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Abstract

The reliable simulation of flow in fractured porous media is a key aspect in the decision mak-

ing process of stakeholders within politics and the geosciences, for example when assessing

the suitability of burial sites for storage of high–level radioactive waste. This thesis aims

to tackle the challenge that is the accurate simulation of these flows and does so via three

computational developments. That is, suitable models for porous media flow with frac-

tures; obtaining rigorous and reliable estimates of errors generated through these models;

and the accurate simulation of the times–of–flight for particles transported by groundwater

within the porous medium. Firstly, an expansion procedure for fractures in porous media

is developed so that physical fluid laws are still retained when tracking particles across

fracture–bulk interfaces. Moreover, the second contribution of this work is the utilisation

of the dual–weighted–residual method to define suitable elementwise indicators for generic

quantities of interest. The third contribution of this thesis is the attainment of accurate

simulations of travel times for particles in porous media, achieved through linearising the

functional representing the time–of–flight; in practice, numerical examples, including one

inspired by the Sellafield site in Cumbria, UK, validate the performance of the proposed

error estimator, and hence are useful in the safety assessment of storage facilities intended

for radioactive waste.
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Chapter 1

Introduction

1.1 Motivation, objectives, and thesis contributions

Within many geophysical engineering applications, the accurate simulation of fluid flow

within fractured porous media poses significant challenge. For example, in the safe long

term storage of both CO2 [77, 111, 119] and high–level radioactive waste [121], the reliable

simulation of flows within these contexts typically contributes to decision making and risk

assessment. Indeed, in the post–closure safety assessment of burial sites for radioactive

waste, the precise computation of flow paths, and travel time for leaked solutes to reach the

surface, is imperative when assessing the suitability of the sites.

The accurate tracing of streamlines, necessary to track particles in porous media flow, is

a challenge in the presence of fractures. In the event a particle enters a fracture within

the domain, the retainment of physical laws is required for a sensible simulation; especially

within a finite element (FE) setting where the fractures are typically considered as lower

dimensional objects. Such dimensionality assumption is paramount when considering real–

life applications, where typically fractures are intersecting and occupy much of the domain

in great quantities. Indeed, there is an ever growing need for high–fidelity simulations of flow

within porous media, even when not considering fractures in the domain. Such accurate

computations lend well for physical applications in the post–closure safety assessment of

burial sites. Furthermore, the computation of travel times of particles in porous media

flow, representing leaked radioactive solutes, requires extension and utilisation of existing

tools within a FE setting. Having these tools at hand will more easily inform decisions

1
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of key stakeholders, especially in regards to applications such as those involving high–level

radioactive waste.

The objective of this thesis is to present three computational developments that enable more

accurate simulations of flow in fractured porous media. First, a modelling approach will be

presented for flows in fractured and non–fractured porous media. Then, rigorous estimates

of the errors in the obtained numerical approximations are derived and analysed. Lastly,

highly accurate computations of travel times of particles in porous media are obtained.

Porous media flow, within this thesis, will be modelled using Darcy’s equations: a mixed sys-

tem of partial differential equations (PDEs) combining conservation of mass, Darcy’s law,

and boundary conditions. Therefore, the natural choice of numerical approximation will

be a mixed finite element method (MFEM) employing Raviart–Thomas (RT) and Brezzi–

Douglas–Marini (BDM) elements; such methods obtain approximations of the Darcy veloc-

ity and pressure simultaneously. Well–posedness, stability, and convergence are well known

for such a model and are presented within this work for both the continuous and discrete

systems described within. An extension of Darcy’s equations, and their analysis, is also

presented for application to flow in porous media incorporating networks of (possibly) in-

tersecting fractures; pooling together a few models found within the literature, along with

their anaylses, as succinctly as possible.

The first main contribution of this thesis is the development of a finite element interpolant

within fractures, in order to trace streamlines across fracture–bulk interfaces, while retaining

physical laws. We define an interpolant for the velocity within the fracture, which has been

expanded employing the procedure developed by Hægland, et al. [63, 66, 64], in a post–

processed fashion, and show that conservation of mass and Darcy’s law may still be weakly

satisfied when streamline tracing. Since fractures in the domain are of a dimension one

lower than the surrounding bulk material, there is no transversal flow information across

the fracture widths themselves, hence the need for such a procedure.

The second main contribution relates to obtaining estimates in the errors of the computed

numerical approximations. Indeed, in order to obtain accurate simulations of porous me-

dia flow, we present and apply the dual–weighted–residual (DWR) method in the context

of Darcy’s equations for generic quantities of interest. We aim to define elementwise in-

dicators, derived from estimates in the DWR method, to develop and utilise the adaptive

tools required to obtain efficient simulations of flow in porous media. We define element-

wise indicators via integration–by–parts of the DWR estimate, but also present a couple of

alternative decompositions that may be employed instead. Through the use of numerical

examples, we investigate a property known as sharpness for the defined indicators; a prop-
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erty paramount in applications, in order to gauge how reliable the simulations may actually

be. We also test the reliability of the proposed error estimate itself, for quantities of interest

of Darcy’s equations. Our experiments reveal that when the MFEM employs RT elements,

the proposed indicators are not sharp; meanwhile, a BDM implementation remains efficient.

However, in both cases, the proposed DWR error estimate reliably predicts the error in

approximations of linear quantities of interest.

The third main contribution is the attainment of accurate simulations of travel times of

particles in porous media. In particular, the linearisation1 of the functional employed to

compute travel times. A key component in the application of the DWR method, when

travel time is the quantity of interest, is the Gâteaux derivative of this functional. Here,

we derive an exact expression for the derivative, based on employing a backwards–in–time

initial–value–problem (IVP), considered to be dual, or adjoint, to the trajectory of the

leaked solute. In doing so, the adaptive tools defined earlier may be utilised to obtain

accurate simulations of the travel time for flows in porous media. Indeed, we showcase a few

numerical examples in order to judge how reliable the proposed estimate is for the travel

time functional. Of particular note is the final experiment of the thesis, in which real–life

units found at the Sellafield site (located in Cumbria, in the United Kingdom) inspire the

defined domain, in order to assess how well the estimate, through adaptive mesh refinement,

performs in a physically motivated example. We show that it is indeed still the case that

the error estimate performs very well, in this example.

1.2 Related work

Portions of the following literature are from [73], by the same author.

Models for porous media and fractured flow

Groundwater flow, governed by Darcy’s equations, represents a viable simplified model

for the fluid flow [96, 42] and will be exploited within this thesis. It is assumed that

whilst the surrounding rocks may not be saturated while the repository is being built, they

will eventually become saturated in its operational lifetime; thus, it is sufficient that in a

post–closure assessment we can consider saturated conditions, and therefore use the time

independent Darcy’s equations as our model, rather than the usual Richards equations for

capillary flow [43, p. 3]. Of course, within this context and in many others, there are more

sophisticated models, cf. [109, 133, 113, 94, 27, 104, 61, 47, 99, 24] and the references cited

1This contribution, found in Chapter 7 in this thesis, is taken from the published work [73] whose

contribution was obtained during, and for, the study of this PhD.
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therein, where large–scale structures and complex topographical features, such as fracture

networks or vugs and caves, are considered as parts of the domain. The solution–based a

posteriori error estimation for these more sophisticated models may be found in, for example,

the articles [41, 39, 40, 132, 71, 125, 97] and the references cited therein.

In the past few decades, homogenisation methods were used to obtain double continuum, or

dual porosity models, and these were typically used to model the flow in fractured porous

media [10]. However, as concurred by [84, 55], these models have their limitations. For ex-

ample, a dual porosity model is not adequate for disconnected networks of fractures, nor is

it typically good at handling an amount of fractures deemed too small, or too large. In these

cases, it is better to represent the fractures explicitly with discrete–fracture–matrix (DFM)

models instead. The strategy posed within DFM models is to average the governing equa-

tions across the fracture apertures. Assuming they are partially filled with debris, Darcy’s

law and conservation of mass hold also within the fractures; by averaging the equations a re-

duced model is obtained, coupled to the bulk Darcy flow with some interface conditions. In

the earlier work [3], a model was presented assuming that the permeability within a single,

non–immersed, fracture was much higher than in the bulk. This lead to the assumption of

pressure continuity across the fracture. This model was later generalised in [94, 53, 6] to al-

low for the low permeability case, where such interface conditions were derived and pressure

continuity was no longer required. Extensions to two–phase flows were later established in

[59, 78], as well as coupling transport to the fluid flow in [4, 88], and the references therein.

For networks of fractures, which may intersect, and may be fully–immersed, we refer to

[54, 55]. Moreover, the conditions imposed in [55] at the intersection of fractures can be

generalised further, as in [54, 46]. Furthermore, in the case where a network of fractures has

permeability much higher than the surrounding porous rock, flow in the bulk domain can

simply be ignored and only that within the fractures is considered; these models, typically

referred to as discrete–fracture–network (DFN) models can be found in, for example, [58],

and the references therein. However, we proceed with DFM models in mind. We mention

also that models exist for which Darcy’s law does not hold in the fractures, for example in

[57], and that curved fractures may be considered [100, 34].

Utilising any of the above models for flow in fractured and non–fractured porous media relies

on empirical data to generate information concerning the models. Indeed, the coefficients of

material parameters, forcing terms, and the geometries of the domain are assumed known

in applications. In reality, there is uncertainty associated with this information that is

not addressed in a deterministic implementation; uncertainty in the model of course leads

to uncertainty in solutions, streamlines, and quantities involving those solutions. Such
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uncertainty and how to address it is beyond the scope of this thesis. We refer mainly to the

work [43], and the references cited therein; here, uncertainty is addressed and developments

for travel times in a random setting are made.

Darcy approximation and error estimation

Control of the discretisation error generated by the numerical approximation of partial

differential equations (PDEs) has witnessed significant advances due to contributions in a

posteriori error analysis and the use of adaptive mesh refinement techniques. Such algo-

rithms aim to save computational resources by refining only a certain subset of elements,

making up part of the underlying mesh, that contribute most to the error in some sense. In

particular, we refer to the early works [1, 11, 12], and the references cited therein.

The original solution–based a posteriori error analysis for Darcy’s equations, employing

Raviart–Thomas elements, was undertaken by Braess and Verfürth in [28]; we also refer to

[15, 14] which consider augmented, stabilised versions of Darcy’s equations, whose original

L2–bound analysis was given in the article [88]. Moreover, there is a vast literature for the a

posteriori error analysis for Darcy’s equations in a variety of contexts. For example, [23, 107]

presents the analysis for time–dependent Darcy flow; [48] uses the finite volume method for

two–phase Darcy flow; and [13] uses an augmented discontinuous Galerkin method. For

the (residual) norm–based a posteriori error analysis for Darcy’s equations, and mixed

finite element methods in general, we refer to the articles [127, 128] by Vohraĺık, and the

references cited therein. In [126], similar to [36], residual–based a posteriori error bounds

are derived by considering a Helmholtz decomposition in order to overcome the need for a

saturation assumption previously assumed by [28]. Moreover, in [5] an enhanced velocity

mixed finite element method is used instead.

Typically, in applications we are not concerned with pointwise accuracy of the numerical

solution of PDEs themselves, but rather quantities involving the solution (which we will

refer to as being goal quantities, or quantities of interest); in this setting goal–oriented

techniques are employed to bound the error in the given quantity of interest. Work in

this area was first pioneered by [17, 18] and [62], which established the general framework

[106, 114] of the dual, or adjoint, weighted–residual method (DWR). When the quantity

of interest is represented by a nonlinear functional, a linearisation about the numerical

solution is employed in order for the problem to become tractable and computable; hence,

the nonlinear functional must be differentiated. Solving a discrete version of this linearised

adjoint problem allows for an estimate of the discretisation error induced by the quantity

of interest, which may be decomposed further to drive adaptive refinement algorithms.
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Unweighted, residual–based estimates can be derived based on employing certain stability

estimates [50], but this results in meshes independent of the choice of the quantity of interest.

The DWR approach has been applied to a vast number of different applications including the

Poisson problem [17], nonlinear hyperbolic conservation laws [70], fluid–structure interaction

problems [124], application to Boltzmann-type equations [72], as well as criticality problems

in neutron transport applications [67].

An energy norm based approach can also be found in [33], where adaptive mesh refinement is

employed to accurately compute streamlines via a streamfunction approach. More generally,

the goal–oriented error estimation for linear functionals of Darcy’s equations can be found

in [101] which employs equilibrated–flux techniques in order to achieve a guaranteed bound.

Furthermore, [92] extends this work to bound higher–order terms to demonstrate that the a

posteriori bounds are asymptotically exact, as well as taking into account the error induced

by inexact solvers.

For a set of slightly different homogenised problems, [35] presents the goal–oriented error

estimation for general quantities of interest. We also point out the existing literature for

goal–adaptivity in the context of contaminant transport, presented in the articles [20, 87],

but which differs slightly from the work presented here. For the numerical experiments

presented in Section 6.6, for example, following [25], we employ a mixed finite element

method using the Brezzi–Douglas–Marini (BDM) elements. These elements, introduced

originally in [31], define approximation spaces that have H(div)–conformity; continuity of

the normal traces of velocity fields across element interfaces is thus guaranteed, and this is

a characteristic vital for streamline computations. As noted, for example, in [44], there are

problems associated with using the standard, nodal-based elements; most importantly is the

attainment of nonphysical streamlines, as well as there being a lack of mass conservation

at an elemental level. These problems are eradicated when a mixed formulation is used

instead, where the velocity and pressure solutions are computed simultaneously.

Approximation of fractured porous media

The well–posedness of the aforementioned DFM models for flow in fractured porous media

has been fully established. Indeed, the problem in mixed form in the original work [94]

was proved to be well–posed within the same article, and this was partially extended to

cover the case of an immersed fracture in [6]. By partially, we mean that in the latter, the

problem was written in a second–order form, only requiring the pressure as a solution. For

networks of fractures in mixed form, well–posedness was proved in [54], assuming that the

pressure was imposed on part of the fracture boundary. In [55] this proof was extended to



1.2. RELATED WORK 7

cover well–posedness for a network of fractures, fully immersed in the domain.

As described in the unifying work [27], there are a few distinct features that are attractive in

a numerical method, when attempting to approximate the fractured porous media problem;

these features meet the criteria of being both robust and flexible. The attributes such

a numerical method should possess are the following: mass conservation, grid flexibility,

robustness in physically relevant limits, and are provably stable and convergent.

The notion of a mass conservative numerical scheme is paramount when the flow field is

paired with transport. Indeed, transport schemes are typically very sensitive when non–

conservative flow fields are used [89]. The two main methods which can ensure such mass

conservation are finite volume methods (FVM) and mixed finite element methods (MFEM).

Finite volume methods applied to fractured porous media, [6, 29, 83, 84, 117], are partic-

ularly useful in keeping condition numbers low and thereby reduce computational cost; for

example, in [27], hybrid cells for fractures are added between the bulk matrix cells, and the

small cells formed at the fracture intersections are excluded with the use of transformations.

While formally consistent, these methods lack convergence analyses and typically require

the computational grid to conform to the fracture network. However some work, in [122],

has been undertaken to use a FVM with non–matching grids. Moreover, MFEM are great

at imposing mass conservation locally since the flux, i.e., the Darcy velocity, is defined as a

separate variable within the scheme. Moreover, these methods sit nicely within the readily

available tools from functional analysis, which can be utilised to prove convergence and sta-

bility results [25, 30]. Combining the two methods is also an option, as done, for example,

in [102], when considering transport in heterogeneous and fractured porous media; a MFEM

is used for the flow problem, while a node–centered FVM is used for transport.

Furthermore, there is the issue of grid flexibility; indeed, generating a good quality compu-

tational grid for realistic fracture networks is very difficult. In an actual oil reservoir, for

example, several thousands of fractures can be found, which can be fairly close together and

intersecting [55]. There is an obvious need to accommodate networks like these in the choice

of numerical method, for purposes in application. A computational grid which conforms to

the network of fractures is often characterised by elements that are extremely small in size,

and thanks to high aspect ratios and small angles, are often of a poor quality. In [93], it

is suggested to locally modify the positions and geometry of fractures in order to keep an

existing computational grid, and this can be done since the fractures are, in most cases,

affected by some level of uncertainty anyway [21]. However, it is more preferred to avoid

this geometric conformity in the first place. In the extended finite element method (XFEM),

[45, 75, 54, 118], the surroundings of the fracture network are meshed independently from
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the fractures themselves; the grids posed on the fractures are then added after the under-

lying grid, or mesh, is established. Thus, in the XFEM setting, fractures are able to cross

through the domain and cut through elements in the underlying computational mesh. There

are also some methods which allow for a partial nonconformity, in that the fracture network

still aligns with the mesh on the bulk domain, but is in itself meshed independently, see

for example [27, 56, 52]. Using XFEM has its advantages, but the elements that are cut

may become arbitrarily small and special constructions are often required to retain stabil-

ity. One could consider also the embedded finite element method (EFEM) [32, 88], the

embedded DFM (EDFM) [90, 110] and the projection–based EDFM (pEDFM) [135, 80, 88]

as alternative choices. In each of these, fractures are allowed to cut elements arbitrarily.

While EFEM and EDFM can only handle the case of highly permeable fractures, pEDFM

is able to handle low permeabilities as well; this latter method also has the fractures meshed

independently of the underlying bulk grid.

There are still some alternative numerical methods that could be chosen to approximate

flow in fractured porous media. For example in the works [55, 8, 54], the mimetic finite dif-

ference method (MFD) is employed for networks of fractures. MFD is known to be robust,

even with highly distorted computational grids, and is related to the virtual element method

(VEM) [19, 129, 47], which can be regarded as its evolution. These methods are both known

to preserve the quality of the solution for very general grids, employing either polygonal or

polyhedral elements that may be highly anisotropic. Discontinuous Galerkin methods (dG)

have also been utilised for this problem in [47, 7]; while still expecting the computational

grid to conform to fractures, each of these three methods are still very adaptable. Lastly,

we mention the use of mortar methods. Introduced in [22], both non–matching grids and

intersections of fractures can be handled in a very natural way [56, 9, 112]. The work un-

dertaken in [27] sees the development of a MFEM utilising the mortar method framework,

using fluxes as the mortar variable instead of the usual pressure. Moreover, being formu-

lated hierarchically, a unified treatment of the porous rock, fractures, and intersections, in

arbitrary dimensions, is obtained. This method is also robust with respect to the apertures

of the fractures, allowing the limiting case of them vanishing and the fractures collapsing.

There has been some work undertaken regarding the a posteriori error estimation for flows

in fractured porous media. In the articles [39, 40, 71, 125, 98] we see the derivation of

adaptive routines and residual–based estimates for the solutions of the usual DFM models.

In [125], it is the mixed–dimensional framework from [26, 27] that is utilised to derived such

error bounds.
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Streamline tracing and travel time

The time–of–flight for a non–sorbing solute to reach the surface, or boundary, of the domain

is a key quantity when considering the post–closure safety assessment of facilities intended

for use as deep geological storage of high–level radioactive waste [42, 105, 103, 96]. This time

taken is represented, in this work, by the (nonlinear) travel time functional. Previously, work

undertaken in [42] employed goal–oriented a posteriori error estimation for this functional,

relying on a finite–difference approximation of its Gâteaux derivative. Indeed, time–of–flight

calculations typically go hand–in–hand with streamline computations, cf. below.

Numerical streamline tracing within this work can be evaluated exactly under a lowest order

approximation; indeed, following standard techniques outlined in [43, 82]. In the case of

higher–order approximations, streamline computations become non–trivial and other tech-

niques, such as time-stepping methods, must be employed instead. It has been shown how-

ever, that for divergence–free flows, the streamlines may be evaluated via a streamfunction

approach to a high accuracy, for both low and high-order implementations [95, 81]. Outside

of a finite element approximation, methods for streamline tracing are more sought after;

indeed, in the finite volume setting, the velocity inside of grid cells may be unknown and

methods for such tracing must be developed, as in [133, 65]. Moreover, application to fully

unstructured grids may be found in [108] as well as tracing independent of the underlying

mesh in [16] and for irregular geometries in [85], and, of course, the many references found

therein. Lastly, the numerical streamline tracing in three spatial dimensions was pursued in

[91], utilising a finite element method.

For extension of numerical streamline tracing to incorporate fractures in the porous media,

we largely refer to the collection of works in [63] and the references cited therein, in which a

finite volume method is used to obtain the numerical approximations of the fluid flow. More-

over, we also refer to the more recent work by [38] whose streamline approach is based on a

boundary layer method. Furthermore, within, for example, [130, 134, 79, 2] and the many

references stated therein, further developments in streamline tracing for fractured media are

achieved for application to realistic, physical problems, such as water breakthrough, barrier–

fracturing and the effects of number and position of fractures on time–of–flight calculations.

There is also the early work by [76] in which flow at fracture junctions is discussed.
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1.3 Thesis overview

Chapter 2: Preliminaries

Within this chapter, we present some preliminary results relating to traces, function spaces,

and well–posedness of variational, or weak, problems of saddle–point type, in an abstract

setting. These are to be used throughout the thesis.

Chapter 3: Darcy’s equations and discretisation

Within this chapter, the analysis of Darcy’s equations and their numerical approximation

by the MFEM utilising RT and BDM elements can be found. Continuous and discrete well–

posedness, discrete stability, and convergence of approximations are presented and proved,

employing results from Chapter 2.

Chapter 4: Flow in fractured porous media

Similar to Chapter 3, we present here the model and analysis for flow in fractured porous

media, proving the same results in this different setting.

Chapter 5: Streamlines through fracture porous media

Within this chapter, we employ the expansion procedure of one dimensional fractures in or-

der to trace streamlines through them. An interpolant of the velocity field, post–processed

using the existing Darcy velocities in the bulk and on the fractures, is defined in the con-

tinuous and discrete setting so that Darcy’s law and conservation of mass are still weakly

satisfied within the expanded fracture.

Chapter 6: Goal–oriented adaptivity for Darcy’s equations

The dual–weighted–residual (DWR) method is presented within this chapter in an abstract

setting, and is further contextualised in application to Darcy’s equations. The definition of

the elementwise indicators is given, and these are used in numerical experiments whose aim

is to test the sharpness of the defined indicators as well as the reliability of the proposed

error estimate for quantities of interest represented by generic linear functionals.

Chapter 7: The travel time functional

This chapter contains everything related to the travel time functional. We see how stream-

lines are computed in porous media, in the discrete setting (with no fractures) and define the

travel time functional. The main result is presented and proved, deriving an expression for
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the derivative of the travel time functional, which is employed in the DWR method in order

to estimate the error in approximate travel time in a handful of examples. This chapter

concludes with the Sellafield inspired example.

Chapter 8: Conclusions

To conclude this thesis, we summarise the work presented within each of the above chapters

and draw some conclusions based on the insights gained throughout. Some details and

discussion are given in view of possible extensions of this work.



Chapter 2

Preliminaries

Within this chapter, we first discuss the notion of the trace of both scalar and vector–valued

functions and define some function spaces that will be used throughout the thesis. Further-

more, we present an abstract problem of saddle–point type, a form typical of variational, or

weak, formulations of systems of elliptic PDEs; for example Darcy’s equations. We address

well–posedness of this problem and its discrete counterpart, concluding with a statement of

quasi–optimality, a result which can be utilised to prove convergence results for the solutions

and their approximations.

2.1 Traces and function spaces

The start of this chapter aims to establish some useful notation and function spaces that

will be used throughout the rest of this thesis. Firstly, Ω ⊂ Rd, d = 2, 3, will denote an

open and bounded domain with a Lipschitz, or polygonal, boundary ∂Ω. We will fix the

spatial dimension d = 2 later. Furthermore, the space of square–integrable functions on Ω

is denoted, as usual, by L2(Ω); the usual notation Hm(Ω) for the associated Sobolev spaces,

with m ≥ 0 an integer, will be used. The analogous vector–valued spaces in Rd will be

denoted here by [L2(Ω)]d and [Hm(Ω)]d, respectively.

A concept most vital in both functional analysis and in numerical approximation schemes

such as the finite element method, is the notion of the restriction, or trace, of a function at

the boundary of the domain. Indeed, although continuous functions are well–defined here,

the same may not be said for functions in Sobolev spaces. However, it is well known in

functional analysis that this notion of trace can be extended to less regular functions, in

12



2.1. TRACES AND FUNCTION SPACES 13

particular those in H1(Ω); if the boundary of the domain is deemed smooth enough, for

example being Lipschitz continuous, then we may define

v|∂Ω := T [v],

where T : H1(Ω) → L2(∂Ω) is the so–called trace–operator. This operator extends the

notion of trace such that for v ∈ C0(Ω), the trace T [v] coincides with its actual, well–defined,

restriction to the boundary. Moreover, the span of all the traces of H1(Ω) functions is a

proper dense subspace of L2(∂Ω), usually denoted as the fractional Sobolev space H
1
2 (∂Ω);

the (algebraic) dual of this space is represented by the notation H−
1
2 (∂Ω).

A common occurrence in, for example, solving Poisson’s equation [86, p. 72], is a function

space defined according to this trace operator, and is given below as Definition 2.1.

Definition 2.1. H1
0 (Ω) := {v ∈ H1(Ω) : v|∂Ω = 0}.

Vector–valued functions play a key role within this work. In particular, we are interested

in those square–integrable functions whose divergence is also square–integrable; these are

defined in Definition 2.2 below.

Definition 2.2. H(div,Ω) := {v ∈ [L2(Ω)]d : ∇ · v ∈ L2(Ω)}.

This Hilbert space is equipped with the norm

‖v‖2H(div,Ω) := ‖v‖2[L2(Ω)]d + ‖∇ · v‖2L2(Ω).

Moreover, the normal–trace of a function in H(div,Ω) is especially important and not im-

mediately defined. That is, if n = n(x) denotes the unit outward normal to the boundary

∂Ω, the quantity (v · n)|∂Ω may not be well–defined. The technical details will be omitted,

but [25, p. 49] ensures that it is possible to define this normal-trace in the space H−
1
2 (∂Ω);

i.e., the normal–trace is well–defined as an action, or functional, acting on H
1
2 (∂Ω). This

idea is realised in the following Green’s formula1. Denoting 〈·, ·〉∂Ω as the duality pairing

between H−
1
2 (∂Ω) and H

1
2 (∂Ω), we thus have Proposition 2.3 below.

Proposition 2.3. For v ∈ H(div,Ω) we have

〈v · n, ψ〉∂Ω =

∫
Ω

ψ∇ · v +

∫
Ω

v · ∇ψ,

for all ψ ∈ H1(Ω).

Employing Proposition 2.3, one can show that the trace operator

T d : v ∈ H(div,Ω)→ (v · n)|∂Ω ∈ H−
1
2 (∂Ω)

1Commonly referred to as a form of integration–by–parts.
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is surjective. This notion of trace allows for the definition of essential function spaces, whose

use will become apparent when Darcy’s equations are discussed in Chapter 3. To this end,

suppose the boundary ∂Ω is partitioned into so–called Dirichlet and Neumann parts, i.e.

∂Ω = ∂ΩD ∪ ∂ΩN such that their intersection is empty. We may now define the following

function spaces.

Definition 2.4. H1
0,D(Ω) := {v ∈ H1(Ω) : v|∂ΩD = 0}.

Definition 2.5. H0,N (div,Ω) := {v ∈ H(div,Ω) : 〈v · n, ψ〉∂Ω = 0, ∀ψ ∈ H1
0,D(Ω)}.

Essentially, the space H0,N (div,Ω) has those functions in H(div,Ω) whose normal–trace

vanishes on ∂ΩN . However, according to [25, p. 50], pathological properties of the spaces

H
1
2 (∂ΩD) and H−

1
2 (∂ΩN ) disallows such a simple definition; however, remaining mathe-

matically rigorous, Definition 2.5 will do and practically means the same thing.

With, momentarily, d = 2, it will be useful at this point to mention how the space

H0,N (div,Ω) interacts with respect to meshes, triangulations, or general partitions of the

domain Ω; this behaviour will ultimately point to the most suitable choice of approximation

spaces for the finite element implementation discussed in Section 3.3 for Darcy’s equations.

Paramount to the definitions of these approximation spaces is that if Th is a partition2

of Ω into non–overlapping elements κ then functions in H0,N (div,Ω) can be discontinuous

across element interfaces, but their normal–traces across the interfaces are always weakly

continuous. This is demonstrated in Proposition 2.6.

Proposition 2.6. Define the broken Sobolev space

Y (Ω) := {v ∈ [L2(Ω)]2 : v|κ ∈ H(div, κ), ∀κ ∈ Th} ≡
∏
κ∈Th

H(div, κ).

Then,

H0,N (div,Ω) = {v ∈ Y (Ω) :
∑
κ∈Th

〈v · nκ, ψ〉∂κ = 0, ∀ψ ∈ H1
0,D(Ω)},

where nκ is the unit outward normal vector on the element boundary ∂κ.

Proof. See [43, pp. 30–31], for example.

2.2 Variational formulation and uniqueness of solution

With the notation and ideas described in Section 2.1 we can now proceed onto discussing

the PDE problems of interest, which in the finite element method framework are usually

transformed into a variational formulation first. For the sake of presentation, we will first

2These partitions will always be shape–regular triangulations in this thesis.



2.2. VARIATIONAL FORMULATION AND UNIQUENESS OF SOLUTION 15

consider a class of abstract variational problems known as being of saddle–point type. The

uniqueness and existence of solutions to such problems will be covered in a general manner,

which will then be applied directly to Darcy’s equations in Section 3.

To this end, let V and Q be Hilbert spaces equipped with the norms ‖ · ‖V and ‖ · ‖Q,

respectively. Denote their dual spaces by V ∗ and Q∗, respectively as well. Given the

continuous bilinear forms a(·, ·) : V × V → R and b(·, ·) : V × Q → R, and the continuous

linear functionals G ∈ V ∗ and F ∈ Q∗, the abstract saddle–point problem is to:

Find (u, p) ∈ V ×Q such that

a(u, v) + b(v, p) = 〈G, v〉V ∗,V ∀v ∈ V, (2.1)

b(u, q) = 〈F, q〉Q∗,Q ∀q ∈ Q. (2.2)

We denote the continuity constants for a(·, ·) and b(·, ·) by ‖a‖ and ‖b‖, respectively, i.e.,

we have

|a(v, w)| ≤ ‖a‖‖v‖V ‖w‖V ∀(v, w) ∈ V × V,

|b(v, q)| ≤ ‖b‖‖v‖V ‖q‖Q ∀(v, q) ∈ V ×Q.

Moreover, the unique solvability of the saddle-point problem (2.1, 2.2) is given by Theorem

2.7; we omit the proof, which can be found in most textbooks on the topic, for example in

[25, p. 223].

Theorem 2.7. Under the foregoing notation, let 〈·, ·〉Q∗,Q denote the duality pairing between

Q∗ and Q. Associate to the bilinear form b(·, ·) the continuous linear operator B : V → Q∗

defined to be such that

〈Bv, q〉Q∗,Q = b(v, q) ∀v ∈ V ∀q ∈ Q.

Then, if the following two conditions are each satisfied, the saddle–point problem (2.1, 2.2)

has a unique solution (u, p) ∈ V ×Q.

• The image, or range, of B is equal to Q∗, i.e. B is surjective.

• The bilinear form a(·, ·) is coercive on the kernel of B, i.e. there is a constant α > 0

such that

a(v, v) ≥ α‖v‖2V ∀v ∈ Ker(B). (2.3)

The first condition in Theorem 2.7 is equivalent to the well–known inf–sup condition on

the bilinear form b(·, ·), commonly referred to as the Banach–Nécas–Babŭska compatibility

condition, which says that

inf
q∈Q

sup
v∈V

b(v, q)

‖v‖V ‖q‖Q
=: β > 0.
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It should be noted also, that Theorem 2.7 provides sufficient, but not necessary, conditions

for the uniqueness and existence of a solution to (2.1, 2.2). The surjectivity of B is necessary,

but the coercivity of a(·, ·) on the kernel of B is actually too strong; an inf–sup statement on

the bilinear form a(·, ·) provides the necessary condition for well–posedness of this saddle–

point problem, [25, p. 226], however, in our application within this thesis, the condition

(2.3) is good enough. It is the continuity of the bilinear forms and the linear functionals,

which we assume to be true, along with the conditions stated in Theorem 2.7 which imply

the well–posedness of the problem.

2.3 Discrete well–posedness and approximation

Suppose Vh ⊂ V and Qh ⊂ Q are finite–dimensional subspaces in which approximations

of (u, p), solving (2.1, 2.2), are sought. For example, a mixed finite element method; these

methods are simply the Galerkin method, which defines the following discrete problem:

Find (uh, ph) ∈ Vh ×Qh such that

a(uh, vh) + b(vh, ph) = 〈G, vh〉V ∗,V ∀vh ∈ Vh, (2.4)

b(uh, qh) = 〈F, qh〉Q∗,Q ∀qh ∈ Qh. (2.5)

Applying Theorem 2.7 to the problem (2.4, 2.5) of course requires a discrete notion of the

associated operator B, which we will denote with Bh.

Following the theory outlined in [25, Chapter 5]. The discrete operator Bh will be the

restriction BVh,Q∗h
, i.e., B : Vh → Q∗h; the adjoint operator B∗h will be the restriction

B∗Qh,V ∗h
. Each of these operators are defined as the following compositions

Bh := πQ∗hBEVh ,

B∗h := πV ∗hBEQh ,

where EVh is the extension operator from Vh to V , and πQ∗h is the projection operator from

Q∗ to Q∗h.

Written explicitly, Theorem 2.7 becomes, for the discrete problem (2.4, 2.5), the satisfaction

of the two following properties.

• The image of Bh is equal to Q∗h.

• The bilinear form a(·, ·) is coercive on

Ker(Bh) := {vh ∈ Vh : b(vh, qh) = 0, ∀qh ∈ Qh},
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i.e. there is a constant αh > 0 such that

a(vh, vh) ≥ αh‖vh‖2V ∀vh ∈ Ker(Bh).

As usual, the first property is equivalent to the discrete inf–sup condition

inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)

‖vh‖V ‖qh‖Q
=: βh > 0, (2.6)

However, it is not clear from (2.6) being satisfied whether or not the constant βh depends on

h, which may, for example, represent the mesh size parameter in a finite element setting. To

be more careful, we say that the discrete inf–sup condition is satisfied if we have (2.6) and

the constant is bounded below by some β∗ > 0 as h→ 0, although this detail is not required

to establish well–posedness. Indeed, it is in convergence analysis that this plays a role, and

while we may still be able to obtain convergence estimates in the case that βh depends on

h, these will not be optimal [25, p. 268]; the same is true of the coercivity constant αh, so

it is useful to think of a different constant Ca such that αh ≥ Ca > 0, independent of h,

when considering the discrete setting. A sufficient condition for the existence of Ca is the

inclusion of kernels Ker(Bh) ⊂ Ker(B) since here we have αh = α =: Ca.

Indeed, we can view Theorem 2.7 as a fairly general version of (discrete) well–posedness ne-

glecting the possible h–dependence of the coercivity and inf–sup constants discussed above.

However, the situation βh → 0 may come to mind if left unaddressed. We refer the reader

to the discussion in [25, pp. 301–302] for more details. To rid this dependence on h of

the discrete inf–sup constant βh, [25, pp. 303–305] has some additional considerations. For

example, the existence of operators Πh : V → Vh such that there exist a constant CΠ > 0

such that

‖Πhv‖V ≤ CΠ‖v‖V ∀v ∈ V

gives the discrete inf–sup constant βh = β/CΠ, independent of h and where β is an inf–

sup constant for the continuous problem. These extra intricacies are taken into account in

Section 3.4 when discussing the well–posedness and convergence for the mixed finite element

approximation of Darcy’s equations.

We note that within this setting, conformity (i.e. Vh ⊂ V and Qh ⊂ Q) transfers the

continuity of the bilinear forms a(·, ·) and b(·, ·) directly from their continuous spaces to the

discrete ones, with the same continuity constants ‖a‖ and ‖b‖, respectively.

Furthermore, this discussion ultimately leads to the following quasi–optimality result, which

may be regarded as an extension of the well–known Céa’s lemma for mixed systems giving

rise to this form of saddle–point problem.
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Theorem 2.8. Let (u, p) ∈ V ×Q be the solution of the problem (2.1, 2.2), and (uh, ph) ∈

Vh × Qh be the solution of the discrete problem (2.4, 2.5); assume each of these problems

are well–posed according to Theorem 2.7. Letting β∗ be an inf–sup constant for the discrete

pair (Vh, Qh) and Ca the coercivity constant for a(·, ·) on Ker(Bh), one has the following

estimate, with a constant C depending on ‖a‖, ‖b‖, β∗, and Ca, but independent of h:

‖u− uh‖V + ‖p− ph‖Q ≤ C
(

inf
vh∈Vh

‖u− vh‖V + inf
qh∈Qh

‖p− qh‖Q
)
.

Moreover, when we have the inclusion of the kernels Ker(Bh) ⊂ Ker(B), we have

‖u− uh‖V ≤ C inf
vh∈Vh

‖u− vh‖V .

Proof. See [25, Theorem 5.2.5], for example.

Theorem 2.8 indeed states that if both the continuous and discrete problems are well–posed,

with the discrete constants independent of h, then we have an almost best approximation

result in the form of a mixed, quasi-optimality estimate. Within the contexts of the cho-

sen function spaces and their discrete counter parts (e.g., finite element approximations),

interpolation estimates alongside this theorem give rise to a priori error estimates for the

given problem; these estimates give insight into the expected rate of convergence, under, for

example, uniform mesh refinement, of the approximate solutions obtained through solving

the discrete problem.



Chapter 3

Darcy’s equations and

discretisation

Within this chapter, Darcy’s equations and their approximation via a mixed finite element

method will be presented. Well–posedness results in both the continuous and discrete set-

tings will be given, in particular for both choices of arbitrary order Raviart–Thomas (RT)

and Brezzi–Douglas–Marini (BDM) approximation spaces. Convergence of the discrete so-

lutions will be addressed, combining interpolation results with the quasi–optimality result

given previously in Theorem 2.8.

3.1 The governing equations

We denote, as standard in this thesis, Ω ⊂ Rd (d = 2, 3) as an open and bounded domain

with Lipschitz, or polygonal, boundary ∂Ω. We assume the boundary is partitioned as

∂Ω = ∂ΩD ∪ ∂ΩN . Darcy’s equations are used to model the flow of saturated groundwater

and are given by the following system of first–order PDEs, where we aim to seek the Darcy

velocity u : Ω→ Rd and the hydraulic head, or pressure, p : Ω→ R such that:

K−1u +∇p = 0 in Ω, (3.1)

∇ · u = f in Ω, (3.2)

p = gD on ∂ΩD, (3.3)

u · n = 0 on ∂ΩN . (3.4)

19
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The equation (3.1) is referred to as Darcy’s law, while (3.2) is the equation for conservation

of mass1.

We briefly discuss the other terms appearing in (3.1) – (3.4). We denote with n = n(x)

the unit outward normal vector to ∂Ω. The matrix K = K(x) ∈ Rd×d is the hydraulic

conductivity of the domain, representing (indeed, depending on) the permeability of the

porous material making up the domain2. We assume that K satisfies the following property:

the smallest eigenvalue of K is bounded uniformly away from zero, and the largest eigenvalue

is uniformly bounded, both with respect to x; i.e. there exist λ− > 0 and λ+ ≥ λ− such that

λ−|z|2 ≤ z>Kz ≤ λ+|z|2 ∀x ∈ Ω ∀z ∈ Rd. (3.5)

In particular, (3.5) implies that K is invertible.

Lastly, the problem data satisfies f ∈ L2(Ω) and gD ∈ H
1
2 (∂ΩD); f representing any sources

or sinks in the domain, and gD being the Dirichlet boundary condition for the pressure.

Recall from Section 2.1 the following function spaces.

H(div,Ω) := {v ∈ [L2(Ω)]d : ∇ · v ∈ L2(Ω)},

H1
0,D(Ω) := {ψ ∈ H1(Ω) : ψ|∂ΩD = 0},

H0,N (div,Ω) := {v ∈ H(div,Ω) : 〈v · n, ψ〉∂Ω = 0 ∀ψ ∈ H1
0,D(Ω)}.

For ease of notation we set, moving forward, V = H0,N (div,Ω) and Q = L2(Ω). To arrive

at a weak, or variational formulation of Darcy’s equations, we begin by multiplying (3.1) by

a test function v ∈ H0,N (div,Ω) and (3.2) by a test function q ∈ L2(Ω) and integrate each

over Ω; next, we apply Proposition 2.3 to the former equation, arriving at a form fitting the

abstract saddle–point type problem (2.1, 2.2). To this end, define the bilinear forms

a(v,w) :=

∫
Ω

K−1v ·w, b(v, q) := −
∫

Ω

q∇ · v, (3.6)

and the linear functionals

G(v) := −〈v · n, gD〉∂Ω, F (q) := −
∫

Ω

fq. (3.7)

With these, the continuous problem is to:

Find (u, p) ∈ V ×Q such that

a(u,v) + b(v, p) = G(v) ≡ 〈G,v〉V∗,V ∀v ∈ V, (3.8)

b(u, q) = F (q) ≡ 〈F, q〉Q∗,Q ∀q ∈ Q. (3.9)
1The homogeneous boundary condition u · n = 0 may be replaced by an inhomogeneous condition with

little extra work regarding the well–posedness of the system, see, for example [25, p. 404].
2The hydraulic conductivity is given by K := (ρg/µ)k, where ρ is density of water, g is acceleration due

to gravity, and µ is the kinematic velocity of water.
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3.2 Well–posedness of the continuous problem

We notice, in this setting, that the induced operator B, appearing in Theorem 2.7 is nothing

more than the (weak) divergence operator3 from H0,N (div,Ω) onto L2(Ω) (identifying Q∗

with Q, in this case), which we will show to be surjective. Furthermore, we will verify that

the bilinear form a(·, ·) is coercive on the kernel of B and thus, according to Theorem 2.7,

a unique solution (u, p) to Darcy’s equations indeed exists; see also [43, pp. 25–29] or [25,

pp. 401–405], for example, for similar details and proofs.

The unique solvability of (3.8, 3.9) is given thanks to the following three lemmas.

Lemma 3.1. Under the foregoing notation, the bilinear forms a(·, ·) and b(·, ·) are contin-

uous on V ×V and V ×Q, respectively.

Proof. We start with b(·, ·). Let v ∈ V and q ∈ Q. Then,

|b(v, q)| =

∣∣∣∣∣
∫

Ω

q∇ · v

∣∣∣∣∣ ≤ ||q||L2(Ω)||∇ · v||L2(Ω) ≤ ||q||L2(Ω)||v||H(div,Ω),

where the first inequality follows by the Cauchy–Schwarz inequality (C.S.) and the second

by definition of the H(div,Ω) norm. Thus, b(·, ·) is continuous with constant ‖b‖ = 1.

We now proceed with a(·, ·). Let v,w ∈ V. Then,

|a(v,w)| =

∣∣∣∣∣
∫

Ω

K−1v ·w

∣∣∣∣∣ ≤ ||K−1v||[L2(Ω)]d ||w||[L2(Ω)]d ,

again, using C.S. Setting z = K−1v in (3.5) we see that

λ−|K−1v|2 ≤ (K−1v)TK(K−1v) = (K−1v)Tv = K−1v · v.

Therefore,

||K−1v||2[L2(Ω)]d =

∫
Ω

|K−1v|2 ≤ 1

λ−

∫
Ω

K−1v · v ≤ 1

λ−
||K−1v||[L2(Ω)]d ||v||[L2(Ω)]d ,

where the last inequality follows again by C.S; this then tells us that

||K−1v||[L2(Ω)]d ≤
1

λ−
||v||[L2(Ω)]d .

Lastly, we acquire

|a(v,w)| ≤ ||K−1v||[L2(Ω)]d ||w||[L2(Ω)]d

≤ 1

λ−
||v||[L2(Ω)]d ||w||[L2(Ω)]d

≤ 1

λ−
||v||H(div,Ω)||w||H(div,Ω),

showing that a(·, ·) is continuous with constant ‖a‖ = 1/λ−.
3In particular, Bv = −div v; the notation ∇·v will also be used throughout, interchangeably, to denote

divergence.
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Lemma 3.2. Under the foregoing notation, the bilinear form a(·, ·) is coercive on

Ker(B) = {w ∈ V : b(w, q) = 0 ∀q ∈ Q}.

Proof. The condition (3.5) is equivalent to

1

λ+
|z|2 ≤ zTK−1z ≤ 1

λ−
|z|2 ∀x ∈ Ω ∀z ∈ Rd. (3.10)

Let v ∈ Ker(B). Then, (3.10) with z = v tells us that

a(v,v) =

∫
Ω

K−1v · v =

∫
Ω

vTK−1v ≥ 1

λ+

∫
Ω

|v|2 =
1

λ+
||v||2[L2(Ω)]d .

Furthermore, since v ∈ Ker(B) then ||∇ · v||2L2(Ω) = −b(v,∇ · v) = 0, so that

a(v,v) ≥ 1

λ+
||v||2[L2(Ω)]d =

1

λ+

(
||v||2[L2(Ω)]d + ||∇ · v||2L2(Ω)

)
=

1

λ+
||v||2H(div,Ω).

Thus, a(·, ·) is coercive on Ker(B) with constant α = 1/λ+.

Lemma 3.3. Under the foregoing notation, the divergence operator

B : V→ Q, v 7→ −∇ · v,

is surjective.

Proof. Let q ∈ Q = L2(Ω). The Lax–Milgram Theorem, or Lemma, guarantees the unique

existence of a Φ ∈ H1(Ω) satisfying the well–known Poisson–type problem

−∆Φ = q ∀x ∈ Ω,

Φ = 0 ∀x ∈ ∂ΩD,

∇Φ · n = 0 ∀x ∈ ∂ΩN .

Consider v := ∇Φ. Then, (v ·n)|∂ΩN = (∇Φ ·n)|∂ΩN = 0 and −∇ · v = −∆Φ = q ∈ L2(Ω);

therefore, v ∈ H0,N (div,Ω). Thus, for q ∈ Q there is a v ∈ V = H0,N (div,Ω) such that

Bv = q, i.e., B is surjective.

To conclude this section we collect these results into the following theorem for well–posedness

of Darcy’s equations.

Theorem 3.4. Under the foregoing notation, the saddle–point problem (3.8, 3.9) has a

unique solution (u, p) ∈ V ×Q.

Proof. The continuity of the linear functionals F and G, defined by (3.7) is trivial, and is

obtained by applying C.S. and trace inequalities. Moreover, the bilinear forms a(·, ·) and
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b(·, ·) are continuous according to Lemma 3.1 on their respective spaces. The coercivity of

a(·, ·) on Ker(B) is given by Lemma 3.2, and this, in conjunction with the surjectivity4 of

B, given by Lemma 3.3, satisfy the criteria of Theorem 2.7, guaranteeing the existence and

uniqueness of a solution to (3.8, 3.9).

3.3 Mixed finite element approximations

3.3.1 Polynomial spaces

Within this section we set d = 2 and only consider two–dimensional approximations to the

solutions of our governing equations. Within the work of this thesis, just one main type

of numerical approximation for the pressure p is considered, while we look at two different

types of approximation for the Darcy velocity u. These approximations are chosen with well–

posedness and stability of solution in mind, ultimately leading to a convergence result at the

end of this chapter. The numerical approximation of choice is that of finite element type;

here, we work on triangular meshes of the domain only, employing a mixed finite element

method in order to solve for the discrete pressure and Darcy velocity simultaneously, in

order to preserve local mass conservation properties.

Carrying forward the notations established so far in this chapter, in order for us to build

the necessary finite dimensional subspaces Vh ⊂ V and Qh ⊂ Q (with V = H0,N (div,Ω)

and Q = L2(Ω)) we firstly consider the local approximation spaces on triangular elements.

To this end, suppose we have a shape–regular triangulation Th of Ω and a single triangular

element κ ∈ Th. For i = 1, 2, 3, denote by Ei the three edges of the triangle κ and consider

the following function spaces given by Definitions 3.5, 3.6, and 3.7.

Definition 3.5. For k ≥ 0 an integer, define

Rk(∂κ) := {φ ∈ L2(κ) : φ|Ei ∈ Pk(Ei) ∀i = 1, 2, 3},

where Pk denotes the usual space of polynomials of degree at most k.

Definition 3.6. For k ≥ 1 an integer, define

BDMk(κ) := {vh ∈ [Pk(κ)]2 : vh · nκ ∈ Rk(∂κ)},

where nκ is the unit outward normal vector to ∂κ. Moreover, the dimension of this space is

given by dim(BDMk(κ)) = (k + 1)(k + 2).

Definition 3.7. For k ≥ 0 an integer, define

RTk(κ) := {vh ∈ ([Pk(κ)]2 + xPk(κ)) : vh · nκ ∈ Rk(∂κ)},
4We note that the continuity of B is automatically guaranteed since b(·, ·) is continuous.
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where nκ is the unit outward normal vector to ∂κ. Moreover, the dimension of this space is

given by dim(RTk(κ)) = (k + 1)(k + 3).

Definition 3.6 describes the Brezzi–Douglas–Marini element (BDM), first introduced in [31],

while Definition 3.7 is the Raviart–Thomas element (RT) [115]. The RT and BDM elements

are related by the following sequence of inclusions:

RT0(κ) ⊂ BDM1(κ) ⊂ RT1(κ) ⊂ . . . BDMk(κ) ⊂ RTk(κ) ⊂ BDMk+1(κ) ⊂ . . .

3.3.2 Degrees of freedom

Thanks to Proposition 2.6, we know that in order to construct finite–dimensional spaces

Vh, defined on Th, that are globally H(div,Ω)–conforming, we need only guarantee that

functions vh ∈ Vh are in the local spaces H(div, κ) and that their normal–traces are con-

tinuous across all element interfaces in the triangulation. The former condition is clearly

satisfied in either the BDM or RT setting. In light of the latter, suitable degrees of freedom

must be defined for the spaces BDMk(κ) and RTk(κ); in the following, Propositions 3.9

and 3.10 help to ensure that such construction of suitable degrees of freedom is possible5.

First, however, it will be useful to define the following family of polynomial spaces, referred

to often as the first–kind Nédélec family [51, p. 176].

Definition 3.8. For k ≥ 0 an integer, let Phk denote the space of homogeneous polynomials

of degree k. Then, define

Nk(κ) := [Pk(κ)]2 ⊕ [Sk+1(κ)]2,

with

[Sk+1(κ)]2 := {q ∈ [P(κ)hk+1]2 : q(x) · x = 0}.

Proposition 3.9. For k ≥ 1 an integer, and for any vh ∈ BDMk(κ), the following relations

together imply vh = 0: 
∫
∂κ

(vh · nκ)pk = 0 ∀pk ∈ Rk(∂κ),∫
κ

vh ·wk−2 = 0 ∀wk−2 ∈ Nk−2(κ).

Proposition 3.10. For k ≥ 0 an integer, and for any vh ∈ RTk(κ), the following relations

together imply vh = 0: 
∫
∂κ

(vh · nκ)pk = 0 ∀pk ∈ Rk(∂κ),∫
κ

vh · pk−1 = 0 ∀pk−1 ∈ [Pk−1(κ)]2.

5These propositions describe the unisolvency property for the defined degrees of freedom. Moreover, [25,

p. 86] confirms that these sets are each linearly independent and therefore may be used to define the BDMk

and RTk finite elements.
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The expressions for the degrees of freedom are defined explicitly by choosing particular

bases6 for the spaces Rk(∂κ), Nk−2(κ), and [Pk−1(κ)]2. To this end, fixing k, we let {φ(j)
i }

nj
i=1

be a basis for Pk(Ej), j = 1, 2, 3, {ψi}nnedi=1 a basis for Nk−2(κ), and {qi}
np
i=1 a basis for

[Pk−1(κ)]2. The values of nj , nned, and np correspond to the dimensions of their respective

spaces. With these bases in place, the degrees of freedom for the spaces BDMk(κ) and

RTk(κ) are defined below, respectively.

Definition 3.11. For k ≥ 1 an integer, we denote by ΣkBDM the collection of the following

linear functionals acting on BDMk(κ):

σ
Ej
i (vh) =

∫
Ej

(vh · nEj )φ
(j)
i ∀i = 1, . . . , nj , ∀j = 1, 2, 3,

σnedi (vh) =

∫
κ

vh ·ψi ∀i = 1, . . . , nned (k ≥ 2).

Definition 3.12. For k ≥ 0 an integer, we denote by ΣkRT the collection of the following

linear functionals acting on RTk(κ):

σ
Ej
i (vh) =

∫
Ej

(vh · nEj )φ
(j)
i ∀i = 1, . . . , nj , ∀j = 1, 2, 3,

σpi (vh) =

∫
κ

vh · qi, ∀i = 1, . . . , np (k ≥ 1).

These degrees of freedom ensure that the continuity of normal–trace at element interfaces

is enforced and thus will give rise (in Section 3.3.4) to approximation spaces Vh ⊂ V =

H0,N (div,Ω). We refer the interested reader to [25, pp. 84–91] for more details.

3.3.3 Local interpolation operators

With the degrees of freedom previously described, the next logical step is to define a local

interpolation operator

ρκ : H(div, κ)→Mk(κ),

where Mk(κ) denotes either BDMk(κ) or RTk(κ). Such construction is unfortunately not

possible due to the computation of quantities such as
∫
∂κ

(v · nκ)pk for v ∈ H(div, κ) and

pk ∈ Rk(∂κ); this expression only makes sense if pk ∈ H
1
2 (∂κ) as the normal–trace of

v is defined only in H−
1
2 (∂κ). In general, such an assumption is not true for functions

pk ∈ Rk(∂κ). However, if v is assumed slightly smoother, namely belonging in the space

W (κ) := H(div, κ) ∩ [Ls(κ)]2, (3.11)

6Often, the basis for Rk(∂κ) is selected so that the degrees of freedoms correspond to the average normal–

trace over element edges (weighted by a polynomial); cf. [51, p. 164].
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for some fixed s > 2, then the construction of an interpolation operator

ρκ : W (κ)→Mk(κ)

is indeed possible [25, p. 103], and shown below for both BDMk(κ) and RTk(κ), respectively.

Definition 3.13. The local interpolation operator ρκ : W (κ)→ BDMk(κ) is defined to be

such that, for v ∈W (κ),
∫
∂κ

(v − ρκv) · nκpk = 0 ∀pk ∈ Rk(∂κ),∫
κ
(v − ρκv) ·wk−2 = 0 ∀wk−2 ∈ Nk−2(κ), (k ≥ 2).

The interpolation operator for BDMk(κ) may also be built piece–by–piece using Whitney,

edge, and bubble interpolants, as in [120, Section 3.1.3]. We refer also to [51, Chapter 16]

for other constructions of both the BDM and RT interpolation operators.

Definition 3.14. The local interpolation operator ρκ : W (κ) → RTk(κ) is defined to be

such that, for v ∈W (κ),
∫
∂κ

(v − ρκv) · nκpk = 0 ∀pk ∈ Rk(∂κ),∫
κ
(v − ρκv) · pk−1 = 0 ∀pk−1 ∈ [Pk−1(κ)]2, (k ≥ 1).

Error estimates for these local element–wise interpolation operators can be found in [25, p.

107]; for the divergence ∇ · (v − ρκv), there is also the error estimate [25, p. 108].

Of most importance are the spaces which consist of the divergences of functions fromMk(κ).

We simply have, according to [25, p. 107] that

div(BDMk(κ)) = Pk−1(κ),

div(RTk(κ)) = Pk(κ).

For convenience, denote these spaces by Dk(κ) ≡ div(Mk(κ)). Consequently, if we denote

by πk the L2(κ)–projection onto Dk(κ), we have the following commuting properties.

W (κ)→div L2(κ)→πk Dk(κ),

W (κ)→ρκ Mk(κ)→div Dk(κ).

Having defined the local spaces and interpolation operators, the construction of global ana-

logues for these is now possible and thus we are able to define the approximation spaces

that will be used in our mixed finite element setting.
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3.3.4 Global approximations and interpolation

Recall that we let Th be a shape–regular triangulation of Ω. Under the foregoing notation

of this chapter, we define the following global approximation spaces.

Definition 3.15. Mk(Ω,Th) := {vh ∈ H(div,Ω) : v|κ ∈Mk(κ) ∀κ ∈ Th}.

Definition 3.16. L0(Dk,Th) := {qh ∈ L2(Ω) : qh|κ ∈ Dk(κ) ∀κ ∈ Th}.

Firstly, we note that we clearly have the inclusion

div(Mk(Ω,Th)) ⊂ L0(Dk,Th).

Moreover, similar to (3.11), we define

W(Ω) := H(div,Ω) ∩ [Ls(Ω)]2,

for some fixed s > 2. Then, using the local interpolation operators defined in Definitions

3.13 and 3.14 we can construct the global interpolation operator

Πh : W(Ω)→Mk(Ω,Th), (3.12)

which is defined so that, for v ∈W(Ω), we have

(Πhv)|κ := ρκ(v|κ) ∀κ ∈ Th. (3.13)

Denoting by Ph the L2(Ω)–projection onto L0(Dk,Th), we have the commuting properties

W(Ω)→div L2(Ω)→Ph L0(Dk,Th), (3.14)

W(Ω)→Πh Mk(Ω,Th)→div L0(Dk,Th). (3.15)

In particular, [25, p. 110] guarantees the surjectivity property

div(Mk(Ω,Th)) = L0(Dk,Th), (3.16)

which we shall not prove, in general.

A key component in deriving an a priori convergence result for the approximation of Darcy’s

equations are error estimates for the global interpolation operators, stated below in Propo-

sition 3.17. These, paired with the quasi–optimality result given by Theorem 2.8 directly

deduce the convergence of the underlying MFEM.

Proposition 3.17. Under the foregoing notation, there exists a constant c > 0 independent

of h, such that for v ∈W(Ω) and Πh defined by (3.13),

‖v −Πhv‖[L2(Ω)]2 ≤ chm|v|[Hm(Ω)]2 ,
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for 1 ≤ m ≤ k + 1. We also have

‖∇ · (v −Πhv)‖L2(Ω) ≤ chs|∇ · v|Hs(Ω),

where s ≤ k for Mk = BDMk and s ≤ k + 1 for Mk = RTk.

Proof. See [25, pp. 103–110], for example.

Furthermore, an error estimate for the L2(Ω)–projection operator Ph is given below in

Proposition 3.18.

Proposition 3.18. Under the foregoing notation, there exists a constant c > 0 inde-

pendent of h, such that for q ∈ L2(Ω) and Ph the L2(Ω)–projection onto L0(Dk,Th) =

div(Mk(Ω,Th)),

‖q − Phq‖L2(Ω) ≤ chψ(k)|q|Hψ(k)(Ω),

where ψ(k) = k for Mk = BDMk and ψ(k) = k + 1 for Mk = RTk.

Proof. See [68, p. 29], for example.

3.4 Well–posedness of the discrete problem

Having defined local and global approximation spaces, as well as stating a few error estimates

for the global interpolation operators, we are now in a position to be able to state the discrete

problem, corresponding to a mixed finite element approximation of the continuous Darcy

problem (3.8, 3.9). To this end, define the finite element spaces Vh ⊂ V = H0,N (div,Ω)

and Qh ⊂ Q = L2(Ω) as

Vh := {vh ∈Mk(Ω,Th) : (vh · n)|∂ΩN = 0}, (3.17)

Qh := L0(Dk,Th), (3.18)

according to the definitions given in Section 3.3.4.

Then, the discrete problem is to:

Find (uh, ph) ∈ Vh ×Qh such that

a(uh,vh) + b(vh, ph) = G(vh) ∀vh ∈ Vh, (3.19)

b(uh, qh) = F (qh) ∀qh ∈ Qh, (3.20)

with the bilinear forms and linear functionals precisely the same as those in Section 3.2.

To establish well–posedness of (3.19, 3.20), we refer to Theorem 2.7 and the subsequent

discussion concerning the discrete problem in Section 2.3. Moving forward, we will explicitly
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check the criteria in Theorem 2.7 for the lowest–order approximation spaces before relating

and extending this result to higher–order approximations. Following this, stability concerns

due to a possible h–dependence in the discrete inf–sup condition will be commented on,

ensuring we can apply Theorem 2.8 in order to derive convergence estimates for this problem.

We firstly re–iterate that the continuity of the bilinear forms and the linear functionals on

the spaces V and Q naturally follows on the discrete subspaces Vh and Qh. Therefore,

we proceed by only verifying the two main conditions in Theorem 2.7 in order to establish

well–posedness.

To this end, recall the induced operator B = −div for this problem. A well–known conse-

quence of Banach’s closed range theorem states that since the image of the discrete adjoint

operator B∗h is trivially closed in V∗h (since it is finite dimensional), the surjectivity of Bh

is equivalent to the injectivity of B∗h [25, p. 214]. This fact is exploited in the following

theorem, in which we prove for the lowest–order approximation spaces that (3.19, 3.20) has

a unique solution.

Theorem 3.19. Let Vh and Qh be such that Mk(κ) ≡ RT0(κ) or BDM1(κ), so that

Dk(κ) = P0(κ). Then, (3.19, 3.20) has a unique solution.

Proof. We first show that B∗h : Qh → V∗h is injective; here, the kernel of B∗h is given by

Ker(B∗h) = {qh ∈ Qh : b(vh, qh) = 0 ∀vh ∈ Vh}.

Let qh ∈ Ker(B∗h). Then, for all vh ∈ Vh we have

b(vh, qh) = −
∫

Ω

qh∇ · vh =
∑
κ∈Th

(
−
∫
κ

qh∇ · vh
)

=
∑
κ∈Th

(∫
κ

vh · ∇qh − 〈vh · nκ, qh〉∂κ
)

= −
∑
κ∈Th

〈vh · nκ, qh〉∂κ,

via Proposition 2.3 and since qh ∈ Qh = L0(Dk,Th) implies ∇(qh|κ) = 0 on all elements

κ ∈ Th. Denote by Eint the set of interior edges of the triangulation so that the summation

can be taken over the element edges instead as

−
∑
κ∈Th

〈vh · nκ, qh〉∂κ = −
∑
E∈Eint

1

2
〈vh · nE , JqhK〉E −

∑
E⊂∂ΩD

〈vh · nE , qh〉E = 0, (3.21)

where JqhK denotes the jump in qh across the interior edges. For Vh with Mk = RT0 there

is a degree of freedom on each of the edges for the normal component vh · nE . Since (3.21)
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is true for every vh ∈ Vh, it is true for vh such that

(vh · nE)|E =

JqhK for E ∈ Eint,

qh for E ⊂ D,

recalling that there are no degrees of freedom on the edges contained in ∂ΩN . Here, we can

see that ∑
E∈Eint

1

2

∫
E
JqhK2 +

∑
E⊂D

∫
E
q2
h = 0.

Since each sum is made up of strictly non–negative contributions, it must be true that each

of the integrals vanish: ∫
E
JqhK2 = 0, ∀E ∈ Eint,

and ∫
E
q2
h = 0, ∀E ⊂ D.

This implies that JqhK = 0 across all of the interior edges and qh = 0 on the boundary edges

in ∂ΩD. Furthermore, so long as ∂ΩD is not empty, there will always be at least one edge

in the triangulation where qh = 0; since qh is piecewise constant and the interior jumps are

all zero, this can only mean that qh = 0 everywhere.

Therefore, Ker(B∗h) = {0}, and Bh : Vh → Q∗h is surjective. Since Bh(Vh) ⊂ Q∗h holds

for both choices of Mk (and since for either velocity space the scalar space Qh is the

same), the inclusion RT0(Ω,Th) ⊂ BDM1(Ω,Th) means Bh : Vh → Q∗h, where Vh has

Mk(κ) = BDM1(κ), is also surjective.

To show that the bilinear form a(·, ·) is coercive on the kernel of Bh we show the inclusion

Ker(Bh) ⊂ Ker(B).

Here, the coercivity on the latter, proved in Lemma 3.2, will simply transfer to the former.

To this end, let vh ∈ Ker(Bh). Then, for all qh ∈ Qh we have

b(vh, qh) = −
∫

Ω

qh∇ · vh = 0.

From (3.16) we have that div(Mk(Ω,Th)) = L0(Dk,Th) = Qh; since Vh ⊂Mk(Ω,Th) and

since images preserve subsets, we deduce that div(Vh) ⊂ Qh. Therefore, there is a qh ∈ Qh
such that ∇ · vh = qh. Consequently,∫

Ω

|∇ · vh|2 = 0,

thus ∇ · vh = 0 and vh ∈ Ker(B). Therefore, Ker(Bh) ⊂ Ker(B).
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3.4.1 Arbitrary order spaces and discrete inf–sup

An extension of the discussion started in Section 2.3 is the following proposition. The aim

of such result is the attainment of a discrete inf–sup constant, in this case β0, which is

independent of the mesh size parameter h. We refer the reader back to Section 2.3 where

the importance of such condition is highlighted.

Proposition 3.20. Assume that we are given a Banach space W ↪→ V with norm ‖ · ‖W .

Suppose that

sup
w∈W

b(w, qh)

‖w‖W
≥ βW ‖qh‖Q ∀qh ∈ Qh,

and assume that there exists a family of uniformly continuous operators Πh from W into V

satisfying b(Πhw − w, qh) = 0 ∀w ∈W ∀qh ∈ Qh,

‖Πhw‖V ≤ CW ‖w‖W ,

with CW independent of h. Then, we have

sup
vh∈Vh

b(vh, qh)

‖vh‖V
≥ β0‖qh‖Q ∀qh ∈ Qh,

with β0 = βW /CW .

Proof. See [25, pp. 304–305], for example.

Indeed, with Πh defined as the global interpolation operator from (3.12), we have

b(v −Πhv, qh) =

∫
Ω

(div v − div Πhv)qh = 0 ∀qh ∈ Qh

as a consequence of the commuting properties (3.14) and

‖Πhv‖V ≤ c‖v‖W(Ω)

since the operators Πh are uniformly bounded from W(Ω) to Vh [25, p. 406].

Applying Proposition 3.20 we obtain a discrete inf–sup condition for all possible approxi-

mation spaces Vh, defined according to (3.17), independent of h7.

The property (3.16) automatically implies that in this setting we have

div Vh = Qh,

for Mk as either BDMk or RTk for any k. Indeed, this must then mean that the discrete

operator Bh is just the restriction of B, the divergence operator, to the discrete space

7We note that the first condition stated in Proposition 3.20 is satisfied since B has continuous lifting from

Q to W(Ω); indeed, the v obtained in the auxiliary problem is in the space W(Ω) and ‖v‖W(Ω) ≤ c‖q‖Q
[25, pg. 404].
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Vh; this immediately implies that Ker(Bh) ⊂ Ker(B) and coercivity of the bilinear form

a(·, ·) transfers from the continuous setting to the discrete. In particular, this, along with

the satisfaction of Proposition 3.20 means that both the discrete coercivity and inf–sup

constants are independent of h and therefore we may apply the quasi–optimality result

given by Theorem 2.8.

To conclude, we state optimal a priori error estimates for the finite element approximations

in the L2(Ω) norm, stated below in Theorem 3.21.

Theorem 3.21. Under the foregoing notations, let (u, p) ∈ V × Q be the solutions of the

continuous problem (3.8, 3.9), and let (uh, ph) ∈ Vh × Qh be the solutions of the discrete

problem (3.19, 3.20). Then, there exists a constant c > 0, independent of h, whose value

may change in each bound, such that the following hold:

‖u− uh‖[L2(Ω)]2 ≤ chs‖u‖[Hs(Ω)]2 ,

for s ≤ k + 1, and

‖p− ph‖L2(Ω) ≤ chs(‖u‖[Hs(Ω)]2 + ‖p‖Hs(Ω)),

‖∇ · (u− uh)‖L2(Ω) ≤ chs‖∇ · u‖Hs(Ω),

for s ≤ k + 1 if Mk is RTk, and for s ≤ k is Mk is BDMk.

Proof. This result is obtained by employing the quasi–optimality result given by Theorem

2.8 and the interpolation estimates given by Propositions 3.17 and 3.18.



Chapter 4

Flow in fractured porous media

This chapter aims to introduce the reader to the model, and subsequent mixed finite element

approximation, for flow in fractured porous media; the structure of this chapter, in more

detail, is as follows.

First, we present the definitions and notations needed to fully describe the governing equa-

tions of the model; moreover, once the functional analysis setting for this problem is estab-

lished, some details concerning traces of functions on fractures is given. Following this, a

weak formulation of the equations is derived and we are able to discuss its well–posedness.

For ease of presentation, we consider and prove well–posedness only for the simplified case

where a single, non–immersed, fracture partitions the domain in two, following [94]. Fur-

thermore, the mixed finite element method to be utilised is then presented with a variety

of possible approximation spaces, including the use of Raviart–Thomas (RT) and Brezzi–

Douglas–Marini (BDM) elements in the bulk portions of the porous media. Such approxi-

mation is such that the fracture network respects the underlying computational mesh, i.e.

it is made up of element edges. For ease of presentation, interpolation results and discrete

well–posedness are presented only for a lowest order RT approximation, as is standard in the

literature. We conclude with an a priori convergence result for this type of approximation.

4.1 Fractures as manifolds

We proceed with some notations concerning the domain setting of this problem. To this end,

let Ω ⊂ Rd, d = 2, 3, be an open and bounded domain representing the fractured porous

medium. Assume that Ω has a Lipschitz, or polygonal, boundary ∂Ω, partitioned into the

33
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non–empty sets ∂ΩN and ∂ΩD. The unit outward normal vector to ∂Ω is denoted, as usual,

by n.

Fractures in the domain are to be described as a collection of co-dimensional planar mani-

folds, which, in the two dimensional setting, are simply lines. We denote by Γ ⊂ Ω a network

formed by the union of NΓ ∈ N fractures γk ⊂ Ω. Each of the fractures γk are open and

bounded and are such that Γ = ∪NΓ

k=1γk. We assume that fractures can only intersect at their

endpoints, and we assume throughout that the fracture network is completely immersed in

the domain, i.e., Γ∩∂Ω = ∅. Consequently, the boundary ∂γk of a one–dimensional fracture

has one of three possible forms: two intersection points, a single intersection point and an

immersed fracture tip, or two immersed fracture tips; the latter of which refers to an iso-

lated fracture. Shown in Figure 4.1 are an example of a fractured domain and the possible

boundary points of a fracture. We write ΩΓ = Ω \ Γ to represent the bulk domain, i.e., the

domain without the fracture network. Moreover, we denote with I the set of all fracture

intersection points i. Indeed, more than two fractures can intersect at a single point. For

example, two lines intersecting in the shape of an X would represent four fractures, sharing

the intersection point in the middle. Given an intersection point i ∈ I, we denote with Si

the set of fractures sharing this point; this is illustrated in Figure 4.2.

Fig. 4.1 – Example fractured domain and fracture boundary labels.

The unit outward normal vector to the fracture network is denoted by nΓ, whose definition

is according to the unique fracture it can be restricted to, i.e., the normal vector nk (or

sometimes denoted by nγk). The network Γ can be arbitrarily extended to ∂Ω in order to

partition Ω into a series of Lipschitz subdomains; the orientation of nΓ is fixed and is defined

according to which subdomain (after labelling) it should point into1.

Although we consider a fully–immersed fracture network, in the case where the network

touches the domain boundary, fracture boundaries ∂γk are divided into ∂γNk and ∂γDk , such

that ∂γNk ∪ ∂γDk = ∂γk ∩ ∂Ω, and boundary conditions can be imposed. Furthermore, by

1Cf. Figure 4.3 and Section 4.3.2.
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defining the intersected part of a fracture boundary ∂γIk = ∂γk ∩ I, an immersed fracture

tip is thus ∂γFk = ∂γk \ ∪s=D,N,I∂γsk; cf. the right image in Figure 4.1. For s = D,N,F

define Is = ∪NΓ

k=1∂γ
s
k. Therefore, a completely immersed fracture network has ID = IN = ∅.

Fig. 4.2 – Intersection point of fractures.

4.2 The governing equations

4.2.1 Some more model notations

We consider here a single fluid of constant density, ignoring the effects of gravity. This

model, taken from [55], assumes that flow in both the bulk (porous medium) and the frac-

ture network are described via Darcy’s law, and by conservation of mass. As mentioned

previously, it is assumed that the fractures are partially filled with debris; we refer to [57]

where this assumption is not considered, and a different set of equations for the flow in the

fractures is used instead.

The macroscopic variables, u and p, represent the Darcy velocity and fluid pressure, respec-

tively, in the bulk domain ΩΓ. The permeability tensor K, in the bulk, includes the depen-

dence on the viscosity µ. Flow within a fracture is derived via a model reduction, whereby

the governing equations are integrated over the fracture aperture. The reduced variables û

and p̂ represent, respectively, the flux and average pressure in each fracture. These variables

are composed as the product of the fracture variables ûk and p̂k, for k = 1, 2, . . . , NΓ.

We make the assumption that the permeability (scaled by viscosity) in each fracture can

be represented as a diagonal tensor in local (tangent and normal) coordinates; i.e. K =

K̂nnΓ ⊗nΓ + K̂τ , where on each γk, K̂τ is a tensor acting only on the plane defined by γk.

In our two dimensional setting, K̂τ = K̂ττ for a scalar function K̂τ , where τ =
∏NΓ

k=1 τk is

the projector onto the tangent plane of the fracture network (τk = I− nk ⊗ nk).

Of course, physically, fractures are not one–dimensional manifolds and have an aperture

which may vary along their length. We denote by wk(x) the aperture of fracture γk and
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assume that it is continuously differentiable; we assume also the existence of a constant

w∗ > 0 such that wk > w∗ for all k = 1, 2, . . . , NΓ. That is, the fracture apertures are

uniformly bounded below. We note that in the work [27], the limiting case where wk → 0,

i.e. collapsing fractures, is allowed.

Moreover, we define the scaled quantities K̂ = wΓK̂τ and η = wΓ/K̂n. Here, wΓ is the

aperture of the fracture network, equal to wk on γk. The quantity K̂ is an effective tangential

permeability, while η represents an effective conductivity.

4.2.2 The strong form

Here we see the model problem for groundwater flow in a fractured porous medium. The

following equations consist of a Darcy flow problem in the bulk domain ΩΓ and a reduced

Darcy flow problem on the fracture network Γ, given by (4.1) and (4.2), respectively. Each

set of equations has also a set of coupling conditions: in (4.1) we see conditions for the

bulk variables on Γ, while in (4.2) we see conditions imposed at the intersection points of

fractures. The latter assumes flux conservation and pressure continuity at the intersection

points. Moreover, we assume a homogeneous boundary condition for the bulk velocity on

∂Ωu and impose no–flow out of the immersed fracture tips. Recall that the fracture network

Γ is completely immersed in the domain.

We seek the solutions (u, p), defined on ΩΓ, and (û, p̂), defined on Γ, such that



K−1u +∇p = 0 in ΩΓ,

div u = f in ΩΓ,

p = gD on ∂ΩD,

u · n = 0 on ∂ΩN ,

η{u · nΓ} = JpK on Γ,

ηξ0Ju · nΓK = {p} − p̂ on Γ,

(4.1)



K̂−1û +∇τ p̂ = 0 in Γ,

divτ û = f̂ + Ju · nΓK in Γ,

û · τ = 0 on IF ,

p̂k = pi in i ∀γk ∈ Si ∀i ∈ I,∑
k:γk∈Si(ûk · τk)|i = 0 in i ∀i ∈ I.

(4.2)

In the above, τ represents the unit outward vector on the tangent plane represented by

a fracture γk. Similar to nΓ, the vector τ is defined according to which fracture we are

restricted to. The operators divτ and ∇τ are the associated tangential divergence and

gradient operators, respectively; in the two dimensional setting, these are of course both

equal to ∂/∂xτ , the tangential derivative along the fracture. We proceed using the same

notation as would be encountered in higher dimensions, so as to retain some notion of
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generality. Furthermore, the closure parameter ξ0 is related to the usual parameter ξ, often

encountered in the literature (e.g. [94]) via ξ0 = (2ξ − 1)/4; a different choice of ξ0 relates

to a different assumption made on the pressure profile across the fracture aperture when

deriving the equations for the reduced model on the fracture network.

We define the usual average and jump operators, respectively, for functions defined on ΩΓ,

as

{v} :=
v+ + v−

2
, JvK := v+ − v−,

where v± is the trace of the function on Γ from either side; cf. Section 4.3.2 where this

notion is established more generally for less regular functions.

Before introducing the functional setting for which a weak formulation of (4.1)–(4.2) can

be established, we must first make some assumptions on the data; such assumptions are

paramount in proving well–posedness of the resulting problem, in Section 4.3.4.

To this end, we require f ∈ L2(ΩΓ) and f̂ ∈ L2(Γ), and that the boundary data term

gD ∈ H
1
2 (∂ΩD). We have assumed a fully immersed network, but in the case that ID 6= ∅

we would require p̂ = ĝD ∈ H
1
2 (ID).

The permeability tensors K and K̂ are each assumed to be uniformly elliptic. That is, we

assume the existence of constants 0 < K∗ < K∗ and 0 < K̂∗ < K̂∗ such that

K∗‖z‖2 ≤ z>K(x)z ≤ K∗‖z‖2 a.e. in ΩΓ,

K̂∗‖ẑ‖2 ≤ ẑ>K̂(x)ẑ ≤ K̂∗‖ẑ‖2 a.e. in Γ,

for all z ∈ Rd and for all ẑ ∈ R with ẑ · nΓ = 0; the norm ‖ · ‖ being the Euclidean 2–norm.

Furthermore, we impose an assumption on the effective conductivity η. That is, the existence

of constants 0 < η∗ < η∗ such that

η∗ ≤ η(x) ≤ η∗ a.e. in Γ.

Lastly, we set γ∗ = mink |γk| and γ∗ = maxk |γk| as the smallest and largest lengths of the

fractures; an obvious, but needed, assumption is that γ∗ > 0.

4.3 Well–posedness of the continuous problem

4.3.1 Functional setting

Within this section we lay the foundations for the functional setting required for a weak

formulation of (4.1)–(4.2) to exist. The justification for the function spaces defined here

should become apparent during the derivation of the weak formulation in Section 4.3.3.
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We start by introducing the space H(div,ΩΓ), recalling that ΩΓ = Ω \ Γ. This space

consists of those vector–valued functions in [L2(ΩΓ)]2 whose distributional divergence is in

L2(Σ) for all measurable Σ ⊂ ΩΓ. We emphasise here that functions in L2(ΩΓ) may be

identified with those in L2(Ω) since Γ is a set of measure zero. Such definition of H(div,ΩΓ)

means that with respect to a partition of the domain, for example, into triangles Th = {κ},

global conformity requirements for v ∈ H(div,ΩΓ) are that v|κ ∈ H(div, κ) for all κ ∈ Th,

and that the normal–trace of v across element interfaces is continuous, except for those

intersecting Γ; such definition will allow for the physical assumption, or lack thereof, that

the normal–component of the Darcy velocity u may be discontinuous across the fracture

network. We note also that H(div,ΩΓ) may be a broken space if the fracture network splits

Ω into disconnected parts.

Moreover, we define the function spaces

V Ω = {v ∈ H(div,ΩΓ) : Jv · nΓK, {v · nΓ} ∈ L2(Γ), (v · n)|∂ΩN = 0},

MΩ = L2(ΩΓ),

V Γ =

v̂ ∈
NΓ∏
k=1

H(div, γk) :
∑

k:γk∈Si

(v̂k · τk)|i = 0 ∀i ∈ I, (v̂ · τ )|IF = 0

 ,

MΓ = L2(Γ).

To make sense of the jump and average of normal–traces on the fracture network, we refer to

the upcoming Section 4.3.2. Each of these function spaces are Hilbert, and can be equipped

with the relevant inner–products and induced norms. To this end, we define more compactly

the spaces

V = V Ω × V Γ,

M = MΩ ×MΓ,

with the norms2

‖(v, v̂)‖2V = ‖v‖2V Ω + ‖v̂‖2V Γ ,

‖(q, q̂)‖2M = ‖q‖2L2(Ω) + ‖q̂‖2L2(Γ),

where

‖v‖2V Ω = ‖v‖2[L2(Ω)]2 + ‖div v‖2L2(Ω) + ‖{v · nΓ}‖2L2(Γ) + ‖Jv · nΓK‖2L2(Γ),

‖v̂‖V Γ = ‖v̂‖2L2(Γ) + ‖divτ v̂‖2L2(Γ).

2In other works, for example [94] the norm on the velocity space V has instead the squared norms of

the normal traces of the bulk velocity v on either side of Γ, instead of the norms of the jump and average

operators. One can show however that these norms are in fact equivalent [55].
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4.3.2 Trace theory on fractures

Before proceeding to the derivation of the weak formulation of (4.1)–(4.2), we need to

consider traces. Indeed, the idea of a function (for example the bulk Darcy velocity u or

bulk pressure p), or its normal–component, being restricted onto the fracture network Γ may

not make sense if the function is not, in a loose sense, regular enough. Here, we briefly state

some details concerning the trace of functions onto fractures, which is a simple extension of

existing trace theory on Lipschitz domains. The main idea (illustrated in Figure 4.3) is that

in the case where the fracture network, or part of it, is completely immersed in the domain,

we can always extend the network in order to partition the domain Ω into several smaller

Lipschitz domains; on these subdomains the usual trace theory applies, where part of the

boundary of these subdomains indeed contain the fractures we are interested in.

Thus, we need only to investigate the trace of a function on a single fracture, and proceed

as such. Consider an open and bounded Lipschitz domain Ω ⊂ Rd, and a single fracture γ.

In general, this fracture either cuts the domain into two smaller Lipschitz subdomains Ω±,

or it is either partially or fully immersed. In either of the latter cases, denote by γ̃ ⊃ γ the

(arbitrary) extension3 of γ to the boundary of the domain, such that γ̃ then partitions Ω

into the two Lipschitz subdomains Ω±. Fix the normal vector nγ = n+|γ = −n−|γ and the

spatial dimension d = 2.

Fig. 4.3 – The arbitrary extension of an immersed fracture to create partitioning Lipschitz

subdomains.

Building on the discussion in Section 2.1, for s > 0 and p ∈ [1,∞) we consider here the

operators T± : W s,p(Ω±)→ Lp(∂Ω±) extending the notion of trace such that

T±[u] = u|∂Ω± ∀u ∈W s,p(Ω±) ∩ C0(Ω±).

Standard trace theory (see, for example, [51, Theorem 3.10]) says that for s > 1
p , since Ω±

are Lipschitz, that T± are bounded. That is, there are constants C± (depending on s, p and

3Cf. Figure 4.3.
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Ω±) such that

‖T±[u]‖Lp(∂Ω±) ≤ C±‖u‖W s,p(Ω±).

For example, s = 1 and p = 2 tells us that

‖T±[u]‖L2(∂Ω±) ≤ C±‖u‖H1(Ω±). (4.3)

Since γ ⊂ ∂Ω± in either case, we know that

‖T±[u]‖Lp(γ) ≤ C±‖u‖W s,p(Ω±) ≤ C±‖u‖W s,p(Ω).

If u is defined only on Ωγ = Ω \ γ, then the right–hand–side can be replaced with the

norm taken on the (possibly) broken space W s,p(Ωγ), and the same is true throughout. We

emphasise that traces may not always be continuous across the fracture γ, which is why we

require the two separate trace operators on either side. Using the above however, we can

derive bounds on both the jumps of functions across the fracture, and for averages. For the

average of a function, we have

‖{u}‖Lp(γ) =

∥∥∥∥1

2
(T+[u] + T−[u])

∥∥∥∥
Lp(γ)

≤ 1

2

(
‖T+[u]‖Lp(γ) + ‖T−[u]‖Lp(γ)

)
≤ max{C+, C−}‖u‖W s,p(Ω).

For the jump of the function u across the fracture, an added factor of two appears in the

bound as

‖JuK‖Lp(γ) ≤ 2 max{C+, C−}‖u‖W s,p(Ω).

Remark 4.1. For particular choices of s and p we can consider the surjectivity of the trace

operators T±. Indeed, if s = 1 and p = 1; 1/2 < s < 3/2 and p = 2; or 1/p < s ≤ 1 and

p 6= {1, 2}, then T± : W s,p(Ω±)→W s− 1
p ,p(∂Ω±) are bounded and surjective.

While still considering the single fracture γ, we consider normal–traces; here, we refer to [51,

Theorem 4.15]. Indeed, from Section 2.1 we know that for Lipschitz domains, vector–valued

functions in H(div,Ω) have normal–traces (v · n)|∂Ω defined only in the space H−
1
2 (∂Ω).

That is, as linear functionals acting on H
1
2 (∂Ω). This is a particular case of the normal–trace

operator defined between the spaces

W div,p(Ω) = {v ∈ [Lp(Ω)]2 : div v ∈ Lp(Ω)}

and W−
1
p ,p(∂Ω). As such, we define the following normal–trace operators

T d,± : H(div,Ω±)→ H−
1
2 (∂Ω±).
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The quantity T d,±[u] is defined via the Divergence Theorem by

〈T d,±[u], φ〉
H−

1
2 (∂Ω±),H

1
2 (∂Ω±)

=

∫
Ω±

E±[φ]div u +

∫
Ω±
∇E±[φ] · u ∀φ ∈ H 1

2 (∂Ω±),

and whose definition is independent of the choice of right–hand inverse (or extension oper-

ator) T±[E±[φ]] = φ. These operators extend the idea of normal–trace such that

T d,±[u] = u|∂Ω± · n± ∀u ∈ [C∞(Ω±)]2,

and are, in fact, surjective onto H−
1
2 (∂Ω±).

More often than not, we must use the definition T d,±[u] when considering the normal–

trace of u, unless we assume some more regularity. Indeed, with Ω± still only assumed

to be Lipschitz, and assuming u ∈ [H1(Ω±)]2 instead of H(div,Ω±), one can obtain the

normal–trace of u in L2(∂Ω±).

With Ω± Lipschitz (e.g. polygonal), we know that the unit outward normal vector n± ∈

L∞(∂Ω±). We discuss here how we can consider the quantity T±[u] ·n± as an extension of

T d,±[u] for u ∈ [H1(Ω±)]2, interpreting the trace of a vector as taking traces component–

wise. We shall see in Lemma 4.2 that T±[u] ·n± ∈ L2(∂Ω±); therefore, identifying L2(∂Ω±)

with its own dual–space, we can view T±[u] · n± as a member of H−
1
2 (∂Ω±) (this is since

[L2(∂Ω±)]∗ ⊂ H− 1
2 (∂Ω±) and H

1
2 (∂Ω±) ⊂ L2(∂Ω±)).

Therefore,

〈T±[u] · n±, φ〉
H−

1
2 (∂Ω±),H

1
2 (∂Ω±)

= 〈T±[u] · n±, φ〉L2(∂Ω±)∗,L2(∂Ω±)

=

∫
∂Ω±

(T±[u] · n±)φ

=

∫
Ω±

E±[φ]div u +

∫
Ω±
∇E±[φ] · u ∀φ ∈ H 1

2 (∂Ω±).

This shows that T±[u] · n± = T d,±[u] in H−
1
2 (∂Ω±), i.e., the former is an extension of the

latter for the more regular u ∈ [H1(Ω±)]2.

Lemma 4.2. Under the foregoing notation, let u ∈ [H1(Ω±)]2. Then, there are constants

D± > 0, depending only on Ω±, such that

‖T±[u] · n±‖L2(∂Ω±) ≤ D±‖u‖[H1(Ω±)]2 .
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Proof. Denote u = (u1, u2)> where ui ∈ H1(Ω±), i = 1, 2 and n± = (n±1 , n
±
2 ). We have

‖T±[u] · n±‖2L2(∂Ω±) =

∫
∂Ω

(T±[u] · n±)2

=

∫
∂Ω±

(T±[u1]n±1 + T±[u2]n±2 )2

≤ ‖n±‖2L∞(∂Ω±)

∫
∂Ω±

(T±[u1] + T±[u2])2

= ‖n±‖2L∞(∂Ω±)‖T
±[u1] + T±[u2]‖2L2(∂Ω±).

The triangle inequality, followed by Cauchy’s inequality thus tells us that

‖n±‖2L∞(∂Ω)‖T
±[u1] + T±[u2]‖2L2(∂Ω±) ≤ ‖n

±‖2L∞(∂Ω±)(‖T
±[u1]‖2L2(∂Ω±) + ‖T±[u2]‖2L2(∂Ω±)

+ 2‖T±[u1]‖L2(∂Ω±)‖T±[u2]‖L2(∂Ω±))

≤ 2‖n±‖2L∞(∂Ω±)‖T
±[u]‖2L2(∂Ω±).

The trace operator T± : [H1(Ω±)]2 → L2(∂Ω±) is bounded (cf. (4.3)), giving the constants

C± > 0 such that

2‖n±‖2L∞(∂Ω±)‖T
±[u]‖2L2(∂Ω±) ≤ 2‖n±‖2L∞(∂Ω±)(C

±)2‖u‖2[H1(Ω±)]2 .

Thus, with D± =
√

2‖n±‖L∞(∂Ω±)C
± we see that

‖T±[u] · n±‖L2(∂Ω±) ≤ D±‖u‖[H1(Ω±)]2 ,

as required. Of course, ‖n±‖L∞(∂Ω±) ≤ 1, so the same conclusions hold with the constants

D± =
√

2C± instead.

This result shows that the normal–trace operator is in fact bounded in L2(∂Ω±) when acting

on the more regular space [H1(Ω±)]2.

Similar to before, we determine a bound on the average normal–trace across the fracture γ.

We have, for u ∈ [H1(Ω)]2,

‖{u · nγ}‖L2(γ) =

∥∥∥∥1

2

(
T+[u] · nγ + T−[u] · nγ

) ∥∥∥∥
L2(γ)

=

∥∥∥∥1

2

(
T+[u] · n+ − T−[u] · n−

) ∥∥∥∥
L2(γ)

≤ 1

2

(
‖T+[u] · n+‖L2(γ) + ‖T−[u] · n−‖L2(γ)

)
≤ 1

2

(
‖T+[u] · n+‖L2(∂Ω+) + ‖T−[u] · n−‖L2(∂Ω−)

)
≤ max{D+, D−}‖u‖[H1(Ω)]2

i.e. with D = max{D+, D−}, we have

‖{u · nγ}‖L2(γ) ≤ D‖u‖[H1(Ω)]2 . (4.4)



4.3. WELL–POSEDNESS OF THE CONTINUOUS PROBLEM 43

The same bounds hold for ‖Ju·nγK‖L2(γ) as well, with a factor of two on the right–hand–side.

To conclude this section we state two more results that will be useful later on.

Lemma 4.3. Suppose Ω ⊂ R2 is an open and bounded Lipschitz domain that is also convex.

Then, for ϕ ∈ H2(Ω) ∩H1
0,D(Ω) we have the elliptic regularity result

‖ϕ‖H2(Ω) ≤ CER(Ω)‖∆ϕ‖L2(Ω),

where CER(Ω) > 0 is a constant depending only on the domain.

Proof. See, for example, [30, p. 139].

Lemma 4.4. Suppose Ω ⊂ R2 is an open and bounded Lipschitz domain that is also convex.

Then, for φ ∈ H2(Ω) ∩H1
0,D(Ω) there is a constant C > 0 such that

‖{∇φ · nγ}‖L2(γ) ≤ C‖∆φ‖L2(Ω).

Proof. The proof is a simple application of the estimate (4.4) and the elliptic regularity

result given above as Lemma 4.3. Since φ ∈ H2(Ω) we know that ∇φ ∈ [H1(Ω)]2; therefore,

‖{∇φ · nγ}‖L2(γ) ≤ max{D+, D−}‖∇φ‖[H1(Ω)]2

≤ max{D+, D−}‖φ‖H2(Ω)

≤ CER(Ω) max{D+, D−}‖∆φ‖L2(Ω),

as required, with C = CER(Ω) max{D+, D−}.

Where it is obvious throughout, we drop the operator notation when referring to traces, and

instead use the usual notation of restrictions. A full characterisation of traces on fractures,

and more precise details than those stated here, can be found in the work [6].

4.3.3 Deriving the weak formulation

As is typical when defining a weak formulation for elliptic PDEs, we begin by multiplying the

governing equations by test functions and integrating over the associated domains. Firstly,

in (4.1) and (4.2) we multiply Darcy’s law, in both the bulk and fracture network, by test

functions (v, v̂). We see that∫
ΩΓ

(K−1u) · v +

∫
Γ

(K̂−1û) · v̂ +

∫
ΩΓ

v · ∇p+

∫
Γ

v̂ · ∇τ p̂ = 0. (4.5)

Next, we look in particular at the third integral in (4.5). Here, we apply integration by

parts, taking into account the fracture network as part of the boundary. Thus,∫
ΩΓ

v · ∇p = −
∫

ΩΓ

p div v +

∫
∂ΩD

gD(v · n) +

∫
Γ

Jp(v · nΓ)K.
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The fracture integral can be simplified via the jump–average relation: JabK = {a}JbK+JaK{b},

and hence we see that ∫
Γ

Jp(v · nΓ)K =

∫
Γ

({p}Jv · nΓK + JpK{v · nΓ}).

Using the bulk–fracture interface conditions in (4.1) we see that∫
Γ

({p}Jv · nΓK + JpK{v · nΓ}) =

∫
Γ

[(p̂+ ηξ0Ju · nΓK)Jv · nΓK + η{u · nΓ}{v · nΓ}]

=

∫
Γ

η(ξ0Ju · nΓKJv · nΓK + {u · nΓ}{v · nΓ}) +

∫
Γ

p̂Jv · nΓK.

Similarly, the fourth integral in (4.5) can be written as a sum over the individual fractures

and then integrated by parts as∫
Γ

v̂ · ∇τ p̂ =

NΓ∑
k=1

∫
γk

v̂k · ∇τ p̂k =

NΓ∑
k=1

(
−
∫
γk

p̂kdivτ v̂k +

∫
∂γFk

p̂k(v̂k · τk)

)

+
∑
i∈I

∑
k:γk∈Si

p̂k(v̂k · τk)|i.

Indeed, since the fracture network is immersed the fracture boundaries ∂γk consist of im-

mersed tips and intersection points. We impose no–flow out of the immersed tips for the

test function v̂, i.e., v̂ ∈ V Γ, and thus this contribution vanishes from the above. Moreover,

the intersection conditions from (4.2) together imply that∑
i∈I

∑
k:γk∈Si

p̂k(v̂k · τk)|i =
∑
i∈I

pi
∑

k:γk∈Si

(v̂k · τk)|i = 0.

This means that simply, in our case of an immersed network,∫
Γ

v̂ · ∇τ p̂ = −
∫

Γ

p̂ divτ v̂.

Collecting these results brings us to the following statement∫
ΩΓ

(K−1u) · v +

∫
Γ

(K̂−1û) · v̂ −
∫

ΩΓ

p div v −
∫

Γ

p̂ divτ v̂

+

∫
Γ

η(ξ0Ju · nΓKJv · nΓK + {u · nΓ}{v · nΓ}) +

∫
Γ

p̂Jv · nΓK = −
∫
∂ΩD

gD(v · n).

Define the bilinear form A : V ×V→ R as

A((u, û), (v, v̂)) := a(u,v) + â(û, v̂) (4.6)

where

a(u,v) :=

∫
ΩΓ

(K−1u) · v +

∫
Γ

η(ξ0Ju · nΓKJv · nΓK + {u · nΓ}{v · nΓ}),

â(û, v̂) :=

∫
Γ

(K̂−1û) · v̂.
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Furthermore, define the bilinear form B : V ×M→ R as

B((v, v̂), (q, q̂)) := b(v, q) + b̂(v̂, q̂) + d(v, q̂) (4.7)

where

b(v, q) := −
∫

ΩΓ

q div v, b̂(v̂, q̂) := −
∫

Γ

q̂ divτ v̂, d(v, q) :=

∫
Γ

q̂Jv · nΓK.

Dealing with the conservation of mass equations in the model is straightforward, and just

amounts to multiplying by test functions (q, q̂) ∈ M and integrating over the domains.

Thus, with the linear functionals Fu : V→ R and F p : M→ R defined, respectively, by

Fu((v, v̂)) := −
∫
∂ΩD

gD(v · n), F p((q, q̂)) := −
∫

ΩΓ

fq −
∫

Γ

f̂ q̂,

we can write down a weak formulation of the fractured porous medium model (4.1)–(4.2)

as the standard saddle–point problem:

Find (u, û) ∈ V and (p, p̂) ∈M such that

A((u, û), (v, v̂)) +B((v, v̂), (p, p̂)) = Fu((v, v̂)), (4.8)

B((u, û), (q, q̂)) = F p((q, q̂)), (4.9)

for all (v, v̂) ∈ V and (q, q̂) ∈M.

4.3.4 Establishing continuous well–posedness

Consider here the case where the fracture network Γ consists of a single fracture (also

denoted by Γ) intersecting the boundary of the domain Ω at both ends, splitting it in two.

Of course, this is different to the immersed fracture network model described previously,

but the well–posedness result can, and has, been extended to cover these more complex

cases, which we discuss in Remark 4.7. In this case, we adopt the notation ID = ∂ΓD and

IN = ∂ΓN for the boundary of the fracture.

Since (4.8)–(4.9) has the structure of a typical saddle–point problem, standard theory for

mixed problems can be employed with ease to establish well–posedness via Theorem 2.7.

That is, assuming that the linear functionals Fu and F p, and the bilinear forms A and B,

are continuous, we require the following two criteria to be satisfied.

Firstly, it is sufficient that A is coercive on the null space V0, defined below as

V0 = {(v, v̂) ∈ V : B((v, v̂), (q, q̂)) = 0 ∀(q, q̂) ∈M}. (4.10)

This space is the same as the kernel of the associated operator B to the bilinear form B,

which we will define and discuss in Section 4.5.1. Next, inf–sup stability for the bilinear form
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B must be satisfied; that is, the existence of a constant β > 0 such that for all (q, q̂) ∈M

sup
(v,v̂)∈V

B((v, v̂), (q, q̂))

‖(v, v̂)‖V
≥ β‖(q, q̂)‖M.

The continuity proofs are fairly trivial (see [55, 94], for example). Moreover, the statements,

and proofs, of the coercivity of A and the inf–sup stability of B are given as the following

two lemmas, respectively.

Lemma 4.5. With ξ0 > 0, the bilinear form A : V×V→ R defined by (4.6) is coercive on

the null space V0 defined by (4.10). That is, there is a constant CA > 0, such that for all

(v, v̂) ∈ V0

A((v, v̂), (v, v̂)) ≥ CA‖(v, v̂)‖2V,

and CA is independent of (v, v̂).

Proof. We notice first that if (v, v̂) ∈ V0 then div v = 0 in L2(ΩΓ) and divτ v̂ = Jv · nΓKΓ

in L2(Γ). Therefore, looking at each of the terms in A((v, v̂), (v, v̂)) separately, we see that∫
ΩΓ

(K−1v) · v+

∫
Γ

(K̂−1v̂) · v̂ +

∫
Γ

ηξ0Jv · nΓK2 +

∫
Γ

η{v · nΓ}2

≥ 1

K∗
‖v‖2[L2(Ω)]2 +

1

K̂∗
‖v̂‖2L2(Γ) + η∗ξ0‖Jv · nΓK‖2L2(Γ) + η∗‖{v · nΓ}‖2L2(Γ),

using the data assumptions outlined in Section 4.2.2. Now, since (v, v̂) ∈ V0 we see that

‖(v, v̂)‖2W = ‖v‖2[L2(Ω)]2 + ‖v̂‖2L2(Γ) + 2‖Jv · nΓK‖2L2(Γ) + ‖{v · nΓ}‖2L2(Γ).

Therefore,

A((v, v̂), (v, v̂)) ≥ min

{
1

K∗
,

1

K̂∗
,
η∗ξ0

2
, η∗

}
‖(v, v̂)‖2V.

With CA as the above constant, noting that CA > 0 is true only if ξ0 > 0 (as this was not

assumed in Section 4.2.2), we conclude the proof.

Lemma 4.6. Assume that Ω is convex. Then, for the bilinear form B : V ×M → R,

defined by (4.7), there exists a constant β > 0 such that such that for all (q, q̂) ∈M

sup
(v,v̂)∈V

B((v, v̂), (q, q̂))

‖(v, v̂)‖V
≥ β‖(q, q̂)‖M.

Proof. We prove the statement of inf–sup stability by proving an equivalent statement. That

is, for a given (q, q̂) ∈M, if there exists a (v, v̂) ∈ V such that:

B((v, v̂), (q, q̂)) = ‖(q, q̂)‖2M,

‖(v, v̂)‖V ≤ C‖(q, q̂)‖M,
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for a constant C > 0 independent of (q, q̂) and (v, v̂), then inf–sup stability is satisfied (see

[30, 94], for example). Thus, for a given (q, q̂) ∈ M we construct such a (v, v̂) ∈ V as

follows.

We consider two auxiliary problems, whose well–posedness is known thanks to a simple

application of the Lax–Milgram theorem. We proceed also assuming that Ω is convex.

Firstly, we consider the solution ϕ ∈ H2(Ω) to

−∆ϕ = q in Ω,

ϕ = 0 on ∂ΩD,

∂ϕ

∂n
= 0 on ∂ΩN ,

whose existence is guaranteed by the regularity of the domain, [55, p. 9] i.e., it is a convex

polygon4. Furthermore, with ∆τ = divτ (∇τ ), we consider ϕ̂ ∈ H2(Γ) the solution of

−∆τ ϕ̂ = q̂ on Γ,

ϕ̂ = 0 on ∂ΓD,

∂ϕ̂

∂τ
= 0 on ∂ΓN .

We pose the velocities v = −∇ϕ and v̂ = −∇τ ϕ̂, noting that div v = −q ∈ L2(ΩΓ) and

divτ v̂ = −q̂ ∈ L2(Γ). Moreover, since v ∈ [H1(Ω)]2 we know that v · nΓ ∈ L2(Γ), cf.

Lemma 4.2, (therefore (v, v̂) is indeed a member of V when restricting the domain of v to

ΩΓ) and in this case, since v ∈ [H1(Ω)]2 ⊂ H(div,Ω), we know that Jv · nΓK = 0.

We see that

B((v, v̂), (q, q̂)) = −
∫

ΩΓ

q div v −
∫

Γ

q̂ divτ v̂ +

∫
Γ

q̂Jv · nΓK

=

∫
ΩΓ

|q|2 +

∫
Γ

|q̂|2

= ‖q‖2L2(Ω) + ‖q̂‖2L2(Γ) = ‖(q, q̂)‖2M.

Since both ϕ and ϕ̂ have zero trace on part of their domain boundaries, the following

Poincaré–Friedrichs inequalities hold:

‖ϕ‖L2(Ω) ≤ CPF(Ω)‖∇ϕ‖[L2(Ω)]2 ,

‖ϕ̂‖L2(Γ) ≤ CPF(Γ)‖∇τ ϕ̂‖L2(Γ).

Moreover, thanks to the Cauchy–Schwarz inequality and the (weak formulations of the)

4The same is true also if Ω is bounded and has a boundary of class C1.
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auxiliary problems, we see that

‖v‖2[L2(Ω)]2 = ‖∇ϕ‖2[L2(Ω)]2

= (∇ϕ,∇ϕ)L2(Ω)

= (q, ϕ)L2(Ω)

≤ ‖q‖L2(Ω)‖ϕ‖L2(Ω)

≤ CPF(Ω)‖q‖L2(Ω)‖∇ϕ‖[L2(Ω)]2 ,

and so

‖v‖L2(Ω) ≤ CPF(Ω)‖q‖L2(Ω). (4.11)

Similarly,

‖v̂‖L2(Γ) ≤ CPF(Γ)‖q̂‖L2(Γ). (4.12)

Finally, using (4.11)–(4.12), and letting Cn > 0 be the final constant from Lemma 4.4,

noting that ‖∆ϕ‖L2(Ω) = ‖q‖L2(Ω), we see that

‖(v, v̂)‖2V = ‖v‖2[L2(Ω)]2 + ‖v̂‖2L2(Γ) + ‖div v‖2L2(Ω) + ‖divτ v̂‖2L2(Γ) + ‖{v · nΓ}‖2L2(Γ)

= ‖v‖2[L2(Ω)]2 + ‖v̂‖2L2(Γ) + ‖q‖2L2(Ω) + ‖q̂‖2L2(Γ) + ‖{∇ϕ · nΓ}‖2L2(Γ)

≤ (1 + CPF(Ω)2 + C2
n)‖q‖2L2(Ω) + (1 + CPF(Γ)2)‖q̂‖2L2(Γ)

≤ max{1 + CPF(Ω)2 + C2
n, 1 + CPF(Γ)2}‖(q, q̂)‖2M

≡ C‖(q, q̂)‖2M.

Therefore, thanks to Lemma 4.5 and Lemma 4.6, we have well–posedness of the weak for-

mulation (4.8)–(4.9).

Remark 4.7. When considering the case of a fully immersed, or partially immersed, frac-

ture network Γ, it is only the inf–sup stability proof that needs adjusting. Indeed, the proofs

in these cases follow the exact same procedure, and conclude such stability in the same way;

in these cases, the above stated auxiliary problems are not sufficient. For a network which

touches the boundary of the domain such that ID 6= ∅, it is possible to formulate a coercive

Poisson problem similar to that used in Lemma 4.6. Its extension is fairly straightforward,

and can be found in [54], for example.

When the network is fully immersed, pressure cannot be imposed on part of the fracture

boundary and so–called flux–carriers must be constructed [55]. Here, an arbitrary extension

of the network partitioning the domain into several Lipschitz subdomains is used; a coercive

problem utilising flux–carriers is defined on each domain, in order to construct a suitable

velocity v required in the proof of inf–sup stability.
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4.4 Mixed finite element approximations

The numerical method to be employed within this work will be a standard, conforming,

mixed finite element method, approximating the solutions of the weak formulation (4.8)–

(4.9) with functions from the finite–dimensional subspaces Vh ⊂ V and Mh ⊂ M. Such

approximation spaces will consist of piecewise polynomial functions, defined according to

some shape–regular triangulation Th = {κ} of the closed domain Ω. We denote by h

the usual mesh–size parameter, defined as the length of the largest edge making up the

triangulation, used as an index for the triangulation and subsequent approximation spaces.

We proceed under the simplifying assumption that the triangulation Th respects the fracture

network5 Γ, i.e., Γ does not cut into the interior of any elements κ ∈ Th. We assume also

that the network itself is made up of interfaces, or edges, between elements in Th. Under

these assumptions, denote with Eh all of the edges in Th; we can subsequently write down

Γh = {E ∈ Eh : E ∩ Γ 6= ∅} such that Γ = ∪E∈ΓhE ,

as the partitioning of the fracture network Γ into one–dimensional elements.

Recall that the use of a mixed finite element method allows for a simultaneous computation

of the required pressures and fluxes in both the bulk and fracture network domains, retaining

a notion of mass conservation at a local level. Such a notion is paramount when paired with

transport schemes, as in [4, 88, 60], as these schemes are typically quite sensitive to non–

conservative flow fields [27]. Indeed, a mixed finite element approach allows us the usual

tools from the literature for a rigorous analysis of the method employed.

Remark 4.8. For a large proportion of numerical methods, the quality of the underlying

computational meshes, or triangulations, has a huge impact on the accuracy of the solution.

Indeed, a conforming mesh as assumed here can lead to small elements of low quality (for

example those with high aspect ratios and small angles), often breaking the shape–regularity

assumption we establish first and foremost. It is, of course, possible to define a partition

of Γ that is independent of the triangulation Th as, for example, described in [56], but this

can still lead to the aforementioned problem. However, going one step further, the fracture

network may even cut elements from Th, not respecting the triangulation at all. In this

case, extended finite elements [45, 54], among other methods such as mortar methods [26],

mimetic finite difference [55], discontinuous Galerkin and virtual element methods [47],

and finite volume approaches [6] may be utilised instead of a standard mixed finite element

method. We emphasise that this list of references is by no means exhaustive, and point

5In the presence of general fractures, the approximation with straight lines would incur a modelling error

penalty, leading to a maximum second order accuracy under subsequent uniform mesh refinement.
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further to the expansive literature.

4.4.1 Approximation spaces

Here, we build up the definitions of the approximation spaces Vh and Mh to be used in

the mixed finite element approximation of the fracture flow problem. Starting locally on

elements κ ∈ Th with the usual RT and BDM spaces, we construct two configurations of

approximation spaces to be utilised. To this end, we define first a reference interval and

polynomial spaces on fracture edges.

Definition 4.9. The reference interval IREF is the interval [−1, 1] in ζ–space.

Definition 4.10. Consider a one–dimensional element E given by the straight line connect-

ing the points X1 X2 ∈ R2. Define the affine mapping FE : IREF → E via

FE(ζ) = X1`0(ζ) + X2`1(ζ),

where `0(ζ) = (1−ζ)
2 and `1(ζ) = (1+ζ)

2 are the lowest–order Lobatto shape functions on

IREF. The Jacobian of such mapping is given by

JE := DFE =
1

2

x2 − x1

y2 − y2

 ,
with length |JE | = |E|

2 .

We aim to construct conforming finite–dimensional subspaces for each of the function spaces

outlined in Section 4.3.1. That is, we require the four subspaces V Ω
h ⊂ V Ω, V Γ

h ⊂ V Γ,

MΩ
h ⊂MΩ, and MΓ

h ⊂MΓ.

Since we are restricting ourselves to the case of two spatial dimensions for the bulk domain,

the tangential divergence on the fracture network is the same as the tangential derivative.

Moreover, in this case, the spaces H1(Γ) and H(divτ ,Γ) are the same; therefore, global

conformity requirements for functions in V Γ imply that the approximation space V Γ
h will

need to consist of continuous piecewise polynomials, with respect to Γh.

The following definitions build towards the definitions of our approximation spaces.

Definition 4.11. For D ⊂ Rd, d = 1, 2, and k ≥ 0 an integer, let Pk(D) denote the set

of polynomials of degree at most k, on D. Moreover, let E be a one–dimensional manifold

(e.g. a line) embedded in a two–dimensional domain. Define polynomials on E as

Pk(E) = {q : E → R : q̃ = q ◦ FE ∈ Pk(IREF)},

that is, those functions that when mapped to the reference interval IREF are polynomials in

the variable ζ, of degree at most k.
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Definition 4.12. For k ≥ 0 an integer, and κ ∈ Th some triangular element, define the

following spaces, where nκ ∈ L∞(∂κ) denotes the unit outward normal vector to κ, and Ei
are its three edges.

Rk(∂κ) = {φ ∈ L2(κ) : φ|Ei ∈ Pk(Ei) ∀i = 1, 2, 3},

RTk(κ) = {vh ∈ [Pk(κ)]2 + xPk(κ) : vh · nκ ∈ Rk(∂κ)},

BDMk(κ) = {vh ∈ [Pk(κ)]2 : vh · nκ ∈ Rk(∂κ)},

with k > 0 for the space BDMk(κ).

Definition 4.13. For k ≥ 0 an integer, define

RTk(ΩΓ,Th) = {vh ∈ H(div,ΩΓ) : vh|κ ∈ RTk(κ) ∀κ ∈ Th},

BDMk(ΩΓ,Th) = {vh ∈ H(div,ΩΓ) : vh|κ ∈ BDMk(κ) ∀κ ∈ Th},

Pk(ΩΓ,Th) = {qh ∈ L2(ΩΓ) : qh|κ ∈ Pk(κ) ∀κ ∈ Th},

Pck(Γ,Γh) = {v̂h ∈ C0(Γ) : v̂h|E ∈ Pk(E) ∀E ∈ Γh},

Pk(Γ,Γh) = {q̂h ∈ L2(Γ) : q̂h|E ∈ Pk(E) ∀E ∈ Γh},

with k > 0 for the space BDMk(ΩΓ,Th).

We reiterate that the requirement vh ∈ H(div,ΩΓ) allows for discontinuous normal–traces

across the fracture network; a degree of freedom doubling will occur on the edges making

up the fracture network, reminiscent of DG methods, for example.

Moreover, we now define two configurations of approximation spaces that we will refer to

in the remainder of this chapter, utilising either RT or BDM spaces for the bulk Darcy

velocity approximation. We define firstly, for k ≥ 0, the spaces

V Ω
h,k = {vh ∈ RTk(ΩΓ,Th) : (vh · n)|∂ΩN = 0},

MΩ
h,k = {q ∈ Pk(ΩΓ,Th)},

V Γ
h,k = {v̂h ∈ Pck+1(Γ,Γh) :

∑
l∈Si(v̂h|γl · τl)|i = 0 ∀i ∈ I, (v̂ · τ )|IF = 0},

MΓ
h,k = {q̂ ∈ Pk(Γ,Γh)}.

(I)

Moreover, define for k ≥ 1, the spaces

V Ω
h,k = {vh ∈ BDMk(ΩΓ,Th) : (vh · n)|∂ΩN = 0},

MΩ
h,k = {q ∈ Pk−1(ΩΓ,Th)},

V Γ
h,k = {v̂h ∈ Pck+1(Γ,Γh) :

∑
l∈Si(v̂h|γl · τl)|i = 0 ∀i ∈ I, (v̂ · τ )|IF = 0},

MΓ
h,k = {q̂ ∈ Pk(Γ,Γh)}.

(II)
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One may notice from configuration (II), that we increase the polynomial degree of the

discrete velocity space when moving down a dimension onto the fracture network. In essence,

this is so that the polynomial degree of normal–traces of functions from V Ω
h match that of

MΓ
h . We refer to [27], which deals with each of these configurations also, referring to them

as families of spaces of the first and second kind, respectively, looking at them from the

more abstract view within exterior calculus.

4.5 Well–posedness of the discrete problem

With either configuration of spaces (I) or (II), the discrete problem is to:

Find (uh, ûh) ∈ Vh,k = V Ω
h,k × V Γ

h,k and (ph, p̂h) ∈Mh,k = MΩ
h,k ×MΓ

h,k such that

A((uh, ûh), (vh, v̂h)) +B((vh, v̂h), (ph, p̂h)) = Fu((vh, v̂h)), (4.13)

B((uh, ûh), (qh, q̂h)) = F p((qh, q̂h)), (4.14)

for all (vh, v̂h) ∈ Vh,k and (qh, q̂h) ∈Mh,k.

For the discrete problem (4.13)–(4.14), we of course would like to show the existence of a

unique solution, and that this solution converges to the exact solutions of the continuous

problem (4.8)–(4.9) under mesh refinement (i.e. as h → 0). Since the numerical method

employed is conforming, the continuity of the bilinear forms A and B, as well as the con-

tinuity of the linear functionals Fu and F p, transfer directly onto the discrete subspaces.

Therefore, in order to show well–posedness for (4.13)–(4.14), similar to that presented in

Section 4.3.4, we need to show that two key criteria are satisfied.

To this end, define the discrete null space

V0
h = {(vh, v̂h) ∈ Vh : B((vh, v̂h), (qh, q̂h)) = 0 ∀(qh, q̂h) ∈Mh},

noting that, in general, V0
h 6⊂ V0, defined in (4.10). Exactly the same as in the continuous

case, it is sufficient that the bilinear form A is coercive on the discrete null space V0
h.

Secondly, the bilinear form B must satisfy a discrete inf–sup condition; i.e. we require the

existence of a constant β∗ > 0, which is independent of h, such that

sup
(vh,v̂h)∈Vh

B((vh, v̂h), (qh, q̂h))

‖(vh, v̂h)‖V
≥ β∗‖(qh, q̂h)‖M ∀(qh, q̂h) ∈Mh.

For the remainder of this chapter, we consider only the spaces in configuration (I) with

k = 0; such can be referred to as a lowest order RT approximation. To approach the discrete

well–posedness in this setting, some interpolation theory is a necessary prerequisite.
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4.5.1 Interpolation in a lowest order approximation

Proceeding with a lowest–order RT approximation, we firstly associate with the discrete

space Mh,0 = MΩ
h,0 ×MΓ

h,0 the L2–projection operator πh,0 = (πΩ
h,0, π

Γ
h,0) : M → Mh,0.

These individual operators are each defined by∫
ΩΓ

(q − πΩ
h,0[q])ϕh = 0 ∀ϕh ∈MΩ

h,0,∫
Γ

(q̂ − πΓ
h,0[q̂])ϕ̂h = 0 ∀ϕ̂h ∈MΓ

h,0.

Furthermore, we have the following well–known interpolation estimates, (see [71, 56], for

example), where C may differ in each case, but is independent of h and (q, q̂).

‖q − πΩ
h,0[q]‖L2(ΩΓ) ≤ Ch‖q‖H1(ΩΓ), (4.15)

‖q̂ − πΓ
h,0[q̂]‖L2(Γ) ≤ Ch‖q̂‖H1(Γ). (4.16)

The projection, or interpolation, operator associated with the space V requires some extra

regularity, so that normal–traces of the functions we interpolate are square–integrable. To

this end, we define for a fixed s > 2 the space

W(s) := V ∩ ([Ls(ΩΓ)]2 × [Ls(Γ)]2).

Within standard literature, for example [25], the usual, lowest–order, H(div)–interpolation

operator simply enforces that the integral average of the normal–traces across element edges

match, for both the function v and its interpolant. However, since continuity of normal–

traces are not required across those edges forming the fracture network Γ, we double the

degrees of freedom associated to the edges making up the fracture network and interpolate

from either side. To this end, we partition the edges Eh into those intersecting Γ and

those that do not; i.e., Eh = Eoh ∪ Γh. We then define the interpolation operator Πh,0 =

(ΠΩ
h,0,Π

Γ
h,0) : V(s) → Vh,0 using the following degrees of freedom∫

E
(v −ΠΩ

h,0[v]) · nE = 0 ∀E ∈ E o
h ,∫

E
(v± −ΠΩ

h,0[v±]) · n±E = 0 ∀E ∈ Γh.

Alternatively, insisting both the jump and average of the function and its interpolant are

equal across the edges E ∈ Γh is equivalent to the second stated condition. These degrees

of freedom come from the definition of the local interpolation operators ρκ : Ws(κ) :=

H(div, κ) ∩ [Ls(κ)]2 → RT0(κ), defined for each element κ ∈ Th, by∫
∂κ

p0(v − ρκ[v]) · nκ = 0 ∀p0 ∈ R0(∂κ), (4.17)

see, for example, [25] or Section 3.3.3.
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In three spatial dimensions, i.e. the case where the network of fractures consists of planes,

the degrees of freedom associated with ΠΓ
h,0 are similar to the usual interpolant for lowest–

order RT approximations. That is,∫
e

(v̂ −ΠΓ
h,0[v̂]) · ne = 0 ∀e ∈ ΓE

h ,

where ΓE
h is the set of interfaces in the partition Γh. However, when in two spatial di-

mensions, as is the case for this work, the fracture network is one–dimensional and so the

interpolation operator looks different. Indeed, in this case ΠΓ
h,0 is just the standard Lagrange

interpolation operator, where the function v̂ and its interpolant agree at the nodal points

of the one–dimensional elements in Γh [56].

Moreover, let Y : RT0(κ) → R0(∂κ) be the discrete normal–trace mapping defined by

vh 7→ (vh · nκ)|∂κ. According to (4.17) we have∫
∂κ

p0(v − ρκ[v]) · nκ = 0 ∀p0 ∈ Im(Y ),

or equivalently, ∫
∂κ

[(v − ρκ[v]) · nκ](wh · nκ) = 0 ∀wh ∈ RT0(κ).

It should be clear that the quantity ρκ[v] · nκ is nothing more than the L2–projection of

v ·nκ from L2(∂κ) onto Im(Y ) ⊂ R0(∂κ)6. Consequently, usual bounds for L2–projections

imply that, on either side of an edge E ∈ Eh, we have

‖([v − ρκ± [v]) · nE ]±‖L2(E) ≤ C±hE‖[v · nE ]±‖H1(E),

for some constant C > 0, independent of h and v ∈ [H1(ΩΓ)]2; from which we can infer

‖[(v −Πh,0[v]) · nΓ]±‖L2(Γ) ≤ C̃±h‖[v · nΓ]±‖H1(Γ).

Furthermore, there are constants CA, CJ > 0 such that

‖{(v −ΠΩ
h,0[v]) · nΓ}‖L2(Γ) ≤ CAh‖{v · nΓ}‖H1(Γ), (4.18)

‖J(v −ΠΩ
h,0[v]) · nΓK‖L2(Γ) ≤ CJh‖Jv · nΓK‖H1(Γ). (4.19)

We have also the usual interpolation estimates, referring again to [71, 56].

‖v −ΠΩ
h,0[v]‖[L2(Ω)]2 ≤ Ch‖v‖[H1(Ω)]2 , (4.20)

‖div(v −ΠΩ
h,0[v])‖L2(Ω) ≤ Ch‖div v‖H1(Ω), (4.21)

‖v̂ −ΠΓ
h,0[v̂]‖L2(Γ) ≤ Ch‖v̂‖H1(Γ), (4.22)

‖divτ (v̂ −ΠΓ
h,0[v̂])‖L2(Γ) ≤ Ch‖divτ v̂‖H1(Γ). (4.23)

6Since L2–projection is unique and ρκ[v] · nκ ∈ R0(∂κ).
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Note that the estimates on the divergences are also a consequence of L2–projection.

Furthermore, an extremely useful property we have is that each of the interpolation operators

πh,0 and Πh,0 are uniformly continuous (see [56], for example7); that is,

‖πh,0[(q, q̂)]‖M ≤ ‖(q, q̂)‖M ∀(q, q̂) ∈M, (4.24)

‖Πh,0[(v, v̂)]‖V ≤ C‖(v, v̂)‖H ∀(v, v̂) ∈ H, (4.25)

where H = [H1(ΩΓ)]2 × H1(Γ) ⊂ V, and the inclusion H ↪→ V is continuous and dense;

this space is equipped with the product norm

‖(v, v̂)‖2H := ‖v‖2[H1(ΩΓ)]2 + ‖v̂‖2H1(Γ).

The operators Πh,0 and πh,0 play an important role in proving well–posedness for the discrete

problem; in particular, they satisfy a commuting property with the divergence operators

defined on the bulk and the fracture network. Indeed, to this end we define the operator

DIV : V→M via the usual divergence operators, by

DIV(v, v̂) := (div v,divτ v̂ − Jv · nΓKΓ) ∀(v, v̂) ∈ V.

The following commuting property is well known for this lowest order configuration of spaces:

DIV(Πh,0[(v, v̂)]) = πh,0[DIV(v, v̂)],

and this implies, thanks to properties of commuting diagrams, that

DIV(Wh,0) = Mh,0.

Remark 4.14. From [56] we gain insight into the case where the grids are non–matching,

i.e. Γh is a mesh independent of Th. Here, we must introduce the discrete divergence

DIVh : Vh → Mh defined as DIVh(vh, v̂h) = (div vh,divτ v̂h − πΓ
h,0[Jvh · nΓK]), since the

trace–space of the bulk velocity space V Ω
h is not, in general, a subset of the fracture pressure

space MΓ
h . Indeed, here we have, in general, that DIVhΠh,0[v, v̂] 6= πh,0DIV(v, v̂). However,

we still do have the commuting properties for the individual interpolation operators:

div ΠΩ
h,0[v] = πΩ

h,0[div v],

divτ ΠΓ
h,0[v̂] = πΓ

h,0[divτ v̂].

Indeed, in this setting, in general,

πΓ
h,0[v · n] 6= πΓ

h,0[ΠΩ
h,0[v] · n].

7Who also reiterates that, indeed, (4.24) without a constant is well known for L2–projections.



4.5. WELL–POSEDNESS OF THE DISCRETE PROBLEM 56

4.5.2 Verification of discrete well–posedness

We can now address the well–posedness of (4.13)–(4.14) using a lowest–order RT approxi-

mation. The satisfaction of the two criteria discussed in Section 4.5 can now be shown.

We first notice a link between the bilinear form B and the DIV operator; that is,

B((v, v̂), (q, q̂)) = −(DIV(v, v̂), (q, q̂))M,

for all (v, v̂) ∈ V and (q, q̂) ∈M. This means that the null space V0 is equal to the kernel of

DIV. We have already seen in Section 4.5.1 that DIV(Vh,0) = Mh,0, and this automatically

implies that

V0
h,0 ⊂ V0.

Indeed, this is because the operator associated with B when defined on Vh,0 ×Mh,0 is

nothing more than the divergence operator DIV restricted to Vh,0. With such an inclusion,

the proof of coercivity of the bilinear form A on V0, given by Lemma 4.5, transfers directly

onto V0
h,0.

Although the surjectivity of DIV from Vh,0 onto Mh,0 is an equivalent condition for the

discrete inf–sup condition to hold (since both L2(ΩΓ) and L2(Γ) can be identified with

their respective dual spaces), it does not guarantee that the obtained inf–sup constant is

independent of the mesh size parameter h. As in Chapter 3, we appeal to Proposition 3.20,

restated below as Proposition 4.15 using the notations of this chapter.

Proposition 4.15. Assume there is the Banach space H ↪→ V, with norm ‖ · ‖H and a

linear subspace Qh ⊂Mh, with a semi–norm | · |Q. Suppose that, for some βH > 0 we have

sup
(v,v̂)∈H

B((v, v̂), (qh, q̂h))

‖(v, v̂)‖H
≥ βH|(qh, q̂h)|Q ∀(qh, q̂h) ∈ Qh, (4.26)

and assume that there exists a linear operator Πh : H→ V such thatB((Πh[(v, v̂)]− (v, v̂), (qh, q̂h)) = 0 ∀(v, v̂) ∈ H, ∀(qh, q̂h) ∈ Qh,

‖Πh[v, v̂]‖V ≤ CH‖(v, v̂)‖H,
(4.27)

with CH > 0 independent of h. Then, we have

sup
(vh,v̂h)∈Vh

B((vh, v̂h), (qh, q̂h))

‖(vh, v̂h)‖V
≥ β∗|(qh, q̂h)|Q ∀(qh, q̂h) ∈ Qh,

with β∗ = βH

CH
.

Proof. See [25, Proposition 5.4.3].
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Under the foregoing notation of this chapter, along with Qh = Mh,0, Proposition 4.15 is

indeed satisfied for a lowest order RT approximation and we have discrete inf–sup stability

with a constant independent of h, for reasons precisely the same as in Section 3.4: commuting

properties of the DIV operator with Πh, and the uniform continuity of Πh from H onto V8.

We note also that the proof of Lemma 4.6 showed that continuous inf–sup holds also on

the subspace H ⊂W, since the solutions ϕ and ϕ̂, of the stated auxiliary problems, are in

H2(Ω) and H2(Γ), respectively9.

We refer the reader to the works [27, 26] for details concerning the interpolation, discrete

well–posedness, and subsequent convergence, when considering the spaces in both configura-

tions (I) and (II) with arbitrary order. These works utilise a dimensional hierarchy approach

much different from that presented here, along with elements of exterior calculus to describe

reduced fracture models in a unified fashion; standard literature concerning finite element

approximations for flow in fractured media is typically only done in lowest order RT, or a

different method is used entirely. The choice here to remain in lowest order RT is one made

in light of ease of presentation.

4.5.3 Convergence of the discrete solutions

We conclude this chapter by very briefly addressing the topic of convergence. As we saw

in the absence of fractures, discrete well–posedness with constants independent of the mesh

parameter h imply the quasi–optimality result given in Theorem 2.8. We have that here

also, restated with the relevant notations of this chapter.

Proposition 4.16. Let [(u, û), (p, p̂)] ∈ V×M be the solution of the problem (4.8, 4.9), and

[(uh, ûh), (ph, p̂h)] ∈ Vh ×Mh be the solution of the discrete problem (4.13, 4.14); assume

each of these problems are well–posed according to Theorem 2.7. Letting β∗ be an inf–sup

constant for the discrete pair (Vh,Qh) and CA the coercivity constant for A(·, ·) on W0
h,

one has the following estimate, with a constant C depending on ‖A‖, ‖B‖, β∗, and CA, but

independent of h:

‖(u− uh, û− ûh)‖V + ‖(p− ph, p̂− p̂h)‖M

≤ C
(

inf
(vh,v̂h)∈Vh

‖(u− vh, û− v̂h)‖V + inf
(qh,q̂h)∈Mh

‖(p− qh, p̂− q̂h)‖M
)
.

Moreover, when we have the inclusion of the null spaces V0
h ⊂ V0, we have

‖(u− uh, û− ûh)‖V ≤ C inf
(vh,v̂h)∈Vh

‖(u− vh, û− v̂h)‖V.

8Throughout, we have used H instead of the less regular space W(s) since the former is required so that

the interpolation estimates can indeed be used.
9As is the case also when considering networks of fractures, see [55] for details.
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We then arrive at the following a priori convergence result.

Theorem 4.17. Under the notations of this section, we have the following a priori error

estimate, where the constant C > 0 is independent of h:

‖(u− uh, û− ûh)‖V + ‖(p− ph, p̂− p̂h)‖M

≤ Ch(‖(p, p̂)‖M + ‖(u, û)‖H + ‖(div u,divτ û)‖M

+ ‖{u · nΓ}‖H1(Γ) + ‖Ju · nΓK‖H1(Γ)),

assuming the exact solutions are regular enough so that the right–hand–side is defined.

Proof. Using the interpolation operators πh,0 and Πh,0, defined in Section 4.5.1, we see that

inf
(vh,v̂h)∈Vh

‖(u− vh, û− v̂h)‖V ≤ ‖(u−ΠΩ
h,0[u], û−ΠΓ

h,0[û])‖V,

inf
(qh,q̂h)∈Mh

‖(p− qh, p̂− q̂h)‖M ≤ ‖(p− πΩ
h,0[p], p̂− πΓ

h,0[p̂])‖M.

The proof follows by applying Proposition 4.16 and the estimates (4.15, 4.16, 4.18, 4.19,

4.20, 4.23).

Remark 4.18. To end, we note that [94] obtains the same convergence result except taking

care to handle how the fracture width might be involved in the constant C. Indeed, here

it is shown that C = max{wΓ, h}. Moreover, [27] has a convergence result for any k in

configurations (I) or (II); here it is shown that the convergence is of order hk+1, where k is

the order of the polynomials in the bulk pressure space.



Chapter 5

Streamlines through fractured

porous media

Previously, Chapter 4 presented the model and numerical approximation, via a mixed finite

element method, of the bulk–fracture flow equations. Our attention turns now to streamline

tracing within this same setting.

Furthermore, in this chapter we describe the procedure where streamlines can be traced

through a porous medium that contains fractures. Recall that in our setting, the bulk

porous medium is represented by a two–dimensional Lipschitz domain, but the fractures,

as described in Chapter 4, are one–dimensional manifolds embedded in the domain. Indeed

in the case where a streamline intersects a fracture, there is a lack of transversal flow

information across its width; hence we cannot determine its trajectory after this intersection

has occurred.

This chapter is organised as follows. First, we re–cap the governing equations of the bulk–

fracture flow model, under the simplifying case of a single one–dimensional immersed frac-

ture embedded in some two–dimensional domain; we then discuss the fracture expansion

procedure and introduce an interpolant, or ansatz, for the definition of the continuous and

discrete velocity fields inside the expanded fracture; we conclude by showing that weak

forms of conversation of mass and Darcy’s law are still satisfied in this expanded fracture

with the defined velocity field, as well as discussing the lack of satisfaction of the strong

form of Darcy’s law even when it is true for the non–expanded variables.

59
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5.1 Expansion of fractures

Given that a particle trajectory intersects a fracture, the only current option, following the

work presented thus far in this thesis, is to interpret the trajectory as moving along the

fracture, along its tangent direction1. However, recalling the model (4.1, 4.2), we see that

no–flow conditions are also imposed in and out of the fracture tips, and therefore there is

no way for the trajectory to exit the fracture in some reasonable sense. Our approach to

this problem is inspired by the work by Hægland, et al. in the works [66, 64], as example

papers from the thesis [63] (and the other papers and references therein), where the same

problem was faced in the finite volume setting. Hægland details a procedure in which the

one–dimensional fracture is expanded back into two dimensions; here, Pollock’s method is

employed to interpolate constant velocity fluxes into and inside the fracture in order to

satisfy conservation of mass and an integrated form of Darcy’s law. Then, the streamline

can be traced through the now two–dimensional fracture until it intersects the bulk domain

again; this exit-point is mapped back onto the one-dimensional fracture and is taken as the

exit-point in the original bulk–fracture setting, where streamline tracing can then resume

at this point2. A cartoon example, showing what such streamline tracing may look like in

fractured domains can be seen in Figure 5.1.

Fig. 5.1 – Cartoon example of what streamline tracing might look like through a fracture

network.

5.1.1 The governing equations

Here, we briefly recall the governing equations for flow in fractured porous media, used

previously in this thesis. For the sake of simplicity, we consider here only the case where a

single fracture is fully embedded in the domain. To this end, let Ω ⊂ R2 be an open and

1The direction according to the velocity û, here a scalar and defined according to the governing equations

(5.1, 5.2).
2Cf. Figure 5.4 and Section 5.2.
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bounded domain with Lipschitz, or polygonal, boundary3 ∂Ω. Assume further the boundary

is partitioned by the non-empty sets ∂ΩN and ∂ΩD. As usual, n denotes the unit outward

normal vector to ∂Ω.

We denote here a single fracture γ ⊂ Ω and assume that it is fully immersed in the domain.

Indeed, here we do not consider the intersection of different fractures within some network,

nor the intersection of a fracture with the domain boundary; we refer the reader to [66] for

these details. Moving forward, with the fracture tips ∂γ = {X0, X1}∩∂Ω = ∅, we apply this

setting to (4.1, 4.2) with IF = ∂γ. Recall the notation Ωγ = Ω\γ denoting the bulk part of

the porous medium and nγ the unit outward normal vector to the fracture. Assuming the

fracture is filled with debris, the governing equations are, again, given as the below coupled

problem.



K−1u +∇p = 0 in Ωγ ,

div u = f in Ωγ ,

p = gD on ∂ΩD,

u · n = 0 on ∂ΩN ,

η{u · nΓ} = JpK on γ,

ηξ0Ju · nΓK = {p} − p̂ on γ,

(5.1)


K̂−1û+ ∂x̂p̂ = 0 in γ,

∂x̂û = f̂ + Ju · nγK in γ,

û = 0 on ∂γ.

(5.2)

The coordinate system on γ is given by (x̂, ŷ) where the x̂ direction points in the direction

of the fixed, unit tangent vector τ to γ, and ŷ the unit normal vector nγ . Our fracture is

assumed a straight line embedded in the domain and so these vectors are indeed fixed and

constant along the fracture length and aperture; cf. Figure 5.2.

Fig. 5.2 – A single fracture in the domain, with associated unit normal and tangent vectors.

3For well–posedness we may also assume it is a convex polygon or Lipschitz with a C1 boundary.
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We recall also the scaled quantities K̂ = wγK̂ττ and η = wγ/K̂n as the effective permeabil-

ity and effective conductivity, respectively, where wγ is the aperture, or width, of the fracture

and K̂τ and K̂n are the tangential and normal components of the fracture permeability. We

assume the fracture width is constant along all of its length.

The weak formulation of this system of equations, and their numerical approximation by

a mixed finite element method was covered in Chapter 4. For example, we can employ a

lowest order approximation using the spaces in configuration (II) to obtain the numerical

solutions (uh, ph) and (ûh, p̂h) on some triangulation Th of the domain Ω. Recall that the

fracture γ will be represented by mesh edges in the triangulation of the bulk, denoted by

γh = {E ∈ Eh : E ∩ γ 6= ∅}, where Eh is the set of all interfaces in Th. In this example

setting, uh is piecewise linear on the triangles; ph is piecewise constant on the triangles; ûh

is piecewise quadratic and continuous on the edges in γh; and p̂ is piecewise linear on the

edges in γh.

5.2 Streamline tracing

Suppose x0 ∈ Ωγ . We are interested in the particle trajectory starting at x0 due to the

Darcy velocity u; denoted by Xu : [0,∞) → R2, the trajectory satisfies the usual initial

value problem given by
dXu

dt
=

u

ψ
,

where ψ is a scalar field representing the porosity of the rock making up the bulk domain.

Suppose at some time t∗ > 0 we have, for the first time, an intersection of the particle

trajectory with the fracture, i.e.,

Xu(t∗) ∈ γ.

Indeed, it is not possible to proceed with the streamline tracing under the current regime.

Since γ is a one–dimensional manifold embedded in Ω, there is no transversal flow informa-

tion available due to the averaging process undergone to derive the modelling equations in

the first place. Furthermore, there is no flow out of the fracture tips either, meaning Xu

will be trapped inside of the fracture, stagnating. Following the work by [66], we proceed

similarly by expanding and re–imagining the fracture γ in two spatial dimensions, denoting

this expanded fracture by γ∗.

First, however, we will introduce some notation moving forward. As per the diagram shown

in Figure 5.3, γ is expanded so that it has a physical width wγ ; the original position of

the fracture corresponding to ŷ = 0 (i.e. so that for notational convenience, γ = {(x̂, 0) ∈

γ∗} ⊂ γ∗) in this coordinate system. As discussed in Section 5.1, we follow the procedure as



5.2. STREAMLINE TRACING 63

Fig. 5.3 – Expansion process for a single fracture.

pictured: the streamline intersects γ; the entry point A = Xu(t∗) is mapped to a point B

on the boundary of γ∗ based on the direction of entry; the streamline is, somehow, traced

within γ∗ until it exits; this exit point C is mapped back onto the one–dimensional fracture

γ at the point D; tracing of the particle trajectory then resumes in the bulk domain. Such

process is sketched in Figure 5.4.

The aim moving forward is to determine how to trace the streamline within γ∗, i.e., how to

define a suitable velocity in the expanded fracture that allows for physical streamlines to be

traced, that make sense. Indeed, one could solve the paired Darcy’s law and conservation

of mass equations in the expanded fracture itself, as an option, to obtain a velocity field

to trace the streamlines. However, when in realistic applications the number of fractures

occupying the domain (and hence the number of possible intersections with the traced

streamline) is often in the thousands4, this does not seem very computationally feasible.

Instead, we present a computationally simpler approach, that is, one of a post–processing

nature involving an interpolant, or ansatz, of the bulk and fracture velocities u and û,

respectively, solving (5.1, 5.2) (or indeed, as we shall see, their approximations).

Furthermore, we denote the boundary of the expanded fracture as ∂γ∗ ≡ ∂γ∗+ ∪ ∂γ∗− ∪

∂γ∗S ∪ ∂γ∗E , the partition into the segments making up the top, bottom, start, and end of

this two–dimensional object, respectively.

To this end, we propose the following velocity field to be employed when tracing streamlines

4See [55], for example.
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Fig. 5.4 – Streamline tracing utilising the expansion procedure.
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through the expanded fracture γ∗:

u∗ :=
û

wγ
τγ + φ(x̂, ŷ)nγ , (5.3)

where the scalar function φ is yet to be determined.

In the discrete setting, recall that the fracture γ is already partitioned by γh = {(`i−1, `i) :

i = 1, 2, . . . , N}. The one dimensional elements (originally mesh edges in Th) are expanded

into rectangular elements in γ∗. We write

γ∗h = {Vi : i = 1, 2, · · ·N},

where Vi is the rectangle of dimensions wγ × (`i − `i−1), wγ is the constant (parameter)

width of γ, and now the constant, physical, width of γ∗. The expansion of the fracture mesh

into these elements is illustrated in Figure 5.5.

For a given Vi we describe its boundary in sections, similar to the boundary of γ∗; those

corresponding to the bulk–fracture interface are labelled as ∂V ±i while the side bound-

aries, corresponding to the fracture element interfaces, as labelled as ∂V
S/E
i ; S/E meaning

start/end, in line with the direction of the tangent vector τγ , to γ and γ∗; cf. Figure 5.6.

Furthermore, we will utilise the following characteristic functions defined on these rectan-

gular elements.

χi(x̂, ŷ) =

1 (x̂, ŷ) ∈ Vi,

0 otherwise.

In this discrete setting, we propose the following interpolant approximation to be employed

when tracing streamlines through the expanded fracture γ∗:

u∗h :=
ûh
wγ
τγ +

N∑
i=1

φi(x̂, ŷ)χi(x̂, ŷ)nγ , (5.4)

where the scalar functions φi, i = 1, 2, . . . , N , are to be determined, and indeed, their sum

(multiplied by characteristic functions) corresponding to an approximation of the scalar field

φ, in the continuous ansatz (5.3).

5.3 Weak conservation of mass

Moving forward, a choice must be made for the normal component φ. A sensible choice

is to enforce flux–continuity between the interface of the bulk domain and the expanded

fracture, hence having φ match the incoming normal–flux here. We choose to impose this

flux–continuity so that the streamlines traced into the expanded fracture remain continuous,

and hence physical. In the discrete setting, we will show a possible choice for the φi that
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Fig. 5.5 – Mesh transformation on the expanded fracture.

Fig. 5.6 – Boundary notations for an element in the expanded fracture mesh.
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match the number of degrees of freedom present on the interface, in the bulk; for example,

using the spaces in configuration (II) to obtain uh and ûh, the bulk normal–flux is piecewise

linear on the edges making up γ (and hence the boundary of γ∗). Here, φi being chosen

as a bilinear function in the element Vi means it has enough degrees of freedom to match

the linear functions from either side of the fracture, and this, of course, can be extended to

reasonable interpolants for higher–order bulk velocities.

Indeed, following the above discussion, along ∂γ∗ we should have u∗ ·η+ u ·η = 0, where η

is the (not fixed) unit outward normal vector to to ∂γ∗, and where u is the Darcy velocity

in the bulk domain. From the definition of u∗, i.e., (5.3), we see that along ∂γ∗

u∗ · η = u∗ · (±τγ) = ± û

wγ
= 0 on ∂γ∗±,

and hence, the flux–continuity condition becomes

φ(x̂,±wγ/2) = −T±[u · nγ ]5. (5.5)

With the flux–continuity (5.5) we obtain a full definition for the ansatz u∗; with this, we

have the following proposition showing a satisfaction of conservation of mass, in a weak

sense.

Proposition 5.1. With the interpolated velocity field u∗, given by (5.3), such that φ is

chosen according to (5.5), we have∫
γ∗
q̂div u∗ =

∫
γ∗
q̂
f̂

wγ
∀q̂ ∈ L2(γ).

Proof. Firstly, according to Green’s formula (Proposition 2.3), we have for a fixed q̂ ∈ L2(γ),∫
γ∗
q̂div u∗ =

∫
∂γ∗

q̂(u∗ · η)−
∫
γ∗
∇̂q̂ · u∗,

where η is the unit outward normal to ∂γ∗. We see that since

∇̂q̂ · u∗ =

∂x̂q̂
0

 ·
û/wγ

φ

 = ∂x̂q̂û/wγ ,

then ∫
γ∗
q̂div u∗ =

∫
∂γ∗

q̂(u∗ · η)−
∫
γ∗
∂x̂q̂

û

wγ
.

Moving forward, we can split the boundary integral into contributions over each part of the

boundary, i.e.,∫
∂γ∗

q̂(u∗ · η) =

∫
∂γ∗+

q̂(u∗ · nγ) +

∫
∂γ∗−

q̂(u∗ · (−nγ)) +

∫
∂γ∗S

q̂(u∗ · (−τ )) +

∫
∂γ∗E

q̂(u∗ · τ ).

5We have abused notation here to emphasise needing the fixed normal vector nγ , instead of using the

normal–trace operator ±T d,±[u], with a sign adjustment since nγ = n+ = −n−.
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Furthermore, we know the integrand on each part of these boundary components. Therefore,∫
γ∗
q̂(u∗ · η) =

∫
∂γ∗+

q̂φ(x̂, wγ/2)−
∫
∂γ∗−

q̂φ(x̂,−wγ/2)−
∫
∂γ∗S

q̂
û

wγ
+

∫
∂γ∗E

q̂
û

wγ

=

∫
γ

q̂(φ(x̂, wγ/2)− φ(x̂,−wγ/2)) + wγ

(
q̂(`E)

û(`E)

wγ
− q̂(`S)

û(`S)

wγ

)
=

∫
γ

−q̂Ju · nγK + q̂(`E)û(`E)− q̂(`S)û(`S)

=

∫
γ

q̂(−∂x̂û+ f̂) + q̂(`E)û(`E)− q̂(`S)û(`S),

where the final equality follows from (4.8, 4.9), the weak formulation for the continuous

solution û. Now,

−
∫
γ

q̂∂x̂û =

∫
γ

û∂x̂q̂ − (q̂(`E)û(`E)− q̂(`S)û(`S)),

due to integration by parts. With this, we see that∫
γ∗
q̂div u∗ =

∫
γ

û∂x̂q̂ − (q̂(`E)û(`E)− q̂(`S)û(`S)) +

∫
γ

q̂f̂

+ q̂(`E)û(`E)− q̂(`S)û(`S)−
∫
γ∗
∂x̂q̂

û

wγ

=

∫ wγ/2

−wγ/2

∫
γ

û

wγ
∂x̂q̂ −

∫
γ∗

û

wγ
∂x̂q̂ +

∫
γ

q̂f̂

=

∫
γ∗

û

wγ
∂x̂q̂ −

∫
γ∗

û

wγ
∂x̂q̂ +

∫
γ

q̂f̂

=

∫
γ

q̂f̂ =

∫ wγ/2

−wγ/2

∫
γ

q̂
f̂

wγ

=

∫
γ∗
q̂
f̂

wγ
.

Hence, the flux–continuity assumption (5.5) is reasonable to assume for sensible streamline

computation since it implies that conservation of mass is retained within this setting.

Let us consider the discrete setting with a single expanded element Vi. In this setting, it

is, due to the expansion, neighboured by two triangular elements from the underlying bulk

mesh Th. Let us consider the restriction, or trace, of the bulk-velocity uh to the top and

bottom boundary components ∂V ±i . Recall that the expanded element Vi corresponds to

the one-dimensional element (`i−1, `i); hence, we can interpret the flow of uh into ∂V ±i as

the same as the flow into either side of the one-dimensional element, conceptually, as

(uh · nγ)|∂V ±i := T±(`i−1,`i)
[uh · nγ ].

Furthermore, in the interpolated discrete velocity

u∗h :=
ûh
wγ
τγ +

N∑
i=1

φi(x̂, ŷ)χi(x̂, ŷ)nγ , (5.6)
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the φi are selected so as to satisfy the flux–continuity property, normal to the expanded

fracture:

φi(x̂,±wγ/2) ≡ −(uh · nγ)|∂V ±i (x̂) ∀x̂ ∈ (`i−1, `i). (5.7)

Suppose the adjacent triangular elements to Vi are labelled κ±i . Within the discrete setting,

the bulk uh|κ±i ∈ BDMk+1(κ±i ), where the lowest order case corresponds to k = 0. The

condition (5.7) can indeed be satisfied given that

φi|∂V ±i ∈ T
d[BDMk+1(κ±i )] ≡ Pk((`i−1, `i)).

For example, in the lowest order case, φi being chosen as a bilinear function means flux–

continuity between the bulk–fracture interface can be enforced. More explicitly, suppose

(uh · nγ)|∂V ±i ≡ A
±
i +B±i x̂,

φi(x̂, ŷ) ≡ ai + bix̂+ ciŷ + dix̂ŷ.

Then, (5.7), along with some simple linear algebra, leads to

ai = −(A+
i +A−i )/2, (5.8)

bi = −(B+
i +B−i )/2, (5.9)

ci = −(A+
i −A

−
i )/wγ , (5.10)

di = −(B+
i −B

−
i )/wγ . (5.11)

Moreover, the same mass conservation holds true when considering the discrete interpolated

velocity field u∗h. We see in the above proof to Proposition 5.1, that it is the consequence of

basic calculus paired with the flux–continuity requirement on φ and the weak formulation of

the original fracture-bulk Darcy problem; the same weak formulation holds in the discrete

setting, i.e., (4.13, 4.14), and thus we may arrive at the following result.

Corollary 5.2. With the interpolated, discrete, velocity field u∗h given by (5.6) such that

the φ is chosen according to (5.7), we have∫
Vi

div u∗h =

∫
Vi

f̂

wγ
∀i = 1, 2, . . . , N.

Proof. As detailed before, we have the discrete version of Proposition 5.1∫
γ∗
q̂hdiv u∗h =

∫
γ∗
q̂h

f̂

wγ
∀q̂h ∈Mγ

h,k,

recalling from configuration (II) the discrete spaces û ∈ V γh,k ≡ {v̂h ∈ Pck+1(γ, γh) : v̂|IF = 0}

and q̂h ∈ Mγ
h,k = Pk(γ, γh) taken for a single fracture in the network. Let q̂h = χi be the

characteristic function on Vi, then the result follows immediately.
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Something that has not been addressed yet is the continuity of flux between the elements Vi

in the expanded fracture. When tracing a streamline within Vi there is no guarantee it will

enter the fracture and leave without entering a neighbouring expanded element. Therefore,

it is vital that we have tangential continuity of the flux, u∗h · τ across the interfaces between

the Vi; this will ensure the streamline stays continuous when being traced from one Vi to

the next. Fortunately, with the interpolant (5.3), this continuity is achieved automatically

since ûh is continuous across this interface and wγ is constant; recall that

ûh ∈ {Pck(γ, γh) : ûh|IF = 0}.

Being the only tangential part of the expanded velocity field means no further work needs

to be done in order to achieve this flux–continuity.

The full choice, or definition, of φ in the continuous setting is still an open question, since

the only restriction required is the condition (5.5). For example, one choice is to interpolate

the continuous velocities u and û onto some mesh of the bulk domain and fracture, such

that their normal–trace is respected, and then apply the aforementioned discussion in the

discrete setting to define φ via the sum of discrete φi.

Alternatively, φ could yet be determined by other physical laws on the expanded fracture.

One may consider Darcy’s law to be the answer, however, we shall see in the following

section that a weak formulation of Darcy’s law is automatically satisfied in this setting and

that a strong form cannot hold true even if the bulk and fracture velocities each satisfy their

respective strong forms of Darcy’s law as well.

5.4 Weak Darcy’s law

Let K∗ be the permeability tensor in the expanded fracture, which matches the permeability

of the one–dimensional fracture via

K∗ =

Kτγ 0

0 Knγ

 .

Just as we have defined an interpolated velocity field, representing the Darcy velocity within

the expanded fracture γ∗, it is useful to think about the pressure as well. We define such a

pressure by

p∗(x̂, ŷ) = p̂(x̂) + q∗(x̂, ŷ),

where p̂ is the pressure solution on the one–dimensional fracture, satisfying (5.1, 5.2). This

follows the ansatz–style approach we have taken thus far; indeed, p̂, and more so its discrete

approximation p̂h, will be known to us, and are already stored when it comes round to
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streamline computation. With these in place, we have already the weak satisfaction of

Darcy’s law in the expanded fracture, given in the below proposition.

Proposition 5.3. Under the foregoing notations, we have the following formulation of

Darcy’s law in the expanded fracture γ∗:∫
γ∗

(K∗−1u∗)v̂τγ =

∫
γ∗
p∗∂x̂v̂ ∀v̂ ∈ V γ ,

recalling the function space V γ = {v̂ ∈ H1(γ) : v̂|IF = 0}. Furthermore, the interpolated

pressure field is such that q∗(x̂, ŷ) ≡ 0, i.e., p∗ = p̂.

Proof. We begin by noting that due to its diagonal nature,

K∗−1 =

1/Kτγ 0

0 1/Knγ

 .

Furthermore,

K∗−1u∗ = K−1
τγ

û

wγ
τγ +K−1

nγ φnγ .

Recall the definition: K̂ := wγKτγ to see that

(K∗−1u∗) · v̂τγ = K̂−1ûv̂

for some given, fixed, v̂ ∈ V γ . The weak formulation (4.8, 4.9) tells us that∫
γ

K̂−1ûv̂ =

∫
γ

p̂∂x̂v̂ ∀v̂ ∈ V γ .

Therefore,∫
γ∗

(K∗−1u∗) · v̂τγ =

∫
γ∗
K̂−1ûv̂ = wγ

∫
γ

K̂−1ûv̂ = wγ

∫
γ

p̂∂x̂v̂ =

∫
γ∗
p̂∂x̂v̂.

With p∗ = p̂+ q∗, we would require∫
γ∗
q∗∂x̂v̂ = 0 ∀v̂ ∈ V γ ,

which, of course, implies q∗ = 0 (a.e.) in γ∗.

The fact that the quantity q∗ vanishes is only required because of the diagonal form of the

permeability field K∗. Indeed, if τγ ·K∗−1nγ 6= 0, which may happen, for example, if K∗

has a non–zero entry (2, 1), then the term∫
γ∗
v̂τγ ·K∗−1nγφ 6= 0.

In this case, we will see that the relation∫
γ∗
v̂τγ ·K∗−1nγφ =

∫
γ∗
q∗∂x̂v̂ ∀v̂ ∈ V γ (5.12)
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is required. This expression relates together q∗ in the interpolated pressure field with φ,

which, up to this point is otherwise undetermined in the interior of the expanded fracture.

If we use again an interpolant for φ, (5.12) may imply a suitable choice for q̂ so that Darcy’s

law is satisfied. Or alternatively, some interpolant for q will imply a choice for φ in the

interior of the fracture.

We note that with p∗ interpreted as the pressure inside the expanded fracture, we do not

have pressure continuity between the interface of bulk and fracture, otherwise assumed in

the original model (in [94], for example) before averaging takes place. This however will not

have an effect on the physicality of streamline tracing in this context.

Lastly, we remark that Proposition 5.3 holds also in the discrete setting with interpolated

velocity field u∗h, test functions v̂h ∈ V γh,k and interpolated pressure p∗h = p̂h
6.

5.4.1 Strong Darcy’s law

To conclude this chapter we look briefly at an interesting property of our interpolated veloc-

ity u∗ in the expanded fracture. That is, that even if we are in the fortunate circumstance

where our bulk and (one–dimensional) fracture variables satisfy their physical laws in their

strong form, that the same cannot be said for our choice of interpolated velocity field in the

expanded fracture; we show this in two ways.

Firstly, suppose that u∗ satisfies Darcy’s law in γ∗. That is,

u∗ = −K∗∇̂p∗, (5.13)

where p∗ = p̂(x̂)+q∗(x̂, ŷ) is the pressure in γ∗; q∗ is to be determined; and ∇̂ is the gradient

operator in the expanded fracture, i.e., (∂x̂, ∂ŷ)>. Explicitly, we haveû/wγ
φ

 = −K∗

∂x̂p̂+ ∂x̂q
∗

∂ŷq
∗

 .

In the direction of x̂ we have

û

wγ
= −Kτγ (∂x̂p̂+ ∂x̂q

∗).

Since (5.13) tells us that wγKτγ = K̂ and û+ K̂∂x̂p̂ = 0, the above becomes

K̂∂x̂q
∗ = 0,

which, since K̂ 6= 0 is a scalar in this setting, simply states that

∂x̂q
∗ = 0.

6Indeed, the bulk–fracture problem has Galerkin orthogonality: the continuous and discrete solutions

satisfy the same weak formulation.
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This lack of x̂ dependence in q∗ causes an immediate issue, since in the ŷ direction we have

− φ

Knγ

= ∂ŷq
∗,

i.e., q∗ must have x̂ dependence. This is indeed a contradiction, and therefore Darcy’s law

cannot be imposed this way.

Alternatively, let us suppose instead that p∗ might take a different form. Given that u∗ =

−K∗∇̂p∗, we consider the curve ζi obtained by tracing the boundary of some arbitrary

element Vi anti-clockwise. Since the permeability tensor is constant, and since the curl of a

gradient is always zero, we must have that the path integral∫
ζi

u∗ · ds = 0. (5.14)

Recall that ∂Vi = ∂V +
i ∪ ∂V

−
i ∪ ∂V Si ∪ ∂V Ei . The contributions of (5.14) along the top

and bottom of γ∗ (i.e. ∂V ±i ) will cancel each other out since û does not depend on ŷ.

Furthermore, we then would require∫ wγ/2

−wγ/2
(φi(`i−1, ŷ)− φi(`i, ŷ)) dŷ = 0.

For example, if using the lowest order projection uh = Πh,0[u] to define the φi, we would

require

wγbi(`i−1 − `i) = 0,

with bi defined according to (5.9), which is clearly not possible. Hence, within this context,

u∗ cannot satisfy (5.13) with any possible choice of scalar field p∗.



Chapter 6

Goal–oriented estimation for

Darcy’s equations

Within this chapter, our focus is on the error estimation for quantities of interest involving

the solutions to Darcy’s equations. We first present the standard dual–weighted–residual

(DWR) theory employed in order to derive a posteriori error estimates for such quantities.

Subsequently, these estimates are decomposed over the triangulation of the domain used

to define the discrete approximations, in order to drive a standard adaptive algorithm for

accurate computation of the quantities of interest. We briefly cover some alternative choices

for this decomposition, as well as addressing the convergence of quantities of interest in the

context of Darcy’s equations, before finishing the chapter with some numerical examples.

These examples highlight some interesting features of the chosen decomposition of the a

posteriori error estimate, namely their so–called sharpness. We conclude with an example

where the adaptive routine not only recovers the optimal rate of convergence for an irregular

solution, but showcases superconvergence of the quantity of interest, in some cases.

6.1 The dual–weighted–residual method

This section aims to apply the standard theory of dual–weighted–residual error estimation

for quantities of interest for the so–called primal problem given by the variational form of

Darcy’s equations (3.8, 3.9)1. It is not precisely the solutions (that is, the Darcy velocity u

1We do not consider fractures in this chapter, but aim towards extending the theory presented here and

in the subsequent Travel Time chapter for porous domains with networks of fractures.

74
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and the pressure p) that we are interested in; we are instead concerned with some quantity

involving the solutions, often referred to as the quantity of interest (QoI). We seek to be

able to control and minimise the error in the QoI, when the exact solutions are replaced

by a discrete approximation, e.g., the solutions of (3.19, 3.20), to within some user–defined

tolerance.

The theory presented here is standard DWR theory, following for example [18, 69]; most

literature on the topic covers the following analysis and is often self–contained.

We assume the QoI can be expressed as the potentially nonlinear functional Q([u, p]) of

the solutions u and p. In brief, the selection of such a QoI readily defines a problem

considered adjoint to (3.8, 3.9); this problem is exploited in order to derive an estimate for

the error in the QoI when evaluated at the discrete solutions (uh, ph), i.e. an estimate for

Q([u, p]) − Q([uh, ph]). In the case of a nonlinear functional, also referred to as the goal

functional, some notion of its derivative is required, which we present below.

Definition 6.1. Let X be a vector space, Y a normed space and F : X → Y a function.

Then, given x ∈ X, if the limit

F ′[x](w) := lim
ε→0

F (x+ εw)− F (x)

ε

exists, for all w ∈ X, and the mapping w 7→ F ′[x](w) is linear and continuous, then F

is said to be Gâteaux differentiable at x. Moreover, in this case we refer to the quantity

F ′[x](·) : X → Y as the Gâteaux derivative, of F , evaluated at x.

Definition 6.2. Let X and Y be normed spaces, and let F : X → Y be a function. For

x ∈ X, if a continuous linear operator F ′[x](·) : X → Y exists such that

lim
‖h‖X→0

‖F (x+ h)− F (x)− F ′[x](h)‖Y
‖h‖X

= 0,

then F is said to be Fréchet differentiable at x and F ′[x](·) is referred to as the Fréchet

derivative of F , evaluated at x. It is also true that if F is Fréchet differentiable at x then it

is Gâteaux differentiable at x as well, and these derivatives coincide.

We proceed with the error estimation in a general setting. To this end, let H be a Hilbert

space and let N (·, ·) : H ×H → R be a semi–linear form (in its second argument) such that

the abstract primal problem has the form:

Find u ∈ H such that

N (u, v) = 0 ∀v ∈ H. (6.1)

Let Hh ⊂ H be a finite dimensional subspace defining the abstract discrete primal problem:
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Find uh ∈ Hh such that

N (uh, vh) = 0 ∀vh ∈ Hh. (6.2)

Of course, since vh ∈ Hh implies vh ∈ H, we have the Galerkin orthogonality property

N (u, vh)−N (uh, vh) = 0 ∀vh ∈ Hh. (6.3)

Let Q(·) : H → R be the functional representing the quantity of interest (that is, we are

interested in the value of Q(u)). We allow for the case that Q(·) is nonlinear, but insist

that it is Fréchet differentiable, according to Definition 6.2. To this end, the mean–value–

linearisation of Q(·) is defined by

Q(u, uh;u− uh) :=

∫ 1

0

Q′[θu+ (1− θ)uh](u− uh) dθ = Q(u)−Q(uh).

Furthermore, consider the mapping u 7→ N (u, v); for a fixed v ∈ H, denote byN ′u[w](·, v) the

Fréchet derivative of this mapping, evaluated at some w ∈ H. The mean–value–linearisation

of N (·, v) is then

M (u, uh;u− uh, v) :=

∫ 1

0

N ′u[θu+ (1− θ)uh](u− uh, v) dθ = N (u, v)−N (uh, v).

With the above notation, we define the abstract adjoint problem I as:

Find z ∈ H such that

M (u, uh;w, z) = Q(u, uh;w) ∀w ∈ H. (6.4)

Moreover, define the residual by

R(uh, w) := −N (uh, w) ∀w ∈ H.

Then, given below in Theorem 6.3, we have an error representation formula for the QoI.

Theorem 6.3. Under the foregoing notation, let u be the solution of the continuous problem

(6.1) with discrete approximation uh solving (6.2). Then, for the goal functional Q(·) : H →

R we have

Q(u)−Q(uh) = R(uh, z − zI) ∀zI ∈ Hh,

where z is the solution to the adjoint problem (6.4).
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Proof. We have, ∀zI ∈ Hh,

Q(u)−Q(uh) = Q(u, uh, u− uh) (6.5)

= M (u, uh;u− uh, z) (6.6)

= M (u, uh;u− uh, z) +N (uh, zI)−N (u, zI) (6.7)

= M (u, uh;u− uh, z)−M (u, uh;u− uh, zI) (6.8)

= M (u, uh;u− uh, z − zI) (6.9)

= N (u, z − zI)−N (uh, z − zI) (6.10)

= −N (uh, z − zI) (6.11)

= R(uh, z − zI). (6.12)

In view of estimating the error Q(u) − Q(uh), Theorem 6.3 is an excellent start. Here, we

removed an explicit dependence of the error on the solution u to the primal problem (6.1),

although the adjoint solution z still depends on u. Therefore, unless we know the solution

z solving the adjoint problem (6.4), which we very rarely do, the expression given by the

error representation formula is not computable and cannot be used in practice.

In order to proceed, and obtain a computable estimate for the error Q(u) − Q(uh), the

general approach in the DWR method is to approximate the problem (6.4). To this end, we

need to introduce two further problems. Firstly consider a linearised version of the abstract

adjoint problem I, which is obtained by putting u = uh in (6.4):

Find z? ∈ H such that

N ′[uh](w, z?) = Q′[uh](w) ∀w ∈ H. (6.13)

We refer to the above problem as the abstract adjoint problem II. Again, one cannot solve

(6.13) in general; moreover, its use is that it readily, and more easily, allows us to define a

suitable discrete problem. To this end, let Wh ⊂ H be a finite–dimensional subspace such

that Wh 6⊂ Hh. Then, we wish to:

Find zh ∈Wh such that

N ′[uh](wh, zh) = Q′[uh](wh) ∀wh ∈Wh. (6.14)

We refer to (6.14) as the abstract discrete adjoint problem II, which can be solved using

similar finite element methods used to obtain the solution approximation uh. The condition

that Wh 6⊂ Hh is essential due to the aforementioned Galerkin orthogonality property (6.3).

If Wh ⊂ Hh, then we see that replacing z with zh in Theorem 6.3 tells us that

Q(u)−Q(uh) ≈ R(uh, zh − zI) = −N (uh, zh − zI) = 0
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since zh − zI ∈ Hh and since uh solves the discrete problem (6.2); this statement is clearly

not very useful in practice. Examples of a suitable Wh include using the same triangulation

of the domain as the space Hh but with a higher polynomial degree of approximation, or

using the same polynomial degree but on some finer mesh; we employ the former in this

chapter. Using all of the adjoint problems (6.4, 6.13, 6.14), we see that the residual may be

decomposed into the three parts

Q(u)−Q(uh) = R(uh, z − z?) + R(uh, z? − zh) + R(uh, zh − zI). (6.15)

The first term R(uh, z − z?) represents the error induced by the approximate linearisation

of adjoint problem I, and the second term R(uh, z? − zh) represents the error induced by

discretising adjoint problem II. The last term, R(uh, zh − zI), is most useful since it is

computable. If we assume that the other, noncomputable, residual terms converge to zero

with an asymptotic rate faster than this latter term, we can estimate the error in the QoI

with the computable part directly via

Q(u)−Q(uh) ≈ R(uh, zh − zI) ∀zI ∈ Hh, (6.16)

which we refer to as the computable error estimate2. Typically, zI ∈ Hh is chosen to be a

projection of the discrete linearised adjoint solution zh. The importance of this projection

is essential to ensure that the double rate of convergence expected in optimal goal–oriented

adaptive regimes is retained when elementwise error indicators are defined based on (6.16),

cf. Section 6.3.

Moving forward, (6.1) may define a residual R(uh, zh − zI) that can be localised, or de-

composed, into a sum of elementwise contributions on a triangulation Th of the domain,

defining the space Hh. Doing so would give us the error estimate, and stopping criterion S

such that

|Q(u)−Q(uh)| ≈
∣∣∣∣ ∑
κ∈Th

ηκ

∣∣∣∣ ≤ ∑
κ∈Th

|ηκ| =: S.

Indeed, we would like the bounded sum

S :=
∑
κ∈Th

|ηκ|

to converge with the same rate as the goal error Q(u)−Q(uh) on a sequence of meshes ob-

tained via refinement. In practice, this can be checked by considering the bounded effectivity

index θ≥; that is, if

θ≥ :=
S

|Q(u)−Q(uh)|
→ Υ ∈ R, (6.17)

2Cf. [73].
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then S remains representative of the error under mesh refinement and could be a viable

choice as the stopping criterion for the refinement algorithm, as long as it also remains an

upper bound. If this is the case, the local indicators ηκ are referred to as being sharp.

The bounded sum S being used as a stopping criterion means that the adaptive refinement

algorithm should be terminated when

S ≤ TOL

for a user–defined tolerance TOL > 0. If the indicators are sharp then S ≤ TOL should mean

that the error is below this tolerance as well3. If S remains an upper bound then using it as a

stopping criterion will give an extra level of security, and certainty, in practical applications.

Furthermore, as we shall see in Section 6.6, it is the absolute values of the indicators ηκ

that are considered when marking elements for refinement when considering an adaptive

refinement algorithm. If the indicators are not sharp then we cannot possibly hope to

obtain optimal meshes for the given quantity of interest, since the bounded sum S no longer

represents the goal error Q(u)−Q(uh).

6.2 DWR formulation of Darcy’s equations

Here, we will briefly contextualise the a posteriori error analysis presented in Section 6.1 for

the case of (the variational form of) Darcy’s equations (3.8, 3.9). Furthermore, we decompose

the error estimate (6.16), in the context of Darcy’s equations into element–based indicators

on a mesh Th based on the usual integration–by–parts approach.

To this end, we recall some notation from Chapter 3. Let Ω be the usual open, bounded,

Lipschitz domain in R2 whose polygonal boundary is partitioned into ∂Ω = ∂ΩD ∪ ∂ΩN .

Define the spaces V := H0,N (div,Ω) and Q := L2(Ω), according to Section 2.1. We define,

on the shape–regular triangulation Th the approximation spaces Vk
h and Qkh according to

Section 3.4, for k an integer; that is,

Mk(Ω,Th) := {vh ∈ H(div,Ω) : vh|κ ∈Mk(κ) ∀κ ∈ Th}, (6.18)

V kh := {vh ∈Mk(Ω,Th) : (vh · n)|∂ΩN = 0}, (6.19)

moreover,

Dk(κ) = div(Mk(κ)) =

Pk(κ) (Mk(κ) = RTk(κ)),

Pk−1(κ) (Mk(κ) = BDMk(κ)),

3Although as noted in [92], we are not even guaranteed the upper bound Q(u) −Q(uh) ≤ S employing

these standard DWR techniques, and more sophisticated techniques should be employed instead.
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and

Qkh := L0(Dk,Th) = {qh ∈ L2(Ω) : Qh|κ ∈ Dk(κ), ∀κ ∈ Th}. (6.20)

We proceed by rewriting the variational formulation of Darcy’s equations (3.8, 3.9), and

its finite element approximation (3.19, 3.20), in a form such that the theory from Section

6.1 can be readily applied. To this end, recall the bilinear forms a(·, ·) : V × V → R and

b(·, ·) : V × Q → R and the linear functionals G ∈ V ∗ and F ∈ Q∗, defined in (3.6) and

(3.7), respectively, and define the following spaces:

W := V ×Q,

W k
h := V kh ×Qkh.

Define the bilinear form A (·, ·) : W ×W → R as

A ([v, q], [v′, q′]) := a(v,v′) + b(v′, q) + b(v, q′),

and the linear functional L (·) : W → R by

L ([v, q]) := G(v) + F (q).

Thereby, the (continuous) primal problem can be stated as:

Find [u, p] ∈ W such that

A ([u, p], [v, q]) = L ([v, q]) ∀[v, q] ∈ W .

The appropriate semi–linear form N (·, ·) : W ×W → R is thus

N ([v, q], [v′, q′]) := A ([v, q], [v′, q′])−L ([v′, q′]),

so that the primal problem is equivalent to:

Find [u, p] ∈ W such that

N ([u, p], [v, q]) = 0 ∀[v, q] ∈ W . (6.21)

Furthermore, the discrete primal problem is:

Find [uh, ph] ∈ W k
h such that

N ([uh, ph], [vh, qh]) = 0 ∀[vh, qh] ∈ W k
h . (6.22)

For a given QoI functional Q(·) : W → R, adjoint problem I is to:

Find [z, r] ∈ W such that

A ([v, q], [z, r]) = Q([u, p], [uh, ph]; [v, q]) ∀[v, q] ∈ W . (6.23)
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The adjoint solutions [z, r] to (6.23) will be referred to as being the adjoint velocity and

adjoint pressure, respectively.

Subsequently, the (linearised) adjoint problem II is to:

Find [z?, r?] ∈ W such that

A ([v, q], [z?, r?]) = Q′[[uh, ph]]([v, q]) ∀[v, q] ∈ W . (6.24)

Moreover, we define the discrete adjoint problem II on the same mesh as the discrete primal

problem, but with an increased polynomial degree of approximation; i.e.,

Find [zh, rh] ∈ W k+1
h such that

A ([vh, qh], [zh, rh]) = Q′[[uh, ph]]([vh, qh]) ∀[vh, qh] ∈ W k+1
h . (6.25)

For ease of language we will refer to the solutions [zh, rh] as being the discrete adjoint

velocity and discrete adjoint pressure, respectively, although they are technically the discrete

approximations to the solutions of adjoint problem II. With these problems in mind, applying

Theorem 6.3 and looking again at the decomposition of the residual term, we arrive with

ease at the computable error estimate for Darcy’s equations, for a generic QoI Q([u, p]):

Q([u, p])−Q([uh, ph]) ≈ R([uh, ph], [zh − zI , rh − rI ]) (6.26)

= L ([zh − zI , rh − rI ]−A ([uh, ph], [zh − zI , rh − rI ]). (6.27)

Again, (cf. Section 6.1) zI and rI are typically chosen to be projections of the discrete

linearised adjoint solutions zh and rh, respectively, so that the double rate of convergence

in the error of the QoI is retained when defining elementwise error indicators, defined next

as part of Section 6.3.

6.3 Decomposition of the computable error estimate

In this section, we decompose the computable error estimate (6.27) into element–based

indicators on the mesh Th, based on the usual, integration–by–parts approach4, this de-

composition and subsequent indicator description is taken from [73].

To this end, writing the right–hand–side of (6.27) as a sum over the mesh Th, we get

Q([u, p])−Q([uh, ph]) ≈
∑
κ∈Th

(
− 〈(zh − zI) · nκ, gD〉∂κ∩∂ΩD −

∫
κ

(rh − rI)f

−
∫
κ

K−1uh · (zh − zI) +

∫
κ

ph∇ · (zh − zI) +

∫
κ

(rh − rI)∇ · uh
)
,

(6.28)

4A technique commonly used and similar to the standard integration–by–parts decomposition employed

for Poisson’s equation, see [86, pp. 105–107] for example.



6.3. DECOMPOSITION OF THE COMPUTABLE ERROR ESTIMATE 82

where nκ denotes the unit outward normal vector to element κ ∈ Th. Employing the Green’s

formula stated in Proposition 2.3, we see that in particular∫
κ

ph∇ · (zh − zI) = −
∫
κ

(zh − zI) · ∇ph + 〈(zh − zI) · nκ, ph〉∂κ.

Therefore, summing over the elements in the mesh, gives∑
κ∈Th

∫
κ

ph∇ · (zh − zI) =
∑
κ∈Th

(
−
∫
κ

(zh − zI) · ∇ph +
1

2
〈(zh − zI) · nκ, JphK〉∂κ\∂Ω

+ 〈(zh − zI) · nκ, ph〉∂κ∩∂ΩD

)
, (6.29)

where J·K denotes the jump operator across an element face. Inserting (6.29) into (6.28)

gives the following result.

Theorem 6.4. Under the foregoing notation, we have the (approximate) a posteriori error

estimate

|Q([u, p])−Q([uh, ph])| ≈
∣∣∣∣ ∑
κ∈Th

ηκ

∣∣∣∣ ≤ ∑
κ∈Th

|ηκ|

where the element indicator ηκ is split into the four contributions

ηκ ≡ ηBCκ + ηDLκ + ηCMκ + ηPRκ ,

each given by:

ηBCκ = 〈(zh − zI) · nκ, ph − gD〉∂κ∩∂ΩD , (6.30)

ηDLκ = −
∫
κ

(K−1uh +∇ph) · (zh − zI), (6.31)

ηCMκ =

∫
κ

(rh − rI)(∇ · uh − f), (6.32)

ηPRκ =
1

2
〈(zh − zI) · nκ, JphK〉∂κ\∂Ω. (6.33)

Each of the indicator contributions (6.30)–(6.33) is adjoint–weighted and may be interpreted

as the following: ηBCκ measures how well the boundary condition (3.3) is satisfied; ηDLκ

measures how well Darcy’s Law (3.1) is satisfied; ηCMκ measures how well the conservation

of mass equation (3.2) is satisfied; and finally, ηPRκ is a measure of the interior pressure

residual across element interfaces.

To conclude this section we briefly discuss a triviality which occurs when a lowest–order

approximation is used for the discrete problem (6.22). Here, the discrete pressure ph is a

piecewise–constant function on the elements in the mesh. Therefore, wherever the jump

term JphK appears (which is in the contribution ηPR
κ ), it is piecewise–constant per element,

on its edges. If zI is selected as being Πhzh, with the interpolation operator defined by
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(3.13), then we have

1

2
〈(zh −Πhzh) · nκ, JphK〉∂κ\∂Ω ≡

1

2

∫
∂κ\∂Ω

(zh − ρκzh) · nκJphK = 0,

since the boundary integral is computed as sum of internal edge integrals, and recalling

the definition of ρκ in either Definition 3.13 or Definition 3.14. The same behaviour occurs

within the contribution ηBCκ , here we see that

〈(zh −Πhzh) · n, ph〉∂κ∩∂Ω ≡
∫
∂κ∩∂Ω

(zh − ρκzh) · nph = 0. (6.34)

This tells us is that ηPR
κ = 0 for all κ ∈ Th; furthermore, combined with (6.34), this shows

that the element–based indicators defined in Theorem 6.4 are precisely the same as those

appearing in (6.28) where the integrals over the domain are simply taken over the elements

instead, and no integration–by–parts has taken place.

6.4 Alternative decompositions

As a brief aside, while not being implemented in the work of this thesis, here we discuss a

couple of interesting, alternative choices for decomposing the error estimate (6.27). Indeed,

the integration–by–parts approach presented in Theorem 6.4 is not the only way to decom-

pose the residual; different definitions for the indicators ηκ may have different properties

relating to sharpness and the optimality of adaptive mesh refinement. The two approaches

below were investigated when trying to seek indicators that are sharp under an RT imple-

mentation. A simple variational approach defines different indicators than those presented

before, however in practice the same problems were encountered concerning sharpness for

RT velocity approximations. The second approach utilises a partition of unity (PU) and

here the defined indicators can be proven sharp under a BDM implementation, the im-

plementation of these was not carried out during this research due to the apparent added

complexity compared to those defined under the integration–by–parts approach; it is still

unclear how these would behave under an RT approximation.

6.4.1 A simple variational localisation

The first, of two, alternative decompositions we consider is obtained easily exploiting the

fact that, in practice, the approximate solutions (zh, rh), obtained via (6.25), are found in

the space W k+1
h . Thereby, the discrete adjoint solutions employed in the error estimate are

defined on the same mesh as the discrete primal solution, but with a higher polynomial de-

gree. Using hierarchical bases to build the space W k+1
h allows for the following construction

of element–based indicators.
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Indeed, since [zh, rh] ∈ W k+1
h , there are coefficients zi and ri such that

z? ≡
N∑
i=1

ziwi, r? ≡
M∑
j=1

rjϕj ,

where wi and ϕi are basis functions spanning V k+1
h and Qk+1

h , respectively. We see that

Q([u, p])−Q([uh, ph]) ≈ L ([zh, rh])−A ([uh, ph], [zh, rh])

= G(zh) + F (rh)− a(uh, zh)− b(uh, rh)− b(zh, ph)

=

N∑
i=1

zi(G(wi)− a(uh,wi)− b(wi, ph)) +

M∑
j=1

rj(F (ϕj)− b(uh, ϕj)).

We first define indicators that are associated to each of the basis functions, given by

ηzi := zi(G(wi)− a(uh,wi)− b(wi, ph)),

and

ηrj := rj(F (ϕj)− b(uh, ϕj)),

which allows us to write

Q([u, p])−Q([uh, ph]) ≈
N∑
i=1

ηzi +

M∑
j=1

ηrj .

If we re–index via

ηi :=

η
z
i i = 1, 2, . . . N,

ηri−N i = N + 1, . . . N +M,

then we can write more simply the decomposition of the error estimate (6.27) as

Q([u, p])−Q([uh, ph]) ≈
N+M∑
i=1

ηi.

We could choose to stop here: when considering element marking for adaptive refinement,

the indicators ηi chosen then correspond to a particular basis function in the space W k+1
h ;

those elements occupying the support of the selected basis functions are those selected for

refinement.

Alternatively, we could instead redistribute the basis–dependent indicators among the ele-

ments in the mesh. This is achieved, for example, by defining for κ ∈ Th

ηκ :=
∑
i∈I

ηi
ci,κ

,

where I is the index set of basis functions having support on element κ. The constant

ci,κ serves to distribute ηi across the elements intersecting the support of its corresponding

basis function. For example, if ηi is the indicator for a basis function with two elements
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intersecting its support (those sharing the edge it is associated to, for example), then ci,κ = 2.

These element–based indicators5 are used as usual in terms of marking and refining since

Q([u, p])−Q([uh, ph]) ≈
∑
κ∈Th

ηκ.

6.4.2 A partition of unity decomposition

Decomposition by a partition of unity is a more well studied type of decomposition, par-

ticularly by the authors Wick et al. in, for example, [116, 131]. Here, instead of the

basis–dependent indicators being defined by the discrete adjoint solutions (zh, rh), they are

defined by a partition of unity (PU). Usually using the standard continuous, linear, hat

functions, consider the partition of unity

1 =
∑
i

ϕi,

such that ‖∇ϕi‖L∞(Ω) = O(h−1) as h→ 0.

Going back to the full, noncomputable error representation formula6, given by

Q([u, p])−Q([uh, ph]) =− 〈(z− zI) · n, g〉∂Ω −
∫

Ω

K−1uh · (z− zI)

+

∫
Ω

ph∇ · (z− zI)−
∫

Ω

f(r − rI) +

∫
Ω

(r − rI)∇ · uh,

we define the PU indicator η̂i by

η̂i :=− 〈ϕi(z− zI) · n, g〉∂Ω −
∫

Ω

K−1uh · ϕi(z− zI) (6.35)

+

∫
Ω

ph∇ · (ϕi(z− zI))−
∫

Ω

fϕi(r − rI) +

∫
Ω

ϕi(r − rI)∇ · uh. (6.36)

Clearly,

Q([u, p])−Q([uh, ph]) =
∑
i

η̂i,

and these indicators can be redistributed among the elements in a similar way to the decom-

position presented in Section 6.4.1; that is, split across the elements in the mesh supporting

the function ϕi. Moreover, these indicators are indeed sharp when using a BDMk imple-

mentation, when we set zI and rI as the usual projections, or interpolants; this result is

presented below as Theorem 6.5.

5These indicators were in fact implemented alongside those given by Theorem 6.4; similar results were

found in the examples showcased in Section 6.6, especially concerning the sharpness of the indicators under

an RT0 implementation. Furthermore, there is empirical evidence that these indicators are also sharp for a

BDM1 implementation.
6Stated as part of Theorem 6.3.
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Theorem 6.5. Suppose [u, p] is the solution of (6.21), [uh, ph] is the solution of (6.22),

and for a given QoI with functional Q(·) : W → R, [z, r] is the solution of (6.23). Assume

the solutions [u, p] and [z, r] are smooth enough so that they achieve the optimal bounds

in Theorem 3.21, Proposition 3.17, and Proposition 3.18. Then, there is a constant C =

C(u,∇ · u, z,∇ · z, p, r) such that ∑
i

|η̂i| ≤ Ch2k,

with the PU indicators η̂i defined by (6.35, 6.36) and zI = Πhz, rI = Phr.

Proof. Since, for all i, we have ϕi(z− zI) ∈ H0,N (div,Ω), then (3.8) tells us that

−〈ϕi(z− zI) · n, g〉∂Ω =

∫
Ω

K−1u · ϕi(z− zI)−
∫

Ω

p∇ · (ϕi(z− zI)).

Thus,

η̂i =−
∫

Ω

(p− ph)∇ · (ϕi(z− zI)) +

∫
Ω

K−1(u− uh) · ϕi(z− zI)

−
∫

Ω

fϕi(r − rI) +

∫
Ω

ϕi(r − rI)∇ · uh.

Furthermore, since for all i, we have ϕi(r − rI) ∈ L2(Ω) then

−
∫

Ω

fϕi(r − rI) = −
∫

Ω

ϕi(r − rI)∇ · u.

This tells us that

η̂i = −
∫

Ω

(p− ph)∇ · (ϕi(z− zI)) +

∫
Ω

K−1(u−uh) ·ϕi(z− zI)−
∫

Ω

ϕi(r− rI)∇ · (u−uh).

Next, since we have the following product rule for divergence

∇ · (ϕi(z− zI)) = ∇ϕi · (z− zI) + ϕi∇ · (z− zI),

we know that

η̂i =−
∫

Ω

(p− ph)ϕi∇ · (z− zI)−
∫

Ω

(p− ph)∇ϕi · (z− zI) (6.37)

+

∫
Ω

K−1(u− uh) · ϕi(z− zI)−
∫

Ω

ϕi(r − rI)∇ · (u− uh). (6.38)

The integrals over Ω in (6.37, 6.38) can instead be replaced with the patch of elements

supp(ϕi) ⊂ Pi = ∪κ. By applying the triangle inequality, and pulling out the supremums

of the functions ϕi and ∇ϕi, we see that

|η̂i| ≤ ‖ϕi‖L∞(Pi)‖p− ph‖L2(Pi)‖∇ · (z− zI)‖L2(Pi) (6.39)

+ ‖∇ϕi‖L∞(Pi)‖p− ph‖L2(Pi)‖z− zI‖[L2(Pi)]2 (6.40)

+
1

λ−
‖ϕi‖L∞(Pi)‖u− uh‖[L2(Pi)]2‖z− zI‖[L2(Pi)]2 (6.41)

+ ‖ϕi‖L∞(Pi)‖∇ · (u− uh)‖L2(Pi)‖r − rI‖L2(Pi), (6.42)
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where, in particular, the term (6.41) follows by the triangle inequality paired with the

condition (3.5).

The result is readily seen, noting that ‖ϕ‖L2(Pi) = O(1), ‖∇ϕ‖L2(Pi) = O(h−1) and by

application of the bounds from Theorem 3.21, Proposition 3.17, and Proposition 3.18.

Although we have a proof of sharpness for these indicators, their implementation is slightly

more tricky than those used in Theorem 6.4, which (cf. Section 6.6) already show evidence

of being sharp, and so are not implemented within this work. A PU application, and proof

of sharpness, under a Raviart–Thomas approximation requires further research.

6.5 Convergence of quantities of interest

Before looking at some numerical examples in Section 6.6, we should address the convergence

of the approximation of the quantity of interest. This section aims to provide at least a

sufficient condition, under uniform mesh refinement, for us to see

Q([u, p])−Q([uh, ph])→ 0

given that the finite element approximations uh and ph converge7. Such a proof of conver-

gence is readily achieved by starting from (6.5), and applying the convergence results from

Theorem 3.21, Proposition 3.17, and Proposition 3.18. This a priori convergence result is

presented below as Theorem 6.6.

Theorem 6.6. Under the notation of Section 6.2, suppose [u, p] is the solution of (6.21),

[uh, ph] is the solution of (6.22), and for a given QoI with functional Q(·) : W → R, [z, r] is

the solution of (6.23). Assume the solutions [u, p] and [z, r] are smooth enough to achieve

the optimal bounds in Theorem 3.21, Proposition 3.17, and Proposition 3.18. Then, there

exists a constant C = C(u,∇ · u, z,∇ · z, p, r), independent of h, such that

|Q([u, p])−Q([uh, ph])| ≤ Ch2ϕ(k),

where ϕ(k) = k if Mk(κ) = BDMk in Vh, and ϕ(k) = k + 1 if Mk(κ) = RTk in Vh.

Proof. We begin by applying (6.5) with the appropriate notations for this context, and by

setting zI = Πhz and rI = Phr, where the interpolants are as they appear in Proposition

7To the exact solutions u ∈ V and p ∈ Q measured in their respective norms.
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3.17 and Proposition 3.18, respectively. Here, we see that

Q([u, p])−Q([uh, ph]) = Q([u, p], [uh, ph]; [u− uh, p− ph])

= M ([u, p], [uh, ph]; [u− uh, p− ph], [z−Πhz, r − Phr])

= A ([u− uh, p− ph], [z−Πhz, r − Phr]).

Therefore, since the bilinear form a(·, ·) is continuous on [H(div,Ω)]2 and since the bilinear

form b(·, ·) is continuous on H(div,Ω) × L2(Ω), there are constants ‖a‖ =: ca > 0 and

‖b‖ =: cb > 0 such that

|Q([u, p])−Q([uh, ph])| = |A ([u− uh, p− ph], [z−Πhz, r − Phr])|

= |a(u− uh, z−Πhz) + b(u− uh, r − Phr) + b(z−Πhz, p− ph)|

≤ |a(u− uh, z−Πhz)|+ |b(u− uh, r − Phr)|

+ |b(z−Πhz, p− ph)|

≤ ca‖u− uh‖H(div,Ω)‖z−Πhz‖H(div,Ω)

+ cb‖u− uh‖H(div,Ω)‖r − Phr‖L2(Ω)

+ cb‖z−Πhz‖H(div,Ω)‖p− ph‖L2(Ω).

The result follows immediately applying the a priori estimates: Theorem 3.21, Proposition

3.17, and Proposition 3.18.

6.6 Numerical experiments

Before we begin this section we address some nomenclature: by referring to either a BDM1

or RT0 implementation we mean that in the definition of the spaces (6.19) and (6.20),

we set Mk(κ) = BDM1(κ) or RT0(κ). In either case we have Dk(κ) = P0(κ) and the

approximation space Qkh has piecewise–constant functions.

Moving forward, we investigate the performance of an adaptive regime employing the lo-

cal error indicators defined in Theorem 6.4, for a couple of quantities of interest that are

described by linear functionals. The first example highlights an intriguing empirical obser-

vation: that is, the indicators are not sharp when an RT0 implementation is used. The

second experiment looks at an irregular primal solution on an L–shaped domain; here we

witness superconvergence in the (QoI) error when a BDM1 implementation is used. The

obtained results are compared with an RT0 implementation. In each case the quantity of

interest only depends on the pressure, p.

The adaptive regime is based on the loop

SOLVE→ ESTIMATE→ MARK→ REFINE→ SOLVE→ . . .
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There exist a variety of different marking strategies that can used to select suitable elements

for refinement. Here, we employ a marking strategy of Dörfler–type8. That is, a refinement

parameter ω ∈ (0, 1) is selected, by the user, and a minimal set of elements T ′ ⊂ Th are

marked, such that ∑
κ′∈T ′

|ηκ′ | ≥ ω
∑
κ∈Th

|ηκ| ≡ ωS. (6.43)

The strategy (6.43) reiterates the need for sharp indicators: it is indeed the bounded sum

S that is used to select elements for refinement.

In the interpretation of the obtained results, and often throughout this section, we will refer

to rates of convergence as being optimal, or not. For uniform mesh refinement we refer to

Theorem 6.6 in which, since the a priori error bounds, and interpolation error bounds, are

each optimal, has the optimal rate of convergence for the error in the approximate QoI.

Applying Theorem 6.6 for a BDM1 or RT0 implementation means that if the error in the

QoI is O(h2) as h→ 0, then this convergence is indeed optimal.

Of course, it does not make sense to talk about the mesh parameter h on an adaptively

refined mesh. With N denoting the number of degrees of freedom in the primal discrete

spaces (that is, the dimension of the space W k
h in (6.22)), in two dimensions, we know that

N−1 ∼ h2 on quasi-uniform meshes [123, pp. 31–34]. This means that for an RTk implemen-

tation, the optimal rate of convergence, for the error in the QoI, using adaptively refined

meshes is O(N−(k+1)), while for a BDMk implementation the optimal rate is O(N−k).

Therefore, when looking at the subsequent loglog plots for the errors involved in the upcom-

ing experiments, we plot N on the x–axis; a line of slope −1 will therefore show the optimal

rate for uniform and adaptive refinements, of the error in the QoI, under both an RT0 and

BDM1 implementation.

6.6.1 Experiment I: Sharpness of indicators

In this first experiment we set Ω = (0, 1)2 to be the unit square, and let the entire

boundary be made up of the Dirichlet part, i.e., ∂Ω = ∂ΩD and ∂ΩN = ∅. By setting

f = 2π2 sin(πx) sin(πy), gD = 0 and K = I2 in (3.8, 3.9), one obtains the solution

p = sin(πx) sin(πy),

8Introduced by Dörfler in [49], this marking strategy can be used in proving theoretical results for the

convergence of adaptive methods; see [37], for example.
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Fig. 6.1 – Initial and final adaptive meshes using a BDM1 implementation.

with associated Darcy velocity u = −∇p. Here, we consider the quantity of interest

Q([u, p]) :=

∫
Ω

x10y10p =
(−7257600 + 1814400π2 − 151200π4 + 5040π6 − 90π8 + π10)2

π22

≈ 0.000508986 . . .

The primal solutions (u, p) are clearly very smooth, therefore we should not expect adaptive

refinement to give approximations that outperform uniform refinement. Despite this, we

expect to see adaptive refinement in the top right corner of the domain, due to the adjoint

weighting.

As well as testing the indicators for sharpness via the bounded effectivity index (6.17), we

would like to test the effectiveness of the proposed a posteriori error estimator; i.e., gain

insight into the extent in which the computable error representation (6.27) approximates

the true goal error. For this, we look at the effectivity index

θh :=

∑
κ ηκ

Q([u, p])−Q([uh, ph])
. (6.44)

Indeed, if effectivity indices of 1 are witnessed then (6.27) can be deemed a reliable estimator.

In this experiment, a Dörfler marking parameter of ω = 1/3 is chosen. Table 6.1 shows the

results under a uniform refinement for a BDM1 implementation: we see effectivity indices

close to 1 on all meshes, showing that (6.27) is reliably predicting the size of the error; we can

also see from the same table that the bounded effectivity indices look to converge to some

constant, showing evidence that the indicators are sharp under uniform mesh refinement.

Moreover, under adaptive mesh refinement we witness the same behaviour, as concurred by

Table 6.2.

Furthermore, this example shows that the adaptive algorithm outperforms uniform mesh

refinements. However, a quick glance at the loglog plots in Figure 6.2 reveals that the error,

under uniform and adaptive refinements, eventually looks to converge with the same, optimal
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Table 6.1 – Results obtained under uniform refinement using a BDM1 implementation.

Number of DOF Error Est. Error S θh θ≥

3552 1.7140× 10−5 1.7236× 10−5 1.8163× 10−5 1.0056 1.0596

14080 4.2854× 10−6 4.2913× 10−5 4.5240× 10−6 1.0014 1.0557

56064 1.0715× 10−6 1.0718× 10−6 1.1300× 10−6 1.0003 1.0547

Table 6.2 – Results obtained under adaptive refinement using a BDM1 implementation.

Number of DOF Error Est. Error S θh θ≥

3552 1.7140× 10−5 1.7236× 10−5 1.8163× 10−5 1.0056 1.0596

3697 1.0871× 10−5 1.0903× 10−6 1.1829× 10−5 1.0029 1.0882

4028 6.6938× 10−6 6.7021× 10−6 7.6420× 10−6 1.0012 1.1416

4823 3.5798× 10−6 3.5828× 10−6 4.5373× 10−6 1.0008 1.2675

6252 1.9656× 10−6 1.9667× 10−6 2.9207× 10−6 1.0004 1.4856

8714 1.0316× 10−6 1.0319× 10−6 1.9546× 10−6 1.0003 1.8947

12856 6.1087× 10−7 6.1108× 10−7 1.3447× 10−6 1.0004 2.2013

19723 3.6458× 10−7 3.6469× 10−7 9.1105× 10−7 1.0003 2.4989

29833 2.8492× 10−7 2.8496× 10−7 6.0713× 10−7 1.0002 2.1309

44717 1.7964× 10−7 1.7967× 10−7 4.1597× 10−7 1.0001 2.3155

68226 1.1671× 10−7 1.1673× 10−7 2.8178× 10−7 1.0001 2.4143

Fig. 6.2 – Loglog plots for BDM1: left has uniform refinement; right has adaptive refine-

ment.

rate: O(h2) or O(N−1). The results for adaptive refinement could be pre–asymptotic; that

is, under further refinement we might expect to see a continuation of the optimal rate of

convergence.

However, different behaviour is witnessed when an RT0 implementation is used instead.

While we still seem to have a convergent algorithm for the adaptive regime, the loglog

plots in Figure 6.3, as well as the data in Tables 6.3 and 6.4, reveal a very obvious lack of

sharpness for the indicators, under both uniform and adaptive refinement; here a blow–up
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Fig. 6.3 – Loglog plots for RT0: left has uniform refinement; right has adaptive refinement.

Table 6.3 – Effectivity indices obtained under uniform refinement using an RT0 implemen-

tation.

Number of DOF θh θ≥

2212 1.0050 5.0338

8784 1.0013 9.9951

35008 1.0003 19.925

Table 6.4 – Effectivity indices obtained under adaptive refinement using an RT0 imple-

mentation.

Number of DOF θh θ≥

2212 1.0050 5.0338

2371 1.0016 7.2314

2961 1.0006 8.5513

4024 1.0004 15.9371

6149 1.0001 17.1098

10012 1.0001 26.1620

17140 1.0001 34.1628

28754 1.0000 42.4481

in the bounded effectivity indices is witnessed since the rate of convergence of the bounded

sum S (labelled as the upper bound) is no longer matching the rate of convergence witnessed

for the error itself. However, we still see effectivity indices close to 1 on all of the employed

meshes, and therefore the error estimate (6.27) is still a reliable error estimator in this

example.

We re–iterate that if the user were to use the bounded sum S, even in this example, as the

stopping criterion in the program utilising this adaptive regime, then the entire process will

have to run for a much longer time under an RT0 implementation, compared with BDM1,

since here S converges at a slower rate.
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A proposed conjecture for the lack of sharpness for an RT0 implementation, using the

indicators in Theorem 6.4, is that the resulting velocity space V kh in (6.19) is not a complete

polynomial space9. In a numerical investigation the term

ηDL
κ = −

∫
κ

(K−1uh +∇ph) · (zh − ρκzh)

seems to be the issue. Applying the Cauchy–Schwarz inequality we see that

S =
∑
κ

|ηκ| ≤
∑
κ

∣∣∣ ∫
κ

(K−1uh +∇ph) · (zh − ρκzh)
∣∣∣+
∑
κ

∣∣∣ηPR
κ + ηCM

κ + ηBC
κ

∣∣∣.
The latter term converges like O(h2), while∑
κ

∣∣∣ ∫
κ

(K−1uh+∇ph)·(zh−ρκzh)
∣∣∣ ≤ ‖zh−Πzh‖[L2(Ω)]

√∑
κ

‖K−1uh +∇ph‖2L2(κ) = O(h),

and this was concurred by the obtained numerics10.

This lower rate of convergence seems to pollute the bounded sum S, and we witnessed

S = O(h) as well. The investigation further revealed that the indicators ηκ are often similar

in size but of opposite sign: i.e., there is significant cancellation happening in the error

estimate
∑
κ ηκ, so when we look at S, those terms that originally cancel no longer do,

resulting in a loss of rate of convergence. A similar phenomenon occurs in [101, p. 142]

where here, the authors witness large cancellations in their error estimate.

6.6.2 Experiment II: Superconvergence in an L–shaped domain

In this second experiment, the irregular primal solutions (u, p) and the chosen quantity of

interest Q([u, p]) will not be able to induce the optimal rate of convergence for the goal error

under uniform mesh refinement. We will see that not only, under adaptive refinement, that

the optimal rate is recovered for RT0 and BDM1 implementations, but a superconvergence

is witnessed in the BDM1 implementation as well. This superconvergence is not witnessed

in the RT0 implementation, and again we see here a lack of sharpness for the indicators ηκ.

The domain for this problem is given by the L–shaped Ω = [−1, 1]2 \ [−1, 0], and the data f

and gD are chosen in (3.8, 3.9) so that, in standard polar coordinates, the pressure solution

is given by

p = ρ2/3 sin

(
2(π − θ)

3

)
, (6.45)

with x = ρ sin(θ) and y = ρ cos(θ). The gradient of p in the radial direction

∇(ρ,θ)p · ρ̂ =
2

3ρ
1
3

sin

(
2(π − θ)

3

)
9Indeed, this space consists of vector–valued linear functions, but does not have all of the linear functions

that we have if a BDM1 implementation is used instead.
10These numerics are not presented in this thesis.
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is clearly singular at the origin, where ρ = 0; although p is analytic in Ω \ {0} we have

p 6∈ H2(Ω) [74, p. 20]. Hence, we might expect to witness a goal error convergence which

differs from the rate predicted by Theorem 6.6.

The quantity of interest is given by

Q([u, p]) :=
1

|R|

∫
R
p,

where R ⊂ Ω is the triangular region pictured in Figure 6.4, and |R| = 1/2 is the area of

the region. This QoI represents an integral average of the pressure over the region R. The

exact quantity of interest is approximately computed via quadrature on very fine, uniformly

refined, meshes until the absolute error between successive approximations is sufficiently

small11.

Before proceeding to the results of this experiment, we recall the error representation (6.15)

now decomposed into the two12 parts:

Q([u, p])−Q([uh, ph]) = R([uh, ph], [z− zh, r− rh]) + R([uh, ph], [zh− zI , rh− rI ]), (6.46)

for all [zI , rI ] ∈ Wh. Rearranging (6.46), we see

θh = 1− R([uh, ph], [z− zh, r − rh])

Q([u, p])−Q([uh, ph])
, (6.47)

with the effectivity index (6.44) defined in the usual way.

It is clear in (6.47) that if the residual term R([uh, ph], [z − zh, r − rh]) decays to zero at

a rate that is faster than the rate at which the goal error decays, then we should see the

effectivity index converge to 1 under mesh refinement; this was true in the first experiment.

However, if R([uh, ph], [z − zh, r − rh]) decays at the same rate as Q([u, p]) − Q([uh, ph])

then the ratio of the terms will converge to some constant α ∈ R and the effectivity index

will see the convergence θh → 1 − α. Under uniform mesh refinement, as observed by the

plots in Figure 6.5, we see precisely this. The effectivity θh seems to converge to a number

around 0.6, while the bounded effectivity θ≥ seems to converge to a number around 0.65.

Here, the error estimate (6.27) is not doing a great job, and while the indicators are still

sharp, we notice that S as an upper bound is in fact not guaranteed.

Moreover, we consider here two types of adaptive refinement, which we will give the nick-

names greedy and not–greedy. Greedy refinement has Dörfler marking with parameter

ω = 4/5 while not–greedy refinement has ω = 1/3 instead. Looking at the loglog plots

11The final mesh, which we deem fine enough, and accept the approximate computation of the QoI in

place of its exact value, is often referred to as an overkill mesh.
12Since the QoI is given by a linear functional, and since the Darcy problem is fully linear, there is no

linearisation step.



6.6. NUMERICAL EXPERIMENTS 95

Fig. 6.4 – Example pressure and velocity approximations, and the region of interest.

Fig. 6.5 – Results under uniform refinement for a BDM1 implementation.

Fig. 6.6 – Results under a greedy adaptive refinement for a BDM1 implementation.

in Figures 6.6 and 6.7 we notice that for both adaptive refinements, the error looks to

converge to zero faster than the optimal rate. Moreover, for a greedy refinement the indi-

cators remain sharp and show a similar effectivity convergence that is exhibited by uniform

refinement in Figure 6.5.

However, for a not–greedy refinement, we see a loss of sharpness in the indicators but a

convergence of the effectivity θh to 1. Indeed, this loss of sharpness seems to be down to

the superconvergence exhibited under the adaptive regime: the bounded sum S also looks

to converge faster than the optimal rate, but does not seem to see as much of this added

rate that the error itself enjoys.
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Fig. 6.7 – Results under a not-greedy adaptive refinement for a BDM1 implementation.

The superconvergence seems to occur from the problem setup. We know that the solution

(6.45) satisfies Laplace’s equation: −∆p = 0, which of course means the velocity u is

divergence–free13: ∇·u = 0. Numerics, not shown here, reveal that both ‖∇·(u−uh)‖L2(Ω)

and ‖∇ · (zh − Πhzh)‖L2(Ω) are negligibly small, giving evidence that, in this experiment,

the divergence ∇ · u is computed exactly, and we even seem to have ∇ · zh = ∇ · (Πhzh) as

well. With this in mind, the convergence result from Theorem 6.6 relies on the bound

|Q([u, p])−Q([uh, ph])| ≤ ca‖u− uh‖H(div,Ω)‖z−Πhz‖H(div,Ω) (6.48)

+ cb‖u− uh‖H(div,Ω)‖r − Phr‖L2(Ω) (6.49)

+ cb‖z−Πhz‖H(div,Ω)‖p− ph‖L2(Ω). (6.50)

By replacing z with zh in the above, due to ‖∇ · (u−uh)‖L2(Ω) and ‖∇ · (zh−Πhzh)‖L2(Ω)

both vanishing, the H(div,Ω)–norms appearing in (6.48) - (6.50) are replaced with the

L2(Ω)–norm instead; this shows a convergence rate faster than optimal. Indeed, in a BDM1

implementation, the L2(Ω) error of the velocity approximations converge with a rate faster

than that when measured in the H(div,Ω)–norm. This is not seen in an RT0 implementation

since here, convergence under the L2(Ω) and H(div,Ω) norms are given by the same, slower

rate. This superconvergence is not witnessed under a uniform refinement as there is a loss

in the rate of convergence measured in the L2(Ω)–norm that is only recovered under an

adaptive regime, since the primal solutions are irregular.

The final adaptively refined meshes, in the BDM1 implementation, are shown in Figure 6.8.

In these we see the expected refinements occurring within the region of interest and at the

singularity. More attention is given to the re–entrant corner where the singularity occurs,

which is the opposite of what an RT0 implementation shows next.

Again, as previously witnessed in the first numerical experiment, the indicators are never

13One has f = 0 in (3.2).
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Fig. 6.8 – Final meshes for BDM1. Left: greedy, right: not-greedy.

Fig. 6.9 – Results under uniform refinement for an RT0 implementation.

Fig. 6.10 – Results under a greedy adaptive refinement for an RT0 implementation.

sharp using an RT0 implementation; this is evident from the loglog plots in Figures 6.9, 6.10

and 6.11 where we can see the bounded sum S converging at a slower rate to the error, in

each case. Because of this, the bounded effectivity indices are not shown on the effectivity

plots since these blow–up.

Showcasing similar phenomena as the BDM1 implementation, in Figures 6.9 and 6.10 we

see the convergence of the effectivity θh to a number less than 1 for a uniform and greedy
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Fig. 6.11 – Results under a not-greedy adaptive refinement for an RT0 implementation.

Fig. 6.12 – Final meshes for RT0. Left: greedy, right: not-greedy.

refinement, although in this case θh is closer to 1 than in the BDM1 implementation.

Again, when a not–greedy refinement is considered, we see in Figure 6.11 what looks to be

the convergence θh → 1, and as predicted, for each adaptive refinement we no longer see

the superconvergence exhibited previously. What we do see however is a recovery of the

optimal rate of convergence for the not–greedy refinement, and almost the same recovery

for the greedy refinement; perhaps ω = 4/5 is too close to 1 in this case, since the slope of

the goal error in Figure 6.10 looks to sit in between those in Figures 6.11 and 6.9.

Figure 6.12 shows the final adaptively refined meshes for the RT0 implementation. Here,

we seem to witness more heavy refinement taking place in the region of interest R than at

the re–entrant corner, when compared to those in Figure 6.8. This could be predicted by

looking at the indicator contribution

ηDL
κ = −

∫
κ

K−1uh · (zh −Πhzh).

These terms (summed with absolute values inside the sum) in the bounded sum S look to

converge with a rate slower than the others, and thus their contribution to S will remain the

largest under long–term mesh refinement. This will highlight elements in which zh −Πhzh
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has most contribution, which would certainly be mostly within the region of interest or

on its perimeter. The other terms in the indicators ηκ, for example the contribution ηBCκ ,

will highlight elements around the re–entrant corner since here we expect the error between

the approximation ph and the boundary data gD, on the boundary, to be largest. Indeed,

in a BDM1 implementation, each indicator contribution decays at the same rate, which

is why we do not see as much refinement in the region R when compared with an RT0

implementation.

While an interesting example to investigate, the exhibited superconvergence definitely makes

this problem a special case, and does not wholly reflect the behaviour we would expect to

see for other irregular Darcy problems undergoing this goal–adaptive treatment14. However

it does seem to highlight certain nuances associated with the implementation of Darcy’s

equations that are not present, in say, a typical Poisson’s equation application.

14This example is usually a good benchmark problem, since it reflects typical behaviour that elliptic PDE

problems exhibit near the re—entrant corner of an L—shaped domain [74, p. 20].



Chapter 7

The travel time functional

The structure of this chapter1 is as follows. First, we define the travel time functional

and derive a computable, exact, expression for its derivative; we then apply this theory in

the context of Darcy’s equations, groundwater flow, and the burial of high–level radioactive

waste, before concluding with some numerical examples. The first of these examples acts as a

preliminary, or cautionary, example concerning convergence and sharpness of element–based

indicators for the travel time functional. The second and third examples are academic–style

examples which aim to build confidence in the proposed a posteriori error estimate; while

the final example adaptively simulates the leakage of radioactive waste within a domain

inspired by (albeit greatly simplified) the Sellafield site, located in Cumbria, UK. This final,

physically motivated example matches the experiment conducted in [42] but uses the new

linearisation result instead.

7.1 Travel time as the quantity of interest

Quantities of interest and their approximate error estimation were considered in Chapter

6; while the dual–weighted–residual theory presented, as part of Section 6.1, considered the

case of nonlinear functionals representing the QoI, the examples showcased in Section 6.6

had each an example of a linear functional, for the purposes of investigating the sharpness

of element–based indicators, and the general performance of the proposed a posteriori error

estimate (6.16).

1This Chapter has sections taken from the published article [73] by the same author; indeed, the research

and contributions presented within were attained through the study of this PhD.

100
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Within this chapter, we consider a single example of a functional that is not only nonlinear,

but also unbounded. This functional, referred to as the travel time functional, represents

the time–of–flight of leaked radioactive waste, modelled as nonsorbing, nondispersive, purely

advective transport–based, particles, reaching the boundary of the domain; vital in the

postclosure safety assessment of potential burial sites, this waste can possibly be transported

by the surrounding groundwater back up to the surface of the site [105, 43, 42].

Error estimation for this novel functional via the DWR method, in particular the linearised

adjoint problem II (i.e. the problems (6.13) or (6.24)), requires evaluation of its Gâteaux

derivative, given by Definition 6.1. Such evaluation encompasses the main result of this

chapter; indeed, we provide an exact expression for the derivative of the travel time func-

tional, considering both the case where the underlying velocity field representing the fluid

flow is continuous or discontinuous on the domain.

7.2 Linearisation of the travel time functional

Within this section, we define the travel time functional for generic velocity fields and

address briefly the difficulties involved with its linearisation. To this end, consider an open

and bounded Lipschitz domain2 Ω ⊂ Rd, d = 2, 3, with polygonal boundary ∂Ω, and the

semi–infinite time interval I = [0,∞). Let us suppose we have a generic velocity field

u = u(x, t) : Ω×I → Rd. For a user–defined initial position x0 ∈ Ω, the particle trajectory

X ≡ Xu, due to u, is given by the solution of the following IVP:

dX

dt
(t) = u(X(t), t) ∀t ∈ I, (7.1)

X(0) = x0. (7.2)

The so–called travel time of the velocity field, T (u; x0), is defined to be the time–of–flight

of the particle trajectory Xu from its initial position x0 to, if ever, its first exit point out of

the domain Ω. Thereby, the functional3 T (u; x0) is defined by

T (u; x0) = inf{t ∈ I : Xu(t) 6∈ Ω}. (7.3)

Alternatively, we can write this in the equivalent form:

T (u; x0) =

∫
P (u;x0)

ds

‖u‖2
,

2We do not consider fractures in this Chapter.
3Not to be confused with the notation used in Chapter 2 and Chapter 4 for the trace of H1(Ω) functions.
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where ‖ · ‖2 denotes the standard Euclidean 2–norm and P (u; x0) is the curve4 traced by

the particle trajectory from its initial position to the first boundary contact:

P (u; x0) = {Xu(t) ∈ Ω : t ∈ [0, T (u; x0)]}.

The integral version of the functional clearly highlights the difficulty concerning the demon-

stration of its differentiability. Indeed, the nonlinearity occurs within the integrand and the

curve in which the integral is taken over depends itself on the velocity field. The travel time

functional cannot clearly be globally continuous and therefore not globally Fréchet differen-

tiable. We shall see, however, that it is possible to evaluate its Gâteaux derivative (Theorem

7.2). The regularity of the functional itself will not be addressed within this work.

Additionally, evaluating the travel time functional itself involves the computation of the ve-

locity streamlines, or particle trajectories Xu(t). Within this work, we follow the techniques

outlined in [82] for streamline computation; furthermore, a streamfunction approach can in-

deed be employed when the considered fluid flow approximations are divergence–free [95],

and it is even possible for high–order velocity approximations, when also divergence–free,

to have accurate streamline tracing [81].

7.2.1 Linearisation in the continuous case

A preliminary result for the linearisation of the travel time functional involves assuming

that the velocity field u satisfying the underlying flow problem is continuous on Ω. When

this is the case, then the Gâteaux derivative of the travel time functional may be evaluated

and computed as an integral, in time, weighted by a variable Z which may be considered as

being adjoint to the particle trajectory Xu. The theorem below presents such a preliminary

version of the main result of this chapter.

Theorem 7.1. Suppose that the velocity field u(x, t) is continuous on Ω. Let n = n(x) be

the unit outward normal vector to ∂Ω. Assume ∂Ω is flat in some neighbourhood of the exit

point Xu(T (u; x0)), and that the particle trajectory is such that u(Xu(T (u; x0)), T (u; x0)) ·

n(Xu(T (u; x0))) 6= 0. Let Z be the solution of the IVP:

−dZ
dt

(t)− [∇u(X(t), t)]>Z(t) = 0 ∀t ∈ [0, T (u; x0)),

Z(T (u; x0)) = − n

u(X(T (u; x0)), T (u; x0)) · n
.

Then, the Gâteaux derivative of the travel time functional may be evaluated as

T ′[u](v) =

∫ T (u;x0)

0

Z(t) · v(X(t), t) dt.

4We will often use the term streamline interchangeably to refer to either the particle trajectory X(t) or

the curve that it traces.



7.2. LINEARISATION OF THE TRAVEL TIME FUNCTIONAL 103

The above result can be used to evaluate the derivative required for the implementation

of DWR a posteriori error estimators, where here the velocity field u is replaced with its

discrete approximation uh. However, such approximations are usually obtained via finite

element methods, and the continuity of uh at element interfaces is not always guaranteed.

In this case, Theorem 7.1 must be generalised to allow for such discontinuity; this is ad-

dressed in the following sub–section, where Theorem 7.2 is derived without such a continuity

assumption. Moreover, Theorem 7.2 presents a more general result in which Theorem 7.1

may be recovered easily by setting the resulting jump terms equal to zero.

7.2.2 Linearisation in the discontinuous case

We emphasise that the main result (i.e. evaluating the Gâteaux derivative of the travel

time functional) is independent of where the velocity field u has come from; for now we

are concerned only about the continuity of u. Indeed, computing an approximation to the

travel time functional via an approximation of the velocity field u may or may not lead to

a continuous velocity field; this depends on the fluid model and the type of approximation

that is employed.

More explicitly: suppose our problem was not in groundwater flow and the disposal of

radioactive waste, but instead that we are interested in T (u; x0) where u is a flow governed

by Stokes equations. In this situation, typically vector–valued H1–conforming elements

are employed (cf. [30]), on some mesh Th, to obtain an approximation (at least in two

spatial dimensions) uh that is continuous across the element interfaces. Here, Theorem

7.1 can be applied to evaluate the derivative T ′[uh](·) (to, for example, drive an adaptive

mesh refinement algorithm). However, in the context of this work, an H(div)–conforming

approximation of a flow governed by Darcy’s equations is used and as such, this conformity

does not guarantee continuity of the velocity field across element interfaces. Thereby, in the

following discussion we derive a more general result stated in Theorem 7.2.

The main result is stated below in Theorem 7.2, which provides the evaluation of the Gâteaux

derivative T ′[v](·), of the travel time functional T (·).

Theorem 7.2. Let n = n(x) be the unit outward normal vector to the boundary ∂Ω. Assume

firstly that ∂Ω is flat in some neighbourhood of the exit point Xv(Tv), in particular, this

means that the unit outward normal vector n = n(Xv(Tv)) is unique. Assume also that

the particle trajectory is such that v(Xv(Tv), Tv) · n(Xv(Tv)) 6= 0. Suppose that Th is a

simplicial partition of Ω and that v is discontinuous across the faces {Fi} that intersect the

path t 7→ Xv(t), defined by (7.1) at the times {ti = ti,v}. Lastly, assume that the particle

trajectory is such that v|∂κ · nκ 6= 0 on any of the boundaries ∂κ of the elements κ ∈ Th,
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where nκ is the unit outward normal vector to ∂κ, and assume also that it does not exit

through the boundary of any of the element faces, except possibly at the exit–point where

here the domain boundary is flat. With the above notation described, let Z : [0, Tv]→ Rd be

the solution to the adjoint, or dual (linearised–adjoint, backward–in–time) IVP:

L∗v(Z(t)) ≡ −dZdt − [∇v(Xv(t), t)]>Z = 0 ∀t ∈ [0, Tv) \ {ti,v},

Z(Tv) = − n(Xv(Tv))
v(Xv(Tv),Tv)·n(Xv(Tv)) ,

JZ(ti,v)K = − Z(t+i,v)·Jv(ti,v)Kn−i
v(Xv(t−i,v),t−i,v)·n−i

∀i,

(7.4)

where n−i is the unit outward normal vector to the faces {Fi}, pointing in the same direction

as the particle trajectory Xv(t) at the time of intersection t = ti, and where JZ(ti,v)K =

Z(t+i,v)− Z(t−i,v) and Jv(ti,v)K = v(Xv(t+i,v), t+i,v)− v(Xv(t−i,v), t−i,v) denote jump operators.

Then, the Gâteaux derivative of T (·), evaluated at v, is given by

T ′[v](w) =

∫ Tv

0

Z(t) ·w(Xv(t), t) dt.

The plus/minus notation refers to the times after/before, respectively, the trajectory Xv

intersects the element interface, forwards in time. We may also index Zv ≡ Z to indicate

that Zv solves the IVP (7.4) induced by the velocity field v. Also, we note that if the

velocity field driving the trajectory is in fact continuous across the element interfaces, then

the jump terms vanish and Theorem 7.1 is recovered.

We now proceed to prove Theorem 7.2. To this end, we require two lemmas which are given

below. Firstly, consider the so–called trajectory derivative, corresponding to the change in

the particle path as a result of a change in velocity:

X′ ≡ ∂vXv[w] := lim
ε→0+

Xv+εw −Xv

ε
,

recalling the notation that Xv is the trajectory induced by the velocity field v.

Lemma 7.3. Let v be as before, discontinuous across the faces {Fi} intersecting the path

t 7→ Xv(t) at the times {ti = ti,v}. Then, the trajectory derivative X′ : I → Rd satisfies the

IVP: 
Lv(X′(t)) ≡ dX′

dt −∇v(Xv(t), t)X′ = w(Xv(t), t) ∀t ∈ I \ {ti},

X′(0) = 0,

JX′(ti)K = −Jv(ti)Kt′i ∀i,

(7.5)

where

t′i = − X′(t−i ) · n−i
v(Xv(t−i ), t−i ) · n−i

. (7.6)
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Proof. The time derivative of X′ is given by

dX′

dt
=

d

dt
lim
ε→0+

Xv+εw −Xv

ε
= lim
ε→0+

(v + εw)(Xv+εw, t)− v(Xv(t), t)

ε
,

where we recall the pathline equations the trajectories satisfy. Thus,

dX′

dt
= lim
ε→0+

(v + εw)(Xv+εw, t)− v(Xv(t), t)

ε

= lim
ε→0+

v(Xv+εw(t), t)− v(Xv(t), t)

ε
+ w(Xv(t), t)

= lim
ε→0+

v(Xv(t) + εX′(t) + o(ε), t)− v(Xv(t), t)

ε
+ w(Xv(t), t)

= lim
ε→0+

[∇v(Xv(t), t)](εX′(t) + o(ε))

ε
+ w(Xv(t), t)

= [∇v(Xv(t), t)]X′(t) + lim
ε→0+

∇v(Xv(t), t)o(ε)

ε
+ w(Xv(t), t)

= [∇v(Xv(t), t)]X′(t) + w(Xv(t), t),

i.e., for all t ∈ I \ {ti} (so that ∇v(Xv(t), t) exists away from the discontinuities),

dX′

dt
− [∇v(Xv(t), t)]X′(t) = w(Xv(t), t).

The initial condition follows easily as

X′(0) = lim
ε→0+

Xv+εw(0)−Xv(0)

ε
= lim
ε→0+

x0 − x0

ε
= 0.

Although the velocity v has discontinuities, we still require that the trajectory Xv is con-

tinuous. Hence, we have the coupling conditions between the two maps:

(v 7→ Xv(t+i )) = (v 7→ Xv(t−i )) ∀i.

Taking the Gâteaux derivative of each side (i.e., (d/dε)(·)(v + εw), as ε→ 0) gives

X′(t+i ) +
dX(t+i )

dt
t′i = X′(t−i ) +

dX(t−i )

dt
t′i ∀i.

Thus,

X′(t+i ) + v(Xv(t+i ), t+i )t′i = X′(t−i ) + v(Xv(t−i ), t−i )t′i ∀i;

rearranging gives

JX′(ti)K = −Jv(ti)Kt′i.

The expression for t′i ≡ ∂vti,v(w), given by (7.6), follows similarly to the proof given for the

following Lemma 7.4.

We note as well that a variational approach can be used instead to prove Lemma 7.3. For

use in Lemma 7.4, consider the change in exit–time, or time–of–flight, due to a change in

the velocity, given by

T ′ ≡ T ′[v](w) = ∂vTv(w) := lim
ε→0+

Tv+εw − Tv
ε

.
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Lemma 7.4. Suppose that ∂Ω is flat in some neighbourhood of the exit point Xv(Tv). Then,

the derivative X′(Tv) satisfies

X′(Tv) · n = −T ′v(Xv(Tv), Tv) · n,

with n ≡ n(Xv(Tv)).

Proof. Since ∂Ω is flat in some neighbourhood of the exit–point Xv(Tv), for sufficiently

small ε we have (Xv+εw(Tv+εw)−Xv(Tv)) · n = 0, so that

X′(Tv) · n = lim
ε→0+

Xv+εw(Tv)−Xv(Tv)

ε
· n

= lim
ε→0+

Xv+εw(Tv)−Xv+εw(Tv+εw)

ε
· n

= lim
ε→0+

Xv+εw(Tv)−Xv+εw(Tv + εT ′ + o(ε))

ε
· n

= lim
ε→0+

−dXv+εw

dt (Tv)(εT ′ + o(ε))

ε
· n

= lim
ε→0+

−(v + εw)(Xv+εw(Tv), Tv)(εT ′ + o(ε))

ε
· n

= −T ′v(Xv(Tv), Tv)) · n.

Remark 7.5. The first step in the proof of Lemma 7.4 requires that the boundary ∂Ω is

flat in a neighbourhood of the exit–point Xv(Tv). Indeed, the statement (Xv+εw(Tv+εw)−

Xv(Tv)) ·n = 0 is not true for any ε in the case of a curved boundary. Here, a contribution

from the curvature at the exit–point would be present in both the result from Lemma 7.4

and would alter the adjoint–IVP in Theorem 7.2; as a brief sketch, Lemma 7.4 would state

that X′(Tv) · n = −(T ′ + κc
X′(Tv)·τ
‖v‖ )(v(Xv(Tv), Tv) · n), where κc is the curvature of the

boundary at the exit–point, and τ is the unit tangent vector to ∂Ω at the exit–point.

Thus, we are now able to prove the main result of this chapter.

Proof of Theorem 7.2

Proof. From Lemma 7.4 and (7.4) we have

T ′ = − X′(Tv) · n
v(Xv(Tv), Tv) · n

= X′(Tv) · Z(Tv).

Since from (7.4) we know that L∗v(Z(t)) = 0 away from the jump times {ti}, we have

T ′ ≡ X′(Tv) · Z(Tv) = X′(Tv) · Z(Tv) +
∑
i

∫ ti

ti−1

L∗v(Z(t)) ·X′(t) dt.
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Integrating by parts reveals that

T ′ ≡
∑
i

∫ ti

ti−1

Z(t) · Lv(X′(t)) dt

+
∑
i

(Z(t+i ) ·X′(t+i )− Z(t−i ) ·X′(t−i )) + Z(0) ·X′(0)

=
∑
i

∫ ti

ti−1

Z(t) ·w(Xv(t), t) dt+
∑
i

(Z(t+i ) ·X′(t+i )− Z(t−i ) ·X′(t−i )),

since from (7.5) in Lemma 7.3 we have that Lv(X′(t)) = w(Xv(t), t) and X′(0) = 0. The

jump condition in (7.5) for X′ can be rearranged to obtain the expression

X′(t+i ) = X′(t−i ) + Jv(ti)K
X′(t−i ) · n−i

v(Xv(t−i ), t−i ) · n−i
.

Thereby,

T ′ ≡
∑
i

∫ ti

ti−1

Z(t) ·w(Xv(t), t) dt

+
∑
i

(
Z(t+i ) ·

(
X′(t−i ) + Jv(ti)K

X′(t−i ) · n−i
v(Xv(t−i ), t−i ) · n−i

)
− Z(t−i ) ·X′(t−i )

)
.

Notice that

Z(t+i ) ·
(

X′(t−i ) + Jv(ti)K
X′(t−i ) · n−i

v(Xv(t−i ), t−i ) · n−i

)
− Z(t−i ) ·X′(t−i )

=

(
Z(t+i )− Z(t−i ) +

Z(t+i )Jv(ti)K
v(Xv(t−i ), t−i ) · n−i

· n−i
)
·X′(t−i )

= (JZ(ti)K− JZ(ti)K) ·X′(t−i ) = 0,

due to the jump condition for Z(ti) in (7.4) for all i. This implies that

T ′ ≡
∑
i

∫ ti

ti−1

Z(t) ·w(Xv(t), t) dt =

∫ Tv

0

Z(t) ·w(Xv(t), t) dt,

thus completing the proof.

7.3 Application to Darcy flow

For a groundwater flow model governed by Darcy’s equations (3.1)–(3.4), physical (non-

sorbing, nondispersive, purely advective transport–based) particle trajectories are due to a

velocity field known as the transport velocity, which relates the Darcy velocity u and the

porosity, φ, of the surrounding rock via uT = u/φ. Indeed, the travel time along particle tra-

jectories driven by this velocity field are those that should be considered in the travel time

functional (7.3). With x0 the initial burial point, our quantity of interest can be expressed

either by the functionals T(· ; x0) or T (· ; x0), where, in particular, the former is given by

T(u; x0) = T (uT ; x0) = inf{t > 0 : XuT (t) 6∈ Ω}, (7.7)
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and it is indeed the trajectory XuT that should be considered (v ↔ uT ) in Theorem 7.2,

and the functional T (uT ; x0) should be considered in the context of the a posteriori error

estimation presented in Section 6.1 and Section 6.2.

Furthermore, a simple application of a generalised chain rule allows us to deduce an expres-

sion for the Gâteaux derivative of the functional T(· ; x0), given by

T′[v](w) = T ′[vT ](wT ). (7.8)

7.3.1 Streamline computation

5Since the Darcy velocity u is approximated by the finite element solution uh from (6.22),

the streamline P (u; x0) will be approximated by P (uh; x0). Under a BDM1 and RT0 imple-

mentation we can calculate these approximate streamlines exactly, following the techniques

outlined in [43, 82]. In the case of higher–order approximations, streamline computations

become non–trivial and other techniques, such as time-stepping methods, must be employed

instead. It has been shown however, that for divergence–free flows, the streamlines may be

evaluated via a streamfunction approach to a high accuracy, for both low and high-order

implementations [95, 81].

We assume that the porosity φ is a piecewise–constant function with respect to the trian-

gulation Th, of Ω; recall that the discrete solutions uh and ph are sought in the spaces

(6.19) and (6.20), respectively, using such mesh. Having this assumption allows for an easy

computation of the discrete streamlines using an element–by–element approach. Moreover,

a key tool in this computational procedure is the so–called contravariant Piola mapping,

which we discuss next.

The general technique employed for the computation of the streamline P (uh; x0) is to map

the IVP (7.1), per element, onto a reference element κ̂. Then, evaluation of the streamline

and subsequent travel time takes place there instead; the exit point on the reference ele-

ment is mapped back to the physical mesh as a new starting point, and so on. Indeed, this

requires a mapping (in this case an isomorphism) for v ∈ H(div, κ) to and from H(div, κ̂).

The preservation of normal traces is paramount in computing physical streamlines, and is

also used in defining the basis functions for the space (6.19). Furthermore, employing the

standard affine map Fκ : κ̂→ κ, by composing it with the velocities, does not preserve nor-

mal traces and thus does not provide the isomorphism we need [43, p. 59]; the contravariant

Piola mapping must be used instead, which we see defined below as Definition 7.8.

5This sub–section, as well as the first showcased numerical experiment (Section 7.4) were the only content

within this chapter to not feature in the published article [73].



7.3. APPLICATION TO DARCY FLOW 109

Definition 7.6. The reference element κ̂ is the triangle in (ξ, η) space with the anti-

clockwise labelled vertices ν1 = (−1,−1), ν2 = (1,−1) and ν3 = (−1, 1). The edges of

κ̂ are labelled such that edge Ei is the edge opposite to the vertex νi for i = 1, 2, 3.

Definition 7.7. Let ψj(ξ, η) be the linear shape functions on κ̂. i.e. they are such that

ψj(νi) = δij for i, j = 1, 2, 3. Let κ ∈ Th be a generic physical element from a triangulation

with vertices xi, i = 1, 2, 3. The affine mapping Fκ : κ̂→ κ is defined such that

Fκ(ξ, η) =

3∑
i=1

xiψi(ξ, η) ≡ (x, y).

It is clear that Fκ(νi) = xi for i = 1, 2, 3.

Definition 7.8. For κ ∈ Th let Jκ be the Jacobi matrix of the affine mapping Fκ; denote

its determinant by |Jκ|. Then, for v̂ ∈ [L2(κ)]2, the contravariant Piola mapping is defined

by

Fκ(v̂) :=
1

|Jκ|
Jκv̂ ◦ F−1

κ .

Indeed, the contravariant Piola mapping preserves normal traces up to edge lengths. Denote

by nκ the unit outward normal vector to ∂κ, and nκ̂ the unit outward normal vector to ∂κ̂.

For nκ on the edge E = Fκ(Ê), corresponding to nκ̂ being on the edge Ê ⊂ ∂κ̂, [43, pp.

60–61] shows that for v̂ ∈ H(div, κ̂) and v := Fκ(v̂) we have

v · nκ =
‖Ê‖
‖E‖

(v̂ · nκ̂),

where ‖ · ‖ denotes edge length. Furthermore, it can be shown that Fκ is indeed an isomor-

phism between H(div, κ̂) and H(div, κ), for each element κ ∈ Th; see [43, p. 62] again, for

example.

With the above in mind, we now consider the computation of streamlines on a single element

κ ∈ Th. We set t = 0 at the entry point xIN; our aim is to compute an expression for the

particle trajectory X(t) on this element so that we can calculate the exit point xOUT and

the total time spent within, referred to as the residence time. For the subsequent element,

we set its entry point as the previous exit point, and the total travel time is calculated by

summing up all of the residence times for each element the streamline intersects.

For the approximate Darcy velocity uh, the equation for the streamline X(t) on the element

κ ∈ Th is given by
dX

dt
= uh,T |κ =

uh|κ
φ

, : X(0) = xIN. (7.9)

If uh is an RT0 or BDM1 velocity then so is the transport velocity uh,T since the porosity φ

is constant on the element κ. By employing the inverse of the contravariant Piola mapping
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we consider (7.9) on the reference element κ̂ instead; cf. Figure 7.1. Writing6 ûh,T =

F−1
κ (uh,T |κ) we have the following IVP on the reference element:

dX̂

dt̂
= ûh,T : X̂(0) = x̂IN. (7.10)

In (7.10), X̂(t̂) = [ξ(t̂), η(t̂)]> is the particle position on the reference element, and x̂IN =

F−1
κ (xIN); furthermore, the reference time t̂ is related to the physical time t by t = |Jκ|t̂.

Firstly, suppose that uh is an RT0 velocity. Then, due to the Piola mapping, so is ûh,T and

there are constants α, β and γ such that

ûh,T (ξ, η) ≡

α
β

+ γ

ξ
η

 .
It can be shown, for example in [82] or [43, p. 71], that the solution to (7.10) is given by

X̂(t̂) =



eγt̂x̂IN + (eγt̂−1)
γ

α
β

 , γ 6= 0,

x̂IN + t̂

α
β

 , γ = 0.

(7.11)

With the solution (7.11), one can calculate, by hand, the intersection points with the three

edges of the reference element κ̂; the intersection point with the smallest positive reference

time t̂ = t̂I is the edge intersected within the element. The physical exit point is calculated

via the affine map Fκ. Meanwhile, the residence time in κ is given by t = |Jκ|t̂I , which is

subsequently stored and added to the total travel time.

When the velocity approximation uh is a BDM1 velocity, the analytical solution to the

streamline IVP is obtained in a different way. Here, there are the constants αξ,η, βξ,η and

γξ,η such that

ûh,T (ξ, η) ≡

αξ + βξξ + γξη

αη + βηξ + γηη

 , (7.12)

and thus (7.10) becomes

dX̂

dt̂
=

αξ + βξξ + γξη

αη + βηξ + γηη

 : X̂(0) = x̂IN. (7.13)

Indeed, (7.13) has many cases to consider; it is a linear differential equation and can thus

be solved quite easily by re–writing as a single second–order, constant coefficient, ordinary

differential equation for one of the solution components. However, since there are quite a few

6Hat notation was used previously in Chapter 4 and Chapter 5 to denote functions defined on fracture

networks, but since fractures are not considered here, we proceed with this notation without confusion.
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cases to consider, that depend on the parameters in (7.12), this becomes quite cumbersome

very quickly. In light of this, we proceed by solving (7.13) utilising matrix exponentials,

leading to a more succinct solution statement.

Fig. 7.1 – Streamline tracing takes place on the reference element κ̂.

Recall the definition of a matrix exponential, given below in Definition 7.9.

Definition 7.9. For any n ∈ N and any matrix M ∈ Rn×n, the power series

eM ≡ exp(M) :=

∞∑
i=0

M i

i!

converges, and is called the matrix exponential of the matrix M .

Matrix exponentials enjoy many shared properties with the usual exponential for real num-

bers; while not all of them, enough of these properties are satisfied to be able to solve (7.13).

To this end, define the following matrix and vector:

A :=

βξ γξ

βη γη

 , b :=

αξ
αη

 . (7.14)

With (7.14) we see that (7.13) may be rewritten as

dX̂

dt̂
−AX̂ = b : X̂(0) = xIN. (7.15)

It is fairly easy to prove that the solution to (7.15) is given by

X̂(t̂) =

e
At̂(x̂IN +A−1b)−A−1b, |A| 6= 0,

eAt̂(x̂IN + ϕ(t̂)), |A| = 0,

where |A| = βξγη − γξβη is the determinant of A and

ϕ(t̂) :=

∫ t̂

0

e−Aτb dτ
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can be computed numerically, using quadrature techniques, in the case where A is singular.

In this case, root finding algorithms7 for nonlinear equations must be employed to find the

intersection times t̂ = t̂I of the edges of κ̂ with X̂(t̂).

7.3.2 Implementation details for Theorem 7.2

In this section, let uh ∈ Vh and v ∈ V be generic velocity fields. For example, uh could be

a discrete transport velocity, while v could be a basis function of Wh ⊂ V, Wh 6⊂ Vh, so

that the derivative

T ′[uh](v) =

∫ T (uh)

0

Z(t) · v(Xuh(t)) dt (7.16)

is required for computing the numerical solution to the approximate linearised adjoint prob-

lem (6.25). Of course, if uh is the discrete Darcy velocity satisfying (6.22) then the derivative

T′[uh](v) can be evaluated combining this section with (7.8).

For simplicity of presentation, we restrict this discussion to d = 2, but we stress that the

generalisation to d = 3 follows directly. In this setting, we recall that Th is a shape-regular

triangulation of Ω for which uh is discontinuous across the element interfaces intersected

by the particle trajectory Xuh(t) at the times {ti}Ni=1; proceed with the assumptions stated

in Theorem 7.2. Denote by Th = {κi}Ni=1 ⊂ Th the ordered list of elements intersected

by the particle trajectory. Here, we allow for repetitions if the trajectory re–enters the

same element, where it will appear multiple times in Th with different labels. In order to

obtain the adjoint variable Zuh ≡ Z, we can solve the IVP (7.4) in an element–by–element

manner. That is, starting from the intersection point with the boundary of Xuh(t), we trace

the particle trajectory backwards through its intersected elements, and solve for Z on each

time interval that the trajectory is residing in that element. More precisely, consider the

final element κN . The trajectory Xuh(t) occupies this element for t ∈ (tN−1, tN ), where

tN ≡ T (uh; x0) is the travel time. Restricting to this time interval, the adjoint variable Z(t)

solves the IVP

−dZ(t)

dt
− [∇uh(Xuh(t))]>Z(t) = 0.

For times t ∈ (tN−1, tN ), we have Xuh(t) ∈ κN and within this element uh is a polynomial

function. This means that together with the given final–time condition

Z(tN ) = − n

uh(X(tN )) · n
,

we can solve for Z within this time interval, via an exact method or using some approximate

time–stepping technique for ODEs. For example, if uh is a piecewise linear function on the

7For example, for the examples shown in Section 7.4 and Section 7.5, Matlab’s expm and fsolve functions

were employed in order to trace streamlines of BDM1 velocities.
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triangulation Th (e.g. a lowest order RT or BDM function) then we may solve for Z directly

via matrix exponentials. Indeed, the gradient of such a function will be piecewise constant

on the same triangulation.

In such a case, denote by a = (αx, αy)>, b = (βx, βy)> and c = (γx, γy)> the real coefficients

such that on κi ∈ Th

uh|κi ≡

αx + βxx+ γxy

αy + βyx+ γyy

 .
Then, a = uh|κi(0, 0), b = uh|κi(1, 0) − a, c = uh|κi(0, 1) − a, and the gradient of uh

restricted to κi is given by

∇uh|κi =
[
b c

]
=

βx γx

βy γy

 .
Denoting by Υi = [∇uh(Xuh(t))]>|κi the gradient transposed for each i, we then have

Z(t) = exp(ΥN (tN − t))Z(tN ) ∀t ∈ (tN−1, tN ]. (7.17)

By putting t = tN−1 in (7.17), we can evaluate Z(t+N−1). The jump condition in (7.4) can

be rearranged for the value of Z at this time before the particle trajectory Xuh(t) crosses

into the element κN , forwards in time, which is given by

Z(t−N−1) = Z(t+N−1) +
Z(t+N−1) · Juh(tN−1)KnN−1

uh(X(t−N−1)) · nN−1

. (7.18)

We see that all of the terms on the right–hand–side of the equality in (7.18) are known

(also, the orientation of the normal vector nN−1 to the element interface does not matter

since it appears both in the numerator and denominator). On the next (or previous, from

the perspective of the particle trajectory) element, κN−1, we restrict to the time interval

(tN−2, tN−1) and solve similarly. Now, using Z(t−N−1) as the final–time condition to obtain

Z(t) = exp(ΥN−1(tN−1 − t))Z(t−N−1) ∀t ∈ (tN−2, tN−1).

One then follows this procedure for all time intervals up to and including (0, t1). In general,

for a piecewise linear velocity field uh, we may hence write

Z(t) = exp(Υi(ti − t))Z(t−i ) ∀t ∈ (ti−1, ti). (7.19)

When uh is, for example, piecewise polynomial with a higher degree, or some other general

function, then (7.19) does not apply since the matrices Υi will not be constant. Instead,

one could employ a time–stepping technique within each time interval to solve for the ad-

joint solution Z(t); time–stepping from Z(t−i ) until Z(t+i−1), using this to generate the next

starting position Z(t−i−1), and so forth.
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We note as well that the integral (7.16) can be reduced to a sum of integrals over these time–

intervals for which the trajectory intersects the support of the function v. This is especially

useful when v is, for example, a finite element basis function, which has support on only

a few elements of which either all or just one might intersect the trajectory. Because of

this, and the need to compute Z(t) in the fashion stated above, the right–hand–side vector

in (6.25) can easily be assembled by looping over these intersected elements in the same

backwards fashion as described here.

7.4 A cautionary numerical experiment

For a couple of choices of simple, linear functionals, numerical experiments in Section 6.6

revealed a lack of sharpness for the indicators ηκ, defined in Theorem 6.4, under an RT0

implementation. With this in mind, we present here an experiment for the travel time

functional, in which the velocity approximation is considered only in BDM1. The approxi-

mate adjoint solutions are sought in spaces defined on the same mesh as the primal discrete

solutions, with polynomial degree one higher (cf. problems (6.22) and (6.25), with k = 1).

The purpose of the following examples is to utilise the linearisation result stated in Theorem

7.2 within the context of goal–oriented adaptivity of Darcy’s equations. We are interested

in the accurate estimation of the discretisation error induced by numerically approximating

the travel time T(u; x0), for a given burial point x0 ∈ Ω.

To this end, on the unit square Ω = (0, 1)2, we set up the primal problem (6.21), or (3.8,

3.9), so that the pressure solution is given exactly by

p = cos(x) cos(y) + x4y3,

with associated Darcy velocity u = −∇p. The initial position of the particle is set at the

point x0 = (0.23, 0.36); the exact travel time, T([u, p]), is computed using Matlab’s ode45

function, whose adaptive time–stepping is employed to approximate the exact travel time

to a high precision.

In Section 6.6 a Dörfler marking strategy was used to identify those elements suitable for

adaptive mesh refinement. Here, we require a marking strategy that is less picky with its

element selection, and instead choose to employ a fixed-fraction marking strategy. The

refinement percentage is set to 10%; that is, elements corresponding to the top 10% largest

values of |ηκ| are those that are selected for refinement. A change in the marking strategy

is a heuristic choice: in this example, using a Dörfler strategy, it appeared that most of

the contribution to S =
∑
κ |ηκ| came from a few elements near the start of the particle
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path; subsequent refinements were around the path, as expected, but occurred in patches.

To avoid, in subsequent refinements, small elements being placed next to large ones, we

switch to a fixed–fraction marking strategy; in this experiment, such marking leads to most

elements on the travel path being marked for refinement, per loop of the adaptive routine.

Figure 7.2 shows the streamline P (uh; x0) computed on the initial mesh, and the final mesh

obtained under the adaptive regime8; refinement looks to take place on and around the

travel path of the particle, which is completely expected. Indeed, Table 7.2 and the right

loglog plot in Figure 7.3 shows that the adaptive algorithm looks to be convergent. We see

for adaptive refinement effectivity indices very close to 1, showing that the error estimate

(6.27) is reliably predicting the error in travel time approximation.

Fig. 7.2 – Initial mesh and streamline, and the final adaptive mesh.

Fig. 7.3 – Loglog plots: left has uniform refinement; right has adaptive refinement.

Looking at the left loglog plot in Figure 7.3, it looks like the error converges optimally with

order O(h2), under uniform refinement. One would perhaps not expect this considering the

apparent irregularity of the adjoint solution approximations shown in Figure 7.4. We also

notice, according to the same loglog plot and in Table 7.1, that the indicators ηκ are no

8We apply the same adaptive loop as described in Section 6.6, but now using a fixed–fraction marking

strategy in place of the Dörfler strategy employed previously.
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Fig. 7.4 – Coarse approximations of the adjoint solutions.

Table 7.1 – Results obtained under uniform refinement.

Number of DOF Error Est. Error S θh θ≥

3552 −9.9260× 10−4 −9.9931× 10−4 1.2725× 10−2 1.0005 12.8200

14080 −2.3335× 10−4 −2.3346× 10−4 6.5011× 10−3 1.0005 27.9010

56064 −5.3057× 10−5 −5.3025× 10−5 3.3324× 10−3 0.9994 62.6570

longer sharp; indeed, it looks like the bounded sum S converges like O(h). This is evidenced

by the bounded effectivity indices θ≥ which seem to blow–up in this case.

Looking at the right loglog plot in Figure 7.3, we see what looks to be a decrease in the rate

of convergence of the error under adaptive refinement. This rate looks somewhere between

O(N−1) and O(N−1/2); the latter of which corresponds to O(h) on quasi–uniform meshes.

It is difficult to tell in this case whether or not the indicators are sharp. Indeed, the bounded

effectivities in Table 7.2 look like they may be converging to some fixed value, but more

refinements are required to be able to say for sure. We note also the slope of the bounded

sum S in the right loglog plot of Figure 7.3 looks steeper than that of the error; either this

is pre–asymptotic and the slopes will eventually match, or with subsequent refinements S

may fail as an upper bound for the error.

A convergence study in [95] shows this same, optimal, rate of convergence, under uniform

refinement, but for divergence–free velocities. However, we note that it is not completely

clear which rate of convergence we should even expect to see for the travel time functional

in the first place, and it may well be problem sensitive. Indeed, the travel time functional is

nonlinear and unbounded, so the theory presented in Section 6.1 may not completely hold

true for this choice of functional. Moreover, as noted by [43, p. 94], the well–posedness of

the adjoint problems (6.22), (6.24) and (6.25) still need addressing and, in particular, the

regularity of the adjoint solutions themselves requires more investigation.

In Figure 7.4 is shown (coarse) approximations of the adjoint solutions, zh and rh, respec-
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Table 7.2 – Results obtained under adaptive refinement.

Number of DOF Error Est. Error S θh θ≥

14080 −2.3335× 10−4 −2.3346× 10−4 6.5107× 10−3 1.0005 27.9010

22542 −1.6199× 10−4 −1.6232× 10−4 3.4993× 10−3 1.0020 21.6020

37277 −9.8650× 10−5 −9.8554× 10−5 1.5234× 10−3 0.9990 15.4330

62627 −7.3444× 10−5 −7.3230× 10−5 9.1654× 10−4 0.9971 12.4790

105346 −5.2956× 10−5 −5.2749× 10−5 4.6569× 10−4 0.9961 8.7939

tively. There looks to be a discontinuity along the path for the adjoint pressure; we also

notice that both solutions pretty much vanish away from the travel path. These solutions

can be interpreted as generalised Green’s functions for the travel time functional and Darcy’s

equations: [43, p. 85] agrees that we might expect to see a δ–type source or sink along the

travel path.

Regarding the regularity of the adjoint solutions, some work has been undertaken on an

experimental basis. Pictured in Figure 7.5, are the measurements of the norms ‖zh −

Πhzh‖H(div,Ω) and ‖rh − Phrh‖L2(Ω). A first, interesting observation to make is that the

approximate adjoint pressure rh behaves quite well: the error ‖rh − Phrh‖L2(Ω) decays

with its optimal rate under adaptive refinement, and while losing some rate under uniform

refinement, still converges. However, the same cannot be said for the approximate adjoint

velocity zh. We see here that ‖zh − Πhzh‖H(div,Ω) grows as the mesh refines; upon further

investigation, and pictured in Figure 7.6, we see also a growth in ‖zh‖H(div,Ω) under mesh

refinement, both uniform and adaptive.

The slow growth of ‖zh − Πhzh‖H(div,Ω) does not seem to have a devastating effect on the

error estimate (6.27) but might be responsible for the lack of sharpness witnessed under

uniform refinement, as well as the loss of rate witnessed in an adaptive refinement. If this

term instead decayed under mesh refinement, then we might expect to witness results more

along the lines of Experiment I in Section 6.6.

A conjecture for this apparent convergence issue with the adjoint velocity zh is that there

is an adjoint inconsistency. The adjoint velocities z and z? might not be functions in

H(div,Ω) to begin with; moreover, we should seek the solution to the adjoint problems

(6.23) and (6.24) in a different, less regular, function space (perhaps in [H−1(Ω)]2, for

example). While not pictured, the same terms shown in Figures 7.5 and 7.6, were measured

in the [L2(Ω)]2–norm and divergence was witnessed here as well.

We re–iterate that despite the above discussion, the proposed error estimator (6.27) still

reliably predicts the error in the quantity of interest, in the case of the travel time functional,
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Fig. 7.5 – Convergence of adjoint error terms.

Fig. 7.6 – Evaluation of the H(div,Ω) norm of the adjoint approximation zh.

on every mesh employed in this example. The irregularity of the adjoint velocity, and its

approximations, seems to have influence only for the indicators ηκ and their sharpness;

therefore, the particulars of obtaining optimal meshes and the correct choice of adaptive

routine remains an open problem.

7.5 Main numerical examples

The following numerical examples comprise those showcased in the published article [73].

As was the case in the previous example, in Section 7.4, fixed–fraction marking is utilised in

Example III with a refinement selection of REF = 10%, together with the standard red–green,

regular, refinement strategy for triangular elements.

Again, we set k = 1 in problems (6.22) and (6.25) to obtain the approximate solutions to

the primal and (linearised) adjoint problems; moreover, we still set zI and rI as the usual

(interpolated) projections of zh and rh into the primal discrete space W k
h , under a BDMk

approximation.

In practice, we have observed that an RTk approximation gives rise to quantitatively similar
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Fig. 7.7 – Example I: Approximate particle trajectory on the final mesh. Cf. [73].

results to those attained in our chosen BDMk setting. Indeed, due to the property that

RTk(κ) ⊂ BDMk+1(κ) ⊂ RTk+1(κ) for all k ≥ 0 the vector–valued space constructed with

RTk(κ) elements (vs. using BDMk+1(κ) elements) will have fewer degrees of freedom on a

fixed triangulation of the domain. Moreover, the difference in the quality of approximation

is only really seen in [L2(Ω)]2; with the choice of BDMk+1(κ) elements, the error converges

at higher–order, as the mesh is refined, compared with their RTk(κ) counterparts. The rate

of convergence of the error, when measured in the H(div,Ω) norm, is identical for both

spaces.

7.5.1 Example I: A simple test case

This first example considers a very simple problem for which we know the value of the

exact travel time T(u; x0). The travel time is approximated on a series of uniformly refined

triangulations, in order to validate the proposed error estimate (6.27). To this end, let

Ω = (0, 1)2; we impose appropriate boundary conditions, so that the exact Darcy velocity

is given by u = [sin(x) cos(y)]>. The porosity is set to be φ = 1 everywhere so that the

Darcy and transport velocities coincide. Furthermore, the de–coupling of the IVP for the

particle trajectory Xu(t) means that we can evaluate exactly the travel time for some choice

of x0 ∈ Ω. Selecting x0 = (0.1, 0.3) gives

T(u; x0) = log

(
tan(1) + sec(1)

tan(0.3) + sec(0.3)

)
≈ 0.9216 . . . ,

cf. Figure 7.7 which depicts the particle trajectory.

The results featured in Table 7.3 show the exact travel time error, the error estimate, and

the resulting effectivity index on each of the uniform meshes employed for this example.

Indeed, here we observe that the effectivity indices are extremely close to unity on each of

the meshes, thereby demonstrating that the error estimate accurately predicts the travel
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Fig. 7.8 – Example I: Primal (top) and adjoint (bottom) pressure and velocity approxima-

tions on the final mesh. Cf. [73].

Table 7.3 – Example I: Results employing the BDM1 finite element space.

Number of DOFs Error Est. Error θh

20 −8.274× 10−3 −8.476× 10−3 0.976

72 1.358× 10−3 1.360× 10−3 0.998

272 −3.155× 10−5 −2.818× 10−5 1.120

1056 −1.894× 10−5 −1.899× 10−5 0.997

4160 −2.085× 10−6 −2.084× 10−6 1.001

16512 −9.310× 10−7 −9.308× 10−7 1.000

time error in this simple example, even on particularly coarse meshes with less than 50

degrees of freedom.

The primal and adjoint pressure and velocity approximations on the final mesh are depicted
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Table 7.4 – Example II: Results employing the BDM1 finite element space.

Number of DOFs Error Est. Error θh

198 1.188× 10−3 1.719× 10−3 0.691

764 4.773× 10−4 4.534× 10−4 1.053

3000 7.891× 10−5 8.178× 10−5 0.965

11888 1.255× 10−5 1.294× 10−5 0.970

47328 4.261× 10−6 4.460× 10−6 0.955

188864 −2.694× 10−7 −2.694× 10−7 1.000

in Figure 7.8. In particular, the adjoint solution approximations are highly discontinuous

along, and near, the path P (uh; x0). Indeed, close to x0 is a source–like feature, where the

adjoint velocity travels backwards along the path to the initial position. Close to P (uh; x0)

we see that part of the adjoint velocity is pointing in the same direction as the primal Darcy

velocity. These adjoint solutions vanish away from the path and may be interpreted as

generalised Green’s functions; in particular, the adjoint pressure looks to be bounded, while

the adjoint velocity resembles more a Dirac–type measure.

7.5.2 Example II: A two–layered geometry

Similar to Example I, this numerical experiment considers a simple geometry and prob-

lem set–up in order to further validate the proposed error estimate (6.27) under uniform

refinement. Here, the domain Ω, pictured in Figure 7.9, is defined by Ω = {(x, y) ∈ R2 :

0 < x < 1, 0 < y < 1 − x
10}. Along the line y = 1/2 the domain is partitioned into the

two sub–domains Ωi, i = 1, 2, representing different types of rock. That is, the top layer

consists solely of Calder Sandstone, while the bottom contains St. Bees Sandstone. To each

of the sub–domains we assign a fixed, constant, permeability and porosity (cf. Example

III), given by the dataset used in [42]. Furthermore, we assume that the triangulation Th is

aligned with the interface between Ω1 and Ω2. If this were not the case, then additional sub–

partitions of the elements intersected by the interface would be required in order to allow

for the use of standard quadrature and streamline tracing techniques (on this sub–partition)

which are employed in these examples.

This example can be considered to be a simpler version of Example III, in which we apply the

same boundary conditions. Along the top of the domain we impose atmospheric pressure,

and no–flow out of the rest of the boundary. The burial point is chosen to be x0 = (0.1, 0.1)

and we set f = 0 in Darcy’s equations (3.1)–(3.4). Unlike the previous example, the exact

travel time T(u; x0) is not known in this case; instead, we use an approximation on the final

mesh.
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Fig. 7.9 – Example II: Approximate particle trajectory on the final mesh.

Fig. 7.10 – Example II: Primal (top) and adjoint (bottom) pressure and velocity approxi-

mations on the final mesh. Cf. [73].

The results presented in Table 7.4 again show that the proposed error estimate reliably

predicts the size of the error, with effectivity indices close to unity on each of the meshes
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Fig. 7.11 – Example III: The domain Ω, inspired by Sellafield; Cf. [42].

employed. Although it looks as if the trajectory is exiting the domain parallel to the

boundary (cf. Figure 7.9), the performance of the error estimator does not deteriorate

in this setting.

The behaviour of the adjoint solution approximations, pictured in Figure 7.10, is similar to

that witnessed in the adjoint approximations in Example I. Here, the sink, or source–like

feature at x0 appears to be more noticeable.

7.5.3 Example III: Inspired by the Sellafield site

In this example, the domain Ω is defined as being the union of six sub–domains Ωi, i =

1, 2, . . . , 6, each representing a different type of rock. Each of these layers is assumed to have

a given fixed, constant, porosity φ and permeability k related to the hydraulic conductivity

K (cf. Section 7.3 and Chapter 3, respectively) by K = ρg/µk, where ρ, g, and µ are the

density of water, acceleration due to gravity, and kinematic velocity of water, respectively;

the data for each of these is taken from [42]. As in Example II, we assume here that the

triangulation Th is aligned with each of the interfaces between all of the sub–domains.

We briefly mention that the domain Ω is merely inspired by the geological units found

at the Sellafield site and in no way is physically representative of it; therefore, we draw

no conclusions of real–life consequence within this numerical example in the context of the

post–closure safety assessments of potential radioactive waste burial sites. Furthermore, this

experiment merely aims to reproduce similar results previously obtained in [42] in order to

verify the main linearisation result presented in Theorem 7.2. More details concerning this

problem, as well as a more complex version of this test case, can be found in [42] where the

permeability per layer was considered variable, but still constant per element.
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Fig. 7.12 – Example III: Particle trajectory approximation on the initial mesh. Cf. [73].

Table 7.5 – Example III: Results employing the BDM1 finite element space.

Number of DOFs Error Est. Error Eff. Index

22871 −8.905× 10−5 −5.970× 10−5 1.492

32624 −5.455× 10−6 −4.421× 10−6 1.234

47053 4.065× 10−6 4.382× 10−6 0.928

69887 −2.140× 10−7 −2.206× 10−7 0.970

1.0755× 105 −4.216× 10−8 −4.326× 10−8 0.974

1.6796× 105 −1.330× 10−8 −1.468× 10−8 0.906

2.6631× 105 −8.280× 10−9 −8.280× 10−9 1.000

Here, we let ∂ΩD be the top of the domain, representing the surface of the site, and let

∂ΩN be the remainder of the boundary, as pictured in Figure 7.11. We make the same

assumptions as [42]: the rock below the stratum consisting of Borrowdale Volcanic Group

type is of much lower permeability than all of the other layers; there is a flow divide on the

left and right edges of the domain; the pressure at the top of the domain is prescribed via

gD = patm/ρg + y; the source term f is set equal to zero. The travel time path computed

on the initial mesh is depicted in Figure 7.12.

Remark 7.10. We note that for implementation purposes, and in the interest of repro-

ducibility, atmospheric pressure patm = 1.013 × 105Pa and other quantities entering the

problem, are non–dimensionalised using the mass, length and time characteristic scales given

by mass = 1, length = 10−3, time = 1/3155760000000. Furthermore, the boundary condi-

tion is also translated to gD = patm/ρg − (500− 1000y)/1000.

In Table 7.5 we present the performance of the adaptive routine when approximating the

travel time functional. The exact travel time T(u; x0) is based on the approximation com-

puted on the final mesh and the computed error estimator; on this basis the exact travel

time is approximately 0.49, which when written in the appropriate units corresponds to

around 0.49×105 years. We can see from these results that the effectivity indices computed

on all meshes are close to unity, indicating that the approximate error estimate (6.27) leads

to reliable error estimation, similar to the previously undertaken work in [42]. We see that
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Fig. 7.13 – Example III: Pressure approximation on the initial mesh. Cf. [73].

Fig. 7.14 – Example III: Velocity approximation on the initial mesh. Cf. [73].

Fig. 7.15 – Example III: Adjoint pressure approximation on the initial mesh. Cf. [73].

Fig. 7.16 – Example III: Adjoint velocity approximation on the initial mesh. Cf. [73].

for this physically motivated example we are able to estimate the error in the travel time

functional very closely.

Figures 7.13 and 7.14 show the computed approximations (uh, ph) ∈ W 1
h on the initial mesh.

Again, here we observe discontinuities in the Darcy velocity across the rock layer interfaces,

with the velocities differing by orders of magnitude within each of the strata. We also see a
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Fig. 7.17 – Example III: Initial and final adaptively refined meshes. Cf. [73].

local stationary point in the pressure near the center of the domain which accounts for the

change in direction of the groundwater flow; indeed, in this region the flow moves upwards

and thus could transport the buried nuclear waste back up to the surface of the site.

Figures 7.15 and 7.16 plot the computed adjoint approximations (zh, rh) ∈ W 2
h . As con-

curred by [42] we see a strong discontinuity along the direction of the trajectory Xuh , and

with both the adjoint velocity and pressure approximations vanishing away from the path

P (uh; x0). Close to the initial release point x0 we see what looks to be a source–like feature

in the adjoint velocity approximation, and again, in agreement with [42], this velocity points

in the same direction as the primal Darcy velocity (approximation) outside of, but close to,

the path, but in the opposite direction along the path itself.

Finally, in Figure 7.17 we show the initial mesh and the final, adaptively refined, mesh. As

expected, we observe mesh refinement taking place around the initial point x0, at the exit

point, and along the trajectory itself. There is more significant refinement (compared with

the rest of the path) where the trajectory changes direction; in these regions there are sharp

discontinuities in the Darcy velocity approximation, which may lead to a large discretisation

error of the primal Darcy problem. Such large errors contribute greatly to the error induced

in the travel time functional and as such, is targeted more for refinement when compared

with the regions containing long horizontal stretches of the trajectory; typically here, the

velocity (especially when confined to a single rock layer) appears to be quite smooth.



Chapter 8

Conclusions

Summary

The summary of this thesis will be addressed chapter–by–chapter, skipping over Chapter 2

as a preliminary section of this work.

Chapter 3: Darcy’s equations and discretisation

Chapter 3 saw the presentation of well established theory for Darcy’s equations as a model

for flow in porous media and their approximation by a mixed finite element method. The

governing equations were described by a mixed system of elliptic PDEs that were translated

into a weak, or variational, formulation in order to define its numerical approximation. The

proof of well–posedness for the continuous problem was presented, giving the weak solutions

u ∈ H0,N (div,Ω) and p ∈ L2(Ω). Furthermore, approximation by a mixed finite element

method was described for both a Raviart–Thomas (RT) and Brezzi–Douglas–Marini (BDM)

element used for the velocity space. We showed, as per standard theory on this topic, discrete

well–posedness and convergence for an arbitrary polynomial degree of approximation, for

both choice of spaces.

Chapter 4: Flow in fractured porous media

A shift of focus, Chapter 4 saw an extension and adaptation of the existing model for flow

in porous media to incorporate fractures as explicit heterogeneities residing in the domain.

The model that was presented is a popular choice within the literature since it considers
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fractures as lower–dimensional embedded manifolds and, as such, allowed for easy treatment

both analytically and numerically. Indeed, we saw the inclusion of networks of intersecting

fractures sitting within the porous medium. As was the case in Chapter 3, in this chapter

we considered the derivation of a weak formulation of the governing equations, and their

subsequent well–posedness. Within this work, the simplifying case of a single fracture was

presented, but it was discussed how the result could be extended to the more general case of

a network of interesting fractures. Furthermore, in order to establish this rigorously, trace

theory for Lipschitz domains with fractures was discussed at length. Moreover, numerical

approximation via a mixed finite element method was presented, with the aim of again

establishing discrete well–posedness and convergence for the method. This chapter consid-

ered only the simplest case of a lowest order RT approximation for the bulk velocity (and

hence a continuous linear velocity on the fracture network) in order to clearly showcase the

necessary details concerning degrees of freedom and the interpolation of functions into these

discrete spaces. The chapter concluded with the statement of convergence in this case.

Chapter 5: Streamlines through fractured porous media

Under the model presented in Chapter 4, in Chapter 5 we presented the procedure in which

streamlines can be traced through a porous medium containing fractures. This chapter

utilised an existing approach in which the one–dimensional fractures are re–imagined, and

expanded, as two–dimensional objects matching the dimension of the domain they reside in.

An interpolant, or ansatz, for the velocity field inside the expanded fracture was stated, both

in the continuous and discrete settings, which would then be used to trace the streamline

through the fracture to give a suitable exit–point, something that was otherwise not possible

in the one–dimensional setting. Here, we defined the interpolant such that physical laws were

still retained in the expanded fracture: we saw that weak formulations of both Darcy’s law

and conservation of mass remained satisfied through this process. Concluding this chapter,

it was briefly discussed that a limitation of this approach was the apparent dissatisfaction

of the strong form of Darcy’s law in the expanded setting, even when true in the bulk and

one–dimensional fractures themselves. This approach could be implemented in order to

trace streamlines in a fractured porous media setting; the retainment of physical laws and

the continuity of fluxes on the fracture–bulk boundary means that streamlines through the

expanded fracture would be continuous and physical, suitable for application in the travel

time problem addressed later in the thesis in the non–fractured setting.
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Chapter 6: Goal–oriented estimation for Darcy’s equations

Quantities of interest of solutions to Darcy’s equations was the focus in Chapter 6. Here,

existing standard theory for the dual–weighted–residual (DWR) method was presented for

an abstract problem that was then applied to the non–fractured Darcy model, discussed

previously in Chapter 3 in this thesis. A computable error estimate for generic quantities

of interest was derived and subsequently decomposed over the domain via the underlying

mesh in order to define elementwise indicators for use in adaptive refinement. The ap-

proach utilised to define these indicators was a simple integration–by–parts of the error

estimate, but alternative decompositions were also discussed: a simple approach via the

variational localisation and one utilising a partition of unity (PU). A focus of this chapter

was a property known as sharpness of the elementwise indicators, and this was investigated

for linear quantities of interest in the context of Darcy’s equations. Indeed, two numerical

examples were presented to estimate the error in quantities of interest under both an RT

and BDM velocity approximation and assess the sharpness of the indicators defined by the

integration–by–parts approach. Based on the data presented as part of these examples,

our recommendation is to only use these indicators with a BDM velocity approximation,

since the property of sharpness is retained here but lost when an RT approximation is used

instead. We saw this via the quantities defined as bounded effectivity indices, which should

converge to some real number under mesh refinement. In all cases, such quantities looked to

diverge when an RT velocity was considered. Retaining sharpness under mesh refinement

is vital since without it you cannot expect to obtain optimal meshes, nor can you use the

error estimate bounded by the triangle equality as a stopping criterion for the routine, some-

thing which adds an extra layer of security and certainty when wanting to refine to some

user–defined tolerance. Indeed, the development of sharp RT–based indicators remains an

open problem. As part of this chapter we gave a possible conjecture for the loss of sharpness

under an RT approximation, but this has yet to be confirmed. Indeed, sharpness was proved

for a BDM approximation for the PU indicators, and a similar proof holds for the indicators

defined by the integration–by–parts. Moreover, the second example in this chapter showed

a superconvergence of solution approximations, a consequence of the problem definition.

Although sharpness is clearly a problem for indicators under an RT approximation, it was

shown in both examples that the DWR error estimate performed very reliably at approx-

imating the error in the quantities of interest, with effectivity indices close to one on all

employed meshes.
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Chapter 7: The travel time functional

Within Chapter 7, the travel time functional was defined and an exact expression for its

derivative was derived. Such an expression was necessary in order to apply the DWR the-

ory previously presented in Chapter 6. Indeed, the aim of this chapter was to accurately

simulate the leakage of radioactive waste underground via the error estimation and adap-

tive treatment of the travel time functional. It was discussed also how streamlines may be

computed exactly for a lowest order RT or BDM setting, the latter being the choice within

this chapter as per the recommendations of the examples from Chapter 6. Such compu-

tations enabled the attainment of travel times for particles in porous media flow and the

application of the linearisation result for the travel time functional; the expression for its

derivative used an initial–value–problem considered adjoint to the particle trajectories, or

streamlines, themselves.

Concluding this chapter was a handful of numerical examples. The first example, labelled

as a cautionary numerical experiment, considered a simple domain and problem set–up with

the aim of looking at the regularity and convergence of the adjoint solution approximations

obtained via the DWR method, for the travel time functional. This example saw, even under

a BDM approximation, a loss of sharpness again in the elementwise indicators used in the

adaptive refinement. A closer investigation revealed that the adjoint velocity approximation

in fact diverges in [L2(Ω)]2, giving us an insight into its possible regularity in a space such

as [H−1(Ω)]2 or one even less regular than this. Despite this, the effect of this divergence

did not alter the performance of the error estimate itself; indeed, here we still saw effectivity

indices close to one on each of the employed meshes, showing that the DWR error estimate

still reliably predicts the error in the travel time functional in this setting. Three more

examples, each from the article [73], were then presented as well. The purpose of the first

two of these was to assess the reliability of the DWR error estimate under uniform mesh

refinement in academic–style problem set–ups, as concurred by the cautionary example, the

estimate performs very well with effectivity indices close to one on all meshes. The last

example within this chapter took place in a domain inspired by real–life units found at

the Sellafield site, located in Cumbria in the United Kingdom. Comprised of many layers

of rocks, each with differing material properties, this example saw the adaptive refinement

of the underlying mesh in order to accurately compute the travel time. Despite this more

complicated setting, we observed in this example that the DWR error estimate performs just

as well as it did before, with effectivity indices close to one on each of the refined meshes.

In each of the examples was visualised the adjoint solution approximations, in which we

witnessed a source–like feature close to the initial position of the particle, with these solutions
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looking to vanish away from the particle path, or streamline. Sharp discontinuities were

observed in the adjoint velocity approximations, resembling Dirac–type measures. In spite

of the apparent divergence in the adjoint velocity approximation, suggesting an alternative

approach should be utilised for its approximation, the error estimate obtained from the

DWR method performed very well even in the more complex setting of the Sellafield inspired

example. Although a more suitable avenue would need investigating for the proper adaptive

treatment of this problem, concerning the loss of sharpness in the indicators even in the BDM

setting, and the regularity concerns of the adjoint velocity approximation, the approach

showcased in this chapter clearly highlights the reliability of the error estimation for the

travel time functional.

Future work

There are many avenues for continued research based on the work presented within this

thesis; here we will state some of them. Firstly, extension of all the implementations within

this thesis into three spatial dimensions should be carried out. Moreover, elementwise indi-

cators for Darcy’s equations in the DWR method should be defined such that they are sharp

under an RT approximation. In doing so, cheaper computational implementations could be

achieved compared with using a BDM approximation, with no loss of convergence measured

in the H–div norm. Furthermore, the regularity of the adjoint problem associated with the

travel time functional should be addressed; this would be very beneficial in understanding

how to improve the DWR error estimate and give more insight into the expected rate of

convergence of the travel time functional. The well–posedness of this adjoint problem still

remains an open question.

In the case of fractured porous media flow, an extension of the work presented here should

firstly be to generalise and implement the existing work without fractures up to and including

the implementation and adaptive treatment of the travel time functional. Indeed, this would

require a different DWR error estimate and definition of elementwise indicators. Adaptive

refinement for a problem similar to the Sellafield inspired example incorporating fractures

would be a good start on this road to more realistic applications of flow in porous media.

Furthermore, some other extensions of this work could be to, for example, consider other

heterogeneities within the domain, such as caves or vugs. Utilising a Darcy–Stokes or

Stokes–Brinkman model in these cases will require different analysis to that presented in

this thesis, and a separate implementation in order to simulate these different types of

domains. Of course, utilising any one of many other numerical methods to approximate

flow in fractured porous media such that we are free of restrictions such as grid–inflexibility.
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One could also consider an optimisation problem in the travel time setting: with a cost

associated with drilling into rocks depending on their depth and material properties, where

is a good location to potentially bury radioactive waste such that it is cost effective and

either takes a given minimum time to reach the surface, or not at all?
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of an augmented mixed finite element method for Darcy flow, Computer Methods in

Applied Mechanics and Engineering, 283 (2015), pp. 909–922.

[15] T. P. Barrios, J. M. Cascón, and M. González, A posteriori error estima-
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