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Abstract

Fluid-Structure Interaction (FSI) is relevant for a range of mechanical processes, in-

cluding wave impacts on offshore and coastal structures, wind-excited vibrations of

tall buildings, fluttering of bridges and blood flows in arteries. Within the FSI phe-

nomenon, Wave-Structure Interaction (WSI) involves wave impacts on dams, flood

protection barriers, wave energy converters, seawalls, breakwaters, oil and gas plat-

forms and offshore wind turbines. These structures are often challenged by extreme

waves, e.g. tsunamis generated by landslides, rockfalls and iceberg calving, potentially

leading to structural damage under exceptional conditions. For structures undergo-

ing non-negligible deformations, referred to as Wave-Flexible Structure Interaction

(WFSI) herein, the physical processes are even more complex. Unfortunately, accu-

rate predictions of the wave effects, e.g. forces, on rigid and flexible structures are

still challenging and laboratory models often involve scale effects.

This thesis explored a range of WSI phenomena based on the numerical model

solids4foam, along with small-scale laboratory experiments. Two-Dimensional (2D)

and Three-Dimensional (3D) tsunamis impacting dams were investigated first. The

numerical wave loading agreed with predictions based on an existing approach and

new empirical equations for wave run-ups and overtoppings of dams were proposed.

The dynamic pressures were also investigated and correlated with new semi-theoretical

equations. New insight into the 3D effects, including the dam curvature and asym-

metrical wave impacts, were provided for selected cases. The combination of both

these effects resulted in up to 32% larger run-ups compared to the 2D predictions.

2D wave impacts on offshore and onshore plates of different stiffnesses were then
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modelled, along with selected 3D tests. The plate stiffness had a negligible effect on

the upwave forces for the majority of these tests. However, the offshore flexible plates

resulted in up to 40% smaller total forces, compared to the rigid ones, due to increased

downwave water depths following the plate deformations. For the onshore tests, the

time series of the wave loading were characterised by two force peaks, according to

previous studies. The second force peaks were up to 3.3 times larger than the first

peaks. New semi-theoretical equations were proposed to predict the onshore wave

forces and run-ups of a plate, as a function of the offshore wave energy.

Finally, a systematic investigation of the scaling approaches and scale effects for

wave impacts on rigid and flexible plates was conducted based on numerical mod-

elling supported by small-scale laboratory tests. The WFSI governing parameters

were derived and successfully validated based on the numerical results. A number of

simulations, involving non-breaking and breaking wave impacts, were then conducted

for the prototypes and up to 40 times smaller models. These were scaled according

to the scaling approaches (i) precise Froude (fluid and plate properties scaled), (ii)

traditional Froude-Cauchy (fluid properties unscaled, plate properties scaled), (iii)

traditional Froude (fluid and plate properties unscaled) and (iv) a new WFSI ap-

proach (partial conservation of the WFSI governing parameters). No scale effects

were observed for (i). Non-breaking waves were correctly scaled by (ii), however, up

to 132% scale effects were observed in the breaking wave pressures due to the unscaled

fluid properties. Further, the plate displacements were up to 98% underestimated by

(iii). The new approach (iv) successfully predicted non-breaking wave impacts, with

less than 4.3% deviations for the maximum wave forces and plate displacements.

In conclusion, the findings of this PhD thesis are intended at enhancing the phys-

ical understanding of WSI to support the design and laboratory modelling of a range

of offshore and onshore structures. Future studies should address a number of further

aspects, such as the 3D effects on tsunami impacts and the role of the air compress-

ibility on WFSI. Also, the WFSI governing parameters and the new scaling approach

should be further validated using numerical and laboratory experiments.
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ū2x + ū2z contours. . . . . . . . . . . . . . . 55

3.6 (a) Relative run-up height R/h and (b) (R/h)(β/90◦)1/3 with Eq.

(3.13) (R2 = 0.94) versus the relative wave amplitude a/h. . . . . . . 56

3.7 Comparison of the horizontal dimensionless (a) force FH/Fh and (b)

moment MH/Mh at the dam versus a/h with predictions from Evers

et al. (2019) and data of Ramsden (1996). . . . . . . . . . . . . . . . 57

XVII



List of Figures

3.8 Distribution of the pressure response factor at the wall Kpw with z/h

for β = 90◦ and Eq. (3.17) for a/h = 0.10 (R2 = 1.00), 0.16 (R2 =

1.00), 0.17 (R2 = 1.00), and 0.42 (R2 = 1.00) and A = 3.47, 5.79, 4.45,

and 1.28, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.9 Coefficient A versus the relative wave amplitude a/h and (a) Eq.

(3.18) for Stokes and cnoidal waves (R2 = 0.59) and (b) Eq. (3.19)

for solitary waves (R2 = 0.72). . . . . . . . . . . . . . . . . . . . . . . 59

3.10 Comparison of the total p/(ρwgh) and dynamic pressure pd/(ρwgh)

with predictions from Evers et al. (2019) (Eq. 3.3) and Eq. (3.16)

for cnoidal waves with a/h = 0.10 and (a) β = 90 and (b) 60◦ and

solitary waves with a/h = 0.20 and (c) β = 90 and (d) 60◦. . . . . . . 60

3.11 Snapshot series of a solitary wave impact on a dam with overtopping

with a/h = 0.28 with (a, c, e) pressure contours in MPa and (b, d, f)
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√
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Chapter 1

Introduction

1.1 Background and motivation

Fluid-Structure Interaction (FSI) is crucial for a range of mechanical processes in

engineering, science and nature. Among these, the most common FSI phenomena in-

clude wave impacts on offshore and coastal structures, wind-excited vibrations of tall

buildings, fluttering and buffering of bridges and blood flows in arteries and artificial

heart valves (Jain et al., 1996; Yang et al., 2004; Sotiropoulos and Borazjani, 2009;

He and Kashiwagi, 2012; Didier et al., 2014; Hu et al., 2023). These structures expe-

rience stresses and deformations under the fluid forces, leading to a mutual interplay

between the fluid and structure domains. This may have significant effects, result-

ing in damage of the structure and severe modifications of the flow under extreme

conditions.

FSI resulted in disastrous failures in the past, hence the need to fully understand

its underlying mechanisms and quantify their effect on structures. On November

7th, 1940, the Tacoma Bridge collapsed during extraordinary wind conditions. Wind

speeds of up to 68 km/h were observed, inducing torsional vibration modes of the

bridge (Fig. 1.1a). The two halves of the bridge oscillated out of phase with one

another, resulting in the failure of the structure (Irvine, 2009). Large wind speeds

have also caused the collapse of the 3 Ferrybridge cooling towers on November 1st,
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1.1 Background and motivation

1965 (Fig. 1.1b, Shellard, 1967). One more relevant example is the failure of the Sines

breakwater during a storm on February 26th, 1978 (Fig. 1.1c). Wave amplitudes of up

to 10 m have been estimated to have impacted the breakwater, with even larger values

in front of the structure due to wave refraction. Several aspects have been identified

to cause the failure of the breakwater, including an inadequate design, extreme waves

and the removal of the dolos due to wave action (Baird et al., 1980).

(c)

(a) (b)

Figure 1.1. Fluid-structure interaction failures: (a) Tacoma Narrows Bridge during

fluttering in 1940 (Irvine, 2009), (b) collapse of the Ferrybridge cooling towers in

1965 (Shellard, 1967) and (c) Sines breakwater after collapsing in 1978 (Baird et al.,

1980).

The present thesis focuses on Wave-Structure Interaction (WSI), a category of

FSI phenomena. WSI is relevant for numerous offshore and onshore applications,

including hydro-power dams, flood protection barriers, wave energy converters, sea-

walls, breakwaters, oil and gas platforms and offshore wind turbines (Fig. 1.2). These

structures are often endangered by extreme waves, such as tsunamis generated by

landslides, rockfalls and iceberg calving. For instance, the Vajont landslide on Oc-
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tober 9th, 1963, is one of the most catastrophic events ever recorded. The tsunami,

generated by the landslide impacting into the reservoir, overtopped the dam crest

and destroyed the downstream villages, resulting in approximately 2000 fatalities

(Panizzo et al., 2005b). More recently, WSI was responsible for the collapse of an

offshore platform during the 2002 hurricane in the Gulf of Mexico (Moan, 2018) and

the Dawlish seawall breach on February 5th, 2014 (Dawson et al., 2016).

(c)

(a) (b)

(d)

Figure 1.2. Examples of wave-structure interaction: (a) a hydro-power dam

(Wikipedia, 2023), (b) wave impact on a vertical seawall (Allsop et al., 2008), (c)

prototype of the OBREC wave energy converter (Contestabile et al., 2017) and (d)

the MOSE mobile gate (Mose, 2023).

Unfortunately, the available prediction approaches for the tsunami forces and

effects, e.g. run-ups and overtoppings, are still associated with large uncertainties

(Ramsden, 1996; Heller et al., 2009; Evers et al., 2019), requiring further inves-

tigations. Furthermore, Three-Dimensional (3D) effects on the tsunami forces and

run-ups are commonly neglected due to a lack of knowledge (Heller et al., 2009).

These include the dam curvatures, asymmetrical wave impact angles and/or complex
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reservoir geometries, potentially enhancing forces and run-ups (Müller, 1995).

For flexible structures undergoing significant deformations, referred to as Wave-

Flexible Structure Interaction (WFSI) herein, the physical processes are even more

complex. These concern deformable wave energy converters, e.g. the Anaconda (Chap-

lin et al., 2012), or slender structures such as wood coastal houses or offshore plat-

forms. Previous studies revealed that the mechanical properties of the structure, e.g.

the Young’s modulus, have an effect on the WFSI pressures and forces (He and Kashi-

wagi, 2012; Linton et al., 2013; Mai et al., 2020; Krautwald et al., 2022; Hu et al.,

2023). However, current findings are inconclusive, such that an accurate understand-

ing of the plate flexibility effect on wave loading is required.

Given the challenge to accurately model WFSI phenomena, laboratory tests are

often used for research, to validate numerical models and to support design solutions.

Smaller laboratory models are designed by downscaling all the relevant parameters

according to appropriate scaling laws. However, they are typically characterised by

scale effects, potentially leading to erroneous experimental results. For free-surface

flows, scale effects commonly arise when ordinary water and air are used in the

laboratory models. Scale effects can manifest themselves in various ways; for instance,

they result in different void fractions (Catucci et al., 2021; 2023) and/or non-identical

pressures in air-water flows (Fig. 1.3, Bredmose et al., 2015).
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Figure 1.3. Scale effects in breaking wave impact on a rigid wall: snapshots of the

wave impact at different geometrical scales (after Bredmose et al., 2015).
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While scale effects have been largely investigated in free-surface flows interacting

with rigid walls (Cuomo et al., 2010b; Blenkinsopp and Chaplin, 2011; Bredmose

et al., 2015; Seiffert et al., 2015; Catucci et al., 2021; 2023), potential deformations of

the structures have not been taken into account. In WFSI, the structural properties

must also be appropriately scaled (Hughes, 1993; Chakrabarti, 2005; Heller, 2011;

Krautwald et al., 2022; Abrahamsen et al., 2023), however, it might be challenging

to find a material with the desired properties for the laboratory tests. Conversely,

the incorrect scaling of the structural properties can lead to inaccurate predictions

of the prototype behaviour, as was the case for the Sines breakwater, whose failure

was partially due to an underdesign informed by misleading results from laboratory

experiments (Fig. 1.1a).

Therefore, an improved understanding and further investigation of WSI, including

both rigid and flexible structures, are necessary to support the design and assessment

of offshore and onshore structures. For these reasons, the present thesis presents a

systematic investigation of WSI based on numerical and laboratory modelling. This

includes an extensive investigation of wave impacts on rigid and flexible structures,

relying on both Two-Dimensional (2D) and 3D experiments. Furthermore, a system-

atic analysis of scale effects for wave impacts on rigid and flexible plates is provided.

1.2 Aims and objectives

The present thesis is aimed at systematically investigating WSI to enhance the physi-

cal understanding, support the design and assist laboratory investigations of offshore

and onshore structures. These aims will be achieved with the following objectives:

• Design a laboratory set-up to investigate wave impacts on plates in the wave

flume of the Department of Civil Engineering at the University of Nottingham.

• Perform laboratory experiments for a range of incident waves impacting rigid

and flexible plates of various inclinations.
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• Validate the numerical model solid4foam for WSI with analytical and other

numerical results along with new and available laboratory experiments.

• Provide new physical insight into tsunamis impacting steep dams based on 2D

and 3D numerical simulations.

• Expand the validation conditions of existing approaches and provide new em-

pirical equations to predict tsunami forces, run-ups and overtoppings on dams.

• Formulate and validate a set of dimensionless governing parameters for WFSI.

• Provide new physical insight into regular and solitary waves impacting offshore

and onshore plates of different stiffnesses.

• Formulate a new scaling approach for WFSI.

• Quantify and understand scale effects in WSI under different scaling approaches.

1.3 Thesis outline

The present thesis is comprised of 6 chapters; the current introduction, a literature

review (Chapter 2), 3 chapters containing journal articles (Chapters 3, 4 and 5) and

the conclusions (Chapter 6). The remainder of this thesis is organised as follows.

In Chapter 2 a comprehensive review of WSI is presented. This includes the

theoretical background along with previous WSI numerical and experimental investi-

gations. Studies of waves interacting with rigid and flexible structures are addressed

with a main focus on the latter. The main aspects about the scaling of WSI phenom-

ena are also included. These concern model-prototype similarity, traditional scaling

laws and scale effects in WSI.

Chapter 3 is comprised of a published article (Attili et al., 2021), focusing on

tsunami impacts on dams. After the validation of the numerical model, this chapter

offers a detailed numerical investigation of a range of waves impacting dams of dif-

ferent inclinations. The 2D tsunami effects on the dam are discussed along with the

3D effects for some selected cases.
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Chapter 4 covers a systematic investigation of wave impacts on rigid and flexible

plates, consisting of a published article (Attili et al., 2023b). Further validation of the

numerical model with available and new laboratory tests is included in this chapter.

A comprehensive analysis of waves impacting offshore and onshore plates of different

stiffnesses is then presented based on numerical modelling.

Scaling approaches and scale effects in WSI are then explored and discussed in

Chapter 5. This chapter is comprised of an article currently under review for publi-

cation (Attili et al., 2023a). Several scaling laws along with a new scaling approach

are investigated based on numerical modelling supported by small-scale laboratory

experiments.

Finally, the main conclusions of the present thesis and potential directions for

future work are discussed in Chapter 6. The appendices include supplementary data

for the laboratory tests (Appendix A) and the numerical investigation of wave impact

on a flexible wall conducted for the CCP-WSI (2021) comparative study 1 (Appendix

B).

Given the structure of this thesis, there is some repetition between the chapters,

concerning parts of the literature review and the description of the numerical and

physical models. Although background information and previous studies are included

in Chapters 3, 4 and 5, Chapter 2 is required to offer a more complete and extensive

overview of the literature review. The nomenclature and reference list are provided

at the end of this thesis.
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Chapter 2

Literature review

2.1 Overview

This chapter presents a full review of analytical, laboratory and numerical Wave-

Structure Interaction (WSI) studies. Given the structure of this thesis, further lit-

erature reviews are also included in Chapters 3, 4 and 5, however, these are more

concise and include only selected studies. In Section 2.2, theoretical insight into wave

theories and the analytical models for wave pressures and forces on vertical and rigid

walls are presented. The most relevant laboratory and numerical WSI studies are

then addressed in Section 2.3. Basic concepts of experimental modelling and scale

effects are then presented in Section 2.4. Finally, the WSI review is summarised in

Section 2.5 and the main research gaps are highlighted.

2.2 Theoretical background

2.2.1 Wave theories

Surface waves are deformations of the free water surface propagating across a water

body. These may be generated by several causes, including the wind action on the

water surface, the passage of a boat, an earthquake or a landslide. Based on the water

depth h relative to the wave length L, they are classified into shallow, intermediate

and deep-water waves. Shallow-water waves are typically observed near the shore,
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where h < L/20. Deep-water waves occur in the open sea where h > L/2, such that

the wave motion affects the top layers of the water body only. For L/20 ≤ h ≤ L/2,

intermediate-water waves are observed.

Based on the water surface profiles, several mathematical theories have been

developed. Cartesian coordinates (x, y, z) are used in the present study, with the

origin at the still water level (Fig. 2.1). The x-axis is parallel to the wave propagation

and positive in the wave propagation direction and the z-axis is defined positive

upwards.

Airy (1845) derived the 2D wave profile of periodic waves, known as regular waves.

For relatively small wave heights H (H/h < 0.03) and steepnesses (H/L < 0.006),

these are commonly referred to as linear waves. The wave profile is described by a

sinusoidal curve (Fig. 2.1a) with the water surface elevation

η(x, t) =
H

2
cos(kx− ωt). (2.1)

In Eq. (2.1) t is the time, k = 2π/L the wave number, ω = 2π/T the wave angular

frequency, with the wave period T , and a = H/2 in Fig. 2.1a is the wave amplitude.

For this wave type, the particle orbits at the surface are circular, with the centre at

z = 0 and no mass transport is observed. The sinusoidal wave celerity is given by

c =

√
gL

2π
tanh

(
2πh

L

)
. (2.2)

Fig. 2.1b shows the wave profile of a 2nd order Stokes wave. Stokes wave profiles

are typically expressed by a power series of H. The linear term is identical to the

linear wave (Eq. 2.1) and the higher order terms are expressed in function of H, L and

T . According to Dean and Dalrymple (1991), 2nd order Stokes waves are described

as

η(x, t) =
H

2
cos(kx− ωt) +

H2k

16

cosh(kh)

sinh3(kh)
[2 + cosh(2kh)] cos(2kx− 2ωt). (2.3)
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Figure 2.1. Water surface elevation with main parameters and orbit of a surface

particle for (a) linear, (b) 2nd order Stokes, (c) cnoidal and (d) solitary wave theories.

Cnoidal waves (Fig. 2.1c) are typically used to model extreme waves, e.g. tsunamis.

They are characterised by sharper crests (subscript c) ac and flatter troughs (subscript

t) at compared to linear waves, being strongly nonlinear. According to Dingemans

(1997), η is expressed as
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η(x, t) = at +H cn2
(
2Ke(m)

x− ct

L
|m|
)
, (2.4)

with the elliptic function cn and the complete elliptic integral of the first kind Ke(m).

These functions depend on the elliptic parameter m, which determines the shape of

the cnoidal wave.

Finally, Fig. 2.1d shows a solitary wave profile. Solitary waves do not have troughs

and are purely translatory, involving significant fluid mass transport. The wave profile

can be expressed as (Boussinesq, 1871)

η(x, t) = a sech2

(√
3a

4h3
(x− ct)

)
. (2.5)

The solitary wave celerity c (Laitone, 1960) and L (Lo et al., 2013) are commonly

approximated as

c =
√
g(h+ a), (2.6)

L =
2πh√
0.75

a

h

. (2.7)

2.2.2 Analytical models for wave loading on a rigid plate

Analytical models (Sainflou, 1928; Tadjbakhsh and Keller, 1960) have been derived

to describe the wave pressures on vertical and rigid walls. These were expressed in

terms of the wave pressure exceeding the hydrostatic rate (Dean and Dalrymple,

1991)

pd(z) =


p(z) for 0 < z ≤ η

p(z) + ρwgz for − h ≤ z ≤ 0

(2.8)

with the pressure p, the water (subscript w) density ρw and the gravitational ac-

celeration g. Sainflou (1928) developed a mathematical formulation of pd(z) due to

nonlinear waves impacting a rigid wall. This model was based on the trochoidal wave

theory (Gerstner, 1802), assuming a complete wave reflection from the wall. At the

12



2.2 Theoretical background

maximum wave elevation z = H + r0, pd(z) = 0 (Fig. 2.2a), with the elevation of the

orbit centre after a full reflection

r0 =
πH2

L
coth(2πh/L). (2.9)

For reducing z, pd(z) linearly increases up to the maximum value

pd,2 =
(ρwgh+ pd,1) (r0 +H)

H + r0
+ h (2.10)

at z = 0, with the pressure at the sea bed (z = −h) pd,1. For z < 0, pd(z) decreases

with increasing depth reaching

pd,1 =
ρwgH

cosh(2πh/L)
(2.11)

at z = −h.

Tadjbakhsh and Keller (1960) proposed a theoretical solution for η(x, t) and pd(z)

for gravity wave impacts on a rigid wall. This model was derived under the assump-

tions of inviscid and incompressible fluid and periodical waves, both in time and

horizontal direction, with a finite h. The dimensionless η(x, t) due to the incident

and reflected waves was expressed as

εpkη =

[
εp +

ε3p
256

(
9ω−8

0 + 6ω−4
0 − 15 + 8ω4

0

)]
cos(kx)+

+
1

8
ε2p
(
ω−2
0 + 3ω−6

0

)
cos(2kx)+

+
3

256
ε3p
(
9ω−12

0 + 6ω−8
0 + 30ω−4

0 − 16 + ω4
0 + 2ω8

0

)
cos(3kx),

(2.12)

with εp = kH and ω0 =
√
tanh kh.

Based on Bernoulli’s equation, the distribution of pd(z) at the wall was derived

as
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k

ρwg
pd =

[
εp +

ε3p
256

(
9ω−8

0 − 234ω−4
0 + 81− 8ω4

0

)] cosh(kz + kh)

cosh kh
−

ε2p

[
1

2
ω2
0 +

3

8

(
ω2
0 − ω−6

0

)] cosh 2(kz + kh)

cosh 2kh
+

ε3p
256

(
1 + 3ω4

0

) (
27ω−12

0 − 63ω−8
0 + 39ω−4

0 − 5 + 2ω4
0

) cosh 3(kz + kh)

cosh 3kh
.

(2.13)

Fig. 2.2b shows pd(z) for εp = 0.11 and ω0 = 0.75. The solution plinear = εp[cosh(kz+

kh)]/ cosh kh takes only the linear term of Eq. (2.13) into account while pnonlinear

was computed with Eq. (2.13). This model has been extended up to the 4th order by

Goda (1967).

(a)of B uckingham (1914) states that Eq. (3.5) is reduced to i= n − k
quantitiesΠ,w ith k asthe num beroffundam entaldim ensionsinvolved,e.g.
e [T],orm ass[M ]

F (Π1,Π2,Π3,...,Πi)= 0. (3.6)

de requiresalldim ensionlessquantitiesΠ to be equalatprototype and at
g.Π1,P = Π1,M .

ρw
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a
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H
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h

r0

pd,1
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litude (H elleretal.2008)and w asapplied forthe 2D w ave channelasw ell
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odelsw ith Froude sim ilitude are discussed in Section 3.2.3.

ensionalanalysis

im ensionalanalysisallow sforthe derivation ofdim ensionlessrelationships

behaviorofa hydraulic phenom enon (N ovak etal.2010,C hadw ick etal.

calsystem ,representing a hydraulic phenom enon in thiscontext,m ay be

function ofn quantitiesQ

f(Q 1,Q 2,Q 3,...,Q n)= 0. (3.5)

of B uckingham (1914) states that Eq. (3.5) is reduced to i= n − k
quantitiesΠ,w ith k asthe num beroffundam entaldim ensionsinvolved,e.g.
e [T],orm ass[M ]

F (Π1,Π2,Π3,...,Πi)= 0. (3.6)

de requiresalldim ensionlessquantitiesΠ to be equalatprototype and at
g.Π1,P = Π1,M .
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Figure 2.2. Analytical wave pressure on a vertical wall: (a) from the theory of

Sainflou (1928) and (b) the solution of Tadjbakhsh and Keller (1960) with εp = 0.11

and ω0 = 0.75.

While the models of Sainflou (1928) and Tadjbakhsh and Keller (1960) were

developed for unexceptional events, e.g. wind waves, Cross (1967) considered more
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extreme waves, such as tsunamis transforming into surges. The impact force due to

a surge was expressed as (Cross, 1967)

FI =
1

2
ρwgh

2
s + Cfρwhsū

2
s, (2.14)

with the shore (subscript s) water depth hs, the depth-averaged shore velocity ūs and

the coefficient related to the inclination of the free water surface Cf . Eq. (2.14) was

derived by imposing the conservation of momentum, where the terms
1

2
ρwgh

2
s and

ρwhsū
2
s take the hydrostatic and dynamic forces into account. Cross (1967) suggested

to evaluate Cf as

Cf = (tan θ)1.2 + 1, (2.15)

where θ = dh/dx is the inclination of the free water surface. For a uniform flow,

where the free water surface is parallel to the shore, Cf = 1. From the comparison

with experimental measurements, it was found that Cf = 1 can be used for θ ≤ 15◦.

Instead, for a sharper water surface Cf should be evaluated with Eq. (2.15) (Cross,

1967).

2.3 Previous work

2.3.1 Laboratory findings

The most relevant WSI laboratory investigations are presented in this section. The

majority of these studies have been conducted to validate and calibrate numerical

models. Laboratory investigations involving rigid walls will be presented first (Sec-

tion 2.3.1.1). These include only a few relevant studies as Wave-Flexible Structure

Interaction (WFSI) is the main interest of the present study. Laboratory experiments

with flexible plates are then presented in Section 2.3.1.2.

2.3.1.1 Rigid walls

Several studies have been undertaken to investigate wave impacts on rigid walls.

These focused on the wave run-ups, overtoppings, pressures and forces, being funda-
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mental parameters for the design of dams and other coastal and offshore structures.

Only a few of these studies have been performed in a wave basin (3D), with the ma-

jority conducted in a wave flume (2D). Pertinent research about wave run-ups and

overtoppings is covered first, followed by the studies of wave pressures and forces.

Hall and Watts (1953), Street and Camfield (1967) and Maxworthy (1976) con-

ducted experiments of solitary wave run-up on a wall within the investigated ranges

of a/h and wall inclination β shown in Table 2.1 (Fig. 2.3a). The measured run-up

heights R were approximated by Hall and Watts (1953) as a function of a, h and β

only. However, this prediction equation cannot be used for vertical walls (β = 90◦)

as the tangent of 90◦ is undefined. No prediction equations have been suggested by

Street and Camfield (1967) and Maxworthy (1976).

Müller (1995) conducted more than 700 experiments to investigate the run-up of

solitary waves on dams, both in 2D and 3D. This study offered a valid prediction

approach, based on a wide range of the investigated parameters (a/h and β, Table

2.1). Additionally, asymmetrical wave impact angles and non-rectangular reservoir

sections have been qualitatively explored based on 3D experiments.

Table 2.1. Prediction equations and limitations for the relative run-up height R/h

in previous studies.

Reference R/h Limitations

Hall and Watts (1953) 3.05 tan(β)−0.13
(a
h

)1.15 tan(β)0.02 0.050 ≤ a/h ≤ 0.564,
10◦ ≤ β ≤ 45◦

Street and Camfield (1967) No empirical equation available 0.100 ≤ a/h ≤ 0.645,
β = 90◦

Maxworthy (1976) No empirical equation available 0.118 ≤ a/h ≤ 0.665,
β = 90◦

Müller (1995) 1.25

(
H

h

)5/4(H

L

)−3/20(90◦

β

)1/5
0.011 ≤ a/h ≤ 0.521,
18.4◦ ≤ β ≤ 90◦

Evers and Boes (2019) 2
a

h
exp

(
0.4

a

h

)(90◦

β

)0.20
0.007 ≤ a/h ≤ 0.690,
10◦ ≤ β ≤ 90◦

In an attempt to provide a unique and reliable prediction approach for non-

breaking solitary and impulse wave run-ups, Evers and Boes (2019) suggested a new
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equation based on 359 experiments from previous studies (Table 2.1). Their equation

predicts the laboratory R with less than 20% deviation, while previous equations

tend to underestimate R for a/h < 0.1.

When R is greater than the available freeboard f , wave overtoppings are observed

(Fig. 2.3). These are relevant for either dams (Fig. 2.3a), with potentially disastrous

consequences, or onshore structures, such that the waves overtop the shore transform-

ing into overland flows (Fig. 2.3b). Fuchs and Hager (2015) performed 2D laboratory

experiments in a 0.50 m (width) × 11.00 m (length) × 1.00 m (depth) wave flume to

investigate the transformation of solitary waves into overland flows. Several experi-

ments have been conducted with the investigated ranges of 0.1 ≤ a/h ≤ 0.7, relative

shore freeboards 0.04 ≤ zf/h ≤ 0.56 and shore inclinations 11◦ ≤ βs ≤ 34◦. The

overland flow depth hs and velocity us were expressed as

hs = hs0

1− tanh

0.54[ xof
zf + h

(
zf + h

h

)5.3 tanβ−1.4
]0.39 and (2.16)

us = 1.6c tanh

[
2.2

(
aeff
zf + h

)0.75
]
, (2.17)

with the streamwise overland flow coordinate xof (Fig. 2.3b), the overland flow depth

at xof = 0

hs0 =
(0.4 tanβs + 0.9)aeff
[(zf + h)/h]0.45 cotβs

(2.18)

and the effective wave amplitude

aeff = a−
zf (tanβs)

0.05

3
. (2.19)

These equations can be complemented with the model of Cross (1967) (Eq. 2.14) to

evaluate surge forces on onshore structures.

2D overtopping of dams has been recently investigated by Kobel et al. (2017)

in a 0.50 m (width) × 11.00 m (length) × 1.00 m (depth) wave flume. The wave

overtopping volume V and the maximum overtopping depth over the dam crest d0
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were measured with a high-speed camera. Solitary waves with 0.1 ≤ a/h ≤ 0.7 and

dam inclinations β = 18.4, 45.0 and 90.0◦ were investigated. The laboratory data

were approximated as

V = 1.35
( a

H

)1.5 [a
h

(
h

l

)(2h/a)(β/90◦)0.25 (a− f

s

)0.12
]0.7

h2 and (2.20)

d0 = 1.32

[
a

h

(
h

l

)4[(β/90◦)−0.21−a/h]( β

90◦

)0.16
]
l, (2.21)

with the dam height l and thickness s. However, Eq. (2.20) can be applied for a > f

only.

d0

R
a

h

V

β

f
l

l

h βs

z

x
a

hs

zf

us

z

x

s

(a)

(b)

s

Overtopping waves

xof

Figure 2.3. Sketches with the main parameters for (a) wave run-up and overtopping

of a dam and (b) solitary wave transformation to overland flow.

Selected studies (Mallayachari and Sundar, 1995; Ramsden, 1996; Didier et al.,

2014) about wave impact pressures and forces are addressed hereafter. Mallayachari

and Sundar (1995) conducted 2D experiments in a 0.30 m (width) × 10.00 m (length)

wave flume with h = 0.315 m (Fig. 2.4). The wave flume was equipped with a paddle-

type wave maker and a 4.5 mm thick plastic plate, which was located approximately

9 m downwave of the wave maker. The plate was supported by a steel structure

and equipped with 4 pressure transducers. Experiments involved regular and random

18



2.3 Previous work

waves with 0.53 s ≤ T ≤ 1.25 s and maximum (subscript max) Hmax = 0.10 m. The

measured p at the plate was successfully compared with the solution of Tadjbakhsh

and Keller (1960) in a few experiments (Section 3.3.1.1).

Plate

Wave makerWave gauges

Figure 2.4. Side view of the experimental set-up from Mallayachari and Sundar

(1995).

Ramsden (1996) conducted laboratory tests in a 0.396 m (width) × 36.600 m

(length) × 0.610 m (height) wave tank. The solitary wave horizontal (subscript H)

forces FH and bending moments MH on a vertical wall were measured. These mea-

surements were approximated by Evers et al. (2019), taking over the concepts intro-

duced in the first version of the manual Heller et al. (2009), as

FH = [1− 1.5(a/h)]1/6(1/2)ρwg(2a+ h)2 and (2.22)

MH = [1− 1.5(a/h)]1/6(1/6)ρwg(2a+ h)3. (2.23)

A triangular distribution of the pressure was assumed at the plate, as

p(z) = [1− 1.5(a/h)]1/6ρwg(2a− z). (2.24)

Eqs. (2.22) and (2.23) are valid for 0.0 ≤ a/h ≤ 0.6 and rely on a few experiments

only. For overtopping waves, Eq. (2.24) was reduced to a trapezoidal distribution by

disregarding the triangular section above the dam crest. This resulted in the reduced

(subscript red) force

FH,red =
(h+ f)

2

[
pK +

2FH

2a+ h

]
(2.25)
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where FH is given from Eq. (2.22) and pK is the pressure at the dam crest

pK =
2FH

(2a+ h)2
(2a− f). (2.26)

More recently, Didier et al. (2014) conducted experiments of waves interacting

with a offshore breakwater in a 1.60 m (width) × 49.40 m (length) × 1.20 m (height)

wave flume. The flume was equipped with a piston-type wave maker, resistance-

type wave gauges and pressure sensors at the front of the breakwater. Experiments

involved several wave conditions with H = 0.10 m, T = 1.30 s and 0.266 m ≤ h ≤

0.325 m. The time series of FH at the wall showed a first peak of relatively short

duration, followed by a second peak due to the collapse of the water column. These

experiments were specifically designed to validate a particle-based numerical model

(Fig. 2.11).

2.3.1.2 Flexible walls

The dam break wave involving an elastic plate (Antoci et al., 2007) and the dam

break wave impacting a flexible obstacle (Liao et al., 2015) represent two of the most

significant WFSI benchmark cases. Antoci et al. (2007) used a tank with an elastic

gate fixed at the top end and free at the bottom end (Fig. 2.5a). The tank was filled

with water of depth h = 0.140 m and an external support was used to close the

gate. The external support was suddenly removed allowing the gate to deform under

the water flow. Large deformations of the gate were observed, with the maximum

displacements occurring near the top end.

Liao et al. (2015) conducted a series of quasi 2D tests in a 0.60 m (height)× 0.20 m

(width) × 0.80 m (length) wave tank (Fig. 2.5b). A water column was confined at the

upwave side of the tank and an elastic plate was located 0.20 m from the downwave

side. This consisted of silicon rubber with solid (subscript s) density ρs = 1161.54

kg/m3 and Young’s modulus E = 3.50 MPa. Experiments consisted in abruptly lifting

the gate with h = 0.2, 0.3 and 0.4 m, generating a dam break wave.
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During the initial stage of the wave impact, the plate showed the largest displace-

ment at the top end with a first mode of vibration. After the wave was reflected by

the downwave side, higher modes of vibration were observed with decreasing displace-

ments. These 2 studies have been widely used to validate WFSI numerical models

(Section 2.3.2).

0.1 m

0.140 m

0.079 m

Rigid wall

(a)

Elastic gate

h

(b)

Figure 2.5. Dam break wave: (a) side view of the tank with elastic gate experiment

from Antoci et al. (2007) and (b) overview of the experiments of Liao et al. (2015).

Kimmoun et al. (2009) conducted a laboratory investigation of solitary waves

impacting plastic plates. The set-up consisted of a wave flume with a 1:15 sloped

shore and a 1.00 m high plate (Fig. 4.12a). A range of a and plate thicknesses s

were investigated. Wave breaking occurred in proximity of the plate in most tests,

leading to a challenging wave-plate interaction. Snapshots of the wave impact and

the plate deformation were recorded, establishing a new database for the validation

of numerical models. However, the data were published only partially and the wave

force on the plate was not measured.

Large-scale experiments have been conducted by Linton et al. (2013) to investigate

tsunamis interacting with wood walls. As shown in Fig. 2.6, the set-up consisted of

a 28.6 m flat section with a 1:12 sloped shore followed by an horizontal shore where

the wall was located. Different timber sizes and spacings were used to reinforce the

wall, resulting in 3 configurations. Solitary waves with 0.09 m ≤ a ≤ 1.04 m were
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investigated. Transient and quasi-static F were observed in each experiment. The

transient F was defined as the force occurring shortly after the initial impact. The

quasi-static F was calculated as the average value over 1 s, starting 0.5 s after the

transient force was observed. Larger a resulted in larger F , following a linear trend. A

good agreement between Eq. (2.14) and the transient experimental F was observed.

The most deformable wall configuration resulted in approximately 25% smaller F

than the stiffest configuration.

Wall

Pressure transducers1:12Wire resistance wave gauges

Ultrasonic wave gaugesWave maker

28.6 m 25.4 m 7.3 m

Figure 2.6. Side view of the experimental set-up with location of the measurement

systems in the study of Linton et al. (2013).

Mai et al. (2020) investigated the effects of the structure elasticity in water-

structure impacts. Tests of a plate impacting onto a water surface and waves impact-

ing a vertical plate have been conducted. The plates were designed to be fixed to the

support frames or connected by springs, mimicking rigid and flexible conditions. It is

important to note that different structure elasticities have been modelled by chang-

ing the boundary conditions of the support frame (Mai et al., 2020), rather than the

plate elasticity, e.g. Young’s modulus, as in the present and other studies.

Under both the rigid and flexible conditions, the stiffness of the structure had an

effect on F . Smaller impact F were observed for the elastic plate impacting onto a

water surface compared to the rigid one at high impact velocities.

For wave impact on a vertical plate, the elastic plates resulted in smaller F than

the rigid ones for high aeration condition. On the other hand, for slightly breaking

waves, larger p were observed for the elastic plates.

Further investigation of waves impacting buildings of different stiffnesses was

22



2.3 Previous work

conducted by Krautwald et al. (2022). Large-scale experiments of wave impacts on

onshore rigid and elasto-plastic structures were performed to investigate the struc-

tural collapse under extreme waves. For small offshore wave heights, F on rigid and

elasto-plastic structures showed similar values. For larger offshore wave heights and

consequently larger F , the elasto-plastic structure showed smaller F during the first

stage of the impact. In the second stage of the impact, similar F were observed for

the different structures, with the rigid one not necessarily resulting in the largest F .

2.3.2 Numerical findings

Given the reliability and maturity of Computational Fluid Dynamics (CFD) and

Computational Structural Dynamics (CSD), numerical modelling has been largely

applied to WFSI phenomena in the last decade. The fluid and solid governing equa-

tions are solved within a unique solver in the monolithic approaches (Rao et al.,

2017; Liu and Zhang, 2019). These are characterised by higher accuracy and robust-

ness compared to partitioned approaches, however, at higher computational cost.

Partitioned techniques consist in coupling the fluid and solid domains through an

exchange of information at the fluid-solid interface (Sotiropoulos and Yang, 2014).

This is generally performed by imposing continuity of displacements, velocity and

equilibrium of stresses at the interface. Although they may be less accurate than

monolithic approaches, partitioned approaches are more efficient and existing CFD

and CSD solvers can be used.

Both mesh-based, e.g. Finite Element Method (FEM, Hartmann and Katz, 2004)

and Finite Volume Method (FVM, Tuković et al., 2018), and mesh-free methods, e.g.

Smoothed Particle Hydrodynamics (SPH, Didier et al., 2014) and Moving Particle

Semi-implicit (MPS, Rao et al., 2017), have been applied to WSI. Mesh-based meth-

ods are highly reliable for both CFD and CSD and computationally efficient. How-

ever, they may be inaccurate for large deformations. On the other hand, mesh-free

approaches can tackle large deformations efficiently. However, they may be compu-

tationally expensive and less accurate for the structural analysis compared to mesh-
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based methods (Kumar et al., 2015; Liu and Zhang, 2019). Mesh-based and -free

approaches have also been combined to minimise the disadvantages of each. This

takes the advantages of each approach, however, making the fluid-solid coupling even

more challenging, with particular emphasis to the energy balance at the interface

(Degroote, 2013).

2.3.2.1 Mesh-based models

He and Kashiwagi (2012) investigated nonlinear waves interacting with a vertical

plate based on a newly developed numerical model. This consisted of a Mixed Eulerian

Lagrangian (MEL) method for the fluid and FEM for the solid within a monolithic

coupling. After validation with an analytical and another numerical model, solitary

waves impacting plates with different stiffnesses have been simulated. The numerical

results showed that the hydroelastic behaviour was strongly influenced by the plate

stiffness and support conditions.

Liao et al. (2015) developed a Finite Difference Method FDM coupled with a

FEM approach to model free surface flows interacting with elastic structures. The

fluid was solved with the FDM and FEM was adopted for the structural analysis

with a moving Lagrangian framework. The coupling was performed by transferring

the fluid forces to the structure first. The solid was then solved and its displacements

were used to update the fluid. This model was succesfully validated with a dam break

wave impacting a flexible plate (Figs. 2.7 and 2.13).

Given the reliability, maturity and flexibility of OpenFOAM (OF), several WFSI

codes have been developed in the OF framework (Higuera et al., 2013; Chen et al.,

2014; Higuera et al., 2014; Hu et al., 2016; Rege and Hjertager, 2017; Mart́ınez-Ferrer

et al., 2018; Tuković et al., 2018; Cardiff et al., 2018; Chen et al., 2019; Chen et al.,

2020; Romano et al., 2020; Di Paolo et al., 2021; Wang et al., 2023). To be concise,

only a few of the OF studies will be presented hereafter.
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Figure 2.7. Comparison between experimental and numerical results of a dam break

wave impacting a flexible plate (Liao et al., 2015). The colour function ϕm denotes

the water, air and solid phases.

Chen et al. (2014) and Hu et al. (2016) implemented new boundary conditions in

OF for the generation of regular, random and focused waves. Both models have been

succesfully validated with ad hoc experiments of waves interacting with cylinders.

However, the structural analysis was not provided.

Tuković et al. (2018) developed the fluid-solid toolbox fsifoam implemented in

Foam-Extend (FE, OpenFOAM extension, 2016). The fluid and solid domains were

solved with FVM with a partitioned coupling approach. This consisted of imposing

kinematic and dynamic boundary conditions at the fluid-solid interface. The accuracy

of the structural analysis has been successfully verified with the analytical solution

for a uniformly loaded plate with a circular hole. This toolbox was employed by Rege

and Hjertager (2017) to investigate vibrations of a flexible structure due to turbulent

flows, showing the capability of fsifoam to model such complex phenomena.

Chen et al. (2020) and Romano et al. (2020) developed new approaches in the

OF framework for the modelling of moving bodies interacting with a water basin.

Chen et al. (2020) presented a novel numerical methodology based on the Immersed

Boundary Method (IBM). This was validated with large-scale laboratory experiments

of tsunamis generated by iceberg calving (Heller et al., 2021). A new 3D model based

on the overset mesh technique was presented and validated by Romano et al. (2020).
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Di Paolo et al. (2021) also proposed a multi-domain method for the simulation of

WFSI phenomena in OF. The computation domain was divided into subdomains

where the governing equations are solved, with the benefit of reducing the computa-

tional time.

Hu et al. (2023) suggested a fully-coupled WFSI numerical model implemented

in FE. This model combined the IHFOAM toolbox (Higuera et al., 2013) for the

wave modelling with an available fluid-solid coupling approach (Tuković et al., 2018;

Cardiff et al., 2018). After validation with numerical and laboratory observations,

nonlinear waves interacting with flexible plates have been investigated. A range of

wave and plate parameters have been modelled to provide insight into the effect of the

structural elasticity on the wave run-up, force and reflection. It has been found that

the wave reflection is reduced for more flexible plates, with smaller F on the flexible

compared to the rigid plates. Empirical equations were also suggested to predict wave

run-ups R and F , taking the plate flexibility into account.

2.3.2.2 Coupled mesh-based and mesh-free models

Kumar et al. (2015) developed a coupled FVM-SPH to solve free surface flows with

large deformations. This model was implemented in OF and did not provide the

structural analysis. The entire domain was solved with FVM first and SPH was then

applied to optimise the solution where FVM may be inaccurate. The FVM-SPH

coupling was performed by locating the SPH particles at the centre of the FVM cells

and estimating their density from the p at the corresponding cells. This model was

successfully validated with a dam break experiment (Colagrossi and Landrini, 2003).

Solitary waves interacting with elastic structures have been investigated by Rao

et al. (2017) with a MPS-FEM approach based on a partitioned coupling approach.

The model was validated with experimental observations of a dam break wave involv-

ing an elastic gate, as shown in Fig. 2.8. Solitary waves impacting rigid and flexible

plates were investigated then. The flexible plate showed smaller and delayed Fmax

compared to the rigid one.
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t = 0.04 s t = 0.12 s t = 0.20 s t = 0.28 s

u (m/s)

0.0 1.5

Figure 2.8. Validation of the numerical model of Rao et al. (2017) with a dam break

laboratory experiment (Antoci et al., 2007).

Zhang et al. (2019a) proposed a partitioned coupled MPS-FEM model. The cou-

pling was performed by transferring the solid displacements to the fluid and the fluid

forces to the solid. Additional layers of fluid and solid ghost particles were used to

guarantee an accurate pressure field at the interface. A novel hybrid approach com-

bining a Lagrangian Smoothed FEM (S-FEM) with a particle method was developed

by Zhang et al. (2019b). S-FEM was applied to solve both the fluid and solid domains

in the first stage of the simulation. The regions of fluid with large deformations were

then modelled with a Decoupled Finite Particle Method (DFPM). This model was

validated with the experiment of Antoci et al. (2007), as shown in Fig. 2.9.

σs (Pa)p (Pa)
0 480 1200 60000 0 60000

t = 0.04 s t = 0.08 s t = 0.12 s

Figure 2.9. Comparison between the experiment of Antoci et al. (2007) and numer-

ical results of Zhang et al. (2019b), showing the pressure p and stress σs fields.

2.3.2.3 Mesh-free models

Antoci et al. (2007) validated an in-house SPH model based on their dam break

experiment. Both the fluid and solid were solved with SPH imposing kinematic and
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dynamic boundary conditions at the interface. The numerical model captured the

gate deformation and the evolution of the flow well, however, the gate displacements

were slightly overpredicted (Fig. 2.10).

Figure 2.10. Dam break wave with an elastic gate: comparison between laboratory

measurements and numerical observations of Antoci et al. (2007).

Didier et al. (2014) validated an SPH model with own experimental observa-

tions (Section 2.3.1.1). A weakly-compressible SPH method implemented in the open

source code SPHysics (Gomez-Gesteira et al., 2012) was used, however, no struc-

tural analysis was included. The wave generation was performed through a numer-

ical piston-type wave maker with the same amplitude and movement as observed

in the physical tests. The numerical findings successfully captured the experimental

observations (Fig. 2.11).

A fully mesh-free method was developed by Khayyer et al. (2018). The fluid was

solved with an incompressible SPH method and an SPH discretisation was used for

the solid. The coupling consisted in treating the solid particles as a moving boundary

for the fluid, satisfying kinematic and dynamic boundary conditions at the interface.

This model successfully simulated a dam break with an elastic gate test (Antoci et al.,

2007). Based on the same coupling procedure, Khayyer et al. (2019) developed an

MPS-based solver. The comparison with the dam break experiment from Liao et al.

(2015) showed a good agreement overall.
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Figure 2.11. Numerical-laboratory modellings of wave impacts on a rigid onshore

wall (Didier et al., 2014).

Sun et al. (2019) presented a fluid δ-SPH model coupled with a total Lagrangian

particle method applied to the structure. The δ-SPH scheme is an SPH method where

an extra term was included into the continuity equation for preventing oscillations

of p. An Adaptive Particle Refinement (APR) technique was also implemented to

increase the resolution in certain areas, e.g. around the structure. This numerical

model was validated with the dam break wave benchmark test of Liao et al. (2015)

(Figs. 2.12 and 2.13). This showed the capability of the numerical model of capturing

the water flow, the plate deformation and the air cavity evolution well. However,

some discrepancies were observed, pertaining with the initial deflection of the plate

and the cavity behaviour in the final stage of the tests. These deviations may be due

to 3D effects, which were not modelled in the simulations.

O’Connor and Rogers (2021) proposed a unified SPH approach for single-phase

flows interacting with flexible structures. Fluid and solid governing equations were

monolithically coupled within a unique framework. The challenges of SPH to accu-
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rately tackle structural dynamics were addressed by using a total Lagrangian for-

mulation with kernel function. The comparison with a dam break wave impacting

a flexible obstacle (Fig. 2.13) showed a good agreement between the numerical and

laboratory plate displacement during the initial impact. However, larger deviations

are observed for t ≥ 0.45 s. In this phase, the wave entrapped an air pocket which

was not accurately modelled in the simulations, explaining the observed deviations.

The numerical models reviewed in this section are summarised in Table 2.2, including

the fluid and solid solvers and the coupling approach.

Figure 2.12. Dam break wave impacting a flexible obstacle: comparison between

laboratory experiments (Liao et al., 2015) and simulations of Sun et al. (2019).

d x
 (

m
) 

t (s) 

Liao et al. (2015) (Laboratory) 
Liao et al. (2015) (Numerical) 
Sun et al. (2019) 
O'Connor and Rogers (2021) 

Figure 2.13. Dam break wave impacting a flexible obstacle: comparison of the

horizontal plate displacement dx between laboratory (Liao et al., 2015) and numerical

(Liao et al., 2015; Sun et al., 2019; O’Connor and Rogers, 2021) experiments.
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Table 2.2. Overview of numerical models for WSI.

Reference Fluid Solid Coupling
M

e
sh

-b
a
se
d

He and Kashiwagi (2012) MEL FEM Monolithic approach

Chen et al. (2014) FVM - -
Liao et al. (2015) FDM FEM Partitioned approach
Hu et al. (2016) FVM - -

Tuković et al. (2018) FVM FVM Partitioned approach
Chen et al. (2020) IBM IBM Partitioned approach

Romano et al. (2020) FVM - Overset mesh technique
Di Paolo et al. (2021) FVM - -

Hu et al. (2023) FVM FVM Partitioned approach

M
e
sh

-b
a
se
d
-

m
e
sh

-f
re

e Kumar et al. (2015) SPH-FVM - -
Rao et al. (2017) MPS FEM Partitioned approach

Zhang et al. (2019a) MPS FEM Partitioned approach

Zhang et al. (2019b)
S-FEM

S-FEM Ghost particle approach
DFPM

M
e
sh

-f
re

e Antoci et al. (2007) SPH SPH Partitioned approach
Didier et al. (2014) SPH - -
Khayyer et al. (2018) SPH SPH Moving wall approach
Khayyer et al. (2019) SPH SPH Moving wall approach

Sun et al. (2019) δ-SPH δ-SPH Ghost particle approach

2.4 Model-prototype similarity

2.4.1 Introduction

Complex phenomena are often investigated based on laboratory modelling to pro-

vide physical insight, inform design solutions and to calibrate and validate numerical

solvers. Laboratory tests are carried out at reduced size with the aim of capturing the

main physical aspects of the full-size prototype. Exact model-prototype similarity is

achieved when geometric, kinematic and dynamic similarities are satisfied (Kobus,

1980; Hughes, 1993; Heller, 2011).

Geometric similarity is satisfied when the ratios between lengths in the prototype

and model are constant. The ratio between a characteristic length in the prototype

(subscript P ) and model (subscript M) is defined as the geometric scale factor

λ =
hP
hM

. (2.27)
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Consequently, areas and volumes are scaled with λ2 and λ3 for the model, respec-

tively. Kinematic similarity requires that the motion in the prototype and model are

proportional at all times. This is achieved with constant ratios of time, velocity and

acceleration between the prototype and its model.

On top of geometric and kinematic similarities, dynamic similarity implies that

all force ratios must be identical between the prototype and its model. The most

relevant forces in fluid dynamics include inertial, gravity, viscous, surface tension,

compressibility and elastic forces (Hughes, 1993; Heller, 2011). Their ratios are defined

as the Froude number Fr = (inertial force/gravity force)1/2, Reynolds number Re =

(inertial force/viscous force), Weber number We = (inertial force/surface tension

force), Cauchy number Ca = (inertial force/elastic force) and the Mach number Ma

= (inertial force/compressibility force).

Unfortunately, it is unpractical, even impossible in some cases, to keep all force

ratios identical between the prototype and model. Therefore, it is common practice

not to conserve some of the force ratios in favour of more feasible laboratory models.

This results in deviations between the upscaled model results and the prototype

observations, known as scale effects (Le Méhauté, 1976; Hughes, 1993; Heller, 2011).

Non-negligible differences between the upscaled model results and the prototype

observations may also result due to model effects (Kobus, 1980; Hughes, 1993). These

are due to the incorrect and/or idealised modelling of the prototype features, includ-

ing the geometry, e.g. the modelling of a 3D phenomenon in 2D, the fluid properties,

such as fresh instead of sea water, and the structure properties, e.g. the mass. In

addition, measurement effects may be the reason of model-prototype deviations due

to different measurement techniques used in the prototype and its model.
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2.4.2 Froude similarity

Froude similarity is often applied for hydraulic models (Le Méhauté, 1976; Hughes,

1993, Heller, 2011; Sheng et al., 2014). This consists in satisfying the criterion

FrM = FrP . (2.28)

Based on Eq. (2.28), the scaling laws for all the physical parameters can be derived

(Table 2.3). Although Froude similarity is particularly convenient for scaling laminar

or fully turbulent pure water flows (Heller, 2017), it is often applied to air-water flows.

In these cases, Froude similarity typically provide incorrect predictions at small scales

when ordinary water and air are used in the model, such that Re, We and Ma are

not conserved.

2.4.3 Cauchy similarity

The geometry and elastic properties of the structure must also be appropriately scaled

to achieve full similarity for WFSI (Hudson et al., 1979; Hughes, 1993; Heller, 2011;

Martinelli et al., 2011; Krautwald et al., 2022). When elastic forces are significant,

the scaling laws follow the Cauchy similarity. A combined Froude-Cauchy similarity

is typically applied to WFSI phenomena (Le Méhauté, 1965). Under this scaling

approach, the scaling laws of the structural properties can be derived in multiple

ways. For example, by defining the elastic forces as EA⊥ (Hughes, 1993), with E as

the Young’s modulus and A⊥ as the cross-sectional area of the structure, the scaling

law of E results in λ when the forces are scaled with λ3 (Table 2.3). This scaling law

can also be derived based on the proportionality of the bending stiffness EI, with I

as the second moment of inertia, between the prototype and the model (Chakrabarti,

2005; Krautwald et al., 2022).

Given that several restrictions need to be fulfilled under Froude-Cauchy similarity,

it might be challenging to find a material with the appropriate physical and mechani-

cal properties for the model. However, an incorrect scaling of the structural properties
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in the model result in an incorrect representation of the structure dynamics.

Table 2.3. Scaling laws for relevant parameters under Froude-Cauchy similarity,

with the 3 units length [L], mass [M] and time [T].

Parameter Unit Scaling law

Length [L] λ

Area [L2] λ2

Volume [L3] λ3

Time [T] λ1/2

Velocity [L/T] λ1/2

Acceleration [L/T2] 1

Mass [M] λ3

Force [ML/T2] λ3

Pressure [M/(LT2)] λ

Young’s modulus [M/(LT2)] λ

2.4.4 Scale effects

Scale effects are due to non identical force ratios between the prototype and its model.

Under Froude similarity, scale effects are commonly due to a non conservation of Re,

We and/or Ma when ordinary water and air are used in the model. A common

strategy for reducing scale effects under Froude similarity is based on the concept of

Re invariance (Heller, 2017). This refers to a fluid state achieved at high Re, where

the effect of the viscosity is negligible. Re invariance can be achieved with relatively

small viscosity and/or relatively large model size, with the boundary limit strictly

depending on the investigated phenomenon.

For wave impacts on vertical rigid seawalls, scale effects have been widely investi-

gated under Froude similarity (Hughes, 1993; Peregrine, 2003; Cuomo et al., 2010b;

Martinelli et al., 2011; Bredmose et al., 2015). Although negligible scale effects have

been observed for non-breaking wave impacts (Hughes, 1993; Cuomo et al., 2010b),

breaking wave impacts may need scale corrections (Hudson et al., 1979; Hughes, 1993;

Peregrine, 2003; Cuomo et al., 2010b; Martinelli et al., 2011; Bredmose et al., 2015).

The unscaled water and air properties, e.g. viscosity and surface tension, result in
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different air effects in the models, leading to incorrect predictions of the pressures and

forces. Based on historical data and the theoretical work of Takahashi et al. (1985),

Cuomo et al. (2010b) proposed an approach to remove scale effects in the upscaling of

breaking wave pressures. This is based on the Bagnold number Ba, being an estimate

of the wave impact strength (Bagnold, 1939). For breaking wave impacts on walls,

Ba can be estimated as (Cuomo et al., 2010b)

Ba =
0.2(1− π/12)

π/12

ρwg(h+H)

p0
, (2.29)

with the atmospheric pressure p0. The maximum pressures pmax,P and pmax,M can be

estimated by entering Fig. 2.14a with BaP and BaM (Eq. 2.29), move up to the solid

line and reading the corresponding values of p on the vertical axis. The corrected

pressure scaling law

λp =
pmax,P

pmax,M
. (2.30)

can then be evaluated. In order to take more complex processes into account, in-

cluding air leakage and air entrainment at the impact, an equivalent energy loss El

was introduced, resulting in the dashed lines in Fig. 2.14a. Consequently, from the

interception between the measured pmax,M and BaM , the corresponding El curve can

be identified. Therefore, by moving along this curve, the correct value of pmax,P can

be read at BaP .

This approach demonstrated that the Froude scaling laws tend to overpredict

breaking wave impact pressures. These findings were confirmed by the numerical

observations of Bredmose et al. (2015). For violent wave impacts, they found that

the wave impact pressures follow the Bagnold-Mitsuyasu scaling law for p ≥ 3.18p0.

This was generalised for 3D air pockets of arbitrary shape as

CB-M
ρwu

2

p0
=

(
pmax

p0
+ 1

)0.4/1.4

+ 0.4

(
pmax

p0
+ 1

)−1/1.4

− 1.4, (2.31)

with the scale-independent constant CB-M (Bredmose et al., 2015) and the fluid
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velocity u. On the other hand, the Froude scaling laws accurately predict p for impact

pressures below 3.18p0. Eq. (2.31) is shown in Fig. 2.14b, along with the line based on

the Froude scaling laws. By entering Fig. 2.14b with pmax,M/p0, the corresponding

abscissa value can be read. This is multiplied by λ to obtain the abscissa values for

the prototype and consequently pmax,P /p0 can be read on the vertical axis.

0.00
6

0.018

0.030

El = 0.054

(a) (b)

Figure 2.14. Upscaling approaches to remove scale effect in wave impact pressures:

(a) pmax/p0 versus Ba from Cuomo et al. (2010b) and (b) pressure scaling curves

based on Bagnold-Mitsuyasu and the Froude scaling laws (after Bredmose et al.,

2015).

More recently, novel scaling laws have been suggested by Catucci et al. (2021,

2023) to avoid scale effects in air-water flows. These were derived based on the self-

similarity of the governing equations, allowing the modelling of air-water flows with-

out Re, We and Ma scale effects. The new scaling laws for all the flow parameters

have been derived, being more flexible than Froude scaling laws, such that different

scaling configurations can be obtained. These were successfully validated based on

the simulations of air-water flow phenomena, including a dam break wave impacting

an obstacle, a plunging water jet and a Taylor bubble.

Nevertheless, an investigation of scale effects involving flexible structures is still

lacking. For WFSI, additional scale effects may occur if the Cauchy similarity is not

satisfied. This may be due to the challenge of finding a material for the model with the

desired physical and mechanical properties, e.g. when the prototype is made of rubber.

The unscaled structural properties lead to scale effects which may be significant
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for both the wave loading and structural response and need to be appropriately

investigated.

2.5 Summary and research gaps

In this Chapter 2, theoretical insight into wave theories was addressed first. Avail-

able theoretical models (Sainflou, 1928; Tadjbakhsh and Keller, 1960; Cross, 1967)

for wave loading on rigid walls were then described in Section 2.2.2. The models of

Sainflou (1928) and Tadjbakhsh and Keller (1960) provide a good estimation of the

wave pressures for unexceptional real events, e.g. wind waves. However, they may

be inaccurate for more extreme waves. A prediction approach for impulse waves im-

pacting onshore plates was proposed by Cross (1967). The surge force was expressed

as a function of the overland flow features, which, however, may be challenging to

accurately predict.

The most relevant laboratory studies of WSI were reviewed in Section 2.3.1. This

included laboratory investigations with plates which are rigid, e.g. solitary wave im-

pacts on a wall (Ramsden, 1996), and flexible, e.g. dam break wave involving an elastic

plate (Antoci et al., 2007). Despite of several benchmark studies, a comprehensive

case for wave impact on plates of different stiffnesses is still lacking. This should pro-

vide the wave parameters, e.g. water surface elevation and force, and plate response,

e.g. displacement, under several configurations, enabling a systematic validation of

numerical models.

Given the maturity of CFD and CSD, the numerical modelling of WFSI has been

largely developed in the last decade. The most relevant WSI and WFSI numerical

studies were addressed in Section 2.3.2. Most of these studies proposed to separately

solve the fluid and solid domains with the so-called partitioned approach. On the

other hand, monolithic models were applied in a few studies, in which a unique

solver is used for both domains (Table 2.2). Given the reliability and efficiency of OF

for both CFD and CSD, an OF toolbox (Cardiff et al., 2018) was used in the present

37



2.5 Summary and research gaps

study, however, requiring further validation for WFSI.

The review of the most relevant WSI laboratory and numerical studies revealed

the need to further validate existing approaches for the prediction of impulse wave

loads on vertical rigid walls (Eqs. 2.22 and 2.23). Physical insight into the wave

pressure is also required. A systematic investigation of impulse wave impacts on rigid

walls, including both 2D and 3D tests, would address this shortcoming.

As showed in Sections 2.3.1 and 2.3.2, evidence regarding the effect of the plate

flexibility on the wave forces is still inconclusive. An accurate understanding of the

wave-structure interaction effects is still lacking, requiring a thorough investigation

with a range of incident waves and plate stiffnesses. This would enhance the physical

understanding of WFSI and support the design of coastal and offshore structures.

Finally, the main aspects related to scaling laws and scale effects were addressed

in Section 2.4. The Froude and Cauchy similarities were reviewed, being the most

common scaling laws applied in hydraulics and for WFSI. The sources of scale effects

in WFSI were briefly discussed and available approaches to remove them in breaking

wave impacts on rigid walls were presented. However, scale effects in WFSI have

not yet systematically been investigated. A comprehensive investigation along with

a new and more practical scaling approach would support laboratory investigations

of WFSI.
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Chapter 3

A numerical investigation of

tsunamis impacting dams

This chapter is comprised of the following journal article:

Attili, T., Heller, V. and Triantafyllou, S., 2021. A numerical investigation of tsunamis

impacting dams. Coastal Engineering 169, 103942.

Despite of the different layout, the article is entirely included within this chapter

with the following differences:

1. Section, page, figure, table and equation numbers are amended to ensure con-

sistency across the thesis.

2. The reference to journal details, e.g. volume and page numbers, are omitted.

3. The email addresses of the authors have not been included.

4. Dates of submission, revision and acceptance have not been included.

5. Minor adjustments have been made to some equations, figures and text to

correct a minor typo, provide more details and ensure consistency across the

thesis.

6. The nomenclature and references list are provided at the end of this thesis.
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A numerical investigation of tsunamis impacting dams

Tommaso Attili1, Valentin Heller1, Savvas Triantafyllou2

1Environmental Fluid Mechanics and Geoprocesses Research Group, Faculty of

Engineering, University of Nottingham, Nottingham NG7 2RD, UK

2Institute for Structural Analysis and Aseismic Research, School of Civil

Engineering, National Technical University of Athens, Athens, Greece

Abstract

Landslides, rockfalls, and iceberg calving impacting into a water body generate large

landslide-tsunamis posing a serious hazard in lakes and reservoirs. These waves can

impact and even overtop dams as in the 1963 Vajont disaster in Italy. However,

estimating the effects of tsunamis on dams, e.g. pressures and forces, and 3D ef-

fects is challenging. An accurate prediction of these effects is also important for a

range of coastal and offshore applications. The present study focuses on the numer-

ical modelling of landslide-tsunamis impacting dams with the open source toolbox

solids4foam. After a validation with theoretical, experimental, and numerical results,

5th order Stokes, cnoidal, and solitary waves were simulated in 72 2D experiments

with dams of steep to vertical inclinations. The wave loading on dams was found

to be in agreement with predictions based on an existing empirical approach, sig-

nificantly expanding its limited validation conditions. New empirical equations are

suggested to predict the wave run-up height together with the overtopping volume

and depth. These address the cases where no empirical equations are available or

existing equations result in large deviations from the numerical results. Novel insight

in the dynamic pressure is provided, supported by new semi-empirical equations. Fur-

ther, simulations in 3D were performed to quantify the effects of the dam curvature

and asymmetrical wave impact angles. Both effects combined induce an increase in

40



3.1 Introduction

the run-up height at dam flanks of up to 32%. Such findings support the design of

dams and tsunami hazard assessment.

3.1 Introduction

3.1.1 Background

Landslide-tsunamis, also called landslide-generated impulse waves, are generated by

landslides, rockfalls, and iceberg calving in water bodies such as lakes and reservoirs

(Heller and Hager, 2010; Heller et al., 2016; Bullard et al., 2019; Evers et al., 2019;

Meng et al., 2020; Heller et al., 2021; Rauter et al., 2021; Ruffini et al., 2021). The

energies of such gravity-driven masses are transferred into waves propagating across

water bodies and potentially interacting with dams. This may result in significant

run-ups and even overtoppings (Kobel et al., 2017; Evers and Boes, 2019; Evers

et al., 2019). Several destructive landslide-tsunamis have been documented in the

recent past. Among these, the one generated in the Vajont reservoir in Italy, in 1963,

caused approximately 2000 casualties (Panizzo et al., 2005b). More recently, the 2014

Lake Askja event on Iceland resulted in a run-up height of 71 m (Gylfadóttir et al.,

2017). Such events represent a persistent danger in regions with a large number of

lakes, fjords, and/or reservoirs such as China and Norway.

Studies into the risk of tsunamis must be carried out for large water bodies (Swiss

Federal Office of Energy, 2015), including tsunami impact and dam overtopping.

In addition to the hydrostatic force from the still water, tsunami forces may be

relevant (Ramsden, 1996) and an accurate prediction is important for the design of

dams and a range of further coastal and offshore structures, e.g. oil and gas rigs,

offshore wind turbine platforms, breakwaters, flood protection systems, and wave

energy converters. Nevertheless, the estimation of tsunami forces is still associated

with large uncertainties. Available prediction methods are based on a small number

of 2D laboratory experiments (Ramsden, 1996). Moreover, 3D effects, e.g. the dam

curvature and/or asymmetrical wave impact angles, often have to be neglected due
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to a lack of knowledge (Heller et al., 2009). Wave run-ups are also important for the

design of dams, e.g. to prevent dam overtoppings. This may cause severe damage to

the dam, e.g. at the crest or downstream slope, and/or to the downstream area.

The present study focuses on the numerical investigation of tsunamis impact-

ing dams to enhance hazard assessment. Tsunamis are modelled with idealised wave

types representing a wide range of impulse waves, e.g. generated by earthquakes, land-

slides, and icebergs. Computational Fluid Dynamics (CFD) shows a great potential

in modelling tsunamis (Yavari-Ramshe and Ataie-Ashtiani, 2016), waves impacting

walls (He and Kashiwagi, 2012; Chen et al., 2014; Didier et al., 2014; Hu et al., 2016),

and impulsive wave forces acting on recurved parapets (Castellino et al., 2018; Mar-

tinelli et al., 2018; Castellino et al., 2021; Dermentzoglou et al., 2021). Mesh-based

methods, e.g. the Finite Volume Method (FVM, Tuković et al., 2018), and mesh-free

methods (particle-based), e.g. Smoothed Particle Hydrodynamics (SPH, Didier et al.,

2014), have been successfully applied. However, mesh-based methods are more com-

putationally efficient and demonstrate a good convergence behaviour (Yavari-Ramshe

and Ataie-Ashtiani, 2016).

Recently, new approaches have been developed for modelling waves generated

by rigid bodies such as landslides. Chen et al. (2020) and Romano et al. (2020)

presented new methods based on the Immersed Boundary Method and Overset Mesh

Technique, respectively, in the OpenFOAM framework. Lagrangian approaches, e.g.

the Particle Finite Element Method, have also been applied as they are efficient in

solving large deformations (Franci et al., 2020; Mulligan et al., 2020). Furthermore,

a new multi-domain method was developed by Di Paolo et al. (2021) to simulate

wave-structure interactions in OpenFOAM. The present study relies on an available

FVM toolbox in Foam-Extend 4.0 (FE 4.0), capable of simulating both the fluid and

structure.

3.1.2 Previous work

An accurate prediction of the effects of tsunamis on dams is still challenging. The total

pressure p at the dam is composed of the dynamic pd and hydrostatic components. An
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analytical formulation of pd for linear waves propagating offshore in a water body was

developed by Dean and Dalrymple (1991) (Section 3.3.2.3). Sainflou (1928) derived

an analytical solution for pd from nonlinear and standing waves on a vertical wall.

Tadjbakhsh and Keller (1960) provided the theoretical pd and water surface elevation

η in function of the time t and the spatial coordinate x for periodic waves impacting

a vertical wall. As the methods of Sainflou (1928) and Tadjbakhsh and Keller (1960)

were originally developed for wind waves, they may be inappropriate to predict wave

pressures for more extreme cases, such as tsunamis.

Landslide-tsunamis can be approximated with Stokes (Dean and Dalrymple, 1991),

cnoidal (Dingemans, 1997), solitary (Boussinesq, 1871), and bore (Le Méhauté, 1976)

waves (Heller and Hager, 2011; Heller and Spinneken, 2015; Xue et al., 2019). These

different wave types result in different effects when impacting dams. Bore-like waves

are typically created in the generation zone and transform into cnoidal- or solitary-

like waves further offshore (Heller and Hager, 2011) or they are generated during

wave breaking near the shore. Wave breaking rarely occurs at a dam as the water

depth tends to increase and the wave amplitude tends to decrease towards the dam;

hence, solitary-like waves represent the most extreme case in most situations (Heller

et al., 2009; Kobel et al., 2017).

A mathematical investigation of solitary waves impacting a vertical wall was

conducted by Cooker et al. (1997). The numerically deduced values of the wave

force and the run-up height R were successfully validated with the numerical results

of Fenton and Rienecker (1982). However, no prediction method for the pressure

distribution at the wall was provided.

Ramsden (1996) conducted laboratory experiments in a 0.610 m (height) × 0.396

m (width) × 36.6 m (length) wave tank to investigate the effects of solitary waves

on a vertical wall. The horizontal (subscript H) force FH and bending moment MH

relative to the foundation resulting from the solitary wave and hydrostatic pressure

from the still water combined were measured. In an effort to present a coherent

methodology to predict the effects of tsunamis in lakes and reservoirs, Heller et al.
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(2009) approximated the empirical data of Ramsden (1996). They found for a wave

amplitude a to water depth h ratio range 0 ≤ a/h ≤ 0.6

FH = [1− 1.5(a/h)]1/6(1/2)ρwg(2a+ h)2, (3.1)

MH = [1− 1.5(a/h)]1/6(1/6)ρwg(2a+ h)3 (3.2)

with the water (subscript w) density ρw and the gravitational acceleration g. Eqs.

(3.1) and (3.2) provide the force and moment per unit width of the dam based on a

triangular distribution of the pressure

p(z) = [1− 1.5(a/h)]1/6ρwg(2a− z) (3.3)

with a maximum water level of 2a + h and z as the vertical coordinate. This is

reduced to a trapezoidal distribution in the case of wave overtoppings (Appendix

3.A), i.e. for a dam height l ≤ (2a + h), the triangular section above the dam crest

is removed (Heller et al., 2009). This results in the reduced (subscript red) force

FH,red (Eq. 3.A.1) and moment MH,red. This approach was taken over by Evers et al.

(2019) in their effort to update the manual Heller et al. (2009). Eqs. (3.1) and (3.2)

require further validation as they rely on a limited number of experiments and wave

conditions.

The most recent prediction methods for R and dam overtopping were summarised

by Evers et al. (2019). For R, the semi-empirical equation of Evers and Boes (2019)

was proposed and for the wave overtopping volume V , duration and the maximum

wave overtopping depth d0, the methods of Kobel et al. (2017) were recommended.

Unfortunately, the empirical equation for V cannot be applied if a is larger than

the freeboard f , being one of the shortcomings addressed in the present work. These

methods will be compared and discussed with the results of the present article in

Sections 3.3 and 3.4.
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3.1.3 Aims and structure

The present study aims to:

• Provide new physical insight into tsunamis impacting dams of steep to vertical

inclinations based on 2D and 3D numerical modelling.

• Provide insight and propose a new semi-empirical approach to predict the dy-

namic pressure of tsunamis on dams in analogy to the theory of Dean and

Dalrymple (1991).

• Expand the validation conditions of the prediction methods of Evers et al.

(2019) for tsunami forces on dams with and without overtopping.

• Provide a new empirical equation for the run-up height to support tsunami

hazard assessment.

• Provide new empirical equations for the overtopping volume and depth for

cases where the equations of Kobel et al. (2017) cannot be applied or result in

significantly different predictions from the numerical results.

The remainder of this article is organised as follows. In Section 3.2 the numerical

toolbox is addressed along with the numerical set-ups and the test programme. The

validation of the numerical toolbox with laboratory data, an analytical solution, and

another numerical solver is presented in Section 3.3. Thereafter, the investigation

of tsunami forces, run-ups, overtoppings, and dynamic pressures for waves with and

without overtopping in 2D is addressed. A discussion of the results and the 3D sim-

ulations can be found in Section 3.4 followed by the main conclusions in Section 3.5.

The appendices include the overtopping wave force method of Evers et al. (2019)

(Appendix 3.A), the convergence tests (Appendix 3.B), and the dynamic pressure

(Appendix 3.C) for overtopping waves.
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3.2 Methodology

The open source toolbox solids4foam (Cardiff et al., 2018) implemented in FE 4.0

(OpenFOAM extension, 2016) was used in the present study to model tsunamis

impacting dams. This toolbox solves fluid-solid interaction problems with a Finite

Volume discretisation for both domains and a partitioned coupling approach is ap-

plied.

3.2.1 Governing equations of fluid

The governing equations of an incompressible Newtonian fluid are the continuity and

the Reynolds-Averaged Navier-Stokes (RANS) equations

∇ · ū = 0 (3.4)

ρ∂ū

∂t
+ ρ(ū · ∇)ū = −∇p̄+ ρ∇ · (µ∇ · ū− u′u′) + ρg. (3.5)

In Eqs. (3.4) and (3.5) ū = (ūx, ūy, ūz) is the mean fluid velocity vector, p̄ the mean

pressure, ρ the fluid density, µ the fluid dynamic viscosity, u′u′ the turbulent stress

tensor (with u′u′ = 0 for laminar flow) and g the gravitational acceleration vector.

Based on the Boussinesq approximation (Jasak, 1996)

u′u′ = νt(∇ · ū+ (∇ · ū)T ) + 2

3
ktI, (3.6)

where I is the identity matrix and νt and kt are the kinematic turbulent viscosity and

the turbulent kinetic energy per unit mass defined by the selected turbulence model

in FE 4.0 (Ferziger, 1987). For the simulations of the present study, the laminar flow

model has been used (Streeter and Wylie, 1985). This assumption provides accurate

results while reducing the associated computational costs, as demonstrated in the

validation tests (Section 3.3.1.1 and 3.3.1.3), with a tendency to operate on the safe

side.

The solver interFoam is applied in FE 4.0 to solve Eqs. (3.4) and (3.5). These
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are discretised into a set of algebraic equations based on the spatial and temporal

partition of the domain using the cell-centered FVM and solved with the PIMPLE

loop (Aguerre et al., 2013). Time integration is governed by the Courant-Friedrichs-

Lewy (CFL) convergence condition (Courant et al., 1928), which is expressed in two

dimensions as

C =
ūx∆t

∆x
+

ūz∆t

∆z
≤ 1. (3.7)

In Eq. (3.7), C is the Courant number, ∆t the time step and ∆x and ∆z are the cell

sizes in the x and z direction, respectively. Once the solver started, the initial ∆t was

continuously adapting to satisfy the CFL condition.

The Volume Of Fluid (VOF) method (Hirt and Nichols, 1981) is employed in

interFoam to solve water-air flows based on the fraction of volume α; α varies from

0 to 1, with α = 0 denoting air, α = 1 water and 0 < α < 1 the air-water interface.

In the present study, α = 0.5 was selected to track the water surface. The fluid

properties ρ and µ are evaluated as

ρ = ρwα+ ρa(1− α) (3.8)

µ = µwα+ µa(1− α) (3.9)

with the subscript a standing for air. Once the fluid velocity field is solved, α is

updated through the following transport equation over time

∂α

∂t
+∇ · (ūα) +∇ · [α(1− α)ur] = 0. (3.10)

The artificial compression term ∇ · [α(1− α)ur], including the compression velocity

vector ur, was introduced by Weller et al. (1998) to reduce the numerical diffusion.

The Euler first-order scheme was employed for temporal discretisation along with the

Gauss linear second order for spatial gradients.

Wave generation was performed with the toolbox waves2Foam (Jacobsen et al.,

2012). Several wave theories are implemented in waves2Foam, including linear, Stokes,
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cnoidal, and solitary wave theory. The governing equations are implemented as in FE

4.0 with the only difference that Eq. (3.5) is written in terms of the pressure in excess

to the hydrostatic one. The wave generation is based on the relaxation zone technique,

consisting of a relaxation function applied to evaluate ū and α inside the relaxation

zone (Jacobsen et al., 2012). In the present study, a relaxation zone of 3 times the

wave length L was used in all the 2D tests (Fig. 3.1a).

3.2.2 Numerical set-up and test programme

The numerical set-up consisted of a 2D wave channel with a rigid dam (Fig. 3.1a).

The dam with height l = 50.00 m and thickness s = 2.50 m was located 4L from

the upstream boundary of the wave flume. Water depths of h = 25, 36, and 48

m were used (Table 3.1), resulting in relative submergences of the dam of h/l =

0.50, 0.72, and 0.96 with a minimum freeboard of f = l − h = 2 m, satisfying the

criterion of the Bureau of Reclamation (2012). The simulations involved a range of

wave types impacting dams of inclinations β = 60, 75, and 90◦. The wave types and

corresponding wave features used in the simulations are shown in Table 3.1 where H

is the wave height and T the wave period.

Table 3.1. The test programme for the 2D tests. Values marked with * were observed

at x = −hcotβ in simulations conducted without the dam and are slightly different,

due to bottom friction, from the round values used at the input.

Parameter Symbol Unit Range Dimensionless range

Water depth h m 25, 36, 48 - -
Dam height l m 50 - -

Dam inclination β ◦ 60, 75, 90 - -
Stokes 5th H m 6.56 to 6.86* H/h 0.13 to 0.26

order waves T s 15, 20 T (g/h)1/2 6.8 to 12.5

Cnoidal waves
H m 5.56 to 6.60* H/h 0.13 to 0.26

T s 15 to 30 T (g/h)1/2 7.2 to 18.8
Solitary waves a m 2.53 to 15.70* a/h 0.10 to 0.60

The mesh was generated using the ”blockMesh” utility, consisting of structured

hexahedral cells. In the cnoidal and Stokes wave tests a resolution of ∆x = L/310

and ∆z = 50.00 cm, with ∆x = L/1240 and ∆z = 12.50 cm in the L/4×80 m refined
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area, was employed. In the solitary wave tests, the domain was discretised with square

cells of ∆x = ∆z = 25.00 cm and a higher resolution of ∆x = ∆z = 6.25 cm in a 25

m × 80 m area in front of the dam (Fig. 3.1a). Finer resolutions were investigated in

a few tests, requiring higher computation times without any significant difference in

the results (Appendix 3.B.1).

Some initial tests were run with and without solving the governing equations of

the solid. The computation times decreased by approximately 60% for the latter cases,

and negligible differences (≈ 1 to 2%) were observed in the wave forces on the dam.

Consequently, all tests in Table 3.1 were conducted by solving the fluid governing

equations only. The simulations were conducted on the High Performance Computing

cluster Augusta at the University of Nottingham using 40 Central Processing Unit

(CPU) cores and 120 GB of memory. Stokes and cnoidal wave tests (≈ 0.4 million

of cells) took approximately 12 h of computation time to simulate 140 to 200 s. A

simulation time of 25 s for a solitary wave test (≈ 1.3 millions of cells) required

approximately 6 h of computation time.

3.2.2.1 3D simulations

In order to provide some insight into the effects of the curvature of the dam and/or

asymmetrical wave impact angles, 3D simulations were also conducted. The numerical

set-up consisted of a 50 m wide wave tank with a 50 m high dam and h = 25 m

(Fig. 3.1). Given the high computational costs, only 4 selected tests were simulated.

These included solitary waves with a/h = 0.30 and propagation angles of γ = 0 and

30◦ (Fig. 3.1c, d) impacting gravity and arch dams (Fig. 3.1a, b). A straight axis

was assumed for the gravity dam (Fig. 3.1a, c) and the upstream face of the arch

dam (Fig. 3.1b, d) was designed with vertical and horizontal radii of 30 and 115

m (Bureau of Reclamation, 2013). The domain was discretised with square cells of

∆x = ∆y = ∆z = 25.00 cm and with a higher resolution of ∆x = ∆y = ∆z = 6.25

cm in a refined area in front of the dam (Fig. 3.1a, b).

For γ = 0◦, only half of the domain (0 m ≤ y ≤ 25 m) was simulated given
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the symmetry of the wave field (≈ 40 million cells). The boundary condition for the

plane y = 0 m was set as “symmetryPlane” (OpenFOAM documentation, 2020). At

y = 25 m, the “noSlip” and “zeroGradient” conditions were used for the velocity and

pressure fields. These simulations were conducted using 40 CPU cores and 600 GB

of memory, requiring approximately 6 days of computation time to simulate 10 s.

For γ = 30◦, the whole domain was used (≈ 75 million cells). At y = −25 and

25 m, the boundary conditions were set as “noSlip” for the velocity and “zeroGra-

dient” for the pressure (OpenFOAM documentation, 2020). The oblique waves were

generated in waves2foam by changing the cosines representing the direction vector.

Based on the wave type used and the relatively narrow domain, the wave generation

is expected to be satisfactory for the purpose of the present study. Given the high

computational costs, the wave front was located 50 m upstream of the dam (Fig. 3.1)

to reduce the length of the domain and the time of simulation. A simulation time of

5 s took approximately 6.5 days of computation time with 80 CPU cores and 600 GB

of memory.
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Figure 3.1. Numerical set-ups: (a) 2D tests, (b, c) lateral and (d, e) top views of

the 3D tests with (b, d) showing the gravity and (c, e) the arch dam.
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3.3 Results

3.3.1 Validation of the numerical toolbox

3.3.1.1 Comparison with experiments and an analytical solution

The numerical toolbox was validated with the laboratory measurements of Mallay-

achari and Sundar (1995) and the analytical solution of Tadjbakhsh and Keller (1960)

for linear waves impacting a vertical wall. The numerical simulations were conducted

with the identical set-up as in Mallayachari and Sundar (1995). A mesh resolution

of ∆x = ∆z = 0.0015 m was employed, resulting from the convergence analysis in

3.B.2. The dynamic pressure pd (Dean and Dalrymple, 1991), defined as

pd(z) =


p(z) for 0 < z ≤ η,

p(z) + ρwgz for − h ≤ z ≤ 0,

(3.11)

where p(z) is the measured pressure in the simulations, is compared with the experi-

mental and analytical results for two selected tests with intermediate-water waves in

Fig. 3.2.

}

(a) (b)

Figure 3.2. Comparison of the numerical pressure pd/(ρwgH) versus z/h with labo-

ratory measurements (Mallayachari and Sundar, 1995) and analytical plin and pnonlin

(Tadjbakhsh and Keller, 1960) for (a) H = 0.023 m and T = 0.950 s and (b)

H = 0.048 m and T = 0.873 s (after Attili et al., 2020).

The analytical solution plin takes only the linear term into account whereas pnonlin

considers up to the third order term (Tadjbakhsh and Keller, 1960). The normalised

root mean square error
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nRMSE =

√
1
Nd

∑Nd
i (pd,ref,i − pd,num,i)

2

(pd,num,max − pd,num,min)
(3.12)

was computed, with the experimental or analytical (subscript ref) and the numerical

(subscript num) value, respectively, Nd is the number of considered pd values and

the subscripts max and min stand for the maximum and minimum values. Eq. (3.12)

was applied for z ≤ 0 m only, due to the lack of experimental data for z > 0 m. In

addition, the analytical solution does not result in atmospheric pressure (pd = 0) as

observed in the simulations at z = η (Fig. 3.2). In both experiments the numerical

toolbox captures the experimental data and the analytical model well. This resulted

in nRMSE = 0.14 and 0.08 for the experimental data in Fig. 3.2a, b, respectively,

and nRMSE = 0.07 to 0.14 and 0.02 to 0.21 for the analytical solution in Fig. 3.2a,

b, respectively.

3.3.1.2 Comparison with numerical solutions

a/h = 0.1

0.2

0.3

0.4

0.5

Figure 3.3. Comparison of the time series of the dimensionless forces F/(ρwgh
2) at

the dam with that of Cooker et al. (1997) for a/h = 0.1, 0.2, 0.3, 0.4, and 0.5.

The time series of the solitary wave forces F at a vertical dam were compared with

the numerical results of Cooker et al. (1997). The numerical simulations herein were

performed with the set-up shown in Fig. 3.1a, for 0.1 ≤ a/h ≤ 0.5. The dimensionless

52



3.3 Results

force F/(ρwgh
2) versus the dimensionless time (t − t0)(g/h)

1/2 is shown in Fig. 3.3,

where t0 is the instant when the maximum R occurs. The present study is in good

agreement with Cooker et al. (1997), showing a maximum deviation of only 5% for

a/h = 0.5 at t = t0. In further agreement, F is maximum at t = t0 for a/h ≤ 0.3,

while a double peak is observed in proximity of t = t0 for a/h ≥ 0.4 (Fig. 3.3).

3.3.1.3 Validation for overtopping waves with laboratory experiments

The numerical solver was validated with 2 laboratory experiments of Kobel et al.

(2017) for the overtopping volume V and depth d0 of solitary waves impacting a

vertical dam. The numerical set-up consisted of a 2D wave flume with a 0.30 m high

plate representing the dam and h = 0.25 m. A mesh resolution of ∆x = ∆z = 1.50

mm was employed (Appendix 3.B).

The comparison between laboratory and numerical results for experiment 1 (Table

3.2) is shown in Fig. 3.4 for a section of the wave flume of approximatively 0.85 m

× 0.30 m. The free water surface is compared at several adjusted times τ = t− td0,

with td0 as the time during the maximum d0. This reveals that the main features of

the phenomenon are captured by the simulation. The experimental (subscript exp)

and numerical V /h2 and d0/h are addressed in Table 3.2. The numerical V /h2 and

d0/h are well predicted in both experiments with a maximum deviation of 14%.

Table 3.2. Overview of the main parameters in the comparison with experiments of

Kobel et al. (2017).

Experiment a/h
V exp

h2
V num

h2
∆V

d0,exp
h

d0,num
h

∆d0

1 0.30 0.25 0.27 8% 0.28 0.27 4%

2 0.50 0.55 0.60 9% 0.56 0.64 14%

53



3.3 Results

τ   0.000 s   =

=

=

τ      0.115 s   =

τ   0.115 s   =

τ   0.230 s   =

τ      0.230 s   

τ      0.345 s   =

(a)

(b)

(c)

(d)

(e)

(f)

0.0 0.20.20.4

0.0

0.1

0.1

0.0 0.20.20.4

0.0

0.1

0.1

0.0 0.20.20.4

0.0

0.1

0.1

0.0 0.20.20.4

0.0

0.1

0.1

0.0 0.20.20.4

0.0

0.1

0.1

0.0 0.20.20.4

0.0

0.1

0.1

Figure 3.4. Comparison between laboratory (Kobel et al., 2017) and numerical

snapshot series of a solitary wave impact on a vertical dam with overtoppings with

a/h = 0.30. The units of the x and z axes are m.

3.3.2 No overtopping

The tsunamis travelled along the numerical flume, impacted and run-up the dam

before being reflected. This is shown in the snapshot series in Fig. 3.5 for a solitary

wave with a/h = 0.31 and β = 90◦.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 3.5. Snapshot series of a solitary wave impact on a dam without overtopping

with a/h = 0.31 with (a, c, e) pressure contours in MPa and (b, d, f) mean velocity

ū =
√
ū2x + ū2z contours.

3.3.2.1 Run-up

The simulations to investigate the run-up heights R at the dam were conducted with

smooth slopes. Although they do not represent all types of dam surfaces, Teng et al.

(2000) found that the effect of the roughness on R can be neglected for relatively

steep slopes β ≥ 20◦.

The maximum R/h observed in each test is shown in Fig. 3.6a versus a/h. In

agreement with Cooker et al. (1997), the instant t0 (Section 3.3.1.2) does not nec-

essarily coincide with t when the maximum F is observed (Fig. 3.3). R/h increases

with a/h following approximatively a linear trend (Fig. 3.6a). Some of the cnoidal

wave tests with β = 60 or 75◦ show larger values compared to the other tests for the

same a/h. This is due to the smaller β resulting in larger R, as also observed for the

solitary tests (Fig. 3.6a) and the splash generated during the wave impacts in these

simulations.

Using the linear trend between R and a/h shown in Fig. 3.6a, R/h was approxi-
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mated as

R

h
=

9

4

(
90◦

β

)1/3 a

h
, (3.13)

where the pre-term and exponent were optimised through a regression analysis based

on the least-square approach algorithm trust-region (Fig. 3.6b). The coefficient of

determination

R2 = 1−
∑

i (Ynum,i − Ypred,i)
2∑

i

(
Ynum,i − Ȳ

)2 , (3.14)

was computed with Ynum,i as the numerical values, Ȳ as the mean of the numerical

values and Ypred,i as the predicted values (subscript pred).

(a) (b)

+2
0%

20%

Figure 3.6. (a) Relative run-up height R/h and (b) (R/h)(β/90◦)1/3 with Eq. (3.13)

(R2 = 0.94) versus the relative wave amplitude a/h.

3.3.2.2 Force and bending moment

The horizontal force FH and bending moment MH are compared with predictions

based on Evers et al. (2019). For the tests with β = 60 and 75◦, FH = F sinβ and

MH = FHzH were computed, with zH as the elevation of the resultant of FH from

−h. FH and MH are normalised with the hydrostatic force Fh = (1/2)ρwg(2a + h)2

and moment Mh = (1/6)ρwg(2a + h)3, respectively. FH/Fh and MH/Mh are shown

with double logarithmic axes in Fig. 3.7 together with the predictions from Evers

et al. (2019) (Eqs. 3.1 and 3.2) and the experimental data of Ramsden (1996).

Eqs. (3.1) and (3.2) predict the numerical FH and MH well, operating on the

safe side, and most of the data are within the ±10% bounds (Fig. 3.7). The 4 tests
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conducted with Stokes waves represent less extreme cases with approximately 10%

smaller wave loadings than predicted with Evers et al. (2019) (Fig. 3.7). Marginally

higher values for FH and MH of the cnoidal waves for larger T are observed. However,

this dependence on T may be neglected for the investigated range 7.2 ≤ T (g/h)1/2 ≤

18.8 such that Eqs. (3.1) and (3.2) deliver also good approximations for cnoidal waves.

The solitary wave loadings on the dam are in good agreement with Eqs. (3.1) and

(3.2).

(a)

+10%

10%

(b)

+10%

10%

Figure 3.7. Comparison of the horizontal dimensionless (a) force FH/Fh and (b)

moment MH/Mh at the dam versus a/h with predictions from Evers et al. (2019)

and data of Ramsden (1996).

3.3.2.3 Dynamic pressure

The total pressure p at the wall is composed of the dynamic pd and hydrostatic

−ρwgz components. The component pd represents the excess pressure due to the

waves, corresponding to p above (z > 0) and to p+ρwgz below the still water surface

(z ≤ 0) (Eq. 3.11).

According to Dean and Dalrymple (1991), the pressure field of linear waves prop-

agating offshore in a water body can be determined from the unsteady Bernoulli

equation resulting in pd = Kp(z)p(z = 0), for z ≤ 0. Kp is the pressure response

factor

Kp(z) =
cosh[k(h+ z)]

cosh(kh)
, (3.15)
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where k = 2π/L is the wave number. Kp reaches the maximum value of 1 at z = 0

and decreases for z < 0 proportionally to cosh(h+ z).

The unsteady Bernoulli equation can also be used to describe the pressure field

of waves impacting walls (Tadjbakhsh and Keller, 1960). In order to define pd of

nonlinear waves impacting dams, in analogy to Dean and Dalrymple (1991), the

pressure response factor at the wall (subscript w) Kpw is introduced herein such that

pd(z) =


p(z) for z > 0,

Kpwp(z = 0) for − h ≤ z ≤ 0,

(3.16)

where p(z) can be predicted with Eq. (3.3) (Evers et al., 2019).

Despite of the different conditions compared to linear waves propagating offshore

in a water body, Kpw in the numerical tests showed similar trends as Kp (Eq. 3.15)

and are approximated in function of a/h, z/h, and a coefficient A as

Kpw(a/h, z/h) =
cosh[A(a/h)(1 + z/h)]

cosh[A(a/h)]
. (3.17)

A was optimised for each test with a least squares regression analysis resulting in

1.28 ≤ A ≤ 15.06. Eq. (3.17) captures the numerical results well with coefficients of

determination of R2 = 0.95 to 1.00, as shown in Fig. 3.8 for 4 representative tests.

To eventually express Kpw as a function of a/h and z/h only, the coefficients A

were defined separately for Stokes and cnoidal (Eq. 3.18) and solitary waves (Eq.

3.19) with

A = (a/h)−1 and (3.18)

A = (a/h)−2/3. (3.19)

Eq. (3.19) captures the data within deviations of ±20% for the solitary waves (Fig.

3.9b), while larger deviations are observed for Eq. (3.18) for Stokes and cnoidal waves

(Fig. 3.9a). However, most of the data lie within the ±30% bounds. Combining Eq.
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(3.17) with Eqs. (3.18) and (3.19) results in

Kpw(z/h) =
cosh(1 + z/h)

cosh(1)
, for Stokes and cnoidal waves and (3.20)

Kpw(a/h, z/h) =
cosh[(a/h)1/3(1 + z/h)]

cosh[(a/h)1/3]
, for solitary waves. (3.21)

a/h
= 0
.16 0.1

7

0.
42

0.
10

Cnoidal
wave

Solitary
wave

Figure 3.8. Distribution of the pressure response factor at the wall Kpw with z/h

for β = 90◦ and Eq. (3.17) for a/h = 0.10 (R2 = 1.00), 0.16 (R2 = 1.00), 0.17

(R2 = 1.00), and 0.42 (R2 = 1.00) and A = 3.47, 5.79, 4.45, and 1.28, respectively.

+20%

20%

(b)(a)

+30%

30%

Figure 3.9. Coefficient A versus the relative wave amplitude a/h and (a) Eq. (3.18)

for Stokes and cnoidal waves (R2 = 0.59) and (b) Eq. (3.19) for solitary waves

(R2 = 0.72).

Eq. (3.21) shows that Kpw decays slower with z/h for smaller a/h than in Eq.
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(3.20). Kpw for Stokes and cnoidal waves is a function of z/h only and would coinci-

dence with Eq. (3.21) for a → h. Therefore, Eq. (3.21) operates on the safe side for

a/h < 1 and can be used for Stokes and cnoidal waves also, i.e. the wave type does

not need to be determined.

To summarise, semi-empirical equations for the pressure response factor at the

wall Kpw were presented in this Section 3.3.2.3. These Eqs. (3.20) and (3.21), com-

bined with the prediction of the total pressure p from Evers et al. (2019) (Eq. 3.3),

directly provide the dynamic component of the pressure pd (Eq. 3.16). To confirm

these equations, the numerical p(z) and pd(z) are compared with predictions of Evers

et al. (2019) (nRMSE = 0.017 to 0.043) and Eq. (3.16) (nRMSE = 0.04 to 0.14)

in Fig. 3.10 for 4 representative tests. The good agreement confirms the suitability

of the new semi-empirical equations for engineering applications.

(c) (d)

(a) (b)

Figure 3.10. Comparison of the total p/(ρwgh) and dynamic pressure pd/(ρwgh)

with predictions from Evers et al. (2019) (Eq. 3.3) and Eq. (3.16) for cnoidal waves

with a/h = 0.10 and (a) β = 90 and (b) 60◦ and solitary waves with a/h = 0.20 and

(c) β = 90 and (d) 60◦.
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3.3.3 Overtopping waves

3.3.3.1 Force and bending moment

In 37 of the 72 tests (Table 3.1) R exceeded the freeboard f and the waves overtopped

the dam, as shown in Fig. 3.11 for a solitary wave with a/h = 0.28, f = 14 m,

and β = 90◦. In these cases, only a part of the wave loading is transferred on the

dam (Appendix 3.A). The ratios FH,red/Fh and MH,red/Mh versus a/h are shown in

Fig. 3.12a, c. Moreover, Fig. 3.12b, d shows FH,red/Fh and MH,red/Mh versus f/h.

FH,red/Fh and MH,red/Mh decrease with increasing a/h for a constant f/h, except

for the solitary wave test with a/h = 0.6 and β = 90◦, whereas larger f/h result in

larger wave loadings for a constant a/h (Fig. 3.12b, d).

0.0
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(d)

(f)

Figure 3.11. Snapshot series of a solitary wave impact on a dam with overtopping

with a/h = 0.28 with (a, c, e) pressure contours in MPa and (b, d, f) mean velocity

ū contours.

Fig. 3.12e, f shows FH,red and MH,red versus the predicted values for FH,red and

MH,red based on Evers et al. (2019). Their method disregarding the top part of

the pressure distribution on FH and MH (Appendix 3.A) agrees with the numerical

results. This method results in predictions of FH,red and MH,red on the safe side

for most of the experiments with deviations of up to approximately 15 and 20%,
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respectively (Fig. 3.12e, f).

(a) (b)

(c) (d)

a/
h = 0.

21

a/h
= 0.

21

0.389

f/h
= 0.042

f/h
= 0.042

0.389

1.00

1.00

+15%

15%

+15%

15%

(e) (f)

Figure 3.12. Overtopping waves: relative reduced horizontal force FH,red/Fh versus

(a) a/h and (b) f/h, moment MH,red/Mh versus (c) a/h and (d) f/h, and comparison

of the predicted (Evers et al., 2019) and numerical (e) FH,red/Fh and (f) MH,red/Mh

at the dam.

Only the 3 solitary waves with a/h = 0.6 are underestimated, namely by up to

19%, compared to the numerical results (Fig. 3.12e, f). In these extreme cases, due

to the relatively large wave steepness a/L ≈ 0.065 (with L from Eq. 3.25), surging

breaking was initiated in proximity of the dam. Surging breakers usually occur in

proximity of steep slopes and are characterised by little foam (Galvin, 1968). Surging
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breaking may be the reason for the observed deviations.

3.3.3.2 Overtopping

The overtopping volume per unit dam width V and the maximum overtopping depth

over the dam crest d0 were also investigated. The numerical toolbox was first validated

with the laboratory experiments of Kobel et al. (2017) (Section 3.3.1.3). V was

evaluated at the upstream corner of the dam crest as

V =
∑

t

q(t) + q(t+ 1)

2
∆t, (3.22)

with the discharge per unit dam width q(t) defined as
∑

zūx(z)∆z, for f ≤ z ≤

(f + d0).

V /h2 and d0/h are shown in function of a/h in Fig. 3.13. Both V /h2 and d0/h

increase with increasing a/h for a constant f/h, except for the solitary wave with

a/h = 0.6 and β = 90◦. In this test the splash generated during wave impact may

explain the relatively larger values of d0/h compared to the remaining tests (Fig.

3.13b).

In addition to a/h, β and f/h have also a significant effect on the investigated

parameters. Smaller β result in smaller V /h2 and larger d0/h (Fig. 3.13a), while both

V /h2 and d0/h decrease with increasing f/h. An exception is once more the solitary

wave with a/h = 0.6 and β = 90◦.

For the Stokes and cnoidal wave tests, the effects of T on V and d0 are also

important. They become even more relevant in combination with the effects of a/h

and β. In the cnoidal wave tests with β = 90◦, an increase of T by 33% results in a

25% larger V . The same increase of T resulted in 77 and 96% greater V for β = 60

and 75◦, respectively.

V /h2 and d0/h can be predicted with the empirical equations of Kobel et al.

(2017) (Eqs. 3.26 and 3.27). They are compared with the present data in Section

3.4.3. However, for a ≤ f , Eq. (3.26) cannot be applied and Eq. (3.27) is in poor
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agreement with the present study. Based on the numerical data, V /h2 and d0/h

were approximated for a ≤ f in function of a, f , h, and β as

V

h2
= 44

(a
h

)10.6(f

h

)−7.5( β

90◦

)−0.1

and (3.23)

d0
h

= 24
(a
h

)7.1(f

h

)−4.5( β

90◦

)1.5

. (3.24)

These correlations were optimised with a least-squares regression analysis and are

shown in Fig. 3.13c, d together with the numerical data. The aforementioned effects

of each parameter are consistent with the pre-sign of the exponents in Eqs. (3.23) and

(3.24) and for both equations the most dominant parameter resulted in a/h, followed

by f/h.

+15%

15%

+20%

20%

f/h
= 

0.
04

2

0.389

1.000 f/h
= 0.389

0.042

1.
00

0

(a) (b)

(c) (d)

Figure 3.13. Relative overtopping (a) volume V /h2 and (b) maximum depth d0/h

versus a/h and correlations of (c) V /h2 with Eq. (3.23) (R2 = 0.99) and (d) d0/h

with Eq. (3.24) (R2 = 0.96).
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3.4 Discussion of results

3.4.1 Validation of the available prediction method and limitations

The prediction method for tsunami forces on dams of Evers et al. (2019) was val-

idated for a wide range of wave conditions and dam inclinations with 72 numeri-

cal tests (Figs. 3.7 and 3.12e, f). The numerical experiments replicate hypothetical,

yet realistic, cases at real-world scale without scale effects (Heller, 2011; Bredmose

et al., 2015). To apply Eqs. (3.1) and (3.2) and the equations for waves with over-

toppings (Appendix 3.A) in nature, the dimensionless wave parameters need to be

within the investigated ranges, i.e., 0.07 ≤ a/h ≤ 0.60, 0.13 ≤ H/h ≤ 0.26, and

7.2 ≤ T (g/h)1/2 ≤ 18.8, for 5th order Stokes, cnoidal, and/or solitary waves, and

dam inclinations of 60◦ ≤ β ≤ 90◦.

Table 3.3 includes some historical subaerial landslide-tsunamis. The dimensionless

maximum a/h and T (g/h)1/2 for these events are all within the limits of the present

study, apart from T (g/h)1/2 of the Lake Askja event. Further, the investigated values

for β in the present study are typical for concrete dams.

Table 3.3. Main parameters of some subaerial landslide-tsunami events.

Event h [m] a/h [-] T (g/h)1/2 [-] References

Pontesei Lake,
1959

47 0.40 Not
available

Panizzo et al. (2005a)

Cabrera Lake,
1965

50 to 200 0.125 to 0.500 Not
available

Watt et al. (2009)

Chehalis Lake,
2007

120 0.47 9.35 Wang et al. (2015);
Evers (2017)

Lake Askja,
2014

138 0.25 6.30 Gylfadóttir et al. (2017);
Ruffini et al. (2019)

3.4.2 Run-up height

Predictions with Eq. (3.13) are compared with laboratory measurements of Street and

Camfield (1967), Maxworthy (1976), and Müller (1995) (Table 3.4) in Fig. 3.14a. Only

data within the limitations of β of the present study were selected. The predicted

R/h capture the experimental R/h and most of the tests lie within ±20% of the
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3.4 Discussion of results

prediction.

Fig. 3.14b shows the predicted R/h with the equations included in Table 3.4

versus the numerical R/h from the present study. Hall and Watts (1953) and Evers

and Boes (2019) expressed R/h as a function of a/h and β only, while Müller (1995)

includes H/h, H/L, and β (Table 3.4). This requires the wave length for solitary

waves, which can be approximated as (Lo et al., 2013)

L = 2πh/(0.75a/h)1/2. (3.25)

Table 3.4. Predictions and limitations of the run-up height R in the present and

other studies.

Reference R/h Limitations

Hall and Watts (1953) 3.05 tan(β)−0.13
(a
h

)1.15 tan(β)0.02 0.050 ≤ a/h ≤ 0.564,
10◦ ≤ β ≤ 45◦

Street and Camfield (1967) No empirical equation available 0.100 ≤ a/h ≤ 0.645,
β = 90◦

Maxworthy (1976) No empirical equation available 0.118 ≤ a/h ≤ 0.665,
β = 90◦

Müller (1995) 1.25

(
H

h

)5/4(H

L

)−3/20(90◦

β

)1/5
0.011 ≤ a/h ≤ 0.521,
18.4◦ ≤ β ≤ 90◦

Evers and Boes (2019) 2
a

h
exp

(
0.4

a

h

)(90◦

β

)0.20
0.007 ≤ a/h ≤ 0.690,
10◦ ≤ β ≤ 90◦

Eq. (3.13)
9

4

(
90◦

β

)1/3 a

h
0.100 ≤ a/h ≤ 0.420,
60◦ ≤ β ≤ 90◦

Hall and Watts (1953) are applied for β = 60 and 75◦ only, as their equation

involves the tangent of the inclination β preventing estimates for β = 90◦. The

equation of Hall and Watts (1953) underestimates the numerical R/h by up to 64%,

apart from a few tests. These deviations are partially due to the violation of the

limitations of β (Table 3.4). The equation of Müller (1995) successfully predicts most

of the cnoidal wave tests, while the solitary waves are underestimated by up to 42%.

Similar agreements are achieved by Evers and Boes (2019) and Eq. (3.13) based on

66



3.4 Discussion of results

the numerical R/h. Most of the tests show relatively small deviations and only a few

cases are underestimated, namely by up to 39% by the equation of Evers and Boes

(2019) and by up to 32% by Eq. (3.13) (Fig. 3.14b).

(a) (b)
+1
5%

15%
+2
0%

20%

Figure 3.14. Predicted relative run-up heights Rpred/h (a) based on Eq. (3.13) ver-

sus the experimental Rexp/h of Street and Camfield (1967), Maxworthy (1976), and

Müller (1995) with β = 90◦ and (b) based on Hall and Watts (1953), Müller (1995),

Evers and Boes (2019), and Eq. (3.13) (Table 3.4) versus the numerical Rnum/h of

the present study.

3.4.3 Overtopping

The overtopping volume V and the maximum overtopping depth over the dam crest

d0 (Section 3.3.3.2) are compared with the empirical predictions of Kobel et al. (2017),

which are

V = 1.35
( a

H

)1.5 [a
h

(
h

l

)(2h/a)(β/90◦)0.25 (a− f

s

)0.12
]0.7

h2 and (3.26)

d0 = 1.32

[
a

h

(
h

l

)4[(β/90◦)−0.21−a/h]( β

90◦

)0.16
]
l. (3.27)

The comparison is shown in Fig. 3.15. For a ≤ f , overtoppings occur due to the

increase in η once the wave is reflected at the dam and V /h2 cannot be predicted

with Eq. (3.26). Instead, Eq. (3.23) can be used. Eq. (3.26) successfully captures

the numerical results, with most of the data showing a deviation on the safe side

of less than 15%. Stokes and cnoidal waves show relatively large deviations with
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3.4 Discussion of results

overestimations of up to 75%; these are attributed to the fact that Eq. (3.26) is

based on solitary wave laboratory tests.

Fig. 3.15b shows the predicted d0/h with Kobel et al. (2017) and Eq. (3.24),

applicable for a ≤ f only, versus the numerical d0/h. Eq. (3.27) agrees with the

numerical results for the tests with a > f , showing the largest deviations of up to

36% for the Stokes and cnoidal wave tests, once more because Eq. (3.27) is based

on a different wave type. Most of the tests with a ≤ f (encircled data in Fig. 3.15b)

are overpredicted by Eq. (3.27) with relatively large deviations. Eq. (3.24) results

in smaller deviations, however, the prediction of the overtopping waves with a ≤ f

remains even then challenging. Table 3.5 shows a summary of the most suitable

equations for the prediction of wave run-ups and overtoppings.

(a) (b)
+1
5%

15%

+1
5%

15%

Figure 3.15. Comparison of the predicted and numerical relative overtopping (a)

volume V /h2 and (b) maximum depth d0/h with encircled data predicted by Kobel

et al. (2017) for a ≤ f .

Table 3.5. Summary of the most suitable equations to predict landslide-tsunami

run-ups and overtoppings.

No Overtopping

overtopping a ≤ f a > f

Run-up height R Eq. (3.13) - -

Overtopping vol-
ume

V - Eq. (3.23) Eq. (3.26) (corresponding to
Eq. 2 in Kobel et al., 2017)

Overtopping
depth

d0 - Eq. (3.24) Eq. (3.27) (corresponding to
Eq. 4 in Kobel et al., 2017)

Note that the new methods introduced herein also provide good estimates of non-
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3.4 Discussion of results

breaking tsunami forces, pressures, and overtoppings for a range of steep to vertical

coastal engineering structures. Therefore, such estimates support tsunami hazard

assessment in coastal environments in general.

3.4.4 3D simulations to investigate 3D effects

3.4.4.1 Symmetrical wave impact angle

For the gravity dam with normal wave impact (γ = 0◦, Fig. 3.1b, d) the different

boundary conditions used at y = 0 and 25 m result in small deviations of the main

parameters, e.g. p and α, across the dam width (Section 3.2.2.1). R/h is constant

across y/h and Rmax/h = 0.68 agrees with the predicted value of 0.68 from Eq. (3.13)

(Fig. 3.16).

Fig. 3.16 shows η/h across the arch dam (Fig. 3.1c, e) with γ = 0◦ during Rmax/h

at y = 25 m. The dam curvature induces an increase in R/h of approximately 10%

close to the lateral flanks of the reservoir. At y = 0 m, Rmax/h = 0.66 at t = 6.2 s,

which is still well captured by Eq. (3.13) with β = 90◦. At y = 25 m, Rmax/h = 0.72

is delayed and approximately 9% larger than at y = 0 m (Fig. 3.16).

For the arch dam, the force vector per unit dam width F was calculated as

F(y, t) =
∑N

i
p(y, zi, t)ni∆z, (3.28)

with p(y, zi, t) as the numerical pressure at the cell (y, zi), N as the number of p(z)

values, and ni as the normal vector to the dam surface. Similarly, the force vector

acting over the entire dam is

F3D(t) =
∑N

i

∑P

j
p(yi, zj, t)ni,jSi,j, (3.29)

with p(yi, zj, t) as the numerical pressure at the cell (yi, zj), N and P as the number

of p values along y and z, and Si,j as the cell area. Hence, the horizontal components

FH and FH,3D were calculated as the resultant of the x and y components.
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3.4 Discussion of results

Figure 3.16. Maximum relative run-up height Rmax/h versus y/h for the gravity

dam and R/h versus y/h for the arch dam at t = 6.8 s, with a/h = 0.3 and γ = 0◦.

(a) (b)

(c) (d)

Figure 3.17. Symmetrical wave impact (γ = 0◦): dimensionless force FH/Fh versus

the relative dam width y/h at the (a) gravity and (b) arch dam and pressure p/(ρwgh)

versus y/h and z/h during the maximum force at the (c) gravity and (d) arch dam.
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Fig. 3.17a, b shows FH/Fh versus y/h for the gravity and arch dam. The gravity

dam shows constant values of FH/Fh across the width with the maximum FH/Fh

overestimated by only 1.3% by the prediction based on Evers et al. (2019) (Eq. 3.1). A

larger FH/Fh in proximity of the flanks acts on the arch dam (Fig. 3.17b). However,

the effect of the curvature on FH/Fh may be neglected as the deviations between

y = 0 and 25 m are only up to 4.7% and the maximum FH/Fh is only 1.3% greater

compared to the prediction based on Evers et al. (2019) (Eq. 3.1). The maximum force

acting over the whole dam FH,3D was normalised with bFh/2, with the dam width

b = 50 m. This resulted in 0.89 and 1.01, for the gravity and arch dam, respectively,

and p/(ρwgh) during the maximum F3D is shown in Fig. 3.17c, d.

3.4.4.2 Asymmetrical wave impact

Fig. 3.18 shows a snapshot series in the xy plane for the gravity dam and asymmetrical

wave impact. In these tests the wave travelled along the wave tank with direction γ =

30◦ (Fig. 3.1). The wave was reflected by the tank boundary at y = −25 m (y/h = −1)

with a concentration of energy at the corresponding dam corner. Diffraction occurred

at the opposite side of the wave tank with lateral spread of the wave energy. The

solitary wave impact on the gravity and arch dam, respectively, for asymmetrical

wave impact, are shown in Fig. 3.19.

The concentration of energy at the dam flank at y/h = −1, resulted in a significant

increase of R/h for both the gravity and arch dam. For the gravity dam, R/h overall

increases across the dam width (Fig. 3.19a, b, c). For t ≥ 2.5 s, R/h is approximately

constant at −1.00 ≤ y/h ≤ −0.75, reaching the maximum R/h = 0.82 at t = 3.0

s. This is 64 and 21% larger compared to the maximum R/h at y/h = 1 and the

prediction with Eq. (3.13), respectively. The effect of the asymmetrical wave impact

is even more relevant in combination with the effect of the curvature of the dam.

As revealed by Fig. 3.19d, e, f, R/h reaches the maximum of 0.90 at y/h = −1 and

t = 4.0 s for the arch dam, which is 32% larger than the prediction with Eq. (3.13).

The maximum R/h = 0.55 at y/h = 1 occurs at t = 3.0 s and is 63% smaller than
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at y/h = −1.

(a) (b)
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(c) (d) t    2.0 s=

 t    0.0 s=

 t    3.0 s=

 t    1.0 s=

Figure 3.18. Snapshot series with surface elevation contours in m of a solitary wave

impact on the gravity dam with a/h = 0.3 and γ = 30◦ at t = (a) 0.0, (b) 1.0, (c)

2.0, and (d) 3.0 s.

(a) (b) 

 t    3.0 s=  t    4.0 s

(c) 

=

 t    2.0 s= t    2.0 s=

 t    2.0 s=

 t    3.0 s=  t    4.0 s=

(d) (e) (f) 

Figure 3.19. Snapshot series of a solitary wave impact on the (a, b, c) gravity and

(d, e, f) arch dams with a/h = 0.3 and γ = 30◦ at t = 2, 3, and 4 s.

Fig. 3.20a, b shows FH/Fh versus y/h for the gravity and arch dams. FH/Fh
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increases with smaller y/h for the gravity dam, reaching a maximum of 0.91 at y/h =

−1. FH/Fh is approximately constant for the arch dam at 0.6 < y/h ≤ 1.0, decreases

for 0.3 ≤ y/h ≤ 0.6 and increases for y/h < 0.3, reaching the maximum FH/Fh = 0.97

at y/h = −1. The gravity and arch dams show similar values of FH/Fh for y/h > 0.6,

while the curvature of the arch dam induces larger FH/Fh in proximity of the flank

at y/h = −1. Although FH may not be normal to the dam axis, due to γ ̸= 0◦ and

the curvature of the dam, the maximum FH/Fh is once more well predicted by Eq.

(3.1) for both the gravity and arch dams, with small underestimations of a maximum

of 7%. The maximum FH,3D/(bFh) resulted in 0.87 and 0.88 and the contours of p at

t during the maximum F3D are shown in Fig. 3.20c, d.

(c) (d)

(a) (b)

Figure 3.20. Asymmetrical wave impact (γ = 30◦): dimensionless force FH/Fh

versus the relative dam width y/h at the (a) gravity and (b) arch dam and pressure

p/(ρwgh) versus y/h and z/h during the maximum force at the (c) gravity and (d)

arch dam.
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As discussed above, the boundaries of the reservoir confine the tsunami with a

significant concentration of energy in proximity of the dam. The dam curvature and

asymmetrical wave impact resulted both in higher R at the dam flanks. These two

effects combined resulted in an increase of R of up to 32%. In contrast, these 3D

effects can be neglected for FH . Although in nature some reservoirs have a similar

geometry as the one investigated in the present study, e.g. the Derwent reservoir

in England and the Luzzone reservoir in Switzerland, in most cases, the reservoir

geometry is less idealised. Furthermore, the waves may approach the dam with a

more extreme angle than γ = 30◦ and the bathymetry may not be flat. Therefore,

the wave behaviour can be more complex (Couston et al., 2015; Ruffini et al., 2019).

3.5 Conclusions

The present article aimed to investigate landslide-tsunamis impacting dams with the

numerical toolbox solids4foam in foam-extend. This investigation was motivated by

the limited validation of available prediction methods for tsunami pressures and forces

on dams, which is also a drawback for a range of offshore and coastal engineering

applications. Moreover, additional methods to predict the overtopping waves under

certain conditions were required.

The numerical toolbox solids4foam was successfully validated with available lab-

oratory measurements, an analytical model, and a numerical solution for pressures,

forces, and overtoppings of waves impacting a vertical wall. A total of 72 2D numer-

ical experiments with 5th order Stokes, cnoidal, and solitary waves impacting dams

of inclinations 60◦ ≤ β ≤ 90◦ were performed. The tsunami forces and moments on

dams were in agreement with predictions based on Evers et al. (2019), extending

their validation ranges.

New empirical equations for the wave run-up heights R, overtopping volumes V ,

and maximum depths over the dam d0 were proposed. R was expressed in function

of the wave amplitude relative to the water depth a/h and β (Eq. 3.13). V and d0
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were expressed in function of a, h, f, and β (Eqs. 3.23 and 3.24) for the tests with

a ≤ f . Larger waves resulted in larger V and d0. In contrast, V and d0 decreased

with increasing freeboard f for a given wave (Fig. 3.13). A summary of the most

suitable equations to predict R, V , and d0 is shown in Table 3.5. Further, a new

semi-empirical approach for the dynamic pressure of tsunamis impacting dams was

presented in Section 3.3.2.3. This approach, combined with the prediction of the total

pressure from Evers et al. (2019), provides the dynamic component of the pressure.

Furthermore, a total of 4 3D simulations were conducted with either a straight or

an arch dam impacted by solitary waves normal or at an angle of 30◦ (Section 3.4.4).

For a normal wave impact, the curvature of the dam induced larger R at the dam

flanks of up to 9%, while the effects on the force can be neglected such that the 2D

equations of Evers et al. (2019) apply. For a solitary wave with asymmetrical wave

impact of 30◦, R was 21 and 32% larger for the gravity and arch dam, respectively,

compared to the prediction for normal wave impact.

Future work will focus on waves interacting with flexible structures. The effects of

the structural deformation on the wave field will be investigated together with scale

effects for both rigid and flexible structures.
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3.A Overtopping wave forces at dams

3.A Overtopping wave forces at dams

Waves overtop a dam when the run-up height R exceeds the freeboard f . For f < 2a,

Evers et al. (2019) followed Heller et al. (2009) by suggesting a reduction of the force

effects due to hydrostatic and wave pressures by removing the triangular section of

the pressure above the dam crest (Fig. 3.11b in Evers et al., 2019). This results in

a trapezoidal distribution of the pressure and the reduced horizontal force per unit

dam width is

FH,red =
(h+ f)

2

[
pK +

2FH

2a+ h

]
. (3.A.1)

In Eq. (3.A.1) FH is the force that would act on the dam without overtopping (Eq.

3.1) and pk is the pressure at the dam crest

pK =
2FH

(2a+ h)2
(2a− f). (3.A.2)

3.B Convergence tests

3.B.1 Convergence of the main tests

The numerical set-up used for the main tests and its discretisation is presented in Sec-

tion 3.2.2. Convergence tests with a solitary wave of a/h = 0.31 have been conducted

to find the optimal cell sizes. Resolutions of ∆x = ∆z = 50.000, 25.000, 12.500, 6.250,

and 3.125 cm have been investigated. The finest resolutions ∆x = ∆z = 12.500, 6.250,

and 3.125 cm were applied in a 25 m × 80 m area in front of the dam and ∆x = ∆z =

25.000 cm was used in the rest of the domain (Fig. 3.1a). The convergence is shown

here in terms of the force

F (t) =
∑N

i

p(zi, t) + p(zi+1, t)

2
∆z, (3.B.1)

with p(zi, t) as the numerical pressure at a certain height z and N as the number of

p(z) values. The maximum F/(ρwgh
2/2) versus ∆x (= ∆z) is shown in Fig. 3.B.1a.

The values of F/(ρwgh
2/2) increase with decreasing cell sizes and the deviations
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between each ∆x and ∆x/2 decrease for smaller ∆x (Fig. 3.B.1a). ∆x = ∆z = 6.250

cm was used for the main tests as convergence is achieved, resulting only in a 0.18%

smaller value for F/(ρwgh
2/2) than for ∆x = ∆z = 3.125 cm and requiring only 1/6

of the computation time.

3.B.2 Convergence of the validation tests

The numerical set-up for the validation tests in Section 3.3.1.1 has the same geometry

as the experimental set-up of Mallayachari and Sundar (1995). The domain was

discretised with squared cells and mesh resolutions of ∆x = ∆z = 6.00, 3.00, 1.50,

and 0.75 mm were investigated. The last two were applied only in a L/4 × 0.630

m area in front of the plate and ∆x = ∆z = 3.00 mm was used in the rest of the

domain.

Convergence tests were performed for the experiment shown in Fig. 3.2a. F on

the plate is shown in Fig. 3.B.1b in function of the mesh sizes. Considering the small

increment of F/(ρwgh
2/2) of 1.4% between ∆x = ∆z = 1.50 and 0.75 mm (Fig.

3.B.1b), the larger computational efforts and some instability issues which occurred

for ∆x = ∆z = 0.75 mm, ∆x = ∆z = 1.50 mm resulted in the optimal resolution

(Fig. 3.B.2).

(a) (b)

Figure 3.B.1. Convergence tests of the relative force F/(ρwgh
2/2) with the mesh

size ∆x = ∆z for the (a) main and (b) validation tests.
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Refined
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Figure 3.B.2. Numerical set-up with a detail of the mesh.

3.C Overtopping waves: dynamic pressure

The dynamics of the overtopping water may have a significant effect on pd due to the

additional water depth and larger velocities ux(z) in proximity of the crest compared

to the waves which do not overtop. Fig. 3.C.1a, b shows the distribution of p and pd

in 2 solitary wave tests with a/h = 0.21, at h = 36 and 48 m, respectively. Due to

the larger f/h of the test in Fig. 3.C.1a compared to Fig. 3.C.1b, smaller values of p

were observed in proximity of the dam crest. In other words, a larger d0 was observed

in Fig. 3.C.1b, resulting in a larger p at the dam crest compared to Fig. 3.C.1a.

For the Stokes and cnoidal wave tests, with 0.07 ≤ a/h ≤ 0.08 and f/h = 0.042,

Kpw is poorly captured by Eq. (3.20) with nRMSE of up to 3.13 (Fig. 3.C.1c).

For the solitary wave tests with 0.21 ≤ a/h ≤ 0.44 and 0.389 ≤ f/h ≤ 1.000, the

overtopping dynamics does not modify the pressure field significantly. In these cases,

Kpw is captured by Eq. (3.21) with nRMSE = 0.06 to 0.41 for most tests apart

from two with 0.79 and 1.86. For larger values of a/h and/or smaller f/h a different

trend of Kpw(z) is observed. In these cases, Kpw is larger then 1, reaches a peak

in proximity of z/h = −0.20 and decreases then, as shown in Fig. 3.C.1d for some

representative tests. This trend is likely due to the larger d0 compared to the cases

with smaller a/h and/or larger f/h.
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Figure 3.C.1. Total pressure p and dynamic pressure pd at the dam in two overtop-

ping tests with a/h = 0.21 and β = 90◦ with (a) f/h = 0.389 and (b) f/h = 0.042

and pressure response factor at the wall Kpw versus z/h for f/h = 0.042 for some

representative (c) cnoidal and (d) solitary wave overtopping tests for β = 90◦.

The pressure p(z) can be approximated with the trapezoidal distribution pro-

posed by Evers et al. (2019) (Appendix 3.A) for engineering applications with wave

overtoppings. For 0.21 ≤ a/h ≤ 0.44 and 0.389 ≤ f/h ≤ 1.000, the component pd

can be predicted as for waves without overtopping (Eq. 3.16) with Kpw defined in

Eq. (3.21). For larger a/h and/or smaller f/h, it is challenging to find an expression

for Kpw(z) (Fig. 3.C.1c, d). However, a good preliminary estimation of pd can be

achieved in these cases by subtracting the hydrostatic component of the pressure

from p(z) (Eq. 3.11).
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Chapter 4

Wave impact on rigid and

flexible plates

This chapter is comprised of the following journal article:

Attili, T., Heller, V. and Triantafyllou, S., 2023. Wave impact on rigid and flexible

plates. Coastal Engineering 182, 104302.

Despite of the different layout, the published paper is entirely included within this

chapter with the following differences:

1. Section, page, figure, table and equation numbers are amended to ensure con-

sistency across the thesis.

2. The reference to journal details, e.g. volume and page numbers, are omitted.

3. The email addresses of the authors have not been included.

4. Dates of submission, revision and acceptance have not been included.

5. Minor adjustments have been made to some equations, figures and text to

provide more details and ensure consistency across the thesis.

6. The nomenclature and references list are provided at the end of this thesis.
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Wave impact on rigid and flexible plates

Tommaso Attili1, Valentin Heller1, Savvas Triantafyllou2

1Environmental Fluid Mechanics and Geoprocesses Research Group, Faculty of

Engineering, University of Nottingham, Nottingham NG7 2RD, UK

2Institute for Structural Analysis and Aseismic Research, School of Civil

Engineering, National Technical University of Athens, Athens, Greece

Abstract

Wave impact on offshore and coastal structures, such as oil and gas rigs, offshore wind

turbine platforms, breakwaters, flood protection systems and wave energy convert-

ers, involve complex wave-structure interactions. These interactions are particularly

challenging for flexible structures and may result in structural damage in extreme

cases. Some studies found reduced wave forces on flexible compared to rigid walls.

However, the technical literature includes inconclusive results on this aspect and

an accurate understanding of wave-structure interaction is still lacking. The present

study comprehensively investigates wave-structure interaction with the numerical

toolbox solids4foam to resolve this shortcoming. The numerical pressures, forces and

plate deformations have been successfully validated with new and already available

laboratory experiments, e.g. the numerical plate displacement deviates less than 35%

from the laboratory observation. 117 Two-Dimensional (2D) tests of waves impact-

ing plates of different stiffnesses located in the open sea (offshore) and on the coast

(onshore) were then conducted, complemented with 2 Three-Dimensional (3D) tests

with offshore plates. For most of the offshore and onshore tests, the plate stiffness

had a negligible effect on the upwave force. However, for the most flexible offshore

plates, the downwave water depth increased due to plate deformation, resulting in

up to 40% smaller total forces on the flexible than the rigid plates. This was also
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confirmed in the 3D tests. The response of the offshore plates was then successfully

examined in view of the Euler-Bernoulli beam theory. In the onshore tests, the wave

force showed two peaks confirming previous observations. The second force peak was

up to 3.3 times larger than the first one, with the rigid plates not necessarily result-

ing in the largest peaks. New semi-theoretical correlations to predict wave forces on

onshore plates are finally suggested, as a simple function of the offshore wave energy.

Such findings enhance the physical understanding of wave-structure interaction and

are aimed at supporting the design of coastal and offshore structures.

4.1 Introduction

4.1.1 Background

Waves pose a challenge for a range of coastal structures. These include oil and gas

rigs, offshore wind turbine platforms, breakwaters, flood protection systems and Wave

Energy Converters (WECs). Such structures may experience significant deformations

under wave loading leading to a mutual interplay between the waves and the struc-

ture, referred to as Wave-Structure Interaction (WSI). WSI resulted in structural

damage and even failure in extreme cases. For example, an offshore platform in the

Gulf of Mexico collapsed during the 2002 hurricane Lili (Moan, 2018) and the Dawlish

seawall breached in 2014 due to a severe storm (Dawson et al., 2016).

Analytical, laboratory and numerical modelling of WSI traditionally addressed

rigid structures (Sainflou, 1928; Cross, 1967; Mallayachari and Sundar, 1995; Higuera

et al., 2014; Attili et al., 2021). Nevertheless, recent applications, e.g. the use of de-

formable materials for WECs (Chaplin et al., 2012; Collins et al., 2021) and vegetation

for shore protection (van Veelen et al., 2021), raised the need to model the structure

as flexible, making WSI even more significant.

Some researchers (Linton et al., 2013; Rao et al., 2017; Zhang et al., 2019a) ob-

served benefits, e.g. reduced wave forces, when a deformable rather than a rigid wall

is used. A few studies (Laya et al., 1984; Yuan and Huang, 2015) suggested reduc-
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tion terms in the Morison equation (Morison et al., 1950), providing wave loading

on stationary rigid cylinders, if the cylinders are moving. This opens up promising

potential solutions by partially or fully replacing rigid coastal structures with flexible

ones. However, current studies are still inconclusive; elastic walls showed larger wave

pressures and forces under certain conditions compared to rigid ones (Mai et al.,

2020).

An accurate understanding of the plate flexibility effect on wave loading is still a

major challenge and an exhaustive analysis involving rigid and flexible structures is

lacking. The present study focuses on an extensive investigation of WSI mimicking

a range of real applications. This relies on numerical modelling of waves impacting

rigid and flexible plates, located either offshore or onshore, using an available toolbox

in foam-extend 4.0 (FE 4.0).

4.1.2 Previous work

4.1.2.1 Laboratory studies

Most laboratory studies of WSI have been conducted for the validation of numerical

models. The most relevant benchmark cases include dam break waves involving elastic

gates (Antoci et al., 2007), waves impacting rigid and flexible walls (Kimmoun et al.,

2009; Linton et al., 2013; Didier et al., 2014) and dam break waves impacting flexible

obstacles (Liao et al., 2015).

Kimmoun et al. (2009) conducted laboratory experiments of solitary waves im-

pacting a flexible plate. Wave breaking was initiated in proximity of the plate in most

tests, resulting in a complex wave-plate interaction. The wave-plate impact and the

plate deflection were recorded, establishing a new database for numerical validation.

Linton et al. (2013) conducted large-scale experiments in a 104 m long, 3.66 m wide

and 4.57 m deep flume to investigate tsunamis impacting timber walls. The most

flexible wall experienced smaller forces compared to stiffer walls. The measured peak

forces were in good agreement with the equation (Cross, 1967)
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FI =
1

2
ρwgh

2
s + Cfρwhsū

2
s, (4.1)

predicting the force on a vertical and rigid wall due to a surge, where ρw is the

water (subscript w) density, g the gravitational acceleration, hs the shore (subscript

s) water depth, ūs the depth-averaged velocity and Cf is a force coefficient related

to the inclination of the free water surface.

Mai et al. (2020) experimentally investigated the effects of the structural elasticity

during wave impacts on a vertical plate and vertically falling plate impact onto a

water surface. In both cases, the structural elasticity had an effect on the impact

load. Reduced forces and pressures were observed in the slamming tests for the elastic

plates compared to rigid ones at high impact velocities only. The wave loading on the

flexible plates was smaller than on the rigid plate under certain conditions, namely for

high aeration waves. For slightly breaking waves, however, the elastic plates showed

larger pressures and forces.

Large-scale laboratory tests have been conducted by Krautwald et al. (2022) to

analyse the failure of rigid and elasto-plastic buildings under extreme wave load-

ings. These involved waves transforming into bores and impacting onshore buildings.

For small wave heights, the structure stiffness had a negligible effect on the mea-

sured forces. For increasing wave heights, the elasto-plastic structures showed less

pronounced force peaks compared to rigid ones. However, the forces were similar for

both structures during the second stage of the impact, with the deformable structure

experiencing even larger forces in some cases.

To the best of the authors’ knowledge, a comprehensive benchmark case for wave

impact on flexible structures is still lacking. This should provide the wave parameters,

e.g. water surface elevation, pressure and force, as well as the plate displacement

and/or deformation. In addition, the effect of the structure elasticity on the wave

force is still uncertain requiring further study.
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4.1.2.2 Numerical modelling

Given the maturity of Computational Fluid Dynamics (CFD) and Computational

Structural Dynamics (CSD), numerical modelling has been increasingly applied to

WSI phenomena (Liu and Zhang, 2019). Both mesh-based, e.g. the Finite Volume

Method (FVM, Tuković et al., 2018), and mesh-free, e.g. Smoothed Particle Hydro-

dynamics (SPH, Didier et al., 2014), methods have been successfully applied with

either monolithic (Rao et al., 2017; Liu and Zhang, 2019) or partitioned (Sotiropou-

los and Yang, 2014) coupling approaches. In the monolithic approaches the fluid and

solid governing equations are solved within a single solver. On the other hand, parti-

tioned techniques individually solve the fluid and solid domains with an exchange of

information at the fluid-solid interface.

Mesh-based methods are highly reliable for both CFD and CSD and also com-

putationally efficient. However, they may become inaccurate for large deformations.

He and Kashiwagi (2012) proposed a mixed Eulerian Lagrangian method monolithi-

cally coupled with a Finite Element Method (FEM). Solitary waves impacting elastic

plates were investigated, showing that the hydroelastic behaviour strongly depends

on the plate stiffness. Several models have been developed in the OpenFOAM (OF)

framework (Higuera et al., 2013; Chen et al., 2014; Higuera et al., 2014; Hu et al.,

2016; Rege and Hjertager, 2017; Tuković et al., 2018; Cardiff et al., 2018; Chen et al.,

2019; Chen et al., 2020; Romano et al., 2020; Di Paolo et al., 2021; Hu et al., 2023),

showing a great potential in tackling WSI phenomena (Huang et al., 2022).

Mesh-free approaches typically handle moving interfaces and large deformations

more efficiently than mesh-based methods. However, they show instabilities and in-

accuracies in the structural stresses (Liu and Zhang, 2019) and are more computa-

tionally expensive (Kumar et al., 2015). New developments in the SPH method have

been presented by Antoci et al. (2007), Didier et al. (2014), Huang et al. (2018),

Khayyer et al. (2018), Sun et al. (2019) and O’Connor and Rogers (2021). These

have been validated with benchmark cases such as dam break waves involving an

elastic gate (Antoci et al., 2007), a wave impacting an offshore wall (Didier et al.,
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2014) and a dam break wave impacting a flexible obstacle (Liao et al., 2015). Overall,

SPH models showed the capability of capturing the physics of WSI phenomena, with

some deviations related to the structural response in most cases (Antoci et al., 2007;

Sun et al., 2019; O’Connor and Rogers, 2021).

Mesh-based and mesh-free methods have eventually been coupled to combine their

strengths. In these hybrid approaches, however, the fluid-solid coupling is even more

challenging. This concerns particularly the energy balance at the interface (Degroote,

2013). Kumar et al. (2015) developed an SPH-FVM model within the OF framework,

showing a good agreement for a dam break experiment. However, the solid analy-

sis was not provided. A Moving Particle Semi-implicit (MPS, Khayyer et al., 2019)

method was coupled with FEM by Rao et al. (2017). This approach was used to

investigate solitary waves impacting rigid and flexible plates. Results showed larger

pressures acting on the rigid than on the elastic plates. Zhang et al. (2019a) proposed

a coupled MPS-FEM approach to investigate regular waves interacting with a hor-

izontal plate. Comparisons with laboratory observations indicated the capability of

this approach to accurately solve WSI phenomena.

The open source software OF is robust, stable and supports two-phase flows with

a range of turbulence models and wave theories. Given the reliability and flexibility

of the OF models, the available toolbox solids4foam (Cardiff et al., 2018) was used

in the present study. This toolbox is capable of modelling both the fluid and struc-

ture with a partitioned coupling (Section 4.2). This numerical model has already

been successfully applied to fluid-solid interaction phenomena (Mohammadi et al.,

2021; Girfoglio et al., 2021). However, further validation is required, being one of the

shortcomings addressed in the present study.

4.1.3 Aims and structure

The present study is aimed at:

• Validating the numerical model solids4foam with new laboratory experiments

and the one from Kimmoun et al. (2009).
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• Providing new physical insight into linear and solitary waves impacting plates

of different stiffnesses and inclinations located in the open sea (offshore).

• Providing new physical insight into broken solitary waves impacting plates of

different stiffnesses located on the coast (onshore).

The remainder of this article is organised as follows. The numerical model is

presented in Section 4.2 along with the numerical set-ups and the test programme.

The laboratory experiments are discussed in Section 4.3. Section 4.4 includes the

validation of the numerical toolbox along with the numerical wave forces and plate

responses for the offshore and onshore tests. In Section 4.5, the results are discussed

and compared with existing prediction methods. The main conclusions are then sum-

marised in Section 4.6. The appendices include the convergence tests (Appendix 4.A),

the Euler-Bernoulli beam theory for the offshore tests (Appendix 4.B) and new cor-

relations for the onshore plate displacements and stresses (Appendix 4.C).

4.2 Numerical model

The numerical investigation was conducted with the open source toolbox solids4foam

(Cardiff et al., 2018) implemented in FE 4.0 (OpenFOAM extension, 2016). This

toolbox solves fluid-solid interaction phenomena employing the FVM discretisation

for both domains and with a partitioned coupling approach.

4.2.1 Governing equations and coupling method

The fluid was modelled as an incompressible Newtonian fluid satisfying the continuity

and the Reynolds-Averaged Navier-Stokes (RANS) equations

∇ · ū = 0 (4.2)

ρ∂ū

∂t
+ ρ(ū · ∇)ū = −∇p̄+ ρ∇ · (µ∇ · ū− u′u′) + ρg + fσ, (4.3)
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where ū = (ūx, ūy, ūz) is the mean fluid velocity vector, p̄ the mean pressure, ρ the

fluid density, µ the fluid dynamic viscosity, u′u′ the turbulent stress tensor, t the

time, g the gravitational acceleration vector and fσ the surface tension force per unit

volume (Brackbill et al., 1992). The tensor u′u′ is defined according to the turbu-

lence model considered (Ferziger, 1987; Jasak, 1996). The k-ε model (Launder and

Spalding, 1974) has been used herein. This standard model ensures fast convergence

and reliability in modelling fully-turbulent processes.

Eqs. (4.2) and (4.3) were discretised into a set of algebraic equations and solved

with the PIMPLE loop (Aguerre et al., 2013). The Courant-Friedrichs-Lewy (CFL)

convergence condition (Courant et al., 1928)

C =
ūx∆t

∆x
+

ūy∆t

∆y
+

ūz∆t

∆z
≤ 1 (4.4)

was used to control the time integration. In Eq. (4.4), C is the Courant number and

∆x, ∆y and ∆z are the cell sizes in the x, y and z direction, respectively. The initial

time step ∆t was dynamically adapted to satisfy the CFL condition throughout the

simulation, with the mean C typically not exceeding 0.012.

The water-air flows herein were solved by employing the Volume Of Fluid (VOF)

method (Hirt and Nichols, 1981) with the fraction of volume α; α varies from 0 to

1, with α = 0 denoting air (subscript a), α = 1 water and 0 < α < 1 the air-water

interface. In the present study, α = 0.5 was used to track the water surface. The

physical properties ρ and µ are computed as

ρ = ρwα+ ρa(1− α) (4.5)

µ = µwα+ µa(1− α). (4.6)

Once Eqs. (4.2) and (4.3) were solved, α was updated based on the transport equation

∂α

∂t
+∇ · (ūα) +∇ · [α(1− α)ur] = 0. (4.7)
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The compression term ∇ · [α(1− α)ur], where ur is the compression velocity vector,

was introduced by Weller et al. (1998) to reduce the numerical diffusion.

The waves were generated with the toolbox waves2Foam (Jacobsen et al., 2012).

The wave generation was based on the relaxation zone technique, consisting of a

relaxation function applied to evaluate ū and α inside the relaxation zone (Jacobsen

et al., 2012). A relaxation zone of 3 times the wave length L was used in all tests of

the present study (Fig. 4.1a).

A Lagrangian approach was adopted for the solid domain. In the present study,

large displacement kinematics were considered along with the Neo-Hookean elastic

constitutive law. The momentum equation is

ρs
∂2ds

∂t2
+∇ · [(JD−T

F ) · σs] = ρsg, (4.8)

where ds is the solid (subscript s) displacement vector, ρs the solid density, DF =

I + (∇ds)
T the deformation gradient, with the identity matrix I, J the determinant

of DF and σs the stress tensor in Voigt notation.

The fluid-solid coupling was performed through a partitioned approach. The fluid

domain was solved with a Dirichlet condition for the mean velocity vector ū at the

interface and the solid with a stress boundary condition (Cardiff et al., 2018). For each

time step, the fluid velocity and pressure fields were updated with Eqs. (4.2) and (4.3)

through the PIMPLE loop (Aguerre et al., 2013), and Eq. (4.7) was solved to track

the water-air interface. Thereafter, the fluid forces acting on the solid were evaluated

and applied to the solid interface. The traction Neumann condition was employed

at the solid interface, where the boundary condition for the displacement was set as

“solidTraction” (Cardiff et al., 2018). The solid domain was solved, then the new solid

velocities were transferred to the fluid using an under-relaxation technique (Cardiff

et al., 2018). This involved multiplying the new solid velocities by a relaxation factor

≤ 1 to optimise the numerical convergence. Consequently, the fluid mesh was updated

and the loop was performed until convergence was achieved.
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4.2.2 Numerical set-up and test programme

Linear and solitary waves impacting plates located either offshore or onshore were

investigated with the 2D set-ups shown in Fig. 4.1. These idealised wave types rep-

resent a range of real-world applications, from wind waves to more extreme cases

such as tsunamis. In the offshore tests, the plate was located 4L from the upstream

boundary of the flume (Fig. 4.1a). The plate, with a height l = 30 m and thickness

s = 2 m, was fixed on a substructure with height ls = 35 m and submerged by 25, 50

or 75% of l. This design is related to the concepts of the MOSE mobile gate (Erbisti,

2014) and Oyster WEC (Lagoun et al., 2010).

Young’s moduli E = 1, 30 and 1000 GPa were used, modelling extreme scenarios

of real applications, with E = 1 GPa representing a variety of plastics and E = 1000

GPa as an upper bound for rigid plates. Inclinations of the plate β = 60, 75 and 90◦

were investigated. Linear and solitary waves with various wave amplitudes a, heights

H and periods T were simulated within a total of 72 tests (Table 4.1). A resolution

of ∆x = ∆z = 0.15 m in a 25.00 m × 32.00 m refined area (Appendix 4.A) was

employed, with ∆x = ∆z = 0.60 m in the remainder of the domain (Fig. 4.1a).
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Figure 4.1. Side views of the numerical set-ups: (a) offshore and (b) onshore.

In the onshore tests, the plate was located on the horizontal section of the shore
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at a distance of Ls = 4 m from the transition point (Fig. 4.1b). An inclination of the

shore of βs = 30◦ was used, as a typical value for the friction angle of sand. Water

depths of h = 2, 3 and 4 m were investigated, resulting in freeboards of zf = 0, 1 and

2 m. For each wave condition, 5 plates with different E, boundary conditions and

thicknesses were used (Table 4.2), resulting in a total of 45 tests. For the Rigid (R)

and “Top Free” (TF) cases the plate was fixed to the foundation and the top end was

free to move. In the “Roller Support” (RS) case the plate was fixed to the foundation

and the horizontal displacement dx at the top end was prevented. The fundamental

natural frequency fs of the plates R, TF1 and TF2 (Table 4.2) was computed as

(Gibson, 2007)

fs =
(1.875)2

2πl2

√
Es2

12ρs
. (4.9)

A resolution of ∆x = ∆z = 0.0250 m, with ∆x = ∆z = 0.0125 m in a 1.40 m × 3.00

m refined area, was used (Fig. 4.1b).

Table 4.1. Test programme for the 2D numerical tests.

Parameter Symbol Unit Offshore Onshore

Water depth h m 42.5, 50.0, 57.5 2, 3, 4
Plate height l m 30 3

Plate inclination β ◦ 60, 75, 90 90
Young’s modulus E GPa 1, 30, 1000 1, 1000
Plate thickness s m 2 0.15, 0.30

Dimensionless rigidity Es3/(12ρwgh
4) - 0.006 to 20.830 0.112 to 1.433×104

Plate density ρs kg/m3 1500, 8000 1500, 8000
Plate boundary condition - - Top free Top free, roller support

Shore freeboard zf m - 0, 1, 2
Shore length Ls m - 4

Shore inclination βs
◦ - 30

Linear waves

H m 2.62 to 3.55 -
H/h - 0.046 to 0.080 -
T s 6, 8, 10 -

T (g/h)1/2 - 2.48 to 3.84 -

Solitary waves
a m 3.56 to 3.75 0.9, 1.2, 1.5

a/h - 0.06 to 0.09 0.225 to 0.750

Number of tests - - 72 45

The simulations were run on the High Performance Computing (HPC) cluster

Augusta at the University of Nottingham using 40 Central Processing Units (CPUs)
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and 150 GB of memory. In the offshore layout (≈ 0.1 million cells), the solitary wave

tests took up to approximately 10 h to simulate 30 to 33 s and linear wave tests took

34 h for a simulation time of 110 s. Onshore tests (≈ 0.5 million cells) required up to

20 h to simulate 6 to 10 s.

Table 4.2. Classification of the 5 plates used in the onshore tests.

Notation E (GPa) ρs (kg/m3) s (m) Boundary condition fs (Hz)

R 1000 8000 0.30 Top free 60.20
RS1 1 1500 0.30 Roller support -
RS2 1 1500 0.15 Roller support -
TF1 1 1500 0.30 Top free 4.40
TF2 1 1500 0.15 Top free 2.20

4.2.3 3D simulations

3D simulations have been conducted with the 15 m wide wave flume shown in Fig.

4.2. The plate, with the same width as the flume, was 30 m high with s = 0.30 m

and supported at both ends. A volume of water with depth hd = 15 m was retained

downwave (subscript d) of this plate. This scenario mimics a section of the hull of a

Floating Production Storage and Offloading (FPSO) unit.

h = 50 m

l
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Refined
mesh s

hd

(a) (b)
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s

Refined
mesh
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av

e 
fr
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t
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Figure 4.2. 3D simulations: (a) lateral view and (b) section AA of the 3D numerical

set-up with the hull of a FPSO unit.

The simulations involved flexible and rigid plates with E = 2 ·102 and 2 ·104 GPa,

respectively, impacted by a solitary wave with a/h = 0.07. The density of the plate

was ρs = 8000 kg/m3 in both cases. A resolution of ∆x = ∆y = ∆z = 0.15 m was

used in a 30.00 m × 15.00 m × 30.00 m refined volume, with ∆x = ∆y = ∆z = 0.60

m in the remainder of the domain resulting in ≈ 6 million cells. The numerical tank

boundaries at y = −7.5 and 7.5 m were modelled as smooth walls. The simulations
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were again run on Augusta using 40 CPUs and 120 GB of memory. The rigid plate

test took approximately 28 h and the flexible case 150 h to simulate 30 s.

4.3 Physical model

Laboratory experiments were conducted in an approximately 15 m long, 0.245 m

wide and 0.460 m deep flume, as shown in Fig. 4.3a. Cartesian coordinates (x, y, z)

are used in this study, with the origin at the still water surface. The tests involved

linear and solitary waves impacting a 0.55 m × 0.24 m plate. The flume was equipped

with a piston-type wave maker. The plate was located 11.43 m downwave the wave

maker and supported by a movable angled ramp, enabling several plate inclinations

β. A gap of 2.0 to 2.5 mm between the plate and the lateral walls of the flume allowed

for a free movement of the plate. A 4 mm thick acrylic (Young’s modulus E = 3.30

GPa) and a 3 mm thick stainless steel plate (E = 200 GPa) were used in the tests

to model flexible and rigid structures.
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Figure 4.3. Experimental set-up: (a) side view of the wave flume and plate, (b)

frontal view of the plate (dimensions in m) and (c) overview of the flume with the

instrumentation.
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The water surface elevations were recorded at 3 locations with resistance-type

Wave Gauges (WGs, Fig. 4.3a). They recorded at 100 Hz with an accuracy of ±1 mm.

An array of MPXV5004GC7U (RS Components UK) Precision Pressure Transducers

(PPTs) was used to measure the water pressure at the plate. Each PPT was attached

to the lateral wall of the flume and connected with a water-filled pipe to the plate.

The locations of the pressure measurements is shown in Fig. 4.3b. The PPTs sampled

at 100 Hz with an estimated accuracy of ±10 Pa. Both the WGs and PPTs were

calibrated daily by changing the still water levels.

Load Cells (LCs) have been manufactured in-house to measure the wave forces

on the plates. These consisted of stainless steel S beams equipped with fibre optic

strain gauges and the data were interrogated with a FS22SI BraggMETER. The 4

LCs were located at the corners of the plate and fixed to the movable angled ramp

(Fig. 4.3a). They have been individually calibrated resulting in an overall accuracy

of ±0.3 N. The force was recorded at 1 kHz. In addition, KFWB Series Waterproof

Strain Gauges (SGs) were mounted on both the upwave and downwave sides of the

acrylic plate to measure deflections (Fig. 4.3b). They recorded at 100 Hz with an

accuracy of ±10−6.

4.4 Results

4.4.1 Offshore

4.4.1.1 Validation of solids4foam with new laboratory experiments

The validation of solids4foam for rigid plates was addressed in Attili et al. (2021).

The numerical model for flexible plates is validated herein with 2 new laboratory

experiments (Section 4.3) of solitary waves impacting a stainless steel and a plastic

plate. An overview of the main experimental parameters is given in Table 4.3. The

numerical set-up consisted of a 3D wave flume mimicking one half (0.00 m ≤ y ≤ 0.12

m) of the experimental flume given the symmetry of the wave field and plate. Small

strains were considered for the plates in these simulations with the linear elastic
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constitutive law.

Table 4.3. Main parameters in the validation with 2 laboratory experiments. Values

marked with * were observed at WG1 in tests conducted without the plate.

Experiment h (m) a (m) s (m) E (GPa) ρs (kg/m3) β (◦)

1 0.250 0.064* 0.003 200.000 8000 90
2 0.250 0.064* 0.004 3.300 1200 90

To accurately model the dynamics of the acrylic plate by reducing computational

cost, a plate with s = 0.008 m, E = 412.5 MPa and ρs = 600 kg/m3 was used in

the simulation. This has the same flexural rigidity EI and natural period Ts as the

laboratory plate where I is the moment of inertia. The numerical model experienced

instabilities when the same physical properties as in the laboratory test were used.

These were likely due to the relatively small thickness of the plate. A mesh resolution

of ∆x = ∆y = ∆z = 0.0040 m was used for the fluid domain in both experiments

and ∆x = ∆y = ∆z = 0.0015 m and ∆x = ∆y = ∆z = 0.0020 m were employed for

the solid domain in experiment 1 and 2, respectively.

The relative water surface elevations η/h observed at the 3 WGs (Fig. 4.3a) are

shown in Fig. 4.4 for both experiments. The wave travelled along the flume, impacted

the plate and was reflected. During wave impact, vibrations of the pipes connecting

the PPTs were observed in the laboratory tests. As a result, oscillations of the pressure

p, which are not directly related to wave pressures, were observed, as shown in Fig.

4.5. However, as also revealed by low-pass filter analyses, these oscillations follow the

overall trend of the wave pressure such that these measurements are still valuable. In

the end, the laboratory measurements were not low-pass filtered to avoid attenuating

significant high frequencies due to plate vibrations.

The comparison between laboratory and numerical results shows a good agree-

ment for η/h and p/(ρwgh) (Figs. 4.4 and 4.5a, b, c, d). The incident and reflected

waves, as well as their superposition, are well captured by the numerical model with

less than 12% deviations. The numerical (subscript num) pnum at PPT1, 2, 3 and 6

shows similar trends as the experimental (subscript exp) pexp, apart from the previ-
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ously mentioned oscillations. The normalised root mean square error was computed

as

nRMSE =

√
1
N

∑N
i (pnum,i − pexp,i)

2

(pexp,max − pexp,min)
, (4.10)

where N is the number of the considered p values and the subscripts max and min

stand for the maximum and minimum values.

(a) (b)

(c) (d)

(e) (f)

Figure 4.4. Comparison of the experimental and numerical water surface elevations

η/h at all 3 WGs for experiment 1 (a, c, e) and 2 (b, d, f) of Table 4.3.

Deviations of less than 7.6% were observed for pexp across the plate between

PPT2, 5, 6 and 7 in experiment 1. This was confirmed by the numerical results,

where pnum showed negligible deviations (< 1%) between y = 0.00 m and y = 0.10

m. However, reduced pnum were observed in proximity of the plate sides as a result

of larger velocities due to the gaps between the plate and the flume walls. This effect
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induced 24.5% smaller pnum at y = 0.12 m than at y = 0 m. Similar results were

observed in experiment 2.

The 3D experimental and numerical total forces F3D = F3D,u−F3D,d, where F3D,u

is the upwave (subscript u) and F3D,d the downwave force, are compared in Fig. 4.5e,

f. The force is overestimated by the numerical simulations by up to 18 and 33% for

experiment 1 and 2, respectively. These deviations may be explained by the inability

of the numerical model to fully capture the 3D effects due to the lateral gaps. The

numerical simulations tend to overpredict the laboratory p in proximity of the gaps,

as indicated by the comparison at PPT7, resulting in larger F3D on the plate.

(a) (b)

(c) (d)

(e) (f)

Figure 4.5. Comparison of the experimental and numerical pressures p/(ρwgh) at

(a) PPT1 (nRMSE = 0.097) and 2 (nRMSE = 0.085), (c) 3 (nRMSE = 0.041)

and 6 (nRMSE = 0.078) and (e) force F3D/(ρwgh
3) for experiment 1 and p/(ρwgh)

at (b) PPT1 (nRMSE = 0.108) and 2 (nRMSE = 0.115), (d) 3 (nRMSE = 0.094)

and 6 (nRMSE = 0.102) and (f) F3D/(ρwgh
3) for experiment 2 of Table 4.3.

Fig. 4.6 shows the numerical and experimental strain εzz at the upwave SGb and
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SGc (Fig. 4.3b) for experiment 2. The largest deformations of the plate were observed

at SGb followed by SGc. This behaviour is captured in the numerical simulation,

however, with up to 45.2 and 59.7% deviations for SGb and SGc. The overestimation

of the wave force in combination with the absence of physical damping in solids4foam

(Section 4.4.2.1) may explain the observed deviations. To sum up, the validation of

solid4foam with new laboratory tests showed its capability of capturing the water

surface elevation and the wave pressures well, however, it overestimates the wave

forces and plate deformation.

Figure 4.6. Comparison of the experimental and numerical strains εzz at SGb and

SGc for experiment 2 of Table 4.3.

4.4.1.2 A numerical representative test

Fig. 4.7 shows an offshore test with wave impact and reflection. In the present study,

t = 0.0 s is the instant when the wave front reaches the plate. The horizontal (sub-

script H) relative forces acting on a rigid and flexible plate with E = 1000 and 1

GPa, respectively, for a linear wave with a/h = 0.038 and T (g/h)1/2 = 3.54, are

shown in Fig. 4.8a.

Both the force acting on the upwave side of the plate FH,u and the total force

FH = FH,u − FH,d due to the hydrostatic and wave pressures are shown in Fig. 4.8a.

The stiffness of the plate results in negligible deviations of FH,u/(ρwgh
2). On the
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other hand, slightly larger deviations, of up to 6%, are observed for FH/(ρwgh
2).

These are due to the increase in the downwave water depth hd for the flexible plates.

The time series of the relative dx/l are shown in Fig. 4.8b.

(a)

t = 66.5 s 

0.0 
0.1 
0.2 
0.3 
0.4 

0.0 
0.1 
0.2 
0.3 
0.4 

0.0 
0.1 
0.2 
0.3 
0.4 

0.0 
0.1 
0.2 
0.3 
0.4 

0.0 
0.1 
0.2 
0.3 
0.4 

(b)

t = 68.5 s 

(c)

t = 70.5 s 

(d)

t = 72.5 s 

(e)

t = 74.5 s 

dx (m) 

0.0 

u (m/s) 

1 0 2 3 4 0.4 0.8 0.4 

Figure 4.7. Snapshot series of a 2D linear wave impacting a plate with a/h = 0.038,

T (g/h)1/2 = 3.54, s = 2.00 m and E = 1.00 GPa showing the mean velocity ū =√
ū2x + ū2z, pressure contours (MPa) and horizontal displacement dx.
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Line style: Colour:
FH
FH,u

E = 1 GPa
E = 1000 GPa

(a) (b)

Figure 4.8. Offshore tests: time series of the relative (a) total FH/(ρwgh
2) and

upstream FH,u/(ρwgh
2) forces and (b) horizontal displacement dx/l at the top end

of the offshore plates (Fig. 4.1a) with E = 1 and 1000 GPa and β = 90◦ for a linear

wave with a/h = 0.038 and T (g/h)1/2 = 3.54.

4.4.1.3 Numerical run-up and force

The maximum dimensionless run-up heights R/h are shown in Fig. 4.9a versus a/h

for the linear and solitary wave tests. Overall, R/h increases with increasing a/h,

following a linear trend in the solitary wave tests. The most deformable plates show

slightly smaller R/h with delays compared to the rigid plates, however, with small

deviations. The numerical Rnum/h are compared with predicted (subscript pred)

Rpred/h based on the equations included in Table 4.4 (Fig. 4.9b). The linear wave tests

were predicted with the theoretical equation from Miche (1951) and the empirical

equation of Müller (1995) was used for solitary waves, with L = 2πh/(0.75a/h)1/2

(Lo et al., 2013). The linear wave Rnum/h are well predicted by Miche (1951) for

β = 90◦, while deviations of up to 116% are observed for β = 60 and 75◦. These

deviations are due to the assumption of complete wave reflection in the theoretical

equation. In contrast, the incident waves are only partially reflected from sloped walls

(Ursell et al., 1960). The equation of Müller (1995) successfully captures the solitary

wave tests, with relatively small deviations.
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Figure 4.9. Offshore tests: (a) relative run-up height R/h versus a/h, (b) predicted

Rpred/h with Miche (1951) for the linear and Müller (1995) for the solitary wave

tests (Table 4.4) versus the numerical Rnum/h, (c) upwave FH,u/(ρwgh
2) and (d)

total FH/(ρwgh
2) forces versus a/h for the different plates shown in Table 4.1.

Table 4.4. Run-up height R prediction equations of Miche (1951) and Müller (1995).

Reference R/h Wave type

Miche (1951)
H

h

(
90◦

β

)1/2

Linear waves

Müller (1995) 1.25
(a
h

)5/4 ( a
L

)−3/20
(
90◦

β

)1/5

Solitary waves

Fig. 4.9c, d shows the relative FH,u/(ρwgh
2) and FH/(ρwgh

2) versus a/h. FH,u/(ρwgh
2)

decreases with increasing a/h for all tests and increases with increasing T in the lin-

ear wave tests. However, T has a small influence on FH,u. The plate stiffness results

in negligible deviations of FH,u/(ρwgh
2) for the investigated conditions. The larger

hd observed for the flexible plates result in larger forces acting on the downwave side

and consequently smaller FH . As shown in Fig. 4.9d, this effect is relatively small for

most of the tests. In a few tests with E = 1 GPa, the plate deformation induced up
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to 16% larger hd, with larger pd acting on the plate, compared to E = 1000 GPa. As

a result, FH for E = 1 GPa was up to 40% smaller than for E = 1000 GPa under

these conditions. The data in Fig. 4.9 will be further discussed and compared with

available prediction methods in Section 4.5.

4.4.1.4 Numerical plate response

In the offshore tests the natural period of the plate Ts varied from 0.24 to 3.11 s.

This was estimated as 1/fs (with fs from Eq. 4.9) with a reduced plate density due

to the initial submergence. In the solitary wave tests, the wave exerts a quasi static

loading on the plate. The ratio T/Ts is relatively large as T → ∞ and the plate does

not oscillate over the loading time. On the other hand, the ratio T/Ts = 1.92 to 42.16

is relatively small for the linear wave tests. In these tests, the wave impact is of short

duration and the plate oscillates with a period close to T (Fig. 4.8b). No resonance

has been observed in the investigated tests.

Fig. 4.10a shows the maximum dx,max/l versus a/h observed in all offshore tests.

The largest dx,max/l were observed in the solitary wave tests and overall dx,max/l

decreases for smaller h with constant a. The maximum relative stress component

σzz,max/(ρsgl) observed along the inner fibre (upwave) versus a/h are shown in Fig.

4.10b for the solitary wave tests. σzz,max/(ρsgl) were observed at or close to the

foundation of the plate. The flexible plates show larger σzz,max/(ρsgl) compared to

the rigid plate.

Based on the Euler-Bernoulli beam theory, dx and σzz can be predicted as shown

in Appendix 4.B. The maximum predicted dx,max,pred with Eq. (4.B.11) versus the

numerical dx,max,num are shown in Fig. 4.10c. The coefficient of determination is

applied as

R2 = 1−
∑

i (Ynum,i − Ypred,i)
2∑

i

(
Ynum,i − Ȳ

)2 , (4.11)

where Ynum,i and Ypred,i are the numerical and predicted values and Ȳ is the mean of

Ynum,i. The theoretical model tends to overpredict the numerical observations with
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deviations of up to 149%, whilst in other tests dx,max,num is underestimated by Eq.

(4.B.11).

(c) (d)

Symbol:
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waves
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Figure 4.10. Plate response for offshore tests: (a) relative maximum displacement

dx,max/l versus a/h, (b) relative maximum vertical stress component σzz,max/(ρsgl)

versus a/h for the solitary wave tests and (c, d) comparison between dx,max,num/l

and (c) dx,max,pred/l (R
2 = −0.42) and (d) dx,max,pred/(2l) (R

2 = 0.94).

The observed deviations are partially due to the violation of some of the as-

sumptions for the beam equation. The critical distributed load was assumed static

in the beam theory analysis. Conversely, the critical wave pressure distribution is

momentarily applied to the plate as a consequence of the dynamic nature of the wave

loading. Therefore, the beam theory represents an upper bound estimate of the time

varying plate deflections. A further assumption in Appendix 4.B is that the run-up

height R corresponds to 2a. However, this overestimates Rnum by up to 50%, also

contributing to the observed deviations. On the other hand, an estimation of the

plate slope dx,max/l ≤ 0.12 reveals that the small slope assumption is satisfied in all

tests. A significantly improved agreement and R2 values can be achieved by applying
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an empirical prefactor of 1/2 to dx,max,pred, as shown in Fig. 4.10d.

4.4.1.5 Numerical 3D tests

Negligible deviations of the main parameters, e.g. p and dx, have been observed across

the plate width in the 3D tests (Section 4.2.3). Fig. 4.11a shows the relative upwave

F3D,H,u/(ρwgh
3) and total F3D,H/(ρwgh

3) forces on the 3D rigid and flexible offshore

plates. As observed in the 2D simulations (Fig. 4.8a), the stiffness of the plate results

in negligible deviations of F3D,H,u, with slight deviations of F3D,H of less than 2%.

These are again due to the increase of hd, and consequently pd (Fig. 4.11b), for the

flexible plate.

(b)(a)

Line style: Colour:
F3D,H
F3D,H,u

E = 2 102 GPa
E = 2 104 GPa

Line style:

(d)(c)

pu
pd

Figure 4.11. 3D simulations of offshore tests: (a) relative forces FH,3D/(ρwgh
3) and

FH,u,3D/(ρwgh
3) versus t(g/h)1/2, (b) relative pressures pu/(ρwgh) and pd/(ρwgh)

along z/h at y = 7.5 m, (c) relative displacements dx/l and (d) relative stresses

σzz/(ρsgl) at the inner fibre along z/h at y = 7.5 m during the maximum force for

E = 2 · 102 and 2 · 104 GPa.
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Fig. 4.11c, d shows the relative displacements dx/l and stresses σzz/(ρsgl) along

z/h during the maximum FH,3D. As expected, the rigid plate shows negligible dx/l

compared to the flexible plate. The maximum dx,max/l was observed near the centre

of the plate at the instant during the maximum FH,3D. The maximum σzz,max/(ρsgl)

were observed at the bottom of the plates, with a deviation between the rigid and

flexible plates of 7% only.

4.4.2 Onshore

4.4.2.1 Validation of solids4foam with an available laboratory experiment

The numerical model was further validated with a laboratory solitary wave exper-

iment from Kimmoun et al. (2009). The experimental set-up consisted of a flume

with a 1:15 sloped shore and a 1.00 m high plate (Fig. 4.12a). A solitary wave with

a/h = 0.12 impacting a plastic plate with s = 5.0 mm, E = 3.25 GPa and ρs = 1190

kg/m3 is discussed herein. The plate was fixed at the bottom end and supported at

z = 0.872 m. The water surface and plate deflections were recorded with 2 cameras.

A mesh resolution of ∆x = ∆z = 4.0 mm was used for the fluid and ∆x = 2.5 mm

and ∆z = 2.0 mm for the solid domain. A simulated time of 6 s took approximately

12 days of computation time with 40 CPUs and 500 GB of memory.

The wave overturned in front of the plate and entrapped an air pocket when im-

pacting the plate. This resulted in a complex wave-plate interaction (Peregrine, 2003;

Bredmose et al., 2015). Fig. 4.12b shows the experimental and numerical snapshots

at t = 0.03 s, where t = 0.00 s is the instant when the wave reaches the plate. The

water surface elevation is captured well in the simulation, however, the volume of the

air pocket is smaller than in the laboratory experiment.

The plate displacements dx at z = 0.35 m are compared in Fig. 4.12c. The ex-

perimental and numerical dx show similar trends, apart from some deviations. For

t ≤ 0 s, dx < 0 m was measured in the laboratory experiments, while dx = 0 m is

expected. The two peaks of dx observed in the laboratory experiments at t ≈ 0.08

and 0.45 s are captured in the simulation, with deviations of up to 35%.
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Figure 4.12. Validation of solids4foam with an experiment of Kimmoun et al. (2009):

(a) experimental set-up, (b) comparison between the laboratory and numerical snap-

shots at t = 0.03 s and (c) horizontal plate displacement dx at z = 0.35 m (after

Attili et al., 2022b).

Once the wave was reflected and propagated towards x ≤ 0 m, the plate oscillated

with a certain frequency, as shown in Fig. 4.12c for t ≥ 0.6 s. In this phase, the

comparison reveals that the laboratory results are affected by a relatively larger

damping than the simulation results. In the latter, damping is due to numerical effects

only, e.g. temporal discretisation, as physical damping is not modelled in solids4foam.

The damping ratio based on the logarithmic decrement of dx can be evaluated as

ζ =
1√

1 +
[
2π/

(
ln

dx,i
dx,i+1

)]2 (4.12)

with dx,i and dx,i+1 as the displacements of two successive peaks. For 0.6 s ≤ t ≤ 1.4

s, the averaged ζ resulted in 0.058 and 0.022 for the laboratory and numerical dx,

respectively. The larger ζ and the negative dx for t ≤ 0 s shown in the laboratory

experiments, in addition to the assumption of incompressible fluid in the simulation,

may explain the observed deviations.
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4.4.2.2 A numerical representative test

Fig. 4.13 shows a snapshot series of an onshore test for a solitary wave with a/h = 0.4

impacting the plate TF2 (Table 4.2). A water column following the wave run-up was

observed in front of the plate, which collapses after its kinetic energy is transformed

into potential energy (Fig. 4.13c, d).
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Figure 4.13. Snapshot series of a 2D solitary wave impacting an onshore plate with

a/h = 0.40, s = 0.15 m and E = 1.00 GPa showing the mean velocity ū =
√
ū2x + ū2z,

pressure contours (kPa) and horizontal displacement dx.
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4.4.2.3 Numerical force

The horizontal force FH acting on the plate shows a first peak FI at the initial

impact followed by a second peak FII (Fig. 4.14a, b), confirming previous laboratory

observations (Linton et al., 2013; Didier et al., 2014). FII is a consequence of the

collapse of the water column following the wave run-up at the plate. All tests show

a double peak apart from the 5 tests with a/h = 0.225 and zf/h = 0.000. In these

tests a single peak of FH was observed, most likely due to the relatively small a/h

and large wave length L.

(a) (b)

(c) (d)

Symbol:

Colour:

Figure 4.14. Plate forces at the 5 plates shown in Table 4.2 for onshore tests:

relative force FH/(ρwgh
2) versus t with (a) a/h = 0.40 and (b) a/h = 0.75 and (c,

d) FH/(ρwgh
2) versus (c) a/h and (d) zf/h.

FII is up to 3.3 times larger than FI , apart from the tests with a/h = 0.75

(Fig. 4.14b). In these tests, due to the relatively large steepness a/L = 0.09, surging

breaking was observed in proximity of the shore. This resulted in a violent impact on

the plate. Fig. 4.14c, d shows FH/(ρwgh
2) versus a/h and zf/h. FH/(ρwgh

2) increases
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with increasing a/h for a constant zf . For a constant a, FH/(ρwgh
2) decreases with

increasing zf/h, except for the tests with a/h = 0.75.

An important finding of this study is that the rigidity of the onshore plate tends

to have a negligible effect on FH (Fig. 4.14c, d). The largest deviations between the

5 plates under constant wave conditions are observed for large a/h and/or small z/h.

Plate R does not necessarily result in the maximum FH , with deviations of the flexible

plates in relation to plate R of up to 3.0% and 17.7% for FI and FII , respectively.

As a result, the design of flexible onshore plates can be based on design approaches

for rigid plates combined with a safety factor of 1.2 to account for the observed force

variations.

4.4.2.4 Numerical plate response

The plate deformation depends on the flexural rigidity and the wave loading. The

plate R shows negligible horizontal displacements dx. Maximum deformations were

observed for the most flexible plates, namely RS2, TF1 and TF2 (Table 4.2). Fig.

4.15a, b shows dx/l along the centroidal axis and σzz/(ρsgl) along the inner fibre of

the plate for a representative test with a/h = 0.4 at the instant when FII occurred.

The plates RS2 showed a maximum dx,max near the centre, while this is observed

at the top end for TF1 and TF2. Note that dx,max do not necessarily occur at the

instant when the maximum F are observed.

Plate TF2 shows the largest σzz/(ρsgl) due to the largest deformation. For all

5 plates, the largest σzz/(ρsgl) are observed at the fixing point of the plate. The

maximum dx,max/l and σzz,max/(ρsgl) are shown as a function of a/h in Fig. 4.15c,

d for plates RS2, TF1 and TF2. Overall, both dx,max/l and σzz,max/(ρsgl) increase

with increasing a/h for a constant zf/h. dx,max/l of TF1 are close and/or slightly

larger than dx,max/l of RS2. In contrast, σzz,max/(ρsgl) of TF1 are smaller than for

RS2. Once the wave was reflected, the plate oscillated with a certain frequency fs.

As expected, plates TF1 and TF2 oscillated with fs close to their natural frequencies

(Table 4.2), namely at fs = 4.55 and 2.27 Hz.
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(a) (b)

(c) (d)

Figure 4.15. Plate response for the 5 plates (Table 4.2) in the onshore tests: (a) di-

mensionless horizontal displacement dx/l and (b) vertical stress component σzz/(ρsgl)

along z/h at t(g/h)1/2 = 2.64 with a/h = 0.4 and maximum (c) dx,max/l and (d)

σzz,max/(ρsgl) versus a/h.

4.5 Discussion of results

4.5.1 Offshore

4.5.1.1 Force

The numerical FH,u,num/
(
ρwgh

2
)
in the offshore tests are compared with predictions

based on Evers et al. (2019) and Heller et al. (2009). The prediction equation of Evers

et al. (2019) has been slightly modified into

FH,u = [1− 1.5(a/h)]1/6(1/2)ρwg(2a+ h− ls)
2, (4.13)
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to disregard the trapezoidal section of p(z) acting on the substructure at −h ≤ z <

(−h + ls). The comparison in Fig. 4.16 reveals that FH,u,num are captured by the

prediction method of Evers et al. (2019), operating on the safe side for all tests. The

solitary wave tests are predicted well by Eq. (4.13), with deviations of less than 22%

for all investigated stiffnesses. The linear wave tests show the largest underestima-

tions, namely up to 73%. These deviations are likely due to the fact that Eq. (4.13)

relies on more extreme waves, including Stokes 5th order, cnoidal and solitary waves

(Attili et al., 2021; Hess et al., 2023).
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Figure 4.16. Comparison of the predicted FH,u,pred/(ρwgh
2) (Evers et al., 2019) and

numerical FH,u,num/(ρwgh
2) for the linear and solitary (encircled) wave tests.

4.5.2 Onshore

4.5.2.1 Transformation into overland flow

Once the waves run-up the shore, they transformed into overland flows before im-

pacting the plates (Fig. 4.17). The overland flow is characterised by the depth hs

and the depth-averaged velocity ūs. These are defined at x = zf cotβs + Ls/2 in

the present study. The first force peak FI (Fig. 4.14a, b) can be theoretically pre-

dicted as a function of hs and ūs with Eq. (4.1) (taken from Cross, 1967). Fig. 4.10a

shows the predicted FI,pred/(ρwgh
2) based on Eq. (4.1) versus the numerical values

FI,num/(ρwgh
2) for the tests with plate R. FI,pred was predicted assuming Cf = 1
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4.5 Discussion of results

and with the numerical hs and ūs resulting in the maximum FI,pred. The comparison

shows a good agreement between FI,pred and FI,num, however, the predictions of hs

and ūs remain challenging. Fuchs and Hager (2015) proposed empirical equations to

predict hs(x) and ūs(x), which, however, result in unsatisfactory agreements in the

present study with deviations of up to 117%. Further guidelines for the prediction of

hs and ūs can be found in design standards (ASCE/SEI 7-16, 2017). In the following

section, FI and FII are directly related to the offshore wave energy Ew such that hs

and ūs are no longer required.

l

h
βs

z

x

Ls

a

hs

zf

Ew
Eof
us

Ls/2

Figure 4.17. Sketch with the main parameters of a solitary wave and its transfor-

mation to overland flow.

When a wave propagates and runs-up a slope, its offshore wave energy is trans-

formed into potential and kinetic energies of the overland flow. A portion of the wave

energy is consumed during this process by various mechanisms, including bottom

friction, reflection from the shore and wave breaking. The energy associated with the

reflection from the shore was found to be negligible in the study of Li and Raichlen

(2003) and von Häfen et al. (2022) found that the energy dissipated by wave breaking

is proportional to a.

The wave energy per unit width Ew is composed of the kinetic and potential

energies. According to Li and Raichlen (2003), Ew of a solitary wave is

Ew =
8

3
√
3
ρwg(ah)

3/2. (4.14)

The total energy per unit area of the overland flow Eof due to the kinetic and

potential components is
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4.5 Discussion of results

Eof =
1

2
ρwhsū

2
s + ρwghs(h+ zf + hs/2). (4.15)

Based on the energy balance, it can be assumed that Ew is directly proportional

to Eof . By employing a least-square approach algorithm, the following equation has

been derived (Fig. 4.18b)

Eof

[ρwg(h+ zf + a)2]
=

5

2

Ew

[ρwg(h+ zf + a)3]
− 0.06. (4.16)

The intercept 0.06 in Eq. (4.16) takes the energy consumed by bottom friction,

reflection from the shore and wave breaking into account. The forces FI and FII

observed at the 5 plates (Table 4.2) were also expressed as a function of Ew as (Fig.

4.18c, d)

FI

[ρwg(h+ zf + a)2]
=

5

4

Ew

[ρwg(h+ zf + a)3]
− 0.04, (4.17)

FII

[ρwg(h+ zf + a+ l)2]
=

2

3

Ew

[ρwg(h+ zf + a)3]
− 0.02. (4.18)

The constants in Eqs. (4.17) and (4.18) have been optimised based on a least-square

approach algorithm. Eqs. (4.17) and (4.18) capture the numerical results well and

most of the data deviate less than ±30%. Eq. (4.17) underestimates the tests with

a/h = 0.75 by a factor of up to 2.43. Once again, the surging breaking and relatively

violent impact on the plate may be the reason for the observed deviations. In this

case, advanced turbulence models could provide more accurate results (Larsen and

Fuhrman, 2019; Xie and Chu, 2019). Similar correlations are shown in Appendix 4.C

to predict dx,max and σzz,max.

Eqs. (4.17) and (4.18) can be used to predict the maximum surge forces on on-

shore buildings and infrastructures. To apply these equations, the main dimensionless

parameters need to be within the investigated ranges, namely 0.225 ≤ a/h ≤ 0.750,

1 ≤ Ls/h ≤ 2, 0 ≤ zf/h ≤ 1 and βs = 30◦. However, Eqs. (4.17) and (4.18) may still
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provide good preliminary estimates when these limitations are moderately violated.

(d)
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Figure 4.18. Overland flow: (a) comparison of the predicted (Cross, 1967) and

numerical FI/(ρwgh
2) (R2 = 0.93) at plate R, (b) energy of the overland flow

Eof/[ρwg(h+zf+a)2] with Eq. (4.16) (R2 = 0.98) for plate R, (c) FI/[ρwg(h+zf+a)2]

with Eq. (4.17) (R2 = 0.90) versus the wave energy Ew/[ρwg(h + zf + a)3] and (d)

FII/[ρwg(h+ zf + a+ l)2] versus Ew/[ρwg(h+ zf + a)3] with Eq. (4.18) (R2 = 0.96)

for all 5 plates in Table 4.2.

4.5.2.2 Run-up height

The maximum run-up heights R at the onshore plates are predicted relative to the

shore height (h+ zf ) as (Fig. 4.19)

R

(h+ zf )
=

9

2

a

(h+ zf )
− 0.6. (4.19)

As discussed for Eqs. (4.17) and (4.18), a requirement for applying Eq. (4.19) is

that the dimensionless parameters in nature are within the investigated ranges and

βs = 30◦. For solitary wave transformation into overland flow, βs has an effect on

the bottom friction, e.g. smaller βs result in larger propagation distances, and on
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the reflection from the shore. For relatively steep slopes, the energy dissipated by

bottom friction and reflection from the shore is negligible compared to the energy

dissipated by wave breaking (Li and Raichlen, 2003). As a result, a is the most

important parameter, such that Eq. (4.19) provides a reasonable prediction of R

even for βs ̸= 30◦. However, for rough slopes and relatively small βs, the energy

dissipation due to bottom friction would have to be taken into account such that Eq.

(4.19) may overestimate R.

+3
0%

30%

Figure 4.19. Dimensionless run-up R/(h + zf ) versus the dimensionless wave am-

plitude a/(h+ zf ) with Eq. (4.19) (R2 = 0.75).

4.6 Conclusions

Waves impacting rigid and flexible plates were investigated based on laboratory and

numerical modelling. This study was motivated by the limited knowledge of Wave-

Structure Interaction (WSI) effects and the need to further investigate the effect of

the plate stiffness on wave forces. The main conclusions are summarised hereafter.

Small-scale laboratory tests of wave impact on offshore plates of different stiff-

nesses were conducted to validate the numerical model solids4foam. This resulted in

a good agreement with the laboratory observations for 2 representative tests, apart

from the strain where deviations of up to 59.7% have been observed. The numerical

model was further validated with a solitary wave impacting an onshore flexible plate
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experiment from Kimmoun et al. (2009). A total of 117 numerical tests were con-

ducted to investigate wave impacts on offshore and onshore plates with 2D set-ups.

These involved a range of linear and solitary waves with plates of different stiffnesses.

The standard k-ε model has been used because the turbulence effect was small in the

offshore tests and fully turbulent flows were observed in the onshore tests. However,

more advanced models, e.g. the Re-Normalised Group k-ε and Shear Stress Transport

k-ω models, should be employed for more complex processes with strong turbulence

and air entrainment (Larsen and Fuhrman, 2019; Xie and Chu, 2019).

The simulations were conducted assuming elastic plates, hence, no energy dissi-

pation due to the material was taken into account. This approximation is suitable

for real applications, where energy dissipation is expected to be relatively small.

In the offshore tests, the linear wave run-up heights R were up to 116% overpre-

dicted by the equation of Miche (1951) whilst the solitary wave R were in good agree-

ment with predictions from the equation of Müller (1995) (Fig. 4.9b). The upstream

horizontal forces FH,u were captured by the prediction method based on Evers et al.

(2019) for all investigated stiffnesses. The total forces FH were up to 40% smaller for

the tests with Young’s moduli E = 1 GPa than for tests with E = 1000 GPa. These

deviations were mostly due to an increase in the downstream water depth hd as a

consequence of the plate deformation. The offshore plate responses were successfully

analysed based on the Euler-Bernoulli beam theory (Appendix 4.B). Solitary wave

impact on 3D rigid and flexible plates was also simulated. Negligible deviations of the

pressures have been observed across the plate width. Once again, the plate stiffness

had negligible effects on the wave forces, with relatively small deviations observed in

the total force.

The force acting on the onshore plates showed a first FI and second FII peak,

confirming available laboratory observations (Linton et al., 2013; Didier et al., 2014).

With the exception of a few tests where surging breaking was observed, FII was up to

3.3 times larger than FI . The rigidity of the plate had a negligible effect on the wave

force in most of the tests (Fig. 4.14c, d). For constant wave conditions, the largest
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deviations between the 5 plates (Table 4.2) were observed for large wave amplitude

relative to the water depth a/h and/or small relative shore freeboard zf/h. The rigid

plate did not necessarily result in the maximum wave forces, with deviations of the

flexible plates in relation to the rigid one of up to 3.0 and 17.7% for FI and FII ,

respectively.

The solitary wave transformation into overland flow was also analysed for the

onshore tests. New semi-theoretical correlations based on the solitary wave energy

were derived. These provide the wave forces for both FI and FII and plate responses,

including the horizontal displacement and vertical stresses. In addition, the maximum

R were approximated in function of a, h and zf .

To sum up, the flexible plates did not necessarily result in smaller wave forces

compared to the rigid ones for the investigated conditions. In the offshore tests, the

plate stiffness had a negligible effect on the upwave forces. However, smaller total

forces were observed for more deformable offshore plates. Based on that, the actual

stiffness of the plate needs to be taken into account for the design of offshore plates.

The total forces on the onshore plates were unaffected by the plate stiffness in most

tests. Up to 17% deviations were observed in a few tests, however, with the rigid

plate not always resulting in the largest force. Therefore, the design of both rigid and

flexible onshore plates can be based on design approaches for rigid plates combined

with a safety factor of 1.2 to account for the observed force variations within this

study.

Ongoing and future work will focus on the scaling and scale effects in WSI phe-

nomena. This, along with the findings of Attili et al. (2021) and of the present article,

are aimed at enhancing the physical understanding and modelling as well as support

the design of coastal and offshore structures.
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4.A Convergence tests

4.A Convergence tests

Convergence tests were conducted for both the offshore and onshore set-ups (Fig.

4.1). Resolutions of ∆x = ∆z = 0.075, 0.150, 0.300 and 0.600 m were investigated in

the offshore case. The finest resolutions ∆x = ∆z = 0.075, 0.150 and 0.300 m were

used in a 25 m × 32 m refined area only (Fig. 4.1a), with larger meshes ∆x = ∆z =

0.300 and 0.600 m in the remainder of the domain.

(a) (b)

(c) (d)

Figure 4.A.1. Convergence tests: semi-logarithmic diagramme for the relative (a,

c) force FH,u/(ρwgh
2) and (b, d) horizontal displacement dx/l with the number of

cells and mesh size ∆x = ∆z for an (a, b) offshore and (c, d) onshore test.

Convergence tests were conducted with a solitary wave with a/h = 0.073 and

L = 2πh/(0.75a/h)1/2 = 1346 m (Lo et al., 2013) impacting a plate with E = 1

GPa. FH,u/(ρwgh
2) and dx/l are shown versus the number of cells and mesh sizes in

Fig. 4.A.1a, b. ∆x = ∆z = 0.150 m was used for the main tests as convergence is

achieved. This resulted in negligible differences (< 1%) with ∆x = ∆z = 0.075 m,

for both FH,u and dx, requiring approximately 1/4 of the computational time.
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4.B An application of the Euler-Bernoulli beam theory for offshore plates

A solitary wave with a/h = 0.4 and L = 2πh/(0.75a/h)1/2 = 34.4 m (Lo et al.,

2013) impacting plate RS2 (Table 4.2) has been simulated to investigate the optimal

mesh resolution for the onshore tests. Resolutions of ∆x = ∆z = 0.0063, 0.0125,

0.0250 and 0.0500 m were investigated. The finest resolutions ∆x = ∆z = 0.0063 and

0.0125 m were used in a 1.40 m× 3.00 m area surrounding the plate, while ∆x = ∆z =

0.0250 m was used in the rest of the domain (Fig. 4.1b). FH,u/(ρgh
2) overall decreases

with rougher resolutions, while dx/l increases (Fig. 4.A.1c, d). ∆x = ∆z = 0.0125

m resulted in the optimal mesh resolution. This shows deviations of only 0.9% and

0.4% for FH,u/(ρwgh
2) and dx/l, respectively, in relation to ∆x = ∆z = 0.0063 m

and required 1/2 of the computational time.

4.B An application of the Euler-Bernoulli beam theory

for offshore plates

The Euler-Bernoulli beam theory describes the behaviour of beams under axial forces

and bending (Timoshenko, 1983). By assuming that plane beam sections remain plane

and perpendicular to the deformed neutral axis and the slope ddx / dz is small, the

beam deflection results in

EI
d4dx
dz4

= p(z). (4.B.1)

In Eq. (4.B.1), I = bs3/12 is the moment of inertia of the beam cross-section, with

b as the beam width, and p(z) represents a distributed static load. The moment

curvature relation is

M = −EI
d2dx
dz2

(4.B.2)

and the shear force is evaluated as

Q = −EI
d3dx
dz3

. (4.B.3)

In the present study the bending moment in the beam is defined positive when it

produces a compressive stress at the downwave face of the beam.
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4.B An application of the Euler-Bernoulli beam theory for offshore plates

Based on the numerical observations, the offshore plate response may be assumed

quasi-static as it is in phase with the excitation and no transient oscillations emerge.

Under these assumptions, Eq. (4.B.1) can be applied to the offshore plates where

b = 1 m and p(z) due to hydrostatic and wave pressures is approximated as shown in

Fig. 4.B.1, with p = ρwg2a[1 − 1.5(a/h)]1/6 (Heller et al., 2009; Evers et al., 2019).

By integrating Eq. (4.B.1) between points 0-1, 1-2 and 2-3 (Fig. 4.B.1) the following

3 equations were obtained

EIdx(z1) = p
z41
24

+ C1
z31
6

+ C2
z21
2

+ C3z1 + C4,

for 0 ≤ z1 < h, (4.B.4)

EIdx(z2) = p
(
1− z2

10a

) z42
24

+ C5
z32
6

+ C6
z22
2

+ C7z2 + C8,

for 0 ≤ z2 < 2a and (4.B.5)

EIdx(z3) = C9
z33
6

+ C10
z23
2

+ C11z3 + C12,

for 0 ≤ z3 ≤ (l − h− 2a) . (4.B.6)

h
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pu pd
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z1

z2

z3
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2

1

0
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s x
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Figure 4.B.1. Sketch with the main parameters and pressure distribution of a wave

impact on offshore plates.

For the sake of conciseness, the substructure has been omitted herein and β = 90◦

has been used. In the presence of a substructure (Fig. 4.1a), Eqs. (4.B.4) and (4.B.6)
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4.B An application of the Euler-Bernoulli beam theory for offshore plates

are valid for 0 ≤ z1 < (h − ls) and 0 ≤ z3 < (l − h + ls − 2a), respectively. For

β < 90◦, Eqs. (4.B.4) to (4.B.6) rely on the x- and z-axis rotated clockwise by

(90◦ − β) compared to β = 90◦.

A number of boundary conditions can be imposed at points 0, 1, 2 and 3 (Table

4.B.1). These include zero displacement and rotation at point 0, continuity of the

displacement, rotation, moment and shear force at points 1 and 2 and zero moment

and shear force at point 3. These boundary conditions result in a system of 12 linear

equations with Ci, for i = 1, .., 12 unknowns, with the solution shown in Table 4.B.2.

Table 4.B.1. Boundary conditions at the 4 significant points for the offshore plate

of Fig. 4.B.1.

Point 0 Point 1 Point 2 Point 3

dx(z1 = 0) = 0 dx(z1 = h) = dx(z2 = 0) dx(z2 = 2a) = dx(z3 = 0) -

ddx
dz1

∣∣∣∣
z1=0

= 0
ddx
dz1

∣∣∣∣
z1=h

=
ddx
dz2

∣∣∣∣
z2=0

ddx
dz2

∣∣∣∣
z2=2a

=
ddx
dz3

∣∣∣∣
z3=0

-

- M(z1 = h) = M(z2 = 0) M(z2 = 2a) = M(z3 = 0) M(z3 = l − h− 2a) = 0

- Q(z1 = h) = Q(z2 = 0) Q(z2 = 2a) = Q(z3 = 0) Q(z3 = l − h− 2a) = 0

The Euler-Bernoulli beam equation can also be used to describe the distribution

of the vertical stresses at the inner fibre of the beam

σzz(z) =
s

2
E
d2dx
dz2

. (4.B.7)

By combining Eq. (4.B.7) with the second derivatives of Eqs. (4.B.4) to (4.B.6)

σzz(z) =
s

2I

(
p
z2s1
2

+ C1zs1 + C2

)
, for 0 ≤ zs1 < h, (4.B.8)

σzz(z) =
s

2I

[
p
(
1− zs2

6a

) z2s2
2

+ C5zs2 + C6

]
, for 0 ≤ zs2 ≤ 2a and (4.B.9)

σzz(z) = 0, for z3 > 0. (4.B.10)
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Table 4.B.2. Values for the constants in Eqs. (4.B.4), (4.B.5) and (4.B.6).

Constant Value

C1 −ph− pa

C2 p
h2

2
+ pha+

p

6
(2a)2

C3 0

C4 0

C5 −pa

C6
p

6
(2a)2

C7 p
h3

6
+ p

h2

2
a+ p

h

6
(2a)2

C8 p
h4

8
+ p

h3

3
a+ p

h2

12
(2a)2

C9 0

C10 0

C11 p
h3

6
+ p

h2

2
a+ p

h

6
(2a)2 +

p

24
(2a)3

C12 p
h4

8
+ p

h3

3
2a+ p

h2

3
(2a)2 + p

h

6
(2a)3 +

p

30
(2a)4

The comparisons between the numerical and predicted dx/l and σzz/(ρsgl) based

on Eqs. (4.B.4) to (4.B.6) and Eqs. (4.B.8) to (4.B.10), respectively, with the con-

stants in Table 4.B.2, are shown in Fig. 4.B.2 for 4 representative tests. The maximum

dx,max at the plate top end results from Eq. (4.B.6) with zs3 = l − h+ ls − 2a in

dx,max = 12
C11(l − h+ ls − 2a) + C12

Es3
. (4.B.11)

While such an application of the static Euler-Bernoulli beam theory provides a rea-

sonable prediction of the offshore plate responses, future studies should include time

varying load distributions for more complex wave-plate interactions.
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(a) (b)

(c) (d)

Figure 4.B.2. Comparison of the predicted and numerical (a) dx/l (nRMSE =

0.27) and σzz/(ρsgl) (nRMSE = 0.22) for a linear wave test with a/h = 0.027,

T (g/h)1/2 = 4.13, E = 1 GPa and β = 90◦, (b) dx/l (nRMSE = 0.10) and σzz/(ρsgl)

(nRMSE = 0.09) for a linear wave test with a/h = 0.046, T (g/h)1/2 = 3.84, E = 1

GPa and β = 90◦, (c) dx/l (nRMSE = 0.14) and σzz/(ρsgl) (nRMSE = 0.10)

for a solitary wave test with a/h = 0.073, E = 1 GPa and β = 90◦ and (d) dx/l

(nRMSE = 0.04) and σzz/(ρsgl) (nRMSE = 0.17) for a solitary wave test with

a/h = 0.062, E = 30 GPa and β = 60◦.

4.C Correlations of the onshore plate response

The maximum dx,max and σzz,max are expressed as a function of the offshore wave

energy Ew for the onshore tests. For the roller support plates the following equations

have been derived (Fig. 4.C.1a, b)

dx,maxEs3

ρsgl5
=

(
Ew

[ρwg(h+ zf + a)3]

)2

− 8.0 · 10−4, (4.C.1)
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σzz,maxs
2

El2
= 1.2 · 10−4

(
Ew

[ρwg(h+ zf + a)3]

)
− 4.4 · 10−6. (4.C.2)

For the top free plates, dx,max and σzz,max are expressed as (Fig. 4.C.1c, d)

dx,maxEs3

ρsgl5
= 19.0

(
Ew

[ρwg(h+ zf + a)3]

)2

− 0.04, (4.C.3)

σzz,maxs
2

El2
= 2.3 · 10−3

(
Ew

[ρwg(h+ zf + a)3]

)2

− 3.6 · 10−6. (4.C.4)
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Figure 4.C.1. Plate response in the onshore tests: maximum relative (a) displace-

ment dx,maxEs3/(ρsgl
5) with Eq. (4.C.1) (R2 = 0.93) and (b) stress σzz,maxs

2/(El2)

with Eq. (4.C.2) (R2 = 0.93) for plates RS and (c) dx,maxEs3/(ρsgl
5) with Eq. (4.C.3)

(R2 = 0.95) and (d) σzz,maxs
2/(El2) with Eq. (4.C.4) (R2 = 0.96) for plates TF ver-

sus the dimensionless wave energy Ew/[ρwg(h+ zf + a)3].
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Chapter 5

Scaling approaches and scale

effects in wave-flexible structure

interaction

This chapter is comprised of the following journal article, which is currently in press

for publication in the Journal of Fluids and Structures:

Attili, T., Heller, V. and Triantafyllou, S., 2023. Scaling approaches and scale effects

in wave-flexible structure interaction. Journal of Fluids and Structures (in press).

To improve readability, the following adjustments have been made:

1. Section, page figure, table and equation numbers are amended to ensure con-

sistency across the thesis.

2. The email addresses of the authors have not been included.

3. The nomenclature and references list are provided at the end of this thesis.
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Scaling approaches and scale effects in wave-flexible

structure interaction

Tommaso Attili1, Valentin Heller1, Savvas Triantafyllou2

1Environmental Fluid Mechanics and Geoprocesses Research Group, Faculty of

Engineering, University of Nottingham, Nottingham NG7 2RD, UK

2Institute for Structural Analysis and Aseismic Research, School of Civil

Engineering, National Technical University of Athens, Athens, Greece

Abstract

Laboratory models are important for research, to inform design solutions and to cal-

ibrate and validate numerical models. Unfortunately, model-prototype similarity is

often difficult to achieve in small models, resulting in scale effects. For Wave-Flexible

Structure Interaction (WFSI), scale effects arise when the fluid and/or structure

properties are incorrectly scaled. The present study provides a systematic investiga-

tion of scale effects for wave impacts on flexible and rigid plates based on numerical

modelling supported by small-scale laboratory tests. Non-breaking and breaking wave

impacts were simulated with regular and solitary waves for the prototypes and up

to 40 times smaller models. These were scaled according to the scaling approaches

(i) precise Froude (fluid and plate properties scaled), (ii) traditional Froude-Cauchy

(fluid properties unscaled, plate properties scaled), (iii) traditional Froude (fluid and

plate properties unscaled) and (iv) a new WFSI approach (partial conservation of the

WFSI governing parameters). The numerical results confirmed the absence of scale

effects for (i). Non-breaking wave impacts were correctly predicted for (ii), however,

up to 132% scale effects were observed in the breaking wave pressures due to the un-

scaled fluid properties. The plate displacements were underestimated by up to 98%

for (iii). The new approach (iv) was successfully validated based on non-breaking
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waves, with less than 4.3% deviations for the maximum regular wave forces and plate

displacements. Additionally, less than 3% deviations for the maximum solitary wave

force and plate displacement were observed. The new scaling approach provides a

more versatile alternative to traditional Froude-Cauchy scaling laws to support lab-

oratory investigations of WFSI.

5.1 Introduction

5.1.1 Background

Wave-Structure Interaction (WSI) is relevant for numerous coastal and offshore struc-

tures, including breakwaters, floating and bottom-fixed wind turbines, wave energy

converters and offshore oil and gas platforms (Cuomo et al., 2010a; He and Kashi-

wagi, 2012; Didier et al., 2014). For flexible structures undergoing non-negligible

displacements, i.e. deflections larger than 0.5 to 2.0% of the structure length, called

Wave-Flexible Structure Interaction (WFSI) herein, the involved physical processes

are particularly complex. These structures may suffer from large stresses and defor-

mations under wave loading and experience damage under extreme conditions. Given

the complexity of these processes, e.g. variable geometries and complex flow fields,

laboratory models (Linton et al., 2013; Krautwald et al., 2022; Attili et al., 2023b)

are often used for research, to inform design solutions and to calibrate and validate

numerical simulations.

A laboratory model is similar to its prototype if geometric, kinematic and dy-

namic similarities are satisfied (Kobus, 1980; Hughes, 1993; Heller, 2011). Exact

model-prototype similarity is rarely achieved, due to the challenge of keeping all rel-

evant force ratios constant between the prototype and its model. This results in scale

effects, manifesting themselves in a variety of ways. For example, they can result

in considerably different void fractions in air-water flows (Catucci et al., 2021) or

non-identical pressures and forces in WSI between a model and its prototype (Abra-

hamsen and Faltinsen, 2013; Bredmose et al., 2015).
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Free-surface flow models are commonly scaled according to the Froude scaling

laws (Le Méhauté, 1976; Hughes, 1993; Heller, 2011; Sheng et al., 2014), ensuring

the same Froude number Fr = (inertial force/gravity force)1/2 in the prototype and

model. When ordinary water and air are used in the model, other force ratios, such

as the Reynolds number (inertial force/viscous force)

Re =
g1/2h3/2

ν
(5.1)

and Weber number (inertial force/surface tension force)

We =
ρwgh

2

σ
(5.2)

are not conserved, introducing scale effects. In Eqs. (5.1) and (5.2), the shallow-water

wave speed (gh)1/2 was used as the characteristic velocity, with the gravitational

acceleration g and the water depth h. The characteristic velocity and length can

change with the investigated phenomenon. Further, ν is the kinematic viscosity, ρw

the water (subscript w) density and σ the surface tension.

Re and We play a key role for air-water flows, e.g. for breaking waves (Kiger

and Duncan, 2012) and plunging jets (Chanson et al., 2004; Catucci et al., 2021).

Furthermore, the Mach number Ma = (inertial force/compressibility force) can be

relevant when the air-water flow compressibility is important, e.g. for oscillating water

columns (Falcão and Henriques, 2014) and violent wave impacts (Bredmose et al.,

2015). For such processes, the Froude scaling laws typically provide unsatisfactory

predictions (Hughes, 1993; Heller, 2011).

In WSI, scale effects are generally negligible for non-breaking waves under Froude

similarity for commonly used laboratory scales, i.e. 1:10 to 1:50 (Hughes, 1993; Cuomo

et al., 2010b). However, relevant scale effects are observed for breaking wave impacts

(Hughes, 1993; Cuomo et al., 2010b; Blenkinsopp and Chaplin, 2011; Martinelli et al.,

2011; Bredmose et al., 2015). Cuomo et al. (2010b) suggested an approach to remove

scale effects in the upscaling process of wave impact pressures on rigid walls. Their
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approach provides an estimate of the corrected pressure scaling law λp based on the

Bagnold number Ba. This is a measure of the peak impact pressure and was expressed

as (Cuomo et al., 2010b)

Ba =
0.2(1− π/12)

π/12

ρwg(h+H)

p0
, (5.3)

with the wave height H and the atmospheric pressure p0. Cuomo et al. (2010b)

revealed that wave impact pressures on rigid coastal structures are overestimated by

the Froude scaling laws. This was confirmed numerically by Bredmose et al. (2015),

who found larger pressures in smaller models due to the relatively stiffer air. To

overcome this, Bredmose et al. (2015) recommended to use the Bagnold-Mitsuyasu

law for pressures larger than 3.18 times the atmospheric pressure, whilst for smaller

pressures the Froude scaling laws provide good predictions. However, none of the

aforementioned studies took potential structural deformations into account.

In WFSI, the geometry and elastic properties of the structure must also be ap-

propriately scaled (Hudson et al., 1979; Hughes, 1993; Chakrabarti, 2005; Heller,

2011; Martinelli et al., 2011; Krautwald et al., 2022; Abrahamsen et al., 2023; Lam-

bert et al., 2023). When elastic forces are relevant, scaling criteria follow the Cauchy

similarity based on the Cauchy number Ca = (inertial force/elastic force). Froude

and Cauchy similarities can be combined to the Froude-Cauchy similarity for WFSI

phenomena (Le Méhauté, 1965; Chakrabarti, 2005; Krautwald et al., 2022), in which

the Young’s modulus E is scaled linearly with the geometrical scale factor between

the prototype (subscript P ) and model (subscript M) (Le Méhauté, 1965)

λ =
hP
hM

. (5.4)

As the structure (subscript s) density ρs and Poisson ratio have to be constant

between the prototype and its model, it is challenging to find an appropriate material

for small scales. On the other hand, an incorrect scaling of the structural properties

may have disastrous consequences, as in the case of the Sines breakwater which failed
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in 1978, partially due to an underdesign informed by misleading laboratory results

(Oumeraci, 1984; Le Méhauté, 1990). The most relevant WSI scaling studies are

summarised in Table 5.1.

Table 5.1. Relevant scaling studies for various WSI phenomena.

Reference Investigated phenomenon λ Comment

Cuomo et al. (2010b)
Wave impact pressures

on vertical walls
1 to 40

Approach to upscale breaking wave
pressures by removing scale effects

Abrahamsen and Faltinsen (2013)
Entrapped air pockets
during slamming events

1 to 1200
New scaling laws for gas

pocket pressures and rise times

Bredmose et al. (2015)
Breaking wave impacts

on walls
1/16 to 16

New scaling law for
breaking wave pressures

Catucci et al. (2021)
Dam break waves

impacting an obstacle
1 to 16

Novel scaling laws excluding
scale effects in air-water flows

Krautwald et al. (2022)
Bore wave impacts on

(collapsing) timber structures
5

Large-scale experimental model
under Froude-Cauchy similarity

A systematic investigation of scale effects in WFSI, including the modelling of

both the fluid and the structure, is still lacking. The present study explores scale

effects in wave impacts on rigid and flexible plates based on numerical modelling

supported by small-scale laboratory experiments (Appendix 5.B). Dimensionless gov-

erning parameters are validated and used to define a new scaling approach which is

more versatile than Froude-Cauchy scaling. Scale effects are systematically quantified

for a range of scaling approaches to illustrate the benefits of this new approach.

5.1.2 Aims and structure

The present study is aimed at:

• Formulating and validating a set of governing parameters fully representing the

underlying physics of WFSI.

• Formulating a new scaling approach for WFSI.

• Investigating scale effects in WSI based on different scaling approaches.

The remainder of this article is organised as follows. In Section 5.2, the numerical

model is presented, including the governing equations and the numerical set-ups.

This is followed by the governing parameters for WFSI, along with traditional scaling
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laws and the new scaling approach. The main results are presented in Section 5.3,

including the validation of the governing parameters and scale effects. These findings

are discussed and applied to upscale new laboratory measurements in Section 5.4

and the main conclusions are summarised in Section 5.5. The appendices include the

convergence tests (Appendix 5.A), a description of the physical experiments along

with the main laboratory results (Appendix 5.B), used as illustrative examples for

discussing scale effects and upscaling the results to hypothetical prototype scales,

and additional data about the scaling and scale effects (Appendix 5.C).

5.2 Methodology

5.2.1 Numerical model

5.2.1.1 Governing equations and coupling technique

The open source toolbox solids4foam (Cardiff et al., 2018; Attili et al., 2021; 2022a;

2023b), implemented in foam-extend 4.0 (FE 4.0) (OpenFOAM extension, 2016), was

used in the present study. The fluid and solid domains were solved based on the Finite

Volume Method (FVM) discretisation and coupled with a partitioned approach. An

incompressible Newtonian fluid model was used, satisfying the continuity

∇ · ū = 0 (5.5)

and Reynolds-Averaged Navier-Stokes (RANS) equations

ρ∂ū

∂t
+ ρ(ū · ∇)ū = −∇p̄+ ρ∇ · (µ∇ · ū− u′u′) + ρg + fσ. (5.6)

In Eqs. (5.5) and (5.6), ū = (ūx, ūy, ūz) is the mean fluid velocity vector, p̄ the mean

pressure, µ the fluid dynamic viscosity, u′u′ the turbulent stress tensor, t the time, g

the gravitational acceleration vector and fσ the surface tension force per unit volume

(Brackbill et al., 1992). The k-ε turbulence model (Launder and Spalding, 1974) was

used.
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The time integration of Eqs. (5.5) and (5.6) was controlled based on the Courant-

Friedrichs-Lewy (CFL) convergence condition (Courant et al., 1928)

C =
ūx∆t

∆x
+

ūy∆t

∆y
+

ūz∆t

∆z
≤ 1 (5.7)

where C is the Courant number, ∆t the time step and ∆x, ∆y and ∆z are the cell

sizes in the x, y and z direction, respectively. Eqs. (5.5) and (5.6) were complemented

with the Volume Of Fluid (VOF) method (Hirt and Nichols, 1981) to model air-water

flows. This is based on the fraction of volume α, which varies from 0 to 1, with α = 0

denoting air, α = 1 water and α = 0.5 was used to track the air-water interface.

The wave generation and absorption was performed with the toolbox waves2Foam

(Jacobsen et al., 2012), using a relaxation zone of 3 times the wave length L.

Contrary to the fluid, a Lagrangian approach was adopted for the solid domain.

The momentum equation

ρs
∂2ds

∂t2
+∇ · [(JD−T

F ) · σs] = ρsg (5.8)

was solved, assuming large displacement kinematics with the Neo-Hookean elastic

constitutive law. In Eq. (5.8), ds is the solid (subscript s) displacement vector, ρs the

solid density, DF = I+ (∇ds)
T the deformation gradient, with the identity matrix I,

J the determinant of DF and σs the stress tensor in Voigt notation.

The fluid-solid coupling was carried out with a partitioned approach (Tuković

et al., 2018; Liu and Zhang, 2019). As such, after solving the fluid velocity and pres-

sure fields, the fluid forces acting on the solid were evaluated. These were used as

new boundary conditions to update the solid domain. Consequently, the new solid

velocities were transferred to the fluid and the fluid mesh was updated. This was per-

formed in a loop within each time step until convergence was achieved (Cardiff et al.,

2018). This numerical model resulted in an overall good agreement with laboratory

measurements for wave impacts on rigid and flexible plates (Attili et al., 2023b).
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5.2.1.2 Numerical set-up and test programme

The numerical set-up involved a wave flume (2D) with a vertical offshore plate, as

shown in Fig. 5.1a. Cartesian coordinates (x, y, z) are used in this study, with the

origin at the still water surface. The plate, with ρs = 8000 kg/m3 and E = 200 GPa,

is 10 m high with a constant thickness s = 0.15 m. Similarly as in Attili et al. (2023b),

this design was inspired by the flood protection system MOSE (Erbisti, 2014) and

the Oyster wave energy converter (Lagoun et al., 2010). A Poisson ratio of 0.3 was

used in all tests.

A total of 3 prototype simulation tests have been conducted, involving non-

breaking regular and solitary waves with the values for the wave height H, period T

and amplitude a shown in Table 5.2. The simulations were run on the High Perfor-

mance Computing (HPC) cluster Augusta at the University of Nottingham with

60 Central Processing Units (CPUs) and 150 GB of memory. A fluid resolution

of ∆x = ∆z = 0.05 m was employed in a 11.00 m × 20.00 m refined area, with

∆x = ∆z = 0.10 m in the remainder of the domain (Fig. 5.1, Appendix 5.A). A solid

resolution of ∆x = ∆z = 0.017 m was used. The simulations were conducted with

a fixed ∆t = 0.025 s for the regular and ∆t = 0.017 s for the solitary wave tests,

satisfying Eq. (5.7). The regular wave tests took up to 50 h to simulate 102 s and a

solitary wave test took approximately 20 h to simulate 20 s.
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structure h 
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mesh

36 m 6 m
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10 m4L

4L

Figure 5.1. Side view of the prototype numerical set-ups for the (a) non-breaking

wave and (b) breaking wave tests.
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Table 5.2. Test programme for the prototype numerical tests.

Parameter Symbol Unit Non-breaking waves Breaking waves

Water depth h m 15 8.5

Plate height l m 10 10
Young’s modulus E GPa 200 200, 400

Plate thickness s m 0.15 0.15, 0.50
Plate density ρs kg/m3 8000 8000

Regular waves

H m 2 2.90
H/h - 0.13 0.34
T s 5.5, 11 11.30

T (g/h)1/2 - 4.45, 8.90 12.14

Solitary waves
a m 2 -

a/h - 0.13 -

5.2.1.3 Numerical simulation of breaking waves impacting plates

Additional numerical tests have been conducted to investigate breaking wave impacts

on a plate. The numerical set-up was inspired by Bredmose et al. (2015), consisting of

a wave flume with the plate located on top of a semi-elliptical shore (Fig. 5.1b). The 2

prototype tests involved a regular wave with H = 2.9 m and T = 11.3 s at h = 8.5 m,

impacting a rigid and flexible plate with their mechanical properties summarised in

Table 5.2. The same mesh resolution as for the tests in Section 5.2.1.2 was employed,

with an adaptive ∆t. Simulations were run on the HPC, taking up to 3.5 days to

simulate 73 s.

5.2.2 Governing parameters in WFSI

For 2D wave interactions with flexible plates, 10 governing parameters were identified:

H, T , h, ρw, ν, σ, the plate flexural rigidity D = Es3/12, the plate mass per unit area

Ms = ρss, l and g. These involve the 3 units length [L], mass [M] and time [T], i.e.

they can be reduced to a set of 7 dimensionless quantities based on the 3 reference

parameters ρw, h and g (Buckingham, 1914). This results in the 7 dimensionless

quantities shown in Table 5.3. Π1 to Π4 include the fluid parameters, with Π1 and Π2

representing the dimensionless wave height and period, and Π3 and Π4 the inverse of

Re and We, respectively. The plate parameters are included in Π5 to Π7, resulting in
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the relative mass (Π5), stiffness (Π6) and height (Π7). These dimensionless quantities

can be used for a general dimensionless presentation of results without the need for

upscaling (Section 5.3.1).

Table 5.3. Dimensionless governing parameters in 2D WFSI.

Π1 Π2 Π3 Π4 Π5 Π6 Π7

H

h
T
(g
h

)1/2 ν

g1/2h3/2
σ

ρwgh2
Ms

ρwh

D

ρwgh4
l

h

5.2.3 Scaling approaches

The prototype tests (Table 5.2) have been simulated within a scale series (Heller

et al., 2008) based on 4 different scaling approaches. These are summarised in Ta-

ble 5.4 with the corresponding scaling laws for all relevant parameters. Simulations

with geometrical scale factors λ = 5, 10, 20 and 40 were conducted for each scaling

approach, with all initial conditions, mesh sizes and time steps scaled accordingly.

Table 5.4. Scaling laws for all WFSI relevant parameters under different scaling

approaches.

Parameter Unit PFr TFrE TFr GP

H m λ λ λ λ

T s λ1/2 λ1/2 λ1/2 λ1/2

ρw kg/m3 1 1 1 1

ν m2/s λ3/2 1 1 1

σ N/m λ2 1 1 1

E N/m2 λ λ 1 λE

ρs kg/m3 1 1 1 Unrestricted

s m λ λ λ 3
√
λ4/λE

l m λ λ λ λ

g m/s2 1 1 1 1

The precise Froude scaling (PFr) laws, in which the fluid and plate properties are

correctly scaled (Catucci et al., 2021; 2023), were applied first. PFr do not involve

any scale effects. Secondly, the traditional Froude-Cauchy scaling (TFrE) laws, where

ordinary water and air were used in the models, with the plate mechanical properties
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scaled according to Cauchy similarity, were employed. Scale effects in the TFrE laws

are due to the non conservation of Re, We and Ma.

Traditional Froude scaling (TFr, Catucci et al., 2021; 2023) laws were also ap-

plied, relying on ordinary water and air at reduced scales and the plate stiffness was

unscaled. Scale effects in TFr are expected due to a non conservation of Re, We, Ma

and Ca. Finally, a new scaling approach based on the WFSI dimensionless governing

parameters (Table 5.3), referred to as GP, was used. This is based on the conservation

of Π1,Π2,Π6 and Π7 between the prototype and models.

By assuming Π1 and Π2 to be constant between the prototype and models, the

same scaling laws as under Froude scaling resulted for H and T (Table 5.4). For

practical reasons, ordinary water and air were used in the models, such that Π3 and

Π4 were not conserved, with a potential for scale effects. By introducing the E scaling

law

λE =
EP

EM
(5.9)

and assuming the conservation of Π6 between the prototype and models,

sM =
sP

3
√
λ4/λE

(5.10)

results. This requires that λE is constant over the applied force range, such that

the material response is linear or remains proportional between the prototype and

models. Finally, it can be derived that l scales linearly with λ by imposing Π7 to

be constant between the prototype and models. The derived scaling laws for the GP

approach are summarised in the last column of Table 5.4.

Based on this approach, the plate material in the models can be freely selected,

λE can then be evaluated (Eq. 5.9) and s can be estimated from Eq. (5.10). Acrylic

plates (E = 3.03 GPa and ρs = 1200 kg/m3) were used for the GP models of

the present study, resulting in λE = 66.01 for EP = 200 GPa. Note that Π5 is

intentionally not conserved in favour of a more versatile and practical approach.
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Consequently, no restrictions are applied to ρs, which otherwise would have to scale

with 3
√

λE/λ to ensure Π5,P = Π5,M . Therefore, model effects (Kobus, 1980; Hughes,

1993) are expected due to an incorrect representation of the plate mass and need

to be appropriately discussed (Section 5.4.2). These might be negligible in WFSI

processes where the plate mass is of secondary importance in relation to its stiffness,

as in the typical case of light-weight and slender structures under long-periodic waves

where the structure dynamics is mainly controlled by the external loading.

5.3 Results

5.3.1 Validation of the governing parameters

The WFSI dimensionless governing parameters (Table 5.3) were validated herein,

confirming their capability to fully capture the physics of WFSI. A regular wave

prototype test (Section 5.2.1.2), referred to as test 1, was compared with 3 tests

conducted under different conditions with the same parameters Π1 to Π7 (Table 5.5).

In tests 1a and 1b, the set-up, fluid properties and the wave features are identical to

test 1. However, E in tests 1a is smaller than in test 1, with a larger s and smaller

ρs. A thinner plate was used in test 1b, with both larger E and ρs compared to test

1.

Test 1c replicates an hypothetical, yet realistic, case at laboratory scale with h = 1

m. Consequently, H, T , ν, σ and l were evaluated by imposing the conservation of

the corresponding Π1,Π2,Π3,Π4 and Π7. By assuming E = 3 GPa, s was evaluated

based on the conservation of Π6 and consequently ρs was calculated from Π5 (Table

5.5). In this test case, the mesh sizes and the time step were scaled to maintain the

same spatial, e.g. s/∆x and l/∆z, and temporal, e.g. T/∆t, resolutions as in test 1.

The initial conditions were also scaled accordingly.
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Table 5.5. Test programme to validate the WFSI dimensionless parameters.

Symbol Unit Test 1 Test 1a Test 1b Test 1c

h m 15 15 15 1

l m 10 10 10 0.67

E GPa 200 100 390 3

s m 0.15 0.19 0.12 0.0165

ρs kg/m3 8000 6350 10000 4850

H m 2 2 2 0.133

T s 5.5 5.5 5.5 1.42

ν m2/s 1.00 · 10−6 1.00 · 10−6 1.00 · 10−6 1.72 · 10−8

σ N/m 0.07 0.07 0.07 3.11 · 10−4

g m/s2 9.81 9.81 9.81 9.81

Π1 - 0.13 0.13 0.13 0.13

Π2 - 4.45 4.45 4.45 4.45

Π3 - 5.50 · 10−9 5.50 · 10−9 5.50 · 10−9 5.50 · 10−9

Π4 - 3.17 · 10−8 3.17 · 10−8 3.17 · 10−8 3.17 · 10−8

Π5 - 0.08 0.08 0.08 0.08

Π6 - 0.11 0.11 0.11 0.11

Π7 - 0.67 0.67 0.67 0.67

Fig. 5.2 shows the dimensionless water surface elevations η/h at x = 0 m, hori-

zontal (subscript H) forces FH/(ρwgh
2) and horizontal displacements at the top end

of the plate dx/l for the 4 experiments of Table 5.5. The wave travelled along the

flume and interacted with the plate, which oscillated with a period close to T . In the

present study, t = 0.0 s is the instant when the first wave front reaches the plate and

FH = FH,u −FH,d, with the upwave (subscript u) FH,u and the downwave (subscript

d) FH,d forces. The 4 experiments show identical results with less than 2% deviations.

This confirms that the derived WFSI dimensionless governing parameters are able to

represent the underlying physical processes of the phenomenon.
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(b) (c)

(a)

Figure 5.2. Validation of the dimensionless governing parameters: dimensionless

time histories of the (a) water surface elevations η/h at x = 0 m, (b) forces

FH/(ρwgh
2) and (c) displacements dx/l for the tests of Table 5.5.

5.3.2 Non-breaking wave impacts

Scale effects are investigated in this section for the non-breaking wave tests (Table

5.2). Given the purpose of the present study, FH and dx at the top end of the plate

were analysed. Further discussions of p and vertical stresses σzz are included in Section

5.4.2.

Figs. 5.3, 5.4 and 5.5 show the time histories of the dimensionless FH and dx for

the 3 prototype tests of Table 5.2 and the scaled models based on the approaches in

Table 5.4. The PFr models are identical to the prototype, confirming full similarity.

The TFrE approach correctly scaled WFSI in all 3 tests, showing negligible Re, We

and Ma scale effects (Figs. 5.3c, d, 5.4c, d and 5.5c, d). In the regular wave tests the

plate oscillated with a period close to T . On the other hand, the plate showed faster

oscillations following Ts (Table 5.C.1) in the solitary wave test. In all tests, the plate

oscillations were correctly captured in the PFr and TFrE models. FH were correctly

modelled under TFr (Figs. 5.3e, 5.4e and 5.5e), however, dx/l were underestimated
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by up to 97.8% (Figs. 5.3f, 5.4f and 5.5f) due to the unscaled E.

PFr

TFrE

TFr

GP

PFr

TFrE

TFr

GP

(a)

(c)

(b)

(e)

(g)

(d)

(f)

(h)

Figure 5.3. Scale series for a regular wave test with H/h = 0.13 and T (g/h)1/2 =

4.45: dimensionless FH/(ρwgh
2) and dx/l versus t(g/h)

1/2 for the prototype (λ = 1)

and scaled models according to (a, b) PFr, (c, d) TFrE , (e, f) TFr and (g, h) GP

approaches.

Finally, the scale series based on the new GP approach are shown in Figs. 5.3g, h,

5.4g, h and 5.5g, h. FH were correctly predicted by the models, with less than 2.5%

deviations compared to the prototype. The plate masses, hence the plate periods Ts

(Table 5.C.1), were incorrectly scaled introducing model effects. In these tests, Ts,M

are up to 58% smaller than the correctly scaled values Ts,M = λ1/2Ts,P .

Although Ts,M were inexact, the model plate dynamics were nearly identical to

the prototype in all 3 tests, confirming that the plate motion is mostly controlled by

the wave action in absence of resonance. In the regular wave tests, the frequency of
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the plate oscillations was correctly captured in the models (Figs. 5.3h and 5.4h). De-

viations are observed at the peaks of dx between the prototype and models, however,

not exceeding 4.3% (Table 5.C.2).

(a)

(c)

(b)

(e)

(d)

(f)

(g) (h)
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TFrE
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GP

PFr

TFrE

TFr

GP

Figure 5.4. Scale series for a regular wave test with H/h = 0.13 and T (g/h)1/2 =

8.90: dimensionless FH/(ρwgh
2) and dx/l versus t(g/h)

1/2 for the prototype (λ = 1)

and scaled models according to (a, b) PFr, (c, d) TFrE , (e, f) TFr and (g, h) GP

approaches.

For the solitary wave tests, the models captured the main features of the plate

deformation (Fig. 5.5h). The maximum (subscript max) dx,max/l in the models oc-

curred slightly earlier in time compared to the prototype, with less than 3% devia-

tions. However, the models were not able to capture the fastest oscillations shown in

the prototype, particularly during wave run-down. Based on these findings, despite

the deviations in the smaller frequency components of dx, the GP approach predicted
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FH and the overall plate deformation well. The scale effects addressed in this section

are summarised in Table 5.C.2 for each scaling approach and λ, including all 3 tests.

(b)(a)

(d)(c)

(f)(e)

(h)(g)

PFr

TFrE

TFr

GP

PFr

TFrE

TFr

GP

Figure 5.5. Scale series for a solitary wave test with a/h = 0.13: dimensionless

FH/(ρwgh
2) and dx/l versus t(g/h)1/2 for the prototype (λ = 1) and scaled models

according to (a, b) PFr, (c, d) TFrE , (e, f) TFr and (g, h) GP approaches.

5.3.3 Breaking wave impacts

Scaled breaking wave impacts on plates (Table 5.2) under TFrE laws are presented

in this section. To be concise, only results from the flexible plate tests with EP = 200

GPa and sP = 0.15 m will be presented herein (Table 5.2). The wave pressures and

forces from the scale series with EP = 400 GPa and sP = 0.50 m were similar to the

flexible plate simulations and can be partially found in Section 5.4.3. In contrast to the

non-breaking wave tests (Section 5.3.2), breaking wave impacts involve complex air-
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water interactions (Peregrine, 2003; Croquer et al., 2023) such that significant scale

effects are expected. Note that both air and water are modelled as incompressible in

solids4foam, as further discussed in Section 5.4.3.

Fig. 5.6a, b shows the time histories of FH/(ρwgh
2) and dx/l (at the top end of

the plate) for the prototype and its models. The first incident wave was reflected by

the plate without breaking, resulting in a peak of FH/(ρwgh
2) = 0.16 and dx/l =

0.006 at t(g/h)1/2 = 16.5. Negligible scale effects can be observed at this stage, with

FH/(ρwgh
2) and dx/l accurately predicted at smaller model sizes.

(e)

(a)

(b)

(c)

(d)

Detail
from (a)

Detail
from (b)

Figure 5.6. Breaking wave impacts for the prototype (λ = 1) and scaled after TFrE :

time histories of the dimensionless (a) forces FH/(ρwgh
2) and (b) displacements dx/l,

with details of (c) FH/(ρwgh
2) and (d) dx/l, and (e) pressure p/(ρwgh) distribution

at the plate at t(g/h)1/2 = 27.7.

The second wave broke before the impact, entrapping an air pocket (Fig. 5.7). This

led to a violent impact with a sharp peak of FH , followed by oscillations during run-up
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27.7 ≤ t/(g/h)1/2 ≤ 29.2. A further increase of FH was observed at t(g/h)1/2 = 30.2

due to the collapse of the water column following the wave run-up (Linton et al.,

2013; Didier et al., 2014; Attili et al., 2023b).

These impact forces were incorrectly scaled under TFrE , with significant Re, We

and Ma scale effects (Fig. 5.6a). These effects can also be seen in Figs. 5.6c and

5.7, where the prototype and scaled wave impact p/(ρwgh) for different snapshots

are shown. Smaller model sizes tend to overpredict FH and p (Cuomo et al., 2010b;

Bredmose et al., 2015). As expected, the largest scale effects were observed at the

smallest scale λ = 40, where FH is up to twice the correctly scaled value. The air-

water interfaces are inexactly modelled when air entrainment is important (Catucci

et al., 2021); the models did not capture the complex free water surface observed for

the prototype in detail. The shape, size and the pressures of the air pockets are also

incorrectly scaled (Fig. 5.7).

Figure 5.7. Snapshots of breaking wave impact on the flexible plate at t(g/h)1/2 =

27.7 of the prototype (λ = 1) and TFrE scaled models showing only minor scale

effects.

The plate showed a peak of dx due to the breaking wave impact at t(g/h)1/2 =

28.05, followed by a second peak corresponding to the collapse of the water column

(Fig. 5.6b). After the wave was reflected, the plate oscillated with Ts/(g/h)
1/2 = 0.86,

146



5.4 Discussion of results

being close to its natural period Ts/(g/h)
1/2 = 0.89 (Gibson, 2007). As a consequence

of the incorrect scaling of the breaking wave loading, the plate dynamics was not

perfectly predicted by the models. The main differences concern the magnitude of

the maximum peak, which is up to 17% underestimated by the models. Further, the

dx oscillations observed for t(g/h)1/2 ≥ 30.5 were up to 2.5 times overpredicted at

λ = 20 and 40, however, capturing their frequency correctly.

5.4 Discussion of results

5.4.1 Governing parameters

The governing parameters (Table 5.3) fully capture the underlying physical processes

of WFSI (Fig. 5.2). These parameters can be used to define a range of physically-

equivalent configurations, benefiting WFSI modelling, especially in laboratory scale

models.

As an example, a prototype wood plate with s = 0.15 m, E = 13 GPa and

ρs = 1500 kg/m3 at h = 20 m is considered. For λ = 10, the TFrE scaled model

results in sM = 0.015 m, EM = 1.3 GPa and ρs,M = 1500 kg/m3 at hM = 2

m. Materials commonly used in the laboratory would not meet these requirements.

However, based on the conservation of the WFSI governing parameters, a low density

polyethylene plate with s = 0.0237 m, E = 0.3 GPa and ρs = 950 kg/m3 can be used.

This is physically-equivalent to the TFrE scaled model, revealing the potential of the

WFSI parameters to achieve plate similarity.

The 2D WFSI dimensionless parameters in Table 5.3 can be extended to Three-

Dimensional (3D) phenomena, e.g. asymmetrical wave fields and/or curved struc-

tures. By introducing the 3D plate mass M3D,s = ρssb and flexural rigidity D3D =

Ebs3/12, with the plate width b, Π5 and Π6 for 3D were derived (Table 5.6). The

remaining dimensionless parameters are identical to the 2D case. Due to the exten-

sive computational cost, the 3D governing parameters were not validated, however, a

similar behaviour as for the 2D case is expected (Fig. 5.2). This should be confirmed
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by future studies.

Table 5.6. Dimensionless governing parameters in 3D WFSI.

Π1 Π2 Π3 Π4 Π5 Π6 Π7

H
h T ( gh)

1/2 ν
g1/2h3/2

σ
ρwgh2

M3D,s

ρwh2
D3D
ρwgh5

l
h

5.4.2 Scale effects in non-breaking waves

The investigated ranges of the main force ratios and WFSI dimensionless parameters

are shown in Table 5.C.3 for the non-breaking wave numerical tests (Section 5.3.2).

Ca and Ma were computed as

Ca =
ρwgh

E
, (5.11)

Ma =
(gh)1/2

csound
(5.12)

with the speed of sound in air csound = (Ka/ρa)
1/2 (Cramer, 1993), whereKa is the air

(subscript a) bulk modulus. In the present study, csound = 340 m/s was assumed for

the calculation of Ma. Although the air-water flows were modelled as incompressible,

Ma is not conserved when ordinary water and air are used in the models due to the

unscaled csound.

Non-breaking wave impacts on flexible plates were characterised by relatively

small air-water interactions. The wave loading and plate behaviour were correctly

scaled under the TFrE approach, indicating that Re, We and Ma scale effects were

relatively small in the investigated conditions (Table 5.C.2). This is further confirmed

by p and σzz in the TFrE models, as shown in Fig. 5.8 for a representative test. It can

be concluded that non-breaking wave impact pressures and forces are correctly scaled

under traditional Froude similarity (Hughes, 1993; Cuomo et al., 2010b; Windt et al.,

2021) and the plate dynamics are correctly predicted for accurately scaled plates.

On the other hand, significant scale effects for dx were observed under TFr due

to the unscaled E. The numerical dx,M (Figs. 5.3f, 5.4f and 5.5f) are upscaled by
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removing scale effects as (Fig. 5.9)

dx,P
lP

=
17

16

CaP
CaM

dx,M
lM

, (5.13)

with Ca calculated based on Eq. (5.11). Eq. (5.13) predicts the prototype plate dis-

placements for incorrectly scaled models. However, it should be used for preliminary

estimations only. Additional model effects due to the incorrect scaling of Ts might

arise under TFr, which are not accounted for by Eq. (5.13) and need to be discussed

on a case-by-case basis.

(a) (b)

Figure 5.8. Regular wave test with H/h = 0.13 and T (g/h)1/2 = 8.90: prototype

and TFrE scaled (a) p/(ρwgh) versus z/h and (b) σzz/(ρsgl) along the inner fibre

(upwave) of the plate at the instant during FH,max.

Figure 5.9. Upscaling of dx under TFr with Eq. (5.13) to remove scale effects:

comparison of the numerical
dx,P
lP

and predictions based on Eq. (5.13).
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The new GP approach was also applied to scale non-breaking wave impacts.

Acrylic plates were used in all the models to overcome the challenge of finding an

appropriate material for scaled plates. Despite the inexact modelling of Ts, the GP

models predicted the wave impact forces and plate displacements well (Figs. 5.3g,

h, 5.4g, h and 5.5g, h). Scale effects due to the use of ordinary water and air in the

models were negligible, as discussed for the TFrE models. Based on the numerical

observations, it can be concluded that this approach is suitable for WFSI with rel-

atively small T/Ts, e.g. for regular waves or relatively stiff plates. In these cases,

the GP approach predicts the prototype correctly, representing a valuable and more

versatile alternative to TFrE . On the other hand, non-negligible model effects might

arise for larger T/Ts, e.g. for long period waves. In the solitary wave tests, the GP

approach did not accurately predict the fastest frequency components of dx, while

providing satisfactory results for FH and dx,max (Fig. 5.5g, h). Therefore, this ap-

proach can also be applied for relatively large T/Ts, if the main aim is to predict the

maximum displacement, being significantly more versatile than the TFrE approach.

5.4.3 Scale effects in breaking waves

Relevant air-water interactions were observed for breaking waves impacting flexible

plates (Section 5.3.3). The air-water compressibility may have a significant effect

during wave impact, potentially resulting in reduced forces and pressures. However,

the observed pmax were smaller than 3.18p0. Consequently, the air compression has a

minor effect on the wave impact (Bredmose et al., 2015), such that the assumption of

incompressible fluid in the simulation provides a suitable approximation. In addition,

discrepancies of the numerical models from real observations do not affect the main

conclusions of the present study as scale effects are quantified relative to numerical

prototype observations.

By using ordinary water and air in the models, the TFrE approach failed to cor-

rectly predict the prototype breaking wave impact (Figs. 5.6 and 5.7). The surface

tension and air bulk modulus were overrepresented in the models, resulting in rela-
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tively smaller and stiffer air pockets at reduced scales (Cuomo et al., 2010b; Bredmose

et al., 2015; Seiffert et al., 2015). At this stage, scale effects were predominantly due

to We and Ma. On the other hand, stronger turbulence was observed at a later stage

with the resurfacing of the air pocket such that Re effects are expected to be more

significant. Fig. 5.10 shows the comparison of pmax,P /pmax,M versus the dimension-

less group ReP
ReM

WeP
WeM

MaP
MaM

along with the Froude scaling predictions. The largest scales,

λ = 5 and 10, show relatively small deviations from the Froude scaling laws, however,

up to 60% deviations are observed at λ = 20 and 40. The decreasing values of Re,

We and Ma at smaller scales explain the observed deviations (Heller, 2011; 2017).

The numerical (subscript num) wave impact pmax,num (Fig. 5.10) were upscaled

with the approach of Cuomo et al. (2010b) (Section 5.1.1) removing scale effects. Ta-

ble 5.7 shows the predicted (subscript pred) and numerical pmax/p0 and λp = pM/pP

for both experimental conditions (Table 5.2). The method suggested by Cuomo et al.

(2010b) agrees overall with the results of the present study in both experiments. For

the stiffer plate, λp,pred consistently underestimates the numerical observations with

23 to 26% deviations. Although this approach was developed for rigid walls, it cap-

tured the flexible plate results well, underestimating λp by only 12% at λ = 5, 10

and 20. Once again, λ = 40 shows the largest deviations.

Figure 5.10. Scale effects in wave breaking impacts: (-) prediction based on the

Froude scaling laws and data of numerical relative impact pressures pmax,P /pmax,M

versus ReP
ReM

WeP
WeM

MaP
MaM

.
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Table 5.7. Comparison of the upscaled relative breaking wave impact pressures

pP,max/p0 based on the approach of Cuomo et al. (2010b) with the numerical results

of the present study, where p0 = 101.325 kPa and ∆λp is the deviation between

λp,pred and λp,num.

λ (pP,max,pred/p0) (pmax,num/p0) λp,pred λp,num ∆λp

EP = 400 GPa
sP = 0.50 m

1 - 1.48 - - -
5 1.15 0.30 3.8 5.0 23%
10 1.15 0.17 6.7 8.7 23%
20 1.15 0.10 12.0 15.4 23%
40 1.10 0.09 11.7 15.8 26%

EP = 200 GPa
sP = 0.15 m

1 - 1.30 - - -
5 1.15 0.32 3.6 4.1 12%
10 1.15 0.17 6.6 7.5 12%
20 1.15 0.09 12.1 13.7 12%
40 0.85 0.08 12.9 16.9 23%

Finally, the numerically derived pressure ratios pmax/p0 are compared with the

Bagnold-Mitsuyasu (Bredmose et al., 2015) and Froude scaling laws in Fig. 5.11. On

the x-axis, the scale-invariant constant CB-M depends on the air pocket character-

istics, e.g. the volume, and u is the fluid velocity. The x values for the prototype

data points were determined from the Froude scaling laws at pP,max and then scaled

with λ for the models (Bredmose et al., 2015). According to Bredmose et al. (2015),

the Bagnold-Mitsuyasu model might not be accurate for pmax ≤ 3.18p0 due to the

relatively stiffer air pockets. These tend to behave as rigid boundaries at such small

scales, resulting in an overestimation of p. Consequently, the Froude scaling laws

should be used for pmax ≤ 3.18p0. However, for pmax > 3.18p0 the compression of the

air pocket has a significant effect, such that the Bagnold-Mitsuyasu scaling law can

be used to remove scale effects.

The numerical pmax lie between predictions based on the Bagnold-Mitsuyasu and

Froude scaling laws (Fig. 5.11). These do not fully agree with the observations of

Bredmose et al. (2015), particularly at the smallest scales. However, the air-water

flows were modelled as incompressible in the present study, explaining the larger p

compared to Bredmose et al. (2015). In addition, smaller values of Re, We and Ma

were investigated in the present study, resulting in larger scale effects. This high-
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lights once again the complexity of scale effects and the importance of taking the

investigated force ratios into account, rather than λ only (Heller, 2011).

Figure 5.11. Comparison of the numerical pmax/p0 with the predictions based on

the Bagnold-Mitsuyasu and the Froude scaling laws (after Bredmose et al., 2015).

5.4.4 Upscaling of the laboratory tests

The laboratory measurements presented in Appendix 5.B are used in this section

as practical examples to discuss scale effects and to upscale the results to real-word

cases. Based on the findings of Fig. 5.B.2b and given that the waves did not break

(Appendix 5.B.2), scale effects due to Re, We and Ma are expected to be small. In

addition, the laboratory Re = 3.92 · 105, We = 8.76 · 103 and Ma = 4.61 · 10−3 are

within or close to the ranges investigated in Section 5.3.2 (Table 5.C.3), indicating

that scale effects are negligible.

By considering a hypothetical prototype scale with hP = 10.00 m, λ = 40 results

(hM = 0.25, Table 5.B.1). The upscaled parameters under TFrE are shown in Table

5.8 for the rigid and flexible laboratory plates. A representative solitary wave with

a = 0.085 m resulted in the 3D forces F3D,H = 56.09 and 45.45 N on the vertical

rigid and flexible laboratory plates. This corresponds to a = 3.40 m and F3D,H =

3589.76 and 2908.80 kN on the rigid and flexible prototype plates, respectively.
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Table 5.8. Upscaled laboratory test parameters of the rigid and flexible plate under

the TFrE and GP approaches, with λ = 40.

Unit Rigid plate (TFrE) Flexible plate (TFrE) Flexible plate (GP)

EP GPa 8000 132 200

ρs,P kg/m3 8000 1200 8000

sP m 0.12 0.16 0.14

lP m 22.00 22.00 22.00

bP m 9.60 9.60 9.60

hP m 10.00 10.00 10.00

Model effects due to the inexact scaling of the plate mass under GP are also

expected to be negligible for the maximum wave force and plate deformation, as

discussed in Sections 5.3.2 and 5.4.2. However, inaccurate predictions of the smaller

frequency components of the plate dynamics might be expected in the upscaling of

the solitary wave tests. Given the interest of the GP approach, only the flexible plate

tests are discussed. In addition to λ = 40, λE needs to be defined. By assuming

that the prototype is made of stainless steel (EP = 200 GPa), λE is 60.6 based on

EM = 3.3 GPa. The prototype thickness can be calculated from Eq. (5.10), resulting

in sP = 0.14 m. At the prototype scale, solitary waves with a ranging from 0.84 to

3.40 m induce F3D,H = 449.35 to 2908.80 kN, with up to −5.73 · 10−4 deformation

along the centroid line of the plate. Regular waves with 0.565 m ≤ H ≤ 1.642 m and

4.43 s ≤ T ≤ 8.22 s, result in 144.17 kN ≤ FH,3D ≤ 563.80 kN and maximum strains

of εzz = −5.73 · 10−4 to −4.05 · 10−5.

5.5 Conclusions

Scale effects have been rarely investigated in Wave-Structure Interaction (WSI) and

may lead to incorrect predictions of the prototype behaviour. Free-surface flows are

typically scaled according to the Froude scaling laws, involving scale effects when or-

dinary water and air are used in the models. For Wave-Flexible Structure Interaction

(WFSI), the solid properties, e.g. the Young’s modulus, must also be scaled based on

Cauchy similarity. This can be difficult to achieve at reduced scale due to the chal-
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lenge of finding a material with the appropriate properties, with potential for scale

and model effects. A systematic investigation of scale effects in WSI was conducted

in the present study. Regular and solitary wave impacts on rigid and flexible plates

have been investigated at different scales based on numerical modelling supported by

small-scale laboratory experiments. The main conclusions are summarised hereafter.

The 7 governing parameters Π1 to Π7 for WFSI (Table 5.3) have been derived and

validated numerically (Fig. 5.2). These can be used to define physically-equivalent

configurations at any scale. A new scaling approach was derived by conserving Π1 =

H/h, Π2 = T (g/h)1/2, Π6 = D/(ρwgh
4) and Π7 = l/h between the prototype and

models, with the wave height H, wave period T , water depth h, water density ρw,

plate flexural rigidity D and the plate height l. This approach is more versatile than

traditional Froude-Cauchy scaling (Section 5.2.3).

Non-breaking and breaking wave impacts have been simulated for 5 prototype

tests (Table 5.2) and their models with geometrical scale factors λ = 5, 10, 20 and

40. These were scaled according to precise Froude (fluid and plate properties scaled),

traditional Froude-Cauchy (fluid properties unscaled, plate properties scaled), tradi-

tional Froude (fluid and plate properties unscaled) and the new WFSI scaling ap-

proach. Accurate predictions of the prototype behaviour were achieved with precise

Froude scaling. Traditional Froude-Cauchy scaling showed small scale effects for non-

breaking waves. The wave pressures, forces and plate displacements were accurately

predicted by the models with less than 2.1% deviations.

On the other hand, significant scale effects were observed for breaking wave im-

pacts under traditional Froude-Cauchy similarity (Fig. 5.6). The models incorrectly

predict the prototype behaviour due to the unscaled fluid properties. The wave pres-

sures were overestimated by up to 132% at smaller scales with λ = 40. The scaled

pressures resulted in a reasonable agreement with available approaches (Cuomo et al.,

2010b; Bredmose et al., 2015), removing scale effects in the upscaling of breaking wave

impacts on rigid plates. Smaller discrepancies were explained by the assumption of in-

compressible fluids and the smaller values of the Reynold, Weber and Mach numbers
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used in the present study (Section 5.4.3).

Traditional Froude scaling showed significant scale effects due to the unscaled

plate properties (Figs. 5.3f, 5.4f and 5.5f). These resulted in an up to 98% underes-

timation of the plate displacements at λ = 40. Scale effects can be removed in the

upscaling of the plate displacements with the newly proposed Eq. (5.13).

The new scaling approach based on the WFSI governing parameters was suc-

cessfully validated with non-breaking waves. The regular wave models showed ac-

curately scaled wave pressures, forces and plate displacements, with less than 4.3%

deviations (Figs. 5.3g, h and 5.4g, h). The solitary wave tests revealed that, despite

non-negligible model effects due to the non conservation of T relative to the plate

period Ts, the wave loadings and plate dynamics were predicted reasonably well (Fig.

5.5g, h). The maximum solitary wave force and plate displacement showed less than

3% deviations. While being more versatile than traditional Froude-Cauchy scaling

laws, this approach is suitable for relatively small and large ratios of T/Ts, i.e. if the

plate mass effects are small. However, this approach may not be appropriate for other

WFSI processes where the inertia of the structure plays a significant role, such as for

offshore floating platforms or offshore pipelines.

Future work should validate the new scaling approach in laboratory experiments

and in other WFSI processes. This would also provide insight in related model effects.
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5.A Convergence tests

Fig. 5.A.1 shows the convergence tests for a non-breaking solitary wave test (Fig.

5.1a). Mesh resolutions of ∆x = ∆z = 0.200, 0.100, 0.050 and 0.025 m were investi-

gated for the fluid domain. The finest resolutions ∆x = ∆z = 0.050 and 0.025 m were

employed in a 11 m × 22 m refined area only, while ∆x = ∆z = 0.10 m was used in

the remainder of the fluid domain. Convergence is achieved for ∆x = ∆z = 0.05 m,

which was selected for the main tests. This showed deviations of only 1% compared to

the finest resolutions, while requiring approximately 1/5 of the computational time.

(a) (b)

Figure 5.A.1. Convergence tests for a solitary non-breaking wave test with a/h =

0.13: semi-logarithmic diagramme for the relative (a) force FH/(ρwgh
2) and (b) hor-

izontal displacement dx/l with the mesh size ∆x = ∆z.

Resolutions of ∆x = ∆z = 0.066, 0.033, 0.017 and 0.008 m were investigated for

the plate. ∆x = ∆z = 0.017 m was selected as the optimal mesh size for the main

tests. This resulted in a 2.4% larger dx/h compared to ∆x = ∆z = 0.008 m, while

saving computational time.

5.B Physical model

5.B.1 Laboratory set-up

Laboratory tests were conducted in a 15.0 m long, 0.245 m wide and 0.460 deep flume

(Fig. 5.B.1a). The flume was equipped with a piston-type wave maker. A 0.55 m ×

0.24 m plate was located approximately 11.50 m downwave the wave maker. The
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plate was supported by a movable angled ramp to vary the plate inclinations β. A

2.0 to 2.5 mm gap between the plate and the lateral walls of the flume ensured a free

movement of the plate.

h
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Figure 5.B.1. Laboratory set-up: (a) schematic side view of the wave flume and

plate, (b) frontal view of the plate with location of the measurement systems and (c)

picture of the wave flume with some of the instrumentation (Attili et al., 2023b).

Resistance-type Wave Gauges (WGs) were used at 3 locations to record water

surface elevations. They sampled at 100 Hz with ±1 mm accuracy. Water pressures

on the plate were measured with an array of MPXV5004GC7U (RS Components UK)

Precision Pressure Transducers (PPTs), which recorded at 100 Hz with an estimated

accuracy of ±10 Pa. In-house Load Cells (LCs) were mounted at the corners of the

plate to measure the wave forces on the plate. Forces were recorded at 1 kHz with an

overall accuracy of ±0.3 N. Finally, KFWB Series Waterproof Strain Gauges (SGs)

were glued to the flexible plate to measure deflections.

A total of 52 laboratory tests were conducted with h = 0.25 m. These involved a

range of regular and solitary waves impacting a stainless steel (E = 200.0 GPa) and

an acrylic (E = 3.3 GPa) plate with β = 60 and 90◦. The laboratory test programme
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is summarised in Table 5.B.1.

Table 5.B.1. Test programme for the laboratory tests.

Parameter Symbol Unit Range

Water depth h m 0.25

Plate height l m 0.55

Plate width b m 0.24

Plate inclination β ◦ 60, 90

Young’s modulus E GPa 3.30, 200.00

Plate thickness s m 0.003, 0.004

Plate density ρs kg/m3 1190, 8000

Regular waves

H m 0.014 to 0.041

H/h - 0.056 to 0.164

T s 0.7 to 1.3

T (g/h)1/2 - 4.39 to 8.14

Solitary waves
a m 0.021 to 0.085

a/h - 0.084 to 0.34

5.B.2 Laboratory results

Fig. 5.B.2a shows the horizontal 3D forces F3D,H versus a/h for the laboratory tests

of Table 5.B.1. The flexible plate resulted overall in smaller forces than the rigid one.

This effect was larger for β = 90◦ than for β = 60◦, with up to 29% deviations of

F3D,H between E = 3.30 and 200 GPa. The laboratory F3D,H were approximated as

(Fig. 5.B.2b)

F3D,H

ρwgh3
=
(a
h

)7/6
Π

1/12
6

(
β

90◦

)1/3

, (5.B.1)

based on a least-squares regression analysis. Data points from the 3 numerical non-

breaking wave prototype tests (Table 5.2) are shown in Fig. 5.B.2b along with Eq.

(5.B.1) and the laboratory F3D,H . The 2D numerical FH were multiplied by λbM to

obtain F3D,H , with the laboratory plate width bM = 0.24 m and λ = 60. Despite

the differences between the set-ups and the plate support conditions (Figs. 5.1a and

5.B.1), the dimensionless numerical and laboratory F3D,H show similar values. This
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is a strong indication that scale effects are negligible in these laboratory experiments

(Section 5.4.4).

The maximum strain εzz measured at the upwave Strain Gauge b (SGb, Fig.

5.B.1b) are shown in Fig. 5.B.2c. Note that the initial deformations due to the weight

of the plate have been deducted. Larger εzz resulted from larger a/h following a linear

trend. These were approximated as (Fig. 5.B.2d)

εzz =
14

8
· 10−3 a

h

(
β

90◦

)3/10

. (5.B.2)

As shown in Fig. 5.B.2d, Eq. (5.B.2) captures the laboratory observations well, with

most data lying within the ±25% limits.

(b)

(d)(c)

+25%

25%

+3
0%

30%

(a)

Figure 5.B.2. Laboratory experiments: (a) maximum relative forces F3D,H/(ρwgh
3)

versus a/h for all tests of Table 5.B.1, (b) F3D,H/(ρwgh
3) with Eq. (5.B.1) (coefficient

of determination R2 = 0.98) and the data points of the non-breaking wave prototype

(λ = 1) numerical tests (Table 5.2), (c) maximum εzz at SGb versus a/h for the

flexible plate (E = 3.30 GPa) tests and (d) εzz at SGb with Eq. (5.B.2) (R2 = 0.98).
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5.C Supplementary tables

Table 5.C.1. Natural plate period Ts = [2πl2/1.8752]
√

12ρs/(Es2) (Gibson, 2007)

and dimensionless plate period Ts(g/h)
1/2 for the non-breaking wave tests of Table

5.2 under the scaling approaches shown in Table 5.4.

λ = 1 λ = 5 λ = 10 λ = 20 λ = 40

PFr
Ts (s) 0.83 0.37 0.26 0.18 0.13

Ts(g/h)
1/2 (-) 0.67 0.67 0.67 0.67 0.67

TFrE
Ts (s) 0.83 0.37 0.26 0.18 0.13

Ts(g/h)
1/2 (-) 0.67 0.67 0.67 0.67 0.67

TFr
Ts (s) 0.83 0.17 0.08 0.04 0.02

Ts(g/h)
1/2 (-) 0.67 0.30 0.21 0.15 0.11

GP
Ts (s) 0.83 0.22 0.14 0.09 0.05

Ts(g/h)
1/2 (-) 0.67 0.40 0.35 0.32 0.28

Table 5.C.2. Scale effects ∆FH,max and ∆dx,max for the maximum force and dis-

placement, respectively, for the non-breaking wave tests of Table 5.2 under the scaling

approaches shown in Table 5.4.

λ = 5 λ = 10 λ = 20 λ = 40

PFr
∆FH,max < 1.0% ∆FH,max < 1.0% ∆FH,max < 1.0% ∆FH,max < 1.0%

∆dx,max < 2.0% ∆dx,max < 1.0% ∆dx,max < 1.5% ∆dx,max < 1.5%

TFrE
∆FH,max < 1.0% ∆FH,max < 1.0% ∆FH,max < 1.0% ∆FH,max < 1.0%

∆dx,max ≤ 2.1% ∆dx,max < 1.0% ∆dx,max < 2.0% ∆dx,max < 2.0%

TFr
∆FH,max < 1.0% ∆FH,max < 1.0% ∆FH,max < 1.0% ∆FH,max ≤ 1.0%

80.4% ≤ ∆dx,max ≤ 81.7% 90.4% ≤ ∆dx,max ≤ 90.8% 95.3% ≤ ∆dx,max ≤ 95.5% 97.7% ≤ ∆dx,max ≤ 97.8%

GP
∆FH,max < 1.0% ∆FH,max < 1.0% ∆FH,max ≤ 2.5% ∆FH,max ≤ 1.4%

1.0% ≤ ∆dx,max ≤ 3.4% 2.5% ≤ ∆dx,max ≤ 4.3% 1.9% ≤ ∆dx,max ≤ 3.8% 1.0% ≤ ∆dx,max ≤ 2.4%

Table 5.C.3. Ranges of Re, We, Ma, Ca and WFSI dimensionless parameters inves-

tigated in the non-breaking wave impact tests for different scaling approaches.

Re We Ma Ca

PFr 1.82 · 108 3.15 · 107 3.57 · 10−2 7.36 · 10−7

TFrE 7.19 · 105 to 1.82 · 108 1.97 · 104 to 3.15 · 107 5.64 · 10−3 to 3.57 · 10−2 7.36 · 10−7

TFr 7.19 · 105 to 1.82 · 108 1.97 · 104 to 3.15 · 107 5.64 · 10−3 to 3.57 · 10−2 1.84 · 10−8 to 7.36 · 10−7

Π1 Π2 Π3 Π4 Π5 Π6 Π7

GP 0.13 4.45 to 8.90 5.50 · 10−9 to 1.39 · 10−6 3.17 · 10−8 to 5.07 · 10−5 0.0142 to 0.08 0.113 0.67
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Chapter 6

Conclusions and outlook

6.1 Conclusions

This thesis undertakes a comprehensive investigation of Wave-Structure Interaction

(WSI), including both rigid and flexible (Wave-Flexible Structure Interaction, WFSI)

plates, based on numerical modelling supported by small-scale laboratory experi-

ments. This study was aimed at enhancing the physical understanding of WSI to

support the design and laboratory modelling of a range of offshore and onshore

structures. The general conclusions are summarised hereafter, in addition to the

conclusions in each of the main Sections 3.5, 4.6 and 5.5.

The numerical toolbox solids4foam (Cardiff et al., 2018), implemented in Foam-

Extend 4.0, was used to model WSI for a range of set-ups using both Two-Dimensional

(2D) and Three-Dimensional (3D) geometries. These included tsunamis impacting

dams and wave impacts on offshore and onshore plates of different stiffnesses, result-

ing in more than 230 tests. The numerical modelling was supported by a total of 52

laboratory experiments conducted in a 0.25 m (width) × 15.00 m (length) × 0.46

m (depth) wave flume (Section 4.3, Appendices 5.B and A). The laboratory tests

involved a range of regular and solitary waves impacting a stainless steel (rigid) and

an acrylic (flexible) plate. The water surface elevations, wave pressures, wave forces

and the plate deformations were measured.
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The numerical model was extensively validated for wave impact on rigid and

flexible plates with analytical, laboratory and other numerical results. The validation

for rigid plates showed the capability of solids4foam to capture the wave pressures,

forces and overtoppings (Figs. 3.2, 3.3, 3.4, 4.4 and 4.5). For wave impact on flexible

plates, solids4foam resulted overall in a reasonable agreement with available and new

laboratory observations, however, overestimating the force and the plate deformations

in some cases (Figs. 4.4, 4.5, 4.6 and 4.12).

Subsequently, a total of 72 numerical simulations were conducted to investigate

2D tsunamis impacting dams of steep to vertical inclinations (Chapter 3). These

were complemented with 3D tests aimed at exploring the effects of the curvature of

the dam and/or asymmetrical wave impact angles. Tsunamis were idealised with 5th

order Stokes, cnoidal and solitary waves. The tsunami forces and pressures on dams

agreed with the prediction approach of Evers et al. (2019), extending its validation

ranges (Figs. 3.7 and 3.12e, f). New equations were proposed for the wave run-ups

(Section 3.3.2.1) and overtoppings (Section 3.3.3.2), where existing approaches were

lacking or inaccurate. Based on the 3D simulations, a solitary wave impacting an

arch dam with an angle of 30◦ resulted in a 32% larger run-up compared to the

2D prediction (Section 3.4.4). For real reservoirs, where the geometries cannot be

idealised as rectangular wave basins and asymmetrical wave impact may occur, the

3D effects can be even more relevant and should be taken into account.

Wave impacts on rigid and flexible plates, located either offshore or onshore, were

then investigated in Chapter 4. A total of 119 numerical tests have been performed

either in 2D or 3D. Linear and solitary waves impacting plates of different stiffnesses

have been simulated, mimicking a range of real applications, such as wave impacts

on a wave energy converter, on a hull of a floating production storage and offloading

unit and surges impacting onshore walls. In the offshore tests, the upstream forces

on the plate were in good agreement with the ones from the approach of Evers

et al. (2019). The total forces, calculated by subtracting the downwave force from

the upwave component, were up to 40% smaller for the flexible compared to the rigid
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plate. These deviations were mostly due to increased downstream water depths as

a result of the plate deformations (Section 4.4.1.3). In addition, the maximum plate

deformations and stresses during the maximum force were successfully related to the

Euler-Bernoulli beam theory (Appendix 4.B).

The onshore tests were characterised by 2 peaks of the force during the impact,

as observed in previous studies (Linton et al., 2013; Didier et al., 2014). The plate

mechanical properties showed a negligible effect on the onshore wave forces for most

tests. Up to 17.7% deviations were observed between the different plates, with the

rigid plate not necessarily resulting in the largest forces (Section 4.4.2.3). Addition-

ally, new semi-theoretical correlations were proposed to predict the wave forces and

run-ups on onshore plates as a function of the offshore wave energy (Section 4.5).

Finally, a systematic investigation of scale effects for WSI based on the numer-

ical modelling supported by small-scale laboratory tests was presented in Chapter

5. A set of governing dimensionless parameters for WFSI was derived and validated

based on the numerical simulations (Section 5.3.1). Consequently, regular and soli-

tary waves impacting rigid and flexible plates have been simulated for the prototypes

and up to 40 times smaller models under various scaling approaches. These included

precise Froude (fluid and plate properties scaled), traditional Froude-Cauchy (fluid

properties unscaled, plate properties scaled), traditional Froude (fluid and plate prop-

erties unscaled) and a new WFSI scaling approach (partial conservation of the WFSI

governing parameters, Section 5.2.3).

The numerical results confirmed the absence of scale effects for precise Froude scal-

ing (Section 5.3.2). Negligible scale effects (≤ 2.1%) were observed for non-breaking

wave impacts under traditional Froude-Cauchy similarity. On the other hand, signif-

icant scale effects were observed for breaking wave impacts, with an overestimation

of the wave pressure of up to 132% at a geometrical scale factor λ = 40 (Sections

5.3.3 and 5.4.3). These scale effects resulted in a reasonable agreement with previous

studies (Cuomo et al., 2010b; Bredmose et al., 2015).

As expected, large scale effects were observed under Traditional Froude scaling
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due to the unscaled plate properties. These resulted in up to 98% underestimations

of the plate displacements at λ = 40. A new equation to preliminarily remove scale

effects under this approach was suggested (Eq. 5.13).

The new scaling approach based on the WFSI governing parameters was success-

fully validated based on numerical simulations. For regular waves, the wave pressures,

forces and plate displacements were accurately scaled in the models, with less than

4.3% deviations (Section 5.4.2). Larger model effects were observed for the solitary

waves, however, the wave forces and plate maximum displacements were correctly

captured in the models with less than 3% deviations. This approach represents a

more versatile alternative to Froude-Cauchy scaling.

In conclusion, the present thesis provides an extensive investigation of WSI based

on numerical and laboratory modelling. Existing prediction approaches for tsunami

forces and pressures on dams have been further validated and new equations for

wave run-ups and overtoppings were suggested. New physical insights into WSI and

WFSI were provided, revealing overall that more flexible plates do not necessarily

result in smaller forces. Additionally, scale effects in WFSI have been investigated

and a new and versatile scaling approach was derived. These findings enhance the

physical understanding and laboratory modelling of a range of offshore and onshore

structures, supporting their design and assessment.

6.2 Outlook

Future work should address important aspects of WSI and WFSI that require further

investigation. Based on the limitations of the present study, potential directions for

future research are pointed out hereafter.

The present study emphasised the importance of the 3D effects due to the dam

geometry and/or asymmetrical wave impact angles. However, these were investigated

for selected cases only. A systematic investigation including a range of wave impact

angles, reservoir sections, e.g. converging and diverging channels, and dam types and
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geometries would provide new insight into these effects and potentially expand the

2D prediction approaches to 3D phenomena.

As only the instant during the maximum force was considered for the application

of the Euler-Bernoulli beam theory to the offshore plate deformations, future work

should include time varying load distributions. This might be done by introducing

the time varying wave pressures in Eqs. (4.B.4) to (4.B.6). Consequently, the plate

displacements and stresses can be derived as shown in Appendix 4.B. This would

provide a valuable analytical approach to accurately describe the plate dynamics

over time.

Future work should additionally extend the validation conditions for the predic-

tion of the surge forces and run-ups on onshore plates. Experiments of solitary wave

impacts on onshore plates, involving a range of wave amplitudes, water depths, shore

inclinations, shore heights and shore lengths, would further validate the equations

(Eqs. 4.17 to 4.19) suggested in the present study.

As only incompressible fluids can be modelled in solids4foam, compressible solvers

should be implemented. This would enable to investigate the fluid compressibility

effect on WFSI. Furthermore, the different sources of scale effects could be separately

quantified, i.e. by correctly scaling viscosity and surface tension, scale effects due to

the Mach number only can be explored. This would deliver further knowledge into

scale effects for WSI.

The 3D WFSI governing parameters suggested in Table 5.6 should be confirmed

by numerical and/or laboratory results. This can be accomplished similarly as for

the 2D WFSI governing parameters (Section 5.3.1). In addition, the new scaling

approach presented in this study should be further validated based on numerical and

laboratory experiments. This would expand its capabilities and provide insight into

the related scale and model effects (Section 5.2.3). This approach should be applied

to other WFSI phenomena and wider ranges of the dimensionless parameters should

be explored, enhancing the physical modelling of WFSI.
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Notation

A Coefficient of the pressure response factor at the wall

A⊥ Cross-sectional area of the structure, m2

a Wave amplitude, m

aeff Effective wave amplitude, m

b Dam/plate width, m

Ba Bagnold number

C Courant number

C1,2,...12 Constants of the offshore plate displacement, Nm0,1,2 or 3

CB-M Constant in the Bagnold-Mitsuyasu scaling law

Cf Force coefficient of Cross (1967)

c Wave celerity, m/s

csound Speed of sound in air, m/s

Ca Cauchy number

cn Elliptic function

DF Deformation gradient

D Plate flexural rigidity in 2D, Nm

D3D Plate flexural rigidity in 3D, Nm2

d Displacement vector, m

d0 Maximum wave overtopping depth, m

dx Plate displacement component along x-axis, m

E Young’s modulus, N/m2

El Equivalent energy loss of Cuomo et al. (2010b)

Eof Overland flow energy per unit area, J/m2

Ew Offshore wave energy per unit width, J/m
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Notation

F Force vector per unit width resulting from a wave and hydrostatic

pressure, N/m

F3D Force vector resulting from a wave and hydrostatic pressure, N

F Force per unit width resulting from a wave and hydrostatic

pressure, N/m

F3D Force on plate resulting from a wave and hydrostatic pressure, N

Fh Hydrostatic force per unit width due to still water, N/m

FI First force peak on plate per unit width resulting from a surge, N/m

FII Second force peak on plate per unit width resulting from a surge, N/m

f Freeboard, m

fs Natural frequency of a plate, Hz

fσ Surface tension force per unit volume, N/m3

Fr Froude number

g Gravitational acceleration vector, m/s2

g Gravitational acceleration, m/s2

H Wave height, m

Hs Significant wave height, m

h Water depth, m

hs0 Overland flow depth at the transition point (xof = 0), m

I Identity matrix

I Second moment of inertia, m4

i Index for the i-th data value

J Determinant of DF

K Bulk modulus, N/m2

Ke Complete elliptic integral of the first kind

Kp Pressure response factor

k Wave number, 1/m

k Turbulent kinetic energy per unit mass in the k-ε model, m2/s2

ks Spring stiffness, N/m

kt Turbulent kinetic energy per unit mass, m2/s2

L Wave length, m

170



Notation

Ls Shore length, m

l Dam/plate height, m

ls Substructure height, m

M Bending moment, Nm

M3D,s Mass per unit length, kg/m

Mh Bending moment per unit width relative to the foundation due to the

hydrostatic pressure, Nm/m

Ms Mass per unit area, kg/m2

m Elliptic parameter

Ma Mach number

N, P Numbers of the considered pressure values

Nd Number of the considered dynamic pressure values

n Normal vector to the dam surface

nRMSE Normalised Root Mean Square Error

p Pressure, N/m2

p̄ Mean pressure, N/m2

p0 Atmospheric pressure, N/m2

pd Dynamic pressure, N/m2

pd,1 Dynamic pressure at the sea bed of Sainflou (1928), N/m2

pd,2 Dynamic pressure at the still water surface of Sainflou (1928), N/m2

pK Pressure at the dam crest resulting from a tsunami and hydrostatic

pressure with overtopping, N/m2

plin Linear dynamic wave pressure of Tadjbakhsh and Keller (1960), N/m2

pnonlin Nonlinear dynamic wave pressure of Tadjbakhsh and Keller

(1960), N/m2

Q Shear force, N

q Discharge per unit dam width, m2/s

R Wave run-up height, m

R2 Coefficient of determination

r0 Elevation of the orbit centre, m

Re Reynolds number
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Notation

S Cell area, m2

s Dam/plate thickness, m

T Wave period, s

Tp Peak wave period, s

Ts Natural period of the plate, s

t Time, s

t0 Instant during the maximum run-up, s

td0 Instant during the maximum wave overtopping depth, s

ū Mean fluid velocity vector, m/s

u′u′ Turbulent stress tensor, N/m2

ur Compression velocity vector, m/s

u Fluid velocity, m/s

ū Depth-averaged fluid velocity, m/s

ūx, ūy, ūz Mean fluid velocity component along x-, y-, z-axis, m/s

V Overtopping volume per unit dam width, m3/m

We Weber number

x, y, z x-, y-, z-axis, m

xof Streamwise overland flow coordinate, m

Y Observed values

Ȳ Mean of the numerical values

zf Shore freeboard, m

zH Elevation of the resultant of FH from the dam foundation, m

α Fraction of volume

β Dam/plate inclination, ◦

γ Wave propagation angle, ◦

δ Density diffusion coefficient

∆d0 Deviation between the experimental and numerical maximum wave

overtopping depth, %

∆dx Scale effects for the horizontal plate displacement, %

∆F Scale effects for the force on the plate, %

∆t Time step, s
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Notation

∆V Deviation between the experimental and numerical overtopping volume

per unit dam width, %

∆x,∆y,∆z Cell sizes, m

∆λp Deviation between the predicted and numerical pressure scale

factor, %

ε Turbulence energy dissipation rate, m2/s3

εp Parameter of Tadjbakhsh and Keller (1960) model (εp = kH)

εzz Strain component of the plate along z-axis

ζ Damping ratio

η Water surface elevation, m

θ Inclination of the free water surface, ◦

λ Geometric scale factor

λE Young’s modulus scaling law

λp Pressure scaling law

µ Fluid dynamic viscosity, Ns/m2

ν Fluid kinematic viscosity (ν = µ/ρ), m2/s

νt Kinematic turbulent viscosity, m2/s

Π1 to Π7 Dimensionless governing parameters for WFSI

π Mathematical constant

ρ Density, kg/m3

σ Surface tension, N/m

σs Stress tensor, N/m2

σs Stress, N/m2

σzz Normal plate stress component along z-axis, N/m2

τ Adjusted time, s

ϕm Colour function

ω Turbulence energy dissipation rate in the k-ω model, m2/s3

ω Wave angular frequency, 1/s

ω0 Parameter of Tadjbakhsh and Keller (1960) model (ω0 =
√
tanh kh)
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Subscripts

a Air

b Block

c Crest

d Downwave

exp Experimental

H Horizontal

M Model

max Maximum

min Minimum

num Numerical

P Prototype

pred Predicted

red Reduced

ref Reference solution

s Shore, solid, structure

t Trough

u Upwave

w Wall, water
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Abbreviations

APR Adaptive Particle Refinement

CCP-WSI Collaborative Computational Project in Wave-Structure Interaction

CFD Computational Fluid Dynamics

CFL Courant-Friedrichs-Lewy

CPU Central Processing Unit

CSD Computational Structural Dynamics

DFPM Decoupled Finite Particle Method

EPSRC Engineering and Physical Sciences Research Council

F Flexible plate

FDM Finite Difference Method

FE Foam-Extend

FEM Finite Element Method

FPSO Floating Production Storage and Offloading

FVM Finite Volume Method

GP New scaling approach based on the WFSI Governing Parameters

HPC High Performance Computing

IBM Immersed Boundary Method

LC Load Cell

LVDT Linear Variable Differential Transformer

MEL Mixed Eulerian Lagrangian

MPS Moving Particle Semi-implicit

OF OpenFOAM

PFr Precise Froude scaling
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Abbreviation

PIMPLE Combination of Pressure Implicit Splitting Operator (PISO) and Semi-

Implicit Method for Pressure-Linked Equations (SIMPLE)

PPT Precision Pressure Transducer

R Rigid plate

RANS Reynolds-Averaged Navier-Stokes

RS Roller Support

S-FEM Lagrangian Smoothed Finite Element Method

SG Strain Gauge

SPH Smoothed Particle Hydrodynamics

TF Top Free

TFr Traditional Froude scaling

TFrE Traditional Froude-Cauchy scaling

VOF Volume Of Fluid

WEC Wave Energy Converter

WFSI Wave-Flexible Structure Interaction

WG Wave Gauge

WSI Wave-Structure Interaction

2D Two-Dimensional (flume)

3D Three-Dimensional (basin)
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Appendix A

Supplementary laboratory data

Supplementary data for the laboratory experiments (Chapters 4 and 5) are provided

in this appendix, including details about the instruments (Table A.1) and the full

test programme (Table A.2), where h is the water depth, H the wave height, a

the wave amplitude, T the wave period, β the plate inclination and F3D,max and

εzz,max are the maximum (subscript max) Three-Dimensional (3D) force and strain,

respectively. In the present study, a positive value of εzz corresponds to a tensile

strain. The largest deformations in the laboratory tests were due to positive F3D,

resulting in compressive strains at SGb, such that εzz,max < 0.

Table A.1. Accuracy and locations of the instruments used in the laboratory tests.

Instrument Accuracy
Locations in function of the coordinates (x, y, z)
(m) for a vertical plate (Fig. 4.3, with z = 0 m
at the water surface and β = 90◦)

Resistance-type
Wave Gauges

WG ±1 mm
WG1 (−1.25, 0.0, 0.0); WG2 (−0.75, 0.0, 0.0);
WG3 (−0.25, 0.0, 0.0)

MPXV5004GC7U
Precision Pressure
Transducers

PPT ±10 Pa

PPT1 (0.0, 0.0, −0.145); PPT2 (0.0, 0.0, −0.09);
PPT3 (0.0, 0.0, −0.035); PPT4 (0.0, 0.0, 0.02);
PPT5 (0.0, 0.03, −0.09); PPT6 (0.0, 0.06,
−0.09); PPT7 (0.0, 0.09, −0.09)

Load Cells
(in-house)

LC ±0.3 N
LC1 (0.0, −0.12, −0.20); LC2 (0.0, 0.12, −0.20);
LC3 (0.0, −0.12, 0.35); LC4 (0.0, 0.12, 0.35)

KFWB
Strain Gauges

SG ±10−6

SGa (0.0, 0.0, −0.123); SGb (0.0, 0.0, −0.013);
SGc (0.0, 0.0, 0.103); SGd (0.0, −0.06, −0.008);
SGe (0.004, 0.0, −0.123); SGf (0.004, 0.0,
−0.013); SGg (0.004, 0.0, 0.103); SGh (0.004,
−0.06, −0.008)
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Fig. A.1 shows additional pictures of the laboratory wave flume, plates and the

instrumentation. The time series of the water surface elevation η, pressure p, F3D

and εzz are then shown in Figs. A.2 to A.4 for 4 representative tests, with the time

t, the gravitational acceleration g and the water density ρw.

(a) (b) (c)
Acrylic
plate

Movable
ramp

Load cell

SGa

SGb
SGd

WG1 WG2

WG3

(d)

Figure A.1. Laboratory set-up: (a) movable angled ramp and stainless steel plate,

(b) acrylic plate with β = 60◦, (c) detail view of the acrylic plate with SGa, b and d

and (d) laboratory wave flume with the wave gauges and the stainless steel plate.
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Table A.2. Overview of main investigated parameters for the 52 laboratory tests. R

stands for a 3 mm thick stainless steel plate (Young’s modulus E = 200 GPa) and F

for a 4 mm thick acrylic plate (E = 3.3 GPa). Values marked with * were observed

at WG1 in tests conducted without the plate.

Test h (m) Waves H (m)* a (m)* T (s) Plate β (◦) F3D,max (N) εzz,max (×10−4)

1 0.25 Regular 0.014 - 0.7 R 60 2.35 -

2 0.25 Regular 0.016 - 1.0 R 60 3.55 -

3 0.25 Regular 0.014 - 1.3 R 60 3.98 -

4 0.25 Regular 0.026 - 0.7 R 60 4.39 -

5 0.25 Regular 0.028 - 1.0 R 60 6.83 -

6 0.25 Regular 0.026 - 1.3 R 60 6.68 -

7 0.25 Regular 0.036 - 0.7 R 60 5.47 -

8 0.25 Regular 0.041 - 1.0 R 60 9.36 -

9 0.25 Regular 0.038 - 1.3 R 60 9.93 -

10 0.25 Solitary - 0.021 - R 60 6.08 -

11 0.25 Solitary - 0.042 - R 60 17.95 -

12 0.25 Solitary - 0.064 - R 60 31.41 -

13 0.25 Solitary - 0.085 - R 60 56.14 -

14 0.25 Regular 0.014 - 0.7 R 90 2.63 -

15 0.25 Regular 0.016 - 1.0 R 90 4.59 -

16 0.25 Regular 0.014 - 1.3 R 90 3.85 -

17 0.25 Regular 0.026 - 0.7 R 90 5.40 -

18 0.25 Regular 0.028 - 1.0 R 90 6.97 -

19 0.25 Regular 0.026 - 1.3 R 90 6.68 -

20 0.25 Regular 0.036 - 0.7 R 90 7.22 -

21 0.25 Regular 0.041 - 1.0 R 90 10.07 -

22 0.25 Regular 0.038 - 1.3 R 90 10.67 -

23 0.25 Solitary - 0.021 - R 90 7.93 -

24 0.25 Solitary - 0.042 - R 90 20.97 -

25 0.25 Solitary - 0.064 - R 90 36.65 -

26 0.25 Solitary - 0.085 - R 90 56.09 -

27 0.25 Regular 0.014 - 0.7 F 60 2.23 −0.42

28 0.25 Regular 0.016 - 1.0 F 60 3.30 −0.59

29 0.25 Regular 0.014 - 1.3 F 60 3.28 −0.53

30 0.25 Regular 0.026 - 0.7 F 60 3.70 −0.76

31 0.25 Regular 0.028 - 1.0 F 60 5.91 −1.10

32 0.25 Regular 0.026 - 1.3 F 60 6.33 −1.08

33 0.25 Regular 0.036 - 0.7 F 60 4.99 −1.07

34 0.25 Regular 0.041 - 1.0 F 60 8.60 −1.63

35 0.25 Regular 0.038 - 1.3 F 60 9.46 −1.63

36 0.25 Solitary - 0.021 - F 60 5.88 −0.84

37 0.25 Solitary - 0.042 - F 60 17.56 −2.51

38 0.25 Solitary - 0.064 - F 60 30.95 −4.00

39 0.25 Solitary - 0.085 - F 60 46.19 −5.04

40 0.25 Regular 0.014 - 0.7 F 90 2.25 −0.40

41 0.25 Regular 0.016 - 1.0 F 90 3.28 −0.61

42 0.25 Regular 0.014 - 1.3 F 90 3.19 −0.52

43 0.25 Regular 0.026 - 0.7 F 90 3.89 −0.78

44 0.25 Regular 0.028 - 1.0 F 90 5.97 −1.11

45 0.25 Regular 0.026 - 1.3 F 90 5.87 −1.07

46 0.25 Regular 0.036 - 0.7 F 90 5.82 −1.17

47 0.25 Regular 0.041 - 1.0 F 90 8.81 −1.67

48 0.25 Regular 0.038 - 1.3 F 90 8.74 −1.62

49 0.25 Solitary - 0.021 - F 90 7.02 −1.12

50 0.25 Solitary - 0.042 - F 90 18.17 −2.96

51 0.25 Solitary - 0.064 - F 90 31.44 −4.58

52 0.25 Solitary - 0.085 - F 90 45.45 −5.73
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(a)

(b)

(d)

(c)

Figure A.2. Laboratory tests 6 and 32: dimensionless time series of (a) η/h at WG2,

(b) p/(ρwgh) at PPT1 and 3, (c) F3D/(ρwgh
3) and (d) εzz at SGb.

(a)

(b)

(c)

(d)

Figure A.3. Laboratory tests 21 and 47: dimensionless time series of (a) η/h at

WG2, (b) p/(ρwgh) at PPT1 and 3, (c) F3D/(ρwgh
3) and (d) εzz at SGb.
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(a)

(b)

(d)

(c)

Figure A.4. Laboratory tests 11 and 37: dimensionless time series of (a) η/h at

WG2, (b) p/(ρwgh) at PPT1 and 3, (c) F3D/(ρwgh
3) and (d) εzz at SGb.

(a)

(b)

(d)

(c)

Figure A.5. Laboratory tests 26 and 52: dimensionless time series of (a) η/h at

WG2, (b) p/(ρwgh) at PPT1 and 3, (c) F3D/(ρwgh
3) and (d) εzz at SGb.
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Appendix B

Breaking wave impact on a

deformable truncated vertical

wall (CCP-WSI comparative

study 1)

The Collaborative Computational Project in Wave-Structure Interaction (CCP-WSI)

was funded by the Engineering and Physical Sciences Research Council (EPSRC).

CCP-WSI has been supporting a number of studies to understand the strengths

of different WSI numerical models and provide directions for future developments

(Ransley et al., 2019; 2020; 2021). The CCP-WSI comparative study 1 was proposed

in October 2021, as a first step towards more complex WSI phenomena, including

fully-coupled fluid and solid mechanics (CCP-WSI, 2021).

Participants have been invited to simulate offshore breaking wave impacts on

a deformable truncated vertical wall with different numerical models. A total of 3

laboratory tests have been considered, including rigid and flexible walls. Initially, the

time series of the laboratory water surface elevation were released along with a full

description of the experimental tests (CCP-WSI, 2021). Participants were then asked

to simulate the laboratory experiments and submit their numerical results, including
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the water surface elevations η, water pressures p and Three-Dimensional (3D) force

F3D on the wall and the horizontal displacements dx of the wall.

In the following sections, the laboratory set-up and the test programme of the

CCP-WSI (2021) are addressed. A description of the current contribution of the

author to the study, including the numerical set-up used and some of the results, are

then presented.

B.1 Laboratory set-up and test programme

Laboratory experiments have been conducted in a 35.0 m long, 0.6 m wide and 1.2 m

deep flume at the COAST laboratory of the University of Plymouth (Mai et al., 2020;

CCP-WSI, 2021). These consisted in breaking waves impacting rigid and deformable

walls. The flume was equipped with a piston-type wave maker and a water depth

h = 0.7 m was used. The 0.560 m (width) × 0.600 m (height) × 0.012 m (thickness)

truncated vertical wall was located 26.90 m downstream the wave maker (Fig. B.1a,

b). The aluminium wall was connected to a rigid support frame by 4 springs and was

free to move along the horizontal direction only.

A total of 3 laboratory tests were conducted by changing the spring configuration

and/or stiffness ks behind the wall. For test 1, the springs were locked, mimicking a

rigid structure. For tests 2 and 3, 2 different spring systems have been used, with the

main parameters summarised in Table B.1.

Table B.1. Test programme for the CCP-WSI (2021) laboratory tests.

Parameter Symbol Unit Test 1 Test 2 Test 3

Water depth h m 0.70 0.70 0.70
Crest wave amplitude ac m 0.1914 0.1914 0.1914
Significant wave height Hs m 0.163 0.163 0.163

Peak wave period Tp s 1.601 1.601 1.601
Spring stiffness ks N/m - 98493 37702

A single focused wave was used for all 3 tests. This was generated using 116 wave

fronts with frequencies equally spaced between 0.2 and 2.0 Hz. The amplitudes of

the frequency components were derived using the New Wave theory (Tromans et al.,
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1991) based on the JONSWAP spectrum with a crest amplitude ac = 0.1914 m, a

significant wave height Hs = 0.163 m and a peak wave period Tp = 1.601 s (Table

B.1).

Plate Membrane

Spring

47
5

70
0

LVDT

Load
cell

45
0

15
0

(a) (b)

Figure B.1. Laboratory set-up of the CCP-WSI (2021) comparative study 1: (a)

photograph of the experimental flume and wall and (b) sketch of the wall and spring

system (all measurements are in mm).

The water surface elevations were sampled with 13 Wave Gauges (WGs, Table

B.2) at 128 Hz. An array of FGP XPM10 pressure sensors was used to measure the

pressure on the plate. The total force on the plate was measured with a low-profile

load cell. In addition, the plate was equipped with a Linear Variable Differential

Transformer (LVDT) to measure the horizontal displacement (Fig. B.1b).

Table B.2. Wave gauge locations along the flume: distance (m) from the wave maker.

WG1 WG2 WG3 WG4 WG5 WG6 WG7 WG8 WG9 WG10 WG11 WG12 WG13

1.00 6.00 11.00 16.00 21.15 22.11 22.90 26.05 26.57 26.66 26.75 26.84 26.89

B.2 Numerical simulations

The 3 CCP-WSI (2021) laboratory tests (Table B.1) were simulated with solids4foam

(Cardiff et al., 2018) within the present work. The numerical set-up consisted of a

Two-Dimensional (2D) wave flume with a rigid plate (Young’s modulus E = 80

GPa, Fig. B.2), mimicking the truncated wall. This was anchored to 2 elastic blocks,
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representing the spring system. These blocks were fixed at the downwave end and al-

lowed horizontal displacements only. Each block (subscript b) modelled the 2 springs

at the same coordinate z. Consequently, its Young’s modulus was calculated as

Eb = 2kslb/A⊥,b, where lb and A⊥,b are the block length and cross-sectional area,

respectively (Table B.3).

0.12 mRefined 
mesh

0.015 m

0.70 m

26.90 m

Plate

x

z

1.00 m

0.60 m Block

Figure B.2. Side view of the numerical set-up for the (CCP-WSI, 2021) comparative

study 1.

Table B.3. Properties of the numerical block used to model the CCP-WSI (2021)

laboratory tests.

lb (m) A⊥,b (m
2) ρb (kg/m

3) Eb (MPa)

Test 2 0.120 0.0084 942.0 2.814
Test 3 0.120 0.0084 2282.0 1.077

Wave generation was performed with the toolbox waves2Foam (Jacobsen et al.,

2012), where the new wave theory was implemented as shown in Katsidoniotaki

(2019). The laminar flow model was used for these simulations, providing accurate

results at reduced computational costs. Although simplifications had to be made due

to the complexity of the laboratory tests, the simulations accurately capture the main

aspects of the laboratory investigation.

A mesh resolution of ∆x = ∆z = 0.0075 m was employed in a 0.60 m × 1.00 m

refined area (Fig. B.2), with ∆x = ∆z = 0.015 m in the remainder of the fluid region.

∆x = ∆z = 0.0075 m was used for the wall. The simulations were conducted with

an adaptive time step ∆t, satisfying the Courant-Friedrichs-Lewy (CFL) convergence
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condition, with a sampling frequency of 128 Hz for consistency with the laboratory

measurements.

B.3 Numerical results

Comparisons between the laboratory and numerical η/h at several WGs are shown in

Fig. B.3 for test 1. The numerical model captures the main physics of the laboratory

waves. At WG1 and 4, a good agreement between laboratory and numerical results is

observed, with relatively small deviations of less than 10% for the wave peaks of the

main wave group (65 ≤ t(g/h)1/2 ≤ 90 at WG1 and 105 ≤ t(g/h)1/2 ≤ 130 at WG4,

where g is the gravitational acceleration). Some deviations can be observed at the

WGs closer to the plate. These are partially due to the imprecise modelling of the

wave breaking in the simulations, given the laminar flow assumption. However, the

overall behaviour is captured well in the numerical simulation. At WG13, the largest

wave amplitude observed in the laboratory tests is predicted by the numerical model,

however, with a phase shift.

WG7

WG10

WG13

WG1

WG4

(a)

(b)

(c)

(d)

(e)

Figure B.3. Time series of the laboratory and numerical water surface elevations

η/h at several wave gauges for test 1 of Table B.1.
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The time series of the relative water surface elevations η/h at various WGs are

shown in Fig. B.4 for the 3 numerical tests. No deviations of η/h are observed between

the 3 tests at the WGs in proximity of the wave maker. However, some deviations

can be observed near the plate due to different reflection processes. At WG13, the

largest elevation is observed for test 1 (η/h = 0.65) followed by test 3 (η/h = 0.60)

and 2 (η/h = 0.58).

(a)

(b)

(c)

(d)

(e)

WG7

WG10

WG1

WG4

WG13

Figure B.4. Time series of the numerical water surface elevations η/h at several

wave gauges for the 3 tests of Table B.1.

The numerical F3D was calculated as F3D = Fb, with the 2D force F and the

wall width b = 0.56 m. For all 3 tests, the maximum numerical force F3D/(ρwgh)

was observed at approximately t(g/h)1/2 = 133, as shown in Fig. B.5a, where ρw is

the water density. Test 1 resulted in the largest F3D/(ρwgh), with deviations of 2.4

and 24.2% for test 2 and 3, respectively. Oscillations of the force are observed for the

flexible configurations after the main peak.

Test 1 showed no displacements compared to tests 2 and 3 (Fig. B.5b). As ex-

pected, the largest displacements were observed for the most flexible configuration

(test 3) with values from 2.0 to 2.6 times larger than in test 2. These deviations are

reasonably consistent with the difference in the spring stiffnesses of these 2 tests. The
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publication for this study, including the results of all contributors and comparison

with the laboratory measurements, is still pending.

(a) (b)

Figure B.5. Time series of the numerical results (a) F3D/(ρwgh
2) and (b) dx/l for

the 3 tests in Table B.1 of CCP-WSI (2021).
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