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Abstract

Stagnation graphs provide a useful tool to analyse the main topological features of the, often

complicated, vector field associated with magnetically induced currents. Previously these graphs

have been constructed using response quantities appropriate for modest applied magnetic fields. An

implementation capable of producing these graphs in arbitrarily strong magnetic fields is presented,

using current-density-functional theory. This enables the study of how the topology of the current

vector field changes with the strength and orientation of the applied magnetic field. Applications

to CH4, C2H2 and C2H4 are presented. In each case we consider molecular geometries optimized

in the presence of the magnetic field. The stagnation graphs reveal subtle changes to this vector

field where the symmetry of the molecule remains constant. However, when the electronic state

and symmetry of the corresponding equilibrium geometry changes with increasing field strength,

the changes to the stagnation graph are extensive. The approach presented here will be helpful in

interpreting changes in molecular structure and bonding in the strong-field regime.

3



Acknowledgements

In particular I would first like to thank my supervisor Andrew Teale, who has throughout the pro-

cess been very patient and understanding in the face of a very circuitous path towards completing

this project, and has been ever insightful during discussion.

I would further like to thank Tom Irons, who was particularly helpful in offering his thor-

ough guidance and time, who helped me to understand the QUEST program used in this work

and troubleshoot any issues I encountered in its operation, and whose ability to debug my code

idiosyncrasies was greatly appreciated.

I would also like to thank Tom Elgood, of the Support and Welfare team, Dan Pitt of the

Nottingham Counselling Service, and Emma at the Cripps Health Centre, all of whom I leaned on

heavily during the difficult moments, and without whom I would not have continued.

Lastly I would like to acknowledge the tireless support of my family, in particular my Mother

and Father on whom I have been a significant imposition during the duration of the project, and

who have always been able to spare time to talk through my myriad worries and concerns. I hope

to justify at least a fraction of the support they have given me.

4



Declaration

The work undertaken in this thesis has recently been published:

”Topological Analysis of Magnetically Induced Current Densities in Strong Magnetic Fields Using

Stagnation Graphs”

Tom J.P Irons, Adam Garner, Andrew M. Teale

Chemistry 2021, 3(3), 916-934;

https://doi.org/10.3390/chemistry3030067

5



List of Figures

3.1 (a) The value of |j| (b) The Cartesian gradient components ∂γ |j| and its magnitude

plotted from y = −2.5 to 2.5 bohr at z = 2.3 bohr in the ethene molecule in the

yz-plane with a magnetic field of 0.1B0 along the z-axis. . . . . . . . . . . . . . . . 16

3.2 (a) The value of |j|2 (b) The Cartesian gradient components ∂γ |j|2 and its magnitude

plotted from y = −2.5 to 2.5 bohr at z = 2.3 bohr in the ethene molecule in the

yz-plane with a magnetic field of 0.1B0 along the z-axis. . . . . . . . . . . . . . . . 17

3.3 The stagnation graphs of the CH4 molecule in its equilibrium geometry with a

magnetic field of (a) 0.05B0, (b) 0.10B0, (c) 0.15B0 and (d) 0.20B0 along the z-axis,

arranged from left to right respectively. The interactive version of these figures may

be found in CH4 B005.html, CH4 B010.html, CH4 B015.html and CH4 B020.html of

the Supporting Information respectively. . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 The energies of the optimised Ms = 0, cis-Ms = −1 and trans-Ms = −1 states of

the C2H2 molecule with respect to the strength of magnetic field applied along the

x-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 The stagnation graphs of the C2H2 molecule in its equilibrium geometry with a

magnetic field of (a) 0.05B0, (b) 0.10B0, (c) 0.15B0 and (d) 0.20B0 along the x-

axis. The interactive version of these figures may be found in C2H2 B005.html,

C2H2 B010.html, C2H2 B015.html and C2H2 B020.html of the Supporting Informa-

tion respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Contour plots of the norm of the current density |j| in the (a) xz-plane (left) and (b)

yz-plane (right) of the C2H2 molecule at its equilibrium geometry with a magnetic

field of 0.10B0 along the x-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6



LIST OF FIGURES 7

3.7 The stagnation graph of the C2H4 molecule in its equilibrium geometry with a

magnetic field of 0.05B0 along the z-axis. The interactive version of this figure may

be found in C2H4 B005.html of the Supporting Information. . . . . . . . . . . . . . 28

3.8 Streamline plots of the current density j, with contours of its norm, in the xy-plane

of the CH4 molecule in a magnetic field of (a) 0.1B0 and (b) 0.2B0 along the z-

axis. Paratropic vortex lines are shown as red circles, diatropic vortex lines as green

circles and saddle lines as blue circles. . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.9 Contour plots of the norm of the (a) current density |j|, (b) spin α current density

|jα| and (c) spin β current density |jβ | in the xz-plane of the C2H2 molecule at

its equilibrium geometry with a magnetic field of 0.20B0 along the x-axis. In (a),

paratropic vortex lines are shown as red circles and saddle lines as blue circles. . . 31



List of Tables

2.1 Classification of stagnation points by their topological characteristics. . . . . . . . 14

3.1 Equilibrium geometries of CH4 at the magnetic field strengths considered in this

work, optimized with the cTPSS functional and in the u-aug-cc-pVTZ basis. In all

cases, the magnetic field is aligned parallel to one of the C − H bonds. . . . . . . . 22

3.2 Equilibrium geometries of C2H2 at the magnetic field strengths considered in this

work, optimized with the cTPSS functional and in the u-aug-cc-pVTZ basis. In all

cases, the magnetic field is aligned perpendicular to the C - C bond. . . . . . . . . 25

3.3 Equilibrium geometries of C2H4 at the magnetic field strengths considered in this

work, optimized with the cTPSS functional and in the u-aug-cc-pVTZ basis. In all

cases, the magnetic field is aligned parallel to the C − C bond. . . . . . . . . . . . 27

8



Chapter 1

Introduction

The properties of magnetically induced currents have been widely studied using linear response

techniques1–19 and a number of programs have been developed to both calculate the induced

currents and analyse their main features18;20–23. An essential requirement is to ensure gauge-

origin independence of the calculated currents; this has been achieved by a range of methods

including: the individual gauge for localized orbitals (IGLO) method24, the continuous set of gauge

transformations (CSGT) approach6;25;26, the continuous transformation of the gauge origin of the

current density (CTOCD) method8;10;14;15;27–30 and using London atomic orbitals (LAOs)18;31

(also known as gauge-including atomic orbitals (GIAOs)). The physical current density is a rich

source of chemical information21;26;32–37; its topology reflects the chemical structure of the molecule

and its interaction with the applied magnetic field. Its features have been used as a criterion to

assess the aromaticity of molecules38, give insight into electron delocalization39–42 and to probe

hydrogen bond strengths43–45. The magnetically induced currents can also be directly related

to magnetic response properties via the induced current susceptibility, a tensor describing the

derivative of the induced current with respect to the applied magnetic field. Evaluating this

response quantity at a zero magnetic field, and using the Biot-Savart law leads directly to magnetic

susceptibilities and NMR shielding constants. Furthermore, ring-current models have long been

used to rationalise NMR chemical shifts in molecules21;32;46–49.

The magnetically induced current is a relatively complicated vector field and as such tools

for its analysis and interpretation of its main features in a simple manner are highly desirable.

Approaches which analyse the induced currents by integration are well developed, see for example
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CHAPTER 1 - INTRODUCTION

the Gauge-Including Magnetically Induced Current (GIMIC) program18;41. Recently, an imple-

mentation of these techniques was presented in the context of current-density-functional theory

(CDFT), allowing applications to systems in arbitrarily strong magnetic fields50. Somewhat less

attention has been given to topological approaches, which employ concepts from vector field anal-

ysis to analyse the topology of the vector field and provide insight into the magnetic behaviour of

the system.

A few groups have pursued a topological analysis following early work on the mathematical

characterisation of stagnation points in vector fields by Reyn51. In particular, see the work of Keith

and Bader26, as well as works by Pelloni, Faglioni, Zanasi and Lazzeretti52–55 for applications to

molecular systems. These studies demonstrate how the location and classification of stagnation

points (points in space at which the current density j has a magnitude of zero, i.e. |j| = 0) to

produce stagnation graphs can distill the main features of of the complicated current vector field

into simpler plots that that can be easily visualised without suffering from issues such as occlusion

that often make the direct visualisation of dense 3D vector fields challenging.

In the present work these techniques are extended to analyse magnetically induced currents

in strong magnetic fields at the CDFT level. This allows us to identify the main features and

topology of induced currents as a function of the applied magnetic field strength and its direction

relative to the molecular frame. In Section 2 the necessary theoretical background to calculate

the magnetically induced current densities in strong fields is outlined; detailing how the current

density is determined in Section 2.1 and how its topological characteristics may be classified in

Section 2.2. In Section 3.1 the compuonal approach used to locate and classify stagnation points

and construct stagnation graphs is described. Results are presented in Section 3.2 for applications

to the CH4, C2H2 and C2H4 molecules at their ground state equilibrium geometries over a range

of field strengths, obtained using a recently developed implementation of geometrical gradients for

calculations using LAOs56. The changes in the stagnation plots with applied field strength are

carefully examined and analysed in Section 3.3. Conclusions and directions for future work are

discussed in Section 4.
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Chapter 2

Theoretical Background

This chapter will provide the theoretical framework for incorporating the presence of a uniform

external magnetic field to molecular systems via London Atomic Orbitals (LAOs)31, in order to

examine systems in magnetic fields of arbitrary strength. The necessary background for the deter-

mination and classification of stagnation points via paramagnetic and diamagnetic current densities

is also necessary to understand the topological structure of stagnation graphs. A thorough coverage

of the more foundational aspects of the theory can be found in the following textbooks57–59.

2.1 Magnetically Induced Current Densities

In the presence of a uniform magnetic field B, the non-relativistic electronic Hamiltonian is given

by

Ĥ = Ĥ0 +
1

2
(B× rO) · p̂ + B · ŝ +

1

8
(B× rO) · (B× rO), (2.1)

where Ĥ0 is the zero–field Hamiltonian, p̂ the momentum operator (−i∇), ŝ the spin operator and

rO the position relative to some gauge–origin O. Since ∇ ·B = 0 for a uniform magnetic field, the

magnetic field may be represented by a vector potential A such that B = ∇×A; in the Coulomb

gauge, this vector potential is defined to have a divergence of zero, ∇ · A = 0. Therefore, for a

uniform magnetic field, the vector potential depends on the gauge–origin as

AO(r) =
1

2
B× (r−O), (2.2)
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CHAPTER 2 - THEORETICAL BACKGROUND

and a change of the position of the gauge–origin O → G is a gauge transformation,

AG(r) = AO(r) −∇AO(G) · r. (2.3)

This gauge–transformation corresponds to a unitary transform of the Hamiltonian,

Ĥ ′ = exp(iAO(G) · r)Ĥ exp(−iAO(G) · r), (2.4)

the eigenfunctions of which, ψ, therefore undergo a compensating unitary transformation

ψ′ = exp(iAO(G) · r)ψ, (2.5)

under which observables of the system remain gauge–origin invariant. This gauge–origin depen-

dence of the wavefunction cannot be properly represented in a finite basis except by explicitly

including the gauge–origin; this is the approach taken using LAOs31, which comprise a standard

Gaussian-type basis function φa centred on R and multiplied by a field-dependent complex phase

factor,

ωa(r) = φa(r) exp

(
− i

2
B× (R−O) · r

)
(2.6)

which yields wavefunctions that are correct to first order in the magnetic field and properties that

are gauge-origin invariant60. Utilizing an LAO basis, the effects of the magnetic field can be treated

in a non-perturbative manner, allowing the behaviour of systems in magnetic fields of arbitrary

strength to be examined61;62. The magnetically induced physical current density j is a continuous

vector field in three dimensions and may be written as the sum of the diamagnetic current density

jd and paramagnetic current density jp
62;63,

jd(r) = −A(r)
∑
σ

ρσ(r) (2.7)

jp(r) =
i

2

∑
σ

∑
i

(∇ϕiσ(r)ϕ∗iσ(r) − ϕiσ(r)∇ϕ∗iσ(r)) (2.8)

where ρσ is the σ spin density and ϕiσ are the σ-spin occupied molecular orbitals. Through the

non-perturbative inclusion of magnetic field effects, the magnetically induced current density can

be evaluated without the need for linear response calculations; in a basis of LAOs, the one-particle

density matrix Dσ
ab computed at the Hartree–Fock (HF) or CDFT levels62–64 may be used to

evaluate the diamagnetic and paramagnetic current densities as

jd(r) = −A(r)
∑
σ

∑
ab

Dσ
abωa(r)ω∗

b (r) (2.9)

jp(r) =
i

2

∑
σ

∑
ab

Dσ
ab (∇ωa(r)ω∗

b (r) − ωa(r)∇ω∗
b (r)) , (2.10)
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CHAPTER 2 - THEORETICAL BACKGROUND

each of which are individually gauge–origin dependent, however the physical current density j =

jd + jp is gauge–origin invariant and can be computed at arbitrary field strengths.

2.2 Topological Characteristics

The magnetically induced current density j(r) is a three–dimensional vector field with a topo-

logical structure that may be characterised in terms of its singularities, otherwise referred to as

stagnation points, at which |j| = 0. The collection of these points for a system with magnetically

induced currents is its stagnation graph, which describes the topological structure of the vector

field6;36;37;51;65. The Cartesian components of the current density jα(r) at position r around a

stagnation point r0 may be described by the second–order Taylor expansion

jα(r) =
∑
β

(rβ − r0β)
∂jα
∂rβ

∣∣∣∣
r0

+
1

2

∑
βγ

(rβ − r0β)(rγ − r0γ)
∂2jα
∂rβ∂rγ

∣∣∣∣
r0

, (2.11)

in which the zeroth–order term is, by definition, zero. Taking only the first–order approximation,

the current density in the region of the singular point can be described by the linear equation54;66–70

j = Jd, Jαβ =
∂jα
∂rβ

∣∣∣∣
r0

, d = r− r0, (2.12)

where j is the current density at r and J is the Jacobian matrix with elements Jαβ comprising the

first derivative of jα with respect to rβ .

It can be shown that the local behaviour of the current may be characterised by the eigen-

values ηi of the Jacobian matrix51. The number of non–zero eigenvalues of J is denoted the rank

r whilst the excess of eigenvalues with a positive real component over those with a negative real

component is denoted the signature s – together the ordered pair (r, s) can be used to characterise

the stagnation point.22;52–54;67;68 Given that, at points where the current density is zero, the iden-

tity ∇· j = 0 must be satisfied, the only possible (r, s) combinations for a three–dimensional vector

field are (3,±1), (2, 0) and (0, 0). In addition, a topological index i may be defined at a stagnation

point where J has two non–zero eigenvalues as

i =


+1 η1 = η∗2 , η3 = 0

−1 η1 = −η2, η3 = 0

(2.13)

The stagnation points can be further characterised by their magnetotropicity52, given by the dot

product of the applied field vector B and the vorticity ∇ × j, indicating whether the current

13



CHAPTER 2 - THEORETICAL BACKGROUND

flow is clockwise (diatropic) or anti-clockwise (paratropic) relative to the direction of the applied

magnetic field. The resulting classifications are summarised in Table 2.1 and will be used through-

out.22;54;68–70

Table 2.1: Classification of stagnation points by their topological characteristics.

(r, s) i ηi conditions magnetotropicity classification

(3,±1) η1, η2, η3 ∈ R isolated singularity: saddle

(3,±1) η3 ∈ R, η1 = η∗2 B · (∇× j) > 0 isolated singularity: p. focus

(3,±1) η3 ∈ R, η1 = η∗2 B · (∇× j) < 0 isolated singularity: d. focus

(2, 0) −1 η1, η2 ∈ R, η3 = 0 stagnation line: saddle

(2, 0) +1 Re(η1),Re(η2) = 0, η3 = 0 B · (∇× j) > 0 stagnation line: p. vortex

(2, 0) +1 Re(η1),Re(η2) = 0, η3 = 0 B · (∇× j) < 0 stagnation line: d. vortex

(0, 0) η1, η2, η3 = 0 branching point

14



Chapter 3

Results and Discussion

3.1 Computational Methods

Previous works22;68 have suggested using Newton-Raphson approaches to search for stagnation

points, which occur at the nodes of the current density j. In particular, these optimization schemes

use only first order information to search the three-dimensional current-density vector field from

a grid of arbitrarily chosen starting points22. Here, an alternative choice of objective function

in stagnation point searches is presented in Section 3.1.1, before outlining an approach allowing

for full second-order trust-region optimization, which benefits from quadratic convergence in the

vicinity of stagnation points, in Section 3.1.2. Our approach to selecting an initial grid of starting

points for the search and their subsequent refinement to produce clear stagnation graphs is detailed

in Section 3.1.3.

3.1.1 Selecting an Appropriate Objective Function

The purpose of the stagnation point search is to locate the set of points {r} at which the objective

function

|j(r)| =
[
j2x(r) + j2y(r) + j2z (r)

] 1
2 . (3.1)

is zero. Such points can be located by searching for stationary points in |j| and selecting those at

which |j(r)| = 0. Previous works have suggested optimizing |j(r)| directly via the Newton-Raphson

15



CHAPTER 3 - RESULTS

approach, which requires only evaluation of the objective function and its first derivative22;68.

However, it is clear that |j(r)| will exhibit cusps at the stagnation points. To demonstrate this,

an example of the ethene molecule oriented in the yz-plane with the two carbon nuclei equidistant

from the origin along the z-axis is presented in Figure 3.1. Plotting |j| along the line −2.5 ≤ y ≤ 2.5

bohr at z = 2.3 bohr, we expect to observe three stagnation points in line with the plots of Ref.54

when a field of 0.1 B0 is applied parallel to the C–C bond axis (B0 = ℏe−1a−2
0 = 2.3505 × 105T ).

These points are clearly visible in Figure 3.1 (a); however, it can also be seen in Figure 3.1 (a)

that the expected cusps are present at the stagnation points along this line. The first derivative

of Eq. (3.1) may be readily evaluated as,

∂|j|
∂rα

=
jx
|j|
∂jx
∂rα

+
jy
|j|
∂jy
∂rα

+
jz
|j|
∂jz
∂rα

, (3.2)

and the singularities associated with the factors 1/|j| at the stagnation points are clearly present

in Figure 3.1 (b), with the total derivative of the objective function being discontinuous at these

points. In practice we find that, using this objective function, the cusps associated with the stag-

nation points can be approached to sufficient proximity that the optimization can be terminated,

however, the rate of convergence is somewhat hindered. A full second-order approach, in which the

(a) (b)

(a) (b)Figure 3.1: (a) The value of |j| (b) The Cartesian gradient components ∂γ |j| and its magnitude

plotted from y = −2.5 to 2.5 bohr at z = 2.3 bohr in the ethene molecule in the yz-plane with a

magnetic field of 0.1B0 along the z-axis.

issues associated with the singularities of |j(r)| are avoided, may be straightforwardly formulated

by considering at alternative objective function, |j(r)|2. Figure 3.2 shows plots of |j|2 and its first

derivative in the same region plotted for |j| and its derivatives in Figure 3.1; it can be seen that

this objective function is continuous and both the gradient and the Hessian of this function are
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well defined at the stagnation points. This objective function, its gradient and its Hessian may

then be evaluated as,

|j|2 = j2x + j2y + j2z (3.3)

∂|j|2

∂rα
=

∑
γ

(
∂jγ
∂rα

jγ + jγ
∂jγ
∂rα

)
(3.4)

∂2|j|2

∂rα∂rβ
=

∑
γ

(
∂2jγ
∂rα∂rβ

jγ + 2
∂jγ
∂rα

∂jγ
∂rβ

+ jγ
∂2jγ
∂rα∂rβ

)
. (3.5)

The gradient components are displayed in Figure 3.2 (b) and are well behaved as expected. Fur-

(a) (b)

(a) (b)

Figure 3.2: (a) The value of |j|2 (b) The Cartesian gradient components ∂γ |j|2 and its

magnitude plotted from y = −2.5 to 2.5 bohr at z = 2.3 bohr in the ethene molecule in the

yz-plane with a magnetic field of 0.1B0 along the z-axis.

thermore the Hessian may be readily evaluated affording full second-order optimization at modest

cost. The required partial derivatives with respect to the position may be evaluated in terms of

17



CHAPTER 3 - RESULTS

the LAOs and density matrices as

jα =
ı

2

∑
σab

Dσ
ab

(
∂ωa

∂rα
ω∗
b − ωa

∂ω∗
b

∂rα

)
−Aα

∑
σab

Dσ
abωaω

∗
b (3.6)

∂jα
∂rβ

=
ı

2

∑
σab

Dσ
ab

(
∂2ωa

∂rα∂rβ
ω∗
b +

∂ωa

∂rα

∂ω∗
b

∂rβ
− ∂ωa

∂rβ

∂ω∗
b

∂rα
− ωa

∂2ω∗
b

∂rα∂rβ

)
−Aα

∑
σab

Dσ
ab

(
∂ωa

∂rβ
ω∗
b + ωa

∂ω∗
b

∂rβ

)
− 1

2
εαγβBγ

∑
σab

Dσ
abωaω

∗
b (3.7)

∂2jα
∂rβ∂rγ

=
ı

2

∑
σab

Dσ
ab

(
∂3ωa

∂rα∂rβ∂rγ
ω∗
b +

∂2ωa

∂rα∂rβ

∂ω∗
b

∂rγ
+

∂2ωa

∂rα∂rγ

∂ω∗
b

∂rβ
+
∂ωa

∂rα

∂2ω∗
b

∂rβ∂rγ

− ∂2ωa

∂rβ∂rγ

∂ω∗
b

∂rα
− ∂ωa

∂rβ

∂2ω∗
b

∂rα∂rγ
− ∂ωa

∂rγ

∂2ω∗
b

∂rα∂rβ
− ωa

∂3ω∗
b

∂rα∂rβ∂rγ

)
−Aα

∑
σab

Dσ
ab

(
∂2ωa

∂rβ∂rγ
ω∗
b +

∂ωa

∂rβ

∂ω∗
b

∂rγ
+
∂ωa

∂rγ

∂ω∗
b

∂rβ
+ ωa

∂2ω∗
b

∂rβ∂rγ

)
− 1

2
εαγβBγ

∑
σab

Dσ
ab

(
∂ωa

∂rγ
ω∗
b + ωa

∂ω∗
b

∂rγ

)
− 1

2
εαβγBβ

∑
σab

Dσ
ab

(
∂ωa

∂rβ
ω∗
b + ωa

∂ω∗
b

∂rβ

)
(3.8)

These derivatives have been implemented in the Quest program23. The correctness of each con-

tribution was verified by finite-difference calculations with respect to rα.

3.1.2 Optimization Algorithm

To locate the stagnation points, |j|2 was minimised with respect to r using a trust region approach.

Using this method, a quadratic model of the objective function

mk(rk + d) = |j|2k + dTgk +
1

2
dTHkd (3.9)

is constructed around each point visited in the optimization rk. Here d defines the step taken

from the point rk and |j|2k, gk and Hk are the objective function, its gradient and Hessian at rk,

respectively,

|j|2k = |j(rk)|2 gk =
∂|j|2

∂rα

∣∣∣∣
rk

Hk =
∂2|j|2

∂rα∂rβ

∣∣∣∣
rk

(3.10)

To ensure progress in the optimization, the step d is determined by solving the trust-region sub-

problem

min
d
mk(rk + d), subject to ||d||2 ≤ ∆k, (3.11)

where ∆k is the trust-radius. The step cannot exceed the trust region, in which the quadratic model

is expected to be reliable. At each iteration, the accuracy of the step from the quadratic model is

monitored using the ratio of the actual change in |j|2 to that predicted by the quadratic model. If
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the step does not produce a sufficient decrease in |j|2, the trust-radius is reduced. Alternatively,

if the model is particularly accurate (as would be the case if it was close to a stationary point for

example) then the trust-radius may be increased; if the model is reasonably accurate the trust-

radius is kept the same. This approach is detailed in Algorithm 1, where the ratio used to control

the trust-radius is denoted γk. At each step we solve the trust–region subproblem Eq. (3.11)

using the Steihaug-Toint truncated conjugate gradient algorithm71. In practice we observe rapid

Algorithm 1 Trust Region optimization

∆0 = 0.1

for k = 0, 1, 2, . . . do

obtain dk by solving Eq. (3.11)

γk = |j(rk)|2−|j(rk+dk)|2
mk(rk)−mk(rk+dk)

if γk < 0.25 then

∆k+1 = max(0.25∆k, 1.0 × 10−8)

else if γk > 0.75 and ||dk|| = ∆k then

∆k+1 = min(2∆k, 0.3)

else

∆k+1 = ∆k

rk+1 = rk + dk

convergence from a wide range of starting points, with quadratic convergence in the local region.

The optimization is terminated when the following convergence criteria are satisfied: the maximum

value of the gradient ∇|j|2 is ⩽ 2 × 10−6 au, its root-mean-square is ⩽ 10−6 au and its Euclidian

norm is ⩽ 10−8 au, the norm of the change in r is ⩽ 3×10−5 au and its maximum value ⩽ 6×10−4

au and the norm of the change in |j|2 is ⩽ 10−8 au. This allows us to clearly distinguish the required

stagnation points in the current-density vector field.

3.1.3 Initial Point Selection

A key aspect of making a stagnation point search computationally tractable is how the initial points

for the optimizations are selected. Few details in this regard are discussed in previous studies of

stagnation plots22;68. In the present work, the stagnation point search is carried out after a

converged CDFT calculation from initial points defined using an atom-centred quadrature grid,

19



CHAPTER 3 - RESULTS

with angular coordinates given by the eleventh degree Lebedev quadrature72 and radial coordinates

given by the Lindh-Malmqvist-Gagliardi (LMG) method73 with threshold on the relative error of

the radial integral of 10−2. This grid is of the type used in DFT calculations, but is much sparser

than would be required for a full numerical integration of quantities such as the electron density

and its gradient. It does however retain a similar structure to the full DFT integration grid, with

more points found close to the nuclei and less points as the distance from the nuclei increases. This

structure provides a set of starting points that are well placed to resolve the details of often more

complex stagnation lines in the vicinity of nuclei, whilst also sampling those further away. In the

present work we initiate stagnation point searches from this initial grid of points.

Typically plotting the converged points reveals the structure of the stagnation graph, but

points may be relatively sparsely placed along the stagnation lines. In order to increase the number

of stagnation points located, a second refinement stage is carried out. The path between stagnation

points from the initial search that are separated by 1.5 bohr or less is divided into segments of

approximately 0.1 bohr and a new initial point created at the midpoint of each segment. Once these

points are generated they are filtered to remove any points that are within 0.05 bohr of another

point in the set. Optimizations are then carried out from these points to refine the stagnation

graph. This strategy was effective at locating a larger number of singular points particularly

along stagnation lines, whilst minimising the computational cost. Finally, since |j|2 decays towards

zero as we move away from the molecule, stagnation points in regions of negligible charge density

(ρ < 10−3 au) are discarded to leave only those of interest within the molecular volume.

3.2 Results

To test the efficiency of this new implementation and investigate how the current vector field

topology and associated stagnation graph changes in the presence of strong magnetic fields, we

study three small molecules: CH4, C2H2 and C2H4. For each case, we consider fields of magnitude

|B| = 0.0−0.2B0 and optimize the molecular geometries using the analytic gradient implementation

of Ref.56 at the cTPSS/u-aug-cc-pVTZ level. Here the prefix u- indicates that the basis set is used

in its uncontracted form; uncontracted basis sets are used to provide greater flexibility to describe

the response of the wavefunction to the magnetic field. The spherical-harmonic form of these

Gaussian basis functions are used throughout.
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To aid the efficiency of the calculations density-fitting is used for all calculations, with the

AutoAux auxiliary basis set. This autogenerated auxiliary basis set is generated following the

approach outlined in Ref.74 and provides a conservative auxiliary basis set constructed by consid-

ering the product space of the primary orbital basis. This choice helps to ensure that the results

are consistent over a wide range of field strengths. Here we note that the TZ quality basis set

employed should be sufficiently accurate to describe systems in field strengths |B| ≤ 0.2B0 – see

for example Refs.50;75 for discussion of this point.

The stagnation plots are visualized along with the nuclear framework using the QMole tool,

built using the Plotly python package76, and are shown in the following subsections in static form;

html files are provided as Supporting Information, which allow the reader to explore the plots in

3D using any modern web browser.

3.2.1 CH4

The energy and main geometrical parameters for the equilibrium structure of CH4, optimized in

magnetic fields of |B| = 0.05B0, 0.10B0, 0.15B0 and 0.20B0 aligned in the lowest energy orientation

parallel to one of the C–H bonds, are presented in Table 3.1. It can be seen that, as expected for a

closed-shell molecule, the energy exhibits diamagnetic behaviour and increases with field strength.

In the absence of a magnetic field, the equilibrium geometry of CH4 has the familiar Td

point group with all C–H bond lengths and H–C–H bond angles equal. Upon the application of

a magnetic field, the point group symmetry of the molecule becomes that of the molecule and

magnetic field combined; this usually lowers the symmetry of the system since, of the symmetry

operations at zero field, only rotation axes parallel to the field, mirror planes perpendicular to the

field and inversion centres remain77. In the case of CH4 with a magnetic field applied parallel to

one of the C–H bonds, the only symmetry element remaining is the three-fold rotation axis parallel

to the field, hence the point group is reduced to C3.

It can be seen in Table 3.1 that, with an applied magnetic field, the optimized geometry

distorts away from the tetrahedral structure to a lower symmetry arrangement; the length of the

C–H bond along the C3 axis becomes distinct from that of the other bonds. Similarly the H–C–H

angles involving the axial H become distinct from those involving only non-axial H atoms. In

Table 3.1 these quantities are reported in pairs, with the first value corresponding to the axial

case, and the second the non-axial case.
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It can be seen that the axial C–H bond becomes compressed with increasing field strength,

reducing in length by ∼ 0.5 pm at |B| = 0.20B0 relative to zero field. The trend for the non-

axial bonds is less clear since their length remains approximately constant over this range of field

strengths. In addition, the axial H–C–H angles become slightly more acute and the non-axial H–

C–H angles become slightly more obtuse with increasing field strength, with the non-axial H–C–H

angles being around 1.1◦ larger than the axial H–C–H angles at |B| = 0.2B0.

Table 3.1: Equilibrium geometries of CH4 at the magnetic field strengths considered in this

work, optimized with the cTPSS functional and in the u-aug-cc-pVTZ basis. In all cases, the

magnetic field is aligned parallel to one of the C − H bonds.

|B| / B0 Energy / Eh RC−−H / bohr ∢ H–C–H / Degree Point Group

0.00 −40.541554 2.0638 109.5 Td

0.05 −40.536608 2.0631, 2.0632 109.4, 109.5 C3

0.10 −40.522124 2.0614, 2.0615 109.3, 109.6 C3

0.15 −40.499129 2.0585, 2.0604 109.2, 109.8 C3

0.20 −40.469243 2.0543, 2.0620 108.9, 110.0 C3

The CH4 stagnation plots in the range |B| = 0.05 − 0.2B0 are shown in Figure 3.3. The

stagnation plot at |B| = 0.05B0 closely resembles the plot presented in Ref.54, with saddle lines

colored blue, para- and dia-tropic vortex lines coloured red and green respectively and branching

points colored purple. The classification of these features is described in Table 2.1. The latter

are located close to the C3 axis as expected. The similarity with Ref.54 confirms the accuracy of

the present implementation for locating the stagnation points and also that the classifications in

Table 2.1 are correctly implemented.

In general, the structures of the stagnation plots display only minor changes with increasing

field strength in this range. However, two trends with increasing field strength may be observed;

the outer saddle and diatropic vortex lines dilate to have a slightly larger radius around the carbon

atom whilst simultaneously the inner paratropic vortex and saddle lines contract towards the

carbon atom with increasing field strength. The stagnation plots reflect the fact that, as the field

strength increases, the induced current becomes more intense and compact around the carbon

atom.
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B

(a) (b) (c) (d)

Figure 3.3: The stagnation graphs of the CH4 molecule in its equilibrium geometry with a

magnetic field of (a) 0.05B0, (b) 0.10B0, (c) 0.15B0 and (d) 0.20B0 along the z-axis, arranged

from left to right respectively. The interactive version of these figures may be found in

CH4 B005.html, CH4 B010.html, CH4 B015.html and CH4 B020.html of the Supporting

Information respectively.

3.2.2 C2H2

In Table 3.2, the energies and main geometrical parameters for the equilibrium structures of C2H2,

optimized in magnetic fields of |B| = 0.05B0, 0.10B0, 0.15B0 and 0.20B0 aligned in the lowest

energy orientation perpendicular to the C–C bond, are presented. Over the range of fields consid-

ered, the ground state of the molecule changes from that with Ms = 0 to Ms = −1; this occurs at

a field strength of around 0.12B0. Consistent with Ref.78, the equilibrium geometry of C2H2 in

the lowest energy triplet state at zero field has a cis structure, with both hydrogen atoms on the

same side of the C–C bond. However, at a field strength of around 0.10B0, the trans structure in

which the two hydrogen atoms are on either side of the C–C bond becomes lower in energy than

the cis structure, hence the Ms = −1 state has a trans equilibrium geometry at |B| > 0.1B0 where

it is the ground state. The energies of the optimised Ms = 0, cis-Ms = −1 and trans-Ms = −1

states are summarised in Figure 3.4.
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Figure 3.4: The energies of the optimised Ms = 0, cis-Ms = −1 and trans-Ms = −1 states of

the C2H2 molecule with respect to the strength of magnetic field applied along the x-axis.

The equilibrium geometry of the Ms = 0 state of C2H2 remains linear whilst it is the ground

state, however the presence of the magnetic field leads to a reduction in symmetry from D∞h to

C2h, since only the two-fold rotation axis parallel to the field, the mirror plane perpendicular to

the field and the inversion centre are retained. It can be seen in Table 3.2 that, as the field strength

increases, both the C–C and C–H bonds contract slightly. In comparison, the trans-Ms = −1 state

has an electronic configuration in which an α-spin electron in a bonding orbital has been excited to

an anti-bonding orbital and undergone a spin flip to a β-spin electron. In the stronger of the fields

considered here, the favourable interaction of the unpaired β-electrons with the external magnetic

field is sufficient to make the Ms = −1 states lower in energy than the Ms = 0 state, whilst in

the stronger fields the trans conformation is favoured over the cis. Consistent with these changes

in occupation, the C–C bond lengthens significantly and the C–H bonds also lengthen but to a

lesser extent. The H–C–C bond angle becomes 118.5◦ at 0.15 B0 and becomes more acute with

increasing field. In the presence of the field the trans-Ms = −1 state adopts an orientation such

that the molecular plane is perpendicular to the field and the point group symmetry of the system

is reduced from C2h in the absence of a field to Ci.

The stagnation plots for C2H2 are presented in Figure 3.5. The plot at |B| = 0.05B0 exhibits

the same features as that obtained from response calculations in Ref.79. In addition to the classes

of stagnation point identified for CH4, isolated saddle nodes are visible in the plane containing the
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Table 3.2: Equilibrium geometries of C2H2 at the magnetic field strengths considered in this

work, optimized with the cTPSS functional and in the u-aug-cc-pVTZ basis. In all cases, the

magnetic field is aligned perpendicular to the C - C bond.

|B| / B0 Energy / Eh RC−−C / bohr RC−−H / bohr ∢ H–C–C / Degree Point Group

0.00 −77.374420 2.2727 2.0136 180.0 D∞h

0.05 −77.368853 2.2722 2.0123 180.0 C2h

0.10 −77.352224 2.2703 2.0085 180.0 C2h

0.15 −77.378285 2.5974 2.0679 118.5 Ci

0.20 −77.421742 2.6106 2.0658 115.8 Ci

internuclear axis and perpendicular to the applied field. The stagnation graph at 0.10B0 has a

very similar structure to that at 0.05B0. The picture at 0.15B0 and 0.20B0 is entirely different,

since the stagnation graph of the ground state at this field strength contains no stagnation lines

but only isolated paratropic vortices and saddle points. These features will be discussed further in

Section 3.3.

B

(a) (b)

(c) (d)

Figure 3.5: The stagnation graphs of the C2H2 molecule in its equilibrium geometry with a

magnetic field of (a) 0.05B0, (b) 0.10B0, (c) 0.15B0 and (d) 0.20B0 along the x-axis. The

interactive version of these figures may be found in C2H2 B005.html, C2H2 B010.html,

C2H2 B015.html and C2H2 B020.html of the Supporting Information respectively.
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To illustrate how the stagnation plots neatly summarize the topology of the magnetically

induced current vector field, contour plots of |j| in the xz and yz-planes of Figure 3.5 (b) are

presented in Figure 3.6. On the left, the darkest blue features in the xz-plane, representing the

smallest |j|, show where the stagnation lines are located. The stagnation line perpendicular to the

C–C bond and passing through its midpoint and those that form loops encircling the nuclei can

both be seen in Figure 3.6 (a). On the right, the darkest blue features in the yz-plane capture

the central diatropic vortex line displayed as a ring around the C–C bond midpoint in Figure 3.5.

In addition the points intersecting the bond axis are clearly represented, along with the four

isolated saddle node stagnation points. This demonstrates that the stagnation plots accurately

and succinctly capture the main features of the topology of the complicated vector field associated

with the magnetically induced current.

Figure 3.6: Contour plots of the norm of the current density |j| in the (a) xz-plane (left) and

(b) yz-plane (right) of the C2H2 molecule at its equilibrium geometry with a magnetic field of

0.10B0 along the x-axis.
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3.2.3 C2H4

The energy and main geometrical parameters for the equilibrium structure of C2H4, optimized in

magnetic fields of |B| = 0.05B0, 0.10B0, 0.15B0 and 0.20B0 aligned in the lowest energy orientation

parallel to the C–C bond, are presented in Table 3.3. In this orientation, the zero-field point group

of D2h is reduced to C2h in a magnetic field since only the two-fold rotation axis along the C–C bond

parallel to the field, the mirror plane perpendicular to the field and the centre of inversion remain.

Consistent with this symmetry, all of the C–H bonds remain equivalent even with increasing field

strength. Between |B| = 0.05B0 and 0.20B0, the C–C and C–H bonds are compressed by ∼ 0.3

and ∼ 0.7 pm respectively, whilst at the same time the H–C–H bond angles become more acute,

reducing by 5◦ over this range of field strengths.

Table 3.3: Equilibrium geometries of C2H4 at the magnetic field strengths considered in this

work, optimized with the cTPSS functional and in the u-aug-cc-pVTZ basis. In all cases, the

magnetic field is aligned parallel to the C − C bond.

|B|/B0 Energy / Eh RC−−C/bohr RC−−H/ bohr ∢H − C − H/ Degree Point Group

0.00 −78.633815 2.5150 2.0532 116.5 D2h

0.05 −78.628954 2.5146 2.0523 116.2 C2h

0.10 −78.614244 2.5133 2.0497 115.2 C2h

0.15 −78.589425 2.5110 2.0457 113.7 C2h

0.20 −78.554391 2.5084 2.0407 111.5 C2h

The stagnation plots for C2H4 are presented in Figure 3.7. As for CH4, the plot at |B| =

0.05B0 exhibits the same features as that obtained from response calculations in Ref.54. The

structure of the stagnation graph remains similar for all the field strengths considered here; as

such, only that at |B| = 0.05B0 is presented in Figure 3.7.
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B

Figure 3.7: The stagnation graph of the C2H4 molecule in its equilibrium geometry with a

magnetic field of 0.05B0 along the z-axis. The interactive version of this figure may be found in

C2H4 B005.html of the Supporting Information.

3.3 Discussion

Stagnation graphs of the kind presented in Figures 3.3, 3.5 and 3.7 provide convenient spatial de-

scriptions of the magnetically induced current densities in molecules, with which various magnetic

properties can be predicted. Analysis of the stagnation graphs obtained by response calculations

carried out via a coupled Hartree-Fock (CHF) approach for CH4, C2H2 and C2H4, has been pre-

sented in Refs.54;79. We now examine how this analysis changes over the range of fields considered

in the present work.

In the diamagnetic CH4 molecule, the current flow around the edges of the molecule in the

low density regions is diatropic and perpendicular to B. At the centre of these rings of diatropic

current flow is the C3 rotation axis of the molecule and along which lies a diatropic vortex line.
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Approaching regions of the molecule in which the charge density is greater, the structure of the

magnetically induced current density becomes more complex with multiple individual circulations

or toroidal vortices. At the centre of each lies a paratropic or diatropic vortex line for paratropic

or diatropic vortices respectively; these branch from the axial vortex line above the carbon atom

and converge to the axial vortex line below the carbon atom such that they form closed loops. In

the same region, saddle lines form a closed loop between the branching points on the axial vortex

line and lie at the points of zero current flow between adjacent vortices.

As described in Section 3.2, it can be seen in Figure 3.3 that the structure of the stagnation

graph in CH4 remains generally similar with increasing magnetic field strength, however the outer

ring of saddle and diatropic vortex lines around the carbon atom dilate whilst the inner ring of

saddle and paratropic vortex lines contract with increasing field strength. This may be confirmed

by considering the current densities at different field strengths; streamlines of the current in the xy-

plane, perpendicular to the magnetic field and at a height of z = −0.2 relative to the carbon atom

at the origin, in CH4 at |B| = 0.1B0 and 0.2B0 are shown in Figure 3.8 (a) and (b) respectively. At

the higher field strength, the magnitude of the current flow around the toroidal vortices becomes

larger, resulting in the diatropic stagnation lines moving further from the nucleus. At the same

time, the paratropic vortices are compressed towards the nucleus, hence the paratropic vortex lines

moving towards the nucleus.
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Figure 3.8: Streamline plots of the current density j, with contours of its norm, in the xy-plane

of the CH4 molecule in a magnetic field of (a) 0.1B0 and (b) 0.2B0 along the z-axis. Paratropic

vortex lines are shown as red circles, diatropic vortex lines as green circles and saddle lines as

blue circles.

As presented in Section 3.2, the ground state of the C2H2 molecule changes between |B| =

0.10B0 and 0.15B0 from Ms = 0 to Ms = −1 and the equilibrium geometry changes from a linear

structure to adopt a trans conformation. The stagnation graph changes completely, with only a

few isolated stagnation points remaining. The pattern of stagnation points at this geometry and

field strength may be understood by considering the magnitude of the current density in the plane

of the molecule; this is presented in Figure 3.9 (a) where the stagnation points can be clearly

identified. Since the Ms = −1 state of C2H2 is not closed shell and has a different number of α

and β electrons, the current density of each is not necessarily the same. This can be seen clearly

in Figures 3.9 (b) and (c), depicting the norm of the α and β current densities respectively. In the

α case, a line of zero current density loops between the two carbon nuclei and around each, whilst

in the β case separate lines of zero current density appear to encircle each of the carbon nuclei

and a line of zero current density at the midpoint of the C–C bond parallel to the magnetic field

is visible.

The overall stagnation graph describes points where the magnitude of the total current density

is zero; since this is a non-negative quantity by definition, at each stagnation point the magnitudes

30



CHAPTER 3 - RESULTS

of both the α and β current densities must vanish. The total stagnation graph therefore represents

the intersection of the sets of stagnation points that would be obtained for the α and β spin

currents independently. Since the topology of the α and β spin currents are significantly different,

the intersection of their stagnation points results in a small number of points, which are visible in

Figure 3.9 (a) and located in Figures 3.5 (c) and (d).

Figure 3.9: Contour plots of the norm of the (a) current density |j|, (b) spin α current density

|jα| and (c) spin β current density |jβ | in the xz-plane of the C2H2 molecule at its equilibrium

geometry with a magnetic field of 0.20B0 along the x-axis. In (a), paratropic vortex lines are

shown as red circles and saddle lines as blue circles.

For C2H4, the stagnation graph exhibits very little change between |B| = 0.05B0 and 0.20B0.

This may be rationalised by noting that the symmetry of the molecule does not change with

increasing field strength in the range studied here. The relationship between a molecule’s symmetry

elements, particularly mirror planes, and its stagnation graph has been discussed in detail in

Refs.52–54, where it is shown that the presence and position of stagnation lines can be determined

from mirror planes. Whilst the equilibrium C–C and C–H bond lengths and the H–C–H bond

angles change with increasing field strength, the symmetry of the molecule remains constant and

as such the features present in the stagnation graph remain the same, notwithstanding distortions

with increasing field strength similar to those in CH4.

Previous studies of stagnation graphs have mainly focused on small molecules with high sym-

metry and have used first-order methods to determine the location of stagnation points22;52–54;68.

31



CHAPTER 3 - RESULTS

The second-order optimization approach for locating the stagnation points presented here should

allow stagnation graphs to be mapped-out efficiently for more complex systems. As demonstrated

with C2H2, this approach allows the changes in the stagnation graph to be examined as the sym-

metry of the molecule and its state changes, which would be expected to become essential to study

systems in stronger magnetic fields56.
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Conclusion

A second–order optimization method for mapping out the stagnation graphs of molecular systems

has been presented. In this approach stagnation points are located by minimising |j|2, which in

contrast to |j| has well-defined first and second derivatives, enabling the stagnation graph to be

elucidated efficiently and robustly for general systems.

In contrast to previous work in this area52–54;79, the magnetic field effects are here treated in

a non-perturbative manner, allowing stagnation graphs to be computed at arbitrary field strengths

and the effect of varying field strength on the characteristics of the stagnation graphs to be exam-

ined. Furthermore, the changes in the stagnation graph arising due to the effect of the magnetic

field on the equilibrium geometry of the molecules has been accounted for by optimising the

molecular geometries at each field strength using the implementation of Ref.56 before computing

the stagnation graphs. This approach has been applied to study the stagnation graphs of three

small molecules: CH4, C2H2 and C2H4, which have previously been considered using response

calculations54;79, across a range of magnetic field strengths. In weak fields, the results obtained

with the present approach are consistent with these earlier results, indicating the reliability of the

implementation.

Upon increasing the field strength we observe that the extent to which the stagnation graphs

change depends strongly on the how the symmetry of the molecular structure and electronic state

are affected by the magnetic field. In cases where the electronic state and molecular symmetry

remain the same as in the absence of a field, only subtle changes to the stagnation graphs are

observed, such as contractions and dilations of the radii of closed stagnation line loops. These
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changes can be explained by considering the magnitude of the current densities, which generally

increase with increasing field strength, increasing the radii of toroidal vortices and increasing the

distance between their corresponding vortical stagnation lines.

In cases where increasing the field strength results in a change in the electronic state and an

accompanying change in symmetry of the molecular geometry, much more extensive changes to

the stagnation graph are observed. For example, the change in ground state of C2H2 from Ms = 0

to Ms = −2 at increasing field strength completely alters the molecular structure, symmetry and

hence the stagnation graph. The structure of the stagnation graph was rationalised by considering

the individual α and β spin current densities, with the stagnation points for the total current being

the intersection of the stagnation points for the α and β spin currents individually.

We expect that the second-order approach for determining stagnation plots presented in this

work will become a useful tool for understanding the electronic structure of more complex molecules

in strong magnetic fields. The present implementation allows flexibility to study stagnation graphs

for a wide range of uniform magnetic fields in a non-perturbative manner and to resolve their α

and β-spin contributions. In the present work only small molecules with up to two carbon atoms

have been considered; in later work, we will apply this method to the study of current densities in

more diverse molecular systems such as homo- and heterocyclic aromatic molecules and aromatic

systems, for which the stagnation graphs are known to show a wider range of features69. In future

work we will also consider the generalization of this approach to non-uniform magnetic fields as

described in Ref.80. As noted by Pelloni and Lazzeretti79 the interaction between toroidal vortices

and the gradient of non-uniform magnetic fields can be examined with the aid of stagnation graphs

and these may provide useful insight into these effects on nuclear magnetic shielding as well as

more exotic properties such as molecular anapole moments.
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Supplementary Material

The stagnation plots presented in this work are also available online as freely interactive HTML

files via:

https://www.mdpi.com/2624-8549/3/3/67/s1?version=1629983788

The full list of stagnation graphs available is as follows, where ’B005’ indicates a field strength

of 0.5B0:

CH4 B005.html, CH4 B010.html, CH4 B015.html, CH4 B020.html,

C2H2 B005.html, C2H2 B010.html, C2H2 B015.html, C2H2 B020.html, C2H4 B005.html.
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