAB, which uses a third order Runge-Kutta method.

For spatial discretisation, we partition ξ ∈ [0, 1] uniformly so that ξi = i∆ξ

for i = 0, . . . , N, where ∆ξ = 1/N and N + 1 is the number of spatial nodes. In
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the discussion that follows, we denote ni(t) = n(ξi, t) and vi(t) = vn(ξi, t) The finite

difference scheme corresponding to (3.27), (3.29) and (3.30) for i = 0, . . . , N are

then given by

∂ni

∂t
=
(
ξivN − vi

)
· 1

L∆ξ


ni+1 − ni if ξivN − vi > 0 or i = 0,

ni − ni−1 if ξivN − vi < 0 or i = N,

− ni

2L∆ξ
·



4v1 − v2 if i = 0,

vi+1 − vi−1 if i = 1, . . . , N − 1,

vN−2 − 4vN−1 + 3vN if i = N,

+ Γ(ni),

(3.31)

dL

dt
= vN , (3.32)

vN = 2∆ξLΣ(nN) + 4vN−1 − vN−2

3 , v0 = 0. (3.33)

The equations from (3.31) and (3.32) are then numerically integrated in time using

the function ode23s in MATLAB, which uses a Runge-Kutta method.

Using central discretisations for both first- and second-order derivatives, the

finite difference scheme corresponding to (3.28) for i = 2, . . . , N − 2 is given by

ni

(L)2 · vi+1 − 2vi + vi−1

(∆ξ)2 + 1
(L)2 · ni+1 − ni−1

2∆ξ
· vi+1 − vi−1

2∆ξ

− 1
L

· ni+1 − ni−1

2∆ξ
· F (ni) − κ

nivi

(1 − ni)
= 0.

(3.34)

This equation can be rearranged to give

Aivi+1 + Bivi + Civi−1 + Di = 0, (3.35)
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where

Ai = 4ni + ni+1 − ni−1

4(L)2(∆ξ)2 , Bi = − 2ni

(L)2(∆ξ)2 − κni

(1 − ni)
,

Ci = 4ni − ni+1 + ni−1

4(L)2(∆ξ)2 , Di = −ni+1 − ni−1

2S∆ξ
F (ni).

(3.36)

The finite difference schemes corresponding to (3.28) for i = 1 and i = N − 1 are

found by imposing the first two boundary conditions from (3.33) onto (3.35), and

are given by

A1v3 + B1v2 + D1 = 0, (3.37)(
4AN−1

3 + BN−1

)
︸ ︷︷ ︸

= ΥB
N−1

vN−1 +
(

CN−1 − AN−1

3

)
︸ ︷︷ ︸

= ΥC
N−1

vN−2 + 2AN−1L∆ξΣ(nN)
3 + DN−1︸ ︷︷ ︸
= ΥD

N−1

= 0,

(3.38)

respectively. The solution to vi is obtained by assembling (3.35), (3.37) and (3.38)

into the matrix-vector form Mv = f, where v = (v1, . . . , vi, . . . , vN−1)T , f =

−
(
D1, . . . , Di, . . . , ΥD

N−1

)T
, and M is a tri-diagonal matrix of size (N −2)×(N −2)

given by

M =



B1 A1

C2 B2 A2

. . . . . . . . .

Ci Bi Ai

. . . . . . . . .

CN−2 BN−2 AN−2

ΥC
N−1 ΥB

N−1



. (3.39)

The vector v is found by computing v = M−1f. The Thomas algorithm is used to

compute M−1 since M is tri-diagonal, via the built-in function tridiag.

3.3.2 Results

In this subsection we fix rm = 0.3, ra = 0.2 and κ = 100, and pay particular

attention to three exemplar values of ϕ that generate patterned and forward- and
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backward-moving travelling-wave solutions. Since the tumour is nutrient-rich and

all cells are adequately nourished, we take n to be near-uniform when t = 0, and

adopt the initial conditions ni(x) = 1
3 + 0.05 sin(15πx). This also accounts for small

fluctuations in the cell density across the tumour. We note that the choice of ni(0) =
1
3 arises from the far-field value of n in travelling-wave coordinates as considered in

Section 3.4, and is chosen here for convenience.

In Fig. 3.1(a, b), we present n and vn when ϕ = 0.2, where we observe forward-

moving travelling waves and linear growth in L, after an initial period of transient

growth from the initial cell distribution. In contrast, Fig. 3.1(c, d) illustrate n and

vn when ϕ = 0.5, where we observe backward-moving travelling waves and linear

recession in L. As the tumour vanishes, the position of the tumour edge decays

exponentially towards zero, as shown in Fig. 3.1(d). Notably, the case in which

ϕ = 0.2 corresponds to tumour growth, whereas ϕ = 0.5 corresponds to the retreat

and eventual extinction of the tumour. This motivates a travelling-wave analysis

of the PDE model (3.20)–(3.23) which is provided in Section 3.4, where we express

the speed of the tumour edge in terms of the model parameters and obtain explicit

criteria for whether the wave grows or retreats.

In Fig. 3.1(e, f), we present n and vn when ϕ = 0.85. After a period of tran-

sient growth from the initial data, n(x, t) exhibits a patterned solution comprising

multiple regions of high density (shown in yellow), which we term cell peaks. These

peaks are sharply separated by regions of low cell density (shown in blue). The max-

imal volume fraction of all cell peaks is approximately equal to n(L, t), where from

(3.25) we have n(L, t) ∼ n∞ for t ≫ 1. As highlighted by the velocity profiles, cells

in low density regions migrate up gradients of n toward regions of high cell density,

due to attractive forces experienced between them when Σ(n) < 0. This attraction

results in the contraction of the tumour, and consequently the eventual extinction

of the tumour. Nevertheless, the patterned solutions observed prior to extinction

retain a degree of biological relevance. For example, and as described in a similar

multiphase model of tissue growth (Green et al., 2009b), the inherent structural
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Figure 3.1: Numerical solutions of the PDE system from (3.20)–(3.23) for three values of ϕ. The
black lines in (a, c, e) represent n(x, t) at indicated fixed times, while the colour maps in (b, d, f)
represent n(x, t) across a temporal interval. The pink arrows point in the direction of increasing
time. Parameter values: rm = 0.3, ra = 0.2, κ = 100 and ϕ = 0.2 (a, b), ϕ = 0.5 (c, d) and
ϕ = 0.85 (e, f).
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instability of a suspension of in vitro tumour cells with a spatially-patterned struc-

ture could lead to its break-up, and consequently the formation of separate tumour

spheroids. Parameter regimes in which we expect pattern formation, that could be

indicative of break-up, are presented in Section 3.4 by determining the instability of

travelling-wave solutions.

3.4 Travelling-wave solutions and stability analy-
sis

In this section, we use travelling-wave analysis to obtain the speed at which the

tumour either advances or retreats in terms of the model parameters. We also

present regions of parameter space in which travelling-wave solutions are linearly

unstable in t, which indicate when patterned solutions are expected.

3.4.1 Formulation

We write the PDE system from (3.20)–(3.23) in terms of the variable L(t) = L(t)/
√

κ

and coordinate z =
√

κx−L(t), where L ∼ ct and z ∈ (−∞, 0]. Here, c is the scaled

wave speed, i.e. the speed of travelling waves observed in a simulation of (3.20)–

(3.23) is c/
√

κ. Setting n ≡ n(z, t) and vn ≡ v(z, t)/
√

κ, we obtain

∂n

∂t
− ∂n

∂z

dL

dt
+ ∂

∂z
(nv) = Γ(n) − ∞ < z ≤ 0, (3.40)

∂

∂z

(
n

∂v

∂z

)
− ∂

∂z
[nΣ(n)] − nv

1 − n
= 0 − ∞ < z ≤ 0, (3.41)

dL(t)
dt

= v(0, t), n(0, t) = n∞,
∂

∂z
v(0, t) = Σ(n∞), lim

z→−∞
v(z, t) = 0.

(3.42)

We note that since κ does not appear in (3.40)–(3.42), the value of the cell-liquid

drag does not determine the stability or direction of travelling waves.
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3.4.2 Determining the stability of travelling waves

To determine the stability of travelling waves, we introduce the perturbations

n(z, t) ∼ N(z) + n1(z, t), vn(z, t) ∼ V (z) + v1(z, t), L(t) ∼ ct + L1(t), (3.43)

where |n1|, |v1|, |L1| ≪ 1, so that to leading order, (3.40)–(3.42) provide the system

of travelling-wave ODEs

−c
dN

dz
+ d

dz
(NV ) = Γ(N), (3.44)

d
dz

(
N

dV

dz

)
− d

dz

[
NΣ(N)] − NV

1 − N
= 0, (3.45)

V (0) = c, N(0) = n∞,
d
dz

V (0) = Σ(n∞), lim
z→−∞

V (z) = 0. (3.46)

Details of the numerical methods employed to find approximations of N(z), V (z)

and c, are presented shortly in subsection 3.4.3. In view of the perturbations from

(3.43), the system (3.40)–(3.42) provides the linearised problem

∂n1

∂t
− c

∂n1

∂z
− dN

dz

dL1

dt
+ ∂

∂z
(Nv1 + V n1) = G(N)n1, (3.47)

∂

∂z

(
dV

dz
n1 + N

∂v1

∂z

)
− H(N)dN

dz
n1 − F (N)∂n1

∂z
− n1V

(1 − N)2 − Nv1

1 − N
= 0, (3.48)

dL1(t)
dt

= v1(0, t), n1(0, t) = 0,
∂

∂z
v1(0, t) = 0, lim

z→−∞
v1(z, t) = 0.

(3.49)

Here, G(n) = d
dn

Γ(n), F (n) = d
dn

[
nΣ(n)

]
and H(n) = d

dn
F (n), where Γ(n) and Σ(n)

are stated in (3.9) and (3.10), respectively.

To determine whether the perturbations n1, v1 and L1 grow or decay with t,

we set

n1(z, t) = η(z)eλt, v1(z, t) = β(z)eλt, L1(t) = ℓeλt, (3.50)

where ℓ is a constant and λ is the growth rate. If ℜ(λ) > 0 or ℜ(λ) < 0, then the

solution triple (N, V, c) is unstable or stable in t, respectively. Substituting (3.50)
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into (3.47)–(3.49), we obtain the autonomous system of ODEs

λη − ℓλN ′ − cη′ + Nβ′ + N ′β + V ′η + V η′ = G(N)η, (3.51)

V ′′η + V ′η′ + Nβ′′ + N ′β′ − H(N)N ′η − F (N)η′ − V η

(1 − N)2 − Nβ

1 − N
= 0,

(3.52)

β(0) = ℓλ, η(0) = 0, β′(0) = 0, lim
z→−∞

β(z) = 0, (3.53)

where ′ ≡ d
dz

. To obtain λ, we discretise (3.51)–(3.53) using finite differences and

assemble the resulting linear system into an eigenvalue problem for λ. Using the

function eig in MATLAB, we obtain the corresponding set of eigenvalues and isolate

the pair with the largest real part, Λ = max
[
ℜ(λ)

]
. If Λ > 0, travelling-wave

solutions are unstable in t, then (3.20)–(3.23) may exhibit patterned solutions. If

Λ < 0, we expect (3.20)–(3.23) to exhibit stable travelling-wave solutions. Details

of the numerical methods employed to obtain the value of Λ are described in the

following subsection.

Before presenting the results relating to the travelling-wave speed and criteria

for pattern formation, we present the numerical methods employed to solve the

travelling-wave ODEs from (3.44)–(3.46) as well as the eigenvalue problem from

(3.51)–(3.53).

3.4.3 Numerical methods for the travelling-wave ODEs, equa-
tions (3.44)–(3.46)

In this section, we present the numerical methods used to determine N(z), V (z)

and c from (3.44)–(3.46).
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Formulation

For numerical purposes, we express (3.44)–(3.46) as a system of three, first order

ODEs by introducing the variables U(z) = V ′(z) where ′ ≡ d/dz. We obtain

N ′(z) = Γ(N) − NU

V − c
, (3.54)

V ′(z) = U, (3.55)

U ′(z) = V

1 − N
+ (F (N) − U)(Γ(N) − NU)

N(V − c) , (3.56)

V (0) = c, N(0) = n∞, U(0) = Σ(n∞), lim
z→−∞

N(z) = α, (3.57)

where α = 1−ra/rm. The fourth from (3.57) is obtained by combining the conditions

limz→−∞ V (z) = 0 and limz→−∞
dN
dz

= 0 (the latter being necessary for a travelling-

wave solution to exist) with (3.44) to provide Γ(N) → 0 as z → −∞. The system

from (3.54)–(3.57) is computationally singular at z = 0 because of the boundary

condition V (0) = c and the right-hand side of (3.54) and (3.56). In view of this,

we consider the leading edge of the wavefront to be z = −δ where δ is sufficiently

small such that the solution converges. We numerically integrate (3.54)–(3.57) on

z ∈ [−Z, −δ] in MATLAB using the function bvp5c which uses a fifth-order, implicit

Runge-Kutta method.

We impose the boundary conditions from (3.57) as z → −∞ at z = −Z, where

Z is sufficiently large such that the solution converges. The Taylor expansions of

N(z) and V (z) around z = 0

N(z) ∼ n∞ + N ′(0)z, V (z) ∼ c + Σ(n∞)z, U(z) ∼ Σ(n∞) + U ′(0)z (3.58)

are used as boundary conditions at z = −δ. The values of N ′(0) and U ′(0) are found
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by combining (3.54) and (3.57) at z = 0 and employing L’Hôpital’s rule, so that

N ′(0) = n∞c

(F (n∞) + Σ(n∞) − ΓN)(n∞ − 1) , (3.59)

U ′(0) = c[ΓN − 2Σ(n∞)]
(F (n∞) + Σ(n∞) − ΓN)(n∞ − 1) , (3.60)

where ΓN = d
dn

Γ(n∞). The unknown value of c is obtained as an eigenvalue in bvp5c.

Slow wave speed (|c| ≪ 1) asymptotic analysis

The function bvp5c requires an initial approximation of the solutions N, V and c

satisfying (3.54)–(3.57) in order to converge. For this, we use asymptotic solutions

valid when |α − n∞| ≪ 1. When |α − n∞| ≪ 1, then |c| ≪ 1, and we linearise N

and V around their far-field values, lim
z→−∞

N(z) = α and lim
z→−∞

V (z) = 0. Following

Lemon and King (2007a), we introduce the perturbations

N ∼ α + εN1, V ∼ εV0, c ∼ εc0, (3.61)

where |ε| = |α − n∞| ≪ 1 and (N1, V0, c0) = O(1). The perturbations N1 and V0

satisfy

α
dV0

dz
= G(α)N1, (3.62)

α
d2V0

dz2 − dN1

dz
F (α) − αV0

1 − α
= 0, (3.63)

lim
z→−∞

V0(z) = 0, lim
z→−∞

N1(z) = 0, N1(0) = −1, V0(0) = c0. (3.64)

where G(n) = d
dn

Γ(n) and F (n) = d
dn

[
nΣ(n)

]
. Combining (3.62) and (3.63) provides

γ
d2V0

dz2 − V0 = 0, where γ = 1 − α

G(α)
[
G(α) − F (α)

]
, (3.65)

so that

N1 = −ez/
√

γ, V0 = km
√

γez/
√

γ, c0 = km
√

γ. (3.66)

These asymptotic solutions are used as initial guesses of N, V and c from (3.54)–

(3.57). For more general parameter values, such as those presented in Fig. 3.4(a),
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the method of parameter continuation is used.

3.4.4 Numerical methods for the eigenvalue problem, equa-
tions (3.51)–(3.53)

In this section, we present the numerical methods used to determine the set of

discrete eigenvalues λ associated with the linear system from (3.51)–(3.53). As

stated above, to obtain λ, we discretise (3.51)–(3.53) using finite differences and

assemble the resulting linear system into an eigenvalue problem for λ. From this,

we isolate the pair of eigenvalues with the largest real part, Λ = max
[
ℜ(λ)

]
.

We partition the truncated domain z ∈ [−Z, 0] uniformly, so that zj = −Z +

j∆z for j = 0, . . . , K, where ∆z = Z/K denotes the grid spacing and K + 1 is

the number of nodes. We denote the travelling-wave solutions (obtained using the

methods described in section 3.4.3) by Nj = N(zj) and Vj = V (zj), and the unknown

perturbations by ηj = η(zj) and βj = β(zj). We note that the approximations of

N(z) and V (z) are obtained on a non-uniform grid via bvp5c as described in section

3.4.3, and are interpolated to be compatible with the uniform grid used in this

section. To simplify the notation of the discrete eigenvalue problem, we introduce

the notation

N
′

j := d
dz

N(zj) ≈ 1
2∆z



−3N0 + 4N1 − N2 if j = 0,

Nj+1 − Nj−1 if j = 1, . . . , K − 1,

NK−2 − 4NK−1 + 3NK if j = K,

(3.67)

V
′

j := d
dz

V (zj) ≈ 1
2∆z



−3V0 + 4V1 − V2 if j = 0,

Vj+1 − Vj−1 if j = 1, . . . , K − 1,

VK−2 − 4VK−1 + 3VK if j = K.

(3.68)

The notation N ′
j and V ′

j will be used in place of the explicit finite difference quotients
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stated in (3.67) and (3.68).

We discretise the derivatives of η(z) and β(z) using central finite differences.

The boundary conditions from (3.53) become

βK = ℓλ, ηK = 0, βK = 4βK−1 − βK−2

3 , β0 = 0. (3.69)

Using the first and third of (3.69), the constant ℓ can be removed from the second

term of (3.51) by writing ℓλ = (4βK−1 − βK−2)/3. The finite difference scheme

corresponding to (3.51)–(3.52) for j = 2, . . . , K − 2 is given by

ληj = A1
jηj+1 + A0

jηj + A−1
j ηj−1 + B1

j βj+1 + B0
j βj + B−1

j βj−1 +
N

′
j

3
(
4βK−1 − βK−2

)
,

(3.70)

P 1
j ηj+1 + P 0

j ηj + P −1
j ηj−1 + Q1

jβj+1 + Q0
jβj + Q−1

j βj−1 = 0, (3.71)

such that

A1
j = c − V j

2∆z
, A0

j = G(N j) − V
′

j , A−1
j = Vj − c

2∆z
,

B1
j = − Nj

2∆z
, B0

j = −N
′

j , B−1
j = Nj

2∆z
,

P 1
j =

V
′

j

2∆z
− F (Nj)

2∆z
, P 0

j = V
′′

j − H(Nj)N
′

j − Vj

1 − Nj

, P −1
j = −

V
′

j

2∆z
+ F (Nj)

2∆z
,

Q1
j = Nj

(∆z)2 +
N

′
j

2∆z
, Q0

j = − 2Nj

(∆z)2 − Nj

1 − Nj

, Q−1
j = Nj

(∆z)2 −
N

′
j

2∆z
.

By combining (3.70) and the boundary conditions from (3.69), the finite difference

schemes corresponding to (3.51) for j = 1 and j = K − 1 are given by

λη1 = A1
1η2 + A0

1η1 + B1
1β2 + B0

1β1 + N
′
1

3
(
4βK−1 − βK−2

)
, (3.72)

ληK−1 = A0
K−1ηK−1 + A−1

K−1ηK−2

+
(

B0
K−1 + 4B1

K−1
3 + 4N

′
K−1
3

)
︸ ︷︷ ︸

= Υ0
K−1

βK−1 +
(

B−1
K−1 −

B1
K−1
3 −

N
′
K−1
3

)
︸ ︷︷ ︸

= Υ−1
K−1

βK−2,

(3.73)
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respectively. The finite difference schemes corresponding to (3.52) for j = 1 and

j = K − 1 are

P 1
1 η2 + P 0

1 η1 + Q1
1β2 + Q0

1β1 = 0, (3.74)

P 0
K−1ηK−1 + P −1

K−1ηK−2 +
(

Q0
K−1 + 4Q1

K−1
3

)
︸ ︷︷ ︸

= Θ0
K−1

βK−1 +
(

Q−1
K−1 −

Q1
K−1
3

)
︸ ︷︷ ︸

= Θ−1βK−1

βK−2 (3.75)

We assemble (3.70), (3.71) and (3.72)–(3.75) into the generalised eigenvalue

problem

λY1f = Y2f (3.76)

where f =
(
η1, . . . , ηj, . . . , ηK−1, β1, . . . , βj, . . . , βK−1

)T
and

Y1 =

I 0

0 0


2(K−2)×2(K−2)

, Y2 =

A B

P Q


2(K−2)×2(K−2)

. (3.77)

Here, the sub-matrices 0 and I are the zero- and identity matrices of size (K − 2) ×

(K − 2) respectively. The sub-matrices A, B, P , Q are given by

A =



A0
1 A1

1

A−1
2 A0

2 A1
2

. . . . . . . . .

A−1
j A0

j A1
j

. . . . . . . . .

A−1
K−2 A0

K−2 A1
K−2

A−1
K−1 A0

K−1



(K−2)×(K−2)

, (3.78)
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B =



B0
1 B1

1 −N
′
1

3
4N

′
1

3

B−1
2 B0

2 B1
2 −N

′
2

3
4N

′
2

3
. . . . . . . . . ... ...

B−1
j B0

j B1
j −N

′
j

3
4N

′
j

3
. . . . . . . . . ... ...

B−1
K−2 B0

K−2−
N

′
K−2

3 B1
K−2+

4N
′
K−2
3

Υ−1
K−1 Υ0

K−1



(K−2)×(K−2)

,

(3.79)

P =



P 0
1 P 1

1

P −1
2 P 0

2 P 1
2

. . . . . . . . .

P −1
j P 0

j P 1
j

. . . . . . . . .

P −1
K−2 P 0

K−2 P 1
K−2

P −1
K−1 P 0

K−1



(K−2)×(K−2)

, (3.80)

Q =



Q0
1 Q1

1

Q−1
2 Q0

2 Q1
2

. . . . . . . . .

Q−1
j Q0

j Q1
j

. . . . . . . . .

Q−1
K−2 Q0

K−2 Q1
K−2

Θ−1
K−1 Θ0

K−1



(K−2)×(K−2)

. (3.81)

We obtain the discrete set of eigenvalues λ from the generalised eigenvalue problem

(3.76) by using the function eig in MATLAB. From this, we isolate the pair of

eigenvalues with the largest real part, Λ = max
[
ℜ(λ)

]
.

Before presenting results relating to the criteria for pattern formation, we now

briefly illustrate the discrete eigenvalues obtained by solving the eigenvalue problem
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Figure 3.2: The discrete spectrum obtained from (3.76) illustrating the eigenvalues λ with the
largest real part for ϕ = 0.7 (a), ϕ = 0.8 (b) and ϕ = 0.9 (c). Parameter values: rm = 0.4, ra =
0.2, K = 1500 and Z = 15.

(3.76) on the truncated domain z ∈ [−Z, 0] where Z = 15. In figure 3.2, we present

the discrete spectrum obtained from (3.76), truncated to highlight the eigenvalues

with the largest real-part for three different values of ϕ. As seen in figure 3.2(a),

there are no eigenvalues such that ℜ(λ) > 0 when ϕ = 0.7, which indicates the PDE

system from (3.20)–(3.23) will exhibit stable travelling-wave solutions. In contrast,

figure 3.2(b, c) illustrates that there exists eigenvalues such that ℜ(λ) > 0 when

ϕ = 0.8 and ϕ = 0.9, indicating that the PDE system (3.20)–(3.23) can exhibit

patterned solutions. In figure 3.3, we present the real-part of the three discrete

eigenvalues with the largest real-part (λ1, λ2, λ3) obtained from (3.76) as a function

of the number of nodes and a fixed set of parameter values (see caption). This figure

illustrates that ℜ(λ1, λ2, λ3) converge as the number of nodes increase.
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Figure 3.3: An illustration of the convergence of the three eigenvalues obtained from (3.76)
with the largest real-part for K ∈ [400, 2000]. Parameter values: rm = 0.4, ra = 0.2, ϕ = 0.9 and
Z = 15.

3.4.5 Results

In this subsection, we present and discuss the criteria for pattern formation obtained

from (3.51)–(3.53), as well as the travelling-wave speed obtained from (3.44)–(3.46).

We first describe the results presented in Fig. 3.4(a). The solid black line represents

the neutral stability curve Λ = 0 obtained numerically from (3.51)–(3.53) as de-

scribed above, for a fixed value of ra. Regions in which travelling-wave solutions are

unstable (Λ > 0) or stable (Λ < 0) are indicated. In Fig. 3.4(a), we also present the

scaled wave speed c when travelling-wave solutions are stable, obtained numerically

from (3.44)–(3.46), via the methods presented in subsection 3.4.3. The dashed black

line represents the curve c = 0, and regions in which the tumour advances (c > 0)

or retreats (c < 0) are indicated. We recall that when travelling-wave solutions are

stable, the wave speed, c/
√

κ, is the speed at which the tumour either advances or

retreats.

To illustrate the accuracy of the stability regions shown in Fig. 3.4(a), we

compare two numerical solutions of n(x, t) from the PDE system (3.20)–(3.23) that

are marginally stable or unstable. In Fig. 3.4(a), the green and pink dots indi-

cate two parameter regimes in which travelling-wave solutions are marginally un-
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Figure 3.4: An analysis of travelling-wave solutions and their stability. In (a), the black solid
line is the curve Λ = 0 obtained numerically from (3.51)–(3.53). The black dashed line is the curve
c = 0. The colour map shows c, obtained numerically from (3.44)–(3.46). Parameter values for (a)
are 0 < ϕ < 1, 0.2 < rm ≤ 1 and ra = 0.2. In (b, c), we plot n(x, t) from the PDE system (3.20)–
(3.23) for ϕ = 0.87 (pink dot) and ϕ = 0.91 (green dot) when t = 0, 3, 6, 9. Parameter values for
(b, c) are rm = 0.6, ra = 0.2, κ = 50. For both (b, c), we use ni(x) = N(x) + 0.05 sin(15πx), where
N(x) is the travelling-wave solution when t = 0.

stable and stable, respectively. In Fig. 3.4(b), we present n(x, t) from (3.20)–(3.23)

corresponding to these two parameter regimes at exemplar early time-points. For

each parameter regime, we take the initial conditions to be a perturbation of the

travelling-wave solution N obtained from (3.44)–(3.46), i.e.

ni(x) = N(x) + 0.05 sin(15πx). (3.82)

When the marginally stable parameter regime (pink dot) is used, solutions decay

from the initial perturbation toward a backward-moving travelling wave, similar to
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that shown in Fig. 3.1(c). As expected, solutions grow toward a pattern-forming so-

lution from the initial perturbation when the marginally unstable parameter regime

(green dot) is used. Hence, the results presented in Fig. 3.4(b) are consistent with

the unstable and stable regions shown in Fig. 3.4(a), and illustrate a good level of

accuracy of the neutral stability curve, Λ = 0.

As seen from the neutral stability curve Λ = 0 in Fig. 3.4(a), the value of ϕ

required to destabilise travelling-wave solutions decreases with rm. This suggests

that patterns will form if there is insufficient cell growth to support the uniform

migration of cells towards their natural packing density. Numerical solutions of the

travelling-wave ODEs from (3.44)–(3.46) indicate that the sign of c corresponds to

the sign of α − ϕ. This is consistent with the results in Fig. 3.4(b), as well as the

slow-wave (|c| ≪ 1) asymptotic analysis of (3.44)–(3.46) provided in section 3.4.3.

When c > 0 (corresponding to when α > ϕ), we have n > ϕ behind the wave-

front and cells are in a constant state of repulsion. Consequently, the tumour edge

expands to provide space to which the cells can migrate. Conversely, when c < 0

(corresponding to when α < ϕ), we have n < ϕ behind the wave-front and cells are

in a constant state of attraction which results in the contraction of the tumour edge.

Fig. 3.4(a) indicates that c is greatest when rm = 1 and ϕ → 0. This suggests that

the tumour grows quickest when the rate of cell production is large, but the cells’

natural packing density is small (thereby increasing the strength of repulsive forces

experienced between cells when n > ϕ).

3.5 The stability of a spatially-uniform steady state

In contrast to the travelling-wave stability analysis presented in the previous section,

we now determine the stability of the spatially-uniform steady state satisfying equa-

tions (3.20) and (3.21) on an infinite spatial domain. This stability analysis neglects

the effects of the boundary conditions at the tumour edge, but has nevertheless been

used informally in similar moving boundary models of tissue growth, e.g Lemon and
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King (2007a) and Byrne et al. (2002). A comparison between this stability analysis

and that from Section 3.4, where the effects of the moving boundary are incorpo-

rated, allows us to identify whether the moving boundary at the tumour edge affects

the onset of pattern formation.

The non-trivial, spatially-uniform steady state of (3.20) and (3.21) is given by

(n, vn) = (α, 0), (3.83)

where α = (rm − ra)/rm. We introduce the linearisation n ∼ α + np(x, t) and

vn ∼ vp(x, t), where |np|, |vp| ≪ 1 satisfy the linearised problem

∂np

∂t
+ α

∂vp

∂x
− npG(α) = 0, (3.84)

α
∂2vp

∂x2 − ∂np

∂x
F (α) − καvp

1 − α
= 0, (3.85)

where G(n) = d
dn

Γ(n) and F (n) = d
dn

[
nΣ(n)

]
. To determine whether the pertur-

bations np and vp grow or decay in t, we set (np, vp) ∝ eiγx+ρt where γ is the

perturbation wave number and ρ is the growth rate. Substituting this ansatz into

(3.84) and (3.85), we obtain the dispersion relation

ρ(γ) = G(α) − (1 − α)F (α)
1 − α + κγ−2 . (3.86)

If ρ > 0 or ρ < 0, then the steady state from (3.83) is unstable or stable, respectively.

As such, it is useful to consider the quantity

ρ∞ := lim
γ→∞

ρ = G(α) − F (α). (3.87)

If ρ∞ > 0, then ρ(γ) is monotonically increasing and since ρ(0) < 0, we have ρ(γ) > 0

for a sufficiently large value of γ. If ρ∞ < 0, then ρ(γ) is monotonically decreasing

so that ρ(γ) < 0. Therefore, the steady state from (3.83) is unstable or stable when

ρ∞ > 0 or ρ∞ < 0, respectively. In Fig. 3.5(a), we illustrate the function ρ(γ) for

two different parameter regimes that are provided in the caption, and which give

rise to the cases ρ∞ > 0 and ρ∞ < 0.
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Figure 3.5: A stability analysis of the spatially-uniform steady state (n, vn) = (α, 0). In (a),
the solid black line is the function ρ(γ) from (3.86) for rm = 0.3, ra = 0.2 and ϕ = 0.7, whilst the
dashed black line is ρ(γ) for rm = 0.5, ra = 0.2 and ϕ = 0.7. In (b), the solid black line is the
curve Λ = 0 obtained numerically from (3.51)–(3.53), whilst the dashed pink line in is the curve
ρ∞ = 0, both with ra = 0.2.

We now compare the stability analysis presented in this section with that from

Section 3.4. In Fig. 3.5(b), we compare the neutral travelling-wave stability curve

Λ = 0 obtained numerically from (3.51)–(3.53) with the neutral stability curve of

the spatially-uniform steady-state ρ∞ = 0 obtained in this section. As seen in Fig.

3.5(b), these two approaches to computing the respective neutral stability curves are

in good agreement. This suggests that the values of cell production, cell death and

the natural packing density largely determine the emergence of patterned solutions,

in contrast to the inclusion or exclusion of the moving boundary. We therefore expect

the destabilising mechanism giving rise to patterned solutions to be the attractive

forces experienced by cells occurring when n < ϕ. The good agreement between

the curves presented in Fig. 3.5(b) justifies using the simpler analysis described

in this section to determine criteria for spatial patterning, rather than the more

computationally exhaustive analysis described in Section 3.4.

The close agreement between the neutral stability curves presented in Fig.

3.5(b) allows us to exploit the relation from (3.83) to deduce how the model param-

eters affect the onset of pattern formation. The parameter regime in which (3.83) is

unstable, and hence patterned solutions are expected, can be found explicitly from
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p∞ > 0, i.e.

ϕ > 1 + r2
a(rm − 2)

rm(ra + rm) . (3.88)

Since 0 < ϕ < 1, (3.88) indicates that solutions will not exhibit pattern formation

when rm ≥ 2. This indicates that a high cell proliferation rate alone can curtail

the formation of patterned solutions, regardless of the strength of attractive forces

experienced between cells. Furthermore, (3.88) suggests that no patterns will form

if there is a negligible rate of cell death. We also note that (3.88) is independent

of κ, this being consistent with the analysis from Section 3.4, which indicated that

the value of the cell-liquid drag does not determine whether solutions will exhibit

pattern formation.

3.6 Qualitative analysis of pattern formation

In this section, we examine the qualitative features of patterned solutions like those

shown in Fig. 3.1(f), which are formed by multiple regions of high cell density

(termed cell peaks), separated by regions of low cell density. As discussed in Section

3.3, the inherent structural instability of a suspension of in vitro tumour cells with

a patterned structure could lead to its break-up, and consequently the formation of

separate tumour spheroids. Whilst tumour break-up is not explicitly modelled here,

a qualitative analysis of patterned solutions nonetheless provides insight into how

the value of model parameters could affect the onset of such a process.

3.6.1 Mathematical formulation

In this subsection, we define the metrics used to quantify the number and width of

cell peaks. We define the number of cell peaks β(t), to be the number of intervals

within x ∈
[
0, L(t)

]
such that n(x, t) is greater than a threshold V . The set
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Figure 3.6: A quantification of patterned solution features. In (a), we present a numerical
solution n(x, t) from the PDE system (3.20)– (3.23) at t = 40 for rm = 0.4, ra = 0.2, ϕ =
0.75, κ = 25 and ni(x) = α + 0.05 sin(15πx). The green line segments between the green crosses
indicate the elements in X(t) from (3.89). In (b), we present the metrics β(t) and ω(t) for ζ = 0.03
and ζ = 0.09. We use rm = 0.3, ra = 0.2, ϕ = 0.85, κ = 100 and ni(x) defined as in (a).

containing these intervals, X(t), is defined as

X(t) :=
{

x ∈
[
0, L(t)

] ∣∣∣∣ n(x, t) > V
}

=
{ [

x2i, x2i+1
]

for i = 0, . . . , β(t) − 1
}

,

(3.89)

so that β(t) is the number of intervals at time t. Fig 3.6(a) shows an example

patterned solution illustrating these intervals for a fixed value of t and V , where we

observe four cell peaks. We define the width of a cell peak occupying [x2i, x2i+1 ] to

be x2i+1 − x2i. Since there are often multiple cell peaks, it is informative to obtain

the average width of all cell peaks at any t. We define this average to be

ω(t) = 1
β(t)

β(t)−1∑
i=0

(
x2i+1 − x2i

)
. (3.90)

Furthermore, we restrict the t-dependent metrics β(t) and ω(t) to t ∈ [T1, T2], where

T1 and T2 are the times at which the first and last single cell peak are observed,

respectively. Naturally, the choice of the threshold V can influence the metrics β(t)

and ω(t). As discussed in Section 3.3, the maximal volume fraction of cell peaks,

such as those shown in yellow in Fig. 3.1(f), is approximately (but never exceeds)

the value of n∞. To capture the features of fully formed cell peaks, we therefore

set V = n∞ − ζ, where ζ > 0 is small. In Fig. 3.6(b), we present β(t) and ω(t)

on t ∈ [T1, T2], computed from the numerical solution of n(x, t) presented in Fig.
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Figure 3.7: The variation of B, M and W from (3.91) with κ, computed from numerical
solutions of the PDE system (3.20)– (3.23), together with exemplar numerical solutions of n(x, t)
at κ = 5 (orange dot), κ = 200 (pink dot) and κ = 500 (green dot). Remaining parameter values:
rm = 0.3, ra = 0.2, ϕ = 0.65, ν = 15.

3.1(f), for two different values of ζ. The negligible difference between the metrics

for the two values of ζ suggests that β(t) and ω(t) are not sensitive to the value of

ζ selected, and in the following we set ζ = 0.06.

In order to examine how the model parameters affect the qualitative features

of patterned solutions, it is instructive to associate the metrics β(t) and ω(t) with

scalar quantities. We define

M = max
t∈[T1, T2]

β(t), B = 1
(T2 − T1)

∫ T2

T1
β(t) dt, W = 1

(T2 − T1)

∫ T2

T1
ω(t) dt.

(3.91)

Here, M describes the maximum number of cell peaks, whilst the time-averages B

and W describe the average number and average width of cell peaks, in a given sim-

ulation of the MBM for t ∈ [T1, T2]. Additionally, we take ni(x) = α + 0.05 sin(νπx)

where ν is a positive integer. By varying ν, we can investigate how the initial cell

distribution affects the qualitative features of patterned solutions.



Chapter 3. Qualitative analysis of pattern formation 76

Figure 3.8: The variation of B, M and W from (3.91) with ϕ, computed from numerical
solutions of the PDE system (3.20)– (3.23), together with exemplar numerical solutions of n(x, t)
at ϕ = 0.6 (orange dot), ϕ = 0.75 (pink dot) and ϕ = 0.9 (green dot). Remaining parameter
values: rm = 0.3, ra = 0.2, κ = 25, ν = 15.

3.6.2 Results

We now use the quantities described in (3.91) to investigate how the model param-

eters affect the qualitative features of patterned solutions. In Figs. 3.7, 3.8 and

3.9, we present the three quantities (B, M, W ) as functions of κ, ϕ and ν, respec-

tively. In each of these figures, we also include numerical solutions of n(x, t) from

the PDE system (3.20)–(3.23) for three exemplar values of the respective parame-

ter, as indicated by the coloured dots. The numerical solutions of n(x, t) presented

in Figs. 3.7 and 3.9 suggest that the values of κ and ν have a significant effect

on the number of cell peaks, and this observation is substantiated by the observed

range over which the quantities B and M increase as functions of the parameters κ

and ν. Furthermore, the numerical solutions of n(x, t) and the quantities B(ϕ) and

M(ϕ) presented in Fig. 3.8 indicate that ϕ does not greatly influence the number

of cell peaks. Interestingly, this observation indicates that the strength of attractive

forces experienced by cells when n < ϕ is not indicative of the number of separate

spheroids that result from the break-up of a suspension of in vitro tumour cells.
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Figure 3.9: The variation of B, M and W from (3.91) with ν, computed from numerical
solutions of the PDE system (3.20)– (3.23), together with exemplar numerical solutions of n(x, t)
at ν = 15 (orange dot), ν = 30 (pink dot) and ν = 60 (green dot). Remaining parameter values:
rm = 0.3, ra = 0.2, ϕ = 0.65 and κ = 25.

As highlighted by the metric W (ϕ) and the numerical solutions of n(x, t) pre-

sented in Fig. 3.8, the width of the cell peaks decreases as ϕ increases, as a result

of the available cells migrating toward a larger natural packing density. In contrast

to this, the quantities W (κ) and W (ν) presented in Figs. 3.7 and 3.9 decrease due

to the available cells being distributed over a larger number of cell peaks. In par-

ticular, the value of ν has the most significant effect on the cell peak width when

compared with the effects of varying κ and ϕ. Whilst the number of cell peaks

increase with κ and ν (as discussed above), the resulting decrease of cell peak width

may have implications on the viability of new tumour spheroids that result from in

vitro break-up.

Whilst the quantities B(κ) and B(ν) provide insight into the average number of

cell peaks, they do not capture the differences in the qualitative features of patterns

seen in Figs. 3.7 and 3.9 at different points in time. For example, the patterned

solutions in Fig. 3.9 illustrate that the number of cell peaks observed at early times

are determined by the value of ν; however, these peaks are not sustained and merge
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together at a later time. Additionally, the patterned solutions in Fig. 3.7 indicate

that the value of κ controls the number of peaks at later times. In particular, the

pink-dot panel in Fig. 3.7 indicates that there exists a relationship between the

values of κ and ν such that the cell peaks generated by the initial cell distribution

are sustained throughout the tumour. However, for a sufficiently large value of κ,

spontaneous pattern emergence is observed in the regions of low cell density, as

illustrated in the green-dot panel in Fig. 3.7. In the context of in vitro tumour

growth, these observations suggests that the initial cell distribution may have a

limited effect on the number of cell peaks that can break away from a primary

suspension of tumour cells to generate tumour spheroids, if there is insufficient drag

between the cells and liquid. This observation is in agreement with the qualitative

analysis of the multiphase description of in vitro liver cell aggregation presented in

Green et al. (2009b).

3.7 A parameter case study: the κ → 0 limit

In this section, we analyse the PDE system from (3.20)–(3.23) in the limit as κ → 0.

This limit is motivated by obtaining parameter values from experimental literature,

which we now present.

To obtain a value for the dimensionless parameter κ, we must obtain estimates

for the dimensional parameters χ, µ and L0. A value of the cell viscosity, µ, is

reported by Lozoya and Lubkin (2012) to be in the range 104 − 106 N m−2 s. This

estimate was calculated by manipulating data in G. Forgacs G (1998) pertaining to

the viscoelastic properties of embryonic tissue. We follow Green et al. (2009b) and

take the value of the dimensional cell-liquid drag parameter, χ, to be in the range

107 − 1010 N m−4 s. This range of values were obtained from data in Swabb et al.

(1974) relating to hepatoma tissue. Finally, we set L0 = 10−4 m. This is consistent

with the experimental values in Klowss et al. (2022) relating to the initial size of an

in vitro tumour spheroid. Using the dimensional parameter values described above,
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we have κ ≈ 10−7 − 10−2.

The remainder of this section is constructed as follows. In subsection 3.7.1,

we formulate the leading order problem for t = O(1) when κ → 0. In subsection

3.7.2, we then present some results which illustrate the behaviour of the t = O(1)

problem, where it is shown that the criteria for growth or decay of the tumour

edge is equivalent to that obtained in section 3.4.5. We note that in the case when

the tumour edge grows, then the leading order problem at the final time scale t =

O(κ−1/2) is obtained via the travelling-wave coordinates

L(t) = ct√
κ

, z =
√

κx − L(t), n = n(z), vn = vn(z)√
κ

, (3.92)

as described in section 3.4.5. In the case when the tumour edge decays, then the

t = O(1) problem discussed shortly is uniformly valid as t → ∞.

3.7.1 Formulation of the leading order problem for t = O(1)

We now formulate the leading order problem arising from the system of PDEs (3.20)–

(3.23) for t = O(1) as κ → 0. To leading order in κ, (3.21) provides

∂

∂x

[
n

∂vn

∂x
− nΣ(n)

]
= 0. (3.93)

Integrating (3.93) and using the first boundary condition from (3.23), we obtain

∂vn

∂x
= Σ(n). (3.94)

Combining (3.94) with (3.20) provides

∂n

∂t
+ vn

∂n

∂x
= Γ(n) − nΣ(n). (3.95)

The PDE system to leading order in κ for t = O(1) is therefore given by (3.95) and

(3.94), which are coupled to boundary and initial conditions from (3.22) and (3.23).

In Lemon and King (2007a), this system is shown to be amenable to a hodograph

transformation (Clarkson et al., 1989) which reduces it to a first order linear PDE;
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however, in this section we simplify the analysis by assuming that n is initially

spatially uniform.

Following Lemon and King (2007a), equations (3.95) and (3.94) may be reduced

further when n is initially spatially uniform, i.e. n(x, 0) = n0 for constant n0, via

solutions of the form

n = n(t), vn = v0(t) + v(t)x, (3.96)

whereby using the condition vn(0, t) = 0 provides v0(t) = 0. Substituting (3.96) into

(3.95), (3.94) and the moving boundary condition from (3.22) provides the leading

order system on x ∈ [0, L]

dn

dt
= Γ(n) − nΣ(n), vn = Σ(n)x,

dL

dt
= Σ(n)L, (3.97)

which is coupled to the initial conditions n(0) = n0 and L(0) = 1. We note that the

first of (3.97) can be integrated to provide the implicit solution

t = Ω(n) − Ω(n0), Ω′(n) = 1
Γ(n) − nΣ(n) . (3.98)

Although Ω(n) can be obtained explicitly, the expression is long and complicated,

and its inverse function cannot be calculated in closed-form so as to obtain n ex-

plicitly.

The system of nonlinear ODEs from (3.97) represents a novel formulation for

several reasons. Firstly, the system (3.97) is derived systematically by considering a

spatially dependent model based on cell behaviour. This is in contrast to many clas-

sical ODE models of tumour growth (see Murphy et al. (2016) for a review), whereby

authors often use ODEs as the starting point for their analysis. Furthermore, the

system (3.97) considers the effect of mechanical forces arising due to cell-cell interac-

tions, in contrast with other traditional models which consider cell production and

death only.
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3.7.2 Results

We now illustrate the behaviour of the system from (3.97), which is valid in the limit

κ → 0 and when t = O(1). We first discuss the large-time behaviour of this system

to obtain criteria for whether the position of the tumour edge grows or retreats.

Following this, we present some numerical solutions of the system from (3.97), before

discussing a special parameter regime in which (3.97) admits a closed-form solution.

Large-time behaviour

We now analyse the large-time behaviour of the system from (3.97). Given that the

first from (3.97) is an autonomous ODE, we have that as t → ∞

n ∼ n∞, vn ∼ Σ(n∞)x, L ∼ eΣ(n∞)t, (3.99)

where Γ(n∞) − n∞Σ(n∞) = 0. Consequently, the tumour edge will grow or decay

exponentially depending on the sign of Σ(n∞) and hence the sign of n∞ − ϕ. If

n∞ > ϕ, the cell volume fraction of the tumour is larger than the natural cell

density, and repulsive forces experienced between cells results in the expansion of

the tumour. Conversely, if n∞ < ϕ, cells attract one another and the tumour edge

consequently recedes. If n∞ = ϕ, then from (3.97) we have that n ∼ ϕ and L ∼ L∞

as t → ∞, where L∞ is a constant determined by n0. We note that the sign of

n∞ − ϕ is the same as the sign of α − ϕ, so that the criteria for growth or decay of

the moving boundary as κ → 0 agrees with that obtained in section 3.4.5.

Numerical results

In figure 3.10, we compare the numerical solutions for n(x, t) on 0 ≤ x ≤ L(t)

obtained from the PDE system from (3.20)–(3.23) for κ = 0.001, against the solu-

tions of the leading order problem from (3.97) for two choices of ϕ. The numerical

solutions of (3.97) are obtained via the function ode45 in MATLAB. Overall, an

excellent agreement between the numerical and asymptotic solutions is observed.
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Figure 3.10: Numerical solution (solid black line) of the PDE system from (3.20)–(3.23) when
κ = 0.001 against asymptotic solution (dashed green line) obtained from (3.97) for n0 = 0.2 and
two different values of ϕ. Parameter values: rm = 0.8 and ra = 0.3.

To compare the numerical solutions of n(x, t) from the PDE system (3.20)–

(3.23) for small κ against the leading order solutions of (3.97) on a temporal domain,

we now define

na(t) = 1
L(t)

∫ L(t)

0
n(x, t) dx. (3.100)

This spatial average associates the near-spatially-uniform solution obtained from

the PDE system (3.20)–(3.23) with a single value at any t.

In figure 3.11, we compare the numerical solutions of na(t) and log(L) obtained

from the PDE system (3.20)–(3.23) when κ = 0.001, against the numerical solution

of n(t) and log(L) obtained from (3.97) for various ϕ. Overall, an excellent agreement

between the numerical and asymptotic solutions is observed. In figure 3.11(a), we

observe sigmoidal growth in the cell volume fraction, whilst figure 3.11(b) highlights

the eventual exponential growth or decay of the tumour boundary after a period

of transient behaviour. Notably, and in agreement with the large-time behaviour

discussed above, the case in which the volume fraction of cells is largest and smallest

results in exponential decay and growth of the tumour edge, respectively. This ob-

servation is striking, as it is plausible to expect that a tumour with a large volume

fraction of cells will result in growth of the tumour boundary rather than decay.

Furthermore, we observe in figure 3.11(b) that L(t) initially decreases before subse-
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Figure 3.11: The quantity na(t) (solid black line) obtained from numerical solution of the PDE
system from (3.20)–(3.23) when κ = 0.001 against na(t) asymptotic solution (dashed green line)
obtained from (3.97) for n0 = 0.2 and four different values of ϕ. Parameter values: rm = 0.8 and
ra = 0.3.

quently increasing exponentially when ϕ = 0.4 and ϕ = 0.6. This initial decrease is

illustrated by the small-time behaviour L ∼ 1 + Σ(n0)t valid for t ≪ 1, suggesting

that L will initially increase or decrease based on the sign of n0 − ϕ. This condition

contrasts the large-time condition for the growth or decay of L based on the sign of

n∞ − ϕ, so that the initial behaviour of L does not necessarily predict its large-time

behaviour.

Analytical results

The system from (3.97) can be solved explicitly in the special case ra = ϕ because

the inverse of Ω(n) from (3.98) is available in closed form. When ra = ϕ, the first

from (3.98) provides

n(t) =
rm − ϕ −

√
(rm − ϕ)2 + (rm − ϕ)(1 − rm + Ae2(ϕ−rm)t)

1 − rm − Ae2(ϕ−rm)t , (3.101)

where

A = ϕ(2n0 − 1) + rm(n0 − 1)2

n2
0

− 1. (3.102)

The solution from (3.101) indicates that n(t) increases logistically from the initial

conditions, and is similar to the solution of the classical logistics ODE commonly

employed to model tumour growth (Vaghi et al., 2020).



Chapter 3. Conclusion 84

3.8 Conclusion

In this chapter, we analyse spatially-patterned and travelling-wave solutions of the

two-phase, moving boundary model of tumour growth developed in Byrne et al.

(2002). The model consists of two equations governing a cell volume fraction de-

noted by n and its associated velocity, as well as a moving boundary condition for the

tumour edge. Mechanisms to represent forces generated by cell-cell interactions are

accounted for by considering relevant constitutive assumptions in a similar fashion

to those in Byrne et al. (2002) and Breward et al. (2002). One important parameter

related to cell-cell interactions is ϕ, which represents the cells’ natural packing den-

sity. If n > ϕ, then cells repel each other to relieve membrane stress, and if n < ϕ,

then cells will attract one another due to their filopodia coming into contact. In

keeping with King and Franks (2004), we assume that nutrient is abundantly dis-

tributed throughout the tumour. Whilst this assumption omits important elements

such as nutrient limited induced cell death, it is physically relevant in the context of

an in vivo tumour in the initial stage of development where all cells are adequately

nourished. Additionally, this nutrient rich assumption is appropriate when consid-

ering the initial growth of a suspension of in vitro tumour cells (Byrne et al., 2002).

Whilst the model developed in Byrne et al. (2002) pertains to both in vivo and

in vitro tumour growth, the techniques developed in its analysis regarding pattern

formation can be applied to a wider class of multiphase tissue growth models, such

as that described in Lemon and King (2007a).

Solutions of the tumour model analysed herein can develop into a forward- or

backward-moving travelling wave, which correspond to the growth or retreat of the

tumour edge, the latter resulting in tumour extinction. A travelling-wave analysis is

used to obtain criteria for the growth or extinction of the tumour via stable travelling

waves, in terms of model parameters. We determine that forward-moving travelling-

wave solutions have n > ϕ behind the wave-front, and cells are in a constant state

of repulsion. Consequently, the tumour edge expands to provide space in which
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the cells can migrate. Conversely, if n < ϕ, cells behind the wave-front are in a

constant state of attraction, which results in the contraction of the tumour edge

and a backward-moving travelling wave. We find that the tumour grows the fastest

when the rate of cell production is large, but the cells’ natural packing density is

small (thereby increasing the strength of repulsive forces experienced between cells

when n > ϕ). We also find that the value of the cell-liquid drag does not determine

the direction of travelling waves, but does significantly control the wave speed.

We also observe patterned solutions that are associated with multiple regions

of high cell density (termed cell peaks) separated by regions of low cell density.

From an initial cell distribution, cells migrate up gradients of n from regions of

low to high density to form distinct cell peaks, due to attractive forces experienced

between them when n < ϕ. This attraction results in the contraction of the tumour,

and consequently the eventual extinction of the tumour. Nevertheless, patterned

solutions observed prior to extinction retain a degree of biological relevance. For

example, and as described in Green et al. (2009b), the inherent structural instability

of a suspension of in vitro tumour with patterned structures could lead to break-up,

and consequently the formation of separate spheroids. Whilst the aspect of tumour

break-up is not explicitly modelled here, a qualitative analysis of patterned solutions

nonetheless provides insight into how model parameters could affect the onset of

such a process. Notably, we find that the initial cell distribution only determines

the number of cell peaks within the tumour at early times, whereas the value of the

cell-liquid drag determines the number of cell peaks at later times. This suggests

that the initial cell distribution could have a limited effect on the number of new

spheroids that result from in vitro tumour break-up, which is in agreement with the

qualitative analysis of the multiphase description of in vitro liver cell aggregation

presented in Green et al. (2009b).

We determine the instability of travelling-wave solutions in time to obtain re-

gions of parameter space in which patterned solutions are observed. This stability

analysis incorporates the effects of the boundary conditions imposed at the tumour
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edge and tumour core, as well as the moving tumour edge. The accuracy of the

stability regions generated by this linear stability analysis are verified by compar-

ing them with numerical solutions of the cell volume fraction in suitable parameter

regimes. The biological implications of the travelling-wave stability analysis suggest

that pattern solutions will emerge if there is insufficient net cell growth to support

the attraction of cells uniformly toward their natural packing density.

In addition to the travelling-wave stability analysis described above, we deter-

mine the stability of a spatially-uniform steady state. In contrast to the travelling-

wave stability analysis, this spatially-uniform steady state does not satisfy the mov-

ing boundary condition at the tumour edge. Interestingly, however, the regions of

instability obtained via the travelling-wave and spatially-uniform stability analyses

are in very good agreement, suggesting that the inclusion or exclusion of the mov-

ing boundary does not determine when patterned solutions will form. We therefore

expect the destabilising mechanism giving rise to pattern formation to be the at-

tractive forces experienced by cells occurring when n < ϕ. A similar multiphase

moving boundary model to that described in this chapter is presented in Lemon

and King (2007a), and the stability of a spatially-uniform steady state (which does

not satisfy the moving boundary condition) is analysed to obtain criteria in which

pattern-forming solutions are expected. The good agreement between the two types

of stability analyses presented in this chapter provides a justification for exploiting

the simpler spatially-uniform analysis, such as for the class of multiphase models in

Lemon and King (2007a).

One interpretation of the initial cell volume fraction distribution in our model

is a uniform suspension of cells on a substrate. Whilst a travelling-wave solution

represents uniform growth of these cells, pattern formation can be associated with

aggregation and tumour cell cluster formation, see Beaune et al. (2014) for exper-

imental illustrations of this process. In suitable growth conditions, these clusters

will detach from the substrate and form individual multicellular tumour spheroids,

although this is not explicitly modelled here. As such, we believe the analysis and
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results in this chapter provide a framework for determining the successful generation

of tumour spheroids from substrate suspensions. Following Green et al. (2009b), our

analysis could be extended to incorporate the effects of the substrate.

A possible extension of the work presented in this chapter is to investigate

how additional constitutive assumptions describing cell-cell interactions affect the

onset of pattern formation. For example, in Breward et al. (2002), a mechanism is

employed in the constitutive assumptions that ensures attractive forces experienced

between cells are short-range, so that cells do not attempt to cluster if they are

too far apart. Another natural extension of this work is to examine the influence

that nutrient limitation has on the onset of pattern formation within a tumour. In

contrast to the model presented in this chapter, preliminary numerical simulations

of the nutrient-limited extension indicate that pattern-forming solutions can exist

on a growing spatial domain.



Chapter 4

A multiphase model for nutrient
limited tumour growth

4.1 Introduction

In this chapter, we analyse solutions of the multiphase, moving boundary model

developed in Byrne et al. (2002). This model describes solid tumour growth, and

considers the evolution of a motile, viscous cell phase and an inviscid extra-cellular

liquid phase, both of which are modelled as incompressible fluids. In contrast to

the previous chapter, we now assume that a single diffusive concentration of nutri-

ent is present in the tumour. Tissue mechanics, cellular growth and a mechanism

to represent cell-liquid drag are accounted for by considering relevant constitutive

assumptions in a similar fashion to those in Byrne et al. (2002) and Breward et al.

(2002).

A detailed analysis of the two-phase model of Byrne et al. (2002) is provided

in Breward et al. (2002), and the cell phase in this model exhibits either travelling

waves which propagate with constant speed or a steady state, both of which are

in agreement with experimental observations. The analysis presented in Breward

et al. (2002) focuses on investigating the effects of varying parameters related to

cell-liquid drag and cell viscosity on a growing tumour, and finds that increasing

these parameters results in a reduction of the rate of tumour growth. In this chapter,

88
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however, we focus on investigating the effects of varying parameters directly relating

to the nutrient distribution within a tumour, i.e. nutrient diffusivity. In contrast to

Breward et al. (2002), we also formulate the travelling-wave ODEs corresponding to

the model of Byrne et al. (2002), and provide a numerical method to obtain their

solutions.

The chapter is constructed as follows. In section 4.2, a summary of the two-

phase model developed in Byrne et al. (2002) is presented and subsequently non-

dimensionalised. Following this, some exemplar numerical solutions of the model are

presented in section 4.4.2, which exhibit forward-moving travelling waves, steady-

state solutions, and solutions representing tumour extinction. In section 4.4, a

travelling-wave analysis is presented. This allows us to investigate the effects of

varying parameters related to nutrient distribution on a growing tumour. After

this, we obtain criteria for the extinction of the tumour in section 4.5; interestingly,

this criteria depends only on parameters related to cell growth and motility, and not

on parameters related to nutrient distribution such as nutrient diffusivity.

4.2 Model development

We now present a summary of the two phase model developed in Byrne et al. (2002),

which describes the growth of a solid tumour. As described in section 3.2, this

model consists of two phases denoted by n(x, t) and w(x, t), that represent the

volume fraction of cells and extracellular liquid, respectively. These phases satisfy

the no-voids volume constraint n + w = 1. The velocity fields vn(x, t) and vw(x, t)

are associated with the phases n and w, accordingly. We model the cell and liquid

phases as viscous and inviscid fluids, respectively. In contrast to chapter 3, the rates

of cell growth and cell death are now dependent on a single diffusive concentration of

nutrient denoted by c(x, t). The spatial domain of the tumour evolves over time due

to cellular motion, so the volume fractions n and w evolve on the moving domain

0 ≤ x ≤ L(t), where x = 0 and x = L(t) denote the tumour core and tumour edge,
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respectively.

As derived in section 3.2, the dimensional equations governing the quantities

n(x, t), vn(x, t) and L(t) are given by

∂n

∂t
+ ∂

∂x
(nvn) = Γ(n, c), (4.1)

µ
∂

∂x

(
n

∂vn

∂x

)
− ∂

∂x

[
nΣ(n)

]
− χnvn

1 − n
= 0, (4.2)

dL

dt
= vn(L, t), (4.3)

µ
∂vn

∂x

∣∣∣∣∣
x=L

= Σ(n)
∣∣∣∣∣
x=L

, vn(0, t) = 0, n(x, 0) = ni(x), L(0) = L0. (4.4)

Here, Γ(n, c) is the net rate of cell proliferation which is now dependent on the

nutrient c(x, t), and Σ(n) represents additional pressures that arise due to cell-

cell interactions and is stated explicitly in (3.10). The positive constants µ and χ

represent the values of the viscosity of the cell phase and interphase drag between

the cells and the liquid, respectively.

We now derive the equations governing the nutrient, c(x, t). Remaining con-

sistent with Byrne et al. (2002) and Breward et al. (2002), we assume that the

nutrient is uniformly distributed in the tumour surroundings, is consumed by cells

and is transported within the cell and liquid phases via both advection and diffusion.

In view of these processes, the equation governing the nutrient c(x, t) is given by

∂c

∂t
+ ∂

∂x
[c(nvn + wvw)] = D

∂2c

∂x2 − Q(n, c), (4.5)

where Q is the rate at which cells consume nutrient and D is the constant diffusivity

of the nutrient. We assume that the time-scales associated with nutrient diffusion

and consumption are much shorter than that of tumour growth (Byrne et al., 2002;

Lemon and King, 2007b), so that the first term in (4.5) may be neglected to obtain

∂2c

∂x2 = Q(n, c), (4.6)



Chapter 4. Model development 91

where Q = Q/D and (3.16) is used to eliminate the advection term from (4.5).

We assume that the tumour is symmetric about its centre (x = 0) and that the

concentration of nutrient is fixed at the tumour edge, so that

∂c

∂x
= 0 at x = 0 and c = c∞ at x = L(t), (4.7)

where c∞ is a positive constant.

4.2.1 Constitutive assumptions

We now define constitutive assumptions for Γ(n, c) and Q(n, c) that are suitable to

describe tumour growth. We assume that daughter cells are constructed via mitosis

using the available liquid, and that when cells die they dissolve into the liquid.

We also assume that the rates of mitosis and death are regulated by the available

nutrient. Following these assumptions, we take

Γ(n, c) = km(c)n(1 − n) − kd(c)n, (4.8)

where km and kd are the positive rates of cell mitosis and death. Following King

and Franks (2004), we assume that the rate at which cells consume nutrient is

proportional to the available nutrient and set

Q(n, c) = ρnc, (4.9)

where ρ is a positive constant which describes the ratio between the nutrient con-

sumption rate and nutrient diffusivity.

The functions km and kd should be monotonically increasing and decreasing

functions, respectively, to account for the fact that inadequate levels of nutrient will

reduce and increase the rate of cell proliferation and death. We therefore adopt the

linear kinetics

km(c) = rmc, kd(c) = ra(σ − c) (4.10)

where rm and ra are positive constants and σ > c∞ is required to retain positivity
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in kd(c). We note that even in optimal nutrient conditions, i.e. c = c∞, we have

kd(c∞) = ra(σ − c∞) > 0 which accounts for cell death via apoptosis.

4.2.2 Non-dimensionalisation

We now non-dimensionalise the model consisting of (4.1)–(4.4), (4.6) and (4.7). By

introducing the dimensionless variables

t̂ = τ

µ
t, x̂ = x

L0
v̂n = µ

τL0
vn, L̂ = L

L0
, ĉ = c

c∞
(4.11)

the following dimensionless model results:

∂n

∂t̂
+ ∂

∂x̂
(nv̂n) = Γ̂(n, ĉ), 0 < x̂ < L̂, (4.12)

∂

∂x̂

(
n

∂v̂n

∂x̂

)
− ∂

∂x̂

[
nΣ̂(n)

]
− κ

nv̂n

1 − n
= 0, 0 < x̂ < L̂, (4.13)

∂2c

∂x̂2 = ρ̂nĉ, 0 < x̂ < L̂, (4.14)

dL̂

dt̂
= v̂n(L̂, t̂), (4.15)

∂v̂n

∂x̂

∣∣∣∣∣
x̂=L̂

= Σ̂(n)
∣∣∣∣∣
x̂=L̂

, v̂n(0, t̂) = 0, ĉ(L̂, t̂) = 1,
∂ĉ

∂x̂

∣∣∣∣∣
x̂=0

= 0, (4.16)

n(x̂, 0) = ni(x̂), L̂(0) = 1, (4.17)

where

Γ̂(n, ĉ) = r̂mn(1 − n)ĉ − r̂an(σ̂ − ĉ), Σ̂(n) = Σ(n)
τ

, (4.18)

and r̂m = c∞rmµ/τ, r̂a = c∞raµ/τ, σ̂ = σ/c∞, ρ̂ = ρL2
0, κ = χL2

0/µ. In the follow-

ing, we dispense with the hat notation for clarity.

As described in section 3.2, combining (4.12), (4.15) and the first and third

from (4.16) at x = L(t) provides the autonomous ODE

dnL

dt
= Γ(nL, 1) − nLΣ(nL), (4.19)
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where nL = n(L, t) so that if rm > ra(σ − 1), then nL ∼ n∞ for sufficiently large

time, where Γ(n∞, 1)−n∞Σ(n∞) = 0. We assume that rm > ra(σ −1) so that there

is net cell growth at the tumour edge. In subsequent large-time analysis we may

therefore replace the first boundary condition from (4.16) with

n = n∞ or ∂v

∂x
= Σ(n∞) at x = L(t). (4.20)

4.3 Numerical results

To illustrate the behaviour of the model from (4.12)–(4.17), we present and discuss

some exemplar numerical solutions on the moving domain 0 ≤ x ≤ L(t).

4.3.1 Numerical methods

To obtain numerical solutions of (4.12)–(4.17), we fix the moving boundary by

scaling x with L(t) as ξ = x/L(t), so that ξ ∈ [0, 1], and the model becomes

∂n

∂t
= 1

L

∂n

∂ξ

(
ξ

dL

dt
− vn

)
− n

L

∂vn

∂ξ
+ Γ(n, c), (4.21)

1
L2

∂

∂ξ

(
n

∂vn

∂ξ

)
− 1

L

∂

∂ξ

[
nΣ(n)] − κ

nvn

1 − n
= 0, (4.22)

1
L2

∂2c

∂ξ2 = ρnc, (4.23)

dL(t)
dt

= vn(1, t), (4.24)

1
L

∂vn

∂ξ
(1, t) = Σ(n)

∣∣∣∣∣
ξ = 1

, vn(0, t) = 0,
∂c

∂ξ

∣∣∣∣∣
ξ = 0

= 0, c(1, t) = 1, (4.25)

n(ξ, 0) = ni(ξ), L(0) = 1. (4.26)

The numerical methods used to solve this system for c ≡ 1 are described in section

3.3, wherein ξ is partitioned uniformly and the dependent variables are spatially
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Figure 4.1: The function ξ from (4.27) for θ = 2, 4, 6, 8 and K = 1000.

discretised using finite differences. In contrast, we now develop a numerical scheme

where ξ is not partitioned uniformly, with a concentrated number of mesh points in

the vicinity of ξ = 1. This allows accurate solutions of (4.21)–(4.26) to be obtained

for large ρ, for which a boundary-layer forms at ξ = 1.

To partition ξ ∈ [0, 1] non-uniformly, we first uniformly partition the interval

X ∈ [0, 1] such that Xi = i∆X for i = 0, . . . , K, where ∆X = 1/K and K + 1 is

the number of spatial nodes. We then introduce the discrete function ξi(Xi), which

maps the uniform mesh Xi to the non-uniform mesh ξi, such that

ξi(Xi) =
(

1 + eθ

1 − eθ

)
eθ(1−Xi) − eθ

1 − eθ
, (4.27)

whereby increasing the constant θ > 0 increases the number of spatial nodes in the

vicinity of ξi = 1. We note that the monotone increasing function ξi preserves the

important properties ξ(0) = 0 and ξ(1) = 1. In figure 4.1, we plot the function

ξi(Xi) for five values of θ, which illustrates that the concentration of mesh points

in the vicinity ξ = 0 and ξ = 1 decreases and increases under the mapping ξi(Xi),

respectively.

Using the non-uniform mesh ξi, we spatially discretise (4.21), (4.22) and (4.23)

using finite differences and introduce the semi-discretised variables ni(t) = n(ξi, t), vi(t) =
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vn(ξi, t) and ci(t) = c(ξi, t). Upwind or downwind finite differences are used for the

first term on the right-hand side of (4.21), the direction of which is determined

by the sign of the quantity in the brackets. The explicit finite difference scheme

corresponding to (4.21), (4.24) and (4.26) for i = 0, . . . , K is given by

∂ni

∂t
=
(
ξivK − vi

)
· 1

L



ni+1 − ni

ξi+1 − ξi

if ξivK − vi > 0 or i = 0,

ni − ni−1

ξi − ξi−1
if ξivK − vi < 0 or i = K,

− ni

L
·



v1

ξ1 − ξ0
if i = 0,

vi+1 − vi−1

ξi+1 − ξi−1
if i = 1, . . . , K − 1,

vK − vK−1

ξN − ξN−1
if i = K,

+ Γ(ni, ci),

(4.28)

dL

dt
= vK , (4.29)

vK = LΣ(nK)(ξK − ξK−1) + vK−1, v0 = 0, cK = 1, c0 = c1. (4.30)

The equations from (4.28) and (4.29) are then numerically integrated in time using

the function ode45 in MATLAB, which uses a Runge-Kutta method.

Using central discretisations for both first- and second-order derivatives, the

finite difference scheme corresponding to (4.22) for i = 2, . . . , K − 2 is given by

ni

(L)2 · vi+1(ξi − ξi−1) − vi(ξi+1 − ξi−1) + vi−1(ξi+1 − ξi)
1
2(ξi+1 − ξi−1)(ξi+1 − ξi)(ξi − ξi−1)

+ 1
L2 · ni+1 − ni−1

ξi+1 − ξi−1
· vi+1 − vi−1

ξi+1 − ξi−1
− 1

L
· ni+1 − ni−1

ξi+1 − ξi−1
· F (ni) − κ

nivi

(1 − ni)
= 0.

(4.31)

This equation can be rearranged to give

Aivi+1 + Bivi + Civi−1 + Di = 0, (4.32)
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where

Ai = ni

L2(ξi+1 − ξi−1)(ξi+1 − ξi)
+ ni+1 − ni−1

(L)2(ξi+1 − ξi−1)2 , (4.33)

Bi = − 2ni

(L)2(ξi+1 − ξi)(ξi − ξi−1)
− κ

ni

(1 − ni)
, (4.34)

Ci = ni

L2(ξi+1 − ξi−1)(ξi − ξi−1)
− ni+1 − ni−1

L2(ξi+1 − ξi−1)2 , (4.35)

Di = − 1
L

· ni+1 − ni−1

ξi+1 − ξi−1
· F (ni). (4.36)

The finite difference schemes corresponding to (4.22) for i = 1 and i = K − 1 are

found by imposing the first two boundary conditions from (4.30) onto (4.32), and

are given by

A1v3 + B1v2 + D1 = 0, (4.37)(
AK−1 + BK−1

)
︸ ︷︷ ︸

= ΥB
K−1

vK−1 + CK−1vK−2 + AK−1LΣ(nK)(ξK − ξK−1)
3 + DK−1︸ ︷︷ ︸
= ΥD

K−1

= 0,

(4.38)

respectively. The solution to vi is obtained by assembling (4.32), (4.37) and (4.38)

into the matrix-vector form Mv = f, where v = (v1, . . . , vi, . . . , vK−1)T , f =

−
(
D1, . . . , Di, . . . , ΥD

K−1

)T
, and M is a tri-diagonal matrix of size (K−1)×(K−1)

given by

M =



B1 A1 0 . . . 0 . . . 0

C2 B2 A2
...

0 . . . . . . . . . 0
... Ci Bi Ai

...

0 . . . . . . . . . 0
... CK−2 BK−2 AK−2

0 . . . 0 . . . 0 CK−1 ΥB
K−1



. (4.39)

The vector v is found by computing v = M−1f. The function tridiag is used in

MATLAB to compute M−1, given that M is tri-diagonal.
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Using central discretisations, the finite difference scheme corresponding to (4.23)

for i = 2, . . . , K − 2 is given by

ci+1(ξi − ξi−1) − ci(ξi+1 − ξi−1) + ci−1(ξi+1 − ξi)
1
2(ξi+1 − ξi−1)(ξi+1 − ξi)(ξi − ξi−1)

= (L)2ρnici. (4.40)

This equation can be rearranged to give

Eici+1 + Fici + Gici−1 = 0, (4.41)

where

Ei = 1
(ξi+1 − ξi−1)(ξi+1 − ξi)

, Gi = 1
(ξi+1 − ξi−1)(ξi − ξi−1)

, (4.42)

Fi = − 2
(ξi+1 − ξi)(ξi − ξi−1)

− (L)2ρni. (4.43)

The finite difference schemes corresponding to (4.23) for i = 1 and i = K − 1 are

found by imposing the last two boundary conditions from (4.30) onto (4.41), and

are given by

2E1c2 + F1c1 = 0, EK−1 + FK−1cK−1 + GK−1cK−2 = 0, (4.44)

respectively. The solution to ci is obtained by assembling (4.41) and (4.44) into the

matrix-vector form Pc = h, where c = (c1, . . . , ci, . . . , cK−1)T , h =
(
0, 0, . . . , 0, −EK−1

)T
,

and P is a tri-diagonal matrix of size (K − 1) × (K − 1) given by

P =



F1 + G1 E1 0 . . . 0 . . . 0

G2 F2 E2
...

0 . . . . . . . . . 0
... Gi Fi Ei

...

0 . . . . . . . . . 0
... GK−2 FK−2 EK−2

0 . . . 0 . . . 0 GK−1 FK−1



. (4.45)

The vector c is found by using the function tridiag in MATLAB to compute

c = P−1h.
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Figure 4.2: Numerical solutions of the PDE system from (4.12)–(4.17) for ϕ = 0.3. The black
lines represent variable solutions at fixed times t = 0, 10, . . . , 120 and the arrows point in the
direction of increasing time. The dashed line in (b) represents vn(L, t) and highlights the lin-
ear growth of L(t) observed in (d). The functions Γ(n, c) and Σ(n) are plotted in (e) and (f),
respectively. Parameter values: rm = 1, ra = 0.3, κ = 1, ρ = 1, σ = 2 and n0 = 0.6.
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4.3.2 Travelling-wave, steady-state and extinction-type so-
lutions

In this subsection we fix rm = 1, ra = 0.3, σ = 2, κ = 1 and ρ = 1, and pay

particular attention to three exemplar values of ϕ that generate travelling-wave and

steady-state solutions, and solutions representing tumour extinction. The large-

time behaviours of the solution types discussed here are independent of the initial

conditions on n, and so for convenience we arbitrarily choose ni(x) = 0.6.

In Fig. 4.2(a–d), we present numerical solutions for n, vn, c and L when ϕ = 0.3,

where we observe the emergence of forward-moving travelling waves and linear

growth in L, after an initial period of transient growth from the initial cell dis-

tribution. The linear growth in L(t) is also highlighted in Fig. 4.2(b), where we

see that L′(t) tends to a constant value for sufficiently large time. As seen in figure

4.2(a), there is a proliferating rim in the vicinity of the tumour edge, within which

adequate levels of nutrient sustain the production of cells, i.e where Γ > 0; see figure

4.2(e). Further into the tumour interior, the effects of cell death due to inadequate

levels of nutrient dominate those of cell production, resulting in a region devoid of

cells. In figure 4.2(c), the nutrient monotonically decreases away from the tumour

edge due to its consumption by cells until it saturates to a constant value. The nu-

merical results presented in figure 4.2 represent the continual growth of a tumour,

and this motivates a travelling-wave analysis of the PDE model (4.12)–(4.17) which

is provided in section 4.4.

In figure 4.3(a–d), we present numerical solutions for n, vn, c and L when ϕ =

0.55, where we observe the eventual formation of a spatially non-uniform steady

state in n, vn, c with L tending toward a constant value for sufficiently large time.

For the steady-state solution in n represented by the dashed line in (a), there exists

a region in the vicinity of the tumour edge in which Γ > 0, so that the net rate

of cell production is positive; see figure 4.3(e). However, the dashed line in figure

4.3(b), representing the steady-state velocity is negative, indicating that cells in
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Figure 4.3: Numerical solutions of the PDE system from (4.12)–(4.17) for ϕ = 0.55. The black
lines represent variable solutions at fixed times t = 0, 10, . . . , 60 and the arrows point in the
direction of increasing time. The dashed lines in (a–c) represent the variables n, vn and c for
t = 300, at which time L(t) is approximately constant. The functions Γ(n, c) and Σ(n) are plotted
in (e) and (f), respectively. The inset in (d) represents L′(t) and highlights the steady-state nature
of L(t). Parameter values: rm = 1, ra = 0.3, κ = 1, ρ = 1, σ = 2 and n0 = 0.6.
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this region are moving toward the tumour core, where Γ < 0. This indicates that

the PDE system (4.12)–(4.17) admits a steady-state solution if there is a balance

between cell production and cell attraction when Σ < 0; see fig 4.3(f). This reasoning

is substantiated by (4.12): Taking n to be only spatially dependent, the first term

from (4.12) vanishes and the resultant equation states that the advection of n equals

the net rate of cell growth, Γ.

In figure 4.4(a–d), we present numerical solutions for n, vn and c on the fixed

domain ξ = x/L and L when ϕ = 0.8. The inset in figure 4.4(d) shows log(L), which

indicates L decays exponentially toward zero after an initial period of transient

decay. These results represent tumour extinction, and we obtain criteria by which

the PDE system (4.12)–(4.17) admits these extinction-type solutions in section 4.5.

4.4 Travelling-wave analysis

The results presented in figure 4.2 indicate the emergence of travelling waves of

constant speed. In light of this, we assume that L evolves linearly for sufficiently

large time, and employ travelling-wave analysis to obtain important quantities, such

as the travelling wave speed, in terms of the model parameters.

The remainder of this section is constructed as follows. In subsection 4.4.1, we

formulate the travelling-wave ODEs corresponding to the PDE system from (4.12)–

(4.17). Following this, we present the numerical methods used to obtain solutions

of the travelling-wave ODEs, and subsequently present some numerical results in

subsection 4.4.3. In subsections 4.4.4 and 4.4.5, we construct asymptotic solutions

of the travelling-wave ODEs in the limit of large and negligible nutrient diffusivity,

respectively.
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Figure 4.4: Numerical solutions of the PDE system from (4.12)–(4.17) for ϕ = 0.8. The black
lines represent variable solutions at fixed times t = 0, 2, . . . , 14 and the arrows point in the
direction of increasing time. The dashed lines in (a-c) represent the variables n, vn and c for t = 100,
at which time L(t) is approximately zero. The inset in (d) represents log(L) and highlights the
exponential decay of L(t). Parameter values: rm = 1, ra = 0.3, κ = 1, ρ = 1, σ = 2 and n0 = 0.6.

4.4.1 Formulation

We write the PDE system from (4.12)–(4.17) in terms of the variable L(t) = L(t)
√

κ

and coordinate z =
√

κx − L(t) ∼
√

κx − Ut, where z ∈ (−∞, 0]. Here, U is the

scaled wave speed, i.e. the speed of travelling waves observed in a simulation of the

PDE system (4.12)–(4.17) is U/
√

κ. Setting n ≡ n(z), vn ≡ v(z)/
√

κ and c ≡ c(z)
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we obtain

−U
dn

dz
+ d

dz
(nv) = Γ(n, c), (4.46)

d
dz

(
n

dv

dz

)
− d

dz

[
nΣ(n)] − nv

1 − n
= 0, (4.47)

d2c

dz2 = βnc, (4.48)

dv

dz

∣∣∣∣∣
z=0

= Σ(n), v(0) = U, c(0) = 1, lim
z→−∞

(
v(z), dc

dz

)
= 0, (4.49)

where β = ρ/κ. We now develop the methods used to obtain numerical solutions of

(4.46)–(4.49).

4.4.2 Numerical Methods

In this section, we present the numerical methods used to find n(z), v(z), c(z) and

U from (4.46)–(4.49). For numerical purposes, we express (4.46)–(4.49) as a system

of five, first order ODEs by introducing the variables h(z) = v′(z) and g(z) = c′(z)

where ′ ≡ d/dz. We obtain

n′(z) = Γ(n, c) − nh

v − U
, v′(z) = h, (4.50)

h′(z) = v

1 − n
+ (F (n) − h)(Γ(n, c) − nh)

n(v − U) , (4.51)

c′(z) = g, g′(z) = βnc, (4.52)

v′(0) = Σ(n∞), v(0) = U, c(0) = 1, lim
z→−∞

[
v(z), g(z)

]
= 0, (4.53)

where F = d
dn

[nΣ(n)]. This system is computationally singular at z = 0 due to

the boundary condition v(0) = U . We therefore consider the leading edge of the

wavefront to be z = −δ, where δ is chosen to be sufficiently small that the so-

lution converges. We numerically integrate (4.50)–(4.53) on the truncated domain

z ∈ [−M, −δ], and must therefore obtain asymptotically appropriate boundary con-

ditions at the points z = −δ and z = −M.
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The conditions at z = −δ are found by expanding the dependent variables from

(4.50)–(4.53) around z = 0. We obtain as z → 0

n ∼ n∞ + n′(0)z, v ∼ U + Σ(n∞)z, h ∼ Σ(n∞) + h′(0)z,

c ∼1 + g(0)z, g ∼ g(0) + βn∞z.

(4.54)

The values of n′(0) and h′(0) are found by taking the limit as z → 0 of the first from

(4.50) and (4.51) via L’Hôpital’s rule, and subsequently summing them. We have

n′(0) = g(0)Γc − n∞h′(0)
2Σ(n∞) − Γn

, (4.55)

h′(0) = 2Σ(n∞) − Γn

Σ(n∞) + F (n∞) − Γn

(
U

1 − n∞
+

Γcg(0)
[
F (n∞) − Σ(n∞)

]
n∞

[
2Σ(n∞) − Γn

] )
, (4.56)

where Γn = ∂Γ
∂n

(n∞, 1) and Γc = ∂Γ
∂c

(n∞, 1). The value of g(0) is unknown and must

be determined numerically as part of the solution.

The appropriate boundary conditions at z = −M are found by analysing (4.46)–

(4.49) in the limit as z → −∞. Numerical simulations of the PDE system (4.12)–

(4.17) indicate that n, v → 0 and c → c0 as z → −∞, where c0 is an unknown

constant. We therefore introduce the perturbations to these values valid as z → −∞,

n ∼ n0(z), v ∼ v0(z), c ∼ c0 + c1(z) (4.57)

such that |n0|, |v0|, |c1| ≪ 1 satisfy the system

dn0

dz
= Kn0, (4.58)

d
dz

(
n0

dv0

dz

)
+ 2ϕn0

dn0

dz
− n0v0 = 0, (4.59)

d2c1

dz2 = βn0c0, (4.60)

where K = 1
U

[raσ − c0(rm + ra)]. The solutions of this system are

n0 = N eKz, v0 = Ve
z
2 (

√
4+K2−K) − 2ϕKN eKz

2K2 − 1 , c1 = βc0N eKz

K2 , (4.61)

where N and V are unknown and must be determined numerically as part of the
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solution. The asymptotic representations for h and g as z → −∞ are obtained via

h = v′ and g = c′.

Thus far, we have developed a method to numerically solve (4.46)–(4.49). We

integrate the system of five first order ODEs from (4.50)–(4.53) using the function

bvp5c in MATLAB. We use the asymptotic representations described above as z → 0

and z → −∞ as boundary conditions at z = −δ and z = −M , respectively. The

values of the five unknown parameters (U, g(0), N , V , c0) are obtained as eigenval-

ues in bvp5c. The function bcp5c requires an initial approximation of the solutions

satisfying (4.50)–(4.53) in order to converge toward a feasible solution. For this,

we first compute the travelling-wave solutions n(x, t), v(x, t) and c(x, t) from the

PDE system (4.12)–(4.17) for a sufficiently large fixed value of t. These solutions

are then fitted to curves using the built-in application curve fitter in MATLAB.

These fitted curves can then be used as initial approximations of the solutions of

(4.50)–(4.53) for a fixed set of parameters. The method of parameter continuation

is then used to obtain the solutions for other parameter sets.

4.4.3 Numerical results

Using the numerical methods presented in the prior subsection, we now investigate

how varying the natural cell density ϕ, and compound parameter β = ρ/κ (where

ρ is proportional to the ratio between the nutrient consumption rate and nutrient

diffusivity), affect the cell volume fraction n(z) and its associated velocity v(z).

In figure 4.5, we present some numerical solutions for n(z), v(z) and c(z) using

the methods described in subsection 4.4.2 for various values of ϕ. As seen in figure

4.5(a), the cell volume fraction in regions (i) and (ii) increase and decrease as ϕ

increases, respectively. In region (i), n(z) increases with ϕ to attain a higher cell

density, as expected. In region (ii) however, n(z) is unable to increase toward ϕ

due to an insufficient level of nutrient, see region (ii) in figure 4.5(c). To increase

toward ϕ, cells therefore migrate toward the region of higher cell density (ii) under
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Figure 4.5: Numerical solutions for n(z), v(z) and c(z) from the travelling-wave ODE system
(4.46)–(4.49) for various values of ϕ spaced uniformly over the interval ϕ = [0.1, 0.5]. The arrows
point in the increasing direction of ϕ. The regions (i) and (ii) in (a, b) indicate where n(z) increase
and decrease with ϕ, respectively. Parameter values: rm = 1, ra = 0.1, σ = 2, β = 5 and M = 20.

the action of Σ(n). This migration of cells from region (ii) to (i) is highlighted by the

positivity of v(z) in region (ii), as observed in figure 4.5(b). More concisely, figure

4.5(a) suggests that increasing the natural cell density ϕ can sharpen the interface

between the proliferating rim and the necrotic core. In figure 4.5(b), we also observe

two qualitatively different behaviours in v(z). For smaller values of ϕ, v(z) decreases

away from the wave-front where it becomes and remains negative due to attractive

forces governed by Σ when n is small. However, for larger values of ϕ, v(z) decreases

away from the wave front becoming negative, before increasing to become positive

in the tumour core. This positive region of v(z) arises due to the forces generated by

cells migrating up gradients of n being greater than those driving tumour expansion.
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Figure 4.6: Numerical solutions of n(z), v(z) and c(z) from the travelling-wave ODE system
(4.46)–(4.49) for various values of β spaced uniformly over the interval β = [1, 5], respectively. The
arrows point in the increasing direction of β. Parameter values: rm = 1, ra = 0.1, σ = 2, ϕ = 0.1
and M = 20.

In figure 4.6, some numerical solutions for n(z), v(z) and c(z) are presented

for various values of β. Given that increasing β corresponds to decreasing nutrient

diffusivity, it is not surprising that the level of nutrient within the tumour reduces as

β increases, as seen in figure 4.6(c). Consequently, the cell volume fraction decreases

as β increases in figure 4.6(a), due to a decreasing net rate of cell production. We

note that the effects of varying β are further investigated in subsections 4.4.4 and

4.4.5, where an asymptotic analysis of the travelling-wave ODEs from (4.46)–(4.49)

when β ≪ 1 and β ≫ 1 is provided, respectively.

To quantify changes to the cell volume fraction, we follow Lemon and King
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(a) (b)

Figure 4.7: Numerical solution of the wave speed U(β, ϕ) (a) and the quantity Y (β, ϕ) (b) from
(4.62) computed from numerical solutions of n(z). Parameter values: ϕ = 0.1, ra = 0.1, σ = 2
and M = 20.

(2007b) and define the cell yield

Y =
∫ 0

−∞
n(z) dz. (4.62)

This quantity measures the amount of cells within a tumour, and can be expressed

as a function of the model parameters. In figure 4.7(b) we present the cell yield

Y (β, ϕ), where we observe that the cell yield appears to have little dependence on

ϕ, and is largely determined by the value of β. This suggests that an increase in the

natural cell density can serve to distribute the available cells closer to the tumour

edge, as seen in figure 4.5(a). Whilst ϕ has little influence on the value of the cell

yield, it can significantly effect the tumour growth speed, as shown by the function

U(β, ϕ) in figure 4.5(b).

4.4.4 Asymptotic analysis for β ≪ 1

In this subsection, we construct asymptotic solutions of the travelling-wave system

from (4.46)–(4.49) valid when β ≪ 1 (so that either ρ ≪ 1 or κ ≫ 1). Physically,

this corresponds to the case when either the nutrient rapidly diffuses through the

tumour or the value of the cell-liquid drag is large. By first scaling z with β, we

consider a region in which z = O(β−1/2) representing the tumour interior, and then a
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region representing the tumour rim in which z = O(1). By matching the expansions

valid in each region, we obtain composite asymptotic solutions of (4.46)–(4.49) valid

on z ∈ (−∞, 0] for β ≪ 1.

The region z = O(β−1/2)

For the region z = O(β−1/2) representing the tumour interior, we introduce the

variables ζ = z
√

β and ν = v/
√

β with (ζ, ν) = O(1), so that (4.46)–(4.49) provides

Γ(n, c) = 0, ν = n − 1
n

d
dζ

[
nΣ(n)

]
,

d2c

d ζ2 = nc, (4.63)

to leading order in β. As seen from (4.63), the cell volume fraction in this interior

region is now only dependent on the effects of nutrient limitation and the net rate

of cell growth, but not the effects of cellular attraction/repulsion governed by Σ(n).

The first from (4.63) allows n to be expressed in terms of c, i.e.

n = 1 − ra(σ − c)
rmc

, (4.64)

so that the third from (4.63) becomes

d2c

dζ2 = c

[
1 − ra(σ − c)

rmc

]
, (4.65)

which is coupled to the condition limζ→−∞
dc
dζ

= 0. We have that

n(ζ) = k1 − raσ

rm

[
Ae

√
k1ζ + k2

] , c(ζ) = Ae
√

k1ζ + k2, (4.66)

v(ζ) = −ra σ + k2 rm + A rm e
√

k1 ζ − k1 k2 rm − A k1 rm e
√

k1 ζ

k1 k2 rm − ra σ + A k1 rm e
√

k1 ζ

× d
dζ

−

k1 − ra σ

rm

(
k2+A e

√
k1 ζ
)2 ϕ − k1 + ra σ

rm

(
k2+A e

√
k1 ζ
)

ra σ

rm

(
k2+A e

√
k1 ζ
) − k1 + 1

 ,

(4.67)

where k1 = 1 + ra/rm, k2 = raσ/(rm + ra) and A is a matching constant. We note

that limζ→−∞ n(ζ) = 0, which confirms the presence of a necrotic core within the
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tumour. Furthermore, we see that limζ→−∞ c(ζ) = k2, indicating that the level of

nutrient present in the tissue core is only dependent on parameters related to cell

growth and cell death.

The region z = O(1)

For the region in which z = O(1) representing the tumour edge we set n := N(z)

and v := V (z). To leading order in β, (4.48) provides

d2c

dz2 = 0, (4.68)

which is coupled to the conditions c(0) = 1 and limz→−∞ c(z) = 0, so that c ∼ 1

and the tumour is therefore nutrient-rich in this region. The equations governing

the quantities N, V = O(1) in the z = O(1) region are hence

−U
dN

dz
+ d

dz
(NV ) = Γ(N, 1), (4.69)

d
dz

(
N

dV

dz

)
− d

dz

[
NΣ(N)] − NV

1 − N
= 0, (4.70)

V (0) = U, V ′(0) = Σ(n∞), lim
z→−∞

V (z) = 0, lim
z→−∞

N(z) = Θ,

(4.71)

where Θ = 1 − ra(σ − 1)/rm. This system of ODEs is identical to those analysed in

section 3.4 and numerical methods are developed in subsection 3.4.3 to obtain its

solution.

Matching conditions and composite solutions

We now obtain composite solutions for n(z), v(z), c(z) and U over the entire domain

to leading order in β. Firstly, we have that limζ→0 c(ζ) = 1 which determines A =

1 − k2. We also have that that limz→−∞ N(z) = limζ→0 n(ζ) = Θ, so that composite



Chapter 4. Travelling-wave analysis 111

solutions when β ≪ 1 are given by

n(z) ∼ N(z) + k1 − raσ

rm

[
(1 − k2)e

√
k1βz + k2

] − Θ, (4.72)

c(z) ∼ (1 − k2)e
√

k1βz + k2 (4.73)

v(z) ∼ V (z), U ∼ V (0), (4.74)

where N(z) and V (z) are calculated numerically using the methods presented in sub-

section 3.4.3. Given that v = O(β1/2) and v = O(1) in the core region z = O(β−1/2)

and rim region z = O(1) respectively, the composite leading order expansion from

(4.74) depend only on solutions for V (z) from the region z = O(1). Therefore, to

obtain the growth speed of the tumour when β ≪ 1, it suffices to solve the nutrient-

rich travelling-wave ODEs from (4.69)–(4.71), an analysis of which was presented

in section 3.4.

In figure 4.8, we compare the numerical solution for n and c when obtained by

solving the PDE system from (4.12)–(4.17) for β = 0.001 against their respective

asymptotic solutions from (4.72) and (4.73). The travelling-wave solutions n(z) and

c(z) are obtained from the PDE system from (4.12)–(4.17) by computing n(x, t) and

c(x, t) for a sufficiently large fixed t. Overall, a very good agreement between the

numerical and asymptotic solutions is observed. From figure 4.8(a), the cell density

is negligible in the tumour core; despite this, the nutrient-limited region over which

n(z) decreases toward this necrotic core will provide a substantial contribution to

the total cell yield Y , as defined by the integral from (4.62).

4.4.5 Asymptotic analysis for β ≫ 1

In this subsection, we obtain asymptotic solutions of the system from (4.46)–(4.49)

valid when β ≫ 1 (so that either ρ ≫ 1 or κ ≪ 1) Physically, this corresponds to

the case when either the nutrient diffuses slowly through the tumour, or the cell-

liquid drag is negligible. For clarity, we set β = 1/ε such that ε ≪ 1.
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Figure 4.8: Numerical solution (solid black line) of the PDE system from (4.12)–(4.17) and
asymptotic solution (dashed green line) from (4.72) and (4.73) for (a) n and (b) c for β = 0.001.
Parameter values: rm = 1, ra = 0.2, σ = 1.5, ϕ = 0.2 and n0 = 0.6.

When z = O(1), we initially adopt an algebraic expansion of n and c in powers

of ε, so that (4.48) provides n = 0 to leading order in ε. This indicates that n is

exponentially small, i.e. n = o(ει) for any ι > 0. In view of this, (4.48) provides

d2c

dz2 = 0, (4.75)

to leading order in ε, so that c = c0, where c0 = O(1) is a constant determined by

the scaling z with ε
1
2 , as follows.

We introduce the variables ζ = z/
√

ε, V (ζ) = v/
√

ε, Q = U/
√

ε and set n :=

N(ζ) and c := C(ζ), with (ζ, V, Q, N, C) = O(1). To leading order in ε, (4.46)–

(4.49) provides

N ′(ζ) = Γ(N, C) − NΣ(N)
V − Q

, (4.76)

V ′(ζ) = Σ(N), (4.77)

C ′(ζ) = G (4.78)

G′(ζ) = NC, (4.79)

V (0) = Q, C(0) = 1, lim
ζ→−∞

(
N(ζ), G(ζ), V (ζ)

)
= 0, (4.80)

where ′ ≡ d
dζ

and G = C ′. We note that, the boundary conditions from the full
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system (4.46)–(4.49) are satisfied as ξ → −∞, which indicates solutions to (4.76)–

(4.80) are uniformly valid for all z. We solve (4.76)–(4.80) numerically via a shooting

method, with initial data specified at the wave front, ζ = 0. This system is compu-

tationally singular at ξ = 0 due to the boundary condition V (0) = Q. We therefore

consider the leading edge of the wavefront to be ξ = −δ, where δ is chosen to be suf-

ficiently small that the solution converges. We numerically integrate (4.76)–(4.80)

on the truncated domain ξ ∈ [−M, −δ], and must therefore obtain asymptotically

appropriate boundary conditions at the points ξ = −δ and ξ = −M.

The initial data at ζ = −δ is found by expanding the dependent variables

around ζ = 0, so that as ζ → 0 we have

N ∼ n∞ +N ′(0)ζ, V ∼ Q+Σ(n∞)ζ, C ∼ 1+G(0)ζ, G ∼ G(0)+n∞ζ, (4.81)

The value of N ′(0) is found explicitly by taking the limit as ζ → 0 via L’Hôpital’s

rule. We have,

N ′(0) = G(0)ΓC(n∞, 1)
Σ(n∞) − ΓN(n∞, 1) + F (n∞) , (4.82)

such that ΓN = ∂Γ
∂N

, ΓC = ∂Γ
∂C

and F (N) = d
dN

[NΣ(N)]. The values of Q and G(0)

are unknown and must be determined as part of the problem.

The appropriate boundary conditions at ξ = −M are found by analysing (4.76)–

(4.80) in the limit as ξ → −∞, where N, V, G → 0 and C → C0, such that C0 is an

unknown constant. We therefore introduce the perturbations N ∼ N0, V ∼ V0, G ∼

G0 and C ∼ C0 + C1 such that |N0|, |V0|, |G1|, |C1| ≪ 1 satisfy the system

N ′
0 = KN0, V ′

0 = −ϕN0, C ′
1 = G0, G′

0 = N0C0 (4.83)

where K = 1
Q

[
raσ − C0(rm + ra)

]
. The solutions of this system are

N0 = N0e
Kz, V0 = −ϕN0e

Kz

K
, C1 = C0N0e

Kz

K2 , G1 = C0N0e
Kz

K
(4.84)

so that as ξ → −∞ we have

V ∼ −ϕN

K
, C ∼ C0 + C0N

K2 , G ∼ C0N

K
. (4.85)
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Figure 4.9: Numerical solution of the PDE system from (4.12)–(4.17) and asymptotic solutions
from (4.76)–(4.80) for β = 50. Parameter values: rm = 2, ra = 0.5, σ = 1.1, ϕ = 0.4, n0 = 0.6 and
M = −50.

These relationships are used as boundary conditions at ξ = −M .

Using the function ode45 in MATLAB, we numerically integrate (4.76)–(4.80)

from ζ = −δ to ζ = −M for various values of Q, G(0) and C0 using the initial

data from (4.81) at ζ = −δ. Using the function fminsearch in MATLAB, we obtain

the values of Q, G(0) and C0 such that the boundary conditions at ζ = −M are

satisfied. From this, we are able to obtain N, V, G and C and the corresponding

value of Q.

In figure 4.9, we compare the numerical solution for n, v and c when obtained

by solving the PDE system from (4.12)–(4.17) for β = 50 against their respective

asymptotic solutions N, V and C from (4.76)–(4.80). The travelling-wave solutions

n(z), v(z) and c(z) are obtained from the PDE system from (4.12)–(4.17) as de-

scribed in subsection 4.4.4. We overcome numerical problems experienced when

solving the PDE system, which arise in the boundary-layer, by employing a non-

uniform mesh with a concentrated number of mesh points in the vicinity of the

tumour edge; see section 4.3.1. Overall, a very good agreement between the numer-

ical and asymptotic solutions is observed, despite only a moderately large value of

β being used.
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4.5 Criteria for extinction-type solutions

The numerical results presented in section 4.3.2 illustrate that as the natural cell den-

sity ϕ increases, solutions of the PDE system (4.12)–(4.17) transition from travelling-

wave, to steady-state and then extinction-type such that L → 0. The former two

solution types correspond to the formation of a non-zero population of cells; how-

ever, the latter corresponds to tumour extinction, and we now obtain criteria by

which the the PDE system (4.12)–(4.17) admits these extinction-type solutions.

The numerical solutions presented in section 4.3.2 suggest the criteria for extinction-

type solutions can be sought by identifying the bifurcation between steady-state

solutions and extinction-type solutions. To obtain this bifurcation criteria, we first

present the steady-state system of ODEs resulting from the PDE system (4.12)–

(4.17). Assuming that n ∼ n(x), vn ∼ vn(x), c ∼ c(x) and that L ∼ L∞ for t ≫ 1

where L∞ is constant, the PDE system from (4.12)–(4.73) provides

∂

∂x
(nvn) = Γ(n, c), 0 < x < L∞, (4.86)

∂

∂x

(
n

∂vn

∂x

)
− ∂

∂x

[
nΣ(n)

]
− κ

nvn

1 − n
= 0, 0 < x < L∞, (4.87)

∂2c

∂x2 = ρnc, 0 < x < L∞, (4.88)

dvn

dx

∣∣∣∣∣
x=L∞

= Σ(n), vn(L∞) = 0, c(L∞) = 1, vn(0) = 0,
dc

dx

∣∣∣∣∣
x=0

= 0.

(4.89)

Numerical solutions of the PDE system (4.12)–(4.17) suggest that L∞ decreases

toward zero as the bifurcation between steady-state and extinction-type solutions

is approached, and we hence assume that this bifurcation point lies at L∞ = 0. In

view of this, we obtain criteria for extinction-type solutions by analysing the system

of steady-state ODEs (4.86)–(4.89) in the limit L∞ → 0.
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4.5.1 Asymptotic analysis of the steady-state ODEs as L∞ →
0

In this subsection, we analyse the system of steady-state ODEs from (4.86)–(4.89) in

the limit L∞ → 0 to obtain the bifurcation between steady-state and extinction-type

solutions.

For convenience, we first scale x ∈ [0, L∞] with L∞ as X = x/L∞, so that

X ∈ [0, 1] and (4.86)–(4.89) provides

∂

∂X
(nvn) = L∞Γ(n, c), 0 < X < 1, (4.90)

∂

∂X

(
n

∂vn

∂X

)
− L∞

∂

∂X

[
nΣ(n)

]
− L2

∞κ
nvn

1 − n
= 0, 0 < X < 1, (4.91)

∂2c

∂X2 = L2
∞ρnc, 0 < X < 1, (4.92)

dvn

dX

∣∣∣∣∣
X=1

= L∞Σ(n), vn(1) = 0, c(1) = 1, vn(0) = 0,
dc

dX

∣∣∣∣∣
X=0

= 0. (4.93)

Guided by numerical solutions of the PDE system (4.12)–(4.17) when L∞ ≪ 1, we

introduce the perturbations

n ∼ n0(X) + ϵαn1(X), vn ∼ ϵηv0(X), c ∼ c0(X) + ϵγc1(X), L∞ ∼ ϵℓ, (4.94)

where α, η and γ are positive constants and ϵ → 0+. Here, ϵ is a small parameter

which will subsequently be determined as a function of the model parameters via an

appropriate dominant balance, thereby identifying a relationship between the model

parameters ensuring that L∞ → 0.
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We first substitute the perturbations from (4.94) into (4.90)–(4.92) to obtain

ϵη ∂

∂X
(n0v0) = ϵℓΓ(n0, c0), (4.95)

ϵη ∂

∂X

(
n0

∂v0

∂X

)
− ℓϵ

∂

∂X

[
n0Σ(n0)

]
− ϵ2+ηℓ2κ

n0v0

1 − n0
= 0, (4.96)

∂2c0

∂X2 = ϵ2ℓρn0c0. (4.97)

To leading order in ϵ, we integrate left-hand side of (4.97) and use the boundary

conditions on c from (4.93) to obtain c0 = 1. The numerical solutions of the PDE

system from (4.12)–(4.17) indicate that n is near-spatially-uniform when L∞ is small.

In view of this, we assume that η > 1, so that (4.95) provides Γ(n0, 1) = 0 to leading

order, thereby determining n0 to be spatially-uniform:

n0 = 1 − ra(σ − 1)/rm. (4.98)

To find an expression for v0, we first note that the third term from (4.96) is negligible

in comparison to the remaining two, and a dominant balance in (4.96) is hence is

obtained when η = 1; however, this contradicts the prior assumption that η > 1.

To address this contradiction, we define ϵ as a function of the model parameters

by using that for spatially-uniform n, (4.19) suggests that Γ(n, 1) = nΣ(n) as t →

∞. In view of this, and given that n = n0 +O(ε2) where n0 satisfies Γ(n0, 1) = 0, we

must also have n0Σ(n0) = 0 so that n0 = ϕ to leading order and hence n0 = ϕ+O(ϵ2).

As such, we set ϵ2 = n0 − ϕ so that (4.91) now provides

ϵη ∂

∂X

(
n0

∂v0

∂X

)
− ℓϵ3 ∂

∂X

[
n0

1 + ϵα−2n1

1 − n0

]
− ϵ2+ηℓ2κ

n0v0

1 − n0
= 0. (4.99)

Choosing α = 2 and then η = 3, a dominant balance is obtained between the first

two terms of (4.99). Integrating this balance and using the first boundary condition

from (4.93), we obtain
∂v0

∂X
= ℓ

1 + n1

1 − n0
. (4.100)

We now find expressions for n1(X), c1(X), v1(X) and ℓ. Recalling that η = 3
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and α = 2, n1(X) and c1(X) satisfy the equations

ϵ3 ∂v0

∂X
= ϵ

ℓ

n0

[
ϵ2n1A(n0, 1) + ϵγc1B(n0, 1)

]
, (4.101)

ϵγ ∂2c1

∂X2 = ϵ2ℓ2ρn0, (4.102)

where A(n, c) = ∂Γ
∂n

and B(n, c) = ∂Γ
∂c

. Choosing γ = 2 and using the boundary

conditions dc1
dX

∣∣∣
X=0

= 0 and c1(0) = 0, (4.102) provides

c1(X) = ℓ2ρn0

2 (X2 − 1). (4.103)

With γ = 2, all of the terms in (4.101) balance, and summing this balance with

(4.100) provides
n0(1 + n1)

1 − n0
= n1A(n0, 1) + c1B(n0, 1), (4.104)

so that

n1(X) = 2n0 − (1 − n0)Bℓ2ρn0(X2 − 1)
2(1 − n0)A − 2n0

. (4.105)

To find v0, we integrate the sum of (4.105) and (4.100), and use the boundary

condition v0(0) = 0 to obtain

v0(X) = ℓ

1 − n0

(
1 + n0

(1 − n0)A − n0
+ ℓ2Ψ

)
X − ℓ3Ψ

3(1 − n0)
X3, (4.106)

where

Ψ = (1 − n0)Bρn0

2(1 − n0)A − 2n0
. (4.107)

Finally, imposing the boundary condition v0(1) = 0 on (4.106), we obtain

ℓ =

√√√√ 3
2Ψ

(
n0

(n0 − 1)A + n0
− 1

)
. (4.108)

In this subsection, we have determined asymptotic solutions of the steady-state

ODE system from (4.90)–(4.93) as L∞ → 0, via the perturbations from (4.94) where

(α, η, γ) = (2, 3, 2). The small parameter ϵ → 0+ introduced in (4.94) is determined

as ϵ2 = n0 − ϕ, so that L∞ → 0 as n0 − ϕ → 0+. As discussed above, we expect

the bifurcation point between steady-state and extinction-type solutions to be at
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L∞ = 0, i.e. when n0 = ϕ. We also expect the PDE system from (4.12)–(4.17) to

admit extinction-type solutions such that L → 0 when n0 − ϕ < 0.

4.5.2 Results

In this subsection, we present and discuss the criteria for extinction-type solutions

obtained by analysing the system of steady-state ODEs from (4.90)–(4.93) in the

limit L∞ → 0. Before this, we illustrate the accuracy of the asymptotic expansion

from (4.94) by comparing it with numerical solutions of the PDE system from (4.12)–

(4.17).

In figure 4.10(a), we compare the quantity L∞(ϵ) obtained by numerically solv-

ing the PDE system from (4.12)–(4.17) against the quantity ϵℓ, where ℓ is stated in

(4.108). The quantity L∞ is obtained from the PDE system (4.12)–(4.17) by eval-

uating L(t) for a sufficiently large value of t. Overall, we observe that asymptotic

expansion for L∞ converges to the numerical solutions as ϵ decreases toward zero.

In figure 4.10(a–c), we compare numerical solutions for n, vn and c obtained from

the PDE system (4.12)–(4.17) against the first three perturbations from (4.94) for

ϵ = 0.1, from which we observe a very good agreement.

In figure 4.11(a), the solid black line represents the bifurcation curve L∞ = 0,

i.e. (n0 = ϕ), obtained in subsection 4.5.1. We indicate parameter regions in which

extinction-type solutions or non-extinction type solutions (i.e. travelling-wave or

steady-state) are expected. We also indicate three parameter regimes in the extinc-

tion region close to the bifurcation curve L∞ = 0 with coloured dots. To illustrate

the accuracy of the extinction region shown in figure 4.11(a), we present log(L) ob-

tained numerically from the PDE system (4.12)–(4.17), corresponding to the green,

orange and pink dot parameter regimes in figure 4.11(b) with their respectively

coloured lines. As expected, figure 4.11(b) indicates extinction-type solutions such

that L → 0 as t → ∞ for all three parameter regimes. Hence, the results pre-

sented in figure 4.11(b) are consistent with the regions presented in figure 4.11(a)
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Figure 4.10: Numerical solution of the PDE system from (4.12)–(4.17) and asymptotic solutions
from (4.94) for (a) L∞(ϵ) where ϵ ∈ [0.07, 0.32] and for (b) n(X), (c) vn(X) and (d) c(X) where
ϵ = 0.1. Parameter values: rm = 1, ra = 0.8, σ = 2, ρ = 1, (a) ϕ = [0.7, 0.7950] and (c–d)
ϕ = 0.79.

and illustrate a good level of accuracy of the bifurcation curve, L∞ = 0.

As seen from the bifurcation curve L∞ = 0 in figure 4.11(a), the value of ϕ

required to generate an extinction-type solution decreases with rm. This suggests

that tumour extinction will occur if there is insufficient cell growth to generate

repulsive forces inducing tumour expansion. Interestingly, the extinction criteria

n0 < ϕ is also independent of ρ and κ, suggesting that the value of the nutrient

diffusivity or cell-liquid drag does not determine when extinction-type solutions

will be observed. However, numerical solutions of the PDE system (4.12)–(4.17)

indicate that L∞ = O(ρ−1/2) for ρ ≫ 1, suggesting the size of the tumour can be

made arbitrarily small by decreasing the value of the nutrient diffusivity.
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Figure 4.11: In (a), the black solid line is the curve L∞ = 0 corresponding to the relationship
ϕ = n0 where n0 = 1 − ra(σ − 1)/rm. The green, orange and pink dots in (a) correspond to the
coordinates (rm, ϕ) = (0.4, 0.51), (rm, ϕ) = (1, 0.81) and (rm, ϕ) = (1.7, 0.89), respectively. In
(b), the green, orange and pink lines represent log(L) obtained from the PDE system from (4.12)–
(4.17), with parameter values corresponding to the respective coloured dots in (a). Parameter
values: ra = 0.2, σ = 2, ρ = 1 and κ = 1.

4.6 Conclusions

In this chapter, the multiphase, moving boundary model of avascular tumour growth

developed in Byrne et al. (2002) is analysed. This model consists of three coupled,

partial differential equations governing a cell volume fraction n(x, t), its associated

velocity and a concentration of nutrient, as well as a moving boundary condition for

the tumour edge. The nutrient is abundantly distributed at the tumour edge, and

is transported throughout the tumour via diffusion where it is consumed by cells.

Mechanisms representing forces generated by cell-cell interactions, cell-liquid drag

and cell necrosis are accounted for by considering relevant constitutive assumptions

in a similar fashion to those in Byrne et al. (2002) and Breward et al. (2002). One

important parameter related to cell-cell interactions is ϕ, which represents the cells’

natural packing density. If n > ϕ, then cells repel each other to relieve membrane

stress, and if n < ϕ, then cells will attract one another due to their filopodia coming

into contact.

Solutions of the tumour growth model can develop into a forward-moving trav-

elling wave which corresponds to tumour growth. These solutions have n > ϕ in a
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vicinity of the wave-front, the cells there experiencing repulsive forces which drive

tumour expansion. This expansion, alongside the consumption of nutrient by cells in

the proliferating tumour edge, deprives nutrient from the tumour interior resulting

in a necrotic core, which is in agreement with both theoretical (Greenspan, 1972;

Ward and King, 1997) and experimental studies (Klowss et al., 2022). To accu-

rately characterise these travelling-wave solutions in terms of the model parameters,

we analyse the corresponding system of travelling-wave ODEs.

A numerical and asymptotic analysis of the travelling-wave ODEs show that

varying the nutrient diffusivity, D, has a significant affect on the structure and

growth rate of the tumor. When the diffusivity is large (D ≫ 1), the cell vol-

ume fraction gradually decreases away from a proliferating rim of O(1) width on

the long-length scale O(D 1
2 ), the tumour interior therefore providing a substantial

contribution to the total cell yield. In contrast, when the diffusivity is negligible

(D ≪ 1), the proliferating rim is of O(D 1
2 ) width, immediately behind which the

cell volume fraction is exponentially small. This emphasises the crucial role of a

highly diffusible nutrient in the development of viable in vitro tumour spheroids,

and suggests that a population of in vivo tumour cells can be reduced by limiting

the diffusion of nutrient provided by the surrounding vasculature.

This being said, we note that the diffusivity of key nutrients involved in tumour

growth such as oxygen and glucose are not readily controllable in vitro. Our analysis

does, however, suggest that the strength of the drag between the cells and liquid has

a similar effect on tumor structure as diffusivity, which could be varied by modifying

the mechanical characteristics of the extra-cellular liquid. Specifically, via a scaling

analysis of the travelling-wave ODEs, we demonstrate that varying the value of the

cell-liquid drag can counteract the effects of high or low nutrient diffusivity on the

tumour structure. For example, when nutrient diffusivity is low (D ≪ 1) but the

value of the cell-liquid drag is O(D−1), the width of the proliferating rim is O(1)

instead of O(D 1
2 ).
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As well as travelling-wave solutions which represent tumour growth, we also ob-

serve solutions where the tumour boundary decays exponentially toward zero, which

corresponds to tumour extinction. After a period of transient behaviour, these solu-

tions have n < ϕ everywhere, so that cells are in a constant state of attraction and

results in the contraction and eventual extinction of the tumour. Via a bifurcation

analysis of the tumour growth model, we obtain criteria for the extinction of the

tumour, which depends on parameters related to cell growth/death and the natural

cell density ϕ, but interestingly not on the value of nutrient diffusivity. We do, how-

ever, note that controlling cell growth/death rates and the natural packing density of

a particular cell line is not readily achievable, particularly in vivo. Nonetheless, the

novel bifurcation analysis presented in this chapter serves as a foundation for estab-

lishing extinction criteria for extensions of the tumour model of Byrne et al. (2002).

For instance, this tumour model could be extended to incorporate a chemothera-

peutic drug concentration, for which the bifurcation analysis in this chapter could

be applied to determine the concentration required for tumour extinction.

A possible extension of the work presented in this chapter is to investigate the

effects of chemotaxis on a growing tumour. For example, in Green et al. (2018), a

mechanism is employed in the constitutive assumptions representing forces gener-

ated by cells responding to a concentration of chemotattractant. Another natural

extension of this work is to examine the effect of additional phases on a growing tu-

mour. For example, Breward et al. (2003) extends the model of Byrne et al. (2002)

by considering a phase representing blood vessels.



Chapter 5

Conclusions and Future Work

5.1 Thesis Overview

In this thesis, we have developed and analysed two multiphase, moving boundary

models representing the evolution of biological tissue. The first model considers

a description of engineered tissue growth, whereas the second describes tumour

growth. Throughout this work, these models are used to characterise the effects of

cell growth and tissue mechanics on various tissue structures. We also believe the

mathematical results obtained in their analysis can be applied to a wider class of

continuum mathematical models. In addition, the analysis contained herein serves

as a foundation for future mathematical investigations.

After providing an overview of engineered tissue and tumour growth, we in-

troduce various mathematical models which have been used to investigate these

processes in chapter 1. We then outline a derivation of the conservation of mass

equations governing two-phase flow, which are employed throughout this thesis.

124
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5.2 Summary of Results

5.2.1 Chapter 2

In chapter 2, we developed and analysed a multiphase, moving boundary model

representing the development of tissue in vitro in an artificial scaffold. Follow-

ing many multiphase studies of engineered tissue growth (Lemon and King, 2007a;

O’Dea et al., 2010; Lemon et al., 2006), we restrict our attention to a cell phase,

extra-cellular liquid phase and a scaffold phase, the former two being modelled as

incompressible fluids and the latter as an inert solid. Assuming that the interphase

drags associated with the fluid phases are dominated by those with the scaffold,

we relate the velocity of the fluid phases to their respective pressures via Darcy’s

laws. In contrast to the above studies which employ equations of momentum bal-

ance, one novelty of this work arises via the use of Darcy’s law, which allows the

elimination of the cell velocity from the governing equations. The reduced model

comprises a nonlinear reaction–diffusion equation for the cell phase, coupled to a

moving boundary condition for the tissue edge. Our formulation also differs from

the existing literature that employ Darcy’s law to model tissue growth (Eyles et al.,

2019; King and Franks, 2004; Franks and King, 2003), which treat the velocity field

of a two-fluid flow as a single continuum.

A non-dimensionalisation of the reduced model considered in chapter 2 exposes

an important dimensionless grouping, κ, that describes the difference between the

scaffold porosity and the ratio between the cell death and growth rates. For κ >

0, we show that the cell volume fraction spreads through the scaffold as a semi-

infinite travelling wave with constant speed, which corresponds to successful growth.

We compute the speed at which the tissue edge moves through the scaffold via a

travelling-wave analysis, and thereby determine optimal values of parameters related

to tissue mechanics and growth which optimise this wave speed. For example, we

demonstrate that wave speed is greatest when the viscosity of the cells is much

greater than the viscosity of the liquid, and when the scaffold porosity is large.
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For |κ| ≪ 1, we employ an asymptotic analysis to find explicit solutions for the

cell volume fraction and moving boundary from the time-dependent model. In this

case, the model reduces to a Porous-Fisher-Stefan system (Fadai and Simpson, 2020;

Fisher, 1937; Aaronson, 1980) with logistic growth. Alongside the various biological

implications obtained from these explicit solutions valid when |κ| ≪ 1, the analysis

itself provides a novel mathematical contribution. Specifically, we extend the work

of Newman (1980) who constructed an implicit solution for the time-dependent

Porous-Fisher Equation, by obtaining the corresponding explicit large-time solutions

for both a positive and negative reaction term.

Although the reaction-diffusion model developed in chapter 2 represents a tractable

description of tissue growth, it is ill-posed due to negative diffusion in parameter

regimes where attractive forces arising from cell-cell and cell-scaffold interactions

dominate repulsive forces. As such, our model can not admit solutions representing

the formation of separate cell aggregates arising from cellular attractive forces, like

those presented in existing multiphase models of engineered tissue growth such as

Green et al. (2018), Lemon et al. (2006) and Lemon and King (2007a). A further

limitation of our model is that non-negligible forces generated by cellular viscosity

in a highly porous medium are not captured by Darcy’s law. To overcome these

limitations, it is appropriate to consider equations of momentum balance (which

account for stresses arising from cellular viscosity) in place of Darcy’s law, such as

in Lemon et al. (2006) and O’Dea et al. (2010). This modification is addressed and

examined in chapters 3 and 4.

5.2.2 Chapter 3

The remainder of this thesis focuses on the multiphase, moving boundary of tumour

growth developed in Byrne et al. (2002), which considers the evolution of a motile,

viscous a cell phase and an inviscid liquid phase. Although this model describes

tumour growth, the results obtained in its analysis can be applied to a wider class
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of multiphase tissue growth models. The velocity of the cell and liquid phases are

related to their respective pressures via momentum balance equations, which leads

to a more complex model than the reaction-diffusion system considered in chapter 2.

Furthermore, in contrast to the model developed in chapter 2, the model of Byrne

et al. (2002) is well-posed in parameter regimes where attractive forces arising from

cell-cell interactions dominate repulsive forces.

In chapter 3, we analyse spatially-patterned and travelling-wave solutions of the

tumour growth model developed in Byrne et al. (2002). Following King and Franks

(2004), we assume that nutrient is abundantly distributed throughout the tumour.

Whilst this assumption omits important elements such as cell death induced via

nutrient limitation, it is physically relevant in the context of an in vivo tumour in the

initial stage of development where all cells are adequately nourished. Additionally,

this nutrient rich assumption is appropriate when considering the initial growth of a

suspension of in vitro tumour cells (Byrne et al., 2002) or a monolayer cell culture.

The primary focus of the analysis in chapter 3 pertains to patterned solutions,

which are associated with multiple regions of high cell density separated by regions of

low cell density. As described in Green et al. (2009a), these patterned solutions can

be associated with the structural instability of an in vitro suspension of cells, which

could lead to their break-up and consequently the formation of separate spheroids.

The formation of these patterned solutions can also associated with the formation

of high density cell aggregates in a monolayer culture, as seen in the experimental

studies of da Silva et al. (2018).

In contrast to existing studies of multiphase, moving boundary models of tissue

growth (Byrne et al., 2002; Lemon and King, 2007a,b), this work adopts a unique

approach to obtain regions of parameter space in which patterned solutions are ob-

served. Specifically, these regions are determined by computing the instability of

travelling-wave solutions of the tumour growth model, which incorporates the effects

of the moving boundary and attendant boundary conditions. Whilst the regions dis-
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played an excellent degree of accuracy when compared to the full time-dependent

model, they were computationally expensive to compute. To overcome this limita-

tion, we determined the stability of a spatially-uniform steady state. In contrast to

the travelling-wave stability analysis, this steady state does not satisfy the moving

boundary condition at the tumour edge; however, it provides an analytical dispersion

relation in terms of the model parameters. Interestingly, the regions of instability

obtained via the travelling-wave and spatially-uniform stability analyses are in very

good agreement, which allows us to exploit the simpler dispersion relation approach

to deduce how varying model parameters affects the onset of pattern formation. For

example, using this dispersion relation, we demonstrate that patterned solutions will

not form if there is no cell death, and obtained a maximum value for the rate of cell

proliferation such that patterned solutions will form. Furthermore, the good agree-

ment between the two stability analyses suggests the inclusion or exclusion of the

moving boundary does not determine when patterned solutions will form, thereby

allowing us to identify the dominant destabilising mechanism giving rise to pattern

formation.

5.2.3 Chapter 4

In chapter 4, we revisit the model of Byrne et al. (2002), although we now as-

sume the presence of a single diffusive concentration of nutrient within the tumour,

which is abundantly distributed at the tumour edge. In certain parameter regimes,

the model exhibits forward-moving travelling waves, which corresponds to tumour

growth. This expansion, along-side the consumption of nutrient by cells at the tu-

mour edge, deprives nutrient from the tumour interior resulting in a necrotic core,

which is in agreement with both theoretical (Greenspan, 1972; Ward and King, 1997)

and experimental studies (Klowss et al., 2022).

Although the seminal model of Byrne et al. (2002) has been employed and ex-

tended in many studies of tumour growth (Breward et al., 2003; Remesan et al.,
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2023), the corresponding travelling-wave ODEs have not been analysed. In view of

this, we extend the work of Breward et al. (2002) by developing a numerical algo-

rithm to solve these ODEs using techniques described in Ward and King (1999),

which allow us to obtain important quantities relating to tumour growth in terms of

the model parameters. Another new aspect of this work arises by obtaining asymp-

totic solutions of these travelling-wave ODEs in terms of a compound parameter

related to nutrient diffusivity and the value of the cell-liquid drag. Interestingly, we

found that the effects of high or low nutrient diffusivity on the tumour structure can

be counteracted by varying the value of the cell-liquid drag.

As well as travelling-wave solutions, the tumour model of Byrne et al. (2002)

can exhibit solutions corresponding to tumour extinction, whereby the tumour edge

decays exponentially toward zero. It is surprising that, despite representing a sig-

nificant biological phenomena, the extinction-type solutions admitted by this model

have not yet been investigated. As such, we obtain criteria for tumour extinction

via a bifurcation analysis, and determine that if the natural packing density of cells

is larger than the net rate of cell growth, the tumour cells will be in a constant

state of attraction resulting in tumour contraction and hence extinction. Whilst

parameters related to packing density and growth/death rates of a particular cell

line may not be readily controllable, this bifurcation analysis serves as a foundation

for establishing extinction criteria for extensions of the two-phase tumour model.

5.2.4 Future Work

Some natural extensions to the individual models described in each chapter are

provided, and we now briefly outline some overarching extensions that can apply to

all of these models.

Throughout this thesis, we follow Byrne et al. (2002), Lemon and King (2007a)

and Lemon et al. (2006) and assume a one-dimensional Cartesian geometry. While

this choice allows for the application of various mathematical techniques, such as
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travelling-wave and asymptotic analysis, we acknowledge that this geometry is ide-

alised and does not fully represent the intricacies of tissue growth. As such, a pos-

sible avenue for future exploration could involve investigating the models developed

in this thesis on more realistic geometries. For example, in chapter 5, the model

could be extended to a spherical geometry to better capture the growth dynamics

of a tumour spheroid. However, it is important to note that modelling on higher

dimensions than one may entail significant numerical computations.

Following Lemon and King (2007b) and Klowss et al. (2022), an additional

extension to explore could involve incorporating statistical theory to compare the

numerical and analytical results obtained in this thesis with experimental data.

This comparative analysis could provide valuable insights and predictions related to

determining suitable values for model parameters.
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