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”We were born too late to explore the Earth,

born too early to explore the galaxy,

but born just in time to explore the brain.” - Anonymous
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Abstract

Diffusion Magnetic Resonance Imaging (dMRI) has revolutionised the way brain mi-
crostructure and connectivity can be studied. Despite its unique potential in mapping
the whole brain, biophysical properties are inferred from measurements rather than being
directly observed. This indirect mapping from noisy data creates challenges and intro-
duces uncertainty in the estimated properties. Hence, dMRI frameworks capable to deal
with noise and uncertainty quantification are of great importance and are the topic of this
thesis.

First, we look into approaches for reducing uncertainty, by de-noising the dMRI signal.
Thermal noise can have detrimental effects for modalities where the information resides
in the signal attenuation, such as dMRI, that has inherently low-SNR data. We high-
light the dual effect of noise, both in increasing variance, but also introducing bias. We
then design a framework for evaluating denoising approaches in a principled manner. By
setting objective criteria based on what a well-behaved denoising algorithm should offer,
we provide a bespoke dataset and a set of evaluations. We demonstrate that common
magnitude-based denoising approaches usually reduce noise-related variance from the sig-
nal, but do not address the bias effects introduced by the noise floor. Our framework also
allows to better characterise scenarios where denoising can be beneficial (e.g. when done
in complex domain) and can open new opportunities, such as pushing spatio-temporal
resolution boundaries.

Subsequently, we look into approaches for mapping uncertainty and design two inference
frameworks for dMRI models, one using classical Bayesian methods and another using
more recent data-driven algorithms. In the first approach, we build upon the univariate
random-walk Metropolis-Hastings MCMC, an extensively used sampling method to sample
from the posterior distribution of model parameters given the data. We devise an efficient
adaptive multivariate MCMC scheme, relying upon the assumption that groups of model
parameters can be jointly estimated if a proper covariance matrix is defined. In doing so,
our algorithm increases the sampling efficiency, while preserving accuracy and precision
of estimates. We show results using both synthetic and in-vivo dMRI data.

In the second approach, we resort to Simulation-Based Inference (SBI), a data-driven
approach that avoids the need for iterative model inversions. This is achieved by using
neural density estimators to learn the inverse mapping from the forward generative pro-
cess (simulations) to the parameters of interest that have generated those simulations. By
addressing the problem via learning approaches offers the opportunity to achieve infer-
ence amortisation, boosting efficiency by avoiding the necessity of repeating the inference
process for each new unseen dataset. It also allows inversion of forward processes (i.e. a
series of processing steps) rather than only models. We explore different neural network
architectures to perform conditional density estimation of the posterior distribution of
parameters. Results and comparisons obtained against MCMC suggest speed-ups of 2-3
orders of magnitude in the inference process while keeping the accuracy in the estimates.

ii



Acknowledgements

During the writing of this thesis, we have witnessed significant global events, including

the definitive departure of the UK from the EU, a global pandemic, an economic crisis,

and even a war within the borders of this idyllic bubble called Europe. These events are

accompanied by the rapid advancements in technology, bringing about significant changes.

It is estimated that up to 75% of the jobs that will exist in 2050 are completely unknown

at present. Climate change and paradigm shifts in society will reshape our known world.

Furthermore, all these transformations are occurring within a single lifespan, highlighting

the unprecedented speed at which the world is changing. Now, better than ever, ”it’s

difficult to predict, especially the future” as Niels Bohr aptly said. It seems very timely

then to undertake a thesis on uncertainty.

In ”Human Knowledge: Its Scope and Limits”, Bertrand Russell makes an analysis from

the logic of all existing disciplines, from microbiology to astronomy, and concluded the

book by saying ”All human knowledge is uncertain, inaccurate and partial”. While this

realization can lead to apathy or a sense of futility, it can also foster us to avoid dogma-

tism, encourage critical thinking, acknowledge limitations, and gradually build on prior

knowledge to illuminate the remaining unknowns. This, to me, is the essence of science.

It is not about certainty, not about facts fetched into stone tablets. Rather, science is

about painstakingly paying down epistemic uncertainty: sharpening our hypotheses to be

“as simple as possible, but no simpler”. Werner Heisenberg once said ”What we observe is

not nature itself but nature exposed to our method of questioning”. It is in this direction

that I aim to contribute with this thesis, offering tools to navigate the uncertainties that

surround us, particularly in understanding a little better the complexities of the brain or,

rather, highlighting the limitations we have to know it, and so judge accordingly.

Within this endeavour, first and foremost, I express my deepest gratitude to Stam for his

unwavering patience, invaluable guidance, and endless support. Thank you for being an

exceptional source of ideas, and constantly pushing me forward at every step. This thesis

would not have been possible without you. I am also immensely grateful to my second

supervisor, Theodore Kypraios, for his valuable research suggestions, encouragement, and

assistance in addressing multiple questions.

I extend warm thanks to all the individuals who have, in some way, contributed to pro-

viding me with this opportunity. To my colleagues and professors in Spain who always

iii



encouraged and motivated me to pursue a PhD, to Austin for introducing me to the world

of MRI, and to my colleagues and supervisors at CSIC and CNIC for revealing to me the

thrilling world of research. I would like to mention as well Dorothee Auer, the Beacon

Precision Imaging and SPMIC staff for their daily efforts that allows us to keep doing

what we love. I am also very grateful to my collaborators Steen Moeller and Essa Yacoub,

and to my assessors Matteo Bastiani, Michael Chappell and Christophe Lenglet, for their

feedback and comments. It is both tremendously humbling and motivating to share a

conversation with you and to realise how much I can (and I still have to) learn.

I am truly fortunate to have experienced an ideal scientific environment in the birthplace

of MRI. I am grateful to all the researchers who have become my friends. If I am getting

something better than my PhD after these 4 years is the experience with all my labmates,

both those who have left, such as Ellie, Asante, Jiv, Christoph, Cheryl, Sarina, Will,... and

those who continue to work alongside me, including Stefan, Shaun, Ali, Andrea, Stephania,

Kanela, and many others. It has been a pleasure to travel this path and enjoy lunches,

coffee breaks, and after-work beers with such brilliant and diverse individuals. You are

the ones that shared the daily burden of the PhD with me, thank you.

A special thanks goes to Angela. I am honoured to have you reading these words. You

know firsthand the experiences we have shared and how important you have been in this

adventure. I have no doubt that you will achieve great things in your life, and I hope to

be there to witness them.

Pero la dedicación más importante debo hacerla en español, ya que es para mi familia. A
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Chapter 1

Introduction

Relative to body size, the human brain is the largest across all vertebrate brains and has

been described as one of the most complex systems in the universe [Koch et al., 2002]. Its

complexity emerges from a never-resting network of more than 1011 neurons with more

than 1016 connections between them [Kandel et al., 2000]. Therefore, it is no surprise that

understanding the brain has been the topic of exploration and research for a very long

time, and one of the greatest scientific challenges of the 21st century.

The approaches used to address such a scientific challenge have evolved dramatically over

time (e.g., see [Abraham and Feng, 2011; Leeds and Kieffer, 2000; Morecraft et al., 2014]

for historical reviews). The invention of the microscope at the end of the 16th century

paved the way for cell theory and allowed the study of individual nerve fibres (e.g., [Ra-

mon y Cajal, 1911]). The development of histochemical tracers in the 1950s generated an

explosion of very precise connectivity data in animal models at the mesoscale providing

the vast majority of our current knowledge of white-matter connections. However, given

the manual, time-consuming and delicate procedures involved, these micro/mesoscopic

methods are limited to small number of samples, low-throughput and challenges in quan-

tifiability; while their invasive nature limits them to post-mortem studies, mostly of the

non-human brain.

Some key technological developments during the 1970s and 1980s led to the introduc-

tion of imaging techniques, such as Magnetic Resonance Imaging (MRI) [Lauterbur,

1973; Mansfield and Maudsley, 1977], which have revolutionised neuroscience. Compared

1
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to other non-invasive alternatives (such as electroencephalography (EEG), magnetoen-

cephalography (MEG) or Computed Tomography (CT)), MRI is unique in being able to

provide multiple contrasts that probe different aspects of tissue structure, function and

physiology. Morphologic characteristics and gross anatomy [Fischl, 2012], brain connectiv-

ity and fine microstructural properties [Basser, 1995; Jbabdi et al., 2015], haemodynamic

changes emerged from neural activity [Biswal et al., 1995], chemical decomposition [Clarke

et al., 2021], perfusion or metabolism [Chappell et al., 2013] can all be probed using the

same machine, non-invasively and in-vivo. Compared to the microscopic imaging tech-

niques, MRI operates at a different scale (the macroscale, i.e. at the systems level [Behrens

and Sporns, 2012; Sporns et al., 2005]). It can however be used to study multiple living

humans [Miller et al., 2016], relate imaging features with behaviour [Smith et al., 2015],

genetics and function [Smith et al., 2013], and longitudinally study disease, development

and aging (e.g., [Cabral et al., 2012; Drysdale et al., 2017; Evangelou, 2000].

Despite its unique potential, MRI is inherently indirect and this creates a number of

challenges in dealing with and interpreting the data [Dubois and Adolphs, 2016; Jbabdi

et al., 2015; Schilling et al., 2019]. MRI scanners are not optical imaging devices and

measure properties directly related to hydrogen protons, which are in abundance in water

molecules within the body. For this reason -and excluding allometric and morphological

features- the biophysical properties one is interested in are often indirectly inferred from

the data, rather than measured directly. For instance, neuronal activity is probed through

oxyhaemoglobin changes in the blood flow of entire regions [Biswal et al., 1995], or tissue

microstructural properties can be probed by the scatter pattern of ensembles of water

molecules that randomly diffuse within tissue [Basser, 1995]. This indirect nature of mea-

surements is exacerbated by the macroscopic spatial-temporal scale of MRI measurements

(e.g. measure at millimeter scale to probe properties of processes that are at the micron

scale, or measure at the second scale to probe neuronal activity that occurs at the mil-

lisecond scale). In order to provide a mapping from (coarse-scale) MRI measurements to

(potentially finer-scale) brain properties of interest biophysical models are needed (Figure

1).

Using models to estimate parameters of interest from MRI observations is known as the
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inverse problem . Crucially, this inverse/estimation process can be challenging as it is

characterised by uncertainty . There are many sources that can contribute to uncertainty

during the inference. Firstly, MRI is inherently noisy. Due to the way the MRI signal

is acquired, the signal-to-noise ratio (SNR) can be low and, additionally, there is a trade-

off between the SNR, the spatio/temporal image resolution (the higher the resolution,

the lower the SNR) and the scan time affordable. Low SNR can affect the precision and

accuracy of estimated model parameters (e.g., [Jones and Basser, 2004]). Secondly, most

models are phenomenological (i.e. tend to explain the behaviour of the measured signal

rather than its true sources). Failure in having the correct representation of ”truth” in

models (attempt to link macroscopic measurements to microscopic compartments), can

therefore lead to errors and inaccuracies [Jelescu et al., 2020; Murray et al., 2018; Novikov

et al., 2018].

For the above reasons, frameworks in MRI data processing that deal with noise and un-

certainty mapping are of paramount importance. At its extreme, uncertainty in MRI

modeling can affect the interpretability and reproducibility of findings [Griffanti et al.,

2016] and the inability to properly characterise it can have detrimental effects. In this

thesis we explore a number of frameworks for MRI denoising and develop evaluation and

uncertainty mapping procedures. We focus on a particularly noisy MRI modality, diffusion

MRI, which allows brain microstructure and connectivity to be estimated. Diffusion MRI

is SNR-limited as the measured signal of interest is a signal attenuation, i.e. the mea-

surement ”destroys” rather than generates signal, therefore leading to inherently noisy

measurements.

We first develop a framework for evaluating denoising algorithms in an objec-

tive manner and consider the inherent properties of the diffusion MRI signal. We then

consider a Bayesian approach for uncertainty mapping in model parameter estimation,

approached in two ways. Firstly, by revisiting a random-walk scheme of the tradi-

tional Markov-Chain-Monte-Carlo (MCMC) and demonstrate how computational

efficiency can be increased with better algorithmic designs. Secondly, by employing a data-

driven approach based on Artificial Neural Networks (ANN), to design an amortised

inference framework where data are used to learn an approximation of the inverse map-



Chapter 1. Organization of the thesis 4

Figure 1.1: From measurements to biophysical properties - To understand the underlying
mechanisms of the brain (What it is), the properties of interest (What we want) are indirectly
inferred from biophysical models applied to MRI measurements (What we measure). In the figure,
an example of diffusion MRI is represented, where microstructural properties of the white matter
and structural connectivity between regions are commonly studied.

ping. The approaches developed in this thesis open new opportunities for dealing with

noise and uncertainty in modeling dMRI data for estimating tissue microstructure and

brain connections.

1.1 Organization of the thesis

This thesis is organized into seven chapters. The first two introduce background knowl-

edge about noise in MRI, the basics of diffusion MRI (dMRI), and existing estimation

approaches to address the inverse problem in neuroimaging with a focus on diffusion MRI

biophysical models. The next three chapters present the original research contributions of

this thesis. Finally, the last chapter summarizes the results presented and discusses future

perspectives. More specifically:

Chapter 2 introduces an overview of the physical sources and properties of thermal noise

that affects MRI measurements. It further summarises the basics of diffusion MRI, where

water diffusion patterns are probed by measurements of signal attenuation. The appli-

cation of biophysical dMRI models to estimate brain properties such as microstructural

features of the white matter (WM) or structural connectivity are reviewed as well. Fi-

nally, the chapter links the dMRI signal and noise properties reviewed, and provides some

examples of how uncertainty quantification can be crucial during the inference process,

particularly when the signal level is very low.
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Chapter 3 reviews the main methods to solve the inverse problem, estimate parameters

from data and map uncertainty in microstructural modeling in dMRI. Noise and other

sources of uncertainty can be accumulated throughout the modeling process. Bootstrap-

ping and Bayesian inference are reviewed as particular methods broadly used for parameter

estimation, both in parametric and non-parametric contexts. Applications of uncertainty

mapping are shown for experimental design, but also for probabilistic tractography algo-

rithms used to map brain connections. Finally, the chapter overviews new directions for

inference based on Machine Learning (ML) that have been recently introduced as potential

alternatives to overcome limitations in current approaches.

Chapter 4 is the first original chapter and is concerned with denoising approaches in

diffusion MRI. It starts with a review of denoising methods specific to diffusion MRI, an

existing gap in the current literature. It then presents a set of considerations for evalu-

ating denoising approaches and a new framework for evaluating them objectively. This

includes evaluations on the impact in the raw signal to effects in advanced modeling esti-

mates. Different brain dMRI datasets at different resolution and SNR regimes have been

acquired to support this framework. The framework is then used to compare a number of

existing denoising approaches that operate either in the magnitude MRI signal or in the

complex MRI signal domain.

Chapter 5 is concerned with mapping uncertainty in dMRI biophysical models through

classical Bayesian inference 1. It builds upon the Metropolis-Hasting Markov Chain Monte

Carlo (MH-MCMC), a sampling method that requires thousands of iterations per model

fit and, therefore, it is highly time-consuming and inefficient. A hybrid MCMC is devel-

oped by introducing a novel block-design, allowing groups of multiple parameters to be

inferred simultaneously and reducing the number of iterations needed. Using real human

brain data, comparisons between the results obtained with the classical MH-MCMC and

the method proposed shows that the hybrid MCMC accelerates the inference process while

achieving similar accuracy and precision in the estimates.

1We use the term ”classical Bayesian inference” throughout the thesis to refer traditional methods to
perform Bayesian inference, e.g. MCMC or VI; it does not refer to ”classical” (i.e. frequentist) vs. Bayesian
approaches.
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Chapter 6 extends the Bayesian inference framework to non-classical designs, using mod-

ern artificial intelligence algorithms. The idea of simulation-based inference (SBI) in dMRI

is explored and adapted. This novel approach allows the integration of Bayesian principles

of inference and uncertainty quantification into Neural Networks capable of learning the

inverse mapping using synthesised datasets. This learning process avoids the necessity

of repeating the inference process for each new data point or subject, also known as in-

ference amortisation. As never evaluated before in neuroimaging, a formal introduction

of SBI is provided. This is followed by tests in both simulated and experimental data,

comparing the results obtained by the SBI with validated classical approaches such as the

MH-MCMC. Results obtained suggest ground-breaking speed-ups in the inference process

while keeping the accuracy in the estimates.

Finally, Chapter 7 provides a summary of the results in chapters 4-6, conclusions and

take-home messages from this research and potential lines of future work.

1.2 Computing Infrastructure and Software

The primary computational resource used for this thesis was the University of Notting-

ham High-Performance Computing (HPC) cluster. The cluster partitions used consisted

of 600 CPU cores in total with memory capabilities ranging from 192 GB to 1536 GB

depending on the node and 10 GP-GPUs (6 Nvidia Tesla V100 and 4 Nvidia Tesla P100).

A secondary processing system was also used in this work, a Linux interactive server (Intel

Xeon CPU E5-2698 v4, 2.20 GHz) with CentOS Linux v7 (630 GB of memory and dual

GP-GPUs).

General image processing was performed using the FMRIB software library, FSL (version

6.0.2 and beyond) [Jenkinson et al., 2012]. Statistical analysis and visualisations were

performed using the Python programming language (v3.9.12) (Python Software Founda-

tion, https://www.python.org) along with several community-developed python libraries

for general purpose (mainly NumPy, SciPy, NiBabel, Matplotlib, Seaborn, PyTorch).

Python libraries and other software tools dedicated for particular purposes (e.g., denois-

ing or simulation-based inference) are specified in the corresponding Methods section of

each chapter. Code to reproduce the results is available under the GitHub repository

https://www.python.org
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https://github.com/josepman.

https://github.com/josepman


Chapter 2

Noise and modeling in diffusion

MRI

The signal of interest in MRI comes from spins that are intentionally excited. However,

there are multiple sources that can cause variations in the image intensity. In this chapter,

we are concerned with unstructured random variations due to thermal noise, which is an

inherent property of electronic systems. This can be particularly harmful for MRI modali-

ties when the signal intensity can be relatively low with respect to noise, such as in diffusion

MRI (dMRI). Unstructured noise differs from artifacts in the images (e.g., geometric dis-

tortions) and physiological confounds (e.g., head motion); those are sources of structured

noise, i.e. they affect particular regions in a particular manner and, although also hamper

the quantitative analysis of the MRI, they require a different treatment [Le Bihan et al.,

2006; Tax et al., 2021]. We overview here sources of thermal noise and its statistical prop-

erties in MRI images.

Subsequently, a review of the basic principles of dMRI is provided, the main imaging

modality this thesis is concerned with. An introduction to dMRI physics is followed by a

section on biophysical modeling of dMRI data. The last section links the above by showing

how thermal noise can have a dual effect on dMRI signals and model estimates that a) can

lead to numerical biases in model estimates, and b) increases the signal variance producing

higher uncertainty in the estimates.

8



Chapter 2. Thermal noise in MRI 9

2.1 Thermal noise in MRI

In an MRI experiment, thermal noise is due to both hardware, but also to the presence

of a subject with the scanner (subject loading). We will briefly overview the sources of

these two noise components, provide a description of the expected statistical properties of

thermal noise and comment on how these can be altered in modern MRI protocols.

2.1.1 Where does thermal noise come from?

Thermal noise is unavoidable in any body populated by electrons, such as measurement

systems or a human body. Similar to gas laws of diffusion and basic thermodynam-

ics [Einstein, 1956], there is a movement of charged particles within electronic sources.

These agitations and collisions between electrons give rise to a thermal process known

as Johnson-Nyquist noise or thermal noise [Johnson, 1928; Nyquist, 1928]. Based on

the Equipartition Theorem of Boltzmann and Maxwell, using the idea that electrons are

independent harmonic oscillators, and relating it to the Planck Distribution in thermo-

dynamics, Nyquist proved that the power spectral density of the noise in a conductor is

given by

Sn(w) =
ℏω

π(e
ℏω

2πkBT − 1)
≈ 2KBT [perHz] (2.1)

where ℏ = 6.62607015 · 10−34 [m2 · kg/s] is the Planck constant, KB = 1.38 · 10−23 [J/K]

is the Boltzmann constant, T is the temperature (in K). The relationship shown in eq.2.1

indicates that, for central frequencies ω < kBT/ℏ ≈ 6000 [GHz] (i.e., MRI systems are in

the order of 3 T ∼ 128 MHz, so unless we go to 3000T magnets eq.2.1 holds), the power

spectral density of the noise can be represented by an uniform distribution, independent

of the frequency. I.e., the total amount of noise in a conductor increases with temperature

and it is constant in the spectrum affecting all the frequencies equally, a property known

as white noise (as all spectral components resulted from splitting off the white light

by Newton). The 2 factor is introduced to take into account the negative frequencies

(respecting the power conservation laws). If Sn(w) is integrated over the bandwidth B (in

Hz) of interest (i.e. the pulse bandwidth in MRI), it is possible to get the mean square

voltage < v2 > of the noise in the transmission line (i.e. the background noise of the

image):
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< v2 >= 4 ·KB · T ·B ·R (2.2)

E.g., for a given resistance of R = 50Ω, there is a root mean square (RMS) noise voltage

of vRMS = 1 [nV/
√
Hz]. As specified in eq.2.2, part of a current flowing through a

conductor will be partially dissipated into heat because the conductor has some resistance

R, so this type of noise will be always present in the hardware electrical resistance RHW

from the receiver coils, data cables and other electronic sources within the MR scanner.

On the other hand, human bodies are mainly made by water, which is a conductor. Only

a tiny fraction of all the protons in the body are excited; the rest remain in thermal equi-

librium, moving between high and low energy states, and contributing to the background

noise. Furthermore, the current flowing in the coil and electronic components will pro-

duce a magnetic field in the object being scanned that, by the Faraday-Lenz’s law, will

induce a current of the opposite sign in the coil, increasing its effective resistance RHW

and, therefore, the hardware noise. This is known also as subject loading. Hence, sub-

jects can be seen also as a conductor with an associated resistance RS and, in fact, the

subject’s loading is more important than the intrinsic hardware noise for systems above

1T: R = RHW + RS ≈ RS [Redpath, 1998]. The sample noise RS is also dependent on

elements such as the coils (geometry, placement, number channels, types and size of the

coils, etc.) or the bandwidth (which differs in each pulse sequence). E.g. the less copper

wound in the coil, the lower skin depth, the less it couples with the body, and the lesser

the sample noise [Navest et al., 2019].

Finally, there is another non-thermal process due to the random fluctuations in the amount

of quantised electrons flowing through conductive pieces that produce what is known as

shot-noise (apart from Eddy currents). It has no dependence on temperature or resistance,

only on the amount of current flowing. In pure conductors at equilibrium, as electrons

move equally freely in every direction, movements in opposite directions are cancelled out

and the net average is 0; the shot-noise is not observed. However, in a semiconductor,

where an electron is not free to move equally in every direction, shot-noise is manifested.

Thus, the effects of transistors (semiconductor) within typical pre-amplifier circuits of the

scanners present shot-noise. Nevertheless, it follows a Poisson process, so for large enough
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currents (as in MRI), it can be approximated by a Gaussian and added to the thermal

noise from the circuit and the samples being measured, contributing to the overall noise

level of the system.

Figure 2.1: Representation of the Additive White Gaussian Noise (AWGN) properties of the
thermal noise in A) 1 dimension, and B) 2 dimensions.

2.1.2 Statistical properties of MRI thermal noise

All in all, background noise is the result of summing a large number of different sources,

most of them originated by thermal noise (e.g., see Fig.2.3). It cannot be represented

by an analytical function but by using statistical terms. By means of the Central Limit

Theorem (CLT), it can be demonstrated that thermal noise, which is assumed to be the

sum of independent random fluctuations, is well approximated by a Gaussian random

variable with mean µN = 0 (the random displacement of electrons cancels out the net

average) and standard deviation σN . It can be described also as Additive White

Gaussian Noise (AWGN) (see Fig.2.1), where the additive term means that the mag-

nitude of the noise does not depend on the magnetization magnitude or RF excitations.

Furthermore, it can be assumed to be temporally stationary (statistical properties of

the noise distribution do not depend on time) and ergodic (statistical properties can be

reliably estimated from long enough samples).

The MRI signal is quite small in general, it is therefore typically measured using two-

channel quadrature detectors (real and imaginary) [Callaghan et al., 1988], which allow

an increase in SNR by
√
2. Measurements are performed at distinct spatial frequencies

(k) giving rise to arrays of continuous complex numbers S(k) [Callaghan et al., 1988]:
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S(k) = SR(k) +NR(k) + i ∗ (SI(k) +NI(k)) (2.3)

where R and I sub-indices denote the real and imaginary part of the signal (S) and the

noise (N), respectively, i =
√
−1 and k is the location in k-space in which the signal is

acquired at. Apart from the statistical properties commented above for the thermal noise,

it is generally assumed that the noise components NR(k) and NI(k) are independent,

identically distributed (i.i.d.) and, as they arise from the same scanner, they are

zero-mean Gaussian distributions with equal variance σN for the two components.

Given the phase aberrations in the measurements (e.g., because of Eddy currents induced

by the gradients) and/or phase-shifts (produced by involuntary physiological motion or

inhomogeneities in the magnetic susceptibility) that can cause local signal cancellations

across acquisitions, forcing all the image information into the real component or working

with magnitude-only images has become the standard. At the expense of lower SNR,

by simply discarding the phase information they prevent these phase artifacts and allow

easier clinical interpretations. In these cases, the magnitude m of the complex signal is

given by:

m =
√

((SR(k) +NR(k))2 + (SI(k) +NI(k))2) (2.4)

Although the Inverse DFT (IDFT) used to reconstruct the images conserves the properties

of the noise distribution, the magnitude calculation introduces a non-linear transforma-

tion. As a consequence, the distribution of the voxel intensities is not Gaussian anymore

on magnitude images. The statistical description of the magnitude of two independent

Gaussian random variables that are in phase quadrature was initially developed by Rice

[Rice, 1945]. After some calculus, it can be demonstrated that any magnitude values

derived from complex arrays, as in 2-channels MRI data, follow a Rician distribution:

P (s;A, σN ) =
S

σ2N
· exp

(
−
(
S2 +A2

)
2σ2N

)
· I0
(
S ·A
σ2N

)
(2.5)

where S is the signal measured, A is the signal in the absence of noise, σN is the standard

deviation of the Gaussian noise in the real and imaginary images (assumed to be equal)

and I0 is the modified zero-th order Bessel function of the first kind. In the case of no
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signal applied (e.g., in the background of the image where there is no response signal

produced by the gradients), the intensity values of a voxel represented will correspond only

to the noise and will follow a Rayleigh distribution, which can be seen as a particular

case of the Rician distribution with A = 0, as stated by [Edelstein et al., 1984] and later

[Gudbjartsson and Patz, 1995], among others:

P (s;A, σN )|A=0 =
S

σ2N
exp

(
−S2

2σ2N

)
(2.6)

2.1.3 Modern MRI protocols. Effects on SNR and noise properties

Current acquisition and reconstruction protocols of MR images do not rely on single-

channel coils anymore. The pressure for reducing scanning time led to the development

of accelerated imaging strategies. One of the most straightforward hardware acceleration

approaches is the use of phased arrays coils or multi-channel coils [Roemer et al., 1990].

Here, different coils are placed around the object being scanned to acquire images simul-

taneously, so this can be seen as a technique that increases the SNR by averaging (and,

therefore, allowing to reduce scan time needed to achieve the same SNR). Reconstruction

techniques that are able to properly combine the images from all coils are required, such

as the Root-Sum of Squares (RSoS) approach [Larsson et al., 2003; Roemer et al.,

1990].

Given that imaging speed acquisition is limited by physical (gradient amplitude and slew-

rate) and physiological (nerve stimulation) constraints, software acceleration approaches

were proposed at the end of the 90’s to take advantage of the redundancy and symmetric

properties of the k-space. These methods aim to reconstruct the same image with less

k-space measurements, as in partial-Fourier sampling. One of the main techniques is

Parallel Imaging (PI) [Deshmane et al., 2012; Pruessmann et al., 1999]. In PI, phase-

encode direction is sampled every R lines (acceleration factor), allowing to reduce the

scanning time by R. However, when k-space is undersampled, the Nyquist criterion is

violated, and Fourier reconstructions exhibit aliasing artifacts. To address this issue,

different implementations are available, such as the Generalized Autocalibrating Partial

Parallel Acquisition (GRAPPA) [Griswold et al., 2002] which operates in k-space, or

Sensitivity Encoding (SENSE) [Pruessmann et al., 1999] that operates in image space.
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Although the approaches and their performance in different scenarios can differ, they are

based on similar principles: a weighted non-linear reconstruction of the image using the

coil spatial sensitivity profiles. Furthermore, motivated by the widespread success of data

compression in natural images, approaches such as Compressed Sensing [Lustig et al.,

2007] have been applied to MRI. Here, by taking incoherent measurements of the k-space,

the subsampling is designed to produce noise-like artifacts in both x- and y-directions.

Due to the image redundancy, and given some mathematical properties, it is possible to

recover the image from a compressed version represented by a reduced number of (sparse)

components in the k-space. These components can be obtained by projections, such as

the wavelet transform, Discrete Cosine Transform (DCT) or any other basis function set.

Recently, Machine Learning (ML), and especially Deep Learning (DL) (e.g., see [Chen

et al., 2022; Pal and Rathi, 2022; Zeng et al., 2021] for reviews), have been successfully

applied to learn the optimal k-space undersampling and improve aspects of the techniques

above, such as the generalization of reconstruction methods when using different coils

[Beauferris et al., 2021].

Figure 2.2: Main MR imaging acceleration techniques. Figures adapted from [Hamilton et al.,
2017]

In general, as all these methods provide a shorter scan time, fewer data points are acquired

and averaged, so there is also an inherent reduction in the SNR. Furthermore, given

the nature of reconstruction, modern acquisitions lead also to spatial inhomogeneities

of noise, i.e. noise variance being different at different locations. This spatial variability
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can be captured by the geometry factor (g-factor), which provides a map of noise ampli-

fication at different parts of the image. For instance, the resultant SNR with and without

acceleration in parallel imaging is:

SNRPI =
SNRnon−PI

g
√
R

(2.7)

In addition to these complexities, modern MRI protocols can severely modify the statis-

tical properties of the noise, making their definition much more complex [Aja-Fernández

et al., 2011; Dietrich et al., 2007; Sotiropoulos et al., 2013c]. Similar to the calculation

of the magnitude images, non-linear and iterative reconstruction methods no longer pre-

serve Gaussian properties of the signal; magnitude MR images obtained from accelerated

protocols generally exhibit properties that can be described by approximations to the

non-central Chi distributions family, which includes the Rician distribution as a

special case (with σ = 1 in eq.2.5 and k = 2 in eq.2.8).

P (s; k, λ) = e−(S
2+λ2)/2 Skλ

(λS)k/2
Ik/2−1(λS) (2.8)

where k specifies the degrees of freedom (i.e., the number of Si datapoints) and λ relates

to the mean of S as:

λ =

√√√√ k∑
i=1

(
µi
σNi

)2

Some properties of this distribution, such as the degrees of freedom (DOF) k, will depend

on factors such as the number of independent multi-channel coil receivers and their sensi-

tivity profiles, the reconstruction technique used to combine the signals from the different

coils (e.g., RSoS), the parallel imaging method applied (e.g., GRAPPA, SENSE), or some

of the possible filters applied in k-space (e.g., Hanning, elliptical, etc.) [Aja-Fernández

et al., 2013; Dietrich et al., 2007, 2008; Sotiropoulos et al., 2013c]. For instance, using

the RSoS to reconstruct multichannel data results in a magnitude signal that follows a

non-central Chi distribution in case of non-accelerated imaging, and to an approximate

non-central Chi distribution when accelerated [Constantinides et al., 1997; Kellman and

McVeigh, 2005]. Its degrees of freedom will depend on the number n of channels. The

greater number of channels, the more deviation from the Rician distribution. This holds

if the signals obtained from the channels are independent. In real experiments with high-

density phased-array coils, the non-central Chi distribution has effectively fewer DOF k
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and larger variance than the ones predicted for independent channels [Aja-Fernández et al.,

2011].

All the above challenges in noise characterisation apply to and are very relevant to diffusion

MRI, as the measured information resides in the signal attenuation, an inherently small and

noisy signal. In some regions, the measured dMRI signal can be as low as the background

noise level, also known as the noise-floor. In such cases, the signal can be rectified by

noise [Jones and Basser, 2004], leading subsequently to biased quantification of model

parameters and erroneous estimations. In the next sections, we review the main principles

behind dMRI acquisition and modeling that will allow us to further explore the effects of

thermal noise in dMRI quantitative analysis.

2.2 Diffusion MRI and biophysical modeling

MRI emerged from the technique of nuclear magnetic resonance (NMR), widely used

in chemistry and biochemistry for compound and structure identification. Thus, MR

images are formed by contrast mechanisms. Although contrast can be achieved by multiple

elements (Carbon, Sodium, ...), Hydrogen concentrations are much higher in human bodies

and, as it only has spin ±1/2, it is easier to operate with. Thus, diffusion MRI (dMRI)

uses the self-diffusion of the excited spins of water molecules (H2O) within the different

tissues as an imaging contrast mechanism [Bihan et al., 1986; Dietrich et al., 2010]. This

diffusion of particles is used as a proxy to describe the microstructural properties of the

imaged tissues. In the following sections, we will describe what drives the phenomena

of diffusion and how MRI can use these principles to depict structural and connectional

features of the brain.

2.2.1 Diffusion phenomena

At a macroscopic level, the diffusion process can be described by the Fick’s laws [Fick,

1855]. The first law states that diffusion can be seen as a net flux J from high to low-

concentration regions. The second law describes the spatio-temporal dynamics of this

diffusion process, also known as the Heat equation or the Diffusion equation. In a homo-

geneous region, the flux J is given by:
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J =
dϕ

dt
= −D · ∇2ϕ [

mol

m2s
] (2.9)

where ϕ is the concentration in the high particle concentration region, and D is the dif-

fusion coefficient (in m2/s), a scalar constant that depends on the medium viscosity, the

particle size and the temperature [Hobbie and Roth, 2007]. Upon Fick’s law, Einstein

extended in 1956 the definition of diffusion into the microscopic level [Einstein, 1956].

Here, the diffusion process can be approximated as thermally-driven random motion, or

Brownian motion. Having a population of molecules sufficiently large in a homogeneous

and barrier-free medium, the mean squared diffusion displacement < r2 >, averaged over

the total number of molecules in the ensemble, is directly proportional to the observation

time τ (in sec.) and the number of dimensions n:

⟨r2⟩ = 2 · n ·D · τ [mm2] (2.10)

In this way, the averaged displacement of a flux of particles is defined in statistical terms.

When both the diffusing particles and the medium in which they diffuse are of the same

type, the process is called self-diffusion (and D the self-diffusion coefficient). At human

body temperature (37 °C), the self-diffusion coefficient of water is 3 · 10−3 [mm2/s]).

The diffusion profile of a hydrogen proton (spin), at location x0, can be expressed in terms

of conditional probability density function as Ps(x|x0, τ), i.e., the probability of diffusion

from x0 to x in a time τ for a single spin s. For an ensemble of particles, the average

probability for any particle in the ensemble of having a relative diffusion displacement r

after time τ is given by [Callaghan, 1991]:

P (r, τ) = P (−r, τ) =
∫
Ps(x0 + r|x0, τ) · ρ(x0) · dx0 (2.11)

with ρ defining the spin density at a specific location. This probability is also known as

the diffusion propagator, ensemble average propagator (EAP) or diffusion scatter

pattern, and plays an essential role in dMRI. The EAP is the object of interest when

modeling dMRI signals in every voxel. It has been widely studied and it can be proved

that, in a barrier-free medium and having all the particles concentrated in the same point

at time τ = 0, the integral in eq.2.11 reduces to a multivariate Gaussian distribution
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[Basser et al., 1994]:

P (r, τ) =
1√

(4πDτ)3
· exp(−r

2

4Dτ
) (2.12)

I.e., the EAP is a 3D function, (and r is a vector, either [x,y,z] in cartesians or [r, θ, ϕ]

in spherical coordinates), where mean µ = 0 indicates that in a barrier-free medium the

total displacement is 0 because random motion in every direction cancels out each other,

and the variance σ2 ∼ 2Dτ for each direction depends on the observation time τ and the

coefficient D.

Figure 2.4: The normalized distribution of the average propagator indicates the probabil-
ity of (an ensemble of) molecules of having a relative displacement r (in m.) in a time τ (in sec) for
1-D. Depending on the tissue, the diffusion is completely free (isotropy), as in the Cerebro-Spinal
Fluid (CSF, in green), or restricted in some specific direction (anisotropy), as in the White-Matter
(WM, in blue). From this profile of diffusion or scattering, the EAP P (r, τ) can be constructed.
Image adapted from the FSL Course (https:// fsl.fmrib.ox.ac.uk/ fslcourse/ ).

2.2.2 How can we use MRI to measure diffusion?

The details of MRI physics for image acquisition and image formation are complex, so we

only give a brief summary here.

A permanent magnetic field B0 (in T) aligns all chemically equivalent protons that have

the same resonant frequency (e.g., all the protons from water) into the same orienta-

tion and makes them precess at the Larmor frequency, f0 = γH · B0 (in Hz), with

γH = 42.576 [MHz/T ] the gyromagnetic ratio of the hydrogen protons. If the system

is irradiated with energy from a transverse magnetic field B1 at the Larmor frequency,

nuclear magnetic resonance will occur. The B1 field is typically turned on for only a few

https://fsl.fmrib.ox.ac.uk/fslcourse/
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milliseconds, during which the net magnetisation M tips away from the main magnetic

field orientation and start precessing on a different plane (transverse plane). When B1

is turned off, the net magnetization continues to precess around B0 and starts to relax

to return to the equilibrium state again. Subsequently, a receiver coil capable of sensing

changes in magnetic flux within the transverse plane is employed to detect the trans-

verse component of M, denoted as Mxy. A small current is generated in this coil via the

Faraday-Lenz induction principle. To detect protons from the different anatomic parts

of the body, as they resonate at the same frequency, a spatially-selective magnetic field

gradient is introduced in the magnetic field to spatially encode the image. This process

effectively uses the resonant frequency to encode (i.e., represent) the spatial position in the

gradient direction. The pattern of B1 excitations and Mxy signal readouts is known as a

sequence. One of the most common sequences is the Spin-Echo sequence, where excitation

that brings spins to the transverse plane (90°excitation) is followed by another excitation

that flips the spins (180°excitation). That way any spin dephasing during relaxation is

flipped and an ”echo” is formed.

In dMRI, in order to measure the amount and direction of the diffusion of water molecules

within the brain, new sequences were built on top of Spin-Echo, originating what is known

as Diffusion Weighted Imaging (DWI). More specifically, Stejskal and Tanner intro-

duced additional diffusion-sensitizing gradients to the classical SE, known as the pulsed

gradient spin echo (PGSE) sequence [Stejskal and Tanner, 1965]. The PGSE ap-

plies two identical diffusion-sensitizing magnetic field gradients, one on either side of the

180°excitation (see Figure 2.5). These lead to phase differences that depend on the start-

ing and end position of a spin during the application of the first and second gradient

respectively.

Specifically, during the application of a gradient, the spins located at a position x will

experience a Larmor frequency offset ωG(x, t) = γH · x · G(t) (in Hz) along the direction

of the gradient G, being G(t) = [Gx(t), Gy(t), Gz(t)]. The accumulated phase during the

application of a diffusion-sensitising gradient will be:

ΦG(x) = −
∫ ∞
0

ωG(x, t) dt = −γH · x
∫ ∞
0

G(t) dt (2.13)
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Let

q = γH

∫ ∞
0

G(t) · dt, (2.14)

what is known as the q-vector. In the case of a constant gradient of magnitude G and

duration δ, q reduces to

q = γH ·G · δ (2.15)

and the phase φi acquired by a spin i at location x during the application of this gradient:

φi(x, t) = −q · x (2.16)

i.e., the phase accumulated will depend on the q-vector. Therefore, the dMRI measure-

ments are acquired in a frequency domain also known as the q-space [Callaghan, 1991],

where diffusivity values are based on gradient magnitude, directions and duration.

Based on these concepts, PGSE applies two identical gradients on either side of a 180°RF

pulse (see Fig.2.5). The 180°RF pulse will reverse the phase change that occurred prior to

its application. So, being x0 the position of a spin at t = 0 and x1 the position at t = ∆,

there are two possible situations after the two gradients are applied (see fig.2.5):

(a) In the case of stationary spins, x1 = x0. The two phases cancel each other and

there will be a complete rephasing: φi(x, t) = −q · (x1 − x0) = 0

(b) If spins move between the first and second gradient, x1 ̸= x0, a phase will be

acquired. In an ensemble of spins, different random displacements will lead to different

dephasing, what is known as phase dispersion. As a consequence, the measured signal

S(q, τ) will be an attenuated version of the baseline signal S0 (when no diffusion-

sensitizing gradients are applied).

In both cases, the signal attenuation can be measured E(q, τ) = S(q, τ)/S0 by integrating

over the accumulated induced phases obtained by all possible diffusion displacements in an

ensemble of spins. The q-vector provides a Fourier-conjugate for the diffusion displacement

r, i.e. E(q, τ) and the diffusion propagator P (r, τ) can be related by the Fourier Transform

F :
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Figure 2.5: Pulse Gradient Sequential Echo (PGSE) sequence - If there is no displacement
of spins, complete rephasing occurs and there is no signal loss during the readout. On the other
hand, if spins displace from location x0 to x1 between gradients, dephasing occurs, such as φi(x, t) =
−q·(x1−x0), and produces a signal loss. In the image, δ is the pulse width, ∆ is the pulse separation,
G is the gradient vector, TE is the echo time, τ1 is the time between the RF pulse (90°) and the
beginning of the first gradient, and τ2 is the time between the end of the 180°RF pulse and the
readout.

E(q, τ) = F [P (q)] =

∫
P (r, τ) · e−iqr dr (2.17)

Measurements at high ”frequencies” q will be more sensitive to subtle diffusion displace-

ments, while low q values will capture larger and coarser displacements. By using this

Fourier relationship, the diffusion propagator P can be estimated from diffusion mea-

surements in the q-space. Assuming homogeneous diffusivity and barrier-free diffusion,

eq.2.17 can be reformulated to obtain the Stejskal and Tanner equation [Stejskal and

Tanner, 1965], where the measured signal S(q, τ) is modelled as:

S(q, τ) = S0 · e−|q|
2Dτ (2.18)

where S0 is the signal when no gradients are applied. Let

b = τ · |q|2 = τ · γ2H ·G2 · δ2 (2.19)

and, therefore

S(q, τ) = S0 · e−bD (2.20)

This b-value has units of s/mm2 and determines the amount of diffusion weighting applied
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during acquisition. It can be controlled by the amplitude G, the duration of the diffusion-

sensitizing gradients δ or the effective diffusion time τ , governed by the time between the

two gradients (typically denoted by ∆).

2.2.3 From dMRI signals to probing tissue microstructure

At this point, one may wonder how will dMRI reveal brain structural features? In the

brain, cell bodies (soma) and dendrites tend to cluster together and form the gray matter

(GM); while axons cluster together to form axonal bundles (tracts or fasciculi) in the white

matter (WM). When measuring diffusion of water molecules within neuronal tissue, this

is hindered by such tissue microstructure (cell membranes, axons and myelin sheaths),

that act as barriers to motion. In regions like the ventricles, this motion can happen

in every direction with the same probability (isotropic), as there are no barriers. In the

case of GM, there are barriers, but there is no systematic hindrance towards any direc-

tion, so diffusion is also isotropic. For WM, as there is a systematic organisation, water

molecules will mainly diffuse along the tracts directions rather than perpendicular to the

tracts (anisotropic). All the above were first confirmed by Le Bihan et al. [Bihan et al.,

1986], who used the PGSE sequence to obtain for the first time a dMRI of the human

brain. As they demonstrated, the diffusion in the brain was hindered by the various tissue

compartments and when enough diffusion time was allowed, particles hit the boundaries

and the diffusionD observed was lower than the expected self-diffusion coefficient in water,

i.e. isotropic diffusion like in a free-barrier medium. During the experiments, they also

realised that they were not only measuring spin dephasing due to sensitizing-gradients,

but also other incoherent artifacts like vasculature pulsations, bulk motion, etc. will con-

tribute to signal attenuation. Hence, the estimated diffusivity was re-termed as apparent

diffusion coefficient (ADC).

From eq.2.20, it is possible to deduce some important relationships. The diffusion-weighted

signal intensity mainly depends on the diffusion gradient parameters, and the mean diffu-

sivity of D, which reflects the underlying tissue configuration. For instance, given the same

gradient excitation, each tissue diffusivity will return a different intensity signal, contribut-

ing to the image contrast of dMRI. In the CSF and the GM, as there is isotropic random

diffusion, the signal measured barely varies with the different gradient orientations applied.
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In the WM, on the other hand, there are considerable changes in the intensity signal de-

pending on the fibre orientations and the gradient applied; if gradient direction and fibre

orientation are parallel, the attenuation of the signal is maximum (see Fig.2.6). Typical av-

erage diffusivity values observed in the human brain areDWM ∼ DGM ∼ 7−8·10−4mm2/s

and DCSF = 3 · 10−3 mm2/s, reflecting the lack of microstructural barriers in the ventri-

cles compared to within the brain tissue).

Figure 2.6: B-values and diffusivity effects in the dMRI measured signal - A) dMRI at
different b-values. The higher the b-value, the higher the angular contrast but also the attenuation
of the signal (and, therefore, the lower the SNR). B) Diffusion profiles in the different brain tissues.
C) Example of a dMRI signal measured in each tissue for a b-value=3000(mm/s2). The signal is
reordered from parallel (highest attenuation) to perpendicular (lowest attenuation) gradient orien-
tations gi respect to an exemplar high-anisotropic WM voxel (e.g., located in the Cortico Spinal
Tract (CST)). As it can be observed, the variations in the WM signal are much higher than in the
GM or the CSF because of its anisotropic characteristics.

Without any gradients G applied, the S0 signal reflects a T2-weighted contrast. As D

reflects the microstructural environment, it is by adjusting the combination of b-values

and the diffusion-sensitizing gradient orientations that this T2-weighted contrast can be

manipulated. For instance, when diffusion weighting is applied (b > 0), the signal intensity

S ∝ e−bD is attenuated and, therefore, the SNR is also lower than the T2-weighted image.

For a typical b-value of b = 1000 (s/mm2) (common b-values range from 0 to 3000
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(s/mm2) in modern acquisition protocols), the signal intensity in the WM will decay by

a factor of 0.5 (i.e., e−bD ∼ 0.4965). The higher the b-value, the better angular contrast

(higher q), but also the higher the signal attenuation (i.e. the lower the signal-to-noise-

ratio (SNR)).

2.2.4 Biophysical Modeling of dMRI data

After measuring dMRI signals at several points in q-space (e.g. with a fixed b-value and

varying gradient orientations), multiple models are available to link the measured signal

S(q, τ) in each voxel with the underlying tissue microstructure (see [Alexander et al., 2019]

for a review). Here we focus on a subset of models that are used throughout this thesis:

the Diffusion Tensor model, crossing-fibre approaches and, in particular, the Ball&Sticks

model.

Diffusion Tensor Imaging (DTI)

While the simplest dMRI model assumes that a single diffusion coefficient can describe

the diffusion scatter pattern in a voxel (see eq.2.20), this limits to descriptions of only

isotropic patterns. The first model and most heavily used for capturing anisotropy in the

brain is Diffusion Tensor Imaging (DTI), proposed by [Basser et al., 1994]. It extends

the solution of the Einstein’s equation from eq.2.11 to 3D models, where a positive-definite

symmetric diffusion matrix D is used instead of a scalar coefficient:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.21)

This tensor is estimated using all measured signals Si (acquired for diffusion-sensitizing

gradient direction gi and with a constant b value) in each voxel:

Si(gi, b) = S0 · exp(−b · gTi ·D · gi) (2.22)

where S0 is the signal with no diffusion gradients applied, and D the unknown diffusion

tensor. If the logarithm is taken on both sides, eq.2.22 becomes a linear system that can be
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solved using ordinary least squares (OLS). Therefore, to estimate the unknown tensor, at

least 6 signals in different directions and one non-diffusion-weighted image (b = 0) need to

be acquired. Typical protocols acquire 32 or 64 weighted images, providing more accurate

estimations of D [Jones, 2004].

DTI models the diffusion propagator P as a Gaussian distribution for each axis (x,y,z),

where the covariance matrix is proportional to the diffusion tensor D. Making the as-

sumption that each voxel has a principal direction of diffusion in WM (i.e., an ellipsoidal

shape of P, see Fig.2.7), the orientation can be estimated by calculating the eigenvectors

e of D. The eigenvalues λ of D provide the diffusivity of the 3 orthogonal directions of

the diffusion distribution. It is assumed that the eigenvector associated with the largest

eigenvalue (i.e. the direction of fastest diffusion) corresponds to the principal fibre orien-

tation in that voxel. From the diffusion tensor, a number of scalar rotationally invariant

metrics can be constructed [Basser, 1995], such as:

• Mean Diffusivity (MD): given by the mean of the tensor’s eigenvalues, that is

equal to the average of the ADC measured in the three orthogonal directions. It re-

flects the average mobility of water molecules. Such, it creates images with relatively

continuous values within a tissue, with high MD in regions with less boundaries (e.g.

CSF) and lower MD in regions with more microstructure (e.g. GM and WM).

MD =
Dxx +Dyy +Dzz

3
=
λ1 + λ2 + λ3

3
(2.23)

• Fractional Anisotropy (FA): reflects the normalized variance of the tensor eigen-

values. It ranges between FA=0, in cases of perfect isotropy (λ1 = λ2 = λ3); and

FA=1, in cases of perfect anisotropy (λ1 ̸= 0, λ2 = λ3 = 0). Therefore, WM regions

will have high FA, while CSF and GM will have lower FA values.

FA =

√√√√√√√√
3 ·

3∑
i=1

(λi − λavg)2

2 ·
3∑
i=1

λ2i

(2.24)

DTI maps provide good contrast in distinguishing between WM (highly anisotropic,
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λ1 >> λ2, λ3) and GM and CSF (highly isotropic, λ1 ≈ λ2 ≈ λ2). However, a lack

of DTI anisotropy can also be erroneously observed in WM. In regions with complex

fibre configurations where there are more than one main fibre orientation, such as fibres

crossing, fanning, bending, etc., the DTI model fails to provide good estimates of the

fibre orientations and the anisotropy (see fig.2.7). As it is expected that, at least, 80% of

the voxels in WM contain fibre-crossings [Jeurissen et al., 2013; Schilling et al., 2017], this

leads to numerous challenges in using DTI faithfully in many WM regions [Behrens et al.,

2007]. To solve these challenges, more complex models exist for estimating multiple fibre

orientations.

Figure 2.7: Examples of common fiber configurations - First column: Examples of axon
fibers configurations. Second column: scatter pattern expected from each of the fibre configurations
in the first column. Third column: typical DTI fit. Fourth column: principal direction of the DTI.
Fifth column: fibre orientation distribution function (fODF) for each configuration. Sixth column:
directional variation of the diffusion-weighted signal for fixed diffusion weighting. For perpendicular
crossings (last row), the DTI cannot distinguish a principal direction of diffusion (oblate profile).
Image extracted from [Seunarine and Alexander, 2009]

Beyond the Diffusion Tensor

Apart from the inability of DTI to estimate complex fibre configurations, microstructural

properties obtained from the tensor model are known to lack specificity, i.e., multiple

structural sources can equally modify their parameter values but there is no mechanism to

disentangle the true source of it [Farquharson et al., 2013]. For instance, both demyelina-

tion, axonal loss and oedema can result in an increase of the radial diffusivity estimated by

DTI, but the model is not able to capture the source of it. To address these issues, more
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advanced dMRI models have been proposed during the last 20 years (see Fig.2.8). One

common classification distinguishes between model-free approaches (or phenomenolog-

ical models), and biophysical models or (mechanistic models).

Model-free methods are generally based on the decomposition of the diffusion signal as

a linear combination of different functional bases (e.g., spherical harmonics (SH)). Hence,

no particular model is assumed for the different types of tissues. One of the first quantities

used for characterising multiple fibre orientations was the diffusion ODF (dODF). Diffu-

sion Spectrum Imaging (DSI) [Wedeen et al., 2005] proposed to estimate the dODF using

the Fourier relationship between the applied diffusion weighting gradient and the q-space

measured signal. Q-ball imaging (QBI) [Tuch, 2004] reformulated DSI for a spherical

acquisition scheme, i.e. sampling different encoding directions while keeping a constant

b-value. It operated with the Funk-Radon transform (FRT) instead of the full Fourier

transform and, although it provided a lower angular resolution than DSI, the reduced

amount of acquired data needed and its faster reconstruction made it more popular than

DSI. Many other techniques have been proposed since then for an improved characteri-

zation of the diffusion propagator or the dODF, such as (3D-SHORE) [Özarslan et al.,

2013a], MAP-MRI [Özarslan et al., 2013b], spherical polar Fourier imaging [Cheng et al.,

2010] or diffusion propagator imaging [Descoteaux et al., 2009b].

On the other hand, there are mechanistic models that incorporate a higher degree

of biological description of the tissue microstructural properties. Most of these models

rely on the signal compartmentalization assumption, i.e. that the measured dMRI signal

can be described as a weighted sum of signals representing water diffusing in different

free/hindered/restricted micro-compartments. Thus, these models are also known as a

mixture or multi-compartmental models. The many methods that have been pro-

posed to date differ with respect to the number and type of compartments they consider

(e.g. intra-axonal, extra-axonal, partial volume compartments) and the detail with which

they represent each of these compartments; there is no thing such as a generalized standard

model but many proposals that focus on different tissue properties or regimes of validity.

An example is the Neurite Density Model (NDI) [Jespersen et al., 2007, 2010], which was

later simplified to make it feasible in the clinical practice, resulting in the neurite ori-
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entation dispersion and density imaging (NODDI) [Zhang et al., 2012]) model. Another

example is the Ball&Sticks model [Behrens et al., 2003], which we review in the following

section. Biophysical models can provide more specific information than DTI about tissue

structure, but they should be interpreted carefully (e.g. assumptions and constraints can

limit estimates’ specificity as well).

If the quantity of interest to estimate is the fibre orientations, the diffusion ODF provides

only blurred versions [Descoteaux et al., 2009a] of the true quantity of interest, the fibre

ODF (fODF). An approach to estimate the fODF is by representing the measured dMRI

signal as the convolution over the sphere of two functions: the fODF, f(θ, ϕ), and a single

fibre response function, R(θ, ϕ). The first represents what is the likelihood to see a fibre in

a certain orientation [θ, ϕ] in space; the latter describes the signal that would be measured

in response to a single fibre.

Si
S0

= FOD ⊛R =

∫ 2π

0

∫ π

0
f(θ, ϕ) ·R(θ, ϕ) · sin(θ)dθdϕ (2.25)

A number of deconvolution approaches, therefore, exist to estimate the fODF directly.

Some of them are closer to model-free methods, as the Constrained Spherical Deconvolu-

tion (CSD) [Tournier et al., 2004, 2007], where R(θ, ϕ) is directly estimated from the data

(avoiding any model) and uses a spherical harmonics representation for the fODF (the

model assumptions, if any, rely on deciding the specific fibre orientation from the fODF

estimated). Similarly, model-based deconvolution approaches exist based on the multi-

compartment model [Dell’Acqua et al., 2007]. In fact, this is a convenient formalization

for most of the mechanistic models, as it provides an analytical expression; then, it is the

definition and estimation of the parameters of interest f(θ, ϕ) and R(θ, ϕ) what actually

differs between them. For instance, in the NDI model the interest lies in the parameters of

R(θ, ϕ) (e.g. diffusivities of individual compartments and/or their volume fractions) while

in the CSD the aim is to estimate the fODF for tractography purposes, generally.

The Ball&Sticks model

The Ball&Sticks model [Behrens et al., 2003] can be seen as a special case of a Multi-

tensor model, a generalization of the DTI model, where the Gaussian model for P is

replaced with a mixture of N + 1 Gaussian densities. This allows the signal in each
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Figure 2.8: Sample example of the microstructural dMRI models proposed, ordered chronologically
(from top to bottom). Note that this scheme is orientative as categorization boundaries are not
strictly defined in the literature. E.g. the Ball&Sticks model can be seen both as a mechanistic
model and as a deconvolution method that inform about microstructural properties and can be used
for tractography purposes.

voxel to be represented as originated from N distinct groups of fibre populations (Partial

Volume Model), each one modelled by a separate diffusion tensor (D) driven by a Gaussian

diffusion. The tensors can either be perfectly anisotropic (the N “sticks”) or a spherical

tensor that describes a perfectly isotropic diffusion (the ”ball”). The signal Sj measured

at each voxel j is modeled by:

Sj = S0 ·

[
(1−

N∑
i=1

fi) · e−b·d +
N∑
i=1

fi · e−b·d·(g·v
T
i )

2

]
, (2.26)

where S0 is the signal with no diffusion gradients applied, b is the b-value, gi represents the

applied diffusion-sensitizing magnetic field gradient (b-vector, a unit direction vector), d

is the diffusivity (assumed to be constant in the voxel), vi is vector describing the ith fibre-

stick orientation, fi is the proportional volume fraction of the ith fibre (where
∑
fi = 1).

The model can be also seen as a version of parametric spherical deconvolution. If in eq.2.25

the fODF is assumed to be a sum of delta functions and the response kernel to be the

signal obtained from a stick compartment, then by replacing
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f(θ, ϕ) =

N∑
i=1

δ(θi, ϕi) (2.27)

and

Ri(θ, ϕ) = e−b·d·(g·v
T
i )

2
, (2.28)

as
∫
δ(t)dt = 1, it reduces to the fibre compartment (stick) sum of eq.2.26. More re-

fined models can be derived from this, like the Ball&Rackets [Sotiropoulos et al., 2012],

which models each fibre population as a continuous Bingham distribution of orientations,

accounting for within-voxel fibre dispersion.

Figure 2.9: Comparison of the fibre orientation estimates obtained by DTI (only 1 fibre direction)
and Ball&Sticks (detects crossing-fibres) in an HCP dataset image acquired at 1.5mm.

2.2.5 From fibre orientation to Streamline Tractography

The fibre orientations estimated locally within a voxel can be used to extract long-range

white matter bundles. Tractography algorithms allow to perform in-vivo virtual dis-

section of white matter bundles [Catani et al., 2002]. By running tractography over the

whole brain it is possible to build a connectome , a comprehensive map of macroscopic

connections as estimated by diffusion MRI [Sotiropoulos and Zalesky, 2019; Sporns et al.,

2005; Yeh et al., 2019].

In the simplest tractography approach, it can be assumed that there is a single predominant

orientation per voxel. The set of voxel fibre orientations defines a vector field v. Thus,

starting from a seed-point p0, tractography returns the streamlines r by finding the curves

maximally tangent to this vector field. The trajectory of these streamlines can be then



Chapter 2. Diffusion MRI and biophysical modeling 32

estimated numerically by solving the differential equation:

∂r(p)

∂p
= v(r(p)) (2.29)

where r(p) is the position along the streamline and v represents the fibre orientation.

Eq.2.29 can be solved numerically using finite differences, obtaining what is known as

the Euler approximation [Conturo et al., 1999]: r(pn+1) = r(pn) + h · v(r(pn)), being h

a small step size (relative to the trajectory). As this is continuous, it assumes there are

orientation estimates for every location r(p); however, fibre orientations are voxel-wise.

Then, interpolation methodology (e.g., trilinear interpolation, splines, nearest neighbours,

etc.) is applied to estimate values at any intermediate arbitrary location. Voxel by voxel,

this procedure is followed until some stopping criterion is reached, such as low anisotropy to

avoid propagation within CSF or GM regions (e.g., FA drops below 0.2), or high streamline

curvature to avoid unrealistic sharp turns (e.g., larger than 45°) [Jeurissen et al., 2019] or

the edges of the brain tissue. As a result, the fibre tracking algorithm returns a streamline

using only the voxel fibre orientations; the ensemble of pathways reconstructed is known

as tractogram.

Figure 2.10: A) Streamline tractography propagation. B) Comparison of tractograms obtained in
the Corpus Callosum by DTI-tractography and multi-fibre tractography. Adapted from [Jeurissen
et al., 2019]

One of the most important aspects of fibre tracking is the model used to infer the local

fibre orientation from the dMRI signal. In contrast to the DTI-tractography, by using as
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a propagator the estimated fODF from any of the deconvolution approaches seen in the

previous section, improvements have been observed in white matter regions with complex

fibre architectures (see Fig.2.10.B).

Since the introduction of this technique in the late 90’s [Mori et al., 1998], many tracking

algorithms have been proposed and nowadays different tractography approaches can be

identified. For instance, the general approach explained above is also known as determin-

istic streamline tractography. Streamlines are propagated voxel-by-voxel, indepen-

dently from each other, and considering discrete orientations. However, these approaches

are subject to errors in the local fibre orientation estimates due to imaging noise, artifacts

or model inaccuracies. An alternative is to follow a global approach, where all tracks are

reconstructed simultaneously by finding the configuration that best describes the measured

dMRI data in their entirety, according to some optimisation criteria, avoiding local error

propagation (e.g., [Christiaens et al., 2015; Jbabdi et al., 2007; Kreher et al., 2008]). An-

other alternative that will be more relevant for this thesis is probabilistic streamline

tractography, which allows for incorporating uncertainty in fibre orientation estimation

(e.g., [Behrens et al., 2007]), as we will see later.

2.3 How does noise affect dMRI model estimates?

As seen previously, thermal noise modifies the MRI signal in convoluted ways and dMRI is

no exception. In fact, as dMRI is inherently a low SNR imaging modality, noise can have

a dual effect in the model parameter estimates: it can introduce biases and increase

variance and uncertainty.

2.3.1 Noise-floor signal rectification and bias

Whereas the noise in the complex domain is zero-mean Gaussian, the non-central-Chi fam-

ily of distributions that can result into the magnitude domain by modern protocols are

asymmetric, non-negative distributions and, hence, the average noise intensity is increased

from 0 to a positive value; i.e., the minimum value or noise-floor is not 0 anymore [Edel-

stein et al., 1984]. Although the Rician distribution can be fairly well approximated by

a Gaussian distribution for SNR>3 [Gudbjartsson and Patz, 1995; Salvador et al., 2005],

the more the deviation to a non-central-Chi, the higher the noise floor. As a consequence,
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this elevated noise floor can interact with the signal when the SNR is low, subsequently

affecting the accuracy of model estimates.

As dMRI information is encoded in signal attenuations, acquisition protocols can return

signals as low as the noise floor in a) regions where the signal attenuation is sufficiently

high (e.g. CSF-filled areas or highly anisotropic regions like in the Corpus Callosum),

and/or b) when b-value/spatial resolution is pushed to high limits. In such cases, the

signal can hit the noise-floor and experience a non-linear rectification by the noise-floor.

In that case, as the signal attenuation observed is lower than it would have been in the

absence of noise, it leads to an underestimation (bias) of estimated diffusivity in regions

with such low-SNR signal.

Previous studies have shown the effects of noise-floor in the downstream quantita-

tive analysis and modeling of dMRI data, including tractography. For instance, [Jones

and Basser, 2004] reported the following biases in DTI model estimates, especially in

anisotropic regions of the WM (peanut-shaped ADC profiles): 1) MD underestimation,

2) overestimation of the FA, 3) a correlation between MD and FA (which are indepen-

dent in theory), 4) a non-linear relationship of these issues with the b-values and/or lower

SNR, and 5) non-gaussian diffusion profiles that wrongly produces multi-compartment

estimations. Some of these observations were also previously reported by [Pierpaoli and

Basser, 1996]. Dietrich et al. [Dietrich et al., 2001, 2007] made similar observations; in

directions with lower SNR, the ADC is underestimated and there exists eigenvalue re-

pulsion that leads to the overestimation of the diffusion anisotropy. [Sotiropoulos et al.,

2013c] shows also how the rectification affects the fibre orientation estimation in both

model-based and model-free approaches, especially in very anisotropic voxels (e.g., mid of

Corpus Callosum).

2.3.2 Variance and Uncertainty

An inherent impact of any type of noise is the increase of the signal variability compared

to a noise-free scenario. This leads to increased uncertainty in any parameter estimate

extracted from the signal; the higher the noise, the higher the variance in the signal and

the uncertainty around an estimated model parameter.
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Figure 2.11: Noise-floor bias - A) Noise-floor rectified signal (red) and noise-floor-free signal
(blue) for different b-values at a voxel in the midbody of the Corpus Callosum. Data points are
sorted according to the angular distance of the respective gradient direction and the principal fiber
orientation of the voxel (i.e., from parallel to perpendicular to the major fiber orientation). Adapted
from [Sotiropoulos et al., 2013c]. Different types of image reconstruction can mitigate the effects
of the noise floor, as shown in the blue line plot. B) Polar representation of the ADC profile,
adapted from [Jones and Basser, 2004]. The dotted line corresponds to the noise-free ADC profile,
whereas the solid line corresponds to the mean of the noisy estimates of ADC. The asterisks mark
the predicted points at which the noisy profile should deviate from the noise-free profile.
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A nice example of this lack of precision for DTI model parameters was presented by

[Jones, 2003]. They used a statistical approach to map the voxel-wise uncertainty around

fiber orientations and visualised them as ”cones of uncertainty”, which represent the 95%

confidence interval for the principal direction of diffusion in the DTI model. Lower SNR

is expected to make these cones wider, i.e. to increase the uncertainty. However, it was

observed that not only regions with high level of noise presented high uncertainty, but also

regions with complex fibre patterns (see Fig.2.12 B). As it will be explained in the next

chapter, the uncertainty captured by model estimates does not come only from noise, but

there are many other factors that can contribute to it, such as modeling errors or data

sampling efficiency.

Figure 2.12: Noise-related variance - Examples of how the variance in the signal induced by
noise can affect the uncertainty in model parameter estimates. A) The variation and the value of
the cones of uncertainty (95% CI) in the estimates of the first fibre orientation reduce as the SNR
increases. Results were obtained from 100 synthetic dataset simulated for each SNR value from 1
to 30 (in steps of 1). B) Cones of uncertainty estimated in real brain data. Both noise and model
complexity can increase the uncertainty in the estimates. Adapted from [Jones, 2003].

To reduce the noise-related variance of the signal and move to a higher-SNR regime, it is

not uncommon to improve SNR by averaging multiple identical acquisitions, also known as

powder average; the signal measured is assumed to be the same while the random variations

of the noise will cancel out (i.e., sum(S)/cancel(std)=higher SNR). However, this implies

the acquisition of N repeats at the expense of N -fold increase of scan time. Over the last

decade, dMRI denoising approaches have drawn considerable attention aiming to mimic

the effect of powder averaging without the cost of increased scan time. A detailed review

and a framework for evaluating their impact are provided in Chapter 4.



Chapter 3

Uncertainty Mapping and

Inference

In Chapter 2, an overview of diffusion MRI has been presented, along with the main

principles behind commonly used biophysical models that map dMRI measurements to

microstructural parameters. Furthermore, the effects of thermal noise as an important

and inherent source of uncertainty in MRI and, particularly, in dMRI where it can lead to

biases, have been summarised. Nevertheless, there are other sources of uncertainty in MRI

that can contribute to the lack of precision in dMRI model estimates, such as modeling

imperfections and oversimplifications arising from the indirect nature of the techniques

used to measure microstructural brain properties.

The first section of this chapter reviews some of these uncertainty sources. The second

section highlights why mapping this uncertainty of estimates can be important and

shows some exemplar cases of how this information can be used. Following that, an

overview of approaches used to map uncertainty in order to infer knowledge about

microstructural brain properties while providing confidence estimates is given. Limitations

of existing methods and potential for new techniques are discussed.

3.1 Uncertainty in dMRI

Every time there is an estimation process (i.e. fitting a model to some given noisy data),

there is some degree of uncertainty associated with the results. Uncertainty is generally

decomposed into two sources: aleatory uncertainty , which refers to the inherent ran-

37



Chapter 3. Uncertainty in dMRI 38

domness of natural phenomena, and epistemic uncertainty , which refers to the lack of

knowledge about the system being modelled and its complexity.

Epistemic uncertainty comprises all the imprecision introduced by approximations and

parameter/method selections at every step of the pre-processing and modeling stages,

inadequate data to evaluate the model and/or to represent the full space of parameters

[Brun et al., 2011; Hüllermeier and Waegeman, 2021]. Hence, aleatory uncertainty usu-

ally presents stationary statistical characteristics while epistemic uncertainty, which arises

from ignorance (”unknown unknowns”), may result in non-stationary residual character-

istics that, if it cannot be represented explicitly, might lead to biases or overconfidence in

inference. As opposed to uncertainty caused by randomness, uncertainty caused by igno-

rance can in principle be reduced on the basis of additional information. In other words,

epistemic uncertainty generally refers to the reducible part of the (total) uncertainty,

whereas aleatory uncertainty refers to the irreducible part. For example, a straightfor-

ward approach to reduce epistemic uncertainty is by obtaining more observations (so it

reduces the approximation uncertainty; the model and parameters uncertainty will re-

main). Nevertheless, aleatory and epistemic uncertainty should not be seen as absolute

notions. For instance, random thermal noise, which is supposed to be the main source

of irreducible aleatory uncertainty, can be actually removed by denoising approaches (see

Chapter 4).

This distinction between uncertainty sources is not easy to make in the MRI practice;

some specific artefacts are known and can be partially modelled but a characterization

and quantification of every source of uncertainty would require expensive experiment de-

signs that make it infeasible in practice. Hence, uncertainty is generally regarded and

quantified as a whole in dMRI. While most of the aleatory uncertainty can be attributed

to the random thermal noise (reviewed in the previous chapter), in the next section we

will review some of the most important sources of epistemic uncertainty in dMRI.
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3.1.1 Sources of epistemic uncertainty in dMRI

One of the main sources of epistemic uncertainty in dMRI is the modeling process. The

same observations of the same underlying microstructure can be represented in very differ-

ent ways by different models, reflecting different assumptions or different non-parameteric

strategies (in case of model-free approaches). For instance, there is no clear consensus

about which modeling strategy is best: multi-compartment model or model-free approach?

An example is shown in Fig.3.1. A number of simulated dispersing fibre patterns are de-

picted in considerably different ways by different modeling approaches in the absence of

thermal noise. Each of these estimates will reflect different levels of “confidence” in the

represented pattern compared to the observed ground-truth, even if there is no noise in-

troduced in the system. All differences arise from how the model itself and the modeling

assumptions.

This is a known problem in the literature. Modeling assumptions can be also driven by

computational limitations; models have to be complex enough to link the signal mea-

sured to the microstructural properties, but not too complex in order to be fitted in a

feasible time. Even different implementations of the same approach can be more adequate

for different scenarios (e.g., see [Canales-Rodŕıguez et al., 2019] for a comparison of spher-

ical deconvolution approaches). Microscopic studies have revealed that microstructure of

the brain is really complex and irregular, and representing it by compartments with reg-

ular and fixed morphology relies on assumptions that may be partially true or that do

not hold for every tissue or region of the brain. For instance, the response function in the

CSD model for each tissue and for each b-shell is usually assumed to be the same across

the whole brain but pathological situations can break the assumptions, [Christiaens et al.,

2020; Veraart et al., 2019]. Furthermore, the modeling process aims to map features in the

order of microns (e.g., axon diameter) while observations are in the order of millimetres,

requiring certain simplifications in the models [Novikov, 2021].

More refined models have been developed over years, e.g., incorporating partial volume

effects in model-free approaches [Jeurissen et al., 2014], considering asymmetries in the

fODF [Bastiani et al., 2017], etc. There have been surveys and reviews comparing multiple

methods that co-exist (e.g., [Canales-Rodŕıguez et al., 2019; Davis et al., 2022; Ferizi
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et al., 2014; Jelescu et al., 2020; Novikov et al., 2019]). However, results converge to the

conclusion that there is not one model that can fit all problems and that uncertainty in the

modeling parameters is an inherent property of these systems that needs to be quantified.

Figure 3.1: Uncertainty arised from the modeling process - Noise-free reconstructions of
four fanning patterns using (from left to right): The ball and rackets model, dODFs, Laplacian-
sharpened (LS) dODFs, constant solid angle (CSA) ODFs, spherical deconvolution (SD) fODFs
and the persistent angular structure (PAS). The ground truth images show collectively all the fiber
orientations present in the grid. Image extracted from [Sotiropoulos et al., 2012]

Another potential source of epistemic uncertainty is data pre-processing. A number

of processing steps are needed to remove systematic artefacts and distortions from dMRI

(e.g. MRI geometrical distortions, involuntary subject motion, physiological noise). How-

ever, these directly modify the data and it is not clear how they affect statistical noise

properties and subsequently modeling assumptions to alter precision in estimates. For

instance, spatial normalization can reduce random variance in neighbour voxels (reduces

uncertainty) but can also lead to loss of information that will be transmitted to down-

stream modeling.
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3.2 Why mapping uncertainty can be useful in dMRI?

As explained in the previous sections, there are multiple factors that can lead to reduced

confidence in dMRI model parameter estimates, from thermal noise effects to modelling

errors. Being able to detect and quantify the reliability of the results is essential to assess

and interpret them and, finally, to make informed decisions. What is more, uncertainty

quantification can be used as a feedback in order to improve the modeling and inference

process. For example, uncertainty can be used to compare models with similar accuracy,

or to indicate rare classes in classification problems and improve the generalization ability

for imbalanced classes. To show relevant applications in dMRI, the following subsections

provide two exemplar cases of how mapping the uncertainty can be employed to improve

protocol acquisitions and to obtain reliability measurements in the spatial modeling of

tracts.

3.2.1 Optimising experimental design

Surrogate errors could be developed from the uncertainty in the parameters to indicate in

what regions tissue microstructure estimates are reliable for downstream analysis. Or how

data acquisition can be optimised to minimise uncertainty for the parameters of a certain

model. [Alexander, 2008] proposed a generic framework towards this direction, finding the

acquisition settings that minimize variance in model parameters. They used the Fisher

information matrix and the Cramer-Rao Lower Boundary (CRLB) as error metrics for

experiment design. The CRLB provides a lower bound on the variance for the unbiased

estimators of a fitted model parameter that often correlates closely with the true variance.

Applying a Markov-Chain Monte Carlo (MCMC) inference approach to simulated data

(see Chapter 5 for a more detailed description of the MCMC), they observed under which

acquisition and sampling protocols the model behaved with greatest sensitivity, and when

the posterior distribution of the parameters were broader (i.e., higher uncertainty).

Similar in spirit, [Jones et al., 1999] showed in previous work that a uniform coverage

q-space sampling scheme minimises variance and also avoids orientational dependence in

DTI parameters (i.e., single-shell data). Here, the standard deviation in the estimate of

the trace of the diffusion tensor D served as an indicator of the precision of its estima-

tion. Combining concepts from these works, [Caruyer et al., 2013] extended the method
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to design multi-shell acquisitions (i.e. multiple spheres) with uniform angular coverage.

All in all, by using uncertainty quantification, these approaches not only achieved a lower

variance in the model estimates (or bounded in what conditions the model is reliable) but

they also found an optimal combination of acquisition parameters that provided the same

results with a lower number of measurements (shorter acquisitions).

3.2.2 Spatial propagation of uncertainty - Probabilistic tractography

Another very common application that inherently uses uncertainty is probabilistic trac-

tography. Uncertainty of voxel-wise model parameters is used in the reconstruction of

global pathways in white matter and propagated spatially, in order to construct a spatial

distribution.

Streamline tractography presented in section 2.2.5 does not provide any intrinsic way to as-

sign a confidence measure to a reconstructed path and provides a deterministic or ”point”

estimate per seed location. However, streamline propagation is very prone to errors caused

by experimental noise [Lazar and Alexander, 2003] and potentially by the method used

for orientation estimation [De Luca et al., 2021; Jelescu et al., 2015; Schilling et al., 2018].

Therefore some uncertainty measure is needed to asses how reproducible a particular

estimate is given the observations. Ideally, such confidence measure could be obtained by

repeating an experiment N times, reconstruct the streamline for each of those experiments

and subsequently check the overlap across repeats, as shown in [Jones, 2003]. As this is

not feasible in the practice, probabilistic tractography was introduced simultaneously

by [Behrens et al., 2003] and [Parker et al., 2003] to tackle some of these issues in an in-

direct way. Probabilistic tractography aims to estimate a spatial distribution of pathways

arising from a seed, by utilising uncertainty in voxel-wise fibre orientation estimates; thus,

providing a probability distribution on the most probable location of the underlying fibre

bundle given the data. To achieve that, in each propagation step of the streamline, a ran-

dom perturbation is introduced (given the uncertainty in the current fibre orientation).

Once NR streamlines have been generated between a starting seed S and an arbitrary

point B, a probability index of connectivity can be obtained. The different probabilistic

approaches mainly differ in the way the orientation uncertainty is assessed.
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As seen in the previous chapter, (probabilistic) tractography is built upon fiber orienta-

tion estimates, which can be expressed in form of continuous density functions, the fODF.

This is a biophysical property, i.e. the proportion of fibers leaving region A along a given

orientation. However, the fODF cannot be measured directly. Instead, our measure-

ments are a function of the dODF. To derive these fiber orientation profiles from it, dMRI

models rely on the assumption that diffusion is given along the fibre orientations, without

water exchange. If this were true, then the dODF should be identical to the fODF. In

reality, there is still significant diffusion along other orientations, not just along the main

direction of diffusion, even perpendicular to the axons orientations. As a result, the dODF

profile is generally broader than the fODF and estimating the exact fibre orientation from

it implies some degree of uncertainty.

This modeling uncertainty, as well as uncertainty due to noise on the fODF shape, are

reflected in the voxel-wise uncertainty ODF (uODF). The uODF does not represent a

biophysical property of the imaged system, as the dODF or the fODF, but a statement

about our confidence in our measurements. Probabilistic tractography uses these local

uODFs to estimate streamlines uncertainty at a more global scale. In the next sections, we

will see how such local uncertainty can be mapped during the model estimation/inference

process.

Figure 3.2: Comparison between deterministic and probabilistic tractography. Image extracted
from the FSL Course.
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3.3 Model Estimation and Uncertainty Mapping Techniques

A forward model comprises of parameters and assumptions that link these parameters

to some quantities of interest (typically unobserved directly). A model also represents a

measurement process as a function of these parameters, such that for some fixed param-

eter values, a model prediction/simulation of what the measurements would be can be

obtained. Given a set of measurements and a model, the inverse process can be used. A

search can be performed of what values of the parameters in the model are most likely to

have produced such observations. This process is also known as inference, the inverse

problem or model inversion. Fitting experimental data to an analytical model can be

seen as an optimization problem where, e.g. in the simplest case the ω parameter val-

ues that minimize a given objective function are found e.g., min{Smeasured − Smodel(ω)}),

Smeasured being the observed data and Smodel(ω) the model signal prediction.

As part of the inference, uncertainty around the exact values of ω can be mapped. In

the following subsections we will review the main approaches that have been applied in

dMRI to solve the inverse problem while providing some uncertainty assessment of the

parameter estimates. More specifically, we will review the application of least-squares

fitting, Bootstrapping and Bayesian Inference into dMRI modeling . We will also

briefly overview the idea of Machine Learning (ML) to learn the inverse mapping

and provide a faster and more flexible alternative approach to traditional optimisation

techniques.

3.3.1 Least Squares Estimation (LSE)

A common approach to estimate model parameters is by least squares fitting. This at-

tempts to find the set of model parameter values that minimise the sum of squared

residuals, between the observations Simeasured and the model predictions Simodel(ω), i.e.∑
i(S

i
measured−Simodel(ω))

2, across i observations. Depending on the model, this function

can be a linear or non-linear function of the parameters ω. Some of the most popular

approaches and their performance in dMRI models are described and compared elsewhere

(e.g., see [Harms et al., 2017; Veraart et al., 2013]).

For linear models and assuming zero-mean Gaussian noise, LSE fitting reduces to a linear
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matrix inversion. For non-linear models, there are generally two main strategies to solve

least squares fitting problems: gradient-free and gradient-based algorithms. Depending

on the algorithm chosen, the accuracy and quality of the solution will vary [Harms et al.,

2017]. Also, due to the existence of multiple local minima, noise can make different set

of parameter values equally probable to explain the measured dMRI signal, leading to

model degeneracy problems. For instance, at very low SNR, e.g., due to the use of high

b-values, all least squares estimators are inherently biased [Veraart et al., 2013]. Given

certain statistical assumptions (i.e. of Gaussian noise), LSE approaches can provide error

measures and confidence interval of the estimates analytically.

3.3.2 Bootstrapping

LSE approaches provide a point-estimate for each model parameter, i.e. a single value

and some error boundaries. An alternative is to use approaches that provide distributions

of values for each model parameter. High uncertainty will then be reflected in a wide dis-

tribution and low uncertainty will result to a narrow distribution for a given parameter.

Bootstrapping is amongst the simplest techniques in this group of methods.

Bootstrapping is a statistical approach to provide confidence assessment about the pa-

rameter estimates calculated on a sample of observations S. It mimics the scenario of

running a measurement multiple times and looking into overlap of results. To do that,

bootstrapping methods iteratively create subsets B of the data S, by randomly drawing

samples from S and allowing duplicates (sampling with replacement).

Its application to dMRI was introduced by [Pajevic and Basser, 2003] to estimate the

uncertainty of DTI model parameters. In their approach, the superset S was formed by

a number of n repeated scans of G gradient orientations each. Then, for i = 1, 2, ..G, the

volume i was randomly picked from one of the n repeats of the superset. That formed

a single bootstrap sample. The process is repeated R times (with R < nG) to get R

new bootstrap datasets. The DTI model is then fit for each of the R bootstrap samples,

providing R estimates for each model parameter, i.e., a distribution of values for each of

them. In [Jones and Pierpaoli, 2005], n = 9 repeated acquisition of G = 64 dMRI volumes

were acquired. Then, using that superset, R = 1000 bootstrapped new datasets were
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constructed. This information can be later used in tractography. For instance, [Jones and

Pierpaoli, 2005; Lazar and Alexander, 2004] used the distributions of parameters to prop-

agate streamlines from a given seed, giving to the deterministic tractography algorithm

applied a new probabilistic fashion.

Classical bootstrapping approaches are non-parametric (i.e. have no explicit assumptions

on noise structure), but require multiple repetitions. [O’Gorman and Jones, 2006] used

Monte Carlo simulations to determine that, at least, n = 4 dMRI datasets were needed in

order to obtain accurate and unbiased uncertainty estimates. This expensive and timing

limitation led to investigate alternative approaches of bootstrapping, like the model-

residual bootstrap [Berman et al., 2008; Haroon et al., 2009]. Here, to construct a new

bootstrap sample we just need to 1) fit the model to the acquired data, 2) calculate the

normalised residuals eri for all the predicted values, 3) permute the residuals eri randomly

with the residuals er′i from other subsets R, and 4) add them back to the model predicted

values: ŷi = yri − eri + er′i . Then, repeat this process R times to get R bootstrapped

samples. The key assumption here is that, even in heteroskedastic models with unknown

distribution of noise, the normalised residuals would return identical distributions (same

noise variance), so permutations can be done freely among them [Davison and Hinkley,

1997]. A special case of residual bootstrap is the wild bootstrapping, which also can

operate in non-i.i.d. models with heteroskedasticity [Liu, 1988]. Here, instead of just per-

muting the residuals, it also multiplies the permuted residuals by a random variable wi,

such as ŷi = yri − eri +wi · er′i . For instance, wi ∼ −1, 1, which simply randomly flips the

sign half of the time, forcing the residual distribution to be symmetric, has been applied

to DTI model estimates [Whitcher et al., 2008] and in tractography [Jones, 2008]. Results

in both residual-based approaches have shown comparable results to the non-parametric

bootstrapping, while using a fraction of the data (e.g., in [Jones, 2008] only 1/9 of the

data of [Jones and Pierpaoli, 2005] is used).

However, further assessments of bootstrapping approaches have revealed some biases when

used in dMRI data [Chung et al., 2006]. Boostrapping can be dependent on factors such

as the sample size of the dataset as well as the complexity of the underlying fibre patterns

modeled. E.g., in non-anisotropic regions we can find larger dispersion and a downward
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bias for the estimated orientations. Another limitation in modern acquisitions is the non-

interchangeability of residuals from different shells, as this can produce biases hard to

correct [Sjölund et al., 2018]. Nevertheless, residual bootstrapping is still commonly used

to estimate confidence intervals and error quantification for dMRI model estimates (e.g.,

[Bernstein et al., 2019; Gu et al., 2019; Ning et al., 2021]).

3.3.3 Bayesian inference

A powerful tool to solve inverse problems is Bayesian inference. Bayesian inference can

be seen as the main representative of probabilistic methods. As with bootstrapping, rather

than a point-wise estimate for each model parameter, a distribution of parameter values

is obtained. Following Bayes theorem, this distribution reflects the posterior probability

density of the model parameters given the data. These posterior densities intrinsically

provide a quantification of the estimate uncertainty.

Given a model with parameters ω and an assumed (additive) noise distribution, one can

define the likelihood function π(Y |ω), the conditional probability of observations Y given

the model parameters ω . Using Bayes theorem, the posterior probability π(ω|Y ) of

particular values of the model parameters given the data is:

π(ω|Y ) =
π(ω) · π(Y |ω)∫

ω π(ω) · π(Y |ω) · dω
(3.1)

The posterior is a conditional distribution from where we want to estimate the values of

the parameters of interest ω, given some data Y . This posterior can be seen as an equiv-

alent to uODFs when the parameters of interest are defined in spherical space (such as a

fiber orientations). Bayes theorem provides a simple rule to relate this conditional distri-

bution from the likelihood function of the data, π(Y |ω) (i.e., the model). Furthermore,

Bayesian inference is considered a subjective method because it allows us to introduce some

prior knowledge about the parameters, π(ω), to help us calculate the posterior distribution.

Once the signal, noise models and prior assumptions have been chosen, there are a number

of strategies to solve Bayes equation [MacKay et al., 2003], such as analytical solutions,

mathematical optimizations, heuristic approximations, and simulation approaches, among
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others. For instance, [Sotiropoulos et al., 2010] proposed an analytical solution to esti-

mate the orientational uncertainty of the dODF and use it to get samples from it, as

probabilistic tractography does not require a complete representation of the uODF but

only samples from it. However, analytical solutions only work for certain noise models

and are in general uncommon in real world problems. In the general case, the calcula-

tion of the denominator in Equation 3.1, which is known as the normalising constant

or evidence (the actual probability of the data given the model chosen), is most of the

times not possible to solve analytically (high-dimensional integral with dimensions as the

number of model parameters), and approximation methods are needed for these cases 1.

Most of the Bayesian frameworks applied for dMRI applications have been based on

approximations, simulations and sampling approaches. The most common approach is

Markov Chain Monte Carlo (MCMC) [Gilks et al., 1995], used e.g. in [Behrens

et al., 2003, 2007; Kaden and Kruggel, 2012; Sotiropoulos et al., 2013a]). MCMC is an

iterative sampling approach that targets the posterior up to a proportionality constant, as

it avoids the computation of the normalising constant. It provides in theory guaranteed

convergence to the true sample distribution, although in practice it is challenging to obtain

metrics that inform about how close we are to that true distribution (more details about

the MCMC method in Chapter 5).

Popular alternatives to MCMC and sampling methods areVariational Bayes (VB) [Blei

et al., 2017] and Approximate Bayesian Computation (ABC) [Sisson et al., 2018].

In VB, rather than iterative sampling as in MCMC, a global approximation to the poste-

rior is done under the constraints of an analytical functional form (typically using Normal

distributions) [Chappell et al., 2009; Kaden et al., 2008]. Although it is considerably faster

than MCMC, the posterior distributions provided are less specific. In ABC, the likelihood

function is approximated by simulations (synthetic likelihood). In this way, it bypasses

the explicit evaluation of the likelihood, which is often expensive or not available. ABC

suffers from the curse of dimensionality (with more than a few parameters), but the ideas

1Often approximation methods refer to methods which are not accessing the posterior distribution but
instead an approximation of it, e.g. Variational Bayes. In this thesis, the term approximation methods will
be used elsewhere with a more general perspective to refer also to methods that, rather than providing
an analytic expression of the posterior density, produce samples from it and do so with the need of
knowing/calculating the evidence (e.g., MCMC), or they learn a surrogate model that aims to produce
samples from the (approximated) exact posterior (e.g. SBI).
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behind it will pave the basis for the Simulation-based inference (SBI) [Cranmer et al.,

2020] approach introduced in this thesis, a promising strategy of combining simulations,

density estimators and neural networks to solve the inverse problem by Bayesian principles

(more details about the ABC and SBI in 6).

In summary, Bayesian approaches offer a natural framework where prior knowledge can

be introduced to constrain the problem into plausible solutions. Furthermore, Bayesian

modeling has shown to be especially useful when data is limited, as it helps avoiding

overfitting and can model uncertainty on parameters estimates. However, and although

great speed-ups have been achieved (e.g., adapting the methods to GPUs [Hernandez-

Fernandez et al., 2019], Bayesian techniques can be very computationally demanding. In

that regards, Machine Learning approaches open a promising route to learn the inverse

problem and avoid the repetition of iterative likelihood calculations, like in MCMC.

3.3.4 Machine Learning for inference in dMRI

Machine Learning has provided many effective tools to capture hidden patterns in a data-

driven manner and to solve highly non-linear optimisation problems in complex scenarios

where no model is available, relying on few assumptions. Indeed, the number of papers

published in dMRI using ML is already comparable to the number of papers based on

mathematical modelling, and since 2010 their numbers increased much faster [Ravi et al.,

2019]. The range of applications in dMRI is diverse: from image reconstruction (see

[Knoll et al., 2020] for a short review) and pre-processing (e.g., [Muckley et al., 2021]), to

classification between healthy subjects and different pathologies [Schnyer et al., 2017] or

tractography (see [Poulin et al., 2019] for a review).

Of particular interest for this thesis is to learn how to directly map the (pre-processed)

diffusion signal measured to the diffusion parameters of interest. Because ML approaches

are mainly model-free, ML methods have the potential to reduce sources of error by avoid-

ing to rely on sub-optimal mathematical models of the diffusion signal (e.g., see sec 3.1.1)

and increase efficiency by learning how to incorporate both local and non-local information

during the learning process. Yet, its application to solve the inverse problem in biophysical

MRI models has been explored in very few studies so far. One of the first of these stud-
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ies, done by [Nedjati-Gilani et al., 2017], trained a Random Forest (RF) regressor to

predict tissue microstructure from the Karger model using rotationally invariant features

computed from diffusion signals. Similar approaches are presented in [Fick et al., 2017] to

map axon diameter with an RF trained using histological data, in [Alexander et al., 2017]

to map diffusion tensor to microstructure parameters from NODDI and SMT models, and

more recently in [Hill et al., 2021] for an axonal permeability model applied to mouse

and validated with histology. However, despite being powerful for fast biophysical model

fitting, RF regressors have shown a limitation in their poor generalizability outside the

training set.

Artificial Neural Networks (ANN) have been also explored to estimate scalar diffu-

sion parameters. This line of work was initiated by [Golkov et al., 2016], where authors

proposed a method called q-space deep learning (q-DL) that allows mapping parameters,

such as diffusion kurtosis or orientation dispersion, directly from the q-space signals (i.e.,

without explicit diffusion models). Q-DL have been refined by Ye et al. in recent works

by introducing the sparsity of diffusion signals into the deep network design and by taking

patches (instead of single voxels) to further incorporate the information in the spatial

domain (MEDN+, [Ye, 2017]), and by allowing adaptive incorporation of historical in-

formation with modified long short-term memory (LSTM) units (MESC-Net, [Ye et al.,

2019]). In addition, unlike in previous works where the estimation is designed specifically

for a model, the network in [Ye et al., 2019] is not limited to a particular signal model. A

parallel line of of research has focused on the estimation of the fODF and the number of

compartment models directly from the signal, without imposing any mathematical model

or physical assumption [Lin et al., 2019; Nath et al., 2019]. For instance, in [Koppers and

Merhof, 2016; Koppers et al., 2017] CNNs are exploited to reconstruct fibre orientations.

Here, instead of solving the inverse problem, the network is trained to solve a classification

problem in each voxel in order to obtain the correct orientation. [Karimi et al., 2021] is one

of the most recently proposed methods that outperformed both traditional and previous

ML approaches.

Despite their potential, the flexibility shown by these ML models may lead as well to the

need of tuning a large number of hyper-parameters (i.e. parameters not of biophysical
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interest, but necessary to make the framework work) and to the risks that sub-optimal

choices may affect the results. For instance, the authors in [Gyori et al., 2022] tested the

bias and variance in the estimates from a traditional non-linear optimization (via non-

linear least squares) and common implementations of a RF and an ANN. Particularly,

they assessed the effect of the training distributions in these supervised ML approaches

and demonstrated that: 1) parameter estimates obtained from traditional model fitting

are overall more accurate and less-biased than the estimates obtained from the ML mod-

els, 2) the more restricted the distribution of training samples, the higher the bias, i.e.,

better to train with uniform distributions of plausible parameter value, and 3) at low

SNR, traditional fitting suffers from high uncertainty, while ML models can suffer from

”overconfidence”.

Overall, these works have shown the possibility to obtain similar estimates using a fraction

of the measurements typically needed in traditional fitting approaches, what makes it in-

teresting for clinical applications [Aliotta et al., 2019; Gibbons et al., 2019; Golkov et al.,

2016; Karimi et al., 2021; Lin et al., 2019]. Although promising, more work is needed

to address challenges such as biases and uncertainty mapping. In this thesis we present

contributions towards this direction, by proposing and testing an ANN-based framework

for Bayesian inference in Chapter 6.

3.3.5 Summary

In this chapter, different approaches to map uncertainty have been reviewed but how do

they compare with each other?

The analytical approach is a deterministic process that provides a point-estimate for

each parameter and relies on assumptions about the model and the residuals that are

rarely met (e.g., normal distribution of the residuals, non-co-linearity between parame-

ters, etc.). Violation of these assumptions can lead to biases or inaccuracies. For instance,

it has been observed that the analytical method generally underestimates the uncertainties

of statistics of interest compared to bootstrapping [Wu et al., 2018].
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Bootstrapping is a resampling method that provides a distribution of the statistics of

interest or model parameters. This sampling distribution is then used to map uncertainty

and confidence intervals. Classical bootstrapping (but not model-based bootstrapping)

does not involve any assumptions about the data (e.g., prior distributions on model pa-

rameters or noise, etc.), so it is less restricted than analytical approaches. Furthermore,

it has showed to be sensitive to sources of variability that could not be included paramet-

rically in the models, like physiological noise or motion [Jones and Pierpaoli, 2005]. On

the other hand, residual-based bootstrapping are an efficient alternative that have shown

similar results in neuroimaging model-fitting problems.

Bayesian approaches have been widely adopted in the neuroimaging community because

their flexibility in modeling and noise assumptions (any noise model will work without

any change in the framework), and incorporation of prior knowledge. They not only

provide uncertainty quantification, but a principled framework to solve the inverse prob-

lem where the probabilities can be directly interpreted as degree of confidence (e.g., the

more “peaked” this distribution, the less uncertainty), while frequentist approaches de-

fine a relative frequency (that can have multiple influence factors). This can be actually

reformulated as the debate between two types of uncertainty: Epistemic uncertainty is

the subjective Bayesian interpretation, the kind of uncertainty that can be reduced by

learning. Aleatory uncertainty is the kind of uncertainty you accept and work around in

frequentist approaches. This perspective highlights the interaction between prior knowl-

edge and data. The possible outcomes, and both aleatory and epistemic uncertainty, not

only depend on the data but also on the way in which prior knowledge (the model and

hypothesis space) and data interact with each other. In that regards, Bayesian frameworks

are advantageous as they allow for the introduction of inductive biases (prior knowledge)

that can help to reduce the uncertainty. E.g., the more restrictive the model assumptions

are, the smaller the uncertainty will be, and the less data is needed. Nevertheless, most of

the Bayesian algorithms that can be applied to real-world problems are highly iterative and

demand elevated computational resources. Therefore, bootstrapping still provides a much

faster and simpler alternative for uncertainty quantification. To address this challenge, in

Chapter 5 we propose an optimal design to improve the computational performance of the

classical Metropolis-Hastings MCMC.
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In Machine Learning, since these techniques are associational and applied to obser-

vational data, they are prone to picking up spurious influences from data, making their

predictions potentially unreliable. Furthermore, except [Ye et al., 2020], all the ML meth-

ods presented in Sec.3.3.4 return point-estimate predictions. [Tanno et al., 2021] proposed

a method to characterise different sources of uncertainty in DL methods in the context of

medical image enhancement applications. There, the predictive uncertainty in modeling

can be described as the combination of the complexity of the task, referred as intrinsic

uncertainty, and the suitability of the model used to describe the data, or model uncer-

tainty (which at the same time can arise from the parameter uncertainty and the model

bias). Although the framework proposed in [Tanno et al., 2021] is not directly applied for

mapping biophysical dMRI models, it shows how the uncertainty estimates can improve

predictions (e.g., by regularising decision based on uncertainty info) and the experimen-

tal design (e.g. if the parameter uncertainty is high but intrinsic uncertainty is low, this

indicates that collecting more training data would be beneficial).

Of particular interest for this thesis is the re-emergence of Simulation-based Inference

(SBI) in recent years. The introduction of ML methods into these frameworks has helped

to overcome computational limitations of Bayesian Inference [Cranmer et al., 2020]. Here,

simulations can be used to train an unsupervised approach (e.g. NNs) that learns an

approximation to the exact posterior distribution without the necessity of iterative model

inversion (inference amortisation). This offers a promising method where high-dimensional

problems can be addressed while obtaining uncertainty quantification of the estimates. In

Chapter 6, we build upon these ideas and present a novel framework to learn the map-

ping between model forward predictions and the posterior probability of model parameters

given the data, and test this approach against classical MCMC in the context of dMRI

biophysical modeling. To the best of our knowledge, only [Jallais et al., 2022] have recently

explored this approach to solve microstructural dMRI models and results obtained in this

thesis are complementary to theirs.



Chapter 4

EDDEN: A framework for

Evaluating Diffusion MRI

DENoising approaches

4.1 Introduction

In the previous chapters, we reviewed different sources of uncertainty and their potential

implications in the quantitative modelling of dMRI signals. One of the main sources of

uncertainty in dMRI is originated from thermal noise, which is unavoidable in MRI and

has a dual effect: 1) increases the variance of the signal producing a reduced precision, and

2) can modify signal properties and lead to biases and lack of accuracy in imaging-derived

measures. To overcome this challenge, a number of approaches have been developed to

reduce the effects of thermal noise (even being considered as a source of aleatory

uncertainty). This is further motivated by current research directions of the field, like

the need for pushing the boundaries in in-vivo (e.g. the HCP [Moeller et al., 2021b]) and

post-mortem acquisitions [Roebroeck et al., 2019b]; the convenience for reducing scanning

times, of particular interest in the clinical daily routine; or the interest in higher b-shells

for higher angular contrasts.

A field of particular interest in this context is dMRI denoising. Denoising can be defined

as any signal processing method that extracts signal from a mixture of signal and noise,

thus preserving the useful information and, consequently, increasing the SNR. As shown

54
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before (Fig.2.3), there are multiple steps where thermal noise is introduced or propagated

and, therefore, where improvements can be introduced to avoid or reduce it. On the other

hand, the growing landscape of DL-based algorithms used to denoise natural images is

starting to be transferred into medical images as well [Lundervold and Lundervold, 2019;

Tamada, 2020; Tian et al., 2020]. All the above combined has led to a considerable rise

in the number of works published about denoising methods in dMRI in recent years (see

Fig.4.1).

Figure 4.1: Growth in the number of publications per year in Pubmed containing ”Denoising
Diffusion MRI” in the title.

However, despite progress and interest in this area, gaps in our knowledge still

exist. The modifications introduced in the dMRI measurements by the denoising process

are still not fully characterised in an objective manner. As a consequence, open questions

remain such as how should one denoise dMRI data? Are there any undesired effects caused

by denoising? Are the theoretical properties of the dMRI signal preserved? What dMRI

denoising method to use and why?. Even the fundamental aspect of whether “to denoise

or not” is still debatable, as arguably signal modelling already performs some type of

denoising as noise is an implicit part of any model.

There have been efforts in developing frameworks to evaluate denoising and answer similar

questions on multiple fields, such as for natural images [Alkinani and El-Sakka, 2017; Fan

et al., 2019; Goyal et al., 2020; Ilesanmi and Ilesanmi, 2021], medical images [Mohd Sagheer

and George, 2020], and even anatomical MRI [Annavarapu and Borra, 2020; Heo et al.,

2020; Mishro et al., 2021] and functional MRI [Huang et al., 2021; Kay, 2022]. However,
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despite the explosive growth of denoising approaches for dMRI, there are no frameworks

specific to dMRI denoising. Two factors seem to be limiting progress in that direction:

the lack of datasets and the lack of objective and comprehensive evaluation

criteria.

Simulating brain data, especially by using the Brainweb framework [Collins et al., 1998],

has been a standard approach for evaluating denoising approaches in MRI. However, even

having as many parameters to fine-tune as this framework have, the simulation approaches

available nowadays cannot reproduce real brain complexity, inhomogeneities and acqui-

sition interactions, especially for very high-resolution regimes. Thus, results obtained in

simulated datasets cannot be fully extrapolated to real cases; they need further validation

and assessment of their generalization in real acquired data. Furthermore, the models

available in the BrainWeb framework provide only structural MRI but not diffusion MRI,

so the impact of denoising in the dMRI signal cannot be directly assessed. Therefore, both

a dMRI simulation framework and a bespoke real brain data/clinical set are still needed

to evaluate denoising.

For the evaluation of denoising, many of the studies reviewed validated results in MRI

denoising using some type of qualitative assessment (e.g., visual inspection of the image

and the residuals). While this may be sufficient for natural images, where the visualization

of more pleasing or visually cleaner images can be the ultimate goal, it can be problematic

for medical imaging, especially for modalities where modelling and post-processing are

needed to extract information of interest, rather than visual inspection. Quantifiable Im-

age Quality Assessment (IQA) can be employed to provide metrics about both denoising

effectiveness (e.g., SNR, PSNR, CNR, MSE, Coefficient of Variation, etc.) and structural

details preservation (e.g., SSIM [Chow and Paramesran, 2016; Wang et al., 2004]). Most

of these IQA’s are generally designed from classical image processing and most of them

require the availability of the true noise-free image, which is not available in real brain

dMRI. Still, they are inherited and extensively used when validating and comparing MRI

denoising methods, especially in anatomical images and tasks such as segmentation or

cortical surface extraction. However, the interest in dMRI does not only rely on image

features such as edges and other sharp structures, typical aspects evaluated by most of
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these IQA’s, but more importantly in the information contained in the different points of

the q-space that will indirectly inform about the microstructural properties of the brain.

Finally, as we have overviewed in the previous chapters, noise can cause challenges with

precision/uncertainty, but also introduce challenges with bias/accuracy, due to the noise-

floor and the rectification effects on the dMRI signal. However, existing evaluation criteria

have mostly focused on the reduction of variance after denoising, leaving unassessed the

dual effect of noise on dMRI.

For all these reasons, we have developed and presented a novel framework for evaluat-

ing Diffusion MRI DENoising approaches (EDDEN). EDDEN comprises a set of

considerations and criteria for performance evaluation, as well as bespoke datasets aimed

to sample different SNR regimes and complementary dMRI signal properties. The new

framework is aimed to address some of the limitations commented on above by providing

more insights into the nature of denoising and how its effects can be formally characterised

for the particular case of diffusion MRI. The framework is applied in a representative set

of existing denoising approaches, highlighting aspects of their behaviour, formally charac-

terising their performance, and comparing alternatives.

The following section overviews theory on current post-reconstruction denoising methods

for (d)MRI thermal noise 1, focusing on the ones that will be used in this chapter. Section

4.3 provides the definition of what a good denoising algorithm should provide and, accord-

ing to this, a detailed description of the criteria proposed in EDDEN, with methodology

on how they are tested. Results follow in section 4.4, where we compare some of the most

common denoising strategies using this framework. The chapter ends with a discussion

about the results obtained, contributions and limitations, and the potential future steps

of this line of research in section 4.5.

4.2 Theory

Denoising approaches can be broadly grouped based on whether they are applied dur-

ing acquisition or early reconstruction (k-space) versus those applied at a post-

1Denoising methods addressed in this thesis refer to thermal-noise-related components of the dMRI
measured signal, i.e. we do not address other sources of artefacts or variability such as motion, susceptibility
distortions and Eddy currents, physiological noise, etc.
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reconstruction stage (imaging space). The former include approaches such as modi-

fied acquisition sequence and reconstruction protocols and are particularly useful to avoid

or reduce (rather than removing) the magnitude of the noise or other types of artefacts,

such as eddy currents or motion. Deep Learning based image reconstruction methods

have gained mode interest in recent years within this category (e.g., see [Pal and Rathi,

2022; Zeng et al., 2021] for recent reviews). These are designed for learning an optimal

subsampling of the k-space that allows for the accelerated acquisition and considerable

reduction of noise introduced in the images.

On the other hand, post-reconstruction denoising methods aim to remove undesired

noise contained in the reconstructed image. Early work focused on applying filters on

model estimates, but results showed that these produce more distorted images than oper-

ating on the dMRI signals directly [Basu et al., 2006; Parker et al., 2000; Zhang et al., 2017].

Initial proposals in dMRI, such as fundamental filters, were directly inherited and adapted

from traditional digital signal processing. Nowadays, more domain-specific alternatives try

to exploit different known properties of MR images, such as information sparseness and

randomness of noise. Another important property is the spatial self-similarity, i.e. images

display similarity in neighbour voxels (local similarity), but also in non-adjacent regions

(non-local similarity). This redundancy of information is even more evident in dMRI

as each acquisition is composed by dozens or even hundreds of volumes representing the

same brain (with a different diffusion-sensitising gradient). Therefore, the majority of

algorithms try to exploit the spatial self-similarity by performing some type of neighbour-

hood filtering or performing denoising in spatial patches (see Fig.4.2) rather than

voxel-wise [Alkinani and El-Sakka, 2017].

Fig.4.3 presents the range of post-reconstruction denoising methods in diffusion MRI,

based on the image statistical properties exploited by each method. Most of the techniques

can be further expanded to adaptive, local/non-local, capability/variations to address

different types of noise, or even to be combined with methods that exploit another signal

property, as some of the assumptions are not mutually exclusive. We offer here a short

overview of a representative subset of methods, focusing more on approaches that will be

used in this chapter.
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Figure 4.2: Spatial patch-based denoising - In order to exploit the self-similarity property
of MRI images, most of denoising methods in dMRI apply the denoising algorithm to local spatial
patches. The dMRI image can be iteratively filtered by unfolding 3D patches from the noisy data into
a matrix C, denominated as the Casorati matrix by some methods. After the denoising algorithm
has operated and filtered this matrix, it can be reshaped again into 3D to reconstruct the denoised
image.

Figure 4.3: Post-reconstruction denoising methods - Classification of denoising approaches
adapted and extended from [Mishro et al., 2021] to the particular case of dMRI.
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4.2.1 Powder Averaging

The simplest way of denoising is to increase the SNR of the image by some type of av-

eraging multiple images acquired with identical image parameters, also known as powder

average. In principle, this approach allows us to average out the variance associated with

random fluctuations originated by thermal noise without manipulating the data. This

makes the multiple-averages to be generally considered as the gold standard. It can be

demonstrated that averaging N signals increases the SNR by
√
N times [Eichner et al.,

2015]:

SNR =
S

σnoise

Nscans−−−−−→ N · S√
N · σnoise

=
√
N · SNR (4.1)

However, averaging has a number of drawbacks. The most evident and limitant is the

requirement of multiple acquisitions, which has motivated the research in alternative post-

acquisition denoising methods for single images. There is also an inherent resolution

blurring when averaging, increased by misalignments and subject motion produced during

the registration between sessions.

4.2.2 Non-Local Means (NLM) Denoising

The Non-Local Means (NLM) [Buades et al., 2005] is probably the most used method

of the Non-linear Fundamental Filters. These have constituted the traditional approach

in pre-processing natural images to either remove noise or select specific features. Such

filtering can be applied to any domain (temporal, spatial, frequency, etc.) and is generally

obtained as the convolution of a weighted kernel with the patches of the image. Unlike

linear models (e.g. mean or median filters), spatially varying noise is assumed in NLM so

non-linear weighted kernels are applied here.

More specifically, NLM is built upon two basic principles: 1) The self-similarity usually

present in MR images can be used to perform a clever way of averaging out the ther-

mal noise, and 2) this can be done by looking for similar regions all over the image (i.e.,

non-local) instead of averaging all (similar and non-similar) local information. As noise

goes down proportionally to the number of averages, localising similar patches provides

multiple regions, so more averaging and more denoising, although it may induce also more

spatial blurring.
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In NLM, the resulting denoised value of the central voxel vi of a given patch is the weighted

average of all the voxels vj in the image, where the weights depend on the similarity

between different patches i and j. The more similar, the larger the weight; these weights

can be assigned based on different kernel functions w(i, j), e.g. a Gaussian kernel.

vi =
1

Ci

∑
i

vj · wi,j (4.2)

While reducing the signal variance, spatial smoothing is induced in the image

by these filters. Consequently, blurring appears, and edges and fine details of the image

can be degraded. Although non-linear filters usually overcome most of the smoothing and

no-edge-preservation issues of linear filters, the level of blurring and denoising will still

depend on the parametrisation of the filters and the patch size.

[Manjón et al., 2008] popularized the use of NLM in MRI applications and [Wiest-Daesslé

et al., 2007] adapted it to dMRI. To date, NLM is one of the denoising approaches with

more flavours and extensions, e.g. to Rician models [Wiest-Daesslé et al., 2008], adaptive

approaches [Manjón et al., 2010], and combined with advanced methods such as Singular

Value Decomposition (SVD) [Wu et al., 2019], in the joint k-q space [Chen et al., 2019],

or with Deep Learning [Manjón and Coupe, 2021].

4.2.3 Marchenko-Pastur Principal Component Analysis (MPPCA) De-

noising

It is commonly accepted that thermal noise follows random patterns and cannot be com-

pressed, while noise-free MR images carry redundant information both in the spatial do-

main (local and non-local self-similarities), and the angular domain in the case of dMRI

(correlation between gradient directions) [Veraart et al., 2016a]. Therefore, there might

be a latent space where the information of interest could be summarised by sparse com-

ponents into a lower dimensionality, while the rest of the components can be assumed as

noise and discarded.

The sparsity across each dimension can be modelled as a low-rank approximation

(LRA) problem, i.e. the approximation of a given multidimensional array or tensor of
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dimensionality N , by a sparsely represented tensor Ak of order k, such that k < N . For-

mally, let A ∈ RL1×···×Ln×···×LN be the noisy tensor of order N . If A contains redundant

information, its covariance matrix Σ is rank-deficient, i.e. the rank k is smaller than the

dimensionality of A, while the covariance matrix of the noise Σnoise is full-rank (it is

random, not redundant). To obtain the best rank-k approximation Ak, Principal Com-

ponent Analysis (PCA) is one of the most common techniques applied to decompose

this redundancy for matrices (N = 2) [Hotelling, 1933; Muresan and Parks, 2003], or the

multiway-SVD and higher-order tensor decompositions for N > 2 (e.g., [Zare et al., 2018]).

In dMRI, 4D data have been traditionally reformatted as matrices C (also known as Caso-

rati matrix) of N3xM (columns x rows) by taking overlapping local patches of N = nxnxn

voxels with M representing the number of diffusion-sensitising volumes (b-values x direc-

tions)(see Fig.4.2). By standardising the data and assuming they are corrupted by white

additive Gaussian noise, PCA can be applied to the variance-covariance matrix to perform

the LRA, i.e. to separate correlated components (redundant) into linearlyM uncorrelated

orthogonal eigenvectors (principal components, PCs), and their associated singular values

λk (weights or scores). Sorting by descending order of λk, the first PCs would describe the

largest variance. The informative signal decay in the dMRI signal should be captured by

PCs with larger eigenvalues, because the variation in these signals tends to be correlated

across voxels and have large variation (corresponding to genuine tissue/image contrast),

whereas the PCs with small eigenvalues typically correspond to noise since they are un-

correlated across voxels and have lower variation [Gurney-Champion et al., 2019]. Hence,

by nullifying the smaller-eigenvalue PCs with index k > Kthr, a denoised signal can be

reconstructed under the assumption that the filtered PCs correspond to noise [Manjón

et al., 2013]. However, defining an optimal value for Kthr is a challenge as it can

vary across the brain, b-values, SNR, etc. Generally, it has been heuristically selected

based on experimental results [Manjón et al., 2013], until the criterion was formalized in

the Marchenko-Pastur PCA (MPPCA) approach [Veraart et al., 2016b].

MPPCA is an elegant approach that exploits a universal law for eigenvalues that Marchenko

and Pastur described in 1967 [Marčenko and Pastur, 1967] where, following the Random

Matrix Theory (RMT), the asymptotic distribution of non-zero singular values of a large
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rectangular random covariance matrix can be estimated. Hence, under the assumption

that the noise level is constant and uncorrelated within the local neighbourhood and across

the dMRI measurements, it is possible to find the cut-off threshold λ+ that delimits the

M̂ pure-noise components from the significant signal-carrying P components (see Fig.4.4).

The MPPCA algorithm can derive this threshold from the noise level σ, which needs to

be estimated. This noise level can be also used for post-denoising rician-bias correction

of the noise-floor (e.g., [Koay and Basser, 2006]). Then, nullifying the M̂ components

(i.e., imposing a hard thresholding on λ ≤ λ+), the denoised Casorati matrix C∗ can be

reconstructed undoing the Singular Value Decomposition with only the P components (see

Fig.4.2).

C∗ =
√
NUΛ̂VT (4.3)

where U and V are unitary matrices whose columns are the left- and right-singular vectors

of C, and Λ̂ are the singular values such that λ > λ+.

Figure 4.4: The Marchenko-Pastur distribution fitted to the histograms of eigenvalues λ
of C (sorted from lowest to highest). λ+ sets the threshold between pure-noise M components
(λ ≤ λ+) and the P signal components (λ > λ+). Image obtained from [Veraart et al., 2016b].

The redundancy M -P (and, therefore, the number of components removed) will increase

with factors such as the windows size (typically, N is set to be N ≥ M) or the number

of shells. All in all, MPPCA has been shown to be effective in removing variance solely

rooted in thermal noise while preserving anatomical details. It is commonly used as the

state-of-the-art denoising approach when multiple acquisitions are not available.
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4.2.4 NOise Reduction with DIstribution Correction (NORDIC)

Among others, MPPCA relies on two fundamental assumptions about the random

covariance matrix: 1) the properties of noise are identical across neighbour voxels, and

2) that signals are zero-mean Gaussian distributed. However, we have already seen

that 1) noise properties in modern protocols are spatially non-stationary, because of the

use of undersampled k-space acquisitions [Aja-Fernández et al., 2014], and 2) that the

magnitude data commonly used deviate from Gaussian properties in modern protocols

[Gudbjartsson and Patz, 1995; Salvador et al., 2005] (see sec.2.1.2).

To address this,NOise Reduction with DIstribution Correction (NORDIC) [Moeller

et al., 2021a] introduces a few modifications to the original MPPCA algorithm. First,

NORDIC operates on complex-valued images; since the assumption that noise is addi-

tive, zero-mean Gaussian is full-filled more closely in the complex domain. The Casorati

matrix is constructed in the same manner but it is assumed to be C∗ = C + N , where

N ∼ N (0, σ2). Second, data is divided by the g-factor map to achieve variance nor-

malization and get a homogeneous spatial distribution, hence fulfilling the assumption

about spatially homogeneous noise properties (see Fig.4.5). Unlike MPPCA, NORDIC

uses known information from the acquisition to ”pre-process” the data to fit the MP

law instead of either estimating the necessary information (noise level) or adapting the

algorithm to fit the data.

Figure 4.5: Scheme of NORDIC denoising. It introduces 2 steps to adapt the data to meet
the Marchenko-Pastur statistical assumptions: 1) Dividing by the g-factor to get a homogeneous
spatial distribution of noise and 2) denoise in the complex space where data is corrupted by Gaussian
noise. Image adapted from [Moeller et al., 2021a]

Using this formalism, results from Random Matrix Theory can be effectively used to devise
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a parameter-free objective threshold based on the eigen-spectrum of the Casorati matrix,

as MPPCA. However, while MPPCA needs to simultaneously estimate the amount of noise

σ and signal components P in magnitude-data in order to remove components that have

little contribution to the variance, NORDIC sets this threshold numerically to achieve

the removal of all components that cannot be distinguished from Gaussian noise thanks

to meeting the MP assumptions. More specifically, as the analytical expression given in

the MP law is an asymptotic expression for infinite matrices, Monte-Carlo simulations

with the same size of the images are used to find the largest singular value (i.e., λ+) of a

random such with i.i.d. zero-mean gaussian with identical variance σ2 as in noise images

acquired without RF applied. Then, similar to PCA, the denoised data can be obtained

by nullifying the λ ≤ λ+ components and applying eq.4.3.

4.2.5 Patch2Self

Recently, Machine Learning principles used for denoising images in other fields have been

proposed for denoising MRI. Among the different types of learning, self-supervised meth-

ods have arisen as the most suitable approach for MRI given the lack of ground-truth

data. Although it has not been extensively applied yet to dMRI (e.g., see [Moreno López

et al., 2021] for a review), the Patch2Self (P2S) [Fadnavis et al., 2020, 2022a] method has

gained attention in the field.

Patch2Self (P2S) is built upon the Noise2Noise [Lehtinen et al., 2018] and Noise2Self

[Batson and Royer, 2019] principles. Shortly, Noise2Noise is based on the assumption of

statistical independence of the noise of image pixels, so it does not make any assump-

tion about the signal distribution. As noise is random and independent, Noise2Noise needs

2 noisy versions of the same image, using one to learn about the other. This necessity of

having at least two images is removed in Noise2Self by relying on a mathematical prop-

erty called J-invariance. A denoising function is J-invariant if the prediction it makes for

each pixel does not depend on the value of that pixel in the original image, i.e. it can use

the information contained in the rest of the image to make the prediction of the denoised

voxel. In this way, an image can be denoised only using the image itself.

P2S follows these principles and assumes that thermal noise is random and uncorrelated
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across dMRI volumes. So, as the signal has some correlation between volumes and the

noise is assumed to be independent between them, P2S try to learn each of the 3D volumes

as a combination of the other N −1 volumes. Relying on the J-invariance assumption, the

problem can be simplified effectively to some sort of out-of-sample prediction: 1) a 3D

volume J is taken from the 4D dMRI data and is held out, 2) patches from the rest N − 1

dMRI volumes are used to train a model M that predict the central voxel of the patches,

3) use the model M trained on the N − 1 volumes to predict the central voxels of patches

in volume J . Those predictions replace the original data and constitute the denoised data.

This process is repeated for the rest of the volumes (i.e. if you have N volumes, N models

need to be trained). The P2S approach can be seen also as predicting a q-space point

as a combination of all the others, but not of itself. Any method can be used to

learn the model M , such as neural networks. Nevertheless, authors suggest that a linear

regression is good enough given the oversampling and redundant information of q-space

[Fadnavis et al., 2020, 2022a].

4.3 Methods

Given the plethora of denoising methods and lack of objective ways for evaluating and

comparing them, we propose a set of considerations aimed towards this direction. We

call them collectively EDDEN (Evaluation of Diffusion MRI DENoising), compris-

ing of a set of criteria for characterising performance of denoising methods, from signal

raw quality to model estimates; and a set of purpose-fit datasets representing different

SNR/resolution trade-offs. This work aims to provide more insights into the nature of

denoising and how it can be formally characterised. We use EDDEN to compare and

characterise a number of denoising algorithms overviewed in the previous section, namely

NLM, P2S, MPPCA and NORDIC.

4.3.1 Defining a good denoising algorithm

EDDEN is based on features and performance that a principled and well-behaved denoising

algorithm is expected to have. Intuitively, an ideal denoising method should be able to

identify and remove as much noise as possible from the raw signal and, as a consequence,

also their undesired effects (e.g., the noise-floor). At the same time, this must be done

without perturbing the information-carrying components of the signal regardless of the
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level of noise contained in the measurements. Translating this into the specific case of

dMRI, there are a number of features that can be expected, characterising from raw

signal quality to high-level analyses:

• Denoising should improve raw signal quality by removing noise-related variance.

• Denoising should preserve expected statistical properties of the dMRI signal and

remove biases introduced by noise-floor.

• Denoising should preserve the spatial resolution of the original data.

• Denoising should converge in the high-SNR regime (e.g. not introduce undesired

effects in low-noise scenarios).

• Denoising should be beneficial for modelling performance.

• Denoising should allow us to utilise the gained SNR for a range of SNR-limited

applications (e.g., allow for very high spatial resolution, or allow for short scans

with a few volumes).

Based on these principles we evaluate the performance of denoising methods, based on

corresponding considerations.

Consideration 1: Provide gains on raw signal quality

The signal-to-noise ratio (SNR) and contrast to noise ratio (CNR) are common metrics to

characterise dMRI quality. In our work, the SNR is evaluated using repeats of images with

the same contrast and, specifically, with no diffusion gradient applied (b = 0s/mm2). The

CNR is evaluated in the angular domain (i.e. ”diffusion” contrast), across volumes within

the same b-shell. By reducing the σnoise, both SNR and CNR increase and, generally,

the higher these are the better. For our experiments, we use the voxel-wise estimations

provided by Eddyqc for each voxel v [Bastiani et al., 2019].

SNRvb=0 =
mean(Svj )

std(Svj )
(4.4)

CNRvbi =
mean(Svjpred)

std(Svj − Svjpred)
(4.5)
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where Svj indicates the signal of voxel v from volumes obtained with b-shell i. For the

CNR, the mean of noise-less signal predictions Svjpred are used as signal, while residuals

of predictions to true measurements are used as noise. Predictions are obtained from a

Gaussian Process (GP) that represents non-parametrically the signal in each shell per

voxel, considering signals from all diffusion-sensitising volumes [Andersson and Sotiropou-

los, 2016]. An average SNR and CNR value can then be obtained from the above maps,

by considering the voxels of interest (e.g. tissue-based).

Consideration 2: Reduce noise-floor and preserve signal statistical properties

It is essential that a denoising approach preserves the statistical properties of the signal,

as these determine the validity of assumptions for downstream applications and analysis.

A number of post-processing steps assume that the signal follows a Gaussian/Rician dis-

tribution, so it is important to examine whether these prevail after denoising. Of crucial

interest here is to determine whether denoising algorithms are able to remove or, at least,

to reduce the noise-floor, the minimum detectable signal level in the absence of true in-

formation. A noise-floor can cause significant biases to dMRI estimates [Jones and Basser,

2004; Sotiropoulos et al., 2013c], so a denoising algorithm is expected to deal with it.

To characterise the above, noise properties such as the variance or the mode should be

sampled from the data. Ideally, these would be taken from the background but it has

been already commented that noise is also spatially non-stationary. Noise properties can

be extracted from the ventricles instead. The diffusion signal there is completely attenu-

ated because of the isotropic propagation and, compared to the background, it can offer

closer proximity to WM voxels (and also measurements in the iso-centre of the brain are

more robust compared to the periphery) [Dietrich et al., 2008].

Further to characterising noise properties before and after denoising, we also evaluate

denoising effects on the noise-floor. Good candidates in WM to explore noise-floor effects

are voxels with very large attenuation, such as in the mid-body of the Corpus Callosum.

Due to the large anisotropy in these regions, the signal in these voxels has a large dynamic

range (from parallel to perpendicular to the fibres) and is also maximally attenuated

compared to any other WM region. Such voxels typically suffer from noise-floor effects,
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where noise rectifies the true signal level and reduces the true dynamic range [Sotiropoulos

et al., 2013c].

Consideration 3: Preserve spatial resolution and do not induce spatial blurring

Given the use of patches or averages in denoising approaches, a question remains whether

some loss of spatial resolution and spatial blurring can be expected after denoising. There

are few proxies that can be used to evaluate the blurring induced by denoising, such as

the frequencies suppressed in the k-space energy densities used in [Veraart et al., 2016b],

or introducing Gaussian blurring and estimating what auto-correlation functions match

with the denoised image [Moeller et al., 2021a]. Similar to the latter, we use Resolution

Elements or Resels in this work. This is a standard approach from the Gaussian Random

Field theory used, for instance, in fMRI for clustering inference or to correct p-values in

multiple comparisons [Hayasaka and Nichols, 2003]. By using derivatives of the spatial

covariance, it is possible to explain neighbourhoods of voxels that have similar covariance

(i.e., effective resolution). More specifically, to estimate the voxel resolution, a 2D zero-

mean Gaussian kernel is fitted to the data; the Full-Width Half-Maximum (FWHM) of

the best fitting will provide an approximation to the actual voxel resolution (i.e., if there

is spatial smoothing, covariance will be introduced into a neighbourhood of voxels). This

kernel can be interpreted as the kernel that would produce the same smoothing as the one

we observed in the data.

To estimate the spatial blurring in the filtered data we used FSL’s smoothest that esti-

mates the smoothing extent in linear model residuals. It is a proxy, but it can be fairly

extrapolated to the smoothing in filtered data before pre-processing, as it is just a linear

transformation. We fit the tensor model (DTI) to the data and then obtain the residuals.

It is then possible to estimate these Resels by studying the variance (i.e., the FWHM)

on the residuals along frequency (x-axis) and phase encoding (y-axis) image directions.

We repeat this process before and after denoising to explore whether denoising causes any

difference.
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Consideration 4: Converge at a high SNR

The convergence at a high SNR regime can be used to verify any unwanted signal mod-

ification when the noise levels are too low. Modern protocols operating at relatively low

resolutions (e.g. ∼2mm) have medium-to-high SNR. Denoising algorithms should be able

to operate in these scenarios with minimum invasiveness. For instance, denoising should

not remove useful information nor introduce any bias or undesired effect, i.e., statistics

and performance in raw data and denoising methods should not differ substantially. We

performed a number of checks to verify the above before and after denoising on a rela-

tively high-SNR dataset. We evaluated raw signal quality metrics (SNR,CNR), as well as

second-level analysis (convergence of tractography results).

Consideration 5: Improvements on modelling performance

The preservation of statistical assumptions and an increased SNR/CNR are expected to

allow better performance in estimating dMRI microstructural models, although quanti-

fying improvements in accuracy and precision in real brain data is limited by the lack

of ground-truth. An attractive scenario is resolving crossing fibres in White Matter, as

there are regions where multiple 3-way crossings are a-priori expected almost everywhere

(e.g., Centrum Semiovale [Jeurissen et al., 2013]) and regions where no crossings are ex-

pected (e.g., midbody of the Corpus Callosum). For modelling crossing-fibres, we used

the Ball&Sticks model (BedpostX tool in FSL [Behrens et al., 2007; Jbabdi et al., 2012]2)

with up to 3 fibre compartments and a Gaussian noise model (so not including any term to

model the noise-floor). By looking into the number of estimated crossings in the Centrum

Semiovale, we can compare modelling performance before and after denoising; by looking

into uncertainty estimates in the Corpus Callosum, we can obtain a measure on precision

for regions where no fibre crossings are expected (and hence any estimation of complex

fibre structure and thus increased uncertainty will likely be artefactual).

Consideration 6: Benefits for pushing spatial resolution and/or reducing scan

time

Improvements in signal quality can be capitalised further in a number of ways, by: a)

attempting ultra-high spatial resolution images or b) reducing scan time by utilising the

2burnin=3000 samples to ensure convergence of the MCMC chain to the parameter region of interest
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higher effective SNR per unit time. We have acquired data and designed tests to explicitly

assess these two routes for denoising methods.

Firstly, we acquired a sub-millimeter 3T dataset (very noisy data, see sec.4.3.2) and ex-

plored whether algorithms that rely on whole-image information, like tractography, can

operate in this highly noisy regime, before and after denoising. We relied on a set of stan-

dardised tractography protocols, available in XTRACT [Warrington et al., 2020] to see

whether we can reconstruct a range of WM bundles, from association to projection and

commisural fibres, that all demonstrate a different level of complexity along their route.

We have also acquired multiple repeats of this dataset so that the multiple-averages can be

used here as subject-level reference, while the high-resolution HCP atlas (1mm isotropic)

is used as population-average reference [Warrington et al., 2020].

Secondly, the increased SNR/time ratio expected from denoising opens the possibility to

indirectly reduce scan the time needed to achieve certain SNR to achieve similar per-

formance as with the full acquisition by a) either reducing number of repeats, or b) the

number of dMRI directions. For that, we evaluated the convergence of different sizes (i.e.

scan times) of denoised data to a) the multiple-averages and b) to the complete sequence

of a single-repeat in the RAW data. Convergence was quantitatively assessed using agree-

ment in simple DTI estimates (e.g., FA or MD).

Specifically, RAW Datasets B and C (1.5mm and 0.9mm respectively, see sec.4.3.2) were

subsampled multiple times with equally increasing sizes. Discarding b0 volumes, Dataset

B was subsampled into the first 45, 90, 135, 180 and 225 directions (effectively reducing to

15, 30, 45, 60, 75 and 90 b=1000mm/s2 volumes for DTI model fits); similarly, Dataset C

was subsampled into the first 30, 60, 90, 120, and 150 directions (effectively reduce to 15,

30, 45, 60, 75 and 90 b=1000mm/s2 volumes for DTI model fits). So, in total, 6 datasets

(5 subsampled sets and the full acquisition) were obtained from the first repeat of Dataset

B and other 6 from the first repeat of Dataset C. Each of these datasets were denoised and

pre-processed independently following the pipeline explained in 4.3.2, so every subsampled

dataset also reflected the effect of the respective data size.
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4.3.2 Data

All MRI datasets were acquired on the same healthy subject at the Centre for Magnetic

Resonance Research (CMRR) at the University of Minnesota in a Siemens 3T Prisma

MRI System using a 32-channel head coil. A T1-weighted MPRAGE sequence was run

at 0.8x0.8x0.8 mm voxel size (TR=2.4 s, TE=2.22 ms). Three dMRI multi-band (MB)

datasets [Moeller et al., 2010] were acquired and reconstructed using a SENSE1 algorithm

[Sotiropoulos et al., 2013c] to represent three different SNR regimes:

• Dataset A: A UKBiobank-like dMRI dataset [Miller et al., 2016] with 2mm isotropic

resolution, TR=3s, TE=92ms, MB=3 (no GRAPPA), and 116 volumes in total: 9 b0

volumes and 107 diffusion encoding orientations, as 53 with b-value of 1000 s/mm2

and 54 with b-value of 2000 s/mm2, phase encoding direction AP and one b0 image

with PA for susceptibility correction. This dataset represents a relatively medium-

to-high SNR regime.

• Dataset B: Five repeats of an HCP-like dMRI dataset [Harms et al., 2018] with

1.5mm isotropic resolution, TR=3.23 s, TE=89.2 ms, MB=4 (no GRAPPA), and

300 volumes in total: 30 b0 volumes and 270 diffusion encoding orientations as

90 with b-value of 1000 s/mm2, 90 with b-value of 2000s/mm2 and 90 with b-

value of 3000s/mm2, phase encoding direction AP and one b0 image with PA for

susceptibility correction. This is a low-to-medium SNR dataset, with relatively high

resolution and multiple repeats to average and use as a reference.

• Dataset C: Three repeats of an ultra-high-res dataset with 0.9mm isotropic res-

olution, TR=6.569 s, TE=91 ms, MB=3, GRAPPA=2, phase encoding direction

AP (with one b0 image with PA for susceptibility correction), and 200 volumes in

total: 20 b0 volumes and 180 diffusion encoding gradients, as 90 with b-value of

1000 s/mm2 and 90 with b-value of 2000 s/mm2, phase encoding direction AP and

one b0 image with PA for susceptibility correction. The purpose of this data set was

to study whether denoising can recover information and connectivity estimates in

extremely noisy data, acquired using a clinical scanner.

Each data set was acquired on a different day, minimizing the tiredness and involuntary

motion of the subject. All acquisitions were obtained parallel to the anterior and posterior

commissure line, covering the entire cerebrum. Each data set was visually inspected before
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further processing. No severe artefacts or alterations were observed.

Protocol Resolution B-shells Directions Repeats

Dataset A UKB-Like 2mm 1k/2k 107 1
Dataset B HCP-Like 1.5mm 1k/2k/3K 270 5
Dataset C HCP-Like 0.9mm 1k/2k 180 3

Table 4.1: Summary table of the datasets acquired for the evaluation of denoising approaches and
included in EDDEN.

Figure 4.6: Examples axial screenshots of the three datasets acquired for the evaluation of denois-
ing approaches. Each dataset offers a different SNR/resolution scenario.

Data processing

Every dataset has been pre-processed for distortion and motion correction using an in-

house implementation [Mohammadi-Nejad et al., 2019] of the dMRI HCP pipeline [Sotiropou-

los et al., 2013b]. This includes skull stripping, Eddy current correction, EPI distortion

correction, motion correction, non-linear registration to MNI standard space and quality

control evaluation. Averages from multiple repeats in datasets B and C were used in some

experiments as gold-standard references. In these cases, each repeated acquisition was

linearly aligned to the first b0 image of the first dataset acquired in that protocol, pre-

processed and averaged afterwards. For some experiments (e.g., criterion 6), this pipeline

was slightly different; for such cases, the modifications on the pipeline are specified in the

correspondent section.
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Denoising was applied to all data sets prior to any distortion correction, described above.

As denoising algorithms, we used the Non-Local Means (NLM, using the default imple-

mentation in DIPY [Garyfallidis et al., 2014]) as an exemplar of non-linear fundamental

filter; the Marchenko-Pastur PCA (MPPCA, using the default MrTrix3 implementation

(https://www.mrtrix.org), and the NORDIC algorithm (author’s original implementation)

as exemplars of PCA-based approaches, which are considered the current state of the art,

applied to magnitude and complex domain, respectively; and Patch2Self (P2S) (using

the default implementation in DIPY [Garyfallidis et al., 2014]) as exemplar of novel self-

supervised approaches that can be combined with Deep Learning methods. NLM, MPPCA

and Patch2Self were applied to the reconstructed magnitude data; NORDIC was applied

to the magnitude and phase reconstructed data (i.e. complex domain).

Data Patch-Size Algorithm Multi-shell

NLM 3D-Magnitude 3x3x3 Non-local averaging No

MPPCA 4D-Magnitude int(n ≤
√
M)* 3 Local with overlapping Yes

NORDIC 4D-Complex 11x11x11 Local with overlapping Yes
P2S 4D-Magnitude 3x3x3 Local with overlapping Yes

Table 4.2: Summary table of the features of the denoising methods evaluated.

4.4 Results

In this section, we will show results obtained from evaluating the denoising approaches

indicated above. For the representation of the results, the following colour code will be

used: RAW data (non-denoised) in orange, NLM in pink, MPPCA in blue, NORDIC in

green, P2S in purple, multiple-averages in red.

4.4.1 Raw signal quality assessments

Qualitative demonstrations of diffusion data pre- and post-denoising for each method and

for different b-values can be seen in Fig.4.7 (Dataset A - 2mm), Fig.4.8 (Dataset B -

1.5mm), and Fig.4.9 (Dataset C - 0.9mm). Across all SNRs a visual improvement in data

quality can be perceived after denoising, particularly noticeable for low SNR raw data.

What can be noticed as well is that the signal in the ventricles (noise-floor) is preserved

or reduced differently by different methods (see arrows in Fig.4.9, for instance). The ap-

https://www.mrtrix.org
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proach that operates in the complex domain (NORDIC), seems to reduce this signal more

compared to the others, which is particularly evident for the b=2000 s/mm2 in 0.9mm

data.

As described in Methods, gains in raw signal quality can be quantified by SNR and

angular-CNR (Fig.4.10). In agreement with the qualitative images, all the denoising ap-

proaches improved the quantitative metrics as well. These gains are especially noticeable in

NORDIC at higher b-shells and higher resolutions, outperforming the rest of the methods.

Gains in signal quality are not shown for P2S as they were highly inconsistent (and very

sensitive to seemingly unrelated parameters, like the number of dMRI volumes). EddyQC,

the tool used to calculate the SNR and angular CNR after distortion correction, returned

very low CNR values, which did not agree with the visual aspect of the denoised images

obtained prior to distortion correction (i.e. Figs.4.7, 4.8, and 4.9). EddyQC uses a Gaus-

sian Process predictor and this is tuned by hyperparameters optimised on runtime from

the data. It seems that the deterministic nature of P2S predictions (P2S replaces all data

with a deterministic prediction) interferes with EddyQC’s Gaussian process tuning and

further estimation.

Figure 4.7: Dataset A (2mm) - Denoised - Qualitative maps of the dMRI signals pre- and
post-denoising by each method (columns) in a b=1000 (s/mm2) (top row) and b=2000 (s/mm2)
(bottom row). At this resolution, all denoising methods present similar results except NLM, which
returns a smoothed image losing considerable structural information. NORDIC provides greater
gains than the rest of the methods, especially at higher resolutions at higher b-values.
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Figure 4.8: Dataset B (1.5mm) - Denoised - Qualitative maps of the dMRI signals pre- and
post-denoising by each method (columns) in a b=1000 (s/mm2) (top row) and b=3000 (s/mm2)
(bottom row). At high b-values, the noise effect is higher and elevated noise-floor preservation in
the ventricles can be observed (yellow arrows).

Figure 4.9: Dataset C (0.9mm) - Denoised Qualitative maps of the dMRI signals pre- and
post-denoising by each method (columns) in a b=1000 (s/mm2) (top row) and b=2000 (s/mm2)
(bottom row). In this case, the elevated noise-floor in the ventricles can be observed at every b-
value.
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Figure 4.10: Gains in Angular Contrast to Noise Ratio (CNR) by denoising - Top row:
Dataset A - 2mm; Middle row: Dataset B - 1.5mm; Bottom row: Dataset C 0.9mm. All methods
show gains in angular CNR regardless of the resolution

Fig.4.11 shows difference maps and their corresponding histogram estimated between the

RAW image and the denoised image for each case. As these should arise from the thermal

noise, they are expected to be spatially random and zero-mean Gaussian distributed. This

is the behaviour mostly observed in MPPCA and NORDIC denoised data. However, in

P2S and especially in NLM, some structural information remains in the difference maps,

which is translated into deviations from zero-mean and skewed distributions. This agrees

with the smoothing effect observed in Figs.4.7, 4.8, and 4.9, and with results from previous

studies [Mishro et al., 2021] (see also sec.4.4.3). Hence, only PCA-based approaches seem

to perform a principled separation between signal and noise, regardless of the scenario.

4.4.2 Noise-floor and Signal statistical properties

Fig.4.12 shows the signal intensity distribution from voxels in the ventricles. The signal is

maximally attenuated in these CSF-filled regions, so what is depicted is effectively the dis-

tribution of noise, before and after denoising. The histograms of all denoised datasets show

an evident reduction of the signal variance (more restricted range of values), as expected.
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Figure 4.11: Difference between RAW and denoised data - The difference d, where d =
SRAW − Sdenoised, is represented for each method in an axial map for an exemplar slice, and its
corresponding histogram of values. If differences arise from the elimination of random thermal
noise, they should follow random spatial patterns and zero-mean Gaussian distributions.
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How to evaluate whether the removed parts are only noise or they also contain signal

features is a hard problem, especially not having access to the ground-truth. The residual

maps in Fig.4.11 suggested that most of the removed components can be attributed to

random noise, especially in PCA-based methods (e.g., no anatomical structures observed

in their residuals).

Another important observation is the preservation of the noise-floor in the majority of

approaches. Apart from NORDIC, which was the only one able to reduce noise-floor, all

methods practically keep the same noise-floor as the RAW data i.e., they only reduce the

variance of the signal (which is translated into SNR and CNR gains). As commented in

section 2.3.1, the preservation of the noise-floor can produce a rectification of the signal

in the WM and induce potential biases in the estimates. In WM, this rectification can be

observed in voxels with high anisotropy that produces high signal attenuation. At high

SNR, rectification is not noticeable. However, as the SNR decreases, the chances of hitting

the noise-floor when the gradient orientation is closely parallel to the fibre orientation and

the signal attenuation is maximum become more likely. As NORDIC has a lower noise-

floor, the rectification happens later and a larger dynamic range of the signal is returned.

This behaviour is demonstrated more clearly on the right plot of Fig.4.12 for the signal of

a voxel in the mid-body of the Corpus Callosum. The dMRI signal for that voxel has been

sorted based on the alignment of the corresponding gradient orientation and the primary

fibre orientation in this voxel (given by the DTI primary eigenvector). The signals from

orientations parallel to the primary fibre orientation are presented first, followed by signals

with increasing perpendicularity to the primary fibre orientation. Hence, the first signals

are maximally attenuated, while the last signals are minimally attenuated. As shown in

the figure before denoising (orange line), the maximally attenuated signals have been recti-

fied by the noise-floor and appear roughly similar to the minimally attenuated signals (i.e.

small dynamic range). Comparing the PCA-based approaches, differences can be found

between denoising in the magnitude-data, which reduces the variance but does not make

a difference in this rectification effect (blue line); and denoising in the complex domain,

which, apart from the variance, also reduces the noise-floor and increases considerably the

dynamic range of the signal (green line).
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It is important to point out that none of the denoising approaches returns back a Rician

noise distribution for this ultra-high-res dataset. Most of them seem to follow a symmetric

non-central chi distribution, but NORDIC is the one that has a considerably lower noise-

floor.

Figure 4.12: Noise-floor preservation and signal rectification (Dataset C) - On the left,
the histogram of signal intensity in the ventricles obtained from the different denoised datasets. On
the right, signal intensity values in a random high FA voxel (FA>0.8) from the Corpus Callosum
(CC) are represented, ordered by the intensity of the reference image (in this case, the reference is
the RAW average of the multiple repeats)

4.4.3 Spatial smoothing

Fig.4.13 shows the estimated resolution in the images before and after denoising compared

to the nominal resolution (dashed line). An estimation of the % smoothing induced per

axis by each method is shown in Table 4.3. As noticed in the RAW data, due to the point-

spread-function blurring, resolution along the phase-encoding direction is always smaller

than nominal, while in the frequency encoding direction it is very close to nominal, as

expected.

All denoising methods introduce an additional loss of spatial resolution compared to the

RAW data, which is expected given the nature of patch-based denoising algorithms, with
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the percentage of spatial smoothing increasing at higher resolutions (see Table 4.3). NLM

is the method that induces the most spatial smoothing, confirming what is already re-

ported elsewhere (e.g. [Mishro et al., 2021]) and observed in previous figures. On the

other hand, NORDIC keeps closer to the original resolution overall, closely followed by

MPPCA, inducing what could be interpreted as a lower level of co-dependency induced

between voxels in both frequency (x-axis) and phase encoding (y-axis) direction. Note

that estimates of P2S have not been included here for similar reasons to gains in CNR

and SNR from sec.4.4.1, as Resels estimation relies on model fit residuals.

FWHM-x (%) FWHM-y (%)

Dataset A - RAW 2.16 1.56
Dataset A - NLM 15.49 21.52
Dataset A - MPPCA 11.54 15.29
Dataset A - NORDIC 8.92 6.68

Dataset B - RAW -4.98 14.19
Dataset B - NLM 27.6 45.7
Dataset B - MPPCA 12.81 24.66
Dataset B - NORDIC 8.67 16.54

Dataset C - RAW -0.95 16.9
Dataset C - NLM 300.73 360.37
Dataset C - MPPCA 11.96 38.16
Dataset C - NORDIC 5.04 23.14

Table 4.3: Spatial smoothing induced by each method in each dataset, quantified as the percentage
ratio between the denoised-data resel size and the nominal resolution .

4.4.4 Convergence in high-SNR regimes

Previous figures have shown that PCA-based methods can still provide some gains in an-

gular CNR (Fig.4.10), even at high-SNR regimes, where noise levels are expected to be

minimal. On the other hand, we saw that denoising can induce a partial loss of spatial

resolution between 5-10% (see Table 4.3), so one could ask whether denoising is beneficial

or detrimental in this high-SNR scenario.

In Fig.4.14 we show the agreement of probabilistic tractography results obtained by each

method and the population-average UKB atlas [Warrington et al., 2020]. MPPCA and

NORDIC show similar agreement on average as RAW data, with a slightly lower variance,

suggesting convergence of these methods at this SNR-regime. Interestingly, NLM caused
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Figure 4.13: Estimated voxel resolution (by FSLsmoothest) for the denoised and non-denoised
datasets, along the frequency (acquisitions along x-axis) and encode (acquisitions along y-axis)
directions - Top row: Dataset A; Middle Row: Dataset B; Bottom row: Dataset C. Dashed line:
acquisition nominal resolution
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a worse behaviour than RAW data; the small CNR gains we observed before seem to be

at cost of a higher loss of spatial specificity (Fig.4.13) and the potentially larger partial

volume averaging that may hinder the propagation of the tracts.

Figure 4.14: Tract correlations with the UKB population-average atlas (Dataset A,
2mm) - The boxplots show the spatial tract correlation of each method with the UKB population-
average atlas. Non-denoised data and PCA-based methods report very similar results, suggesting
convergence, while NLM provide lower correlation, suggesting loss of information.

4.4.5 Improvements in modelling performance

At higher resolutions, denoised datasets are expected to demonstrate better modelling

performance, assessed here as an improvement in sensitivity to detect fibre crossings and

in precision in fibre orientation estimates. Fig.4.15 demonstrates examples for a crossing-

fibre model, where 0.9mm denoised data support more fibre complexity in the Centrum

Semiovale, a region where most of the voxels are expected to have at least two fibre bundles

crossing. Interestingly, the raw data support false positive fibre crossings in the ventricles,

as no crossings or fibres are expected in this CSF-filled region, while the denoised data do

not show this behaviour.

Fig.4.15 shows the percentage of voxels with two-way and three-way crossing-fibres in

the Centrum Semiovale. In this case, both NLM and NORDIC provide higher rates of

detection of secondary and third fibres at 0.9mm resolution, although MPPCA also shows

considerable improvements over raw data.
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Figure 4.15: A comparison of modelling performance between RAW and denoised
data (Dataset C) - Top: Example of crossings detected in the Centrum Semiovale in the RAW
and NORDIC-denoised data. Bottom left: Rate of crossing detection in the Centrum Semiovale.
Bottom right: First fibre uncertainty measured in the voxels of the Corpus Callosum.
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Precision in the estimates can be assessed by the MCMC-estimated uncertainty in the

fibre orientation. To avoid interpretation complications between model complexity and

uncertainty, we focused on a region where most voxels are expected to exhibit a single fi-

bre (i.e. model complexity stays the same), the midbody of the corpus callosum. Overall,

as all denoising approaches reduced variance, the precision is considerably increased by all

of them as well.

Overall, filtered datasets have demonstrated a considerable improvement in both sensitiv-

ity and precision in modelling performance at low SNR levels.

4.4.6 Capitalising on increased SNR to push spatial resolution

Improvements in effective SNR/CNR by denoising open opportunities that only bespoke

setups can provide, such as allowing recovering information from barely unusable data at

ultra-high spatial resolution. Or reducing scan time, as the increased SNR per volume

reduces the need for sampling many volumes or multiple repeats. In this and the following

sections, we explore the feasibility of these two applications of denoising.

Fig.4.16 demonstrates an example of doing tractography at an ultra-high resolution dataset

(0.9mm isotropic), acquired using a clinical scanner. For reference, the FA image is shown

on the left, before and after denoising. While a number of tracts cannot be reconstructed

at all using the RAW data (seven bundle tracts in total, namely: left Acoustic Radiation,

left and right Corticospinal Tracts, right Fornix, Middle Cerebellar Peduncle, and left and

right Superior Longitudinal Fasciculus 1) and even after averaging (it also missed both

Cortico-Spinal Tracts, the Middle Cerebellar Peduncle, and the right Superior Longitu-

dinal Fasciculus 1), denoising allows good reconstruction of all considered WM tracts,

except the Middle Cerebellar Peduncle in MPPCA and NLM.

To quantify further the improvement in tractography, Fig.4.17 represents the spatial tract

correlation across all tracts with the High-resolution HCP atlas [Warrington et al., 2020],

used here as an average population reference. All denoising methods improved the agree-

ment of tractography results with the HCP Atlas, compared to the raw data. As it is

reported elsewhere [Warrington et al., 2020], the common spatial tract correlation of data
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Figure 4.16: Examples of FA maps (left) and Maximum Intensity Projection (MIP) of tracts re-
constructed (right) by RAW and NORDIC-denoised data at 0.9mm (Dataset C). At this resolution,
denoising allows to recover multiple bundles that were missed in the non-filtered version.

at 1mm with this population average is around 0.5-0-6. NLM and NORDIC provided

results around this expected range.

Figure 4.17: Spatial tract correlation of RAW and denoised versions of Dataset C (0.9mm)
with the HCP atlas used as a reference for the average population.
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4.4.7 Capitalising on increased SNR to reduce scan time

Denoising inherently aims to improve the effective SNR per sample. This opens the ques-

tion of whether scan time can be reduced, i.e. whether acquiring fewer denoised volumes

is equivalent to acquiring many noisy volumes. Fig.4.18 shows a qualitative comparison

for fractional anisotropy maps, pre- and post-NORDIC denoising from Dataset C and how

these compare against maps from multiple averages Fig.4.18 (top) and from considerably

longer scan times in a single-repeat acquisition Fig.4.18 (bottom). In both cases, filtered

data provided similar maps with a considerably lower number of volumes.

Figure 4.18: Qualitative FA maps comparisons (Dataset C). Top row: Denoised single-repeat
data vs. multiple-averages. Bottom row: A low number of volumes from denoised data vs a high
number of volumes from RAW.

To quantify these improvements, we calculated the spatial correlation between FA and MD

scalar maps in WM obtained from subsets of the original data and the FA and MD maps

obtained from repeats of the original data. Fig.4.19.A shows the agreement between FA

maps in Dataset C (average of the 3 repeats of the dataset used as a reference), where MP-

PCA and NORDIC converge faster to the reference than the non-filtered data (in Dataset

B, correlation of 0.96 with 1/9 of the data used). However, in this case, NLM deviates
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considerably, potentially because of the effects of spatial smoothing. Interestingly, all of

them including the RAW data, don’t seem to converge to the multiple averages but to a

different point (i.e., correlations do not converge at 1). Still, the correlation is high (0.88)

and there are potential reasons that could contribute to this deviation, such as geometric

misalignments during the image registrations to obtain the average or even the lack of

enough volumes to reach the true convergence.

Figure 4.19: Convergence to the multiple-averages (reference) assessed by the correlations in
tensor model estimates (DTIFIT) of subsets from Dataset C (0.9mm). Top: Fractional Anisotropy
correlations. Bottom: Mean Diffusivity correlations.

However, these deviations from the ground-truth after convergence are more evident and

less easily interpretable when looking at the MD (Fig.4.19.B). Particularly, the NORDIC-

filtered subsets follow their own trend and converge to a completely different point than

RAW and MPPCA-filtered data. This initially puzzling behaviour can be explained by

the effect of the noise-floor (which is preserved in MPPCA). As observed in Fig.4.12, the

non-filtered data had an elevated noise-floor. As it has been reported before (e.g., [Tax

et al., 2021]), averaging images with positive noise-floor will preserve the noise-floor in

the averaged image as well (see Fig.4.20 A and B). Averaging is an approach capable to
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deal with the random variance of noise but not with the bias introduced by the change of

statistical properties (i.e., deviation from Gaussian to non-central-Chi distributions). As

a consequence, methods that were not able to address the noise-floor such as MPPCA,

reported a similar convergence point to the average as the RAW data in the MD. How-

ever, NORDIC reduces the noise-floor, therefore, in regions with very high attenuation,

NORDIC returns a larger dynamic range of the signal, capturing higher attenuations and

producing higher (and more accurate) diffusivity values (see Fig.4.20.C). As expected, this

effect would be much more noticeable at lower SNR scenarios, as in dataset C. This was

not observed in the correlations of the FA maps because it is a variance metric, so it is

not affected as much by the signal attenuation effects (noise-floor) as the MD.

Figure 4.20: Preservation of the noise-floor in the multiple averages - Dataset B. A)
Preservation of an elevated noise-floor in the RAW data and in the multiple-averages compared to
NORDIC. B) Histograms of the CSF voxel intensities. C) Results from the difference between the
MD maps of multiple averages and NORDIC, i.e. MDavg −MDNORDIC .

To further explore the above hypothesis (i.e. that differences in convergence are due to

differences in the noise-floor), we masked the MD correlation calculation to those regions

in the WM that have low FA (i.e., low attenuation). Noise-floor effects are expected to

be higher for high FA regions in WM and less noticeable for low FA regions. Doing so

for FA<0.2-0.3 (Fig.4.21), we observed a much better behaviour, where NORDIC MD

estimates converge to the average more than the other approaches. This provides extra

evidence that differences seen before are driven by differences in handling the noise-floor.

Taken together, the results in this section suggest that denoising offers the potential to



Chapter 4. Discussion 90

Figure 4.21: Convergence of the MD in denoised datasets to the multiple-averages (reference)
assessed by correlations in regions with low attenuation (FA<0.2), where the noise-floor is less
likely to rectify the signal.

reduce scan time. The gained SNR can be capitalised to reduce either the number of

repeats, or the number of diffusion-sensitising volumes, while maintaining similar perfor-

mance to full undenoised datasets. Some denoising approaches can offer advantages in

terms of reducing scan time up to half or more with similar performance, although this

needs to be evaluated for each particular data.

4.5 Discussion

We have devised and presented a novel framework for evaluating diffusion MRI denoising

approaches (EDDEN). Although works in structural and functional MRI exist [Heo et al.,

2020; Kay, 2022; Mishro et al., 2021], this is the first time to the best of our knowledge

that has been comprehensively evaluated how denoising methods in diffusion MRI deal

with effects of noise-induced variance (that lead to increased uncertainty), and with effects

from the noise-floor (that lead to bias). We have also examined potential loss of resolution,

due to the patch-based nature of many denoising methods. We have used bespoke data

to evaluate existing approaches at various SNR regimes.

Our results, taken together, suggest benefits in denoising dMRI data overall, especially

in medium- to low-SNR regimes. However, these benefits seem to increase when denoising

in the complex domain. For instance, we saw more noise-floor suppression, less spatial

smoothing, higher SNR/CNR and better modelling performance when denoising complex

data compared to denoising magnitude-only data. This is not surprising; some of the
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assumptions on thermal noise made by algorithms (e.g., zero-mean Gaussian distribution)

are better fulfilled in the complex domain. Hence, all the algorithms studied managed

to reduce the noise-related variance but none of them except NORDIC could address the

noise-floor bias. Given that noise variance effects can be mitigated by acquiring more

data, but noise-floor effects cannot be mitigated always by longer scan times, this is an

important finding on the usability and usefulness of dMRI denoising methods.

Gains in signal quality obtained by denoising can open opportunities for new appli-

cations. For instance, we have observed how denoising can turn barely usable data

at sub-mm resolution (very low SNR) to data that high-level analyses can run on, like

tractography. Denoising can be potentially applied also to reduce scan time needed to

achieve a certain SNR-level, either by reducing the need for averages or the need for many

dMRI volumes. This advantage can be applied in both clinical routine and research (e.g.,

post-mortem scans).

Nevertheless, although denoising can be beneficial in a number of ways, caution is needed

on how it is applied. Similar to the “No Free Lunch Theorem” in optimization [Wolpert

and Macready, 1997], we have observed that the impact of denoising in dMRI signals

is not trivial and the performance can vary considerably depending on the data,

the features being studied, or the algorithm employed. For instance, denoising can result

in a loss of spatial resolution and different approaches induce larger or smaller losses. This

strengthens the argument that establishing an objective approach is necessary to charac-

terise and evaluate the impact of the above choices. Frameworks such as EDDEN may

help to identify the range of cases within each method performs well or not.

Very few approaches for objectively evaluating dMRI denoising have been introduced and

most of the times they rely on ad-hoc criteria, ranging from qualitative comparisons to

indirect model fitting comparisons [Fadnavis et al., 2020; Manjón and Coupe, 2021; Zhang

et al., 2017]. Here, we extend previous efforts by considering a more comprehensive set of

important criteria that have been missed before. These highlight aspects that have been

missed and/or provide a better justification of the source of observed effects. For instance,

improvements of denoising in the complex domain over the magnitude domain were al-



Chapter 4. Discussion 92

ready reported in [Moeller et al., 2021a], especially as the spatial resolution increases.

While they attributed these improvements to the SNR decrease and a more apparent im-

pact of non-zero i.i.d. thermal noise as revealed in a loss of q-space contrast and residual

high-spatial frequency modulations, we here pointed more accurately to the effect of the

noise-floor, which also becomes more evident at lower SNR and that variance and resid-

uals provided by MPPCA and NORDIC are similar. We also found detectable spatial

smoothing in both PCA-methods (Fig.4.13) despite previous studies suggested the oppo-

site [Fadnavis et al., 2020; Moeller et al., 2021a; Veraart et al., 2016b]. This difference

may be due to the evaluation method employed. For instance, in [Fadnavis et al., 2020]

the assessment made is just a visual check on the denoised image; in [Veraart et al., 2016b]

the evaluation is done in terms of frequency components; in [Moeller et al., 2021a], they

used 1) comparison to the multiple-averages (which is inherently smoothed due to averag-

ing residual motion and/or distortions) to estimate the optimal patch size, and 2) loss of

angular contrast between dMRI of the same acquisition with same b-values but different

gradient orientation. We here rely on covariance estimation within the same volume and

comparisons with respect to the nominal resolution in single-repeat non-denoised data

measurements, which can avoid biased comparisons. Nevertheless, when assumptions are

met, applying the Marchenko-Pastur approach to PCA methods, where the bias-variance

trade-off is controlled by the number of dimensions, can provide a threshold good-enough

to achieve a considerable reduction of variance without introducing concerning biases (less

than 10% for MPPCA and NORDIC compared to RAW data resolution) even operating

at very low SNR regimes.

Relatively recent studies have attempted to define a scoring system for image-denoising

methods. For instance, [Chow and Rajagopal, 2017] adapted the blind/reference-less im-

age spatial quality evaluator (BRISQUE) [Mittal et al., 2012] to evaluate denoising for

structural MRI. In dMRI, [Fadnavis et al., 2022b] recently proposed the Noise Uncer-

tainty Quantification (NUQ) metric, where a Bayesian framework proposed by [Sjölund

et al., 2018] is used to develop an uncertainty score for parameter estimates in any model

fitted using weighted least squares. Similar to the Ball&Sticks model, the lower the noise

in the data, the lower the uncertainty expected; thus, the NUQ is proposed to be used

to compare denoising methods. EDDEN aims to provide a considerably more generic
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framework, where uncertainty quantification in model fitting is a single component of our

approach. Given the challenges in uncertainty quantification (and in separating different

uncertainty sources, as seen in the Background chapter), this may be insufficient to fully

characterise the effects of denoising in the signal as it only reflects potential noise-related

variance changes. Summary scores need to inform about variance, biases and error met-

rics in different domains of the signal, as the features proposed in this work. EDDEN’s

proposed comprehensive evaluation process is compatible with the view expressed previ-

ously [Veraart et al., 2016b] that advocates valuations mainly at the signal level instead

of studying their accumulated effect on downstream analysis, as the rest of pre-processing

and/or modelling stages may be altering/masking the modifications performed purely by

denoising. Here, we proposed specific steps to evaluate gains in signal quality, preservation

of noise and expected signal properties, and covariance or spatial smoothing induced.

In our study, we have focused on a big source of bias caused by the signal rectification

produced by the noise-floor. Previous studies have defined errors or deviations in terms

of a so-called ”bias-variance trade-off”, considering bias sources introduced by the de-

noising algorithm itself, as suggested in [Kay, 2022] for MRI. That is, methods that focus

on reducing the variance may be indirectly introducing algorithmic biases (in addition to

the noise-floor signal bias). We saw some of these effects in our study. For instance, we

observed that NLM reduced the most variance among the methods studied at the expense

of inducing excessive blurring in the image and, therefore, a higher risk of introducing bi-

ases (e.g., partial volume effects). The effects of this can be observed in Figures 4.19 and

4.20 where despite reducing variance should push NLM towards the ground-truth, it de-

viates considerably from it or other methods that preserve the noise-floor, such as MPPCA.

The challenge in defining a ground truth

An important finding from our analyses was the challenge to define a good in-vivo ground-

truth. In the context of recovering SNR, a ground-truth can be defined by multiple aver-

ages of the same subject with the same acquisition parameter, so the variability originated

from noise can be averaged out while the signal information remains. This can work under

the assumption of no major motion effects and that a set of measurements corrupted by

thermal noise will converge to the true signal across repeated acquisitions because they
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are governed by additive, zero-mean, symmetric noise, i.e. measurements can have high

variance but are unbiased. However, we have seen that magnitude images do not neces-

sarily follow these properties, due to the noise-floor effects that can be difficult to remove.

Particularly at low SNR, noise-floor-contaminated images will result in a noise-floor con-

taminated average, thus preserving the bias in the powder average, preventing accurate

signal modelling [Dietrich et al., 2001; Jones et al., 2013]. This can lead to erroneous val-

idation of denoising methods if such multiple-averages are used as ground-truth, opening

the question on how to define a good reference. For instance, for a number of evaluations

denoising in the magnitude domain looked closer to the magnitude ”gold-standard” than

denoising in the complex domain, as both of them preserved noise-floor effects. A poten-

tial solution to these discrepancies would be averaging in the complex domain instead of

magnitude images. This will preserve the assumptions about noise properties and avoid

the noise-floor bias [Eichner et al., 2015]. This approach has not been evaluated here, but

it is a natural extension of the work presented in order to avoid the issues we identified

with a biased ”gold-standard” average.

In fact, this lack of ground-truth forces also the need for supplementary metrics beyond

the error or the bias-variance trade-off, as there is no actual reference to compare with

and calculate the error. As we have seen in Fig.4.19, the bias in the multiple-averages

at very low SNR (i.e., lack of proper reference) was leading to wrong conclusions when

purely relying on error metrics. In fact, this lack of ”ground-truth” dataset further prop-

agates in defining ground-truth values for quantitative model estimates. For instance, it

is challenging to assess results at very high resolution that deviates from standard results

obtained at lower resolutions. Findings such as having a higher rate of crossings at higher

resolution could mean either increasing sensitivity or a problem of overfitting. All in all,

it is not clear that the quality of downstream analysis results necessarily mirrors the per-

formance of these methods on low-level data metrics, such as the amount of rectification

on voxel-wise signals. An example of this is the high rates of crossings provided by NLM

(4.15), despite presenting clear rectification in the signal. The definition of domain-specific

quantitative scores for the evaluation of denoising is needed, as the ones commented on at

the beginning of the Discussion section of this chapter (e.g. BRISQUE or NUQ). However,

according to all the above, this may be insufficient to fully characterise the effects of de-
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noising in the signal as it only reflects potential noise-related variance changes. Summary

scores need to inform about variance, biases and error metrics in different domains of the

signal, as the features proposed in this chapter. However, again, the lack of ground-truth

impedes the design of quantitative metrics for all of them and more work is needed.

Denoising as Filtering vs Deterministic Prediction

Traditionally, denoising can be considered as a filtering operation, where an algorithm iden-

tifies components of the measured signal that represent noise and filters these out from

the true signal. A more recent view is that denoising can be based on forward parametric

or non-parametric model predictions (i.e. effectively deterministic regressions), e.g., P2S

[Fadnavis et al., 2020]. In such a scenario, the measured signal can be totally discarded

and surrogated instead by a prediction that depends on many other voxels except the

one being predicted. This seems a more invasive approach, which produces by definition,

”noise-free” model-predicted data. This type of approach caused issues in our evaluations,

as existing tools expect input measurement-like data rather than deterministic model pre-

dictions. It is very likely that with further development on approaches like FSL’s EddyQC

will work with P2S-denoised data, but a philosophical question arises: is this really de-

noising, given that any deterministic model regression will provide ”denoised” data? Why

someone would use the P2S-model to denoise, rather than the multi-shell Gaussian Process

model in Eddy or even the DTI model predictions that will be equally ”denoised”?

More formally, most of ML-methods are oriented to achieve high predictive performance

rather than providing explanatory modelling [Shmueli, 2010]. These models aim to mini-

mize the error (a combination of bias and variance) so unless predictions are perfect, there

is a potential that bias exists for denoising techniques trained by predictive performance.

An intuitive example can be data imputation (not quite different of what is done in P2S

effectively). Let’s suppose we delete a small region of a picture and in-painting techniques

are used to fill in the missing region. While we are likely to obtain a reasonable-looking

image that generally conforms to natural image statistics, it is obvious that this is no sub-

stitute for actual measurements. Had there been a specific object in the deleted region,

it is likely that the in-painting approach would miss this completely and instead fill the
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region with general texture priors by, e.g. drawing a river where there was a small village.

The imputation would likely incur a massive bias that can have an enormous impact when

modelling medical signals. Arguably, this type of risk could be assumed if the generative

approach is achieving levels of performance or addressing a task that any other method

can. However, the observed performance of these methods in dMRI is in the same range

as the alternatives in the state of the art and they are not addressing any novel challenge

(not even the noise-floor bias). Note that similar techniques applied in reconstruction

with aims for faster acquisition (and less noise introduced in the final image) may not fall

under the same consideration, as they are learning instead how to select the optimal (and

actually measured) components.

All in all, one could ask whether any dMRI model reviewed in the Background chapters

can be seen also as a denoising approach. In fact, these can be seen arguably as more

advantageous, as they are voxel-wise (so no patch-based smoothing expected) and include

biophysical validated constraints. Nevertheless, sophisticated or not, we have observed

that these forward predictions would become tied to a specific model and its underlying

assumptions. In that respect approaches like P2S (or Eddy’s Gaussian Processes) that

are agnostic to any particular biophysical model may provide a more unbiased forward

prediction for data. However, the question still remains on whether they can be considered

as denoising ”filters” and we expect interesting discussions around this topic in the future.

Limitations and Future Work

Conclusions from our work have certain limitations that open possibilities for future ex-

tensions. Firstly, we have used a specific biophysical model (Ball&Sticks) to evaluate

modelling performance. Findings in this work could vary due to the specific model choice;

we, however, expect that the main trends remain regardless of the biophysical model

used, as some of them are based on evaluations before modelling, i.e. at the signal level.

Secondly, the denoising methods used were ”off-the-shelf” (default) implementations. Po-

tential improvements may be found with dedicated fine-tunning of parameters that suit

better the datasets or evaluations provided. This is in fact one of the applications of

EDDEN, to be used as a framework for denoising optimisation. Hence, there are many

possible experiments that can be done with the actual level of development of the ED-
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DEN framework, such as evaluating a more comprehensive set of algorithms, different

flavours or exploring whether hybrid approaches that combine two or more methods are

advantageous (e.g., as suggested in [Mishro et al., 2021]). Thirdly, we applied denoising

always before distortion correction and did not explore the potential interaction between

the two. It is not clear yet whether denoising should be performed before or after motion

and/or distortion correction. While the signal is assumed to be low-rank in methods like

MPPCA or NORDIC, the reality is that raw signal is not only mixed with thermal noise

but also with random subject motion, volume-to-volume variability, signal dropouts and

other Eddy current distortions. For instance, patch-based denoising can have patches com-

prising of signal piled up/stretched from/to regions outside the considered patch due to

susceptibility-induced distortions. Whether distortion correction before or after denoising

helps performance is something to be explored. This can be linked also to the question

of whether denoising can help in reproducibility of results (e.g. test-retest experiments

[Schilling et al., 2021]) and assist in data harmonisation.

Amongst these future opportunities, another aspect that can be evaluated is whether sig-

nal transformations done to reduce the noise-floor bias after magnitude calculation to

meet statistical assumptions (e.g., Koay’s method of moments [Koay and Basser, 2006;

Koay et al., 2009] or the Variance Stabilization Transform (VST) approach proposed in

[Ma et al., 2020]) or the introduction of terms that compensate for the noise-floor (e.g.

modelling assuming Rician noise instead of Gaussian) can provide any advantage at all

regarding signal rectification, as variations applying it has been found for some models

by previous works (e.g., [Hutchinson et al., 2017]). Preliminary experiments suggest they

don’t; most models already take into account the noise, so these approaches only try to

improve model fitting by adding some components in the model (and, hence, small shifts

in the scalar parameters can exist) but cannot recover the signal already lost under the

rectification, strengthen the idea of denoising in the complex space.

All of the above can be evaluated with the current implementation of EDDEN. However,

a desired extension is to include the framework in fully quantifiable scores, which is

not available currently. This would help in the endeavour of comparing the performance

of different algorithms or finding the optimal parametrisation of each method. Given the
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lack of ground-truth and the complexity of quantifying some parameters, a potential line

of research is the application of unsupervised ML to learn no-reference IQA scores (e.g.,

[Chow and Paramesran, 2016; Lin et al., 2020; Stepień et al., 2021]), such as the Modified-

BRISQUE for MRI [Chow and Rajagopal, 2017] commented previously. This type of score

can offer a more sophisticated alternative to SNR or CNR, where aspects such as spatial

resolution loss or noise-floor could be included. Although the end-goal of EDDEN is to

evaluate real measurements in order to reflect the true complexity of the brain and possible

interactions during acquisition (anatomical complexity, scanner inhomogeneities, motion,

etc.), simulations can be added to the framework to help testing some of these features

(e.g., covariance induced by methods, signal and model parameters ground-truth, etc.).



Chapter 5

Mapping uncertainty in dMRI

using MCMC: A hybrid approach

5.1 Introduction

In the previous chapter, we saw how denoising can be beneficial for increasing data quality

and improving modelling performance. In this chapter, we are concerned with mapping

uncertainty (which can be noise-induced or not) while estimating the parameters of bio-

physical models. We will be relying on a classical Bayesian inference (i.e. MCMC) in

this chapter and we will explore in the next chapter whether alternative options based in

modern ML approaches can offer advantages.

As we saw before, when we fit a model to dMRI data, the task is to estimate the values

of the model parameters ω that best explain the measured images Y . This can be done

either deterministically or stochastically. The latter option is an intriguing choice: instead

of estimating a single value for each model parameter, we can estimate the conditional

distribution π(ω|Y ), also known as the posterior distribution of the parameters given

the data. This distribution provides an inherent characterisation of uncertainty for the

estimated model.

Bayes theorem provides a simple rule to relate this posterior distribution with the like-

lihood function of the data, π(Y |ω), as well as the prior distribution of the model pa-

rameters π(ω). Bayesian inference relies on this rule and offers a suitable framework to

99
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address this estimation problem. However, this also includes the calculation of a quantity

π(Y ), the probability of the data after integrating out all possible model parameter values

(see Equation 3.1), also known as model evidence. In the general case, this can be a high-

dimensional integral (with dimensions as the number of model parameters) not possible

to solve analytically most of the times. To overcome the difficulty of not having access to

the posterior distribution, different approaches can be used to provide an approximated

estimation of the posterior.

Sampling-based methods are a popular option for the estimation of the posterior and

Markov Chain Monte Carlo (MCMC) [Gilks et al., 1995], amongst others, is one of

the most commonly-used. In MCMC, instead of providing an analytic expression of the

posterior density, samples from it are produced without the need of knowing/calculate

the evidence. As the evidence is a normalising constant, the target posterior distribution

can be sampled up to a proportionality constant. MCMC has been extensively applied in

dMRI biophysical modelling (e.g., in [Behrens et al., 2003, 2007; Kaden and Kruggel, 2012;

Pisharady et al., 2018; Sotiropoulos et al., 2013a, 2016]). Despite the strength of MCMC,

it can be very computationally expensive in its most basic form, (Random-walk MCMC),

where independent explorations for each model parameter are performed in the param-

eter space in an iterative fashion. This can be problematic to the degree that bespoke

heavily-parallelised computational frameworks, such as on GPUs ([Hernandez-Fernandez

et al., 2019], are deemed necessary to use these approaches in practice.

Popular alternatives to MCMC include Variational Bayes (VB) [Blei et al., 2017] and

Approximate Bayesian Computation (ABC). In VB, rather than iterative sampling

as in MCMC, a global approximation to the posterior is done under the constraints of an

analytical functional form (typically using Normal distributions) [Chappell et al., 2009;

Kaden et al., 2008]. Although it is considerably faster than MCMC, the posterior distribu-

tions provided may not capture the true uncertainty (they are less specific) and they also

impose assumptions on priors that can make it difficult to incorporate improper priors,

such as shrinkage Automatic Relevance Determination priors, that provide effective ways

for Bayesian model selection [Behrens et al., 2003]. On the other hand, ABC relies on

a generative forward process that allows to address problems where even the likelihood
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is not tractable, although there exists still a dependency on simulations. ABC-inspired

extensions will be the subject of the next chapter.

Here, we revisit the classical Random-walk MCMC paradigm, as initially introduced into

the dMRI field by [Behrens et al., 2003] and [Behrens et al., 2007]. We propose and

evaluate new algorithmic designs that improve efficiency, both for MCMC sampling and

computing. Specifically, we move away from sampling each model parameter indepen-

dently of each other, to a block-update MCMC paradigm that allows inference of multiple

or all model parameters simultaneously. To achieve this, we devise ways to incorporate lo-

cal approximations (Laplace approximations) and parameter covariances into the MCMC.

We demonstrate the utility of this approach in performing more efficient sampling for an

exemplar dMRI biophysical model, the Ball&Sticks.

The chapter is organised as follows: the following section overviews the theory on the

Markov-Chain Monte Carlo and the Laplace approximation. In Methods, we propose three

different algorithmic designs for block updates: 1) an Independence sampler, 2) a Random-

Walk Block-proposal MCMC, and 3) a Hybrid design of the block and individual update

of parameters. We also provide details about the Ball&Sticks model implementation used

for this chapter, the evaluation metrics, and the synthetic and real used for them. Results

follow, where we evaluate the different designs in simulated and in-vivo brain data. The

chapter ends with a discussion about the results obtained, contributions and limitations,

and the potential future steps of this line of research.

5.2 Theory

5.2.1 Markov-Chain Monte-Carlo (MCMC) sampling

The Markov-Chain Monte-Carlo (MCMC) algorithm is the result of combining different

concepts to achieve the sampling of a target density distribution π(q):

• Monte-Carlo: Formally, these are non-deterministic numerical methods used to

approximately calculate a definite integral. In Bayesian inference, they discretise

the problem of estimating the evidence, converting the integration into a summation

(see eq.5.1). For this discretisation, pseudorandom numbers are sampled from a
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known probability distribution.

• Markov-Chain: This is a stochastic model describing a sequence of events, in which

the probability of each event depends only on the state attained in the previous

event. To perform a stochastic exploration of the parameter space, the MCMC uses

a Markov chain C.

In the problem addressed in this chapter, the target density distribution π(q) is the pos-

terior distribution of parameters ω given the observed data Y , i.e. π(q) = π(ω|Y ). Hence,

a Markov-Chain Monte-Carlo method relies on a sampler where the next (ωnew) position

depends only on the current position (ω). To generate the Markov chain C, a function

f(ωnew|ω) is applied sequentially to move stochastically from the current position ω to

the new point ωnew. In the context of MCMC samplers, this function is generally known

as the proposal distribution. In the simplest implementation, with the unique constraint

of preserving the target distribution π(ω|Y ), C is expected to generate a random walk

across the regions of high probability, from which we can compute the expectation Eπ(ω|Y ).

Hence, the MCMC sampling process can be expressed as:

Eπ(ω|Y ) =

∫
Ω
π(ωnew) · f(ωnew|ω) · dωnew −→ Eπ(ω|Y ) =

1

N

N∑
i=1

f(ωinew) (5.1)

The aim is to sample from regions that generate the largest contributions to the expec-

tation Eπ(ω|Y ) rather than computing the target distribution analytically. The sampling

should be concentrated in parts of the parameter space that are relevant for the target

density π(ω|Y ); this is called the typical set and denotes the set of parameter space

where the stochastic exploration is made by the Markov-Chain.

Monte-Carlo’s estimation has an absolute error proportional to 1/sqrt(N) (Central Limit

Theorem). This theoretically guarantees that, given enough computational resources or

time (to do enough iterations), the chain will explore completely any target distribution

regardless of where the chain has been initialized: limC→∞Eπ(ωnew|Y ) = Eπ(ω|Y ). How

many are enough cannot be easily defined and will depend on many factors, such as the

complexity of the distribution, the precision of the result required, the implementation of

the MCMC, etc. Therefore, an open problem is to determine how many steps are needed

to converge to the target distribution within an acceptable error.
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Figure 5.1: The Metropolis-Hastings MCMC algorithm comprises two main steps: the
proposal values and a rejection-acceptance step that corrects such proposals to continue the explo-
rations in the typical set.

Different MCMC step sampling methods follow different approaches to perform the

stochastic transitions in parameter space;throughout this chapter, theMetropolis-Hasting

(MH) algorithm [Hastings, 1970; Metropolis et al., 1953] will be used to sample from

posterior distributions of the form π(ω|Y ) when estimating the parameters ω given the

measurements Y .

The MH algorithm introduces two main steps into the MCMC sampling [Hastings, 1970]:

1) a proposal distribution π(ωnew|ω) to build the stochastic Markov chain, and 2) a sample

acceptance/rejection based on the Metropolis-Hasting’s criteria. The original MH-MCMC

algorithm, also called Random Walk Metropolis (RWM), utilizes a univariate Gaus-

sian distribution as the proposal, centred on the last accepted ω value with random jumps

given as a function of the standard deviation σ2:

π(ωnew|ω) = N (ω, σ2) (5.2)

Regarding the acceptance criteria, the probability of accepting the new value ωnew as a

sample of the target distribution depends on the quantity r:

r = min

(
1,
π(ω|ωnew) · π(ωnew|Y )

π(ωnew|ω) · π(ω|Y )

)
(5.3)
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Being a Gaussian, π(ωnew|ω) is a symmetric distribution in the random-walk setup (i.e., the

likelihood of jumping to ωnew from ω is the same as the likelihood of jumping back to ω from

ωnew). Therefore, the proposal densities in eq.5.3 cancel because π(ωnew|ω) = π(ω|ωnew),

leaving for the acceptance criteria the compact form of:

r = min

(
1,
π(ωnew|Y )

π(ω|Y )

)
(5.4)

Then, if u < r with u ∼ U(0, 1), the proposed sample ωnew is accepted as a sample from

the target distribution and the algorithm repeats itself by starting at the new sample ωnew;

otherwise, the sample is rejected and the algorithm starts in the next iteration at the last

accepted sample ω. The algorithm is self-repeating, so it can be carried out as long as

required. In practice, the total number of samples needed from the target distribution is

decided in advance.

Finally, it is noteworthy that, for numerical reasons, the target density in eq.3.1 can be

also expressed in logarithmic terms. In such case, the negative log-posterior distribution

is also known as energy function, E (i.e., the unnormalized negative log-density):

E = − log(π(ω|Y )) = −(log(π(Y |ω)) + log(π(ω))) (5.5)

Taking the log allows to turn multiplications of many quantities smaller than 1 (e.g. the

priors) to addition, therefore ensuring numerical stability. All in all, the logarithm is a

monotonic function and does not change the properties of the density functions.

Dependence on initialization and burn-in

Under ideal conditions, Markov chains explore the target distribution in three distinct

phases: 1) First, the Markov chain has to converge to the typical set, i.e. to parts of the

parameter space relevant to the target distribution; 2) Once the Markov chain finds the

typical set, the bias decreases rapidly and the estimators become much more accurate; 3)

As the Markov chain refines its exploration of the typical set, it gradually reduces estima-

tor errors towards zero.

Depending on the initial value of the parameters and the covariance of the proposal distri-



Chapter 5. Theory 105

bution, convergence could take a very long time. Parameters can be initialised randomly

from the prior distribution or through a deterministic fitting method that helps to start

close to an approximate typical set and accelerate convergence.

Finally, if the Markov chain is run for an infinite amount of time, the effect of the initial

values decreases to zero. In practice, we only have time for a limited number of samples.

Hence, the samples generated by the Markov chain during the initial walk for identifying

the typical set can bias the estimators. To ensure convergence to the target distribution,

it is common practice to discard a chosen number of early samples (burn-in period).

This is the time considered necessary for the algorithm to stabilize and converge to the

target posterior distribution (i.e. to go from step 1 to 2).

5.2.2 Mixing and sampling efficiency in random-walk MCMC

Because of its simplicity and ease of implementation, Random-walk Metropolis (RWM) is

still popular in many applications. Unfortunately, implementation simplicity comes with

poor scaling behaviour for both many dimensions and complex target distributions.

When the number of dimensions of the target distribution rises, RWM tends to suffer from

the curse of dimensionality. The volume of the typical set gets squeezed in the parameter

space and the regions of relevance for the target distribution tend to stretch and get lost in

an increasing volume of space that gives little contribution to the desired integral. I.e. it

becomes more likely to obtain a point outside the typical set in the new RWM proposals,

leading to many proposed samples being rejected by the MH criteria. As a consequence,

the resulting Markov chain experiences poor mixing, traversing slowly the parameter space

and proposing many correlated samples, which results in biased estimations.

This is a problem of mixing and sampling efficiency. Assuming the model is correctly

specified (excessive auto-correlation may indicate problems with model specification also)

and that we have reached the stationary target distribution (i.e., we are at step 2 described

in sec.5.2.1), there are a couple of strategies commonly used to mitigate most of these

issues: thinning and Adaptive sampling.
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Thinning to reduce sample auto-correlation in Markov Chains

Thinning is useful to reduce the auto-correlation of an already obtained chain. A chain

can be thinned by keeping every t-th sampled drawn. E.g., thinning of t = 20 means keep-

ing only 1 from every 20 consecutive samples (as they are likely correlated and, therefore,

offering similar information).

Note that, although it is a common trick applied to already sampled distributions and

it has been found to be convenient, this implies throwing away a t−1
t fraction of all the

posterior samples generated. This is a considerable waste of computational time, i.e., it

is not improving the efficiency of the sampler nor reducing the number of jumps but only

the number of already obtained samples.

Adaptive Metropolis

The acceptance rate and estimator errors are closely related to the sampling efficiency of a

Metropolis chain. For RWM, a high acceptance rate means that most new samples occur

close to the current data point, i.e. the Markov chain is moving rather slowly and not

exploring the full parameter space. On the other hand, a low acceptance rate means that

the proposed samples are often taken far from the target distribution and, consequently,

rejected. In both cases, obtained samples are likely to be autocorrelated, producing biased

estimators.

The scale in the proposal distribution effectively controls this acceptance probability. Ide-

ally, an efficient Metropolis sampler has an acceptance rate that is neither too high (it is

not moving around the mode only) nor too low (it is not only producing samples from

outside of the posterior). With such optimal design, efficiency is achieved by reducing

the total number of jumps needed to estimate the posterior distribution. For instance,

[Gelman et al., 1997] showed that if both the target and proposal densities are normal,

and the width of the proposal distribution is correct, the optimal acceptance probability

for the Markov chain should be around 0.45 in a single dimensional problem (for unimodal

Gaussian distributions), and asymptotically approaches 0.234 in higher dimensions. If the

initialization is not good enough, a strategy to reach an optimal covariance is by intro-

ducing an Adaptive Metropolis algorithm, where the proposals are scaled by a correcting
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factor λL.

π(ωnew|ω) = ω + λ · N (0, σ2) (5.6)

There are different strategies to update the value of λ. For instance, for normal proposal

distributions, [Haario et al., 2001] proposed to automatically adapt the width of the pro-

posal distributions of each parameter independently, during the burn-in phase, by a λL as

a function of the observed acceptance rate and the target acceptance rate:

λL =
1 + accepted

1 + rejected
> 0 (5.7)

In particular, this λL is designed to have an acceptance ratio close to 50% in the RWM.

If the acceptance ratio in a given tuning loop L is too low, new samples come from the

tails or outside of the acceptance interval. Hence, the scale of λ is reduced, reducing the

step-size in new jumps and avoiding new proposals trying to exit the high probability

regions. On the other hand, if the acceptance ratio is too high, most of the samples

may be obtained from the neighbourhood of the mode. In this situation, the posterior

distribution is not being fully sampled (or it will require many steps for accurate results),

so λL will be increased providing a larger step-size in new jumps to reach regions in the

tails. Thus, the advantage of the Adaptive Metropolis is that it adjusts the proposal

variances automatically. The 1 added in both numerator and denominator can be set to

any small value δ > 0; it is included just for numerical reasons, to prevent λL becoming 0

if the number of acceptances or rejections is 0.

5.2.3 Model selection and automatic relevance determination

In many cases, it is useful to establish the relevance of some model parameters in a nested

model fitting setting, i.e. where a parent model can be reduced to simpler models with a

subset of the original parameters. Deciding which of these models is supported by the data

is a model selection problem. In dMRI multi-compartment biophysical models, it is often

needed to establish whether the addition of a compartment to the model is supported by

the data. For instance, when estimating fibre orientations, different voxels may have a

different number of fibres. In such scenarios, we need a technique to decide how many

model parameters/compartments are relevant and therefore adjust the parameter space
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accordingly.

A technique used in Bayesian inference serves this aim automatically and is known as

Automatic Relevance Determination (ARD) [MacKay, 1995; Wipf and Nagarajan,

2007]. ARD requires the use of a certain type of prior on the parameter whose relevance

needs to be determined. This prior distribution can take a number of forms, with one

of the simplest being a Gaussian distribution with zero-mean but unknown variance (see

appendix B.6).

π(ω)ARD ∼ N (0, σ2ARD) (5.8)

The variance σARD is then estimated as a hyper-parameter. If there is no evidence in the

data for the existence of the original parameter ω, this variance term will shrink, giving a

very strict prior around zero and forcing ω to zero (hence turning off effectively the part

of the model linked to that parameter). However, if ω is supported by the data, σ2ARD will

obtain high values, making the prior wide (at the extreme a uniform distribution). This

will allow freedom for ω to take any value supported by the data.

By using these sparsity-induced priors, we can effectively perform an online model-selection

in the presence of multiple compartments in the model, as any unnecessary parameters are

automatically forced to zero. By setting ARD priors to the volume fraction parameters of

these compartments, we a-priori penalise the existence of multiple compartments and let

the data likelihood contribution point towards adding compartments for improved poste-

riors. As indicated in [Behrens et al., 2007], the expression of the Gaussian distribution

based ARD applied to fi can be simplified to:

π(ω)ARD ∼ 1

ω
(5.9)

Using ARD is different from other model selection techniques, as it does not need fitting

different models to the data separately, and comparing them on the basis of a metric

reflecting data fit and model complexity. As long as the modes are nested, when we use

ARD we fit the more complex model, but ensuring that parameters that are not supported

by the data do not contribute to the likelihood.
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5.2.4 Improving random-walk MCMC: Block proposals and the Laplace

approximation

One of the greatest challenges in MCMC sampling is achieving good mixing of the chains.

A number of factors determine the performance of a Metropolis sampler. For instance,

when sampling each parameter individually with a univariate proposal in multidimensional

problems, as in the RWM, the chain may mix too slowly because of marginal target dis-

tributions being too narrow and also because of ignoring structure and covariances in the

parameters. Hence, it can take a long time for the chain to fully explore each dimension

alone. In such multivariate parameter model, if all parameters were proposed with one

joint proposal distribution, the sampling and the evaluation of the likelihood would

occur for all of them once at the same time. Then, if accepted, this could accelerate by

xK the MCMC algorithm, where K is the number of parameters in the joint proposal.

The challenge here is to find such a joint proposal (called block-proposal for the rest of

the chapter) that resembles the actual posterior distribution of the parameters, as that is

the distribution used to sample from in order to approximate the posterior. That is, it

should mimic both the mode and the covariance. The Large sample theory states that the

posterior distribution of a set of continuous parameters can be well approximated by a

multivariate normal distribution (see [Gelman et al., 2015], Appendix B, and Section 7.4

of [Schervish, 1995]). That is why a multivariate normal block proposal often works well

in practice.

π(Ωnew|ω) = MVN (Ω,Σ) (5.10)

where Ω denotes a vector with the modes of the parameters, Ω = (ω1, ω2, ..., ωk), and Σ

is the covariance matrix. However, making this multivariate proposal adaptive is not as

straightforward as in the univariate case given the interaction between parameters in the

covariance matrix. Providing a good initialisation or learning a proper covariance Σ that

produces a good ratio of acceptances and rejections can be a challenge, especially when

the model parameters vary by more than a few orders of magnitude or if the posterior

correlations are high. The simplest approach is to initialize Σ by using an identity matrix

multiplied by a factor. However, this can take a number of tuning phases before the
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proposal distribution is tuned to be optimal. Numerical optimization routines, such as the

quasi-Newton method, can be also employed to find a starting covariance matrix in a more

efficient way. Deterministic non-linear optimization is performed on the joint posterior

distribution to find its mode, and the covariance matrix is a quadratic approximation at

the posterior mode. However, there are cases where the optimization could fail to find

a covariance matrix that is positive definite. An alternative for initializing this block

covariance is using a Laplace approximation [MacKay, 1992; Tierney and Kadane, 1986].

The Laplace approximation

The Laplace approximation (LA) is an integral approximation method [MacKay, 1992;

Tierney and Kadane, 1986]. In a Bayesian framework, it provides a way of locally approx-

imating a density whose normalization constant (evidence) cannot be evaluated. More

specifically, the LA entails approximating the joint posterior π(ω|Y ) by a multivariate

normal distribution, which provides an analytical solution for the integral. Generally, the

LA relies on approximating any function f(x) by a second-order Taylor series expansion

around the value x∗:

f(x) ≈ f(x∗) + f ′(x∗)(x− x∗) + 1

2!
f ′′(x∗)(x− x∗)2 + ... (5.11)

Therefore, to approximate the log-density, Log(π(ω|Y )), around the Maximum A Poste-

riori (MAP) estimate x∗ = ω̂:

log(π(ω|Y )) ≈ f(ω̂) + f ′(ω̂)(ω − ω̂) +
1

2
f ′′(ω̂)(ω − ω̂)2 = f(ω̂) +

1

2
f ′′(ω̂)(ω − ω̂)2 (5.12)

as f ′(ω̂) = 0 (because ω̂ is the maximum). The resultant expression above can be reshaped

into the expression of a Gaussian density, which is effectively the Gaussian approximation

q(·) to the log-posterior proposed by the LA:

q(·) ≈ log(N (ω|µ,Σ)) ≈ log(2π)−1/2 · Σ−1/2 · exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
=

1

2
log(Σ)− 1

2
log(2π)− 1

2
Σ−1(ω − µ)2 =

1

2
log(

Σ

2π
)− 1

2Σ
(ω − µ)2 (5.13)

Thus, the LA results in a local Gaussian approximation to the log-posterior centred around

the estimated mode µ = ω̂ and with negative curvature at the mode Σ = −f ′′(ω̂)−1.
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This technique can be used for reasonably well-behaved functions that have most of their

mass concentrated around a small area and has very rapidly decreasing tails, i.e. this

approximation works well if the posterior distribution is similar to normal distribution

but it will suffer if the posterior is not bell-shaped distribution e.g., multimodal or highly

skewed (see Fig.5.2).

Figure 5.2: Examples of Laplace Approximation (LA) - Left: Approximation to a unimodal
bell-shaped distribution, where the LA can capture most of the density. Right: Approximation to a
bimodal posterior; as it deviates from expected Gaussianity, there are regions that the LA cannot
cover. Figure reproduced from https://pat.chormai.org/blog/2021-laplace-approximation

Hence, this approximation q(·) can be used as the multivariate Gaussian proposal distri-

bution of the MCMC, π(ωnew):

π(ωnew|ω̂,−H−1) ∼ N (ω̂,−H−1) (5.14)

where

H =
∂2 log(π(ω|Y ))

∂Y 2
|ω=ω̂ (5.15)

and ω̂ is the MAP value that maximises the logarithm of the posterior distribution

ω̂ = argmax
ω

(log(π(ω|Y )) (5.16)

Note that here the proposal in eq.5.14 is not conditional on previous accepted ω values (as

in eq.5.10 or eq.5.6), but fixed. This is the basis of the known Independence Sampler,

which assumes that the LA approximation is accurate enough and does not require the

implementation of a Markov Chain to search in the parameter space. Then, under the

assumption of non-informative priors, eq.5.15 and 5.16 reduce to finding the mode and the
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inverse Hessian of the likelihood, respectively. This inverse of the Hessian can be actually

used as the variance-covariance matrix in a block-RWM, i.e. it is not limited to operating

in Independence Sampler only (see Appendix C for demonstrations).

5.3 Methods

As explained above, one of the main challenges of the Random-walk MCMC (RWM) re-

lies on its sampling and computational efficiency. This burden becomes more relevant

in data-heavy scenarios like diffusion MRI, where likelihoods need to be computed thou-

sands of times for every model parameter in every voxel. To solve these challenges, we

devise new MCMC approaches that i) use block proposals that consider correlations in

the parameter space and have more efficient jumps for groups of parameters compared to

random-walk independent jumps, ii) use the Laplace approximation to find a proper ini-

tialization of the covariance matrix for block proposals, iii) employ optimal subsets of the

parameters to accommodate the coexistence of proper and improper priors (such as ARD).

The description of such algorithms is presented in this section. We apply these to an

exemplar model, the Ball&Sticks model, and we compare them with the original random-

walk MH-MCMC implementation [Behrens et al., 2007]. We start by presenting this

RWM and subsequently how this can be improved using the proposed designs. The data

and evaluations employed to assess the performance of the proposed methods are also

described.

5.3.1 Inference for the Ball&Sticks model using random-walk MH-MCMC

As an exemplar biophysical model for this work, we use the Ball&Sticks model (see

eq.5.18). A Bayesian inference approach for this model using RWM is available in FSL

[Behrens et al., 2007] and we will use a similar implementation in Python here. Assuming

independence between diffusion-sensitising measurements i (i = 1 : N), and zero-mean

additive Gaussian noise with precision τ = 1/σ2, the likelihood function of the data,

π(Y |ω), is [Behrens et al., 2003]:

π(Y |ω, τ) ∼ N (Si, τ)
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⇒ π(Y |ω, τ) =
N∏
i=1

( √
τ√
2π

)
· exp

(
−τ
2

N∑
i=1

(Yi − Si)
2

)
(5.17)

where Yi is the measured signal with gradient i, N is the number of gradients or volumes,

ω are model parameters of interest, and Si is the predicted signal by the forward model,

given by the Ball&Sticks model (see 2.2.4):

Si(bi, gi, ωi) = S0 ·

(1− M∑
j=1

fj) · exp(−bi · d) +
M∑
j=1

fj · exp
(
−bi · d · (gi · vTj )2

) (5.18)

with S0 the measured signal with no diffusion-sensitising gradients applied, d is the dif-

fusivity, fj and vj are the volume fraction and fibre orientation vector of the j-th stick

(j = 1 :M), respectively, and bi and gi are the magnitude and vector direction of gradient

i (i.e., b-value and b-vector), i = 1 : N . Note that vTj is commonly expressed in spherical

coordinates, as it allows to reduce the number of unknown parameters (from x, y, z to

θ, ϕ):

vj : [xj , yj , zj ]cartesian → [cos(ϕj)sin(θj), sin(θj)sin(ϕj), cos(θj)]spherical (5.19)

Acquisition parameters bi and gi are known, so the unknown parameters are {S0, d, θj , ϕj , fj , τ}.

It is possible to marginalize out the precision parameter τ (see appendix B.4), having as

a result a likelihood dependent only on model parameters ω:

π(Y |ω) ∝
∑N

i=1 (Yi − Si)
2

2

−N
2

(5.20)

⇒ log(π(Y |ω)) ∝ −N
2

· log

(∑N
i=1 (Yi − Si)

2

2

)
(5.21)

Regarding the prior distributions of the parameters, π(ω), non-informative distributions

can be used [Behrens et al., 2003], besides from a positivity constraint on S0, d, and fj

(for j >= 1). For secondary volume fractions, ARD priors are used in order to discern

whether they are needed or not:

π(θj , ϕj) ∼ U(0, 2π)|cart →
| sin θj |

2
|sph
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π(f1) ∼ U(0, 1)

π(fj) = − 1

fj
(j ≥ 2)

π(d) ∼ U(0, 1)

π(S0) ∼ U(0, ∞)

Putting all the above together (the priors and the likelihood), and following the Bayes

Rule, the posterior distribution π(ω|Y ) has the following form:

π(ω|Y ) ∝ π(Y |ω) · π(θ, ϕ) · π(f) · π(d) · π(S0) (5.22)

And in terms of energy function E :

E = − log(π(ω|Y )) ∝ N

2
log

∑N
i=1 (Yi − Si)

2

2
−

M∑
j=1

log
|sin(θj)|

2
+

M∑
j=2

log(fj) (5.23)

Model parameters are initialised by a non-linear deterministic fitting (i.e., the Levenberg-

Marquadt, (LM)) to the signal measured. For further considerations about the initial-

ization of the parameters, see appendix B.2. The adaptive Metropolis implemented has

been detailed in sec.5.2.2. The RWM algorithm implemented can be found in Algorithm 1.
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Algorithm 1 Adaptive Univariate RWM

Require: Y , π(Y |ω), π(ω)

1: procedure Estimate π(ω|Y )

2: Initialize MCMC parameters ▷ jumps, burn-in, λL, etc. defined by user

3: Initialize forward model and x0 ▷ See appendix B.2

4: ωold = x0

5: Calculate π(Y |ωold) and π(ωold) ▷ ARD applied

6: Calculate π(ω|Y )old ▷ Bayes Rule

7:

8: for l = 1 to burn− in+ njumps do

9: for k = 1 to nparams do

10: Propose ωnewl,k ∼ λL · N (ωoldk , σ) ▷ following eq. 5.10

11: if ωnewl,k is within boundaries then

12: Calculate π(Y |ωnewl,k ) and π(ωnewl,k ) ▷ ARD applied

13: Calculate π(ω|Y )new ▷ Bayes Rule

14: r = min
(
1,
π(ωnew)

π(ωold)

)
15: if r < U(0, 1) then ▷ MH acceptance criteria

16: Store ωnewl,k samples ▷ For π(ω̂|Y )

17: Update ωoldk = ωnewl,k

18: Update π(ω|Y )old = π(ω|Y )new ▷ ωl,k is accepted

19: else

20: Go to line 23

21: end if

22: else

23: Store ωoldk samples ▷ For π(ω̂|Y )

24: Keep ωoldk = ωoldk ▷ ωnewl,k is rejected

25: Keep π(ω|Y )old = π(ω|Y )old

26: rejected =+ 1

27: end if

28: end for

29: if i = mod(L) then

30: Update λL

31: Reset accepted and rejected counters

32: end if

33: end for

34:

35: Discard burn-in samples in π(ω̂|Y )

36: Sample every X samples of π(ω̂|Y ) ▷ Thinning

37: return π(ω̂|Y )
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5.3.2 Alternative designs to random-walk MH-MCMC

Method 1: Independence Sampler

In the standard RWM implementation, the univariate proposal distribution depends on

the current values of the parameters so the next jump starts from that point, and does

so independently for each parameter dimension. The most efficient alternative (assuming

the proposal distribution is correct) is to define a fixed joint proposal distribution

(i.e. no adaptive steps nor Markov-Chain), from where new samples are proposed as a

block at every iteration, considering all parameters at once. This paradigm is known as

Independence sampler as there is no dependence on the previous steps of the chain.

Hence, it is crucial to achieve a proposal distribution that mimics the target density so

the independence sampler will propose values for the parameters that are close to the real

values and, therefore, have a sufficient acceptance ratio and allowing for a reduction in

the computation needed.

Here, we use the Laplace approximation of the joint posterior of all parameters to de-

fine such proposal. In order to calculate the covariance matrix, we need to get the second

derivatives with respect to the parameters we want to estimate (the Hessian of the energy

function). The Hessian is then evaluated at an optimum of the parameter space and we

find these values for the model parameters by a non-linear fit to the observations. The

analytical derivatives to compute the Hessian for the Ball&Sticks model with 3 sticks can

be found in appendix C.2. This analytical derivation of the Hessian will be used for all

the methods proposed in this chapter (except the univariate RWM, as it does not need

it).

It’s important to note that with this proposal the symmetric assumption used in Metropo-

lis of π(ωnew|ω) ≡ π(ω|ωnew) is not valid anymore. It is therefore necessary to revert the

MH acceptance criteria to its original form of eq.5.3.

A limitation of this implementation is that only proper priors can be considered (i.e., no

ARD priors are used), as the Laplace Approximation works under the assumption well-

behaved density functions. We do not expect particularly efficient performance from this

algorithm, but it is considered here as a building block for the following designs.



Chapter 5. Methods 117

Algorithm 2 Independence Sampler

Require: Y, π(Y |Ω), π(Ω), Hessian H

1: procedure Estimate π(Ω|Y )

2: Initialize MCMC parameters ▷ jumps, burn-in, λL, etc. defined by user

3: Initialize forward model x0 and covariance Σ ▷ See appendices B.2 and C.2

4: Calculate π(Y |x0) and π(x0) ▷ No ARD priors

5: Calculate π(Ω|Y )old = π(Y |x0) · π(x0) ▷ Bayes Rule

6:

7: for l = 1 to burn− in+ njumps do

8: Propose Ωnewl ∼ N (x0,Σ) ▷ Independence Sampler

9: if all ωk in Ωnewl are within boundaries then

10: Calculate π(Y |Ωnewl ) and π(Ωnewl ) ▷ No ARD applied

11: Calculate π(Ω|Y )new ▷ Bayes Rule

12: r = min
(
1,
π(x0|Ωnew

l )·π(Ωnew
l )

π(Ωnew
l

|x0)·π(x0)

)
13: if r < U(0, 1) then ▷ MH acceptance criteria

14: Store Ωnewl samples ▷ For π(Ω̂|Y )

15: Update π(Ω|Y )old = π(Ω|Y )new ▷ ωl,k is accepted

16: else

17: Go to line 19

18: end if

19: else

20: Store x0 samples ▷ For π(Ω̂|Y )

21: Keep π(Ω|Y )old = π(Ω|Y )old ▷ Ωnewl is rejected

22: end if

23: end for

24:

25: Discard burn-in samples in π(Ω̂|Y )

26: Sample every X samples of π(Ω̂|Y ) ▷ Thinning

27: return π(Ω̂|Y )

Method 2: Adaptive Block-RWM

An alternative to the simple Independence Sampler can be obtained by introducing two

modifications: 1) A random walk paradigm within the joint proposals, i.e. the joint pro-

posal of all parameters depends on the current values of the chain, rather than being a fixed

proposal. 2) Fine-tune the covariance of the joint proposal in an adaptive style. Hence, we

are still updating all the parameters at once (in a block) and the Laplace approximation

is still used to initialize the joint proposal distribution (modes and covariances). However,

modification 1) helps to reach the multivariate target posterior if the initialization is not

good enough; and modification 2) allows the covariance to be updated along the proce-

dure, which can add flexibility to the new proposals and increase the acceptance ratios,
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especially if the covariance provided by the LA is not good enough (e.g., when working

with not bell-shaped target distributions).

As we have seen in the theory section, there are multiple options to adapt the covariance

Σ. For instance, the tuning phase can be used to find an optimal scale for the covari-

ance matrix Σ and, again, there are multiple ways to define this optimal scale. Here, as

acceptance/rejections happen for all parameters simultaneously, we implement the same

adaptive Metropolis scheme used in the univariate RWM, where a factor λL is updated

every L MCMC iteration. Finally, as we allow for adaptive covariances and the LA is

used only to initialize the proposal, we can use ARD priors, such as ARD ∼ 1
fj

for fj (for

j > 1).

Algorithm 3 Adaptive Block-RWM

H]
Require: Y, π(Y |Ω), π(Ω), Hessian H
1: procedure Estimate π(Ω|Y )
2: Initialize MCMC parameters ▷ jumps, burn-in, λL, etc. defined by user
3: Initialize forward model x0 and covariance Σ ▷ See appendices B.2 and C.2
4: Ωold = x0
5: Calculate π(Y |Ωold) and π(Ωold) ▷ ARD optional
6: Calculate π(Ω|Y )old ▷ Bayes Rule
7:
8: for l = 1 to burn− in+ njumps do
9: Propose Ωnewl ∼ λL · MVN (Ωoldl ,Σ) ▷ following eq.??
10: if all ωk in Ωnewl are within boundaries then
11: Calculate π(Y |Ωnew) and π(Ωnewl ) ▷ ARD optional
12: Calculate π(Ω|Y )new ▷ Bayes Rule

13: r = min
(
1,
π(Ωnew)

π(Ωold)

)
14: if r < U(0, 1) then ▷ MH acceptance criteria

15: Store Ωnewl samples ▷ For π(Ω̂|Y )

16: Update Ωold = Ωnewl

17: Update π(Ω|Y )old = π(Ω|Y )new ▷ Ωnewl is accepted
18: accepted =+ 1
19: else
20: Go to line 23
21: end if
22: else
23: Store Ωold samples ▷ For π(Ω̂|Y )
24: Keep Ωold = Ωold ▷ Ωnewl is rejected.

25: Keep π(Ω|Y )old = π(Ω|Y )old

26: rejected =+ 1
27: end if
28: if i = mod(L) & Adaptive=True then
29: Update λL
30: Reset accepted and rejected counters
31: end if
32: end for
33:
34: Discard burn-in samples in π(Ω̂|Y )

35: Sample every X samples of π(Ω̂|Y ) ▷ Thinning

36: return π(Ω̂|Y )



Chapter 5. Methods 119

Method 3: Hybrid-MCMC

The advantages of treating all model parameters jointly, as done in the previous algo-

rithms, are linked to the challenges of finding an appropriate joint proposal. In practice,

grouping all parameters in the same set can be rather inefficient, especially when parame-

ters have vastly different scales as in the Ball&Sticks model or can become degenerate due

to ARD priors. Also, as the number of parameters gets large, it is much more likely to

have (proposal) samples that fall well into the tails of the target distribution, producing

too small acceptance ratios.

An intermediate alternative to alleviate these difficulties is to allocate a group of param-

eters into smaller blocks and update them sequentially. To the best of our knowledge,

there is no theory to determine an optimal ”blocking” for an arbitrary parametric model.

A rule of thumb followed in practice is to form small groups of correlated parameters that

belong to the same context in the formulation of the model.

We therefore implemented an approach that performs block-updates on a subset of pa-

rameters, while leaving parameters with improper priors to be updated independently.

We called it Hybrid-MCMC. More specifically, we evaluated two potential blocking

configurations in preliminary experiments:

• Hybrid-MCMC configuration 1 (or Hybrid1): We split the parameters based

on potential degeneracy due to ARD priors. We considered block Ω1 = {s0, d, θ1, ϕ1, f1},

being the parameters that are always relevant for the model and block Ω2 = {θ2, ϕ2, θ3, ϕ3},

being that parameters that can become degenerate, as they reflect compartments

with an ARD on the respective volume fractions. Parameters in each of these blocks

are treated jointly. We perform independent jumps for parameters f2 and f3, where

ARD priors are applied, i.e. Ω3 = {f2} and Ω4 = {f3}.

• Hybrid-MCMC configuration 2 (or Hybrid2): We split based on contextual

similarity, with blocks Ω1 = {s0, d, f1}, containing non-orientational parameters

and Ω2 = {θ1, ϕ1, θ2, ϕ2, θ3, ϕ3} being the parameters that represent orientations in

a wrapped [0, 2π] space. Parameters in each of these blocks are treated jointly. We

perform independent jumps for parameters f2 and f3, where ARD priors are applied,
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i.e. Ω3 = {f2} and Ω4 = {f3}.

Both hybrid-MCMC configurations can still accelerate the MCMC process updating most

of the parameters in a block-manner while leaving freedom to use sparsity priors for model

selection on the fly.

Algorithm 4 Hybrid MCMC

Require: Y, π(Y |ω), π(ω), Hessian H
1: procedure Estimate π(ω|Y )
2: Initialize MCMC parameters ▷ jumps, burn-in, λL, etc. defined by user
3: Initialize forward model x0 and covariance Σ ▷ See appendices B.2 and C.2
4: ωold = x0
5: Define K blocks of parameters ωk and covariance Σk
6: Calculate π(Y |ωold) and π(ωold) ▷ ARD applied
7: Calculate π(ω|Y )old ▷ Bayes Rule
8:
9: for l = 1 to burnin+ njumps do
10: for k = 1 to nblocks do
11: Propose Ωnewl,k ∼ Ωoldk + λL · N (0,Σj) ▷ following eq. ??

12: if all ω in Ωnewl,k are within boundaries then

13: Calculate π(Y |Ωnewl,k ) and π(Ωnewl,k ) ▷ ARD applied

14: Calculate π(Ω|Y )new ▷ Bayes Rule

15: r = min
(
1,
π(Ωnew)

π(Ωold)

)
16: if r < U(0, 1) then ▷ MH acceptance criteria

17: Store Ωnewl,k samples ▷ For π(Ω̂|Y )

18: Update Ωoldk = Ωnewl,k

19: Update π(Ω|Y )old = π(Ω|Y )new ▷ Ωnewl,k is accepted

20: accepted =+ 1
21: else
22: Go to line 26
23: end if
24: else
25: Store Ωoldk samples ▷ For π(Ω̂|Y )

26: Keep Ωoldk = Ωoldk ▷ Ωnewl,k is rejected.

27: Keep π(Ω|Y )old = π(Ω|Y )old

28: rejected =+ 1
29: end if
30: end for
31: if i = mod(L) then
32: Update λL
33: Reset accepted and rejected counters
34: end if
35: end for
36:
37: Discard burn-in samples in π(ω̂|Y )
38: Sample every X samples of π(ω̂|Y ) ▷ Thinning
39: return π(ω̂|Y )

5.3.3 Data

Simulated data

First evaluations of the proposed algorithms were done in simulated data. The dMRI

signal was simulated using the Ball&Sticks model and a single-shell (b = 1000 s/mm2)

sampling scheme with 64 diffusion sensitizing directions and 5 b0 = 0 volumes. Gaussian
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noise was added to the signal in quadrature (i.e. resulting to Rician noise) for the b = 0

s/mm2 signal. Using this parametrisation, we simulated three datasets (see also Fig.5.3):

• Dataset A: dataset simulated with a single fibre orientation per voxel. We

kept fixed S0 = 1000, d = 0.0012 [mm2/s]. We vary the volume fraction in steps of

∆f1 = 0.1 from f1 : [0.1 − 0.9], and the orientation v1 keeping fixed ϕ1 = π/6 [rad]

and varying θ1 : [0, π/2] [rad] with increasing ∆θ1 = π/10 [rad]. A total of 5x8 voxels

were simulated per realisation. The aim of this dataset is to evaluate whether the

algorithms can perform online model selection and return accurate estimates in a

fairly simple fibre configuration with different values of volume fraction and fibre

orientation.

• Dataset B: dataset simulated with with two fibres per voxel. We kept fixed

S0 = 1000, d = 0.0012 [mm2/s] and v1 = [1, 0, 0]cart. Volume fractions of both

fibres were kept as equal f1 = f2, varying in a range of fi : [0.2 − 0.45] with steps

of ∆fi = 0.05. Simultaneously, we vary the crossing angle Xangle between v1 and

v2 such as Xangle : [40 − 90](◦) with ∆Xangle = 5◦. A total of 5x10 voxels per

realisation. Similar to Dataset A, here we evaluate whether they can perform online

model selection and the accuracy of estimates in voxels with a more complex fibre

configuration.

• Dataset C: dataset simulated with three fibres per voxel. We kept fixed S0 =

1000, d = 0.0012 [mm2/s], f1 = 0.3, and the fibre orientations perpendicular such

as v1 = [1, 0, 0]cart, v2 = [0, 1, 0]cart, and v3 = [0, 0, 1]cart. We vary the volume

fraction of the second fibre as f2 : [0.2 − 0.3] with ∆f2 = 0.01, and f3 : [0.2 − 0.3]

with ∆f3 = 0.02. A total of 5x10 voxels per realisation. The aim of this dataset is

to evaluate the accuracy and precision of identifying multiple fibres where volume

fractions have similar (low) values.

For each dataset, we simulated z = 100 noisy realisations to evaluate median errors. In

all cases, we fit the Ball&Sticks model with (up to) 3 fibre compartments. To assess

the effect of noise, we repeated these experiments for SNR=15 and SNR=30. Given the

similar volume fraction values in datasets B and C, a fibre orientation matching between

ground-truth and estimates is performed prior to assessing the results, based on the lowest

crossing angle between fibre orientations (see eq.5.26).
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Figure 5.3: Scheme of the simulated datasets.

Note that the data in this study is simulated using the identical biophysical model that is

later employed in the likelihood computation during the MCMC procedure. It is essential

to acknowledge that employing the same model for both simulation and evaluation could

introduce biases when assessing the accuracy and precision of a given biophysical model

(i.e. whether the model accurately captures and reproduces the biophysical properties of

the studied anatomy). However, in this chapter, our focus is on comparing the performance

of different inference strategies, namely component-wise MCMC versus block-approaches

MCMC, using the same dataset and biophysical model. Therefore, any potential biases

resulting from using the same model for simulation and evaluation would be consistent

across all approaches and hence would not affect the validity of the comparisons. Similarly,

we expect conclusions to remain valid if a different model were used for simulation and

inference.

In-vivo brain data

We used diffusion MRI data from 15 subjects randomly selected from the UKBiobank

dataset, accessed through UKBiobank project number 43822 (PI: Sotiropoulos). All data

were already pre-processed from the UKBiobank for distortion and motion correction

[Alfaro-Almagro et al., 2018; Miller et al., 2016]. We extracted the lower b = 0 and

b = 1000s/mm2 shells, as these are compatible with the assumptions of the Ball&Sticks

model used here [Jbabdi et al., 2012].

Algorithms and MCMC parametrisation

The proposed MCMC algorithms were evaluated: the Independence Sampler, the adap-

tive Block-proposal RandomWalk MH-MCMC (Block-RWM), and the two Hybrid-MCMC

configurations (Hybrid1 and Hybrid2). For all algorithms except the Independence Sam-
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pler, the default configuration included the adaptive joint proposal with the scalar factor

λL (see sec.5.2.2) and the ARD priors applied to f2 and f3. All these designs were com-

pared to the original univariate random-walk MH-MCMC (RWM) as proposed in [Behrens

et al., 2007].

For all the algorithms, we used a standard set of MCMC hyper-parameters (e.g., used in the

FSL’s BedpostX implementation as default): Burn-in=1000, jumps=1250, thinning=25.

This setup returns 50 already-thinned samples with the burn-in samples period discarded.

These 50 samples are used to construct the posterior density estimates. Common to all

configurations are the initialization of parameters x0 (mean of the proposal) done by the

Lavenberg-Marquadt non-linear fitting and the non-informative priors described in the

previous section. The λL factor is set to be automatically updated every L = 50 loops

(for the RWM, Block-RWM and the Hybrid-MCMC configurations).

5.3.4 Evaluations

Accuracy

To evaluate accuracy, we calculated the errors in the mean estimates. Once posterior

model parameters densities are sampled, their mean posterior is extracted, i.e., ⟨π(ω̂|Y )⟩

for scalar parameters {S0, d, fj}. For the fibre orientations vj , the principal eigenvec-

tor of the dyadic tensor was used to get the average fibre orientations across θj and ϕj

MCMC samples. In simulations, the ground-truth value of each parameter ω is available.

For scalar parameters, the voxel-wise error e can be calculated directly as the difference

between the ground-truth and the mean estimates:

eω = ω − ⟨π(ω̂|Y )⟩ (5.24)

This can be also expressed in percentage rates:

eω|% = 100 ∗ w − ⟨π(ω̂|Y )⟩
w

[%] (5.25)

For fibre orientations, we calculated the crossing-angle Xangle (in degrees) between the

true vj and the estimated one such as:
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Xangle = arccos ⟨vj · v̂j⟩ [◦] (5.26)

where vj is the fibre orientation considered as truth, v̂j is the estimated dyadic vector,

and the ⟨·, ·⟩ denotes the scalar product between both vectors.

For the in-vivo brain data, we used the mean estimates from the univariate RWM as

the reference values for the evaluations, as RWM is the implementation currently used

in many tested and validated software packages, such as FSL. Hence, the error in scalar

parameters was calculated as the difference between mean estimates, and the % error as:

eω|% =

∣∣∣∣100 ∗ ⟨π(ω̂|Y )⟩RWM − ⟨π(ω̂j |Y )⟩
⟨π(ω̂|Y )⟩RWM

∣∣∣∣ [%] (5.27)

Regarding fibre orientations, the error was calculated as in eq.5.26, where vj is now the

dyadic vector provided by the RWM.

Precision

In both simulations and in-vivo brain data, precision was evaluated by comparing the

width of the posterior distributions provided by the RWM (used as a reference) and the

rest of the methods. For the fibre orientation, by getting the principal eigenvalue of the

dyadic tensor we could obtain the dispersion of the direction samples. Here, secondary

fibres are expected to have higher dispersion where such fibres are not supported by the

data.

Performance

Regarding the performance of the algorithm, there are different features of the Markov

chain that can be evaluated, such as convergence to the target posterior distribution,

mixing quality and sampling efficiency. For convergence, there are no conclusive tests

on whether a Markov chain has converged, especially in multivariate chain [Roy, 2020];

we assumed it reached stationarity if the distribution of points was not changing as the

chain progressed (e.g. relatively constant mean and variance). We analysed traceplots of

the chains and the posterior density estimates for that purpose.
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Mixing quality can be assessed by calculating the autocorrelation function (ACF), where

the estimated sample autocorrelation ρ̂h at lag h (i.e. time difference between observations)

is defined in terms of the sample autocovariance function:

ρ̂(h) =
Cov(Xt, Xt+h)

V ar(Xt)
(5.28)

If we assume the chain starts at t = 0, the autocorrelation reduces to:

ρ̂(h) =
ψ̂(h)

ψ̂(0)
(5.29)

where ψ̂(h) is the sample autocovariance function of lag h:

ψ̂(h) =
1

n

n−h∑
i=1

(ωt+hi − ω̃i)(ω
t
i − ω̃i) (5.30)

where n is the total sample size such h < n, ωti denotes the value of the variable i at time

t, and ω̃i represents the sample mean of the variable i. However, given that we use n = 50

samples to build the posterior, the ACF needs to be computed with a limited number of

lags to keep reliable correlation estimates. We fix it to h = 5 lags.

As a complementary measure to examine the mixing/sampling efficiency of the Markov

Chain, we also provided the Effective Sample Size (ESS) [Kass et al., 1998]:

ESS =
n

τ
=

n

1 + 2
∑∞

j=1 ρh(ω)
(5.31)

where n is the total sample size, ρh(ω) is the estimated autocorrelation at lag h for pa-

rameter ω (h defines a threshold point after which the autocorrelations are very close to

0) and τ is the autocorrelation time.

All the evaluations explained above are voxel-wise and are calculated after burn-in and

thinning. For global performance, we compared the computational time required

to complete the different MCMC procedures. This time was measured by running the

in-house Python implementations in a dedicated single-core CPU (see sec.1.2 for detailed

specs).
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5.4 Results

In this section, we will show results obtained from evaluating the different MCMC ap-

proaches presented above. For the representation of the results, the following colour code

will be used: RWM in black, Independence Sampler in red, Block-RWM in blue, Hybrid1

in green, and Hybrid2 in magenta. We provide representative examples that help to un-

derstand the behaviour of the samplers. Note that the results shown in this section (e.g.,

traceplots, error calculations, etc.) have been already thinned (thinning=25) and had

burn-in samples discarded.

5.4.1 Simulations

In this subsection, we evaluate the sampling performance, accuracy and precision of the

different MCMC samplers with simulated data where ground-truth values are known.

From these results, we select the samplers with the best performance to compare them in

in-vivo brain data.

Convergence to the stationary distribution and sampling efficiency

As a first step, we confirmed whether the behaviour of the chains is as desired after thinning

and burn-in period. Fig.5.4 shows the traceplots provided by each MCMC from exemplar

voxels in Dataset A (only one fibre), Dataset B (two fibre-crossing), and Dataset C (three

fibre-crossings) for the diffusivity, π(d|Y ), and the volume fractions, π(f1|Y ), π(f2|Y ),

and π(f3|Y ). These figures already provide insights about differences in the behaviour of

the different algorithms. For instance, the Independence Sampler is barely able to move

away from the non-linear initialization values in the parameter space (e.g., Dataset A).

Given the complexity of the model fitted, the Laplace approximation is too smooth to

cover appropriately the multimodal posterior density. As a consequence, almost 100% of

the samples were rejected by the MH acceptance criteria, being incapable of performing a

search in the parameter space. For this reason, we do not consider it any further and we

focus on the other approaches.

The adaptive Metropolis and the Markov Chain changes introduced in the Block-RWM

and Hybrid-MCMC configurations allow them to reshape the Laplace approximation and

achieve better mixing, especially the Hybrid-MCMC approaches which are mostly over-
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lapped with the univariate RWM. The Block-RWM shows unstable behaviour in some

cases where the number of compartments in the model fitted is different than the true

underlying fibre configuration (e.g., see example of 2 fibres in Fig.5.4); it provides good

mixing and similar estimates to the univariate RWM or the Hybrid-MCMC otherwise (see

examples of 3 fibres in Fig.5.4).

Figure 5.4: Median traceplots (across realisations) of the diffusivity and volume fractions
(columns) obtained by each MCMC approach (denoted by colors) for three different exemplar voxels
in dataset A (top row), dataset B (middle row) and dataset C (bottom row) with SNR=30. The
ground-truth value is indicated with a black dashed line and the LM initialization value with a red
star.

Fig.5.5 shows a histogram of the median posterior estimates across realisations for the

same exemplar voxels showed in Fig.5.4. The univariate RWM and the Hybrid1 are the

methods with better agreement, with similar variability in the mean estimates (width of

the distribution) and modes close to the ground-truth (black dashed lines) for all datasets.

The Hybrid2 deviates from them in Dataset B. The Block-RWM shows higher variability

in terms of accuracy and precision, especially for configurations with 1 and 2 fibres; on

the other hand, it performs best in Dataset C.

Similarly, boxplots in Fig.5.6 show a histogram of the width of the posteriors (given by

the standard deviation) obtained across the 100 noisy realisations. Although there is no

ground-truth for this metric, the Block-RWM shows much lower uncertainty quantification
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Figure 5.5: Histogram of the median posterior estimates across realisations for the same exemplar
voxels shown in Fig.5.4. For visualizations reasons, the Independence Sampler is not represented
(it would be a mass point on the initial values of the MCMC).

compared to the rest of the algorithms, especially in the cases of one and two fibres. On

the other hand, it provides higher widths in cases where the ARD drives the parameter

to 0, i.e. in f2 and f3 for the case of 1 fibre dataset, and in f3 in the case of 2 fibres

dataset. Both Hybrid approaches provided similar results, being the Hybrid1 a bit closer

to the behaviour observed in the RWM.

Figure 5.6: Boxplots of the posterior width (given by their standard deviation) across realisations
for the same exemplar voxels showed in Fig.5.4. For visualizations reasons, the Independence
Sampler is not represented.
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Regarding sampling efficiency, Fig.5.7 shows representative examples of the autocorrela-

tion in the chains, and the ESS obtained for f1. As the posterior is built with 50 samples

(after thinning and burn-in), the ideal Effective Sample Size (ESS) should be close to 50,

i.e., 50 non-autocorrelated samples. The univariate RWM performs consistently the best

for all parameters, followed by the Hybrid1 and the Hybrid2, and finally the Block-RWM

with the highest autocorrelation. Nevertheless, according to what was observed in the

traceplots, any of them showed signs of concerning autocorrelation issues (except those

cases where the Block-RWM could not move).

Figure 5.7: Autocorrelation Function (ACF) and Effective Sample Size (ESS) for the
samples of the volume fraction of the first fibre in the same voxels shown in Fig.5.4 and Fig.5.5.

Analysing the accepted and rejected proposed samples, the univariate RWM and the

Hybrid-MCMC configurations showed a homogeneous behaviour, independently of the

type of pattern simulated, where ≈50% of the samples were accepted and the other half

were rejected by the MH acceptance criteria, as designed to do. The Block-RWM showed

more variability. Nevertheless, the above corroborates the advantages of the adaptive

Metropolis even in high-dimensional problems with block-proposals. Furthermore, the

behaviour observed confirms that the adaptive Metropolis can be run only during the

burn-in period to reduce the computational cost, as it quickly converges to the desired be-

haviour (in less than 10 loops, see Fig.5.8). Hence, despite the use of block configurations,

and contrary to what has been suggested in the Theory section, both Hybrid-MCMC ap-



Chapter 5. Results 130

proaches have shown the capability to obtain acceptance ratios around 50% consistently,

comparable to what is expected for the component-wise RWM (and, therefore, allowing

to reduce computational time).

Figure 5.8: Median acceptance ratio (across realisations) obtained by each MCMC approach
(in colors) for an exemplar random voxel in the 3 different datasets (in columns). It includes
burn-in period loops (i.e., up to updating loop=20).

Accuracy and Precision

Based on the above, we can assume that all algorithms reached the stationary distribution

and we can evaluate the accuracy and precision of the estimates. The values shown in this

subsection represent the median values across the z = 100 realisations.

Fig.5.9 shows the median number of fibre compartments detected by each method in

each dataset. For each voxel, compartment j is considered as supported by the data if

⟨π(fj |Y )⟩ > 0.05 [Behrens et al., 2007]. Given the low angular contrast of the simulated

data (only b = 1000s/mm2 shell), multi-way crossings can be wrongly estimated (e.g.,

RWM and Hybrid-MCMC in Dataset C at SNR=15). Increasing the SNR (or b-value), all

methods provided a good estimation of the number of fibres, as shown in Fig.5.9 (bottom

row).

The following figures show the median estimation errors for each algorithm and for each

dataset, as indicated in eq.5.25 (for scalar parameters) and eq.5.26 (for fibre orientations).

In the case of single-fibre patterns (Fig.5.10), errors decreased (or slightly changed)

with increasing SNR. The performance of the univariate RWM and the Hybrid-MCMC is

pretty similar, while the Block-RWM showed the highest error rates overall. Nevertheless,
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Figure 5.9: Number of fibres detected at different SNR levels (rows) for each algorithm
(columns) for Datasets A (A.), Dataset B (B.), Dataset C (C.), and Dataset C simulated with
higher angular contrast (b = 2500s/mm2).
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as the fibre configuration in Dataset A is fairly simple, errors were low for all methods

(maximum errors are around 5% for mean diffusivity of volume fraction, and 5 degrees of

difference in the fibre orientation estimates). Slight overestimation of the diffusivity was

generally compensated with small underestimation of the volume fraction for all methods.

Figure 5.10: Error maps obtained by each method in Dataset A at different SNR levels.

Fig.5.11 and Fig.5.12 present the difference between approaches in Dataset B, where 2-

fibre crossings are simulated. As reported in Fig.8 of [Behrens et al., 2007], for relatively

low b values and low SNR, the univariate RWM is known to provide a reliable estimate
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for fibre configurations with angles between compartments above 40-45 degrees. This is

observed also here. All methods tend to overestimate diffusivity and the volume fraction

of the second fibre, while underestimating the f1. This intercoupling between parameters

is much more compensated in the univariate RWM and the Hybrid1 than in the others,

as shown in the maps of the fsum (Fig.5.11). The most similar accuracy compared to

the RWM is provided by the Hybrid1 although it needs larger crossing angles to provide

reliable estimates when f1 = f2 ≤ 0.25. This is also the region where it failed in detecting

the correct number of fibres (Fig. 5.9). In these cases, the Hybrid1 returns only 1 fibre

with a volume fraction similar to f1 + f2 and fibre orientation similar to v1. Out of that

region, the error rates are drastically lower independently of the noise level, similar to the

RWM (e.g., less than 10-15 degrees error in fibre orientation estimates).

While the Block-RWM showed good performance detecting the number of fibres, it re-

ported the highest median errors, e.g., up to 40% higher error rates and orientation errors

of up to 50º more compared to the univariate RWM. In many crossings scenarios, Block-

RWM and Hybrid2, which use a joint-proposal for all the fibre orientations, provided

completely perpendicular (and wrong) fibre orientation estimates; updating all the fibre

orientations in the same block may be imposing too much structure and inflexibility in

the proposal. This would explain the high errors obtained despite returning the correct

number of fibres (determined either by a good initialization or by the action of the ARD).

There are also differences in the precision of the estimates. Fig.5.13 shows for different

model parameters the dispersion across MCMC samples (median calculated across the

noisy realisations). Again, although there are no ground-truth values for the dispersion

or the standard deviation here, we used the RWM estimates as a reference, as they have

been extensively employed in real brain data, e.g., to guide probabilistic tractography. In

this context, the Block-RWM suffers from a heavy underestimation of uncertainty, while

the Hybrid-MCMC approaches returned similar ranges of uncertainty to the RWM, with

uncertainty decreasing with increasing SNR and higher dispersion in secondary fibres, as

expected. This agrees with what has been observed in Fig.5.6. Two reasons can explain

this behaviour: 1) a unique joint-proposal can lead to a lack of flexibility that makes it

difficult to cover appropriately the multivariate target posterior, and 2) when improper
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Figure 5.11: Error maps obtained by each method in Dataset B for the scalar parameters at
different SNR levels.
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Figure 5.12: Difference maps obtained by each method in Dataset B for the fibre orientations
at different SNR levels.

priors (i.e. ARD) are not updated independently, this can lead to a severe underestimation

of uncertainty in the posterior parameter estimates. For the above reasons, and taking all

previous results together, we do not consider the Block-RWM nor the Hybrid2 any further

and we focus on the Hybrid1 approach as an alternative to the univariate RWM.

Fig.5.14 shows exemplar results for Dataset C, where perpendicular 3-fibre crossings

were simulated. As stated before, at the given low contrast in the images, 3-way crossings

are likely to be missed; therefore, median error estimates here are only calculated on real-

isations where the number of fibres was correctly estimated (across all noisy realisations,

around 50% and 75% of the voxels for low and high SNR, respectively). Doing so, differ-

ences between RWM and Hybrid1 algorithms are barely noticeable for all parameters and

errors returned by both methods are low (less than 5% in scalar parameters and less than

15 degrees for fibre orientations at high SNR). Dispersion maps (see Appendix D.0.1),

show similar behaviour in both approaches.

In summary, the Hybrid1 configuration has shown greater flexibility and performance
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Figure 5.13: Standard deviation or dispersion obtained by each method for f1 and the fibre
orientations in Dataset B at different SNR levels.
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Figure 5.14: Error maps of the first and second fibres estimates obtained (see eq.5.25 and
eq.5.26) by the RWM and Hybrid1 methods in Dataset C at different SNR levels.

than the other alternatives. It allows for an adaptive algorithm, leaves parameters with

improper priors to operate independently and breaks the joint-proposal constraint imposed

on the fibre orientations. It has shown similar behaviour to the classical univariate RWM

for different noise levels in terms of mixing, acceptance rates, number of fibres correctly

detected (i.e. compatible with the ARD), and error estimates. This suggests that similar

levels of accuracy and precision can be achieved in a more efficient sampling scheme, but

further validation in in-vivo brain data needs to be performed.

Computational speed-up

The theoretical speed-up at voxel-wise inference provided by the Hybrid-MCMC designs

against the univariate RWM can be calculated. For instance, for a model with three fi-

bre compartments (11 parameters), Hybrid-MCMC configurations update the parameters

in 4 sub-blocks, as explained in Methods. This should provide a theoretical speedup of

11/4 = 2.75, i.e. the Hybrid1 should need only 36% of the RWM time to infer the posterior

density given the same MCMC parametrisation (jumps, thinning, etc.).

Fig.5.15 shows the experimental computation time in a single-core CPU obtained for the

different algorithms implemented and different numbers of iterations (Hybrid1 actually



Chapter 5. Results 138

represents also the Hybrid2, as they require the same computational times). The dashed

line indicates the ideal improvement, using the experimental time in the RWM as the

reference.

Figure 5.15: Comparison of the computational time required by the different MCMC approaches
implemented in function of the number of MCMC iterations. The dashed indicates the ideal be-
haviour.

The speed-up obtained by the proposed approaches has been found to be lower than the

theoretical results. In the case of the Hybrid1, it is around 2-fold (experimental) vs 2.75-

fold (theoretical) for the particular model considered here. The deviation can be due

to the fact that some of the evaluations carried on in the Hybrid approach, such as the

multivariate proposals, are more expensive to compute than in the univariate RWM. Nev-

ertheless, the code used here was not particularly optimised for performance and further

algorithmic optimizations may contribute to getting closer to the theoretical speed-ups.

5.4.2 In-vivo data

In this section, we will compare results from the univariate Random-walk MCMC and

the Hybrid1 MCMC algorithms applied to in-vivo brain data, as this was found to be

the optimal alternative in simulations. First, we evaluate voxel-wise estimates from the

Ball&Sticks model. Then, we use these model estimates to perform tractography and

assess the agreement between both methods.
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Voxel-wise estimates and uncertainty mapping

As a first evaluation, we assessed the mixing and convergence of the chains in randomly-

selected voxels from areas where different fibre complexity is anticipated: one from the

middle of the Corpus Callosum (one fibre orientation expected), and two from the Centrum

Semiovale (2-way and 3-way crossings expected). Fig.5.16 shows the already thinned and

burn-in discarded traceplots for both MCMC approaches. With the selected burn-in and

thinning, samples show convergence with no sign of autocorrelation and good mixing. This

convergence can be also confirmed by 1) the ARD effect, which keeps fj at 0 in those vox-

els that don’t have secondary or third crossing fibres, and 2) the overlapping between the

conditional posterior densities observed in the RWM and the Hybrid1 (Fig.5.17). Hence,

proper mixing of the chains seems to be achieved by both MCMC approaches.

Figure 5.16: Comparison of MCMC Markov Chain traceplots in the RWM and the Hybrid-MCMC
for 3 representative voxels in white matter.

Fig.5.18 shows a comparison between posterior mean maps of scalar parameters ob-

tained for an exemplar axial slice. For volume fractions, we report differences and scatter

plots where ⟨π(fj |Y )⟩ > 0.05 (i.e. where these compartments are supported by the data)

in both the RWM and the Hybrid1 approaches; for the mean diffusivity, we report values
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Figure 5.17: Posterior density for the same voxels as in Fig.5.16

in the whole WM. We can qualitatively observe that there are no noticeable differences

between the map contrasts obtained for d and f1. Differences are normally distributed

and there is a high correlation r between mean estimates of both approaches (rd = 0.92

and rf1 = 0.96). Higher differences are observed in secondary fibres. The RWM seems to

provide slightly higher f2 values (see small right tail in the histograms or the predominant

red colour in the residual map); higher (and more accurate) f2 values in RWM were also

observed in some simulated patterns (e.g., see small crossing angles Fig.5.11). Neverthe-

less, the correlation is still high (rf2 = 0.86) and mean maps look considerably similar.

These slightly higher f2 values compared to the Hybrid1 are accompanied by a slightly

lower number of 3-way crossings. The Hybrid1 approach seems to have a higher sensitivity,

capturing a higher number of 3-way crossings within regions like the Centrum Semiovale.

Examples of fibre orientation estimates are shown in 5.19. Qualitatively, both ap-

proaches return plausible and similar fibre-crossing patterns. They both depict complex

orientations in the Centrum Semiovale crossing from left to right, inferior to superior and

anterior to posterior, corresponding to callosal, pyramidal and longitudinal tracts respec-

tively. Differences (in degrees) are quantified in Fig.5.20 between the dyadic orientation
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Figure 5.18: Comparison of mean estimates between the RWM and the Hybrid-MCMC. Differ-
ences and scatter plots are calculated only in WM. In the scatter plot: the dashed line shows the
ideal perfect correlation (diagonal); the light blue line indicates the actual linear relationship be-
tween estimates.
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vectors vj provided by each approach. Differences are in general small (95th percentile of

differences: 17 degrees for v1, and 36 degrees for v2). They only become more substantial

in cases of 3-way crossings, due to the Hybrid1 approach returning slightly more crossings

than the RWM. Overall, however, both methods return a considerably smaller degree of

3-way crossings, compared to 2-way crossings, as expected.

Figure 5.19: Fibre orientation estimates (mean) from the RWM and the Hybrid-MCMC in the
Centrum Semiovale (coronal view - top row, axial view - bottom row), overlaid on the mean
anisotropy map (mean of the sum of all anisotropic volume fractions fj).

Finally, results for the fibre orientation dispersion are shown in Fig.5.21. Differences

are presented in white matter, as more relevant for tractography. The Hybrid1 tends to

return smaller uncertainties, particularly for secondary fibres (see circled area in the Den-

sity Scatter Plot of Fig.5.21). Nevertheless, dispersion maps in the Hybrid algorithm still

follow similar patterns as the RWM, especially for v1 and v2 (i.e., low uncertainty in WM

and high uncertainty in CSF and GM). The underestimated uncertainties are randomly

scattered throughout the whole brain (e.g., see Differences map in Fig.5.21) and differ-

ences between both approaches are 0 on average (see Histogram of Differences centered at

0). To further explore the impact of these differences in tract propagation, we performed
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Figure 5.20: Comparison of fibre orientation estimates between the RWM and the Hybrid-MCMC.
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tractography and compared results obtained using the orientation estimates from RWM

and Hybrid1.

Figure 5.21: Comparison of dispersion estimates between the RWM and the Hybrid-MCMC.
Differences and scatter plots are calculated only in WM. In the scatter plot: the dashed line shows
the ideal perfect correlation (diagonal); the light blue line indicates the actual linear relationship
between estimates. The circled area refers to the points where the uncertainty was underestimated
in the Hybrid1.
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Probabilistic Tractography

We compared tracts reconstructed using XTRACT [Warrington et al., 2020] and the voxel-

wise orientation estimates obtained from the RWM and the different Hybrid-MCMC con-

figurations. Fig.5.22 shows the Maximum Intensity Projection (MIP) of a set of tracts from

a single subject as an exemplar case for the RWM (left column) and the Hybrid-MCMC

configuration 1 (right column). All MCMC parameters were kept as default. Visually,

both sets of tracts seem to be almost identical. To quantify the similarity between them,

Fig.5.23 represent the spatial tract correlation between both MCMC approaches across 15

subjects of the UKBiobank dataset. Comparing tract correlations by subject (top row),

we can see a high level of agreement across subjects, with all median correlations ≥ 0.90.

There are few outlier tracts with low correlation, that correspond to tracts with known

complexities, e.g., thin tracts such as the Anterior Commissure (ac), with complex ge-

ometries such as the Fornix (fx ), or tracts with multiple crossings such as the Superior

Longitudinal Fasciculus 2 (slf2 ). In fact, these are the set of tracts that also demonstrate

lower correlations (bottom row of Fig.5.23), as expected.

An example of outliers tracts detected in the results above is shown in Fig.5.24 with the

Fornix (both left and right) from the subject with the lowest correlation in this tract. It

can be seen that tracts in fact are not reconstructed successfully with any of the approaches

(even if the Hybrid1 looks slightly better), as the single-shell version of the UKBiobank

dataset used (50 directions, b = 1000 s/mm2) is not good enough to allow good recon-

struction of this thin pathway. Nevertheless, similar to the subject’s correlations, most of

the group of tracts returned median correlations above 0.9.

In the absence of ground-truth for these tracts, we used the HCP WM population atlas

[Warrington et al., 2020] as gold-standard and compared the performance of the RWM and

the Hybrid1 against it. Similar to the above, Fig.5.25 shows the spatial tract correlation

grouped by subjects (top row) and by tracts (bottom row) of each MCMC approach with

respect to the atlas. In both cases, the spatial correlation distributions are very similar

and follow similar patterns, i.e. harder to reconstruct tracts agree less with the atlas for

both methods. The Hybrid1 returns on average almost identical median correlations to

the atlas compared to the RWM: 0.56 (std. 0.11) vs 0.55 (std. 0.11), by averaging subjects
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Figure 5.22: Maximum Intensity Projection (MIP) of different tracts obtained by using
estimates from the RWM and the Hybrid1. The abbreviation definition for each tract can be found
in [Warrington et al., 2020]
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Figure 5.24: Example of outlier tract - Comparison of the MIP in the Fornix tract (subject
1000515) obtained from the RWM and the Hybrid-MCMC.

per tract, respectively; and 0.56 (std. 0.023) vs 0.55 (std. 0.024) by averaging tracts per

subject.

Results obtained from a longer run of the Hybrid1 (burn-in=3000, thinning=100, jumps=5000)

can be found in the appendix D.1. Increasing the number of MCMC iterations provides

slightly higher correlations overall (see Fig.D.2). However, it does not recover the outliers

observed while increases computational time, in this case, by 5-fold (i.e. this is dependent

on other factors, such insufficient as angular contrast). Hence, keeping the Hybrid-MCMC

configuration 1 with the default MCMC parameters provided performance and results that

are in a high level of agreement with current univariate MCMC implementations while

providing the speed-up commented in sec.5.4.1.

5.5 Discussion

The adaptive component-wise Random-walk MH-MCMC (RWM) is an established method

heavily used in dMRI over the last 15 years. However, the idea of using a random walk

process to sample the parameter space, independently for each model parameter, can be

inherently inefficient and does not scale well with larger dimensionality. In this work,

we have designed, implemented and evaluated different MCMC alternative modifications

based on the idea of proposing and sampling multiple parameters at the same time (in

blocks) to improve the algorithmic efficiency of the RWM while preserving accuracy. More

specifically, we have built upon the idea of an Independence Sampler, and devised an adap-

tive all-at-once Block-RWM, and two Hybrid-MCMC configurations. All of them relied
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on the Laplace approximation as an efficient and principled manner to define the initial-

ization and block-covariance of parameters.

A novelty in our designs is that we addressed the challenge of including improper priors

in the model, such as shrinkage priors, in the form of automatic relevance determination

(ARD). And at the same time, we allowed for adaptive proposals and therefore efficient

mixing. The more conventional Independence Sampler was quickly discarded due to poor

performance but provided an important building block for the subsequent approaches.

The adaptive Block-RWM considers all parameters in a single block and introduces

1) iterative adaptation for the block proposal covariance matrix Σ depending on the ac-

ceptance ratio, constraining/expanding the Laplace approximation when it becomes too

smooth/tight in higher dimensions and reducing the number of rejections; and 2) the mul-

tivariate proposal is re-centred to the last accepted sample, which helps to converge to

the target distribution (i.e., introduces the Markov-Chain). However, it showed unstable

behaviour in cases where the model fitted does not agree with the underlying fibre config-

uration and also a significant underestimation of the width of the posterior distribution

(i.e., the uncertainty of parameters). This can be due to the inflexibility of the proposal

and too much structure imposed by having a unique block, making it challenging to mix

properly in the presence of improper priors. In fact, updating all fibre orientations in a

joint proposal showed similarly challenging behaviour, as observed in the Hybrid2.

One potential reason for these issues is that all the parameters in the Ball&Sticks model

are not necessarily correlated. E.g., the existence of one compartment does not determine

the existence of the other. Despite that, only one covariance matrix Σ is considered for

all of them in the Block-RWM, which is globally modified by λL based on the average

acceptance ratios of the parameters. Therefore, the covariance of the parameters is not

optimally tuned and the results may vary depending on the fibre configuration complexity

found in each voxel. This can lead to acceptance of samples that are only close to the

modes, returning as a consequence very narrow posteriors as the ones observed.

The Hybrid1 design takes these issues into consideration and allows for greater flexibility;

it allows for an adaptive algorithm, using optimal subsets of the parameters in order to
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accommodate for the coexistence of proper and improper priors and the multiple com-

partments being updated independently on each other. In doing so, it showed comparable

accuracy to the established RWM in both simulated experiments and in-vivo brain data

(with correlations of almost 1 for some parameters). We observed some differences at voxel-

wise level estimates of the secondary fibres, with smaller volume fractions returned by the

Hybrid1 compared to RWM in in-vivo brain data. These were typically accompanied by

more 3-way crossings. Nevertheless, these observed deviations showed a spatially-random

distribution and did not affect higher-level analysis that uses these orientations, such as

tractography. Both the RWM and the Hybrid1 reported a very high level of agreement in

tractography results. This has been achieved while providing a computational speed-up of

2x, which can be particularly helpful when processing large datasets (e.g., UKBiobank).

But more importantly, this paves the way for Bayesian inference or more complex biophys-

ical multi-compartment models [Alexander et al., 2019; Sotiropoulos et al., 2016], where

dimensionality becomes a limiting factor in practice for the random-walk MCMC.

Recently, a number of parallelisation approaches have been proposed to accelerate random-

walk MCMC [Hernández et al., 2013; Hernandez-Fernandez et al., 2019; Kim et al., 2022;

Madhyastha et al., 2017]. These are based on the power of GPUs and parallelise effectively

the model fitting across image voxels. Our approach is compatible with such parallelisation

techniques, but also offers a design improvement rather than only a computational speed-

up, which offers the potential for even larger scalability.

Limitations and Future Work

Despite the extensive number of experiments performed there are yet certain evalua-

tions that could be assessed to validate the Hybrid1 as a generalisable alternative of

the established RWM. For instance, we have used a specific single-shell biophysical model

(Ball&Sticks) to evaluate MCMC inference performance, but other models should be eval-

uated. Furthermore, factors like tractability of the likelihood, model complexity, or the

lack of analytic Hessian have not been tested and can influence the results.

There is also an inherent limitation in this approach given trade-off njumps vs speed-up:

the more jumps we used in the Hybrid-MCMC, the more similar it can become to the
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RWM results, but the lower the speed-up. On the other hand, the Laplace approximation

used here requires the calculation of second derivatives to initialize the covariance. In this

case, it was possible to do it analytically. However, there are multiple scenarios where

this is not possible and numerical differentiation is needed, reducing the computational

speed-up and introducing potential inaccuracies.

Nevertheless, the Hybrid-MCMC allows also for further algorithmic optimization. For

instance, GPU tree-like parallelization at two levels, across volumes and across likelihood

calculations, such as in [Hernandez-Fernandez et al., 2019] can be investigated in future

work. Also in this direction, new Machine Learning approaches have been proposed in the

last years to learn the covariance and perform model inversion in an unsupervised way

[Cranmer et al., 2020]. We will explore more about this line of research in the next chapter.

We observed a general trend of underestimation of the fibre orientation uncertainties at

voxel-wise level in the block approaches. Even if the effect was less noticeable for Hybrid1

and we did not see demonstrations in probabilistic tractography results, it is unclear how

this can affect other scenarios. One potential reason might reside in the incapability

of the block-approach to cover appropriately multimodal posterior distributions. As we

start from the LA, which is a local approximation to the modes, there may be too much

shrinkage around them. Nevertheless, it is worth noting that there is no ground-truth

for uncertainty and these conclusions are obtained from comparisons with the univariate

RWM. As commented above, in the next chapter we will explore alternative inference

frameworks relying on ML approaches that also allow us to skip the definition of the block

proposals and covariance matrices.



Chapter 6

Amortised simulation-based

inference in diffusion MRI

6.1 Introduction

Inference and uncertainty quantification in imaging-based modelling provides a principled

way of estimating non-linear model parameters, but also assessing confidence on results

[Jones, 2003], quantifying noise effects [Behrens et al., 2003], and aiding experimental de-

sign [Alexander, 2008]. In the past chapter, we explored algorithmic improvements on

classical Bayesian inference approaches (MCMC) to improve their sampling efficiency. In

this chapter, we devise and evaluate a different -in principle- framework, based on the idea

of generative modelling using neural networks.

Machine learning has been used before for model fitting in the context of dMRI (see

overview in 3.3.4). However, most of the approaches commented on provide point-estimate

fitting and do not express uncertainty over model parameters. In the approach presented

in this chapter, we devise an inference approach using neural networks and apply it to

a dMRI microstructural model. The assumption is that using enough complexity in a

considered network trained on synthetic data, we can learn an arbitrary complex map-

ping between the posterior distribution of model parameters and observations [Cranmer

et al., 2020]. We can then use this mapping to perform model estimation and inference in

the parameters using new data. Given the high data dimensionality with modern dMRI

protocols (e.g., [Sotiropoulos et al., 2013b]), the large space of parameters, and/or the

153
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complexity, or lack of tractable likelihoods in some biophysical models, this approach can

be an attractive alternative to traditional inference approaches.

The presented framework builds upon the explosive growth of deep learning over recent

years, which has made possible network-based inference. Advances in deep generative

methods have enabled frameworks that use data to learn representations of any target

latent density, such as the posterior distribution of model parameters. This can be cast

as a problem of density estimation and there exist several interconnected approaches in

the current literature [Bond-Taylor et al., 2022]. One of the most popular is Generative

Adversarial Networks (GANs), which learn to represent latent, high-dimensional distri-

butions in an adversarial manner [Goodfellow et al., 2014]. Another class of generative

approaches, termed ”likelihood-based”, seeks to learn a model represented by, mainly,

neural networks that assign a high likelihood to the observed data samples. This includes

Auto-Regressive models (AR) [Bengio et al., 2003], Normalizing Flows (NF) [Tabak and

Turner, 2013; Tabak and Vanden-Eijnden, 2010], and Variational Autoencoders (VAEs)

[Kingma and Welling, 2014]. New capabilities have been opened recently by diffusion mod-

els, which have both likelihood-based and score-based interpretations and are considered

to be as powerful as GANS, without requiring the complex adversarial training [Dhari-

wal and Nichol, 2021; Ramesh et al., 2022; Saharia et al., 2022]; and Generative Flow

Networks (GFlowNets) [Bengio et al., 2021], which combine principles from reinforcement

learning, deep generative models and energy-based probabilistic modelling to allow for

non-parametric Bayesian inference. All in all, network-based inference is a relatively new

field with a lot of synergies between methods and a very quick pace of development.

In this work, we will focus on likelihood-based approaches. More specifically, we ex-

plore Simulation-Based Inference (SBI) frameworks [Cranmer et al., 2020], which allow

us to combine learning latent features of importance from networks (e.g., Deep Nets),

the interpretability of mechanistic models (e.g., multi-compartment models) and Bayesian

principles. SBI uses forward models to provide a data-driven alternative to classical infer-

ence based on training. Generally, an artificial neural network (ANN) learns a Bayesian

model inversion, allowing inference for unseen data without the need for repeating the

model inversion (amortised inference). We present here one of the first applications of
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SBI in voxel-wise microstructural modelling for dMRI data. Importantly, we also directly

compare SBI with classical Bayesian inference for the same model using MCMC. This new

perspective can open new opportunities for solving likelihood-free problems in neuroimag-

ing and/or provide massive computational speedups in the inference process.

The chapter is organised as follows: the following section overviews the theory on Simulation-

Based Inference and modern density estimation methods. In Methods, we describe the de-

sign and implementation of the SBI approach for the inference of voxel-wise parameters,

using the Ball&Sticks model as a proof-of-concept. Results follow, where we evaluate the

novel approach in simulated and in-vivo brain data and compare it against MCMC. The

chapter ends with a discussion about the results obtained, contributions, limitations, and

the potential future steps of this line of research.

6.2 Theory

6.2.1 Simulation-Based Inference

Classical Bayesian inference methods, such as MCMC, requires a likelihood function,

π(Y |ω), to provide samples from the posterior distribution of parameters π(ω|Y ). How-

ever, this approximation typically needs a non-linear iterative process, which can be chal-

lenging and expensive. Furthermore, there may also be cases where simulations can be

readily obtained from a modelling process, but inversion becomes analytically and/or com-

putationally intractable (e.g. due to complex likelihoods). A group of methods have been

proposed to overcome such challenges by making use of simulations from a forward gener-

ative process fY (ω) [Diggle and Gratton, 1984; Gourieroux et al., 1993], which implicitly

defines a likelihood π(Y |ω) (that may be tractable or not). These can be used to learn a

mapping (and its inversion) between parameters and observations.

This principle was first followed by Approximate Bayesian Computation (ABC)

[Beaumont, 2019; Beaumont et al., 2002]. ABC are simulation-based methods that aim to

approximate the posterior density by generating large amounts of data Ysim from a for-

ward generative process fY (ω), with parameters ω drawn from defined prior distributions

π(ω). A set of summary statistics S(Y ) can be calculated for each simulated sample so



Chapter 6. Theory 156

the dimensionality of the problem is reduced. The problem relies then on finding the set

of parameters ω that best mimics the observed data Yobs (or S(Yobs)), without the neces-

sity to compute or invert a likelihood. One of the initial and simplest ABC approaches

is Rejection-ABC [Pritchard et al., 1999; Tavaré et al., 1997]. To decide what parameter

proposals to keep, an ad-hoc distance function ρ and a tolerance threshold value ϵ are de-

fined, such that ω that provide ρ(Ysim, Yobs) < ϵ are accepted as samples from the posterior

distribution; they are rejected otherwise. This process is repeated as long as needed to

obtain the density posterior. As Rejection-ABC samples from the prior, and the posterior

is typically much narrower than the prior, most of the proposals are rejected for a given

observation, i.e. there is a trade-off between the number of accepted samples and how

conservative ϵ can be. Algorithms to improve sampling efficiency have been proposed on

top of the rejection scheme, such as MCMC-ABC [Marjoram et al., 2003] or Sequential

Monte Carlo (SMC) [Sisson et al., 2007], which iteratively re-define proposals by perturb-

ing parameters that have been already accepted to explore more often the areas where

parameter values have shown higher posterior density.

However, ABC methods have important shortcomings, including the sensitivity to ad-

hoc decisions (namely, S(Y ), ρ and ϵ), and the curse of dimensionality. Given the dimen-

sionality of some problems and the poor scalability of most of these methods, ABC often

needs the definition of summary statistics that inherently leads to information loss and

worsens the approximation. At the same time, this makes it harder to define similarity

conditions between observed and simulated data. E.g., the smaller the ϵ, the better the

approximation but the more samples are likely to be rejected; and this trade-off becomes

more critical when using high-dimensional or multimodal data.

Regression Adjustment techniques for ABC introduced a new perspective by assuming

that there exists some structure that relates the set of plausible values ω and the observed

data. For instance, [Beaumont et al., 2002] hypothesized that such structure can be de-

fined by a linear regression model with fixed variance. The parametric model is trained on

simulated data in order to learn a mapping from Ysim to ω. This learnt mapping is then

used to correct the values of posterior samples gathered by e.g., Rejection-ABC to reduce

discrepancies between the simulated and observed data. This adjustment increased the
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number of samples accepted from 5% in Rejection-ABC to 20%, approximately. Later,

[Blum and François, 2009] relaxed the constraints and let non-linear Regression Adjust-

ments be calculated using feed-forward neural networks (NNs), increasing now the rate of

accepted samples up to 90% and, therefore, allowing for much higher dimensionalities and

ϵ values.

These developments have led to a shift of perspective: if making these adjustments allows

us to accept almost all proposed samples, the inference problem can then be recast: from

using iterative sampling approaches that rely on model inversion to finding the latent

underlying relationship between observed data and model parameters in a data-driven

manner using an abstract descriptor, such as a neural network. This in principle allows

to approximate the exact posterior distribution (i.e. ϵ = 0) of parameters conditioned on

observed data with the aid of a prior over parameters and a stochastic simulator, without

computing potentially intractable log-likelihood nor defining distance metrics or tolerance

thresholds. This is a pattern recognition problem where Machine Learning algorithms

excel and high-dimensionality problems can be tackled. This combination of Bayesian

principles and Machine Learning to approximate not only the posterior but any target

density distribution is what currently defines the field of Simulation-Based Inference

(SBI) [Brehmer, 2021; Brehmer et al., 2020; Cranmer et al., 2020]. In the next section, a

more detailed description of the SBI frameworks is provided.

6.2.2 Density Estimation using Neural Networks

Methods that rely on neural networks to directly learn the mapping from fY (ω) to the

posterior, known as neural density estimators (NDE), have offered promising re-

sults in neuroscience and neuroimaging problems [Gonçalves et al., 2020; Hashemi et al.,

2022; Jallais et al., 2022]. Neural networks are considered universal approximators, i.e.

given sufficient conditions, they can map any arbitrarily complex function [Cybenko, 1989;

Hornik et al., 1989], although common feed-forward networks are designed to provide

point-estimates. Instead, the strategy in NDE is to obtain a probability distribution as

output from the neural network; this can be achieved by embedding a conditional den-

sity estimator into them so the point-estimates in the output layers effectively define the
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Figure 6.1: Comparison between Classical Bayesian Inference and Simulation-based
Inference - Both approaches rely on the use of a forward simulator fY (ω). However, methods like
MCMC use these to compare with the observed data, accepting or rejecting samples in an iterative
way for each new case, while SBI uses the simulations to train a neural network that approximates
the exact posterior via a parametric model. Using this approximation, samples from the posterior
can be obtained with a single forward pass to the network for any new case. Figure adapted from
[Cranmer et al., 2020]

hyperparameters of the target distribution (e.g. the mean and variance of a Gaussian

distribution).

Formally, an NDE is a parametric model that takes as inputs pairs of datapoints (u, v)

(which can be simulated) and returns a conditional probability density Qψ(U |V ) that is

an approximation to the true conditional density π(U |V ). A family of flexible conditional

distributions, parametrised with parameters ψ and assumed to resemble the target den-

sity, is proposed. The problem relies then upon estimating the optimal parameters ψ of

such distributions. This general formulation can be used to approximate any conditional

density distribution: an approximated likelihood Qψ(Y |ω), termed as Neural Likelihood

Estimation (NLE) [Durkan et al., 2018; Papamakarios et al., 2018b]; the posterior dis-

tribution of parameters Qψ(ω|Y ), termed as Neural Posterior Estimation (NPE)

[Greenberg et al., 2019; Lueckmann et al., 2017; Papamakarios and Murray, 2018]; or a

ratio of likelihoods
Qψ(Y0|ω0)
Qψ(Y1|ω1)

, termed as Neural Ratio Estimation (NRE) [Durkan et al.,

2020; Hermans et al., 2020]. In all cases, the learnt model subsequently allows direct infer-

ence of the posterior given new data from the trained network, without model inversion.
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This property is known as amortised inference. Note that, despite training with pairs

of simulated data (u, v), this framework is essentially unsupervised in nature as the pos-

terior is reconstructed without the need of labels in real input data. Also, it is Bayesian

in the general sense (getting the posterior) although the density is obtained by fitting in

a point-estimate way the parameters ψ of Qψ(ω|Y ) using typical feed-forward networks

F(Y, ω), i.e. ψ = F(Y, ω).

Deciding what conditional density to approximate depends on the problem being tackled.

For instance, in both NLE and NRE the model learnt by the networks provides a surrogate

likelihood, so they require a further sampling step to build the posterior (e.g., MCMC).

On the other hand, the NPE can sample the posterior directly from the NDE but does

not provide a surrogate likelihood that can be reused across inference tasks.

Given the core of the methodology relies on forward simulations, it is crucial that the

breadth and depth of simulated data capture all the important aspects of real data for the

relevant range of parameter values. Two techniques are commonly used to address this

challenge: 1) To introduce inductive bias via the parameter priors or model specification,

hence simulate more around parameter values that are more strongly supported a-priori.

2) To perform active learning and focus on more ”important” regions of the parameter

space. A simple scheme of active learning is the sequential variant (SNPE, SNLE, and

SNRE), where after each round of training the estimated posterior becomes the new prior.

This is a similar concept to what MCMC-ABC and SMC introduced in Rejection-ABC.

However, although the sequential approach is usually more simulation-efficient (e.g., see

an empirical comparison in [Lueckmann et al., 2021]), amortisation is partially lost after

each iteration as it focuses on regions of high probability for a particular observation. This

is particularly problematic in multimodal posterior distributions, as in each round of the

SNPE you deviate a bit more from the true posterior, going to the region of maximum

likelihood where the posterior will ultimately collapse to a delta or mass point at the limit

of infinite iterations.

The aim is to maximize the log-likelihood of the observed data with respect to model pa-

rameters, which is usually expressed in terms of a minimization problem such as argmin
ψ

{− logQψ(Y |ω)}.
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For NPE, the training adjusts the hyper-parameters of the network ψ (which would provide

the parameters of the posterior distribution in the output layer). If the density estima-

tor is flexible enough and sufficient simulated training data (ωsim, Ysim) is given, this loss

function leads to perfect recovery of the exact posterior [Papamakarios and Murray, 2018].

Given that infinite data is not feasible, it is crucial to at least have flexible density esti-

mators to approximate the posteriors as best as possible.

In this chapter, we focus on the estimation of the posterior density by using Neural Pos-

terior Estimation (NPE), detailed in the next section.

6.2.3 Neural Posterior Estimation (NPE)

The idea implemented in the NPE dates back to the regression adjustment approaches

[Blum and François, 2009]; these were not flexible enough to accurately estimate the pos-

terior, and they were only used within some other ABC method to allow for a larger ϵ.

By making use of the flexibility of NDEs, [Papamakarios and Murray, 2018] extended the

concept of learning a mapping between data and model parameters to directly approxi-

mate the exact posterior density.

The active learning scheme used in the sequential NPE (SNPE) approach also introduced

in [Papamakarios and Murray, 2018] consists in using the posterior learnt in the iteration i

as prior for the iteration i+1. As a consequence, the approximated posterior Qψ(ω|Y ) de-

viates from the true posterior after each iteration, as Qψ(ω|Y )i+1 ∝ π(ω)i+1 · π(Y |ω)i+1,

where π(ω)i+1 = Qψ(ω|Y )i (i.e if learning exists, the posterior will contract from the

prior definition, leaving out regions of the parameter space). Hence, the posterior needs

a post-hoc correction factor of π(ω)i
π(ω)i+1

to avoid over-contraction. The SNPE-A proposed

by [Papamakarios and Murray, 2018] restricted the priors to Uniform or Gaussians, and

the density estimator to a Mixture Density Network (MDN) capable of representing a

mixture of Gaussians (see below). By applying these restrictive conditions of application,

analytical corrections were possible. In SNPE-B [Lueckmann et al., 2017], the correction

is directly introduced in the loss function, extending the application to any NDE and not

only MDNs. Although SNPE-B seemed to solve the contraction issue, the changes in the

loss made training much more difficult. Finally, [Greenberg et al., 2019] manipulated again
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the mathematical formulation of the problem and the loss to dynamically reparametrise

the proposals and provide a final solution: the Automatic Posterior Transform (APT), or

just SNPE-C. SNPE-C allows for the use of any type of NDE with a low training cost.

Once the networks are trained, amortised inference allows sampling from the posterior

given an observation with a single forward pass through the network, without model in-

version.

For completeness, a description is provided for some of the common NDE architectures

compatible with SNPE-C that will be used here.

Mixture Density Networks

Mixture Density Networks (MDN) were proposed by [Bishop, 1994] and use neural net-

works to learn the coefficients (means and standard deviations) of a Gaussian Mixture

model (GMM), Qψ(ω̂|Y ), which density approximates the target distribution π(ω|Y ) (see

Fig.6.2):

Qψ(ω̂|Y ) =

m−1∑
j=0

αj · π(Y |µj , σj), (6.1)

with m the number of Gaussian components, αj the mixing coefficients (
∑
α = 1) and

π(Y |µj , σj) the density function of a univariate Gaussian distribution. In principle, any

probability density function can be approximated to arbitrary accuracy.

Auto-regressive Likelihood models

The term auto-regressive (AR) originates from time-series models where observations from

previous steps are used to predict the value of the current one. Similarly, AR likelihood

models [Bengio et al., 2003] are based on the chain rule of probability (eq.6.2), where the

probability of a random vector variable X=(x1, ..., xn) can be decomposed as:

π(X) =
N∏

i=1,k<i

p(x̂i|x1:k) (6.2)

i.e., the auto-regressive condition relies on xi being explained by the i− 1 components.

This formulation can lead to impractical learning of the joint distribution given the high
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Figure 6.2: Mixture Density Network - The output of the neural network provides the param-
eters (means and standard deviations) of a Gaussian Mixture Model (GMM).

Figure 6.3: Auto-regressive property - Being X a random variable, the estimate x̂i can be
only explained by the xk components, being k < i. Image adapted from [Bond-Taylor et al., 2022]
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number of conditionals that may need to be estimated if N is sufficiently high. Instead,

each conditional distribution can be specified as parameterised functions with a fixed

number of parameters, e.g. assuming each follows a given distribution and using NNs

to estimate the parameters of that distribution. Among different techniques existing to

build AR models (e.g., Recurrent NNs such as Long Short-Term Memories, Self-attention,

etc.), masking is one of the most popular [Larochelle and Murray, 2011; Uria et al., 2016].

Here, pre-defined binary masks are applied to the weights of a neural network of any type.

These masks are used to decide which connections to keep and which connections to drop

in order to satisfy the AR property, while enabling density estimation and without relying

on sequential loops that are common in AR models.

This approach is used in [Germain et al., 2015] to build a Masked Autoencoder for

Distribution Estimation (MADE) (see Fig.6.4). In this case, to satisfy the AR prop-

erty for conditional distributions (i.e., that x̂i only depends on the preceding inputs x<i),

the idea is that there should be no network path with the next layer, i.e., at least one

connection must be 0 (see eq.8 and eq.9 from [Germain et al., 2015]). Masking here essen-

tially is equivalent to a logical removal of some connections or the input data. To make

easier the learning by the network, they propose a list of possible masks to choose between

(i.e., selecting the mask becomes a hyperparameter).

Figure 6.4: Masked Auto-regressive Density Estimation (MADE) - By masking a stan-
dard NN architecture (e.g. an autoencoder) to accomplish for AR properties (see Fig.6.4), MADE
can provide conditional density estimation in the outputs.
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Normalizing Flows

Normalizing Flows (NF) is a class of generative models that transform a simple base dis-

tribution x0 ∼ π(x0) into a complex target density xk ∼ π(xk), where both sampling and

density evaluation can be efficient and exact. The framework was defined in [Rippel and

Adams, 2013; Tabak and Turner, 2013; Tabak and Vanden-Eijnden, 2010], and later pop-

ularised by [Rezende and Mohamed, 2015] in the context of variational inference, and by

[Dinh et al., 2015] for density estimation, rising as an efficient alternative to e.g., MDNs.

NF have shown also good scalability and high expressivity for density estimation [Kobyzev

et al., 2021; Papamakarios et al., 2019].

To obtain the target density, a flow of concatenated non-linear and flexible deterministic

transformations fk are applied to a base distribution x0, such as xK = fK(xK−1) ◦ ... ◦

f2(x1) ◦ f1(x0) (see Fig.6.5). Essential conditions are that the defined transformations fk

are 1) invertible (i.e., bijective functions that have an inverse function f−1k ), and 2) smooth

differentiable functions (diffeomorphisms).

Figure 6.5: Normalising Flows (NFs) can build complex multi-modal distributions by mapping
a simple distribution x0 through invertible functions fk(xk−1). Image extracted from [Bond-Taylor
et al., 2022]

The mathematical formulation is grounded in the assumption of volume preservation (total

probability sums to 1) and the change of variable formula:

pk(xk) = p0(x0)
K∏
k=1

∣∣∣∣det(∂fk(xk−1)−1∂xk−1

)∣∣∣∣ = p0(x0)
K∏
k=1

∣∣∣∣det(∂fk(xk−1)∂xk−1

)∣∣∣∣−1 , (6.3)

i.e., the base and the target distributions are related by a scaling factor given by the prod-
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uct of the Jacobian determinant of the successive invertible mappings,
∂fk(xk−1)
∂xk−1

, that tells

how much each ∂xk−1 is stretched into ∂xk. In the case of estimating the conditional pos-

terior distribution, pk(xk) → Qψ(ω̂|Y ). As transformations fk can be arbitrarily complex,

the NF can be embedded into a neural network and the problem resides then in finding the

optimal hyper-parameters of fk (the weights of the networks), that will provide in return

the parameters ψ of Qψ(ω̂|Y ) in the output layer. Effectively, it is not needed to know

the target distribution. The inverse transformation enables to sample from the posterior

by simply extracting values from the base distribution and pushing forward these samples

through the sequence of learned transformations fk. This allows for fast evaluation as it

only needs a single forwards pass through the flow to generate samples from the posterior

conditioned on some observed data.

Commonly, the bottleneck is the computation of the Jacobian determinants, so most of

the works in recent years have focused on how to achieve an efficient computation of

it while preserving enough flexibility in the transformations (see [Kobyzev et al., 2021;

Papamakarios et al., 2019] for reviews). In this chapter, we will make use of two of the

state-of-the-art NFs: the Masked Auto-regressive Flow (MAF) [Papamakarios et al.,

2018a] and the Neural Spline Flow (NSF) [Durkan et al., 2019].

Masked Auto-regressive Flow (MAF): MAF [Papamakarios et al., 2018a] uses MADE

as a building block for each layer, i.e. each layer in MAF is a feed-forward neural network

with masked weight matrices, such that the auto-regressive property holds. Thanks to the

probability chain rule, these properties enable us to factorize the target distribution as

a sequence of 1-dimensional conditional densities, where the parameters of each of these

conditional density estimators (i.e., MADEs) are estimated by a neural network. The

transformations fk are linked to auto-regressive conditioning, providing a triangular Ja-

cobian by design that allows for low-cost computation of the absolute determinant.

Neural Spline Flows (NSF): Another method of creating invertible functions is by

implementing monotonic splines as transformations fk, i.e. a piece-wise function consist-

ing of P segments, where each segment is a simple function that is easy to invert (e.g.

a low-degree polynomial). Outside of such interval, the transformation can default to
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a simple identity function. Different functional forms have been explored (in order of

increasing flexibility): linear and quadratic splines [Müller et al., 2019], linear-rational

splines [Dolatabadi et al., 2020], and rational-quadratic splines, which are the ones used in

Neural Spline Flows [Durkan et al., 2019]. With this formulation, any arbitrary monotonic

function can be approximated in a given interval by a neural network; having enough in-

tervals, any function can be approximated while using a differentiable closed-form function

that can be inverted analytically (quick to compute).

6.3 Methods

Similarly to the previous chapter, our goal is to estimate the posterior distribution π(ω|Y )

of a dMRI biophysical model parameters ω given measured data Y , where π(ω|Y ) ∝

π(Y |ω)π(ω). For that, we designed a SBI framework and compared it against a classical

Bayesian inference approach, the univariate Metropolis-Hastings MCMC, referred to from

now on just as MCMC. We have explored how the posterior in MCMC is obtained by

inverting the forward model using approximate/iterative approaches. In our SBI imple-

mentation, this is achieved by training an NPE to learn the mapping between parameters

and the data. For that, two inputs are needed to be specified: 1) a prior distribution π(ω)

defining the plausible range of parameters ω, and 2) a generative forward process fY (ω)

to create a simulated training dataset {ωsim, Ysim}. These are used to train a neural den-

sity estimator as a parametric model, Qψ(ω|Y ), by maximizing the total log-probability,∑
N logQψ(ωN |YN ) (or minimizing the negative log-probability), with respect to hyper-

parameters ψ (see Fig.6.6).

To the best of our knowledge, this is the first time SBI is implemented to solve such a

problem. Hence, as a first approximation and without loss of generality, we evaluated the

above framework using a single-shell single-fibre Ball&Sticks model as an exemplar for

fY (ω), as it is a model with tractable likelihood where MCMC can be also applied for

comparisons.

fY (ω) → A(d, f1, v1, σ
2) = (1− f1) · e−bid + f1 · e−bid(giv

T
1 )2 + ϵ (6.4)
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Figure 6.6: NPE scheme implementation - A. Training phase: Samples can be obtained
from the prior distribution of parameters and used to produce forward predictions Yi. The pairs
{ωi, Yi} are passed to a neural density estimator to learn the mapping between, which will provide
the approximate posterior distribution Qψ(ω̂|Y ). B. Inference: Once the model is learnt, new
observations can be passed to it to obtain the samples from the posterior distribution.
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with ϵ indicating a constant level noise of SNR=30. Note that we learn the mapping

between the signal attenuation A = S/S0 for a given dMRI acquisition scheme (64 direc-

tions, b = 1000 s/mm2) and the parameters, rather than the signal S directly. S0 is a

scaling factor that is directly measured over multiple repeats in a dMRI experiment, it can

therefore be fixed to the mean value of these repeats (i.e. the mean of the b = 0 s/mm2

measurements in each voxel). Including such an arbitrary-scaled factor in the training

could increase substantially the size of the training dataset, so we omitted it for simplic-

ity. For the implementation of the NPEs, we have used the Pytorch-based sbi Python

package [Tejero-Cantero et al., 2020].

6.3.1 Training

We focused on Neural Posterior Estimators (NPE), as they bypass the need for fur-

ther sampling as in NLE methods. Also, we performed one round of training instead of

following a sequential NPE (SNPE) approach, in order to be able to perform amortised

inference.

A critical component of the process is the training data. We employed Eq. 6.4 to generate

N training sets {ωsim, Ysim}. We kept the dMRI sampling scheme constant (64 directions,

b = 1000 s/mm2). We then obtained millions of training samples by sweeping through the

four model parameters of interest in ways that generated uniform coverage over specific

ranges of parameter values.

Algorithm 5 Neural Posterior Estimation as in [Papamakarios and Murray, 2018]

Require: fY (ω), π(ω)

1: procedure Estimate π̂(ω|Y )

2: for n = 1 to N do

3: ωn ∼ π(ω) ▷ Sample a proposed value from the prior

4: Yn = fY (ωn) ▷ Simulate data Yn using the forward model and the proposal sampled

5: end for

6: ψ ←− argmin
∑N
n − logQψ(ωn|Yn) ▷ Learn the parameters ϕ of the conditional density estimator

7: Set π̂(ω|Y0) = Qψ(ω|Y )

8: return Sample from π̂(ω|Y0) ▷ Sample from π̂(ω|Y0) for new observations Y0

In order to achieve optimal performance, we evaluated different aspects of the framework.

We kept the network hyper-parameters (number of layers, activation function, etc) at their
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defaults provided in the sbi package and subsequently evaluated:

Density estimators: Although NSF has been shown to be the most flexible flow that

generally outperforms its alternatives in the (S)NPE (see appendix H.5. in [Lueckmann

et al., 2021]), the appropriate density estimator is problem specific. For instance, MDNs

have been proven to be advantageous in SNPE if the posterior is simple enough since they

allow for analytical corrections of the posterior. In [Jallais et al., 2022], MAF is used

instead of NSF. Hence, we evaluated a range of density estimators: Mixture Density Net-

works (MDN), Masked Autoencoder Density Estimator (MADE), Masked Auto-regressive

Flow (MAF), and Neural Spline Flow (NSF).

Size of training data: There is no rule of thumb to pre-define the size of the training

dataset in SBI. [Lueckmann et al., 2021] evaluated the performance of the networks in

different tasks using up to 106 of training samples, while [Jallais et al., 2021] addressed

an inference problem using a grey matter biophysical model and used N = 105 samples

for training. Here we generated 107 simulations and evaluated the convergence as a func-

tion of the training data size (i.e. by taking random subsets of the full set). All NDEs

were trained using the same pre-simulated datasets. We avoided summary statistics and

mapped the simulated data directly to model parameters.

Parameter priors: Priors on the model parameters are directly linked to the accuracy of

the model learned (the closer the simulated ranges are to the true parameters, the less in-

terpolation the model needs). Using established knowledge of the problem (inductive bias),

we defined positivity constraints and a known plausible range of values. For scalar parame-

ters, we used uniform prior distributions over the following ranges: d ∼ U(10−5, 7.5 ·10−3)

[mm2/s], f1 ∼ U(0.001, 0.999). Regarding the diffusivity, it is also common to use a

Gamma distribution as a prior such as d ∼ Γ(α, β), with plausible values α = 3.5 and

β = 1500 [Behrens et al., 2003]. We compared both options to see which one is more

convenient.

For spherical parameters linked to fibre orientations, using uniform distributions such as

θ ∼ U(0, π) [rads] and ϕ ∼ U(0, 2π) [rads] leads to oversampling of the poles in spherical
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coordinates (i.e., parts of the sphere with ϕ close to either 0 or π) and too much sparsity

around the equator (ϕ = π/2), biasing the training dataset and the performance of the

network [Devroye, 1986]. Therefore, we used the correction in eq.6.6 that ensures uniformly

distributed points on the sphere (see Fig.6.7):

θ ∼ 2π · U(0, 1) (6.5)

ϕ ∼ arccos(1− 2 · U(0, 1)) (6.6)

Figure 6.7: Uniform sampling in the sphere - On the left, oversampling of the poles due
when using uniform distribution for spherical angles θ and ϕ. On the right, uniform sampling on
the sphere was obtained after applying the correction in eq.6.6.

6.3.2 Evaluations

Experiments and Metrics

To evaluate the implemented SBI framework, we performed different experiments. We

first explored what architecture and hyper-parameters provide the best results. For that,

we explored a range of possible density estimators, the convergence depending on training

data size, and parameter priors using synthetic data where ground-truth values are known.

Based on accuracy metrics using ground-truth values from the synthetic test datasets, we

selected the best NPE configuration. Then, we compared the best NPE candidate against
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results provided by classical MCMC in both synthetic and in-vivo brain data. In the for-

mer, we have ground-truth values; in the latter, we assume the MCMC estimates as the

reference values for comparisons, as these can be considered to be samples from the ex-

act/true posterior distribution. Results from these comparisons against MCMC will help

also to assess the predictive uncertainty estimates from SBI, as there is no ground-truth

for the posterior density.

In all these experiments, we evaluated the accuracy, precision and performance of the novel

SBI framework. For accuracy, we used the same metrics employed in Chapter 5.3.4. We

calculated the errors in the median posterior estimates. For scalar parameters, the error

e for each synthetic realisation can be calculated directly as the difference between the

known ground truth value and the median posterior estimates (see eq.5.24 and 5.25). For

fibre orientations, we calculated the crossing-angle Xangle (in degrees) between the ground

truth vj and the mean estimated one (extracted from the dyadic vectors), as indicated in

eq.5.26. In the in-vivo data, where no ground truth exists, we computed the errors against

the MCMC mean estimates.

Precision was evaluated in both synthetic and in-vivo brain data. We evaluated the

behaviour of uncertainty quantification as a function of noise level and training data size;

uncertainty is expected to reduce as the SNR and/or the training data size increase.

Further sensitivity analysis of the posterior can be useful for identifying pathologies in

the model inversion process. For instance, using the synthetic test data, we calculated

the posterior z-scores and the posterior shrinkage for each parameter ω, as defined in

[Betancourt, 2018]:

z − score =

∣∣∣∣ ω̂ − ω

σpost

∣∣∣∣ (6.7)

shrinkage = 1−
σ2post
σ2prior

(6.8)

where ω̂ indicates the estimated posterior mean, ω is the ground-truth value used for sim-

ulations, and σ2prior and σ
2
post indicate the variance of the prior and posterior, respectively.

The posterior z-score provides a quantification of how well the posterior distribution en-
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velops the ground-truth, with a small z-score being an indicator of true values accurately

encompassed in the posteriors. The shrinkage quantifies how much the posterior distribu-

tion contracts from the initial prior distribution for a given observation, so large contrac-

tions (large shrinkages) are indicators of a learning process; if in addition the z-score is

small, the learning process is likely to be successful. Hence, representing one measurement

against the other allows us to define regions of confidence for the model inversion (e.g.,

bottom right in Fig.6.8). Finally, we compared the width of the approximated posterior

distributions provided by MCMC (used as a reference) and SBI in both synthetic and

in-vivo brain data.

Figure 6.8: Sensitivity analysis of the posterior - An ideal experiment should be informative
(large shrinkage) and accurate (small z-scores) for every observation and parameter. Deviations
from here may indicate different biases. For instance, small posterior shrinkage indicates an exper-
iment that poorly identifies the given parameter component, while large z-scores indicate inferences
biased away from the true data-generating process. Large values in both shrinkage and z-score in-
dicate overfitting, while concentration to the top left indicates a poorly chosen prior that biases the
model configuration space away from the presumed true data-generating process.

Regarding performance, if the neural network is not properly trained, it won’t be able

to recognise and operate correctly with new observations. In such scenarios, sampling

from the network may take relatively long. We evaluated global performance by compar-

ing the computational runtime required for training and inference in SBI and MCMC.

Runtime was measured from running the in-house Python implementations in a dedicated

single-core CPU of a MacbookAir M1 2020.
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Data

For the evaluation of the inference frameworks, we firstly used synthetic data to explore

how well the different SBI designs performed (note that these are different simulated sets

than the simulated data we used to train the NPEs). For these synthetic test data we

used the Ball&Sticks model to generate noisy realisations of the dMRI signal attenuations,

given some ground truth parameter values, and we tested how well each SBI design could

estimate these ground truth values. Then, we further explored the performance of SBI

against classical MCMC in synthetic and real brain data.

Synthetic test data: We generated a set of 1000 synthetic single-shell (64 directions,

b = 1000 s/mm2) single-fibre dMRI signals covering the whole range of parameter values

used in the training sets. Parameter values were sampled from the priors to generate new

synthetic observations for which we knew the ground truth parameter values. These cov-

ered uniformly the possible range of parameters the network has been trained on. These

data were also used to compare the different options of training (type of NPE, size of

training data, priors) and select the best configurations.

For comparisons against the MCMC, we generated 100 noisy realisations for a given SNR

level of the same sets of underlying fibre patterns. This is a 5x8 single-shell (64 directions,

b = 1000 s/mm2) single-fibre set of dMRI signals, which allowed easier visualisation of

performance in a specific WM setup, where the dependency on volume fraction and fibre

orientation was assessed.

Unless specified otherwise, both datasets have a constant level noise of SNR=30.

In-vivo brain data: We used standard 3T data acquired in a Siemens Prisma scanner

from a healthy volunteer, with 2x2x2 mm3 voxels (104x104x56 voxels) that had dMRI

acquisition parameters compatible with the ones used in the training: 64 directions, b =

1000 s/mm2. We estimated fibre orientations and performed probabilistic tractography

using XTRACT [Warrington et al., 2020] and compared results with the ones obtained

using conventional MCMC.
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6.4 Results

6.4.1 Design, training and evaluation of the SBI network

All results in this section are obtained from evaluating the networks with the synthetic

test data for the inference. We first evaluated the accuracy obtained using the different

density estimators (i.e., MDN, MADE, MAF and NSF) in recovering the ground-truth

values used for simulations. Fig.6.9 shows exemplar posteriors (top row in each subplot)

and the % error obtained (bottom row) for each parameter by the different density es-

timators trained with a subset of 50.000 samples. Overall, density estimators based on

normalising flows (MAF and NSF) have shown the best results, with NSF being the one

with the best performance in recovering the ground-truth, and MDN the worst. As a

sanity check, it is expected to see the posterior contracted with respect to the priors. The

priors (uniform within a bounded range) are not represented here for visualization reasons,

but it is straightforward to observe that all density estimators, but MADE, demonstrate

this contraction around the ground truth value, for all the exemplar cases shown.

Figure 6.9: Comparison of density estimators. The figure shows results obtained from dif-
ferent density estimators trained with a dataset 50,000 samples. Top: posterior density parameters
obtained from each density estimator in an exemplar dMRI signal from the synthetic test data. The
ground-truth value is indicated with a black dashed line. Bottom: Median error estimates obtained
from the mean parameters in the synthetic test data (1,000 realisations).

Using the NSF as a density estimator, a comparison of the test errors obtained when

using different priors for the diffusivity and different sizes of training data can be found in
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Fig.6.10. Using a uniform prior for d showed more stable results and faster convergence

than using a Gamma distribution, although for training data sizes larger than 500.000

samples, the results converge to similar behaviour for all parameters.

Figure 6.10: Mean error in parameter estimates for different training data sizes and
different diffusivity prior distributions - The figure shows a comparison of test error obtained
from using π(d) ∼ U(10−5, 7.5 · 10−3) [mm2/s] (in orange) or π(d) ∼ Γ(3.5, 1500) (in blue) for
different size of training data and using a Neural Spline Flow as density estimator.

So far we have seen that an NSF density estimator with uniform priors and 106 train-

ing samples provides very good performance in terms of accuracy in the synthetic data

for all the parameters. We kept these features fixed (unless specified otherwise) and we

subsequently evaluated performance in terms of the precision of the inference. Fig.6.11

represents the standard deviation of the posteriors for increasing SNR levels and different

sizes of training data. As expected, the uncertainty decreases as the SNR increases for all

models; also, models trained with more simulations returned higher precision.

Figure 6.11: Variations in the width of the posteriors - Each line shows the std (for d and
f1) and the dispersion (for v1) obtained by models trained with a different number of simulations
(see legend) respect to increasing SNR level. The inference is done in the synthetic test data.

Fig.6.12 shows the changes in the standard deviation of the posterior samples when a

different number of posterior samples are considered. Results suggest that the width of

the marginal posteriors can be assumed relatively stable when at least 50-100 samples are
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used to build the posterior distribution. We used 50 samples in subsequent comparisons

against MCMC (where we also use 50 samples drawn from the posterior).

Figure 6.12: Variations in the width of the posteriors as a function of the number of
posterior samples.

As a further assessment for the precision of the estimates, the density scatter plot in

Fig.6.13 shows the relationship between the posterior z-scores and the posterior shrinkage

(reliability plot) [Betancourt, 2018], where the combination of high shrinkage and low z-

scores represents an ideal anticipated behaviour from a well-trained network. As expected

from previous figures (see Fig.6.9), high shrinkage is observed for all parameters in the

NSF, i.e. the posteriors are well-identified and considerably contracted compared to the

initial uniform priors. A higher density of points around small z-scores indicates that the

mean estimates are concentrated around the ground-truth values. Taken together, these

results provide evidence of learning by the networks. Some cases exist that suggest be-

haviour towards the overfitting region (high z-scores and shrinkage), however, the largest

portion of cases lie in the ideal region.

Figure 6.13: Posterior fit evaluation - The density scatter plots show a measure of the relia-
bility of the inference using synthetic data, plotting the posterior z-scores against the shrinkage of
the posteriors as defined in [Betancourt, 2018] and sec.6.3.2
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Finally, Fig.6.14 shows the relationship between the computational runtime in a single-

CPU (in hours) with training data size and the training error measured as the log-

probability in the validation subset. Runtime shows a linear relationship with the size

of training data. In terms of error, the validation log probability curve seems to converge

at 1 million samples. This agrees with what has been observed before, e.g. if the pos-

terior barely changes in terms of mean and std (i.e. variations can be attributed to the

randomness of sampling) for varying parameters such as training data size, it is a sign of

convergence; otherwise, if posterior still gets tighter, more simulations are likely needed.

In Fig.6.11 we observed how the uncertainty remains pretty much the same in the model

trained with 1M or 10M samples. Hence, based on the results so far, we can assume

convergence (in terms of accuracy and precision) for the given biophysical model for an

NSF trained with 1 million samples. This requires only around 2 hours; furthermore, this

training needs to be done just once for a model (amortised inference).

Figure 6.14: Training size vs training time - The figure shows the Log-probability obtained (in
green) in the test set obtained by an NSF with uniform priors for training dataset size. Similarly, in
blue, it is indicated the time needed to train the network for a given training dataset size measured
in a single-core CPU.

In terms of generating the simulated training data, creating a simulated dataset ofN = 106

realisations took around 20 minutes. In terms of inference, obtaining 50 samples from the

posterior distribution from the already trained NSF is almost instantaneous and takes ∼1

msec. Still, as both simulation and inference runtime are linear with N , the runtime can be

reduced by C by parallelising at the data level, with C being the number of CPU-threads

used.
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6.4.2 Comparisons of SBI to MCMC – Synthetic data

After exploring a range of possible NPE hyper-parameters experimentally in the previ-

ous subsection, we found the configuration that provides best results is using a Neural

Spline Flow (NSF) as density estimator, uniform priors that cover the whole plausible

range of the parameters ω (d ∼ U(0, 5e−3) mm2/s, f ∼ U(0, 1), orientations:[θ ∼ U(0, π);

ϕ ∼ U(0−2π) rads], and a training data size of N = 106 samples. Using a network trained

with this configuration, we first compared results in a specific WM setup using a synthetic

dMRI dataset (see sec.6.3.2) against a more classical inference approach, the random walk

MCMC.

Fig.6.15 shows two exemplar cases of the posterior estimates given by each approach. In

terms of signal prediction, both provide accurate reconstruction. For a normalised signal,

MCMC returns an RMSE of 0.03 and 0.06, for the first and second exemplars of Fig.6.15,

respectively; RMSE in SBI is 0.05 for both cases. However, there exist differences in the

width of the posterior of the diffusivity.

Figure 6.15: Posterior Predictive Check - Comparisons between the ground-truth values
(black dashed line) and the estimates given by MCMC (orange) and SBI (blue) for two different,
randomly-chosen synthetic data realisations (in rows). Left column: Signal prediction. Middle
column: posterior distribution obtained for the diffusivity. Right column. posterior distribution
obtained for the volume fraction.

Fig.6.16 represents the median error across the 100 realisations for MCMC and SBI. SBI

returns slightly higher median errors than MCMC, although these are still low (below 5%

for scalar parameters, and 10 degrees for the fibre orientation). In SBI, there is a certain
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tendency to overestimate the mean parameter, especially in the diffusivity.

Regarding precision, Fig.6.17 shows the uncertainty estimation of each method quantified

by the standard deviation of the posterior across the 100 realisations. Uncertainty mapping

in the volume fraction and fibre orientation is similar in both approaches, while in the

diffusivity SBI provides uncertainty in the order of 10 times higher, as anticipated by 6.15.

In relative terms, the standard deviation of the posterior distributions is in the order of

2-5% of the estimated value for both SBI and MCMC, except in the diffusivity model

parameter in the SBI that is in the order of 40%, suggesting an overestimation in this

case.

6.4.3 Comparisons of SBI to MCMC – In-vivo brain data

Using the same trained network as in the subsection above, a comparison between SBI

estimates and MCMC outputs in in-vivo brain data is shown in Figs. 6.18 and 6.19. In

terms of accuracy, SBI shows a high level of agreement with the MCMC. Although the

difference maps and the histogram of differences suggest slightly higher values in the diffu-

sivity and the volume fraction compared to MCMC. This is in agreement to the observed

in synthetic data. Nevertheless, the differences are always below 5% with an overall cor-

relation of r = 0.84 for the diffusivity and r = 0.94 for the anisotropic volume fraction.

There is also a high agreement in the fibre orientation estimates, with a median difference

of 4.3°(IQR=6.21°) between SBI and MCMC mean posterior estimates.

Regarding precision, the uncertainty of the posterior parameter distributions provided by

SBI is lower compared to the MCMC, especially in non-WM regions. However, these dif-

ferences were not observed in synthetic datasets; in fact, there was an overestimation of

the uncertainty in the diffusivity parameter. Given that the uncertainty mapping agreed

with the expected behaviour in terms of SNR and data size (see Figs.6.12 and 6.11), a

potential reason for this might be differences between SBI and MCMC in capturing signal

complexity that is unexplained by the fitted model. In the synthetic data, we simulated

one fibre compartment and fitted a model with one compartment. But in real data we also

have signals arising from multiple crossing fibre compartments. While MCMC seems to

capture this unexplained signal from the extra compartments as the source of uncertainty
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Figure 6.16: Error maps in synthetic data - MCMC vs SBI - Comparisons of the error
obtained in the MCMC and SBI estimates across 100 noisy realisations (SNR=30) of the same
WM setup.
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Figure 6.17: Dispersion maps in synthetic data - MCMC vs SBI - Comparisons of the
dispersion maps obtained in the MCMC and SBI estimates across 100 noisy realisations (SNR=30)
of the same WM setup. Dispersion is measured as the standard deviations of the posterior distri-
bution.
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returning a higher dispersion in the estimates, the SBI seems to return overconfident pos-

teriors.

We explored whether these differences could have an effect on the tract bundles obtained

using probabilistic tractography [Warrington et al., 2020] and the fibre orientation poste-

riors provided by SBI and MCMC. Given that no crossing fibres are considered in these

experiments, a number of tracts that go through complex white matter patterns could

not be resolved successfully with these single-fibre vector fields (specifically the bilateral

Acoustic Radiations (AR) and superior Longitudinal Fasciculi (SLF) I and II). Never-

theless, reasonable estimates were obtained from the rest of the tracts with a relatively

high correlation (median correlation r = 0.74) between the SBI-obtained tracts and those

obtained from the MCMC approach (see Fig.6.20). Despite the agreement in the main

core of the tracts, we can observe how the difference in orientation uncertainties between

SBI and MCMC are reflected in spatially more confined distributions for some of the SBI

tracts (e.g. the Frontal Aslant, pointed with yellow arrows in Fig.6.20).

Finally, we evaluated the computational performance in this in-vivo brain dataset. Using

the in-house Python implementations and using a single-CPU core, obtaining the posteri-

ors for a whole-brain unseen dataset (104x104x56 voxels) took 20 minutes, while running

MCMC took more than 100 hours. This reflects a speed-up of 2-3 orders of magnitude

in parameter inference once the network is trained, as found also in other studies (e.g.,

[Hashemi et al., 2022]).

6.5 Discussion

Simulation-Based Inference takes advantage of the capability of Machine Learning meth-

ods to handle large dimensionality problems while preserving Bayesian principles to ap-

proximate the posterior distribution. Furthermore, untackled challenges can be addressed

within this framework as it can provide amortised inference without the necessity of an

explicit likelihood; the only requirement is to have access to a forward process that can

simulate data. In this chapter, we have designed and evaluated the application of SBI in

voxel-wise microstructural modelling of the brain for dMRI data for the first time. As

a proof-of-concept, we used a single-shell single-fibre Ball&Sticks model, studied the op-
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Figure 6.18: Qualitative comparison between MCMC and SBI estimates in in-vivo
brain data - Each column shows the mean maps obtained for the diffusivity and volume fraction,
the fibre orientation, and the dispersion of the fibre orientation estimates (as exemplar of precision
maps).
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Figure 6.19: Quantitative comparison of MCMC and SBI estimates in in-vivo brain
data - First row: difference maps between estimates from MCMC and SBI. Second raw: histogram
of these differences. Third row: a correlation plot between scalar parameters, respectively. Differ-
ences are calculated in the WM only using a FA>0.1 mask.

Figure 6.20: Comparison of probabilistic tractography obtained from MCMC and SBI
estimates in in-vivo brain data - Top: Comparison of Maximum Intensity Projection of some
exemplar tracts obtained by using MCMC and SBI model estimates. Bottom: Correlation between
MCMC and SBI tracts. Legend indicates the median correlation between all tracts (discarding
missed tracts).
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timal design of the network, and compared results against classical inference approaches

(MCMC) in both synthetic and in-vivo brain data.

The Neural Spline Flow (NSF) was the density estimator that performed the best, closely

followed by the Masked Auto-regressive Flow (MAF). This agrees with what has been

found in other SBI studies [Lueckmann et al., 2021], also in neuroimaging [Hashemi et al.,

2022]). In our study, we utilized the NSF as the density estimator along with synthetic data

to determine the most stable and accurate results for all model parameters. We discovered

that employing uniform priors with biophysical-informed ranges for all parameters, with

appropriate corrections for angular parameters to ensure uniformity in spherical space

rather than Cartesian space, yielded the best outcomes. Bayesian inference can benefit

from inductive biases, which can be introduced by defining more specific prior distributions

for the parameters. To explore this, we utilized the Gamma distribution, previously em-

ployed in other works for diffusivity [Behrens et al., 2003]. However, we found that using

a uniform prior for diffusivity outperformed in terms of accuracy and stability. This may

initially appear counterintuitive since inductive biases are typically employed to enhance

convergence during training (e.g., enforcing biophysical-informed ranges). Nevertheless,

similar findings have been reported in other simulation-based inference studies [Lueckmann

et al., 2021]. The reasons for these architectures favouring uniform priors are not yet fully

understood. It remains unclear whether defining overly specific priors might overly con-

strain the parameter space during training, leading to undersampling/oversampling in

certain regions, whether there is any dependency on the geometry of the parameter space

(e.g. we have commented on the consequences of this type of bias when the poles of the

sphere were undersampled), or it is just lack of training. Further investigation is required

to shed light on this matter. Interestingly, recent developments in the field, such as Ac-

tive Learning [Rezende et al.] and the sequential approaches mentioned in section 6.2.1,

offer intriguing alternatives for leveraging more accurate and complex priors specific to

the data. These avenues provide opportunities for future research and warrant exploration.

Regarding precision, uncertainty in ML models is expected to be reduced with higher

SNRs and/or larger and more diverse datasets [Hermans et al., 2021; Stickland and Mur-

ray, 2020], and we have observed this in synthetic data. We have also verified that using
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only 50 samples to build the posteriors (allowing for faster inference and direct compar-

isons against MCMC) is not biasing the results and that the posteriors obtained are mostly

located in reliable regions as defined in [Betancourt, 2018]. Regarding training data size,

a set of N = 106 samples was shown to be close to convergence in terms of error, while

keeping a very low training time of the network. This size of the training set is in a sim-

ilar range obtained in other works inferring a similar number of model parameters with

non-linear relationships [Jallais et al., 2022; Lueckmann et al., 2021].

Using this configuration (NSF trained with N = 106 samples simulated with parameters

drawn from uniform priors), we compared model parameter estimates obtained by the

novel SBI implementation and a classical univariate-MCMC approach in synthetic data.

Accuracy of estimates was overall high in both methods, with a slight overestimation in

the SBI. In terms of precision, SBI returned similar widths of the posteriors for all param-

eters except the diffusivity, which showed up to 10 times broader posterior distributions.

A similar comparison was performed for in-vivo brain data. The only requirement for

this data is to be obtained with the same acquisition parameters as the ones used for

the training dataset. Again, a high level of agreement was found in the mean parameters

estimates, confirming the accuracy of the SBI approaches. However, we found differences

in the precision of the estimates. Compared to MCMC estimates, SBI has shown lower

uncertainty values for model parameter estimates. These differences with respect to the

MCMC were not observed in simulated data. Two potential hypotheses can be explored

to explain these differences: 1) There is a model miss-specification and the simulated data

used for training were not realistic enough; however, this should have led to an incorrect

training of the network and, as a consequence, very bad accuracy in mean parameter es-

timation, which was not the case. 2) SBI and MCMC behave differently when there is a

residual signal unexplained by the complexity of the considered model. The model fitted

was a single-fibre model; simulated data were drawn from single-fibre patterns, but in-vivo

brain data can contain multiple compartments. As a consequence, the variance explained

by the predicted signal is lower in general and the uncertainty of the estimates is higher,

as happened in the MCMC. However, the SBI has not been able to map this uncertainty

correctly. This seems to be a more plausible explanation, which points to a limitation of
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the SBI framework (see sec.6.5.1 below for a more extensive discussion on this matter).

Nevertheless, probabilistic tractography (which is built upon uncertainty estimates of the

fibre orientations) using SBI model estimates has provided plausible results and a relatively

high level of agreement with those obtained using MCMC (median correlations above 0.7).

We further evaluated SBI in terms of it computational performance. Given the amortised

implementation, the computational cost of SBI largely resides in the training phase. Once

the network is trained, inference for new unobserved data can be done almost interactively,

with a simple forward pass on the trained network, providing experimental speed-ups of

2 to 3 orders of magnitude compared to classical inference approaches like MCMC.

The idea of applying ML to learn the mapping between data and model parameters in

dMRI is relatively recent but has been demonstrated in previous studies (e.g., [Golkov

et al., 2016; Gyori et al., 2022; Ye et al., 2020]). However, to the best of our knowledge,

only [Hashemi et al., 2022; Jallais et al., 2022] provide a similar approach for inference at

whole-brain scale including uncertainty mapping, instead of point-estimate predictions.

Of particular interest is [Jallais et al., 2022], where the authors fitted a 3-compartment

biophysical model (neurites, somas and extra-cellular space (ECs)) to dMRI signal, in

order to characterize cortical cytoarchitecture [Palombo et al., 2020]. They designed an

NPE, with a MADE as density estimator with a similar training set-up to ours (e.g., 105

simulations, ADAM optimizer and default parameters in the sbi Python package) and

validation using both synthetic and in-vivo brain data. However, relevant differences can

be found in our design. For instance, they relied on a vector of 7 rotationally invariant

summary features used to describe the dMRI signal [Jallais et al., 2022]. They used this

approach to allow inference for data from any dMRI sampling scheme (i.e. for any b-

value and b-vector), while in our design the sampling scheme was fixed. Although the

suitability of using summary statistics is highly dependent on the data and model used,

the above suggests this could be a future aspect to investigate for both making training

easier by having a lower dimensionality and to allow using different sampling schemes or

models for the same trained network. Regarding precision, they evaluated the variance

of the posteriors by quantifying the reduction of the variance as a function of different
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simulated parameter values, but not by comparing against other methods. In our study,

we evaluated the effect of the SNR and training data size in the dispersion of the param-

eters and confirmed the expected behaviour that uncertainty reduces as SNR or training

data size increases. Furthermore, we showed that sharper distributions are not always

equivalent to accurate precision mapping, but a potential symptom of overconfident esti-

mates, so studying the variance of SBI estimates alone (as done in [Jallais et al., 2022])

can be misleading and further diagnostics are needed (see sec.6.5.1 below for a discussion).

Taken together, results from both works provide complementary observations of how SBI

has shown potential to be applied to a variety of biophysical models while providing

ground-breaking speed-ups thanks to the amortised inference. This makes SBI frameworks

a promising approach with a potential impact on neuroimaging. However, there are open

questions in multiple directions that need to be addressed, such as the generalisability and

applicability of the frameworks and, more crucially, the uncertainty mapping done by SBI.

6.5.1 Uncertainty mapping in SBI

We have observed situations where the uncertainty quantification obtained by the MCMC

and the novel SBI approach differed. Exploring which approach provides the right width

for the posterior distributions is challenging as there is no ground-truth. However, classical

Bayesian approaches, such as MCMC, have been extensively used in the past, while there

are recent studies that highlight the potential of overconfident behaviours in NNs [Guo

et al., 2017]; therefore, cautious use of methods that rely on them, such as SBI frameworks,

may be needed [Hermans et al., 2021].

Recent studies have looked into how these deviations in uncertainty mapping can arise

and have pointed to a complex mix of multiple sources. For instance, while vanilla neural

networks are proven to provide well-calibrated probabilities [Niculescu-Mizil and Caru-

ana, 2005], techniques designed to boost accuracy in current deep learning approaches

(weights decay, batch normalization, active learning, etc.) affect output probability cal-

ibration [Guo et al., 2017] and coverage of the posterior [Hermans et al., 2021], leading

to potential overconfidence. In simple terms, if the probabilities are not calibrated they

cannot be directly interpreted as a degree of confidence. Training data size, imbalance in
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the training set or data distribution shifts in new observations with respect to the training

data (also known as out-of-distribution data) are also common sources that contribute to

badly calibrated output probabilities [Bjorck and Gomes, 2021; Gyori et al., 2022; Ovadia

et al., 2019]. Model complexity and model miss-specification is especially relevant as well

in an SBI context as simulations are used to learn about real-world observations [Schmitt

et al., 2022]. Some of these sources could have been captured in our experiments with SBI,

such as the flexibility of density estimators, and the effects of training data size, noise,

or imbalanced training data if corrections are not made to angular parameters; however,

others such as increased uncertainty by model miss-specification have not been evidenced.

To alleviate the impact of these factors in uncertainty quantification some approaches have

been very recently proposed. For instance, post-processing recalibration techniques of the

output probabilities can be applied (e.g. see [Cranmer et al., 2016; Kuleshov and Desh-

pande, 2022; Macêdo et al., 2022]). However, these posterior corrections are not always

accurate nor solve the bias in the learnt surrogate model. Hence, there is an active field

of research looking for well-calibrated algorithmic designs capable of preserving the accu-

racy of the current ones, such as: defining new objective functions for correct uncertainty

mapping in NNs [Delaunoy et al., 2022; Glöckler et al., 2022; Macêdo et al., 2022], or new

alternative methods based in Bayesian-NNs [Blundell et al., 2015] or use ensembles that

perform model averaging that have been proved experimentally to improve generalisation

[Hansen and Salamon, 1990; Lakshminarayanan et al., 2017; Ovadia et al., 2019; Stickland

and Murray, 2020] and increase the expected coverage in SBI frameworks [Hermans et al.,

2021].

All in all, SBI has shown great potential for being used as a probabilistic framework and

addressing untackled problems by classical inference methods. However, while improve-

ments in modern ML methods in recent years have boosted performance in predictive

accuracy they might be showing symptoms of falling short in giving correct estimates of

their predictive uncertainty. In this thesis, we have stressed on multiple occasions that

correct uncertainty mapping is crucial and how it can be useful in a number of dMRI con-

texts, such as identifying regions in the parameter space or in the brain where it is harder

to fit a given model; or assessing whether the acquisition scheme is sufficiently informative
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[Jallais et al., 2022]. Hence, further research in this direction is a promising opportunity

to extend the reliability and applications of simulation-based inference frameworks in neu-

roimaging.

6.5.2 Limitations and Future Work

Given the novelty of SBI, a limitation is that the theoretical underpinnings are much less

understood than in classical Bayesian approaches. In general, more research needs to be

done regarding guarantees of the approximations and, especially, uncertainty mapping, as

we discussed above.

Specific to the problem addressed in this chapter, and despite the promising results, we

used a toy example here to provide proof of principle. More evaluations can be done and

further modeling complexity can be considered. For instance, we have only evaluated a

model with a single fibre compartment, so the generalisation of the problem to complex

fibre patterns is still unclear from these experiments. We observed challenges regarding

uncertainty quantification. Hence, a direct extension would be to improve on this using

some of the techniques described above (e.g., recalibration of output probabilities, mod-

ification of loss functions or alternative methods to NNs). Particularly contrasting with

classical approaches, as we did here, can also provide deeper insights into the generali-

sation of the new approaches with different parameter acquisitions (b-shells, resolution,

etc.) or the compatibility with complex parametrization, such as angular parameters, or

improper priors, such as the ARD.

Furthermore, one of the main motivations for SBI is the capability to address problems

where there is a forward process (but not necessarily a single likelihood) to invert. Hence,

the suitability to perform inference in models where there is not an explicit likelihood, but

a series of iterative reconstruction and regularisation steps, like the Constrained Spherical

Deconvolution (CSD) [Tournier et al., 2004, 2007] is an appealing future direction.

Following that line of research, many applications in neuroimaging can be envisioned in the

longer term. Theoretically, if a neural network is appropriately chosen, tuned and trained,
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it can represent any relationship between inputs and outputs if such a relationship exists.

Framed into an SBI framework, a probabilistic mapping can be learnt between raw dMRI

signals to the desired outputs (even directly from k-space data), e.g., biophysical model

parameters or connectivity indices. Current pipelines barely provide feedback from pre-

vious steps despite the information being partly loss or smoothed at every pre-processing

stage (registration, motion correction, denoising, modelling fibre orientations, etc.). How-

ever, by providing a direct mapping using a neural network, 1) all these modelling and

assumptions taken during pre-processing steps are avoided, and 2) the effects of each layer

on the final result are propagated back to adjust preceding layers, preventing the loss of

information during intermediate steps.



Chapter 7

Conclusions and future directions

7.1 Main Contributions

Advanced imaging techniques, such as diffusion MRI, have had explosive growth and have

shown great potential in studying brain architecture and structure. However, the mea-

surements are indirect, in the sense that quantities of interest cannot be observed directly

from images and have to be estimated. Over the last years a number of models have been

proposed to link measurements from the scanner to different biophysical properties of

brain tissue. This inverse mapping process creates challenges from estimating parameters

for potentially highly-complex models to mapping uncertainty in these estimates. Hence,

approaches that can address this inverse problem in an efficient manner are of crucial im-

portance. To contribute towards that direction, we have devised and evaluated inference

frameworks for computational diffusion MRI that deal with uncertainty mapping. We

also explored one of the largest sources of uncertainty, thermal noise, and how denoising

approaches can be beneficial.

Chapter 4 presented a novel framework for evaluating diffusion MRI denoising approaches

(EDDEN). By setting objective criteria based on what a well-behaved denoising algorithm

should offer, we evaluated the performance of commonly-used denoising approaches. Im-

portantly, we captured both effects that noise can introduce: a) increasing variance of

signal, but also b) causing signal biases. We showed that magnitude-based denoising ap-

proaches deal with the first challenge, but not with the second, leaving noise-floor effects

in the ”densoised” signal. They also cause larger loss of spatial resolution compared to

192
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complex space-based denoising. The latter are more successful in dealing with noise-floor

effects as well. All in all, we demonstrated that dMRI denoising, when done properly, can

provide gains in signal quality and model estimability, and this can open opportunities

for new applications, such as reducing scan time or pushing the boundaries for spatial

resolution.

After demonstrating how some sources of uncertainty can be reduced, we considered in

the following chapters the problem of mapping this uncertainty when inferring models

from data. In Chapter 5 we tackled this challenge by proposing and evaluating new algo-

rithmic designs of the Metropolis-Hastings MCMC in order to improve efficiency in both

sampling and computing. We proposed moving away from the conventional univariate

random-walk sampling scheme to a block-update MCMC paradigm that allows inference

of multiple model parameters simultaneously. Among the different designs proposed, the

Hybrid-MCMC algorithm showed the best performance. This new algorithm finds the

appropriated covariance matrix of parameters via a Laplace approximation followed by an

adaptive learning procedure, while permitted parameters with improper priors to operate

independently. Hybrid-MCMC achieved similar accuracy in biophysical model parameter

estimates to the univariate random-walk approach, in both synthetic and in-vivo brain

data, while reducing the inference time by more than two-fold.

Finally, in Chapter 6 we approached the inverse problem from a different perspective.

We designed and evaluated a novel simulation-based inference framework that relies on a

generative forward process and the use of neural networks to learn an implicit mapping

between data and parameters of interest. Using neural density estimators, these mappings

are not simply considering point estimates but whole distributions, such as likelihoods and

posterior densities of parameters given the data, allowing Bayesian inference in a data-

driven way. Using a dMRI model as a proof-of-principle, we evaluated the framework in

both synthetic and in-vivo brain data. Results showed a high level of accuracy in the

mean estimates of model parameters, while achieving orders of magnitude faster inference

than classical methods such as MCMC. Moreover, this type of framework allowed for

inference amortisation even in problems that cannot be explicitly modelled with a tractable

likelihood, paving the way for exploring new opportunities in neuroimaging-based models.
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7.2 Future Directions

The methods and explorations presented in this thesis can be envisioned as complemen-

tary advances in the field. These could be translated into new research pathways and

direct applications into clinical routine settings. For example, the utilization of denoising

techniques has been discussed as a means to enable shorter scanning acquisitions, reducing

the burden on patients undergoing scanning. Moreover, the introduction of high-resolution

protocols holds promise for more precise and personalized diagnoses. It is worth noting

that these methods extend beyond diffusion MRI, as various inherently noisy MRI modal-

ities can benefit from principled denoising approaches, both in research (e.g., post-mortem

imaging [Roebroeck et al., 2019a]) and different targets in clinical applications (such as

non-proton MRI [Weber et al., 2020] or DW-spectroscopy [Palombo et al., 2018]). How-

ever, to validate the efficacy of denoising, it is crucial to establish a principled manner for

its evaluation, which necessitates a deep understanding of how the signal is modified by

denoising approaches. Further work on developing standardised benchmarking for denois-

ing is necessary, and we outline potential next steps below in section 7.2.1.

When combined with the new amortised inference approaches explored in this thesis, which

also benefit from higher signal-to-noise ratios, these avenues become even more accessi-

ble. In clinical practice, they can remove the need for extensive computational resources

traditionally associated with neuroimaging inference. For instance, by leveraging trained

models, advanced and specific biophysical parameters could be displayed alongside the

readily available FA or MD maps, generated in near real-time and aiding diagnostic pur-

poses.

While exploring alternative avenues of research, such as hardware improvements, accel-

erated image acquisition, and GPU implementations, can enhance computational perfor-

mance as well, the availability of high-quality ultra-high-resolution data (achieved through

denoising) and methodologies like the SBI framework examined in this thesis offer exciting

prospects for addressing unexplored research questions. One area of exploration involves

investigating more complex crossing-fibre models. As observed, SBI has the potential to

revolutionise inference speed (e.g., for models with multiple crossings like the Ball&Sticks

model) but, more significantly, provide a novel inference approach for complex models.
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For example, current methods are unable to perform inference in spherical deconvolution

models such as Constrained Spherical Deconvolution (CSD) [Tournier et al., 2004, 2007].

Typically, these intricate microstructural models are solved using iterative heuristics that

do not provide information about parameter correlations or find global minima [Daducci

et al., 2015]. However, data can still be simulated from these models as a mixture of

tensors, rendering them suitable for SBI exploration. Looking into the long term, vali-

dating these tools may unlock exciting opportunities to tackle some of the field’s current

challenges, such as multimodal fusion of data or direct mapping from raw measurements

to relevant features, bypassing intermediate pre-processing steps.

7.2.1 Benchmarking for dMRI denoising

The interest in pushing spatial resolution boundaries, the convenience of reducing scan

times, or achieving higher diffusion-sensitisation to increase angular contrast [Moeller

et al., 2021b; Roebroeck et al., 2019b] have motivated research for algorithmically re-

ducing thermal noise effects in the dMRI signal [Buades et al., 2005; Fadnavis et al., 2020;

Manjón and Coupe, 2021; Moeller et al., 2021a; Pal and Rathi, 2022; Veraart et al., 2016b;

Zeng et al., 2021]. However, many questions remain unanswered: how should one denoise

dMRI data? Are there any undesired effects caused by denoising? Are theoretical proper-

ties of the dMRI signal preserved? or even whether “to denoise or not”.

These type of concerns are generally addressed in other fields by a benchmark [Kay et al.,

2013; Plotz and Roth, 2017], which is lacking currently in dMRI. By implementing a con-

trolled environment formed by a set of principled evaluations designed for a given type

of data, and a fixed dataset representing different challenging scenarios, it is possible to

characterise the performance of any algorithm. This process is required in order to answer

the questions above in a standard and reliable manner.

This is basically the idea behind our framework EDDEN and turning it to a benchmark

is the aim for the future. At the moment, some of the evaluations are empirically-driven.

Quantitative summary metrics are needed to allow automated performance comparison of

existing and new algorithms, or to find the optimal parametrisation of each method in an

objective manner. Given the lack of ground-truth for in-vivo brain data and the complexity
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of quantifying some parameters, one could work in two directions: 1) incorporating to

the framework synthetic data where ground-truth is known, and 2) exploring Machine

Learning options to learn no-reference quantifiable scores [Chow and Rajagopal, 2017; Lin

et al., 2020; Mittal et al., 2012; Stepień et al., 2021], especially for their application to

in-vivo brain data. In fact, this type of score can offer a more sophisticated alternative to

SNR or CNR, where aspects such as spatial resolution loss or noise-floor could be included.

7.2.2 Direct mapping from raw signal to model estimates

Machine Learning provides powerful ways to learn abritrarily-complex transfer functions

without the necessity of any model or a priori knowledge of the data. Their application to

perform analyses in dMRI, even beyond biophysical model parameters fitting, is expand-

ing [Knoll et al., 2020; Poulin et al., 2019; Ravi et al., 2019]. For instance, [Wasserthal

et al., 2018] used a CNN to directly segment tracts from the fODF peaks without using

tractography, image registration or parcellation.

This raises the question of whether we could extend this idea to directly map noisy raw

data to downstream model parameters, such as biophysical model parameters or con-

nectivity indices, without the need of intermediate steps; by integrating those into one

forward process. For instance, pre-processing data is usually needed to reduce the im-

pact in modeling of artifacts during acquisition, such as noise or motion; registration to a

common space for comparisons; or even just for human visualization and interpretation.

However, no new information is produced during this process, i.e. all the information

should be already contained in the acquired k-space measurements. Pre-processing may

rely on inaccurate statistical assumptions, model simplications and/or signal alterations

to smooth the data, that can affect the final estimates. A direct mapping, as for instance

allowed in an SBI framework, may provide crucial advantages: 1) Avoid signal modifica-

tions across various intermediate steps, thus reducing the sources of interpolation artifacts

and/or uncertainty; 2) Use uncertainty in model estimates for more efficient acquisition

and experimental design; 3) Massive reductions of computational time given amortised in-

ference; 4) Reduce differences arising from different pre-processing and analysis pipelines

in favour of standardisation.
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Nevertheless, this entails important challenges and considerations. For instance, how the

outcome may be affected when images are not distortion-corrected or in a common space

has not been investigated, so it is unclear what steps can be really avoided or not. How

much of the processing can be reversed and be identifiable may also depend on how data

are acquired. Furthermore, although SBI operates via unsupervised learning, training

relies on forward simulations. If the generative models employed are simplifications of the

reality, the surrogate model learnt by SBI will be inherently limited as well. Nevertheless,

this is an exciting stream of research that now seems to be tangible, as these methods are

capable of handle high-dimensionalities while imposing little assumptions on data.

7.2.3 Fusing information from multiple sources

The fact that a flexible density estimator can be used to learn any arbitrarily complex func-

tion also paves the way for an avenue extensively desired in the neuroimaging community:

information fusion from different sources. Different MRI modalities provide indirect and

complementary approaches to probe on same occasions the same underlying brain prop-

erties. For instance, brain connectivity and networks can be probed using different MRI

modalities, including anatomical MRI (anatomical covariance), resting-state functional

MRI (functional connectivity) and diffusion MRI (structural connectivity) [Jbabdi et al.,

2015]. However, the current paradigm treats them independently in ad-hoc modality-

specific pipelines, ignoring complementary information they convey during modelling. This

results in errors and ambiguities to a degree that hinders the ability to map individual

brains reliably, affecting and possibly biasing [Maier-Hein et al., 2017], and affects inter-

pretability of findings [Cole, 2010; Eickhoff et al., 2015]. Furthermore, these errors reduce

reproducibility in neuroscience research and impede its translation into clinical applica-

tions [Griffanti et al., 2016].

Attempts to fuse information and reduce these errors have been implemented in the past

to integrate cross-modalities data [Cabral et al., 2011; Honey et al., 2009; Kasabov, 2012],

complementary within-modality data [Sotiropoulos et al., 2013a, 2016], or different models

for the same data modality [Assaf et al., 2013; Howard et al., 2019]. In fact, the concept

of fusing modalities to provide a unified generative model linked by common biophysical

characteristics has been proposed a while ago [Jbabdi et al., 2007; Woolrich and Stephan,
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2013] although it has not been comprehensively evaluated and adapted, due to challenges

posed by classical inference approaches. Nowadays, there is not actual fusion of informa-

tion so each individual modality will carry its own sources of error after the individual

processing/modelling. As a workaround, a common approach is to use one modality to

restrict the other, but in a unidirectional manner, e.g. assume anatomical connectivity

obtained from experimental data as a true scaffold (which is not) to study parameters

from generative models of large-scale neural populations coupled to that structure [Cabral

et al., 2011; Deco et al., 2012; Honey et al., 2009].

The approaches that truly allow data fusion are generally limited by the computational

feasibility of inverting the model or just the lack of well-established joint forward mod-

els that can be written as a likelihood. While the Hybrid-MCMC showed advantages

by allowing for block-conditioning during inference, it would still need the definition of

tractable likelihood. Hence, SBI could provide a potential framework to fuse information

without the need of explicit joint forward models while 1) being able to address highly

dimensional parameters spaces, 2) introducing naturally prior knowledge and biological

constraints, and 3) assessing the uncertainty of the estimations. Ideally, constraining the

conditional density estimation using information from multiple sources should unlock the

potential for more accurate brain mapping, even at the individual level.
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R. Salvador, J.-P. Thiran, and A. Daducci. Sparse wars: A survey and comparative
study of spherical deconvolution algorithms for diffusion MRI. NeuroImage, 184:140–
160, Jan. 2019. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2018.08.071.

E. Caruyer, C. Lenglet, G. Sapiro, and R. Deriche. Design of multishell sampling schemes
with uniform coverage in diffusion MRI. Magnetic Resonance in Medicine, 69(6):1534–
1540, 2013. ISSN 1522-2594. doi: 10.1002/mrm.24736.

M. Catani, R. J. Howard, S. Pajevic, and D. K. Jones. Virtual in Vivo Interactive Dis-
section of White Matter Fasciculi in the Human Brain. NeuroImage, 17(1):77–94, Sept.
2002. ISSN 10538119. doi: 10.1006/nimg.2002.1136.

M. A. Chappell, A. R. Groves, B. Whitcher, and M. W. Woolrich. Variational Bayesian
Inference for a Nonlinear Forward Model. IEEE Transactions on Signal Processing, 57
(1):223–236, Jan. 2009. ISSN 1941-0476. doi: 10.1109/TSP.2008.2005752.

M. A. Chappell, M. W. Woolrich, S. Kazan, P. Jezzard, S. J. Payne, and B. J. MacIntosh.
Modeling dispersion in arterial spin labeling: Validation using dynamic angiographic
measurements. Magnetic Resonance in Medicine, 69(2):563–570, 2013. ISSN 1522-2594.
doi: 10.1002/mrm.24260.



BIBLIOGRAPHY 203

G. Chen, Y. Wu, D. Shen, and P.-T. Yap. Noise reduction in diffusion MRI using non-
local self-similar information in joint x - q space. Medical Image Analysis, 53:79–94,
Apr. 2019. ISSN 13618415. doi: 10.1016/j.media.2019.01.006.
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C. M. W. Tax, F. Guo, H. Y. Mesri, S. Dávid, M. Froeling, A. M. Heemskerk, A. Lee-
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D. Greenberg, and J. Macke. Sbi: A toolkit for simulation-based inference. JOSS, 5
(52):2505, Aug. 2020. ISSN 2475-9066. doi: 10.21105/joss.02505.

C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo, and C.-W. Lin. Deep learning on image
denoising: An overview. Neural Networks, 131:251–275, Nov. 2020. ISSN 08936080.
doi: 10.1016/j.neunet.2020.07.025.

L. Tierney and J. B. Kadane. Accurate Approximations for Posterior Moments and
Marginal Densities. Journal of the American Statistical Association, 81(393):82–86,
Mar. 1986. ISSN 0162-1459. doi: 10.1080/01621459.1986.10478240.

J.-D. Tournier, F. Calamante, D. G. Gadian, and A. Connelly. Direct estimation of
the fiber orientation density function from diffusion-weighted MRI data using spherical
deconvolution. NeuroImage, 23(3):1176–1185, Nov. 2004. ISSN 10538119. doi: 10.1016/
j.neuroimage.2004.07.037.

J.-D. Tournier, F. Calamante, and A. Connelly. Robust determination of the fibre orien-
tation distribution in diffusion MRI: Non-negativity constrained super-resolved spher-
ical deconvolution. NeuroImage, 35(4):1459–1472, May 2007. ISSN 10538119. doi:
10.1016/j.neuroimage.2007.02.016.

D. S. Tuch. Q-ball imaging. Magnetic Resonance in Medicine, 52(6):1358–1372, Dec. 2004.
ISSN 0740-3194, 1522-2594. doi: 10.1002/mrm.20279.
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Appendix A

List of Abbreviations

ABC Approximate Bayesian Computation
AC Anterior Commisure
ACF Autocorrelation Function
ADC Apparent Diffusion Coefficient
ANN Artificial Neural Network
APT Automatic Posterior Transform
AR Auto-regressive
ARD Automatic Relevance Determination
BedpostX Bayesian Estimation of Diffusion Parameters Obtained using Sampling Techniques
BNN Bayesian Neural Network
BRISQUE Blind/Reference-less Image Spatial Quality Evaluator
CC Corpus Callosum
CNN Convolutional Neural Network
CNR Contrast-to-Noise Ratio
CPU Central Processing Unit
CR Corona Radiate
CRLB Cramer-Raw Lower Boundary
CS Compressed Sensing
CSD Constrained Spherical Deconvolution
CSF Cerebro-Spinal Fluid
DCNN Deep Convolutional Neural Network
DCT Discrete Cosine Transform
DIPY Diffusion Imaging in Python
DL Deep Learning
dMRI diffusion MRI
dODF Distribution ODF
DOF Degrees of Freedom
DTI Diffusion Tensor Imaging
EAP Ensemble Average Propagator
EDDEN Evaluating DMRI DENoising
ELBO Evidence Lower Bound
EPI Echo-Planar Imaging
ESS Effective-Sample Size
FA Fractional Anisotropy
fMRI functional MRI
fODF Fibre ODF
FRT Funk-Radon Transform
FSL FMRIB Software Library
FWHM Full-Width Half-Maximum
FX Fornix
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GAN Generative Adversarial Network
GFlowNets Generative Flow Networks
GM Gray Matter
GMM Gaussian Mixture Model
GP Gaussian Process
GPU Graphical Processing Unit
GRAPPA Generalized Autocalibrating Partial Parallel Acquisition
HCP Human Connectome Project
IID Independent and Identically Distributed
IQA Image Quality Assessment
LA Laplace Approximation
LFI Likelihood-Free Inference
LM Levenberg-Marquadt
LRA Low-Rank Approximation
LSTM Long-Short Term Memory
MAF Masked Auto-regressive Flow
MADE Masked Autoencoder Density Estimation
MAP Maximum A Posteriori
MAP-MRI Mean Apparent Propagator MRI
MD Meand Diffusivity
MDN Mixture Density Network
MCMC Markov-Chain Monte Carlo
MH Metropolis-Hastings
MIP Maximum Intensity Projection
ML Machine Learning
MLE Maximum Likelihood Estimation
MLP Multilayer Perceptron
MNI Montreal Neurological Institute
MPPCA Marchenko-Pastur PCA
MRI Magnetic Resonance Imaging
MSE Mean Squared Error
NDE Neural Density Estimator
NDI Neurite Density Model
NF Normalizing Flow
NLE Neural Likelihood Estimation
NLM Non-Local Means
NODDI Neurite Orientation Dispersion and Density Imaging
NORDIC NOise Reduction with DIstribution Corrected
NPE Neural Posterior Estimation
NRE Neural Ration Estimation
NSF Neural Spline Flow
NUQ Noise Uncertainty Quantification
ODF Orientation Distribution Function
OLS Ordinary Least Squares
P2S Patch2Self
PC Principal Component
PCA Principal Component Analysis
PGSE Pulsed Gradient Spin Echo
PI Parallel Imaging
PSNR Peak SNR
PVM Partial Volume Fraction
QBI Q-Ball Imaging
QC Quality Control
q-DL q-space Deep Learning
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RF Random Forest
RMT Random Matrix Theory
RMS Root Mean Square
RNN Recurrent Neural Network
RSoS Root-Sum of Squares
RWM Random-Walk Metropolis
SBI Simulation-Based Inference
SENSE Senstivity Encoding
SH Spherical Harmonics
SLF Superior Longitudinal Fasciculus
SMC Sequential Monte Carlo
SMT Spherical Mean Technique
SNPE Sequential Neural Posterior Estimation
SNLE Sequential Neural Likelihood Estimation
SNR Signal-to-Noise Ratio
SNRE Sequential Neural Ratio Estimation
SSIM Structural Similarity Index Measure
SVD Singular Value Decomposition
TE Echo Time
TR Repetition Time
uODF Uncertainty ODF
VAE Variational Autoencoder
VB Variational Bayes
VI Variational Inference
VST Variance Stabilization Transform
WM White Matter



Appendix B

Initialization and other MCMC
considerations

B.1 Spherical to Cartesian coordinate conversion

A number of parameters in the considered model in this thesis (e.g. fibre orientations
vi or gradient directions vectors gi) are defined on the unit sphere. This is done for
computational convenience as using spherical coordinates representation in the models
we have one parameter less to estimate; for visualisation we convert these to Cartesian
coordinates. To transform from Cartesian coordinates to spherical coordinates, we use the
following identities:

r =
√
x2 + y2 + z2

θ = acos(
z

r
)

ϕ = atan2(y, x)

and from spherical coordinates to Cartesian coordinates:

x = r · cos(ϕ) · sin(θ)
y = r · sin(ϕ) · sin(θ)

z = r · cos(θ)

For unit vectors, r = 1, so v becomes:

v = [x, y, z]Cartesians

v = [sin(ϕ) · cos(θ), sin(θ) · sin(ϕ), cos(θ)]spherical

Figure B.1: Angle convention followed
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B.2 MCMC Initialization

As explained in the main text, non-linear fitting of the Ball&Sticks model is performed to
initialize the model parameters in the MCMC, ω0, in this case by the Levenberg-Marquardt
(LM) algorithm. However, the LM itself requires an initial vector x0 of values from where
start to do the optimization process; this x0 can be obtained by fitting a DTI model (see
eq.2.22) to the data in each voxel.

B.2.1 Tensor model fitting

The first step is to estimate the diffusion tensorD, which is a generalization of the diffusion
propagator (see eq.2.12) without assuming homogeneity in the medium of propagation, so
different diffusion values are allowed along different directions.

D =

Dxx Dxy Dxz
Dyx Dyy Dyz
Dzx Dzy Dzz

 (B.1)

As D is assumed to be symmetric and constant per voxel, there are 6 unknown parameters
that need to be estimated from D. Let bi indicate the b-value of gradient i (it is typically
assumed constant and with values around 1000 s/mm2 [Jones et al., 1999]), gi a gradient
directions vector with (x,y,z) coordinates (ideally evenly distributed in the unit sphere to
obtain rotationally invariant properties of the parameters [Jones, 2004]), and Si the signal
measurements, with i = 1, .., N . Using the definition given by the DTI model

Si(gi, bi) = S0 · exp(−bi · gTi ·D · gi), (B.2)

and taking logs on both sides of eq.B.2, we obtain

− ln(
Si
S0

) = bi · gTi ·D · gi

= bigi(x)
2Dxx + bigi(y)

2Dyy + bigi(z)
2Dzz

+2bigi(x)gi(y)Dxy + 2bigi(x)gi(z)Dxz + 2bigi(y)gi(z)Dyz

or in matrix form:
S = C · D̂est (B.3)

where S is the vector of the − ln( SiS0
) measurements, C is the NxN matrix of known

coefficients, and D̂est is the estimated tensor D in vector form, i.e.


− ln(S1

S0
)

− ln(S2
S0
)

...

− ln(SNS0
)

 =


b1g1(x)

2 b1g1(y)
2 b1g1(z)

2 2b1g1(x)g1(y) 2b1g1(x)g1(z) 2b1g1(x)g1(z)
b2g2(x)

2 b2g2(y)
2 b2g2(z)

2 2b2g2(x)g2(y) 2b2g2(x)g2(z) 2b2g2(x)g2(z)
...

...
...

...
...

...
bNgN (x)

2 bNgN (y)
2 bNgN (z)

2 2bNgN (x)gN (y) 2bNgN (x)gN (z) 2bNgN (x)gN (z)

 ·



Dxx

Dyy

Dzz

Dxy

Dxz

Dyz


(B.4)

This is a linear system where, at least, 6 measurements of Si are needed to estimate D
(usually many more than 6 non co-linear directions are used [Jones, 2004] to increase
immunity against noise). By assuming zero-mean Gaussian noise and constant variance,
ordinary least squares (OLS) are usually applied to solve linear systems [Goldberger, 1964].
These assumptions are reasonable for common scenarios in MRI, where SNR >3 [Pajevic
and Basser, 2003]. The estimated tensor will be:
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D̂est = (CT · C)−1 · CT · S (B.5)

B.2.2 Non-linear fitting

Once the tensor is estimated, its eigenvectors Λ and eigenvalues λ are obtained (and sorted
from high to low λ) and subsequently the fractional anisotropy (FA) and mean diffusivity
(MD), such as:

MD =
Dxx +Dyy +Dzz

3
=
λ1 + λ2 + λ3

3
(B.6)

FA =

√√√√√√√√
3 ·

3∑
i=1

(λi − λavg)2

2 ·
3∑
i=1

λ2i

(B.7)

These are then used to initialize x0 such as:

d = 2MD

f1 = FA

f2 = FA/2

f3 = FA/2

(θi, ϕi) = (Λi)sph

→ x0 = [S0, d, θ1, ϕ1, f1, θ2, ϕ2, f2, θ3, ϕ3, f3]

These equivalencies have been found experimentally to provide good results and are used
in softwares like BedpostX (FSL). Having set x0, non-linear fitting is used to obtain more
accurate estimation of the initial values of parameters for the MCMC, ω0, where the cost
function optimised is:

ω0 = argmin
ωi

N

2

N∑
i=1

log

(
(Yi − Si)

2

2

)
(B.8)

This is a minimisation problem between the observed data Si and the forward predictions
Yi, i.e. obtaining the most likely parameter values ω given the observed data (maximum
likelihood estimation). See appendix B.4 for more details. To solve this minimization prob-
lem, the Powell conjugate-directions or the Levenberg-Marquadt algorithms have shown
reliable results in minimizing the cost function B.8 and are extensively implemented in
statistical packages [Harms et al., 2017]. The LM is used in this thesis.
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Algorithm 6 Model parameter initialization

Require: Si, Cost function, bi, gi
1: procedure Model parameter initialization for MCMC
2: D̂est = DTIfit(Si, bvals, bvecs) ▷
3: Eigendecomposition of tensor Dest

4:

5: MD = sum(λi)
len(λ)

6: FA =

√
3·
∑

(λi−MD)2

2·
∑

(λ2i )
7:

8: d = 2MD ▷ Experimental equivalencies
9: f1 = FA

10: f2 = FA/2
11: f3 = FA/2
12: (θi, ϕi) = (Λi)sph
13: x0 = [S0, d, θ1, ϕ1, f1, θ2, ϕ2, f2, θ3, ϕ3, f3]
14:

15: ω0 = argminωi
N
2

∑N
i=1 log

(
(Yi−Si)2

2

)
▷ Run LM

16:

17: return ω0 ▷ Parameters initialized for the MCMC

B.3 Defining priors for the MCMC

The priors used in this work are defined as following:

• π(d) is given by a Gamma prior ∼ Γ(α, β), where the covariance is α/β2. The
hyperparameters α, β are then chosen to be >0 to give very high variance (i.e. an
uninformative prior) while ensuring positive values of d. Therefore, we can set as
possible values αd = 1 and βd very small (e.g. < 10−7).

• The priors used for the orientations vi ensure uniform distribution on the sphere.
This cannot be achieved if spherical angles follow a uniform distribution, a correction
term is needed:

π(v) ∼ U(0, 1)
π(θ, ϕ) ∼ π(v) ∗ |J(v ⇒ (θ, ϕ))|

where |J(v ⇒ (θ, ϕ))| = | sin θ|. This distribution is used to be non-informative;
using the geometrical definition of solid angle

δA = sinθdθdϕ

we can check that:

∫ 2π

0

∫ π

0

1

4π
sin θdθdϕ =

∫ 2π

0
dϕ

∫ π

0

1

4π
sin θdθ =

∫ π

0

2π

4π
sin θdθ =

∫ π

0

sinθ

2
dθ = 1

(B.9)

Therefore, the prior distribution of the parameters are:

π(d) ∼ Γ(αd, βd) ∼ U(0, 1)
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π(θ, ϕ) ∼ 1

2
| sin θ|

π(f) ∼ U(0, 1)

π(S0) ∼ U(0, ∞)

Note that to make the priors as non-informative as possible, the unique boundary we are
introducing is the positivity of the parameters.

B.4 Integrating out precision τ from likelihood

Our likelihood functions contain inherently a noise variance parameter, or equivalently
a precision τ = 1 σ2. We can integrate this parameter out of the likelihood if we are
not interested in directly inferring on it. By using a Gamma distribution as a prior for
precision τ , and having ω1 = S0, d, θ, ϕ, f and ω = ω1, τ :

π(Y |ω) =
∫ ∞
0

π(Y |ω1, τ) · π(τ)dτ =

∫ ∞
0

√
τ√
2π

· exp

(
−τ
2

n∑
i=1

(Yi − Si)
2

)
· 1
τ
dτ ∝

∝ 1√
2π

∫ ∞
0

τ1/2−1 · exp

(
−τ
2

n∑
i=1

(Yi − Si)
2

)
dτ (B.10)

By comparing the integral to the probability density function of a Gamma distribution,
we can use the identity

∫∞
0 tα−1eβtdt = Γ(α)

β(α) , being α, β > 0:

π(Y |ω1) ∝
Γ(1/2)

−1
2 ·
∑n

i=1 (Yi − Si)2
(B.11)

⇒ Log(π(Y |ω1)) ∝
1

2
·
n∑
i=1

(Yi − Si)
2 (B.12)

A similar result can be achieved when integrating out σ instead of the precision τ , as
π(τ) = π( 1

σ2 ) = σ2:

π(Y |ω1) =

∫ ∞
0

π(Y |ω1, σ
2) · π(σ2)dσ2 ∝ 1√

2π

∫ ∞
0

(
1

σ2
)
1
2 · exp

(
−
∑n

i=1 (Yi − Si)
2

2σ2

)
· σ2dσ ∝

∝
∫ ∞
0

(
1

σ2
)
1
2
−1 · exp

(
−
∑n

i=1 (Yi − Si)
2

2σ2

)
dσ

(B.13)

Setting t = 1
σ2 , we obtain the identities α = 1/2 and β = −

∑n
i=1 (Yi − Si)

2/2 in the
inverse-gamma above, resulting in eqB.11 again.

B.5 MCMC Posterior Energy

Having noise precision integrated out, the MCMC can draw samples from a distribution
independent of τ and dependent only on the model parameters of interest:

π(ω|Y ) ∝ π(Y |ω) · π(ω) (B.14)
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π(ω|Y ) ∝ π(Y |ω) · π(θ, ϕ) · π(fi) · π(d) · π(S0) (B.15)

Expressing the posterior distribution in terms of the energy E :

E = −log(π(ω|Y )) = − log (π(Y |ω) · π(ω)) ∝

∝ − log

(
Γ(1/2)

−1
2 ·
∑n

i=1 (Yi − Si)2
· |sin(θi)|

2
· (− 1

fi
) · π(d) · π(S0)

)
(B.16)

Non-informative priors can be discarded, as π(ω) = 1 → log(π(ω)) = 0. Therefore, the
energy function results as:

E ∝ 1

2
·
n∑
i=1

(Yi − Si)
2 − log(

|sin(θi)|
2

) + log(fi) (B.17)

Note that the prior π(fi) applied here is the ARD prior in its Gaussian form (see below
section B.6), applied to the volume fraction of secondary compartments (i.e., i ≥ 2). For
f1 (or if not ARD is applied), the prior will be non-informative and can be discarded from
B.17 as π(d) or π(S0).

B.6 Implementation of the multi-fibre model with ARD

The Automatic Relevance Determination is a technique used in dMRI model to perform
online model selection of the compartments supported by the data. The ARD prior can be
implemented either with a Gaussian distribution with zero mean and unknown variance
or a Beta distribution with mode at zero and unknown width:

ARD ∼ N (0, σ)

ARD ∼ β(1, k)

The idea of the ARD is that if a second or third compartment is not supported, the width
of the distribution (σ or k) is very small, so that fi is driven to the mode, which is zero.
However, if fi is supported by the data, then the variance has a very large value that
allows fi to be away from the zero mode and take any value in [0,1]. Both of the Beta-
and Normal-based ARD prior exhibit similar behavior (penalize large fi values).

B.6.1 Beta based ARD prior for fi

π

(
fi
k

)
∼ β(1, k) (B.18)

To get an explicit formula for π(fi), we can integrate out k:

π(fi) =

∫ ∞
0

π(fi|k)π(k)dk =

∫
k(1− fi)

k−1 1

k
dk =

∫
(1− fi)

k

1− fi
dk (B.19)

Using the identity
∫
acxdx = 1

c ln(a)a
cx (for a > 1, a ̸= 1 ):

π(fi) =
1

1− fi

1

ln (1− fi)
[(1− fi)

k]∞0 =
1

1− fi

1

ln (1− fi)
[ lim
k→∞

(1− fi)
k − (1− fi)

0] =

=
1

(1− fi) ln(1− fi)
(B.20)
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B.6.2 Gaussian based ARD prior for fi

As noted in [Behrens et al., 2007] ,we can simplify the computation if assuming π(fi) ∼
N (0, σ2) and applying the Jeffrey’s prior to σ, as π() ∼ 1

σ :

π(fi) =

∫ ∞
0

π(fi|σ2)π(σ2)dσ2 =
∫ ∞
0

1√
2πσ2

· exp− f2i
2σ2

1

σ2
dσ2 =

= − 1√
2π

∫ ∞
0

(
1

σ2

)1/2−1
· exp− f2i

2σ2
dσ2 (B.21)

Comparing with the inverse-Gamma again, as in the previous section:

π(fi) ∝
Γ(1/2)(
f2i
2

)1/2 ∝ − 1

fi
(B.22)

.→ Log(π(fi)) = Log(− 1

fi
) = fi (B.23)

This is the ARD prior applied in the main text B.23.



Appendix C

Laplace Approximation

C.1 Demonstration 1: Laplace Approximation is located
around the posterior mode

The Laplace approximation replaces the problem of integrating a function with the prob-
lem of maximizing it. In order to compute the Laplace approximation, we have to compute
the location of the mode, which is an optimization problem. Often, this problem is faster
to solve using conventional non-linear optimizers rather than integrating the same function.

Suppose we have a function g(x) ∈ L2 with maximum at x0. We want to compute∫ b

a
g(x)dx (C.1)

Let h(x) = log(g(x)) ∫ b

a
g(x)dx =

∫ b

a
exp(h(x))dx (C.2)

From here we can take a Taylor series approximation of h(x) around the point x0:∫ b

a
exp(h(x))dx ≈

∫ b

a
exp(h(x0) + h′(x0)(x− x0) +

1

2
h′′(x0)(x− x0)

2)dx (C.3)

Because we assumed h(x) achieves its maximum at x0, we know h′(x0) = 0. Therefore,
we can simplify the above expression to be

=

∫ b

a
exp(h(x0) +

1

2
h′′(x0)(x− x0)

2)dx (C.4)

Given that h(x0) is a constant that doesn’t depend on x, we can pull it outside the integral.
Rearranging some terms, we have

= exp(h(x0))

∫ b

a
exp(−1

2

(x− x0)
2)

−h′′(x0)−1
)dx (C.5)

Now, we have a quantity proportional to a Normal distribution N (x0,−h′′(x0)−1).

The next step is to compute the normalizing constant. Let Φ(x|µ, σ2) be the cumulative
distribution function for the N (µ, σ∈) and φ its density function. The expressions above
can be rewritten as:

236
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= exp(h(x0))

√
2π

−h′′(x0)

∫ b

a
φ(x|x0,−h′′(x0)−1)dx

= exp(h(x0))

√
2π

−h′′(x0)
[Φ(b|x0,−h′′(xo)−1)− Φ(a|x0,−h′′(x0)−1)]

If b = ∞ and a = −∞, [Φ(b|x0,−h′′(xo)−1)−Φ(a|x0,−h′′(xo)−1)] → 1, making the Laplace
approximation equal to the value of the function g(x) at its mode multiplied by a constant
that depends on the curvature of the function h:∫ b

a
g(x)dx =

∫ b

a
exp(h(x))dx = exp(h(x0))

√
2π

−h′′(x0)
(C.6)

C.1.1 Computing the posterior mean

The posterior mean of a parameter ω given the data Y is can be expressed in terms of the
expected value E[ω]:

E[ω] =
∫
π(ω|y) · ω · dω =

∫
f(Y |ω) · ω · π(ω) · dω∫
f(Y |ω) · π(ω) · dω

(C.7)

Introducing the exponential-log trick, we can obtain an expression composed by integrals
in the same form that the ones solved in by using the Laplace Approximation:

=

∫
exp(log(f(Y |ω)π(ω))) · ω · dω∫
exp(log(f(Y |ω)π(ω))) · dω

=

∫
exp(h(ω)) · ω · dω∫
exp(h(ω)) · dω

(C.8)

Given that h(ω) its a simply monotonic transformation (log) of a function proportional to
the posterior density:

max(h(ω)) = E[ω] (C.9)

So, if we let be ω̂ the posterior mode of (ω|y), then we have:∫
ω · p(ω|y)dx ≈ ... = ω̂ (C.10)

Hence, the Laplace approximation to the posterior mean is equal to the posterior mode.
This approximation is likely to work well when the posterior is unimodal and relatively
symmetric around the mode. Furthermore, the more concentrated the posterior around
ω̂, the better.

C.2 Demonstration 2. Hessian matrix for the Ball&Sticks
model with 3 compartments

The Laplace Approximation to the posterior distribution requires the calculation of the
Hessian matrix H of such conditional density, i.e. the second partial derivatives of π(ω|Y )
respect to the parameters ωi given the data Y . We can express the posterior in terms of
the Energy function, E:

E = − log(π(ω|Y )) = − log (π(Y |ω) · π(ω)) (C.11)

Assuming non-informative priors, i.e. π(ω) = 1 → log(π(ω)) = 0, the energy function has
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the following final form:

E = − log(π(ω|Y )) ∝ − log(π(Y |ω)) = −N
2
log


N∑
i=1

(Yi − Si)
2

2

 , (C.12)

where i refers to each volume of the image (gradients, i = 1, .., N) and Si is given by the
Ball&Sticks model forward predictions (see eq.2.26). Note that, for the sake of simplicity,
in this derivation we have obviated the prior terms of the fibre orientations and volume
fractions where ARD is applied; the matrix H is calculated only to initialise the covariance
in the Block-RWM and Hybrid approaches so we don’t expect the lack of this term to harm
the algorithm in any way. Further discussion can be done regarding the Independence
Sampler.
With all the above, the Hessian matrix of E for a model with M = 3 compartments is
defined by:

H =



∂2E
∂S2

0

∂2E
∂S0∂d

∂2E
∂S0∂θ1

∂2E
∂S0∂ϕ1

∂2E
∂S0∂f1

· · · ∂2E
∂S0∂f3

∂2E
∂d∂S0

∂2E
∂d2

∂2E
∂d∂θ1

∂2E
∂d∂ϕ1

∂2E
∂d∂f1

· · · ∂2E
∂d∂f3

∂2E
∂θ1∂S0

∂2E
∂θ1∂d

∂2E
∂θ1∂θ1

∂2E
∂θ1∂ϕ1

∂2E
∂θ1∂f1

· · · ∂2E
∂θ1∂f3

∂2E
∂ϕ1∂S0

∂2E
∂ϕ1∂d

∂2E
∂ϕ1∂θ1

∂2E
∂ϕ1∂ϕ1

∂2E
∂ϕ1∂f1

· · · ∂2E
∂ϕ1∂f3

∂2E
∂f1∂S0

∂2E
∂f1∂d

∂2E
∂f1∂f1

∂2E
∂f1∂ϕ1

∂2E
∂f1∂f1

· · · ∂2E
∂f1∂f3

∂2E
∂θ2∂S0

∂2E
∂θ2∂d

∂2E
∂θ2∂θ1

∂2E
∂θ2∂ϕ1

∂2E
∂θ2∂f1

· · · ∂2E
∂θ2∂f3

∂2E
∂ϕ2∂S0

∂2E
∂ϕ2∂d

∂2E
∂ϕ2∂θ1

∂2E
∂ϕ2∂ϕ1

∂2E
∂ϕ2∂f1

· · · ∂2E
∂ϕ2∂f3

∂2E
∂f2∂S0

∂2E
∂f2∂d

∂2E
∂f2∂f1

∂2E
∂f2∂ϕ1

∂2E
∂f2∂f1

· · · ∂2E
∂f2∂f3

∂2E
∂θ3∂S0

∂2E
∂θ3∂d

∂2E
∂θ3∂θ1

∂2E
∂θ3∂ϕ1

∂2E
∂θ3∂f1

· · · ∂2E
∂θ3∂f3

∂2E
∂ϕ3∂S0

∂2E
∂ϕ3∂d

∂2E
∂ϕ3∂θ1

∂2E
∂ϕ3∂ϕ1

∂2E
∂ϕ3∂f1

· · · ∂2E
∂ϕ3∂f3

∂2E
∂f3∂S0

∂2E
∂f3∂d

∂2E
∂f3∂f1

∂2E
∂f3∂ϕ1

∂2E
∂f3∂f1

· · · ∂2E
∂f3∂f3



C.2.1 First Derivatives

Making use of some properties of the Hessian matrix:

• Symmetry: ∂2E
∂S0∂d

= ∂2E
∂d∂S0

• Semi-positive definite

and the following derivating rules:
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∂
N∑
i=1

f(x, y)

∂x
=

N∑
i=1

∂f(x, y)

∂x
(C.13)

∂(log(f(x, y)))

∂x
=
f ′(x, y)

f(x, y)
(C.14)

∂f(x, y)N

∂x
= N · f(x, y)N−1 · f ′(x, y) (C.15)

∂f(x, y) · g(x, y)
∂x

= f ′(x, y) · g(x, y)− f(x, y) · g′(x, y) (C.16)

we can calculate a general form for the first partial derivatives of E:

∂E
∂ω

=
∂(N2 log(f(x, y)))

∂x
=
N

2

f ′(x, y)

f(x, y)
=
N

2

(12

N∑
i=1

(Yi − Si)
2)′

1
2

N∑
i=1

(Yi − Si)2
=

=
N

2

1
2

N∑
i=1

(2(Yi − Si)(−Si)′)

1
2

N∑
i=1

(Yi − Si)2
= −N

N∑
i=1

((Yi − Si) · S′i)

N∑
i=1

(Yi − Si)2
(C.17)

E And apply it to each parameter ω:

∂E
∂S0

=

∂N2 · log(12
N∑
i=1

(Yi − Si)
2)

∂S0
=

=

∂N2 · log(12
N∑
i=1

(Yi − [S0 · [(1−
M∑
j=1

fj)e
−b·d +

M∑
j=1

fj · e−b·d·(g·v
T )2 ]])2)

∂S0
=

= −N

N∑
i=1

[(Yi − Si) · ((1−
M∑
j=1

fj) · e−bd +
M∑
j=1

fj · e−bi·d(gi·vT
i )2 ]

N∑
i=1

(Yi − Si)2
(C.18)
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∂E
∂d

= −N

N∑
i=1

[(Yi − Si) · S0 · [−b · (1−
M∑
j=1

fj) · e−bid +
M∑
j=1

fj · (−bi) · (givTi )2 · e−bid(giv
T
i )

2
]]

N∑
i=1

(Yi − Si)2
=

= N

N∑
i=1

[(Yi − Si) · S0 · bi · [(1−
M∑
j=1

fj) · e−bid +
M∑
j=1

fj · (givT
i )

2 · ebid(giv
T
i )2 ]]

N∑
i=1

(Yi − Si)2

(C.19)

∂E
∂fj

= −N

N∑
i=1

[(Yi − Si) · (−S0) · (e−bid +
∑
i
e−bid(giv

T
i )

2
]]

N∑
i=1

(Yi − Si)2
=

= N

N∑
i=1

[(Yi − Si) · S0 · (e−bid −
N∑
i=1

e−bid(giv
T
i )2 ]]

N∑
i=1

(Yi − Si)2
(C.20)

Regarding the fibre orientation parameters (θ, ϕ), it is worth to note that the gradient
orientation vector, gi, should be in the same reference system than vi. So, being gi =
[sin(α) · cos(β), sin(α) · sin(β), cos(α)], vi = [sin(θ) · cos(ϕ), sin(θ) · sin(ϕ), cos(θ)], and dp =
giv

T
i , their partial derivatives are given by:

dp = giv
T
i = cos(ϕ− β) · sin(α) · sin(θ) + cos(α) · cos(θ)

dp1θ =
∂dp

∂θ
= cos(θ) · (g(:, 1) · cos(ϕ) + g(:, 2) · sin(ϕ))− g(:, 2) · sin(θ)

dp1ϕ =
∂dp

∂ϕ
= sin(θ) · (−g(:, 1) · sin(ϕ) + g(:, 2) · cos(ϕ)) (C.21)

Then, the partial derivatives of E respect the fibre orientation parameters are:

∂E
∂θj

= N

N∑
i=1

[(Yi − Si) · (S0 · f · 2bi · d · dp · dp1θ) · e−bid(giv
T
i )2 ]

N∑
i=1

(Yi − Si)2
(C.22)

∂E
∂ϕj

= N

N∑
i=1

[(Yi − Si) · (S0 · f · 2bi · d · dp · dp1ϕ) · e−bid(giv
T
i )2 ]

N∑
i=1

(Yi − Si)2
(C.23)
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For the sake of simplicity in the second derivatives, let’s re-arrange some terms in the
following form:

SS =
1

2

N∑
i=1

(Yi − Si)
2

Ai = exp(−bi · d)
Bi = exp(−bi · d · (g · vT )2)

Wi = S0(1−
M∑
j=1

fj) · exp(−bi · d) = S0(1−
M∑
j=1

fj) ·Ai

Xi = S0 ·
M∑
j=1

fj · exp(−bi · d · (g · vT )2) = S0 ·
M∑
j=1

fj ·Bi

Ki = (1−
M∑
j=1

fj) · exp(−bi · d) +
M∑
j=1

fj · exp(−bi · d · (gi · vTi )2) = (1−
M∑
j=1

fj) ·Ai +
M∑
j=1

fj ·Bi

Zi = S0(1−
M∑
j=1

fj) · exp(−bi · d) + S0 ·
M∑
j=1

fj · (gi · vTi )2 · exp(−bi · d · (gi · vTi )2) =Wi +Xi(giv
T
i )

2

(C.24)

So introducing these in C.18, C.19, and C.20:

∂E
∂S0

= N ·

N∑
i=1

(Ki · (Yi − Si)
2

SS

∂E
∂d

= N ·

N∑
i=1

(Ki · (Yi − Si)
2

SS

∂E
∂fj

= N ·

N∑
i=1

(S0 · (Yi − Si)(Ai −Bi))

SS
(C.25)

C.2.2 Second Derivatives

For the second partial derivates the following derivative rules will be used:

f(x) =
u

v
→ f ′(x) =

u′ · v − u · v′

v2

g(x, y) =
1

f(x, y)N
→ ∂g(x, y)

∂x
= N · f(x, y)n−1 · f ′(x, y)

Now, starting from the general form of the 1st derivative:
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∂E
∂ω1

= −N ·

N∑
i=1

((Yi − Si) · S′i)

N∑
i=1

(Yi − Si)2
= −N ·

N∑
i=1

((Yi − Si) · ∂E
∂ω1

)

N∑
i=1

(Yi − Si)2
(C.26)

We can obtain a general expression also for the second derivatives:

∂2E
∂ω1∂ω2

= −N

∂(
N∑
i=1

((Yi−Si)·
∂Si
∂ω1

))

∂ω2
·
N∑
i=1

(Yi − Si)
2 −

N∑
i=1

((Yi − Si) · ∂Si∂ω1
) ·

∂(
N∑
i=1

(Yi−Si)2)

∂ω2

(
N∑
i=1

(Yi − Si)2)2
=

= −N ·

(
N∑
i=1

(−∂Si∂w2
· ∂Si∂ω1

)−
N∑
i=1

((Yi − Si) · ∂Si
∂ω1∂ω2

)

)
·
N∑
i=1

(Yi − Si)
2

(
N∑
i=1

(Yi − Si)2)2

+

N∑
i=1

((Yi − Si) · ∂Si∂ω1
) · 2 ·

N∑
i=1

((Yi − Si) · (− ∂Si
∂ω2

))

(
N∑
i=1

(Yi − Si)2)2

Most of the terms have been already calculated in C.2.1. Only ∂Si
∂ω1∂ω2

needs to be calcu-
lated here. Therefore, the second partial derivatives for S0 result in:

∂2E
∂S2

0

= 0 (C.27)

∂2E
∂S0∂d

= −(1−
M∑
j=1

fj) · bi · e−bi·d +
M∑
j=1

fj · (−bi) · dp2 · e−bi·d·dp
2

(C.28)

∂2E
∂S0∂θj

= fj · (−2 · bi) · d · dp · dp1θ · e−bi·d·dp
2

(C.29)

∂2E
∂S0∂ϕj

= fj · (−2 · bi) · d · dp · dp1ϕ · e−bi·d·dp
2

(C.30)

∂2E
∂S0∂fj

= −e−bid + e−bi·d·dp
2

(C.31)

For d:

∂2E
∂d2

= S0 ·

(1−
M∑
j=1

fj) · b2i · e−bi·d +
M∑
j=1

fj · b2i · dp2 · e−bi·(gi·v
T
i )

2

 (C.32)
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∂2E
∂d · ∂θj

= S0 · fj · (−2 · bi) · dp · dp1dth · (1− bi · d · dp2) · e−bi·d·dp
2

(C.33)

∂2E
∂d · ∂ϕj

= S0 · fj · (−2 · bi) · dp · dp1dph · (1− b · d · dp2) · e−bi·d·dp2 (C.34)

∂2E
∂d · ∂fj

= S0

(
fj · bi · e−bid + (−bi) · dp2 · e−b·d·dp

2
)

(C.35)

For θj :

∂2E
∂θ2j

= S0 · fj · (−2bi) · d · e−bi·d·dp
2 · (1− 2bi · dp2)− dp2 (C.36)

∂2E
∂θj · ∂ϕj

= S0 · fj · (−2 · bi) · d · e−bi·d·dp
2 · dp · dp2θϕ (C.37)

∂2E
∂θj · ∂fj

= S0 · (−2 · bi) · d · dp · dp1θ · e−bi·d·dp
2

(C.38)

For ϕj :

∂2E
∂ϕ2j

= S0 · fj · (−2bi) · d · e−bi·d·dp
2 ·
(
(1− 2bi · dp2) · dp1ϕ2 + dp · dp2ϕ2

)
(C.39)

∂2E
∂ϕ2j

= S0 · (−2 · b1) · d · dp · dp1ϕ · e−bi·d·dp
2

(C.40)

where

dp1ϕ2 =
1− cos(2θj)

2

dp2ϕ2 = −gi[:, 1] · vj [1]− gi[:, 2] · vj [2]

And for fj :

∂2E
∂f2j

= 0 (C.41)



Appendix D

Hybrid-MCMC results

D.0.1 Dispersion maps in Dataset C - 3 fibres

The following maps show the standard deviation (or dispersion) provided by each MCMC
algorithm. In agreement with the rest of results, the Block-RWM may suffer from a rigid
structure given by the joint proposal and it is not able to correctly map the uncertainty
of the estimates (i.e. the posterior distribution).

D.1 Probabilistic Tractography and uncertainty propaga-
tion

In this section, we will provide results that complement the main text.

D.1.1 Comparisons to the RWM

Following are comparisons of the spatial tract correlations obtained from different MCMC
configurations with respect the default RWM used as gold-standard.

244
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Figure D.1: Standard deviation or dispersion obtained by each method for f1 and the fibre
orientations in Dataset C at different SNR levels.
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D.1.2 Comparisons to the HCP White-Matter population average atlas

Following are comparisons of the spatial tract correlations obtained from different MCMC
configurations.
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