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Abstract 

This research focuses on how personal data from wearable physiological 

measures can be used to assess the Mental Workload (MWL) of staff in the 

rail industry. Automation technologies are being implemented in the rail 

industry to improve operational performance and capacity. These new 

technologies are changing the role of staff. This research considers how 

temporal physiological data present an opportunity to supplement existing 

workload assessment methods to measure the impact of these technology 

changes. The research explores how wearable physiological measures could 

be applied in live operations to collect real-time data with minimal task 

interference. Whilst the research focuses on railway signallers, the research 

has implications for other roles in the rail industry and other industries. 

 

The research included three studies and two literature reviews. The initial 

industry interview study identified the benefit of more continuous data to 

assess human performance, including successful performance. A detailed 

review of candidate technologies was then performed solely on physiological 

measures to extend the knowledge in this area. To assess the potential of 

physiological measures to provide this continuous data, a simulation study of 

railway signalling tasks was conducted with an Electrodermal Activity (EDA) 

wrist strap for alertness and stress and a Heart Rate Variability (HRV) chest 

strap for uncertainty and increased MWL. The limited application of these 

measures in rail research provided a suitable research gap for the research to 

pursue.  

 

The simulation study found physiological data provided visibility of 

individuals’ personal experience of workload. The interplay of EDA, HRV, task 

demand and subjective workload over time were visible in the storyboard for 

each participant. The simulation study provided two key contributions to the 

thesis. Firstly, EDA identified moments in workload during the task, indicating 

moments of realisation, and periods of uncertainty, or strain due to time 
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pressure. Such data could be used in staff debriefs to better understand their 

workload, and tailor training. Secondly, average HRV had a strong negative 

correlation with average subjective workload. HRV could provide a real time 

indicator of workload and provide visibility of staff effort to managers.  

 

The final study was an interview and survey study of staff perspectives on the 

potential use of these measures. This study replaced a live trial which could 

not proceed during COVID-19 related restrictions. The study found wearable 

devices suit use in the live operational environment, with the wrist strap 

rated the most suitable due to low distraction. Trust emerged as a key factor 

for staff to accept the use of wearables, particularly if named data is shared. 

Tangible benefits that lead to improvement in operations was identified as 

one way to build this trust. 

 

An additional contribution of the thesis, drawing on all studies and literature 

reviews, was to propose a new theoretical perspective on MWL, based on 

physiological data. A Novelty of Events and Autonomic State (NEAS) model is 

proposed as a preliminary conceptualisation. It shows how individuals may 

vary in the impact workload has on their performance and how physiological 

data may be used to identify this. The concept of Novelty of Events includes 

aspects of tasks that an individual has not performed before, including those 

introduced by new technology or procedures. The NEAS model suggests how 

support in the form of tailored training, or shift breaks, could be used to 

support improved human performance. Following on from this thesis, a 

priority for further empirical work would be to trial EDA using a wrist strap 

that uses a repeated measures approach to determine to what extent 

individual physiological data changes over time. 
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Chapter 1:  Introduction 

 

1.1  Chapter overview 

This chapter starts with a short introduction to the rail industry context and 

need for this research. The chapter then presents the research questions, and 

how each chapter contributes to answering these questions. The chapter 

ends with a brief introduction and clarification on key terminology that will be 

used throughout the thesis. 

 

1.2  Rail context 

Rail is a complex safety critical system in which the combination of staff, 

equipment and procedures provide safe operational performance. A system 

failure can put at risk the lives of staff, passengers, or the public. Automation 

technologies are being implemented to improve performance and capacity, 

whilst maintaining safety. Whilst these are designed to improve the system, 

they change the role of staff and their impact on staff is not fully understood. 

The industry seeks to improve the measurement of impact of these changes 

on staff and, more broadly, gain more value from data (RSSB 2017).  The Rail 

Accident Investigation Board (RAIB, 2020) recommend improving workload 

assessments of signallers for this reason, particularly in their move to large, 

centralised workstations. Whilst this research is rail focused, the findings have 

implications staff across rail including drivers, signallers, control staff, and 

managers, and for other industries implementing automation technologies 

and changing staff roles.  

 

1.3  Research perspective and scope 

The research focuses on how personal physiological data can be used to 

measure human cognitive performance and workload. As automation 



Introduction 

 2 

technologies increase in rail, the balance between physical and cognitive 

elements of work is changing. Increased use of automation reduces the 

observability of workload: as staff physically move less, there is less workload 

to measure through observation. Yet there remains a need to understand and 

measure the workload of their cognitive monitoring and vigilance task. 

Alternative workload measures, such as self-assessed workload scales 

interrupt the task, or are completed after the task. An additional 

requirement, since COVID-19 restricted visitor access to signalling centres, is 

how to accurately measure workload remotely.  

 

The research gap is finding a measure of human performance that can be 

applied in live operations to collect real-time data to measure the impact of 

technology changes, with minimal task interference. Such data could then 

inform management decisions. This research considers how temporal 

physiological data from wearable physiological measures could address this 

research gap. The temporal data from these devices provide a chronology of 

events in the task which, if patterns are detected, could indicate in future 

when staff are at risk of moving from good performance, into the higher risk 

areas of either underload or overload.   

 

This research considers MWL and overall performance. In terms of MWL, 

previous theories and studies show humans are more likely to make errors 

when MWL is too high (overload) or too low (underload) (Reason, 1990). This 

implies that humans can perform more successfully when neither overloaded 

nor underloaded in terms of MWL. This research proposes to focus on the 

area between these two MWL levels, which is currently poorly defined. This 

range can be described by the Goldilocks Principle, representing a range that 

is ‘just right’, so called as it is analogous to the porridge not being too hot or 

too cold in the original children’s story. In research around physical capacity 

at work, this Goldilocks Principle of productive work is work that stimulates a 

range of body systems whist allowing adequate rest and recovery 

(Holtermann et al., 2019). This research takes this principle and considers the 
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implications for cognitive work. How could a range of cognitive work and 

effort be monitored that includes when it is ‘just right’, and thus sustainable. 

This scoping review considers whether physiological measures distinguish 

different levels of mental workload, from underload through productive work 

into overload.  

 

In terms of overall performance, an overarching ethos of this research is to 

capture positive human performance and explore ‘what does good look like’, 

rather than focusing on when errors are made. This fits with the Safety II 

approach proposed by Hollnagel, where the aim is as much as possible goes 

right to achieve good performance in everyday work (Hollnagel, 2014).  In rail, 

RSSB have developed questions to help derive performance indicators for the 

industry which includes not only ‘what can go wrong?’, but ‘what does 

success look like?” (ORR, 2017). This research will consider whether 

physiological measures can detect factors associated with the task, or 

experience of workload, when performance is successful. If so, how could 

these contribute to our understanding of ‘what does good look like’? Part of 

this includes avoiding some of the ironies of automation (Bainbridge, 1983) 

particularly around monitoring an ever increasingly automated system in rail 

signalling control.  

 

To address ironies of automation regarding monitoring tasks, physiological 

measures could monitor alertness over time. This could show drops when an 

operator is bored due to low task load, or due to the vigilance decrement that 

is known to occur over time with a monitoring task (Mackworth, 1948). 

Secondly, regarding job satisfaction, when an operator needs to intervene at 

short notice or take over from automation, measures could show the effort, 

workload, or stress ‘cost’ on the part of the operator. Exploring these areas 

could build an understanding of what is sustainable in terms of cognitive 

effort. 
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The focus on railway signallers was a decision made in stages. The initial 

industry interview study identified a broad range of people who can impact 

rail operations including staff, passengers, and the public. In terms of industry 

priorities, train drivers and signallers would suit being the focus of the 

research, as they complete Safety Critical Tasks and are two of the biggest 

groups of staff. The scoping reviews of literature therefore considered driving 

and signalling tasks and roles. Proportionally less research was found that 

focused on signallers, presenting a viable research gap for the research. 

Secondly, to successfully apply physiological measures ‘in the wild’ it is 

important to control for the confounding variables such as physical 

movement and temperature. Taking all these factors into consideration, 

signallers were chosen as the focus of this research. These measures may, in 

future, also suit use in train cabs with drivers. A signalling centre, with 

temperature control and no vibration, was chosen as a best location at this 

exploratory stage of applying wearables measures in the rail industry. 

 

1.4  Research aim 

The research scope considers how personal data1 could be used in rail to 

measure human cognitive performance.  The research aim is to measure, in 

real-time, staff mental workload in live operations. The research focuses on 

cognitive performance, and the measurement of staff mental workload.  This 

in turn would both improve our understanding of how staff achieve their 

cognitive tasks and inform future decision with respect to tasks and training in 

the rail industry. This is particularly pertinent to the implementation of 

automation technologies which are changing the roles of staff in the rail 

industry. 

 

 
1  This personal data angle fits with the ‘My Life in Data’ theme of the Horizon Centre for Doctoral 

Training (CDT), through which the PhD was completed. The Horizon CDT at University of 

Nottingham carries out interdisciplinary research within the Digital Economy theme, with a focus on 

digital identity, personal data, and data creativity. 
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1.5  Research questions 

1. How can temporal physiological data from wearable measures 

contribute to MWL assessment in rail industry live operations? 

2. What are the theoretical implications of individual physiological data 

to changes in MWL in a workplace setting?  

3. What are staff perspectives on wearables and use of their personal 

physiological data? 

 

1.6  Identifying a research gap 

The initial remit of the research combined the rail industries sponsors request 

to research the impact of new technology on human performance in rail with 

the ‘My Life in Data’ theme of the PhD Horizon Centre for Doctoral Training 

Centre. A research gap was sought through a literature review and industry 

interviews. The interviews identified an industry challenge, so the research 

scope remained pertinent to industry. The interviews identified the challenge 

of detecting when staff are approaching their limits (underload or overload), 

including as new technology is introduced into rail. Drivers or signallers were 

identified as key roles to focus the research on. The literature review 

indicated signallers were the lesser studied group. Signallers were therefore 

selected as a focus for the research, after the industry interviews, with an 

understanding the findings from signallers could have implications for other 

staff roles in rail.  

 

In addition to the studies presented here, a domain familiarisation activity 

was completed in signalling operations during an internship with Network 

Rail, a sponsor of the Horizon CDT PhD research programme. The internship 

occurred after the industry interviews, before the simulation study, helping to 

inform the remaining research. The internship was completed over three 

months at East Midlands Control Centre (EMCC) in Derby, a modern signalling 

centre with 10 workstations. Field observations were conducted of 
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workstations, scenarios, teams, and individuals, to gain a realistic view of the 

complexity of the work environment (Roth and Patterson 2000) and 

contextual nature of expertise. Ethical approval was gained (see Appendix A) 

to observe, make field notes, and interview individual staff. All data was 

anonymised.  

 

The naturalistic observation method is similar to ethnographic derived 

methods (such as Nardi 1997), providing the opportunity to be immersed in 

the daily lives of the people being studied. In the role of participant observer, 

the author acknowledges their presence will affect staff behaviour, though 

hoped to minimize such influences (Farrington-Darby and Wilson, 2006). As 

internship progressed, signallers and shift managers appeared to grow used 

to the researcher, known as habituation in field research (Robson 1993). The 

observations provided context for the literature on rail industry signalling 

operations, and the findings from the interview study around how human 

performances is assessed. The observations influenced the scope of the 

research by identifying the need for MWL measures that suit live operations. 

Specifically, signallers’ workload was observed to vary greatly but peaks were 

difficult to predict as these tend to occur around incidents rather than only 

timetabled events. In addition, the workload in live operations is different 

than in a simulation, especially around communications (Sharples et al., 2011) 

such as phone calls. This presented a gap to research unobtrusive measures, 

to suit use in live operations, to detect MWL changes over time and the effort 

required. Measures would need to be used over extended periods of time 

compared to current measures to capture incidents as well as routine 

timetabled task demand.  

 

 

1.7  Thesis structure 

This thesis presents the progress made throughout this research.  This 

research was conducted using a mixed methods approach, and in 
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collaboration with industry. It includes two literature reviews and three 

studies. 

 

Chapter 2 presents an overview of the rail industry context, and a scoping 

review of theories underpinning human cognitive performance, including 

information processing, the nature of expertise, and Mental Workload 

(MWL). Drivers and signallers are included to reflect research on staff in the 

rail industry. The additional detail provided on signallers’ tasks reflects the 

subsequently decision to focus on applying wearables in signalling first, 

before driving. A range of current MWL measures are presented, including 

those tailored to the rail industry. Performance Shaping Factors (PSF) are 

mentioned with other broad themes peripheral to measuring human 

performance.   

 

Chapter 3 presents the results from Study 1, an interview study with industry 

stakeholders. The study explored rail challenges that relate to human 

performance or new technology, individual attributes of performance, and 

how performance is assessed in rail and other transport industries. The study 

sought to identity who impacts rail operations, and industry priorities of who 

to focus the research on. This study informed the subsequent research focus 

of scope on railway signallers in live operations in later stages of the research.  

 

Chapter 4 provides a scoping review of physiological measures and the 

critique used to select the measures suitable for signallers in live operations. 

The chapter includes, from the literature, the underlying physiology, and what 

is detected and can be inferred by the follow types of physiological measure: 

heart, skin, facial thermography; breathing; eye movement; electro-

encephalography (EEG); and Functional near Infra-Red Spectroscopy (fNIRS). 

Based on this review, a decision was made to focus on HRV and EDA as 

measures of workload in rail signallers. 
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Chapter 5 presents the results from Study 2, a simulation study of twenty 

participants wearing physiological measures to infer MWL during a rail 

signalling task. Heart Rate Variability (HRV) and Electrodermal Activity (EDA) 

data were collected and compared to task demand and self-report workload. 

The study was conducted to provide an initial test of methods, equipment, 

data processing and data visualisation prior to future live trialling of measures 

with industry. Results showed what aspects of workload different measures 

were sensitive to, with storyboards graphing dynamic changes over time to 

show the complexity of relationships between HRV, EDA, task demand and 

subjective workload. 

 

Chapter 6 presents the results from Study 3 the perspectives of staff to the 

use of wearable physiological measures. The interview study explored 

signalling staff perspectives on the potential use of wearable measures in the 

workplace in future. The study method combined semi-structured interviews 

and surveys with rating scales. Analysis considered to what extent personal 

attitude to change could predict technology acceptance. The study found 

wearable devices suit use in the live operational environment, with the wrist 

strap rated the most suitable due to low distraction and perceived ease of 

use. In terms of data use, themes included perceived usefulness, anonymity, 

and trust. 

 

Chapter 7 presents answers to the research questions and novel contributions 

of this research. The discussion draws together findings from the industry 

interviews, simulation study, and perspectives and attitude studies. The 

discussion includes how physiological measures can contribute to MWL 

assessment, staff perspectives and attitudes on their use, theoretical 

implications, and implications for industry.  

 

Chapter 8 completes the thesis by presenting the contributions and 

conclusions of the research, and recommendations for future work on the 
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measurement of human performance and the development of physiological 

measures. 

 

1.8  COVID-19 impact statement 

The lockdowns put in place in response to COVID-19 had a direct impact on 

this research. A live trial using wearable physiological measures was planned 

in full but cancelled on 13th March 2020, the week before it was due to run at 

East Midlands Control Centre (EMCC), Derby. Twelve signallers, working at 

EMCC, were due to wear a wrist strap and chest strap for 4 to 5 hours, and 

respond to a self-assessment workload measure, whilst completing half their 

shift at a live operational workstation. The study aimed to evaluate whether 

wearable physiological data could:  

• Indicate the mental effort of signalling staff to complete their task. 

• Match the results of existing workload measures (Instantaneous 

Workload Scale). 

• Detect task related events that contribute to task load.  

 

Planning for this trial began with Network Rail in March 2019, with the RMT 

Union informed of the study in April 2019, and University ethics approval 

gained in February 2020. On Friday 13th March 2020 all operational site 

access was closed to visitors to minimise the risk to operational staff of 

COVID-19. Restrictions to visitor access remain in place to date.  

 

An alternative research approach was needed to replace the planned live trial 

of wearables. This research was subsequently adapted, to ensure the 

research could go ahead irrespective of changes in COVID-19 restrictions. 

Regular contact was maintained with Network Rail. By May 2020 a remote 

interview study with operational staff was agreed with supervisors, RSSB and 

Network Rail. This change ensured the study would be more likely to be able 

to proceed if visitor access remained restricted. University Ethics was 
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approved in September 2020. Interviews began in November 2020. Interviews 

were subsequently halted for 5 weeks following staff cases of COVID-19 and 

staff self-isolating. Interviews were successfully completed in January 2021. 

The findings from this staff perspective study forms part of this thesis. 

 

1.9  Terminology 

There are terms used throughout this research that benefit from introduction 

at this stage: Cognitive vs mental workload; Human Performance vs 

competency; and Psychophysiology vs physiological. 

 

The term mental relates to the mind and is used interchangeably with 

cognitive to refer to the processes of thinking (Cambridge Dictionary, 2021) 

and to distinguish from the physical. MWL is a construct that encapsulates 

task demand, how individuals experience workload and performance 

(Sharples, 2019). Cognitive ergonomics includes MWL, information 

processing, reaction, decision making, and stress (Wilson and Sharples, 2015). 

In this research the term mental will be used throughout. 

 

Human performance in this research refers to the capacity of any human to 

achieve a task. Performance can describe the act of achieving a task and a 

measurable outcome.  This deserves clarification as, in rail, performance 

refers to operational performance and human performance is thought of as 

‘competency’ (Fowler et al., 2019). In this thesis human performance is used 

as a broad term that refers to achieving a task. This performance is influenced 

by both competency and MWL, with successful performance outcomes reliant 

on sufficient competency, and a level of MWL that is between the states of 

underload and overload. Further description of MWL is provided in Chapter 2 

Theories. 
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Physiological measures detect a physical aspect of bodily function. The term 

physiological measure encapsulates both the device and data collected, and 

wearable measure refers to the device that fit on the body. When 

physiological measures are applied to cognitive activity they can be referred 

to as psychophysiological measures. In this research the term ‘physiological’ 

will refer to the data that the measures detect and psychophysiology as a 

field of research. 

 

Alertness levels are relevant to this research, with a focus on cognitive 

‘alertness’. Various terms are used in academic literature and in industry that 

refer to a similar construct. Vigilance refers to the ability to maintain focus of 

attention over a period of time (Davies and Parasuraman, 1982). In 

psychophysiological literature the term arousal is used (Hugdahl, 1995) to 

describe a level of cortical, behavioural, or autonomic activity. The common 

usage of arousal can imply sexual arousal. Tonic alertness can be viewed as 

synonymous with vigilance and sustained attention (Oken et al., 2006). In the 

rail industry concentration is the term recognised as equivalent to vigilance 

(Pickup et al., 2010). In this thesis the term ‘alertness’ will be used 

throughout. 

 

Here the term rail and railway are used interchangeably to refer to the rail 

industry. The rail industry encompasses all operations of railway technology 

which transport goods and passengers from one place to another along 

railway tracks.  
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Chapter 2:  Industry context and theories of human 
performance 

 

2.1  Chapter overview 

This chapter presents an overview of the rail industry context, and a scoping 

review of theories underpinning human cognitive performance, including 

information processing, the nature of expertise, and Mental Workload 

(MWL). Drivers and signallers are included to reflect research on staff in the 

rail industry. The additional detail provided on signallers’ tasks reflects the 

subsequently decision to focus on applying wearables in signalling first, 

before driving. A range of current MWL measures are presented, including 

those tailored to the rail industry. Performance Shaping Factors (PSF) are 

mentioned with other broad themes peripheral to measuring human 

performance.   

 

2.2  Introduction 

This research considers how changes in procedures and technologies impact 

human performance, and how to assess the impact on the cognitive aspects 

of their workload. This aims to inform choices made around changes 

implemented in future. This chapter presents the context of the rail industry, 

relevant theories of cognition and mental workload measures identified in a 

scoping review. In doing so, this chapter contributes to the first two research 

questions by identifying existing MWL theories and measures and describing 

rail operations.  

 

This research considers human performance from the perspective of human 

cognitive performance (see shaded area in Figure 2-1), in the context of 

external changes to tasks being performed. Within this, the research 

considers both the Safety I view of ‘what goes wrong’ and the Safety II view of 
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‘what goes right’. This is to cover the full range of performance in live 

operations.  

 

 
Figure 2-1 Qualitative Methodology in Ergonomics, Hignett (2001, p.210).  

Shaded area shows focus of scoping review 

Safety I and Safety II are contrasting approaches to safety, of relevance to this 

research. Safety I is an established approach to safety that seeks to reduce 

danger, risk, and injury (Vaughan, 1997). It does this through investigating 

incidents and accidents, seeking to identify causes, implementing 

preventative measures, and monitoring lagging after the event e.g. reduced 

injury or incident rates (Lingard et al., 2013). In Safety I, humans can be 

viewed as a liability (Hollnagel et al., 2013) and cause of safety failures. Safety 

II, in comparison, proposes a different perspective on Safety, concerned with 

ensuring ‘as many things as possible go right’ (Hollnagel, 2017). It seeks to be 

a proactive, adaptive approach to safety, by monitoring success. In Safety II, 

humans are seen as a resource for system flexibility and resilience (Hollnagel 

et al., 2013). Safety II is in its infancy, along with other new approaches to 

safety termed New View including Resilience Engineering, Human and 

Organisational Performance (HOP) (Conklin, 2012), and Safety Differently 

(Dekker, 2014). New View and Safety I converge on the concept that safety 

involves the management of risk (Bergström et al., 2015). In other features, 

the two diverge. Critics of Safety II note there are no published, peer 

reviewed, empirical evidence that Safety II improves safety (Cooper, 2020), 
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and it lacks measures. Cooper suggests, in their position paper, that New 

View should not replace a Safety I approach, as New View offers a perspective 

only rather than a methodology (Cooper, 2020). Cooper postulates that 

cultural differences could explain the differences between Safety I and II, 

being at different ends of a cultural continuum between cultural tightness 

and looseness, drawing on Gelfand’s assessment of different cultural 

responses to COVID (Gelfand et al., 2021). Some situations require a tight, 

strong Safety I cultural approach to manage safety, some a cultural looseness 

of Safety II as appropriate COVID (Gelfand et al., 2021). The choice between 

Safety I and Safety II may not need to be an either or, but more for what 

proportion of each is beneficial. 

 

In the rail industry, maintaining a high standard of safety remains an 

important goal.  The railways continue to benefit from a Safety I approach to 

improve safety following accidents. This includes the work by accident 

investigation organisations across the world such as Rail Accident 

Investigation Branch (RAIB) in the UK, National Transport Safety Board (NTSB) 

America, Australian Transport Safety Bureau (ATSB), European Railway 

Agency, and Japan Transport Safety Board.  More recently in rail there has 

been interest in applying Safety II type principle such as considering “What 

does success look like?” to understand fatigue (ORR 2017). Where human 

performance research in rail has previously focused on what goes wrong, a 

more positive approach may be the monitoring of what goes right every day 

and system strengths (McDonald, 2021) and identifying protective factors in 

near misses (Thoroman et al., 2019). One reason for doing this is, as 

incremental safety improvements work, the occasions to measure major 

safety failures reduce. In Britain 4,9172 days occurred without a fatality 

involving a passenger train between the incident at Grayrigg in 2007 and the 

Stonehaven derailment in 2020. Recent research in rail does appear to have 

shifted away from failure analysis towards human activities that maintain 

 
2 The accident at Grayrigg, 23 February 2007, caused 1 death of 109 on board. Number is intervening 

days. 



Industry context and theories of human performance 

 15 

safety (Ryan et al., 2021). As part of that endeavour, this research aims to 

research how the MWL of staff can be monitored whilst achieving high levels 

of safety and consider how such data could provide feedback through live 

status to managers. This research considers how to assess workload changes 

over time, to detect variation over time, including when performance 

outcomes are acceptable. In broad terms, therefore, this research has a 

Safety II perspective.  

 

This research considers the range of individuals’ performance, of effective 

and ineffective workload (Xie and Salvendy, 2000), including the Safety II 

premise of what can be learnt about everyday success and Work-As-Done 

(Hollnagel, 2014) rather than focusing solely on human errors (a more Safety I 

approach). The justification for this has two parts: monitoring the range of 

human effort that underlies daily successful operational performance could 

improve industry understanding of the impact of change; and detecting 

patterns in data leading up to incidents to provide leading indicators of 

deterioration in human performance sufficient to warrant operational 

intervention (e.g. a break, or allocation of additional staff resource). These fit 

a Safety II approach seeks to understand and measure what goes right to 

result in intended and acceptable outcomes (Hollnagel, 2014).  

 

The remaining sections of this chapter provide an overview of the outcome of 

a scoping review of the theories on cognition and measurement relevant to 

front line rail staff performance. It starts by introducing the rail industry 

context and safety critical tasks. It then presents theories of information 

processing, expertise, and MWL, highlighting those applicable to complex 

continuous tasks in a dynamic field setting. It goes on to the MWL measures 

used in rail. 
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2.3  Rail industry context 

2.3.1  Rail as a sociotechnical system  

The rail industry is a large complex socio-technical system (Wilson, 2014), 

whose operations rely on skilled human interaction with physical engineering 

such as trains, stations, and signals. Rasmussen’s socio-technical system 

model of risk management (Rasmussen, 1997) represents the hierarchy of 

control in such a system (Figure 2-2).  

 

Figure 2-2 The socio-technical system involved in risk management (Rasmussen 1997) 

 

Rasmussen notes two challenges faced in the present dynamic society: the 

very fast pace of change of technology at the operational level at odds with 

ever slower responses to change at every level up the hierarchy; and the 

ever-increasing integration of systems making modelling in isolation 

increasingly difficult. The areas of the hierarchy in Figure 2-2 of focus in this 
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research are the human factors discipline and staff process level, with 

implications for management and work processes in relation to changing 

technology and competency. The research considers how staff MWL data 

could provide feedback across levels of the system as a form of technology 

aided mutual monitoring. Within a team at work, mutual monitoring means 

colleagues intervene and assist with workload in a timely manner e.g. by 

answering a phone work live operations. This informal team support is not 

visible to those outside the control room. Measures that could visualise 

changing MWL could increase the visibility to managers outside of the control 

room. This could, in turn, inform managers’ decisions for front line staff to 

support a systems approach to accident prevention through vertical 

integration (Thoroman et al., 2019). 

 

Various automation technologies are being introduced in rail to assist drivers 

and signallers. The intention is to increase capacity, whilst maintaining safety. 

The challenge is how to provide data for rail managers on the impact of these 

changes, to inform their future judgements, to ensure the intended benefits 

of new technologies are realised. One challenge specific to cognitive 

performance is determining whether changes increase the risk of staff 

overload or underload (deWaard 1996). Underload, or excessively low mental 

demands are detrimental to performance (Young and Stanton, 2002). A 

research gap exists in the collection of real-time data on human performance. 

If collected, such data collected at the staff and work levels of Figure 2-2 

would be used to seek patterns, and ultimately predict, impact of changing 

technologies and inform management decisions at the management and 

company levels of Figure 2-2. 

2.3.2  Drivers and signaller tasks and attributes  

Safety Critical Tasks are those tasks that involve responsibility for the safety of 

passengers, staff, or the public (ORR 2017). Staff performing their tasks 

successfully are a barrier function (Golightly et al., 2013) or ‘last line of 
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defence’ (RAIB 2020) to safety. Drivers and signallers perform safety critical 

tasks, and both experience the impact of new technologies in the train cab 

and signalling control centres. The research considered both drivers and 

signallers in the first Industry Interviews study, before the focus narrowed to 

signallers in the Simulation and Staff Attitudes and Perspectives studies. This 

scoping review includes our current theoretical understanding of the 

cognitive tasks, and workload, of drivers and signallers as experts.  

 

Certain individual attributes help drivers and signallers to achieve their tasks 

and handle the complexity and responsibility of their roles. These individual 

attributes such as attention and communication are addressed initially during 

recruitment. Driver recruitment includes tests of attention, 

concentration/vigilance, memory, and communication (Train Driver 2021). 

Signaller recruitment includes tests of situational judgement, and numerical, 

verbal reasoning, and inductive reasoning (Practice4Me 2021). Once 

recruited, drivers and signallers become experts through extensive training, 

followed by supervised live experience, before being passed as competent. 

 

It should be noted that across world the role of signaller varies, with 

alternative terms of dispatcher and controller. In Australia the controller is 

more strategic, and the signaller is more a tactical role. Train controllers are 

responsible for managing the strategic overview of the whole rail network 

including recovery from disruption (Dorrian et al., 2011). Signallers cover a 

more tactical role turning controller’s plans into actions by operating the 

points to set routes (Dorrian et al., 2011). In the USA, railroad dispatchers are 

responsible for the safe, efficient movement of trains and the protection of 

the workforce working on the track (Gertler and Vaile 2007). In this regard 

they are responsible for traffic management. In the USA signallers operate the 

points, like signallers in the USA. In Britain, dispatchers are station platform 

staff who communicate the train is ready to depart. The signaller plans, sets 

routes, and authorises trains to move through the rail infrastructure while 

ensuring separation between all trains. They make decisions on the order of 
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trains through junctions for effective traffic management, particularly during 

disruption. (Balfe et al., 2015). In Britain, minor late running is all handled by 

the signaller. The controllers in Britain handle major diversions (Farrington-

Darby et al., 2006), coordinating between train operating companies and 

signallers. The implications of the findings of this research are applicable to 

dispatchers and controllers around the world who monitor, plan, and must 

recover from operational disruption. In this thesis the term signaller is used 

throughout.  

 

Rail is a dynamic work setting, where keeping trains running safely and on-

time are balanced continuously. This forms a paradox as keeping time and 

driving safely can conflict (Naweed and Aitken 2014). External task load 

factors, affecting drivers and signallers, include regular imposed time 

constraints (e.g., station dwell times, or permitting access to track by 

maintenance staff between trains running). Both drivers and signallers have 

the authority to stop a train to maintain safety, however, normal running 

relies on trains moving at line speed to keep to the timetable. Any disruption, 

or perturbation, affects operational performance and can add complexity and 

uncertainty to the roles of both staff. Subsequent commercial pressures come 

from the costs incurred through Delay Attribution (DAB) (Network Rail, 2023). 

Delay Attribution is used in rail to determine the cause of any delays and 

whether the train operator or infrastructure provider are liable for the cost 

incurred of any delays. 

 

Whilst drivers and signallers perform safety critical tasks with time 

constraints, there are differences in their roles that affect the proportion and 

types of cognition tasks required. Drivers are responsible for the safe 

operation of the train, including maintaining appropriate speed, stopping at 

stations, warning other rail users (using the horn) and communicating with 

signallers and passengers if required (e.g., during delays) (Ryan et al., 2021). 

Drivers are responsible for the safety of all onboard, themselves included. In 

terms of cognitive skills, drivers require good memory (including system 
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knowledge), monitoring skills, sustained attention, and decision making 

(Buksh et al., 2013, Naweed 2014). Their ‘route knowledge’ allows drivers to 

anticipate, which is key to their role (Buksh et al., 2013, Balfe et al., 2017). 

Signallers are responsible for monitoring and authorising train movements, 

anticipating delays and poor traffic flow, implementing speed restrictions, and 

communicating with track workers, control, station staff and drivers, and may 

also operate level crossings (Golightly and Young, 2022; Ryan et al., 2021; 

Sharples et al., 2011). Signallers are present in time, but in comparison to 

drivers, they are remote from the track, controlling signals and points from a 

box, or signalling centre.  Signaller experiential knowledge is important, built 

through experience and comprising local geographical knowledge and likely 

patterns of trains (service patterns) to provide safe and efficient performance 

(Golightly and Young 2022, RAIB 2020). Compared to drivers their role more 

often requires coordinating with other staff to avoid or address delays. 

Signallers also require good skills in communication, planning and prioritising, 

problem solving and decision making, collaborating and being vigilant and 

resilient under pressure (PENNA 2018). These Non-Technical Skills (NTS) are 

applicable to railways around the world (Flin et al., 2017; Jarosz et al., 2021; 

Madigan et al., 2015; Nayak et al., 2018). 

2.3.3  The impact of new technology on driver and signaller tasks 

Over its history, the railway in Britain has benefited from new technologies. 

The railway itself was a new technology and disruptive innovation in 1825. 

Initially constructed for freight, the public began travelling in 1830. The 

railway then grew, with construction of new railways peaking in 1847 (Bradley 

2016). The bells allowing signallers to communicate are still in use in over 500 

lever frame signal boxes today. Each innovation adds to the mixed ages of 

legacy technology that must work in parallel. On the trains, by 1900, bogies 

(part of the suspension) provided a smoother ride (Bluebell Railway, 2021). 

Steam locomotives, then diesel and electric, allowed trains to run faster, and 

greener. Today Britain has 15,904km of route, of which 38% is electrified 
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(ORR 2020). Added safety technologies, such as Train Protection and Warning 

System (TPWS), have reduced the risk of collisions and led to British railways 

being amongst the safest in Europe (ORR 2013). Drivers, until the last decade, 

had to get out of the train cab to speak to signallers via a signal post 

telephone. Communications in the cab have since become possible using 

Global System for Mobile Communications-Railway (GSM-R), installed 

between 2009 - 2016 (Wikipedia 2021). The 7-year implementation indicates 

how long ‘new’ technologies take to integrate into an industry, like the 

railway, that must continue to operate daily. So, in train cabs, the ‘telephone’ 

is a relatively new technology.  

 

In Britain trains currently operate at varying levels of automation. Mainline 

trains are controlled manually by a driver, with safety systems such as TPWS 

that applies the brakes if the train passes a signal at danger without authority, 

or approaches buffers or a signal at danger too fast. At the high end of 

automation is Docklands Light Railway (DLR) in London. The DLR is an 

automated light metro system that is driverless (see passenger front seat 

view in Figure 2-3). Train movements are 

monitored from a control room. A staff 

member is onboard to assist passengers. 

Thameslink, use Automatic Train 

Operation (ATO) in the ‘core area’ of 

London, with drivers taking back manual 

control outside of this area. Driver 

cognition is crucial during transitions 

between different forms of driving, or 

mixed mode driving (Buksh et al., 2013). 

 

Signalling operations in Britain are 

undergoing a long-term plan to 

consolidate 800 signal boxes into 12 

centralised Rail Operating Centres (ROCs) 

 

 

Figure 2-3 Driverless DLR passenger front 
view (Authors image, 21.11.2017) 
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(Network Rail 2019). These centres benefit from upgrades in signalling 

technology to enable one signaller to control a larger area of route. This 

increase in area is evident in Figure 2-4. The figure shows the small route area 

controlled from one lever frame signal box at Egginton3 compared with 

workstations. Determining the area controlled by a workstation is one way to 

balance the task demand of signallers. At Derby East Midlands Control Centre 

(EMCC), the areas covered by the Nottingham workstation is smaller than 

others as it routes a high number of trains and contains a busy station with 

multiple platforms. Netherfield covers a larger area as it routes fewer trains, 

with no major station. The challenge is their area is difficult to alter once in 

place. 

 

Figure 2-4 Area controlled by VDU workstation at Derby, versus a Lever Frame signal box 

Presented in rank order of number of timetabled trains including freight. 

 

The advantage of the move to a modern centre is the opportunity to add 

assistive technology such as Automatic Route Setting (ARS) to signalling 

control. Half the workstations at Derby have a form of ARS (see Figure 2-4 

key). ARS makes and implements decisions autonomously (Balfe et al., 2015) 

unless the human overrides. Compared to other industry automation (Vagia 

et al., 2016), this is a high-level of automation. The ARS makes decisions 

 
3 Egginton opened in 1800s and remains in operation today (Derby Signalling 2021). 
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based on timetabled information. A simulator study found ARS reduced 

mental workload and improved performance (Balfe et al., 2015), particularly 

during normal running. Normal running in this case refers to trains running to 

timetable, without delays. In Britain, per year, approximately 10% of 

passenger trains are more than 10 minutes late at their destination (ORR 

2022). Dealing with delay is therefore a regular occurrence in Britain, 

although this varies across operators and regions (ORR 2022). Frequency of 

delays vary around the world based on factors from the condition of trains 

and track in Sweden (Palmqvist et al., 2017), to overcrowding in Japan 

(Fujiyama 2018). If trains are running late, signallers in Britain need to check 

which train ARS plans to route first to determine whether to alter that plan. 

This can increase their workload if they must check each train on repeated 

occasions. The Balfe study noted the workload reduction is not as large during 

disrupted running, and more complex effects of disruption may not have 

appeared in the simulation study (Balfe et al., 2015). In live operations, once 

ARS sets a route the signaller can see it, procedures, recommend they do not 

change the choice if there is an approaching train. In addition, the British 

control system, the signaller can only set routes for a train when that train 

will be the first to reach a junction. This means any intervention must be 

carefully timed. It cannot be corrected in future as is possible in for Train 

Control Officers in the Netherlands, or Service Direction Leaders in Germany. 

More recently the Rail Union have raised concerns that ARS can increase 

signaller workload and have requested clarification on the allocation of 

function between the signaller and the automation with regulating (deciding 

which train goes first) (RMT 2020). These staff concerns suggest the reality of 

automation in the full range of live operational scenarios, is more complex 

than a blanket reduction in MWL indicated by the simulation study.  This adds 

to the case for measures that can capture MWL during live operations, 

including during disruption. 
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The move to signalling centres is intended to benefit the signallers in other 

ways. Firstly, a positive improvement is the manual handling of heavy levers 

in a lever frame (left picture in Figure 2-5) has been replaced with buttons 

and tracker ball controls (right picture in Figure 2-5). This move has, however, 

introduced different challenges. It changes the balance between physical and 

cognitive elements of work, with increasingly cognitive rather than physical 

task components (Sharples and Megaw 2015). The disadvantages of this 

change are it includes an increased risk of underload, and associated difficulty 

of remaining vigilant whilst completing a monitoring task. In train driving the 

risk of reduced vigilance that comes from fatigue or underload have been 

address by the adoption of in-cab vigilance devices (that apply the brakes if 

the driver fails to respond in time). The implications of this are that it remains 

important in rail to measure MWL (both underload and overload), but the 

industry increasingly requires a measure that is less reliant on observable 

visual information. 

 

A disadvantage of larger centralised control is the loss of local knowledge. 

Control becomes remote from location. Lever frame boxes have a view of the 

track they control (e.g., refer to Egginton in Figure 2-5) supplemented by the 

sounds, smells and vibrations on location, of weather conditions and the state 

 

 

 

 
Figure 2-5 Comparing current signalling technologies 

Egginton Lever frame signal box (left) [Author 03.08.2018] Derby VDU workstation (right) [Author 
12.12.2018] 
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of trains and the track. Signalling in centres is remote from the location it 

controls, relying on visual information on screens and audible alarms. In 

addition, the areas become too great for signallers to have a high level of 

local knowledge. They may not know or live near the area. Automation can 

route trains when they are running normally, to timetable. When signallers 

deal with situations or incident at stations, level crossings or any degraded 

working their local knowledge can assist them. 

 

The next step change in British rail operations is the European Rail Traffic 

Management System (ERTMS) which is being introduced over the next 30 

years (ORR 2021, ERTMS 2021). Signalling will be displayed in the train cab, 

replacing line side signals, and allow an increase in capacity by spacing trains 

relative to each other rather than to line side signals. Signallers would have 

more trains in their area of control, with the automation designed to route 

timetabled trains. Signallers would need to intervene when times or patterns 

of events do not match the timetable.  

 

In summary, new technologies impact both drivers and signallers. New 

technologies take time to fully implement, meaning a telephone in the train 

cab is a relatively new technology and requiring staff to work with mixed ages 

of technology. Control is moving remote with an increase in automation. The 

automation can reduce staff workload during normal running but requires 

staff to intervene when there are delays or incidents.  

 

Having presented the rail context of this research, with examples of the 

impact of new technology, the following section will present the theory 

underpinning our current understanding of human cognition and expertise. 
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2.4  Understanding the cognitive performance of experts 

Theories of cognition and expertise, combined with neurology help explain 

human performance and why certain cognitive tasks, or combinations of 

tasks, are easy or hard for humans to complete. This section of the scoping 

review highlights current theories and concepts, models of MWL, and how 

current measures are used (Colquhoun et al., 2014). The theories and concept 

to understand the cognitive performance of experts include information 

processing, alertness, fatigue, expertise, decision making and the skills rules 

knowledge framework.  

2.4.1  Information processing 

The term ‘cognitive’ refers to “the action or process of knowing” (Oxford 

English Dictionary 2021). This happens in a sequence of stages summarised in 

Figure 2-6, adapted from Wickens (1999) and simplified from Sharples and 

Megaw (2015). This model has been developed and adapted over time to 

reflect the changing theoretical understanding of information processing, 

with the term attentional resources replacing limited processing capacity. 

Initially sensory information is perceived by our senses4 and processed in the 

cortex, initially separately for each sense. Perception then draws on this 

processed information, combined with memory, for a response to be selected 

and executed. Attentional resources acknowledges that humans have limits 

on their perception, memory and response execution (Sharples and Megaw 

2015) that constrain how they can complete a task. The sensory information 

processing combined with long-term memory could be automatic 

(involuntary), with no conscious awareness, or voluntary with varying degrees 

of conscious awareness. It is important to note, when considering MWL 

measures, the large number of processes are not conscious so cannot be 

subjectively assessed by asking people to report their workload (Meijan and 

Mulder 1992). 

 
4 Railway staff must meet requirements for hearing and sight e.g. no colour blindness. 
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Wickens’ Multiple Resources Theory (2002) considers demand, and the 

impact of resource overlap and allocation policy, to understand the extent to 

which tasks can be completed in parallel. A study that applied Multiple 

Resources Theory to the work of signallers in rail found that aspects of the 

signallers’ task required the same types of resource, so overload was a risk 

despite newer signalling technology (Krehl and Balfe, 2014). The 

observational data from the study identified twelve typical signaller tasks. The 

most frequent were monitoring, setting routes, communication (with 

colleagues and supervisors), and referring to information in the timetable or 

Train Running System5 (TRUST). Signallers use both timetable (the planned 

schedule) and TRUST information (current train punctuality data) to plan 

which order to route trains. This enables signallers to balance maintaining the 

timetable and, when possible, recover from previous delays. The observer 

noted that during more than half the time of observing tasks were completed 

in combination such as whilst maintaining monitoring or setting routes. Using 

the newer VDU based system (a set of computer screens as shown in the right 

image in Figure 2-5), compared to an older NX Panel (an abbreviation of 

eNtrance-eXit control panel, with physical push/pull buttons for route 

setting), was found to increase referencing to timetable or TRUST 

 
5 Train Running System (TRUST) is a system contains train operational data as compared to schedule. It 

monitors train movements for punctuality and has been used since the 1980s. 

 

Figure 2-6 A general model of human information processing (Wickens et al., 1999) 
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Information, and increased attending to audio signals. In comparing these 

findings using the Multiple Resources Theory found that signaller tasks, such 

as monitoring and routing, make use of similar cognitive resources. Whilst 

VDU workstations can cover larger areas with the use of automation, the 

interaction with the control system is largely the same. The study concluded 

that overload remained a danger, particularly during non-normal working 

conditions.  

2.4.2  Vigilance and alertness 

Vigilance is the ability to maintain focus of attention over prolonged periods 

of time (Davies and Parasuraman, 1982). Vigilance as a construct is pertinent 

to drivers, signallers, and to this research when considering the unobservable 

aspects of MWL. The subject of vigilance has also become more pertinent as 

automation has increased (Parasuraman and Riley, 1997), changing human 

roles to more of a monitoring task. Vigilance is considered here, along with 

the associated constructs of attention, alertness, arousal, and concentration, 

and how they relate to MWL.  

 

The derivation of vigilance is the Latin for ‘keeping awake’ and alert. It is a 

term used by cognitive neuroscience and psychology researchers (Oken et al., 

2006). In psychology research, the term vigilance relates to signal detection 

and readiness to respond. Vigilance decrement describes a decline in 

attention performance, that emerged from research with radar and sonar 

operators during World War II (Mackworth, 1948). The research found 

vigilance wanes quickly in a monitoring task, with a 15% decline in signal 

detection after 30 minutes. It has since been found this vigilance decrement 

affects experienced and naïve watchkeepers alike (Warm et al., 2008), and 

has been demonstrated in operational and laboratory settings (Baker, 1962; 

Pigeau et al., 1995). In rail, train drivers must be vigilant (Gillis, 2016), with a 

test for vigilance forming part of selection for drivers (Train Driver, 2021). The 

importance of vigilance in railway operations is evidenced by the presence of 
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a vigilance device in train cabs, alarm if the driver has not responded to any 

controls for a period of time (Whitlock et al., 2018). 

 

Attention, in comparison, derives from the Latin ‘to take notice of’. Attention 

is more focused on cortex activation that supports information processing 

(Mesulam, 1990). Where vigilance and attention overlap are in the term 

sustained attention, which describes the ability to attend over time (Davies 

and Parasuraman, 1982). Vigilance can be viewed, therefore, as synonymous 

with sustained attention (Parasuraman et al., 1998). In rail, errors in attention 

of train drivers were identified as a contributing factor to certain incidents, in 

particular Signal Passed At Dangers (SPADs) and Train Protection and Warning 

System (TPWS) activation, (Madigan et al., 2016), where a train has passed a 

stop signal and the train breaks automatically applied to protect trains ahead. 

The term alertness refers to the state or quality of being alert, whilst also 

acknowledging the part played by cognitive processing. There are two types 

of alertness: phasic, which focuses on the orienting response to stimuli 

(Sokolov, 1963); and tonic alertness, which can be viewed as synonymous 

with vigilance and sustained attention (Oken et al., 2006). This way of viewing 

vigilance being tonic alertness and sustained attention, implies a degree of 

arousal on the sleep wake axis and the level of cognitive performance (Oken 

et al., 2006). This view suits this research, in that it considers both the 

physiological underlying state, and the impact this has on cognitive 

performance. When vigilance is good, tonic alertness is sufficient for cognitive 

performance to be sustained over time. Oken recommends future studies 

analysis the finer temporal aspects of this physiologic-performance 

relationships. 

 

Arousal, mentioned briefly above, overlaps with alertness. Arousal is 

conceptually distinct, referring to a state associated with the level of 

activation of the cortex in the sleep-wake cycle (Oken et al., 2006). Clinical 

neurophysiologist may use the term vigilance level here to refer to arousal 

level on the sleep-wake spectrum, without reference to cognition (Oken et al., 
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2006). In psychophysiological literature the term arousal describes a level of 

cortical, behavioural, or autonomic activity (Hugdahl 1995). The common 

usage of arousal can imply sexual arousal. This is not the focus here, where 

instead the focus is on cognitive ‘alertness’. 

 

Concentration is a construct that includes attention and focus on one thing, 

but not explicitly specifying a duration. As a term it is relevant here as it is 

recognised by SMEs in rail and is mentioned as a Non-Technical Skill in Rail 

(see Table 3-2), and during the development of ODEC as a workload measure 

for railway signallers, it was a term found to be relevant across all four 

elements considered relevant to MWL namely operational infrastructure, 

indicators, processes and service pattern (Pickup et al., 2010). 

 

Regarding how vigilance relates to MWL and task demand, traditionally 

vigilance has been viewed as ‘benign’, with monotonous tasks assumed to be 

mentally undemanding (Warm et al., 2008). More recently, however the 

opposite has been indicated suggesting that, when task demand is low, 

greater effort is required for monitoring tasks thus increasing reported MWL 

(Warm et al., 2008). Warm et al. found undemanding tasks gained surprisingly 

high MWL rating on NASA TLX, especially effort and frustration (Warm et al., 

1996). The researchers proposed this could reflect an increase in attentional 

resource exerted to overcome the tedium of the task. In contrast, when task 

demand is high, high vigilance is linked to increased MWL and stress (Baker, 

1962).  

 

In summary, vigilance overlaps with several associated constructs are relevant 

to this research as, with an increasingly monitoring task, they are associated 

with unobservable mental workload, and consider the temporal interactions 

between physiology and performance. The focus here is on cognitive 

‘alertness’, or tonic alertness, which can be viewed as synonymous with 

vigilance and sustained attention (Oken et al., 2006). In this research the term 

‘alertness’ will be used throughout to refer to the construct of vigilance. 
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2.4.3  Fatigue 

Fatigue is a significant performance shaping factor in railway operations 

(Kyriakidis et al., 2015). Yet, like MWL, the search for measures of fatigue 

continues and the management of fatigue faces organisational barriers in the 

rail industry. Consideration of how fatigue is measured and managed in rail 

could help inform the introduce of new physiological data into rail.  

 

Fatigue can occur due to both sleep related and task related factors (May and 

Baldwin, 2009). The UK rail regulator defines fatigue as ‘a state of perceived 

weariness that can result from prolonged working, heavy workload, 

insufficient rest and inadequate sleep’ (ORR 2012). Research on sleep related 

factors shows higher fatigue levels are associated with less observed sleep or 

lack of sleep (Caldwell et al., 2009; Darwent et al., 2015; Dawson and 

McCulloch, 2005; Dorrian et al., 2011; Young and Steel, 2017), with a clear 

relationship between the length of time off, time-of-day and the amount of 

sleep obtained (Roach et al., 2003). In addition, circadian disruptions 

(Caldwell et al., 2009) or sleep pattern interruption (Åkerstedt 1991) can 

contribute to fatigue. Task related factors associated with fatigue include long 

duty periods (Caldwell et al., 2009) such as 9 -12 hour shifts (Filtness and 

Naweed, 2017), monotonous tasks with low task demand (Anund et al., 

2015), or tasks requiring high mental effort and sustained vigilance (Phillips et 

al., 2010) which does not allow for recovery (Dunn and Williamson, 2012). 

The effort and vigilance (alertness) element of this are where physiological 

data may detect changes.  

 

Fatigue and sleepiness are common in transport operations and a significant 

cause of safety-critical events (Anund et al., 2015). To date there is 

proportionally more research in road and aviation industries than in rail 

(Anund et al., 2015), such as aviation (Caldwell et al., 2009) and automotive 

(May and Baldmin 2009). In the rail industry much fatigue research has 

focused on train drivers (Sussman and Coplen 2000), identifying fatigue as 
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affecting train drivers (Filtness and Naweed, 2017) especially freight drivers, 

and especially at night. Fatigue of train drivers can affect passenger services 

too, as demonstrated by the accident of a train collision with buffers stops at 

a terminus station after the driver had a micro sleep at the end of night shift 

after 18 hrs awake (RAIB (2017). Other research across the world confirms 

fatigue can negatively affect signallers and dispatchers (Sussman and Coplen 

2000, Dorrian, Baulk and Dawson 2011, RAIB 2020) and other shift workers 

(Dorrian, Baulk and Dawson 2011). 

 

Current methods to manage fatigue include employer and employee controls. 

Employer controls include: limits on working hours across transport industries 

(Jones et al., 2005) and in rail (Young and Steel 2017); rosters (Ashton and 

Fowler 2005); fatigue modelling, including biomathematical, to predict fatigue 

risk prior to implementing a roster (Darwent et al., 2015; Filtness and 

Naweed, 2017; Young and Steel, 2017); and fatigue monitoring such as in 

USA, Canada and Australia (ONRSR 2021, Transport Canada 2022). Employee 

controls include self-regulation and sleep management, and techniques to 

counter fatigue such as going for a walk, having a nap (Filtness and Naweed, 

2017), and consuming caffeine (Dunn and Williamson, 2012, Anund et al., 

2015). Individuals can, however, be bad at judging their own fatigued state 

(Martindale, 2012).  

 

Despite the countermeasures mentioned above, research in the UK and 

Australian rail industry identified that organisational culture can be a barrier 

to fatigue management. These may be relevant to the introduction of 

physiological measures. There appears to be an ingrained culture surrounding 

fatigue (Young and Steel 2017), in a highly reactive organisational culture 

where fear has developed, so even the mention of fatigue is considered taboo 

(Filtness and Naweed, 2017). This is potentially due to peer pressure or 

knowing it will increase the workload of colleagues (Young and Steel 2017), or 

motivated by the extra income, despite knowing the risks (Filtness and 

Naweed, 2017). It is thought that management aspects of organisational 
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culture are also barriers. Staff fear reporting fatigue in case it results in a 

medical assessment (Filtness and Naweed, 2017). Instead they may phone in 

sick but not declare fatigue (Filtness and Naweed, 2017; Young and Steel, 

2017). In addition, management messaging around fatigue can be 

inconsistent. Rosters can be designed to reduce the risk of fatigue, yet 

managers may then agree to shift swapping or overtime that leave 

inadequate time to recover. Staff raised concerns that managers do not 

monitor actual shifts worked (Filtness and Naweed, 2017). Secondly, with this 

research successful application of MWL measures would require 

organisational acceptance. 

 

In future, fatigue management in rail could benefit from joint responsibility 

between employer and employee, monitoring fatigue reports, and monitoring 

psychophysiological state (Young and Steel 2017) once measures are 

sufficiently mature. 

2.4.4  Skills rules knowledge framework 

Rasmussen’s skill-rule-knowledge framework (Rasmussen, 1983, Rasmussen 

and Jensen, 1974) is very relevant to signallers because it relates to those in 

control positions (e.g. processing plants), and performance is linked to varying 

levels of familiarity with the situation or task. Rather than claim that an 

individual is an ‘expert’ in all situations, it focuses on the type of situation or 

task individuals face.  

• At the Skill-based level performance is based on pre-existing learnt 

analogue patterns of behaviour. Behaviour is unconscious. This 

level works well with routine, familiar, non-problematic activities.  

• At the Rule-based level performance is based on a stored set of 

rules, where a situation is recognised as a fitting type, and this in 

turn defines the action required. Behaviour is conscious after a 

situation is identified as unfamiliar or non-routine.   
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• At the Knowledge-based level performance is based on conscious 

analytical thought, applied to novel situations, where previous 

learnt responses are unsuitable. 

These levels exist within each person. Experience built over time increases the 

range of situations that can be recognised at the rule-based level, and 

experience to drawn on for experts at the knowledge-based level to analyse a 

novel situation and determine a suitable response.  

 

The Generic Error Modelling System (GEMS) presents an integrated picture of 

what types of human error occur at each Skill, Rule and Knowledge-based 

levels (Reason, 1990). At the Skill-Based level slips and lapses occur during 

routine familiar activities and tasks. Skill-Based errors precede the problem. 

Examples include to inattention such as omission following an interruption or 

mistimed checks. Rule-Based mistakes occur when conditions deviate from 

planned and inappropriate rules are applied. These ‘bad rules’ could be either 

an encoding deficiency of the problem leading to misdiagnosis, or an action 

deficiency of applying the wrong rule. Both Skill-Based and Rule-Based errors 

are ‘hallmarks of expertise’ (Reason, 1990 p.59) and skilled performance, 

which are more abundant than the final type of error. Knowledge-Based 

mistakes occur when an individual realises the situation they face is outside 

their repertoire of Rule-Based solutions. Examples in include failure to notice 

the absence of relevant features or the tendency to focus on the wrong 

features. Either lead to Knowledge-Based mistakes being made. Both Rule-

Based and Knowledge-Based mistakes occur after a problem occurs. 

2.4.5  Expertise 

Expertise is relevant to this research both in terms of seeking a measure of 

experts’ MWL and elicits knowledge from experts as input to the two 

interview studies. Definitions of expertise are numerous (Farrington-Darby 

and Wilson, 2006) and vary across disciplines of research including 

experimental psychology, computer science and knowledge acquisition 
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(Hoffman, 2014). Whilst types of expertise can include physical, cognitive, or 

social (distributed cognition) (Rasmussen et al., 1991), in this research the 

focus is on cognitive expertise. Early research in expertise studied chess 

players’ ability to perceive patterns (de Groot, 1965) and encode positions 

into larger perceptual chunks (Chase and Simon, 1973; Lenat and 

Feigenbaum, 1988). Since then, aspects of expertise have expanded to 

extensive literature in psychology on strategies, judgement, decision making 

and associated phenomena of cognition (Hoffman, 1998), and the study of 

experts in cognitive science research (Shanteau, 1992). In this research the 

interest in expertise is focused less on the mechanisms of how experts make 

decisions, and more acknowledging that expertise contributes to managing 

MWL, successful completion of tasks and may, therefore, influence 

individuals’ physiological data.  

 

The research takes the cognitive science view that experts are more skilled 

and competent than novices (Anderson, 2000). Attributes from across 

disciplines that contribute to expertise include extensive knowledge, superior 

cognitive mechanisms such as memory organisation (Glaser, 1987), memory 

capacity, perception of meaningful patterns, identifying exceptions, and 

faster problem solving (Chi et al., 1988). Experts demonstrate a rich 

repertoire of strategies, are greater at inferring the meaning and implications 

behind information (Cellier et al., 1997) including dealing effectively with rare 

or tough cases (Hoffman et al., 1995). Experts have highly developed 

attentional abilities, can adjust decisions continuously, and have self 

confidence in their decision making (Shanteau, 1992) with economy of effort 

(Hoffman et al., 1995). Attributes relevant to railway staff include: inferring 

from information the implications for railway operations; faster problem 

solving so staff continue to meet the timetable where ever possible; self-

confidence means they can make key operational or safety decisions 

independently; economy of effort; and a rich repertoire of strategies 

including tough cases; and the ability to adjust decisions continuously, 

enables staff to dealing with disruption or incidents effectively.  
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Experience built over time is an important contributor to expertise (Anderson, 

2000; Bullough and Baughman, 1995; Ericsson and Smith, 1991). In this way 

expertise is not static (Bullough and Baughman, 1995), instead expanding and 

changing over time. The development of expertise can be broken down into 

five stages: novice, advanced beginner, competent, proficient, and expert 

(Dreyfus and Dreyfus, 1986). The concept of progression in expertise is not 

new, with craft guilds in the Middle Ages having a “Guild” terminology for 

development stages of expertise including novice, apprentice, journeyman, 

expert, and master (Hoffman et al., 1995). A distinguishing point when an 

apprentice becomes a journeyman is when the individual is deemed 

competent to perform a day’s work unsupervised, working under orders. In 

rail this is equivalent to when a signaller or driver is passed out to work 

without a trainer present. Then experts are distinguished journeyman with 

extensive experience, who can deal effectively tough cases with economy of 

effort. A master is qualified to teach, and their judgements set the regulations 

or ideals (Hoffman et al., 1995). This research includes input from a range of 

experts from ‘journeyman’ experienced staff to those ‘masters’ who train 

them. The research has implications that extend to from trainees (apprentice) 

to master and the decisions made by managers and policy makers on the 

workload of staff. 

 

Expertise is pertinent to this research in terms of methodological approach, as 

the research includes eliciting knowledge from domain experts. The 

robustness of such research relies on both identifying experts for participants 

and selecting appropriate methods for knowledge elicitation. Identifying 

experts includes consideration of their level of expertise such as years of 

experience, type of expertise including qualification, professional 

memberships, and whether they are practitioners with experience of daily 

problem solving or academic experts with more theoretical understanding 

(Shadbolt and Smart, 2015). The appropriate selection of which level and type 

of expert will depend on the knowledge being sought. In this research the 
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focus is on practitioners, with some input from academics, but primarily 

qualified railway staff.  

 

Various methods can be used with experts for knowledge elicitation. The 

appropriateness of these methods depends on the type of expert the type, 

and the type of knowledge such as Domain (declarative), Inference 

(concepts), Task (goals and procedures) and Strategic (broader system and 

controls) (Shadbolt and Smart, 2015). All four types can contain both explicit 

knowledge gained from what is taught and implicit, or tacit, knowledge from 

experience. Examples of methods that work with experts include 

observations, ranking exercises, interviews, and event recall. Observations 

suit identification of aspects of the task and procedures, and more implicit 

tacit knowledge learnt from experience (Milton N, 2003). Ranking or sorting 

exercises are used in some domains to explore hypotheses, whilst interviews 

work well to gain an overview of the domain, concepts, and reasoning 

(Hoffman et al., 1995). Semi-structured interviews add some structure to this 

method to make efficient use of the experts’ time. One issue to note with 

experts in interviews is their differential access due to internalisation and 

reduced verbal access to their knowledge. As expertise increases, some 

aspects of expertise are not available to consciousness (Kim and Courtney, 

1988; Salter, 1988). This means an individuals’ knowledge increases, their 

ability to verbalise their knowledge decreases as conscious access to that 

knowledge decreases.  Interviews may, therefore, yield more information 

from participants with intermediate levels of experience (Shadbolt and Smart, 

2015). In an interview, or in addition to interviews, use of test cases can be an 

effective technique for knowledge elicitation (Grover, 1983). Event recall can 

also be an effective way to elicit knowledge as experts often have clear 

memories for tough or salient cases (Kolodner, 1991; Slade, 1991). All these 

methods are relevant to the research. 
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2.4.6  Decision Making 

Klein’s decision-making Models and frameworks in the literature explain 

human cognitive capabilities, such as decision making in complex conditions. 

Klein’s Recognition-Primed Decision model (Klein 1993) indicates experts use 

their experience to form a repertoire of patterns enabling them to choose a 

suitable course of action rapidly. This would fit with psychology studies of 

visual recognition versus recall showing humans recognise images they have 

seen before.  

 

In professional knowledge, Schön (1982) distinguishes between knowing-in-

action, reflection-in-action, and reflection-on-action. Knowing-in-action 

includes ‘Spontaneous behaviour of skilful practice’ (p.51) and ‘knowing more 

than we can say’ (p.51). When performance matches expectation, humans 

tend not to think about it. This fits with Rasmussen’s skills level, where 

experts complete their actions successfully without conscious awareness. 

Reflection-in-action ‘is both a consequence and cause of surprise’ (p.328), 

occurring within the ‘action-present’ whilst action can still make a difference. 

Experts seek cues to a standard solution, moving from a stance of tentative 

exploration to one of commitment (p.102). This fits with the rules and 

knowledge levels, and expert being conscious of the decision. Schön notes the 

importance of timing. What is meant by this is, reflection-in-action is swifter 

so can be applied in a timely manner during a task. It can be dangerous if it 

tips into reflection-on-action as this could unintentionally delay a decision, as 

reflection-on-action tends to be a longer process. 

 

These concepts here are of particular interest in this PhD. Experts may be 

swifter, yet still suitable, as they draw on a repertoire of patterns. Secondly, a 

limitation of existing subjective measures is they only detect the conscious 

aspects of workload, and not all cognitive performance is conscious. Finally, in 

interviews, similarly, individuals may be able to recall moments of surprise 

but less able to recall what they did for actions that were successful. This 
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matches what methods are suitable for use with experts. The SRK levels of 

performance explain how consciousness of actions align with different levels 

of expertise. 

 

2.5  Models of Mental Workload 

Mental workload (MWL) is a multi-dimensional concept (Xie and Salvendy 

2000, Wickens 2008, Sharples and Megaw 2015) with no single agreed 

definition. Debate continues as to what exactly it is (Pickup, Wilson, Sharples, 

Norris, Clarke and Young 2005) and whether it measures what people do or 

how they feel about it (Pickup et al., 2005a). It is important to recognise the 

variation that exists in the definition of MWL. This presents a challenge when 

describing precisely what does or does not indicate MWL in previous, and this 

current, research. In this research, MWL is the umbrella term referred to 

throughout the thesis that acknowledges MWL is best understood through its 

constituent factors. A model of MWL is presented in Figure 2-7.  

 

Figure 2-7 Mental workload Framework (Pickup and Wilson 2007) 
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Commonalities across this and other models and theories include a distinction 

between external task demand imposed upon a person, individual workload 

factors including effort and how they perceive the workload, and the 

performance outcome or work result. This research explores what specific 

factors of MWL could be inferred from physiological data, drawing on 

previous research findings and the novel contributions presented in this 

research. 

 

External task factors are stressors such as, but not limited to, time pressure 

(Hendy 1997) and task complexity (Hart and Staveland, 1988). Internal factors 

include pre-existing individual characteristics such as experience, fatigue 

(Klein and Malzahn 1991), and other performance shaping factors (Kyriakidis 

et al., 2015). There are then information processing limitations that should be 

considered determining the mental capacity spent on the task (Kahneman 

1973). The workload experienced by an individual can be measured in terms 

of individual effort, and any associated strain (Young et al., 2015). The NASA 

TLX workload measures, described in 2.6.1 , includes ‘frustration’ as a factor 

to include stress or annoyance. The inclusion acknowledges that emotional 

response can contribute to workload (Meshkati et al., 1995). In a complex 

work setting, Xie and Salvendy (2000) mapped out these external, internal 

and degrading factors, with their combination predicting performance (Xie 

and Salvendy, 2000), see Figure 2-8. 

 

 

Figure 2-8 Factors contributing to mental workload  

External, internal, and degrading in a complex setting (Xie and Salvendy 2000) 
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These models suggest various factors can individually, or in combination, 

impact workload and are relevant to understanding the workload of staff in 

live railway operations. Both task factors and individual factors will be 

considered in this research.  

2.5.1  The dichotomy of overload and underload 

Overload and underload are relevant to this research, as industry concerns. 

Regarding overload, as task demand increases, task related effort can initially 

be increased to sustain a level of acceptable performance. This is shown in 

region A3 the model in  

Figure 2-9 (deWaard 1996). If workload continues to increase, overload 

occurs and performance decreases (region B in 

Figure 2-9).  

 
 

Figure 2-9 deWaard’s workload and performance model (deWaard 1996) 

 

When task demand increases, and effort can no longer sustain performance, 

research in air traffic control suggests a ‘precipice of performance’ is followed 

by a rapid, rather than graceful, degradation in performance (Edwards et al., 

2016). This decline is as shown by the grey dotted line in Figure 2-10. 
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Figure 2-10 Degradation in performance with increase in demand (Edwards et al., 2016) 

 

Regarding underload, deWaard (1996) also predicts that if workload drops to 

a very low level, then performance will drop once the operator cannot 

counteract their reduced state. On the other hand, Young and Stanton (2002) 

propose that performance decrements that occur with mental underload 

could be explained by reduced attentional resources. In a simulation car 

driving study they found, measuring secondary task performance, that total 

attentional resources shrunk to match the task demands. Whilst no studies 

were found that replicate these findings in rail, it seems likely that there are 

parallels relevant to a driver’s or signaller’s task. 

 

In addition to understanding the range of potential contribution factors is the 

concept of how workload can accumulate over time (Xie and Salvendy 2000). 

Performance can be maintained during a temporary increase in task demand 

through increased effort. A sustained increase in task demand will result in 

overload and associated drop in performance (see Edwards’ precipice of 

performance in Figure 2-10). This presents the possibility, in future, of 

determining if a pattern or chronology of factors lead to certain workload or 

performance outcomes. If a pattern in workload is discernible, and monitored 

over time, this could be a leading indicator of when workload is changing 
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towards a negative impact on performance. This could apply to both overload 

and underload. In the rail industry this would be relevant to drivers and 

signallers. Underload risk could be assessed by considering attention. 

Overload risk could be assessed by considering duration of high task demand 

or other MWL factors.  

 

2.6  Current measures of Mental Workload in the rail industry 

The measurement of MWL has been the subject of research for over 50 years 

(Moray 2008). A wide range of measures have been established including 

primary and secondary task, subjective ratings, and physiological (Meshkati 

1995). Originally MWL measures focused on discrete tasks (Moray 2008) in 

controlled conditions. More recent work considers dynamic tasks (Xie and 

Salvendy) and how individuals adjust their effort to sustain performance 

(Edwards et al., 2016, Young and Stanton 2002). Building on this work, and 

most relevant to rail, are measures that suit continuous dynamic tasks, detect 

a range of individual experience, levels of demand and effort, and identify 

how this experience changes over time, in live operations to measure Work-

As-Done.   

2.6.1  Criteria for workload measures 

Selecting the most suitable workload measures requires consideration of the 

several criteria (Eggemeier et al., 1991, Sharples and Megaw 2015), as 

presented in Table 2-1. In this research minimising intrusiveness is a priority 

to ensure measures suit implementation in an operational environment and 

can be collected over longer periods. For this reason, secondary measures, 

that draw attention away from the main task, are not suitable for live 

operations due to their intrusion into the task and their risk of distraction. 

Sensitivity to temporal changes in MWL is also a priority, to capture the full 

range of MWL experienced in live operations. Staff acceptability is essential to 

apply these measures. Implementation considerations are relevant as they 
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have practical implications for the researcher working in a live environment. 

Reliability can be drawn from the literature where evidence exists. Validity 

and diagnosticity are to be determined from the literature and the 

contributions of this research.  

 

The criteria in Table 2-1 is narrower in their definition of MWL compared to 

the models of mental workload presented in Section 2.5 . Here 

selectivity/validity is deemed acceptable if only cognitive demands are 

detected as opposed to emotional stress. This is despite the models 

acknowledging that stress is a factor that contributes to MWL (Hart and 

Staveland, 1988). To determine the suitability of physiological data for the 

measurement of MWL. It is proposed here that that what factors 

physiological data are sensitive and diagnostic of should be explored first. The 

research remains open to what factors non-intrusive measures are sensitive 

to. Then an informed decision can be made as to whether physiological 

measures are beneficial to the measurement of MWL in live operations, and 

what defines MWL as a construct.  

 
Table 2-1 Suitability of mental workload measures 

Area of Expertise Role 

Sensitivity Detect changes in task difficulty or 
demands 

Reliability Must reflect consistently the mental 
workload 

Selectivity/Validity Sensitive only to differences in cognitive 
demands, not other variables such as 
physical workload or emotional stress 

Diagnosticity Identifies changes in workload variation 
and the reason for those changes 

Implementation Includes aspects such as time, 
instruments, and software for the 
collection and analysis of data. 

Intrusiveness Should not interfere with the primary task 
performance 

Subject acceptability Subject’s perception of the validity and 
usefulness of the procedure. 

 

This scoping review presents current workload measures used in rail, then the 

potential physiological measures that could fill gaps in the research. 
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2.6.2  Subjective measures of Mental Workload 

Subjective measures capture individual experience, with high face validity, as 

data is derived from those completing a task. A task may result in different 

mental workload ratings for different individuals (Xie and Salvendy 2000, 

Pickup et al., 2005a, Matthews et al., 2014). Whilst this could be viewed as a 

weakness in a measure, Rouse et al. (1993) suggests this individual experience 

of load may be of greater relevance than imposed load. To give changes 

during a task these measures can require interruption of a task. Alternatively, 

an estimate can be given prior to a task or an average provided after a task. A 

Toolkit of measures was developed for rail in the early 2000s to suit use in the 

field for signallers (Lowe and Pickup, 2008), and drivers (RSSB 2005a, RSSB 

2005b). Pickup noted in their Mental Workload Framework that workload 

comprises a sequence of stages. The measures developed addressed different 

aspects of this Mental Workload Framework.  

Predictive subjective measures 

The Operational Demand Evaluation Checklist (ODEC) is predictive tool, 

designed for signallers, that assesses potential task load and demand (Pickup 

and Wilson 2007). It counts the number of operational infrastructure 

elements such as junctions, stations, the volume of traffic in the timetable 

and complexity introduced by known incidents or failures. It can be used prior 

to other workload measures. It is extensively applied in the field by Network 

Rail and Human Factors consultancies (Delamare et al., 2016). Whilst it 

provides a first good “pass” on projects (Delamare et al), as technology 

changes, Network Rail are looking to update it (private communication 2018). 

As ODEC focuses on task demand factors, rather than individual experience, 

and Work-As-Imagined, it is out of scope in this research.   
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Subjective measures applied during the task 

The Integrated Workload Scale (IWS), developed for signallers, rates 

subjective workload on a 9-point scale (Pickup, Wilson, Norris, Mitchell and 

Morrisroe 2007). The principles of IWS came from the Instantaneous Self-

Assessment (ISA) tool (Tattersall and Foord 1996), a single 5-point scale 

designed to report a level of workload at regular points during a task. 

Originally designed by NATS (National Air Traffic Services).  IWS, like ISA, was 

specifically developed for use in an applied setting. It collects real-time 

changes in MWL through a task, and the range of workload including peaks 

and troughs (Pickup et al., 2005b). It is suitable for use with both signallers 

and drivers in simulators to provide patterns of workload during dynamically 

changing work conditions. It does not provide information on the sources of 

workload. An example application was in a simulator, signallers gave frequent 

verbal rating of their workload which were recorded by researchers (Balfe et 

al., 2015, Pickup et al., 2005b). To date, if applied in live operations, the scale 

is verbally reported to an observer (Network Rail Ergonomics Team 

communication 2021). Despite verbal reporting, the risk of interfering with 

the task is sufficient that use is currently limited to simulator.  

Retrospective subjective measures 

These measures avoid interrupting the task, so suit application in simulator 

and live settings. NASA Task Load Index (TLX), (Hart and Staveland 1988) is the 

most widely used subjective measure presented here. NASA TLX has six 

subscales: Mental Demands, Physical Demands; Temporal Demands; Own 

Performance; Effort; and Frustration. It considers both demands from the 

task, and an individuals’ feelings about it, identifying how much each factor 

contributes to workload. It does not provide temporal sensitivity. It has been 

used in rail, with adaptation, in research with train drivers (Large et al., 2014; 

Larue et al., 2016) and signallers (Thomas-Friedrich, 2017). 
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The Defence Research Agency Workload Scale (DRAWS) is another 

retrospective tool for train driver mental workload (RSSB 2005a, RSSB 2005b), 

based on a Defence Research Agency (DERA) workload tool (Jordan et al., 

1995) to identify the nature of the workload being experienced, with four 

descriptors deemed more applicable to driver workload: receiving 

information, mental operations, making responses and time pressure. 

 

The Adaptive Subjective Workload Scale (ASWAT) is designed for signallers to 

complete after a shift and was designed to compare two different times. It 

rates three factors that contribute to workload: time (how much spare time 

they have), mental effort (amount of mental effort or concentration) and 

pressure (level of problems, frustration, or anxiety). ASWAT was adapted 

from the Subjective Workload Assessment Technique (SWAT) (Reid and 

Nygren, 1988). Two main adaptations were, firstly, the term ‘pressure’ 

replaced ‘stress’, as signallers viewed stress as a weakness, whilst pressure 

was more frequently associated with workload than psychological stress. 

Secondly the weighting phase was removed to make the measure swifter to 

use in the field (Pickup 2006). The ASWAT provides an indicator of ‘typical’ 

workload at a location.  

 

Overall subjective measures are sensitive and valid measures of MWL. Their 

sensitivity to temporal changes in a live environment however, come with a 

risk of task interruption. They can only provide part of the picture. 

2.6.3  Observational 

Observations, including time occupancy calculations (are used in live rail 

operations, capturing Work-As-Done, to assess proportion of time staff are 

spending on types of activity (Sharples et al., 2011, Balfe et al., 2008, 

Delamare 2016, Thorne and Rawlinson 2021). In such studies of signallers, the 

research records the predominant activity in the preceding 5 seconds, 

applying one of five categories: interaction (inputs e.g. setting a route); 
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planning (referring to timetable and live running information); monitoring; 

communication (telephone, radio or face to face); and quite times (e.g. non-

work talking with colleague). 

 

Observations benefits from minimal or no interference with the task but 

requires an observer and a Subject Matter Expert (SME) to help articulate the 

motivations behind the observed behaviours (Delamare 2016). A limitation is 

it may fail to detect MWL associated with monitoring, planning and decision 

making as individuals as theses may not present with physical observable 

markers. The data gathering requires a high level of attention from the 

observer(s), so it can only be applied for short periods (less than 1 hour). This 

in turn limits the range of workload that can be detected, as it is not possible 

to predict clearly which hour MWL will be at its highest.  

 

If new measures could collect data over longer periods, they could show a 

wider range of workload throughout and across shifts. During COVID-19 all 

forms of this type of in-person assessment stopped, increasing the interest 

and relevance in measures that could be used without an observer present. In 

future, as tasks increase in monitoring, there will be a need for measures that 

determine workload from fewer observable behaviours.   

2.6.4  Modelling 

Computer modelling, and high-fidelity simulators, can predict an estimation 

of task demand. A measure for signaller workload is the D-MOD modelling 

tool (Delamare et al., 2016) provide both static and dynamic results of 

predicted workload for a signaller workstation. It incorporates a semi-

automatic calculation of ODEC. The second signaller measure, currently being 

developed with Network Rail is the Workload Assessment Calculation Tool 

(WASCAL) (Zeilstra 2021). Modelling has also been applied to train diving 

(Hamilton and Clarke, 2005), including predictions of SPAD risk. A SPAD is 

when a train passes a red stop signal and is a potential precursor to a railway 
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accident. In the United States it is known as a stop signal overrun. A strength 

of modelling is that multiple scenarios can be assessed, including normal 

running and perturbation. A limitation is they do not incorporate the varying 

demand from telephone calls. Modelling, as with any predictive tool, 

measures Work-As-Imagined, and inputs loads, rather than individual 

experience of workload. Ideally any measures that suit live operations could 

inform more accurate modelling. 

2.6.5  Potential of physiological measures 

Physiological, or psychophysiological, measures infer MWL from bodily 

activity such as heart rate. They show interesting potential to explore 

individuals’ experience of MWL, including momentary peaks and underlying 

physiological state, with minimal task intrusion. These measures have been 

developed in parallel to MWL measures, and been applied in other industries, 

but with limited application in rail. When the research commenced, only two 

studies were identified from live railway operations: one involving train 

drivers (Song et al., 2014); and one involving signallers (Broekhoven 2016). 

During the research, psychophysiological metrics were noted by Rail accident 

investigators as a valid measure of drivers’ physical state in future, specifically 

fatigue (Young and Steel 2017). A research gap was identified to explore how 

physiological measures could contribute to MWL assessment in rail. In doing 

so this research explores the physiology task interface, and the HCI of devices.  

 

2.7  Conclusions 

This chapter presented an overview of the rail industry context and a scoping 

review of the theories that underpin human cognitive performance, and the 

measurement of MWL. It provides a summary of the research and 

background on two research questions: How can temporal physiological data 

from wearable measures contribute to MWL assessment in rail industry live 

operations?; and what are the theoretical implications of individual 
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physiological data to changes in MWL in a workplace setting? It identifies 

current MWL measures used in rail and theories of MWL that are relevant to 

MWL in a workplace setting. The scoping review scope included both drivers 

and signallers (controllers or dispatcher roles in other parts of world). 

Proportionally less research was found that focused on signallers, which 

presented a research gap. The research therefore went on to focus on 

signallers. The tasks described here reflect this focus, with detail provided on 

signalling. Whilst the focus is on signalling centres, the implications of this 

research are applicable to other control setting where staff have safety 

oversight and responsibility for operations.  

 

The industry challenges identified were underload (attention) and overload 

(task demand and time pressure) as detrimental to performance. In addition, 

various automation technologies introduced to benefit staff workload may 

increase the risk of underload and increase workload during periods of 

disruption. This identified an opportunity for this research to explore the 

range of MWL, including between underload and overload. Taking this Safety 

II ‘what goes right’ perspective means measuring MWL that underlies 

sustainable successful operational performance. If new MWL measures could 

detect patterns, or cumulative MWL over time, these could provide both 

protective factors and leading indicators of deterioration in performance as 

MWL moves into underload or overload. Ideally applicable would be in the 

live operational environment to detect the full range of MWL experienced by 

staff. Such data could provide valuable feedback across levels of the socio-

technical system. The challenge for a measure for the live environment is to 

be sensitive to MWL whilst minimising interference with the task. 

 

Models help explain the different parts to MWL applicable to workplace, 

namely task demand, individual workload factors and performance outcome. 

In addition, research confirms various factors can influence MWL including 

external factor such as task demand and time pressure, and internal factors 

such as effort, alertness/fatigue, expertise, and self-confidence. Current MWL 
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assessment in rail includes subjective measures, observation, and modelling. 

Each have different strengths and different limitations in terms of what they 

are sensitive to and how applicable they can be to live rail operations. 

Observation detects changes over time, with minimal task interference, but is 

limited to 1 hour and may not detect monitoring or planning as they may lack 

observable markers. Modelling and simulators can assess task demand but 

are limited in their realistic range of MWL. Subjective measures provide 

differences in individual experience, and changes over time, but are more 

intrusive to the task and may not identify the source of workload. The topic of 

whether a MWL should detect external task related changes, or internal 

individual changes is an ongoing debate.   

 

Physiological wearable measures provide an opportunity to detect changes 

over time, with minimal task interference compared to asking staff to 

complete scales whilst working. They could inform management decisions 

regarding the management of MWL and the impact of change. They show 

potential to depict individuals’ experience of MWL, including momentary 

peaks and underlying physiological state. In the rail industry, such measures 

would be applicable now and in the future in rail, with relevance to both 

current level of automation in the rail industry and ERTMS in future. 

Regarding what physiological data is diagnostic of MWL depends in part on 

the construct of MWL being ill defined as to whether it is only cognitive 

demands (as in table of suitability of measures) include contributing factors 

such as stress (as in Xie and Salvendy’s research). This research is an 

opportunity to explore what physiological data are sensitive to in this setting 

(whether task demand or other factors), to then determine its suitability as a 

MWL measure.  This in turn can inform the ongoing clarification on the 

construct MWL. 
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Chapter 3:  Study 1 – Industry interviews on human 
performance in rail 
 

“Nobody goes out there to have an accident, nobody goes out there saying 

“I’m going to mess up the system today”. They’re all just trying to get the job 

done and go home at the end of the day” (Participant 11) 

3.1  Chapter overview  

This chapter presents the results from Study 1, an interview study with 

industry stakeholders. The study explored rail challenges that relate to human 

performance or new technology, individual attributes of performance, and 

how performance is assessed in rail and other transport industries. The study 

sought to identity who impacts rail operations, and industry priorities of who 

to focus the research on. This study informed the subsequent research focus 

of scope on railway signallers in live operations in later stages of the research.  

 

3.2  Introduction 

Demand for rail travel has been increasing, with passenger journeys in 2017-

2018 up 28% compared to 2007-2008 (Office of Rail and Road (ORR) 2018). To 

meet this increase in demand, the rail industry is increasing the capacity of 

the rail network by allowing more trains to use the tracks at any one time. To 

achieve this, automated and assistive technologies are being introduced to 

support some staff performing safety critical tasks. These staff have 

responsibility for the safety of themselves, colleagues, passengers, and the 

public. The industry seeks new measures to assess the impact of these new 

technologies on human performance in rail. Of particular interest are those 

technologies that assist or automate aspects of task. Their impact is that tasks 

are increasingly cognitive rather than physical, as more automation is 

introduced. This making the effort required more difficult to assess through 

physical measures or observation (Sharples et al., 2011). There is a risk is that 
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managers of staff that see staff doing less assume that the task is easier when 

in fact, an irony of automation, the difficult parts of the operator’s task 

remain or are more difficult (Bainbridge, 1983). The challenge is how to 

measure human performance and assess the impact of these new 

technologies.  

 

Automotive and Air Traffic Control (ATC) industries are included here to 

identify whether human performance monitoring and assessment of road 

drivers or air traffic controllers could be applicable to train drivers and 

signallers. These industries were chosen for their similarly increasing 

automation and more cognitive, less physically, demanding tasks in control. 

Advancements in technology provide an opportunity to assess these changing 

roles in new ways. Current self-assessment workload measures require 

interruption of a task or application only the after completion of a task 

(Sharples and Megaw, 2015). Physiological measures offer the potential for 

continuous data without interrupting the task. Physiological measures detect 

aspects of physical activity, such as Heart Rate Variability (HRA), or Galvanic 

Skin Response (GSR), that can be used to infer levels of cognitive activity. This 

study considers whether such technologies could be applied in future to 

assess human performance in rail. An important consideration is how the 

data from these technologies will be used and whether they can fit with wider 

competence and performance assessment processes. 

 

The purpose of the study is to investigate rail industry challenges relating to 

human performance, and how data on human performance is currently 

assessed across three transport industries. The study applied a pragmatic 

approach by seeking stakeholders’ perspectives to identify current challenges 

and assessments and inform the research focus. As perspectives of 

stakeholders are likely to shape their acceptance, understanding these 

industry perspectives can guide the subsequent research towards a topic 

pertinent to rail that the industry will both engage with and benefit from. The 

first part of this aimed to identify whose performance to measure, including 
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any specific new technology. The second aimed to explore the types of 

current data collection of human performance, and what types of measure 

could be applicable to rail in future. The findings from this study, in 

combination with the scoping review, informed a focus that is a research gap 

and is perceived as pertinent the rail industry.  

 

3.3  Method 

3.3.1  Study design 

The study applied a pragmatic approach (Robson and McCartan, 2015) by 

seeking stakeholders’ perspectives to guide the subsequent research focus 

towards a topic pertinent to the rail industry. The value of the findings was in 

identifying what works for industry, recognising that the reality of the rail 

industry’s operational setting is multiple, complex, constructed and stratified 

(Reichardt and Rallis, 1994). This initial study took a broad and high-level 

scope to gain a wide range of experience and opinions from stakeholders 

across transport industries. Findings were used to contextualise the findings 

and develop and refine the research questions (Thompson, 2017). 

 

This study used semi-structured interviews to explore how human 

performance is currently assessed in rail, and how it could be measured in 

future. The use of semi-structured interviews allowed the stakeholders to 

share their experiences and opinions in their own words (Coveney, 2014). The 

method included elements of both an inductive and deductive approach. The 

semi-structured interview prompts supported a top-down deductive 

approach (Robson and McCartan, 2015) with stakeholder providing answers 

and examples on existing topics. The bottom-up inductive approach was 

applied as the interviews progressed and additional topics emerged beyond 

the original prompts (Braun and Clarke 2012). The coding and analysis stages 

used a combination of both inductive and deductive approach to establish 

themes. Themes reflected both the original deductive prompts and emerged 
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during the interview process and coding. The themes that emerge from the 

interview data go beyond what can be observed (Glaus et al., 1996). The final 

themes and sub-themes reflect those relevant to the rail industry to inform 

the focus of subsequent stages of the research. 

3.3.2  Participants 

Semi-structured interviews were conducted with 14 participants, 

representing stakeholders from across the rail industry and transport 

industries. Stakeholders were those in roles most likely to make use of human 

performance data, with a vested interest in any new measures that are 

developed. They are the ones who have the potential to influence the future 

uptake of measures. The range of stakeholders included: those with current 

or previous front line operational experience; managers of staff or operations 

who are the users of the information gathered on human performance to 

inform operational decisions; and experts, including Human Factors experts, 

who are the gathers of data on human performance and developers of new 

measures to inform industry. A full list of stakeholders is presented in Table 

3-1.   

 

Recruitment was through the two industry organisations, Railway Safety and 

Standards Board (RSSB) and Network Rail, both industry sponsors of the 

research. A snowball sample approach was then taken, with each participant 

being asked to suggest other participants to ensure a range of perspectives 

from across the industry. The stakeholders from other industries were 

approached through professional contacts of researchers at University of 

Nottingham. Participation was voluntary and no financial incentive was 

provided.  

 

To provide anonymity, all interview responses were labelled with a 

participant number. Participants provided a description of their role.  The 

range of roles and expertise of these stakeholders are presented in Table 3-1.   
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Table 3-1 Participant roles and expertise (Train Operating Company (TOC), Freight 
Operating Company (FOC) 

P. No. Area of Expertise Role 

P1 Train Operations (TOC) Head of Operations, Ex Driver  

P2 Railway Human Factors, Specialist in 
Human Performance  

P3 Railway Risk Expert 

P4 Signalling Signaller 

P5 Signalling Human Factors Expert 

P6 Signalling Human Factors Expert, Ex Signaller 

P7 Train Operations (TOC) Head of Operations 

P8 Railway Human Factors Specialist 

P9 Train Operations (TOC) Head of Drivers, Ex Driver 

P10 Automotive Industry Human Factors Senior Academic 

P11 Railway Accident Investigator 

P12 Air Traffic Control Head of Human Factors 

P13 Train Operations (FOC) Operations Standards Manager, 
Professional Head of Operations, 
Ex Driver 

P14 Rail Simulation Systems Modelling and Simulation 
Expert 

 

3.3.3  Procedure 

The interviews were semi-structured, consisting of open-ended questions in 

two categories: current challenges related to human performance; and 

current data collected on human performance. During the interviews broad 

initial questions were asked including: what current challenges in rail rely on 

the performance of humans?; what new technologies are involved?; what 

data currently exist in rail that capture human performance?; how are data 

collected?; and who uses the data? Follow on questions were asked to 

encourage stakeholders to explain their answers and give examples. In the 

final part of the interview, participants were provided an opportunity to 

recommend other people to be interviewed to provide another perspective. 

The study received ethical approval from University of Nottingham, as shown 

in Appendix A. The protocol used for open questions is also presented in 

Appendix A. 
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The interviews were conducted between March and October 2018. Eleven 

interviews were conducted face to face, and four over the telephone. All 

interviews were audio recorded, with notes taken during the interview to 

guide questions and capture themes. The interviews were planned to last 45 

minutes, with the actual interviews ranged between 29 – 87 minutes and 

averaged 54 minutes.  

 

In addition to the interviews, a TOC meeting of operational managers was 

attended which covered driver training, recent incidents, and current 

operational issues. This provided operational the context in which to situate 

the subsequent themes that emerged through the coding of the interviews.  

3.3.4  Data analysis 

Interview data was analysed in a series of steps. Firstly, the interviews were 

transcribed verbatim. Secondly emerging thematic analysis (Strauss and 

Corbin 1990) was used to identify codes and broad themes. An initial coding 

template was built by coding on paper using coloured pens and applied to five 

interviews. During this stage, fourteen initial codes emerged. The third stage 

involved transferring the coding from the initial paper copies into NVivo 

where another iteration of coding was conducted (Saldaña 2016). This 

iteration grouped the initial codes into themes and sub themes. The resulting 

themes were then applied to the remaining 9 interviews. The final themes are 

presented in Figure 3-1. 

 

To further explore the theme of ‘individual attributes’, a comparison was 

completed between opinions offered by stakeholders of what indicates ‘good 

human performance’, with the evidence base of two existing frameworks: 

RSSB’s Non-Technical Skills (NTS) (RSSB 2012) and Risk-Based Training Needs 

Analysis (RBTNA) tool (RSSB 2018). These highlighted which opinions match 

existing frameworks in industry, and which were additional. 
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3.4  Results 

The thematic analysis of the interviews identified four key themes relating to 

human performance in rail: People who impact rail operations; Time when 

assessed; Individual attributes; Future types of monitoring. 

The coding tree is presented in Figure 3-1. Results are then presented for 

each theme.  

 

Figure 3-1 Coding tree of key themes from industry interviews 

3.4.1  People who impact rail operations 

A theme that emerged during interviews was that, rather than only staff, the 

performance of a broad range of people can impact rail operations. One 
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specialist, when asked where in rail humans impact rail operations, answered 

“everywhere” (P11).  The following people were mentioned in interviews, 

with categorisation added here based on their visibility to passengers and the 

industry definition of Safety Critical Tasks (ORR 2017): 

• Staff  

o Front-line staff performing Safety Critical Tasks most visible to 

passengers: Driver; Guard; Train Dispatcher, Track workers.  

o Staff performing Safety Critical Tasks less visible to passengers: 

Signaller; Level Crossing Operator (including CCTV); Electrical 

Controller; Mobile Operations Manager (MOM); Maintenance 

Fitter; Shunter; Axel Inspector. 

o Managers: Managers of front-line staff; Standards Manager; 

Train Services Manager; Operations Manager; Head of 

Engineering; Head of Safety; Station Controller (who allocates 

platforms); Shift Signaller Manager; Track Section Supervisor; 

Train Running Controller; Route Control Manager; Route 

Control Incident Manager. 

o Other staff: Timetable Planners; Control Centre Technicians 

(receive fault alerts from remote condition monitoring). 

• Suppliers to operations: Signal Designer; Traffic Management System 

Designer; manufacturers; funders; government; Rolling Stock Leasing 

Companies (ROSCOs). 

• Passengers: at the platform train interface  

• General Public: road users at level crossing users; trespassers. 

 

This wide range of people shows how complex a socio-technical system rail is. 

What became apparent during interviews is the performance of any one 

human in the system is interlinked with the performance of many others. In 

terms of prioritisation of research, stakeholders indicated drivers and 

signallers would specifically suit being the focus of further research. This was 

because drivers and signallers are two of the biggest groups of staff, have 
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high levels of assessment, and complete Safety Critical Tasks. The difference 

noted between the two staff roles is the extent to which it is visible to 

passengers and the public, with drivers being a more ‘visible’ staff role. This is 

interesting as the scoping review of literature found that proportionally less 

research has been conducted on signallers. The less visible staff play an 

important role in safety and present a research gap for this research.  

3.4.2  Timing of competency assessments 

Comments revealed concerns about driver and signaller competence at 

different career stages. Assessment predominantly occurs at selection during 

recruitment, at routine competency review; and following an incident. Each 

will be presented in turn. 

Selection 

Selection during recruitment includes an interview, as well as medical and 

psychometric tests (drivers only). One TOC (P9 and TOC meeting) felt that the 

standard of candidates had reduced in recent years. More applicants now 

pass their assessment, but then fail basic training. The TOC suggested that 

this increase had been since a change to the industry’s standard Initial Driver 

Assessment in 2013. The TOC had four drivers fail training on one course of 8 

candidates (P9, TOC meeting):  

“We’ve had more failures through training in the past few years than we’ve 

ever had and at least 25% of our incidents now are down to post qualified 

drivers” [P9, Head of Drivers, Ex Driver, TOC] 

 

There is also anecdotal evidence of a change in applicant demographic: 

“Youngest freight drivers are late twenties, mid-thirties, early forties. Probably 

as a second career sometimes (having) been in the army, or police, or 

teachers. We’ve had a bank manager who’s joined because it’s good money… 

So I think the demographics are going to change over the years.” [P13, Head 

of Operations, Ex Driver, Rail] 
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“We lost people who had been in the industry for 20-30 years and spent the 

weekend looking at trains at the end of platforms. Then (new) junior people 

are doing it as a computer game in a sense, who have to learn the real world. 

It takes a long time for them to get to speed.” [P5, Human Factors Expert, 

Rail] 

One specialist suggested the pay offer could be encouraging this change in 

applicants (P7) and implied that this did not improve the suitability of 

individuals for the role. These findings may indicate that what motivates 

individuals to apply to rail is changing, resulting in people with a wider range 

of previous experience and interests working in rail. Some individuals may 

have more intrinsic reasons for applying such as an interest in rail, others may 

be motivated by more extrinsic factors such as pay and working conditions. 

 

The high failure rate of basic training suggests firstly a concern over the 

current accuracy of assessment techniques, and secondly that some 

individuals are more suited to the roles than others. Opinions expressed by 

stakeholders suggest that they believe that those with an enthusiasm for rail 

in their personal life are more suitable. Conversely younger ‘gamers’, or those 

from outside rail, are less suitable. Stakeholders also described experienced 

staff leaving the industry as a loss, implying it is a negative. Potentially the 

introduction of new technologies can lead to experienced staff choosing to 

leave rather than learn a new way of working. The same technology attracts 

new recruits who already work in a different way. There appeared, overall, to 

be a concern around how to manage the change, and a lack of clarity on what 

should be selected for.  

Competency assessment 

Once qualified, staff competency assessments occur on a rolling programme 

over 1 - 2 years (P7, P9). Signallers are observed at their workstation and 

drivers during a cab ride. Samples of voice recording are checked for correct 

use of safety-critical communications (P8). Driver monitoring includes 
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samples of data from the On Train Data Recorder (OTDR) to check 

performance such as speeding (P7) and provide feedback on good 

performance (P9) e.g. correct sequence of actions (P7). Currently, signaller 

workstation control logs are not routinely reviewed (P6).  

 

Two specialists (P3, P13) questioned whether staff perform differently when 

observed. To address this a concern a FOC has moved away from relying on 

observations:  

“The primary method of assessing a driver is a download (from) data 

recorders because they (a driver) will drive nearly perfectly if someone’s sat 

next to them … your data recorder assessment is probably warts and all. The 

detail you can get is quite astonishing.” [P13, Head of Operations, Ex Driver, 

Rail] 

A FOC’s safety team receive live OTDR alerts e.g. if a driver leaves a work site 

without turning the Train Protection Warning System (TPWS) back on before 

driving over 40 mph. Patterns in OTDR data can also show erratic actions such 

as braking and use of the Drivers’ Vigilance Device6 (DVD) (P13). This manager 

has seen in the data how drivers who are fatigued acknowledge the 

Automatic Warning Systems7 (AWS) alarm in different ways. Drivers have 3 

seconds to respond to the AWS. The manager gave the comparison between 

a driver who is wide awake will respond to reset it in one second, and a 

fatigued driver who will either respond to it at the very end of that time or 

may press it too early as pre-empting it “almost on auto-pilot” (P13). During a 

review of data from an incident, the manager reported noticing, over the 

course of the journey prior to the incident they could see the driver’s reaction 

times increasing. The manager believed this indicated the driver becoming 

more tired over time. The manager also found reviewing snap shots of the 

data with the driver a useful part of their competency assessment, to 

 
6 The Driver’s Vigilance Device (DVD) sounds an alarm after a period of driver inactivity. The driver 

must relieve pressure on the Driver Safety Device (DSD) pedal, and reapply it, in a short amount of 

time. If they do not the emergency brakes apply to the train. 
7 AWS gives drivers an audible warning and visual reminder they are approaching a distant signal at 

caution. If the driver does not acknowledge the warning the brakes are applied.  
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complement their observations in the cab. Whilst the detailed OTDR data is 

not available in real-time, if there is an event that warrants investigation, the 

data can be downloaded remotely, and a time-period reviewed.  

 

Simulators are used for training, such as drivers’ route learning (P9) and to 

practice degraded working (P13), however individual performance is not 

assessed during these sessions (P7).  

Incidents 

Staff are interviewed following an incident e.g., a Stop Short Door Release 

(when only part of a train is at a platform and passengers risk falling onto the 

track). Various sources of data can support further investigation. Investigators 

can check staff received everything they needed (P8) e.g., training. On Train 

Data Recorder (OTDR) data can identify driver errors or confirm their account 

of events. The quality and ease of access to OTDR varies across the industry. 

Signallers’ inputs are logged, but only at modern electrical control centre 

workstations (P6, P8). These logs do not identify the individual so linking data 

to an individual requires checking their roster.  

 

Factors that influence performance are also considered such as fatigue and 

levels of experience. Participants reported that drivers rarely report feeling 

fatigued (TOC meeting), although it is known to be an industry issue (P2, P13) 

that contributes to incidents (P13, TOC meeting). In terms of experience, one 

TOC estimates that 25% of their incidents are by drivers in their first year (P9).  

 

Participants felt that there is an element of chance as to whether an 

individual has an incident (P2) and noted that individual performance has the 

potential to limit the risk of an incident occurring. 
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3.4.3  Individual attributes 

Responses in interviews focused on the measurement of human performance 

through competency assessment and incident investigation. Individual 

attributes as a theme emerged over the course of the interviews. What made 

someone good at a role seemed difficult to define (P4). Participants were 

therefore asked what made a good driver as an example role. Their responses 

are presented in the first two columns of Table 3-2. Non-Technical Skills (NTS) 

were noted as important by stakeholders (see list presented in Appendix C). 

Where interview responses map to the existing industry NTS framework 

(RSSB 2016) is shown in the final column of Table 3-2. The skills and 

knowledge theme was noted as matching requirements identified in the Risk 

Based Training Needs Analysis (RBTNA) tool (RSSB 2018) (P2). This tool 

provides the industry with guidance to determine staff training needs. It was 

developed for the role of train drivers but is intended to be applicable to 

other staff.  

 

Whilst physical attributes, gender and age were not mentioned, the 

application of skills, personality and attitude were mentioned. Expanding on 

the capacity for good concentration mentioned in Table 3-2, a driver manager 

gave examples of good or poor concentration based on their experience of 

observing drivers in the cab. A driver they had observed who seemed good at 

maintaining concentration had concentrated from station to station, taking 

each stage of the journey at a time. In comparison, drivers they had observed 

who seemed to find it difficult to maintain concentration were those who 

were distracted more easily, or their mind wandered. They suggested that the 

lifestyle of some individuals outside of work may leave them less able to deal 

with long periods of work, such as due to insufficient sleep. 
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In addition to the findings in Table 3-2, there were some comments that 

implied that personality or attitudes impact drivers’ performance. A 

stakeholder believed that introverts made better drivers than extroverts, as 

they perceive introverts as self-contained and better at working solo. In terms 

of attitude, an ‘every day’s a school day’ was viewed as a positive, whilst a 

‘what’s in it for me’ or a complacent attitude were viewed negatively. These 

Table 3-2 Perceived beneficial attributes for drivers  

Attributes mapped to Risk-Based Training Needs Analysis (RBTNA) tool and Non-Technical Skills 
(NTS) 

 Interview Responses RBTNA tool NTS 

Skills & 

Knowledge 

Excellent Non-
Technical Skills 

Non-technical 

Skills 

All NTSs 

Practical skills e.g., 
train inspection 

Functional Skills n/a 

Knowledge Underpinning 

knowledge 

Self-management: 

Maintain and develop 

skills and knowledge 

Capacity Good situation 

awareness 

n/a Situation awareness: 

Overall awareness 

 Good concentration, 

can deal with long 

periods of work 

n/a Situation awareness: 

Maintain concentration 

 Can take on lots of 

information 

n/a Situation awareness: 

Retain information 

Approach Reliable e.g. turns up n/a Self-management: 

Motivation 

Methodical n/a Conscientiousness: 

Systematic and thorough 

approach; Checking 

Prepares & plans well n/a Self-management: 

Prepared and organised 

Takes each stage at a 
time e.g., concentrates 
from station to station 

n/a Workload management: 

Prioritising 

Confidence n/a Self-management: 

Confidence 
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findings indicate stakeholders can believe the capacity and approach of staff 

varies between individuals and that attributes can impact staff performance. 

 

Demographics were viewed as quite superficial (P2). It was noted that 

experienced staff can find the transition to newer technologies, such as 

tablets, difficult (P13), with some choosing to retire rather than transition. A 

level of uncertainty was detected in interviews as to whether staff with 

experience of older ways of working, or newer recruits who only learn the 

newer technology, are better able to achieve good performance. One 

participant described younger signaller applicants as ‘gamers’ who have a 

different mindset, with the benefit of adapting quickly and positively to digital 

technologies (P14). 

 

The number of incidents an individual had was not deemed a reliable 

measure of performance (TOC meeting). It is a point of debate for accident 

investigators how much previous incidents are relevant to a current 

investigation (P11). TOC operational managers expressed confidence in some 

drivers who had had an incident and a lack of confidence in some drivers who 

had not had an incident.  

 

In terms of the attitude of staff: 

“Nobody goes out there to have an accident, nobody goes out there saying 

“I’m going to mess up the system today”. They’re all just trying to get the job 

done and go home at the end of the day” [P11, Accident Investigator, Rail] 

It was noted that demands for precision are increasing (P1), and staff are 

close to the limit (P5): 

“The requirement for a train driver now is that you need to be 100% accurate 

100% of the time and there isn’t any let up to that. Twenty-five years ago, 

there wasn’t the pressures in the performance, capacity, and the safety 

requirements” [P1, Head of Operations, Ex Driver, TOC] 
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Interviews highlighted challenges beyond individual roles. Firstly, due to how 

long technology deployment takes, staff must constantly operate with a 

mixed age of technologies. Secondly, across the industry corporate 

knowledge is lost when staff leave the industry (P5, P14) leading to decisions 

being made that impact front line staff by individuals with limited 

understanding of the implications. Thirdly, driver and signaller roles have 

become more mundane (P13): driver routes are not varied (P7), trains have 

become easier to drive, with more comfortable cabs (P1) and automation 

protects signalling staff actions (P4). These all have the unforeseen risk of 

leading to inattention due to underload (P2), (TOC operational meeting). One 

participant questioned how individuals can maintain focus (P7). 

 

The industry faces a combination of challenges. How can individual factors, 

such as capacity or approach, be objectively measured to manage MWL 

effectively? Objectivity could assist in removing biases in interpretation, 

reduce associated cultural tensions, and encourage collaboration. Challenges 

include experienced individuals choosing to retire which reduces the pool of 

experience in teams that takes years to rebuild. Also, it remains unclear how 

close to their MWL limit staff are working, including the risk of underload. 

3.4.4  Future types of monitoring 

In this theme, stakeholders provided their perspective on where and how 

different measures show potential for future use in rail to assess human 

performance. 

Data logs 

Stakeholders from across the transport industries provided examples of ways 

systems could provide objective data to support assessment of performance. 

In the automotive industry, lane keeping is now available in some cars to 

monitor driving performance in real time (referred to as lateral driving 

performance) (P10). In ATC, objective data from mouse clicks, and time spent 
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on the radio, can indicate the complexity of the task (P12). In rail, OTDR data 

can indicate different personal driving styles (P8). Stakeholders proposed 

OTDR data could be used (P3) to record an ‘optimal’ drive performed by an 

experienced tutor to show to trainee drivers (P13).  

Physiological Measures 

Results from the interviews indicate that the application of physiological 

measures is at different stages of development in different industries. The 

opinion of stakeholders was that the automotive industry was the most 

advanced, with measures currently available in some cars on the market. ATC 

has trialled various physiological measures in live operational settings. In rail, 

operational staff were not aware of any physiological measures being used in 

live operations.  

 

The automotive industry is developing real-time driver monitoring features 

(P10) including cameras to detect aspects of the face including eye position to 

monitor slouching (P10). Products such as fatigue monitoring are available at 

the high end of the market such as a dashboard coffee cup indicator to 

recommend a driver takes a break when they show signs of fatigue (P10, Car 

Sales 2018). Features that are deemed to be for safety are generally well 

received by customers, although attitudes to being monitored vary between 

cultures and between generations (P10). 

 

In ATC, trials of physiological measures found that they could monitor 

individual consistency and spot change. Using Electroencephalogram (EEG) 

for example, it was possible to detect when an individual’s readings were 

different from that individual’s normal reading. The next day the individual 

became ill. This demonstrates how change in EEG detected a physiological 

change before the individual was aware of becoming ill (P12). Other biometric 

data collected in ATC includes visual scanning patterns (using eye tracking) 

and how individual Controllers deal with stress (using a chest strap to detect 

heart rate variability, and GSR from a device worn on the arm) (P12). In 
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addition to physiological measures, in ATC subjective measures are routinely 

used including workload, confidence, and Situational Awareness to assure the 

system is safe (P12). The stakeholder from ATC postulated that in future, in 

the live environment, data from physiological devices could provide the 

supervisor with real time indicators and a decision support tool for when the 

task load of a Controller needed adjusting. In ATC, the task load can be 

adjusted by rerouting aircraft to different sectors. 

 

Operational staff in rail did not mention physiological measures being used to 

monitor staff. They instead reported competency management as the current 

way human performance of staff is monitored. Human Factors Experts were 

more aware of the potential of physiological measures. One trial that was 

specifically mentioned was one that found train driver GSR correlating with 

difficult conditions such as risk of train slipping in low adhesion conditions 

(P8) (Crowley and Balfe 2018). 

Risk exposure rates 

Two tools were provided in interviews that calculate ‘exposure to risk’ rates, 

and therefore likelihood of adverse events occurring. Firstly, the Red Aspect 

Approach Tool (RAAT) (P2) is a tool to indicate how frequently drivers are 

exposed to the risk of a SPAD (P1). It does this by determining how many red 

aspect (stop) signals a driver approaches on their route. A red aspect will 

indicate to a driver that a track section is occupied. A SPAD is when a train 

passes a red aspect signal, and therefore is at risk of collision with whatever is 

occupying the track ahead.  The second tool would use existing timetable 

information to calculate the exposure rate of drivers to incidents of Stop 

Short or Failure to Call at a station, based on the number of times a driver 

stops at a station (P1). These incidents can occur, for example, when a driver 

drives a route where frequently they drive a long train (multiple carriages) 

that stops at only major stations on a route. When they then drive the same 

route as a stopping service, they are at risk of Failure to Call as they are used 

to driving through some of the station stops. If the length of trains they drive, 
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they may become used to stopping part way along a specific station platform 

with a shorter train then in error stop at the same point when driving a longer 

train. This would then not allow passengers to safely disembark or board the 

train on the carriage as it is not level with the platform.   

Simulators 

Simulators in rail are currently used for training (P8), but not widely for 

competency assessment. Simulators provide both trainee drivers and 

signallers with opportunities to learn how to complete their tasks before 

applying their training in a live operational environment. Currently only about 

5% of the data collected from a simulator session are used (P14). There is a 

potential that, however, simulators could be used to study aspects of 

performance such as reaction time (P14). 

 

3.5  Discussion 

The industry challenge for human performance in rail that emerged from the 

findings related to risks resulting from overload and underload. Concerns 

were raised that staff are approaching an overload limit as demands increase 

for precision and capacity whilst maintaining safety. Underload was a risk 

noted for the driver and signaller due to their roles becoming more mundane, 

making it difficult to maintain focus. A second challenge was, rather than a 

specific technology, the introduction of any new technology that impacts staff 

as they must adapt their way of working and work with mixed ages of 

technology. Any novel technology brings with it a period where staff are 

inexperienced in using that technology. An impact is that staff choose to 

retire rather than transition. A further impact is new replacement staff, with 

25% of train driving incidents involving drivers in their first year. These 

findings in combination suggest that there is a need in industry to assess and 

monitor the impact of introducing new technology. Rather than only 

assessing a specific technology, or only at specific points in time, measuring 
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human performance over longer periods to detect changes over time. This 

could provide data on periods of time where human performance is 

successful and seek to detect periods of overload or underload. Comparing to 

data before a change could assess the impact of new technology. Equally such 

data could be used as a learning aid for new staff as their build experience. 

These study findings and viable future measures are summarised in Figure 

3-2. 

 

 

 

 

The theme of people whose performance impacts rail expanded during the 

interviews to include not only staff but suppliers, passengers, and the public. 

This finding expanded the potential choice of whose performance in rail the 

research could focus on. It was determined that front-line staff completing 

Safety Critical Tasks, in particular drivers or signallers, would be a suitable 

research focus that would fit with industry priorities. The distinction between 

the roles is that the signallers are less ‘visible’. The scoping review discovered 

proportionally more research focused on drivers than signallers, indicating 

research into signallers as a suitable research gap. A focus on one role may be 

generalisable to other staff in rail and other transportation industries, 

particularly where similar risks of overload or underload apply or in other 

control roles. 

 

Figure 3-2 Challenges and future opportunities for human performance assessment in rail 
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The theme ‘individual attributes’ emerged from interviews as attributes 

stakeholders associated with individuals who deal well with the workload and 

achieve successful performance in their roles. Many match good rail Non-

Technical Skills. In the light of industry concerns about reaching limits and 

levels of experience, two attributes stood out: confidence and concentration. 

Maintaining concentration is recognised in the industry as important, yet 

there is an industry concern about it being achievable. Confidence was 

mentioned in interviews as being measured in ATC and is also included in NTS. 

It is not currently measured in rail, so presents a potential research gap. In 

addition, some attitudes and personality types were implied by stakeholders 

to have an impact on human performance. Whilst some attitudes are implied 

in the self-management aspects of NTS, personality is not explicitly covered. It 

is of interest here, however, that stakeholders believe that there are aspects 

of successful performance that depend on individual characteristics and not 

solely on the external task demands. This suggests a benefit in acknowledging 

that individual factors are relevant if human performance is to be assessed. 

 

The current assessment of human performance in rail is around competency 

and occurs at certain times. Data focuses on human equipment inputs (e.g. 

OTDR data), and less on individual performance. One challenge in rail is that 

as roles change, appropriate competency is changing without an associated 

change in assessment. If incidents occur, a more detailed data analysis is 

completed. This fits with the Safety I approach (Hollnagel, 2014), which tends 

to be reactive and can lack the awareness to predict incidents. As one 

participant said, rail has “no way of knowing how close to the limits of ability 

staff are” (P5). Adopting a Safety II approach in future would focus on 

identifying what factors contribute to good human performance and result in 

successful operational performance. These factors include the individual 

attributes of concentration, confidence, and identifying when staff are 

approaching an overload or underload limit. 
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In considering future monitoring, increased use of data logs (e.g. OTDR) and 

simulators are possibilities in rail. OTDR data shows potential for further use 

(Balfe et al., 2017), although Balfe notes there are currently no validated 

metrics that differentiate good from poor performance of either the drivers 

or infrastructure (Balfe et al., 2017). These would need to be developed. 

Additional use of simulators, and assessments of risk exposure also show 

potential. In terms of identifying a research gap that focuses on personal 

data, the use of physiological measures in rail is a topic for further 

investigation. ATC, rail, and automotive industries are exploring the potential 

of various physiological measures. These measures offer a potential future 

opportunity to collect and analyse continuous data in rail, without 

interrupting the task. This in turn will allow measurement of good 

performance and help to prevent incidents. It will be important to assess the 

suitability of these measures, practicalities of applying them, and ethics of 

collecting data that measure individual performance of staff. Further research 

should include consideration of the attitudes of staff to the use of such data, 

who would have access to it, and how such data could be used within wider 

competence and performance assessment processes.  

 

The terminology used when discussing performance needs further thought. 

Whilst the phrase ‘human performance’ is not used in rail by operational 

staff, or seen as a distinct issue, participants did recognise that the 

performance of a wide range of people impacts rail, including passengers and 

the public. There were also examples of good work and research around 

human performance, but a lack of awareness of this across the whole 

industry. This fits with the finding that the industry is segmented, with 

priorities varying across operations, locations, and time scales.  
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3.6  Limitations 

In aiming to identify a topic for the research scope to focus on, this study took 

a broad and shallow approach to the structured interviews. This constrained 

the opportunity to uncover and explore stakeholders’ underlying reasons for 

their perspectives. The resulting coding structure tends to reflect categories 

and themes for further research of the ‘who, what and how’, rather than 

identify underlying more abstract concepts that reflect the perspectives of 

staff of the ‘why’. Secondly, the study was the first by the researcher to apply 

a qualitative approach. Whilst this provided a learning opportunity for future 

studies, it constrained this study. Redressing these limitations in future could 

provide a richer picture of the reasons for stakeholder perspectives on 

challenges in rail, human performance data, and beneficial attributes in staff.  

 

This study aimed to identify what measures could be used in future in rail. For 

this reason, the stakeholders primarily represented the rail industry, with only 

one stakeholder from the aviation and automotive industries. If a more even 

proportion of stakeholders were recruited in future, a comparison of 

perspectives across different transport industries could be conducted. This 

could be an interesting study, particularly to understand the relative 

difference in underlying organisational cultural maturity.  

 

3.7  Conclusion 

The study explored rail challenges that relate to human performance or new 

technology, individual attributes of performance, how performance is 

currently assessed, and could be assessed in future. The study gathered 

stakeholder perspectives and opinions, to guide the subsequent research 

towards a topic pertinent to the rail industry that the industry will both 

engage with and benefit from. The study identified underload and overload as 

current challenges in rail relating to human performance. Another challenge is 

that when technologies are introduced, staff are inexperienced in using the 
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novel technology. An opportunity exists here to seek measure of human 

performance. This could measure successful performance as a baseline. Then 

the impact of new technology could be assessed against the baseline, or the 

risk of poor performance be predicted when MWL moves into overload or 

underload, or be used as a learning aid to support new staff whilst they build 

experience.  

 

Regarding whose performance to measure, a wide range of people were 

identified as having an impact on rail operations. Of these, drivers and 

signallers were identified as the priorities for the industry. Of these two, 

signallers were chosen as they are the less visible role and present the larger 

research gap. Whilst research will focus on signallers, results from 

assessments of measures may be generalisable to other roles in rail and 

transportation industries, particularly control roles. 

 

Currently in rail, performance is assessed intermittently, using mainly 

competency assessments. Future research opportunities exist to expand the 

use of data logs, risk exposure tools, and simulators. In addition to assessing 

the impact of task factors, there was acknowledgment in the interviews that 

individual attributes contribute to performance. Maintaining concentration, 

and confidence are two specific characteristics that present a research gap to 

consider when measuring human performance. This research will explore the 

use of physiological measures as they fit the personal data perspective of the 

research and show the potential to provide continuous data. Further work 

will be needed to assess their suitability for assessing a range of MWL with 

associated underload or overload, for unobtrusive use, and for the 

acceptance of staff to their use.  
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Chapter 4:  Physiological measures for mental 
workload assessment 
 

4.1  Chapter overview 

This chapter provides a scoping review of physiological measures and the 

critique used to select the measures suitable for signallers in live operations. 

The chapter includes, from the literature, the underlying physiology, and what 

is detected and can be inferred by the follow types of physiological measure: 

heart, skin, facial thermography; breathing; eye movement; electro-

encephalography (EEG); and Functional near Infra-Red Spectroscopy (fNIRS). 

Based on this review, a decision was made to focus on HRV and EDA as 

measures of workload in rail signallers. 

 

4.2  Introduction 

This chapter introduces physiological measures as a potential way to assess 

cognitive tasks, MWL, and effort, in safety critical industries such as rail. The 

challenge in rail is, as automation increases, the signaller role becomes a 

more cognitive monitoring task, less physical task, making the effort required 

more difficult to observe and measure. A concern is the impact of new 

technologies, including automation, may exceed boundaries in human 

capability resulting in the overall system failing to achieve an intended 

performance or safety improvement. There is a need for adapted or develop 

new measures of mental workload (overload and underload), and effort, to 

assess the impact of automation and other new technologies. Current 

measures of mental workload rely on observation, or subjective workload 

assessments that interrupt the task or are completed after the task. 

Physiological measures offer an opportunity to collect more objective, 

continuous data, without interruption. Physiological measures detect a 

physical aspect of bodily function such as breathing rate or heart rate. When 
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applied to cognitive activity such measures are referred to as 

psychophysiological measures. Psychophysiological measures in research 

areas such as Human Computer Interaction (HCI) provide a new way to seek 

"a sixth sense" of someone’s psychological state (both cognitive and affective) 

(Dirican and Gokturk, 2011) which has previously been hidden or difficult to 

measure. In this review the term ‘physiological’ will refer to what measures 

detect, whilst psychophysiological will refer to what they can infer.  

 

Research using psychophysiological measures is a growing area as 

contemporary technologies and computing allow collection of continuous 

physiological data in real time. Physiological measurement devices are 

reducing in cost, increasing in robustness, and are increasingly portable. This 

provides new opportunities for studies to be conducted beyond the 

laboratory. This review is particularly interested in measures being used in 

applied and dynamic work settings and tasks to determining whether 

measures suit use in a simulator or live signalling operational environment. 

Separate to this is the question of acceptance. The proliferation of wearable 

physiological measures for personal use shows a growth in cultural 

acceptance and interest. An example is the prevalence of personal fitness 

trackers that detect physical activity levels. Fitbit, launched in 2009, has sold 

over 127 million units by 2021 (Larichia, 2022a). Apple has since grown to 

have the largest market share with wearable shipped devices totalling 162 

million units by 2021 (Larichia, 2022b). The implications of acceptance are 

considered further in other chapters in this thesis. Wearable devices are 

developing rapidly, for example the global fitness tracker market is projected 

to grow from £26 billion in 2020 to £83 billion8 in 2028 (Fortune Business 

Insights 2021). 

 

This scoping review will focus on presenting what physiological measures 

currently exist, what they detect, and what they can infer about MWL and 

 
8 Based on an exchange rate 1 USD = 0.727 GBP, as checked on xe.com 23.10.2021 
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other factors surrounding cognitive tasks and experience. This includes what 

the measures can provide about transient changes and dynamic patterns of 

mental workload and effort during a task. Studies in a simulator or live 

operational environment are of particular interest. The review will begin with 

a brief introduction to the physiology of physiological measures and introduce 

the concepts of stress and anticipation. A range of psychophysiological 

measures will then be presented, followed by a short summary of lessons 

learnt about practicalities. The discussion and conclusion will consider 

whether these measures detect MWL, what they do detect and infer, and the 

implications of the findings, including practicalities, for this research. Whilst 

the research focuses on signallers, the implications could apply to train 

drivers and other industries facing similar changes to staff tasks with new 

technologies. 

 

4.3  Method 

The focus of this scoping review was to identify and map the types of 

physiological measures and data used to assess MWL, clarify key concepts 

and definitions, and gaps (Colquhoun et al., 2014) relating to application in 

the railway industry or other transportation industries. Limited research was 

found assessing MWL in the rail industry using physiological data. To reflect 

the industry application of this research, other industries were considered 

including Air Traffic Control (ATC), pilots, nuclear, maritime, automotive.  

 

4.4  Underlying physiology 

A basic understanding of the body’s physiology helps the understanding of 

physiological measures, and what they can infer of psychophysiology.  

 

To function, the body strives to maintain a state of internal stability known as 

homeostasis (Sherwood 2013). This ensures the body’s internal environment 
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remains steady for cells to remain alive, such as maintaining a body 

temperature of 370C (Tortora and Derrickson 2007). The two parts of the 

autonomic nervous system, sympathetic and parasympathetic (Sherwood 

2013), maintain homeostasis through exerting opposing influences on the 

body (see Table 4-1).  

 
Table 4-1 Autonomic Nervous System 

 Sympathetic Parasympathetic 

Function Prepares body for strenuous 
physical activity “fight or 
flight” emergencies  

Maintains bodily resources. 
Dominates in quiet relaxed 
situations 

Heart Increases heart rate and 
blood flow 

Decreases heart rate and 
blood flow 

Skin  Increases sweat across 
body, including palms 

Increase sweat in armpits 
and groin only 

Eye 
 

Dilates pupils Constricts pupils 

Brain 
 

Increases alertness None 

 

The autonomic nervous system exerts its control on the body in two ways. 

The first is rapid, through direct electrical signals sent via the nervous system. 

The second is slower, through glands releasing hormones into the blood 

stream. The hormones take longer to take effect, but their effect may last 

longer. This research focuses on the rapid nervous system responses, 

although the difference in speed of signal and the duration of effect are 

important principles to consider when interpreting physiological data. This 

time difference is also important to note when detecting a physiological 

change in a different part of the body. An example of this is if detecting a 

change in blood flow in the head, a 6-9 second delay should be expected from 

an external stimulus (Bunce et al., 2006). 

 

4.5  Stress and anticipation 

Stress is a commonly used term, referring to a state of mental or emotional 

strain or tension. In physiological terms stress is broken down into elements. 
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A stressor is anything that throws the body out of homeostatic balance 

(Sapolsky 1994) e.g. physical danger, toxins, or strong emotional reactions. If 

a stressor causes a reaction that is greater than homeostatic mechanisms can 

counteract this leads to a stress response (Tortora et al). This stress response 

may be experienced as strain. The stress response has two parts, firstly the 

rapid ‘fight or flight’ response, produced through nervous control, prepares 

the body for physical activity e.g. running from a lion. Then a slower 

‘resistance reaction’, produced by the release of hormones (including 

cortisol), supports survival e.g. keep running even when the body starts to tire 

or is injured. Once a stressor is removed, signals sent via the vagus nerve 

restore homeostasis or ‘tone’ (Selkurt 1976). Animals, humans included, are 

superbly adapted for dealing with short term physical stressors e.g. running 

from the lion (Sapolsky 1994). Our modern lives can expose us to stressors 

that are emotional or chronic pressures that make us sick. The implication of 

this for understanding ‘what does success look like’ is that a sustainable 

physiological state may include short peaks of sympathetic response due to 

strain, but prolonged heightened levels are less sustainable.  

 

Anticipation commonly refers to the expectation or prediction of a future 

event. It is a way for the mind and body to prepare for a potential stressor. If 

it is detected in physiological data, this will be chronologically before the 

external events it relates to. Secondly, there is a possibility that if anticipation 

is accurate, an individual will not experience strain. This possibility was 

identified in sports research proposing that if (physical) fatigue is experienced 

at an anticipated level then the individual theoretically will not be aware of 

the sensation of fatigue (Swart et al., 2012, and Tucker 2009). The example 

provided was of a marathon runner will not report feeling fatigue later in a 

race if they feel how they anticipated feeling at that point and feel able to 

complete the race. This is despite being measurably physically fatigued at that 

point in a race. In contrast, a short distance runner in a long race would 

experience and report fatigue as the distance exceeds their anticipated 

exertion for a race. This presents potential parallels to the anticipation of 
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cognitive tasks and MWL of signallers. A signaller handling many trains may 

not report high workload if that number is what they anticipated. The 

individual experience of an event is linked to the extent to which it matches 

the experience as anticipated by the individual. 

 

4.6  Criteria for measures for use in live operations 

A set of criteria were developed, informed by the domain familiarisation 

previously completed by the author (see Section 1.6 ) and by ergonomists and 

operational signalling staff working at Network Rail involved in preparing for 

the planned live trial.  

 

(1) Staff can walk around if needed - to talk to colleagues, the shift 

manager, and reach the telephone at the end of their workstation.  

(2) Measures must cause minimal or no task interference, to ensure staff 

can complete all aspects of their task safety and effectively. This is 

imperative in a live operational environment where staff are 

responsible for safety critical tasks and operational performance. This 

includes allowing all staff to wear prescription glasses if required.  

(3) Staff control over data collection. The devices need to be swift to put 

on/remove for the convenience of staff who have a long and busy 

shift. Secondly, to assist with staff acceptance, devices would benefit 

from allowing individual staff to turn on and off data collection with 

no assistance from a researcher. This would apply to toilet breaks, and 

also any situation that develops at the workstation that the individual 

does not want recording. The researcher felt that increasing advocacy, 

by providing this level of control over data to staff, would be an 

important aspect of applying the measures in the rail industry.  

(4) Sensitive to MWL on own. This relates to the data from an individual 

measure showing sensitivity to MWL. This would assist in keeping the 

number of devices to a minimum, for practical purposes, in the field. 



Physiological measures for mental workload assessment 

 82 

 

4.7  Physiological measures 

Physiological measures detect a physical aspect of bodily function such as 

breathing rate or the electrical signals that instruct the heart to beat. When 

applied to the study of cognitive activity these are referred to as 

psychophysiological measures. It is worth therefore distinguishing between 

what measures detect and what can be inferred from this. The assumption is 

these measures can infer mental states that are not observable in overt 

behaviour or verbal report (Hugdahl, 1995). Psychophysiological studies seek 

correlations of behaviour, they do not claim causal links (Lehrer et al., 2010). 

 

The benefits of applying psychophysiological measures are they are less 

intrusive to the task than secondary task measures or self-report measures. 

Secondly the measures can distinguish between short duration events (phasic 

characteristics) as well as tonic changes over time. Thirdly they may detect 

relevant data not available through current measurement techniques (e.g. as 

the individual is not consciously aware of them, or one that is difficult to 

provide a verbal description for).  

 

This field of research is evolving quickly (Charles and Nixon, 2019) from 

initially studying the ANS and arousal, to the interaction of complex cognitive 

and emotional processes (Hugdahl, 1995). Charles and Nixon (2019) provide a 

literature review of current research specifically on mental workload using 

physiological measures. The research here considers mental workload, but 

also overall effort in terms of what is sustainable for a human to maintain 

whilst completing a task. New psychophysiological studies may in turn 

endorse or question aspects of existing theories of mental workload and 

related concepts.  
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In this section physiological measures concentrate on five categories, 

reflecting the five areas the autonomic nervous system control shown in 

Table 4-1. The results are also summarised in a conference poster (see 

Appendix B). Here, each section explains what the measure detects, how it is 

detected, and what studies have found it can infer. The order is 

approximately chronological, starting with older, developed and ending with 

novel methods: 

• Heart  

• Skin 

• Breathing 

• Eye 

• Brain 

Following this, lessons learnt regarding practicality and ethics will be 

presented.   

4.7.1  Heart rate 

Heart related psychophysiological measures returned the largest set of results 

in the literature. Heart Rate (HR) is the number of heart beats per minutes, 

detectable at various positions on the body (e.g. fingers, wrist, torso). HR is 

sensitive to changes in overall MWL in a nuclear control room study 

(Bainbridge, 1983), task demand in a pilot flight study (Gao et al., 2013) and 

task duration in a car driving study (Hankins and Wilson, 1998). In a car 

driving simulator study, involving 15 participants, HR and Blood Pressure (BP) 

indicated short lasting increases in task demand (Richter et al., 1998). A study 

of 25 Air Traffic Controllers in the field found that Instantaneous HR (the 

interval between beats) correlated with number of aircraft, task load, NASA-

TLX, and skin conductance (Averty et al., 2003). 

 

HR is so sensitive to participant’s physical movement, and emotions, it is 

deemed unreliable as a standalone measure of MWL. HR is viewed instead as 

a useful addition to self-report measures. Heart Rate Variability, which is 
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described next, is deemed in the literature to be a more reliable way to infer 

MWL. 

 

4.7.2  Heart Rate Variability 

Heart Rate Variability (HRV) relating to the electrical activity of the heart as 

detected by Electrocardiography (ECG). The resulting ECG pattern is described 

as the R wave, with a distinctive peak at the start and end of each beat cycle 

(see Figure 4-1). Heart Rate Variability (HRV) measures the varying time gap 

between these peaks, the R-R interval, and is an important 

psychophysiological variable (Lehrer et al., 2010). Medical grade measures 

include multiple leads with sensors placed on the skin in up to 12 positions 

around the body. In this research a recording sufficient for research purposes 

can be detected with two sensors in contact with the skin. 

 

 
Figure 4-1 R wave peaks in Electrocardiography data 

HRV correlates with sensory inputs (Riganello, Garbarino and Sannita, 2012). 

HR increases and HRV reduces with increased anxiety (Riganello et al., 2012). 

A study of 7 pilots in a simulator found HRV reduced when task demand was 

high (Lehrer et al., 2010). In a live train with six trains driver participants, Song 

et al. (2014) found HRV decreased before and after a train stop and at 

tunnels. They reported this as inferring a level of alertness and mental 

‘tension’. As an alternative, Nickel and Nachreiner (2003) propose HRV does 

not indicate MWL, but instead indicates time pressure and emotional strain.  

These studies demonstrate the varied results found when using physiological 

data to measures MWL. This is encouraging as it sows potential whilst leaving 

a research gap to explore the reasons for change. They could all be 

representing an element of truth by detecting task demand and influencing 
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factors including anxiety, alertness, and emotional strain. Song et al. provide a 

methodological approach that is viable to collect data in live operations 

applying a data driven approach to identify what points on a journey HRV 

changed and the potential reasons for this.  

 

Research suggests the frequency of signal may also provide useful 

information. High Frequency increased when individuals were relaxed and 

decrease during stress or physical exercise, low frequency was low during 

high mental tasks (Nagano 2002) and increased with boredom (Schellekens et 

al., 2000). Johnsen et al. (2003) noted that neither HR or HRV returned to 

base line during the recovery period. This delay or lack of return to base line is 

a feature of other psychophysiological measures. It is unclear why this is the 

case. It could be the genuine time needed for the parasympathetic nervous 

system to reduce the heart rate. It could be a gradual drift in measurement. 

The literature recommends considering recovery rate as the time to return 

from the peak value to 50% of the value of the baseline (Hugdahl, 1995). To 

achieve this baseline values can be recorded prior to a trial starting so that 

the relative change in values are assessed rather than the absolute values. 

Absolute and relative values have both been used in research, ideally authors 

state clearly which they have used.  

 

One ethical consideration is the R spike is the main feature of arrhythmia 

detection (Kim et al. 2022). Devices are not medical grade, researchers are 

not medically trained, and such feature detection is not the focus of cognitive 

studies. Even so, practical and ethical considerations need to be addressed. 

Secondly wireless ECG devices are not recommended for participants with 

pacemakers in case they interfere with the pacemaker. To address these 

issues, research suggests the frequency of signal may also provide useful 

information. High Frequency increased when individuals were relaxed and 

decrease during stress or physical exercise, low frequency was low during 

high mental tasks (Nagano 2002) and increased with boredom (Schellekens et 

al., 2000).  
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4.7.3  Skin – Electrodermal Activity 

Electrodermal Activity (EDA), also referred to as Galvanic Skin Response or 

Skin Conductance Response (SCR), is a measure of the electrical conductance 

of the skin (Venables and Christie, 1980). Sensors are placed in contact with 

the skin, e.g. wrist or finger, making it easy to apply. Conductance increases 

as the skin sweats. An individual’s state can then be inferred from the level of 

sweat. To understand EDA data the underlying nervous control by the 

sympathetic nervous system should be taken into account (Kim et al., 2015). 

 

EDA is good for inferring stress (Healey and Picard, 2005) and arousal. An 

aroused state describes being awake, alert, and attentive. The term arousal is 

used interchangeably with ‘activation’ in the psychophysiological literature 

(Hugdahl 1995), describing a level of cortical, behavioural, or autonomic 

activity. The common usage of arousal can imply sexual arousal, here it refers 

to alertness and autonomic state.  

 

In a car driving study 33 participants completed a driving and braking task in a 

simulator. Electrodermal Response (EDR) distinguish between different tasks 

(Healey and Picard, 2005). In a second study of 108 car drivers, HR and Skin 

Conductance Level (SCL) both increased statistically significantly with changes 

in cognitive load (Mehler et al., 2012). The study compared different ages 

groups of drivers and found SCL was lower in 40s and 60s age, but the pattern 

of incremental increase was consistent across all age groups. This finding 

suggests varying cognitive load can be inferred from EDA, and that the use of 

relative values is beneficial for showing patterns in data. Absolute values may 

be of use if comparing between participants. 

 

In train driving studies, EDR distinguished different train driving and braking 

tasks, including emergency braking (Collet et al., 2014). A live trial with train 

drivers trial in Korea found EDA reflected arousal status of drivers (Song et al., 

2014). GSR correlated with low adhesion conditions and anticipation of such 
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conditions (Crowley and Balfe, 2018). Drivers were aware of an area prone to 

low adhesion and GSR spiked in advance of the location. This anticipatory 

element of EDA offers an interesting additional potential not mentioned with 

other measures.  

 

A live trial involving ten rail signaller EDA was a good discriminator between 

high and low self-assessed workload, in two out of three scenarios 

(Broekhoven, 2016). It was theorised the lack of EDA in the third case was due 

to a lack of an underlying stress response. The duration of raised EDA levels 

varied after phone calls were received by the signaller. A short recovery time 

was associated with a phone call received with factual information and 

minimum service disruption. A longer recovery time was associated with a 

phone call where a driver reported they may have hit a person. This call 

contained levels of emotionality, and uncertainty including potentially longer 

disruption to train services. The situation was resolved when it was confirmed 

no person had been hit and services could resume. This study was the only 

one identified in the scoping review focusing on railway signallers.   

Whilst EDA can be used on its own, some authors recommend combining it 

with other measures (e.g. cardiac activity) to enhance reliability of results 

(Collet et al., 2014). This is a recommendation made in the literature for many 

physiological measures. 

4.7.4  Facial Thermography 

Facial Thermography is a newer psychophysiological measure that detects 

changes in blood flow to the skin derived from temperature detected by a 

thermal camera. A laboratory study found that facial thermography and pupil 

diameter were good indicators of workload, corelating strongly with 

normalised Instantaneous Self-Assessment (ISA) ratings (Marinescu, et 

al.,2018). A recent flight simulation study suggested it shows promise as a 

MWL measure, with the nose area skin temperature correlating highly with 

both subjective workload measures and performance (Collet et al., 2014). The 
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study did note individual differences, as discovered by other 

psychophysiological studies in this scoping review. This method is not yet 

common in the literature but could prove a useful addition to the choice of 

measures in future. Machine learning techniques could improve the data 

analysis burden of this measure. Machine learning could be taught to 

recognise facial features, then use this to more rapidly process the thermal 

video data that has previously been a more manual processing step.   

4.7.5  Breathing 

Breathing rate is a measure of how many breaths are taken in a given period 

of time. Changes in breathing rate when sedentary can infer cognitive and 

emotional states (Song et al., 2014; Harmat et al., 2015; Rendon-Velez et 

al.,2016). Breathing rate, and depth, can be detected with a chest strap in 

contact with the skin. Wireless options are available allowing free movement. 

The prevalence of such devices has greatly increased in sport science and 

personal fitness tracking (Sanders et al., 2016). The measurement of 

breathing is more prominent in physiological studies than in 

psychophysiological studies.  

 

In the scoping review of psychophysiological studies breathing rate was not 

measured in isolation. Studies instead combined breathing rate with other 

psychophysiological measures. A study involving 77 participants playing the 

electronic game TETRIS found effortless attention correlated with deeper 

breathing. However, no association was found with blood flow in the 

prefrontal cortex (Marinescu et al., 2016). In an Air Traffic Control (ATC) study 

of workload (Harmat et al., 2015) breathing rate, along with other 

physiological measures, correlated with changes in workload. Breathing rate 

does not necessarily inter-correlate with other physiological measures.  
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In terms of practicality, wireless devices reliant on Bluetooth are not 

recommended for participants with pacemakers as with the ECG device. This 

can be covered in consent form and participant briefings.  

4.7.6  Eye Measures 

Eye Movement Tracking (EMT) is a measure of the location of gaze. MWL can 

be inferred from eye measures including blink rate, fixation time, pupil 

dilation and eye lid closure. These can be measured either through devices 

worn on the head, or data captured by remote camera. In terms of detecting 

MWL, in a driving study, blink rate decreased at complicated sections of road 

(Brookings et al., 1996). Blink rate was sensitive to short term temporal 

changes of workload, both in differences in overall task complexity and 

changes in peak complexity in a nuclear control room task (Richter et al., 

1998). Blink rate increased in a monotonous car driving condition (Borghini et 

al., 2012). In other eye measures, increased MWL correlated with pupil 

diameter and fixation time but not saccade distance or speed (saccade being 

the rapid movement of the eye between fixation points) (Gao et al., 2013). 

Brookhuis and de Waard (2010) suggest Percentage of Eyelid Closure 

(PERCLOS) is a useful psychophysiological measure of MWL, however (de 

Greef et al., 2009) found EEG and Electrooculography (EOG), to detect fixation 

duration, more accurately.  

 

In terms of detecting drowsiness, a car driving simulator study included 

measures of blink rate and eye closure (Nguyen et al., 2017). The study found 

slow eye movements indicated drowsiness and changes in beta band brain 

waves, and a sharp increase in oxy-haemoglobin (detected by Near Infrared 

Spectroscopy), happened several seconds before eye closure. This study 

shows how different physiological measures can detect different changes that 

occur in sequence, rather than simultaneously.  
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On a practical level eye measurements suit simulator conditions as ambient 

light is controlled, as data can be affected by ambient lighting levels 

(Matthews et al., 2014; Tang et al., 2016). A visual task seems the most 

appropriate and, if using a camera, one where the participant can remain in 

one position. If a headset is required as part of measurement, duration of 

study should be considered for the comfort of participants. The difficulty of 

data analysis is not clear from the literature, but a level of understanding of 

the underlying psychological mechanisms is implied.  

4.7.7  Brain – Electroencephalography 

Electroencephalography (EEG) is a non-invasive way of measuring electrical 

activity in the brain from signals detected on the scalp by multiple electrodes. 

These electrodes can be fitted ‘wet’ to the scalp by a gel or glue, or ‘dry’ worn 

in a head cap. The methods of fitment impact how accurate the data is 

compared to collecting unwanted noise in the signal. EEG produces various 

brain wave patterns e.g. Delta waves during sleep, alpha waves when awake, 

beta waves when alert (Kim et al., 2015, Matthews et al., 2014)). EEG data 

can infer level of activation of areas of the brain and distinguish different 

patterns of brain wave.  

 

In the literature various studies were identified involving detecting workload 

and cognitive performance. A study of 92 participants completing a vigilance 

task found EEG distinguish between two MWL levels, and therefore could 

monitor vigilance (Kamzanova, Kustubayeva and Matthews, 2014), 

particularly using alpha waves. Another study of 80 participants found an 

increase in EEG correlated with working memory, problem solving, reasoning 

and integration of information, and correlated with both subjective and 

objective performance metrics (Kamzanova et al., 2014). (Berka et al., 2007) 

deem EEG a highly sensitive tool, capable of distinguishing high and low 

workload (Mühl et al., 2014), particularly when combined with eye related 

variables to remove eye movement artefacts (Zawiah and Dawal, 2016). An 
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EEG-based cognitive control behaviour study with 37 air traffic controller 

indicated EEG could discriminate skill, rule, knowledge cognitive levels 

(Borghini et al., 2017). The findings from these studies are important for two 

reasons: 1) they show the potential for EEG to detect various aspects of 

cognitive performance that are relevant to MWL including MWL level, 

vigilance and SRK level; 2) the need to remove or account for artefacts. 

 

A car driving study found EEG was sensitive to workload changes (Rasmussen, 

1983). When car driving difficulty increased, EEG detected theta band 

increase in the PFC, and alpha band decrease in the parietal area of the brain. 

During monotonous parts of the simulation, alpha band ‘bursts’ were 

detected which indicated drowsiness and reduced vigilance. These findings 

demonstrate the complexity of EEG findings. The implication for this research 

is, if EEG is used, it will be important to understand what areas of the brain 

are involved, and the different types of brain wave, rather than simply a 

measure of amount. 

 

In rail, in a study of 15 drivers, EEG showed a significant difference between 

three train driving conditions: daytime, rainy day; and rainy night (Borghini et 

al., 2012) although differences were not significant across all channels of EEG 

sensors. A rail study in Korea was conducted in a live operational 

environment. The study combined multiple physiological measures. Six 

drivers wore an EEG head sensor, breathing belt, and sensors on the fingers 

for EDA (Zawiah and Dawal, 2016). The study considered whether measures 

could detect, and therefore in future predict, sleepiness from arousal status. 

EDA, EEG and ECG were found to correlate with arousal and mental ‘tension’. 

In the EEG data, beta waves were higher before and after a train stop and 

tunnels, and negatively correlated with HRV which decreased. The changes 

detected were thought to be due to changing levels of alertness and mental 

‘tension’. In addition to the data findings the study stands out as an example 

of data being collected using physiological measures in a live railway 
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operational environment. Whilst the application of these measures is 

expanding such trials are still rare in the literature. 

4.7.8  Brain – Functional Near Infra-Red Spectroscopy 

Functional Near Infra-Red Spectroscopy (fNIRS) is a relatively new measure in 

the assessment of MWL, with a 2014 paper celebrating 20 years of progress 

(Boas et al., 2014). Whilst the least mature measure here, it’s potential to 

visualise brain activity (see Figure 4-2) makes it worthy of inclusion. The fNIRS 

headband (Figure 4-2) is light to wear and fits to the forehead. 

 

 

Sensors                                Emitters 
 

 

 

Figure 4-2 fNIRS visualisation of brain activity (right), and headband (left) 

fNIRS works by deriving levels of oxygenation and deoxygenation of 

haemoglobin in the brain, based on the level of near-infrared light absorbed 

by the cortical tissue. Emitters send near-infrared light signals into the cortex, 

and the reflected light not absorbed by the haemoglobin is detected by 

sensors (see Figure 4-2). Based on the signal detected, the level of blood 

oxygenation and deoxygenation is derived. Cognitive activity is inferred from 

both levels of oxygenation and deoxygenation. The oxygenation is linked to 

the expected level of oxygen the brain needs, and deoxygenation indicates 

how much oxygen has been used.  

 

fNIRS infers cognitive activity in the area of the brain closest to fitment. When 

on the forehead it is closest to the Pre-Frontal Cortext (PFC), the activity of 

which is of interest here. The PFC coordinates attention, organises perception 

over time, goal directed behaviour, and deals with novelty and complexity 

(Fuster, 2001), and working memory (Song et al., 2014). Humans have higher 
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cognitive capacities in these areas, helped by having the largest and most 

developed PFC in mammals (Fuster, 2001). Activity in this area of the brain is 

of interest in this research as signallers are required to sustain attention, and 

make complex decisions situated in distinct but variable time frames. 

 

In the literature, various laboratory studies found fNIRS was sensitive to 

MWL. Firstly, fNIRS distinguished three workload levels in an n-back task 

(Herff et al., 2013), but not in all participants. In a study of air traffic 

controllers, fNIRS increased with task difficulty in an n-back working memory 

and attention task (Baddeley, 2001). In a military study of 150 participants 

completing a threat detection task, fNIRS oxygen saturation was sensitive to 

workload when compared with base line oxygenation levels (Ayaz et al., 

2010). In another military study, fNIRS was sensitive to mental task load and 

practice level of students completing an unmanned air vehicle task (Ayaz et 

al., 2012). This would fit with the theory that experts with experience of a 

task will find it less mentally taxing than someone new to the task. 

Oxygenation levels were found to have the strongest correlation with 

performance (Matthews et al., 2014). Findings from all of these studies 

indicate fNIRS is sensitive to MWL, task difficulty and practice level. Practice 

level findings fit with theories of working memory effort reducing as 

experience increases. These studies also raise issues to consider when 

applying fNIRS including possible individual differences across participants, 

and the use of relative values (to baseline) rather than absolute values.  

 

The literature also reports on what fNIRS does not detect. fNIRS failed to 

detect ‘effortless’ attention whilst participants played the electronic game 

TETRIS (Maior et al., 2018). In another study, PFC oxygenation was higher 

with voice rather than visual data communications. The study concluded 

MWL was lower with visual data. In both cases, these finding could simply 

indicate PFC did not have a significant role to play rather than providing MWL 

data. This leads to a broader discussion around whether mental workload 

only occurs in the prefrontal cortex.  



Physiological measures for mental workload assessment 

 94 

 

In terms of practicality, to date the literature of studies using fNIRS appears to 

be focused on laboratory studies. fNIRS is sensitive to motion artefacts which 

need to be removed during analysis. Using fNIRS beyond the laboratory is in 

its infancy. 

 

4.8  Practicalities of use: lessons from the literature 

There are practical and ethical considerations when using psychophysiological 

measures. Many can be drawn from the research presented above, with 

implications for research study design and measures choice. Here is a 

summary of broader practicalities relevant to any studies using measures to 

assess highly cognitive, less physically demanding, tasks. The focus here is on 

the practicalities of applying measures in a live rail signalling environment or 

signalling simulator. 

 

Firstly, it is common to use psychophysiological measures in combination 

(Dirican and Gokturk, 2011) or with other measures such as self-assessed 

workload or observation. This allows triangulation of findings from difference 

sources, where correlations as well as lack of intercorrelation are of equal 

interest. Multiple measures can control for confounding variables, such as 

physical movement artefacts in the data. Physical movement can also be 

addressed in part through study design requiring participants to remain 

seated. 

 

Environmental factors such as light and temperature can affect physiological 

measures so need to be controlled for, especially light levels when using eye 

measures. This is one of the challenges when moving psychophysiological 

measures from highly controlled laboratory conditions to a live environment 

workplace such as railway signalling. Another confounding variable is caffeine 

consumption, and it has been restricted in some studies (Nguyen 2017) as it is 
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a known stimulant. In this research a decision will need to be made on 

whether caffeine consumption is restricted in participants or not.  

 

There are medical considerations worthy of note with physiological measures. 

ECG devices have the potential to detect arrhythmia which, whilst not the 

focus of cognitive studies, raises ethical questions of how to deal with unusual 

readings. As the researcher is not medically trained a solution is to clarify will 

all participants that studies cannot be regarded as a medical check.  

 

Psychophysiological measures show dynamic changes in data over time, 

including duration of effect and proportion of change. This has two practical 

implications, firstly using relative values (e.g. fNIRS and EDA) may be more 

appropriate than absolute data values. This means that it is the change in 

value, the direction of change and the timescale of change that are of most 

interest rather than an absolute value. Secondly, a baseline value is needed to 

compare to however following spikes in the data values may not return fully 

to the baseline. Linked to this second point, what would need further 

investigation is whether a gradual tonic shift over time is a measurement 

error that should be removed during analysis, or whether tonic changes could 

be detecting a relevant underlying shift in physiological levels. An example is 

EDA values will generally shift upwards as the area of skin next the sensor 

becomes sweaty due to the close-fitting sensor.  

 

Caffeine may be a variable that needs to be controlled for in future 

psychophysiological studies. Participants in studies can be asked to avoid 

caffeine (Borghini et al., 2012; Nguyen et al., 2017). This is worth considering 

for the current research when determining what restrictions, if any, to put on 

participants.  

 

Another consideration is, of the measures presented so far, EEG appears the 

most complex in terms of data analysis and correct interpretation of the data. 



Physiological measures for mental workload assessment 

 96 

This has implications for the researcher in terms of the implementation of the 

measure. 

 

Finally, the ease of data analysis and the learning curve for researcher varies 

between different psychophysiological measures. This is, in part, due to the 

extent to which the data collected requires signal amplification or post 

collection filtering and the extent to which a level of knowledge is needed to 

interpret the signal. The data analysis challenge also varies with the extent to 

which measures are very new, or more established (with associated software 

to assist with analysis). Whilst these considerations are not noted in the 

literature, they do have practical implications for any researcher wishing to 

apply psychophysiological measures effectively and successfully.  

 

4.9  Selection of measures for use in live operations 

The physiological measures identified in the scoping review were compared 

with the criteria for use in live operations presented in section 4.6 . As a result 

of this comparison of measures, wearable measures were determined to be 

preferable. Results are presented in Table 4-2. The EDA wrist strap was the 

most suitable. Both Heart Rate and HRV were found to be suitable in three of 

four criteria. The final decision to focus on HRV were for two reasons. Firstly, 

that the literature suggested HR itself was not, on its own, sensitive to MWL 

but that HRV was. In addition, given the PhD research requirement to seek 

novel contributions to research, HRV was found to be a comparatively recent 

addition to the physiological measures used for workload. No studies were 

identified that had previously applied HRV in a signalling setting. The 

combination of the EDA wrist strap and HRV chest strap were chosen to take 

forward to the next study. 
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4.10  Discussion 

This scoping review has presented what physiological measures exist, 

whether they detect MWL, and what else they can detect and infer about the 

effort and experience of completing cognitive tasks. This discussion will 

consider the implications of these findings for the research, including 

practicalities, of applying these measures in a live operational environment or 

simulator. 

 

Table 4-2 Comparison of physiological measures to suit live signalling operations 

Criteria  
 
 
Measure 

Staff can 
walk 
around if 
needed  

Minimal 
task  
Interference 
& can wear 
glasses 

Staff 
control 
over data 
collection 

Sensitive to 
MWL on 
own 

EDA 
(Electrodermal 
Activity) 
Wrist strap 

Good – 
wireless 

Good –  
Easy to 
wear 

Good – 
wearer can 
turn off/ 
remove  

Yes 

HRV (Heart Rate 
Variability) 
Chest strap 

Good – 
wireless 

Good –  
Easy to 
wear 

Medium – 
wearer can 
turn off. 
Fitment in 
private 

Yes 

Heart Rate 
Wrist or chest strap 
 

Good – 
wireless 

Good –  
Easy to 
wear 

Good – 
wearer can 
turn off/ 
remove 

Medium – 
usually used 
with other 
measures 

Breathing 
Chest strap 

Good – 
wireless 

Good –  
Easy to 
wear 

Medium – 
wearer can 
turn off/ 
remove in 
private 

Medium – 
usually used 
with other 
measures 

Facial 
Thermography 
Remote camera 

Medium – 
must face 
camera 

Medium – 
no glasses 
preferable 

Poor - 
researcher 
stops 
recording 

Yes 

Eye Movement 
Tracking  
Remote camera 

Medium – 
must face 
camera 

Medium – 
no glasses 
preferable 

Poor -
researcher 
stops 
recording 

Yes 

Eye Movement 
Tracking  
Glasses 

Medium - 
small batter 
pack 

Poor – no 
glasses 

Good – 
wearer can 
turn off/ 
remove 

Yes 

EEG (Electro-
encephalography) 
Head cap 

Poor – wired 
device 

Medium – 
weight on 
head 

Medium – 
needs 
assistance 

Yes 

fNIRS (functional 
Near Infrared 
Spectroscopy) 
Head cap/strap 

Medium – 
small batter 
pack 

Medium – 
weight on 
head 

Medium – 
needs 
assistance 

Yes 
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Physiological measures detect various aspects of the body including electrical 

signals, electrical conductance, level of reflected light (e.g. fNIRS), and 

movement (e.g. eye measures, breathing). Such measures can be used to 

infer cognitive activity, thus gaining the term psychophysiological measures. It 

is important to distinguish between what measures detect and what they can 

infer.  

 

The scoping review found various psychophysiological measures are sensitive 

to overall MWL. They can also be sensitive to other factors surrounding 

cognitive tasks and individual experience, some of which sit within MWL and 

some outside. HR and HRV correlate with overall MWL and task demand, but 

also to emotional state which traditionally is outside of MWL. HRV reduces 

with increased task demand and anxiety. Nickel and Nachreine (2003) 

proposes that HRV does not indicate MWL, but instead time pressure and 

emotional strain. EDA varies with the cognitive load of difficult tasks, strain 

(stress) and alertness (arousal). Breathing as a measure on its own does not 

detect MWL but can be of use in combination with other measures, and one 

study linked it with ‘effortless attention’. Eye measures can detect drowsiness 

and distinguishes complex tasks (blink rate reduces) from monotonous tasks 

(blink rate increases). EEG can infer vigilance, sleep/awake state, 

performance, and alertness from different types of brain wave pattern and 

location of brain activity. All these measures are sensitive to something, but it 

is questionable whether they are all detecting MWL. The consensus in much 

of the literature is to use measures in combination. The extent to which 

measures inter-correlate varies. If measures do detect MWL and other factors 

it would explain why they can vary independently. Whilst these measures 

may not single out MWL, they do offer continuous data in real time to explore 

the more dynamic aspects of cognitive tasks. They are therefore chosen for 

use in this research. 

 

The first implication of these findings for the research is to choose measures 

based on what aspects of MWL, or other factors, are the most relevant. The 



Physiological measures for mental workload assessment 

 99 

signalling task requires sustained attention, planning, monitoring (visual and 

auditory), alertness, working under time pressure and varying MWL between 

low (e.g. infrequent trains, running to timetable) and high (e.g. late running, 

perturbations, increased phone calls). Based on these task requirements, 

suitable physiological measures include HRV, EDA, fNIRS, breathing rate (if 

combined with other measures), EEG, EMT, Facial Thermography. These 

measures have been found to correlate with MWL. They can, in addition, 

show dynamic patterns and changes over time, both phasic (short duration), 

and tonic (longer duration). The proportion of change and speed of change 

are useful forms of physiological data. Such data can uncover the 

physiological effort being put in to achieve a performance outcome. In future 

this could lead to a better understanding of how sustainable such effort is and 

indicate whether the task is leading to strain. 

 

EDA appears to detect anticipation of a potential near future event. This 

anticipatory element was discovered during the scoping review and is of 

interest to this research. It is hypothesised that novices will not show an 

anticipatory spike prior to events, but experts will. In contrast, a novice is 

more likely to show a spike after an event that indicates their level of surprise 

or habituation. Spikes will reduce after repeated exposures these, a novelty is 

replaced with familiarity. Whilst these are outside traditional MWL, how 

predictable or unpredictable events are is relevant to signallers. The signalling 

task includes dealing with highly predictable timetabled events as well as 

unexpected disruptions. EDA could, potentially, distinguish between difficult 

task events that can be anticipated by experts, and events that are 

unexpected. This becomes less about the quantity of task load and more 

about the difference between expectation and reality. If signallers expect 

something to occur, they will show a small physiological change and swiftly 

return to baseline, reflecting a sustainable physiological state. Unexpected 

events would show elevated responses in physiological data that take time to 

return to baseline. 
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In terms of setting, the literature shows psychophysiological measures suit 

application in simulator and live environment settings. To date, however, 

little has been done in rail. This provides an opportunity appropriate to a PhD 

to apply these measures in a new setting.  To successfully apply these 

measures ‘in the wild’ however, it is important to control for the confounding 

variables physical movement, light levels (affects eye measures), and caffeine 

consumption. In a signalling simulator lighting can be controlled, and physical 

body movement is mainly arms and head. In a modern Integrated Electronic 

Control Centre (IECC) signallers are seated (controlling for physical 

movement) in a light and temperature-controlled room. Signallers however 

must be able to move along a workstation and around the room walk. This 

favours wearable measures where physical movement can be recorded by 

accelerometers and dealt with in data analysis. With regards to caffeine 

consumption, observation of signallers during the domain familiarisation for 

this research suggests some signallers consume caffeine frequently during 

shifts.  It may not be appropriate to request signallers abstain from caffeine. 

Instead, consumption will be recorded, including during data collection.  

 

Regarding validity, the variation in application of measures, and definitions 

used, make it difficult to directly compare or combine findings from different 

studies. This leaves a mixed picture of whether specific physiological data are 

sensitive to specific workload factors. Where correlations exist in the research 

this indicates a relationship exists but does not prove a causal relationship. 

Despite this lack of clarity, physiological data remains of interest to this 

research as there is an interest in the full range of MWL, and understanding 

what effort underlies sustainable workload that supports successful 

operational performance. To progress the use of physiological data, an 

accuracy of terminology is needed in future research to both label the 

construct of MWL being examined and the specific type of physiological data 

being measured. This will confirm what certain physiological data are 

diagnostic of, factors such as task demand, time pressure, stress, or alertness. 



Physiological measures for mental workload assessment 

 101 

This in turn can inform further discussion on tightening the definition of the 

construct of MWL and the factors that influence it.  

 

Regarding reliability, the evidence base for psychophysiological measures is 

currently incomplete. No studies in this review collected data from the same 

participant on occasions separated by days or weeks. Some studies find 

inconsistency in results between participants (e.g. fNIRS). This second finding 

could be a genuine difference between participants in their experience of the 

task. This limited reliability data remains a weakness surrounding 

psychophysiological measures. To address these limitations in this research 

firstly a within-subjects study design will be applied, and secondly multiple 

measures will be applied to allow triangulation of results.  Further research, 

beyond the scope of this research, is needed to prove reliability. Ideally such 

studies will provide open access data, and report clear data processing 

methodologies, to build an evidence base and determine the boundaries of 

appropriate use of each measure.  

 

In terms of the dynamic changes over time psychophysiological data show, 

the return to baseline can be relatively slow, or a value may fail to return to a 

previous baseline. After each short phasic event, the underlying tonic value 

can shift. It is unclear in the literature why values fail to return to baseline. 

These shifts in tonic values over time may be measurement errors (e.g. EDA 

device causes skin under the device to become sweatier). Alternatively, 

measures are detecting a genuine cumulative effect. In EDA this is dealt with 

by treating recovery as a 50% return towards baseline. If this is a genuine shift 

in baseline, it may make visible a reducing ‘spare capacity’ in real time, 

whether or not individuals are consciously aware of this reduction. This area 

of psychophysiological measures is worthy of investigation and consideration 

in future studies. The practical implications for this for the current research 

are that it is important to firstly determine what is an appropriate baseline is 

for each measure and collect it. HR or HRV can be compared to a baseline 

value taken at the beginning of a session, whereas fNIRS values need to be 
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compared over a shorter time period. Secondly be able to distinguish 

between any phasic changes and tonic changes. This can generally be done by 

looking at the pattern and speed of change (over seconds or minutes). 

Thirdly, then compare relative data rather than use absolute values of data. 

This allows for analysis of changes over time, direction of change, and 

proportion of change, with speed of return to baseline as an indicator of 

‘recovery’. Finally, seek evidence of a cumulative effect over time that may 

indicate a shifting quantity of ‘spare capacity’.  

 

In terms of feasibility of applying these measures in rail, one key aspect is 

whether signallers will accept the use of these measures. One key benefit of 

these measures is they are not intrusive to the task as they require no 

interruption to the task, as current self-assessment measures require. 

Acceptance, however, goes beyond whether a measure interrupts the task. 

Potential distraction is another potential concern. A feasibility study will be 

conducted prior to trials with signallers to assist in confirm whether the 

devices may distract from the signalling task or be uncomfortable or 

impractical (e.g. due to time required for set up).  Anonymity of findings will 

be another factor. Finally, how signallers perceive this type of personal data 

being used in future is important to consider. These feasibility concerns will 

fed into the ethics application, study design, and recruitment for studies 

involving railway signallers.  

 

4.11  Conclusion 

To conclude, various psychophysiological measures were identified as linked 

to MWL. The use of psychophysiological measures is expanding in the 

literature, including in simulator and live environment settings. The 

application in the railway industry or in live environments is, to date, small. 

The measures offer potential in rail, and whilst their novelty in this application 
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suits the need for PhD research to contribute something novel, novelty in rail 

could add to the challenge of gaining acceptance of signallers in studies. 

 

The measures offer the potential to infer alertness, time pressure, strain (the 

experience of stress), and anticipation. Ideally measures are used in 

combination to enable triangulation of results and to assist with controlling 

for confounding variables. A weakness of psychophysiological measures are 

their limited evidence of reliability and validity. Further research, beyond the 

scope of this research, is needed to build validity and reliability evidence. In 

building this evidence, psychophysiological measures could identify what 

aspects of the task, or other factors, cause spikes in physiological data to 

determine the extent to which these findings endorse existing MWL theories. 

This will be the next step in the research, with a feasibility study to assess the 

suitability of these measures for assessing the signalling task. After assessing 

the signaller’s task in this research, in future the measures may suit 

assessment of other rail tasks. 
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Chapter 5:  Study 2 – Using wearable to infer 
workload during a simulated signalling task 
 

5.1  Chapter overview 

This chapter presents the results from Study 2, a simulation study of twenty 

participants wearing physiological measures to infer MWL during a rail 

signalling task. Heart Rate Variability (HRV) and Electrodermal Activity (EDA) 

data were collected and compared to task demand and self-report workload. 

The study was conducted to provide an initial test of methods, equipment, 

data processing and data visualisation prior to future live trialling of measures 

with industry. Results showed what aspects of workload different measures 

were sensitive to, with storyboards graphing dynamic changes over time to 

show the complexity of relationships between HRV, EDA, task demand and 

subjective workload. 

 

5.2  Introduction 

Additional Mental Workload (MWL) measures would benefit railway signalling 

control as signalling moves from manual signal boxes to larger centralised 

centres. These centres allow signallers at seated workstations (see Figure 5-1) 

to use new assistive technologies to control larger areas. At workstations 

(compared to a traditional signal box) the signallers’ task is more cognitive 

rather than physical, making workload less overtly observable. The Rail 

Accident Investigation Branch has recommended improving signaller 

workload assessment (RAIB, 2020), including the impact of new technologies. 

Whilst measures are already available that measure task demand and 

subjective workload, an opportunity exists to build on these through 

physiological approaches. This study considers whether less observable MWL 

could be inferred from wearable physiological measures.  
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New MWL measures need to suit use in live operations, where current 

measures such as subjective workload scales can be intrusive and too time 

consuming to apply. Traditionally workload assessments in live operations 

have used observations, subjective measures after a shift, or the Integrated 

Workload Scale (IWS) designed for signallers (Pickup et al., 2005b) with verbal 

ratings given during a task. Wearable measures could collect continuous 

physiological data with minimal task interruption (Charles and Nixon, 2019) 

from which MWL could be inferred.  

 

MWL is a construct that encapsulates task demand, how individuals 

experience workload and performance (Sharples, 2019). Signaller tasks 

include setting routes, operating level crossings, and phone calls with drivers 

and staff out on track. Signaller workload varies from relative inactivity 

(PENNA, 2018) to overload, particularly during disruption (Krehl and Balfe, 

2014). Figure 5-1 shows Mansfield, an example VDU workstation with 

information screen to the left, level crossing CCTV screens at the top, track 

below, and tracker ball and button controls on the desk in front of the 

signaller, control panels for the level crossings, and keyboard. Signaller 

performance is essential to staff, passengers, and public safety. Previous 

 

 
 

Figure 5-1 Mansfield VDU signalling workstation, EMCC, Derby (Source: Author) 
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observations show that signallers split their work between monitoring (the 

screens), planning, intervention (control inputs), communication and quiet 

time (Balfe et al., 2008, Thomas-Friedrich, 2017). Monitoring, either active or 

passive, and planning are difficult to observe and measure.  

 

Psychophysiology, which studies the interaction between brain and 

physiological function, assumes physiological responses mirror cognitive or 

emotional responses to events, thus providing ‘a “window” into the mind’ 

(Hugdahl, 1995). Physiological state is controlled by the sympathetic and 

parasympathetic parts of the autonomic nervous system: changes in physical 

state, in the absence of movement, imply changes in mental state. Different 

physiological measures are sensitive to different aspects of MWL (Matthews 

et al., (2014), Charles and Nixon (2019)). 

 

In this study Heart Rate Variability (HRV) and Electrodermal Activity (EDA) 

were measured to indicate MWL. HRV is the variation in time between 

heartbeats in milliseconds, detected from the heart’s electrical impulse (see 

Figure 5-2), with variation from baseline typically 0 – 40ms Standard 

Deviation of Normal-to-Normal beats (SDNN). HRV reflects activity in both the 

sympathetic and parasympathetic nervous system (Tortora and Derrickson, 

2007). 

 

 
Figure 5-2 R wave peak in electrical heart data (Source: Author) 

 

Research suggests low HRV indicates uncertainty or anxiety (Ramírez et al., 

2015), attention (Forte et al., 2019, Colzato and Steenbergen, 2017), and time 

pressure or emotional strain (Nickel and Nachreiner, 2003). In a study of 

pilots HRV was sensitive to task demand (Lehrer et al., 2010), and in train 
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drivers HRV reduced during tunnels and at stops (Song et al., 2014) due to 

‘mental tension’. 

 

EDA is widely used in psychophysiology research (Cacioppo et al., 2017). EDA 

reflects only the sympathetic nervous system (Tortora and Derrickson, 2007). 

Level of arousal (alertness) or stress (Healey and Picard, 2005) may be 

inferred from EDA data that reflects the level of skin sweating (Venables and 

Christie, 1980). Skin Conductance Level (SCL), the tonic baseline, is typically 

between 2 – 20μS (Dawson et al., 2017). SCL implies vigilance, attention 

(Hugdahl, 1995), cognitive activity (Kilpatrick, 1972) or anticipation (Lacey et 

al., 1963).  

 

Figure 5-3 EDA SCR response (Boucsein, 2012) 

 

Skin Conductance Responses (SCRs) are peak amplitudes of 0.2–1.0μS above 

SCL. SCRs indicate a response to sudden stimuli, particularly unexpected 

events (Sokolov, 1963). Figure 5-3 shows an SCR peak. SCR durations vary 

with laboratory studies stimulus to peak durations of 2-6 seconds (Cacioppo 

et al., 2017), compared to up to 14 seconds when stimuli were determined 

retrospectively from peaks in a continuous task (Bound, 2016). Typical values 

of half recovery time, in laboratory conditions, is 2 – 10 seconds. SCR 

amplitudes reduce with repeated exposure, due to habituation (Hugdahl, 

1995) as a stimulus becomes more familiar. A study of signallers in live 

operations comparing three incidents found EDA increase when they received 

communication regarding an incident. They experienced more frequent EDA 

Latency Amplitude 

Stimulus 
Rise  
time 

Half  
recovery 

time  

Peak 
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SCRs and their EDA SCL was significantly higher during this period of high self-

assessed workload. Their subsequent recovery differed depending on the 

incidents’ significance and operational implications (Broekhoven et al., 2016). 

The longest was high workload for over forty minutes when they received a 

call from a driver reporting they may have hit a person (Broekhoven et al., 

2016). This highlights the potential wide difference in timescales when 

discussing workload and EDA in laboratory studies compared to live 

operational conditions. In a train driving study points of anticipation were 

identified in the EDA data ahead of an area of low track adhesion, which 

increases safe braking distances (Crowley and Balfe, 2018).  

 

This study is the first to apply both EDA and HRV measures to assess a 

simulated rail signalling task. This study considers how changes in temporal 

physiological data can reflect MWL. The study had the following research 

questions: 

• Do physiological data correlate with task demand or subjective 

workload? 

• Does EDA responses reduce with a second phone call event due to 

habituation? 

• What task events are physiological data sensitive to during a 

continuous signalling task? 

• How could physiological data be visualised to support staff debriefs in 

the live operational environment? 

 

5.3  Methods 

This study applied a mixed methods approach to address a research gap in 

rail, with limited previous research on physiological measures in this domain. 

A quantitative approach was taken with the first two research questions to 

determine whether results replicated previous research: whether 

physiological data was sensitive to task demand (Lehrer et al., 2010) or self-
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assessed MWL; and whether EDA spiked occur due to phone call 

communications (Broekhoven 2016) then reduced due to habituation 

(Hugdahl, 1995). The latter two research questions took an exploratory 

qualitative approach to explore: 1) what was occurring that could explain the 

MWL experienced during a continuous task, 2) how to progress the measures 

for use in a live operational environment. This method was chosen as 

previous research suggests that a more complex relationship exists between 

physiological data and MWL, with physiological data being sensitive to 

divergent aspects of MWL (Matthews et al., 2014, Charles and Nixon, 2019). 

These include alertness (Healey and Picard, 2005), anxiety (Ramírez et al., 

2015), and emotional strain (Nickel and Nachreiner, 2003). Previous studies of 

MWL with physiological data that have used advanced statistical analysis and 

spectral analysis have suited the laboratory setting, where conditions are 

short and workload levels are controlled. Here instead a timeline data 

presentation is used (Gillis, 2016). The storyboards and qualitative methods of 

labelling used here are a data driven approach to identify key points during 

the task and explore the reasons why these changes may have occurred in the 

data. An analogy is if studying fuel economy in car driving, maximum speed 

and total journey time does not provide the whole story. Instead, a timeline 

identifies when on the journey speed was reduced and a storyboard of why 

that may be (e.g. traffic). The findings from this exploratory qualitative 

approach could inform future quantitative studies on what the physiological 

data are sensitive to, and their validity as measures of MWL, to improve the 

diagnosticity of physiological data. 

 

The final research question addresses progressing the implementation of 

these measures from the laboratory to the field, this study explored the use 

of storyboards from chronological data to visualise data changes in a 

continuous task. This study provided the opportunity to develop and test a 

methodologically swift method to graph the data. This would be used to 

produce a timeline to make the complex data accessible to operational 

railway staff. Developing this method to be swift would enable physiological 
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data to be use in post-task debriefs with staff, to explore what physiological 

data can tell us about the task demand, task events and workload. The aim, 

ultimately, is for such a method to be applicable in live operations with staff 

in the railway industry. 

 

5.3.1  Participants 

Twenty participants took part (11 male, 8 female, 1 preferred not to specify), 

aged 22 – 39 years (M = 30.2, SD = 5.1). All were university students or staff 

members, incentivised by a prize draw for a £40 shopping voucher. None had 

prior experience of signalling. The rational for choosing these participants was 

they were within the age range of railway safety critical staff, and they were 

an easier population to access to provide an initial test of the methods and 

equipment prior to future trialling within industry with railway staff. 

5.3.2  Simulation Protocol 

The signalling task used SimSig, an ecologically valid simulation of signalling 

screens used in operational IECC signalling centres in Britain. This PC 

simulation runs in real time, with trains appearing on the screen based on a 

real timetable (Figure 5-4 and Figure 5-5). The simulation uses donationware 

and commercial software. Participants each received training in how to 

operate the sim followed by 20 minutes practice during which they controlled 

the simulation to confirm they could correctly signal and route a train. 

Participants then put on the wearable measures (on their non-dominant wrist 

and on torso). A 20 second baseline (Averty et al., 2003) was recorded, and an 

audio clap used for retrospective data synchronisation in time across devices. 

Task time was 47 min – 64 min (M = 55, SD = 4). The study was approved by 

University of Nottingham’s Faculty of Engineering Ethics Committee, as 

shown in Appendix C. 
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Figure 5-4 Simulation, with timetable and workload app 

The number of trains was used as a measure of task demand as each train 

represented a required set of actions. These can be broadly categorised into 

planning, intervention (control inputs), monitoring (the screens), and 

communication (Balfe et al., 2008, Thomas-Friedrich, 2017). During the task 

participants must notice each train when it arrives on the screen, then 

identify its destination from the headcode (train reporting number label) by 

referring to the simplifier (timetable on the second screen, see Figure 5-4). 

 

Figure 5-5 Royston, SimSig simulation 
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They must then set the correct route, the first part only so as not to block the 

later stages of the route of other trains. Once the route is set the train’s 

progress must be monitored through sections, to notice when the next route 

can be set. Routes cannot be set in advance if the track ahead is currently 

occupied. They can only be set when the route shows clear. The number of 

trains therefore represents all these steps, and associated cognitive workload, 

to provide a task demand value.  

 

An addition to the design was a phone call. This was included as calls are a 

potential source of task interference. Whilst communication is a known factor 

in signaller workload, phone calls are often missing from simulation-based 

workload assessments, or modelling, of signaller workload (Delamare et al., 

2016; Gillis, 2016). Task interference from phone calls was predicted to be 

one of these critical points as they occurred were an event that was 

unplanned.  

 

The task was designed to be achievable by individuals with minimal training 

prior to simulator. The total number of trains was low, relative to busier areas 

of control. An ODEC workload assessment (Pickup et al., 2010) rates the area 

controlled as low workload (out of low, medium, high) based on the number 

of station platforms, junction, depots, controlled signals, and trains. This area 

provided variation in routing whilst keeping number of junctions and trains 

sufficiently low that participants could route all trains in the task without 

extensive training. The timetable had gaps to provide time to complete all 

tasks including addition tasks such as interposing (changing the train 

headcode). Task performance was not assessed. This fits with the agreed 

railway industry future use case of using these measures to assess workload 

not staff performance. The focus of data collection was on detecting 

physiological data continuously during a task with varying task demand. It was 

sufficient for this purpose for participants to demonstrate they engaged with 

the task. Participants were all deemed to have actively participated in the 
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tasks. If they had not, the number of trains would have increased without a 

decrease, as trains stopped at red signals awaiting routes.  

 

Task time varied to ensure each participant experienced increases and 

decreases in task demand, and similar overall total task demand. Task 

demand was defined as the number of trains on the screen at any one time. A 

timetable, on the second screen, provided details of when and where to route 

trains, and when to interpose (change) train headcode (train reporting 

number label).  

 

To increase the face validity of the task, two phone calls and a freight train 

were included as randomly timed novel events. A written script was provided 

for the calls. In the first call, from someone working near the track, the 

participant listened to the caller’s report, noted down their location, confirm 

they could commence work, and state the time. The second call from the 

same individual was confirmed work was complete, with the participant 

noting the time work was complete.  Verbal instructions were provided to 

route the freight train. Table 5-1 presents the planned task times. Actual 

times depended on the extent to which participants kept to the timetable and 

correctly routed the trains. 

 

5.3.3  Equipment 

An Affectiva QTM wrist strap (Figure 5-6) recorded skin conductance at 8hz 

and accelerometer data. A Zephyr BioHarness (Figure 5-7) chest strap 

 
Table 5-1 Planned variation in number of trains and order of events 

Time (min) Number of trains and order of events 

0m  0 trains at session start. 

1m – 15m Up to 3 trains, reduces to 1 – 2. Interpose 1 train headcode 

At any time Freight train arrives 

15m – 30m Up to 4 - 5 trains, reduces to 2. Interpose 1 train headcode 

30m – 50m Up to 4 trains, with 2 phone calls 

50m – 60m Session ended after next reduction in number of trains 
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calculated HRV from a rolling 300 heartbeat SDNN (Standard Deviation of 

Normal-to-Normal beats) in milliseconds, updated once per second.  

 

A subjective workload measures was included to compare data from the 

physiological devices with an existing MWL workload using in rail to capture 

time domain workload ratings. A mobile app, developed by the Mixed Reality 

Laboratory, University of Nottingham (on desk in Figure 5-4 displaying the 

Integrated Workload Scale (IWS) designed for signallers (Pickup et al., 2005b) 

(Figure 5-8). The scale appeared with an audible alert after 2 minutes, 

remained on screen until a rating was entered, then the screen went blank 

between ratings. If participants missed ratings, the scale would remain visible 

until a rating was given. Missing values were omitted from the analysis rather 

than being estimated. Screen capture software recorded audio and visuals to 

time stamp individuals’ task demand, task events, and all interactions with 

the task. 

5.3.4  Data processing 

One participant was excluded due to a 

technical problem. HRV represents 18 

participants as one participant’s data 

failed to record. Missing values were 

excluded from the study. Mean number 

of IWS ratings was 21.3 (SD = 5.2), with a 

total of 405 ratings across 19 participants. 

EDA data represents 12 participants as 

  

Figure 5-6 Q Sensor for 
EDA data 

Figure 5-7 Zephyr Bioharness for heart data 

 

 
Figure 5-8 IWS scale 



Study 2 – Using wearable to infer workload during a simulated signalling task 

 115 

seven non-responders were excluded with SCRs <0.05µS (Boucsein, 2012). 

Data across devices was synchronised by timestamps converted in MatLab. 

 

The data driven investigation of HRV identified task times when HRV was in 

the lowest or highest quarter for each participant. Within these, each 30 sec 

period was coded into two types of behaviour: 

• Correct (action required and completed, or cursor was still when no 

action was required) 

• Uncertain (interactions were initially incorrect, missed, in error (e.g., 

wrong route), hesitant, repeated, or cursor moved unnecessarily). 

These categories were developed from observations made by trainers of 

signallers during the domain familiarisation. They described individual 

trainees who they deemed ready to be passed out (take their test to qualify) 

were observed by trainers to make correct observable actions. Trainees 

requiring further training time were observed to make uncertain actions e.g., 

hesitation. Coding required task knowledge on the part of the researcher to 

identify which action was required when. Cursor movement provided a clear 

visual indication from the screen capture.  

 

The data driven investigation of EDA sensitivity identified when EDA peaked. 

Screen capture and audio data were then reviewed from 30 sec prior to rise 

times of EDA SCRs and SCLs. This applied the principles of a method used by 

Bound (2016) to identify events in a continuous task that precede peaks in 

EDA data. This is achieved by a visual inspection of EDA data, then an 

inspection of task data in the period preceding the EDA peak. Bound 

constrained their inspection to 14 seconds prior to peaks. In this study, this 

period was extended to 30 seconds. This was done to include and incremental 

increase of SCL due to a series of small SCRs, that lead to a cumulative 

increase in SCL despite individual SCRs being small. This exploratory data 

driven approach was applied to inform the inclusion, or not, of this method in 

analysis of future live operational trials. 
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Wrist movement was categorised as high, medium, or low. Physical 

movement is a known confounding variable of physiological data, so those 

classified as showing high levels of movements were excluded from further 

analysis. Medium and low were analysed further, to seek stimuli (external 

task demand or internal response to the task) that could explain EDA peaks 

beyond solely physical movement.  

5.3.5  Statistical analysis 

Correlations were analysed using Pearson’s correlation coefficient (2 tailed) in 

SPSS. A P – value of < 0.05 was regarded as significant. The difference in 

observations when HRV was High and Low was analysed using a Paired 

Samples t-Test. 

 

5.4  Results 

5.4.1  Storyboards of temporal physiological data 

Task demand, task events, EDA, HRV and IWS were graphed across the task in 

Storyboards for each participant, similar to the time sequence of physiological 

data of train drivers (Song et al., 2014). Figure 5-9 and Figure 5-10 show 

examples. 

5.4.2  Sensitivity of EDA to workload 

A visual inspection of storyboards determined SCRs did not coincide with 

phone calls, with no associated habituation between Call 1 and Call 2. A data 

driven exploration of observable behaviour preceding SCRs instead 

determined that SCRs could be explained by moments in workload including:  

1. Moments of realisation  

2. Uncertainty  

3. Time pressure. 
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Moments of realisation occurred after an error. Two participants showed an 

SCR. One saying “Oh oh oh” immediately after dealing with a level crossing 

(P6, as shown in Figure 5-9 at 33 minutes task time). The second, after 

realising trains were late said “Disaster. I’m very anxious now, what did I 

do?”. Two participants showed SCLs on realising an error. One said “Sorry I 

thought I knew what I was doing” whilst receiving instructions for routes, and 

the other, later in the task, “You kick yourself, what have I missed?”. These 

peaks occurred after the error, at the time the individual realised their error, 

such as setting a wrong route. 

 

Uncertainty was observed in participant behaviour around calls, novel events, 

errors and unexpected system responses. Calls were associated with two 

participants’ SCRs and one SCL. One participant with an SCR in Call 1 asked 

“What if I don’t understand [the caller]?” and one with an SCL, higher in Call 

2, said after both calls “Sorry I didn’t really catch their location”. In both cases 

it was not receiving the call that led to the EDA response, but uncertainty and 

confusion over the content. P06, shown in Figure 5-9, showed a similar 

response after Call 1 but did not verbalise, so the reason for their SCL is 

unclear. The novel freight train was linked to SCRs in three participants whilst 

receiving verbal instructions to route it. P6 showed SCRs after noticing the 

freight train, during routing it (Figure 5-9). Dealing with the freight train was 

linked to EDA responses in some participants. Participants received verbal 

instructions to route it and had to wait for permission to route it into the 

sidings. Their responses could be due to the novelty of the task, and their 

associated uncertainty, as the freight route differed to all other services. 
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Further examples of uncertainty included participants unaware of their own 

errors and confused by unexpected system responses. One participant 

showed SCRs and one SCLs whilst under instruction to route timetabled 

trains. Both participants made errors they were unaware of. P16 had a SCL 

(see Figure 5-10, from 34 minutes task time) when they failed to notice the 

freight train and set a route into an occupied platform. Their SCL continued to 

increase through both phone calls and whilst trying to cancel a route. This 

included a period of failing to answer the IWS. Two participants showed SCRs 

with unexpected system responses such as not understanding why a train had 

stopped or a cancelled route taking time to clear.  

 

Time pressure was observed in one of two ways. Firstly, SCRs whilst waiting 

for an external task to complete, such as a route to clear. Secondly, when 

participant error resulted in trains running late. In the latter case, time 

pressure was implied by participants’ observed behaviour or comments such 

as “I’m very anxious now, what did I do? All [the trains are] late!”. P16 

showed an SCL whilst waiting and trains were late (see Figure 5-10, during 

EDA rise time 13 – 16 minutes task time). 

5.4.3  Sensitivity of HRV to workload 

During periods of low HRV proportionally more Uncertain behaviours were 

observed (e.g., errors or hesitancy) with an associated decrease in Correct 

behaviours (see Figure 5-11). A Paired Sample t-Test (2-tailed) found no 

significant difference in Correct behaviours between High and Low HRV (M = 

7.22, SE = 2.47 df 17, t = 0.21). This suggests a trend towards uncertainty 

when HRV was low.  
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Figure 5-11 HRV Observations of Behaviours 

5.4.4  Correlations between HRV, EDA, IWS and task demand  

Statistical analysis compared means across the task and values at each IWS 

rating. The following HRV values were compared with IWS Mean across 18 

participants: HRV Baseline with IWS Mean; HRV Mean with IWS Mean; and 

HRV – BL Mean (HRV Baseline removed) with IWS Mean. Each comprise 366 

IWS ratings across 18 participants. Descriptive statistics for these variables are 

presented in Table 5-2.  

 

Table 5-2 Descriptive statistics for IWS and HRV mean correlations 

Variable Mean  

(N = 18) 

Standard 
Deviation 

(N = 18) 

Task Demand    3.30   1.11 

IWS    4.03   1.64 

HRV Baseline   74.08   0.67 

HRV Mean (20s to IWS)  64.66 18.35 

HRV - BL Mean (20s to IWS) -11.60 17.26 

    

 

A strong negative correlation was found between HRV Mean and IWS Mean (r 

= – 0.721, P 0.001), across 18 participants, 366 IWS ratings. Results of the 

correlations are presented in Table 5-3. A relationship exists between 

participants’ average subjective rating and their average HRV data. A 

moderate, significant, correlation was also found between HRV Baseline and 

IWS Mean (r = – 0.570, P 0.013). Individuals’ HRV Baseline prior to a task 

0%
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HRV Observations of Behaviours

Correct Uncertain
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provided a moderate prediction of average IWS during the task. This suggests 

High MWL may be inferred from low HRV. HRV baseline before the task may 

also partially predict MWL reported during the task. In comparison, when 

baseline values were removed, HRV-BL Mean did not correlate with IWS 

Mean (r = 0.137, P 0.587), see Table 5-3. Removing the baseline corrected for 

individual differences, leaving workload due to task demand. This finding 

indicates average IWS had a stronger relationship with individual HRV than 

with task demand (number of trains). 

 

Table 5-3 IWS and HRV mean correlations 

(18 participants). Bold **significant at 0.01, *significant at 0.05 (both 2-
tailed). 

 IWS Mean  HRV 
Baseline  

HRV Mean 

(20s to IWS) 

IWS Mean 1   

HRV Baseline = – 0.570* 

P = 0.013 

1  

HRV Mean (20s to IWS) = –0.721** 

P = 0.001 

= 0.849** 

P = < 
0.001 

1 

HRV - BL Mean (20s to 
IWS) 

 

= 0.137 

P = 0.587 

= – 0.755** 

P = < 
0.001 

= – 0.294 

P = 0.236 

    

 

Two comparisons of HRV and IWS were conducted at the time of each IWS 

rating, with HRV averaged in the 20 sec period prior to IWS rating: HRV (20s 

to IWS) with IWS; and HRV – BL (20s to IWS) (HRV Baseline removed) with 

IWS.  

 

A moderate significant negative correlation with HRV (r = – 0.391, P < 0.001) 

was found with individual IWS ratings, see Table 5-4. This fitted with the 

correlation found between task HRV Mean and IWS mean. When HRV 

Baseline was removed, to correct for individual differences, the correlation 

with IWS was absent (r = 0.036, P < 0.492). 
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At the time of each IWS rating HRV was a weaker predictor of a specific IWS 

rating. Figure 5-12 illustrates this difference between absolute HRV and 

relative HRV – BL values. 

 

Task demand and IWS showed a moderate significant correlation across 405 

IWS ratings by 19 participants (r = 0.474, P = 0.001), see Table 5-4.  IWS 

ratings changed partly in line with task demand. In comparison task demand 

and HRV showed a small significant negative correlation across 366 ratings by 

18 participants (r = – 0.154, P = 0.003), see Table 5-4. Task demand and HRV-

BL did not correlate (r = 0.002, P = 0.962). Once individual differences were 

corrected for, HRV did not predict task demand.  

 

Task demand and EDA did not correlate across the 12 participants showing an 

EDA response (r = 0.112, P = 0.072). Descriptive statistics are presented for 

EDA in Table 5-5.  

 

Table 5-4 HRV, EDA and Task Demand correlations at times of IWS ratings  

Bold ** significant at 0.01 level (2-tailed); * significant at 0.05 level (2-tailed). Sample sizes vary due 
to data processing, and number of IWS rating per participant. N = number of values from IWS of 19 
participants, HRV of 18 participants and EDA of 12 participants. 

 Task Demand 

 

IWS Rating HRV  

(20s to IWS) 

HRV-BL 

(20s to IWS) 

EDA 

Task Demand 

 

1  

 

   

IWS 0.474**  

P = < 0.001 

N = 405 

1    

HRV  

(20s to IWS) 

– 0.154** 

P = 0.003 

N = 366 

– 0.391** 

P = < 0.001 

N = 366 

1   

HRV-BL  

(20s to IWS) 

0.002 

P = 0.962 

N = 366 

.036 

P = 0.492 

N = 366 

0.169** 

P = 0.001 

N = 366 

1  

EDA 0.112 

P = 0.072  

N = 260 

0.294** 

P = < 0.001 

N = 260 

– 0.147* 

P = 0.029 

N = 222 

– 0.158* 

P = 0.019 

N = 222 

1 

 

      



Study 2 – Using wearable to infer workload during a simulated signalling task 

 124 

Table 5-5 Descriptive statistics for IWS and EDA mean correlations 

Variable Mean  

(N = 12) 

Standard 
Deviation 

(N = 12) 

Task Demand 3.30 1.11 

IWS 3.97 1.64 

EDA 0.20 0.12 

 

EDA did not show a relationship with task demand. As task demand increased 

HRV decreased, but to a lesser extent than IWS increased. 

 

  

Figure 5-12 IWS with HRV and HRV-BL 

 

IWS and EDA showed a small significant correlation (r = 0.294, P = < 0.001), 

see Table 5-4, for the 12 participants who were EDA responders. Whilst EDA 

does not correlate with task demand, increases in EDA does partially infer 

increased MWL in those participants who record an EDA response.  

 

In summary, HRV showed a negative correlation with IWS and Task demand. 

HRV showed a stronger association with IWS than with task demand. These 

HRV correlations came from values that were not baseline corrected. EDA 

showed a small significant correlation with IWS (in responders), but phone 

calls did not cause SCRs. 

 

5.5  Discussion 

Findings show a complex relationship between Task demand, IWS, HRV and 

EDA, with responses varying across participants. The temporal data presented 
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in storyboards provide a detailed visualisation of this complex interaction 

across a dynamic task. They demonstrate the potential to be produced swiftly 

in a live environment to form part of a debrief with operational staff. This use 

case could prove valuable to prompt discussion with staff as to why MWL or 

physiological data changed at certain points in time during the task. This 

method would add validity to the qualitative labelling of events in the 

continuous data by involving the individual who performed the task. 

 

A strong negative correlation was found between HRV Mean and IWS Mean 

across the task, showing convergent validity for mean HRV. This finding 

matches previous studies that show HRV decreases as workload increases. At 

individual instances of IWS rating, a moderate negative correlation was 

detected. Whilst HRV may not be a strong at predictor of specific a subjective 

workload rating, it could potentially predict the average subjective workload 

rating across a task. This finding fits with previous research that subjective 

workload ratings are good indicators of how an individual experiences the 

workload, rather than reflecting task demand. Findings suggest, if only an 

average workload rating was required for a whole task, HRV could replace 

IWS. HRV values, averaged over the task, could provide an estimate of the 

likely average subjective workload score. In addition, an HRV baseline may be 

sufficient to provide an indicator of where on a subjective workload scale, for 

a similar task, individuals will report workload relative to each other. This 

would fit with HRV indicating individuals’ underlying current autonomic state, 

and where they currently sit in the balance between the sympathetic and 

parasympathetic nervous system. A sample of HRV may, in future, provide an 

individual ‘weighting’ to complement subjective ratings. 

 

The above correlation between HRV and IWS was removed when HRV data 

was corrected relative to baseline. HRV – BL did not predict IWS ratings. 

Whilst it is common with physiological measures to use relative values, with 

baseline removed, this study found HRV absolute values can offer insight into 

MWL. In this study the same task demand (timetabled trains) led to different 
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individual experiences of workload. Absolute values showed differences 

between individuals’ experience of workload, whilst relative values (baseline 

corrected) provided data on task demand. Both have their place. In terms of 

MWL however, the meaning of absolute values in physiological data are not 

currently well understood.  

 

Task demand (number of trains) and IWS showed a moderate significant 

correlation. This suggests subjective workload was more than simply the 

number of trains on the screen. At instances of IWS ratings, HRV and IWS 

showed a moderately significant negative correlation that was stronger than 

the HRV and task demand small significant negative correlation. This suggests 

HRV indicates individual effort and time pressure (as reported by IWS), more  

than HRV reflects the number of trains on the screen.  

 

In terms of the individual experience of workload, a trend was found for HRV 

being lower when uncertainty was observed. Whilst no significant difference 

was found between high and low HRV, uncertainty linked to HRV matches 

previous research by Ramírez et al. 2015. Taken together these findings show 

HRV can imply individual workload experience. 

  

EDA identified moments in workload during the task. EDA did not correlate 

with task demand and showed only a small significant correlation with IWS. 

Instead, both EDA SRCs and SCLs indicated moments of realisation, and 

periods of uncertainty, or strain due to time pressure. Moments of realisation 

occurred when an individual realised something such as an error. The timing 

of this realisation was not when the error was made (when they had no 

awareness of erring). This finding matches the concept in literature of SCRs 

occurring due to a sudden unexpected, or novel, event. In this study they 

were internal sudden realisations, not external stimuli.  

 

Determining when physiological data showed ‘stress’ or ‘alertness’ proved 

challenging. Instead, in this study ‘Uncertainty’ was used to label observations 
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of behaviour that could then be linked in time to physiological data. In in the 

EDA data, uncertainty was observed with calls, novel events, errors, and 

unexpected system responses. These were based on what participants were 

heard to say, or their speed and accuracy of cursor moves and interactions. 

The literature terms these responses as level of alertness, stress, or 

anticipation. There is therefore some ambiguity in the terms used by different 

studies to describe what may be a similar underlying physiological response. 

To develop these measures, clarity is needed when reporting results to 

distinguish what the data detects and what it infers (e.g. stress, alertness etc). 

 

In the EDA data, SCRs did not coincide with phone calls or show habituation 

between calls. Similarly, the arrival of the freight train did not result in EDA 

responses for all participants. Whilst this does not match previous laboratory 

studies of sudden external events, it does match findings in the field of EDA 

response varying with the reason for communications (Broekhoven et al., 

2016): EDA appeared to indicate only individuals for whom the calls caused 

confusion.  

 

Whilst a proportion of non-responders is to be expected in a study, this study 

had a higher proportion of non-responders with only 12 of 19 participants 

displayed SCRs or SCLs. This could be due to cooler room temperature, or 

sensor placement. In addition, this result may be a valid reflection of the 

simulator setting, and a task that some participants found easy to complete 

without any sudden unexpected events. EDA increases only when the 

situation is deemed to need more attentional resource, or effort. 

 

Results suggest aspects of experienced MWL can be inferred from 

physiological data. Physiological data was found to have a stronger 

relationship with subjective ratings than with task demand (number of trains). 

This suggests physiological measures strengths suit measuring individuals’ 

experience of workload, and how this varies between participants. In 

addition, it could indicate that the increase in number of trains did not 
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account for task demand. Time pressure, complexity and Novelty of Events 

(e.g. dealing with the freight train) are likely to have contributed. EDA’s 

strengths lie in pinpointing moments pertinent to workload in a continuous 

task. HRV can indicate an individual’s underlying autonomic state during a 

task. Contextual information is required to determine what has led to a 

physiological response. They both could potentially, in real time, indicate an 

individual’s changing capacity to respond to task demand. Whilst absolute 

values of physiological data may yet to be fully understood, individual 

patterns of HRV changes could be of use.   

5.5.1  Implications and future work 

Physiological data could be used in a debrief, to address aspects of the task 

that result in the largest physiological responses. Identification of precise of 

workload, in graphed storyboards of the task, could enable the provision of a 

retrospective narrative of individual workload. This narrative approach would 

provide detail that cannot be captured during the task without interruption. 

Such an approach could be used as a training aid, or workload assessment 

tool. 

 

This study found individuals differ in their physiological data. To develop 

physiological measures for MWL assessment it will be important to 

understand the impact of individual differences. A repeated measures study, 

with data collected from the same individuals, would assist in understanding 

how stable (and therefore predictable) individuals’ responses are over time. 

 

To progress the use of physiological measures for MWL assessment it is 

recommended further research distinguishes the findings of what data were 

detected from what was inferred. This will assist in clarifying what each 

measure is best suited to assessing. In this study electrical signals from both 

skin and heart activity were detected. From these data individuals’ experience 

of workload were inferred. Whilst research continues to decipher the 
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interaction between physiological data and MWL, this distinction will assist 

clarifying the diagnosticity of physiological data for MWL assessment.  

In addition, these measures cannot be applied in isolation. Where inferences 

are made, these rely on additional sources of data, such as event logs or 

individual accounts, to account for changes in data. 

 

This study focused on what could be detected from continuous temporal 

data, with qualitative analysis exploring what events in task and physiological 

data co-exist in time or in sequence. This is exploratory approach would 

benefit in future from the outcome of qualitative debriefs with staff. If clear 

sequences of events are identified these could then inform future qualitative 

research with advanced statistics. 

 

Finally, applying wearables in live rail operations is an emergent field. If 

wearable measures are to use physiological data in future to assess staff 

MWL, it will be important to understand the perspective and attitudes of staff 

to both wearing the devices and the use of their physiological data.  

 

5.6  Limitations 

Participants had no prior experience of signalling, and practice time on the 

simulator was limited. Whilst all participants successfully routed trains, some 

participants seemed to experience uncertainty or confusion when unexpected 

system responses occurred or made errors that they were initially unaware 

of. This led to a wider range of experience of the task than only the varying 

task demand. The resulting varying physiological data did suggest this 

element of identifying moments of uncertainty is worthy of further 

investigation in a future study. 

 

The study had 37% non-responders, with SCRs <0.05µS (Boucsein, 2012). This 

is higher than the 10% of previous studies (Braithwaite et al., 2013). This 



Study 2 – Using wearable to infer workload during a simulated signalling task 

 130 

could be caused by sensor placement or low room temperature (M = 14.9 0C, 

SD = 2.6). To improve future EDA data collection, sensors could be placed in 

the volar wrist position or palm, and ambient temperature increased and 

controlled.  

 

The coding of Correct or Uncertain behaviour required an understanding of 

the signalling task to determine whether an action was required at any one 

time. Should future studies apply this method, the reliability and validity of 

this observational coding would be strengthened by a second observer coding 

the data to provide inter-rater reliability. 

 

In using HRV data, a longer baseline period may be appropriate in future 

studies. This would confirm whether the difference between HRV and HRV-BL 

found in this study endured. 

 

5.7  Conclusion 

Additional MWL measures would benefit the rail industry to measure MWL 

from relative inactivity to overload. This study considered whether 

physiological wearables could provide a new measure for signallers. The study 

found that different physiological measures were sensitive to different 

aspects of MWL.  

 

Both HRV and EDA detected physiological responses that imply, in 

combination with other data, aspects of individuals’ experience of workload. 

HRV could be used in place of IWS, or other subjective workload subjective 

measures, particularly if average MWL ratings are required. EDA could be 

used to identify moments in workload during a continuous task, such as 

moments of realisation, or periods of uncertainty, or time pressure. It is 

important to be clear what question needs answering to choose a 

physiological measure sensitive to detecting an answer or inferring one. The 

moments in workload could inform a debrief, and focus training efforts, on 
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aspects of the task individuals showed strong responses to. HRV could 

provide a real time indicator of workload and provide visibility of staff effort 

to managers. It also remains essential to keep distinct what a physiological 

measure detects, and what is being inferred from the data about MWL. 

 

How individuals differ in their physiological data could help explain why 

individuals differ in their subjective workload for a similar task. This has 

implications for MWL theory and subjective workload measures, beyond this 

rail specific study. 
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Chapter 6:  Study 3 – Staff attitudes and perspectives 
on wearable measures 
 

6.1  Chapter overview 

This chapter presents the results from Study 3 the perspectives of staff to the 

use of wearable physiological measures. The interview study explored 

signalling staff perspectives on the potential use of wearable measures in the 

workplace in future. The study method combined semi-structured interviews 

and surveys with rating scales. Analysis considered to what extent personal 

attitude to change could predict technology acceptance. The study found 

wearable devices suit use in the live operational environment, with the wrist 

strap rated the most suitable due to low distraction and perceived ease of 

use. In terms of data use, themes included perceived usefulness, anonymity, 

and trust. 

 

6.2  Introduction 

The railway industry seeks new ways to measure and predict the mental 

workload (MWL) of signallers (Hack 2021, Zeilstra 2021) with the Rail Accident 

Investigation Branch (RAIB) recommending improved measures of signallers’ 

workload (RAIB, 2020).  

6.2.1  Staff Mental Workload 

MWL is a construct that encapsulates task demand, individuals’ experiences 

of MWL and task performance (Sharples, 2019). Staff MWL data can inform 

future design decisions regarding new assistive and automated technologies. 

This includes visibility of the impact on human performance of any technology 

introduced intended to increase operational performance and capacity. The 

aim is to monitor staff MWL and response to change, so that staff and 
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operations remain within the boundaries of acceptable performance (see 

Rasmussen’s (1997) Dynamic Safety Model).  

6.2.2  Workload measures to suit live operations 

Currently in the railway industry there is no single, widely used workload 

assessment method (RSSB 2005a). Measurement of MWL in live railway 

operational environments is a challenge, relying on short periods of an 

observer counting actions, or self-assessed ratings using the Integrated 

Workload Scale (IWS) (Pickup et al., 2005b), reported verbally to an observer. 

Measuring in the live environment is preferable, as the complex task of the 

signaller is difficult to realistically simulate, particularly for real-time 

communications (Sharples et al., 2011). Figure 6-1 shows a modern VDU 

workstation that includes automatic route setting, which is just one example 

of increasing task automation in this context (Sharples et al., 2011). This adds 

to the challenge of determining appropriate MWL. Reduced physical 

workload, due to the new technologies, presents two issues for MWL 

assessment: 

1. The assumption by managers that when staff look like they are doing 

less work their MWL must be lower and their cognitive task is easy. 

2. There are fewer observable cues that could infer an individuals’ MWL. 

 

In response to these issues, a simulation study was conducted to determine 

how wearable physiological data could supplement existing measures by 

providing visibility of workload in real-time to staff and their managers. This 

study found that these measures could provide continuous data of a signalling 

task with minimal distraction.  

6.2.3  Importance of staff perspectives 

The current study addresses the perspectives of staff to the use of these 

potential measures by interviewing staff about both the devices and the use 

of their physiological data. The importance of the perspectives of staff to the 
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use of measures, and their data, became apparent during the thesis. As 

wearable measures become more accessible, the perspectives of staff to their 

use emerges as a research gap. This interview study provided a way to 

examine what contributed to staff perspectives.  

 

 
Figure 6-1 Signaller at VDU workstation, December 2018 (Source: Author) 

6.2.4  Background 

New physiological wearable measures offer an opportunity to track MWL in 

the live operational environment. Physiological state is balanced by the 

sympathetic and parasympathetic nervous systems in the human body. The 

sympathetic nervous system increases heart rate, alertness and sweating to 

prepare for action, whilst the parasympathetic nervous system decreases 

heart rate and increases gut secretions to rest the body (Sherwood 2013). 

Changes in mental state can be inferred from changing physiological state, 

with measures offering a “window into the mind” (Hugdahl 1995). Research 

has shown different physiological measures are sensitive to different aspects 

of MWL (Matthews et al., (2014), Charles and Nixon (2019)). Wearable 

physiological measures have been used in sports and health care, such as with 

athletes for mental acuity and stress (Seshadri, Li, Voos, Rowbottom, Alfes, 

Zorman and Drummond, 2019), rugby players (West, Williams, Kemp, Cross 

and Stokes 2019), remote medical health monitoring (Soon, Svavarsdottir, 
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Downey and Jayne 2020) and personal fitness. Wearable devices are 

developing rapidly, for example the global fitness tracker market is projected 

to grow from £26 billion in 2020 to £83 billion9 by 2028 (Fortune Business 

Insights 2021). Use of physiological measures in railway research has shown 

potential to assess driver and signaller MWL (Song et al., 2014, Broekhoven 

2016, Crowley and Balfe 2018) but has, to date, been limited.  

 

Electrodermal Activity (EDA) implies activation of the sympathetic nervous 

system and Heart Rate Variability (HRV) implies both sympathetic and 

parasympathetic nervous system activation (Tortora and Derrickson 2007). 

Alertness and attention can be inferred by EDA (Cacioppo 2017, Boucsein 

2012) from a wrist strap (see  

). Increased workload can be inferred from low HRV (Lehrer et al., 2010) from 

a chest strap (see  

).  

 

 

 

 

 

Previous research in rail found EDA inferred train driver alertness (Song et al., 

2014) and anticipation (Crowley and Balfe 2018), and distinguished signallers’ 

 
9 Based on an exchange rate 1 USD = 0.727 GBP, as checked on xe.com 23.10.2021 

Figure 6-2 Wrist strap, Chest strap and App 

Figure 6-2 Wrist strap, Chest strap and App 

Figure 6-2 Wrist strap, Chest strap and App 

Images: Wrist strap (Source: Author), Chest strap (Zephyr Bioharness, www.zephyranywhere.com) 
and App (Pickup et al., 2005b) 
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varying reactions to communications (Broekhoven 2016). In train drivers HRV 

decreased before and after stops, and at tunnels (Song et al., 2014). As a 

comparison to wearable measures, IWS is a self-assessed workload measure 

for signallers (Pickup et al., 2005b) (see  

). An app version of the IWS was developed by the Mixed Reality Laboratory, 

University of Nottingham for a simulation study of the signalling task (see 

Figure 5-4). 

 

Despite the growth in wearable technologies, little research has been 

conducted on the acceptance of wearables (Gribel et al., 2016). The 

Technology Acceptance Model (TAM) is a widely applied information systems 

theory that explains technology acceptance and predicted usage. The 

Technology Adoption Cycle is a sociological model that explains why 

individuals vary in how swiftly they uptake new technology. TAM (Davis 1989) 

and its extension TAM2 (Venkatesh and Davis 2000) provide a scaled 

questionnaire to assess current attitudes, affording a valid and reliable way to 

predict future use of new technology. Whilst the original research focused on 

the use of software, it includes factors applicable to wearables. Figure 6-3 

shows the factors of TAM2. Factors most applicable to wearables, as assessed 

pre-experience to predict Intention to Use are: Perceived Ease-of-Use, and 

Perceived Usefulness including Experience, Subjective Norm, Image and Job 

Relevance.  

Figure 6-2 Wrist strap, Chest strap and App 
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There are broader cultural reasons for acceptance or resistance of any new 

technology, captured in part by Subjective Norm in the TAM model. Limited 

research around resistance to technology has been conducted in the railway 

transportation domain (Rose and Bearman, 2013). A study of train drivers 

found negative opinions of new technology were be based on what 

individuals had heard from peers (Rose and Bearman, 2013), particularly 

when individuals had not experienced the technology for themselves. The 

study also found that whilst some staff saw the positives of sharing 

information with their manager to improve driving skills through training, 

other felt this was too ‘big brother’ and feared information would be used 

against them (Rose and Bearman, 2013). The latter points to more systemic 

issues of trust (Fox A, 1974). Staff need assurance as to how technologies will 

be used, and trust management that is how the technology is used. There are 

also concerns around the negative personal impact such as reducing the need 

for worker’s skills without significant benefits (Rose and Bearman, 2013). 

These broader factors are potential barriers to acceptance that need to be 

managed. This includes ensuring staff are involved, that the intended use of 

the technology is communicated clearly, and that concerns are 

acknowledged. Resistance can reflect legitimate concerns such as safety 

 

Figure 6-3 Technology Acceptance Model 2 (TAM2), Venkatesh and Davis (2000) 
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implications (Naweed and Rose, 2018). Identifying which factors apply to the 

future use of wearables will assist in progressing their development, whether 

these be cultural, personal impact or safety concerns. 

 

In addition to TAM2 that considers the functionality and cultural fit of the 

technology to the task, other theories consider the potential impact of 

individuals’ attitudes to new technology. The Technology Adoption Lifecycle, 

a sociological model, describes the adoption or acceptance of a new product 

or innovation, and explains the varying speed of uptake across a population. 

The bell curve (Figure 6-4) is derived from the Diffusion of Innovations theory 

(Rogers 1962). According to Rogers’ theory, innovators are the first to seek 

out new technology. Early adopters seek kindred spirits across industries. The 

early majority are pragmatists, they communicate more within their own 

industry and prefer being able to compare products. The late majority are 

conservative, they prefer to stick with what they know, only engaging with 

mature products. Laggards resist new technology. It is predicted that, in the 

rail industry, there may be resistance to new technology as staff are familiar 

with a slow uptake of new technology. The Individual Innovative scale (Hurt et 

al., 1977) identifies individuals’ position on this bell curve.  

 

In addition to TAM2, the following other factors should be considered when 

assessing attitudes and attitudes to wearables measures: 

• Comfort (Urquhart and Craigon, 2021; Gribel et al., 2016; Wolf et 

al., 2018) 

 

Figure 6-4 Technology Adoption Lifecycle (Moore 2002) 
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• Distraction (Jacobs et al., 2019, Gribel et al., 2016, Parasuraman 

and Colby, 2015, Urquhart and Craigon, 2021) 

• Trust (Gribel et al., 2016, Jacobs et al., 2019, Parasuraman et al., 

2015), 

• Anonymity (Jacobs et al., 2019, and Urquhart and Craigon, 2021)  

• Concerns over being tracked (Wolf et al., 2018) 

• Sharing data with third party access (Gribel et al., 2016) 

 

These factors were drawn from the Technology Readiness Index 

(Parasuraman and Colby 2015), the Moral IT deck (Urquhart and Craigon 

2021), TAM2 adapted to wearables (Wolf, Menzel, Advisory, and Rennhak 

2018, Gribel et al., 2016), Acceptance Factors of Wearable Computing (Gribrel 

et al., 2016), and staff attitudes to using wearables (Jacobs, Hettinger, Huang, 

Jeffries, Lesch, Simmons, Verma and Willetts 2019).  

 

The current study determines whether wearable physiological measures 

could provide a timely addition to the toolkit of workload measures, by 

assessing current staff perspectives towards the use of wearable measures. 

Three measures are compared: a wrist strap to detect Electrodermal Activity 

(EDA); a chest strap to detect Heart Rate Variability (HRV); and the IWS as an 

app, to replace the previous method of verbal self-assessed ratings. These 

three measures were applied in a simulated signalling task. The inclusion of 

both EDA and HRV ensures both sympathetic and parasympathetic activity 

are accounted for.  To assess railway staff perspectives on these new 

measures, this study draws on the interdisciplinary theories of the Technology 

Acceptance Model (TAM) and the Technology Adoption Cycle to predict likely 

usage of wearable physiological measures to assess staff workload, this study 

had the following research questions: 

• Which measures suit live operations based on perceived comfort 

levels, perceived distraction from the task, and perceived 

relevance of data?  
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• What factors contribute to the perspective and attitudes of staff to 

the potential use of wearables at work? 

• Can individual innovativeness or experience explain differences in 

attitude? 

 

6.3  Method 

6.3.1  Study design 

The study applied a pragmatic approach (Robson and McCartan, 2015) by 

seeking stakeholders’ perspectives and experience. The value of the findings 

was in identifying what works for industry, recognising the reality of the rail 

industry’s operational setting is complex (Reichardt and Rallis, 1994). This 

study used semi-structured to explore how physiological wearable measures 

could be used in the rail industry in future. The use of semi-structured 

interviews allowed the stakeholders to share their experiences and opinions 

in their own word (Coveney, 2014). The method included elements of both an 

inductive and deductive approach. The semi-structured interview prompts 

supported a top-down deductive approach (Robson and McCartan, 2015) 

with stakeholder providing answers and examples on existing topics. The 

bottom-up inductive approach developed initially as the interviews 

progressed and additional topics emerged beyond the original prompts 

(Braun and Clarke 2012). The coding and analysis stages used a combination 

of both inductive and deductive approach to establish themes that reflected 

both the original deductive prompts and emerged during the interview 

process and coding. The themes that emerge from the interview data go 

beyond what can be observed (Glaus et al., 1996). The final themes and sub-

themes inclusion reflect those relevant to the rail industry. 
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6.3.2  Participants 

All eighteen participants recruited in this study were signallers and shift 

managers working at East Midlands Control Centre (EMCC) and included the 

local Union representative. Participation was voluntary, and no incentive was 

offered. Staff at the centre knew the researcher from the domain 

familiarisation activity undertaken during an internship with Network Rail (see 

1.6 , and whilst arranging the live trials that were subsequently cancelled due 

to COVID-19 related restrictions in March 2020. These events assisting in 

gaining industry support for the interviews, both for participants and for the 

staff required to cover operations to enable the interviews to go ahead. The 

representative railway Unions were informed of the research ahead of 

interviews. Participants were recruited using a snow-ball sampling method, 

via a poster and managers.  

 

The average age of participants was 46.9 years (SD = 12.9). Their average total 

signalling experience was 14.2 years (SD = 11.1), and experience of modern 

signalling VDU workstations was an average of 7.1 years (SD = 6.5). Higher 

Grade signallers were those at Grade 7, 8 and Shift Signaller Managers (who 

are qualified to cover workstations when required). Lower grade signallers 

were those graded 4 – 6. Participants represented 22% of the staff at one 

centre based in the Midlands. Participant numbers were randomly assigned, 

and do not reflect the order the interviews were completed in. 

 
Figure 6-5 Participant experience of wearables, signalling and individual innovativeness 
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The Venn diagram in Figure 6-5 shows the distribution of participants based 

on whether they had experience of wearables for fitness, their Individual 

Innovativeness, and total experience of signalling. This demonstrates the 

participants covered a range of experiences from across all three of these 

demographics, enabling interviews to represent a range of perspectives and 

attitudes. The eight participants with experience of wearables for fitness 

reported using a wrist device, smart watch, or mobile phone app, and one 

who previously used a chest strap for fitness. Only six participants had 

experience of workload assessment techniques, spread across the three 

circles of the Venn diagram in Figure 6-5. All participants who had experience 

of reporting their workload using IWS were in the High Signalling Experience 

category. 

6.3.3  Procedure 

The questionnaire and interview questions (see Appendix D) were adapted 

from TAM and other existing methods and models (Venkatesh at al 2000, 

Hurt et al., 1977, Jacobs et al., 2019, Gribel et al., 2016, Urquhart and Craigon, 

2021, Parasuraman et al., 2015, and Wolf et al., 2018). Unlike the 

technologies originally researched using TAM, the physiological measures 

investigated here are not designed to improve productivity directly (Jacobs et 

al., 2019).  

 

In advance of the interviews, participants received a consent form, a short 

Pre-Interview Questionnaire to be completed online using Jisc Online Surveys, 

and a two-page pamphlet ‘Introduction to Wearables and App’. This 

introduction contained pictures of all three devices (see  

), with a short description of each, to ensure all participants had the same 

briefing about the devices prior to being interviewed (see Appendix E). The 

Pre-Interview questionnaire collected demographic information, including 

Figure 6-2 Wrist strap, Chest strap and App 
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level of experience of signalling, workload assessments, and experience of 

wearables (see Appendix F). The Individual Innovativeness questionnaire 

(Hurt et al., 1977) was included to determined individuals’ preference for new 

technology. 

Use cases were referred to during interviews to present three alternative 

hypothetical future use cases that current staff could relate to (see Table 6-1).  

These were used as prompts to explore the reasons behind participants’ 

answers on purpose. The case studies provided details of potential uses, such 

as examples of different levels of data sharing, and different purposes.  

 

The Use Cases were developed by drawing on findings from the industry 

interviews study, the simulation study, the scoping review of physiological 

data, the literature on user acceptance of new technology and privacy, and in 

consultation with railway industry experts. They provided a range of:  

• Perceived Usefulness (Venkatesh and Davis, 2000) - potential uses, 

based on industry interview of when staff are assessed currently (e.g. 

as a trainee, or by manager) and in consultation with industry. They 

include a workload assessment use, and two types of change: from 

trainee to being qualified signaller; and the impact of new technology.  

• Job Relevance (Venkatesh and Davis, 2000) – most relevant aspects of 

workload to infer, based on the scoping review of physiological 

measures and simulation study findings. 
 Table 6-1 Use Cases used in interviews 

 A 

Understand 
Signaller Workload 

B 

Learning Aid 

C 

Assess impact of new 
technology or procedure 

Perceived 
Usefulness 

Detect peaks & 
troughs in workload 
& effort 

Track progress, self-
learning, assess 
training 

Assess effectiveness of 
change 

Job 
Relevance 

Anticipation, 
alertness, stress, 
time pressure, brief 
peaks 

Alertness, confidence, 
unexpected event, 
stress, effort 

Stress, effort, unexpected 
system responses 

Anonymity 
& Trust 

Anonymised Trainee data shared 
with trainer & device 
supplier 

Labelled with initials, 
shared with manager & 
investigator 

Time 
required  

Data collected during 
1-2 shifts 

Data collected across 
training period 

Data collected across 
period of change 
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• Anonymity and Trust – level of anonymity (Jacobs et al., 2019; 

Urquhart and Craigon, 2021) and third party access (Gribel et al., 

2016) from the scoping review of privacy in personal data use. 

• Duration – how long would it be feasible to collect data for, based on 

consultation with industry. 

 

The semi-structured interviews were conducted over the telephone and audio 

recorded. The interview prompts are presented in Appendix G. The average 

length of interview was 60 minutes (SD = 14 minutes), with a total of 18 hours 

recorded. Interviews could not take place in person due to COVID-19 

restrictions stopping visitor access to operational sites. All interviews took 

place during work hours, with cover arranged at the workstation to allow staff 

to participate. The study was approved by University of Nottingham’s Faculty 

of Engineering Ethics Committee, as shown in Appendix D. 

 

The short Post-Interview questionnaire asked participants to rate, on a scale, 

their level of agreement with eleven statements on topics covered in 

interview (adapted from Venkatesh at al 2000, Jacobs et al., 2019, Gribel et 

al., 2016, Parasuraman et al., 2015, and Wolf et al., 2018). The questionnaires 

included scale questions from 1 strongly disagree to 7 strongly agree (see 

Appendix H). This compared responses between the chest, wrist, and app 

devices. 

6.3.4  Data Analysis 

An Automatic Transcription Service was used to initially transcribe interviews. 

Familiarisation was achieved during checking and manual correcting of all 

interviews by the first author of the study. 

 

Thematic coding was used in an iterative process to discover the factors 

underlying staff perspectives and attitudes (Robson and McCartan 2015, 

Braun and Clarke, 2012, and Saldaña 2016). Half the interviews were coded 
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on paper to produce the framework v1. A coding review exercise was 

performed at this stage, in which a second analyst sorted the child codes into 

thematic groups, without reference to framework v1. All child codes were 

retained, with 38 matching their eleven existing parent codes. The results of 

this check were examined by the two analysts, which resulted in some parent 

codes being merged and a new parent code (‘Data Quality Uncertain’). This 

stage is presented in Figure 6-6, showing parent and child codes. 

 

After the check by two analysts, all child codes were merged into their parent 

codes. The resulting revised framework v2 comprised of 10 codes. Coding was 

digitised using NVivo 12 (QSR 2019) and all interviews were coded. Two codes 

were merged so the final framework (presented in Table 6-2) contained 9 

codes across three stages: Justification, Data Collection and Consequence.  
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Figure 6-6 Coding tree for staff perspectives on wearables 

Independent of the coding exercise, the researcher devised a method to 

categorise the results from the 32 interview questions. The categories 

indicated the extent to which participants supported the use of measures. A 
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traffic light coding was applied to each answer provided. Red indicated that 

participants’ answers explicitly contained responses that were against the use 

of the measures. Green indicated participant responses explicitly endorsed 

the use of the measures. Amber indicated responses that were mixed, such as 

containing caveats to their use, or where they did not wish to comment either 

for or against the measures. This analysis was specifically used to determine 

whether a pattern existed between experience, or individual innovativeness 

and individual perspectives and attitudes to the new measures, and 

robustness in the analysis. 

 

6.4  Results 

The iterative thematic coding produced 9 codes, across 3 stages, and 

represented a range of perspectives and attitudes from endorsement, 

uncertainty, to opposition to the use of wearable measures (see Table 6-2).  

 
Table 6-2 Coding framework for perspectives on wearables in the workplace 

 Stages → 

 1 2 3 

 Justification Data Collection Consequences 

→
 P

o
s
it
iv

e
 

Tangible benefit 
to railway 
operations 

Comfortable 
devices suit live 

operations 

Importance of 
trusting those 
who see their 

data 

A
tt

it
u

d
e

s
 

Data relevance 
to signalling task 

Data quality 
uncertain 

Suspicion data 
privacy will not 

be kept 

N
e

g
a

ti
v
e

 ←
 

Low social 
acceptability 

Risk of 
distraction 

Concerns over 
data misuse 

 

The themes identified in the study are presented in the sunburst chart in 

Figure 6-7, and described in the following sections, presented with results 

combined from interviews and questionnaires. 
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Figure 6-7 Sunburst of framework, with distribution of number of items coded. 

  

6.4.1  Stage 1: Justification 

This first category is comprised of codes on the benefits and relevance of 

measures and their social acceptability. All codes relate to how well wearable 

measures currently fit into the railway industry. 

Tangible benefit to railway operations 

Participants overall held positive views that measuring signaller workload 

would be useful in one, or more, use cases to: demonstrate to others how 

hard they work; understand their own data as trainees; or demonstrate to 

others the impact of change. Questionnaire responses matched these 

findings, with participants agreeing that measuring workload is important in 

the railway industry (Mean = 5.61, SD = 1.88), on a scale 1, strongly disagree 

to 7, strongly agree. Wearable measures were seen as having potential, 

provided they had clear operational benefits [P13, P14, P15, P15] that led to 

improvement in operations [P7], effectiveness [P3] or safety [P7, P18]. 

Trusting the use of the data (covered in a later section of the results) would 

be improved if the company was clear on what precisely they hope to achieve 
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with wearables [P4, P5]. One potential benefit was improving the visibility of 

effort staff put in, exemplified by the following quotes from interviewees:  

“The job looks easy to somebody sitting outside … When it looks like you're 

doing nothing because you’re on top of (the) task.” [P14]  

“I think it is very useful in certain senses. I think people in different areas of rail 

operations, we don't see what they do, and what their stress levels are, and 

they don't see what the signallers’ side is.” [P8] 

 

Participants felt wearables would provide objective data, with fewer false 

readings [P3, P5], and more overall readings than the app, which may not be 

completed during an incident when workload was high [P16]. Overall, 

participants were receptive to a live trial of physiological measures, to provide 

evidence of the data that wearable measures could offer.  

 

“I think if we're looking for ways to improve efficiency or improve safety than 

then it's a no-brainer.” [P7] 

 

Participants suggested measures could show the variance in workload across 

a shift, across days, and workstations, and the varying pressure [P18] that 

may not be obvious to others [P9]. Measures may also show when staff are 

stressed [P6] or fatigued and require a break [P1]. Participants thought it 

would be interesting to see how trainees react to certain situations [P12, 

P17], their stress levels [P7, P8, P12, P18], concentration levels [P8], attention 

[P18], alertness [P10, P16], and confidence [P5, P7, P16], compared to 

experienced signallers [P8, P18]. Measures could assist in training and 

assessment [P6, P18]. Data could also inform a debrief activity [P15], to 

reflect on situations [P15, P16], and for the trainee to become more 

conscious of what they are doing [P2], when they may not be thinking about 

how they are performing [P18]. Potentially both trainer and trainee could 

benefit from wearing a device [P16] and comparing outputs. Regarding the 

impact of change, participants commented that not all changes were better 
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[P7, P8, P15]. Data may provide a more accurate picture of the impact of 

technologies, whether they work as intended [P16], and to adapt the roll out 

[P5] if not. In addition to the use cases, participants commented that the 

impact of incidents on staff is not known. Measures may be able to assess the 

effect incidents have on staff, particularly incidents such as a fatality when a 

train hits someone10 [P17].  

Data relevance to signalling task 

In the questionnaire participants agreed that measuring their workload is 

relevant to their job (Mean = 5.61, SD = 1.82). To determine whether the 

chest strap or wrist strap were relevant to signallers’ workload, participants 

were presented with examples of what could be inferred from physiological 

data. Stress, confidence, and alertness were deemed most relevant to 

signallers. Anticipation and time pressure were deemed less relevant. Stress 

and alertness can be inferred from the wrist strap and confidence or 

uncertainty, from the chest strap. 

 

Participants reported that stress can occur with failures, incidents, or 

emergencies [P2, P4, P8, P9, P15, P17, P18]. For example, points failure [P2], 

bridge strike [P3, P5, P9], children on the track[P3], or trains disappearing off 

the screens due to leaf fall11[P6, P9]. Drivers only call when there is a problem, 

so hearing the phone ring can be stressful [P1, P2, P9] until the problem is 

known [P1, P5, P9, P14, P16]. Incidents can then take time to wind down 

from: “All of a sudden you’ve got an emergency call to deal with and you’re 

finding out whether or not a driver/ a train has actually run over someone.” 

[P1] Not all Unexpected events are stressful. Once the signaller knows what 

to do [P9], some events less stressful [P11, P17], such as a tree [P17] or cow 

 
10 Most fatalities are suicides. Anyone affected by suicide can gain support by calling Samaritans, UK, 

116 123 or NSPI, USA, 1-800 273 8255; SRPC, Beijing, China, 0800 8101117; or AASRA, Mumbai, 

India 91 22 275 46669. Additional international helpline numbers are available via Therapy Route 

(2020) 
11 Leaf fall, compressed by trains can, in track circuit areas mean the metal wheels lose contact with the 

track. 
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[P13] on the line. Brief peaks in MWL in these circumstances would not affect 

signallers for long [P6, P8, P11, P12, P14].  

 

Participants reported feeling confident when everything runs smoothly and 

on time [P1, P2, P5, P8, P9, P12, P15]. Trainee confidence builds with 

experience over time. Once they successfully deal with something the first 

time, they know they could a second time [P4, P6].  As their confidence 

increases, their stress decreases [P2, P5, P13], and they deal better with time 

pressure [P13] and when unexpected events occur [P8]. “Confidence. I believe 

it’s a big thing in this job. And knowledge is confidence. You know if you've got 

the knowledge, you ARE more confident. And that gives you a much better set 

of skills to work the workstation.” [P15]. Confidence also links to alertness. 

Trainees start with a heightened level of alertness, trying not to miss anything 

[P7], whereas, experienced signallers can sit back, observe, whilst being 

prepared for problems. For example, a participant with high experience gave 

an analogy to compare a trainee with a seasoned signaller: “Because you’re 

new in the role you're there like a meerkat, because you’re constantly looking, 

you’re always then anticipating what's going to happen next? [Compared to] 

an elephant or rhinoceros or something like that that's possibly not as 

threatened by predators, something that's more laidback. So, the alertness 

level is there because they ARE looking for the dangers around them, BUT 

they’re not up on their hind legs scouring” [P16]. Other participants suggested 

that trainees may have heightened levels of alertness, describing them as 

having ‘eyes on stalks’12 with alertness ‘through the roof’13 [P5], with those 

new to the live workstation in a constant state of fear for the first few days 

[P7, P14]. These findings suggest confidence builds with experience, and with 

this, alertness is reduced from a very high level to a regular level. The trainee 

gradually gains sufficient experience and confidence to turn from the 

‘meerkat’ to the ‘elephant’. 

 

 
12 An English phrase meaning their eyes are wide open with surprise.  
13 An English phrase meaning to rise to a very high level. 
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Time pressure and anticipation were deemed less relevant to signallers. 

Regarding time pressure, signallers acknowledged their job is ‘all about time’ 

[P12]. One participant said, as an example, “I must look at the clock more than 

anything else in this place.” [P18]. Not all participants viewed this as time 

pressure [P6, P13], as staff manage their own workload [P1, P15]. There may 

be, however, multiple people waiting for a line block [P2, P4, P5, P6, P14], or 

only seconds to enter a route for a busy junction [P9], or minutes to give up a 

possession and allow trains to run again [P12]. This seems to suggest that, 

whilst time pressure is a daily external task demand, this does not 

automatically lead to a negative experience of pressure. Ensuring the 

timeliness of train services is a signaller responsibility. It could be this does 

not automatically translate into time pressure for signallers as they have the 

control to delay their tasks, if that is what is required to complete their tasks 

safely. Signallers can inform staff on site they must wait to start work or they 

can keep a train held at a red signal.  

 

Anticipation was viewed as bad for a signaller [P11, P13] when the workload 

cannot be anticipated such as the phone ringing. Signallers plan what they 

can, e.g. routing trains and regulating the order trains proceed. Their 

responses suggest they do not view these as anticipation. They suggested that 

they instead indicated anticipation is a risk if it is based on poor assumptions 

of what normally happens [P13] or dwelling on what might happen [P12].  

Participants advocated a level of preparedness instead, to notice issues when 

they occur, and deal with them promptly. “You can NEVER expect to have a 

problem. It's just knowing how to deal with that problem at that time.” [P16]. 

Preparedness included being aware of weather conditions [P14] and the likely 

workload of a workstation [P5, P12]. Noticing issues, included regulating 

(deciding the order of trains) [P2, P5, P8, P10, P11, P16, P17] and noticing, on 

CCTV, those pedestrians or vehicles that may not comply with level crossing 

lights and barriers [P7]. 
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Low social acceptability  

In interviews, despite signallers themselves seeming prepared to use at least 

one device, they anticipated a mixed response from colleagues.  When asked 

‘What is the likely reaction of colleagues to the use of these new measures?’ 

only 17% of participants responded that the reaction of colleagues would be 

positive. The remainder anticipated some level of resistance to the new 

measures, including the wrist strap, chest strap and app. One participant’s 

comment sums up the expected range of responses: “I think we've got those 

that don't like change in any way, shape or form, they won't like it. You'll get 

those who’ll think ‘Oww, you know, this is something new I’d like to try this’.  

Then I think you'll get the middle of the road ‘So, well, if it does me any good 

then I’ll give it a go’”. [P18] Resistance seemed due to concern over what the 

information could be used for, and fear, such as fear they might lose their job. 

“This is a backhanded way of the company trying to monitor us ... The union 

will be all over that.” [P11].  This fear, and associated resistance, present a 

barrier to the future use of these measures.  

 

In response to the precautionary principle (Urquhart and Craigon, 2021) ‘Just 

because we could use these measures, should we?’, nine responded 

endorsing the measures, 9 were uncertain, and none were against the 

measures. Predicted use and intension to use resulted in the same ranking of 

measures. The wrist strap had the highest predicted use, on a seven-point 

scale with 7 high (wrist strap Mean = 6.06, SD = 1.00, app (Mean = 5.28, SD = 

1.56, chest strap (Mean = 5.11, SD = 1.68) (see Figure 6-8). 

 

In the questionnaire signallers, on average, slightly disagreed with the 

statement: ‘I would not recommend the devices to my colleagues’ (Chest 

Mean = 3.33, SD 1.37, Wrist Mean = 3.00, SD = 1.53, App 3.22, SD 1.40).  This 

shows that, despite signallers expecting a mixed response to measures, they 

would somewhat be prepared to recommend devices. 
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Regarding the TAM2 component ‘image’, 

signallers somewhat disagreed with the 

statement in the questionnaire: ‘The devices 

could be a status symbol in my organisation’ 

(Mean = 2.94, SD = 1.43). Wearables were 

not viewed as improving image, with one 

signaller commenting that there could be “a 

little bit of banter” from colleagues for 

wearing one [P3]. 

 

6.4.2  Stage 2: Data collection 

This second category is comprised of codes 

on comfort, data quality and distraction. All 

relate to devices and the data collection stage.  

 

Comfortable devices suit live operations 

Comfort was associated with increased experience and reduced awareness 

whilst wearing. “I wear one (an apple watch) all the time, don’t I so I don't 

really think about it to be honest. I’d be happy to wear one all shift, for 

research [P8]. Signallers were familiar with wearing something on their wrist 

[P16], like a watch [P7] that they wear all the time [P17], or Fitbit [P1]. Once 

the watch is on, they don't really know it’s there [P1], it becomes ‘part and 

parcel’ [P16] and they forget about it [P12]. 

 

“It's like anything that's new. You've got to take time for it to become part of 

the norm.” [P16] 

Signallers commented the chest strap was a bit strange [P3, P5], would 

require “more messing about putting it on” [P3], and may be an irritant [P8] 

or uncomfortable [P12], but it was difficult to predict comfort. All except one 

 
 

 
Figure 6-8 Questionnaire responses to 
prediction of use of wearables. 

Box shows interquartile range, x is the 
mean, line the median, whisker is 1.5 
times interquartile range, and dots are 
outliers. 
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signaller had no experience of chest straps. “I don't know, (laughs) but 

obviously without trying without trying the chest one it's hard to say” [P4]. 

The signaller who was familiar with the chest strap was less aware of it: “I've 

used them (chest strap) before for like heart rates you know and fitness type 

stuff, and once you get going, you kind of forget about them” [P1]. Whilst 

signallers may initially be conscious that they were wearing them, this would 

be likely to reduce once they were used to them [P13]. 

 

  
Figure 6-9 Questionnaire responses to devices being difficult to use or require mental effort 

Box shows interquartile range, x is the mean, line the median, whisker is 1.5 times interquartile 
range, and dots are outliers. 

 

Figure 6-9 illustrates the results for the questions, ‘Wearing devices wouldn't 

require a lot of my mental effort’, and ‘I would find the devices difficult to 

use’. The questionnaire data indicated a trend to the wrist or chest strap 

requiring less mental effort (Wrist Mean = 2.67, SD = 1.61, Chest Mean = 3.11, 

SD = 1.88) than the app (Mean = 4.33, SD = 1.75). This is consistent with the 

app requiring signallers to enter ratings compared to wearables recording 

data passively. All devices, on average, were rated as not difficult to use, with 

the wrist strap being the lowest difficulty (Mean = 1.94, SD = 1.35). The three 

signallers with rating scale experience rated the app as difficult to use (ratings 

of 6, 4 and 6). The wrist strap overall reportedly suits use in the live 

environment. The chest strap may suit use after a period of familiarisation. 

The app was rated the least suitable, as it requires the most mental effort. 



Study 3 – Staff attitudes and perspectives on wearable measures  

 156 

Data quality uncertain  

The data quality code includes concerns by participants that firstly app data is 

reduced by staff missed ratings [P1, P2, P3, P10, P11, P12, P15], particularly 

when busy and potentially for a while after an incident [P16]. “If you are 

going to pursue the app, you probably are going to have to accept that some 

of the data is going to be quite sporadic” [P11]. Secondly, that data from the 

app may be skewed [P16], depending how honest people are [P12]. People 

won’t report when they are too busy, they will under-report [P5, P11, P12, 

P15, P16], or overreport pretending they are busy [P5, P11, P16], enter a 

value without much thought [P6], or different individuals will report different 

values for the same situation [P11]. In the eyes of the signallers all these 

points make the app data less reliable in the eyes of signallers.  Finally, 

participants queried how accurate physiological data would be for workload. 

For example, how to differentiate individuals who appear stressed, and 

others who do not [P11], or when self-assessed workload does not match 

physiological data [P16]. Participants understood that stress increases heart 

rate but queried whether it was clear what was good or bad levels in terms of 

workload [P5].  

Risk of distraction  

Participants thought the app the most distracting and the wrist strap the least 

distracting. “I don't think the wrist one would be an issue at all” [P4]. 

“Sometimes there's three phones ringing at the same time, and you’ve got to 

decide which one you want to answer. Never mind just interact with an app” 

[P9]. 
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Participants thought the app would distract staff from their job [P7, P8, P13, 

P14], in particular the sound [P4, P9] which may even distract staff at another 

workstation [P1, P5]. Mobile phones are not allowed on the floor due to the 

risk of distraction [P7, P13]. The app would be especially unsuitable for 

trainees [P4, P10, P11, P13, 14, P18] who may be at risk of overload [P14] or 

may interact with the app and miss something [P9]. “On a live workstation, 

we've got safety critical situation, we're asking them to possibly, just by doing 

this (answer the app) to distract them from what they're already doing” [P14] 

In interviews participants reported the chest strap may be more intrusive 

than the wrist strap [P2, P8] and they would be more conscious of wearing it 

[P2, P18]. Two participants added they may also be distracted wondering 

what the data was showing [P2], particularly if there was an incident [P7]. 

Despite this, on average, participants were not concerned about being 

tracked, with low ratings for the statement ‘I wouldn't use the devices 

because I would be concerned about being tracked’: chest (Mean = 2.06, SD = 

1.11); wrist (Mean = 2.06, SD = 1.11); and app (Mean = 2.00, SD = 0.97).  

 

The questionnaire confirmed the most distracting was the app (Mean = 4.72, 

SD 1.56), then the chest strap 

(Mean = 2.94, SD = 1.73), and the 

least distracting device was the 

wrist strap (Mean = 2.50, SD = 

1.38) (see Figure 6-10). In the 

questionnaire, those who agreed 

or strongly agreed that the app 

would be distracting [P5, P9, P13, 

P18] had no prior experience of 

wearables. One had previous 

experience of the IWS.  

 

 
Figure 6-10 Questionnaire responses to devices 
would be distracting 

Box shows interquartile range, x is the mean, line 
the median, whisker is 1.5 times interquartile range, 
and dots are outliers 
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6.4.3  Stage 3: Consequences 

This third category of comprised of trust, data privacy and data misuse codes. 

All relate to what happens with the data collected from devices. 

Importance of trusting those who see their data 

Level of trust in sharing named data varied depending on who sees the data. 

Participants were more inclined to trust those external to the organisation: 

researchers who process the data before anonymisation, and device suppliers 

who need access. Participants were more cautious about sharing named data 

within their organisation. Over half the participants agreed trainers could see 

trainees’ data. Only 11% of responses were positive regarding sharing named 

data with managers. One reason given was managers may misinterpret data 

due to lack of understanding [P1, P5].  “If they ((managers)) don't fully 

understand what's going on, then I'd rather you ((a researcher)) come and tell 

me” [P1]. 

 

Sharing data with accident investigators met with mixed attitudes. Some 

participants queried how data would be used [P13] and its relevance [P5], 

whilst others accepted it [P6, P12, P15, P18]:: “Honestly really is the best 

policy … in regard to the last question about being shared with investigators, I 

think another reason I don't think it (would) be that much of an issue, I don't 

think you should be working if you're not in the right state of mind” [P6]. Two 

dichotomies were identified regarding participants preference for 

anonymising data. Firstly, for those wishing to see their own data, it must be 

identifiable so could not be fully anonymised. Secondly, while increasing 

anonymity may increase acceptance, anonymisation is a challenge, such as for 

trainees when there are only a few at one time [P7], as date and time, and 

workstation data could be used to identify an individual.   
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Suspicion data privacy will not be kept 

Participants were asked whether they had any concerns about data use. 

Seven raised concerns around data privacy. One aspect of this was word 

spreading [P1, P6], despite steps to anonymise data: “You don't want to walk 

into work and then everyone saying ‘Ohh we‘ve seen your stress levels 

yesterday’” [P6]. It could be particularly hard on trainees if they were talked 

about. Yet it is a challenge to anonymise the data, as rosters show who is on 

shift [P2] and, if only a small number of participants wear measures it would 

be obvious who they are [P14]. Both these confirm anonymisation would be 

difficult in practice.  

Concern over data misuse 

Fourteen participants raised concerns that data may be misused by managers. 

Their ultimate concern was the risk of losing their job [P5, P11, 17]: “Oh the 

company will get rid of me then if they don't think I could do the job properly” 

[P11]. They didn’t think colleagues would want this added pressure [P11]. 

Participants were concerned managers would criticise staff about their 

physiological data [P2, P9, P7], as has happened with delay attribution [P2], or 

wrong routes [P1]. Participants did not want the data used for disciplinary 

matters [P16], to assess job performance [P11], or as a negative indicator of 

their capacity [P18]. Another concern was staff may be unfairly compared to 

each other [P5, P9, P11, P13, P14]. Staff heart rates differing [P5], or differing 

levels of stress [P5, P13], were not seen as relevant if the performance 

outcome was successful [P5]. It was deemed unfair to compare trainees in 

training, between someone working on their own, with someone who has a 

trainer with them [P13]. If, instead, the data was not used to incriminate staff 

in any way, and kept only for research, then staff should not have a problem 

[P17]. “I’m all for it and I'm quite happy with the technology, as long as they 

are USED by the company in the correct way. That’s vital that’s vital” [P14]. 
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6.4.4  Individual Innovativeness and experience impact 

In addition to the codes in the Framework, the demographics of level of 

individual innovativeness, and signalling experience, were analysed to 

determine if they predicted variation in attitudes. This found attitudes did not 

predict proportion of interview responses endorsing new measures. Results 

showed a slight trend to low signaller experience being more positive about 

measures (Mean = 69.0%, SD = 7.9) compared to a high signalling experience 

(Mean = 57.6% (SD = 21.7). A pattern that did emerge was that signalling 

experience and individual innovativeness were linked with experience of 

wearables for fitness. All low signalling experience, high innovativeness (n = 5) 

had experience of wearables, compared to all low signalling experience, low 

innovativeness (n = 2), who had no experience of wearables. High signalling 

experience had varying experience, (3 had experience, 8 had none).  

 

6.5  Discussion 

To predict the likely usage of wearable physiological measures to assess staff 

workload, this study assessed: which measures most suit live operations 

based on perceived comfort levels, perceived distraction from the task, and 

perceived relevance of data?; which factors contribute to staff perspectives 

on the potential use of wearables at work?; and, can individual 

innovativeness or experience explain differences in perspectives and 

attitudes?  

6.5.1  Suitability for live operations 

The device most suitable for live operations was the wrist strap, being the 

most comfortable, least distracting device, that staff would be unaware of 

wearing. Participants preference for the wrist strap could be explained by 

familiarity with wrist watches, compared to the novelty of wearing a chest 

strap. The app raised the greatest concerns over distraction, particularly for 

trainees. These findings support the previous theories and models that 
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suggest comfort (Urquhart and Craigon, 2021, Wolf et al., 2018), and 

distraction (Jacobs et al., 2019, Gribel et al., 2016, Parasuraman et al., 2015 

and Urquhart and Craigon, 2021) are valid factors in staff attitudes to 

wearables at work. Regarding the most relevant data, stress, confidence, and 

alertness were deemed most relevant to signallers. Anticipation and time 

pressure were deemed the least relevant. Whilst stress and alertness can be 

inferred from wrist strap data (Healey and Picard 2005) confidence, or 

uncertainty as a lack of confidence, is inferred from the chest strap data 

(Ramírez et al). If confidence is to be tracked, a chest strap could be 

considered, after a familiarisation period.  

6.5.2  Factors contributing to staff perspectives on wearables 

A key factor that emerged that contributed to staff perspectives and attitudes 

toward the use of wearables was whether they trusted the staff who would 

see the data, and what the negative consequences could be of sharing data, 

particularly if named data is shared. Trust, as a key part of gaining staff 

agreement, matches theories and models in the literature (Gribel et al., 2016, 

Jacobs et al., 2019, Parasuraman et al., 2015). No devices would be worn by 

staff if they were concerned managers would use the data to criticise them, 

blame them, or assess their job performance. The ultimate concern was 

misuse of data by managers leading to staff losing their job. The alternative to 

this was that a clear operational benefit of the data, leading to improvement 

in operations or safety, would encourage staff to trust the use of their data. 

Regarding whom specifically they would trust, participants’ responses suggest 

they would trust researchers outside the organisation to interpret the results 

and pool data across participants to protect individual identities. The 

distinction between trusting those outside the organisation, compared to 

managers, may reflect the relative control over consequences that these 

parties have. Managers have the most influence on supporting or disciplining 

staff. External third parties, with less direct control, may be seen as less of a 

threat. This concern is removed if data is fully anonymised, matching existing 
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theories (Jacobs et al., 2019, Urquhart and Craigon, 2021). One dichotomy 

here is, within a signalling centre, anonymisation would be difficult to 

achieve, as workstation and date would be sufficient information for staff to 

know, from the roster, who was on shift. Another dichotomy is individual staff 

could not see their own data if it was fully anonymised.  

 

Three factors identified in theories that did not appear to contribute to staff 

perspectives and attitudes of wearables were devices being seen as a status 

symbol (Venkatesh et al., 2000), concern over being tracked (Wolf et al., 

2018), or sharing data with third parties (Gribel et al., 2016). Participants did 

not view the measures as a status symbol, possibly as they do not directly 

support performance outcomes, and are not viewed as a privilege. The data 

from the wearables was viewed instead as a potential threat due to the risk of 

misuse. This did not show as a concern about being tracked. This may be due 

to staff in rail being used to high levels of existing monitoring (such as phone 

calls content, workstation inputs logged).  

6.5.3  Individual Innovativeness and signalling experience  

Individual innovativeness or signalling experience did not explain differences 

in perspectives or attitudes. Those familiar with wearables did not 

automatically endorse the use of wearable measures. Familiarity with wrist 

watches however, may explain a preference for a wrist strap over a chest 

strap. In addition, all those with high innovativeness, low signalling 

experience, had experience of wrist wearables and mobile apps for fitness 

compared to only 3 out of eleven participants with high signalling experience. 

These findings, taken together, suggest the proportion of individuals with 

experience of wearables will increase as more staff join. This is predicted to 

be higher if those individuals have high innovativeness. If staff join with 

experience of a chest strap, they may be more likely to wear a chest strap at 

work without the device being a distraction. So experience may influence 
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attitudes (Gribel et al., 2016, Jacobs et al., 2019, Venkatesh et al., 2000), but 

in this study it did not predict attitudes. 

6.5.4  Implications of findings for understanding signalling workload  

This study has implications for understanding the individual experience of 

MWL by signallers. Firstly, individuals’ experience of workload is not the 

number of trains on a workstation. The number of trains timetabled varied 

across workstations. Staff seem to prepare themselves, prior to a shift, for 

level of task demand. This would fit with the malleable MWL theory of Young 

and Stanton (2002). Instead, changes in stress and alertness, were due to 

either unexpected, or novel external events such as incident and associated 

individual internal factors such as level of personal experience and 

confidence. Novelty and uncertainty seem inextricably linked, with 

confidence from experience a counterbalance to this.  

 

Trainees start stressed and with high alertness. Over weeks and months this 

subsides as their experience and confidence build, as they successfully 

respond to a range of unexpected events. This includes signallers building 

experience of making others wait (e.g. trains or staff), in order to manage 

their own workload and control time pressure. Physiological data could 

provide an indicator of the resulting changes in the underlying state, and the 

balance between sympathetic and parasympathetic nervous system. The 

dichotomy here is that participants acknowledge trainees may have 

heightened alertness, compared to experienced signallers, but felt comparing 

results would be unfair, and trainees’ data could falsely represent the 

workload imposed by the task. Participants felt comparisons should only be 

on operational performance outcomes, not individual experiences of MWL. 

This caution may be linked to participants’ concerns over the misuse, or 

misinterpretation, of physiological data. These concerns would need to be 

addressed before physiological measures are applied, to understand this 

variation in individual experience of MWL. 
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6.5.5  Generalisability in rail and other industries 

How generalisable these results are to other staff roles and tasks in rail, and 

other industries, will vary. This study suggests the greatest changes in 

experienced MWL for signallers comes not from the number of trains but 

from how novel events are to them and the associated additional tasks 

required including phone calls, increased regulating and managing 

disruptions. In other countries, these findings could be generalisable to 

controllers who play a similar strategic role recovering from disruption 

(Dorrian et al., 2011). Similarly, the results are generalizable to other control 

roles in safety critical industries. The results may be less applicable to the 

more tactical role of signallers in parts of the world where their role is more 

implementing a plan. Where the strongest generalisability exists is where 

there are conceptual similarities in role to the signallers here, rather than the 

association being purely by domain. 

 

The extent to which the results map to train drivers is unclear. Anticipation 

was not identified as relevant to signallers. This contrasts with previous 

research of train drivers which did identify anticipation as relevant (Crowley 

and Balfe, 2018). Where the physiological data may be generalisable to 

drivers is around inferring stress and alertness from EDA, and confidence 

from HRV data (by an absence of uncertainty). To select the most applicable 

wearables for each role in rail, and each industry, would need to determine 

which physiological responses were most relevant to understand the MWL of 

that specific staff role.  

 

Each role, or each industry may prove to be at a different stage of securing 

appropriate Justification, Data Collection and Consequences.  

6.6  Limitations 

All participants scored above average on the Individual Innovativeness scale. 

The results of the study may be biased towards a more positive perspectives 
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and attitudes on the use of new measures. Voluntary participation may have 

led individuals with lower innovativeness to not participate in a study about 

new technology for future use. Alternatively, this finding could indicate 

signallers working with the most modern signalling control systems, the VDU 

workstations, are naturally biased towards high innovativeness.  

 

6.7  Conclusion 

This study considered the perspectives and attitudes of staff to the potential 

use of wearable physiological measures to detect signaller MWL. The study 

suggests wearable devices suit use in the live operational environment, with 

the wrist strap rated the most suitable due to low distraction. Physiological 

data from the wrist strap could provide visibility of individual MWL of staff, in 

particular their stress and alertness, both relevant to signalling. Such data 

could build our understanding of individual workload, across a range from 

underload to overload, and from novelty to familiarity. It is essential however 

that staff trust those who will see their data, particularly if they share named 

data. This trust would need to be in place before staff accept wearable 

measures. One way this trust can be built is through clear operational 

benefits that lead to improvement in operations. A certain level of resistance 

to measures is to be expected due to this low current experience and the 

novelty of the devices. If the chest strap was needed, a period of 

familiarisation would be required. Whilst this study focuses 

on railway signallers, the findings have implications for other roles where 

human performance is key to the control and monitoring complex safety 

systems. 
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Chapter 7:  Discussion and implications 
 

7.1  Chapter overview 

This chapter presents answers to the research questions and novel 

contributions of this research. The discussion draws together findings from 

the industry interviews, simulation study, and perspectives and attitude 

studies. The discussion includes how physiological measures can contribute to 

MWL assessment, staff perspectives and attitudes on their use, theoretical 

implications, and implications for industry.  

 

7.2  Introduction 

This research considered how temporal physiological data from wearable 

measures could monitor mental workload. The industry interviews identified 

MWL, including underload, as an industry risk with increasing automation 

technology. The research aim was to progress the measures for use in live 

operations, in real-time, to assess staff mental workload with minimal task 

interference. An overarching ethos of this research is to consider positive 

human performance and explore ‘what does good look like’, rather than 

focusing only on when errors are made. The research aimed to detect not 

only MWL underload or overload but also when MWL is between these, so is 

more sustainable and supports successful operational performance. The 

research scope considered how personal data could be used in rail to 

measure human cognitive performance to, in future, provide feedback 

through visibility to staff and their managers. This would inform decisions on 

how best to manage staff workload to support successful operational 

performance. 

 

The temporal data from physiological measures highlights dynamic changes 

and provides a chronology of events to provide a timeline of a continuous 
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task. This data can be used to visualise patterns that could indicate when staff 

are at risk of moving from successful performance into the higher risk areas of 

either underload or overload. The findings suggest that this risk of overload is 

higher when there is event novelty. The discussion centres around answering 

the three research questions: 

1. How can temporal physiological data from wearable measures 

contribute to MWL assessment in rail industry live operations?  

2. What are the theoretical implications of individual physiological data 

to changes in MWL in a workplace setting?  

3. What are staff perspectives on wearables and use of their personal 

physiological data?  

Whilst the results focus on railway signallers, the implications of the findings 

have implications for other railway staff, and staff in other industries in 

control roles with increasing automation. 

 

7.3  How can temporal physiological data from wearable measures 

contribute to MWL assessment in rail industry live operations? 

The answer to this first research question combines evidence from all three 

studies, both scoping reviews, and builds on existing research. The section 

focuses on how physiological data can contribute and its suitability as a MWL 

measure. It includes two novel contributions from the temporal EDA and HRV 

data: EDA can detect moments in workload; and average HRV has a strong 

negative correlation with average subjective workload ratings.  

7.3.1  Moments in workload from Electrodermal Activity 

EDA is a measure of the electrical conductance of the skin (Venables and 

Christie, 1980). This research progresses the previously very limited 

application of EDA to the railway signalling task. The research found EDA data 

can contribute to measuring MWL in two ways. Firstly, a key contribution of 

EDA is that SCR spikes can identify important ‘moments’ during a continuous 
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task and secondly alertness and stress can be inferred from changes in EDA 

over time. EDA SCRs can indicate responses to sudden, unexpected events 

(Sokolov, 1963). The simulation study highlighted the importance of discrete 

periods, or ‘moments’ in workload. Such data could indicate periods of 

interest in the continuous data to better understand the individuals’ 

experience of workload.  

 

Whilst EDA was hypothesised to increase with phone calls (as found 

previously by Broekhoven 2016 in live signalling operations), this was not the 

case. The phone calls may not have been sufficiently novel or demanding to 

produce the stress response Broekhoven 2016) including participants 

knowing the simulator was not real (as noted in the perspectives and attitude 

study). In the simulation study, EDA SCRs identified points in time where 

participants appeared to experience a moment of realisation such as realising 

an error. These ‘moments of realisation’ occurred either at same time or with 

a delay after the external event. Tracking this time difference between 

external event and internal response could be a useful application of EDA. An 

example use would be to determine how long after an external event it takes 

an individual, such as a trainee, to notice an action is required, as implied by 

an increase in EDA.   

 

This research suggests EDA indicates individual experience of workload. In the 

simulation study, EDA SCL identified times during the task where participants 

appeared to experience uncertainty, or time pressure. This would fit with 

previous research that has found that stress (Healey and Picard 2005) and 

alertness (Song et al., 2014) can be inferred from EDA. This research found no 

link between task demand and EDA, in contrast to previous research that 

suggested EDA reflects differences in task (Healey and Picard 2005), or 

changes in cognitive load (Mehler et al., 2012). In other words, it is not the 

number of trains alone that produce an EDA response, but instead an 

individual’s experience of that task demand due to associated alertness and 

stress. Both stress and alertness were identified by participants as relevant to 
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the signalling task. In this way EDA could provide visibility of individual 

experienced MWL that is not directly observable. This suggests EDA could 

contribute to a better understanding of the MWL experienced by signallers to 

show both brief moments and underlying level of alertness or stress.  

7.3.2  Heart Rate Variability links with mental workload and 

confidence 

The simulation study found that average HRV showed a strong negative 

correlation with average IWS (self-assessed workload), demonstrating that a 

high HRV was associated with low self-reported workload. This was a key 

contribution of the simulation study as limited research to date has applied 

HRV data to railway research. The correlation between HRV and IWS was no 

longer evident when values of HRV were adjusted by participants’ baseline. 

This was an interesting finding as it suggested HRV was more indicative of 

differences between individuals’ experiences of the task than it was between 

different levels of task demand. This is a novel finding, and one that differs 

from previous HRV research that found it was sensitive to task demand in 

pilots (Lehrer et al., 2010). If only average workload ratings were required, 

HRV could potentially replace IWS (self-assessed workload) ratings or be 

taken before a task to estimate an individuals’ average self-assessed workload 

rating during a task. 

 

HRV has also been found to correlate with emotional state, such as anxiety 

(Ramírez et al., 2015) which is traditionally considered to be a separate 

concept to MWL. A live trial with train drivers found HRV decreased before 

and after a train stop and at tunnels due to alertness and mental ‘tension’ 

(Song et al., 2014). Nickel and Nachreine (2003) proposes that HRV does not 

indicate MWL, but instead time pressure and emotional strain. HRV may 

imply uncertainty (Ramírez et al., 2015) with the simulation finding this as a 

trend rather than a significant difference between correct and uncertain 

observed behaviours. Participants in the perspectives and attitudes study 



Discussion and implications 

 170 

indicated that detecting levels of confidence or uncertainty would be relevant 

to signalling, and time pressure was deemed less relevant. The findings of the 

simulation study, taken with the previous research suggest that low HRV 

shows promise as an indicator of individual high MWL. Ambiguity remains, 

however, around precisely what can be inferred from HRV data such as 

confidence, time pressure, emotional strain, or anxiety. 

7.3.3  Timeline and storyboards of experienced MWL 

Temporal data shows how physiological data changes over time relative to 

task events with the sequence of which changed first, plus rate of change and 

speed of recovery to baseline. The storyboard approach provided a way to 

visualise these changes based on the chronological data. The frequency 

breakdown used by previous research suits comparing discrete workload 

conditions in laboratory studies. The storyboard suit continuous data and are 

akin to the time sequences of train driver physiological data created during a 

live trial (Song et al., 2014).  

 

The scoping review noted physiological measures were sensitive to different 

aspects of MWL (Matthews et al., (2014), Charles and Nixon (2019). This 

research used the storyboards to support a more detailed qualitative 

exploration of what specific aspects of MWL or task could explain why 

physiological data change. This includes preserving the interaction of the 

different timescales of changes including brief moments such as EDA SCRs 

that peak in seconds, compared to recovery to baseline that can take tens of 

minutes. In future, debriefs with staff in industry could use visualisations of 

temporal physiological data to discuss which changes in data values are 

associated with certain task events or MWL. If sequences are identified, they 

could ultimately lead to predicting MWL experienced and its likely impact on 

performance (positive or negative). 
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7.3.4  Cumulative impact of workload 

A speculation regarding the physiological data that arose during the research 

was whether it could show a cumulative impact of workload. It is an idea that 

is based on the data in the simulation study that showed a large increase in 

Skin Conductance Level (SCL), particularly in participants P16, P17, and P20 

(see Appendix C). These increases were not directly reflected in increases in 

subjective workload. It is postulated here that if one peak in EDA does not 

return to baseline before the next peak occurs (i.e., there is overlap in 

different instances of SNS activity), there will be a cumulative increase in SNS 

activity over time. In the literature on EDA, speed of increase is swifter than 

speed of recovery. In laboratory studies, recovery time is indicated by a 

recovery of EDA back to 50% of the peak value, relative to baseline. 

Theoretically therefore, in a continuous task, a series of separate events could 

lead to a cumulative, incremental, increase in sympathetic tonic baseline. A 

visualisation of this proposed cumulative increase is presented in Figure 7-1. 

The return to original baseline will be extended over time or fail to return to 

baseline during a continuous task.  

 

 

Figure 7-1 Cumulative increase in sympathetic baseline following multiple events 

 

It is further proposed that if the individual notices the relative decrease in 

workload after one event, they may be unaware of any underlying overlaps 

and resultant increases in SNS activity. They may report a decrease in 
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subjective workload back to the same scale point as before the increase, but 

their physiological state, in SNS activity, would be higher than before the 

increase. This fits conceptually with the theory around awareness of physical 

fatigue (St Clair Gibson 2018). Physical fatigue that is self-reported reflects the 

gap between an individuals’ actual experience of fatigue relative to the 

individuals’ anticipated level of fatigue. The implication is physical fatigue is 

not noticed if it is at expected levels. If this were to be found to be the case 

for cognitive effort, it would be interesting to explore when conscious 

subjective MWL matches underlying physiological state, and when the 

underlying physiological state shows an increase that the individual is 

unaware of.  

 

Physiological data shows potential to, in future, detect and make visible when 

an individual is unknowingly moving towards an overloaded state. This type of 

data could provide visibility to managers, particularly those not in the room, 

of the effort or stress of staff. The managers could benefit from 

understanding the cumulative total hidden ‘effort cost’ of work on their staff 

of a shift, and compare that to the task demands, and operational 

performance.   

7.3.5  Absolute versus relative values 

The simulation study found both HRV absolute values and relative values 

offered different insight into MWL. It is common with physiological measures 

in research to use the relative value of physiological data (deduct participants’ 

baseline) to reflect differences due to changes in task demand after removing 

individual differences. In the simulation study these relative values did not 

correlate with IWS (self-assessed workload). So relative HRV was not sensitive 

to task demand, which is contrary to previous research that did find HRV 

decreased when MWL increased (Lehrer et al., 2010). 
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Instead in the simulation study, the absolute value of average HRV showed a 

strong negative correlation with average IWS. This was one of the key 

contributions of the simulation study. If individuals’ average HRV across the 

task was low, their individual average IWS was high. This suggests that the 

HRV physiological data is sensitive to individuals’ subjective experience of 

workload rather than to changes in task demand. This would fit with 

individual’s perceived load and internal load aspects of MWL proposed in 

Pickup’s MWL framework (Pickup and Wilson 2007).  

 

This thesis proposes that both absolute and relative values of physiological 

data are useful when understanding MWL. They answer different questions. 

Individuals’ experience of MWL is shown in absolute values, whilst any 

changes in relative values indicate commonalities of response to MWL across 

participants (e.g. task demand). It should be noted that, in terms of MWL, the 

meaning of absolute values in physiological data are not currently well 

understood. Further research would be required to determine the ranges of 

absolute values to be expected during different tasks, and whether boundary 

values can be identified.  

 

7.4  What are the theoretical implications of individual 

physiological data to changes in MWL in a workplace setting? 

Drawing on findings from all three studies, and the literature reviewed, this 

research presents a preliminary conceptual model as its theoretical 

contribution. It proposes the measurement and monitoring of individual MWL 

through combining level of novelty task events with changing physiological 

state. The model comprises two scales that cover the concept of Novelty of 

Events and Autonomic State. Individuals are anticipated to move to the right 

over time as their breadth of experience increases. Individuals will remain in 

the upper half if they are rested and remain calm. 
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7.4.1  Novelty of events 

The concept of Novelty of Events is a contribution this thesis makes to the 

theory and understanding of signaller MWL. MWL is a construct comprised of 

external task demands, internal individual experience of workload, and 

resulting task performance (Sharples 2019). Here Novelty of Events includes a 

sudden, or unexpected event. It also includes any new way of working such as 

due to the introduction of a new technology or a change in procedures. The 

novelty shows in physiological data if it causes surprise, a change in alertness 

level, or a stress response. The importance of the concept of Novelty of 

Events to the MWL of signallers, became increasingly apparent through the 

course of this research.  

 

The initial industry interview study found within its results that drivers in their 

first year account for 25% of incidents (see 3.4.2 Incidents section) and the 

transition to novel technologies can be difficult for experienced staff (see 

3.4.3 The simulation study confirmed that novel events may be inferred from 

EDA increases. The study went on to propose that uncertainty can be linked 

to novel events. Finally, the perspectives and attitudes study confirmed 

unexpected events happen frequently in signalling, so are a relevant element 

of the task to detect. The perspectives and attitudes study also concluded 

that novelty of events and uncertainty are inextricably linked, with confidence 

from experience a counterbalance to this. As novelty and unfamiliarity can 

introduce the risk of mistakes, the implications of novelty are worth further 

consideration. 

 

Trainees and experienced signallers learn to deal with novelty in events 

through building experience over time, which in turn builds their confidence. 

This is drawn on concepts within existing literature such as expertise 

(Farrington-Darby and Wilson, 2006; Hoffman, 2014; Shanteau, 1992) and the 

skill-rule-knowledge framework (Rasmussen, 1983). The perspectives and 

attitudes study noted signallers’ confidence comes from having successfully 
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dealt with certain situations on more than one occasion. Signallers, however, 

do not build up an even spread of experiences. Exposure to novel events can 

instead be individual, developing from the experiences an individual is 

exposed to (Bullough and Baughman, 1995).  

 

Individual signallers’ opportunity to gain experience of dealing with specific 

types of situations varies. Level crossings, for example, vary by the geography 

of workstations, being less common in urban rather than rural areas. In 

addition, signallers may go months without dealing with a particular type of 

situation if it occurs when they were not on shift. This means individual 

signallers will have gaps in their expertise. In live operations, novelty risk 

mitigations could include staff receiving assistance from colleagues and shift 

managers. Also tailored training could address gaps in experience such as 

simulator training or simple walk-through scenarios, to reduce the likelihood 

of a events being completely novel when it occurs during a real shift. 

 

The use of the term ‘Novelty of Events' draws on the literature and studies, 

linking the novelty of a given event and the resultant change in MWL for the 

individual. The concepts of sudden unexpected events and uncertainty were 

mentioned in the literature on physiological measures, but not specifically 

‘Novelty of Events’. The distinction between unexpected events and 

uncertainty relates to level of experience. In the simulation study this was 

seen in the data that neither the unknown timing of telephone calls nor 

arrival of the freight train produce an increased in EDA in all participants. 

Some participants instead showed increases in EDA, and a decrease in HRV, 

when they appeared uncertain.  

 

A comparison can be made to the Skills Rules Knowledge levels of 

performance (Rasmussen and Jensen, 1974). Unexpected events, whilst 

unscheduled, may have been experienced before, allowing performance to 

occur at the rule-based level. A novel situation, with no pre-existing 

experience, requires a move to the knowledge-based level of performance. 
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The level of uncertainty experienced, at the rule or knowledge level, 

represents an awareness of the discrepancy between what the situation 

requires for successful performance and the likelihood of success based on 

individual experience.  

7.4.2  Familiarity of events 

Familiarity of Events is at the opposite end of the scale to Novelty of Events. 

As familiarity grows over repeated exposures, the size of EDA response 

reduces. In psychophysiology this is referred to as habituation. The scoping 

review of physiological measures found this is something that could be 

indicated by physiological data. The first few times a novel event is 

experienced, it would show as a spike in EDA SCR.  As familiarity grows with 

that specific event, the spike would decrease in amplitude until the specific 

event was no longer novel and therefore occur in an absence of an EDA SCR 

spike (Hugdahl, 1995). This fits with the literature on experts who have 

confidence (Shanteau 1992) and can complete tasks with economy of effort 

(Hoffman et al., 1995). This aspect of EDA could be used to plot the progress 

of trainees as they develop from novices to experts. As individuals gain 

expertise, they are more confident (Shanteau 1992).  

 

In the perspectives and attitudes study Signalling staff agreed with this, and 

that it was likely that a drop in stress would be seen in trainees as they gained 

experience. It should be noted however, that in the perspectives and 

attitudes study participants felt it would be unfair to monitor trainees or 

newly qualified signallers. This reflected a wish to avoid putting undue 

additional pressure on trainees. Another aspect of EDA to note is that, in 

laboratory studies, not all participants show EDA responses to the same 

stimuli (Boucsein, 2012, Braithwaite et al., 2013). As EDA can imply stress, it 

could be that non-responders are correctly showing an absence of stress 

response. To understand the EDA response, it would be important to collect 

data from both responders and non-responders for the same event.  
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7.4.3  Balanced Autonomic state 

The Autonomic Nervous System (ANS) is comprised of two parts: the 

Sympathetic Nervous System (SNS); and Parasympathetic Nervous System 

(PNS) (Sherwood, 2013). Activation of the SNS increases sweating, Heart Rate, 

with an associated reduction in HRV, and inhibits digestion Table 4-1 

Autonomic Nervous System). It prepares the body for ‘fight or flight’ 

emergencies. The PNS dominates in relaxed situations, stimulating digestion, 

and reducing the Heart Rate, with an associated increase in HRV.  

 

The term ‘Balanced Autonomic State’ is used here to refer to a sustainable 

underlying physiological state that can support successful performance. This 

includes sustainable effort, concentration or vigilance, and alertness. Such a 

state is achieved with some sympathetic activity to raise alertness, but with 

variability to include periods of increased parasympathetic activity that allows 

the mind and body to rest, and for digestion during breaks. It is important to 

understand this is not about achieving and remaining at a specific point on a 

scale, but instead a variance that accommodates the needs of the human 

body.  The Balanced Autonomic State includes ‘flexibility’ of state, so if 

physiological values increase, a swift return towards baseline follows. In 

terms of EDA, a Balanced Autonomic State can include EDA rises. The issue is 

having sufficient recovery time for EDA values to return towards baseline. If 

additional EDA rises follow in quick succession, the return to baseline will be 

delayed. The scale of EDA response varies both in individuals, as found in the 

simulation study, and across different work situations as found by 

Broekhoven (2016) with variance depending on the content and implications 

of different communications to signallers.  

7.4.4  Skewed Autonomic state 

A skewed autonomic state refers to a sustained period ‘stuck’ with either high 

sympathetic activity, or high parasympathetic activity. High sympathetic 

activity is associated with overload and stress (Sapolsky 1994), including due 
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to novelty of events. High parasympathetic activity is associated with rest and 

lethargy, or reduced alertness due to underload. Either state will make 

successful performance more difficult to achieve. Such states could explain 

why individuals can become hyper fixated, with narrowed thinking in either 

during overload or underload. Physiological measures could provide a live 

read out of where on the sympathetic – parasympathetic balance individuals 

are. HRV would detect varying activity in the sympathetic and 

parasympathetic nervous system, EDA would detect only the sympathetic 

nervous system (Tortora and Derrickson, 2007). Measures would not aim to 

detect a specific value, instead variability centred around the personal 

baseline of an individual. If measures detect that an individual is moving away 

from their baseline then interventions could be implemented, such as 

allocating extra staff resource to help an individual or allowing the individual 

to take a break.  

7.4.5  Novelty of Events and Autonomic State model 

The Novelty of Events and Autonomic State (NEAS) model is a preliminary 

conceptual model (see Figure 7-2), drawing on findings from all three studies 

and the literature reviewed in the research. It proposes looking at MWL in a 

different way, from the perspective of changing physiological state and its 

relationship with human performance. It comprises two scales that cover the 

concept of Novelty of Events and Autonomic State. It considers an individual’s 

level of expertise, likely speed of response and recovery of physiological state, 

the predicted level of EDA and HRV, and the effort required to maintain 

successful performance. Individuals will move along both scales during a shift, 

and over months as their experience and confidence increase. To illustrate 

the model, each quadrant is presented with individual’s starting level of 

expertise and state, an operational scenario with likely performance, 

physiological response, potential human error, and resulting operational and 

individual impacts. 
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Quadrant I – Familiar Events Balanced State  

The first quadrant combines Familiar Events with Balanced Autonomic State. 

It represents an individual who is highly experienced, with a wide range of 

operational experience, who is most likely to result in successful 

performance. This fits with research showing experts demonstrate a rich 

repertoire of strategies (Cellier et al., 1997). Experts are calm, confident in 

their decision making (Shanteau, 1992), and can make key operational or 

safety decisions. They have sufficient sleep and breaks to be alert, such as 

mid-way through a set of day shifts.  

 

 

Figure 7-2 Novelty of Events and Autonomic State (NEAS) model quadrants 

 

An example of an operational scenario in the top right Familiar Event 

Balanced State quadrant would be signalling trains during normal operations 

to meet the timetable. Normal operations include routine tasks such as: 

planning, setting routes; monitoring trains’ progress; and operating CCTV 
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Skewed Autonomic State

II

Calm alert novice
Confidence varies by event

Notices issues rapidly, requires 
assistance or time to resolve

Effort to achieve performance 
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EDA peaks with recovery

IV
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Risk of over confidence

Slower response, low alertness 
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III

Highly alert novice
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Slowest response 
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EDA peaks without recovery 
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Calm confident expert
Rapid response, resolution and 
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level crossings (Balfe et al., 2008). It could also involve regulating trains by 

deciding which proceeds through a junction first. Verbal communications are 

minimal as operations are running normally, with signal aspect providing 

drivers their indication to stop or proceed. 

 

This combination of high experience, balanced state, and a familiar task 

enable signallers to notice issues promptly and respond effectively to resolve 

them. It is the ideal combination for sustainable human performance, 

resulting in successful operational performance. Individuals will be able to 

achieve this without excessive effort as they have dealt with the type of event 

before. They will not be overloaded, underloaded, or under time pressure. 

Whilst they remain calm and work at a level they view as normal, or ‘business 

as usual’, they could seem busy to others despite being on top of the task.  

 

In keeping with previous research on expertise, it is proposed individuals in 

this quadrant complete will their tasks with economy of effort (Hoffman et 

al., 1995), will be faster at problem solving (Chi et al., 1988) and adaptable. 

Individuals in this quadrant can adjust decisions continuously (Shanteau, 

1992) to deal with disruptions swiftly and effectively to support the timetable. 

This includes the ability to deal effectively with rare or tough cases (Hoffman 

et al., 1995). An individual’s underlying physiological state is predicted to have 

an average EDA SCL and exclude EDA peaks, as they have habituated to the 

events (Hugdahl, 1995), are not stressed, and their alertness is not excessively 

high. If something does occur that results in a peak in EDA, it would be a small 

and short duration SCR. Their HRV is anticipated to be high; reflecting 

confidence and the absence of uncertainty.  

 

Errors of any kind are predicted to be at the lowest likelihood of all the 

quadrants. In this scenario there are no operational or individual impacts. 

Normal train running would continue. Successful performance could be 

sustained throughout a full shift. 
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Quadrant II – Novel Events Balanced State 

The top left quadrant combines Novelty of Events with Balanced Autonomic 

State. It represents an individual who is a qualified signaller with a limited 

range of operational experience. They are calm but lack confidence in 

scenarios they have personally never dealt with before. They are rested and 

alert from sufficient sleep, rest breaks, and shift pattern, such as halfway 

through a set of day shifts.  

 

An example of an operational scenario that would fit in quadrant II would be 

receiving a report of a cow on the line (as reported by signallers in the 

Perspectives and Attitudes study (see section Data relevance to signalling 

task). If this specific event is unfamiliar to a signaller, they can successfully 

apply the rules and procedures from their experience of other obstruction of 

the line incidents. The task involves stopping trains, arranging for staff to visit 

the site to locate the cow and block the point they gained access to the track, 

and then inform the driver to proceed at caution to confirm the track ahead is 

clear. Communication includes signalling and verbal communications to 

coordinate with staff to visit the site. 

 

This combination of limited experience, balanced state, and novel task will 

enable an individual to be alert and notice issues. They may, however, 

respond slowly due to inexperience. It is a mixed combination for human 

performance that can be sustained, and result in successful task performance, 

but requires additional time or resources (such as support from colleagues). A 

decision made too rapidly increases the likelihood of error. Individuals will be 

able to achieve performance with moderate effort as they have not dealt with 

the event, or something similar, before. Whilst they can remain calm, they 

will require additional time or assistance to remain on top of the task and not 

become overloaded. The individual may seem alert but uncertain or hesitant. 
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Their underlying physiological state is predicted to have an average EDA SCL 

but include EDA SCR peaks in the situations most novel to them (Sokolov, 

1963). These peaks may occur up to 14 seconds after the event they are 

associated with (Bound, 2016). HRV is predicted to be medium, as they are 

neither strongly confident nor uncertain.  

 

Rule-based errors are likely, meaning the individual applies the wrong rule or 

set of procedures. Knowledge-based errors could occur in another scenario in 

this quadrant if the event does not clearly fit an existing rule or procedure. 

Individuals in this quadrant will benefit from support from colleagues who 

have relevant experience, such as the location’s access points and farms in 

the immediate area. In this scenario, there are operational impacts but 

minimal impacts on the individual. There may be resulting delays to the route 

that need to be managed. They are likely to swiftly return to their normal 

state once the situation is resolved. In addition, the signaller gains valuable 

experience and confidence. 

Quadrant III – Novel Events Skewed State 

The bottom left quadrant combines Novelty of Events with Skewed 

Autonomic State. It represents an individual early in their career, with a 

limited operational experience. They lack confidence in situations they have 

not personally dealt with before. They experience strain from dealing with an 

event that is critical but novel to them, particularly if they are fatigued. This 

matches previous research that novices are less skilled than experts 

(Anderson, 2000). They are predicted to require more effort to complete 

tasks compared to the economy of effort of experts (Hoffman et al,. 1995). 

 

An example of an operational scenario that would fit in the quadrant III would 

be an emergency call from a driver to say they may have hit something, as 

reported by signallers in the Perspectives and Attitudes study (see section 

Data relevance to signalling task), and in a study in live signalling operations 
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(Broekhoven et al., 2016). This type of event is sudden and unexpected. To 

deal with it, the signaller must speak to the driver to both reassure them and 

to gain a report of the event. In addition to speaking to the driver, they must 

signal other trains to avoid the stopped train and limit the disruption. The 

need for verbal communication is considerable, not only to the driver but 

with colleagues, to coordinate with multiple agencies. Signallers in the 

attitudes study added that drivers only call when there is a problem, so just 

hearing the phone ring can be stressful, particularly until the nature of the 

incident is understood. 

 

This combination of limited experience, skewed state, and novel task limits an 

individual’s ability to notice issues. It will increase the time issues go 

unnoticed, and the time needed to resolve them. It is the most challenging 

combination for human performance, resulting in reduced sustainable 

duration and risks of poor performance outcomes. Individuals will need to 

employ excessive effort to compensate for inexperience and lack of 

confidence. They are likely to seem uncertain. They are at risk of overload and 

strain.  

 

Their underlying physiological state is predicted to include frequent EDA SCR 

peaks, with elevated EDA SCL. This matches the findings of a study in live 

operations, where a signallers experienced more frequent EDA SCRs and their 

EDA SCL was significantly higher during periods of high self-assessed workload 

(Broekhoven et al., 2016). Their high workload took over forty minutes to 

lower when they received a call from a driver reporting they may have hit a 

person (Broekhoven et al., 2016). HRV, in comparison, is anticipated to be low 

due to their uncertainty and lack of confidence.  

 

This quadrant comes with the greatest risk of all types of error. Individuals in 

this quadrant will benefit from both support from colleagues and regular 

breaks. It would take time for the individual signaller’s state to return to 

baseline. Both could extend past the end of the shift. 
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Quadrant IV – Familiar Events Skewed State 

The bottom right quadrant combines Familiarity of Events with Skewed 

Autonomic State. It represents an individual who is highly experienced, with a 

wide range of operational experience. They are confident but are likely to 

experience vigilance decrement from cumulative fatigue, such as at the end 

of a series of night shifts.  

 

An example of an operational scenario that would fit in the bottom right 

quadrant IV would be dealing with a disrupted timetable, which occurs 

frequently enough to be familiar to the individual signaller. To recover from 

the disruption, tasks include regulating trains, by determining which proceed 

first through a junction, weighing the level of delay of each train. The need for 

verbal communication is low, as signal aspect provides drivers the indication 

they need.  

 

This combination of high experience, skewed state, and familiar task will 

mean individuals may be less alert and slower to notice issues or respond to 

resolve them.  It is a mixed combination for human performance that can 

result in successful task performance but will require rest and sleep as it 

cannot be sustained. Individuals can achieve successful performance with 

additional effort to boost alertness and remain on top of the task. There is a 

risk of over-confidence here, if an individual fails to realise they are fatigued. 

Individuals are bad at judging their own fatigued state (Martindale, 2012). If 

the event is very familiar, then underload is a risk. The individual may seem 

subdued and unable to maintain their attention.  

 

Their underlying physiological state will have low EDA SCL. Any EDA SCR peaks 

are predicted to take longer to recover to baseline. HRV is anticipated to be 

low, with increased uncertainty and effort.  
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Skill-based errors of slips and lapses are likely in this quadrant. An example, 

during the scenario presented above, would be the signaller mistakes two 

train head codes (the train reporting numbers), wrongly routing the first train 

onto a route intended for the second train. This type of error is likely to lead 

to further operational impact if the driver takes the route, they will miss a 

scheduled stop, disrupting passengers. If the driver notices the wrong route 

they will stop and call the signaller causing a slight delay. If the signaller 

notices their error, they may choose to change the signal to red, however this 

risks the driver applying the emergency break which could injure passengers. 

If a signaller did wrongly route a train, it is proposed the individual would 

experience a physiological response when they realise their error. In this 

scenario there are individual impacts with potential operational impacts. 

Individuals would benefit from a break or ideally sleep, to improve their 

performance. Their vigilance decrement could lead to an error that impacts 

operational performance. 

7.4.6  Comparison of NEAS model with existing MWL models 

The Novelty of Events Autonomic State (NEAS) model matches elements of 

existing models of MWL to varying extents. Comparisons are made here with 

deWaard’s workload and performance model (deWaard 1996), Xie and 

Salvendy’s factors contributing to mental workload (Xie and Salvendy 2000), 

and Edward’s precipice of performance (Edwards et al., 2016).  

 

In their model of workload and performance, deWaard proposed how these 

have an inverted U relationship with each other as demand increases (see  

Figure 2-9). Here it is proposed that deWaard’s regions from A to D map onto 

the NEAS model anticlockwise as shown in Figure 7-3. 
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Figure 7-3 Mapping deWaard’s MWL regions A – D onto the NEAS model  

 

DeWaard’s state-related effort (region A1) sits on the boundary between 

quadrants IV and I. Here an increase in state-related effort is needed to 

sustain performance. Optimal performance (region A2) maps onto quadrant I 

Familiar Events Balanced State. Task-related effort (A3) maps onto the 

quadrant II Novel Events Balanced State. In this area, performance is 

sustained, with effort but without overload. Region B, when task-related 

effort can no longer sustain performance, maps onto the boundary between 

quadrants II and III. Region C, where performance is low, maps onto quadrant 

III Novel Events Skewed State. Finally, region D maps onto quadrant IV 

Familiar Events Skewed State. In this case, the NEAS model takes existing 

theory and builds on it to propose what measurable physiological changes 

could be detected as an individual transitions between the quadrants and 

through the regions of deWaard’s model.  

 

Edwards’ ‘precipice of performance’ (Edwards et al., 2016) fits the same 

position on the NEAS model as deWaard’s Region B; on the boundary 

between  top left and bottom left Novel Events - Balanced State and Skewed 

State (see Figure 7-3). In Edward’s theory (see Figure 2-10), performance can 
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be protected by compensatory strategies (which would map onto the Novel 

Events Balanced State quadrant). After these compensatory strategies fail, 

performance degradation is rapid, resulting in a state that fits quadrant III 

Novel Events Skewed State. After the rapid degradation in performance, 

Edward’s describes the individual as having no plan, likely to panic, and reliant 

on colleagues’ support.  

 

A key difference between what is proposed by the NEAS model compared to 

both deWaard’s and Edwards’ theories is the concept of a quantity of demand 

is absent. Instead, the model suggests a quality in the concept of novelty. 

Whilst quantity of task demand is a core concept in MWL, in this research 

physiological measures show mixed results when used to detect task demand. 

Previous research comparing physiological measures for detecting MWL have 

found mixed results (Charles and Nixon, 2019; Matthews et al., 2014). Specific 

to HRV and EDA considered in this research, HRV decreases with increased 

task demand (Lehrer et al., 2010) and EDA with cognitive load (Mehler et al., 

2012). Equally, research found EDA changed with task difficulty (Healey and 

Picard, 2005) and arousal (Song et al., 2014). In the simulation study within 

this thesis, HRV and EDA did not correlate with Task Demand, but average 

HRV did correlate with average self-assessed workload ratings. It is proposed 

by the thesis, therefore, that novelty of events has as great an impact on an 

individuals’ capacity to deal with workload as the quantity of task demand. 

 

A subset of factors that contribute to mental workload in a complex setting 

(Xie and Salvendy, 2000) map onto the NEAS model. Fatigue (Klein and 

Malzahn, 1991), task duration (Dember et al., 1993), and stress (Hart and 

Staveland, 1988) will move an individual down in the model. Knowledge will 

move them right, and task uncertainty (Knight and Salvendy, 1981; Lehto and 

Buck, 1988) will move them left. It is proposed here that task importance 

(Sawin and Scerbo, 1993) may move them down in the model, especially if it 

leads to strain. The concepts of attitude, motivation (Reid and Nygren, 1988) 

and task complexity (Hart and Staveland, 1988) do not directly map onto the 
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model. Whilst these are accepted as factors that can influence workload and 

performance, they are not factors which physiological measures are likely to 

delineate.  

 

Taken together, the above comparisons highlight the challenges of 

determining the diagnosticity of physiological measures for MWL, when the 

construct of MWL is not well defined. The models that map more closely with 

the NEAS model are those that distinguish the individual factors such as 

fatigue (Klein and Malzahn 1991), and performance outcome, rather than 

those focused on external task factors such as task complexity (Hart and 

Staveland 1988). This presents an opportunity to re-evaluate what we mean 

by MWL. 

 

7.5  Progressing the terminology around MWL 

This research found that individual experience of workload can be inferred 

from physiological data. Alertness, stress, and uncertainty were deemed the 

aspects of workload most relevant to signaller workload. Increases in these 

three aspects of workload can be inferred from increases in EDA and 

decreases in HRV. It could be concluded from this that EDA and HRV can be 

used to measure MWL. This, however, depends on the definition of MWL. 

Suitability of workload measures criteria includes sensitivity to changes in task 

demand and validity to detect only cognitive aspects of MWL (Eggemeier et 

al., 1991, Sharples and Megaw 2015). Based on these criteria EDA and HRV do 

not measure MWL. What this research proposes instead is that physiological 

data can assist in determining why individuals respond to the same task 

demand in different ways. In this respect it could be argued that physiological 

data could assist in distinguishing reasons for change that are individual in 

nature. In this way EDA and HRV could provide diagnosticity.  
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Accurate use of terminology will be important to remain clear on what is 

detected by physiological measures (e.g. HRV is the time gap in electrical 

signal to the heart) and what can be inferred (e.g. high experienced workload 

when HRV is low).  This research proposes this clarity will assist in 

incorporating these new measures and their data into our existing 

understanding of MWL. The temporal data from measures can provide 

information on the sequence of events in task, and any time gap between 

external events and internal reaction. In combining our existing 

understanding of what external task demands affect MWL, physiological data 

can assist in building our understanding of the internal demands and 

reactions to the task including effort, strain, and uncertainty. This goes 

beyond assessing workload as a quantity of task demand and includes the 

combination of factors that support successful performance.      

  

7.6  What are staff perspectives on wearables and use of their 

personal physiological data?  

Staff attitudes and opinions on the use of wearable measures are an 

important factor to their success. The devices were not viewed as a status 

symbol, unlike new technology in the TAM2 model (Venkatesh et al., 2000). 

This could be due to wearables not directly supporting performance 

outcomes and not being viewed as a privilege. As wearing measures are novel 

to all staff for use at work, a certain level of hesitance or resistance was 

expected. Overall response by participants in the perspectives and attitudes 

study was that they would be prepared to trial the measures. They were 

unsure what the reaction of colleagues would be.  

 

During the simulation and perspectives and attitudes studies, a distinction 

developed between the suitability of wearable devices for the live 

environment and the use of data from wearables.  
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7.6.1  Device suitability for use in live operations  

The perspectives and attitudes study indicated that wearable devices would 

potentially be appropriate for use in the live operational environment. The 

wrist strap received acceptable comfort ratings, with minimal distraction. It 

was predicted that the acceptable wearable time could be up to a full shift (8-

12 hours). Some participants commented that the wrist strap would be like 

wearing a watch, so they would be unaware of wearing it. In comparison, 

participants were uncertain about wearing the chest strap at work, with a 

wider range of opinions being offered about the chest strap. No participants 

currently used a chest strap as a fitness tracker. It could be this preference for 

the wrist strap, in part, reflects the relative difference in familiarity and 

positive experiences of a wristwatch compared to the novelty of wearing a 

chest strap. This fits with the TAM2 model of past direct experience of 

technology influencing attitudes (Jacobs et al., 2019; Venkatesh and Davis, 

2000).  

 

Comfort ratings were not collected during the two field studies that applied 

wearable measures in live railway operations (Song et al., 2014; Broekhoven 

et al., 2016). Based on their data collection, drivers wore a chest and a finger 

EDA sensor for up to 3 hours (Song et al., 2014) and signallers wore a wrist 

strap for an average of 3.4 hours (Broekhoven, 2016). Taken together the 

implications of these findings are that a future live trial of wearables could go 

ahead, with the wrist strap being the preferred device and the chest strap 

optional if a period of familiarisation is provided for participants to get used 

to wearing it. 

7.6.2  Suitability of personal physiological data use  

The perspectives and attitudes study found the concerns of staff were less 

about the use of devices to collect the data and more around the 

consequence of use of their data. The study determined that trust was a key 

factor. It was essential staff had trust in those who would see their data, 



Discussion and implications 

 191 

particularly any named data. Whilst they accepted researchers and third-

party providers would need to see the data, their concern was mainly 

whether their managers would see data that could be linked to them. They 

were concerned that physiological data may be misused to assess their 

competency. Their ultimate concern was that they may lose their job. 

Concern was highest when those who saw their data had the most direct 

control over their employment, and the perceived risk that managers may use 

the data against the staff. Where data from the wearables could be used to 

support staff, perspectives and attitudes to their use were improved. 

 

The above reflect organisational cultural barriers around the implementation 

of wearable physiological measures in the railway industry. Such barriers are 

not restricted to physiological measures. Similar concerns and cautiousness 

are evident around fatigue management, as reported in Chapter 2. Examples 

include staff fearing reporting fatigue, and there being contradiction between 

shift patterns designed to reduce fatigue risk and management agreement to 

shift swapping. In this organisational cultural context, it is understandable 

that staff would wish to have clear justification prior to the use of personal 

physiological data and agreement as to how their data would be used.  

 

Anonymity or aggregation of results may, in theory, increase acceptance. A 

live trial to collect anonymized physiological data could proceed to prove 

what it can show. In a signalling centre anonymisation is difficult however, as 

individuals can be identified from the roster by date, time, and workstation. 

Instead, this research recommends improving perceived usefulness of the 

measures to improve attitudes. To achieve this, the industry would need to 

be clear what operational benefit or improvement would come from 

physiological data. An example would be informing shift break patterns based 

on alertness levels, or tailoring training scenarios from physiological 

responses. This would alleviate a dichotomy from the findings that absolute 

individual physiological data is a useful contributor to understanding 

individual workload but difficult to anonymise. Relative data, with baseline 
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removed, would be easier to anonymise but may not show individual 

experience of workload.  A tangible benefit to railway operations would be to 

encourage staff to accept wearable measures including use of absolute, 

identifiable data, rather than only anonymized data. 

 

7.7  Limitations 

Regarding participants, railway signallers became the focus. The potential 

exists for the results here to have implications for other staff roles in rail (e.g. 

drivers) and for control staff in other transport industries. To compare 

perspectives across different transport industries, a broader range of 

stakeholders could be recruited. This could be an interesting study, 

particularly to understand the relative difference in underlying organisational 

cultural maturity regarding potential acceptance of physiological measures. 

 

The simulation study found individuals differ in their physiological data. To 

develop physiological measures for MWL assessment it will be important to 

understand the impact of these individual differences. A repeated measures 

study, with data collected from the same individuals, would assist in 

understanding how stable (and therefore predictable) individuals’ responses 

are over time and the reliability of the measures. 

 

The simulation study had a higher proportion of EDA non-responders than 

previous studies (Braithwaite et al., 2013). This could be caused by sensor 

placement, low room temperature, or it could be correctly showing an 

absence of stress response to the task. The latter reason could be an indicator 

of positive staff state. To understand the EDA response, it would be important 

for future studies to collect data from both responders and non-responders 

for the same event, rather than remove non-responders.  Linked with the 

above recommendation to repeat measures, it could be determined whether 

certain individuals are more likely to be consistent non-responders.  
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7.8  Implications for industry 

There are a range of implications for the railway industry relating to the use 

of wearables, what benefit the physiological data could provide industry, and 

how to progress these. Overall physiological wearable devices could suit use 

in live operational environment, particularly the wrist strap. Physiological 

data was found to reflect individuals’ experience of MWL rather than task 

demand, as found by some previous research. Temporal physiological data 

could make individual effort more visible and provide useful feedback on staff 

individual MWL. This would be a form of mutual monitoring, currently 

achieved informally in operations through teams observing one another and 

stepping in if required such as answering a phone when a colleague is busy. 

 

Physiological data could not answer the question of how many trains are too 

many for one signaller to handle. Physiological data could answer which 

situations do signallers find the most challenging. EDA, collected using the 

wrist strap, could identify moments of increased workload during a 

continuous task in live operations, including moments of uncertainty, time 

pressure, or realisation such as an error. This includes moments they were 

conscious of, and those they may not have been consciously aware of. HRV, 

collected from a chest strap, could indicate average individual workload. If 

only average workload rating were required, average HRV could replace self-

assessed workload measures. The acceptance of a chest strap was lower than 

a wrist strap, so would require a period of familiarisation. The benefits of 

physiological measures would be to highlight individual experience of 

workload, and their unseen effort, level of alertness or strain required to 

complete a task. This also presents the future potential to monitor fatigue, to 

fit with existing programs that manage shift work and the risk of fatigue. 

 

Physiological data could produce storyboards of a continuous task, with other 

data sources to indicate task demand, phone calls, other events in the task, 

shift pattern and operational performance status. These could facilitate 
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debriefs with staff to understand periods of both sustainable effort with 

successful performance and any challenges. The data would need to remain 

anonymous whilst progressing these measures from the laboratory to the live 

environment. Further research is required to confirm which specific data from 

EDA and HRV is most relevant to the signalling task. This could then inform 

industry agreement between staff and managers on who can see the data and 

how it would be used. Ideally such data could inform tailored training sessions 

(using walkthroughs or simulator) to fill individual gaps in work experience 

and build confidence in situations that would be challenging. The aim would 

be, ultimately, to make the workload experience and effort of staff visible to 

managers and trainers.  

 

The use of physiological measures is not appropriate in the railway industry 

yet. Prior to implementing live use of physiological measures, it is essential for 

staff to accept their use as the measures rely on staff personal data. To do 

this involves a tangible benefit to railway operations and demonstrate how 

the data could be used to support rather than blame individuals for their 

performance. A way to progress this would be to develop the NEAS model 

with staff and managers to determine how best the workload of staff can be 

managed to support successful operational performance.  

 

The benefit of applying the NEAS model would be to understand where an 

individual sits to identify how best to support them and maximise the time 

spent in the top right FB region (through support and rest). Staff and 

managers would benefit from understanding the distinction between how 

rest breaks could be used to recover from a Skewed Autonomic State. To 

mitigate the risk of uncertainty and novelty of events involves providing staff 

support from experience staff or providing additional time for novel 

situations, build individuals’ experience and confidence, and retain staff with 

experience. This works for stage of career from staff new to signalling to 

those transitioning to using more modern signalling equipment. The aim is to 



Discussion and implications 

 195 

build familiarity and confidence in individuals to successfully deal with a wide 

range of situations or events.   

 

There are broader implications for industry of the findings of this research. 

Firstly, novelty of events has been identified as a source of increased 

workload and effort. Building experience and confidence in staff can mitigate 

the risks associated with this novelty, as stated above. In addition, industry 

could predict when changes in technology or procedure introduce an element 

of Novelty of Events. This should be expected to have a negative impact on 

performance, for a period, until whatever has changed becomes familiar.  

 

Secondly managers of staff would benefit from understanding what tailored 

support they can provide staff to build their experience and confidence. Part 

of this is to understand the position of an individual within the NEAS model is 

not a fixed point. It will move gradually to the right over time, as experience 

and confidence grow, whilst introducing novelty will move them left. During 

any 24-hour cycle everyone will go through periods where they drop lower, 

that can be managed by shift patterns and break patterns. The advantage of 

this approach is to demonstrate the benefit of understanding physiological 

state of individuals and how that understanding can help staff to sustain their 

efforts and in turn support successful operational performance outcomes.  
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Chapter 8:  Conclusions and future work 
 

8.1  Chapter overview 

This chapter completes the thesis by presenting the conclusions of the 

research. This includes the contributions of how physiological measures can 

contribute to MWL assessment, staff perspectives and attitudes on their use, 

and theoretical implications. The chapter finishes with recommendations 

further research and implications for future work application in the rail 

industry.  

 

8.2  Conclusions  

This research contributes to our understanding of human performance in the 

rail industry by determining the potential contribution of temporal 

physiological data from wearable measures. The research addresses three 

research questions: 

1. How can temporal physiological data from wearable measures 

contribute to MWL assessment in rail industry live operations? 

2. What are the theoretical implications of individual physiological data 

to changes in MWL in a workplace setting?  

3. What are staff perspectives on wearables and use of their personal 

physiological data? 

 

The specific contributions of the research are how temporal physiological EDA 

and HRV data could contribute to MWL assessment of railway signallers, 

whether wearable measures suit use in live operations, and what staff 

perspectives are on the use of their personal data. From these the research 

also proposes theoretical contributions around MWL and the implications of 

these for the rail industry. 
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The rail industry is challenged by staff overload and underload as they 

negatively affect human cognitive performance. This is particularly the case 

during disruption and is despite increasing automation. To address these 

MWL related challenges, the PhD considered ‘what does good look like’, 

rather than focusing only on errors. This includes what range of MWL 

supports successful operational performance, and what MWL is sustainable 

by staff. As the research progressed it focused on signalling staff, although the 

results have implications for other control staff both within the rail industry 

and in other industries requiring staff to complete safety critical tasks. 

Physiological wearables were identified as a potential measure of MWL that 

suit use in live operations. Using wearables to measure MWL is relatively new, 

particularly in an industrial field setting. To date both EDA and HRV have 

mainly been constrained to laboratory and simulator settings. To address the 

first research question, the PhD investigated what EDA and HRV data could 

contribute to MWL assessment. 

 

The first research question was ‘how can temporal physiological data from 

wearable measures contribute to MWL assessment in rail industry live 

operations?’ In answer to this, regarding temporal physiological data, the 

research found that both EDA and HRV data could contribute by indicating 

individual experience of workload. EDA measures skin conductance. The novel 

contribution regarding temporal EDA data was that EDA SCR spikes can 

identify important ‘moments in workload’ from a continuous task. These may 

be sudden unexpected events or a moment of realisation, or uncertainty, 

when an individual realises there is a problem. Such data could provide 

information for a debrief to staff and tailor training to address events 

individuals find challenging. In addition, EDA SCL, the underlying baseline 

value of EDA, could imply levels of uncertainty or alertness. The research 

indicated that changes in stress and alertness, were due to either unexpected, 

or novel external events such as incidents. In future, EDA could monitor 

alertness, with a decreased SCL indicating reduced alertness. Equally, if EDA 



Conclusions and future work 

 198 

SCL remained steady, an absence of SCRs could be a positive indication that 

an individual is confident and not under strain.  

 

HRV shows promise as an indicator of individual MWL. The novel contribution 

of HRV was that average HRV values across a task had a strong negative 

correlation with average subjective workload ratings. This means that 

individuals with higher average subjective workload have lower HRV. Previous 

research suggests confidence, time pressure, emotional strain, or anxiety can 

be inferred from HRV. Further research is required to confirm precisely what 

aspect of MWL HRV is sensitive to. An interesting and novel find of the 

research was that HRV was more indicative of differences between 

individuals’ experiences of the task than it was between different levels of 

task demand. The correlation between HRV and IWS was no longer evident 

with relative values of HRV, with participants’ baseline removed. In future, if 

only average MWL was required, HRV could potentially replace IWS as a self-

report workload measure. This would provide an indication of how individuals 

varied in how much confidence versus strain they experienced during the 

task.  

 

This research found physiological data did not indicate the number of trains 

an individual was dealing with but instead an individual’s experience of that 

task demand due to associated alertness and stress. In this way physiological 

data could visualise the individual experienced MWL that is not directly 

observable. In future physiological data could be used to provide storyboards 

for use in debriefs with staff. Visualisation of the temporal data could provide 

a basis for discussion to understand what task or individual factors influenced 

individuals’ workload. The benefit would be to understand periods of both 

sustainable effort with successful performance, and events or periods of 

uncertainty that were challenging. In turn, this could inform tailored training 

for staff to practice events individuals found challenging, to build their 

confidence. If data were collected real-time, it could provide visibility to 

managers, particularly those not in the room, of the effort or stress of staff. 
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The managers could benefit from understanding the cumulative ‘effort cost’ 

of work on their staff. Ultimately, if sequences were identified, this could lead 

to predicting when staff MWL levels are at risks of moving from successful 

performance into the higher risk areas of underload or overload. 

 

In answer to the first research question, regarding use of wearables in live 

operations, the research determined wearable devices could suit use in live 

operations. Staff supported the idea of using wearables to improve the 

measurement of MWL in live operations. In particular, the wrist strap was 

identified as suiting live operations as it was viewed as more comfortable and 

distraction due to the device would be minimal. In addition, staff reported 

that inferring alertness from the EDA data collected from the wrist strap 

would be relevant to signallers. The chest strap was unfamiliar to staff, 

compared to wearing something on the wrist. This suggests a period of 

familiarity would be essential if a chest strap was required. HRV data from the 

chest strap could indicate how confident or strained an individual is, or how 

they perceive their MWL. Over time, if chest strap wearables become more 

prevalent for personal use, familiarity can inform staff acceptance of use in a 

work setting. It is important the industry acknowledge that, as with the 

technologies being implemented for direct task support, the acceptance of 

new technologies takes time. 

 

The second research question was ‘what are the theoretical implications of 

individual physiological data to changes in MWL in a workplace setting?’ In 

answer to this, the theoretical contribution of the research is the preliminary 

conceptualisation NEAS Model. This provides a way of understanding how 

Novelty of Events and Autonomic State combine to impact individual MWL 

and performance outcomes in a quadrant. It suggests a way of understanding 

how individual’s physiological state combines with novelty of event to predict 

likely performance. The model considers across two axes of physiological 

state and level of confidence relating to how novel an event is that needs 

staff input. Physiological data provides a potential way to identify where in 
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the NEAS model an individual is, and what would support an improvement in 

performance. This contribution progresses the theoretical understanding held 

around individual experience of workload and how it has an important 

contribution to make in the measurement and prediction of MWL. 

 

The physiological data in this research, and the NEAS model, suggest a new 

way to consider MWL of staff in live operations. Compared to previous MWL 

theories, the concept of a quantity of demand is absent. Instead, the model 

suggests a quality in the concept of novelty. Traditionally the concept of MWL 

does not include emotional state. It focuses instead on quantity of task 

demand and of cognitive information processing. Whether EDA and HRV are 

measures of MWL depends on definition of MWL. Suitability criteria suggest 

measures are sensitive to task demand and not emotions. Signallers indicated 

however that detecting levels of confidence or uncertainty would be relevant 

to signalling. This research proposes instead that physiological data can assist 

in determining why individuals respond to the same task demand in different 

ways. In this respect it could be argued that physiological data could assist in 

distinguishing individual reasons for change in the data. In this way EDA and 

HRV could provide diagnosticity of MWL. 

 

The third research question was ‘what are staff perspectives on wearables 

and use of their personal physiological data? In answer to this, the research 

identified that concerns around the use of wearable measures related more 

to the potential consequences of use of personal physiological data. Trust was 

a key factor. Staff were hesitant as they thought their data may be used to 

assess their competence. Their ultimate concern was that they may lose their 

job. One way of addressing this would be to anonymise the data, however 

this would lose much of the potential value of the data in understanding 

individual factors. The PhD recommends the industry instead aims to use the 

physiological measures only when the staff are prepared for named data to 

be shared. This is to ensure both the individual staff member, and those with 

responsibility to support them, can benefit from the data. In the meantime, 
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industry can benefit from lessons learnt from the theoretical implications 

identified by the research findings. 

 

8.3  Future work 

The use of physiological data shows potential to provide valuable insight and 

visibility of individuals’ experience of MWL. Further research would help 

progress the use of physiological measures. Research should continue to 

explore what specific aspects of MWL can be inferred from specific 

physiological data. This would clarify what individual MWL factors the 

physiological data are sensitive to such as time pressure, stress, alertness. 

This research indicates physiological data are more sensitive to individual 

factors, so it is recommended that they are not used in studies that only track 

quantitative Task Demand.  

 

It would be interesting in future to confirm whether individual MWL is 

cumulative and in what circumstances individuals’ awareness of their MWL 

matches their physiological data. The research found that average HRV 

negatively correlated with average self-assessed workload. Previous research, 

however, suggests that individuals may be more aware when there is a 

discrepancy to their anticipated levels. Combining these two, it would be 

interesting to investigate when an individual does not report high workload as 

it matches their anticipated MWL level. Physiological data could provide 

visibility of their underlying state. Equally, if MWL is cumulative, individuals 

may be unaware their underlying state has incrementally changed over time. 

Again, physiological data could indicate when data returns to baseline 

(indicating it is physiologically more sustainable), and when it does not return 

to baseline and individuals may be unaware.  

 

This research recommends both absolute and relative values of physiological 

data are considered in future studies. Both can be useful to understanding 
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MWL. They answer different questions. Relative values, adjusted by baseline, 

provide information on task differences in MWL as it removes individual 

differences. Absolute values retain the individual differences in experience, 

which are deemed a strength of the measures rather than something that 

should be removed. Future studies applying a repeated measures approach 

would also be desirable, to determine the reliability of measures both within 

and across individuals.  

 

The outcome of the research for industry is that wearable physiological 

measures could benefit the rail industry in future but should not be used yet. 

Cultural barriers within industry would need to be addressed prior to use. 

Regarding the cultural barriers to acceptance, resistance to the measures 

mainly relate to concerns around the consequence of use of personal 

physiological data. The ultimate concern of staff was that they may lose their 

job. Trust was identified as a key factor, with staff hesitant to provide data 

that managers may be used to assess their competency. Instead of 

introducing new physiological measures, this research recommends applying 

strategies to support staff remain alert and confident. This could include 

effective use of breaks and building confidence through experience. The NEAS 

preliminary conceptualisation could assist staff and managers to understand 

how individuals, over time, are affected by novelty and would benefit from 

different support. Retaining staff with experience and building staff 

confidence can mitigate the risks associated with novelty of events. Breaks 

can mitigate the risks of fatigue and reduced alertness. These strategies 

would not require staff to wear physiological measures. Instead, if effective, 

they would provide a justification for why monitoring individual state could 

be mutually beneficial to staff and managers in future.  

 

If a justifiable purpose is determined, with clear operational benefit, then a 

trial of wearables could be run in live operations, initially using only the wrist 

strap and EDA data. The chest strap was less familiar to staff and viewed as 

less comfortable. A trial would provide staff the opportunity to experience 
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wearing a device and to validate the data. A debrief with staff after the trial 

could identify what aspects of the task, experience, and effort the data shows 

to evaluate the utility of the process. Additional data about task demand 

including phone calls, level crossings, and control inputs would be required to 

compare physiological responses. The initial trial would need to ensure staff 

data was anonymised. The trial could demonstrate to staff the benefits of 

sharing graphical data, such as to show the physiological effort required to 

sustain successful performance. This data, if shared, could inform tailored 

training. The physiological data shows the potential to, in future, detect that 

an individual is moving away from their baseline so timely interventions could 

be implemented.  

 

Appropriate choice of physiological measures depends on what question 

needs answering. The strength of physiological measures is to infer individual 

experienced workload, rather than task demand. If the question is ‘what 

quantity of task demand can staff handle?’ This cannot be answered by 

physiological measures. If the question is ‘how can we visualise individual 

workload changes over time?’ then temporal physiological data from 

wearables could provide an answer. The latter would be choosing 

physiological measures for their strength of detecting individual experience of 

workload. The data could show the effort that may not be directly observable 

and do so with minimal task interference. 

 

Whilst the results focus on railway signallers, these findings have implications 

for other railway staff, and staff in other industries in control roles with 

increasing automation. This research opens the opportunity for similar 

research to be applied in live operations in other industries were managing 

individual workload and strain is a protective factor for overall sustainable 

safe operations.  

 

The research concludes that temporal physiological data shows great 

potential to contribute to the MWL assessment of signallers. HRV can indicate 
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self-assessed workload, as it shows a strong negative correlation with self-

assessed workload. EDA could identify moments of realisation during a 

continuous task to support debriefs with staff and inform training needs. 

Uncertainly or confidence could potentially be indicated by both HRV and 

EDA. Further research is required to clarify what specific aspects of MWL 

different physiological data are sensitive to. Collecting physiological data from 

staff should, however, not happen yet. Whilst wearable measures could suit 

use in live operations, staff concerns around how data will be used need to be 

address first. In future temporal data could indicate when staff are at risk of 

moving from good performance, into the higher risk areas of either underload 

or overload. In the meantime, the theoretical contributions of the thesis can 

benefit industry practice. Increased awareness of the impact of physiological 

state and novelty of events can inform effective MWL management. This in 

turn can support sustainable staff effort to achieve successful human 

performance in live operations. 
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Ethics for Industry Familiarisation 

 

  

 

 

 

 

 



Appendix B Physiological measurement poster 

 226 

 

Appendix B. Physiological measurement poster 

This poster was displayed at the HFRail Conference, London, November 2017. 

References from poster: (Borghini et al., 2012; Collet et al., 2014; Gao et al., 
2013; Lehrer et al., 2010; Matthews et al., 2014; Y. Song et al., 2014; Zawiah 
and Dawal, 2016) 
 

 

Physiological Measurement of

Human Performance: more than meets the eye
Abigail Fowler, PhD Candidate, University of Nottingham, abigail.fowler@nottingham.ac.uk

Supervisors Dr David Golightly, Dr Max Wilson, Prof Sarah Sharples

METHOD

A literature review was conducted of physiological measures including studies in transport, military, and nuclear sectors

AIM

Determine if physiological data can improve our 

understanding of human mental performance in rail to 

support increased capacity and keep passengers safe 

CONCLUSIONS

Physiological measures can improve our understanding of human performance by providing: continuous, objective data; 

rich data if measures are combined; a range of measures to match the task; suitability for use in simulators and beyond.

FINDINGS

CHALLENGE

Meeting increasing demand

Passenger journeys are

up 80% since 2000 [ORR 2017]

Heart ECG -

Electrocardiography

HRV - Heart Rate Variability

How ECG works… sensors on the 

skin detect electrical heart activity

HRV is the varying gap between R 

wave peaks 

Heart R wave peaks

HRV decreased at train tunnels 

and before/ after stops [Song et al 

2014] and with increased task 

demand [Lehrer et al 2010]

Brain EEG - Electro-

encephalography

How EEG works… Sensors on the 

scalp detect brain electrical activity

Brain waves

During a train driving task, EEG 

differed in day, night and rainy 

conditions, and during periods of 

reduced alertness [Zawiah et al 

2016]

Brain activity increased (beta 

waves) at tunnels, and before and 

after stops, during a live trial [Song 

et al 2014]

Drowsiness was inferred from 

EEG (bursts of alpha waves) 

during a monotonous car driving 

task in a simulator study [Borghini

et al 2012]

EDA - Electrodermal Activity

How EDA works… 

Sensors on the skin 

measure conductance 

EDA distinguished

task demand across Wrist sensor

different train driving tasks in a 

simulator [Collet et al 2014]

BR - Blink Rate

How BR works… Sensors on the 

skin near the eye, or by remote 

camera, detect the frequency of 

blinks 

Short term changes in workload 

were inferred from BR in a nuclear 

industry study [Gao et al 2013]

Brain fNIRS - Functional 

Near-Infrared Spectroscopy

How fNIRS works… Sensors on 

the forehead infer blood oxygen in 

the Prefrontal Cortex

fNIRS: oxygenation (red) deoxygenation (blue)

across three trials with varying task demand 

fNIRS varied with workload 

[Matthews et al 2014] and 

usability of different computer 

screen layouts [Lukanov et al 

2016]

Trial 3Trial 2Trial 1

This literature review forms part of a PhD on The Impact of New Data and Technology on Human Performance in Rail. The 

PhD is funded by the rail industry. Poster references are available on request.
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Appendix C. Simulation study ethics, NTS and 

storyboards 

Ethics for Simulation Study 
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Non-Technical Skills 
 

These are the Non-Technical Skills used in the rail industry in the UK (RSSB 

2012, RSSB 2016). 

 
References 
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RSSB (2016) A Good Practice Guide to Integrating Non-Technical Skills into 

Rail Safety Critical Roles. https://www.rssb.co.uk/Library/improving-
industry-performance/2016-07-non-technical-skills-integration-good-
practice-guide.pdf [Accessed 17.09.18] 
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Storyboards 
 

Storyboards were created in the simulation study from each Individual 

participants’ temporal task demand, events, EDA, HRV and IWS data. All 

nineteen participants are presented here (P7 was excluded due to a technical 

problem). Where HRV data, or IWS data points are missing there are not 

estimated, they are omitted from the graphs. 

 

The top graph plots: Task Demand (Total trains including Freight), with the 

freight train indicated in a darker grey; EDA (µx100); and wrist accelerometer 

data.  

 

The bottom graph plots: IWS rating; and HRV (ms).  

 

Task Events are marked vertically:  

I = Interpose headcode (the train reporting number) 

C = call start and end 

F = Notices freight. 

 

  



Appendix C Simulation study ethics, NTS and storyboards 

 230 

 

 

 St
or

yb
oa

rd
 (

P
1)

. T
op

 g
ra

p
h:

 T
a

sk
 d

em
an

d
 (T

ot
a

l t
ra

in
s 

in
cl

u
d

in
g

 F
re

ig
h

t)
; E

D
A

 (
µ

Sx
10

0)
; 

a
nd

 w
ri

st
 a

cc
el

er
om

et
er

 d
a

ta
. B

ot
to

m
 g

ra
p

h
: I

W
S 

ra
ti

n
g;

 a
nd

 H
R

V
 (

m
s)

. 
Ta

sk
 E

ve
n

ts
 m

a
rk

ed
 v

er
ti

ca
lly

 (
I =

 In
te

rp
os

e 
h

ea
d

co
d

e,
 C

 =
 c

a
ll 

st
a

rt
 a

n
d

 e
n

d
, F

 =
 N

ot
ic

es
 f

re
ig

h
t)

. 

 

  



Appendix C Simulation study ethics, NTS and storyboards 

 231 

 

 

St
or

yb
oa

rd
 (

P
2)

. T
op

 g
ra

p
h:

 T
a

sk
 d

em
an

d
 (T

ot
a

l t
ra

in
s 

in
cl

u
d

in
g

 F
re

ig
h

t)
; E

D
A

 (
µ

Sx
10

0)
; 

a
nd

 w
ri

st
 a

cc
el

er
om

et
er

 d
a

ta
. B

ot
to

m
 g

ra
p

h
: I

W
S 

ra
ti

n
g;

 a
nd

 H
R

V
 (

m
s)

. T
a

sk
 

Ev
en

ts
 m

a
rk

ed
 v

er
ti

ca
lly

 (
I =

 In
te

rp
os

e 
h

ea
d

co
d

e,
 C

 =
 c

a
ll 

st
a

rt
 a

n
d

 e
nd

, F
 =

 N
ot

ic
es

 f
re

ig
h

t)
. 

 

  



Appendix C Simulation study ethics, NTS and storyboards 

 232 

 

 

St
or

yb
oa

rd
 (

P
3)

. T
op

 g
ra

p
h:

 T
a

sk
 d

em
an

d
 (T

ot
a

l t
ra

in
s 

in
cl

u
d

in
g

 F
re

ig
h

t)
; E

D
A

 (
µ

Sx
10

0)
; 

a
nd

 w
ri

st
 a

cc
el

er
om

et
er

 d
a

ta
. B

ot
to

m
 g

ra
p

h
: I

W
S 

ra
ti

n
g;

 a
nd

 H
R

V
 (

m
s)

. T
a

sk
 

Ev
en

ts
 m

a
rk

ed
 v

er
ti

ca
lly

 (
I =

 In
te

rp
os

e 
h

ea
d

co
d

e,
 C

 =
 c

a
ll 

st
a

rt
 a

n
d

 e
nd

, F
 =

 N
ot

ic
es

 f
re

ig
h

t)
. 

 

  



Appendix C Simulation study ethics, NTS and storyboards 

 233 

 

 

 

 

St
or

yb
oa

rd
 (

P
4)

. T
op

 g
ra

p
h:

 T
a

sk
 d

em
an

d
 (T

ot
a

l t
ra

in
s 

in
cl

u
d

in
g

 F
re

ig
h

t)
; E

D
A

 (
µ

Sx
10

0)
; 

a
nd

 w
ri

st
 a

cc
el

er
om

et
er

 d
a

ta
. B

ot
to

m
 g

ra
p

h
: I

W
S 

ra
ti

n
g;

 a
nd

 H
R

V
 (

m
s)

. T
a

sk
 

Ev
en

ts
 m

a
rk

ed
 v

er
ti

ca
lly

 (
I =

 In
te

rp
os

e 
h

ea
d

co
d

e,
 C

 =
 c

a
ll 

st
a

rt
 a

n
d

 e
nd

, F
 =

 N
ot

ic
es

 f
re

ig
h

t)
. 

 

  



Appendix C Simulation study ethics, NTS and storyboards 

 234 

 

 

St
or

yb
oa

rd
 (

P
5)

. T
op

 g
ra

p
h:

 T
a

sk
 d

em
an

d
 (T

ot
a

l t
ra

in
s 

in
cl

u
d

in
g

 F
re

ig
h

t)
; E

D
A

 (
µ

Sx
10

0)
; 

a
nd

 w
ri

st
 a

cc
el

er
om

et
er

 d
a

ta
. B

ot
to

m
 g

ra
p

h
: I

W
S 

ra
ti

n
g;

 a
nd

 H
R

V
 (

m
s)

. T
a

sk
 

Ev
en

ts
 m

a
rk

ed
 v

er
ti

ca
lly

 (
I =

 In
te

rp
os

e 
h

ea
d

co
d

e,
 C

 =
 c

a
ll 

st
a

rt
 a

n
d

 e
nd

, F
 =

 N
ot

ic
es

 f
re

ig
h

t)
. 

 

  



Appendix C Simulation study ethics, NTS and storyboards 

 235 

 

 

St
or

yb
oa

rd
 (

P
6)

. T
op

 g
ra

p
h:

 T
a

sk
 d

em
an

d
 (T

ot
a

l t
ra

in
s 

in
cl

u
d

in
g

 F
re

ig
h

t)
; E

D
A

 (
µ

Sx
10

0)
; 

a
nd

 w
ri

st
 a

cc
el

er
om

et
er

 d
a

ta
. B

ot
to

m
 g

ra
p

h
: I

W
S 

ra
ti

n
g;

 a
nd

 H
R

V
 (

m
s)

. T
a

sk
 

Ev
en

ts
 m

a
rk

ed
 v

er
ti

ca
lly

 (
I =

 In
te

rp
os

e 
h

ea
d

co
d

e,
 C

 =
 c

a
ll 

st
a

rt
 a

n
d

 e
nd

, F
 =

 N
ot

ic
es

 f
re

ig
h

t)
. 

  



Appendix C Simulation study ethics, NTS and storyboards 

 236 

 

 

St
or

yb
oa

rd
 (

P
8)

. T
op

 g
ra

p
h:

 T
a

sk
 d

em
an

d
 (T

ot
a

l t
ra

in
s 

in
cl

u
d

in
g

 F
re

ig
h

t)
; E

D
A

 (
µ

Sx
10

0)
; 

a
nd

 w
ri

st
 a

cc
el

er
om

et
er

 d
a

ta
. B

ot
to

m
 g

ra
p

h
: I

W
S 

ra
ti

n
g;

 a
nd

 H
R

V
 (

m
s)

. T
a

sk
 

Ev
en

ts
 m

a
rk

ed
 v

er
ti

ca
lly

 (
I =

 In
te

rp
os

e 
h

ea
d

co
d

e,
 C

 =
 c

a
ll 

st
a

rt
 a

n
d

 e
nd

, F
 =

 N
ot

ic
es

 f
re

ig
h

t)
. 

 

  



Appendix C Simulation study ethics, NTS and storyboards 

 237 

 

 

 

St
or

yb
oa

rd
 (

P
9)

. T
op

 g
ra

p
h:

 T
a

sk
 d

em
an

d
 (T

ot
a

l t
ra

in
s 

in
cl

u
d

in
g

 F
re

ig
h

t)
; E

D
A

 (
µ

Sx
10

0)
; 

a
nd

 w
ri

st
 a

cc
el

er
om

et
er

 d
a

ta
. B

ot
to

m
 g

ra
p

h
: I

W
S 

ra
ti

n
g;

 a
nd

 H
R

V
 (

m
s)

. T
a

sk
 E

ve
n

ts
 

m
a

rk
ed

 v
er

ti
ca

lly
 (

I =
 In

te
rp

os
e 

h
ea

d
co

d
e,

 C
 =

 c
a

ll 
st

a
rt

 a
n

d
 e

n
d

, F
 =

 N
ot

ic
es

 f
re

ig
h

t)
. 

 

 

 



Appendix C Simulation study ethics, NTS and storyboards 

 238 

 

 

 

St
or

yb
oa

rd
 (

P
10

).
 T

op
 g

ra
p

h
: T

a
sk

 d
em

an
d

 (
T

ot
a

l t
ra

in
s 

in
cl

u
d

in
g

 F
re

ig
h

t)
; E

D
A

 (
µ

Sx
10

0)
; 

an
d

 w
ri

st
 a

cc
el

er
om

et
er

 d
a

ta
. B

ot
to

m
 g

ra
p

h
: I

W
S 

ra
ti

n
g

; a
n

d
 H

R
V

 (
m

s)
. T

a
sk

 E
ve

n
ts

 
m

a
rk

ed
 v

er
ti

ca
lly

 (
I =

 In
te

rp
os

e 
h

ea
d

co
d

e,
 C

 =
 c

a
ll 

st
a

rt
 a

n
d

 e
n

d
, F

 =
 N

ot
ic

es
 f

re
ig

h
t)

. 

 

  



Appendix C Simulation study ethics, NTS and storyboards 

 239 

 

 

St
or

yb
oa

rd
 (

P
11

).
 T

op
 g

ra
p

h
: T

a
sk

 d
em

an
d

 (
T

ot
a

l t
ra

in
s 

in
cl

u
d

in
g

 F
re

ig
h

t)
; E

D
A

 (
µ

Sx
10

0)
; 

an
d

 w
ri

st
 a

cc
el

er
om

et
er

 d
a

ta
. B

ot
to

m
 g

ra
p

h
: I

W
S 

ra
ti

n
g

; a
n

d
 H

R
V

 (
m

s)
. T

a
sk

 
Ev

en
ts

 m
a

rk
ed

 v
er

ti
ca

lly
 (

I =
 In

te
rp

os
e 

h
ea

d
co

d
e,

 C
 =

 c
a

ll 
st

a
rt

 a
n

d
 e

nd
, F

 =
 N

ot
ic

es
 f

re
ig

h
t)

. 

 

  



Appendix C Simulation study ethics, NTS and storyboards 

 240 

 

 

St
or

yb
oa

rd
 (

P
12

).
 T

op
 g

ra
p

h
: T

a
sk

 d
em

an
d

 (
T

ot
a

l t
ra

in
s 

in
cl

u
d

in
g

 F
re

ig
h

t)
; E

D
A

 (
µ

Sx
10

0)
; 

an
d

 w
ri

st
 a

cc
el

er
om

et
er

 d
a

ta
. B

ot
to

m
 g

ra
p

h
: I

W
S 

ra
ti

n
g

; a
n

d
 H

R
V

 (
m

s)
. T

a
sk

 
Ev

en
ts

 m
a

rk
ed

 v
er

ti
ca

lly
 (

I =
 In

te
rp

os
e 

h
ea

d
co

d
e,

 C
 =

 c
a

ll 
st

a
rt

 a
n

d
 e

nd
, F

 =
 N

ot
ic

es
 f

re
ig

h
t)

. 

 

  



Appendix C Simulation study ethics, NTS and storyboards 

 241 

 

 

St
or

yb
oa

rd
 (

P
13

).
 T

op
 g

ra
p

h
: T

a
sk

 d
em

an
d

 (
T

ot
a

l t
ra

in
s 

in
cl

u
d

in
g

 F
re

ig
h

t)
; E

D
A

 (
µ

Sx
10

0)
; 

an
d

 w
ri

st
 a

cc
el

er
om

et
e

r 
d

a
ta

. B
ot

to
m

 g
ra

p
h

: I
W

S 
ra

ti
n

g
; a

n
d

 H
R

V
 (

m
s)

. T
a

sk
 

Ev
en

ts
 m

a
rk

ed
 v

er
ti

ca
lly

 (
I =

 In
te

rp
os

e 
h

ea
d

co
d

e,
 C

 =
 c

a
ll 

st
a

rt
 a

n
d

 e
nd

, F
 =

 N
ot

ic
es

 f
re

ig
h

t)
. 

  



Appendix C Simulation study ethics, NTS and storyboards 

 242 

 

 

St
or

yb
oa

rd
 (

P
14

).
 T

op
 g

ra
p

h
: T

a
sk

 d
em

an
d

 (
T

ot
a

l t
ra

in
s 

in
cl

u
d

in
g

 F
re

ig
h

t)
; E

D
A

 (
µ

Sx
10

0)
; 

an
d

 w
ri

st
 a

cc
el

er
om

et
er

 d
a

ta
. B

ot
to

m
 g

ra
p

h
: I

W
S 

ra
ti

n
g

; a
n

d
 H

R
V

 (
m

s)
. T

a
sk

 
Ev

en
ts

 m
a

rk
ed

 v
er

ti
ca

lly
 (

I =
 In

te
rp

os
e 

h
ea

d
co

d
e,

 C
 =

 c
a

ll 
st

a
rt

 a
n

d
 e

nd
, F

 =
 N

ot
ic

es
 f

re
ig

h
t)

. 

 

  



Appendix C Simulation study ethics, NTS and storyboards 

 243 

 

 

St
or

yb
oa

rd
 (

P
15

).
 T

op
 g

ra
p

h
: T

a
sk

 d
em

an
d

 (
T

ot
a

l t
ra

in
s 

in
cl

u
d

in
g

 F
re

ig
h

t)
; E

D
A

 (
µ

Sx
10

0)
; 

an
d

 w
ri

st
 a

cc
el

er
om

et
er

 d
a

ta
. B

ot
to

m
 g

ra
p

h
: I

W
S 

ra
ti

n
g

; a
n

d
 H

R
V

 (
m

s)
. T

a
sk

 
Ev

en
ts

 m
a

rk
ed

 v
er

ti
ca

lly
 (

I =
 In

te
rp

os
e 

h
ea

d
co

d
e,

 C
 =

 c
a

ll 
st

a
rt

 a
n

d
 e

nd
, F

 =
 N

ot
ic

es
 f

re
ig

h
t)

. 

  



Appendix C Simulation study ethics, NTS and storyboards 

 244 

 

 

St
or

yb
oa

rd
 (

P
16

).
 T

op
 g

ra
p

h
: T

a
sk

 d
em

an
d

 (
T

ot
a

l t
ra

in
s 

in
cl

u
d

in
g

 F
re

ig
h

t)
; E

D
A

 (
µ

Sx
10

0)
; 

an
d

 w
ri

st
 a

cc
el

er
om

et
er

 d
a

ta
. B

ot
to

m
 g

ra
p

h
: I

W
S 

ra
ti

n
g

; a
n

d
 H

R
V

 (
m

s)
. T

a
sk

 
Ev

en
ts

 m
a

rk
ed

 v
er

ti
ca

lly
 (

I =
 In

te
rp

os
e 

h
ea

d
co

d
e,

 C
 =

 c
a

ll 
st

a
rt

 a
n

d
 e

nd
, F

 =
 N

ot
ic

es
 f

re
ig

h
t)

. 

  



Appendix C Simulation study ethics, NTS and storyboards 

 245 

 

 

St
or

yb
oa

rd
 (

P
17

).
 T

op
 g

ra
p

h
: T

a
sk

 d
em

an
d

 (
T

ot
a

l t
ra

in
s 

in
cl

u
d

in
g

 F
re

ig
h

t)
; E

D
A

 (
µ

Sx
10

0)
; 

an
d

 w
ri

st
 a

cc
el

er
om

et
er

 d
a

ta
. B

ot
to

m
 g

ra
p

h
: I

W
S 

ra
ti

n
g

; a
n

d
 H

R
V

 (
m

s)
. T

a
sk

 
Ev

en
ts

 m
a

rk
ed

 v
er

ti
ca

lly
 (

I =
 In

te
rp

os
e 

h
ea

d
co

d
e,

 C
 =

 c
a

ll 
st

a
rt

 a
n

d
 e

nd
, F

 =
 N

ot
ic

es
 f

re
ig

h
t)

. 

  



Appendix C Simulation study ethics, NTS and storyboards 

 246 

 

 

St
or

yb
oa

rd
 (

P
18

).
 T

op
 g

ra
p

h
: T

a
sk

 d
em

an
d

 (
T

ot
a

l t
ra

in
s 

in
cl

u
d

in
g

 F
re

ig
h

t)
; E

D
A

 (
µ

Sx
10

0)
; 

an
d

 w
ri

st
 a

cc
el

er
om

et
er

 d
a

ta
. B

ot
to

m
 g

ra
p

h
: I

W
S 

ra
ti

n
g

; a
n

d
 H

R
V

 (
m

s)
. T

a
sk

 
Ev

en
ts

 m
a

rk
ed

 v
er

ti
ca

lly
 (

I =
 In

te
rp

os
e 

h
ea

d
co

d
e,

 C
 =

 c
a

ll 
st

a
rt

 a
n

d
 e

nd
, F

 =
 N

ot
ic

es
 f

re
ig

h
t)

. 

 

 

  



Appendix C Simulation study ethics, NTS and storyboards 

 247 

 

 

St
or

yb
oa

rd
 (

P
19

).
 T

op
 g

ra
p

h
: T

a
sk

 d
em

an
d

 (
T

ot
a

l t
ra

in
s 

in
cl

u
d

in
g

 F
re

ig
h

t)
; E

D
A

 (
µ

Sx
10

0)
; 

an
d

 w
ri

st
 a

cc
el

er
om

et
er

 d
a

ta
. B

ot
to

m
 g

ra
p

h
: I

W
S 

ra
ti

n
g

; a
n

d
 H

R
V

 (
m

s)
. T

a
sk

 
Ev

en
ts

 m
a

rk
ed

 v
er

ti
ca

lly
 (

I =
 In

te
rp

os
e 

h
ea

d
co

d
e,

 C
 =

 c
a

ll 
st

a
rt

 a
n

d
 e

nd
, F

 =
 N

ot
ic

es
 f

re
ig

h
t)

. 

 

  



Appendix C Simulation study ethics, NTS and storyboards 

 248 

 

 

St
or

yb
oa

rd
 (

P
20

).
 T

op
 g

ra
p

h
: T

a
sk

 d
em

an
d

 (
T

ot
a

l t
ra

in
s 

in
cl

u
d

in
g

 F
re

ig
h

t)
; E

D
A

 (
µ

Sx
10

0)
; 

an
d

 w
ri

st
 a

cc
el

er
om

et
er

 d
a

ta
. B

ot
to

m
 g

ra
p

h
: I

W
S 

ra
ti

n
g

; a
n

d
 H

R
V

 (
m

s)
. T

a
sk

 
Ev

en
ts

 m
a

rk
ed

 v
er

ti
ca

lly
 (

I =
 In

te
rp

os
e 

h
ea

d
co

d
e,

 C
 =

 c
a

ll 
st

a
rt

 a
n

d
 e

nd
, F

 =
 N

ot
ic

es
 f

re
ig

h
t)

. 

 



Appendix D Attitudes study ethics and theories 

 249 

Appendix D. Attitudes study ethics and theories 

 

Ethics for Attitudes Study 

 

  

 

 



Appendix D Attitudes study ethics and theories 

 250 

Mapping theory to topics 

 

KEY:  

G Gribel, Regier and Stengel (2016) 

J  Jacobs et al. (2019) 

P  Parasuraman and Colby (2015) 

U  Urquhart and Craigon (2020) 

V  Venkatesh and Davis (2000) 

W Wolf et al. (2018) 

 

Pre-Interview Questionnaire 
 Topic Question Adapted 

from 

1 Experience of 
signalling 

Date first passed competent as a signaller New item 

Date first passed competent on a VDU workstation 

3 Experience of 
workload 
assessment 

Have you ever taken part in a workload assessment at 
work?  

• You carried out work whilst someone observed for 
a workload assessment 

• You carried out work and rated your workload on a 
scale 1-9 every few minutes 

• You rated workload on 3 scales after you finished 
your tasks 

• You were asked to count the number of items or 
features on a workstation 

• You listed tasks in a typical hour at a new 
workstation, in a workshop 

New item 

2 Personal 
experience of 
wearables 

How often do you collect data from wearables or fitness 
apps? (1 Never, 2 Previously, not now, 3 Sometimes, 4 
Weekly, 5 Daily) Wearables:  

• Step counter 

• Wrist strap fitness/heart tracker 

• Chest strap fitness/heart tracker 

• Smart phone with fitness app 

• Smart watch with fitness app 

G, J, V 
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Interview Question 
 Topic Question Adapted 

From 

1 Experience If you use wearables, what’s your favourite and why?  J, V, G  

2.1 Devices 
Perceived 
Ease of Use 

How distracting could devices be for you during a shift? 
(chest, wrist, app) 

P, G, J, U 

2.2 How comfortable could devices be for you during a 
shift? (chest, wrist, app)  

U, W 

3 Subjective 
Norm/ Image 

What is the likely reaction of colleagues to the use of 
these new measures (chest, wrist, app)? 

U, V  

4 Own 
experiences 
of workload  
 

From your experience on shift give examples of: 

• Anticipating a problem correctly (a ‘gut’ reaction) 

• Time pressure/ stress 

• Unexpected event/ system response not expected  

• Brief workload peak affected you for rest of shift 

• Confidence when successful achieving your tasks 

• Impact of a change of new technology/ procedures 

New item  

Use Cases 
A.  Use Case 

Understand 
Signaller 
Workload 

Assess task – peaks/troughs in workload & overall effort  New item 

Devices Infer – anticipation, alertness, stress, time 
pressure, brief peaks 

New item 

Data – anonymised J, U, W 

When – 1-2 shifts New item 

5.1 Perceived 
Usefulness 

How useful would it be to demonstrate to others how 
hard you work? 

New item 

5.2 Anonymity Acceptable?  J, U, W 

5.3 Job Relevance What’s inferred – which most relevant to assessing task?  V 

5.4 Trust Any concerns about data use?  J, P, G  

5.5 Time Data collection needed vs tolerable: >4 hrs? Continuous 
or every 5 mins (app) 

New item 

B.  Learning Aid  Assess trainee – track progress, self-learning & training 
effectiveness. 

New item 

Infer – alertness, confidence, unexpected events, stress, 
effort 

New item 

Data – You & trainer share. (Device supplier?) J, G, U, W 

When – Before/during/after training to plot progress New item 

6.1 Perceived 
Usefulness 

How useful would it be for you to understand your data 
(e.g. heart)? 

New item 

6.2 Anonymity Acceptable? J, G, U, W 

6.3 Job Relevance What’s inferred – which most relevant to assessing 
trainees? 

New item 

6.4 Trust Any concerns about data use? J, P, G 

6.5 Time Data collection needed vs tolerable: >4 hrs? Continuous 
or every 5 mins (app) 

New item 

C.  Assess 
impact of 
new tech or 
procedures 

Assess change – work support/ effectiveness of change  New item 

Infer – stress, effort, unexpected system responses New item 

Data – Workstation & initials. Managers may know. 
Supplier? Investigator? 

J, G, U, W 

When – Before/during/after change.  New item 

7.1 Perceived 
Usefulness 

How useful would it be to demonstrate to others impact 
of changes on signallers? 

New item 

7.2 Anonymity Acceptable? J, G, U, W 

7.3 Job Relevance What’s inferred – which most relevant to assessing 
impact of change? 

New item  

7.4 Trust Any concerns about data use? J, P, G 

7.5 Time Data collection needed vs tolerable: >4 hrs? Continuous 
or every 5 mins (app) 

New item 

8 Precautionary 
Principle 

Just because we could use these measures, should we? U 
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Post-Interview Questionnaire 

Q Question Adapted 
from 

 Please indicate how much you agree or disagree with the following 
statements. (1 strongly disagree, 2 moderately disagree, 3 somewhat 
disagree, 4 neither disagree nor agree, 5 somewhat agree, 6 moderately 
agree, 7 strongly agree) 

 

1 Measuring individual signaller workload is important in rail V 

2 Measuring my workload is relevant to my job V 

3 Wearing devices wouldn't require a lot of my mental effort V 

4 A lot of my mental effort would be required to interact with the devices V 

5 I would find the devices difficult to use V 

6 During a shift the devices would be distracting G, J, P 
 

7 The devices could be a status symbol in my organisation V 

8 I wouldn't use the devices because I would be concerned about being 
tracked 

W 

9 Assuming I have access to the devices, I intend to use them V 

10 Given that I would have access to the devices, I predict I would use them V 

11 I would not recommend the devices to my colleagues New item 
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Appendix E. Introduction to wearables and app  

Attitudes to Wearables  

in the Workplace 

Introduction to Wearables & App 

This study assesses attitudes to two potential wearable measures and a 
self-report app to detect individual workload and effort over a live shift, 
unobtrusively, and without an observer. 

 

 

 

 

 

Workload Scale App  

• Easy to clean, sits on desk, relies on individual inputs to collect 
data  

• Workload entered every 5 minutes on the mobile device, when 
prompted by a sound 

• Previously used in live signalling operations by giving verbal 
ratings to an observer 

• Also used in simulators by pressing a button on a 1-9 scale 

• Deemed not intrusive to the task (7/8 signallers, 1hr simulator 
trial, NX Panel) 

• Shows reported workload. Ratings missed if prompt not heard or 
concentrating hard 

Wrist Strap with Skin Sensor 

• Easy to clean, fit, adjust to size, and removeable at any time to 
stop data collection 

• Detects Electrodermal Activity (EDA), temperature, and 
movement 

• Predicted 5 hours comfortable wear time (17/20 participants, 1hr 
lab-based trial) 

• Rarely or never distracting (18/20 participants after 1hr lab-
based trial) 

• In a signalling study EDA varied depending on phone call 
content and implications: EDA response was small and recovery 
quick after a call about a speed restriction; Response was large 
and recovery slow when a driver said they had hit something.  

• In train driving EDA inferred alertness, and anticipation of low 
adhesion conditions 

 

Workload 
Scale App 

Wrist Strap 
Skin Sensor 

Chest Strap Heart Monitor 
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Chest Strap with Heart Sensor  

• Easy to clean, fit, adjust to size, and removeable at any time to 
stop data collection 

• Detects electrical heart activity, breathing rate, movement, 
posture and location 

• Predicted 5 hours comfortable wear time (14/19 participants,1hr 
lab-based trial)  

• Rated rarely or never distracting (17/20 participants after 1hr lab-
based trial) 

• High workload is inferred from low Heart Rate Variability (HRV) 
i.e. a steady beat 

• In a train driving study HRV decreased at stops and during 
tunnels 

• Note: Recommended not for use by those with a pacemaker 
(due to Bluetooth) 

Use of Data from Wearables 

• Data use would be limited to what would be necessary to infer 
mental workload  

• Compliant with GPDR and not to be used to identify someone 

• Baseline adjustments allow for factors such as age, gender, hair 
on wrist etc 

Example Uses 

• Air Traffic Control researched unobtrusive monitoring in live 
operations, including how controllers dealt with stress 

• Rugby union monitored movement, distance and impact to 
manage injury risk. Coaches could identify each player’s data  

 

How to Use the Measures 

Workload Scale App 

 
 

The screen starts blank  

After 5 minutes the scale 
appears with a short audible 
alert 

You rate how you feel at the 
time and tap ‘finish rating’ 

The screen returns to blank  

IWS is low priority, so you 
should complete any current 
tasks before responding  
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Wrist Strap with Skin Sensor 

 

 

 

 

 
 

 

 

Chest Strap with Heart Sensor 

 
 
 

 
 
 
 

 

 

 

 

 

 

You wear the skin sensor on your wrist 
(or on the inside of your wrist)  

The light flashes intermittently whilst 
turned on. It makes no sound. 

Data from the device is downloaded to 
a laptop after data collection. 

The chest strap fits around your torso 

(optional shoulder strap). 

Dampening a small area with water 

improves sensor data collection. 

The light flashes intermittently whilst 

turned on. It makes no sound. 

Data from the device is downloaded 

to a laptop after data collection. 
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Appendix F. Attitudes study pre-interview 

questionnaire 
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Appendix F Attitudes study pre-interview questionnaire 

 258 
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Individual Attitude to Change 

 

This survey uses the Innovativeness Scale (Hurt et al., 1977), designed to 

measure individuals’ orientations towards change. 
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Hurt, H. T., Joseph, K., and Cook, C. D. (1977). Scales for the measurement of 

innovativeness. Human Communication Research, 4, 58-65 
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Appendix G. Attitudes study interview questions 

 Topic Interview Question 

1 Experience If you use wearables, what’s your favourite and 

why?  

2.1 Devices 

Perceived Ease of 

Use 

How distracting could devices be for you during a 

shift? (chest, wrist, app) 

2.2 How comfortable could devices be for you during 

a shift? (chest, wrist, app) (NOTE re COVID 19 - 

straps are washable) 

3 Subjective Norm/ 

Image 

What is the likely reaction of colleagues to the use 

of these new measures (chest, wrist, app)? 

4 Own experiences 

of workload  

 

From your experience on shift give examples of: 

• Anticipating a problem correctly (a ‘gut’ 

reaction) 

• Time pressure/ stress 

• Unexpected event/ system response not 

expected  

• Brief workload peak affected you for rest of 

shift 

• Confidence when successful achieving your 

tasks 

• Impact of a change of new technology or 

procedures 
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Use Cases 

D.  Use Case 
Understand Signaller 
Workload 

Assess task – peaks/troughs in workload & overall effort  

Devices Infer – anticipation, alertness, stress, time pressure, 
brief peaks in reaction to unexpected events etc 

Data – anonymised 

When – 1-2 shifts 

5.1 Perceived Usefulness How useful to demonstrate to others how hard you work? 

5.2 Anonymity Acceptable?  

5.3 Job Relevance What’s inferred – which most relevant to assessing task?  

5.4 Trust Any concerns about data use?  

5.5 Time Data collection needed vs tolerable: >4 hrs? Continuous or 
every 5 mins (app) 

E.  Learning Aid  Assess trainee – track progress, self-learning & training 
effectiveness. 

Infer – alertness, confidence, unexpected events, stress, 
effort 

Data – You & trainer share. (Device supplier?) 

When – Before/during/after training.  

6.1 Perceived Usefulness How useful for you to understand your data (e.g. heart)? 

6.2 Anonymity Acceptable? 

6.3 Job Relevance What’s inferred – which most relevant to assessing trainees? 

6.4 Trust Any concerns about data use? 

6.5 Time Data collection needed vs tolerable: >4 hrs? Continuous or 
every 5 mins (app) 

F.  Assess impact of 
new tech or 
procedures 

Assess change – work support/ effectiveness of change  

Infer – stress, effort, unexpected system responses 

Data – Workstation & initials. Managers may know. Supplier? 
Investigator? 

When – Before/during/after change.  

7.1 Perceived Usefulness How useful to demonstrate to others impact of changes? 

7.2 Anonymity Acceptable? 

7.3 Job Relevance What’s inferred – which most relevant to assessing impact of 
change? 

7.4 Trust Any concerns about data use? 

7.5 Time Data collection needed vs tolerable: >4 hrs? Continuous or 
every 5 mins (app) 

 
8 Precautionary Principle Just because we could use these measures, should we? 
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Appendix H. Attitudes study post-interview 

questionnaire 
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