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Abstract

Image generation techniques, such as generative adversarial networks (GANs), have
become sufficiently sophisticated to cause growing security concerns regarding image
authenticity. Although generation and detection methods are often applied to a
range of images such as objects and faces, more domain specific image types such
as Earth Observation (EO) have received relatively little attention, leaving the field
vulnerable to potential malicious misuse of this technology. This thesis investigates
the current state of EO specific GAN generation and detection methods using an
interdisciplinary approach. This work argues that further detection methods should
incorporate both human and computational detection to improve current techniques.
Evidence to support this conclusion is given by the following contributions:

1. A literature review of the current state of image generation and detection with
respect to EO imagery.

2. A new benchmark evaluation of current GAN models in the task of the un-
conditional generation of synthetic EO imagery.

3. A Comparison between detection methods in both human and computer detec-
tion systems towards synthetic EO imagery that quantifies the key behavioural
differences and effectiveness for each approach. The findings from two image
detection studies show that these systems prioritize different image features
for making accurate detections.

4. An eye-tracking image detection study between expert and novice users. The
results find that experts exhibit more efficient and effective visual search strate-
gies for detection.

5. The development of a novel framework to improve current techniques by guid-
ing a CNN detection model using eye gaze data from self-reported high expe-
rience individuals. The results found that this approach increased detection
performance over control models.
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Chapter 1

Introduction

1.1 Motivations

The last decade has seen remarkable progress in the fields of machine learning and

computer vision as more sophisticated algorithms are designed and the hardware to

run them becomes more powerful and accessible. Generative algorithms for creating

images and video have become much more robust with the inception of Generative

Adversarial Networks (GANs).

This ability to convincingly generate and alter visual data brings a new set of chal-

lenges and threats when the technology is used with malicious intent. One recent

example of this is the rise of “Deep Fakes,” which use GANs and other deep learning

techniques to splice one face onto another in motion, making it possible to create

video of real people doing things, and with audio synthesis, saying things that never

actually occurred. This is one example, which shows how this technology has se-

rious and potentially dangerous ramifications across multiple levels, from people’s

personal data being altered and misused without their consent, to larger reaching

consequences of national security if this technology becomes used for digital propa-

ganda to influence large populations on a larger scale.

The implementation of generative techniques becoming more accessible and easier

to use, with generative systems being able to be trained in hours using consumer

level GPUs and various generative web APIs available within a web browser. The

1



Chapter 1. Motivations 2

generated content itself is also becoming more realistic and harder for the human eye

to distinguish [1, 2]. Current research into the detection of generated imagery is a

rapidly growing field yet research gaps persist. One shortcoming in current research

is the comparatively lack of work looking at domain specific data outside faces and

objects, which have already been explored much more comprehensively [3–5].

Earth observation (EO) data (e.g. satellite aerial imagery), is an example of a do-

main specific data type whose authenticity is relied on in a variety of technical fields

from remote sensing to urban planning. The lack of specific understanding into the

generation and subsequent detection of generated EO data presents a significant

security threat. During the time frame of this PhD project the U.S. government

publicly released military intelligence of EO images depicting Russian Forces build-

ing up on the border of Ukraine [6]. The release of these images as evidence of

imminent Russian aggression drew the attention of the international community.

This is one recent example of the importance of being able to trust that vital EO

image data is authentic. Although there are no currently well known cases of en-

tirely fake EO images using deep learning generative techniques, digitally altered

EO data is already an issue. On 1 August 2014 the Russian Ministry of Defense

released satellite images in relation to the downing of Malaysia Airlines Flight 17,

yet a subsequent investigation by Bellingcat analysed the images, concluding that

they had been modified using Adobe Photoshop software [7]. As generative algo-

rithms become easier to use it is reasonable to predict that they may replace, or be

used alongside manual methods of digital image manipulation, as has been found in

other domains.

Despite the larger public exposure to image generation and manipulation techniques

such as deep fakes, many domain specific image types such as EO data are often not

considered targets and remain vulnerable to the spread of misinformation. Although

there is the argument that research into novel detection methods just leads to further

advancements in the generation technology in a continuous, escalating loop, it is

hard to deny the importance of researching current vulnerabilities and also gaining

insights into how this kind of technology functions, both technically and in human
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interactions.

Aside from the defence, security, and trust implications of investigating generative

EO data, it also presents a novel method for evaluating current generative models.

The nature of the differences in features found in aerial imagery compared to faces

and objects presents a distinct set of challenges for current generative models which

may not have been extensively assessed on similar data sources.

The research for this PhD looks at novel ways to improve current detection meth-

ods for synthetic earth observation data. This thesis achieves this by evaluating the

current performance of state-of-the-art (SotA) GAN models and then assessing the

strengths and limitations of both automatic and visual methods of perceiving false

image content. The results of these findings are then utilized to inform the direction

for improving current methods of detection. In addition to new academic contribu-

tions, any findings during this research also hopes to be able to be applied towards

the relevant projects and goals of the Defence, Science and Technology Laboratory

(Dstl) with whom this project is partnered with.

1.2 Aims and Objectives

This project seeks to combine Computer Vision and Machine Learning with human

factors research into human/algorithm interaction and visual perception. The work

in this thesis explores the current state of generation and detection of image data

and proposes a novel detection method for synthesised earth observation images.

Earth observation (EO) data (e.g., aerial imagery) has been chosen for this project

as it is a novel, domain specific image type that has not been widely researched

in GAN (Generative Adversarial Networks) generation and detection, despite its

importance for many applications.

The main aim of this project is to evaluate the generation and detection of GAN

generated EO imagery and to improve current detection methods by using a multi-

disciplinary approach from both computer vision and human factors. This will be

achieved with respect to 3 main objectives:
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1. Evaluate current GAN generation models on the ability to synthesis realistic

EO imagery.

2. Analyse detection methods in both human and computer visual systems to-

wards generated aerial imagery and to quantify the key behavioural differences

and effectiveness for each approach.

3. Improve current synthetic image classification systems with the use of expert

human detection data.

1.3 Contributions

In the areas of GAN image detection and generation for EO imagery the work in

this thesis makes the following contributions:

1. (Chapter 2) A literature review of the current state of image generation and

detection with respect to EO imagery. An overview of current GAN models is

given as well as a review of detection methodologies for synthetic images and

human evaluation studies.

2. (Chapter 3) A new benchmark evaluation of current GAN models in the task

of the unconditional generation of synthetic EO imagery. Different GAN eval-

uation metrics for this task are also reviewed including Frechet Inception Dis-

tance and Kernel Inception Distance. During the model evaluation a synthetic

EO image dataset is produced for use in further image detection studies.

3. (Chapters 4-5) A Comparison between detection methods in both human and

computer detection systems towards synthetic EO imagery that quantifies the

key behavioural differences and effectiveness for each approach. The findings

from two image detection studies (one online and one in person) show that

these systems prioritize different image features for making accurate detec-

tions.
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4. (Chapter 5) An eye-tracking image detection study between expert and novice

users where participants are asked to accurately identify the synthetic im-

age in a series of real/synthetic image pairs. The results are analysed with

gaze entropy metrics and visual inspection of eye fixation heatmaps. It was

found that experts exhibit more efficient and effective visual search strate-

gies for detection than participants with low experience, even when the im-

ages are novel to both groups of participants. A dataset of 3200 images

consisting of real and synthetic EO images. This dataset can be found at

https://www.kaggle.com/datasets/matty0512/expert-gaze-maps-for-realfake-eo-

images.

5. (Chapter 6) The development of a novel detection framework that improves on

current techniques by guiding a CNN detection model using eye gaze data from

self-reported high experience individuals. The results found that this approach

increased detection performance over control models. The implementation of

this model provides evidence that expert visual detection data can be used

to improve existing computational models of synthetic image detection for

domain specific image types.

https://www.kaggle.com/datasets/matty0512/expert-gaze-maps-for-realfake-eo-images
https://www.kaggle.com/datasets/matty0512/expert-gaze-maps-for-realfake-eo-images


Chapter 2

Background

2.1 Deep Learning based Generative models

Digital image generation has become an increasingly important area of Computer

Vision since Generative Adversarial Networks (GANs) were first outlined in 2014

[8]. This field covers a wide range of tasks such as unconditional image synthesis

[9, 10], super resolution [11], anomaly detection [12] and more recently text-to-

image [13]. As the field has grown and matured there now exist several different

core architectures that are used for achieving the different generative tasks and a

further variety of models within each respective category [14]. The performance of

these models has also improved over time as models are updated in both complexity

and size [2].

2.1.1 Generative Adversarial Networks

Until the explosion of Diffusion models in 2022 the most popular class of generative

model was GANs with hundreds of different variants applied to different problems

and data types [15] often with state-of-the-art performance. GANs have been used as

the basis for many different generative tasks [11, 16] but are suited to unconditional

image synthesis starting from a random latent vector [2, 17]. Their spread has led

to substantial large media coverage [18] of NVIDIAs StyleGAN series of models in

particular for their ability to quickly synthesis photo-realistic faces.

6
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Figure 2.1: Basic structure for Generative Adversarial Networks (GANs). GANs work
by taking input as a latent vector and learning to generate an image based on the distri-
bution of features from a training dataset. The model consists of a generator G and a
discriminator D. D is tasked with learning the training dataset, whilst G is tasked with
generating images. G will generate an image which is passed to D for prediction, if the
image doesn’t fit the dataset, the loss from the prediction is backpropagated through G.
This continues until G generates an image that D predicts came from the training dataset.

While the exact details can vary wildly between specific models, the underlying

concept behind these models is that two opposing neural networks, a generator (G)

and a discriminator (D) that are pitted against each other in a zero-sum game [8].

Network G creates an image which is given to the D network in an attempt to

fool it into a false classification. The resulting loss from this classification is then

used to improve both networks via gradient descent until D cannot distinguish the

synthesised image from the real image. This process can be summarised as the

equation (2.1):

minGmaxDV (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pdata(z)[log(1 −D(G(z)))] (2.1)

The inception of GANs saw a huge increase of interest in the field of data generation

[15]. Although the original network demonstrated the ability to use neural networks
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to generate data, rather than simply output a prediction like for classification tasks,

there are still challenges in both the research and application of the models. One of

the main problems that GANs can encounter is that of mode collapse [19]. Mode

collapse is a problem that can occur during training when the GAN becomes stuck

in generating limited and repetitive outputs, failing to capture the entire diversity

of the target generation. One of the main causes for this in earlier models is the

training balance between the generator and the discriminator. If the discriminator

does not adequately learn the distribution of the training data, the generator is able

to fool the network with inaccurate images. This results in the generator receiving

no feedback loss from the discriminator to adjust its weights. Mode collapse can also

occur from an imbalanced dataset, if some features (or modes) are more frequent

in the data, the GAN will not produce images that capture the full distribution of

the data. Conversely, if the data is too complex the GAN may also struggle to fully

capture the diversity of the full dataset.

Aside from mode collapse another issue with GANs is that they are resource heavy

to train. This is a challenge that that many deep learning architectures face, but

particularly applies to GANs. As training the model requires optimising two sepa-

rate networks, this can quickly become computationally intensive as deeper networks

are used and the models become more complex. GANs also require large amounts

of training data to produce high quality generated samples, as more recent models

seek to generate higher resolution and more realistic images, the datasets required

to train them also increase in size, adding the computational costs.

Other challenges that GANs face are interpretability and control. One criticism of

deep learning models in general is their inherent black box nature [20], that is, the

reasons for producing a specific output are often opaque to researchers. It is often

hard to interpret why a GAN produces specific output patterns and researchers

often have to speculate on what features a GAN prioritises when learning a given

data type. This question has led researchers to investigate methods to control what

output a GAN produces and to generate data with specific features. As GANs learn

the overall distribution of a dataset, rare or uncommon features for a given data type
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may be harder to generate. This also produces the problem of bias and fairness, if

there is a bias in the training dataset, this will be reflected in the output images.

Since Goodfellow’s original 2014 implementation there have been numerous devia-

tions and updates to the original structure with several models bringing noteworthy

changes that have led to increased, training speed, stability, image quality and over-

all performance. Unconditional GAN models for image synthesis will be looked at

in more detail in Chapter 3, as these are the primary GAN variants that this re-

search investigates. Aside from unconditional image synthesis GANs, there have

been many other GAN architectures for other generative tasks. The next section

provides a high level overview of the different GAN types as well as some of the

more impactful variations on the original architecture. As there are 1000s of dif-

ferent types of GAN models, the few models that were selected to be discussed

here each brought either new innovations to the architecture or significant steps in

generative image quality.

CycleGAN

CycleGAN [21] is an image-to-image translation model which attempts to learn

the identifiable features of one image and then translate those features into a target

image. This could be a texture or “style” of one set of images which is then translated

to another set of images whilst keeping the overall structure and features of the

target set. The significance of this model is that it was on of the earlier GAN

models that showed uses for the architecture in novel tasks outside of unconditional

image generation. This model has become one of the most popular models for style

transfer and image to image translation tasks.

Wasserstein GAN

The Wasserstein GAN [22] improves upon the performance capabilities of conven-

tional GAN architectures by making a few important improvements. Instead of

using the discriminator to evaluate the generated samples as real or fake as in a con-

ventional DCGAN, this model instead uses a “critic” that scores each sample image
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based upon perceived realness and fakeness. This is calculated by measuring the

distance between the distributions of the real and fake datasets. The distance metric

used is Wasserstein distance [23], also known as the Earth Mover Distance, which

calculates the optimal way to get from one distribution to another. The advantage

of this over a conventional DCGAN is that it can optimize the GAN without having

to balance the training of both the discriminator and generator, reducing the like-

lihood of mode collapse from an imbalance in the strength of either network. This

happens as the critic is trained to its optimal state and then provides a loss for the

generator to continue to optimize.

Wp(P,Q) = ( inf
J
∫
(P,Q)

∫
||x− y||pdJ(X, Y ))

1
p (2.2)

Due to the training stability and robustness provided from using Wasserstein critic,

this method has been widely adopted amongst other successful GAN variations such

as the popular models PGGAN and StyleGAN [17].

PGGAN & STYLEGAN

By utilizing several different techniques for increasing GAN performance such as

Wasserstein Loss, PGGAN set a new benchmark in performance and image quality

for unconditional image generation [24]. In addition to creating almost photorealistic

faces PGGAN can generate images to a resolution of 1024X1024p, whereas most

previous GANs had been only capable of working to image resolutions of 512X512p

or lower. The core feature that is proposed by PGGAN is its “progressive growing”

architecture. The model first learns to generate an image at a low resolution (e.g.

4X4) and when performance converges at that resolution it then up samples the

image to a higher resolution, repeating this process until the maximum resolution of

1024X1024. This method means that the network is forced to first embed large scale

structures at the lower resolutions before progressively adding more fine features and

details towards the end of training. This approach speeds up the training process

and makes it less prone to mode collapse, as compared to earlier architectures that
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process only a single resolution size.

StyleGAN [1] is another progressive growing GAN which exceeded the performance

of PGGAN in terms of image quality and visual control of features. The model

architecture used the fundamental training progress of PGGAN, the progressive

growing of image size, but added a few additional changes to the generator. These

changes included Bilinear sampling for the upsampling between layers instead of

PGGAN’s nearest neighbour layers, the addition of Gaussian noise added prior

to each activation map and also a standalone mapping network. These changes

were implemented to allow StyleGAN to conditional generate images of different

conditionally learnt styles. This also led to StyleGAN being able to outperform

PGGAN in unconditional image synthesis tasks at various resolutions. StyleGAN2

[25] included further improvements to the StyleGAN architecture, including the

replacement of the progressive growing feature. Both PGGAN and StyleGAN2

will be explored in further detail and benchmarked for generation performance in

Chapter 3. Both PGGAN and StyleGAN have been chosen to be looked at due to

their significant advancements in image quality and training stability.

2.1.2 Other Generative Models

GANs are currently the most popular and researched class of generative models and

for these reasons are the primary focus in the work within this Thesis. Despite this

it is also important to note that there are several other generative models that are

widely used and rival the top GAN models for performance in specific tasks.

Transformer Networks

Transformer networks [26] have been found to either match or surpass GANs in gen-

erated image quality with potentially better scalability and faster and more robust

training. The transformer network architecture is a deep learning, self-attention

model that is commonly used for natural language processing (NLP) tasks where it

is the leading class of model in terms of performance and usage [27]. Transformers
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have more recently been applied to computer tasks such as image generation [28].

The theoretical advantage of transformers is that their central self-attention mecha-

nism overcomes the poor global spatial understanding of image features inherent to

convolution-based models [29] and can track more long-range dependencies in the

data. One of the current issues with Transformers is that they require large amounts

of data to train which also requires substantial computational power. Despite the

potential limitation of the necessary computational power needed to train, trans-

formers have seen a huge recent increase in use for image generation, particular in

combination with Diffusion models [30] for text to image tasks.

Variational Autoencoders

Variational autoencoders (VAEs) are another class of model that is often seen in

image generation task [31]. These models learn to first encode a given input such as

an image and then to reconstruct the original input based on these learnt encodings.

Although VAEs have not shared the same state-of-the-art (SotA) results of the top

GAN and Transformers models they are usually much quicker and less computa-

tionally intensive to train [32], making them a more viable option in cases of limited

resources. Some of these shortcomings have been overcome with VAE-GANs [33]. A

combination of both VAE (Variational autoencoders) and GAN features, providing

the advantages from each respective class of model. OpenAI’s original DALL-E 1

model [13] is one notable model that partially relies on a VQ-VAE component to

learn the encodings for given input images.

Diffusion Models

Diffusion models [34] are an example of a more recent model type to be applied to

image generation. These are likelihood-based models that learn the encodings of

an image distribution while applying an increasing amount of Gaussian noise to the

image at each time step. The network then learns to “denoise” the image back to

the original noise. Diffusion networks have been found to beat GAN performance

[35] in terms of standard evaluation metrics (e.g. FID) but also in terms of diversity
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of generated samples. A large drawback with current Diffusion models is the long

training and generation times, making them a lot slower than GANs. This is seen

to a greater extent in generating images, a trained GAN model can very quickly

generate large amounts of samples for a set of input vectors. As Diffusion networks

work by denoising an image of random noise through a series of linear time steps it

is much slower as this process is required for each generated sample.

Recently diffusion models have risen sharply in popularity due to forming the back-

bone of many large text to image models such as OpenAI’s DALL-E [13] and Stable

Diffusion [36]. These are large models trained on vast quantities of data making

them capable of generating high quality images from highly specific text prompts.

Although these models achieve very impressive results, this thesis will not include

any detailed focus on them as the resources needed to train these models to SotA

are simply not realistic for many researchers, due to the cost and access of the com-

putational power required for training. DALLE 2 for example was trained on a

dataset of 250M images, contained a decoder of 2.3B parameters and was trained

on 256 V100 GPUs for 2-4 weeks [37]. Smaller models with similar architectures

are able to be trained with less computational power and data but are not able to

achieve the same high resolution and image quality as current GAN models under

these circumstances.

2.1.3 Image Generation Tasks

The types of generative models discussed have been applied to a wide range of

image generation tasks with different aims and objectives. The most fundamental

generative challenge is unconditional image synthesis [17]. As the name suggests,

this is referring to the generation of image samples from a given dataset with no other

conditions (e.g. labels). Examples of GAN models that have achieved exceptional

performance in this category include PGGAN [17] and BigGAN [2], the evaluation

of these models is usually concerned with image quality and image variation.

As an extension of the objectives of unconditional image generation, conditional
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generation models are designed to synthesise images based on additional task spe-

cific constraints, offering more control over the types of samples produced. This

is achieved using class labelled datasets [1, 38], StyleGAN3 [39] is an example of a

SotA conditional GAN, being the latest iteration of NVIDIAs original unconditional

PGGAN [17] architecture. One disadvantage with using conditional generation is

that it requires more training images than unconditional generation as there needs

to be sufficient samples for each target class. Unconditional and Conditional image

generation models have been applied to a wide range of image types, in particular

the synthesis of photorealistic faces [1] and large object datasets such as ImageNet

[2]. Currently the top implementations of these models are very computationally

expensive to train, requiring long training times and multiple GPUs to produce large

resolution (e.g. 1024 x 1024p) and high-quality images. Despite the current limi-

tations, the advancements for both conditional and unconditional generation have

seen massive leaps in terms of photorealism and image quality when comparing ex-

amples from the original GAN implementation in 2014 [8] to those generated by the

2021 model StyleGAN3 [39]. Recent work [40] has found that the face generation

abilities of the most advance models (e.g. StyleGAN3) are now indistinguishable

from real face photos in the context of human visual perception 2.2.

Figure 2.2: Examples of the progress between the original GAN implementation (left) [8]
in 2014 and more recent models such as StyleGAN3 (right) [39]
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Style transfer is another powerful application of generative models [41]. This involves

using an image-to-image translation algorithm (e.g., CycleGAN [21]) to transfer the

visual “style” and textures of dataset A onto dataset B while retaining the defining

features such as objects present in dataset B. One of the core models used for

variations of this task is CycleGAN.

The CycleGAN architecture consists of two complete GAN models and works by

generator A taking an input image from dataset A which it then presents to dis-

criminator B which attempts to distinguish it as being from dataset A or B. Using

the loss from this decision generator A learns to generate an image from dataset B

using dataset A. Another system which is in place in the model is the generated

image is then used as input into generator B which tries to reverse engineer the gen-

erated image to create a fake version of the original image which is then compared

with the original using a cycle consistency loss function. Examples often used to

demonstrate the abilities of these models often rely on benchmark datasets for tasks

such as changing hair types in human face images [42] or transferring one artistic

style to a contrasting image of artwork [41]. These methods have been shown to

be applicable to other domain specific tasks such as creating road map style images

from overhead RGB satellite images [43].

2.2 Synthetic Image Detection

As generative models become increasingly popular, easier to implement and more

applicable to a wider range of tasks, the research into detection methods becomes

a higher priority. This is evidenced by the broadening field of research dedicated

to deep learning based image detection [43]. Currently there are a wide range of

proposed detection methods which can vary in terms of performance and technique

used depending on the specifics of the detection target. Models have been created

specifically to detect manually created fakes (e.g. Photoshopped images) [44] or the

diverse types of generative model-based fakes. There are unique challenges for each

domain specific image type making it a difficult research goal to create a universal
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detection model, although there are some papers which claim to have developed

such an approach [45], although these results have been disputed [46]. As this

Thesis is primarily concerned with CNN based GAN models, the detection literature

presented in this section will reflect this focus and look at detection techniques for

CNN synthesised images.

For the detection of CNN synthesised images (e.g. GAN samples) many of the suc-

cessful techniques [45, 47] involve the use of CNNs as image classifiers [43] as the core

method in combination with various pre-processing or post processing techniques.

A 2018 survey of detection techniques [43] ran a benchmark test on a selection of the

highest performing detection methods on a variety of different Tensorflow datasets

[48] all generated from CycleGAN and used the performance of its discriminator

network as a baseline. Multiple tests were conducted for each dataset with various

levels of Gaussian blur added. This was implemented to simulate the kinds of image

artefacts caused from jpeg compression, which is often seen on social media images,

giving the study a higher level of ecological validity. They found the best perform-

ing model in this comparison was a CNN based model [49] followed by the large

CNN model, XceptionNet [50] and a third method using Steganalysis based method

[51]. The hardest datasets were found to be win2sum (a dataset which transfers the

season of image A to that of image B) and map2sat (transfers the roadmap style

of image A to the topography shown in image B), both datasets had few obvious

artefacts when viewed with the human eye. All the models saw various drops in

detection performance when tested on the jpeg blurred images which questions the

robustness of these techniques when deployed in the real world. Out of the models

tested, XceptionNet showed the lowest drop in performance between the control

dataset and the compression datasets.

Following on from the results of the benchmark survey the researcher proposed

a new GAN image detection method [52] based on techniques from the field of

Steganalysis in combination with a deep CNN classifier. The model first computes

the co-occurrence matrices directly on the image pixels for each colour channel

(RGB) then passes them though a standard CNN classifier. This method works
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as images generated by GAN image to image translation have differences in their

pixel statistics compared to real images. These differences can then be discovered

by image forensics methods made to bring out latent information in image data.

The results found that this new model vastly improves performance compared to

the models tested in the previous survey across most of the datasets, particularly

in the win2sum and map2sat datasets which were found to be the most challenging

to classify. However, it should be noted that this new method performed relatively

poorly against the other models on the Facades dataset [53], again highlighting the

difficulty in making a universal detection method. This method was also only tested

on style transfer datasets.

The use of co-occurrence matrices as a detection tool is also found in another paper

concerning GAN image identification [54]. The detection method outlined uses a

feature set composed of co-occurrence matrices extracted from the residual images

of different colour components of both the real and generated samples. The paper

concludes that there are identifiable markers present in generated images when look-

ing at the HSV and YCbCr colour spaces. This is because of the inherent differences

in how colour is processed in creating images naturally (via a camera then converted

to digital) and during generation (up sampling from a small latent vector until then

transformed into a tensor with three channels at the end). The method is tested

on generated faces and bedroom furniture images. One potential limitation of this

method is it only targets models that leave these specific fingerprints and may not

work in the presence of additional post processing of the images such as added filters

(e.g. jpeg blur).

For specific images types such as faces, more specialized detection techniques have

been proposed. Most notably are the various detection methods for synthetic face

images. As face generation has been extensively researched in comparison to other

more domain specific imagery, the visual fingerprints of what to look out for in

distinguishing between real and fake are well established. Generated images can

be exposed by looking for common image artefacts like unnatural asymmetries in

the facial features, different lighting conditions between the eyes and malformed
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accessories such as incoherent necklaces or ear rings [55]. On initial inspection of

these images they may appear to be photorealistic but when the individual features

of the faces are isolated, these image artefacts become easier to identify. Facial

landmark locations have also been examined as a flaw in GAN photorealism [56].

Similar to the issues of asymmetry, GAN faces may often exhibit an unnatural

configuration of the facial features, even if the individual features are all rendered

themselves to a high degree of photorealism.

Contrary to much of the current detection literature Wang et al. [45] published a

CNN detection paper with the claim that GAN image detection is a solved problem,

presenting a pre-trained CNN model which is capable of classifying GAN images

with high accuracy across diverse synthetic image datasets generated by a variety

of the most popular SotA GAN models.

This model uses a ResNet architecture [57] with a customised training procedure.

Residual Networks, or ResNets, are a set of deep convolutional neural network struc-

tures. They consist of a deep architecture with many convolutional layers (e.g.

ResNet-50 contains 50 convolutional layers), and use residual blocks to facilitate

efficient learning despite their depth. Residual blocks contain regular convolutional

layers with the addition of skip connections. Skip connections take the input to the

residual block and add it directly to the output of the block, bypassing the convolu-

tional computations of the block itself. Skip connections H(x) are therefore defined

as H(x) = F (x) + x, where F (x) is the output of the residual block and x is the

input to the block. The advantage of skip connections in CNNs is that they prevent

the degradation problem that can occur in very deep models where the ability to

propagate information throughout the network is lost. Skip connections allow learnt

feature embeddings from lower layers in the network to flow through to the higher

layers. The use of skip connections and residual blocks has seen ResNets become a

common choice of CNN architectures where very deep models are needed.

The proposed GAN detection model from Wang et al. uses a ResNet-50 trained

on several real image datasets and corresponding synthesised images created using

PGGAN [17]. To improve the model’s ability at generalising, the training images
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undergo a series of augmentations including adding various levels of Gaussian blurs

to add robustness in the presence of common jpeg compression artefacts. In addition

to achieving high accuracy (90%) on images from PGGAN, the paper also presents

the results for testing the model’s classification ability for other popular GAN ar-

chitectures, including StyleGAN2. The paper concludes that this relatively simple

method of CNN detection works well across most current GAN generation mod-

els and that GAN detection is not currently the security issue that other research

alludes to it being.

These claims have however been questioned through work covered in a more recent

paper ([46]). This work found that the CNN detection model proposed by Wang

et al. (2019) struggled to perform at an adequate level needed if it was deployed

in a real-life scenario. The detection performance from the original paper was not

able to be replicated in these new conditions. Like the tests in the detection models

original paper, this study tested the model using a dataset of StlyeGAN2 generated

faces. Novel detection models are an important part of the image detection field

but research into the specific properties and features present in generated images

is equally important. A more analytical approach to fake image detection is taken

in the paper “What makes fake images detectable? Understanding properties that

generalize” [58]. The authors explore the general properties of fake images using

a fully convolutional patch-based classifier with a limited receptor field to focus

on parts on the image that appear fake. The model is trained to identify local

patches which appear contain GAN image artefacts rather than focusing on the

global semantics of the entire image. A technique to exaggerate these “fake patches”

so that they can be used to further improve detection methods is also demonstrated.

This is a novel approach as it uses a detection technique that looks at local image

artefacts for predicting if an image is fake or not rather than global semantics such

as colour spectral analysis or analysis of the image in the Fourier domain. They also

include a method for displaying the results of the classifier as a heat map which gives

us insight into what features are used for detection. This is particularly relevant at

a time where there is a push against “black box” methodologies [59] and a need for
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more explainable machine learning models.

Despite this interesting approach in trying to understand the visual fingerprints of

fake images, the proposed patch-based classifier does not achieve the same level of

performance as reported by other models [45, 54]. Although detection performance

was not state-of-the-art, the authors presented the results of which features in the

images were most used for prediction. They found that background textures, mouths

and eyes were the most used features for detection. In particular, the generated

models seemed to struggle when it came to replicating sharp boundaries between

features such as background and head or hair and face. This understanding of what

to look for in trying to distinguish between real and generated images is useful for

improving detection models and in training humans in detection, an often-overlooked

factor of this area of research.

Spectral analysis of GAN generated images is a detection method that, until re-

cently, has shown to be one of the most reliable methods for differentiating between

real and generated images [60]. When images are analysed using Fourier transfor-

mation to produce a frequency spectrum, the differences between real and generated

images become much easier to spot for many of the most commonly cited GAN mod-

els. Although this is a relatively reliable method of GAN image detection, at least

compared to some of the other methods discussed, a more recent paper claims to be

able to counter such spectral analysis techniques[61]. By introducing a novel pre-

processing pipeline for GAN generated images, this method is able to mitigate the

occurrence of spectral artefacts which act as GAN fingerprints when using spectral

analysis methods. Additionally this method was found to also decrease the relia-

bility of spatial domain based detection methods such as the aforementioned CNN

detection model by Wang et al (2019), although the impact on accuracy was less

than that found for the spatial domain models. A similar method of attacking GAN

detectors by removing the key GAN fingerprints was presented in Wesselkamp et

al. (2022) [62]. By using targeted and untargeted fingerprint removal, this method

was also able to mislead Fourier spectrum based detection methods. This recent

set back to GAN detection highlights the rapid back and forth arms race between
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detection and generation. The nature of this dilemma presents the need to be con-

stantly researching novel methods of detection to expand the array of available tools

for countering increasingly sophisticated fake image generation.

2.3 Human detection

The images produced by GANs are usually created for the purpose of being viewed

by humans, with or without the intent to deceive the target. For this reason, it is

important to investigate human visual perception towards generated imagery. This

is accomplished through measuring the extent to which humans can reliably detect

fake images and evaluating the factors which impact the behavioural mechanisms of

image detection such as image visual realism (IVR).

Image visual realism (IVR) [63] describes the perception of photorealism in an image

and has been a topic of interest in the wider field of digital forensics and security

outside of the field of Generative modelling. IVR and human perception has been

investigated using visual search experiments from cognitive psychology. One ex-

ample of this is a 2015 study [64] on visual perception towards manually altered

digital images. The researchers conducted an online user study were participants

were given a visual search task consisting of viewing a series of images, with the

goal of detecting whether the images had been altered or not. As well as answering

whether the image contained any alterations, the participants were also asked which

region of the image had been altered and what their confidence was in their answer.

The results from the experiment found that humans have difficulty detecting alter-

ations in images even when they are actively primed to look for them. Participants

were able to correctly identify whether an image had been edited 58% of the time

but could only actually identify the forgery in the image in 46.5% of cases. It was

also found that that younger participants and those with relevant experience to the

experiment had greater levels of performance than other groups. The behaviour

of participants (time, hints, confidence levels etc.) also had an impact on the suc-

cess rate. As some of this behaviour can be taught, it suggests that with additional
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training it is possible for people to vastly increase their performance in similar tasks.

Image attributes that contribute to IVR (Image Visual Realism) were investigated

in the context of non-AI based computer generated imagery in a 2017 study [63]. An

interdisciplinary approach was taken with the goal of understanding how humans

perceive visual realism and to employ this understanding to computational models.

A visual realism dataset was created which contained over 2000 realistic computer-

generated images as well as photographs of similar scenes. The images depicted

in the dataset included faces, objects, and building. The first experiment asked

participants to make a binary decision on whether the images presented were real

or computer generated (CG). Participant performance was analysed for expertise

groups and gender, with groups of higher expertise (graphic designer, photographer,

gamer) achieving higher levels of accuracy. The second experiment was a similar

setup to the first but instead looked at identifying factors related to the human

perception of visual realism. This experiment asked participants to use a 5-point

Likert scale to rate realism, familiarity, colour and illumination, attraction, and

objects.

An ensemble of computational models consisting of convolutional neural networks

and decision trees were created to predict these indicators of visual realism by learn-

ing from the annotated visual realism dataset. The results found that the compu-

tational framework created was able to predict the level of visual realism for the

images in the dataset in correlation with human evaluation of the images. Although

this study did not look at samples from generative models, the mixed methods ap-

proach provides a useful framework for further research into human perception and

fake image detection.

Visual perception studies using human participants as evaluators are being increas-

ingly common [40, 65] in the study of GAN image detection. A 2021 study evaluating

both human and algorithmic detection of GAN images [46] found that humans have

difficulty identifying real from fake images across multiple face and object datasets

and the current top detection methods [45] are not yet robust enough in their per-

formance to be deployed in real world scenarios. In the case of human detection,
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the authors found that participants with previous AI experience achieved greater

detection accuracy than the general population. These findings suggest that there

are experiential factors which contribute to human detection ability, leading to the

questions of how this could be used to improve current detection methods, both

human and algorithmic.

One limitation with much of the research highlighted here for both human and au-

tomated methods is that there is little crossover between the two. The methods

looking at human evaluation [46] measure accuracy in differentiating between real

and synthetic and the factors associated with this but don’t seek to improve on

current detection methods. Conversely, research into computational methodologies

for detection, neglect to look at human evaluation, an important factor to consider

when photo realistic GAN generated images are often produced to be viewed by hu-

mans rather than to bypass computational detection systems. This thesis addresses

this by looking at both detection methods (human/automated) and how they can be

integrated to form a more comprehensive detection strategy, utilizing the advantages

from each.

2.4 Earth Observation Data

Earth observation (EO) data encompasses a wide range of imaging techniques for

obtaining information on the different physical systems of the Earth [66] and has

many different applications spanning different fields of interest. The most com-

mon EO images come from visible spectrum satellite photography, but other image

types [67] include passive imagery such as multi-spectral, hyper-spectral, microwave-

radiometry and active imagery like Synthetic Aperture Radar, Lidar and GNSS re-

flectometry. Although there are different ways of obtaining EO data, this thesis will

primarily refer to satellite-based remote sensing and use the term EO data with this

assumption, unless stated otherwise.

The use of EO imagery is most prominently seen in the studies of remote sensing

and mapping but is also a crucial data source in many other industries such as
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environmental disaster warnings and management [68], urban planning [69] and

the economic assessment of regions [70]. EO data is also heavily used for security

and intelligence purposes [71], and therefore a potential target of misinformation

and counter-intelligence attacks[72]. This application of EO data is of particular

relevance in light of the 2022 events in Ukraine, where satellite imagery has played a

key role in both military planning and the responses from the global media [73, 74].

Another concern with fake EO images is that they can be challenging to easily

interpret for untrained viewers [75]. This contrasts with more familiar and common

images that humans regularly encounter such as face or objects that require high

levels to pass as real and not fall into the “uncanny valley” of photorealism. The

implications of this being that it may be much easier to produce fake EO images that

fool human detection that are of lower quality than needed for generated samples

containing either faces or objects. EO images data for generative modelling tasks

is a relatively unexplored area of research when compared to other image types

such as faces and object datasets [25, 56]. This gap in research knowledge for EO

data and generative models poses a significant security risk as the current challenges

and limitations of generation and detection of EO data has not yet been rigorously

evaluated.

Although there is not the same volume of publications for EO image generation

as in other areas, the use of Satellite imagery and GANs has been explored in a

few key scenarios. Aerial image data has been found to be used in work involving

image to image translation for tasks such as mapping, in the case of GeoGAN[76]

this was to use aerial photography to generate road maps of the same topography.

Likewise, image translation methods have also been applied to other remote sensing

applications such as estimating ground level views from aerial images[77] as well as

a method for converting synthetic aperture radar (SAR) data to optical [78, 79].

Other work has looked at the use of satellite image training data for cloud removal

for optical [80] and hyper-spectral imagery [81].

These uses of GANs and EO data are often focused on being applied to industry

specific challenges, there has been less of a focus on the security and detection
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aspects of synthetic aerial imagery. The first evaluation of synthetic aerial image

deception comes from Zhao et al. [82] which investigated detection methods using

synthetic EO samples generated from image translation GAN models. Also noting

on the relative lack of research on this topic, the authors remark that while there are

only a small number of case studies involving fake satellite imagery, it only takes a

few impactful uses of deep fakes for all subsequent instances of geospatial data to be

questioned on authenticity. The concluding remarks encouraging further research

into fake EO data detection as an important pre-emptive measure.

Building up on this work regarding fake aerial imagery, a recent article (2021) has

proposed a detection method specifically built for this task [83] and is currently

the only peer reviewed model to be published. The model, GEO-DeFakeHop uses

parallel subspace learning (PSL) where the input image space is mapped to several

different feature spaces based on multiple filters. Detection between real and fake

images is made by evaluating the differences of different channels for the different

filters. The model is light-weight with a comparatively small number of parameters

(0.8-62K) making it easy to train on limited hardware. On the UW fake Satellite

Image Dataset, the authors report robust performance even under various noise

conditions such as compression and resizing. The authors do note that the UW

dataset only contains data from 3 different cities and generated using a single GAN

and so may be more challenged by detection tasks using larger multi-city datasets

generated using an ensemble of GAN models. Another issue found with the research

presented is the reported performance metrics are only from a small single dataset

(4K samples) which is then given a 70%, 30% split into training and testing, giving

no indication at how well this model generalises to other datasets.

Despite the extensive applications of EO data and the recent flurry of work on image

generation and detection, there is still a concerningly small corpus of literature

investigating the intersection of these topics. The papers that have been discussed

that do tackle this issue are not comprehensive enough to adequately solve this

problem. The work in this thesis addresses this with further investigations into the

generation and detection of GAN produced synthetic aerial imagery.
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2.5 Expert Visual Detection

The literature[64] for human visual detection of real and fake digital imagery, either

deep learning based or traditional methods, often looks at the role of prior expertise

as a signifier of detection ability. Evidence suggests that populations experienced

in looking at either forged imagery or the type of images the fakes are aiming to

imitate (e.g. geospatial experts looking at fake remote sensing data) are significantly

more likely to be able to distinguish between real and fake. With this established

link between expertise and detection ability, further research aims to explore how

detection strategies between experts and novice differ and how expert behaviour can

be analysed to create better detection methodologies and more optimal methods of

training.

Expert visual attention has also been extensively researched in the field of remote

sensing. As previously mentioned, aerial images have been found to be a hard stim-

ulus for humans to visually process compared to objects and faces and even when

compared to ground level scenes [84]. This makes a measurable difference between

experts and novices in viewing aerial images and identifying features that they con-

tain. Studies [85] have found that this is not a quickly acquired skill either, an

experiment that compared visual memory of aerial scenes between 1st year geog-

raphy students and 1st year psychology students found no discernible difference in

response. Both groups were found to perform much lower than a third group of

experts with >15 years of experience in analysing aerial imagery.

Expert and novice differences in analysing remote sensing data was also explored

in Wardlaw et al (2018) [86]. Using an online citizen science platform, participants

were asked to annotate and classify surface changes on satellite images of Mars.

Participants were from two groups, an expert group consisting of Planetary Science

researchers, and a novice group from public visitors to the online platform. It

was found that while both groups were able to spot surface changes in geological

features between images, the novice group were not able to classify these features

to the extent of the expert group.
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In regards to synthetic EO imagery, there is a lack of research into the effect of

expertise on detection. The previous literature on expertise in remote sensing and

fake imagery suggests that there are cognitive behavioural differences between ex-

perts and novices. Based on this evidence, the work in this Thesis aims to explore

these previous findings with synthetic EO imagery. This involves investigating the

role of expertise in this context for the goal of furthering the development of novel

detection techniques.

2.6 Methodology

The research in this thesis uses a mixed methods approach with a combination of ex-

perimental designs from cognitive psychology, human factors, and computer vision.

The data collected comes from benchmark surveys of deep learning architectures

as well as from empirical studies involving human participants, likewise, the eval-

uation metrics used for analysing results also encompasses automated and human

measures.

This section will give a brief introduction to the research methods used in this Thesis,

with specific and more detailed descriptions being found in the relevant chapters.

2.6.1 GAN Evaluation Metrics

There are a range of measures that can be used to measure aspects of GAN per-

formance with fewer standardised procedures than seen in the evaluation of other

model types such as classification models. This is because, for generative tasks, the

primary aim is to produce images of a certain quality or containing specific features.

Image quality may be considered by some to be an inherently subjective measure

which can make it a difficult measure to quantify, leading to multiple different met-

rics to be applied to the task.
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Automated Metrics

The aim of many GAN evaluation metrics work by attempting to evaluate the

differences in data distributions between the input, real dataset and the output,

generated dataset. The closer these distributions are, the more likely they will

appear homogeneous, with identical distributions indicating that the two datasets

are identical in features. The most commonly cited methods using this approach are

Inception Score (IS) based metrics and are found in the majority of GAN research

papers.

Inception Score takes in a dataset of generated samples and returns a single value

score which aims to measure image variety and features. This is achieved by using

the feature space of a pretrained [87] instance of the Inception V3 CNN model. By

looking at the distribution of probability scores across the different classification

categories from the network output, feature rendering and image variety can be

estimated. If the generated images return a uniform distribution of probabilities

across classes, then there is less likely to be any sort of identifiable object in the

image compared to a distribution that is skewed towards certain classes, indicating

that the images do contain recognisable features. Image variety can be estimated

by looking at the label distribution across the entire dataset[88].

Inception score has been found to be limited for several reasons, the first being that

it only measures whether an image has been formed rather than how close it is com-

pared to the target dataset. As the metric is also based on a pretrained classifier it

is only useful when the target data contains features that have been learned by the

classifier network. This presents an issue if it is applied to a domain specific image

type, not covered by the dataset used to the train the classifier and therefore will not

have learnt the correct image features. Additionally, IS cannot detect cases of gen-

erated data overfitting to the training data. Although still sometimes used in GAN

evaluation papers for measuring sample diversity and quality, IS has been largely

superseded by Fréchet Inception Distance (FID)[89]. FID is recognised as being a

more reliable[90] and useful measure of GAN image quality in that it evaluates the
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generated images relative to the target dataset, unlike IS which only measures the

generated image distribution compared to the Inception network class probabilities.

Like IS, FID still uses the Inception Network in calculating an image quality score

but instead of using the class probabilities, it uses the feature maps from the final

convolutional layer of the network and measures the output activations of this layer

for both the generated images and the real target images. These activations are then

summarised as two multivariate Gaussians and the distance is calculated between

them using Fréchet distance 3.1 [89]. Like IS, this is then calculated into a score

where a lower number indicates that the two datasets are closer in image quality

and distribution, with the score of 0 indicating that all the images could come from

the same dataset.

FID(r, g) = ∥µr − µg∥22 + Tr
(

Σr + Σg − 2 (ΣrΣg)
1
2

)
(2.3)

The calculation for FID can be seen in equation 3.1. Where r and g are two multi-

variate Gaussian distributions with means µr, µg and covariances Σr, Σg. The dis-

tributions in FID are the feature vectors of the real and generated images, ∥µr−µg∥2

is the Euclidean distance between their means and Tr represents the trace operator

to sum the diagonal elements of the matrix

Although FID is considered[91] a more useful tool for evaluating GAN image quality

than IS it is not without its own pitfalls and caveats. FID assumes that features

present in the samples have a Gaussian distribution which may not be the case de-

pending on the specific datasets used. Another issue to consider with FID is that

it requires a large sample size to accurately assess quality (> 50K samples) and

low sample sizes can lead to an over-estimation of the true value and a lack of con-

sideration for overfitting. Studies in correlating FID with human visual evaluation

have also returned mixed results, with some suggesting that FID is consistent with

human perception and judgement as an indicator of visual quality [89] and others

finding that it does not highly correlate with humans [65].

Kernel Inception Distance (KID) [88] is a similar Inception based method which
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has been cited more frequently in more recent GAN papers [39]. KID calculates the

squared maximum mean discrepancy (MMD) for a given kernel function. MMD acts

as a two-sample hypothesis test and measures the dissimilarity between two prob-

ability distributions using independent samples. KID measures the MMD between

the extracted Inception features from the real and fake images to produce a single

value score. Like IS and FID (Fréchet Inception Distance), a low score indicates

closer distributions between the target and test data, and thus compared to FID,

KID has been found to be computationally faster, needs fewer samples to provide

an accurate score. KID is also more robust against instances of overfitting to the

training data, where the model simply generates copies of samples from the input

data [88].

Both FID and KID are calculated using the feature space from a pretrained Inception

network, often using the specific weights from a 2015 model trained on ImageNet

and is included in the most popular deep learning libraries[48, 92]. This inclusion

makes model evaluation much easier and faster than training an Inception Network

from scratch and also allows for more consistent comparisons across the literature,

however, they also raise several concerns. Recent work into FID has criticised the

reliance on using a model trained on ImageNet for evaluating datasets which may

not be covered by ImageNet’s class label. The authors of one paper [93], investigated

the role that ImageNet classes can effect FID scores for generated faces, an image

type not covered by the ImageNet dataset. They found that they were able to

iteratively optimise the dataset of generated face images to produce a much lower

FID score without making any changes to the generative model itself. In addition

to highlighting how FID can be easily manipulated to produce better, cherry-picked

scores these experiments show how using an evaluation model based on one specific

dataset (ImageNet) may not always be appropriate as a universal evaluation metric

for generated data.

FID and other inception metrics may be the most widely used GAN specific evalu-

ation metrics but the more traditional information theoretic metrics, Precision, and

Recall, can also be adapted to be used to access image generation[94]. For image
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generation, the precision value is related to the proportion of the generated distribu-

tion Q that matches the true data P, and the recall value is the distribution P that

can be reconstructed back from the generated distribution Q [95]. These metrics

were proposed as an alternative to FID based metrics as they better evaluate the

extent to which the entirety of the true data distribution has been captured by the

generated data distribution. An example which is given by Sajjafi et al., 2018[94] is

that a model trained on a mixed gender face dataset but only produces high quality

male faces may have the same FID score as a model which produces blurry faces but

of both genders. In the case of the high quality model, applying precision and recall

metrics would show that the reason for having the same FID as the lower quality

model is that despite producing high quality images it has a low recall as it does

not fully capture the distribution of the true data.

2.6.2 Human Evaluation Metrics

Human evaluation remains a valid method of assessing image quality from generated

models, if only because image quality can be subjective when it is defined by human

visual perception. Despite being hard to define, several different approaches have

been proposed to investigate the human evaluation of image quality using empirical

methods with psychophysics design paradigms from cognitive psychology [96–98].

Human eye Perceptual Evaluation (HYPE) [65] is a human-in-the-loop evaluation

method which approximates image realism for a generated sample based on human

accuracy in a real/fake detection task. The work in the paper state that HYPE

achieves a 66% accuracy rate for predicting human judgment on the same generated

images. Human evaluation methods such as these are useful for more accurately

evaluating image realism and image quality than automated metrics but are much

more time and resource intensive, requiring large human participant studies and are

unsuitable for tasks such as monitoring model performance during training.

Other techniques draw from cognitive neuroscience, such as the evaluation method

Neuroscore [99]. This evaluation method uses brain signals of participants to mea-
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sure their visual perception of generated images that are presented to them in

rapid succession. Compared to other evaluation metrics, the authors state that

this method is more consistent with human judgement and needs a smaller number

of samples. Additionally, a CNN based brain-inspired network is proposed that can

approximate a given images Neuroscore. The use of cognitive neuroscience tech-

niques makes this an interesting and novel evaluation metric. However, one draw-

back from using such methods is the significant cost and time required to conduct

brain imaging studies.

The human evaluation methods chosen in this thesis are most similar to the cog-

nitive psychology approach of using psychophysics designs such as real/fake image

detection tasks. The reason for picking this set of methods is that they are simple

to implement and analyse. The data can then be evaluated with metrics such as de-

tection accuracy for experiments where participants are tasked with distinguishing

between a set of real and fake images. This method also allows more flexibility in the

data collection stage as studies can be adapted to be completed online in cases were

it is not possible to conduct laboratory based work (e.g. COVID-19 restrictions).

An additional research method applied in this thesis is eye tracking. Eye tracking

metrics are a set of human evaluation tools that can be used in conjunction with

real/fake image detection studies, although much harder to reliably implement re-

motely. Eye tracking has been used in previous work[100, 101] to explore the regions

of interest (ROI) of human gaze towards visual stimuli in order to infer differences in

visual attention between different groups of participants and stimuli. In the context

of the work presented in this thesis, the use of eye tracking can give insight into

what ROIs are important for detection for generated EO imagery and how that may

change between different experience groups.

2.6.3 Datasets

The datasets used throughout the research for this thesis contain RGB satellite

aerial imagery from various urban and rural areas around the globe that have been
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created for remote sensing applications. The dataset used most extensively is the

INRIA Aerial Image Labelling dataset[102]. This dataset consists of 180 high res-

olution (5000x5000p) images of urban settlements in North America and Europe.

The images cover 810km2 of land with a spatial resolution of 0.3m per pixel (Figure

2.3). This consistent spatial resolution of 0.3m and that the images are already

orthorectified is useful for comparing results using this dataset across different ex-

perimental setups. The images are also of a high resolution for satellite images that

are often greater than 0.3m resolution. Additionally, this dataset was chosen due

to its variety in environmental features ranging from small alpine towns to densely

populated cities like Chicago and San Francisco. The dataset was obtained with

permission from the owners.

Figure 2.3: Samples of the INRIA Aerial Image Labelling dataset. The images presented
have been segmented into 512x512 tiles

The OpenCities dataset[103] is another RGB aerial imagery dataset. This contains

drone imagery taken across 10 different regions of Africa (Figure 2.4). Unlike the

INRIA dataset, OpenCities contains aerial imagery taken from different heights

with varying levels of spatial resolution (0.02-0.3m per pixel) and inconsistent aerial

surveying conditions. This dataset has been used as a secondary dataset for the

research in this thesis as it is different enough from the INRIA dataset to be used

to test generalization outside of INRIA. The differences in aerial height and spatial

resolution within the OpenCities dataset makes it a good evaluation tool for testing
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Figure 2.4: Samples of the OpenCities African regions dataset. The images presented
have been segmented into 512x512 tiles

the generalisability of systems trained on the INRIA dataset towards other EO

imagery.

2.7 Summary

Image generation is an area of computer vision research that has rapidly advanced

and matured into its own field since the original implementation of GANs in 2014.

In the following years, there has been many different improvements to the original

GAN model and also a wide range of competing architectures such as transformers

and diffusion models. Although the field is evolving quickly GANs are still one of the

most popular architectures to use for image generation tasks and are now capable

of producing highly realistic images from various types of image data.

For the detection of machine learning generated imagery, the current literature pro-

vides examples of several different approaches, each with different strengths and

limitations. Despite the existence of such models, the work on detection is greatly

outweighed by the work into novel generation models themselves, presenting a prob-

lem for data security as the improvements to generation methods outpace the ad-

vancement of novel detection techniques.

EO imagery such as RGB satellite data is a crucial data source in a variety of
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technical fields. Despite its significance there is comparatively little research into

investigating the generation and detection of synthetic EO image data. This leaves

the field potentially vulnerable to malicious misinformation attacks.



Chapter 3

GAN Benchmark Comparison

3.1 Introduction

As previously discussed in Chapter 2, one of the issues prevalent in the field of

GAN image generation is the lack of domain specific testing on image data such as

EO images. To gain insight into the capabilities of the SotA GAN models towards

EO images a benchmark study was conducted which measured three of the highest

performing unconditional image synthesis models in addition to a basic DCGAN

to function as a baseline. The aim of this benchmark comparison study in the

wider PhD project is to provide a systematic evaluation of recent, state-of-the-

art unconditional GAN models for the task of generating synthetic aerial imagery,

providing a foundation specific knowledge to inform further research. Although

other generation models exist and can offer comparable results in many instances

to that of GANs (2), the focus of this PhD is on the detection and generation of

GAN specific EO imagery, thus only GAN models were included in this benchmark

analysis.

The main contributions in this chapter is the evaluation of current GAN models and

metrics in the context of EO imagery. A secondary contribution is the generation

of synthetic EO image datasets for future research into synthetic image detection

methods.

36
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3.2 Methodology

3.2.1 Unconditional GAN Models

Unconditional GANs do not require labels and learn unsupervised. This chapter

focuses on the task of unsupervised image generation and an evaluation of the abil-

ities of recent unconditional GAN models in the context of aerial imagery. GAN

models share the same underlying principles of adversarial training, comprising two

opposing deep neural networks: a generator and a discriminator [8]. The generator

network G generates “fake” images by up sampling a random noise vector z. The

produced image from G is then passed on to the discriminator network D. D is

then tasked with classifying the given image G(z) as real or fake, based on the dis-

tribution of the training dataset. The result is then used to optimize both networks

simultaneously.

Progressive Growing GAN (PGGAN)

PGGAN is a popular unconditional GAN model for image synthesis and is one of

the first GAN models to consistently produce high quality images at a resolution

(1024×1024) (Karras et al., 2018). The images of faces generated by the authors

of the model were also widely reported in the media (Vincent, 2017), giving expo-

sure to the technology, and stimulating discussion on the potential implications this

technology could have.

PGGAN achieves high-resolution and high-quality images primarily through the

use of a progressive growing feature during training [17]. When training is initiated,

the network starts with an input of low-resolution images (e.g. 4x4 pixels) and

then gradually increases the resolution until it reaches its desired output size (e.g.

1024x1024 pixels). The model learns to produce the distribution of the images at

a low resolution and then refine its parameters for increasingly finer details when

moving to the next resolution. Other additions to the standard GAN architecture

include pixel normalization in place of batch normalization, minibatch standard

deviation and a Wasserstein loss function.
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The Wasserstein loss function [22] is used as it provides more stability than the orig-

inal, cross-entropy based minimax loss [8] becoming the new standard loss function

for GANs. This function calculates the Wasserstein-1 distance (earth mover dis-

tance) between two probability distributions and is commonly used in many recent

GAN models including StyleGAN2 and CoCoGAN. Instead of a minimax method

of using the discriminator to predict the probability of a given image of being real or

fake, this new loss function replaces the discriminator with a ”critic” which instead

gives a numerical score on the how real or fake the given sample is. The generators’

goal is to then use this score to minimize the distance between the training data

distribution and the distribution of the generated samples. The Wasserstein loss

function benefits from a decreased chance of mode collapse and avoiding problems

caused by vanishing gradients when compared the minimax loss function as the

model is still able to learn independent of the generator’s performance. This com-

bined with the other architecture improvements gave PGGAN increased stability,

training speeds and lower computational costs over that of previous models.

The original paper for the model presented state of the art Inception score results

on a variety of commonly used object focused benchmark datasets (CIFAR10 [104]),

LSUN ([105]) and CelebA-HQ[17]). These datasets contain a wide array of images.

While the images generated in the model are almost photorealistic, they do contain

some noticeable image artefacts which are most obvious in the backgrounds.

Since its release in 2017, PGGANs have been applied to a variety of different tasks

in various areas of research. The main use for this model has been to generate

faces, often for the purpose of testing fake image detection methods[43, 106, 107].

These studies cover different approaches to trying to detect GAN generated images,

using PGGAN and other unconditional models trained on benchmark datasets to

test their detection methods. As well as being used in image generation, the key

progressive growing architecture that underlies the model has also been successfully

adapted for data types, such as music and 3D MR images of brain volumes[108].

When trying to distinguish whether an image is real or generated from PGGAN

the most telling sign is the incomprehensible backgrounds behind the focal image
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object. This is particularly noticable in the face images from the PGGAN paper,

as the model was trained on portrait style face images, the generated faces appear

realistic but the backgrounds lack cohesiveness and continuity. For the task of

generating convincing aerial imagery this could be a hindrance as it suggests the

model struggles with generating cohesive images when there is no single focus (e.g.,

faces and objects).

StyleGAN and StyleGAN2

The original StyleGAN model is an update from PGGAN that enabled the model

to learn unsupervised separation of image attributes. This led to the network being

able to have more control over the image output[25]. In addition to control over

different “visual styles,” the model also achieved new state of the art Inception

scores on benchmark datasets (CelebA HQ[17], FFHQ[1]).

StyleGAN has been used in many of the same areas as PGGAN, including detecting

GAN fingerprints[52, 109] and face generation[110]. The main difference between

PGGAN and StyleGAN is the latter’s ability to learn conditional data in addition

to unconditional data, leading to it be used for a larger number of tasks such as

style transfer and image editing[111–113]. StyleGAN has been trained to produce

diverse types of images, with the most common test datasets being faces (FFHQ,

CelebA[114]), as well as commonly used datasets containing different object cate-

gories (LSUN[105]).

StyleGAN2 is the latest iteration to be released[1]. It includes significant changes

in the architecture which allow it to obtain state-of-the-art performance in image

generation and style transfer tasks. StyleGAN2 removes the progressive growing

structure found in the previous models as the authors stated while this method was

able to produce high resolution images it was prone to causing image artefacts in

the output images.

Another problem observed with the progressive growing technique was that when

trained on objects such as faces there is a strong location preference for certain

features such as the nose and eyes which leads to lower variation in the final output
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images. StyleGAN2 overcomes this problem by replacing the progressive growing

with skip connections between layers after seeing a similar structure utilized by

MSG-GAN [115]. Like in residual neural networks [57], the skip connections in

StyleGAN2 connect lower feature maps in the network directly to the final generated

output. This gives a similar advantage in training as previously given by progressive

growing, which is for the generator to initially focus on low-resolution images and

then shift its focus to changing the finer details of the image at the latter stages of

training.

StyleGAN2 also made other changes to the network which contributed to improve-

ments in performance. The model introduces a new normalization method to the

loss, path length regularization. This results in smoother interpolations in the fi-

nal image when the latent vector z is changed. The authors note that smoother

interpolations correlate with increased stability and consistency in shapes, leading

to improved visual quality. An adaptive instance normalization layer [116] is also

incorporated which increases diversity in the final samples and avoids ”water drop”

image artefacts that were found in ProGAN and StyleGAN samples.

Like previous models, StyleGAN2 has so far been used primarily for generating

realistic faces and other object categories [117] and has not been applied to the

generation of aerial images. In comparison with previous versions (PGGAN, Style-

GAN), StyleGAN2 can generate more photo realistic and varied images that lack

GAN image artefacts that were present in past models. With the updates in archi-

tecture bringing increased visual performance and output images which are more

coherent across the entire image and not just on the main object, StyleGAN2 is one

of the more suitable models for aerial image generation.

One potential flaw of StyleGAN2 that is noted by the authors is that despite gen-

erating images with higher levels of photo realism than previous models (PGGAN,

StyleGAN)[25], these images are easier to detect as synthetic by image classifiers

trained to distinguish between real and GAN images. This discrepancy between per-

ceived visual quality and performance against image classifiers suggests that there

are inherent differences towards image realism and detection strategies between hu-
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mans and deep learning-based models. Additionally, while StyleGAN2 has been

presented as an improvement on PGGAN in terms of generated image quality, the

model is also much larger and more computationally expensive to train. This leads

to questions on how beneficial the improved performance is for using StyleGAN2

over the smaller PGGAN when considering possible limitations of computational

resources available.

CoCoGAN

Conditional Coordinate GAN (CoCoGAN) presents another novel GAN architecture

with results that rival other high performing GANs (StyleGAN2, BigGAN)[118].

Inspired from the human visual system’s ability to perceive an entire visual scene

from eyesight despite the limitations of eyesight to only be able to look at a part of

that scene at any given point in time, CoCoGAN generates high resolution, photo

realistic images in parts by using the spatial coordinates of each part as a condition

during training. The authors also put forward the model to be used for the novel task

of “beyond boundary generation”. This is when the model is asked to extrapolate

the image beyond the range that it has been trained on, generating output images

that are larger than those in the training set and guaranteed to be novel, as they

are not directly based on any real data.

CoCoGAN has been tested on a number of different datasets including object

datasets such as CelebA and the LSUN256 dataset. As well as these standard

benchmark datasets, the model was also able to achieve low FID scores for the

panorama dataset Matterport3D[119]. This presents a different challenge for image

generation than compared to object focused datasets, as it requires the model to

learn how to create a coherent image with decentralised features, much like those

seen in aerial images.

BigGAN and BigBiGAN

BigGAN is another recent GAN model which is capable of conditional and uncon-

ditional high resolution image generation[2]. As the name suggests, BigGAN is a
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large-scale GAN model, trained using four times the number of parameters and

eight times the batch size compared with prior models. The authors report that

their results benefited greatly from upscaling the architecture. BigGAN managed to

achieve similar levels of visual fidelity at high resolutions as PGGAN and StyleGAN

on object and category datasets like ImageNet. BigBiGAN builds on the BigGAN

model architecture with a series of updates to achieve greater variety and photo

realism in the generated images[120].

Despite being a recent model with competitive performance in generating realistic

images[110, 120], neither BigGAN nor BigBiGAN will be included in this survey.

These models are much larger than the other models included in this comparison,

with 340 million training parameters compared to 58 million in the largest network

included in this study (StyleGAN2). To train these models from scratch at the

resolution of 256×256 requires over 12 GB of video memory, which exceeds the

resources expected to be available for researchers. The results presented in this

chapter focus on applicable techniques for the wider community, using models that

are able to be trained on consumer level GPUs with 8-12GB of video memory.

Baseline DCGAN

In addition to testing these current, high performing GAN models, a basic deep con-

volutional generative adversarial network (DCGAN) is also included for evaluation

(Figure 3.1. This serves as a baseline model for this study. It was chosen as it is still

able to produce 256×256-pixel images, but lacks any of the innovations and updates

in structure found in more recent models. Using the original DCGAN base archi-

tecture described by Radford, 2015[121]. Iterating on Goodfellow’s original GAN

[8] by adding convolutions, this model achieved impressive results at its time of re-

lease when deep learning image generation was still a novel concept. Due to being

a much smaller model than any of the current high performing models, DCGAN is

considerably quicker to train with much lower computational requirements.

The specification for this implementation of a DCGAN uses simple convolutional

neural networks for its adversarial training. The generator network G up samples
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Figure 3.1: Baseline DCGAN architecture. The generator (top) and discriminator, D
(bottom) consist of a series of convolutional layers (Conv) and dense layers for reshaping
the data.

the random noise vector z though 7 convolutional blocks to produce an image that

is given to the discriminator D. G uses Relu as its activation function for each layer,

apart from the output layer which uses a Tanh function. D is a CNN classifier made

up of 6 convolutional layers (including input layer) and a single dense layer. D

uses average pooling between each convolutional block and a leaky Relu activation

function, as this was found to work better for higher resolution images than the

standard ReLu [121]. A Minimax loss function is used for training both networks.

3.2.2 Experimental Setup

The image generation performance was tested for the PGGAN, StyleGAN2 and

CoCoGAN networks and, for comparison, also evaluated a baseline DCGAN. In all

experiments, the official implementations of the networks were used. These networks

were chosen due to their reported state of the art unconditional performance on com-

mon GAN benchmark datasets. PGGAN was also selected for comparison as, despite

being superseded by StyleGAN2, it remains one of the best performing and most
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used GAN architectures for the task of unconditional image synthesis. As mentioned

above, despite achieving similar performance, BigGAN has not been included due to

the large VRAM requirement during training for resolution of 256×256-pixel images

(>12 GB GPU Memory). Other unconditional GAN models (e.g. FineGAN[122],

AutoGAN[123], SRNGAN[124]) were not included as they could not scale to the

target resolution, while others did not have official code repositories at the time of

research.

Each model was trained with the hyper parameters specified in their official imple-

mentations. All the models were trained using two GPUs with 8GB of VRAM, aside

from the baseline DCGAN which required only one GPU. Each model was trained

until a short time after model convergence was apparent, with no further decrease

in the model’s training loss. For each trained model, a sample dataset of synthesised

images was generated to be used for evaluation. Each test generated dataset was of

the same size as the training set, and each model was evaluated by comparing 10

random subsets of 10,000 generated images with 10 random subsets of real images

of the same number. These comparisons measured the mean and standard deviation

for the metrics Fréchet Inception Distance and Kernel Inception Distance for each

model.

3.2.3 Dataset

Most of the published research in the area of deep learning methods with Earth

Observation data use Map2Sat as a baseline dataset[43]. This dataset is mostly

used due to its ease of access: it is included in TensorFlow 2.0. Map2Sat was

created for the purpose of demonstrating the performance of CycleGAN[21], and

contains 2,000 satellite images with road data extracted from Google Earth. While

the image pairs are useful for style transfer tasks, its relatively small size, lack of

diversity and low resolution (max 256x256) make it unsuitable for the unconditional

generation task addressed here.

In this chapter the models are evaluated using the INRIA Aerial Imagery Dataset[102],
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which contains a large number of high-definition images of varied environments. The

INRIA dataset contains open access, high resolution aerial images in GeoTIFF for-

mat. Originally created for building detection, it covers 810 km2 and is comprised

of aerial orthorectified colour imagery at a spatial resolution of 0.3 m per pixel. It

includes images from urban settlements from a wide range of geographic locations

and with a wide range of characteristics, from densely populated areas such as San

Francisco, to alpine towns in Austria. The variety of images offered in this dataset

make it an ideal target to evaluate GAN-based EO image synthesis.

3.2.4 Data pre-processing

The original version of the Inria dataset includes 180 colour tiles of 5000x5000 pixels

covering a surface of 1500 m x 1500 m. These tiles were then resized to 4096x4096

and each split into 8 tiles of 512x512. Fig. 1 shows a random sample of images

extracted from the dataset after being split and resized to 256×256. There was

approximately a 50/50 split in terms of rural and urban features present in the final

tiles.

Figure 3.2: Random selection of images from the INRIA Aerial Imagery Benchmark
Dataset [102].

Data augmentation techniques have been successfully applied in deep learning prob-

lems to improve performance[125]. In this instance both vertical and horizontal

flipping transformations were applied to the original dataset[126]. A mirrored, du-

plicate dataset was added to the training set, and all of the images were also rotated
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by 180°and 90°.

After data augmentation, the dataset is comprised of 34,600 256×256 images. This

resolution was selected because it was the highest resolution shared by each of the

tested models. In addition to the previous augmentations, a sliding window was

used to create more tiles to further increase the dataset size.

StyleGAN2 was selected for additional evaluation as it is the most widely used out

of all the benchmark models and was built specifically for the generation of high-

resolution images. For this task, an additional, higher resolution dataset was created.

This dataset also used the Inria dataset, but was made up of larger tiles of the

original 4000x4000 images than the 256x256 dataset used for the main benchmark

evaluation. This high resolution dataset contains 16,500 images at a resolution of

1024×1024 pixels.

3.2.5 Metrics

To assess the performance of each model Fréchet Inception Distance [90] (FID)

and the Kernel Inception Distance [88] (KID) were applied. The Fréchet Inception

Distance has become one of the most widely used metrics [127] for evaluating the

performance of GAN models. Its purpose is to measure the statistical similarities

between the original data and the generated data. A lower FID indicates that the

two groups of samples are more similar, with a score of 0 indicating both groups are

identical.

This metric is measured by embedding a set of generated samples into the feature

space of a specific convolutional layer of the Inception CNN model[128]. Then, the

distance between the mean and co-variance of each group (real and fake images)

is calculated. The Fréchet distance between the two Gaussians is then used as a

quantitative measure for visual quality of the generated samples. It is given by 3.1:

FID(r, g) = ∥µr − µg∥22 + Tr
(

Σr + Σg − 2 (ΣrΣg)
1
2

)
(3.1)

Where µr,Σr are the mean and co-variance of the real data distribution, with µg,Σg
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being that for the generated data distribution. The euclidean distance is measured

between the two means (∥µr − µg∥2) and Tr is the trace operator that sums the

diagonal elements of the matrix. FID superseded the previous GAN evaluation

standard, Inception Score [98] as it has been shown to be a more robust measurement

of image quality [89]. The Inception score has also been shown to inadequately detect

overfitting [91], as it only uses the generated samples while ignoring the training set,

and is also sensitive to image resolution [90].

Kernel Inception Distance [88] measures the maximum mean discrepancy (MMD)

between two probability distributions (Pr and Pg) for some fixed characteristic kernel

function k. MMD is a two-sample testing measure that computes the dissimilarity

between Pr and Pg using independent samples from each. This metric has been

found to be more sensitive to overfitting than FID scores, although as with FID

due to sampling variance M(X, Y ) it may not be 0 even when Pr = Pg [129]. It is

calculated as shown in equation in 3.2:

Mk(Pr, Pg) = Ex,x′∼Pr [k(x, x′)] − 2Ex∼Pr,y∼Pg [k(x, y)] + Ey,y′∼Pg [k(y, y′)] (3.2)

Where k is a fixed kernel function (e.g. Polynomial Kernel k(x, y) = (1
d
xTy + 1)3,

with d being the dimension of the Inception representation) and (x,y) refer to the

real and generated sample. KID has been found to converge to its true value faster

than FID [88], also requiring less n samples.

One problem which is present in all GAN evaluation metrics is that they try and

quantify the very subjective factor of image realism, something which is often mea-

sured using human evaluation measures [63, 130]. FID has been to found correlate

with measures of human perception towards assessing image realism and image qual-

ity in GAN samples [89]. This suggests that FID and its iteration KID can be used

as metrics for the quantitative analysis of GAN image quality. However no studies

have been performed evaluating the fitness of these functions for EO image synthesis.

FID and KID suitability as quality metrics has been questioned in the results from
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Zhou (2019) [65]. When measuring GAN face generation (CelebA, FFHQ, Cifar-10)

using their own human perception metrics (HYPE) they found that there was no

significant correlation between humans and the automated metrics. It is important

also to note that these Inception score based metrics are derived using a pretrained

network which was is trained on Imagenet [87]. For the main evaluation of GAN

models we use the pretrained Inception model that is the standard practice in many

GAN papers ([1],[120]).

As EO data comprises different features beyond common images with objects usually

centred, the use of an Inception model trained on ImageNet does raise additional

questions on the reliability of these benchmark metrics beyond ImageNet models

[91, 93]. In addition to the standard Inception Network we also present FID scores

using an instance of this Inception model after fine-tuning on a section of the Open

Cities Dataset [131], which consists of high quality urban and rural images of African

cities.

3.3 Results

FID and KID were compared for each model across 10 k-fold random subsets of

10,000 generated images, with the average FID/KID being reported. Each subset

was compared against the same number of randomly selected real images, the mean

and standard deviation was then recorded for each model. The results of the com-

parison can be found in Table 2. Additional sample images from each model can be

found in the appendices 7.4.

3.3.1 Model Comparison

When comparing performance across models, it is first important to note that com-

paring FID scores between papers can be difficult due to the FID’s sensitivity to-

wards the number of test samples [88], meaning that FID can only be fairly compared

in tests with an equal n value (as FID is a measurement between two distributions),

hence an equal number of images were generated for each model.
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Table 3.2 shows the FID and KID scores for the various models trained on the INRIA

dataset, a random selection of generated samples visual image quality can be seen

in Figure 3.7, with additional images found in the appendices.

Model Number of Trainable Parameters Training Time
DCGAN (920K generator, 1.8m discriminator) 2 days
PGGAN (23m generator, 23m discriminator) 4 days
StyleGAN2(256) (30m generator, 28m discriminator) 10 days
CoCoGAN ( 24m generator, 29m discriminator) 7 days
StyleGAN2(1024) (32m generator, 30m discriminator) 13 days

Table 3.1: Number of trainable parameters and training time for each tested network.

Model FID (Mean ± SD) KID (Mean ± SD)
DCGAN 283.72 ± 1.32 312.32 ± 2.21
PGGAN 27.24 ± 0.30 12.45 ± 0.63
StyleGAN2 16.59 ± 0.18 7.28 ± 0.61
CoCoGAN 141.10 ± 0.56 104.39 ± 0.09

Table 3.2: Metrics for Baseline and state-of-the-art models. Best performance is shown in
bold (lower values are better).

StyleGAN2 was found to produce the highest quality images, both in terms of met-

rics, as shown in Table 3.2, and in terms of visual results in Figure 3.7. The model

did require the longest training time out of the tested models and has the highest

minimum requirements for GPU memory (8GB).

The generated samples were more detailed than those from the other networks

tested, with the updates in architecture from previous iterations (PGGAN) im-

proving its general generation ability beyond the face datasets (CelebHQ) tested by

its original authors. Whilst the progressive growing architecture of PGGAN is still

able to produce fairly realistic looking images, with image details such as cars, trees

and buildings, the change to using blocks with skip connections in StyleGAN2 makes

these details much clearer. StyleGAN2 improvements such as the multi-resolution

training, where all image resolutions are trained at once, to help in learning more

stable and coherent representations across different scales, makes for more consistent

and realistic images.

Despite the generated EO images being of poorer quality than the examples of

faces and objects in the original paper [1], they demonstrate that aerial images
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Figure 3.3: a) Baseline GAN results: The DCGAN has managed to learn the basic
shapes and features of the training data but struggles to correctly generate finer details.
Convolutional upsampling crosshatch artifacts are also present

Figure 3.4: b) PGGAN results: The PGGAN images are quite detailed, baring close
resemblance to the real images but still contain obvious deformities at object boundaries
(e.g. roads, building edges)

Figure 3.5: c) StyleGAN2 results: The generated images bare a strong resemblance to the
training data, with improvements in quality over PGGAN and less obvious image artifacts

Figure 3.6: d) CoCoGAN results: CoCoGAN struggles to generate convincing images
with large warping artifacts for straight line features (roads, buildings)

Figure 3.7: Random selection of results from trained GANs

can also be successfully generated with high levels of photo realism. The warping

artefacts we notice in other approaches are much less pronounced in these images,

with roads and roofs being realistically rendered. Overall the images are also much

more detailed and clearer, giving them a much more photo realistic look. The model

manages to render both rural and urban features reasonably well, although there

are more noticeable artifacts in the urban imagery. This is perhaps simply due to
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the additional challenge of rendering buildings rather than foliage. Warping around

straight edges can be seen in other instances of GAN image generation [58] as the

models struggle on replicating hard boundaries between images. The abundance of

such features in urban images may explain the differences in visual quality between

the generated urban/rural scenes.

The results from PGGAN showed a noticeable dip in visual quality in comparison

to the more recent StyleGAN2, but still achieve fairly realistic looking images. The

images produced were visually better than those by the baseline DCGAN which was

also reflected in the FID and KID metrics. Results look visually more “realistic”,

as shown in Appendix Figure B.3, with details such as trees and houses present.

There are, however, some noticeable artifacts such as warping issues that can be

seen where roads and rooftops which should appear uniform and straight do not.

The warping issues are most present in the images that depict more urban area and

are less noticeable in images with higher amounts of foliage. PGGAN’s performance

is especially interesting when compared with CoCoGAN. Although CoCoGAN is

a more recent architecture, PGGAN outperformed CocoGAN in both metrics and

visual fidelity. This suggests PGGAN has a much more robust architecture, better

suited to generalisation beyond face and object synthesis. Although PGGAN did

not produce images to the same quality of StyleGAN2, PGGAN took considerably

less time to train to convergence when trained on the same hardware.

The FID scores presented in the original paper [118] suggested that CoCoGAN

would outperform the other networks. However, CoCoGAN produced less visually

realistic images, and lower metric scores. FID results dropped by 131.5 between

the CelebHQ dataset, which was reportedly used in [118], and the INRIA Dataset.

This is a surprising result, as the network has been reported as outperforming other

networks on high resolution, non-object focused datasets such as the Matterport 3D

panorama dataset [118]. We trained with a reduced batch size of 64, compared to

the original 128, due to memory constraints on the large INRIA dataset, but this is

unlikely to have caused a notable drop in quality.

Similar to the PGGAN results, the images from CoCoGAN managed to capture
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the more basic geometry and colours in the image, but without the detail and

clarity of those from StyleGAN2. CoCoGAN struggled with generating convincing

urban environments with some images being incoherent. The most prominent image

artifact found in the generated CoCoGAN images was a visible grid pattern of the

seams between the different macro patches. This grid pattern could be an indication

that the model has failed to learn the distribution of features in EO data, causing

difficulty in its attempts to merge micro-patches. In addition to generator and

discriminator loss functions, CoCoGAN also has a spatial consistency loss. This is

used to govern the two spatial coordinate systems (micro and macro) for determining

how the individual patches of the image are generated and put together. These

grid artefacts suggest that the network has not been fully optimised towards the

spatial consistency loss (Figure 3.7). In the original paper this was noted as being

a problem that was possible, and this is particularly noticeable in our experiments.

In less cluttered images of fields and vegetation the effect is most pronounced.

A limited hyper parameter search (patch size, learning rate, gradient penalty weight)

was conducted to try to improve image quality but saw negligible results. Further

tuning of the hyper-parameters could potentially improve image quality but is com-

putationally costly. A more likely solution would be to use more data, to better

accommodate the optimisation of the spatial consistency systems,. A larger dataset

may be, particularly given that the datasets in the original paper contained many

more images. In this instance the experiment was limited by the VRAM available.

Models such as StyleGAN2 and PGGAN, were shown to be much more reliable in

this regard, making them better choices for further experiments.

As expected, DCGAN offered the lowest performance of all methods. It produced

average FID and KID scores of 283.7 and 300 respectively. DCGAN is the simplest

GAN network, not incorporating modern network design elements present in the

other works. Its inclusion in this comparison is still useful in providing baseline re-

sults against which we can compare. Visually, as shown in Figure B.2 in Appendix

B, the limitations of the network are clear. The model has learned to capture the

low level features in the training data, such as broad shapes and colours, but has
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struggled to capture the finer details and textures. Earlier GAN models such as

this one are known to struggle with producing realistic looking images at resolu-

tions higher than that of toy datasets such as MNIST and ImageNet, producing

unclear and blurry images [132]. Certainly, the differences in image realism between

StyleGAN2 and DCGAN highlight just how rapidly automated image generation

techniques have evolved in a short space of time. The DCGAN images do not con-

tain the detail in the StyleGAN2 images which manage to replicate aerial image

features to a much higher level of visual fidelity. Features in the more recent GANs

such as the progressive growing in PGGAN and the skip connections in StyleGAN2,

enable the GANs produce finer details, such as cars, whilst keeping the low level

features and can do so at a higher resolution. The simplistic convolutional layers

used in DCGAN are not able to produce these at the tested resolutions.

3.3.2 StyleGAN2 Latent Space Analysis

As the highest performing network, we performed an analysis of the embedded

features in StyleGAN2’s latent space. This can give us a further understanding

to what extent the model has learnt the more uncommon features in the training

dataset. We first generate an output image from the StyleGAN2 generator given

a starting latent vector z [1]. The output images and a target real image are then

both placed in a pretrained feature extractor (VGG16 [133]) which then computes

the loss between the features of the images. Using gradient descent the loss is then

used to optimize the latent space to generate an approximation of the target image.

The latent space images show a noticeable disparity between the learned represen-

tations and the target images (Figure 3.8). While the model can approximate the

general rural landscape from the target images, it has failed to replicate the building

estates in the bottom two examples. The model can be seen to effectively replicate

the more global features and repetitive patterns in the aerial images, such as type of

terrain or vegetation, but struggles to add local features such as buildings and more

fully completed roads and trees. If the model had managed to learn the datasets
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Figure 3.8: Four pairs of real (right) images and their associated latent-space image (left)
from the trained StyleGAN2 1024 model. The latent space images are close to the training
images, but have some differences in specific features. The model has learnt to generate
the structures and features similar to those in the Inria dataset images with out overfitting
to the training data. This would likely be the case if the latent images were exact replicas
of the training images

distribution more accurately then there would be fewer differences in the images,

although this also suggest that the model has learnt image features rather than

simply overfitting to the training data. Additionally, irregular and unique features

such as landmarks specific to that are not produced in the generated samples as

these represent anomalies in the data distribution that StyleGAN2 is attempting to

mimic. In distinguishing between a well generated urban scene, looking for unique

landmarks such as a sports stadium could help to quickly determine if the image is

authentic or not.

3.3.3 FID Comparison between Inception Models

As previously discussed in section 2, one concern with Inception model-based metrics

(e.g. FID, KID) is that the standard way of calculating the metric is to use a model

pretrained on the ImageNet [87] dataset. Due to the large variety of image classes

included in the ImageNet dataset, this single pretrained model can be useful for

evaluation in many circumstances. This becomes a potential issue however when

being used for evaluation of image data from domains not included in ImageNet
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(e.g. EO imagery).

In the main evaluation section of the GAN models this instance of the Inception

network was used, keeping in line with the standard practices in current GAN lit-

erature. To further explore the consequences of using an Inception network trained

on a different image type (objects vs EO data) a second set of FID metrics were

calculated using a ImageNet pretrained Inception Network fine-tuned on a different

EO dataset (OpenCities [131]). The choice for using this dataset was that it was

another high quality, large EO image dataset that contained different geographical

rural and urban locations as those found in the Inria dataset. Although the In-

ria dataset could also have been used to train an Inception model for calculating

FID, using an external dataset allows the results be used in future comparisons with

different generative models or EO datasets.

To configure this additional Inception model (ImageNet+Maps) for FID evalua-

tion, the output layer was modified from 1000 output class probabilities to 1001

(n =ImageNet classes + Map class). The classifier was then fine tuned on the task

of classifying the OpenCities dataset into the new Maps class against the existing

ImageNet classes. This was completed when the accuracy was approximately the

same as the ImageNet classes (∼94.8%) .

These results can be seen in Table 3.3. The results show that FID changes signifi-

cantly when using a model fine-tuned on EO data. The resulting scores being much

lower, which indicate closer features found in the distributions between the real and

generated datasets. The performance rankings between the different models stayed

the same for both evaluation methods.

Model FID (ImageNet) FID (ImageNet+Maps)
DCGAN 283.45 193.45
PGGAN 25.51 0.90
StyleGAN2 16.59 0.69
CoCoGAN 136.35 27.35

Table 3.3: FID metrics for different Inception models (lower values are better).
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3.4 Discussion

The aim of this chapter has been to evaluate the generation of Earth Observation

(EO) data using current state-of-the-art GAN models. EO data presents a novel

challenge since these models are usually fine-tuned towards the generation of ob-

jects and faces. The main motivation behind this work comes from the increasing

prominence of sophisticated image-generation algorithms, the lack of current litera-

ture and scientific evidence towards their use for generating aerial image data, and

the potential concerns associated with malicious use of image synthesis tools which

could relate to fake information generation.

Results of this evaluation are both promising and concerning for those addressing

the problem of fake EO image generation. When comparing the performance of

all models together, all were found to perform worse quantitatively for the purpose

of EO generation, than in results reported for their original implementations on

other domains. While this comparison was not expected to find the same levels of

state-of-the-art scores that were achieved on the various benchmark datasets there

are substantial drops in performance (average 61% FID decrease) in this evaluation

using EO imagery. One explanation that can be hypothesised is that the data these

models were designed with were primarily face and object datasets (e.g. CelebA,

FFHQ). These image types are quite different that aerial imagery in terms of the

spatial relationships between features. Unlike the defining features in facial data

(nose, mouth, and eyes), which are very central and have defined spatial relationships

with each other, the features unique to aerial imagery (roads, foliage, buildings) are

much more decentralized presenting a different spatial relationship of features.

The importance of differences between image types can be seen in the disparity of

FID scores (Table 3.3). The lower scores for the EO trained Inception Model show

that even without being trained from scratch, the addition of fine tuning on domain

specific data forces the network to embed different predictive features than those in

the standard ImageNet model. This has also been observed in previous experiments

[134] of changing the underlying data the Inception network is trained on. Changing
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this dataset causes FID to be effected by different features and biases in the data.

This results in an FID metric which is more suited for bench-marking models when

dealing with a specific image domain. Due to the bias that changes to the Inception

dataset create, comparisons can only be made with FID results that use the same

FID implementation.

Another contributing factor is that the dataset used to train the models was rela-

tively low at 36.4K samples, in contrast, many commonly used datasets have well

over 50k samples. This does, however, highlight the ability for some models such as

PGGAN and StyleGAN2 to be able to generate realistic looking images from smaller

training sets. This ability to perform well in terms of KID and FID with smaller

datasets makes these models suitable for tasks where existing data for training is

limited or unbalanced. As previously discussed in this chapter, this provides further

evidence of the advantages of GANs as a data augmentation tool to extend training

sets for classifiers which may need larger or more balanced training datasets.

StyleGAN2 produced visually impressive samples despite a smaller training set.

This model is sufficiently capable on EO data to merit further research, both as a

tool for generating training data for detection systems, and in assessing the level

of threat that it poses towards current systems. This ability to generate data that

could potentially fool detection systems, both automated and human presents an

immediate concern, especially when this technology is developing at a rapid pace as

seen in the improvements between current models (StyleGAN2, PGGAN) and ones

from only a few years prior (DCGAN).

3.5 Conclusion

This chapter presented a thorough benchmark analysis of the generation of fake

aerial imagery using unconditional adversarial networks. Results from this bench-

mark study show that SotA GAN models, such as StyleGAN2, can successfully

generate examples of EO imagery although replication of the low FID scores pre-

sented in their accompanying papers is difficult to replicate. Furthermore, the ex-
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ploration of different implementations of FID based metrics lend further evidence

to the argument that these metrics are not consistent enough to be employed for

empirical evaluation of GAN performance. The FID results (Table 3.3) obtained

from the OpenCities Inception Model show how these scores are subjective to the

types of image data being used and making score comparisons between GAN papers

unreliable. The differences we found in FID when using a different dataset for the

Inception model support the concerns that these are flawed metrics for measuring

GAN image quality, especially the industry standard to rely on Imagenet based

models regardless of the generated image type[93].

The accurate generation of Earth Observation data such as photo-realistic aerial im-

agery presents concerning implications regarding the security and validity of digital

imagery. The ability to rapidly generate enormous quantities of false information

gives Security and Defence research a unique challenge to tackle. The work in this

chapter has explored EO image generation using mathematical GAN evaluation met-

rics as well as the creation of GAN generated EO datasets to use for future work.

Following on from the results and conclusions drawn in this chapter the research in

the following chapters will evaluate the best performing model (StyleGAN2) using

human evaluation methods. As GAN images are often generated for the purposes of

being viewed by humans, particularly in terms of deception, it is important to ex-

amine just how realistic they appear using human evaluation methods, rather than

automated metrics such as FID and KID.
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GAN Image Detection

4.1 Introduction

The GAN benchmark study in the previous chapter found that StyleGAN2 achieved

the highest performance in the unconditional generation of synthetic aerial imagery

when measured using FID and KID. Using samples generated from this model, this

chapter explores human detection performance on synthetic aerial imagery and the

differences with automated methods. As discussed in the literature review section

on human detection (Chapter 2), it is important to understand this aspect of fake

image generation in addition to automated detection methods as humans are often

the target viewer for fake photo realistic imagery, malicious or otherwise.

This chapter argues that research into the security and authenticity of image data,

given the rise of machine learning driven generation algorithms, requires a balanced

understanding of human and automated generation methods. Evidence is given to

support this by showing how both humans and pretrained CNN detection models

achieve sub optimal performance in differentiating between real and synthetic EO

imagery. This is presented in the form of a comparison between a CNN detection

model and the results of an online human detection study.

The research presented here aims to address how hard it is for humans to iden-

tify between real and synthetic aerial imagery and whether this is correlated with

previous experience in using similar data (e.g. satellite imagery).
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The results find that previous experience (self-reported) positively correlates with

task performance, this indicates that self-perception of expertise in this context

can be used to reliably group participants when using expert/novice experimental

designs.

Additionally, this chapter also examines the current Inception model-based evalua-

tion metrics and their differences with human evaluation in the context of synthetic

aerial imagery.

4.2 Experiments

4.2.1 User Study

To investigate human detection towards synthetic aerial imagery a user study was

conducted online using images from the Inria aerial imagery dataset and samples

generated by StyleGAN2, the best performing model in the previous chapter.

Design

A within groups, 2-alternative forced choice design (2AFC) was used for the study.

In this experimental design, participants from independent groups are asked to select

between two given stimuli. This methodology was selected for being a reputable

and established experimental design ([135]) for decision based visual search studies.

Although this study design does not indicate participant confidence, as the forced

choice may result in some decisions being guesses, this design does negate the option

of non-answers or neutral responses from participants.

The purpose of this study is to investigate if participants can distinguish between

real and generated images as well as any correlations between experience levels and

accuracy. Due to this study was kept as simple as possible, and additional measures

for confidence were not included. Doing so, such as, asking participants to rate the

confidence of there answers, may have reduced participant engagement, lowering the

overall turn out for the study.
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2AFC was chosen rather than a sequential design for displaying images, as it removes

implicit biases towards the visual stimulus (real/generated images) that could impact

decision making [135–137]. If a single image is presented to the participant which

they are unsure of, they may be biased in one direction to chose a certain answer. As

the participant has been briefed on the purpose and context of this study, they may

be biased towards believing the image is fake, skewing the final results. Additionally,

sequence of single images can also skew a participant’s perception as they will be

influenced most by the previous image they saw. This could cause their perception

of real and generated to become more warped over the course of the study. 2AFC,

with two images presented simultaneously tries to prevent this from occurring.

Figure 4.1: Screenshot from the forced choice study. One image is real and the other is
synthetic. Participants are asked to indicate which one is synthetic. In this example the
left image (real) depicts an urban scene and the image on the right (synthetic) depicts a
rural scene, urban/rural combinations are presented randomly.

The experiment was created using PsychoPy3 [138], a Python3 software package

for creating interactive cognitive psychology experiments. The study was hosted on

the online psychology experiment platform, Pavlovia.org [139]. This was done as at

the time of research, face to face studies were not an option due to restrictions in

response to the COVID-19 pandemic. Although online studies are not able to be as

rigorous and precisely monitored as in lab conditions, it did allow a larger sample

of participants to be recruited in a relatively short amount of time. To dissuade

repeated attempts, only one full completion of the task could be made before being
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locked out via website cookies. Participation was open to all but the final population

(N= 94) was generally made up of students, academics and data scientists based in

the UK.

In an initial practice task, participants were given a set of image pairs (4.1) and for

each pair asked to identify which image is fake. Each pair consisted of 1 StyleGAN2

generated image and 1 real INRIA satellite image. It was made clear to the par-

ticipants that for these pairs there would always be one real and one fake image.

The images from both sets (fake/real) were a mix of urban and rural images and

presented at random. After answering they were then given feedback if they were

right or wrong. At the start of the experiment participants were asked to give their

level of previous experience (low, moderate or high) at looking at similar types of EO

data and images. After this initial practice task (10 image pairs) was completed, the

main task was given. This followed the same format as the practice task but without

feedback and more image pairs (100 image pairs in blocks of 25). The image pairs

were generated randomly for each trial from a dataset of 250 StyleGAN2 images and

250 INRIA images, all at a resolution of 256×256. These pairs consisted of random

combinations of urban and rural images. Randomisation of the images ensures that

the data obtained during the study is from the difficulty of the images rather than

specific pairings. Although some participants may encounter more challenging pairs

than others, this effect is minimised over multiple trials and participants.

Participants were given as much time as they would like to answer. Previous works

([65, 140]) have opted to implement time constraints for participants. The current

experiment measures the participants’ ability to distinguish between real and fake

images regardless of a time taken. The only time variable that is controlled is that

the images are shown for a minimum of 500ms before the participant is allowed to

answer, this is to avoid mis-clicks or the participant making guesses without looking

at the stimuli first.
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Hypotheses

H1 : Participants will not be able to consistently distinguish real EO images from

generated images. This will be reflected in a low task accuracy (e.g., less than 75%

accuracy average).

H2 : Participants that self-perceive to have higher expertise will show higher accu-

racy than lower expertise.

4.2.2 CNN Detection Model

In addition to testing the generalization capabilities of generation models, using less

common GAN datasets such as earth observation images can be used to evaluate

current GAN detection models. Currently there are a number of different models

for the purpose of detecting GAN generated images but many of these are limited

to looking at specific image types such as faces. One recent paper by Wang et al.[45]

(Previously discussed in Chapter 2) claims that GAN detection is currently a solved

problem and presents a trained ResNet model which is capable of classifying GAN

images with high accuracy across datasets generated by a variety of SotA GAN

image synthesis models including ProGAN and StyleGAN2. While the authors

show that the model can generalize to a variety of different image types by different

models only common GAN benchmark datasets were used. This makes the results

of paper hard to generalize to other unseen forms of synthesised data such as EO

data. Despite this potential limitations of the model, further studies on GAN image

detection have used this model as a method of evaluation[39] making it one of the

most currently used methods of GAN detection that evaluate the visual differences

between real and synthetic images.

For this study, the ResNet model from Wang et al.[110] was selected for evaluation,

due to its reported high detection accuracy and use in other GAN papers. This

model consists of a pretrained (ImageNet) ResNet-50 model that the authors had

further trained on additional image data specifically for the purpose of being a

generalized CNN generated image detector. The model was trained on real/fake,
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object and image datasets generated by PGGAN, up to a resolution of 1024x1024.

During training the authors used data augmentation techniques of adding Gaussian

blur and jpeg image artefacts were applied to increase generalization ability and

robustness to real life scenarios.

For the purpose of the current experiment, two variants of the model were used

(trained by Wang et al.). One which was trained with each training image having a

probability of JPEG compression and a Gaussian blur of 10% (jpeg and blur 0.1) and

another at 50% (jpeg and blur 0.5). The purposes of this training augmentation is

to test how ecologically valid the model would be when employed on common image

types seen online. Both models were tested using 10000 images of each class (Inria

real images, StyleGAN2 generated samples) and were from the same datasets as the

images used in the human study.

4.3 Results

4.3.1 User Study Results

Image Type Correct Response FID KID
All Images 68% 17.51 43.01
Urban 70% 17.48 43.65
Rural 66% 13.54 36.88

Table 4.1: Metrics table for urban and rural generated samples.

In this chapter a user detection study was carried out. The aim being to discern the

extent to which users are fooled by state of the art, synthetic EO images, and the

extent to which FID and KID are useful predictors of human performance on this

task. It was found that participants (N=94) were able to correctly identify the fake

image from each image pair shown on average 68% of the time, the distribution of

user scores can be found in Figure 4.2. The results also showed that self-reported

user experience did have a positive correlation with accuracy (Table 4.2) but no

significant conclusions can be drawn from this due to the low sample size of users

answering ’High’ experience. The data was found to be non-parametric as it did
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not follow as normal distribution, so a Kruskal-Wallis H test carried out. The test

found ε2 = 0.223 (p < 0.001) indicating only a weak positive correlation. the

pairwise comparison can be found in the appendices (C.1).

While these results may initially suggest that synthetic aerial imagery is not yet at

a level to cause concern, it is important to note that this was under specific forced

choice conditions in which participants were aware that exactly one of the pair of

images was synthetic. There was also only two choices for the participant to select

from in each trial so even if every choice was completely random this would still

result in 50% accuracy. If fake images were deployed in the wild against a less

prepared users, it would be expected that a lower level of detection would occur.

The participant accuracy results show favour for H1, that participants have difficulty

in consistently distinguishing the fake EO images from the real ones. H2 is also

favoured as the results show a small but significant correlation between expertise

and task accuracy.

Figure 4.2: (Left) Distribution of accuracy across participants and (Right) distribution
of scores between different expertise

For analysis, the synthetic images were manually separated into two groups, contain-

ing urban or rural scenes. Rural scenes were defined as containing natural features

such as forest across the majority ( 50%) of the image, with images containing less

than this threshold being classified as Urban. Examples of urban and rural scenes

can be seen in Figure 4.1.
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Experience level N Accuracy
All 94 68.9%
Low 60 62.9%
Moderate 24 77.2%
High 8 83.8%

Table 4.2: Experience level statistics from User study

Participants were able to better identify synthetic images that contained urban

environments than those that consisted of primarily rural features. This is likely

due to the fact that rural aerial imagery has less obvious and distinct features than

those in urban scenes, making it harder to tell if the scene is naturally blurry or is

a GAN image artefact. Errors in the generation of straight features such as roads

and building edges is perhaps more obvious. The FID and KID were calculated for

each image that was shown to participants (250 StyleGAN2 generated images). The

average FID of the images shown was 4.02 and the average KID was 4.31, when

calculated using a standard pretrained Inception network.

Metrics Correlation Coefficient P value
FID/KID 0.959 0.001
Accuracy/KID -0.031 0.625
Accuracy/FID -0.078 0.270

Table 4.3: Pearson’s Correlation Coefficient for StyleGAN2 images and participant Accu-
racy

Correlations between the GAN metrics (FID/KID/ACC) were explored as seen in

Table 4.3 using Pearson’s correlation coefficient. The results found that while KID

and FID had a strong positive correlation against each other, there was no signif-

icant correlation found between participant accuracy and either GAN metric. A

comparison of means between human accuracy and FID/KID when split into rural

and urban found that there was a significant difference between metrics showing

that urban images achieved higher FID/KID scores (Lower is better) than rural

images, but were more easily identified by participants (4.1). This shows that on

the level of an individual image there is a disconnect between Inception distance-

based metrics (FID/KID) and the human perception of photo-realism. This implies
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that image generation algorithms do not necessarily require low scores for FID and

KID for certain image types when the goal is to achieve photo realism as judged by

the human eye. It should be noted that FID and KID are more unreliable when

comparing the distributions of a single sample dataset and a real dataset as each

samples distribution may be very different to the full dataset. This high variance

and uncertainty can be seen as the FID/KID scores for each image are much higher

than the dataset as a whole.

4.3.2 CNN Detection Results

Model Acc. Acc.(Real) Acc.(Fake)
jpeg blur:0.1 60.98 97.79 24.16%
jpeg blur:0.5 62.58 97.97 27.19%

Table 4.4: Results from pretrained Inception network CNN image detection model. Two
models were trained with different levels of blur added to the images. Accuracy for each
class in addition to overall accuracy is included.

In the human detection study the mean accuracy was 61.2% (Figure 4.2), this result

increasing to 74.5% when only looking at the results from participants with moderate

or high previous experience. When the same image dataset was tested on the CNN

detector the model achieved an overall accuracy score of around 60%, achieving

97.2% when presented with real images and 24.16% accuracy when presented with

generated samples (4.4).

This disparity between the model’s ability to correctly classify the two different

image classes suggests that the model can learn the distribution of the real images

but there is something in the GAN images that is causing the model to perform

worse than chance. This could be due to GAN artefacts that are only present in

this type of image. While the original paper states that the model was trained on a

variety of image datasets, this did not include aerial data.

Comparing the CNN against the human detection results show that the CNN per-

forms worse at the task than people with at least some experience looking at similar

images. It should be noted however that while empirical comparisons can be made
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of the differences between the human and CNN results, there are large differences

in how each of these visual systems operate and require different testing protocols

to measure them. The results do indicate that the detection behaviour between the

CNN detection model and humans are different enough to justify further exploration

with the goal of improving current detection techniques.

Our findings in EO data support current state of the art research on automatic

and human detection of synthetic imagery in other problems, such as non-generated

forgeries [63, 64] and faces [46]). Like the findings in these other areas, the results

from this particular comparison suggest that while it is still possible for detection

systems, human and automatic, to distinguish between real and synthetic EO data

these methods are not at a level where they could be reliably deployed in a real-world

scenario.

4.4 Discussion

The work in this chapter evaluated the extent to which synthetic satellite imagery

can fool both humans and a SotA CNN-based detection model. The results of

these detection experiments were also compared to the GAN evaluation metrics

FID and KID for the same set of images. In addition to highlighting the limitations

of human and automated detection towards synthetic EO data, the comparison

between computational and human evaluation metrics for visual quality also adds

to the growing body of literature[93] that calls for additional scrutiny on the industry

standard use of Inception distance-based metrics as measures of sample quality.

The psychometric study we present here shows that current generative aerial images

are at a point where they are becoming harder to distinguish from real images. The

level of difficulty for detection varies depending on the level of experience of the

participant. Further work into what specific expertise is useful for detection is

needed to form a more comprehensive approach to tackling the potential issues that

could arise with the use of fake satellite imagery for misinformation. Based on our

results we speculate the differences in the rural/urban evaluations may arise from
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attention differences between methods, although the experimental design we have

used does not allow us to confirm this. Future iterations of this study could include

additional measures such as human gaze analysis through eye tracking.

Building on our results, future studies using additional measures focusing on visual

attention during detection could provide more clarity and insight into this. The

disparity between automated (FID/KID) and human evaluation metrics is supported

by previous comparisons [65] which found that correlations between human metrics

and KID/FID varied between model, dataset and training instances.

The results from the CNN detection model also show that despite achieving > 90%

performance on many of the common benchmark datasets, it still has some issues

when applied to domain specific tasks such as the detection of fake EO imagery, with

some room for improvement. Although a generalized GAN detection model is ideal,

the work shows here that it may also be important to continue working on domain

specific solutions that may be more reliable in practice. Future work should aim

at improving the results of similar detection models but on smaller, more focused

image types.

4.5 Conclusion

Following on from the benchmark comparison of GAN models for generating EO

imagery in the previous chapter, the work in this chapter focused on synthetic

image detection using samples from the best performing model, StyleGAN2. The

work found that both humans and a CNN based detection model had varying levels

of difficulty in distinguishing between real and generated images. Correlations for

detection accuracy were also found with levels of expertise of human participants

and what urban and rural features were present in the images. It was also observed

that there were differences between the CNN detection model and humans for which

types of images were harder to correctly predict as synthetic.

With these observed predictors of detection accuracy in this chapter, the next stage

of research is to further explore if there differences in visual behaviour between
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expertise groups and between the selected detection methods (humans and CNN

models). This will be done by conducting a second psychometric study with addi-

tional measures to analyse visual behaviour during detection such as eye tracking.



Chapter 5

Human Gaze and CNN Attention

in Detecting GAN Generated EO

Images

5.1 Introduction

The image detection study detailed in the previous chapter 4 found that both hu-

mans and automated analysis (evaluation metrics or CNN image detection model) of

synthetic EO data had their own limitations and differing results in evaluation. The

user study in particular showed evidence that there is a need for further research

into synthetic EO image generation as they have reached a point where they cannot

be reliably detected in a highly controlled and simple 2 alternative visual search

task. This makes the threat of going undetected in a real-life scenario potentially

much greater. The initial user study in Chapter 4 was limited in its scope with

a simple design and measurements, with user accuracy for correct detection being

the primary evaluation metric of performance. This chapter focuses on a follow

up study, using a similar 2 alternative forced choice design but this time with the

additional capture of eye tracking during the duration of the experiment.
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5.1.1 Hypotheses

The experiments in this chapter will explore two different comparisons using visual

attention correlates such as eye tracking. The first is between human expert and non-

experts and the second is between humans and a CNN based GAN image detection

model. Based on the findings on the previous chapters (Chapters 3 and 4), and also

in previous literature on visual attention summarised in this chapter, the hypotheses

for the experiments are as follows:

H1 : There will be significant difference in visual search behaviour and task accuracy

between high and low experience groups in detecting synthetic aerial imagery.

H2 : There will be a difference in ROIs for identifying synthetic aerial imagery

between humans and CNN based detection methods.

5.1.2 Visual Attention in Human Cognition

Visual attention is an important area of research in both cognitive and deep learn-

ing based perception research[141]. Understanding the mechanism and hierarchies

involved when a vision system, human or computational, interacts with a complex

visual scene is important to many tasks in vision research such as object recognition,

classification, segmentation, and detection.

For research into synthetic image detection and generation, visual attention is of

particular importance. Regions of Interests (ROIs) and detection strategies of vi-

sual systems should be evaluated to better understand what factors may contribute

to EO images being perceived as real or fake. Visual attention is often inferred by

eye movements, although these two systems are partially independent, eye move-

ments are typically preceded by shifts in attention [142]. Based on this relationship,

visual attention in the context of human detection can be estimated by studying the

movement of the eye in regard to the presented stimulus (e.g. real/synthetic EO

images.)
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5.1.3 Eye tracking

Eye tracking (oculography) is a common research method for accurately measur-

ing visual attention during a given task by recording a person’s gaze and eye

movements[143]. These eye movements are usually recorded as either fixations or

saccades[144]. Fixations are recorded when the eye tracker detects the eyes focuses

on a specific region of interest for a fixed amount of time. A saccade is a short, rapid

movement between different fixation points [145].

The precise values that define the parameters of fixations and saccades (e.g. mini-

mum fixation time, minimum saccade distance) are often defined in context of the

recording scenario, the task given and the accuracy of the eye tracking hardware.

In the case of fixations, it has been generally found[146] that a longer fixation du-

ration indicates a higher cognitive workload and a focus of visual attention on that

particular ROI. Typically, fixation duration values are recorded between 200 and

350ms[147], fixations significantly shorter than these values are typically not long

enough to be embedded into long term memory. Individual differences in fixation

duration have also been suggested to be determined by information processing and

cognitive processes.

Saccades occur when the eye movements recorded show a sequence of rapid fixations

across the target image[144]. During a saccade, no visual information is processed

making them less of a useful metric for visual attention than fixations. Unlike fixa-

tions, saccades can be used to determine search behaviour and the specific sequence

viewing patterns towards a given stimuli, which can be useful in determining the

visual hierarchy of an image by analysing in what order a series of ROIs are viewed.

The use of eye tracking research has been applied successfully in many different

fields, like, improving the gaze behaviour of pilots[148], a training tool for medical

professionals [149] and also for assessing image quality[150]. These applications of

eye tracking analysis give useful insights into the visual attention differences for

differing groups of domain experts. One eye tracking paradigm which has been used

in a variety of research fields is in investigating the differences in visual attention
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between experts and novices[151]. This paradigm works under the assumption that

in a visual search task that benefits from domain knowledge, the visual attention of

experts will be informed by their prior domain knowledge. The resulting differences

in the recorded eye movements in comparison to that of novices highlights the most

relevant ROIs and search patterns to success at that particular visual task. This can

give informative insights into how experts use their domain knowledge to achieve

superior performance in a way that the experts themselves may not be consciously

aware of enough to articulate themselves.

Observed eye movement differences between experts and novices have been studied

across different skills and domains. One example is in chess players, expert players

have been found to fixate their attention on pieces more relevant to their next move

than novices [152]. Another study observed aircraft pilots, the more experienced

pilots spent more time looking out of the cockpit than novice pilots, they also fixated

on a wider array of cockpit instruments but for shorter amounts of time than less

experienced pilots [148]. Expert vs novice studies have also been applied to earth

observation imagery. One study which looked at the differences between expert

and novice geoscientists when viewing data visualizations[153] found that experts

spent a larger proportion of their time focusing on the latitude and longitudinal

axes on EO images, while the students (novice group) spent more time looking at

the colour bar key. Both groups had similar behaviour patterns when looking at

the actual geomorphological data itself but when interviewed after the study had

different interpretations on what they were viewing.

In the study of GAN generated imagery, there is relatively little literature that

looks at eye-tracking data towards generated samples. One study that has explored

this area is Caporusso et al. 2020 [154], this work looked at the visual attention

of participants when given images of either a real human face or a synthetic face

generated by a StyleGAN implementation. They found that the participants with

the highest detection accuracy had covered a much larger area of the image, with

their visual attention spread out throughout the image. This contrasted with the

lowest performing group who focused only on the main facial features (eyes, nose
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and mouth). In this case, the results identified that it was a more accurate search

method to look at the entire image rather than just the face region as one of the

issues with StyleGAN generated faces are the often-incoherent backgrounds[1] as

the GAN only learns to generate realistic faces, with little regard for the peripheral

parts of the images.

5.1.4 Evaluating Visual Attention in Deep Learning with

Post-hoc Attention

Attention in deep learning comes with multiple definitions depending on the exact

mechanism it is describing. One broad definition given in a 2022 review on Visual

Attention Methods in Deep Learning[141] describes attention as “a mechanism that

imitates the human cognitive awareness about specific information, amplifying criti-

cal details to focus more on the essential aspects of data.” Typically, visual attention

either refers to some kind of trainable attention mechanism within the model or a

post hoc examination of a model’s attention focuses such as Grad-CAM which looks

at the class activation maps (CAM) of a model regarding a given input image.

Gradient-weighted class activation mapping (Grad-CAM)[155] is a popular method

for looking at the visual attention of trained network models. This method works

by using the gradients for a target class in the final convolution layer of a network

to create a coarse localization map for a given target image. This results in a heat

map over the image highlighting regions of importance to the class prediction. This

method of analysing a networks visual attention is useful as a model evaluation

metric to gain insight into if the model is working correctly and focusing attention

on the right parts of the image for prediction. One application for this would be to

detect if a model is overfitting to a dataset or producing other aberrant behaviour

that typical metrics such as prediction accuracy would not detect.

The original Grad-CAM provides a useful analytical tool but does have some noted

shortcomings. One issue is that it will fail to properly localize the predictive regions if

there are multiple occurrences of the same class in an image, additionally localization
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can often not cover the entire object but will only highlight parts of it. To improve on

these points Grad-CAM++[156] was proposed which gives better object localization

and is better suited for multiple class instances in a single image.

In addition to Grad-CAM++ there are numerous other CAM models available for

evaluation. HiResCAM is one such model that also builds upon Grad-CAM which

proposes to provide a more accurate representation of network visual attention. It

does this by fixing an issue caused by Grad-CAMs gradient averaging step which

causes some of the relative scales and magnitudes of the gradients for the target fea-

ture maps to be lost[157]. HiResCAM instead applies an element-wise multiplication

between the feature maps and gradients directly, resulting in a better reflection of

the regions most used in computation for the model’s class predictions. Ablation-

CAM[158] is another evaluation model which proposes a “gradient free” method for

representing visual attention in networks by using ablation analysis to determine the

importance of individual feature maps units. This approach avoids the problem in

gradient based methods of “gradient saturation” where the back-propagating gradi-

ents are reduced to a point where they will not be visualised on the final heat map,

despite being of significant importance. This is also avoided in Score-CAM[159],

which is also a gradient free method that calculates the weight for each activation

map from its target class score in the forward pass.

Regardless of variant, CAM models provide useful tools for more explainable deep

learning models[160]. The move away from “black box” models and the trend to-

wards more explainable AI is becoming increasingly more important as this tech-

nology becomes more ubiquitous in everyday tasks. CNN models and other archi-

tectures which contain “black box” like inner workings and latent spaces have been

found to be distrusted by the public[161], an issue which will surely increase as the

reliance on these models increases.
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5.2 Experiments

For further insight into the visual attention and behaviour during the human de-

tection of synthetic EO images, a detection study which recorded participant’s eye

movements was conducted. The visual attention of a CNN image detection model[45]

was also estimated using class activation mapping techniques.

5.2.1 User Study

To measure participant’s detection behaviour towards synthetic EO images a user

study was conducted with a similar design to the study in the previous chapter

(Chapter 4). This study again utilized a two alternative forced choice design where

participants were presented with a simultaneous pair of images consisted of one real

EO image from the Inria Aerial Benchmark dataset and one StyleGAN2 generated

image. The original images in both real and fake datasets were 512x512 and enlarged

to 768x768 for the experiment. This increase in resolution scale from the previous

study (256x256) is to allow the eye tracking camera to more accurately capture

changes in fixation, as the images now cover a larger area on the screen. If the

images appear too small on the screen, the eye movements of participants may be

too small to differentiate fixation points.

Participants were asked which image of the pair was synthetic. Each participant

was presented with 300 pairs of images with a break every 50 images to reduce the

possibility of fatigue. The 300 image pairs for each participant trial were randomly

selected from a dataset of 1800 real images and 1800 generated images. Participant’s

experience level was recorded, and their task accuracy was measured in addition to

eye movement fixations via an eye tracking camera.

Participants were recruited from different departments at the University of Notting-

ham, in particular the School of Geography and the School of Computer Science.

Participant experience was grouped based on their own self-reported experience with

satellite image data rather than their respective department, although most of the

“high” experience group came from the school of Geography. Overall, 27 partic-
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ipants took part in the study, divided into 3 groups, High experience (N = 12),

Moderate experience (N = 7) and Low experience (N = 8).

5.2.2 Eye Tracking Setup

For capturing participant’s eye movements, a Tobii Pro Nano Camera was used,

with participants sitting approximately 60cm from the screen. The Tobii Pro Nano

has a sample rate of 60Hz, accuracy of 0.3◦and a latency of 17ms. Raw gaze points

for the screen were captured for both the left and right eyes of participants and then

average was recorded for each gaze point pair. A natural gaze protocol was used as

participants were given no instructions on any ROIs during the task. Participants

were instructed to return their gaze to central fixation cross between trials. A 9-point

calibration was conducted at each 50 trials interval before the start of the next set.

Both the image detection task and the eye tracking recordings were implemented

using PsychoPy and were conducted in person in a lab setting.

Both fixation and saccades of participants were recorded for each trial, however,

the analysis of the results focuses primarily on fixation points with a minimum of

100ms and a maximum duration of 500ms. The decision to use fixation points rather

than saccades was due to the short total duration of each individual trial and to

make a more valid comparison with the detection behaviour of a CNN detection

model which does not include any temporal processing needed to be comparable to

saccades.

5.2.3 Gaze Heatmap Calculation

The raw gaze points obtained during the experiments used the Velocity-threshold

identification algorithm (I-VT)[162]. This is a velocity-based classification algorithm

used to convert the raw camera data relating to the captured eye movements on the

screen to gaze data of fixations and saccades. I-VT uses a threshold value to classify

the eye movements based on the velocity of the directional shifts of the eye. Once a

threshold value is set, any data above that value is classified as a saccade and below
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that value as a fixation. After the fixation points for each eye were obtained, each

pair of coordinates were averaged to give the final gaze points used for the heatmap

generation. As per the I-VT algorithm, the points are then collapsed into fixation

group which is then mapped to the centroid of its consisting points. To create the

heatmap a Gaussian blur was added to the centre of these groups and plotted over

their corresponding images. This process led to the final heatmaps presented in this

chapter (Figure 5.1).

The minimum duration for a fixation point to be recorded was 100ms. This fixation

threshold value is towards the lower bounds for threshold values in gaze research.

The use of a low fixation definition was due to some participants only looking at an

image for less than 1 second, making it hard to capture any gaze points at all if a

higher fixation value was used.

5.2.4 Gaze Entropy

Gaze entropy refers to a set of gaze evaluation metrics that aim to provide quanti-

tative measures to the uncertainty in scanning behaviour from a given set of gaze

fixation points[163]. These measures use the information theory concept of entropy

which here, describes the amount of information necessary to produce a given se-

quence. With a given set of gaze points ordered in a temporal sequence, stationary

gaze entropy is calculated using Shannon’s entropy equation (5.1) to give the average

level of uncertainty in the gaze sequence.

Hs = −
n∑

i=1

pi log(pi) (5.1)

In equation 5.1, pi is the probability of viewing the ith ROI, with n being the total

ROIs. pi is calculated by dividing the number of fixations in an ROI by the total

number of fixations, the minus sign is to ensure the value is between 0 and 1, as the

log function gives a negative output, therefore Hs is always positive.

This means that for higher values of stationary gaze entropy value(Hs), there is

less of an overall fixation on a certain ROI as the higher entropy equates to less
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predictability and a higher overall spatial dispersion of gaze points. An individual

with a high Hs will focus less on a single ROI than an individual with a lower Hs.

Gaze transition Entropy (Ht) is a further metric which measures the individual’s

unpredictability in gaze patterns when switching between ROIs. This is calculated

by modelling the temporal gaze sequences as Markov chains. Previous findings

[164] have indicated that predicting the next fixation point in a sequence is more

accurate when predicted using the current fixation location rather than the overall

probability of the prior locations. With this assumption, the Markov property can

then be applied to gaze data and modelled using the Markov chain rule. Shannon’s

equation of entropy is then applied to the 1st order Markov chain matrices of the

fixation transitions to give the transition entropy. This gives a measure of the

average uncertainty and therefore unpredictability of the scanning behaviour. This

is given by the equation 5.2:

Ht = −
n∑

i=1

pi

n∑
j=1

pij log(pij) (5.2)

Again, like in stationary entropy, pi is the probability of looking at the ith ROI,

with n being the total number of ROIs. pij is the probability of a fixation at jth

ROI with respect to the previous fixation of the ith ROI. These probabilities are

represented by a transition matrix, with the matrix rows being the source ROI and

the columns being the destination ROI. This transition matrix is calculated by the

equation :

pij =
nij∑
j nj

(5.3)

In this equation the transitions
∑

j nj are divided by the total number of transitions

from the source ROI.

A higher Ht value suggests a less predictable and less structured visual search be-

haviour between ROIs [165]. In the context of this study, this would indicate the

participant is switching back and forth between real and fake images, with a less

methodical search pattern than a participant with a low Ht. These metrics have
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been applied to gaze data analysis on a variety of tasks such as measuring the effects

of sleep deprivation on drivers[166] and evaluating situational awareness in emer-

gencies at nuclear power plants[167]. Together the two metrics (Ht , Hs) are useful

measurements for linking top down interference events with gaze pattern behaviour

[168].

In this chapters’ image detection study, for each participant’s data, Ht and Hs are

calculated for each trial (real/fake image pair) and then averaged across all trials.

The ROIs used in the gaze entropy calculations were the real and fake images,

which were each further split into 9 equal sections for the purpose of gaze entropy

calculations. The inclusion of these metrics is to provide insight into the differences

between groups in visual scanning between the two images on screen (left/right)

when they are trying to make a detection decision.

5.2.5 CNN Detection

To compare the eye tracking results to the CNN image detection model, Grad-

Cam++ was used to visualise the networks attention in the last convolutional layers

of the ResNet model. The model analysed used the pretrained weights from the

results cited in the original paper that were made available on GitHub by the model

creators. Multiple Cam models were tested but there was not much variation be-

tween the different types tested (GradCam, HiResCam, Ablation-Cam) so only the

results from GradCam++ were reported.

5.3 Results

A multivariate analysis test (MANOVA) between all dependent conditions (Table

5.1) indicated that there is a large significant difference in the dependent vector

(experience) between the different groups, F (12, 36) = 4.35, p < .001, Wilk’s λ =

0.167, partial η2 = .59.
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5.3.1 Difference Between Expertise Groups

Experience Avg
Resp
Total

Avg
Resp
Corr

Avg
Resp
Incorr

Acc Avg Ht Avg Hs

High 1.396 1.405 1.191 91.500 0.201 0.488
Moderate 2.363 2.303 3.643 92.833 0.210 0.523

Low 3.960 4.141 4.840 68.000 0.233 0.604

Table 5.1: Gaze results for experience groups. The variable values are average response
time (Avg Resp Total), average response time for correct answers (Avg Resp Corr) and
incorrect answers (Avg Resp Incorr), task accuracy (Acc), gaze transitional entropy (Ht)
and gaze stationary entropy (Hs).

Variable
Experience Pairs
(G1, G2)

G1 Value G2 Value Mean SD P-Value

Acc High-Moderate 91.500 92.833 1.43 4.57 0.97
Acc High-Low 91.500 68.000 23.70 4.57 <0.01
Acc Moderate-Low 92.833 68.000 25.14 5.14 <0.01
Avg resp total High-Moderate 1.396 2.363 0.96 0.45 0.3
Avg resp total High-Low 1.396 3.960 2.56 0.45 <0.01
Avg resp total Moderate-Low 2.363 3.960 1.59 0.51 0.087
Avg Resp Corr High-Moderate 1.405 2.303 0.9 0.49 0.41
Avg Resp Corr High-Low 1.405 4.141 2.74 0.49 <0.01
Avg Resp Corr Moderate-Low 2.303 4.141 1.84 0.55 0.067
Avg Resp Incorr High-Moderate 1.191 3.643 2.45 0.65 <0.01
Avg Resp Incorr High-Low 1.191 4.840 3.65 0.65 <0.01
Avg Resp Incorr Moderate-Low 3.643 4.840 1.2 0.73 0.49
Ht High-Moderate 0.201 0.210 0.0092 0.0062 0.56
Ht High-Low 0.201 0.233 0.032 0.0062 <0.01
Ht Moderate-Low 0.210 0.233 0.035 0.007 <0.01
Hs High-Moderate 0.488 0.523 0.035 0.017 0.33
Hs High-Low 0.488 0.604 0.12 0.017 <0.01
Hs Moderate-Low 0.523 0.604 0.081 0.019 0.018

Table 5.2: Pairwise (G1, G2) ANOVA Results for each experience group. The variable
values (G1, G2), absolute difference between means (mean), standard deviation (SD) and
P-values are reported. The variable values are task accuracy (Acc), average response
time (Avg Resp Total), average response time for correct answers (Avg Resp Corr) and
incorrect answers (Avg Resp Incorr), gaze transitional entropy (Ht) and gaze stationary
entropy (Hs). The significant results are in bold

An ANOVA post hoc was also performed for the individual DVs between groups

(Table 5.2). For accuracy there was a significant difference between High-Low (p <

0.01), Moderate-Low (p < 0.01) but no significant difference between High-Moderate

(p < 0.97). Significant differences between response times for High-Low were found;



Chapter 5. Results 83

High/Low variables F P-value
Accuracy 16.9 (1,24) <0.001
Avg Resp Total 13.2 (1,24) <0.001
Avg Resp Correct 13.6 (1,24) <0.01
Avg Resp Incorrect 8.3 (1,24) <0.001
Transition 12.3 (1,24) <0.01
Stationary 20.1 (1,24) <0.001

Table 5.3: ANOVA results for merging experience groups High and Moderate vs Low

avg resp (p = 0.01), avg resp correct (p > 0.01) and avg resp incorrect (p < 0.01).

Significant differences for stationary gaze entropy were found between High-Low

(p < 0.01) and approaching significance for Moderate-High (p = 0.05). Stationary

gaze entropy was found to be significantly different between High-Low (p < 0.01)

and Moderate-Low (p = 0.01). The between groups ANOVA results can be found

in the appendices (Table C.1)

When groups high and moderate were grouped together resulting in just two groups

(High, Low), a significant difference was found between all measures (Table 5.3).

5.3.2 Task Accuracy

Like the results in the previous image detection study (4) participants that reported

their previous experience as either “high” or “moderate” achieved higher task ac-

curacy than those who responded with “low”. As with the previous results, this

provides further evidence that self-reported experience shares a positive correlation

with task accuracy, a useful finding for further studies as it supports the use of

self-reported experience as a grouping metric for expert/novice designs. In compari-

son with the previous image detection study, all participant groups performed much

higher on average. This could have been caused by a few differences between the

studies. One difference is the size of the images presented to participants, the larger

images in this study make it easier to spot anomalies and discern the images as real

or fake. The initial study was also hosted online, due to the COVID restrictions at

the time, while this current study was held in lab conditions. Online studies have

been found to have decreased levels of participant engagement than ones held in the
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lab [169], which could negatively effect task performance.

Although there was a significant difference (Table 5.3) between the High/Moderate

and Low groups, there was no significant difference between high and moderate. This

effect of understating one’s experience levels has been seen before in research[170],

where participants may have a much higher level of expertise than they believe.

Although one takeaway from this could be that future experiments using the same

self-report methodology should instead only use the categories of high and low,

another interpretation would be that having a middle category (e.g. moderate) is

important as it minimises the potential effects of underestimating expertise. With

just two categories, this would potentially result in those who do underestimate

their expertise self-reporting as “low”, which skews the borders between groups.

The results from this experiment show that having a “moderate” group gives a

better grouping for those with actual low expertise.

Rural and Urban Image Accuracy

Experience Rural Urban
High 0.86 0.92
Moderate 0.78 0.83
Low 0.81 0.92
All 0.83 0.90

Table 5.4: Participant accuracy for correct detection of generated urban and rural images

In the previous study (Chapter 4), participants were found to have a lower detection

accuracy for generated images that depicted rural scenes than those that depicted

urban scenes. This is also seen in the results from this study (Table 5.4). For all

experience groups an Wilcoxon Signed-Rank test indicated that there is a significant

large difference (p < 001, effect size=0.8) between means for rural accuracy (0.83)

and urban accuracy (0.90). Although, like with overall task accuracy, the scores are

higher than in the previous study, likely due to factors such as increased image size

and being conducted in person. There was no significant difference found between

experience groups, with rural images being more challenging to correctly identify

regardless of experience levels.
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5.3.3 Response Times

In addition to differences in task accuracy, the average response times for each

detection also differed significantly between groups. Those in high/moderate took

significantly less time to make their detection choices (1.40ms) than those in Low

group (3.96ms). This further reinforces that self-reported expertise can be used to

differentiate experts from novices as they achieved higher task accuracy and needed

much less time to do so. This is supported by the literature as it suggests that experts

make more informed searches, to quickly identify key features in the image. Novices

are more likely to scan the entire image without noticing any of these visual cues

[86]. All groups had higher response times to incorrect guesses than correct guesses.

For correct responses, this could be caused by a tendency to double check answers

when the participant thinks they may be correct but lacks complete confidence due

to a challenging image pair, leading to a higher response time. This could be similar

in the inverse scenario, if the participant is unsure and the image is too challenging,

they may make a quick guess to move on to the next image pair.

5.3.4 Gaze Entropy

Both stationary gaze entropy (Hs) and transition gaze entropy (Ht) decreased with

experience levels (Table 5.1). This implies that expert visual behaviour follows a

more structured and less random search pattern in analysing each real/synthetic pair

as opposed to the more random and dispersed gaze behaviour of lower experienced

participants, despite the fact that the images in this task were novel to both groups.

The high Hs value (0.604) recorded in the Low experience group indicates that

they more evenly distributed their search across the entirety of the images with

not as much of a visual focus on individual features as the High experience group

(Hs = 0.488). The lower Hs for the higher experience group means that their search

strategies were more concise and focused on features that may give away the nature

of the image’s realness. Transition gaze entropy was also found to be significantly

lower(p > 0.01) for the expert group (Ht = 0.201) than the Low experience group
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(Ht = 0.233). This means that their gaze switched less between images, focusing

more on identifying one image rather than going back and forth comparing images.

Overall, the gaze entropy metrics between groups support previous findings on other

expert/novice studies[171] which also find that there is less variance and entropic

uncertainty in expert search patterns compared to novices, as experts already have

a schema on what cues to look out for that give away an image as either real or fake.

Less experienced participants with less developed schemas on what to look out for

and are more likely to pass over give away details, resulting in them searching more

of the image and making more pairwise comparisons for each given trial.

5.3.5 Gaze Heatmaps

Figure 5.1: Raw fixation points (left) and the final heatmap (right)

As the main findings (Figure 5.1) found there to be more measured variables that

significantly differed between the High and Low experience groups, a visual inspec-

tion of the gaze heatmaps from these groups has been included in the analysis. The

samples included here were randomly selected and viewed by the same number of

participants from each respective category.

Together with the differences in stationary gaze entropy the visual analysis of the

gaze heatmaps (Figure 5.2) show that there is generally a smaller range of ROIs as

shown by the spread of fixation points for the high experience group than the low
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Figure 5.2: High expertise (centre) and Low expertise (right) gaze heatmaps over syn-
thetic urban scenes from a combined sample of 7 participants for each group. The high
expertise group (centre) shows more focused gaze on few ROIs than the low expertise group
(right)
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experience groups. The high experience groups can also be seen to concentrate on

the same areas in making their detection predictions.

Figure 5.3: High expertise (centre) and low expertise (Right) gaze heatmaps over syn-
thetic highway images. The high expertise group exhibits a greater focus on small details
such as cars than the low expertise group

ROIs as defined by the areas of concentrated fixation points show that the high

experience groups spending more attention searching the edges of buildings, in par-

ticular areas which have the common GAN artifacts of poorly defined straight lines

and edges or where roofs of buildings blend unnaturally into other parts of the im-

age. High experience individuals also pay more scrutiny to smaller, objects such as

cars, especially in highway images, as shown in Figure 5.3. Like straight edges, cars

in the generated images can often lack detail on close inspection.

Figure 5.4: High expertise (centre) and low expertise (right) gaze heatmaps over synthetic
rural scene. The low expertise groups shows a less dispersed and more central grouping
of fixation points. This could indicate that for images that are harder to identify, such as
rural images, the low expertise group are switching, and comparing between both images
that have been presented (real/synthetic). The gaze heatmap for the high expertise group
(left) conversely feature a higher degree of visual exploration of the image. This could
be that the high expertise group is spending longer searching the image for identifiable
markers.
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One deviation from the differences in fixation spread and gaze coverage is in rural

scenes (Figure 5.4). In these images there was more dispersed spread of fixation

points for the High experience group and a smaller number of fixation points near

the centre of the image for the Low experience groups. One potential explanation

for this is that rural scenes have been found to be harder to identify as real or

generated (Table 5.4) than urban scenes, as found in the study in the previous

chapter. This could indicate that low experience participants glance at the image

once before switching their gaze to the other image on screen (in this case the real

image), hence the large grouping of fixation points in the centre of the image but

no further searching. High experience individuals, who as shown by their lower

transition gaze entropy, are more likely to focus on one image, continue searching

the image for any visual cues. Due to rural images being harder to identify, there are

no obvious visual cues which results in a low consensus on the ROIs of the image,

giving a more dispersed heatmap.

5.3.6 CNN Detection Comparisons

The generalized CNN detection model [45] was evaluated on the same subset of

real/synthetic images that were used in the human detection study. The model

achieved an accuracy of 82.09% for correctly predicting if an image was synthetic.

This is lower than the average detection accuracy of the High and Moderate human

groups (92.42%) and slightly lower than all the average of all participants (85.71%).

Grad-Cam++ was used to visualize what ROIs in the given images the network

found important to classification. Samples were then compared to those from the

human detection study. It is important to note these comparisons cannot be thor-

oughly quantified due to inherent differences in the way the visual attention data has

been collected for each method (CNN and human) and also the inherent differences

between them (e.g. no temporal aspect for the CNN detection). Comparing the two

methods can still give insight into the differences in detection behaviour.

One of the most apparent differences between the two methods was the visualization
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of attention in rural images (Figure 5.5). The CNN detection model had much higher

activations across the entire images for rural scenes, indicating more features in the

image that were useful for prediction. This supports the findings in the previous

study which found that computational methods were able to differentiate better

between real and synthetic images than humans. From a visual inspection of these

images, it also supports the idea that features that are useful for detection for CNN

based methods differ from those with people.

Figure 5.5: CNN (centre) and Human (all groups) (right) attention heatmaps on syn-
thetic rural imagery. As discussed in Chapter 4, humans find rural synthetic images harder
to identify than CNN models. This can be seen in these heatmaps, the Grad-CAM image
(centre) shows that large areas of the image contain features that give a high probability of
the image of being synthetic. The human gaze-map (right) contains a single central group-
ing of fixations, indicating that the participants could not identify any obvious features and
instead switched their gaze back to the other image on the screen.

Figure 5.6: CNN (centre) and Human (all groups) (right) attention heatmaps on bound-
aries. The CNN detection model places greater attention on boundaries when making
predictions than humans. The gaze maps from humans (right) show that while image ar-
tifacts around boundaries are still used, there is also a larger visual focus on features (e.g.
buildings) when compared to the CNN model.

For synthetic EO images that depicted more obvious features to the human eye (e.g.

buildings, cars and roads) the CNN model showed higher activation for boundaries
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between different areas (figure 5.6). While this was also seen in the images from

human participants, it was more heavily weighted than other features like buildings

in CNN detection. Human participants were found to focus more on objects such

as buildings or cars.

Boundary lines can be seen to be the most common visual feature that the model

used for its predictions, a lot of the time with much lower activations on buildings.

Other areas with high activations, seemingly random to the human eye as they

are devoid of anything of visual note, indicate that the CNN can find GAN image

artefacts which humans may not be able to perceive. These may include differences

in colours or textures between real and synthetic images.

5.4 Fine-tuned CNN Detection Model

Using an unseen section of the Inria dataset (10,000 images), the CNN detection

model was fine-tuned to see if exposure towards EO specific images improved its

ROI attention (Figure 5.8). The fine-tuned model achieved an accuracy of 88.03%,

which is a modest increase of the general GAN detection model (82.09%) and still

lower than High and Moderate human groups (92.42%). Although this is a relatively

small increase in task accuracy, the GradCam++ images show that fine-tuning the

model increases the focus of the network to more specific areas. This is likely due to

the network having learnt to identify EO specific features rather than simply GAN

artifacts like seen in the original model. This can be seen most prominently for the

images in the second and final rows of Figure 5.8. In these images the fine tuned

model can be seen to take into account local features (e.g. roads, buildings) more

so than the original model which gives greater weight to global features (e.g. GAN

specific image textures) in influencing its predictions.

The GradCam++ images comparing the two GAN detection models, demonstrate

that for domain specific image detection, there is still value in fine-tuning on similar

data, even when the model used is a general-purpose GAN detection model. Another

interesting result from this comparison is that despite the fine-tuning increasing the
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Figure 5.7: Additional samples of GradCam++ class activation mappings over synthetic
EO images. The top two images depict images with primarily urban features. The bottom
left image contains more suburban features and the bottom right image consists of just
foliage and roads. In all of the images displayed, the heatmaps indicate that boundary
lines are the most heavily weighted features for correct predictions of synthetic EO images.
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Figure 5.8: Samples from Human attention maps (left) compared against GradCAM++
samples from a CNN detection model (Middle) and an EO image fine tuned detection
model (right). Fine tuning the model on EO images shows an increased focus on particular
features in the images compared to the general detection model, although there is still a
large disparity between human and CNN ROIs.
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focus on specific EO features, the ROIs for the computational models still differ

from those in the human gaze maps. Out of these comparisons only the final row

of images shows the fine-tuned model aligning more with human attention, as the

model is now looking at EO specific images. This lends further evidence that their is

fundamental differences between human and CNN’s in the key identifying features

for synthetic image detection.

5.5 Discussion

The results from the eye tracking image detection task supported the initial hypoth-

esis that a significant difference would be found in both task accuracy and visual

search patterns between high and low experience groups in detecting synthetic aerial

imagery. This is evidenced by the differences in gaze entropy metrics and the visual

analysis of gaze heatmaps between the groups. It was found that higher experienced

individuals applied a more efficient visual search to the images and were more ac-

tively looking for image artefacts which appeared abnormal or false. This differed

from those with less experience who searched over larger areas of the images and

switched their gaze between the two images on screen.

The higher rate of gaze switching suggests that less experienced individuals’ de-

tection techniques were more centred around comparing both images on screen to

see which one appeared less real, rather than actively looking for GAN markers in

individual images. This could also infer a lower level of confidence in the detection

strategies in this group. In addition to a higher accuracy in correctly identifying

synthetic images, the High experience group were also faster at making their pre-

dictions, with a higher average response time further supporting that their search

strategies were more efficient and gave a higher level of confidence to their predic-

tions.

The CNN detection GradCAM images also supported the hypothesis that there

would be differences in attention between human and CNN detection methods. Al-

though as mentioned before, this comparison is limited by the differences between
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the testing conditions and detection methods themselves. The differences between a

computational CNN classifier and the human visual system mean that two different

testing methods were needed to capture detection performance.

A paired image detection study was used for humans and the CNN model was given

single images in batches. This meant that the CNN was given a single image classifi-

cation while the human participants were performing a paired comparison classifica-

tion task. The images themselves were kept the same but there was no comparison

element to the CNN model testing or any form of temporal dimensions. This is not

ideal but is unavoidable, as while the outcome behaviour between methods is the

same (predicting real/synthetic), the visual systems (biological and computational)

are vastly different despite a few minor similarities. The other major difference is

how the heatmaps were obtained and what they represent, the CNN model coming

from class activation mappings which show the areas of the image with the highest

activations for a class (synthetic) predict as obtained from the gradients passing into

the final convolutional layer.

While GradCAM methods have been extensively studied and are presumed to rep-

resent visual attention, the degree to exactly how close this does this is still debated,

hence multiple different methods that have been developed to improve on the origi-

nal GradCAM methods. The human gaze heatmaps are also used to visualize visual

attention via measuring fixation points on a given target. This method has previ-

ously been found to be a valid correlation to visual attention [172] but is limited by

factors such as the refresh rate, accuracy, and calibration of the eye tracker. Ad-

ditionally, there is not an exact agreed upon threshold values for defining fixation

points and saccades.

Despite these limitations that come with using individual testing methods, there are

still some interesting observations that can be made by looking at the differences

between CNN detection models and humans. The gaze heatmaps from humans

show that visual attention is drawn towards objects such as buildings much more

than in the GradCAM images. One explanation for this is that the CNN detection

model has been trained specifically to look for differences between real and GAN
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generated images while the human visual attention system is going to naturally be

drawn towards features that are more familiar to people, in this case well defined

objects.

A common fingerprint for the synthetically generated images for both detection

systems was boundaries, a GAN artefact which is present in many of the images

is poorly rendered straight lines or boundaries between textures, for example road

markings and street edges. This was observed particularly in the case of the CNN

GradCAM images, indicating that it was one of the strongest features for assisting

the model’s predictions. In some cases, there would be very low activations on

visually misshapen buildings that the human gaze heatmaps focused on and high

activations for boundaries which human visual attention focused much less on. As

observed in the results section, the other large discrepancy between the two sets of

heatmaps were images that primarily consisted of thick areas of vegetation. The

CNN model showed comparatively higher levels of activation throughout much of

these images, whereas humans found the images devoid of visual features to assess.

This implies that the CNN model can notice textural markers of GAN generation

without the need for clearly defined, isolated features that are important for human

visual detection.

5.5.1 Limitations and Future Work

Both the human eye tracking study and comparison with a CNN detection model

produced interesting insights into the differences between different detection meth-

ods regarding GAN generated EO detection. Despite this, there are limitations with

the work presented that could be addressed in future work aiming to implement a

similar experimental design. As previously mentioned, the eye tracking accuracy

and refresh rate was limited to that of the hardware available, a Tobii Nano Pro

with a refresh rate of 60 Hz, accuracy of 0.3◦and latency of 17ms. It may be bene-

ficial for future studies to use hardware with a higher accuracy and refresh rates to

improve the quality of the gaze data obtained.
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Another suggestion for follow up studies would be to scale up the population sample

used. As well as testing between self-reported experience groups from different

university populations, future work could look at finding differences between larger

groups of participants from various technical roles such as data scientists, earth

observation engineers and remote sensing analysts. Further data surrounding the

participants own reasons should also be collected such as a qualitative survey after

task completion.

The work here also focused exclusively on EO imagery but the methodology and

experimental setup could also be applied to other potential areas that could be

potentially vulnerable to GAN image generation technology.

5.6 Conclusion

The work in this chapter measured human gaze and CNN attention towards the

detection of EO synthetic aerial imagery. The results established that for the vi-

sual detection of GAN generated EO imagery there was a positive correlation be-

tween self-reported prior experience and detection accuracy. Through the use of

both empirical evaluation metrics (gaze entropy, accuracy, response time) and vi-

sual observation (gaze heatmaps) differences were observed in the search strategies

used between expert and non-expert groups, with more experienced individuals us-

ing more effective and efficient detection methods. It was also found that despite

similar levels of overall accuracy on the real/synthetic EO dataset used, there are

differences in the key features used for detection between human and CNN based

GAN detection methods. The implications for this being that both detection meth-

ods, computational and human, use differing visual-spatial features in the images

that signify whether the image is real or generated. Future work should follow on

from the results found here and investigate novel methods which take advantage of

both detection methods studied. Further studies should explore ways to utilize these

techniques for a more comprehensive approach to synthetic EO image detection.



Chapter 6

GAN Generated EO Image

Detection with Human Gaze

Guidance

6.1 Introduction

The previous chapter explored both human and computational visual attention us-

ing a mixed methods approach comparing the eye tracking results from a real or fake

detection task to that of gradient weighted class activation maps of a CNN based

detection network. Through a qualitative comparison of the human gaze heatmaps

and CNN detection network GradCAM images of corresponding GAN samples, dif-

ferences were observed in ROIs across the images, suggesting that the two different

detection systems were assigning different visual cues to aid detection. The results

also found that experience with EO images was a predictor of GAN image detection

ability, with different experienced groups exhibiting different search strategies.

These insights, that human experts show more effective detection strategies than

novices and that there are visual differences in attention between human and CNN

methods, forms the basis for the work presented in this chapter. The research in this

chapter uses the obtained gaze heatmaps from the high expertise group in the pre-

vious study, together with their corresponding images to improve the performance

98
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of computational methods by guiding the learning of detection models. This idea of

using guided attention to improve image classification networks is supported by pre-

vious literature looking at similar methods. One examples is a 2017 study [173] that

trained an instance of the CNN model AlexNet to give more human-like prediction

behaviour. In this study the researchers fine-tuned the pretrained CNN model on

just the ROIs of the training images which were focused on by humans, as obtained

from an eye tracking study in a similar setup as the study detailed in Chapter 5 but

without the real/fake detection element.

The aim of the work in this chapter is to improve on current CNN detection models

for the detection of GAN generated EO images through guided attention using

domain specific expertise. Building up on the research conducted in the previous

chapters that looked at the generation and different methods of detection of GAN

generated imagery, the objective is to combine human and computational detection

methods for a single model.

The experiments in this chapter aim to achieve these objectives by using human

gaze together with a current SotA GAN detection model. The model used is a

pretrained ResNet-50 model [45]. This model has been used throughout this thesis

as the benchmark standard for GAN image detection. As a general and non-domain

specific GAN image detection model, it performs well, particularly on popular image

benchmark datasets such as ImageNet. Despite this, in Chapter 3, it was found that

for EO domain specific image data, the detection model performs considerably worse

than previous benchmarks for ImageNet and similar datasets. Notably, there was

a high false negative rate for correctly classifying synthetic images. This meant

that as the accuracy for correct classifications of synthetic images was significantly

lower than classifications for real images, it would predict most images as being

real, whether synthetic or not. It was also found that using Grad-CAM, the areas of

significance differed to the areas that were focused on by humans, as visualized using

gaze heatmaps. The experiments in this study focus on improving the pretrained

CNN detection model through transfer learning using gaze heatmaps to guide the

attention of the model towards areas considered important for human detection.
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Based on both the previous literature for synthetic image detection and the results

from the preceding chapters the hypothesis is as follows:

H1 : CNN based EO image detection accuracy will show improved performance

when guided by expert human gaze data during model training, compared to mod-

els trained without.

The model proposed in this chapter consists of two parts. Firstly, a convolutional

U-Net model trained on human gaze data to produce attention masks for unlabelled

data. The second part is a pretrained ResNet model [45] which is then finetuned

on paired real/synthetic EO image data with corresponding expert gaze data. This

results in an end to end model that takes in an EO image (real or synthetic),

generates a corresponding attention mask before giving a real or synthetic prediction

(Figure 6.2).

6.1.1 ResNet Architecture

The generalized CNN detection model[45] used throughout this paper uses an im-

plementation of the ResNet architecture that has been specifically trained to predict

the occurrence of GAN generated images in an input dataset. ResNets, short for

Residual Networks[57], refer to a specific class of deep convolutional neural network

models that are characterised by their use of a very deep structure of layers and their

use of residual blocks. The residual block is a block of network layers which utilizes

“skip connections” to facilitate the training of such large models. Skip connections

provide a path for information to flow directly from lower layers of the network to

higher layers of the network, skipping out any intermediate layers (hence the name).

Skip connections are calculated by H(x) = F (x) + x, where F (x) is the output of

the layers inside the residual block, calculated from the input x. Skip connections

ensure that important features learned in the lower parts of the network is not lost

as the information flows to the higher layers and avoids the notorious “vanishing
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gradient problem” that can be an issue in networks using > 20 layers.

The use of residual blocks throughout the final networks results in a robust model

that can learn many complex patterns that can be useful for binary and multi class

classification. These attributes have resulted in ResNets being one of the most

popular CNN models to use for a variety of tasks and often form the backbone of

the image classification component of larger ensemble models.

As ResNets require a large amount of data for training they are often pretrained on

large benchmark datasets such as ImageNet then adapted to a target task or dataset

through the process of fine-tuning or transfer learning. This enables the network to

be used on smaller datasets.

6.1.2 UNet Architecture

Figure 6.1: UNet architecture[174]

The U-net model architecture was created for the purpose of biomedical image

segmentation[174]. The network consists of a convolutional neural network arranged

in a symmetrical encoder-decoder configuration. The network takes in an input im-

age and outputs a segmentation image of the same size via a series of contracting
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then up sampling convolutional blocks. A series of contracting blocks in first half of

the network each consist of two 3x3 convolutions using the ReLU activation func-

tion and a max pooling layer. The expanding second half of the network uses up

sampling convolution blocks with 2x2 up-convolution operations, before two 3x3

convolution blocks, mirroring the contracting section. Throughout the model the

feature maps in the contracting section are concatenated to the corresponding fea-

ture maps in the expanding section. A final 1x1 convolution is applied to reduce

the feature map to the number of channels relevant for the final output image. For

classification tasks like in the original implementation, the U-Net then uses a pixel-

wise loss function such as cross entropy loss to train the network on the backward

pass via backpropagation.

The U-Net model has been widely used for binary and multiclass segmentation for a

variety of different applications, for creating segmentation maps for medical imagery.

The network lends itself well to this field as it is capable of learning accurate end-

to-end image segmentation on only small amounts of data. This makes it a useful

model for tasks where only a small training set of masks and images are available.

6.2 Experiments

Figure 6.2: Examples of training image + gaze mask
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6.2.1 ResNet training

A pre-trained CNN detection model using a modified ResNet-50 that took in a 4-

channel input image was fine-tuned on the image data obtained in the eye tracking

study from the previous chapter. This data consisted of 3200 real (1600) and syn-

thetic aerial images (1600) that had been presented to the participants in the study.

Each image was then concatenated with a grayscale gaze heatmap made up of the

areas of visual fixation of participants from the high/moderate experience groups.

Only images/heatmaps from trials where the participant had correctly identified the

generated image were included. The intuition behind this was that the addition of

the heat maps would improve the performance of the ResNet classifier during train-

ing. The heatmaps would by used to guide the network’s attention towards ROIs in

the images which were of most importance to visual attention.

To increase the variation in the dataset horizontal and vertical transformations were

applied to each image/heatmap input image in addition to image normalization to

improve training performance. The model was then trained for 9 epochs (until

convergence) with a binary cross-entropy loss function together with a sigmoid layer

to obtain the final output prediction.

Two different approaches to model training were tested. The initial approach fine

tuned the pretrained ResNet model on the image/heatmap dataset with all trainable

parameters available. This was found to led to very poor results as the dataset was

too small for the large ResNet-50 model. The second approach, which was used for

the final complete model, only fine tuned the initial layer and the final convolutional

block of the ResNet model, with the rest of the weights frozen. This is an often used

solution to problems with small datasets as it increases training performance and

also preserves many of the learnt features from the original pretrained weights. In

this process of fine-tuning, the model weights were frozen apart from the input

layer, to account for the new input channel (grayscale mask channel), and the final

convolutional block. The last convolutional black was left unfrozen (trainable) as

generally the higher level features and details of classes are encoded here.
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Performance of the final model was tested on two datasets of real/synthetic EO

imagery generated from StyleGAN2 as detailed in Chapter 2, one consisting of un-

seen images from the Inria dataset and the other from OpenCities. Both datasets

contained 20K images (10K real/ 10k StyleGAN2) and did not have corresponding

human gaze data unlike the training set.

6.2.2 UNet Attention Map Generation

One issue with the ResNet fine tuning and transfer learning experiments is that

the networks are trained on 4-channel input data (RGB images + Grayscale gaze

attention maps) but are then tested on 3-channel input. This requires removing

an input channel in the trained network which results in the final detection model

trying to make a prediction on RGB images when the task it has been optimized for

is making a prediction on an image + heatmap. This is particularly important as

in real world detection scenarios the model would be used for data which does not

have any corresponding, expert gaze data available. To solve this problem a U-Net

model was trained to generate attention masks for unpaired images, based on expert

gaze heatmaps.

Figure 6.3: Implementation of expert gaze guided UNet-Resnet synthetic EO detection
model

The U-Net model was trained on the image + heatmap dataset for the task of

producing a heatmap based on an input RGB image. The structure of the U-Net
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used can be seen in Figure 6.1 and the full model summary can be found in the

Appendices (Figure C.2).

The reasoning for this implementation is that the U-Net model would be able to

learn areas of the image that correlate with human visual attention and generate

corresponding attention maps. These newly generated attention maps would then

be paired with the original image (real/fake) and passed through the fine-tuned 4-

channel ResNet detection model for a final real/synthetic prediction (Figure 6.3).

This results in a complete end-to-end detection model without the need to remove

any trained layers of the ResNet model to accommodate for RGB images that are

not paired with a human gaze attention map.

The U-Net model was trained on the same dataset as used in the ResNet exper-

iments, with a dataset consisting of 3200 image/heatmap pairs (512x512). The

pixelwise loss function used was changed from cross entropy loss to MSE loss to ac-

commodate for the change in task from binary classification of pixels (segmentation)

to a regression task of estimating greyscale pixel values of the output image given

the input image.

6.3 Results

The results for three ResNet models were compared. The first model is the Wang et

al. (2019) general GAN detection model using the weights from the official imple-

mentation. This model had been trained on a variety of GAN (PGGAN) generated

images from benchmark datasets with different levels of guassian blur added to the

images. This was tested against our model which added a UNet attention map

generator to the pretrained detection model for further training using paired images

(image + attention maps). This test was controlled with a control model which took

the Wang et al. (2019) pretrained model and applied the normal finetuning process

with real and synthetic EO images (no attention masks/gaze maps).

The control model was added to accurately assess the impact of the human gaze

heatmaps on detection performance. Without a control model it would not be pos-
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sible to tell if any improvements to performance are due to the addition of heatmaps

or from just being trained with EO imagery alone, as this is likely to improve the

model’s performance on similar data regardless of human gaze. Both the proposed

model and control model were trained on the the same 3200 image dataset (1600

real, 1600 synthetic) for a fair comparison. The use of this dataset allows for the

evaluation to show if training with the use of gaze heatmaps is more impactful than

simply fine-tuning on a large amount of unpaired EO data. If the models were both

trained on additional images (e.g. 10K images from the Inria dataset), it would

be hard to assess the impact of the small amount of expert labelled data on the

prediction accuracy. It is well known that training on large amounts of data can

vastly increase prediction performance, but the objective here is to see if gains can

be made on a small amount of paired data.

It is important to note that while the model was only trained on this small labelled

subset, the experiments for model evaluation used larger (20K images) EO/GAN

datasets (OpenCities, Inria) that were unseen by the models.

6.3.1 UNet Mask Generation

The UNet model trained on paired data of EO images (real and synthetic) and

expert human gaze data was able to produce attention masks for the images to some

success. Looking at examples from the test images (figure 6.4) the trained network

could not accurately replicate the real gaze heatmaps when given the corresponding

EO image as in input. This was to be expected as only a relatively small number

of paired training images (3200 image pairs) were available for training. Due to the

nature of the image and gaze data having non uniform features between different

samples, it makes it a difficult task for the network to be able to accurately predict

a 1 : 1 mask. Unlike in image segmentation tasks, this is not necessarily an issue the

masks only need to guide the classifiers attention to areas likely to contain image

features important to correct predictions.

Another noticeable discrepancy between the real gaze images and the generated
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masks are the image artifacts are the lines across the images that are the remains

of features in the input EO images, these could also be caused by the upsampling

convolutional layers present in the network. Although these UNet results could pos-

sibly be improved with larger amounts of trained data, they do manage to produce

masks similar to gaze maps that can be used as input for the ResNet section of the

proposed detection model.

Figure 6.4: Samples of Unet Masks (top row) generated from true expert gaze masks
(Bottom Row)

6.3.2 Model Detection Performance

Model performance was evaluated using the same datasets as previously used in

the first image detection study (chapter 4) for evaluating the CNN detection model

before fine-tuning. These datasets consisted of a larger, unseen segment of the Inria

benchmark dataset and a segment of the OpenCities dataset. Each test dataset

was made up of 10000 real images and 10000 StyleGAN2 generated images based

on the respective dataset. The 4-channel models trained with the additional input

of human gaze heatmaps were evaluated on each dataset with corresponding mask

images generated via the UNet mask generation model. The control model was

evaluated using RGB images only.

Using only 3200 images (1600 real, 1600 GAN) with gaze points, the detection model
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Model AP ACC ACC (Real) ACC (Fake) F1
Wang (2019) 93.28 65.77 99.64 31.90 0.48
Control (no masks) 91.00 63.58 99.75 27.41 0.43
Our Model 95.93 87.54 95.25 79.83 0.87

Table 6.1: Results for StyleGAN2/Open Cities real/fake dataset (20K images). Evaluation
metrics are average precision (AP), total accuracy (ACC), accuracy for each category
(ACC real/fake) and F1 score

Model AP ACC ACC (Real) ACC (Fake) F1
Wang (2019) 94.26 73.42 98.34 46.51 0.63
Control (no masks) 98.02 79.41 99.91 58.91 0.74
Our Model 97.24 85.02 80.04 71.96 0.83

Table 6.2: Results for StyleGAN2/Inria Aerial real/fake dataset (20K images). Evaluation
metrics are average precision (AP), total accuracy (ACC), accuracy for each category
(ACC real/fake) and F1 score

was able to outperform both the generalized detection network and the control

model. The final detection model performed better on both test datasets with

a higher AP and ACC (Table 6.1). Although this overall performance was better

than previous models, our detection model performed slightly lower than the general

CNN detection model at correct predictions for real images, despite vastly improving

on prediction accuracy for GAN images.

This can be more clearly seen in the F1 score comparison between models on both the

OpenCities dataset (Table 6.1) and the Inria dataset (Table 6.2). This indicates a

high overall increase in correct detection. Our model fixes the issues with incorrectly

detecting most images as real as seen in the other models. This is likely due to the

additional input of the attention maps which highlight areas of the images more

likely to contain features indicating whether the image is real or synthetic. Despite

the generated attention maps not replicating the real expert gaze maps 1 : 1, they

were still able to mark areas with a high probability of containing defining image

features for correct detection, as evidenced by the increased performance of the final

end-to-end model.

All models were further tested in their detection performance on urban and rural

classes for both datasets, Inria (Table 6.3) and OpenCities (Table 6.4). Similar to

the results found in Chapter 3, which looked at inception scores for generated urban
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Model Image Class AP ACC ACC (real) ACC (fake) F1
Wang (2019) Urban 92.81 54.24 99.97 14.09 0.24
Wang (2019) Rural 97.62 69.12 99.91 35.77 0.56
Control (no masks) Urban 85.63 63.28 95.65 34.85 0.50
Control (no masks) Rural 98.62 78.06 99.83 54.48 0.70
Our Model Urban 92.81 66.77 99.24 38.25 0.55
Our Model Rural 99.78 95.15 99.69 90.24 0.95

Table 6.3: Breakdown of model performance for urban and rural images classes from the
StyleGAN2/Inria dataset (20K images)

Model Image Class AP ACC ACC (real) ACC (fake) F1
Wang (2019) Urban 87.75 59.98 99.64 24.80 0.39
Wang (2019) Rural 93.47 67.98 99.83 29.96 0.46
Control (no masks) Urban 90.60 61.05 99.22 27.17 0.42
Control (no masks) Rural 95.43 71.00 99.88 36.52 0.53
Our Model Urban 92.58 80.61 94.43 68.34 0.78
Our Model Rural 98.11 93.64 95.81 91.05 0.92

Table 6.4: Breakdown of model performance for urban and rural images classes from the
StyleGAN2/OpenCities dataset (20K images)

and rural images, all models performed higher on rural scenes than on urban scenes.

Similar to the results for the overall datasets (Tables 6.2, 6.1), the original GAN

detection model (Wang 2019) performed the worst and the gaze assisted model (Our

model) achieved the best performance. Despite still surpassing the previous model

(Wang 2019) and the control model, the gaze-assisted model can still be seen to

struggle with fake urban scenes, especially with the low accuracy of 54% (Table 6.3)

in the Inria results. This suggests that the improvements from the expert gaze data

do not come from the differences in attention between land types and instead more

general differences between human and computational gaze methods. This is further

seen in the evaluation of the differences between F1 scores (Table 6.5), which shows

no pattern of relative class improvements between the models.

6.4 Discussion

In this Chapter gaze data from expert visual detection of real and synthetic EO

images was used to guide attention in a CNN based image classifier. The results

(Table 6.2) support the hypothesis that expert visual gaze data can be used to
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Model Dataset F1 Urban F1 Rural F1 difference (%)
Wang (2019) Inria 0.24 0.56 80
Control (no masks) Inria 0.50 0.70 33
Our Model Inria 0.55 0.95 53
Wang (2019) Open Cities 0.39 0.46 16
Control (no masks) Open Cities 0.42 0.53 23
Our Model Open Cities 0.55 0.95 16

Table 6.5: Percentage difference between urban and rural F1 scores on both test dataset
(Inria, Open Cities)

improve the performance of CNN based image detection models. This new method

improves on previous models for prediction accuracy on real/synthetic EO images.

By training a U-Net encoder network on a small number of images with gaze data,

synthetic gaze masks can be generated for unpaired datasets allowing for further

fine tuning of the network without the need to conduct additional studies.

The samples from the UNet generation show that the model was not able to produce

completely accurate masks that replicate human gaze data. This could be due to the

small amount of labelled samples which due to the nature of the image data varied

greatly in ROIs between the samples. Despite this, the results from the end-to-end

detection model demonstrate that the additional input of the generated masks into

the ResNet model did significantly increase detection performance.

The success of combining detection methods, both human and computational sup-

ports the work throughout this thesis that a mixed methods approach is necessary

to establish novel solutions to the generation of synthetic EO imagery. Rather than

rely completely on algorithmic solutions, domain expertise is a valuable asset to

improving current methods and should continue to be considered in further detec-

tion methods. this is supported by similar trends in other specialised fields such as

medical imaging which have also found success in incorporating domain expertise

with SotA deep learning models[175–177].

In this chapter the proposed model is trained to detect GAN EO images and uses

UNet and pretrained ResNet architectures. Despite these details the approach used

could also be replicated to improve other models and applied to different types of im-

age data. The results from this demonstration show the effectiveness of using expert
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human gaze data to improve classifier performance and could quickly be applied to

the detection of images generated from other methods such as Diffusion and trans-

former models. Expert gaze data could also be collected for other domain specific

image types that may be vulnerable to misinformation. In a rapidly advancing field

where specific architectures quickly become outdated and new, more sophisticated

image generation techniques are developed, this work provides methods that can be

adapted for such changes and advancements.

6.4.1 Limitations and Future Work

Although the detection model implemented in this chapter increased the overall

accuracy and precision of previous methods, it did not perform as well at the accurate

prediction of real images. Although it is unclear why this the case, there are a few

factors which could potentially explain this drop in performance. One potential

reason for this is due to the procedures followed for the data collected in the previous

chapter. The gaze data that was used for training was collected from participants in

an image detection study where the task was to correctly identify which image was

synthetic out of a series of real/synthetic image pairs. By asking the participant

to identify the synthetic image could influence the behaviour of the participants to

focus their attention more on images that they considered to appear synthetic rather

than more realistic looking images. This could lead to less gaze data being collected

overall for real images. Additionally, the ROIs in these images may not necessarily

correlate with where the images look most real but instead, look synthetic. This

could lead to less useful gaze data to be paired with the real images, lowering their

effectiveness.

Future data collection should aim to investigate this by conducting an additional

series of studies where participants are asked to identify the real image instead of

the synthetic image to balance the current set of gaze data. Further research should

also investigate using a different study design for data collection, such as showing

the images in a sequential sequence rather than as pairs. The paired design was
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chosen initially for reasons described in Chapter 4, however, for the sole objective of

collecting gaze data for creating image masks this may be a better choice for future

studies. This way there is less bias between images as they are shown individually

which could led to higher quality gaze heatmaps.

Another advantage of a larger scale data collection would be the increased number of

paired samples available to train the UNet mask generation network. As discussed,

the masks did not manage to fully replicate the human gaze maps, despite encoding

enough information to generate attention maps useful for training. These results

could however, be further improved using a larger dataset to produce more accurate

gaze maps which would likely result in increased accuracy on the end-to-end model.

In addition to expanding the experimental design of the data collection, future

work should look at the value of training the model on a larger scale with a higher

quantity of image/gaze mask pairs across multiple real/fake EO image datasets.

Further studies should also employ novel methods to further investigate the precise

differences in human and computational detection. As it was found in this chapter

that detection performance improved overall, but there were still differences between

urban and rural prediction accuracy.

6.5 Conclusion

The work in this chapter proposes a human expert guided, synthetic EO image

detection model. The final detection model improves on accuracy and precision of

previous methods and demonstrates how implicit domain knowledge from human

experts can be integrated with computational detection techniques for better detec-

tion of GAN generated EO images. The model was able to achieve high accuracy

after only being trained on a small, paired image dataset (N = 3200), demonstrat-

ing that this is a viable method in scenarios where it is hard or costly to obtain

substantial amounts of expert gaze data or synthetic examples.

In the preceding chapters, it was found that there were difference in performance and

behaviour of humans and CNN based detection methods in differentiating between
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real and GAN generated EO images. The contributions in this chapter demonstrate

an effective methodology of combining these different detection systems to further

improve current detection methods.



Chapter 7

Conclusion

As image generation techniques, such as generative adversarial networks (GANs)

become more advanced and applied to a wider range of generation tasks and do-

mains, there is a growing need for the development of novel detection techniques.

EO imagery, such as satellite imagery is one such area which could be potentially

vulnerable to the misuse of image generation.

The research in this thesis investigated the generation and detection of GAN syn-

thesised EO imagery. Following a benchmark evaluation of current GAN methods,

studies were conducted to compare differences between automated and human de-

tection methods. The effects of expertise was also measured for human detection

of synthetic EO imagery with expert/novice experiments. The results from this

research led to the implementation of a new expert guided GAN image detection

classifier model.

7.1 Main Contributions

7.1.1 Chapter 3: GAN benchmark comparison

As discussed in the literature review (chapter 2), limited work currently exists for

measuring GAN performance in generating EO imagery, compared to other image

type such as faces and objects. New GAN models are commonly tested within a

small range of benchmark datasets (e.g. ImageNet, CIFAR-10, CelebA), leaving

114
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questions about how they may perform on other, domain-specific image types.

The work in the initial chapter of research evaluated the capabilities of different GAN

models for the task of generating synthetic EO imagery and benchmarked them on

the Inria Aerial Dataset. The benchmark results found that StyleGAN2 was the

most successful at generating high quality synthetic aerial imagery when measured

using the evaluation metrics FID and KID. The findings of this comparison show

that GAN EO imagery has reached the level that could present a possible security

concern in matters relating to authenticity.

In addition to the GAN benchmark evaluation, the effects of how FID is calculated

were also explored. Many GAN evaluation papers report FID that has been cal-

culated using an InceptionNet implementation trained on the ImageNet dataset.

Although using a standardised evaluation model can be helpful for making com-

parisions between models and paper results, it may present problems and biases

when applied to image classes not covered in the ImageNet dataset. To investigate

this, FID calculated using ImageNet was then compared to a novel variant of FID

calculated using a network trained on the OpenCities dataset. The results found

that EO samples from StyleGAN2 were scored lower (better) for the FID that was

based on the OpenCities dataset rather than the standard ImageNet variant. This

contributes to the growing amount of evidence that FID should not be used as

an empirical measure of quality, particularly in comparing different models as it is

heavily influenced by the types of data the core Inception network has been trained

on.

In summary the main contributions for this chapter were:

1. The evaluation of GAN models in the domain specific context of EO imagery.

2. The comparison of FID scores for different instances of the Inception V3 model

3. A real/fake dataset based on the Inria Aerial Benchmark Dataset [102] for EO

imagery produced using StyleGAN2
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7.1.2 Chapter 4: GAN image detection study

Whereas the work done in the first chapter focused on GAN generation of EO

image data, this chapter evaluated human and computational detection of generated

EO image data. Automated metrics such as FID are useful for performing quick

evaluations of model performance but are not representative of how realistic they

may appear to humans. Additionally, synthetic images may be used to fool humans

and necessarily automated systems, necessitating user studies to evaluate human

detection on synthetic EO imagery.

Using the StyleGAN2/Inria dataset produced in the first chapter, an online image

detection study was conducted to evaluate the difficulty in distinguishing between

real and fake image pairs. The study found that participants achieved varying

levels of accuracy correlated with their self-reported previous experience with dealing

with similar images (GAN or Satellite images). The study also found that images

with higher amounts of rural features such as trees, fields or foliage were much

harder to correctly classify than those with urban features (roads, buildings, and

other infrastructure). When comparing the FID of rural and urban images with

participant detection scores it was found that despite lower FIDs (lower is better) for

urban scenes, these were easier for humans to identify, with the reverse relationship

found for rural scenes.

A State-of-the-art generalised GAN detection model was also evaluated against the

same dataset as used in the image detection study. It was found that the detection

model achieved lower levels of accuracy in predicting if an image was real or fake for

the StyleGAN2/Inria dataset than on the benchmark datasets that were reported in

its original implementation. Although it performed well on classifying real images,

the CNN detection model had particularly low accuracy when presented with syn-

thetic images, and overall achieved a slightly lower score than the high and moderate

expertise groups from the human detection study.

In summary the main contributions for this chapter were:

1. Detection accuracy for synthetic aerial imagery varies between groups of pre-
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vious experience.

2. Rural images are harder for humans to distinguish as real or synthetic than

urban images.

3. FID for GAN generated EO images is inconsistent with human detection ac-

curacy

4. Synthetic EO image data presents a novel challenge for current computational

detection methods trained only on popular object and face datasets.

7.1.3 Chapter 5: Human Gaze and CNN attention in De-

tecting GAN generated EO Images

The image detection study in the previous chapter explored the differences in per-

formance between computational and human detection methods and also found a

correlation between experience and synthetic EO detection accuracy. The work in

this chapter further investigated these findings through another image detection

study including an additional modality of eye tracking. The results were evalu-

ated using gaze entropy metrics and a qualitative visual analysis of gaze heatmaps.

The study found that significant differences in the gaze behaviour between self-

reported experts and novices when making predictions on real/synthetic EO image

pairs. The participants with higher experience made more accurate predictions and

showed overall lower gaze entropy, and shorter response times than the participants

with low experience. This suggests that the more experienced groups were using

more effective and efficient search strategies for making correct detections. These

findings were also supported by a visual inspection of the gaze heatmaps.

The CNN detection model evaluated in the previous chapter was also further ex-

plored using Grad-CAM to visualize the ROIs that produced higher class specific

activations. Both the Grad-CAM heatmaps and gaze heatmaps were then com-

pared as correlates of visual attention for each respective detection method. This

qualitative analysis noted that the CNN detection model gave higher significance
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to different ROIs for classification than humans, particularly in rural areas and for

boundary lines.

In summary the main contributions for this chapter were:

1. Further support for the previous findings that self-reported experience is a

correlating factor for synthetic EO image detection ability

2. Experts and novices exhibit differences in gaze behaviour for detecting syn-

thetic EO image data, with experts performing more efficient and accurate

visual search strategies.

3. Humans and CNN based detection methods prioritise different ROIs in real/synthetic

EO images.

7.1.4 Chapter 6: GAN Generated EO Image Detection with

Human Gaze Guidance

Building on the research from the previous chapters the aim of this chapter was

to improve current detection methods for GAN generated EO images. This aim

was achieved by the implementation of a classifier model guided by expert gaze

data. The final model consisted of two sections. The first section of the model

used a convolutional UNet architecture that was trained on 3200 real/StyleGAN2

EO images and corresponding grayscale masks of expert gaze data collected in the

previous study. Using the images as input the model was then trained to generate

corresponding attention masks, using the real gaze masks as the ground truth data.

The second section of the model consisted of a ResNet model, modified to accept 4-

channel input data and used to classify an image as real or synthetic. For increased

model performance the model was pretrained using the weights from a current,

generalized detection model [110]. These two sections were then assembled to give

the final detection model which would accept an input image, produce an attention

map based on human gaze data, concatenate both together before passing it to the

ResNet classifier to give a prediction on whether the image was real or synthetic.
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The final attention guided detection model was tested on two EO GAN datasets

produced in Chapter 1 and based on the Inria Aerial Benchmark dataset and the

OpenCities Datasets. To assess the impact of the human gaze data on the classifier

performance a control model was also trained on just the 3200 training images and

without the addition of the gaze heatmaps, the generalized GAN detection model

was also compared. The results found that the attention guided model gave a higher

overall accuracy and average precision in detecting synthetic EO images than both

the previous GAN detection model and the control model.

In summary the main contributions for this chapter were:

1. A human attention guided synthetic EO image detection model that fine-

tuned a GAN classifier using paired image and attention masks generated

from heatmaps of expert gaze data.

2. Improvements over current methods for synthetic EO image detection using

only a small paired image training dataset

3. Support for the importance of mixed methodologies and the use of domain

specific knowledge for implanting future detection models.

7.2 Impact and Implications

In this thesis I have presented an interdisciplinary, mixed methods approach to

addressing some of the current concerns that the advancement of generation models

presents in relation to the field of EO image data. The first major implication of

this work is bringing to attention evidence that image generation techniques have

reached a level of sophistication where they can unconditionally produce synthetic

EO images to a highly realistic standard. Despite the threats to data security and

authenticity, there is still a lack of literature focused on domain specific detection

techniques. The work of this thesis has attempted to fill in some of these gaps in

current knowledge by looking at human and computational detection methods in

a domain specific context. Doing so has found that both detection methodologies
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have different advantages and limitations. Future work in this field of research

should continue to explore mixed method approaches to detection to fully utilize the

different strengths each method provides. The final detection model implemented

in chapter 6 is an example of this, as it uses human gaze data to guide the decision

making of a CNN based classifier to give more accurate predictions than either a

classifier or human alone.

Another outcome from this project is highlighting the importance of utilizing domain

specific knowledge for more specific detection methods. The image detection studies

conducted in chapters 4 and 5 found that previous experience is a correlating factor

with detection performance and experts exhibit different and more effective search

strategies than non-experts. This is important to consider for future work that can

leverage this experience to improve detection methods (similar to this project) or

help train non-experts to be better at distinguishing between real and synthetic

images themselves.

In relation to the wider impact on defence and security, the work in this thesis sug-

gests that further research into domain specific detection methods should continue to

be prioritised to keep up with the rapidly evolving array of image generation meth-

ods. Even over the timespan of this project the landscape of image generation has

evolved, with the surge in popularity of Diffusion and Transformer models trained

on vast amounts of data presenting new challenges towards image data authenticity.

Despite the constant evolution of generation models, the methods and experimental

designs depicted in this thesis can provide templates for future detection research

into new and emerging generative techniques.

7.3 Limitations and Suggestions for Further Re-

search

The work in this Thesis presents several contributions to EO image GAN detec-

tion but also has several limitations of note that are important to note for future
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research in this field. Although significant findings were present in the results of

the human participant image detection studies, they would have benefited greatly

from higher numbers of participants and from a wider range of populations. If sim-

ilar experiments were to be conducted in the future it would interesting to explore

how detection abilities and behaviours differ between different domain expert groups

such as geospatial scientists and data scientists, and how occupation correlates with

detection accuracy when compared to self-reported expertise.

This thesis has focused on RGB satellite image data, but similar experiments could

be applied to other forms such as infrared and multi-spectral data. It is possible

that the detection capabilities of current methods have different levels of performance

between different EO data types and further work is needed to assess which areas

are more vulnerable than others.

GAN models were the primary image generation architecture that was chosen to be

the focus of this project, this was due to them being at the top of the image gener-

ation field in terms of both their performance and widespread popularity. Over the

course of this project and in particular the final year of work, the image generation

landscape has changed significantly with the explosion of large Diffusion models

such a DALL-E2[37] and Stable Diffusion[36]. If the current trends continue, then

it is likely that they will continue to improve and become the dominant models

for generative tasks. It is therefore important that future research takes this into

account to further detection methods in relation to these models. Although this

project has focused on GANs, the experimental designs and techniques used could

also be applied to these newer architectures.

Other limitations on the work presented here are partly due to circumstances. The

2019 COVID-19 pandemic caused major disruptions and delays to research in par-

ticular the ability to hold lab-based experiments. While the studies were still able

to be completed and resulted in meaningful contributions, the scope and design of

the studies had to consider the limitations at the time, such as conducting the first

study online rather than face to face. A face to face experiment would have been

beneficial as it would allow for more control over extraneous variables and higher
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participant engagement with the task. Converting the original study to be ran on-

line was also time consuming and caused unforeseen delays to the work. Despite

these issues, once the setup was completed, running the study online allowed for the

collection of a much higher sample size than originally expected when planning for

the initial face to face experiment.

7.4 Summary

This PhD thesis has explored the generation and detection of GAN generated EO

images. The capabilities of a range of GAN models were bench marked on EO

image datasets, with the best performing model (StyleGAN2) being used to create

real/synthetic EO datasets. Using these datasets, different visuospatial detection

methods were evaluated, CNN based methods and also human visual perception.

These methods were then compared and contrasted within pair of image detection

studies which also considered the differences between more and less experienced

participant groups using gaze metrics. Finally, the results of these studies were used

to inform an improved real/fake image classifier specifically for GAN generated EO

imagery.

The work in this thesis has established a link between previous experience in working

with EO images and real/synthetic detection ability, both in terms of accuracy

and gaze behaviour. The final detection model from this thesis also supports the

hypothesis that domain specific knowledge in the form of gaze data can be used

to improve the ability of CNN based image classifiers. The methodology described

in this thesis also provides a template for further researching detection methods

to counter current and future generative models. As AI driven image generation

continues to improve, this will become ever more important over the coming years.
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[143] M. Borys and M. Plechawska-Wójcik, “Eye-tracking metrics in perception and
visual attention research,” EJMT, vol. 3, pp. 11–23, 2017.

[144] Z. Bylinskii and M. Borkin, “Eye fixation metrics for large scale analysis of
information visualizations. etvis work,” Eye Track. Vis, 2015.

[145] D. Purves, G. Augustine, D. Fitzpatrick, L. Katz, A. LaMantia, J. McNa-
mara, and S. Williams, “Neuroscience 2nd edition. sunderland (ma) sinauer
associates,” Types of Eye Movements and Their Functions, 2001.

[146] U. Ahlstrom and F. J. Friedman-Berg, “Using eye movement activity as a cor-
relate of cognitive workload,” International journal of industrial ergonomics,
vol. 36, no. 7, pp. 623–636, 2006.

[147] S. Pannasch, J. Schulz, and B. M. Velichkovsky, “On the control of visual
fixation durations in free viewing of complex images,” Attention, Perception,
& Psychophysics, vol. 73, no. 4, pp. 1120–1132, 2011.



BIBLIOGRAPHY 134

[148] G. Ziv, “Gaze behavior and visual attention: A review of eye tracking studies
in aviation,” The International Journal of Aviation Psychology, vol. 26, no.
3-4, pp. 75–104, 2016.
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Appendix A

List of Abbreviations

EO Earth Observation
DNN Deep Neural Network
CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long-Short Term Memory
GAN Generative Adversarial network
MAE Mean Average Error
AP Average Precision
ACC Accuracy
FID Frechet Inception Distance
KID Kernel Inception Distance
SOTA State of the Art
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Figure B.1: Randomly selected real images from the Inria Benchmark Aerial Imagery
Dataset (256×256)
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Figure B.2: Randomly selected images generated from the baseline DCGAN (256×256)
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Figure B.3: Randomly selected images generated from PGGAN (256×256)
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Figure B.4: Randomly selected images generated from StyleGAN2 (256×256)
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Figure B.5: Randomly selected images generated from CoCoGAN (256×256)



144

Figure B.6: Randomly selected images generated from StyleGAN2 (1024x1024)
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Figure B.7: Randomly selected images generated from StyleGAN2 (1024x1024)
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Figure B.8: StyleGAN2 latent space representations (left) of target images from the Inria
training dataset (right)



Appendix C

Additional material

Figure C.1: Pairwise comparison of experience levels. (H Statistic: 20.086, p : 0.001)
Different distributions (reject H0) ε2 : 0.223
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Dependent Variable F P-value
Accuracy 8.14(2,23) 0.0021
Avg resp total 8.12(2,23) 0.0021
Avg Resp Correct 7.84(2,23) 0.0025
Avg Resp Incorrect 8.75(2,23) 0.0015
Transition 6.71(2,23) 0.0051
Stationary 11.55(2,23) 0.00034

Table C.1: Between groups Post-Hoc ANOVA results for the eye tracking study in Chapter
5. The variable values are task accuracy (Acc), average response time (Avg Resp Total),
average response time for correct answers (Avg Resp Corr) and incorrect answers (Avg
Resp Incorr), gaze transitional entropy (Ht) and gaze stationary entropy. The Post-Hoc
ANOVA test using a Bonferroni corrected alpha of 0.017
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Figure C.2: UNet model summary for images generated in Chapter 6
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