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Abstract

Flow and transport processes through porous media are ubiquitous both in nat-
ural and industrial environments. Ranging from diffusion in human tissue to
oil recovery and CO2 storage, including the design of porous reactors, geother-
mal energy production, groundwater remediation, oil recovery and CO2 stor-
age, the characterisation of fluid flow and solute transport at different scales
represents the paradigm to better understand the mechanisms at the base of
several processes. Due to the broad spectrum of applications, a vast empiri-
cal and numerical research field developed around transport in heterogeneous
porous media. While on the numerical side, the mathematical models avail-
able for simulating transport at the micro and meso-scales have shown good
agreement with the empirical tests, the debate around modelling transport at
the macro-scale is still open. One example is the unknown relation between
system parameters and their values measured at different scales which is usu-
ally addressed as scale effect. Other examples are anomalous or non-Fickian
transport phenomena and the validity range of macro-scale transport models.
Our study focuses on the impact of the heterogeneous distribution of the sub-
surface properties on the transport of solute at the macro-scale. Initially we
propose an analysis of transport in heterogeneous porous media generated with
a random geostatistical algorithm. Subsequently this subject is expanded and
applied to a real domain which was surveyed and reconstructed with a high
level of resolution. Three-dimensional meso-scale numerical simulations per-
formed with our open-source C++ library, built on top of the finite-volume
library OpenFOAM, represent the main source of data to test macro-scale
mathematical models.
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List of symbols and
abbreviations

• ADE: Advection Dispersion Equations;

• PGS: Pluri-Gaussian Simulations;

• GRF: Gaussian Random Field;

• BTC: Breakthrough Curve;

• PDF: Probability Density Function;

• CDF: Cumulative Density Function;

• σ2: variance;

• E: Expected value;

• λ: correlation length;

• q: flow rate;

• D: hydrodynamic dispersion;

• Dmol: molecular diffusion;

• Dmec: mechanical dispersion;

• Dmac: macrodispersion;

• k: permeability;

• K: hydraulic conductivity;

• ϕ: porosity;
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• v: velocity of the fluid;

• V : Darcy’s velocity;

• µ: dynamic viscosity;

• Pe: Péclet number;

• f : PDF of the inverse Gaussian distribution (also known as Wald distri-
bution);

• F : CDF of the inverse Gaussian distribution (also known as Wald dis-
tribution);

• ρ: fluid density;
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Chapter 1

Introduction

The broad applicability of flow and transport equations is one of the most
intriguing and fascinating aspect of an applied mathematic approach to the
study of hydrogeology. Indeed, depending on the scale adopted, an extremely
broad set of materials can be regarded as porous media, from battery cells
to flesh and subsoil. Following a similar parallelism, the equivalence between
strongly different types of fluid can be established and the advection-dispersion
model reveals its congruity for simulating heat as well as water or oil trans-
port dynamics. Although the advection-dispersion model has been validated
in several contexts, the range of represented scales, especially for highly hetero-
geneous environments like subsurface, is limited. When solute is transported
through heterogeneous porous media, it might experience flowing through re-
gions with contrasting geological properties. As a result, depending on sedi-
ment geometry and values, the solute concentration in space and time might
diverge from the advection-dispersion model description. When the discrep-
ancy between observed transport and model prediction becomes relevant the
transport is called anomalous or, in contrast to the Fick law on which the
advection-dispersion model is based, non-Fickian.

1.1 Motivation

Transport of solute in heterogeneous porous media is modelled with good ac-
curacy at the micro (or porous) and meso (or heterogeneity) scale while a long
lasting debate still revolves around the models for simulating solute transport
at macro (or field) scale 1.1. In this context, the meaning of heterogene-
ity is always associated with discontinuous sediment pattern that happens at
the meter scale. While the transport modelling at the micro and meso scales
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Figure 1.1: The four scales which characterise subsurface formations. From
left to right: the nano or continuum scale (10−9 m), the micro or porous scale
(10−4 m), the meso or heterogeneity scale (10−1 − 101 m) and the macro or
field scale (104 m).

through Navier-Stokes and the Advection-Dispersion equations (ADE) respec-
tively has been widely tested and accepted, the lack of consensus around the
macro scale models yielded several approaches that can essentially be subdi-
vided into two main categories: local and non-local transport models. One
of the most widely adopted local transport model for the macro scale is the
macrodispersion model [1] while some non-local transport models include the
multi-rate mass transfer model [2], the continuous time random walk [3] and
the moment equation approach [4], just to mention a few. A more comprehen-
sive list can be found in [5]. In this context, the meaning of local and non-local
adjectives should not be limited to the spatial domain while it should be ex-
tended to the temporal domain as well, thus becoming synonyms of Markovian
and non-Markovian models. In other words, local or Markovian models at a
given time depend only on the system state at the previous time while the full
spatial and temporal history of the system is needed to characterise the state
of a non-local or non-Markovian model at any time. Although profoundly
different, the applicability of local and non-local models is still quite limited.
The unpopularity of local models descends from the strict hypothesis under
which they are formulated (e.g. ergodic domain and stationary process) while
the non-local models are often difficult to calibrate.

Focusing on the macrodispersion model, in our work we rely on numerical
ADE simulations at the meso scale (third panel from left in figure 1.1) to
assess the impact of distinct geostatistical parameters on the transport at the
macro scale (fourth panel from left in figure 1.1). By quantifying the error that
affects the macrodispersion simulations, our study firstly set clear geological
guidelines around the validity of the macrodispersion model. Specifically, the
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present work aims to

• provide a comprehensive overview of some popular geostatistical, flow
and transport models within the geostatistical and hydrogeological con-
text;

• understand the influence of geological and geostatistical parameters on
transport and classify their relative importance;

• put the conclusions obtained for synthetic cases to the test by running
simulations on a quarry which was excavated, surveyed and whose geo-
logical properties were directly tested;

• systematically explore the effect that different types of categorical fields
have on transport;

• provide some transport simulation study examples which uncover the
potentiality of hydrogeologic studies performed with the openly available
OpenFOAM®library [6].

The main research question can be formulated as what is the hierarchy of
anomalous transport triggering factors in porous domains characterised by
sharply changing geological properties? Using the present framework as guide-
line, other open hydrogeological questions can be effectively tackled. Some
examples are how does the lithotype rule affect the transport? what is the role
of variable density fluids in triggering non-Fickian transport?

1.2 Literature review

The literature review in this work focuses on two main areas: geostatistics and
flow and transport in porous media.

1.2.1 Geostatistics

Given that the mathematical modelling of subsurface flow and transport heav-
ily depend on the properties assigned to the virtual geological domain and that
the spatial pattern followed by the hydraulic properties may vary greatly across
a wide range of spatial and temporal scales, the virtual representation of geo-
logical formations is of capital importance for solute transport predictions and
extremely challenging to be simulated. The widespread response to the com-
plexity and the inaccessibility of the subsurface, is a statistical approach to
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geology, namely geostatistics [7]. The complexity of reproducing the subsur-
face (figure 1.2) has been tackled using different approaches that Koltermann
and Gorelick’s review [8] classifies into three main groups: structure-imitating,
process-imitating and descriptive. Although this classification can be further

Figure 1.2: Sediment outcrops or tunnels provide insights into the otherwise
inaccessible subsurface structure. From left to right: the sandstone cliffs on
the coast of Slovenia, volcanic rock in the Alcantara valley and the limestone
wall of a tunnel through Pasubio mountain.

refined into several sub-groups with multiple algorithms each, the focus of this
study is on a very specific class of geostatistical simulations called truncated
Pluri-Gaussian simulations (PGS). Amongst the spatial statistical methods,
this one is capable of reproducing high contrast values between hydrogeologi-
cal parameters and thus the one characterised by higher geological realism [9].
Spatial stochastic methods aim to reproduce the range of possible subsurface
spatial patterns, by generating several equally probable realisations of geolog-
ical facies1. These multiple images allow us to assess the uncertainty related
to flow and transport models. An additional distinction can be made: spatial
statistical methods can be Gaussian based (e.g. PGS) or non-Gaussian. The
underlying distributions of the random variable in the Gaussian approach is
continuous albeit it is suitable to be further divided by thresholds to repro-
duce categorical variables patterns. Non-Gaussian methods span a wide range
of approaches which include (but are not limited to): transition probabilities,
indicator variograms, Boolean methods and simulated annealing. Particularly
appealing when fulfilling soft data of non-stationary fields is a main require-
ments, these algorithms go beyond the scope of the present study.

PGS can effectively reproduce heterogeneity fields characterised by sharp
interfaces that well fit the purpose of imitating discontinuous subsurface prop-
erties. These categorical fields are usually associated with values of perme-

1Body of rock or sediments with specified chemical, physical and biological characteristics
which distinguish it from adjacent rocks or sediments
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ability or porosity. This type of fields, despite their name, is non-Gaussian
and it was initially introduced in geostatistics to represent ordered deposits
(i.e. depositional or stratified) and later extended to model heterogeneities
that are not sequentially ordered [10]. Its most remarkable feature is the sub-
division of the multivariate spatial domain into categorical values as a result
of a thresholding process that marks the transition from smooth random fields
characterised by specific correlation functions and geostatistical parameters to
categorical non-Gaussian random fields.

1.2.2 Flow and transport in porous media

Meteorology, hydrology and groundwater hydrology (or hydrogeology) form
the triplet of sciences which cover the whole water cycle. The inner difficulty
of hydrogeology with respect to the other two branches of water science stems
from the impossibility of directly observing the subsurface. Direct (e.g. bore-
holes) or indirect (e.g. seismic waves) survey are difficult, expensive and, to
a certain degree, they still embed uncertainty. Mathematical models which
describe subsurface flows and transport phenomena hence become essential to
formulate predictions of solute spread through porous media such as soil, sand
and rock. However, the modeling approach is not free of challenges. Spatial
and temporal scales for flows and transport vary hugely on aquifers, the typical
domains of application. Aquifers, geologically defined as subsurface domains
able to store and transmit water, may cover scales of 104 m (or more) while
adsorption and chemical process of interest require the analysis at sub-micro
scales on the order of 10−7 m. Diffusion and dispersion can be analyzed on
the whole set of scales in between, from pore scale (10−4 m) to sediment het-
erogeneities (10−1 − 101 m). Consequently, the spatial range of interest spans
more than 10 orders of magnitude. The temporal scales which are relevant to
transport and chemical modeling purposes show great variations as well: the
day scale might be relevant to describe the spread of a contaminant plume
through a highly permeable aquifer, nitrification-denitrification processes typ-
ically can occur on a seasonal scale [11] while depositional processes may take
centuries. Intuitively explained the concept of scales, the idea that a phe-
nomenon, which naturally lives on multiple scales, is conveniently described
by different laws at different scales should be intuitive. Of course, valid laws
should show consistency between different scales. It then becomes a matter
of perspective to focus on a particular range of magnitudes and consequently
adopt the appropriate conceptualization for the chosen scale interval. The
most popular fluid mechanics examples are probably the Navier-Stokes and
Darcy equations: both hold on an interval of several spatial scales, defined by

11



the limits of the respective conceptual model. For examples, Navier-Stokes is
not suitable to describe fluid flows at molecular scale (first panel from left in
figure 1.1) because the continuous medium hypothesis does not hold. At the
same time, Darcy’s law cannot be applied at pore scale (second panel from
left in figure 1.1) because an extensive property such as permeability has no
physical meaning at porous scale.

Introducing the concept of “upscaling” now becomes more natural since it
refers to the accurate prediction of flow and transport at large scales based
on the interpretation of smaller scale parameters. To “go one scale up” it is
essential to develop upscaled mathematical models that is, methods based on
averaged small scale properties. As a result, the large scale description becomes
computationally convenient with respect to the small scale fully-resolved prob-
lem [12]. It is therefore computationally relevant to choose the right model for
the right scale: a fully-resolved problem, such as the solution of a molecular
model at the pore scale (10−3 − 10−5 m) or the Navier-Stokes at the hetero-
geneity scale (10−1 − 101 m), provide solutions that are consistent between
scales but are not computationally convenient.

For the purpose of the present study, nature is observed at three resolution
levels: the pore-scale (or micro-scale), the heterogeneity scale (or meso-scale)
and the field-scale (or macro-scale). Pore-scale simulations require the virtual
representation of the porous matrix where the flow velocity field is provided
by the solution of the Navier-Stokes equations [13]. The same physical phe-
nomena at larger scales is well captured by the Darcy equation which is based
on macroscopic properties of the porous matrix, e. g. the hydraulic per-
meability [14]. This is because macroscopic properties are inherently related
to microscopic characteristics of the medium, like the case of the hydraulic
permeability that arises from the presence of large surface area where no-slip
conditions generate linear damping in the momentum equation [15]. However,
this in not the only relevant upscaling problem. The complex geometry which
characterizes the space heterogeneity of geological media gives rise to recircu-
lating phenomena that limit the applicability of upscaled advection-transport
equations in heterogeneous porous media at the field scale [16, 17, 18, 19, 20].

The averaging and homogenisation techniques developed to deal with a
multi-scale phenomena like turbulence can be successfully applied to Navier-
Stokes equation to obtain the Darcy law [21, 22, 23, 24, 25]. While scale separa-
tion in turbulence and transport stems from completely different causes (the
former coming directly from the nonlinearity of the Navier-Stokes equation
while the latter being a consequence of geometrical properties of the medium),
the final goal of the upscaling process in both cases is to achieve a relation be-
tween local properties and the upscaled parameters involved in the equations
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which describe the macroscopic dynamics [15].
So far we provided an overlook of the upscale meaning in the flow con-

text. When it comes to transport modelling, the advection-dispersion equation
structure is essentially preserved across the scales while its coefficients assume
different meanings 1.1. At the pore scale, the hydrodynamic dispersion tensor

Table 1.1: Advection-dispersion coefficient meanings at different scales

micro meso macro

u Navier-Stokes Darcy’s law Spatial average
D Molecular diffusion Hydrodynamic dispersion Macrodispersion

is a diagonal matrix whose coefficients, in case of isotropic molecular diffu-
sion, take the same constant value. At the heterogeneity scale, pore throats
are no longer visible but their effect on transport is accounted by summing
the mechanical dispersion tensor to the molecular diffusion diagonal matrix.
This new tensor is named hydrodynamic dispersion. At the field scale, the
macrodispersive model tries to capture the effect of the sediment heterogeneity
by redefining the hydrodynamic coefficient as the macrodispersion coefficient,
which takes a new statistical meaning.

1.3 Structure of the thesis

The aim of this first chapter is to identify the problem and to provide a de-
scription of the classical geostatistical and mathematical approaches to it while
introducing the idea of the separation of scales on which following chapters
are based. The rest of the study develops around five parts:

• a high level overview of the porous media transport modelling state of
the art which can be further subdivided into geostatistical, flow and
transport modelling;

• a detailed description of the macrodispersion model, its limitations and
the rationale behind the numerical experiments performed in OpenFOAM®that
is, the establishment of a hierarchy among the non-Fikcian triggering fac-
tors. This chapter was published as part of paper and can be read in full
at [26];

• description of a real geological site and its reconstruction through the
application of geostatistical techniques to field data (Herten analog).
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Flow simulations through the permeability field reconstructed by [27]
are performed as well and results analysed;

• assessment of geostatistical, flow and transport parameters on transport
numerical simulations: the reconstruction of Herten permeability field
is adopted as benchmark to evaluate the influence of geostatistical real-
ism, isotropic and anisotropic mechanical dispersion, Péclet number and
injection area on transport;

• conclusions.

Most of the experiments and the results presented in this thesis were achieved
by collaborating with University of Nottingham and the British Geological
Survey staff while using computers and facilities provided by the University of
Nottingham. A minor part of this work focused on geostatistical simulations
was developed during an external collaboration with Ephesia Consult. More
in detail, the study and geostatistical simulations which involve the Herten
analog were developed during a two months placement at Ephesia Consult as
part of my second year of my PhD. The main areas of the small Swiss-French
company are geological consultancy and geostatistical software development.
According to the agreement achieved with the company, the objective of the
collaboration was a geostatistical simulation suitable for both, their geostatis-
tical demo purposes and our flow and transport tests.
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Chapter 2

Geostatistical, flow and
transport simulations in
heterogeneous porous media

2.1 Geostatistical modeling of heterogeneous

reservoirs

The physical and chemical properties of geological domains control the fate
of fluid flow and solute transport through them. For this reason, a good
understanding of the impact of the geological structure on solute transport
requires an in-depth analysis of the relation between geostatistical parameters
and macro-transport models. One of the main objective of this study is the
assessment of the relation between the geostatistical parameters at the origin
of the heterogeneous permeability pattern and the flow and transport.

2.1.1 Random fields

In geostatistical context, a random field Z is defined as a stochastic process
indexed by an Euclidean space. Let (Ω,F ,P)1 be a probability space and
D ⊂ R2 an Euclidean domain. A stochastic process indexed by an Euclidean
space can be thought as a collection of random variables indexed by spatial
locations x ∈ D. Each random variable maps a set of possible outcomes Ω to a
measurable space, often the real numbers. In this document the bold notation

1Ω is the sample space, F is the set of all the possible Ω subsets and P is a probability
measure which assigns probabilities to all members of F .
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Z is used to describe a N -variate Gaussian distribution while Z refers to a
single-variate Gaussian distribution. Relevant cases are [28]:

• stationary random fields: the mean µ(x) is constant and the covariance
depends on r = xi − xj;

• isotropic random fields: the covariance depends on |xi − xj|.

The covariance function for a random field measures the variation between
random variables sampled at two random locations (xi,xj) and is defined as

C(r) = C(Z(xi), Z(xj)) = E [(Z(xi)− E(Z(xi))) · (Z(xj)− E(Z(xj)))] ,
(2.1)

where E is the expected value of a random variable. In practice, the covari-
ance function computes the covariance value C(r) between a pair of variables
located at points separated by the vector r. The covariance function C(r) can
also be rewritten as the product between the variance σ2 and the correlation
function ρ(r)

C(r) = σ2ρ(r). (2.2)

It is a well established geostatistical convention to express the spatial relation
of a random field in terms of variogram rather than covariance function. Since
variogram and covariance function both convey the same information, that
is the degree of spatial dependency of a random field between two points
xi and xj, one of them is sufficient to describe Z(x). While the covariance
C(r) is computed as the expected value of the product between field values
at two different locations (2.1), the variogram 2γ(r) shows the variance of the
difference between field values at two different locations that is

2γ(r) = 2γ(Z(xi), Z(xj)) = Var [Z(xi)− Z(xj)]

= E
[
(Z(xi)− Z(xj)− E [Z(xi)− Z(xj)])

2]
= E

[
(Z(xi)− E(Z(xi))− Z(xj) + E(Z(xj)))

2] .
(2.3)

For a stationary field E(Z(xi)) = E(Z(xj)) hence the variogram becomes

2γ(Z(xi), Z(xj)) = E
[
(Z(xi)− Z(xj))

2] . (2.4)

The variogram differs from the covariance (or correlation) function in that the
first measures the variation while the second expresses the similarity. For
example, the variogram computed for two adjacent points that are likely to
show similar properties will have a low value while the covariance value will be

16



high. The relation between covariance function and variogram can be deduced
applying the covariance definition (2.1) to equation (2.3)

2γ(Z(xi), Z(xj)) = E
[
(Z(xi)− E(Z(xi)))

2]+ E
[
(Z(xj) + E(Z(xj)))

2]
− 2E [(Z(xi)− E(Z(xi))) · (Z(xj)− E(Z(xj)))]

= C(Z(xi), Z(xi)) + C(Z(xj), Z(xj))− 2C(Z(xi), Z(xj))
(2.5)

and it is illustrated in figure 2.1.

Figure 2.1: Geostatistical terminology to describe the variogram: range refers
to the separation distance between two points beyond which no correlation is
expected to be found; nugget is the value of the variance computed for a pair of
adjacent points; sill is the value taken from the variance when it is computed
for any pair of two points that are separated by a distance longer than the
range. The variogram conveys the same information as the covariance function
and it is the standard in the geological practice.

2.1.2 Gaussian random fields

Gaussian Random Fields (GRFs) are the most widely used random fields be-
cause of their good mathematical properties, such as being composed by a
collection of random variables whose Probability Density Function (PDF) is
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fully determined by the mean and the variance. In order for a random field to
be Gaussian, its variables follow a Gaussian distribution i.e. their probability
density function (PDF) should be

f(x) =
1

σ
√
2π

e−
1
2(

x−µ
σ )

2

. (2.6)

This entails that the collection of random variables

Z = [Z(x1), Z(x2), .., Z(xN)]

behaves like an N -variate Gaussian distribution for any x1, ..,xN ∈ D. That
is, Z ∼ N(µ, C) where the mean vector µ and the covariance matrix C have
entries µi = µ(xi) and cij = C(xi,xj) ∀i, j = 1, .., N . As an example, in
figure 2.2 we show some two-dimensional realisations of GRFs using Gaussian
(2.17), Exponential (2.18) and Matérn (2.19) covariances. Notwithstanding

Figure 2.2: Continuous GRFs characterised by three different covariances.
From left to right: Gaussian, exponential and Matérn covariance.

the visible differences between the fields in figure 2.2, they are all Gaussian as
their random variables share the same Gaussian PDF. The differences between
the spatial patterns stem from the different covariance functions: the smooth
field on the left panel in 2.2 is generated using a Gaussian covariance 2.17
function while the covariance of the field in the central panel is exponential
2.18 which makes the spatial pattern more convoluted. The field on the right
panel is characterised by Matérn covariance 2.19 which in terms of smoothness
falls between the Gaussian and the exponential.
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2.1.3 Truncated Gaussian random fields

GRFs such as the one in figure 2.2 are continuous functions while geological
media are often characterised by abrupt changes in physical and chemical prop-
erties (figure 2.4). For this reason, Truncated Gaussian Simulations (TGSs)
were deemed capable of reproducing the complex pattern of the sediments’
properties with higher fidelity than continuous GRFs. The idea behind the
algorithm is to simulate one (or more than one, as we will see in the PGS
section 2.1.4) Gaussian variable Z(xi) at every point in the study area and
then use a truncation or lithotype rule to convert these values into facies. In
other words, a truncation rule maps a set of continuous numbers Gaussian
distributed to a discrete number of sediment categories. For example, as a
result of the binning process which applies three thresholds to the continuous
GRFs of figure 2.2 we obtain a contour map characterised by four intervals. If
constant values are assigned to the four regions between the contour lines the
result graphically appears as the truncated GRFs in figure 2.3. These colours

Figure 2.3: Truncated GRFs characterised by three different covariances. From
left to right: Gaussian, exponential and Matérn covariance.

can be associated to different properties of the geological media such as per-
meability or porosity and the interval definition is called truncation rule. In
this sense, the “truncated” adjective refers to a GRF that has been “binned”.
As it will be explained more in the details in section 4.2, the TGS algorithm
relies on information provided by field samples and processed using transition
probability matrices [29, 30] to capture the vertical transition pattern between
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facies (i.e. facies that can or cannot be adjacent) while it uses conceptual
models like the one in figure 2.4 for the same information on the horizon-
tal direction. Categorical random fields can honour two important observed

Figure 2.4: Conceptual geological model of alluvial sediments. Since boreholes
can only capture the vertical alternation of facies, a conceptual model scheme
is needed to determine the horizontal contact between facies.

features: the contact sequence between the facies and their volumetric pro-
portions. The theory which follows refers to the case where only one GRF
is truncated multiple times, which provides self-embedded or orderly facies
(figure 2.3) i.e. structure where one facies always share its boundary at most
with two and only two facies which remain the same over the domain. This
is useful to reproduce geological domains where the sequence stratigraphy is
clear, for instance when sandstone is followed by shaly sandstone then shale
so that shale will never touch sandstone. However, repeating the truncation
process for two GRFs at time allow the simulation of more complex structures
(figure 2.5).

We now define a truncated Gaussian random field. The result of a mapping
process which associate the values of a continuous N -variate Gaussian random
field Z to a partition B(x) of the n-dimensional real space Rn is called trun-
cated Gaussian random field. In this study the n-dimensional real space Rn is
either the real coordinate plane R2 or three dimensional space R3. Following
[31], Fi is the i

th-sediment category which seats at a point x ∈ Rn and that is
associated to the partition Bi(x) through the truncation rule. In other words,
the value of Z at location x is mapped into one of the sediment categories Fi
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if the value falls into the interval defined by the partition Bi(x) that is

Fi(x) ≜ Z(x) ∈ Bi(x). (2.7)

The probability of having the category Fi at the point x corresponds to its
volumetric proportion that is, the ratio between volume occupied by Fi and
the whole domain volume F . Adopting the notation by [31], we can formulate
it as

pFi
= E[1Fi

(x)] = p(ti−1 < x ⩽ ti) (2.8)

where p and E are referring to the probability and the expected value of a
random variable while 1Fi

is an indicator function that is one when Fi is found
at the position x and zero everywhere else. For fixed threshold values ti, all the
values taken by Z(x) in between two thresholds are set constant. The smooth
transition which characterizes the GRF is then replaced by i + 1 categorical
values. Calling 1Fi

the facies indicator function we can define i facies as

1Fi
(x) = 1 ⇔ ti−1 ⩽ Z(x) ⩽ ti (2.9)

whose probability pFi
are

pFi
(x) = p(ti−1 ⩽ Z(x) ⩽ ti) = (2.10)

= p(−∞ < Z(x) ⩽ ti)− p(−∞ < Z(x) ⩽ ti−1). (2.11)

However, what happens most of the time in practice is that we want to retrieve
the thresholds from the experimentally known facies proportion. Once the
sequence between facies has been established, the one-to-one relation between
facies proportions and thresholds is relatively easy to be inverted. Being G(t)
the cumulative PDF of the Gaussian distribution, the probability of the facies
i is computed as

pFi
(x) = G(ti)−G(ti−1). (2.12)

By inverting this relationship we can deduce the thresholds

t1 = G−1[pF1(x)]

t2 = G−1[pF1(x) + pF2(x)]

ti = G−1[pF1(x) + pF2(x) + ..+ pFi
(x)].

(2.13)

For example, to retrieve the thresholds associated to a geological domain char-
acterised by three sediment categories with volumetric proportions pF1(x) =
0.2, pF2(x) = 0.5 and pF3(x) = 0.3 one can use equations 2.13

t1 = G−1[0.2] = −8.84 (2.14)

t2 = G−1[0.2 + 0.5] = 0.524. (2.15)

By doing so, the PDF of the Gaussian variables at each spatial location are
divided into three intervals which honour the observed volumetric proportion.
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2.1.4 Truncated pluri-Gaussian random fields

Sediments’ deposits rarely show an orderly or stationary structure. When
geological surveys suggest no natural sequence between facies that is, certain
facies can be in contact with more than two facies, the TGS model is too
restrictive. To reproduce non-stationary geometries, we need two or more
GRFs. For this reason, a simulation derived from the truncation of multiple
GRFs is called PGS. Three examples of PGS fields with Gaussian, exponential
and Matérn covariance functions are illustrated in figure 2.5. The idea behind

Figure 2.5: Bi-truncated GRFs characterised by three different covariances.
From left to right: Gaussian, exponential and Matérn covariance.

the PGS method is to simulate two or more continuous GRFs on a spatial
domain and compare them through a series of inequalities which allows us to
assign a unique value to each cell (figure 3.1). In our case, this value is an
indicator of the facies and the series of inequality is described by the truncation
rule (figure 2.6). For example, assuming that the underlying GRFs of figure
2.5 are Z1(x) and Z2(x), the red cells in the domain satisfy the condition
t1 < Z1(x) < t3 and s1 < Z2(x) < s2, as illustrated by the truncation rule
(figure 2.6). The volumetric fraction of the facies Fi is equal to the probability
p of finding Fi at the location x which is

pFi
(x) = [G1(ti)−G1(ti−1)] [G2(si)−G2(si−1)] . (2.16)

The problem of defining the thresholds given the volume proportions (i.e. the
probabilities) leads to the optimisation of i error functions. In other words,
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Figure 2.6: Qualitative truncation rule for figure 2.3. Note that the areas
of the different facies do not correspond to the their respective proportions
in the simulations, not because of the qualitative nature of the image, but
because the underlying continuous variables are Gaussian and not uniformly
distributed.

there are infinite threshold combinations which honour a given set of volume
proportions and some constraints need to be defined beforehand to allow for a
single solution. However, it is always possible to arbitrary fix thresholds and
compute the corresponding set of proportions.

2.1.5 Correlation functions and variograms

Depending on geological factors such as the depositional history, the orogenesis
or the tectonic deformations, the subsurface sediment structure might show
strongly different patterns. To match these spatial characteristics, a large
number of covariances are available in literature [32]. Some of the most popular
covariances in the geostatistical practice together with their respective spectral
representations, i.e. their form after the Fourier transform being applied to the
covariance, are described by the expressions 2.17, 2.18 and 2.19. As illustrated
in section 2.1.6, the spectral representation of the covariance is essential for
the implementation of the OpenFOAM®geostatistical utility setRandomField

that can be downloaded at [6].
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Gaussian

C(d;λ) = σ2
(
1− e−

π
4 (

d
λ)

2)
and S(a;λ) = σ2

(
λ

π

)n

e−
1
π
(aλ)2 (2.17)

Exponential

C(d;λ) = σ2
(
1− e−

|d|
λ

)
and S(a;λ) = σ2λn Γ

(
n+1
2

)
(π (1 + a2λ2))

n+1
2

(2.18)

Matérn [33]

C(d; ν, λ) = σ2

(
1− 21−ν

Γ(ν)

(√
2ν

d

λ

)ν

Kν

(√
2ν

d

λ

))
S(a; ν, λ) = σ2λn Γ(ν + n

2
)(2ν)ν

Γ(ν)π
n+1
2 (2ν + λ2a2)ν+

n
2

(2.19)

The parameters in the expressions 2.17-2.19 are defined as:

• d is the distance which separates a pair of random variables;

• λ is the correlation length;

• a is the frequency vector;

• n is the number of dimensions;

• Γ is the gamma function;

• ν is a smoothness parameter;

• Kν is the modified Bessel function of the second kind.

The exponential and Gaussian covariances are both special cases of the Matérn
covariance. For ν = 1/2 the Matérn covariance becomes the exponential while
for ν → ∞ it becomes the Gaussian. As it can be noted from figure 2.2, the
Gaussian covariance 2.17 generates smoother patterns than the exponential
covariance 2.18. In terms of smoothness, the pattern generated by the Matérn
covariance in figure 2.2 is between the Gaussian and the exponential with slight
variations depending on the value of ν.
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2.1.6 Geostatistical implementation

We leveraged on the well established use of geostatistics to reproduce geo-
logical properties distributions [8] to associate randomly generated truncated
pluri-Gaussian fields with subsoil permeability patterns. Although the com-
plexity of reproducing the subsurface sediment distribution has been tackled
using different approaches [8], we chose the truncated pluri-Gaussian simula-
tion method because it can reproduce the high contrast heterogeneity patterns
characteristic of the subsoil with a high degree of realism.

Several well-known methods have been implemented in literature for gen-
erating GRFs [34, 35, 36, 37]. According to [38] a GRF can be represented
using a stochastic Fourier integral:

Z(x) =

∫ +∞

−∞
e−2πia·x

√
S(a)dW (a). (2.20)

where a are frequencies, dW (a) is a complex Gaussian random variable and
S(a) is the amplitude of the spectral measure. This can be rewritten as

Z(x) =

∫ +∞

−∞
cos(2πa · x)

√
S(a)dW (a) + i

∫ +∞

−∞
sin(2πa · x)

√
S(a)dW (a).

(2.21)
that in its discrete form becomes

Z(x) =

Nf∑
j=0

cos(2πaj · x)
√
S(aj)Wj + i

Nf∑
j=0

sin(2πaj · x)
√
S(aj)W

′
j . (2.22)

Equation 2.22 represents the core of the PGS algorithm implemented in the
setRandomFiled geostatistical library as it is used to generate continuous
GRFs. Several geostatistical features were implemented in the setRandomFiled
library to enable a good match of the geometrical properties between the vir-
tual geostatistical field and the real geological media. These parameters are
illustrated in table 2.1 along with the accepted values. An accurate description
of the PGS algorithm implementation for the exponential covariance can be
found in section 3.3.1.
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Geostatistical library parameters
Feature Description Values

Field name Name of the field string of characters

Field type
Distribution of the
random variable

uniform, gaussian,
logNormal, truncated,
bitruncated

Correlation function Variable spatial dependence
exponential, Gaussian,
Matérn

Function parameters
Mean, variance and correlation
lengths

R

Enable statistics Metrics of the generated fields true, false
Disable dimensions 1D, 2D or 3D true, false
Periodicity Periodic field true, false
Frequencies Number of frequencies N

Thresholds values
Categories’ limits expressed as
input values for the Gaussian

R

Percentiles values
Categories’ limits expressed as
volume fraction of sediments

[0 1]

Field values
Numerical value assigned to
each category

R

Table 2.1: Most relevant geostatistical features available for the OpenFOAM

library setRandomField. The third column collects the valid input for setting
the features in the first column.
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2.2 Flow and transport mathematical models

While in 1856 Henry Darcy was working on a freshwater filtering problem for
the fountains of Dijon, he first proposed a relation between the flow rate and
the pressure difference [14]:

q = −K
h2 − h1

l
(2.23)

where q is the rate of water displacement per unit area [LT−1], l is the distance
between the inlet and outlet sections of the porous media [L], h2 and h1 are
the heights [L] of water measured in manometers upstream and downstream
respectively andK is a factor of proportionality, namely hydraulic conductivity
[LT−1]. Another fundamental relationship to 2.23 for transport in fluids was
derived by Adol Fick in 1855:

J = −D
dc

dx
(2.24)

where J is the diffusive flux [L2T−1], D is the molecular diffusion coefficient
[L2T−1] and c is the volume fraction of solute in fluid [-].

These groundbreaking empirical intuitions paved the way for the study
and modelling of flow and transport in porous media. In the next sections, the
mathematical description of the flow and transport mechanisms is illustrated.

2.2.1 Continuity equation

The continuity equation for most of the groundwater application purposes is
a scalar equation where the unknown fluid density appears in the temporal
derivative and in the divergence. The interpretation is that, for a fixed region
in space, the temporal and spatial variation of one property equals the property
variation produced by the sinks/sources (Eq. 2.25)

∂(ρϕ)

∂t
+∇ · (ρV ) = ρfRf (2.25)

where ρ is the fluid density [ML−3], ϕ is the porosity [−], V is the Darcy’s
velocity [LT−1] and Rf is a source or sink rate [T−1] of fluid with density ρf
[ML−3]. Expanding the derivatives we find

ρ
∂ϕ

∂t
+ ϕ

∂ρ

∂t
+ ρ∇ · V + V · ∇ρ = ρfRf (2.26)

that under the following hypothesis:
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• constant porosity;

• constant and homogeneous density;

• no sources or sinks in the domain;

yields the incompressibility condition

∇ · V = 0. (2.27)

2.2.2 From Navier-Stokes to Darcy’s law

We provide a short derivation of the Darcy law from the Navier-Stokes equa-
tion. We start by deriving Navier-Stokes momentum equation 2.34 from New-
ton’s second law 2.28 and, under low Reynolds number assumption, simplifying
it into the Stokes equation. Upscaling the Stokes equation 2.36 as illustrated
by [21, 24] leads to the Darcy equation (e.g. [39]).

Cauchy momentum equation

Starting from Newton’s second law

Dp

Dt
= F , (2.28)

and assuming constant density, one can see the derivative of the momentum
p at the left hand side as

Dp

Dt
=

Du

Dt
ρdxdydz (2.29)

and the resulting force F on the right hand side as the sum of body and surface
forces

F = F b + F s. (2.30)

If the only body force considered is the gravitational force

F b = gρdxdydz (2.31)

and the surface forces are described by the the stress tensor σ

F s = (∇ · σ) dxdydz (2.32)

then Newton’s second law 2.28 becomes Cauchy momentum equation:

Du

Dt
=

1

ρ
∇ · σ + g. (2.33)
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Navier-Stokes momentum equation - Lagrangian form

Navier-Stokes momentum equation can be derived as a particular case of
Cauchy momentum equation 2.33 by setting the Cauchy stress tensor σ to
be the sum of viscous (or deviatoric) stress matrix τ and the pressure (or
volumetric) stress −pI.

ρ
Du

Dt
= −∇p+∇ · τ + ρg (2.34)

Navier-Stokes momentum equation - Eulerian form

Expanding the total derivative of equation 2.34, the Navier-Stokes momentum
equation becomes

ρ

(
∂u

∂t
+ v · ∇u

)
= −∇p+∇ · τ + ρg (2.35)

where u is the velocity of a particle of fluid with respect to a Lagrangian
reference system and v the Eulerian velocity of the fluid, i.e. with respect to
a fixed reference frame system.

If lagrangian acceleration of particles flowing through a porous media are
considered negligible the material derivative Du/Dt vanishes and the Navier-
Stokes equation 2.34 simplifies into

0 = −∇p+∇ · τ + ρg (2.36)

Assuming that the force resisting the motion of a particle at a point inside
an elementary channel is proportional and opposite to the Darcy’s velocity V ,
the divergence of the stress tensor can be written as

∇ · τ = −µVik
−1
ji i, j = 1, 2, 3 (2.37)

where k is a function of the channel’s geometry and µ is the dynamic viscosity
of the fluid. Substituting equation 2.37 in equation 2.36 yields

0 = −∇p− µVik
−1
ji + ρg (2.38)

which is the Darcy law

V = −k

µ
(∇p− ρg) . (2.39)

The Darcy velocity V is also called apparent velocity because it represents the
velocity of the fluid as if the porous matrix did not occupy any space while
the real velocity v = V /ϕ is the velocity that would be measured by a flow
meter in the porous domain and it clearly exceeds the Darcy velocity.
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2.2.3 Darcy’s law

The constitutive equation for groundwater flows is Darcy’s law (Eq. 2.39).
The most relevant statements about this experimental law which has been
rewritten multiple times using disparate notations, concern the hypothesis
which go under each formulation [40, 41]. The formulation we adopt here
(Eq. 3.5) is the most general, rich and complete, preparatory to the code
implementation work

V = −k

µ
(∇p+ ρg∇z) (2.40)

where k is the hydraulic permeability tensor [L2], µ is the dynamic viscosity
[ML−1T−1], p is the pressure [MT 2L], g is the gravity constant [LT−2] and
∇z = (0, 0, 1) [−]. The original formulation (Eq. 2.23), although it suffers
from a uniform density assumption which is rarely explicitly stated, is proba-
bly more suitable for direct application to practical hydrogeological problems
where the uniform density hypothesis applies. The uniform density assumption
(∇ρ = 0) is seldom explicitly stated for two main reasons:

• it is implicit in the more restrictive assumptions of incompressibility
condition (Eq. 2.27) that is often assumed to close the system of three
equations (2.40) in four unknowns (V and p);

• fluids for which pressure compressibility is generally negligible, show a
non-negligible chemical compressibility behavior, i.e. relevant density
changes. For instance, relevant quantity of salt can be dissolved into
water before sensible volume variations can take place; as a result, we
observe significant density increments. Apparently pressure incompress-
ible liquids such as water suddenly become chemically compressible.

By means of a substitution as simple as

k =
µK

ρg
, (2.41)

and defining a scalar function called hydraulic head h = p
ρg

+ z [L], equation
2.40 can be rewritten as

V = −K∇h. (2.42)

where K is the hydraulic conductivity [LT−1]. Given the popularity of equa-
tion 2.42, it is worth noting that, notwithstanding the similar notation, per-
meability k and hydraulic conductivity K are profoundly different: the first
merely describes a properties of the porous medium, the second depends on
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both, the properties of the porous medium and on the properties of the fluid
itself (density and viscosity). As a consequence, k does not change with the
fluid while K does. In brief:

• permeability k is the ability of a specific material to allow for any fluid
to pass;

• hydraulic conductivity K describes the ease of flow through porous me-
dia related to a specific combination of flow and material.

Stated this necessary distinction, we will mostly use Darcy’s law in the form
(Eq. 2.40).

Groundwater flow

The combination of continuity equation (Eq. 2.25) with Darcy’s law (Eq.
2.40) provides a system of four equations which contains all the six unknowns
(p, ρ, ϕ and V ) which are physically relevant to fully describe groundwater
flow. Clearly, this problem cannot be solved unless two constitutive equations
for ρ and ϕ are provided or the number of unknowns is reduced. Under the
assumptions of equation 2.27, ϕ and ρ become parameters so that the num-
ber of unknowns is reduced and the resulting system can be rewritten as the
canonical equation for groundwater flow

∂

∂x

(
−kx

µ

∂p

∂x

)
+

∂

∂y

(
−ky

µ

∂p

∂y

)
+

∂

∂z

(
−kz

µ

(
∂p

∂z
+ ρg

))
= 0. (2.43)

2.2.4 Advection-dispersion transport model

Classical transport theories identify the spread of a nonreactive solute in
porous media as a consequence of three mechanisms:

a ) molecular diffusion;

b ) mechanical (or kinematic) dispersion (sometimes effective diffusion);

c ) advection (often convection).

A fourth type of dispersion called Taylor dispersion [42, 43] describes the
spread of the solute under the variation of the velocity profile through small
tubes. Given the symmetry of such dispersion which moves with the mean
speed of the flow, it has negligible effects from a meso-scale perspective. The
combination of the first three mechanisms (a-c) is usually embedded in the
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hydrodynamic dispersion matrix D. Unfortunately, no consensus about ter-
minology has been reached yet and the attribution of different meanings to
the same word by distinct communities (e.g. geologists, engineers and mathe-
maticians) could lead to misleading interpretations. Beyond the terminology,
mechanism (a) indicates the motion of particles at molecular scale caused
by their own random collisions, mechanism (b) describes velocity-driven pro-
cesses where molecules disperse by tracking through the tortuous pathways of
the medium because of the variability of the complex, microscopic velocities
while mechanism (c) represents the way particles are carried by the bulk mo-
tion of the fluid [44]. Before introducing their mathematical representations,
an important distinction is needed: when flow velocity is zero, the only flux is
induced by molecular diffusion (a) while when flow velocity is non-zero solute
spreading is induced by the simultaneous contributions of molecular diffusion
(a), mechanical dispersion (b) and advection (c). Taking the spread of a con-
taminant in a homogeneous porous medium as an example, in case of no flow
molecular diffusion (a) would generate an increasing spherical plume. How-
ever, if flow velocity is added, the plume would spread uniformly as it advected
with the flow (c) but it also elongates since the spreading caused by mechanical
dispersion (b) is generally observed to be greater in the direction of the flow
rather than in the transverse direction. In case of fluid flow, the contribution
of each mechanism is variable and the dominating mechanism depends on the
Péclet number [−]

Pe =
V l

ϕDmol

(2.44)

where l [L] is a characteristic length (e.g. the correlation length) and Dmol

[L2T−1] is the molecular diffusion coefficient. It has been observed from ex-
periments that

• for Pe < 1 molecular diffusion dominates mechanical dispersion;

• for 1 < Pe < 10 molecular diffusion an mechanical dispersion are com-
parable;

• for Pe > 10 mechanical dispersion dominates molecular diffusion.

Fick’s law: molecular diffusion and mechanical dispersion

We will now focus on case (a), hence no flow velocity. Detailed description of
the collision between molecules at aquifer scale is still computationally pro-
hibitive hence, predictions on the spread of a solute in a porous medium rely
on Fick’s law (Eq. 2.45). Similar to Darcy’s law for hydraulic flow, Ohm’s
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law for charge transport and Fourier’s law for heat transport, the constitutive
equation for the diffusive flux per unit area J0 [LT−1] happens in the direction
of the negative gradient

J0 = −D0∇c. (2.45)

The diffusion equation can be derived from the continuity equation 2.25 by
substituting the density ρ, the Darcy flux ρV and the fluid sink/source rate
ρfRf respectively with the volume fraction of solute in fluid c [−], the diffusion
flux per unit area J0 and the sink/source rate csRs of the solute (no porosity
ϕ is present because we are not considering the porous matrix yet)

∂c

∂t
−∇ · (D0∇c) = csRs (2.46)

where D0 is the molecular diffusion coefficient in the fluid [L2T−1]. In common
with other linear parabolic partial differential equations, equation 2.45 shows
some basic properties:

• disturbances propagate at infinite speed;

• it smooths out roughness in the initial boundary data;

• there is a loss of information as signals propagate;

• there is a maximum principle.

The molecular diffusion and the mechanical dispersion fluxes in porous media
are then given by

a ) Jmol = −ϕDmol∇c ;

b ) Jmec = −ϕDmec∇c ;

whereDmol is the effective molecular diffusion coefficient in the porous medium
[L2T−1] and Dmec is the mechanical dispersion matrix [L2T−1]. While the use
of Fick’s law (Eq. 2.45) for case (a) is widely acknowledged, the Fickianity
of the dispersion flux (case b) is still debated. However, since no alternative
model is currently available, we will assume its validity for the next chapters.
The effective molecular diffusion coefficient Dmol is usually smaller than the
molecular diffusion coefficient D0 because of the hinder effect of the solid
boundaries of the porous structure where the liquid phase is enclosed. The
range of the ratio Dmol/D0 is usually 0.1− 0.7 and is called tortuosity.
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Mechanical dispersion models

Mechanical dispersion needs to be taken into account when solute is trans-
ported through a porous matrix. Based on the analogy with the molecular
diffusion, the mechanical dispersion flux is assumed to happen against the con-
centration gradient and proportionally to the mechanical dispersion coefficient
however, the parallelism with molecular diffusion holds as long as channels and
geometry of the porous matrix are uniformly distributed in space so that the
overall effect of mechanical dispersion can be assimilated to the molecular ag-
itation at the microscopic scale. Based on this parallelism, the mechanical
dispersion coefficient Dmec has the same units as the molecular diffusion co-
efficient and it describes all the displacements that the porous matrix induces
on the fluid and that are not represented neither by the advective or diffu-
sive models, i.e. sharp velocity gradients and highly permeable channels. One
constitutive model [15, 45] for mechanical dispersion is

Dmec = αT |V |I+ (αL − αT )
V TV

|V |
(2.47)

where αL and αT are the longitudinal and transversal mechanical dispersion
coefficients, V is the local Darcy velocity written as a row vector and I is the
identity matrix. In a simplified case where the flow is only longitudinal, the
Darcy velocity has one non-zero component V = (Vx, 0, 0) and the mechanical
dispersion model 2.47 can be rewritten as

Dmec =

αLVx 0 0
0 αTVx 0
0 0 αTVx

 (2.48)

Typically α in the longitudinal direction is roughly taken one order of magni-
tude bigger than in the transversal direction (αT ≃ 0.1αL).

Advection-dispersion equation

The mathematical representation of the advective flux is

c ) Jadv = V c .

The net flux per unit area J [LT−1] is then given by the sum of the three
fluxes (a - c)

J = Jadv +Jmol +Jmec = V c− ϕ(IDmol +Dmec)∇c = V c− ϕD∇c (2.49)
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for which the sum of IDmol and Dmec gives the hydrodynamic dispersion ma-
trix D. The advection-dispersion equation can be derived from the continuity
equation 2.25 by substituting the concentration c to the density ρ and the net
flux per unit area J 2.49 to the Darcy flux ρV . By doing so, the continuity
equation 2.25 becomes

∂(ϕc)

∂t
+∇ · (V c)− ϕ∇ · (D∇c) = csRs. (2.50)

In our study no reactions have been considered so that, expanding the vari-
ables’ dependency, equation (2.50) simplifies into the advection-dispersion
equation

∂c(x, t)

∂t
+∇ · [v(x)c(x, t)]−∇ · [D(x)∇c(x, t)] = 0 (2.51)

where v represents the real velocity of the flow through the channel throats.

2.2.5 Transport upscaling

Upscaling means to find analogies between phenomena which happen on sep-
arate scales and try to fit the smaller scale mathematical description to the
larger scale mechanism. One example that has widely been tested is the adap-
tation of Fick’s law initially developed for molecular diffusion (a) description to
capture the effect of the mechanical dispersion (b) driven by the porous media
channel structure through a redefinition of the molecular diffusion coefficient.
The same way [1], the advection-dispersion equation 2.51 first formulated to
model the transport at the meso-scale, is proposed to capture the effect of the
sediment heterogeneity at the field scale. To do so, the hydrodynamic dis-
persion matrix D becomes the macrodispersion matrix Dmac which simulates
the dispersion effect that the sediment regions with different properties have
on the solute

∂(ϕc)

∂t
+∇ · (V̄ c)− ϕ∇ · (Dmac∇c) = 0 (2.52)

where instead of V the spatially averaged Darcy velocity V̄ is adopted.
Advection-dispersion equation however, was conceived and experimentally

verified in meso-scale porous domains where sediment properties were homoge-
neously distributed. Thus, it is understandable how its application to macro-
scale transport problems characterised by sharp variations in geological proper-
ties might sometimes be affected by large uncertainties. Indeed, the attempts
made to adapt the original hydrodynamic dispersion coefficient to account
for macro-dispersion phenomena often results in large macro-dispersion values
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affected by elevated uncertainties. Some macro-dispersion predictive and cali-
brated methods to estimate the macro-dispersion coefficient are illustrated in
section 3.3.5.

2.2.6 Transport implementation

The in-house solver for scalar transport scalarTransportFoam was initially
adopted for preliminary transport tests on PGS fields. As the name suggests,
this solver allows for the solution of the classical advection-diffusion equation
which is suitable to describe the transport of a scalar through a porous media.
This initial version did not include any mechanical dispersion model that re-
sults in transport being driven by advection and isotropic molecular diffusion.
The implementation of an adaptive time step together with a condition on the
permitted concentration threshold on the outlet boundary as additional fea-
tures of scalarTransportFoam yielded the adaptiveScalarTransportFoam

solver. A further extension of the adaptiveScalarTransportFoam which fore-
sees the aggregation of a mechanical dispersion model as an additional term to
the diffusion eventually fully represents the model described in equation 2.51.
At the current stage, the last version of the transport solver is represented
by the rhoDarcyFoam utility which, among other features, allows the simula-
tion of transport in compressible fluids. A comprehensive description of its
potentiality can be found in [45] where the code along with some benchmark
examples are presented in detail. The core of the paper [45] is also reported
in the appendix ?? of the present work.
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Chapter 3

Emergence of non-Fickian
transport in truncated
pluri-Gaussian permeability
fields

This chapter was published as a paper on the GEM-International Journal of
Geomathematics [26].

3.1 Abstract

We present a numerical simulation study of advective-diffusive scalar transport
in three-dimensional high-contrast discontinuous permeability fields, generated
with a truncated pluri-Gaussian geostatistical approach. The numerical ex-
periments are run with an Eulerian approach using a novel unified numerical
framework based on the finite-volume library OpenFOAM®[46], for i) generat-
ing random pluri-Gaussian porous media, ii) solving the steady state Darcy-
scale flow, iii) solving the advection diffusion equation, iv) computing post-
processing quantities such as first order statistics, spatial probability density
functions and breakthrough curves. A range of permeability contrasts, corre-
lation lengths, and Péclet numbers are tested to assess their relative weight on
transport control and for the first time, the deviation of a calibrated macrodis-
persive model from the Fickian transport is quantified. We identify a hierarchy
of non-Fickian transport triggering factors. From the tested scenarios, perme-
ability contrast is the main controlling parameter for the anomalous transport
behaviour as it enhances the generation of preferential flow paths which are
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characterised by high advective flow velocities. The Péclet number and the
characteristic length at which facies transitions are observed as secondary fac-
tors.

3.2 Introduction

Subsurface flow and solute transport modelling is used in several engineering
and environmental fields (CO2 storage, groundwater remediation, oil recov-
ery) where mathematical and computational models play a central role in
supporting the reliability of analysis and design strategies. The effectiveness
of advection-dispersion models in describing solute transport in highly hetero-
geneous media such as geological formations has been questioned [47, 48, 49],
and the definition of appropriate models and their parameterization remains
an open field of research [50, 51, 52, 53]. An important challenge is how to
simulate non-Fickian behaviour, which originates mainly from physical het-
erogeneities emerging across multiple scales [5, 54, 1]. Transport is defined as
anomalous or non-Fickian when solute plumes and breakthrough curves display
a significant departure from the predictions made by an advective-dispersive
model where dispersion is expressed with a Fickian analogy, i.e. mechanical
dispersion and molecular diffusion are grouped together in a single effective
coefficient [55].

Approaches to modelling solute transport in heterogeneous porous media
largely differ depending on the scale of interest. In this work we start from
a mesoscale, which corresponds to a resolution where geological porous me-
dia can be described by an equivalent continuum with spatially heterogeneous
properties [56, 57]. At this scale, solute transport is governed by two separate
mechanisms: advection and local hydraulic dispersion which includes the con-
tributions of molecular diffusion and mechanical dispersion. At the mesoscale,
spatial heterogeneity is explicitly represented, most commonly using a statisti-
cal model. We then move to macroscale modelling, where the aim is to define
an effective model able to describe the dynamics of the system without an
explicit description of the underlying heterogeneity. In classical descriptions
[58], velocity at these scales may be interpreted as the average Darcy velocity
while the hydraulic dispersion coefficient turns into a macrodispersion coef-
ficient, employed to quantify the effect of heterogeneity on solute spreading.
This model has been questioned in the literature and alternative non-Fickian
effective models have been proposed [59, 60, 61]. These approaches mainly
focused on cases where the underlying (mesoscale) log-conductivity field has a
Gaussian distribution. Beyond this specific case, the validity of the Advection
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Dispersion Equation (ADE) based macrodispersive models are not clearly iden-
tifiable a priori, although they are certainly heavily controlled by the degree of
heterogeneity of porous media properties [61] and their spatial organisation.
For example this latter point was recently addressed in [53], who investigated
the role played by the injection area and the correlation length in activating
anomalous transport mechanisms. The persistence of this anomalous trans-
port behaviour at the macroscale can be due, for example, to these regions
where the flow paths create preferential fast channels [62], a feature that also
influences reactive transport settings [63, 64].

In this work we investigate solute transport and the onset of anomalous
or non-Fickian transport behaviour in high-contrast heterogeneous permeabil-
ity fields, generated with the geostatistical pluri-Gaussian truncated (PGS)
method [65]. Solute transport has been widely investigated in continuous
Gaussian and non-Gaussian permeability fields [66, 67], and methods have
also been proposed to handle non-continuous fields, suitable to reproduce ge-
omaterials where property transition is marked by sharp interfaces [68]. PGS
random fields are used in this context to model actual subsurface geological
media in a sedimentary setting. In this context this model is used to link
an assumed geological architecture or structure, e.g. driven by sedimentologi-
cal rules, with the spatial distribution of physical properties such as porosity
or hydraulic conductivity. This allows to create fields starting from given
geological assumptions and explicitly control the connectivity of high- and
low-permeability facies. Therefore, PGS can be employed to reproduce and
interpret the emergence of non-Fickian transport traits observed in real geolog-
ical media. Simulation of solute transport in alluvial settings, represented by
discontinuous conductivity fields, has been considered by a number of studies
in the recent literature. Discontinuous permeability fields with a high con-
nectivity degree and sharp contrast between regions are recognised among the
most important factors that regulate the transport of solute [69, 52]. Facies
properties can be qualitatively linked to non-Fickian parameters for alluvial
aquifers [70], however such a link remains hard to quantify in a predictive
fashion. This is likely due to the fact that several factors can contribute to
the emergence of a non-Fickian behaviour of solute travel times. As noted
by [71], the Péclet number provides useful information on the duration of
the anomalous transport while the correlation length controls the connectivity
and, therefore, the onset of non-Fickian behaviour.

Starting from these existing results, our aim here is to investigate the con-
nectivity and conductivity contrast thresholds that drive a transition between
Fickian and non-Fickian response. Our objective is to then rank the factors
triggering transition non-Fickian transport. To this end, we quantify the de-
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viation of the results obtained from numerical simulations in PGS domains
from Fickian behaviour by comparing them to the analytical solution of the
advection-dispersion equation. We rely on a quantitative approach aimed at
capturing the discrepancy between mesoscale simulations and a macrodisper-
sive model, rather than focusing on a detailed characterisation of the processes
involved. This allows us to identify the physical and structural thresholds that
can lead to non Fickian transport and ultimately contributes to the definition
of aquifer typing approaches where the relevance of non Fickian transport
features may become identifiable from a knowledge of the field properties.

To achieve these objectives we rely on numerical simulations, by solving the
advection-dispersion equation in heterogeneous media using an Eulerian finite
volume method. This approach is implemented as a parallel open-source code
based on OpenFOAM®[46], as part of the SECUReFoam library [6]. The advan-
tages of the Eulerian approach are that it allows the computation of Péclet
number and that an accurate simulation of solute low concentration tails does
not require a large particle ensemble as with Lagrangian formulations, which
have often been used in the recent literature [62, 72, 5]. Moreover, the Eu-
lerian description is closer to the experimental conditions where results are
often obtained in terms of molar or mass concentration while Lagrangian ap-
proaches need to be post-processed to obtain local concentration fields. From
an operational perspective, our approach is based on a single computational
framework, including a geostatistical algorithm for permeability field genera-
tion, a numerical code for flow and transport simulation, and post-processing
tools. This is an interesting feature of our approach as the synthetic gen-
eration of realistic geological domains remains one of the main challenges in
modelling flow and transport [34]. Several approaches are available to re-
produce complex subsurface structures (sequential Gaussian simulations [73],
Markov chain probability [74], Multiple-point statistics [75]) as well as a num-
ber of geostatistical open toolboxes (GSLib [36], T-PROGS [76]). Neverthe-
less, few open-source tools exist that provide integrated geostatistical, flow
and transport simulation solvers (OpenGeoSys [77], porousMultiphaseFoam
[78], DuMux [79]). This work is structured as follows: in Section 2 we give
the mathematical overview of the problem, in Section 3 we describe the test-
cases and summarise the numerical methodologies. Numerical results and the
post-processing are presented in Section 4, before we draw conclusions and give
some guidelines about the emergence of non-Fickian transport. For the sake of
clarity, the terms “facies” (uncountable) and “category” as well as “lithotype”
and “truncation” rule will be used interchangeably depending on the context.

40



3.3 Methods

We describe here the methods underpinning our numerical simulations. We
start by presenting the geostatistical framework and then move to the descrip-
tion of the physical problem, i.e. the flow and transport setting.

3.3.1 Geostatistical model

Permeability fields are generated via the pluri-Gaussian Simulation (PGS)
method, i.e. applying a truncation rule to continuous multivariate Gaussian
random fields (GRF) [65]. Fields generated with this approach are charac-
terised by:

• discontinuous permeability fields characterised by a discrete number of
zones of uniform permeability whose spatial arrangement is the result of
a specific truncation rule (i.e., Lithotype rule [31]);

• high geological realism since the truncation rule allows simulating ob-
served geometrical relations between geological facies [8, 80, 31].

GRFs can be generated in the frequency domain by multiplying indepen-
dent complex Gaussian random variables by the spectral representation of the
covariance function. The spatial field is then reconstructed by applying the
inverse Fourier transform to the spectral GRF. To ensure independence of the
random field generation from the mesh-discretisation and to allow arbitrary
unstructured grids, we apply an explicit discrete inverse Fourier transform dis-
cretised with Nf frequencies in each direction. Following [38, 34], a discrete-in-
frequencies continuous-in-space representation of a complex GRF is therefore
given by:

Z(x) =

Nf∑
j=0

cos(2πaj · x)
√

S(aj)Wj + i

Nf∑
j=0

sin(2πaj · x)
√
S(aj)W

′
j (3.1)

where x is the position vector, aj = (ax,j, ay,j, az,j) is the j
th frequency vector,

Wj and W ′
j are independent complex Gaussian random variable and S(aj)

is the amplitude of the spectral measure. From Z, we can then extract two
independent Gaussian random fields from its real and imaginary parts.

The covariance function of a stationary field quantifies the covariance γ(r)
between a pair of values of a random variable located at points separated by
the distance r. We denote the correlation function as ρ(r) and the variance
as σ2 (where γ(r) = σ2ρ(r)).
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In this work, we assume an exponential correlation function

ρ(r) = 1− e
−

√
r2x
λ2x

+
r2y

λ2y
+

r2z
λ2z (3.2)

with corresponding spectrum

S(a) = σ2∥λ∥d
Γ
(
d+1
2

)(
π
(
1 + a2xλ

2
x + a2yλ

2
y + a2zλ

2
z

)) d+1
2

, (3.3)

where d = 3 is the number of dimensions, Γ is the Gamma function, λ =
(λx, λy, λz) are the correlation lengths.

GRFs are continuous fields, but geological media are often characterised by
abrupt changes in physical and chemical properties. With the PGS approach
discontinuous patterns are reproduced from the truncation of two GRFs ac-
cording to a lithotype or truncation rule (fig. 3.1), which bins continuous values
into a set of categories. The smooth transition which characterises the GRF is

Figure 3.1: Truncated pluri-Gaussian simulation. a) Continuous multivariate
Gaussian random fields Z1 and Z2 generation; b) truncation rule for four facies
domain and its corresponding thresholds on the Gaussian distribution of the
variables; c) sample of a two-dimensional truncated pluri-Gaussian random
field. The arrows indicate the contribution of the two GRFs in assigning a
given category at a selected location in space.

then replaced by n = (Nr +1)(Ns+1) categorical values where Nr and Ns are
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the number of thresholds applied via the truncation rule to the two GRFs. In
this sense, the “truncated” adjective refers to a GRF that has been discretised
through a binning process. The probability, i.e. the proportion, of the facies
φi is obtained from

pφi
(x) = [G(ri)−G(ri−1)] [G(si)−G(si−1)] i = 1 . . . n (3.4)

where n is the number of categories, G is the cumulative Gaussian distribution
with the mean and the variance typical of each field. The lithotype rule allows
to control the probability of two different categories (or facies) to be in direct
contact. This constitutes a fundamental feature as it allows the simulated field
to reflect geological transition patterns observed in field data. According to
the conceptual steps normally used in PGS geostatistics, transition patterns
are captured along the vertical direction by processing field sample informa-
tion through transition probability matrices [29, 30] while field observations
and/or established conceptual models of geological environments are used as
guidance for the estimation of transition patterns in the horizontal directions
[31]. In this work, we assume the single truncation diagram, in Fig. 3.1. In our
simulations we vary the correlation lengths λ of the underlying GRFs and the
permeability values assigned to different categories. The four categories have
equal probability and therefore volumetric fractions pφi

= 25%. The distribu-
tion of the multivariate random variables adopted to generate the underlying
continuous Gaussian random fields in this study has mean µ = 0 and σ = 1
and their correlation function is exponential.

3.3.2 The flow model

We assume fluid flow obeys the standard Darcy’s equation which reads

V = −k

µ
(∇p+ ρg∇z), (3.5)

where V is the Darcy velocity vector [LT−1], k is the permeability tensor [L2],
µ is the dynamic viscosity [ML−1T−1], p is the pressure [MT−2L−1], ρ is the
fluid density [ML−3], g is the gravity constant [LT−2] and ∇z = (0, 0, 1) [−] is
an upward unit vector. For this study we set g = 0 as any influence of the solute
on the liquid density is assumed to be negligible. The flow solver implemented
in OpenFOAM®[46] is based on equation (3.5) assuming an incompressible fluid.
Therefore pressure can be computed according to a Poisson equation

∇ · V = −∇ · k
µ
∇p = 0 (3.6)
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where we have assumed no sources or sinks are present and the gravity term
is zero. The permeability tensor is, from this point, assumed diagonal and
isotropic, i.e., k = kI, I being the identity matrix. Boundary conditions for
the pressure are zero gradient on lateral sides and a fixed gradient of 50 Pa/m
in the longitudinal direction.

3.3.3 Local transport model

The advective flux per unit area Jadv [LT−1] is the product of the advective
Darcy velocity V [LT−1] and solute concentration c [−]

Jadv = V c. (3.7)

In line with previous work [62], we neglect mechanical dispersion and model
the diffusive fluxes Jmol [LT

−1] as

Jmol = −ϕDmol∇c (3.8)

where Dmol [L
2T−1] is the molecular diffusion tensor and ϕ is the porosity of

the medium. Summing up the advective and diffusive fluxes, the conservation
of mass yields the advection-diffusion equation, which, for the case of isotropic
diffusion and porosity and no source/sink terms is

∂c

∂t
+∇ · (vc)−Dmol∇2c = 0 (3.9)

where v ≡ V /ϕ is the fluid velocity, i.e. the velocity that would be mea-
sured by a flow meter in the porous domain and Dmol = DI. We impose a
constant concentration on the whole inlet face of the domain (3.9) and zero
gradient on all the other sides. In this study, to focus on the effects of the
heterogeneity, the geostatistical parameters and the Péclet number, we have
made strong assumptions on the permeability (isotropic and diagonal), poros-
ity (constant) and neglected mesoscopic dispersion. Whilst preliminary tests
suggested these do not impact the main findings of this work, the investigation
of these processes may be tackled in future contributions.

3.3.4 Macrodispersion model

Transport mechanisms described so far characterise the transport behaviour
at the mesoscale, i.e. where geological and flow resolution allows for hetero-
geneity to be modelled explicitly. However, macroscale models aim to provide
an overall description while using an effective/upscaled advection-dispersion
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equation neglecting heterogeneity. Here, we only focus on transport along the
main velocity direction and the longitudinal dispersion processes, therefore we
will compare our results with a one-dimensional advection-dispersion equation:

∂C

∂t
+ vx

∂C

∂x
−Dmac

xx

∂2C

∂x2
= 0, (3.10)

where C is the section-averaged concentration, Dmac
xx is the longitudinal compo-

nent of the macrodispersion tensor and vx indicates the spatial average of the
longitudinal component of the velocity. Macrodispersion in Fickian transport
models can be predicted or inferred. Predictive macrodispersion estimates are
often evaluated computing the product between a typical length scale and an
average velocity (3.13) while inferred macrodispersion assessments can be per-
formed using the moments’ method (3.20) or applying the least square method
to the breakthrough curve, as illustrated in section 3.3.5.

3.3.5 Quantities of interest

The record of the section-averaged concentration in time at a control section
(e.g. outlet boundary or an arbitrary point) constitutes the breakthrough
curve (BTC). Under a continuous injection, the BTC is equivalent to the cu-
mulative density function (CDF) of the arrival times of the solute mass (F (t))
while its time derivative, which is a concentration rate, is the probability den-
sity function (PDF) of the arrival times (f(t)). These functions are typically
obtained by injecting a pulse in time or a constant concentration at the inlet
(or an injection point).

To enable the comparison between simulations considering different pa-
rameters and different duration, we consider a dimensionless time T obtained
by dividing t by the average travel time, calculated as the ratio between the
longitudinal domain dimension and the average fluid velocity. This quantity
is equivalent to the injected pore volume. The section averaged concentration
at the outlet is non-dimensionalised by dividing it by the single inlet concen-
tration and is represented by c.

In the post processing phase of the simulation results, the following quan-
tities were estimated:

Péclet number

Pex [−] =
vxλx

Dmol

; (3.11)
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effective permeability

keff
x [m2] = − vxµ

∂p
∂x

− ρg
; (3.12)

nominal macrodispersion

Dij
mac [m

2/s] = ϕλTV (3.13)

where λ and V are typical lengths and velocity vectors. Equation (3.12)
quantifies the effective permeability based on the average field velocity and the
pressure gradient. In case of a two dimensional Gaussian permeability field,
analytical solutions which allow the effective permeability to be computed only
on the permeability field basis already exists in literature [15, 81, 82, 1]. How
these analytical expression compares with the computed effective permeability
in non-Gaussian permeability field remains an open question. Equation (3.13)
allows the macrodispersion matrix to be approximated a priori starting from
geostatistical (correlation length λ) and flow (velocity V ) data, independent of
the BTC data. Concentration data coming from the BTC constitutes the basis
for the methods adopted to estimate the macrodispersion from the mesoscale
simulations, as illustrated in subsection 3.3.5.

Breakthrough curve and inverse Gaussian approximation

The mass arrival time distribution simulated with the one-dimensional advection-
dispersion equation is the inverse Gaussian distribution. This corresponds to
the analytical solution of eq. (3.10) in a semi-infinite one-dimensional domain
with a Dirac-delta initial condition. For practically relevant parameters, this
is almost indistinguishable from the solution on a finite domain with a Dirac-
delta (in time) concentration injection at the inlet. For our problem with a
continuous injection at the inlet, due to the linearity of the problem, the BTC
is well approximated by the integral in time of the Inverse Gaussian distri-
bution, computed for a fixed section in space (the outlet in our case). When
transport behaviour is Fickian, we can approximate the experimental BTCs
with the cumulative density function of the Inverse Gaussian distribution as

F (T ;µ1, ν) = c̄ = Φ

(√
ν

T

(
T

µ1

− 1

))
+ e

2ν
µ1Φ

(
−
√

ν

T

(
T

µ1

+ 1

))
(3.14)

where Φ is the standard normal cumulative distribution function, µ1 is the
first order statistical moment of the concentration rate distribution and ν is a
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shape parameter. The PDF of the solute arrival times can be obtained through
a time derivative of (3.14) and corresponds to the PDF of the solute arrival
times. This PDF is expressed as [83]

f(T ;µ1, ν) =
∂c̄

∂T
=

√
ν

2πT 3
exp

[
−ν(T − µ1)2

2µ2
1T

]
. (3.15)

Other analytical solutions are available for different boundary conditions on
finite domains [84]. For the purposes of this paper, we will only consider
the Inverse Gaussian model as a reference for Fickian transport due to its
simpler analytical formula more suitable to fitting and moment matching. The
macrodispersive solution is generally a good approximation [54] if

• domain is large;

• experiment time is long;

• domain’s properties are ergodic.

In the assumption of a Fickian model such as (3.15) arrival times display a
sharp and exponential tail as t → ∞. Non-Fickian transport processes have
a clear impact on the shape of the PDF of the arrival times: early arrival
concentrations raise the PDF peak and power low scaling emerges prior to
exponential decay [54, 62].

The moments’ method Following [85, 86], the estimation of the statistical
moments of the cumulative Inverse Gaussian is performed by approximating
its parameters µ1 and ν as

E[c̄] = µ1 (3.16)

V ar[c̄] = µ2 − µ2
1 =

µ3
1

ν
. (3.17)

To compute the first and second order moments we used

µ1 =

∫ +∞

0

fTdT =

∫ +∞

0

F ′TdT = −
∫ +∞

0

FdT + [FT ]+∞
0

= −
+∞∑
i=0

Fi∆T + F+∞T+∞, (3.18)

µ2 =

∫ +∞

0

fT 2dT =

∫ +∞

0

F ′T 2dT = −2

∫ +∞

0

FTdT +
[
FT 2

]+∞
0

= −2
+∞∑
i=0

FiTi∆T + F+∞T 2
+∞. (3.19)
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The estimated effective velocity and macrodispersion coefficient can be esti-
mated from the statistical moments as

Vx =
Lx

µ1

(3.20)

Dmac
xx =

µ2V
3

2Lx

(3.21)

where Lx is the distance between the inlet and outlet sections (in our case the
domain length). To quantify the distance between the numerical outputs and
the Inverse Gaussian approximation, a normalised error e was defined as

e =
||c̄(T )− F (T )||

||c̄(T )||
· 100. (3.22)

Least squares estimation Parameter estimation is performed by minimis-
ing the least squared error between numerical data and the models (3.14)-
(3.15). This procedure is applied to three types of data

• probability density function of the solute arrival times, obtained by nu-
merical differentiation of the BTC values at the outlet;

• cumulative density function of the concentration arrival times (i.e. the
BTC itself);

• PDF of the arrival times obtained in an interval of 0.5 dimensionless
time unit, centred around the peak of the probability density function
of the arrival times.

In the first and third case, the analytical function used as reference to per-
form the least squares fitting is the probability density function of the inverse
Gaussian distribution given by equation (3.15) while for the second case the
analytical function is equation (3.14). For all cases the analysis was performed
using Python library lmfit constraining the estimation so that µ1 and ν were
always non-negative. Values of the estimated parameters uncertainty are also
obtained from the diagonal entries of the parameters covariance matrix com-
puted by lmfit and were used to assess the reliability of the estimate. The
initial values for the least square estimation were set equals to values computed
for µ1 and ν with the moments’ method. This method was applied to the low
and high contrast scenarios described in section 3.3.10 and the corresponding
parameter values are reported in tables 3.6 and 3.7.
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3.3.6 Numerical experiments

Geostatistical, flow and transport numerical simulations were conducted over
hexahedral domains which represent a portion of the subsurface with dimen-
sions (Lx/l, Ly/l, Lz/l) = (2, 1, 1) where Li are the dimensions of the
domain and we took l = Ly = Lz as the reference length. The mesh is un-
structured and characterised by cubic cells of dimension d/l = 0.01, so that
the total number of cells is 2 · 106.

The permeability distribution within the domain corresponds to the field
generated with a PGS simulation while porosity is assumed homogeneous over
the domain. All the simulated fields considered in this study share the corre-
lation function reported in equation (3.2), the number of permeability zones,
as well as the volumetric proportion for each of the facies (see table 3.1). We
investigate the variability of the observed output and of the estimated param-
eters as a function of three inputs: geostatistical parameters (e.g., correlation
length used to generate the conductivity fields), hydraulic properties (i.e., per-
meability) and transport regime, defined in terms of Pe.

Based on the assigned permeability values, we distinguish two cases: low
and high contrast. For both cases the permeability values ki assigned to the
four geomaterials considered are evenly spaced on a logarithmic scale. How-
ever, for the low permeability contrast case the four permeability values range
between 10−10 and 10−13 m2 with a relative ratio log10(ki/ki+1) = 1 while for
the high permeability contrast case permeability values range between 10−9

and 10−15 m2 and log(ki/ki+1) = 2. Boundary conditions for the pressure
are set as zero gradient along the lateral boundaries and a one dimensional
pressure gradient of 50 Pa/m aligned with the longitudinal direction. A con-
stant concentration is imposed on the inlet face, the remaining boundaries are
considered impermeable.

Geostatistical parameters
Correlation function Exponential
Number of facies 4
Volumetric proportion 25%

Flow parameters
Pressure gradient [Pa/m] 50

Transport parameters
Fixed inlet concentration [-] 1

Table 3.1: Parameters kept constant throughout the simulations.

The simulation workflow is divided into three steps
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• geostatistics: the permeability domain is generated using the truncated
pluri-Gaussian algorithm;

• flow: equation 3.5 is solved with the prescribed boundary conditions and
provides the steady state flow field;

• transport: advection-dispersion transient model is solved with continu-
ous injection for each simulation time step.

The simulations are run within the open-source OpenFOAM®-based library
SECUReFoam [6] which includes the setRandomField utility for truncated
pluri-Gaussian simulations, simpleDarcyFoam and adaptiveScalarTransportFoam
solvers for flow and transport simulations. Most of the simulations were run
in parallel on 96 cores split between 8 HPC nodes. An adaptive time step tied
to the Courant number was implemented together with an automatic check on
the subsection-average outlet concentration value which stopped the transport
simulation when a value of 0.99 on the outlet boundary was reached. In this
setting, the overall simulation time ranges between 1 and 7 hours depending on
the permeability contrast adopted, with high contrast cases being characterised
by larger CPU costs. Transport simulation are the most expensive of the three
simulation steps, accounting for between the 70 and 95 % of the total com-
putational time for the low or high permeability contrast setting, respectively.
Steady state flow has been solved by discretising the Darcy equation combined
with mass balance, in a primal (non-mixed) form, i.e., with the pressure as the
only variable. This exactly satisfies the mass balance at the faces, as in the
finite volume framework the velocity is discretised as fluxes over the faces and
so is the divergence term in the pressure equation. In terms of computational
time, this means that the solution for the flow field is typically achieved in
a few minutes, while the geostatistical simulation and post-processing could
take up to 1h approximately.

3.3.7 Results

The results presented in this section aim to assess the impact of the parameters
related to the PGS fields on solute transport processes. To this end, first, we
compare the PDFs of velocity point values obtained in the considered fields.
Then, we move to the analysis of the transport simulations and we provide
a qualitative assessment of the variability exhibited by results obtained from
realisations of the conductivity fields generated with identical geostatistical
parameters (section 3.3.9). Finally, we analyse the impact of three physi-
cal parameters on arrival time PDFs, namely permeability contrast (section
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3.3.10), the longitudinal correlation length used to generate the fields (section
3.3.11) and Péclet number (section 3.3.12). By testing transport behaviour
in settings with increasing longitudinal correlation lengths and permeability
contrast between facies, we aim to:

• assess the sensitivity of transport behaviour and the onset of non-Fickian
transport with respect to the correlation length and permeability con-
stast of the generated permeability fields;

• quantify the discrepancy from Fickian behaviour as a function of both
correlation lengths and permeability contrast, considered separately.

Figure 3.2: Solute plume distribution in high contrast permeability domain
at late time. Domain sizes are 2x1x1 and correlation lengths along the three
directions are set to (0.8, 0.1, 0.1). On the left panel it is possible to observe
how low solute concentration values (0 blue - 0.99 red) are confined to low
permeability regions (10−12 [m2] dark grey - 10−13 [m2] black) while on the
right panel high concentration values (0.99 blue - 1.00 red) are highlighted and
their spatial distribution clearly show that saturated zones are concentrated
in highly permeable regions (10−10 [m2] dark grey - 10−11 [m2] black).

Before moving to these detailed analyses, figure 3.2 illustrates the simula-
tion of the solute plume at late times through a PGS field with high contrast
permeability and characterised by longitudinal correlation length of 0.8 m.
Figure 3.2 on the left highlights the regions where concentration values falls
beneath the 0.99 threshold while the right panel visualises the regions where
concentration values fall between 0.99 and 1. It is possible to observe that the
transport of the solute is facilitated in the high permeable regions of the do-
main (white and light grey) while low permeability ones (dark grey and black)
form a flow barrier that impede advective solute transport.
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3.3.8 Velocity PDFs

The velocity PDF has a direct influence on non-Fickian transport features [87]
as large differences between permeability values may induce bi- or multi-modal
velocity distributions [53]. The PDFs of point velocity values with increasing
longitudinal correlation lengths λx are shown in figure 3.3. The longitudinal
velocity Vx normalised with the average longitudinal velocity is reported on
the horizontal axis of figures 3.3 and 3.4 as V ∗

x . The vertical axis of figure
3.3 reports the probability density distribution as a function of the longitu-
dinal velocity p(V ∗

x ). As expected, the velocity distributions in figure 3.3 are
comparable for different correlation lengths. All distributions show four peaks
of similar height corresponding to the four facies that populate the domain.
However, as the correlation length increases, the four peaks become sharper
reflecting the formation of preferential flow paths where velocities are lumped
around the mean velocity of a given facies, each corresponding to a mode of the
distributions (figure 3.4), similar to what is shown for a bimodal permeability
distribution by [53]. This result also indicates that with a decrease of λx the
distribution of velocity values progressively converges towards a uniform dis-
tribution across the whole range. Comparing the amplitude of the peaks in the
two panels of figure 3.3 we observe that as the permeability contrast increases
the four modes of the distribution appear more distinct for high contrast than
for low contrast. Note also that the high contrast distribution spans a much
wider interval of velocity values as compared to the low contrast one.

Figure 3.3: PDFs of the longitudinal velocity component for low and high
contrast. Velocity PDFs are shown for low (left) and high (right) permeability
contrast. The correlation lengths λx span between 0.4 (darker lines) and 1.0
(lighter lines).

Figure 3.4 reports the conditional PDFs p(V ∗
x |k = ki), where each distribu-

tion considers only longitudinal velocities values computed in cells associated
with a given facies (i = 1 . . . 4). Velocities in highly permeable regions show an
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asymmetric distribution, characterised by a pronounced peak and a leftward
tail. Conversely, velocity values observed in the low permeability regions tend
to assume a symmetric and compact distribution. This distinct behaviour is
particularly evident in high contrast media. This means that high-permeability
regions may feature a broad distribution of velocity values because of the over-
all connectivity of the field. Highly connected regions give rise to fast channels
in formations featuring large values of k but poorly connected regions may also
involve high-permeability cells.

Figure 3.4: Conditional PDFs of the longitudinal velocity values in low (left)
and high (right) permeability contrast. Results are shown for correlation
lengths λx = 0.4. The curves are shown with different colours depending
on the facies permeability, i.e., lighter colours correspond to low permeability
and darker colours to high permeability media.

3.3.9 Variability of transport behaviour across multiple
realizations

Figure 3.5 displays the overlap of the PDF of the solute arrival times, obtained
taking the time derivative of the BTC (dc̄/dT ) obtained from 10 realisations
of permeability fields generated with the same geostatistical parameters. The
observed variability tends to be greater for early times while at later times the
different realizations attain similar values. This behaviour is the result of a
continuous injection in the whole inlet face, where the solute broadly explores
the facies’ heterogenities as the solute fill the whole domain. Local injections
in high/low conductivity have been considered in previous works [71] and may
display a larger variability within the sample. A comparative study on the
averaging property of Eulerian simulations in local injection setting will be
considered for future works. The outlined behaviour does not show qualita-
tively relevant differences between low (left panel) and high (right panel) per-
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meability contrast. However, we observe a slightly larger spread in computed
early solute arrivals for the high contrast as compared to the low contrast case
(see the rising limb of the curves in Figure 3.5). Because in the following we
focus on the assessment of the macroscopic response of the system and the
departure from a Fickian macrodispersive model, we deem a single realisation
to be representative of the response of the system to various combinations of
the investigated parameters.

Figure 3.5: PDFs of solute arrival times associated with 10 realisations with
the same correlation length (λx = 0.8m). Low and high permeability contrast
on the left and right side of the panel respectively.

3.3.10 Effect of permeability contrast

Figure 3.6 illustrates the effect of the permeability contrast between facies on
transport, by comparing the results of transport simulations performed on two
geological domains with identical arrangement but assuming low and high per-
meability contrast. Geostatistical, flow and transport parameters associated
with the results in figure 3.6 are shown in table 3.2.

The simulated BTCs (i.e., CDFs of the solute arrival times) are shown in
the top left panel of figure 3.6 while on top right panel of figure 3.6 the cor-
responding time derivative are shown, these latter corresponding to the PDFs
of arrival times. The dotted and dashed lines in the bottom panels of figure
3.6 are computed applying the moment’s method and the least square method
illustrated in 3.3.5 to the results of the numerical experiments. A Fickian
model based on the Inverse Gaussian distribution yields a reasonable fitting
of the numerical data for the low contrast simulation, where the permeability
contrast remains within one order of magnitude (see figure 3.6, bottom left
and the first error column in table 3.3). In this case the match between the
numerical simulation and the Inverse Gaussian distribution is satisfactory es-
pecially for the peak and the right tail of the distribution, representing late

54



arrivals. While equation 3.14 represents the analytical solution for the ADE
in an infinite domain, in our case the optimal analytical solution should con-
sider the semi-infinite boundary condition adopted for the concentration. The
analytical expression can be found in [84]. In the low contrast case the re-
sults obtained with different estimation methods are self-consistent, i.e. least
squares and moments methods yield similar outcomes. For high permeabil-
ity contrast, the Inverse Gaussian distribution cannot match the simulated
data (figure 3.6, bottom right), regardless of the method used to estimate its
parameters (Least Square or Moments method).

In summary, figure 3.6 suggests that as the permeability contrast increases,
the evolution of the solute concentration shows significant departure from the
Fickian model.

Figure 3.6: Top panels: breakthrough curves (left) and their time derivatives
(right) simulated on identical geological structure with low and high permeabil-
ity contrast between the facies. Bottom panels: the curves are overlapped with
the corresponding Inverse Gaussian approximations via least square (LSQ) or
moments’ method estimation in low (left) and high (right) permeability con-
trast case.

A detailed analysis of these results is shown in Table 3.3. Our results sug-
gest that the level of accuracy of macrodispersion models in capturing trans-
port behaviour decreases with the permeability contrast. Table 3.3 reports the
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Low contrast High contrast
Geostatistical parameters

λx [m] 0.8 0.8
ln(ki+1/ki) [−] 1 2
V ar(ln(k)) [ln m4] 6.5 26.1

Flow parameters
keff,x [m2] 2.11 · 10−11 1.49 · 10−10

Vx [m/s] 1.07 · 10−6 9.64 · 10−6

Pex[−] 21113 59633

Table 3.2: Geostatistical and flow parameters for the low and high perme-
ability contrast fields used to generate results reported in Figure 3.6. The
flow parameters were defined by equations (3.11) and (3.12). Considering that
the permeability interval in the high contrast permeability case ranges between
10−9 and 10−15, the variance of the natural logarithm of the permeability fields
where the four sediment categories are equally probable can reach values up
to 26.

values of macrodispersion parameters computed through approximation (3.13)
(considered as a reference value) and compare them with the the estimated
ones. Transport parameters estimations are closer to the reference values for
the low contrast if compared to the high contrast cases. Moreover the esti-
mates obtained through least squares in the high contrast case are generally
affected by large confidence bounds (i.e., they are indicated in italic) thus the
estimated values cannot be considered as reliable.

3.3.11 Effect of spatial correlation

Transport simulations are performed on PGS domains sharing comparable
geostatistical parameters (table 3.4) while increasing longitudinal correlation
lengths (figure 3.7). These provide interesting insights into the transition
from Fickian to anomalous transport in relation to the connectivity degree of
the sediment structure (figure 3.8). We emphasise here that the correlation
length mentioned here is the one employed to generate the continuous Gaussian
random fields which are then employed to generate the conductivity fields (see
Figure 3.1). This length can be interpreted as the characteristic length over
which facies’ transitions are observed.

Figure 3.8 displays the PDFs of the solute arrival times obtained for a
range of values assigned to λx. As the longitudinal correlation length increases,
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Figure 3.7: Truncated pluri-Gaussian permeability fields with increasing lon-
gitudinal correlation length λx. Clockwise order from top left panel: λx = 0.4,
λx = 0.6, λx = 0.8, λx = 1.0.
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Low contrast High contrast
V̄x[m/s] Dmac[m

2/s] e[%] V̄x[m/s] Dmac[m
2/s] e[%]

Reference solution 1.07 · 10−6 8.57 · 10−7 − 9.64 · 10−6 7.71 · 10−6 −
Method 1 6.94 · 10−7 4.97 · 10−7 16.20 7.03 · 10−7 1.59 · 10−6 79.5
Method 2 2.08 · 10−7 1.81 · 10−7 10.71 3 .79 · 10−5 8 .79 · 10−7 48 .1
Method 3 6.50 · 10−7 6.09 · 10−7 11.94 6.36 · 10−7 2.33 · 10−6 126.7
Method 4 2.42 · 10−7 1.13 · 10−7 11.93 8 .95 · 10−8 3 .74 · 10−5 49 .2

Table 3.3: Simulated (Reference solution) and estimated (Methods 1 − 4)
values for average Darcy velocity V̄x, macrodispersion Dmac and relative break-
through error e values. The reference solution values represent the average
longitudinal velocity and the nominal macrodispersion as from equation (3.13).
Method 1 is the moments method, Method 2, 3 and 4 correspond to least
squares method applied to the simulated PDF, CDF and the PDF peak data.
As a result of the unsuitability of the Inverse Gaussian model to the describe
the PDF in high permeability contrast scenarios, some values (italic) are char-
acterised by extremely large standard deviations (σ > 106).

the magnitude of the peak value increases and the peak shifts towards earlier
arrival times. This can be explained observing that, with increasing correlation
in the longitudinal direction, the connectivity between highly permeable facies
favours the formation of fast channels where advection prevails over diffusion
thus leading to early arrivals. This effect is more evident for the high contrast
scenario (right side of figure 3.8) and is reflected by the solute arrivals PDFs
trends: as the domain connectivity increases, the initial concentration peak
rises while the central segment of the curve highlights a power law response.

Figure 3.8: Arrival time PDFs computed as dc̄/dT for low (left panel) and
high (right panel) permeability contrast for as a function of the longitudinal
correlation length λx. From the darkest to the lightest curve the longitudinal
correlation length λx = 1 increases with evenly spaced interval from 0.4 to 1.

58



Tables 3.4 and 3.5 report relevant geostatistical and flow simulation param-
eters which are required to interpret the results of the average Darcy velocity
and macrodispersion estimation process provided in tables 3.6 and 3.7. As a
result of the emergence of preferential flow-paths, the effective permeability
shows a positive trend for increasing correlation lengths.

λx = 0.4 λx = 0.6 λx = 0.8 λx = 1.0
Geostatistical parameters

log(ki/ki+1) 1 1 1 1
V ar(log(k)) [log m4] 6.7 6.6 6.6 6.6

Flow parameters
keff,x [m2] 1.75 · 10−11 1.99 · 10−11 2.14 · 10−11 2.27 · 10−11

Pex[−] 3508 5972 8571 11355

Table 3.4: Geostatistical and flow parameters for low permeability contrast
simulations. The flow parameters are defined by equations (3.11) and (3.12).

λx = 0.4 λx = 0.6 λx = 0.8 λx = 1.0
Geostatistical parameters

log(ki/ki+1) 2 2 2 2
V ar(log(k)) [log m4] 26.1 26.2 25.9 26.2

Flow parameters
keff,x [m2] 1.50 · 10−10 1.76 · 10−10 1.93 · 10−10 2.05 · 10−10

Pex[−] 29953 52919 77127 102719

Table 3.5: Geostatistical and flow parameters’ for high permeability contrast
simulations. The flow parameters were defined by equations (3.11) and (3.12)
and are computed in the longitudinal direction of the flow. Longitudinal cor-
relation length increases from 0.4 to 1.0.

Comparing the relative error computed for low and high permeability con-
trast cases, it is clear that the reliability of the Fickian model at the macroscale
decreases with the permeability contrast (see figure 3.9). We also observe a
mild increasing trend of the relative error with increasing values of the corre-
lation length. This trend is justified by the role of the preferential flow-paths
which facilitate fast advective flow that make overall solute behaviour anoma-
lous.
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Summarising the results of our numerical experiments, we observe that
both correlation length and permeability contrast are triggering factors for
non-Fickian transport behaviour. Increasing the correlation length by a factor
2 induces a 15-20 % increase in the observed error. Thus, the correlation length
appears to have a milder effect if compared with the permeability contrast.

Figure 3.9: Longitudinal correlation length vs relative error computed as the
departure from Fickian model (eq. 3.22) with parameters estimated with the
moments method (Method 1).

3.3.12 Effect of Péclet

We analyse here the effect of the Péclet number on our results. This means
that not only the effect of different permeability fields (as in section 3.3.10)
or correlation lengths (section 3.3.11) were tested, but also the effect of the
compound-specific diffusion coefficient. Our tests were conducted by decreas-
ing the molecular diffusion coefficient of one magnitude order at each simula-
tion, from 10−9 m2/s to 10−11 m2/s. This corresponds to an increase of the
Péclet (Pe) of one magnitude order at each simulation. The average Darcy
velocity and the correlation length λx are kept constant. The variations in
Pe have a marked influence on the right tail of the arrival times distributions,
as shown in figure 3.10. This result is in agreement with [71] and can be ex-
plained observing that diffusion effects become apparent in late arrivals, while
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early arrivals are conversely driven by advection-dominated processes. Left
and right panels in figure 3.10 show the combined effect of increasing Péclet
(darker to lighter curves) in a low (left) and high (right) permeability contrast
domain. We observe that both trends display a linear trend in figure 3.10,
indicating a proportionality e ∼ a log(Pe), where the constant a depends on
the assumed permeability contrast. Thus, the analysis yields comparable con-
clusions with the ones obtained in section 3.3.11: while the interplay between
increasing Péclet numbers and the departure from Fickian behaviour is clear,
the increase of permeability contrast still appears to play a predominant role.

Figure 3.10: Arrival times PDFs in low (left) and high (right) permeability
contrast domains sharing the same geological structure (λx = 0.8m) while
characterised by a different Péclet. In case of low permeability contrast, the
Péclet number ranges between 8 · 102 and 8 · 104 while for high permeability
contrast the Péclet ranges between 6 · 103 and 6 · 105. Significant Péclet vari-
ation for these simulations was obtained by changing the molecular diffusion
coefficient.

Figure 3.11 shows that the increase in permeability contrast by one order
of magnitude exhibits a stronger control on transport behaviour than the in-
crease in Péclet number by one magnitude order as for comparable Pe, the
error associated with low permeability contrast simulations (light curve) is
always lower than the error associated with the high permeability contrast
(dark curve). It is interesting to note that the permeability contrast appears
to control the rate at which the Fickian model error decreases for decreasing
Pe. The error is here represented by taking the approximation resuting from
the moments’ method (M.1 in tables 3.6 and 3.7).
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Figure 3.11: Péclet number vs relative error computed as in eq. (3.22). The in-
terplay between increasing Péclet numbers, permeability contrast and relative
error is qualitatively similar to the one exhibited by the increasing longitudinal
correlation length in fig. 3.8.
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3.4 Conclusions

In this work we have explored the impact of permeability contrast and, sim-
ilarly to [70, 71, 53], correlation length and Péclet number on the emergence
of non-Fickian transport in random discontinuous permeability fields.

The following conclusions can be drawn from the interpretation of our
results:

• our results combine error and uncertainty quantification metrics to assess
departure from a Fickian transport regime in PGS fields. Emergence of
non Fickian transport is quantified upon relying on relative error with
respect to the prediction of a macrodispersive solution, where this latter
can be obtained with diverse estimation strategies. Large relative errors
and large confidence intervals for estimated parameters are indicative
of the unsuitability of the Inverse Gaussian distribution in interpreting
the outcomes of high-resolution numerical simulations, thus indicating
non-Fickian response;

• a Fickian macrodispersive model can match with reasonable accuracy
solute arrival times in ergodic domains featuring conductivity values dis-
tributed over up to four orders of magnitudes. In such conditions the
Fickian model underestimates early arrival times, but can capture with
good accuracy the peak and late arrivals. Overall observed errors are in
the order of 10-20 %. Lowest errors are obtained when the characteristic
size associated with the medium heterogeneity is much smaller than the
distance travelled by the solute;

• for ergodic domains, a hierarchy of non-Fickian triggering factors can be
established: permeability contrast plays a primary role in determining
the fate of the solute, while correlation length and Péclet number can be
both considered secondary non-Fickian transport triggering factors;

• fluid velocity PDFs support the prevalence of permeability contrast over
correlation length in triggering non-Fickian transport. The velocity dis-
tribution is strongly modified by permeability contrast, displaying a
much larger spread in high contrast media if compared with low contrast
ones. Conversely, increasing the correlation length only slightly affects
the shape of the flow velocity PDFs. Interesting insights are also gained
upon considering velocity distributions separately by facies. In both high
and low contrast media flow velocity values in low permeability regions
are homogeneously distributed around the corresponding peak values.
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Conversely, flow velocities in permeable facies display increasing skew-
ness with increasing permeability contrast indicating the occurrence of
low velocity regions in highly permeable media. This element could be
further exploited in the context of macroscopic non-Fickian parameteri-
sation, which will be considered in future works;

• the BTC variability observed between multiple realisations of the same
geological setting is more evident at early times while it tends to disap-
pear at late times;

• the relative importance of diffusion and advective processes, captured by
Pe, plays an important role in the solute transport response. Yet, the
influence of Pe on the accuracy of a macrodispersive model is markedly
influenced by the assumed permeability contrast. Our results suggest a
logarithmic trend e ∼ a log(Pe) where the constant a is proportional to
the assumed permeability contrast;

• while for Fickian or moderately non-Fickian transport the different pa-
rameter estimation methods (method of moments or least-squares-based
methods) are equivalent, when a macrodispersion approximation is sought
for significantly non-Fickian curves, the choice of the fitting method is
crucial as it can lead to very different effective parameters and fitted
curves. Although this is expected, due to the lack of validity of the un-
derlying model, it has important consequences for practitioners that are
nevertheless forced to use and fit macrodispersion effective parameters.
Here, the method of moments is built to preserve accurately the statis-
tics but it could predict poorly the early arrival peak as well as the long
tails.

Future works will include the extension to more realistic injection scenar-
ios, variable density and hydrodynamic dispersion models, investigating the
effect of different lithotype rules, as well as interpreting the non-Fickian trans-
port results with more complex anomalous transport models including spatial
Markov processes [88] and Generalised Multi-Rate Transfer equations [89].
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Chapter 4

Geostatistical and flow
modelling case study: the
Herten site

The study in the previous chapter is based on idealised fully stationary ran-
dom fields. With the purpose of extending some of the conclusions to real
applications, in this chapter we consider a real field site, namely the Hertn
site [90, 91]. The switch from idealised fully stationary random fields to a real
field site required a software that could handle conditional geostatistical sim-
ulations. For this reason, our geostatistical utility [6] adopted in the previous
chapter is replaced by a more advanced commercial software that performs
PGS simulations with conditioning data.

The objectives of this chapter are twofold: to recount the steps followed
to reconstruct a 3D geological domain conditional on boreholes data (section
4.2) using the PGS plug-in of a commercial software (Petrel), and to perform
flow simulations on a real geological domain 4.3.

The first objective aims to provide a universal procedure for applying the
PGS algorithm to a realistic case study. This procedure was elaborated and
tested during a two-month internship at Ephesia, a Swiss-French company
that developed a PGS plug-in for a well-known commercial geological mod-
elling software produced by Schlumberger (Petrel). The idea behind it is to
virtually reproduce a geological domain applying a PGS algorithm to hard data
that mimic the ones usually available on field (boreholes) and to compare them
with a more complete reconstruction obtained with a different algorithm [92]
applied to cross sectional data [90], seldom available for large field sites. The
second objective is to compute the flow field on this domain and show the
effects of the geostatistical approximation on the flow. A more detailed anal-
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ysis of the transport is instead the focus of the next chapter. We test these
PGS algorithms on a geological domain representing a high resolution aquifer
consisting of an outcrop of a late Pleistocene unconsolidated fluvio-glacial and
fluvial-braided river sediments in the Rhine basin [90]. The 3-D domain was
reconstructed from a set of detailed 2D cross sectional data as illustrated in
[91].

Having access to geological data surveyed with high resolution, it is possible
to benchmark the PGS geostatistical algorithm and its effect on flow and
transport against it. [ADD The second part of this chapter looks at the flow
field in the Herten reconstructed using these geostatical algorithms, while a
more detailed study of the transport is the focus of the next chapter]

4.1 Site description

An analysis of several open geological data sets (Norne [93], Sleipner [94],
Herten and Descalvado [95], Volve [96], etc..), indicated a 1120 m3 depositional
formation in the upper Rhine valley of southern Germany near the town of
Herten, as the most suitable domain for our study purposes. The 16x10x7
metres quarry was excavated and surveyed in 1999 and based on our knowl-
edge, Herten and Descalvado are the only sites where geological properties of
2D cross sections were directly measured. This characteristic, together with
the cubical spatial shape and the number of geological properties surveyed at
high spatial resolution were our drivers in the choice for test case domain. The
data analog, consisting of hydrogeological properties measured at six parallel
2D sections, were released in 2006 along with a detailed sedimentological inter-
pretation [90] and its three-dimensional reconstruction [91, 95, 27]. According
to the hydro-facies classification suggested by [90], the sediments can be di-
vided into ten categories whose spatial locations are indicated in figure 4.1.
The fluvio-glacial river sediments show a high degree of heterogeneity with
permeability values that span approximately six orders of magnitude [90].

The three-dimensional permeability field of figure 4.1 was obtained by [92]
applying the sequential 2-D simulation with conditioning data [92] to the six
longitudinal cross-sections excavated from the Herten field site 4.2. In more
details, the three-dimensional reconstruction of the geological domain that
will be taken as reference for performing flow and transport simulations in the
next sections, is the combined result of direct observations and geostatistical
simulation [92]: after multiple cross sections were mapped (figure 4.3) and
digitized during the excavation process, the 2D analogs were used as training
images to perform multiple point statistics (MPS) simulations between cross
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Figure 4.1: The ten different colours represent the spatial distribution of the
ten facies which characterise Herten. It shows the results of the application
of sequential 2-D simulation with conditioning data algorithm [92] to the six
cross sections of hard data collected at Herten by the authors of [95]. The
algorithm was applied 100 times to the same 2D cross sections and the results
published at [27]. This image was obtained by the authors selecting at each
cell the sediment category that appears with the highest frequency over the
ensemble of 100 realizations.
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Figure 4.2: The digital reconstruction of the original six longitudinal cross sec-
tions surveyed at Herten field site [90] map the sediment categories in space.
Except for the colour scheme which changes from a visualisation software to
another (e.g. Paraview and Petrel), the external sections show a perfect match-
ing with the the boundaries of the 3D reconstruction of Herten in figure 4.1.
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sections. Usually, the number of dimensions between input and output data in

Figure 4.3: One of the six high resolution photo of Herten cross sections
surveyed by [95]. Different colours indicate the presence of sediments with
different geological properties for example permeability of porosity. The re-
construction of the permeability field in figure 4.1 show a good geometrical
affinity with the shape of in this photo.

classical MPS algorithms has to be consistent. However, thanks to a custom
method called sequential 2D simulation with conditioning data [92], this hy-
pothesis was relaxed and an ensemble of 100 three-dimensional realisations of
the simulated domain are provided at [27] alongside the 2D surveyed analogs.
Out of this ensemble, in this study a new map is adopted by selecting at each
cell the most probable sediment category that is, the one which occurs with
the highest frequency over the ensemble of 100 realizations. The conditional
PGS simulation illustrated in section 4.2 was performed on a subset of the
original 2D cross sectional data. The idea behind it, consists of conditioning a
simulation on a hard data set arranged in a format more commonly available
at the field scale than 2D cross sectional data. In this sense, the hard data
adopted in section 4.2 and plotted in figure 4.4, represent boreholes or core
samples data.
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Figure 4.4: 3D visualisation of the 2D cross sections surveyed at Herten field
site and described in [90]. The cylindrical shapes mimic the geometry of
boreholes which is the typical geometry of the data available at field scale.
These vertical data are used as boreholes to perform conditional simulations
in section 4.2. The slightly different patterns from figure 4.2 are the results
of lumping ten sediment categories into four classes, each characterised by
sediments with similar permeability.
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4.2 Conditioned PGS application

The procedure to perform PGS simulations starting from boreholes data offers
an original and universal framework to develop PGS realisations conditional
on real data. In this context we adopt the geostatistical terminology where the
meaning of simulation is to reconstruct the permeability field and not solving
partial differential equations. The main goal of the pre-processing stage is to
determine the truncation or lithotype rule. This can be achieved in several
ways, i.e. analogy with sites having the same geological setting, direct ob-
servation of outcrops or analysis of cores and well-logs. In this work, since
a larger amount of information is available, we decided to draw it based on
transition probability and bivariate transition probability matrices outcome.
These matrices, described more in details in the next paragraph, are respec-
tively indicators of conditional and joint probability of random variables. In
this case, the random variable is represented by the sediment category values
that can be taken by each cell in the spatial domain. The hard data for the
conditional modelling stage were extracted from the reference data set (figure
4.1) as if they were the outcome of a survey campaign where several equally
spaced boreholes were drilled (some of them are visible in figure 4.4).

The procedure can be subdivided into three main stages, each formed of
minor successive steps:

• pre-processing (Matlab)

1. best proportion trend map: from the 100 equally probable Herten
reconstruction available at [27], a new three-dimensional map is
adopted by selecting at each cell the sediment category that appears
with the highest frequency and, based on the similarity in perme-
ability values, the original ten sediment categories individuated by
[27] are lumped into four permeability homogeneous categories;

2. transition probability matrix and bivariate transition probability
matrix: the probability of finding sediment categories A and B at
the two sides of a cell border and the probability of a cell being
associated with sediment B given the neighbouring cell of sediment
A, respectively;

3. truncation or lithotype rule that represents the contact pattern of
the sediments, as illustrated in 2.1.4;

• simulation (Petrel and PGS plug in)
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4. hard data (core samples, boreholes, wells) preparation to be im-
ported into Petrel;

5. proportion trend map for each sediment category: Kriging interpo-
lation of hard data provides the spatial distribution of each sediment
category;

6. dip angle map: the observed sediments’ inclination is one of the
simulation’s inputs that allows to better reproduce the target geo-
logical structure;

7. conditional simulation: hard data, Kriging and dip angle are used
to reconstruct the geological data set with an elevate realism degree;

• post-processing (OpenFOAM®)

8. polyMesh grid generation: a grid with the same sizes and the same
resolution of the available permeability field is created;

9. permeability field import: manipulation of the permeability field to
make them readable from OpenFOAM®;

10. flow and transport simulation: Darcy and advection-dispersion equa-
tions are solved by means of OpenFOAM®libraries over the condi-
tional permeability field created in the previous steps. The results
are illustrated in section 5.

The pre-processing for this study starts from the sequential 2-D simulations
performed by [92] with six surveyed cross sections as conditioning data. A hun-
dred equally probable realizations of the excavated geological field site were
published at [27] by the same authors who surveyed the six cross sections. Our
best proportion trend map (figure 4.1) maps the cells’ values according to the
sediment category mode that is, the highest occurrence frequency throughout
the whole ensemble of simulations. Given the similarity in permeability values,
the original ten sediment categories individuated by [27] have been lumped into
four permeability homogeneous categories (1). This also facilitates the eval-
uation of transition probability and bivariate transition probability matrices
for the sketching of the lithotype rule. The permeability values of these four
sediments classes range from 1.84 · 10−9 m2 to 3.30 · 10−15 m2 and they are
obtained as weighted averages of the permeability values of the facies and their
volumetric fractions. Taking the best proportion trend map as reference, its
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sediment transition probability matrix 4.1
9.65 · 10−1 1.52 · 10−3 3.10 · 10−2 2.82 · 10−3

1.04 · 10−1 4.31 · 10−1 3.29 · 10−1 1.36 · 10−1

4.92 · 10−2 7.60 · 10−3 9.37 · 10−1 6.44 · 10−3

1.92 · 10−1 1.35 · 10−1 2.77 · 10−1 3.97 · 10−1

 (4.1)

and the bivariate transition probability matrix 4.2 (2)
5.82 · 10−1 9.14 · 10−4 1.87 · 10−2 1.70 · 10−3

9.14 · 10−4 3.77 · 10−3 2.88 · 10−3 1.19 · 10−3

1.87 · 10−2 2.88 · 10−3 3.55 · 10−1 2.45 · 10−3

1.70 · 10−3 1.19 · 10−3 2.45 · 10−3 3.49 · 10−3

 (4.2)

are computed [29, 97]. As their names suggest, each element of the transition
and the bivariate transition probability matrix describes a transition proba-
bility from a facies to another. Transition and bivariate transition probability
matrices are squared matrix with the number of rows (or columns) equal to
the number of one element possible transitions, i.e. the number of facies. The
fj elements on the i-th row of the transition probability matrix describe the
conditional probability of finding the element j at the position x+1 given the
element i at the location x. In other words, this can be the probability of a
cell being associated with sediment B given the neighbouring cell of sediment
A, that is P (B | A). For the definition of probability, the sum along the rows
of the transition probability matrix is one. It is also interesting to notice that
the highest values for both matrices are on the diagonals which is in line with
what one would expect as it is always likelier to find the same sediment while
moving from one cell to the next. In this context, bivariate transition proba-
bility is defined as the probability of finding sediment categories A and B at
the two sides of a cell that is, P (A ∪ B). The bij values within the bivari-
ate transition matrix differ from the elements inside the transition probability
matrices as bij describes the joint probability of finding the facies i and j at
two neighbouring cells. For this reason the bivariate transition probability
matrix is symmetrical. As it is possible to observe, none of these probabili-
ties is zero which means that all the facies are in contact with all the facies.
This essential information is conveyed by these matrices and allows to define
the contact pattern between sediments accordingly, i.e. by drawing a trun-
cation rule where the perimeter of each category is in contact with all other
categories. To simulate a contact pattern where all the facies are in contact,
the truncation rule in figure 4.5 was sketched and used as input for the PGS
plug-in in Petrel. Whether the contact pattern could have been honoured with
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a different combination of thresholds, an arbitrary choice needs to be taken
as the impact of the thresholds on transport goes beyond the scope of the
present work. As explained in section 2.1.3, the inclusion (4) and later Krig-

Figure 4.5: Herten lithotype rule characterised by the mutual contact between
four homogeneous facies. The contact pattern is inferred by the transition and
the bivariate transition matrices.

ing interpolation (5) of hard data (boreholes) extracted from the 2D sections
would lead to smooth transition pattern between facies if no truncation rule
was established. To increase the realism of the final geostatistical domain by
matching the local inclination of the facies, a dip angle inclination map was
imposed (6). Variogram or correlation function parameters required for the
conditional simulation to be performed, were estimated on a trial-and-error
basis. Additional requirements by Petrel to perform the PGS algorithm with
conditioning data are the continuous distribution of each of the sediment over
the domain, namely the proportion trend maps. These sediment maps can
be achieved through the Kriging interpolation of the sediment categories that
characterise the hard data found in the boreholes (7). The transport simu-
lations illustrated in chapter 5 are performed in OpenFOAM on a regular grid
(8) with the same dimensions as the one simulated in Petrel. This grid was
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populated with permeability values by matching sediment categories and cor-
responding geological properties (9), as measured by [90]. Flow and transport
simulations were then possible to be run (10) on the simulated permeability
field (figure 4.6).

The increasing complexity of the simulation steps (1-7) reflects an increas-
ing degree of realism. Notwithstanding the objectiveness of the geostatistical
tools available, their application to a real data set like Herten requires some
subjective choices that, although legitimate, need to be clearly stated. As
a result of the trial and error process (6), these choices are reflected by the
following parameters:

• facies correlation lengths in x, y and z direction are respectively set to
10, 2 and 0.1 meters. Although correlation lengths are essential param-
eters for variograms or correlation functions to be computed, a precise
evaluation from field data is challenging while a good estimation could
be reached by a visual analysis;

• the nugget value describes the short scale randomness implicit to spatial
variables and it is defined as the intercept of the variogram at a distance
that goes to zero. In theses cases it set to 0.0001 which means that short
scale permeability randomness is quite small;

• Kriging search radius is the number of cells considered for the application
of the Kriging algorithm and is set to 10.

These parameters are shared by the simulations in figure 4.6, which represent
how the final reconstructions of the original data set with three different var-
iograms look like (figure 4.1). As a posterior assessment of the geostatistical
similarity, the transition and bivariate transition probability matrices could
have been computed for the reconstructed permeability fields and compared
with 4.1 and 4.2.
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Figure 4.6: Herten PGS with (a) Gaussian (b) exponential and (c) spherical
variogram. By means of the geostatistical techniques, which include the con-
ditioning on boreholes, these simulations try to match the sediment structure
of figure 4.1.
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4.3 Spatial velocity analysis

In this section, a detailed analysis of the velocity field for a steady state flow
simulation through the permeability field of Herten reconstructed by [91] is
provided. To enable the comparison with the results from the transport anal-
ysis discussed in chapter 5 and obtained for the benchmark permeability field,
the velocity analysis is performed on the benchmark permeability field instead
of the reconstructed ones. It is worth to be noticed that while the reconstructed
permeability field is characterised by just 4 facies, the benchmark permeability
field shows 10 different permeability values. The PDF of the velocity field con-
tains important information on the heterogeneity of velocities that are a key
factor to non-Fickian transport as large differences between probability values
indicate multi-modal velocity distribution which in turn might indicate the
presence of preferential flow paths. The velocity field represents the solution
of the Darcy’s flow equation by means of the OpenFOAM®libraries available at
[6]. The 16x10x7 meters dimensions of the domain are discretized using a 5
cm spatial resolution which makes the number of total cells equal to 8960000
equal. Boundary conditions for the pressure are zero gradient along the lateral
sides while a constant gradient of 50 Pa/m along the longitudinal direction.
To solve the advection-dispersion equation in the next section, the concen-
tration gradient is zero everywhere except for the inlet boundary where the
concentration is kept constant to one. While the number of cells is almost four
times higher than the one used to discretise the domain in [26], pressure and
concentration boundary conditions are maintained the same in both studies.
To solve the Darcy’s flow equation over the permeability domain, the same
OpenFOAM®solver simpleDarcyFoam is adopted in chapter 3 and 4, while to
solve the advection-dispersion equation two different versions of the modified
scalarTransportFoam are adopted. In terms of computational time, although
the larger number of cells makes the flow and transport simulations through
Herten case study more expensive, the increase in computational time does not
exactly scale with the number of cells and this is probably due to the improve-
ments implemented in macroScalarTransport. Pressure and velocity fields for
Herten permeability domain are visualised in figure 4.7. On the left panel, the
pressure drop between inlet and outlet shows a smooth pattern compared to
the velocity field values on the right. The sharp transitions in the velocity fields
are in agreement with what expected from a high contrast permeability fields
such as the one presented by Herten field site. The values of the longitudinal
Darcy velocity normalised with the mean longitudinal velocity are reported on
the horizontal axis of figures 4.8. The vertical axis on the left panel of figure
4.8 reports the probability density distribution as a function of the normalised
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Figure 4.7: Clip of Herten pressure and velocity fields. Smooth transition
pattern between permeability values on the left panel indicates a gradual drop
in pressure while the discontinuities highlighted in the velocity field on the
right panel are characteristics of high contrast permeability fields.

longitudinal Darcy velocity while on the vertical axis of the right panel of
figure 4.8, the joint probability of p(V ∗

x , k = ki) is reported. In other words,
each of the curves on the right panel of figure 4.8 represents only longitudinal
velocity values computed for cells associated with a given sediment category
(i = 1..10). For both panels all the axes are plotted in logarithmic scale. Con-

Figure 4.8: Probability density function (left) and joint probability density
function (right) of normalised longitudinal Darcy velocity V ∗

x field computed
on the benchmark Herten domain. The greyscale adopted for the curves in
the right panel associates bright colours to low permeabilities facies, e.g. fine
sand, and dark colours to high permeability facies, e.g. gravel.

trary to what shown in figure 3.3, the velocity distribution is quite scatter and
do not peak around the permeability values of each sediment category. This
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is likely due to the higher number of sediment categories (10) in the reference
field 4.1 than in the field adopted in section 3.3.8 where four equally spaced
permeability facies with the same volume fraction populate the domain. The
joint velocity distribution in figure 4.8 illustrates the distribution of velocities
across the 10 sediment categories. The brighter lines corresponding to lower
permeability values are quite symmetric and have their peaks around lower
velocity values meaning that, as expected, it is likely to find low velocities in
low permeability regions. Conversely, the fact that higher permeability values
(darker lines) show an asymmetric velocity distribution with leftward tail, en-
tails a larger distribution of velocities in highly permeable sediments meaning
that, high permeable regions are characterised by low and high velocities while
low permeable regions mainly present low velocities. This is in agreement to
what was found in figure 3.4 and the conclusion that highly connected regions
give rise to fast channels in formations featuring large values of k but poorly
connected regions may also involve high-permeability cells is not only limited
to synthetic domains but can be extended to real domains as well.

The parity diagram in figure 4.9 shows on the horizontal axis the normalised
Darcy velocity lumped into 50 categories while on the vertical axis the longitu-
dinal permeability of the sediments grouped into 50 categories. The diameter

Figure 4.9: Parity diagram of longitudinal velocity and permeability. Perme-
abilities Kx and normalised velocities V ∗

x were divided into categories and the
diameters of the circles are proportional to the number of cells which fall into
the permeability-velocity category identified by the values on the axes.
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of the circles is proportional to the joint probability of each category of the re-
spective velocity-permeability coordinates. The alignment along the diagonal
is expected but it is interesting to notice the different spreading of the various
facies which represent a different velocity variance in each facies.

4.3.1 Non-conditional and benchmark flow field spatial
velocity analysis

In this section we anticipate the velocity fields that, together with 4.7, will
be used to study the effect of the permeability field realism degree in sec-
tion 5.2. At first sight the striking difference between the three velocity dis-
tributions in figures 4.8 and 4.8 clearly emerges. These relevant differences

Figure 4.10: Spatial pdf of the velocity field obtained in the the unconditional
(on the left) and conditional (on the right) reconstruction of Herten perme-
ability field.

are indicators of substantial differences between the permeability fields re-
constructed with different techniques. The permeability field on the left of
figure 4.10 procedes from an unconditional simulation of Herten performed
with our setRandomField OpenFOAM®library while the permeability field at
the base of the right panel in figure 4.10 is obtained as described in section
4.2. This is quite noticeable since some important geostatistical parameters
such as the permeability values of the sediments, their volumetric fractions
and the correlation lengths between the unconditional permeability field and
the conditional permeability field at the base of the velocity distributions in
figures 4.10 are kept constant. Overall, the same qualitative differences can be
observed between any of the two panels in figure 4.10 and the velocity distri-
bution illustrated in figure 4.8 obtained from the benchmark permeability.
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Chapter 5

Transport modelling study case:
the Herten site

In [26] we established a possible hierarchy of non-Fickian triggering factors
which can serve as a guideline for setting the limits of macro-scale transport
models applicability. Although certainly relevant, the three parameters inves-
tigated in [26], namely permeability contrast, correlation length and Péclet
number, are just few of the variables which play a relevant role in mono-phase
non-reactive transport simulations through heterogeneous porous media. For
example, it is essential to assess the relevance of the injection source shape on
transport through permeability fields characterised by high contrast sediment
as local or well shaped sources limit the range of sediments experienced by the
solute. As evidenced in section 4, another relevant factor is the realism de-
gree of the reconstructed geological domain. This is crucial for identifying the
preferential flow paths and the velocity distributions that characterise a sub-
surface domain. As part of the novelties of this chapter, the simulation of more
complex meso-scale transport dynamics including the effect of dispersion, is
made possible by the developments to the OpenFOAM®library [6] which, among
other features, introduces models for longitudinal and transversal mechanical
dispersion. The main new feature introduced from adaptiveScalarTransport-
Foam used in chapter 3, to macroScalarTransport used in this chapter, is the
anisotropic mechanical dispersion. At the present stage, our OpenFOAM®library
[6] allows to perform transport simulations which include all the parameters
that describe the classical meso-scale transport model described in section
2.2.4. Multi-phase, compressibility, variable density and other features are not
used here as the focus is to study solute transport.

The Eulerian approach to hydrogeology constitutes a new paradigm for
flow and transport studies where the impact of several geological and hydraulic
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parameters on transport is assessed by using OpenFOAM®to solve partial dif-
ferential equations. In this chapter, the effect of the following parameters on
transport through the geostatistical reconstruction of Herten is assessed:

• injection area;

• geological realism;

• isotropic mechanical dispersion;

• anisotropic mechanical dispersion;

• Péclet number through changes to the molecular diffusion.

The first set of simulations is designed to assess the impact of the solute
injection geometry on the overall transport. As highlighted by [53], the geom-
etry of the injection source might be a key parameter in triggering anomalous
transport. This is particularly relevant when permeability contrast is high,
as relatively small fraction of low or high permeability sediment create flow
barriers or highly connected regions which in turn can hinder the transport
effects or act as preferential flow paths. Qualitative considerations are drawn
by looking at the relative distance between breakthrough curves. Depend-
ing on the geometry of the injection source, breakthrough curves might show
single or multi-modal distributions. Although local injections might better
address the effect of anisotropic mechanical dispersion, due to two main rea-
sons the injection source will be the whole inlet boundary from here onward:
firstly the consistency with our previous study [11] where molecular diffusion
is always isotropic and secondly wide injection areas allow a greater number
of permeabilities to be explored by the solute while travelling through highly
heterogeneous porous media.

An increasing degree of realism characterises the permeability fields of the
second set of transport simulations. The purpose of these simulations is to
assess the relevance of the geological reconstruction realism degree on trans-
port mechanism. Of the three permeability fields, the first one aims at repro-
ducing the Herten field site by means of the PGS algorithm implemented in
OpenFOAM®and available at [6], the second one is conditionally generated on
a subset of boreholes extracted from the Herten analog (figure 4.4) while the
third one represents the best proportion trend map obtained as the mode of the
hundred realisations available at [27]. The latter being graphically represented
by the sediment distribution in figure 4.1, it is also taken as the reference per-
meability distribution for the simulations performed in all the other sections
of the present chapter.
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The third set of simulations is intended to describe the impact that isotropic
mechanical dispersion has on solute transport. While in chapter 3 molecular
diffusion was the only mechanism implemented in the transport simulation
solver, the last version of the code [6] allows for the mechanical dispersion
model 2.2.4 to be added to the simulation process. Thanks to this improve-
ment, a more accurate description of the complex meso-scale transport mech-
anisms is provided which entails a more accurate description of macro-scale
solute transport.

The fourth set of simulations evaluates the influence of anisotropic me-
chanical dispersion on transport. Although certainly relevant, the relation
between longitudinal and transversal dispersion is not clear. As evidenced by
[98], several empirical studies that attempted to approximate the longitudinal
to transversal mechanical dispersion relation provided significantly different
results. For this reason, a simple relation where the ratio between αL and
αT is 10 : 1 was deemed representative of anisotropic dispersion mechanism
through a wide range of porous media.

The fifth set of simulations aims to test the effect of transport at different
Péclet numbers on the breakthrough curve. This set of numerical experiments
is substantially different from results presented in section 3.3.12 where sim-
ulations with a similar setup are performed without including the effect of
mechanical dispersion. Although a positive relation between Péclet number
and channeling effect was expected, at high Péclet the effect of mechanical dis-
persion smoothed out the effects of molecular diffusion producing an overlap
of the breakthrough curves.

The effects of these five parameters on transport are assessed by varying
one parameter value at time over three or four values while keeping the other
constants. As a result, seventeen scenarios are proposed with the parame-
ters’ values specified in table 5.1. For all these five cases, the same flow and
transport initial and boundary conditions adopted in section 3.3.12 and de-
tailed in table 3.1 were selected. It is worth noting that, except for section
5.2, geostatistical parameters like correlation lengths and permeability values
cannot be arbitrarily set as the permeability field provided by [95] is adopted
as reference.
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5.1 Effect of injection area

In this section we analyse the results of injection areas characterised by three
different types of geometry on transport (figure 5.1). For the local injection

Figure 5.1: The three injection shapes tested in this section: local (left), well
or borehole (center) and wall (right).

the solute is released through a cube with one meter side placed at the center
of the injection face and one meter away from the high pressure boundary.
The well injection is characterised by a parallelepiped of the same height of the
Herten domain and a surface area of 0.1x0.1 m. In the case of wall injection the
solute is released through the whole inlet boundary. While real tracer tests are
typically characterised by localised or vertically shaped injection geometries,
numerically simulated wall injection sources allow the solute to experience a
wider range of sediments. It is interesting to observe the peaks of the temporal
derivative of the BTCs in the panel on the right side of figure 5.3: the local
injection (left panel in figure 5.2) shows a unimodal distribution which becomes
tri-modal in the case of well injection (right panel in figure 5.2) and returns
bi-modal for the wall-injection. As highlighted in [53], the geometry of the
injection source plays a central role in determining the onset of anomalous
transport as the release of solute through wide injection volumes allows for
the concentration to be evenly distributed across the whole range of sediments
while small injection volumes tend to limit the sediments that can be explored
by the solute.
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Figure 5.2: Concentration plume at the last time step of the simulation. On
the left panel the the local injection is visualised while on the right panel the
borehole injection scenario is represented.

Figure 5.3: BTCs characterised by different shapes of the injection volume.
The BTC obtained in the local injection setup is characterised by unimodal
distribution while vertical and wall injections are characterised by multi-modal
distributions. In case of the local and borehole injection the BTCs peaks
correspond to the number of preferential facies through which the solute is
flowing. The BTC distribution for the wall injection is the result of more
complex dynamics as the overall mixing is enhanced by the elevate number of
facies experienced by the solute.
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5.2 Effect of permeability field realism degree

Given the natural inaccessibility of the subsurface, its virtual reconstruction
is a challenging task which usually requires the application of geostatistical
techniques. Geostatistical algorithms can be conditional or unconditional: the
firsts preserve the values of surveyed or measured geological properties (hard
data) at specified locations and attempt to reconstruct the unsurveyed regions
by means of spatial interpolation. The seconds aim at reproducing geologi-
cal domains by honouring geological parameters such as correlation length or
variogram (soft data) throughout the domain. Due to the fundamental role
played by the permeability field on transport simulations, it is crucial to un-
derstand the effect that these two types of geostatistical algorithms have on
transport. In this section we run transport simulations on conditional and un-
conditional permeability fields and, by assuming that conditional simulations
are characterised by a higher realism with respect to the unconditional ones,
we ultimately assess the influence of the geological realism degree on transport.
While an individual component is inherently involved in the assessment of the
geological realism degree, in this study the geological realism degree can be
interpreted as degree of similarity between the simulated and the benchmark
field. Transport through three permeability fields is simulated:

• unconditional permeability field: it is generated using a PGS algorithm
implemented in OpenFOAM®and available at [6]. The details about the
unconditional PGS algorithm are provided in section 2.1.4 and the result
is illustrated in the left panel of figure 5.4.

• conditional permeability field: it is the result of a geostatistical recon-
struction which uses boreholes data extracted from the original bidimen-
sional data analog [90] as hard data. More details on the conditional re-
construction process are available in section 4 and the result is presented
on the right panel of figure 5.4.

• benchmark for the transport simulations in unconditional and condi-
tional permeability fields: it is based on the detailed geological recon-
struction of the Herten field site from bidimensional data available in
[27]. The process followed to obtain the reference permeability field is
described in section 4.1 and its spatial representation is available in figure
4.1.

It is worth noting the dip angle of the facies at the centre of the permeabil-
ity field on the right of figure 5.4 which is applied on top of the conditional
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algorithm. This dip angle map together with the conditional algorithm con-
tributes to substantially increase the difference between the facies spatial dis-
tribution in the conditional and unconditional permeability fields 5.4. As a

Figure 5.4: Herten permeability field clipped using along the longitudinal axis
using a cubical shape. On the left panel the unconditional permeability field
is represented while on the right panel the conditional permeability field is
shown.

direct consequence, the concentration plumes observed at the same time for
the unconditional and the conditional scenarios of figure 5.5 show profoundly
different shapes. Although the tilt angle of the facies in the central region
of the conditional domain makes it look more similar to the benchmark per-
meability field than the unconditional one (figure 5.4 vs figure 4.1), it also
generates a flow barrier which smooths the peak of the plume (figure 5.5 left
panel vs right panel). This effect is clearly visible for BTCs plotted against
dimensional times (figure 5.6).

A relevant consequence of altering the permeability field is the modification
of the average travelling time that is used to normalise the horizontal axis in
non-dimensional of figure 5.7. When breakthrough curves are plotted against
the dimensional times, a clear mismatch between benchmark and transport
simulations in both conditional and unconditional permeability fields emerges.
This discrepancy is representative of the velocity differences that could arise
whenever synthetic permeability fields are used to estimate real world trans-
port experiments at field scale using different levels of conditioning.

When a different timescale is used, a net shift between the breakthrough
curve peaks emerge: while for BTCs normalised with the average travel time
the first peak is the one of the conditional simulation, for BTCs plotted against
dimensional times the peak’s arrival time is the same. Ultimately, only the
BTC obtained for the unconditional normalised simulation matches one of the
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Figure 5.5: Concentration plume at around 8000 seconds. On the left panel
the plume is travelling through the unconditional permeability domain while
on the right panel the represented plume is flowing through the conditional
permeability field.

Figure 5.6: Dimensional time BTCs associated with different permeability
fields: the unconditional BTC corresponds to a transport simulation through
a domain generated in OpenFOAM using a PGS random algorithm, the con-
ditional BTC is the output of a transport simulation where the permeability
field is conditional on core samples randomly extracted from the 2D sections
surveyed by [90] and the benchmark BTC represents the result of a transport
simulation through a geological domain reconstructed in [91].
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Figure 5.7: BTCs corresponding to transport simulations through different
permeability fields. The same legend of figure 5.6 applies. It is worth noting
that the timescale for these breakthrough curves is scaled on the average trav-
elling time which varies between one realisation and another.

peaks which characterise the bimodal BTC distribution for the benchmark
case.

The fact that the peak of the normalised unconditional breakthrough curve
matches quite accurately the first peak of the normalised benchmark break-
through curve both, in terms of time and magnitude might suggest that the
input geological parameters for the unconditional simulation of Herten per-
meability field such as the correlation length and the variogram provide a
geological reconstruction characterised by sediment spatial distribution that
well captures the salient characteristics of the permeability field such as mean
facies length, connectivity and geometry. Quite surprisingly, the additional
pieces of information embedded in the conditional simulation produce a shift
of the peak towards earlier arrival times which decreases the accuracy of the
transport description. This does not compromise the effectiveness of the con-
ditioning on borehole data while it stresses the central role of the conceptu-
alisation step and the relevance in the choice of the geostatistical parameters
set.

5.3 Effect of isotropic mechanical dispersion

In this section the effect of different isotropic mechanical dispersion coefficients
on transport is tested. The mechanical dispersion flux, as explained in section
2.2.4, is one of the two fluxes which contributes to the hydrodynamic flux in
the advection-dispersion model.

Starting from the assumption that the effect of randomly distributed pores
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is qualitatively comparable to the one produced by the molecular agitation,
the effect of porous media matrix channels on dispersion flux is mathematically
modelled following a parallelism with the molecular diffusion that is, the prod-
uct between the concentration gradient and the mechanical dispersion matrix
2.48. Being the hydrodynamic dispersion flux the sum on different scales of
two mathematically similar terms, i.e. the isotropic molecular diffusion and
the mechanical dispersion fluxes, the overall effect is a dispersive behaviour
where molecular diffusion becomes relevant for low Péclet numbers while for
advection dominated transport, the dispersion is driven by the mechanical dis-
persion. The mechanical dispersion implementation in the present work relies
on the model described by equation 2.47. Isotropic mechanical dispersion is
used to describe a comparable effect of the porous media matrix on the solute
dispersion in the three directions of the space. In other words, the longitudi-
nal αL and transversal αT dispersion coefficient of the mechanical dispersion
matrix 2.48 take the same value α.

Having this mechanism included in the numerical model used for the trans-
port simulation of this chapter, allows to include an additional level of physical
realism that was not considered in the results of the simulations presented in
[26]. Contrary to what expected, for a fixed value of the molecular diffusion

Figure 5.8: Concentration plumes at around 5000 seconds. The value of
isotropic mechanical dispersion coefficient which is adopted for the simula-
tion of plume on the left panel is α = 1 m while on the right panel is α = 10−3

m. The effect of the molecular diffusion on the concentration front is visible
only for the low value of the mechanical dispersion coefficient.

coefficient when the mechanical dispersion is high, the front of the plume ap-
pears to be more spatially extended (left panel of figure 5.8) than in the case
of low mechanical dispersion (right panel of figure 5.8). However this effect is
valid on a local scale, where molecular diffusion is relevant.
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On a global scale the overall effect of the mechanical dispersion is compara-
ble to that of the molecular diffusion at a local scale: the larger the mechanical
dispersion coefficient, the more homogeneous becomes the propagation front
of the solute. This effect appears quite clearly looking at the BTCs in figure
5.9 where the unimodal BTC is associated with high value of the mechani-
cal dispersion coefficient while for lower values of mechanical dispersion the
bimodal distribution becomes more evident.

Figure 5.9: BTCs characterised by decreasing values of the mechanical dis-
persion coefficient. Longitudinal αL and transversal αT mechanical dispersion
have the same value α. As the mechanical dispersion coefficient decreases
the smoothing effect at heterogeneity scale becomes weaker and the advective
fluxes give rise to a bimodal distribution.

5.4 Effect of anisotropic mechanical dispersion

In this section the effect of anisotropic mechanical dispersion coefficient on
transport through the reconstructed permeability field of Herten is illustrated.
Field observations and laboratory experiments often highlight the existence of
anisotropic mechanical dispersion behaviour. As illustrated in [98], the mea-
surements of longitudinal and transversal mechanical dispersion often yield
significantly different values [98]. Although the physical mechanisms behind
this behaviour are very complex and need to be studied at the pore-scale, being
able to numerically reproduce it is an essential pre-requirement to tackle the
understanding of non-Fickian transport in real macroscale applications. An
anisotropic mechanical dispersion model which follows the one presented in
2.48 was implemented in [6] and its results presented in this section. Thanks to
this improvement to the code, the longitudinal αL and transversal αT mechan-
ical dispersion values can be independently set. Among the several empirical
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models that describe the longitudinal to transversal ratio of the mechanical
dispersion coefficient, one of the most popular relation estimates the longitu-
dinal dispersion as ten times the transversal dispersion. Notwithstanding the
longitudinal to transversal mechanical dispersion ratio adopted, the differences
between figure 5.8 and figure 5.10 are negligible. Little differences also emerge

Figure 5.10: Concentration plumes at around 5000 seconds. The value of
the longitudinal mechanical dispersion coefficient which is adopted for the
simulation of plume on the left panel is αL = 1m while on the right panel
αL = 10−3m. The ratio between longitudinal and transversal mechanical
dispersion coefficient is αL : αT = 10 : 1

by comparing the BTCs in figure 5.11 and 5.9. Although these results suggest

Figure 5.11: BTCs characterised by decreasing values of the longitudinal and
transversal mechanical dispersion coefficients αL and αT . The ratio between
the longitudinal and transversal values is to 10:1 for all the four cases. This
enhances the spread in the longitudinal direction.

a negligible impact of the transversal mechanical dispersion on transport, dif-
ferent conclusions might be derived when transport simulations are performed
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using different injection geometries. While solute in wall injections tends to fill
the whole domain from the start, for local or borehole injections anisotropic
mechanical dispersion might have a stronger impact on the solute plume as
the transversal dispersion affects the lateral flow paths.

5.5 Effect of Péclet number

In this section the effect of Péclet number on transport through the recon-
structed permeability field of Herten is presented. As already defined in 3.11,
the Péclet number is computed using the molecular diffusion but it does not
account for the mechanical dispersion. For a fixed set of initial and bound-
ary conditions the molecular diffusion coefficient was varied of one magnitude
order at each simulation. In this way, since characteristic length and Darcy
velocity are kept constant, an increase of the molecular diffusion coefficient
corresponds to an equivalent decrease in Péclet number and viceversa. Fol-
lowing the results from section 3.3.12, we decided to observe the transport be-
haviour under a set of similar Péclet numbers. For the transport results to be
consistently compared, the characteristic length for this case is the estimated
sediment correlation length and initial conditions replicates the setup adopted
in section 3.3.12. The main difference between the simulations presented in
section 3.3.12 and the one performed in the present section is represented by
the isotropic mechanical dispersion. While in section 3.3.12 no mechanical
dispersion is considered, for the results presented in this section the hydrody-
namic dispersive flux is the result of the combined effect of molecular diffusion
and isotropic mechanical dispersion. Contrary to what expected, no significant

Figure 5.12: Concentration plumes at around 5000 seconds. The plume on the
left panel is characterised by a low Péclet number while the one on the right
has a high Péclet number.
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differences can be appreciated for the solute plumes in figure 5.12 which rep-
resent the low and high Péclet number simulations. The reason behind these
results lays in the mechanical dispersion effect which dominates and tends to
smooth the concentration front of the plume. The value of the isotropic me-

Figure 5.13: BTCs characterised by different values of the molecular diffusion
coefficient Dmol. As the molecular diffusion decreases the effect of advection
becomes predominant and characterised by higher Péclet.

chanical dispersion coefficient adopted for the simulations which yielded the
BTCs in figure 5.13 is α = 10−3m and the Péclet number evaluated using the
estimated longitudinal correlation length as characteristic dimension ranges
from 2.73 · 106 for the simulation characterised by low Péclet and 2.73 · 108 for
the simulation characterised by high Péclet.
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Chapter 6

Conclusions

In this thesis, flow (Darcy) and transport (advection-dispersion) meso-scale
mathematical models have been discussed and applied to heterogeneous un-
conditional and conditional permeability fields by means of numerical simula-
tions. The results from these numerical simulations aim to substitute empirical
tracer tests, otherwise expensive and time consuming to be collected. Based on
macro-scale transport model fitting of the meso-scale data, chapter 3 provides
a quantitative estimation of the discrepancy between the macro-scale predic-
tion and the numerical meso-scale results. The application of this procedure
to unconditional permeability fields with different geostatistical and flow pa-
rameters allowed the compilation of a hierarchical list of non-Fickian transport
triggering factors. Chapter 4 focuses on the process to be followed to condi-
tion the reconstruction of an aquifer on boreholes data. The result is compared
against the aquifer reconstruction conditioned on several sections surveyed at
a high resolution level. Flow simulations through the aquifer are run on the
reconstructed permeability field of the aquifer. Eventually, in chapter 5 trans-
port behaviour through highly heterogeneous porous medium is analysed for
the unconditional and the conditional aquifer reconstructions.

The most relevant results of this work can be summarised as follow:

• chapter 3

1. for the settings specified in chapter 3, the macrodispersion model
can be confidently applied with good accuracy in low permeability
contrast scenarios. In ergodic domains with permeability contrast
up to one order of magnitude, the error which characterises the
approximated solution of the macrodispersion model is in the order
of 10-20%;

97



2. for ergodic domains where the solute is injected on a surface which
encompasses all the sediments of the domain, the permeability con-
trast between facies is the most relevant factor in determining the
onset non-Fickian transport. Although Péclet number and correla-
tion length influence the fate of the solute, their role in triggering
anomalous transport behaviour has secondary importance;

• chapter 4

3. the spatial distribution of fluid velocity is mainly determined by per-
meability contrast between facies and secondary by the correlation
lengths. Since the velocity field controls the transport mechanisms,
this result confirms the hierarchy of the non-Fickian triggering fac-
tors described in the previous point;

4. subsurface reconstruction is a challenging task that, in case of high
contrast and sharp separation between facies can be effectively tack-
led using the PGS algorithm. The procedure described in section
4.2 provides some guidelines to perform conditional PGS simula-
tions starting from boreholes data. Given the extreme complexity
which characterises the subsurface geological systems, the relevant
simplifications which constrain the numerical model inputs might
compromise the overall simulation. Consequently, considerable time
should be invested in the conceptualisation step and sensitive anal-
ysis might be used to individuate the best simplification procedure;

• chapter 5

5. the solute release location and the shape of the volume involved
exert a strong control on the overall transport dynamics. Depend-
ing on the sediments where solute is initially injected, its spreading
patterns deeply affect the BTCs. Consequently, depending on the
experiment or simulation purpose, great attention is needed espe-
cially when local or borehole injection are performed. As a rule
of thumb for BTCs close to local injection sources, the number of
peaks correspond to the number of facies within the injection vol-
ume;

6. unconditional and conditional permeability fields which share the
correlation lengths and the sediment proportions do not necessarily
present the same effective permeability therefore substantial trans-
port differences might arise from different velocity fields. Geosta-
tistical parameters such as Kriging search radius and the dip angle
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maps might be combined with conditional simulations and heav-
ily control the pattern of the permeability field therefore rigorous
procedures should be adopted before setting theirs values;

7. Péclet number provides useful qualitative indications on the ex-
pected trend of breakthrough curves for transport simulations where
the only dispersive mechanism involved in the advection-dispersion
equation is molecular diffusion. For transport models where me-
chanical dispersion is accounted for, Péclet number variations ef-
fectively characterise only low advection velocity scenarios where
the mechanical dispersion effects are negligible;

8. in high advection velocity scenarios, mechanical dispersion plays a
critical role in the solute transport process therefore, the mechan-
ical dispersion model should be carefully selected. The difference
between isotropic and anisotropic mechanical dispersion models in
injection scenarios characterised by wide surface injection area is
negligible. Nevertheless, the impact of these two mechanical dis-
persion models on transport should be assessed on local injection
scenarios;

Beyond these conclusions, we would like to stress the relevance of the methods
first proposed in this study and later expanded in [45]. The shift of perspective
from the traditional Lagrangian approach to the Eulerian perspective frees the
hydrogeological community from computational limitations which have often
constrained the simulations to 2-D particle tracking experiments by proposing
the numerical solutions of partial differential equations which describe the
complex subsurface mechanisms, such as the advection-dispersion equation.
This paradigm shift was enabled by the extension of OpenFOAM®libraries to
hydrogeological problems. These libraries can be freely accessed at [6].

Future works which might conveniently be developed within the computa-
tional framework illustrated in this work include the assessment of the litho-
type thresholds for PGS permeability fields on transport and the fitting of
more complex non-Markovian macro-models. Another interesting future study
might involve the assessment of the contribution of variable density fluids to
the onset of non-Fickian transport together with the study of multiphase trans-
port in porous media. These are hot topics that can be effectively tackled with
the latest version of our meso-scale transport simulation utility freely available
at [6] with some benchmark example described in [45].
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[32] Christian Lantuéjoul. Geostatistical simulation: models and algorithms.
Number 1139. Springer Science & Business Media, 2001.

[33] Hans Wackernagel. Examples of covariance functions. In Multivariate
Geostatistics, pages 55–59. Springer, 1998.

[34] Falk Heße, Vladyslav Prykhodko, Steffen Schlüter, and Sabine Attinger.
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[65] Grégoire Mariethoz, Philippe Renard, Fabien Cornaton, and Olivier Ja-
quet. Truncated plurigaussian simulations to characterize aquifer hetero-
geneity. Groundwater, 47(1):13–24, 2009.

[66] Hrvoje Gotovac, Vladimir Cvetkovic, and Roko Andricevic. Flow and
travel time statistics in highly heterogeneous porous media. Water re-
sources research, 45(7), 2009.

[67] Guillem Sole-Mari, Monica Riva, Daniel Fernàndez-Garcia, Xavier
Sanchez-Vila, and Alberto Guadagnini. Solute transport in bounded
porous media characterized by generalized sub-gaussian log-conductivity
distributions. Advances in Water Resources, 147:103812, 2021.

[68] Marco Bianchi and Daniele Pedretti. Geological entropy and solute
transport in heterogeneous porous media. Water Resources Research,
53(6):4691–4708, 2017.

[69] Yong Zhang, Christopher T Green, and Graham E Fogg. The impact
of medium architecture of alluvial settings on non-fickian transport. Ad-
vances in water resources, 54:78–99, 2013.

[70] Yong Zhang, Christopher T Green, and Boris Baeumer. Linking aquifer
spatial properties and non-fickian transport in mobile–immobile like allu-
vial settings. Journal of Hydrology, 512:315–331, 2014.

[71] Yong Zhang, Christopher T Green, and Geoffrey R Tick. Peclet number
as affected by molecular diffusion controls transient anomalous transport
in alluvial aquifer–aquitard complexes. Journal of contaminant hydrology,
177:220–238, 2015.

106



[72] Heather Savoy, Thomas Kalbacher, Peter Dietrich, and Yoram Rubin.
Geological heterogeneity: Goal-oriented simplification of structure and
characterization needs. Advances in Water Resources, 109:1–13, 2017.

[73] Roussos Dimitrakopoulos and Xiaochun Luo. Generalized sequential gaus-
sian simulation on group size ν and screen-effect approximations for large
field simulations. Mathematical Geology, 36(5):567–591, 2004.

[74] Steven F Carle and Graham E Fogg. Modeling spatial variability with
one and multidimensional continuous-lag markov chains. Mathematical
Geology, 29(7):891–918, 1997.

[75] Sebastien Strebelle. Conditional simulation of complex geological struc-
tures using multiple-point statistics. Mathematical geology, 34(1):1–21,
2002.

[76] Steven F Carle. T-progs: Transition probability geostatistical software.
University of California, Davis, CA, 84, 1999.

[77] Olaf Kolditz, Sebastian Bauer, Lars Bilke, Norbert Böttcher, Jens-
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Gérald Debenest. An open-source toolbox for multiphase flow in porous
media. Computer Physics Communications, 187:217–226, 2015.

[79] Bernd Flemisch, Melanie Darcis, K Erbertseder, B Faigle, A Lauser, Klaus
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