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Abstract

Hybrid quantum systems have received significant interest, especially with
the goal of technological exploitation of complementary capabilities for quan-
tum information processing and communication tasks. Quantum transducers
can be used to couple the properties of one object or system to different proper-
ties of another system, thus combining, for example, the robust transmission of
photonic quantum states with strong interactions between material quantum
objects. In a room-temperature environment, a spin-polarized atomic ensem-
ble and a micromechanical oscillator over a one-meter distance are coupled to a
free-space laser beam. This experiment requires a stable interferometer, which
is usually done actively. Stabilizing a large path separation interferometer is
cumbersome. Thus, we investigate an alternative way to build a robust po-
larization interferometer characterised by its stability with no requirement for
any adjustment. This thesis constructs a hybrid quantum system consisting of
a quantum transducer that maps small position changes of a micro-mechanical
membrane onto the polarization of a laser beam. This is done with an inter-
ferometric setup that has reduced the need for stabilization. Specifically, an
oscillating silicon nitride membrane placed in the middle of an asymmetric
optical cavity causes phase shifts in the reflected, near-resonant light field.
A beam displacer is used to combine the signal beam with a mode-matched,
orthogonally polarized reference beam for polarization encoding. Subsequent
balanced homodyne measurement is used to detect thermal membrane noise.
The high signal-to-noise ratio should allow for detecting motional quantum
noise in the regime of high optomechanical coupling strength. This setup can
provide a robust quantum link between a micro-mechanical oscillator and other
systems such as atomic ensembles.
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Chapter 1

Introduction

Hybrid quantum systems have received significant interest, especially with the

goal of technological exploitation of complementary capabilities for quantum

information processing and communication tasks. Quantum transducers can

be used to couple the properties of one object or system to different proper-

ties of another system, thus combining e.g. robust transmission of photonic

quantum states with strong interactions between material quantum objects

[3]. Driven further, this type of research develops a toolbox for the engineer-

ing of strong interactions between quantum systems, thus building quantum

machines.

These systems are important because they have many possible applica-

tions. An important example is that optomechanical systems are effective

in sensing uses ranging from gravity wave interferometry [4] to atomic force

microscopy. However, the detection of the displacements for example in ac-

celerometers is restricted by the standard quantum limit which sets a limit

on the weakest forces that can be measured. This measurement is limited

by the quantum noise of light and its backaction on the interferometer mir-

rors. Optomechanical devices are appealing for quantum computing because

of their ability to store, transduce and retrieve quantum information where

1
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the mechanical oscillator can be excited into other states by the laser beam.

Let’s say a transferred quantum state on a microwave signal can be stored in

a mechanical oscillator by coupling interactions, it will be retrieved by a laser

beam pulse interacting with the same mechanical oscillation [5]. They are also

promising for future quantum networking, thus mapping the quantum state of

a material quantum system on the state of a laser beam and vice versa can be

used to couple distant and different quantum systems.

Optomechanical systems have a wide range of configurations and sizes,

allowing access to several parameters and operational regimes. A well-studied,

prototypical system where the membrane-in-the-middle (MIM) arrangement is

introduced by Thompson et al.[6]. The micro-mechanical membrane couples

to the electromagnetic field inside an optical cavity which is driven by low-

noise lasers via the radiation pressure force. A typical membrane material

is silicon nitride (Si3N4), which combines low optical absorption in the near-

infrared with low mechanical loss[7]. Engineering of SiN membranes and beams

led to demonstrations of extremely high mechanical quality (Q) factors [8–11]

that enable quantum mechanical experiments with massive objects at room

temperature.

The MIM optomechanical system is characterised by the detuning (for dis-

persive coupling) or the change of optical loss (for dissipative coupling) that

affects a light beam when the position of the membrane is changed [6, 12].

This system can be used to observe the quantum noise effects, but it must be

shielded from all external forces to eliminate all classical noises like phase, fre-

quency, intensity fluctuations of the laser beam and any environment seismic

vibrations. The effects of typical effects of quantum noise on the MIM system

can be studied. Photon shot noise limits the precision with which the posi-

tion of the membrane can be measured. At the same time, back-action noise

arises from the radiation pressure and alters the momentum of the membrane.

Together, these two types of noise preserve the validity of the uncertainty prin-
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ciple. The shot noise leads to a noisy output of the photodetector and this

noise is intrinsically linked due to the quantum nature of photons as they reach

the detector at random time intervals, leading to uncertainty in its position

measurement [13]. The quantum back-action noise results from each photon

causing a momentum kick to the membrane, which increases the uncertainty

in its momentum, such that the Heisenberg uncertainty principle is fulfilled.

There have also been many experiments on the quantum mechanical in-

teraction between light and atomic ensembles [14] where polarised light was

used to drive effective interactions [15], generate entanglement [16], and deter-

ministically teleport quantum states between macroscopic objects [17]. A key

feature is the robustness of the polarisation state of light that preserves quan-

tum properties over long distances. It is thus the combination of these systems

that currently receive interest for the realisation of hybrid systems. It served

for studies of quantum measurement back-action in the optical detection of

macroscopic objects and demonstration of back-action evading measurement

of mechanical oscillation [18]. The same toolbox enabled entanglement [19] and

strong coherent coupling [20] between a membrane and an atomic ensemble.

The same type of remote link was employed for quantum coherent measure-

ment and feedback, where reducing entropy removal from the spin degrees of

freedom in an atomic ensemble by optical pumping can be converted to cooling

of a mechanical mode of vibration [21].

Observation of the back-action of the atoms onto the membrane has been

studied [22]. The laser beam is strongly coupled with a micromechanical mem-

brane and a collective atomic spin over a distance of 1 meter at temperature

300K [20]. However, it requires a stable interferometer, which is technically

difficult. In this work, we design a position-to-polarisation converter to map

the position of a micromechanical silicon nitride (Si3N4) membrane onto the

polarization of a laser beam in an interferometrically stable way. This device
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can reduce some of the technical overhead when coupling a polarised light

beam to an optical cavity that interacts with a mechanical resonator. It works

as an alternative approach that can be used for strong coupling between a

micromechanical membrane and the atomic spin with no maintenance.

1.1 This Work

Figure 1.1: Construction of hybrid system with a robust polarization interferom-
eter. It shows light-membrane coupling via an optical cavity and the input beam
interferes with the reference beam. QWP represents a quarter wave plate.

The basic construction of the hybrid optomechanical system that is de-

scribed in this thesis is shown in Figure 1.1. It aims to design a transducer

that we named a position-to-polarization converter that maps the small posi-

tion changes of the micromechanical membrane onto the polarization of a laser

beam. A micromechanical membrane sits in the middle of an asymmetric op-

tical cavity and causes phase shifts in the reflected near-resonant light field. A

birefringent crystal which is the key part of the design of the transducer is used

as a beam displacer to combine the signal beam with a mode-matched, orthog-

onally polarized reference beam for polarization encoding. This is done with

a robust interferometric setup where the two-path of the interferometer has

an exact length with no need for stabilization. The system is distinguished by

its accuracy and is easily operated. Subsequent balanced homodyne measure-

ment is used for detecting the membrane thermal noise. In the regime of high

optomechanical coupling strength, the high signal-to-noise ratio should enable



Chapter 1. Thesis Outline 5

us to detect the motional quantum noise. This experiment pursues an alterna-

tive approach that can be used for strong coupling between a micromechanical

membrane and the atomic spin with no maintenance. The main objective is to

observe the quantum effects and reach the optomechanical system with high

position sensitivity. A short summary of each chapter is provided below.

1.2 Thesis Outline

This thesis is organised as follows:

Chapter 2 discusses fundamental concepts of optical cavities and their

coupling to laser beams. It also gives a theoretical description of the mechanical

membrane and its coupling to the light field when it sits in the middle of an

optical cavity as well as a description of the read-out process via polarimetric

measurements

Chapter 3 introduces to the reader the details principle of our robust in-

terferometer of the position to the polarization converter and shows the scheme

of the beam alignment with the condition to have the optimum mode overlap.

We use a method of observing interference patterns and intentional misalign-

ment to evaluate the required alignment precision. It manifests the scenario

of the beam misalignment that causes interference.

Chapter 4 describes experimental details and characterizes the exper-

iment of optomechanical setup that is designed in such a way as to have a

thermally stable system and is vacuum-compatible. Also, it highlights the pri-

mary considerations for the optomechanical system e.g mode matching, etc.

The theory of Pound Drever Hall (PDH) locking is presented with our locking

scheme. Also, the theory of the active feedback to suppress noise is expressed

with its measurements. A polarimetric setup which is used for adjusting the
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phase or the polarization in the detection stage is also provided.

Chapter 5 includes the experimental measurements and calibrations of

our optomechanical system. The calibration of the piezo actuator (PZT) which

allows us to estimate the position sensitivity is provided. Also, the finesse of the

MIM cavity is discussed as a function of the membrane position. The resulting

signal from the detection stage can be used for measuring the membrane’s

motion, and thermal noise of the membrane. In addition, the shot-noise limited

sensitivity is estimated to compare it with membrane thermal noise to reach the

strong coupling regime. An improvement in our thermal noise measurement

to deduce the laser frequency noise using a filter cavity is shown.

Chapter 6 includes the conclusion of our experiment and emphasizes

future experiments with the main ideas and goals recapitulated to converge to

the big picture.



Chapter 2

Theoretical model of the

optomechanical system

To comprehend the more sophisticated cavity operation that occurs when a

thin, partially reflecting membrane is placed in the middle of the cavity, this

chapter begins by describing the theoretical model and background of the

optomechanical system. In fact, we will be focused on the coupling between

the membrane oscillation and the light field entering and leaving the cavity,

which will result in optomechanical coupling to laser beam polarization.

Thus, this chapter has four main sections as follows: First, the propagation

of a coherent beam through an optical cavity is explained by the derivation

of the paraxial wave equation including the properties of the optical cavity

with their stability criteria. Also, the laser beam coupling mode matching

the optical cavity is discussed using two lenses. The second section describes

the micromechanical membrane vibration modes as a mechanical oscillator

with its damping. In addition, it is described from the quantum mechanical

aspect. Third, the principle of the optomechanics system is discussed in the

simple case where one mirror of the optical cavity is attached to a spring.

Besides, the theoretical description of the optomechanical system where the

7
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micromechanical membrane sits in the middle of the optical cavity is provided.

In this system, the phase of the light beam that leaves the cavity will be

shifted according to the membrane position. Also, the polarization state of

the laser beam is described to give a better understanding of our polarization

interferometer. The fourth section presents the scheme of homodyne detection

with its derivation and the noise readout from the polarization converter.

2.1 Basics of the Optical Cavity

2.1.1 Paraxial Wave Equation and Gaussian beams

In order to describe the electromagnetic field inside an axially symmetric op-

tical resonator it is useful to introduce Gaussian beams. The wave equation of

the electric field E can be derived by Maxwell’s equations in vacuum [23, 24]

as

∇2E− 1

c2

∂2E

∂t2
= 0 (2.1)

where c is the speed of light in a vacuum. A monochromatic solution U

to the wave equation for a laser beam which travels in the z direction is given

by

E = U(x, y, z)ei(kz−ωt) (2.2)

substituting Equation2.2 in the wave Equation2.1 leads to the Helmholtz equa-

tion which is given by

∇2U(x, y, z) + k2U(x, y, z) = 0 (2.3)

where k = 2π
λ

is the wave number of the light. The Helmholtz equation provides
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a monochromatic solution and it is given by

U(x, y, z) = ψ(x, y, z)eikz (2.4)

The function U(x, y, z) provides a useful expression of plane waves eikz. Sub-

stituting Equation2.4 into Equation 2.3 becomes

[
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
+ 2ik

∂ψ

∂z

]
eikz = 0 (2.5)

Here we assume that the longitudinal variation of ψ(x, y, z) along z is very

small with respect to the transverse variation along x and y which means the

beam will have a small divergence and it will remain close the central axis

of beam propagation. Thus, the second order variation ∂2ψ
∂z2 will be ignored.

Therefore, Equation 2.5 can be simplified as

[
∂2

∂x2
+

∂2

∂y2
+ 2ik

∂

∂z

]
ψeikz = 0. (2.6)

This is called the paraxial wave equation. The following expression satisfies

Equation.2.6

ψ(x, y, z) = E0e
i[P (z)+k

(x2+y2)
2q(z)

] (2.7)

Here the parameter P (z) and q(z) represents the complex phase shift and the

complex beam curvature respectively. By substituting Equation.2.7 into the

paraxial equation, we obtain

[(
2ik

q
− 2k

∂P

∂z

)
(x2 + y2) +

(
k2

q2

∂q

∂z
− k2

q2

)
(x2 + y2)

]
ψ(x, y, z) = 0 (2.8)

For Equation2.7 to be a solution for all x and y, the coefficients of (x2 + y2)

must be equal to zero separately, yielding

∂P

∂z
=
i

q
(2.9)
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and

∂q

∂z
= 1 (2.10)

In order to characterize the beam, it is possible to express the complex radius

of curvature as a function of two real parameters: The complex radius of

curvature 1
q

can be written in term of two real parameters as[25]:

1

q
=

1

R
+ i

λ

πw2
(2.11)

where R is the radius of curvature of the wavefront and w is the transverse

dimension of the beam. The width of the beam is determined by the distance

from the axis when the intensity drops to 1
e2

. By substituting Equation2.11

into 2.7, the solution of Equation2.8 is given by

ψ(x, y, z) = E0e
iP (z)eik

(x2+y2)
2R(z) e

−(x2+y2)

w2 (2.12)

where eiP (z) = ω0

ω(z)
e−iφ(z), ω0 is the minimum waist and φ(z) = tan−1(λz/πω2

0)

is known as the Gouy phase. At this point, we have a mathematical represen-

tation of the Gaussian beam of the electric field as

E(r, z, t) =
E0w0

w(z)
eik

(r2)
2R(z) e

−(r2)

w2 e−i[φ(z)−kz+ωt)] (2.13)

with r2 = x2 + y2, this full expression is a solution to the wave equation[23].

By comparing Equation2.11 with Equation2.7, it can be easy to understand

the behaviour of the radius of curvature and the beam transverse size in terms

of the spot size w0 (minimum beam size). The beam waist and the radius of

curvature are related to distance z as follows

ω(z) = ω0

√
1 +

(
z

zR

)2

(2.14)

R(z) = z

[
1 +

(zR
z

)2
]

(2.15)
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where zR is Rayleigh range and it is given by

zR =
πω2

0

λ
(2.16)

Consequently, the Rayleigh range is a measure of the length of the waist region

where spot size is smallest as illustrated in Figure.2.1. Using Equation2.14 and

2.15, one can see that for z →∞, w will linearly increase with z so that

ω ≈ ω0
z

zR
(2.17)

Figure 2.1: A Gaussian beam variation of the beam size w(z) as a function of the
distance z along the beam, which forms a hyperbola.

At position z = 0 beam waist, the wavefronts are plane waves and the

wavefront curvature is minimum at z = zR. For large distances z >> zR,

one can define an angle θ which describes the beam divergence in the far field

propagation of a Gaussian beam. The divergent angle is given by

θ =
ω(z)

z
=

λ

πω0

(2.18)

The Gaussian beam inside the optical cavity shown in Figure 2.2 has

spherical wavefronts. For the two mirrors positioned at z1 and z2 respectively,

the radii of the wavefronts at the mirrors must match their respective radii of

curvature, R1 and R2. Thus
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Figure 2.2: A Gaussian beam matches the radii of curvature of the optical cavity
mirrors.

R(z1) = z1 +
z2
R

z1

= −R1 (2.19)

R(z2) = z2 +
z2
R

z2

= R2 (2.20)

where minus sign in Equation 2.19 comes from the sign convention used for

the mirror and radii of the wavefront. The mirror separation Lcavity can be

written as

Lcavity = z2 − z1 (2.21)

Using Equation 2.21 and 2.19 enables us to obtain z1, z2 and zR in terms of

the mirror radii and its separation as follows

z1 =
−Lcavity(R2 − Lcavity)
R1 +R2 − 2Lcavity

(2.22)

z2 =
Lcavity(R1 − Lcavity)
R1 +R2 − 2Lcavity

(2.23)

z2
R =

Lcavity(R1 − Lcavity)(R2 − Lcavity)(R1 +R2 − Lcavity)
(R1 +R2 − 2Lcavity)2

(2.24)

Similarly, the minimum spot size ω0 explicitly can be expressed in terms of the
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mirror radii of curvature, their separation and the wavelength as

ω0 =
(λ/π)1/2[Lcavity(R1 − Lcavity)(R2 − Lcavity)(R1 +R2 − Lcavity)]1/4

(R1 +R2 − 2Lcavity)1/2

(2.25)

we obtain the beam spot sizes at the mirrors using Equation 2.14 as

ω1 = ω0

√
1 +

z2
1

z2
R

, (2.26)

ω2 = ω0

√
1 +

z2
2

z2
R

, (2.27)

The phase of the Gaussian-mode field along the optical axis of the optical

cavity is given by

θ(z) = kz − tan−1

(
z

zR

)
(2.28)

Along the optical axis, the phase change of the field in a round trip must be

an integral multiple of 2π which imposes that the electric field at the mirrors

is zero, therefore

θ(z2)− θ(z1) = k(z2 − z1)−
[

tan−1 z2

zR
− tan−1 z1

zR

]
= nπ (2.29)

where n = 0, 1, 2, ... The allowed values of k are given by this expression and

the resonance frequencies f = kc/2π and the allowed mode frequencies are

fn =
c

2Lcavity

(
n+

1

π
cos−1

√[
1− Lcavity

R1

][
1− Lcavity

R2

])
. (2.30)

which are found using Equations 2.21−2.23

There are other solutions to the paraxial Equation2.6 which form a com-

plete and orthogonal set of functions. These solutions are sums of forward and

backward propagating Gaussian beams that match that shape and are named
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“ modes of propagation”[26]. These modes can represent the modes of the

electromagnetic field inside the optical cavity. They are a full set of solutions

that satisfies the paraxial equation. In Cartesian coordinates, a full set of

solutions which have a rectangular symmetry is known as Hermite Gaussian

modes and it is given by[27]

ψl,m(x, y, z) =
w

w0

.Hl

(√
2x

w

)
.Hm

(√
2y

w

)
E(r, z) e(i[l+m]φ(z)) (2.31)

Hl and Hm are the Hermite polynomials of order l and m (l,m = 0, 1, ..).

The lowest order mode can be found when l = m = 0. In this case, the

Hermite polynomial zeroth order is constant, thus Equation2.31 is turned into

a Gaussian beam as in Equation2.13. The zero-order mode is called TEM00.

Another complete set solution which obeys the axial symmetry in cylindrical

coordinates is the Laguerre Gaussian mode. Thus, it can be expressed as

ψp,l(r, φ, z) =
w

w0

.Llp

(
2r2

w2

)(√
2r

w

)2

E(r, z) e(i[2p+l]φ(z)) (2.32)

The lowest order mode at l = p = 0 is exactly a Gaussian beam. Higher

order modes are produced when the light beam is not completely symmetric

which causes a different waist size between the horizontal and vertical[28]. The

optical cavities’ boundary condition, stability and properties will be described

in detail in the following sections.

2.1.2 ABCD Matrices and Beam Propagation

To understand the behaviour of light in an optical cavity, the ray tracing

technique is used to relate the ray vectors at the input and output planes by

the ray transfer matrix (RTM). The RTM analysis allows us to determine the

stability criterion in the cavity.
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The transmission of the paraxial ray through any optical component can

be described by its positions x and its angle θ with respect to the optical axis.

The position and the angle of the input and output ray in front of the optical

component is represented by a column vector ~p = ( xθ ) whereas the optical

components are represented by a 2× 2 matrix M with real numbers. Thus, it

can be written in this form

~p′ = M . ~p or

x′
θ′

 =

A B

C D

 .

x
θ

 (2.33)

The most important optical components like lenses, mirrors, etc. are described

by these kinds of matrices [29]. For the propagation light with distance S, the

transfer matrix of a thin lens with the focal length f is given by:

Ms =

1 S

0 1

 or Mf =

 1 0

−1/f 1

 (2.34)

The optical system can be constructed with more than one optical com-

ponent. In the case of a system that has two thin lenses, the RTM of the

system is simply a multiplication of five different transfer matrices: the ray

propagation from the initial point to the first lens, refraction by that lens, ray

propagation from the first lens to the second lens, the refraction by the second

lens and finally the propagation to the endpoint:

Mg = Ms3Mf2Ms2Mf1Ms1 (2.35)

The beam tracing can be computed by Equation 2.33. This analysis reduces

a complicated optical system to one single matrix and offers the possibility of

tracing a ray propagation with a limited number of multiplications.
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2.1.3 Types of Optical Cavities and Their Stability

It is possible to build an optical cavity with a different configuration of mirrors.

These different types of configurations can be formed at least by two mirrors,

and it is essential that their centre is on the optical axis. The optical cavity

is geometrically symmetric if the radius of curvature of the two mirrors is

identical, whereas mirrors with different radii of curvatures form asymmetrical

cavities. The length of the cavity and the radius of curvature of the mirrors

play an important role in the stability criteria of the cavity. The focus of a

curved mirror is given in the limits of paraxial approximation by f = R/2

[30]. The two mirrors are separated by distance Lcavity and both have radii

of curvatures R1 and R2. One round trip of the ray can be described with

Equation 2.35, thus

Mg =

1 Lcavity

0 1


 1 0

− 2
R1

1


1 Lcavity

0 1


 1 0

− 2
R2

1

 (2.36)

The result of the multiplication leads to

Mg =

1− 2Lcavity
R2

− 4Lcavity
R1

+
4L2

cavity

R1R2
2Lcavity −

2L2
cavity

R2

−2
(

1
R1

+ 1
R2

)
+

4Lcavity
R1R2

1− 2Lcavity
R2

 (2.37)

The light inside the optical cavity undergoes several reflections back and

forth many times between the two mirrors. The optical cavity stability can be

specified by finding the eigenvalues of Mg. The stability condition is given by

0 ≤
(

1− Lcavity
R1

)
︸ ︷︷ ︸

g1

(
1− Lcavity

R2

)
︸ ︷︷ ︸

g2

≤ 1 (2.38)

where g1 and g2 are called stability parameters. Any cavity with two plane
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or spherical mirrors must obey Equation 2.38 to be stable. Figure 2.3 shows

graphically the stability of different configurations of the optical cavity[28].

Figure 2.3: The graphical representation of different cavity configurations depends
on the stability parameters g1 and g2. The grey area shows the stable regions. The
most stable configuration is a symmetrical confocal cavity (yellow dot) and stability
varies along the red line. The borderline cases (green dots) are the planar parallel
and the spherical concentric cavities. Also, hemispherical cavities, which have one
planar and one spherical mirror, are denoted by pink dots.

In the following section, we will restrict the description to TEM00 mode

and discuss it as a one-dimensional simplification in more detail.

2.1.4 Fabry-Perot Cavity and its Properties

Optical cavities are defined by their reflection and transmission properties.

Even though we use an asymmetrical cavity in our optomechanical setup, this

section provides the relevant theory for a simple case (symmetrical case). The

important relevant features for example free spectral range, finesse and quality

factor can be demonstrated in the simple case and generalized for different

cavities according to [31].

Let us assume a Fabry-Perot cavity consists of two mirrors separated by a

fixed distance Lcavity with reflectivity r. When laser light enters a Fabry-

Perot cavity with a field amplitude Ein through the input mirror M1 as shown
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in Figure 2.4, it will be reflected back and forth multiple times between the

two mirrors. Assuming that we have ideal, lossless mirrors, the electric field

amplitude of the light inside the optical cavity will be reduced by
√
r after

reflection from the mirror, thus it is reduced by a factor of r after one full

round trip [27].

Figure 2.4: Schematic of a cavity transmission process. Laser light enters the
optical cavity through M1 and it will reflect multiple times between M1 and M2.

In order for laser light inside the optical cavity to interfere with itself

constructively after a full round trip forming a standing wave, it should satisfy

Lcavity = n
λn
2

with n = 1, 2, 3... (2.39)

where n characterizes the cavity longitudinal modes. If this condition is sat-

isfied in which beams constructively interfere at the coupling mirror M1, the

frequency can be written as

fn = n
c

2Lcavity
(2.40)

In frequency space, the distance between two longitudinal modes (peaks) can

be defined as Free Spectral Range (FSR) as seen in Figure 2.6. It can be

written as

FSR = fn − fn−1 =
c

2Lcavity
(2.41)

If we assume the phase of the light wave at the first mirror Min is zero, there

will be a phase difference δ for the beam that circulated once in the cavity
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after reflection. Thus, δ can be defined as

δ = k.2Lcavity =
2π.2Lcavity

λ
= 2πf

2Lcavity
c

=
2πf

FSR
(2.42)

where f is the light’s frequency as it enters the cavity. The amplitude of the

electric field after one full round trip is given by

Ej+1 = r.Eje
iδ (2.43)

Ej represents the amplitude of the field in the optical cavity after j round

trips. The optical cavity’s overall amplitude is represented by

Ecavity = E0 + E1 + E2 + .... =
∞∑
j=0

r.E0

(
eiδ
)

= E0
1

1− reiδ
(2.44)

Ecavity experimentally can be measured by its intensity, which is described by

Icavity = |Ecavity|2. Thus, the intensity of light inside the cavity is related to

the incoming light intensity by

Icavity
Iin

=

∣∣∣∣ E0

Ein

∣∣∣∣2 . ∣∣∣∣ 1

1− reiδ

∣∣∣∣2 =
1

(1− r)
1

1 + (2F
π

)2sin2( δ
2
)

(2.45)

This is known as the Airy function and it is Lorentzian in shape, see Figure 2.6.

The finesse F represents the quality of the cavity to sustain the constructive

interference along the path length in the cavity and it is defined as [32]

F =
π
√
r

1− r
with r = r1r2 (2.46)

If r ≈ 1, F will be high and lead to narrow resonance features with a small
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value of full width at half maximum (FWHM) linewidth which is given by

FWHM = κ =
FSR

F
(2.47)

On the other hand, the resonance of the cavity will get broader for lower values

of r as shown in Figure 2.5.

Figure 2.5: A plot of single resonance feature of Fabry-Perot cavity with different
mirror reflectivities. The resonance is sharp for r = 0.99 with high finesse. It
becomes broader for r = 0.95 and r = 0.80 with low finesse.

The light intensity of the transmission and reflection of the cavity can be

described using Equation 2.45 by

Itransmitted = (1− r)Icavity =
Iin

1 + (2F
π

)2sin2( δ
2
)

(2.48)

Ireflected = 1− Itransmitted =
(2F
π

)2sin2( δ
2
)

1 + (2F
π

)2sin2( δ
2
)

(2.49)

Moreover, the phase shift of the transmission and reflection of the cavity

are frequency dependent and they express as[33]
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Figure 2.6: The cavity transmission spectrum is plotted using Equation.2.48 with
linewidth (FWHM) and free spectral range (FSR).

∆δtransmitted = tan−1

(
−sinδ

r − cosδ

)
(2.50)

∆δreflected = tan−1

(
(1− r)sinδ

1 + r −
√
r(r + 1)cosδ

)
(2.51)

The effect of losses in optical cavities is typically characterized by their

finesse. There is another measure to quantify that loss, which can be used for

any type of damped oscillation. It is called the quality factor Q which measures

the photon lifetime of the optical cavity mode multiplied by the oscillation

frequency. It is determined by the energy loss in the cavity as a consequence

of the photon lifetime. This Q factor in principle is similar to any damped

oscillating system. For electrical resonance circuits, Q is the quality factor of

an oscillating electrical circuit [34]. The Q factor measures the efficiency of

the stored energy inside the cavity, it means that a high Q factor provides a

low energy loss in comparison with the stored energy. The Q factor is defined

as[35]

Q =
2π x stored energy

loss of energy per cycle
(2.52)
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It can be written as the resonant frequency of the cavity divided by the fre-

quency linewidth κ

Q =
f

κ
=

fF
FSR

(2.53)

Equation 2.53 illustrates that the frequency resolution of a cavity is equivalent

to its finesse times the number of half-waves between the cavity mirrors [36].

2.1.5 Coupling Laser Beam to the Optical Cavity

Figure 2.7: Optical cavity with length of d1 +d2, w0 shows the smallest waist inside
the cavity.The mirror on the left has a radius of curvature R1 and the mirror on the
right has a radius of curvature R2.

Mode matching of the input laser beam to the optical cavity mode is

required for coupling. To optimally couple the laser beam to the fundamental

cavity mode TEM00, the radius of curvature and width must match that cavity

mode at the first mirror.

The different configurations of misalignment between the laser beam with

cavity mode are illustrated in Figure 2.8. Thus, it is useful to use the natural

coordinates of the first cavity mirror, spherical polar coordinates with the

origin at the mirror’s centre as shown in Figure.2.7. The relationship between

these spherical coordinates and the cylindrical polar coordinates is given below.
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r = |R1| sin θ (2.54)

z = |R1| (1− cos θ)− d1 (2.55)

where R1 is the radius of curvature of the first mirror and d1 +d2 is the length

of the optical cavity. We need to introduce four parameters to characterize any

misalignment(up to a rotation about the optic axis) between the optical cavity

and the laser beam. The displacement along the optic axis between the optical

cavity and laser waists denotes by δ, the angle between the direction of the

laser and the cavity’s optic axis refers to α; b and c are the displacements of

the laser beam’s centre from the cavity’s optic axis (along the axis of rotation

for b and in the plane of the rotation for c).

Figure 2.8: Different configurations of the misalignment between the laser beam
(green dashed line)and cavity mode(red solid line).

r2 = r′2 + b2 + c2 − 2 r′
√
b2 + c2cos γ (2.56)

z = |R1|(1− cos θ)− d1 + δ (2.57)
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with:

r′ = R2
1(sin2θcos2φ + sin2θ sin2φ cos2α)

− 2|R1|sinα cosα sin θ sinφ (|R1|(1− cosθ) + δ)

+ sin2α (|R1|(1− cos θ) + δ)2

(2.58)

γ = φ− arctan(c/b) (2.59)

Examples of misalignment with just one non-zero parameter are shown in Fig-

ure 2.8. It shows the laser beam and cavity mode waists are mismatched along

the optic axis in (a), the laser beam is not well matched due to its displacement

away from the centre of the cavity’s optic axis in (b) and undergoing an angle

α in (c).

All these types of misalignment between the two will lead to a couple

of higher-order modes. Laguerre-Gaussian modes in one dimension form a

complete basis and any axially symmetric function can be entirely described

as a sum of these modes.

ψp,l(r) =
∞∑
p=0

∞∑
l=0

Cp,l

√
p!

(p+ l)!
Llp(2r

2)(
√

2r)|l|e−r
2

(2.60)

Normalized Laguerre-Gaussian modes as in Equation 2.60 yield that the sum

of the modulus square of the coefficients should be one.

∞∑
p=0

∞∑
l=0

|Cp,l|2 = 1 (2.61)

This means that the laser beam must be aligned correctly such that it is

axially symmetric along the optical axis of the cavity, thus the intensity of the



Chapter 2. Basics of the Optical Cavity 25

laser beam will couple to one of the cavity modes. From another point of view,

if the laser is not axially symmetric along the optic axis of the cavity, being at

an angle, the sum of the coupling coefficients can not be one and the intensity

will not couple to the cavity fundamental mode.

Mode Matching with Two Lenses

To achieve strong coupling between the laser beam and the cavity fundamental

mode, the beam width and radius of curvature must match the mode of the

cavity. It is easily can be done with an arrangement of two lenses with focal

lengths f1 and f2 as shown in Figure 2.9 such that the beam along the distance

between the two lenses D has to be collimated. The distance between the

second lens and the front mirror of the optical cavity must be equal to the

focal length f2.

Figure 2.9: An arrangement of two lenses to achieve strong coupling between the
laser and optical cavity.

The output complex radius of curvature q1 at the first mirror can be

calculated using ABCD metrics[30] as follows

q1 =

f2

f1
q0

f1

f2
+
(

1
f1

+ 1
f2
− D

f1f2

)
q0

(2.62)

where q0 is the complex radius of curvature at the initial width of the laser w0

which is given by
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1

q0

=
iλ

πw2
0

and
1

q1

=
1

R1

+
iλ

πw2
1

(2.63)

By inserting the equation 2.63 into 2.62, we come up with the following

constraints.

w0

w1

=
f1

f2

(2.64)

D = f1 + f2 −
f 2

2

R1

(2.65)

where R1 is the radius of the first mirror in the cavity. The first mirror in our

MIM cavity is a plane mirror, so R1 =∞.
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2.2 Mechanical Oscillator

2.2.1 Mode Function of Mechanical Oscillator

To have an accurate description of the vibrations of the mechanical oscillator,

continuum mechanics is used for calculating the eigenmodes of bulky geome-

tries. The mechanical oscillator that is used in this thesis is a stoichiometric

silicon nitride square membrane with a dimension of 1mm×1mm×50nm thick.

A 3D membrane is restricted to 2D for simplicity, which has displacement along

z within the linear response. As the laser beam passes through the membrane

along the z direction, it will vibrate from its equilibrium position in the x− y

plane, see Figure 2.10(b).

Figure 2.10: a) Commercial membrane from Norcada [1]. b)Transverse amplitude
along the z direction.

The partial differential equation governing the free vibrations of the mem-

brane is [37]

∂2z

∂x2
+
∂2z

∂y2
=

1

c2
m

∂2z

∂t2
(2.66)

Along z is the vertical displacement of the membrane as a function of x, y

coordinates in time and cm refers to the speed of the wave propagating in the

medium. The solution is presumed to be separable as [13]

z(x, y, t) = X(x)Y (y)T (t) (2.67)

By inserting the solution in Equation 2.67 into 2.66, the differential equation
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takes the form

Y T
d2X

dx2
+XT

d2Y

dy2
= XY

1

c2
m

d2T

dt2
(2.68)

The left and right sides must be equal to a constant value. After multiplying

the equation by c2m
XY T

, it turns to

c2
m

X

d2X

dx2
+
c2
m

Y

d2Y

dy2
=

1

T

d2T

dt2
= ω2

m (2.69)

The solution for the right side is a harmonic solution with an oscillating at

frequency ωm. Thus, T(t) can be written as

T (t) = A cos (ωmt) +B sin (ωmt) (2.70)

Likewise, the left side also equals to ωm
2, and dividing all terms by c2

m will

leads to

1

X

d2X

dx2
= −ω

2
m

c2
m

− 1

Y

d2Y

dy2
= −k2

x (2.71)

1

Y

d2Y

dy2
= k2

x −
ω2
m

c2
m

= −k2
y

Thus, the new constant has to satisfy the condition,

k2
x + k2

y =
ω2
m

c2
m

(2.72)

The solution for the spatial coordinates x and y follows,

X = C cos (kxx) +D sin (kxx) (2.73)

Y = E cos (kyy) + F sin (kyy)

Now, we are setting boundary conditions of all four sides of the membrane with

lengths of lx and ly to be zero (fixed edges). We need to find the derivative

of z and the second derivative of z to predict how the membrane “trampo-

line” behaves. The boundary conditions for vibrations of the membrane are
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z(x, 0, t) = z(0, y, t) = 0 and z(lx, y, t) = z(x, ly, t) = 0. At t = 0 the mem-

brane has an initial displacement and is released with zero velocity z(x, y, 0).

Applying these conditions leads to

kx =
iπ

lx
and ky =

jπ

ly
(2.74)

where i and j are mode numbers (integers). For square membrane, lx = ly = lm

and the oscillation eigenfrequencies are given by

ωm = cmπ

√
i2 + j2

l2m
(2.75)

The frequency also can be written as

fm =
cm
2

√
i2 + j2

l2m
(2.76)

The speed of the wave is defined in terms of tensile stress T and the density

of the membrane ρm as

cm =

√
T
ρm

(2.77)

The solution of the wave equation for the selected boundary conditions is

harmonic and the mode function gives the general solution for the motion as

zij(x, y, t) =
∞∑
i=1

∞∑
j=1

[Aij cos(ωijt)+Bij sin(ωijt)]sin

(
iπx

lx

)
sin

(
jπy

ly

)
(2.78)

where Aij and Bij are of course the constants of motion depending on the

initial conditions. At initial displacement t = 0, the vibrations of the square

membrane are simulated by MATLAB in Figure 2.11. The mechanical mode

here is similar to a simple harmonic oscillator with a single momentum and

position coordinate. Thus, the potential energy of the vibrational mode of the
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Figure 2.11: Simulated vibrations of the square membrane with different mode
numbers (i,j).

square membrane is given by

Epot(t) =
1

2

∫
lm

∫
lm

∫
dm

z2
ijω

2
mρmdxdydz =

1

2
Mω2

mx
2
m(t) (2.79)

where dm, xm(t) and ωm are the thickness of the membrane, the peak displace-

ment and the frequency of the membrane respectively. Here, M = 1
4
l2mdmρm is

the effective mass of the oscillator which is defined as 1/4 of its physical mass.
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2.2.2 The Driven Damped Oscillator

There are always external forces as a function of time F (t) that affect the

membrane and they may arise from collisions with surrounding gas molecules,

thermal vibrations of the membrane holder, acoustic noise, and radiation pres-

sure forces from the light field. This will cause a small displacement to the

mechanical oscillator from its equilibrium position xm(t). The equation of

motion for a driven damped harmonic oscillator is given by[38]

Mẍm(t) +Mγmẋm(t) +Mω2
mxm(t) = F (t) (2.80)

here γm and ωm are the damping rate of the oscillator and the mechanical

resonance frequency in the units of rad s−1 respectively. F (t) is an externally

driven force exerted by laser light. Decomposing the driven force F (t) into a

Fourier series leads to

−Mω2xm(ω) + iMωγmxm(ω) +Mω2
mxm(ω) = F (ω) (2.81)

The mechanical susceptibility linearly relates the response of the oscillator to

a driven external force and it is given in the frequency domain by

X(ω) =
xm(ω)

F (ω)
=

1/M

ω2
m − ω2 − iγmω

(2.82)

If the driven force is F (t) = F0 sin (ωt) with laser frequency ω, the expected

solution of the oscillator on the time domain is given by

xm(t) = x0 sin (ωt− φ) (2.83)

where the amplitude and the phase are expressed as x0 = F0/M√
(ω2
m−ω2)2+γ2

mω
2

and

φ = arctan
(

γmω
ω2
m−ω2

)
respectively.

Our mechanical oscillator or the membrane is assumed to be a weak damp-
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ing oscillator. This regime requires γm � ωm. Thus, the amplitude of the

damped oscillator can be rewritten as

xm(t) = x0 e−
γm
2
t sin

(
t
√
ω2
m − γ2

m/4− φ
)

(2.84)

The smaller damping of the mechanical oscillator increases the quality

factor of the oscillator whereas more damping will decrease it. In general, the

quality factor Q is defined for the membrane oscillation as

Q =
ωm
γm

. (2.85)

Here ωm and γm have dimensions of frequency. Moreover, Q can be investigated

by looking at a resonator response that is extremely sharp around its resonant

frequency as shown in Figure 2.12. The mechanical oscillator has efficiently

stored the energy as long as it is well isolated from its environment, thus

achieving high Q. On the other hand, coupled oscillator to its environment

leads to a low Q factor or broad peak around its resonant frequency.

Thermal Noise of Mechanical Oscillator

When there is no external force applied to the oscillator, the damping rate of

the oscillator will be zero. But lack of forces would also mean that there is no

excitation of the oscillator. In reality, the environment always couples to the

oscillator producing damping as well as non-zero amplitude influenced by finite

temperature Tbath. The impact of coupling acts as a random driving force with

a noise power spectral density which is given by the Fluctuation-Dissipation

Theorem [39, 40].

SF (ω) = 4kBTbathγmM (2.86)
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Here SF (ω) is single-sided power spectral density in the domain of positive

angular frequencies. The Fluctuation of xm and F are related by important

parameter namely mechanical susceptibility |X(ω)|2 and it is given by

Szz(ω) = |X(ω)|2SF (ω) =
4kBTbathγm

M
.

1

(ω2
m − ω2)2 + γ2

mω
2

≈ 4kBTbath
γmMω2

m

.
1

1 + 4(ωm − ω)2 + γ2
m

(2.87)

The last approximation satisfied the condition of the weak damping regime

of the oscillator which takes a Lorentzian form near resonance. The variance

of thermal amplitude (thermal displacement) in a stationary system can be

found by the surface integral of the noise power spectral density Szz(ω) as

〈
x2
m(t)

〉
th

=

∫ ∞
0

1

π
Szz(ω)dω =

kBTbath
Mω2

m

. (2.88)

The surface integral of the noise power spectral density Szz(ω) is independent

of γm and 〈x2
m(t)〉 is coupled to the average energy from the equipartition

theorem. The average of the potential energy of the oscillator is given by

〈U〉 =
1

2
k
〈
x2
m(t)

〉
th

=
1

2
kBTbath (2.89)

Thus 〈
x2
m(t)

〉
th

=
kBTbath
Mω2

m

. (2.90)

where k = ω2
mM is the spring constant. The average of the total energy of the

oscillator is given by kBTbath.

For example, a SiN membrane has (1mm)2×50nm, density ρm = 3170kg/m3,

tensile stress T =1 GPa results effective mass M= 3.96×10−11kg, fundamental

eigenfrequency ωm = 2π×397kHz and thermal amplitude at room temperature

xth =4pm.
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Figure 2.12: Power spectral density is plotted using Equation 2.87. Assuming that
a SiN membrane at room temperature Tbath = 300K, has ωm = 2π × 397kHz, M
=3.9×10−11kg and Q= 106.

2.2.3 Quantum Mechanical Harmonic Oscillator

The Hamiltonian of the mechanical harmonic oscillator of mass M and fre-

quency ωm is given by [41]

Ĥm = − p̂m
2M

+
1

2
Mωmx̂

2
m (2.91)

where x̂m and p̂m are the position and momentum operators, respectively. The

quantised energy follows by solving the time-independent Schrodinger equation

Ĥmψ(xm) = Enψ(xm) (2.92)

For eigenfunctions ψn and energies En. x̂m and p̂m can be expressed in terms

of the ladder operators or the creation and annihilation operators b̂† and b̂

respectively as follows

x̂m =

√
~

2Mωm
(b̂+ b̂†) = xzp(b̂+ b̂†) (2.93)
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p̂m = iMωm

√
~

2Mωm
(b̂† − b̂) = iMωmxzp(b̂

† − b̂) (2.94)

Here xzp is the ground state amplitude and we have made use of the commuta-

tor [x̂m, p̂m] = i~. Also, b̂ and b̂† will obey the bosonic commutation [b̂, b̂†] = 1.

Thus, we may rewrite the Hamiltonian in the form:

Ĥm = ~ωm
(
b̂†b̂+

1

2

)
(2.95)

Equation 2.95 has the form of an eigenvalue equation. Where N̂ = b̂†b̂ is the

number operator. In Fock space, the various eigenstates |n〉 with eigenvalues

of n = 0, 1, 2, 3.. can be written in term of the ground state |0〉 as follows

|n〉 =
1√
n!

(b̂†)n|0〉 (2.96)

Where |0〉 is the lowest eigenstate for n = 0. Since the Fock states form an

orthonormal basis, they must satisfy 〈n|n′〉 = δnn′ and
∑∞

n=0 |n〉〈n| = 1. The

energy of nth level is given by

En = ~ωm(n+
1

2
) (2.97)

We notice that the energy levels are quantized. Also, the energy of the ground

state can not be zero (E0 = ~ωm/2 > 0) and it is called zero-point energy[42].

The ground state wave function in the position space represents as

ψ0(xm) =

(
1

πxzp

)1/4

exp

(
− x2

m

2x2
zp

)
(2.98)

The expectation value of the position operator 〈x2
m〉0 and its variance 〈xm〉20

will lead to

xzp =
√
〈x2

m〉0 − 〈xm〉20 =

√
~

2Mωm
(2.99)
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which allows us to find the ground state amplitude xzp where

〈x2
m〉0 =

~
Mωm

(n+
1

2
) =

√
~

2Mωm
(2.100)

〈xm〉20 = 0 (2.101)

For membrane with M= 3.96×10−11kg at the center frequency ωm = 2π× 379

kHz leads to xzp = 1.8 fm. Up to this point, we looked at the behaviour of

the membrane from a quantum perspective. Now, we follow the next section

to discuss the membrane that sits in the middle of the optical cavity and

understand the optomechanical coupling.

2.3 Optomechanics System with Membrane

2.3.1 Basic Theory of Optomechanics system

Cavity optomechanics aims to utilize mechanical interactions with the radia-

tion pressure of laser light allowing us to control and measure the motion of

mechanical oscillators with extremely high precision. It is a sufficient approach

for highly sensitive position measurements which paves the way to study the

quantum mechanical behaviours of mechanical oscillators. Moreover, the ra-

diation pressure of the light can be used to cool the mechanical oscillators

to their vibrational ground states [43–49] and generate mechanical oscillators

in non-classical states [43, 50, 51]. To understand the effect of the optome-

chanical system, we introduce the basic cavity optomechanics by considering

a Fabry-Perot cavity with one mirror mounted on a spring as in Figure 2.13.

The frequency of the input laser beam has to be near the resonant frequency

of the Fabry-Perot cavity to leak into the cavity and form a standing wave

within it. The movable mirror will move when it experiences a force which is

the radiation pressure of light. At the same time, the cavity’s length and the
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Figure 2.13: Schematic of the basic optomechanical system. Laser light can change
the position of the mechanical oscillators by the radiation pressure and the motion
of mechanical oscillators with extremely high precision can be measured by sending
the reflected beam by a detector.

resonant frequency of the cavity will be altered when the mirror is displaced,

leading to a change in the amount of light inside the cavity and its phase. The

amplitude and phase of the light can be measured by looking at the reflection

of the cavity in a photodetector.

2.3.2 Optomechanical Interaction Hamilton

The cavity optomechanical system illustrated in Figure 2.13 involves an optical

cavity that is dispersively coupled to a mechanical oscillator. The resonance

frequency of the cavity ωc will depend on the position of the oscillator xm

[52]. The optomechanical system in quantum mechanics can be described by

following Hamiltonian as [53]

Ĥ = Ĥm + Ĥc = ~ωm
(
b̂†b̂+

1

2

)
+ ~ωc

(
â†â+

1

2

)
(2.102)

where â†â is the optical modes at resonance frequency ωc and b̂†b̂ represent

the mechanical modes at resonance frequency ωm. Assuming that oscillator

displacement xm or ∆xm is small compared to the cavity length, the resonance

frequency of the cavity can be expanded by Taylor expansion to the first order
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at zero displacements ∆xm = 0 as

ωc ≈ ωc +
∂ωc
∂xm

∆xm (2.103)

where G = − ∂ωc
∂xm

is the cavity frequency shift per mechanical displacement.

By substituting ∆xm = xzp(b̂ + b̂†) in Equation.2.103, we can rewrite the

Hamiltonian as

Ĥ = ~ωm
(
b̂†b̂+

1

2

)
+ ~ωc

(
â†â+

1

2

)
− ~Gxzp(b̂+ b̂†)

(
â†â+

1

2

)
(2.104)

It includes the unperturbed Hamiltonian and the optomechanical interaction

Hamiltonian

Ĥopt = −~g
[
â†â(b̂+ b̂†) +

1

2
(b̂+ b̂†)

]
(2.105)

where g = Gxzp is the single photon optomechanical coupling system. This

interaction is not a linear process at the level of a single photon. If the cavity

is completely filled with N̂ photons, the coupling interaction will increase. The

optical field can be described by a coherent state, and the annihilation operator

is represented by the sum of complex number α and quantum fluctuations δâ

around the amplitude

â = α + δâ (2.106)

substituting Equation.2.106 in 2.105 leads to

Ĥopt = −~g
[
(α∗ + δâ†)(α + δâ)(b̂† + b̂) +

1

2
(b̂+ b̂†)

]
(2.107)

Ĥopt = −~g
[
(|α|2 + α∗δâ+ δâ†α + δâ†δâ)(b̂† + b̂) +

1

2
(b̂+ b̂†)

]
(2.108)

where |α| =
√
N̂ is a constant that causes an offset in the mechanical oscilla-

tor’s equilibrium position due to radiation pressure force. The small fluctua-

tion in quadratic term δâ†δâ is ignored. Thus, the interaction Hamiltonian is
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linearized as following

Ĥopt = −~g
√
N̂(δâ+ δâ†)(b̂† + b̂) (2.109)

we see that the fluctuations of the light field δâ couple to the mechanical state

b̂ and the coupling is enhanced by the square root of the number of photons

in the cavity, g
√
N̂ .

Resolving the cavity frequency shift in the strong coupling regime where

(g/κ > 1) would allow us to observe quantum nonlinear dynamics at a single

photon-phonon level such as observation of mechanical quantum jumps [52].

However, the regime where (g � κ) is operated in solid state mechanical res-

onators experiments [43, 54–57]. The strong coupling regime only achieved for

cold atoms experiments[58, 59]. However, It is essential to note from Equa-

tion 2.108 that a large cavity photon number is sufficient for reaching a high

sensitivity to mechanical zero-point motion in the measurement of the reflected

beam from the cavity.

2.4 Membrane in Asymmetric Optical Cavity

The model described in the previous section does not accurately describe the

situation where a transparent membrane is placed in the middle of a cavity.

While the essence of the optomechanical coupling remains the same, it is not

the mirror that moves and changes the resonance frequency via the cavity

length, but the position of the partially reflecting membrane. Here, the in-

fluence of that position is analysed. Specifically, the case of an asymmetric

cavity is discussed, where the front mirror has a lower reflectivity than the

back mirror. Each optical element in the optomechanical system can be de-

scribed as a beam splitter. Two light waves enter(one going forward, one going

backwards), and two light waves exit. All we need to describe these four waves
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are the four complex amplitudes. Ignoring additional phase shifts, the relation

Figure 2.14: Optical element with the incident, transmitted and reflected light
fields.

between inputs and outputs is given by a beam splitter matrix of the form [60]

Aout

Bout

 =

t r′

r t′


Ain

Bin

 =

 cosθ isinθ

i sinθ cosθ


Ain

Bin

 (2.110)

where r, r′ and t, t′ are reflection and transmission amplitudes that link the

forward and backward travelling complex field amplitudes before (Ain and Bin)

and after (Aout and Bout). We assume that the light is originally sent from

the left and if the light at Aout goes through further optical elements which

cause the incoming light to be reflected back. This will include a phase shift

due to the optical path length to the next optical element and back, but also

everything that happens due to the combination of further optical elements.

For now, and in analogy to impedance transformations on transmission lines,

we can describe that all by an effective, complex reflection coefficient Z ′, such

that

Bin = Z ′Aout (2.111)

Therefore, we have a resulting transmission coefficient for the optical element

of
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Aout = tAin + r′Bin = tAin + r′Z ′Aout

⇒ Aout(1− r′Z ′) = tAin

⇒ Y =
Aout
Ain

=
t

1− r′Z ′

(2.112)

Which also follows a resulting reflection coefficient for the optical element

of

Bout = rAin + t′Bin = rAin + t′Z ′Aout

⇒ Bout = rAin + t′Z ′
t

1− r′Z ′
Ain

⇒ Z =
Bout

Ain
= r +

tt′Z ′

1− r′Z ′

(2.113)

The effective reflection coefficient Z
′

for the next element can be calculated

exactly in the same way. But we must also include the extra phase shift that

arises from twice the optical path length to that element (light travels back

and forth), as well as any losses that we want to describe.

For an optomechanical system where a thin dielectric membrane sits in the

middle of the optical cavity, we can introduce field amplitudes for all inputs

and outputs as in the Figure 2.15.

Figure 2.15: A schematic representation of the membrane in the middle of
the optical cavity. A thin dielectric membrane locates at ∆xm along the optical
axis of the cavity. It divides the length of the cavity into two, on the left L1

and on the right L2. A0, B0, A3, B3 are the incident, reflected, transmitted fields.
A1, A

′
1, A2, A

′
2, B1, B

′
1, B2, B

′
2 are circulating fields.

At each element (mirror, membrane, mirror), the two respective outputs
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(top right and bottom left) can be calculated from the respective input (top

left) by using effective transmission and reflection coefficients.

A1 = Y1A0 A2 = Y2A
′

1 A3 = Y3A
′

2

B0 = Z1A0 B
′

1 = Z2A
′

1 B
′

2 = Z3A
′

2

(2.114)

The distances between the three elements are the lengths L1 and L2, and we

use the relations

A
′

1 = η1A1e
ikL1 A

′

2 = η2A2e
ikL2

B1 = η1B
′

1e
ikL1 B2 = η2B

′

2e
ikL2

(2.115)

to include the optical delays and losses from scattering and diffraction that

are produced by unstable modes. The relevant ratios of amplitudes on the

right-hand side of the elements are then given by

Z
′

1 =
B1

A1

=
η1e

ikL1

η−1
1 e−ikL1

B′1
A
′
1

= η2
1e

2ikL1Z2

Z ′2 =
B2

A2

=
η2e

ikL2

η−1
2 e−ikL2

B′2
A′2

= η2
2e

2ikL2Z3

(2.116)

Since there is no fourth element and thus no light at the return input

Z ′3 =
B3

A3

= 0 (2.117)

Now, the overall reflection and transmission can be calculated using nested

expressions. To describe the behaviour of each element, we use beam splitter

“mixing” angles α, β, and γ instead of θ. For the first element, we have

Y1 =
cosα

(1− i sinαZ ′1)
=

cosα

(1− i sinα η2
1 e

2ikL1Z2)

Z1 = i sinα +
cos2 αZ ′1

(1− i sinαZ ′1)
= i sin′α +

cos2 α η2
1 e

2ikL1Z2

(1− i sinα η2
1 e

2ikL1 Z2)

(2.118)
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This can be expressed using the results for the second element

Y2 =
cos β

(1− i sin β Z ′2)
=

cos β

(1− i sinβ η2
2 e

2ikL2Z3)

Z2 = i sin β +
cos2 β Z ′2

(1− i sin β Z ′2)
= i sinβ +

cos2β η2
2 e

2ikL2Z3

(1− i sin β η2
2 e

2ikL2 Z3)

(2.119)

And that can be expressed using the result for the third element, which

is reduced to that of a simple beam splitter

Y3 =
cos γ

(1− i sin γ Z ′3)
= cos γ

Z3 = i sin γ +
cos2 γ Z ′3

(1− i sinγ Z ′3)
= i sin γ

(2.120)

Note that the total reflection coefficient is given by that of the first mirror

Z =
B0

A0

= Z1 (2.121)

But the total transmission coefficient is given by

Y =
A3

A0

=
A1

A0

A′1
A1

A2

A′1

A′2
A2

A3

A′2
= Y1 η1 e

ikL1 Y2 η2 e
ikL2 Y3 (2.122)

The membrane divides the optical cavity into two sub-cavities of lengths

dependent upon the membrane displacement ∆xm and back mirror displace-

ment ∆xc as follows

L1 = Lfront + ∆xm

L2 = Lback −∆xm + ∆xc

(2.123)

To calculate the spectra that we see, we need to relate the variables here

to the real parameters. Laser frequency f affects the wavenumber

k =
2πf

c
=

2π(f + ∆f)

c
=

2π

λ
+

2π∆f

c
(2.124)
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The beam splitter angles are given by the reflectivities (intensity coeffi-

cients)

α = arcsin
√
r1

β = arcsin
√
r2

γ = arcsin
√
r3

(2.125)

where r1, r2 and r3 are the reflectivity of the front, membrane and back mirror

respectively. In our optomechanical system with a planar front mirror, we

disregard absorption and scattering losses but consider an efficiency η1 < 1

due to the dominating optical instability of the plane parallel sub-cavity, which

depends strongly on the parallel alignment of the membrane and front mirror.

We assume η2 = 1, i.e. no further losses in the back cavity other than the

transmission through the back mirror.

The explicit expression for the cavity’s reflection coefficient Z1 becomes

Z1 =
r1

(
r2r3e

2ikL2 − 1
)

+ η1

(
r3e

2ik(L1+L2) − r2e
2ikL1

)
(r2r3e2ikL2 − 1) + η1r1 (r3e2ik(L1+L2) − r2e2ikL1)

(2.126)

The total reflection coefficient of the system is just the effective reflection

coefficient Z1 of the first element, while the total transmission is given by the

product of all effective transmission coefficients Y , the total propagation phase

and all single-pass loss factors.

The plot in Figure 2.16 shows the total reflection coefficient scanned ∆xc

in meters for 5 fixed values of ∆xm (steps of to 100 nm). The resonance peak

has the same finesse because losses are fixed, assuming that η1 and η2 are 0.7

and 1 respectively.

Different values of membrane parallel alignment η1 lead to an increase

(sharp resonance) or decrease (broad resonance) in losses between the two sub

cavities at various membrane positions ∆xm and that is shown in Figure 2.17.
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Figure 2.16: The total reflection coefficient is plotted for a cavity has a length
of L1 = L2 = 15mm with wavelength λ = 780nm and reflectivities of r1 = 0.99,
r2 = 0.995, rm = 0.22 at different values of ∆xm where η2

1 = 0.7.

Figure 2.17: The total reflection coefficient is plotted with the same parameters as
in Figure.2.16 but for several values of η2

1 at different membrane positions ∆xm.
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Figure 2.18 shows the theoretical cavity response according to this model

as a function of membrane position ∆xm for tuned laser frequency as well as for

tuned back mirror position ∆xc. The former might be intuitively understood in

terms of decreasing and increasing mode energies of the two sub-cavities with

different finesse. Their coupling by transmission through the membrane leads

to avoided crossings. As a result, resonant frequencies as well as cavity finesse

oscillate as a function of membrane displacement ∆xm. This behaviour corre-

sponds to the maximum field intensity alternating between both sub-cavities.

For the case of tuned mirror position, one should note that the mirror position

does not influence the length of the front sub-cavity and is thus not equiva-

lent to tuning the laser frequency. Here, the apparent linewidth of resonance

is determined by a mixture of cavity decay rate and tuning behaviour. This

case will be used for comparison with experimental data that will be shown in

Chapter 5.

The strongest dispersive coupling to the membrane occurs when the back

sub-cavity is resonant, while the front sub-cavity is anti-resonant (Lfront =

λ/4 +mλ/2 and Lback + ∆xc = nλ/2 with an integer m,n for the same sign of

all ri), see indicating arrow in Figure 2.18(a). Here, the first-order expansion

of the effective reflection coefficient becomes

Z1 ≈
r1(r2r3 − 1) + η1(r3 − r2)

(r2r3 − 1) + r1η1(r3 − r2)
+ 4πi

(r2
1 − 1)r2η1(2r2r3 − 1− r2

3)

((r2r3 − 1) + r1η1(r3 − r2))2

∆xm
λ

,

(2.127)

where all amplitude reflection coefficients r1,2,3 and η1 are real. One should note

here that the reflected intensity will reach a minimum on resonance and may

completely vanish, i.e. lead to Z1(∆xm = 0) = 0. This impedance-matching

condition is given by

r1 =
η1(r2 − r3)

r2r3 − 1
, (2.128)
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Figure 2.18: Theoretical simulations show the total reflectance of the resonator as
a function of the membrane position and laser frequency (a) or back mirror position
(b). For clarity, an exaggerated optical instability loss with η1 = 0.7 was used,
resulting in low-finesse modes. Dashed lines indicate loss-less sub-cavity modes for
100% membrane reflectivity.
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which reduces to

r1 ≈ η1 (2.129)

for highly reflective back mirrors with r3 ≈ 1. However, the signal response

is entirely given by the imaginary part of the expression in Equation (2.127)

that also corresponds fully to the light quadrature, which we will discuss in

the following section.

2.5 Polarization States of the Light

Figure 2.19: a)Types of photons polarization in a real space presentation for light
travelling along the z-axis. Red arrows indicate the direction of the electric field os-
cillation. b) Polarisation is represented on the Poincaré sphere. Circularly polarized
photons along Sz(here Sz is a classical component when we consider many photons
in a pulse) and the grey disc represents Heisenberg uncertainty of the transverse
components Ŝx and Ŝy. c)Top view of (b) where the field quadrature P̂L and X̂L are
identical d)Squeezing of one quadrature.

The experiment in this thesis involves laser interacting with a mechanical

oscillator via a polarization interferometer and it turns out that laser light

polarization is relevant to the quantum variable. The polarization states of

the light can be described by the Stokes operators. The quantum mechanical

Stokes operators follow the definitions for photon flux differences and a right-

handed coordinate system
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Ŝx =
c

2
(n̂H − n̂V) (2.130)

Ŝy =
c

2
(n̂D − n̂A) (2.131)

Ŝz =
c

2
(n̂L − n̂R) (2.132)

thus, it can be rewritten in terms of the annihilation and creation operators as

Ŝx =
c

2
(â†H âH − â

†
V âV ) (2.133)

Ŝy =
c

2
(â†H âV + â†V âH) (2.134)

Ŝz =
c

2
(iâ†V âH − iâ

†
H âV ) (2.135)

where V and H denote the two orthogonal field components in vertical and

horizontal directions. We have defined the annihilation operators for the other

two basis sets as

âL,R = (âH ∓ iâV)/
√

2 (2.136)

âD,A = (±âH + âV)/
√

2, (2.137)

where âL, R,âD, A, describes left/right-handed circular, linear diagonal/anti-

diagonal, beam polarization, respectively. All these types of polarization are

depicted in Figure 2.19(a). These Heisenberg operators for the field amplitude

must obey

[âi(z), â†j(z
′)] = δi,jδz(z − z′) (2.138)

for orthogonal polarizations i, j, such that the number operators n̂i = â†i âi

describe linear spatial photon density and the Stokes operators describe photon

flux, i.e. the rates at which photons arrive at the detector.

Observing that δ(t) = cδz(z = ct), the Stokes vector components must
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obey the commutation rules of the angular momentum according to

[Ŝx(t), Ŝy(t
′)] = iδ(t− t′)Ŝz(t) (2.139)

〈
∆Ŝx〉 .〈∆Ŝy〉 ≥

S2
z

4
(2.140)

and using circular permutation x→ y, y → z, z → x.

The total photon flux is given by

2Ŝ0 = c(n̂H + n̂V) = c(â†HâH + â†VâV). (2.141)

If a beam is fully circularly polarized, the Ŝz component of the correspond-

ing Stokes vector measures half the photon flux. However, measurements of

polarisation in another basis, for example in (A/D or H/V) basis will lead

to noise which is the Heisenberg uncertainty of the transverse components Ŝx

and Ŝy that is represented by the grey disc, see Figure 2.19(b). The reason is

that a circularly polarised photon has an equal probability to be detected at

either output of a polarising beam splitter, which measures if it was H or V.

Measuring at a 45-degree rotated polarizer will lead to the same result unless

the polarisation state is squeezed which means the noise may be smaller in the

A/D measurement if it is larger in the H/V measurement, see Figure 2.19(d).

In the assumption of the impedance matching at the cavity, the reference

beam that comes back is horizontally polarised and the signal beam is very

weak and vertically polarised. That means, instead of having a large Ŝz, we

have a large positive Ŝx (nH = A2 cos2 α and nV = 0, thus
〈
Ŝx〉 = cA2

2
cos2 α

where α is the polarisation angle and A the amplitude of the electric field before

the beam displacer). From the above view of the grey disk that is shown in

Figure 2.19(c, d), we can define new quantum quadrature operators X̂L and
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P̂L and their commutator as

X̂L =
Ŝy√
〈Ŝx〉

, P̂L =
Ŝz√
〈Ŝx〉

, → [X̂L, P̂L] = i. (2.142)

Thus, it is convenient to rewrite these Hermitian operators in terms of non-

Hermitian operators â†V and âV as

X̂L =
âV + â†V√

2
, P̂L =

âV − â†V√
2

(2.143)

where âV and â†V are the annihilation and creation operators for photons that

send to the cavity with vertical polarization. The Stokes operators can be

measured by a homodyne detection which will be explained in the following

section

2.6 Quantum noise

To assess the suitability of our setup for quantum optical experiments, ob-

serving and evaluating the levels of measurement noise is required. Here, the

principle of the detection scheme of homodyne detection is described with the

quantum noise of the light. Also, we show the entire quantum description of

coherent beam propagation through the converter and we end up with an im-

portant usage of the power spectral density, which can be used for predicting

the outcome of passing a noisy signal through our system.

2.6.1 Homodyne detection and quantum noise of light

A balanced homodyne detection (BHD) schematic diagram in Figure2.20 is

used for the detection of the thermal noise of the membrane. In general,

it consists of a 50:50 beam splitter and two identical photodiodes PD1 and
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PD2. The two photodiodes are connected to an electronic circuit that takes

the difference between them as an output (i1 − i2), where i1 and i2 are the

photocurrents that are produced by PD1 and PD2 respectively. The balanced

Figure 2.20: Schematic of the balanced homodyne detection.

detector has two input ports. The signal beam and local oscillator (LO) are

normally generated from the same laser and each beam input is detected by

one of the input ports of the balanced detector. The LO beam has the same

frequency as the signal beam but with a large amplitude light wave. Let’s

assume signal and LO beams are interfering on the beam splitter and the

output fields are ε1 and ε2 are given by

ε1 =
1√
2

(εLOe
iφLO + εS) (2.144)

ε2 =
1√
2

(εLOe
iφLO − εS) (2.145)

where εLO and εS are the amplitude of LO and signal beams respectively.

φLO is the phase of LO relative to the signal beam. The LO beam is treated

classically as its amplitude field is large whereas the signal beam is a weak field

and must be treated quantum mechanically. Therefore, the signal beam can

be represented by its two quadrature components as εS = εXLS + iεPLS . Thus,

the output fields split into their real and imaginary parts as
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ε1 =
1√
2

[
(εLO cosφLO + εXLS ) + i(εLO sinφLO + εPLS )

]
(2.146)

ε2 =
1√
2

[
(εLO cosφLO − εXLS ) + i(εLO sinφLO − εPLS )

]
(2.147)

The balanced homodyne detection output to the first order of εS is given by

Output ∝ i1 − i2

∝ ε1ε
∗
1 − ε2ε

∗
2

∝ 2εLO (cosφLO ε
XL
S + sinφLO ε

PL
S )

(2.148)

that results from the fact that the photocurrent of the balanced detector is

proportional to|ε|2 = εε∗. The LO beam has a sensitive phase, for example for

φLO = 0, π, 2π, ...., the output amplitude will be proportional to signal beam

quadrature εLOε
XL
S , which is in phase with LO beam [61].

In a classical scenario with a blocked signal beam - or a signal beam of

zero amplitude, the two signal quadratures are zero. Therefore, the measured

signal will also be zero. LO intensity will be equally divided between the

two photodiode inputs. That will lead to zero photocurrents (i1 − i2 = 0)

which suppress all classical intensity fluctuation of LO. However, that is not

correct in the quantum description according to Equation 2.148. Even though

a signal field has zero intensity, it will still have a non-zero field amplitude that

fluctuates around zero. These fluctuating amplitudes cause the non-zero signal

output of the detector. This is because there are vacuum modes entering the

signal port. Thus, the detector’s output is proportional to εLOε
vac and it is

equivalent to the photon shot noise in the LO. The interpretation is that the

shot noise output with no signal presents a result of the homodyning of the
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local oscillator with the vacuum field.

Quantum mechanically, the signal quadratures are described by the sum

and difference of field amplitude (or photon creation and annihilation) opera-

tors for the signal field

X̂L =
1√
2

(
âS + â†S

)
, (2.149)

P̂L =
1√
2

(
âS − â†S

)
. (2.150)

In our experiment, we use polarisation homodyne detection. The principle

is the same, but a polarising beam splitter is used. In this case, the local

oscillator travels on the same path as the signal beam, but it has orthogonal

polarisation. Using waveplates with the converter as shown in Figure 2.21,

the polarisation is rotated such that each component will be divided equally

between the two outputs. But the field amplitudes at the outputs will show

interference of the two input amplitudes.

Let’s assume the LO is horizontally polarised (H) and the signal beam is

vertically polarized (V). Using the usual beam splitter matrix, the two output

amplitudes that reach the two photodiodes will be described by the operators

â1 =
âH + iâV√

2
, (2.151)

â2 =
iâH + âV√

2
, (2.152)

and corresponding conjugate operators.

The measurements of the detected intensities or photon fluxes are de-
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scribed by the operators

φ1 = câ†1â1, (2.153)

φ2 = câ†2â2, (2.154)

The intensity difference is given by

φ2 − φ1 = c
(
â†2â2 − â†1â1

)
(2.155)

= c

(
−iâ†H + â†V√

2

iâH + âV√
2

− â†H − iâ
†
V√

2

âH + iâV√
2

)
(2.156)

= c
(
iâ†VâH − iâ†HâV

)
(2.157)

= 2Ŝz. (2.158)

Therefore, the detector measures the operator Ŝz, i.e. how circularly polarized

the input beam is.

2.6.2 Noise Readout From the Polarization Converter

Figure 2.21: Schematic of the polarization of the beam in the converter. QWP
refers to a quarter-wave plate and HWP refers to a half-wave plate .

We illuminate the converter with a coherent, linearly polarized input beam
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under an angle α, and the input polarization is described by

〈âH,in〉 = A cosα, 〈âV,in〉 = A sinα (2.159)

and thus

〈Ŝz,in〉 = 0, (2.160)

〈Ŝy,in〉 = 〈Ŝ0,in〉 sin 2α (2.161)

〈Ŝx,in〉 = 〈Ŝ0,in〉(cos2 α− sin2 α) (2.162)

Here 〈Ŝx,in〉 has a non-zero mean value due to the change in the balance

between reference (H) and signal (V) beams.

The effect of the converter is described as an effective beam splitter acting

on the partially entering signal field, while the reference beam is fully reflected

because it is not aligned with respect to the optical axis of the cavity. Including

the exchange of horizontal and vertical polarisations, the detected field is thus

given by

âH = âH,in and âV = Z1âV,in + i
√

1− |Z1|2âV,0, (2.163)

where âV,0 is the fictitious vacuum mode that’s required to describe the whole

system as a single beams splitter. We assume impedance matching and reso-

nance with the cavity such that Z1 ≈ iχ∆xm. We also assume 〈∆xm〉 = 0 and

the coupling to membrane motion to be small enough such that |Z1|2 � 1. As

a consequence, the measurement is described by

Ŝz ≈
c

2

(
χ∆xm(â†V,inâH,in + â†H,inâV,in) + (â†V,0âH,in + â†H,inâV,0)

)
(2.164)
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We write the field operators as a sum of expectation value (the classical

field amplitude) and a different operator to describe the quantum fluctuations

of those amplitudes

âH,V = 〈âH,V〉+ δâH,V (2.165)

Ŝz ≈
c

2

(
2A2χ∆xm cosα sinα

+ Aχ∆xm cosα(δâ†V,in + δâV,in)

+ Aχ∆xm sinα(δâH,in + δâ†H,in)

+ χ∆xmδâ
†
V,inδâH,in + χ∆xmδâ

†
H,inδâV,in

+ A cosα(â†V,0 + âV,0)

+â†V,0δâH,in + δâ†H,inâV,0

)

neglecting all higher-order terms results in

Ŝz(t) ≈ ηd〈Ŝy,in〉χ∆xm(t) +

√
ηd
c

2
〈Ŝ0,in〉 cosα(â†V,0(ct) + âV,0(ct)), (2.166)

where we included a detection loss ηd which reduces the photon flux but replen-

ishes the vacuum field. The first term measures the membrane displacement

while the second term arises from the co-measured field quadrature of the ver-

tically polarised vacuum field, which leads to white photon shot noise. This

signal is measured with a frequency-dependent electronic gain Ge such that

U(t) = GeSz(t). Since membrane position and vacuum field are uncorrelated,

the auto-correlation function RUU(τ) = G2
e〈Ŝz(t)Ŝz(t + τ)〉 of the measured
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voltage is given by

RUU(τ) = G2
e〈Ŝz(t)Ŝz(t+ τ)〉 =G2

eη
2
d〈Ŝy,in〉2χ2〈∆xm(t)∆xm(t+ τ)〉

+G2
eηd cos2 α

c

2
〈Ŝ0,in〉〈â†V,0(ct)â†V,0(ct+ cτ)〉

+G2
eηd cos2 α

c

2
〈Ŝ0,in〉〈âV,0(ct)â†V,0(ct+ cτ)〉

+G2
eηd cos2 α

c

2
〈Ŝ0,in〉〈â†V,0(ct)âV,0(ct+ cτ)〉

+G2
eηd cos2 α

c

2
〈Ŝ0,in〉〈âV,0(ct)âV,0(ct+ cτ)〉

(2.167)

Since for the vacuum 〈0|â†V,0 = âV,0|0〉 = 0, this reduces to

RUU(τ) =G2
eη

2
d〈Ŝy,in〉2χ2〈∆xm(t)∆xm(t+ τ)〉

+G2
eηd cos2 α

c

2
〈Ŝ0,in〉〈âV,0(ct)â†V,0(ct+ cτ)〉.

(2.168)

Using the commutator [â, â†]= δz(ct− (ct+ cτ)) leads to

RUU(τ) =G2
eη

2
d〈Ŝy,in〉2χ2〈∆xm(t)∆xm(t+ τ)〉

+G2
eηd cos2 α

c

2
〈Ŝ0,in〉

(
〈â†V,0(ct)âV,0(ct+ cτ)〉+ δz(cτ)

)
,

(2.169)

where the last bracket reduces again to δz(cτ), because âV,0|0〉 = 0.

RUU(τ) = G2
eη

2
e〈Ŝy,in〉2χ2〈∆xm(t)∆xm(t+ τ)〉+

1

2
G2

eηe cos2 α〈Ŝ0,in〉cδz(cτ)

= G2
eη

2
d〈Ŝy,in〉2χ2Rzz(τ) +

1

2
G2

eηd cos2 α〈Ŝ0,in〉δ(τ)

(2.170)

Here, we can introduce the auto-correlation Rzz(τ) = 〈∆xm(t)∆xm(t + τ)〉 of

membrane motion. To calculate the spectrum of the expected noise, we can

use the theorem that the power spectral density SUU of a voltage signal is

given by the Fourier transform of the signal’s auto-correlation function RUU .

Without electronic noise, the power spectral density of the measured volt-
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age is given by

SUU(f) =

∫ ∞
−∞

RUU(τ)e−2πifτdτ = G2
eη

2
d〈Ŝy,in〉2χ2Szz(f) +

1

2
G2

eηd cos2 α〈Ŝ0,in〉.

(2.171)

As discussed in Section2.2.2, the power spectral density (per natural frequency)

of an underdamped, thermally driven oscillator with resonant frequency fm and

energy loss rate γm is approximately given by

Szz(f) =

∫ ∞
−∞

Rzz(τ)e−2πifτdτ ≈ kBT

M(2πfm)2

2γm
16π2(|f | − fm)2 + γ2

m

, (2.172)

where M is the effective mass taking part in the oscillation with variance

〈∆x2
m〉 =

∫ ∞
−∞

Szz(f)df =
kBT

4π2Mf 2
m

. (2.173)

The power spectral density voltage of the measured SUU can be detected using

homodyne detection.

This chapter has described all the needed background that is used for the

MIM system. Also, the quantum description of our converter is well explained

and we provide the detection scheme with the converter’s readout. The fol-

lowing chapter will show how to design a robust interferometer taking into

account precise alignment.



Chapter 3

A Position to Polarization

Converter

In this chapter, we want to build an interferometer that maps the quantum

mechanical properties of the laser light that comes back from the optical cavity

signal beam onto the polarization of the laser beam. That has to be done in

an interferometric robust way because the reference beam must not change

its phase with respect to the signal beam rather than the membrane. The

design of our interferometer includes a birefringent crystal, thus it is useful to

show the effect of laser light polarization propagating in a birefringent crystal.

The sensitive alignment of the laser beams into the optomechanical system is

theoretically discussed considering the optimum overlap between the reference

and the signal beam to form the interferometer.

3.1 Polarization In A Birefringent Crystal

The speed of monochromatic light that passes through a Glass is the same in

all directions in isotropic materials which is characterized by a single index

of refraction. For anisotropic materials, the speed of light is different along

60
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different axes within the material as well as the index of refraction. Examples

of anisotropic materials are calcite, ice and quartz. When the material is

doubly refracting, it is called birefringence. This optical property is interesting

because it is polarization-dependent.

Figure 3.1: Birefringent crystal. a)Schematics of an unpolarized beam that is
doubly refracted by birefringent crystal. The input beam splits into an ordinary
beam (o-ray) and an extraordinary beam (e-ray). The ordinary beam will be linearly
polarized and travels just like in an isotropic medium. The extraordinary beam will
be polarized in the orthogonal direction and will be laterally displaced b) Photo of
calcite crystal showing the effect of double refraction [2]

.

When unpolarized light passes through a birefringent crystal as shown

in Figure 3.1 at some non-zero angle to the optical axis of the crystal, the

beam will be doubly refracted and split into two components. The two beams

are linearly polarized in orthogonal directions. The ordinary beam (o−ray) is

the beam that passes through a birefringent crystal in a straight line and it

has a refractive index no. In contrast, the beam that is refracted is called an

extraordinary beam (e− ray) and has a refractive index ne. The optic axis

has a particular direction, and it is indicated by dashed lines in Figure 3.1a.

Along that axis, no =ne means there is no extraordinary ray transmitted[2].
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3.2 Design of A Position to Polarization Con-

verter

Figure 3.2: Design of the position-to-polarization converter. A stable polarization
interferometer is formed between a beam displacer and an asymmetric, plano-convex
optical cavity containing a transparent membrane. The input beam is split into
the signal (red) and reference (green) beams of orthogonal polarization. The signal
beam is mode-matched to a TEM00 mode of the cavity. Upon reflection from the
entrance mirror, located in the focal plane of a lens, both beams are recombined by
the displacer, thus closing the interferometer. A double-pass through a quarter-wave
plate (QWP) provides the necessary exchange of horizontal and vertical polarization
components for beam recombination. As a result, membrane motion causes phase
shifts of the signal beam and thus variation of the output polarization. Resonator
length and membrane position can be actively controlled.

The principle of a position-to-polarization converter design is shown in Fig-

ure 3.2. It is based on a polarizing beam displacer/combiner, which spatially

splits a polarised input laser beam into two orthogonally polarized compo-

nents. Both ordinary and extraordinary beams are focused by a single lens

onto an asymmetric optical cavity. The extraordinary beam is not aligned

along the optical axis of the cavity and is reflected off the first mirror under

an angle and serves as an optical phase reference. The ordinary beam travels

along the optical axis and is brought into resonance with a cavity mode by

precisely tuning the position of the back mirror with a piezo element. The

light that enters the cavity reflects back and forth multiple times and will

interact with a transparent, micromechanical membrane that sits in the opti-
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cal cavity. Each time it traverses a micromechanical membrane will cause a

significant phase shift that depends on the membrane’s position. The cavity

mirrors have different reflectivity such that the ordinary signal beam leaves the

cavity predominantly through the front mirror. The light leaving the cavity

can be recombined with the imaged reference beam and form a single beam

with modulated polarisation. Position changes and oscillations of the mem-

brane are translated into modulation of the resulting polarization, which can

be observed by polarimetry or used to couple to another polarisation-sensitive

system such as dispersively coupled atomic ensembles. Back action onto the

membrane motion arises from changes or fluctuations of the input polarization

as well as overall power, which translates into varying signal beam intensity

and radiation pressure inside the cavity.

3.3 Beam Alignment and Mode Overlap

To achieve optimum optomechanical coupling between membrane and beam

polarization, the input laser beam has to be mode matched to a TEM00 mode

of the optical cavity while at the same time ensuring mode-overlap between

signal and reference beam paths. The control of beam size and divergence is

needed for mode-matching to the cavity mode but these should not be adjusted

using the lens depicted in Figure. 3.2, which ensures signal and reference beams

are overlapped. The distance between the lens and the reflecting surface of

the front mirror of the cavity must be equal to the focal length f because the

beam displacer produces a parallel signal and reference beams. These should

again be parallel when returning to the displacer. For a collimated beam of

the correct diameter and a planar-concave cavity as used here, this condition

may coincide with matching the beam divergence to the cavity mode (for

vanishing Gaussian focal shift [62]. Any further mode-matching to the cavity

mode should be performed by shaping the laser beam before entering the beam
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displacer.

Figure 3.3: Geometry of reference beam alignment. If the lens-cavity distance
deviates from one focal length, the returning signal (red, along the optical axis) and
reference beams (green) will not be parallel, leading to reduced mode overlap after
recombination by the beam displacer (not shown). The dashed line shows the intended
reference beam path. The depicted degree of typical misalignment is exaggerated here
for clarity.

The geometric precision that is required for sufficient beam overlap can be

estimated, i.e. the tolerance to deviations of the correct lens-mirror distance.

In the case of the distance between the lens and the reflecting surface of the

front mirror of the cavity not equal to the focal length f , the reference beam

will gain a small angle α as illustrated in Figure 3.3. For a distance error d

between the reflecting surface and back focal plane of the lens, the focusing

angle β is determined by beam separation ε and focal length f . Thus, the two

triangles that have β as one angle give

tanβ =
h

d
=
ε

f
(3.1)

where ε is the distance between the signal and reference beams of the bire-

fringent crystal. From this, we find that the reflected reference beam will be

parallel displaced from its intended path by a distance

h =
εd

f
(3.2)
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The returning reference beam will deviate by an angle α and cross the

intended beam path in the front focal plane. We use the small angle approx-

imation, tan α ≈ α. If α is too large, it will result in the beams no longer

overlapping and being able to recombine after passing back through the bire-

fringent crystal. Consequently, the angular deviation from the geometry can

be calculated as follows

α =
2h

f
(3.3)

substituting Equation 3.2 into 3.3 leads to

α =
2εd

f 2
(3.4)

When signal and reference beam are recombined, a reduced mode overlap

manifests as a spatial modulation of resulting beam polarisation in the near

field and may lead to beam separation in the far field. The beam displacer

introduces identical displacements ε during the splitting and recombination

processes. Therefore, we can evaluate the transversal mode matching by the

overlap between the actual and intended reference beam. For various dis-

tances between the lens and cavity mirror, the two returning beams intersect

as shown in Figure3.4 in the front focal plane of the imaging lens resulting

interference pattern. Thus, α can be defined in term of fringe spacing ∆z and

laser wavelength λ as

tan α ≈ α =
λ

∆z
(3.5)

comparing α in Equation 3.4 and 3.5 leads to

∆z =
f 2λ

2εd
(3.6)

where ∆z is the distance between light (or dark) fringes. The returning beams

differ only in their transverse momentum which is given by the wave number
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Figure 3.4: The reference beam has an angle α with respect to the signal beam,
where the crest is indicated by the solid line and the dashed line marks the trough.
The constructive interference is yellow highlighted and it occurs when the crest of
one of the beams intersects with a crest of another beam or a trough meets another
trough. The destructive interference is grey-highlighted and it appears where a crest
meets a trough.

difference

∆k =
2π

λ
sinα ≈ 2π

2ε

λf 2
d (3.7)

The interference fringes will vanish if the lens is placed a focal length away

from the cavity mirror resulting in the optimum overlap between the signal

and reference beams.

The overlap between the reference and signal beams can be estimated

using Gaussian beam profiles (we mean the amplitude profile, which has phase,

not the intensity). For the signal beam, we assume a two-dimensional Gaussian

beam profile with the main axes aligned along x and y. Without considering

its phase it is given by

Esig(x, y) = E0 e
− (x−x0)2

2ω2
x e

− (y−y0)2

2ω2
y , (3.8)
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here the coefficient E0 is the amplitude, x0 and y0 are the position of the centre

of the distribution(mean), whereas ωx, and ωy are the width of the Gaussian

(standard deviation). The Gaussian beam profile for the deviating reference

beam is given by

Eref (x, y) = E0 e
− (x−x0)2

2ω2
x e

− (y−y0)2

2ω2
y e−i(xkx+yky) e−ia(x2+y2) (3.9)

where e−i(xkx+yky) refers to the relative beam tilting (it will have a relative

phase that depends linearly on lateral distance) whereas e−ia(x2+y2) represents a

different curvature of the beam (assuming circular symmetry). The normalized

overlap of the two amplitude profiles is given by

Overlap =

∫ ∞
−∞

∫ ∞
−∞

Eref (x, y)Esig(x, y)dxdy√
|Esig(x, y)|2.|Eref (x, y)|2dxdy

(3.10)

To simplify this, the mismatch in overlap can be calculated by assuming that

the signal and reference beams are near-collimated Gaussian beams of sufficient

diameter. It means that the radii of curvature of the beams approach infinity

(and thus a = 0) and any changes in wavelength due to the Gouy phase shifts

can be ignored. The overlap integral between the ideal and tilted reference

beam becomes

Overlap =

∫ ∞
−∞

∫ ∞
−∞

2

πw2
e−

x2+y2

w2 e−i∆kxdxdy = e−
∆k2w2

8 , (3.11)

where w is the beam waist which is constant along the collimated beam path.

The effect of displacing the lens away from the focal plane by distance d

has to be investigated experimentally to check how the sensitivity of precision

of the alignment of two beams overlaps. The output of the converter is sent to

a camera instead of the balanced photo-detector and the MIM optical cavity

is replaced with a plane mirror. In this configuration, the only contribution

to a phase difference between the reference and signal cavity beams should
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be any optical path length difference due to air fluctuations and from any

misalignment of the optical system.

If a plane mirror or MIM cavity sits exactly at the front focal plane of

the lens, the reflection of the reference and signal cavity beams will be quite

overlapped with no interference. Displacing the lens away from the focal plane

by distance d will cause interference fringes. The interference fringes occur

because the reference beam is slightly inclined by a small angle α with respect

to the signal cavity beam and it can be monitored by a camera for different

values of d. At the separation of the two dark bands closest to the centre, one

can measure the fringe spacing ∆z. The six images in Figure 3.5 illustrate

how lens displacement d affects the separation distance between two bright (or

dark) fringes. Clearly, ∆z is getting smaller as d increases.

Figure 3.5: The six images illustrate how the spacing between fringes ∆z varies
with distance in mm. (Images are taken using ThorCam software (DCC1645C) with
resolution (1280 × 1024 Pixels).

The spatial fringe frequency is proportional to the deviation of lens-cavity

distance from one focal length and can be used to locate the correct lens

position. It shows the interference becomes visible as we move away from the

lens focal plane, see Figure 3.6 (top).

For a beam that is mode-matched to our MIM cavity with λ = 780 nm,



Chapter 3. Beam Alignment and Mode Overlap 69

Figure 3.6: The mismatch in the overlap between signal and reference beam. Align-
ment precision and mode overlap (bottom). The spatial fringe frequency is propor-
tional to the deviation of lens-cavity distance from one focal length and can be used
to locate the correct lens position (top). The expected mode overlap for deviations
from that position shows the tolerance to misalignment. The estimated positioning
accuracy of ≈ ±0.7 mm allows for a mode overlap of better than 0.985. (bottom)

a beam waist of w = 0.7 mm, a beam displacement of ε = 4 mm, and a focal

length of f = 300 mm, we find that the lens position must be accurate to

≈ ±1.3 mm to achieve an overlap of better than 95%. The overlap is shown

in Figure 3.6 (Bottom) is plotted using Equation 3.11.

The robust polarization interferometer that is shown above can be im-

plemented into the experimental setup which will be discussed in the next

chapter.
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Opto-Mechanical Setup

The optomechanical system requires a constructed setup that has to be stable

and vacuum-compatible. To enhance the coupling of the MIM system, we need

an optical cavity to be short for easy alignment, a thermally stable holder of

the optical cavity to avoid any thermal drift and is supported by vibration

isolation. This chapter highlights the experimental setup with its main con-

siderations for the optomechanical system. Lastly, the locking scheme, which

requires keeping the cavity on resonance with the laser, is described as involv-

ing forward feedback.

4.1 Designing A Thermally Stable Cavity Holder

To achieve optimum stability of the optical cavity, the material of the holder

of the optical cavity was chosen to be a combination of invar and aluminium

as shown in Figure 4.1. Invar is known for its uniquely low thermal expansion

coefficient αInvar = 1.7 × 10−6/◦C and aluminium which is used to hold the

concave mirror has a high thermal expansion coefficient αAluminum = 2.3 ×

10−5/◦C. In addition, the mirror is made of fused silica which has a low thermal

expansion coefficient αFusedsilica = 0.55×10−6/◦C and the piezoelectric chip is a

70
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standard piezo ceramic component with thermal expansion coefficient αPZT =

20× 10−6/◦C.

Figure 4.1: Holder design for a stable cavity.

Thermal expansion of the holder will expand or change the size of the

material as the temperature varies. The essential advantage of using these

two materials is that the Invar will expand outward whereas the mirror and

aluminium expand inward causing the change in the length to be exactly zero.

Thus, the length of the optical cavity is fixed. The initial length of the holder

in Figure 4.2 between the two mirrors Lcavity is given by

Lcavity = L1 − 2L2 − L3 − L4 − L5 − L6 (4.1)

where L1, L3 and L6 are lengths of invar. The thickness of the mirror and

PZT are labelled by L2 and L4 respectively. L5 refers to the length of the

aluminium holder see Figure. 4.2. The length after thermal expansion can be

calculated as a function of the initial length Li (i = 1, 2, 3, 4, 5, 6), temperature

difference ∆T and linear thermal expansion coefficient αmateriel. The length

after the thermal expansion of each material is given as

LInvar = (L1 − L3 − L6)(1 + αInvar∆T ) (4.2)
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Figure 4.2: Illustration of the lengths of each material where( αAluminum > αInvar).

LFusedsilica = L2(1 + αFusedsilica∆T ) (4.3)

LAluminum = L5(1 + αAluminum∆T ) (4.4)

LPZT = L4(1 + αPZT∆T ) (4.5)

The length of the cavity after the thermal expansion of the holder will

vary slightly and it can be written as

δLcavity = LInvar − 2LFusedSilica − LAluminum − LPZT (4.6)

Thus, the difference in length before and after thermal expansion of the holder

D has to be zero to have a thermally stable cavity as

D = Lcavity − δLcavity = 0 (4.7)

By considering slightly variation in the temperature ∆T = 1◦C, the length of

the Invar L1 = 52mm, L3 = 3.99mm and L6 = 2mm. The thickness of the

mirror and PZT are L2 = 6.35mm and L4 = 3 mm respectively. Thus, the
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length of aluminium can be obtained by

L5 =
(L1 − L3 − L6)αInvar − 2L2αFusedSilica − L4αPZT

αAluminum
(4.8)

To satisfy the condition in Equation 4.7, L5 is calculated to be 0.5 mm.

4.2 Membrane Holder Design

The membrane is lying freely on the small invar holder that sits in a recessed

location (groove) 5.5 ×5.5mm in size and it is clamped into the holder securely

by a thin clamping plate (sheet). The holder has three screws on the top, the

middle screw is to fix the membrane holder into the optical cavity mount and

the screws near the edges are used to align the membrane with respect to the

cavity optical axis, see Figure 4.3. The PZT sits between a small holder and

the big holder and it is screwed with a spring.

Figure 4.3: The membrane holder.

This holder is designed such that the membrane can be tilted in two di-

rections such that it can be adjusted to be parallel to the front mirror and thus

orthogonal to the optical axis. The membrane holder finally is integrated into

the cavity mount as shown in Figure 4.4c. It is screwed on top of the cavity
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holder which enables us to exchange the membrane without the need to disas-

semble the setup further. Details of the holder can be found in Appendix B.

Figure 4.4: (a) Membrane holder fixed into optical cavity mount. (b)Assembly of
all parts of the optomechanical holder which are attached to a flange that is provided
with electrical feedthrough to power PZTs in (c).

4.3 Vacuum System

The optomechanical system is enclosed in a high vacuum at low pressure which

is required to prevent damping of the mechanical quality factor of the mem-

brane and fluctuation of air which affects the cavity stability. Our chamber

is a 4-way standard cross, the optical access of the cavity is on the horizontal

ways and has two parallel AR-coated viewports (Lewvac,795nm). The vertical

ways have a flange that has the holder with feedthrough and the gate valve

on the opposite side. There is access to the membrane alignment with opened

gate valve. The pumping system is connected to the gate valve and it involves

a turbo (D-35614 Asslar) and roughing (MVP 040-2) pump. The roughing

pump first turns on for 30min-1hr, then we turn the turbo pump on for 1-2hr

and finally we close the valve with turn both pumps off for taking our measure-

ments. Unfortunately, there is no space to have a pressure gauge to measure
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the pressure but we estimate it to be low as clearly shown in our measurement,

which is approximated 10−6. Exchanging the membrane is effortless and can

easily be done by unscrewing the attached window to the gate valve.

4.4 Experimental Setup

The experiment has two optical breadboard tables: the MIM vacuum chamber

is placed on the optical breadboard table that has passive isolation mounts

with an anti-vibration mat under each foot. The MIM system is inside a box

that is enclosed by foam acoustic insulation see Figure 4.5. The laser beam is

well coupled to an optical fibre from the second optical breadboard table that

has the DLpro laser and the filter cavity.

Figure 4.5: A photograph of MIM optical breadboard, showing the MIM vacuum
chamber and optical elements.

The optical setup for the laser source is shown in Figure 4.6 shows DLpro

laser beam splits by a polarizing beam splitter (PBS) and the intensity of

the beam is adjusted by a half-wave plate (HWP). The transmitted beam of

PBS is sent to the Rb spectroscopy to ensure that the laser is on the desired

wavelength. The reflected beam of PBS is sent to the filter cavity with lens

(f1) to match the laser mode to the mode of the filter cavity. This cavity with a
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linewidth of ≈ 160 kHz was introduced to reduce frequency fluctuations of the

laser. That is well coupled and the reflected signal shows a strong dip in the

intensity corresponding to TEM00 mode. The divergence of the transmitted

beam will be adjusted to match the optical fibre mode by the lens (f2). The

reflected signal from the cavity is detected by a fast photo-detector (PD1)

which is used to lock the filter cavity to the laser via PDH. The transmission

of the filter cavity is coupled into an optical fibre to MIM setup.

Figure 4.6: Setup for filter cavity experiment. Laser light is sent through a filter
cavity to eliminate the laser frequency fluctuations.

The MIM cavity setup is shown in Figure 4.7. The output fibre coupler

passes through HWP and PBS to adjust the laser power as needed which is a

few microwatts. Then, the laser beam is split by the displacer and focused by

a lens (f3) to the MIM cavity. The displaced beams have to recombine as one

beam after reflection from the MIM cavity and the polarization of that beam

must be balanced by pair of HWP and QWP with PBS. The balanced signal

or dispersive signal is detected by a balanced photodetector (BPD) which

takes the difference between the two inputs. Even though the cavity length
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is reasonably stable due to the thermally stable holder design, the dispersive

signal is used to actively lock the MIM cavity. It also can be used to read out

the thermal noise of the membrane as we will discuss in the next chapter.

Figure 4.7: Experimental MIM setup including position to polarization converter
detection. A-D are waveplates which are adjusted sequentially in order to optimise
the polarization.

4.4.1 Mode Matching and Cavity Considerations

The laser beam mode has to be matched to the fundamental mode of the cavity

TEM00. The MIM cavity is constructed by a plano-concave mirror which leads

to beam divergence. Thus, the input laser beam requires beam waist ω0 at

location zR for optimized coupling and they are defined as

ω0 =

√
λzR
π

(4.9)

zR =

√
Lcavity(R1 − Lcavity)(R2 − Lcavity)(R1 +R2 − Lcavity)

(R1 +R2 − 2Lcavity)2
(4.10)

where R1,2 is the radius of curvature and Lcavity is the length of the cavity.

The filter cavity is a symmetric cavity with reflectivity r1,2 = 99.95% and

radius of curvature R1,2 = 1000mm. The length of the filter cavity is 180mm
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and the cavity mode waist is 275.5µm at the centre cavity. In the case of

symmetric cavity where R1 = R2, leads to zR =
√

2RLcavity − L2
cavity.

The mode of the filter cavity has to be matched to the laser mode. The

output of the DLpro laser has a spot size of 1.7mm and the needed lens for

mode matching has a focal length of 750mm at a 550mm distance from the

cavity centre. The power through the filter cavity is 4-5mW when the laser

is locked. The power intensity of TEM00 has a slight dependence on the laser

frequency. The transmission of the filter cavity is coupled into an optical fibre

by f2 = 500mm lens, which gives more than 200µW out of the fibre. We

measured up to 270µW.

The MIM cavity is an asymmetric cavity consisting of a flat mirror R1 =

∞ and a Plano-Concave mirror with a radius of curvature R2 = 100mm. The

length of the MIM cavity is Lcavity = 30mm and the cavity mode waist is

ω0 = 213.2µm at the flat mirror. In the case of asymmetric cavity where

R1 6= R2, leads to zR =
√
R2Lcavity − L2

cavity. The output of the fibre coupler

is collimated with a spot size of 1.5mm and from Equation 2.64 the needed

lens for perfect mode matching is f3 = 300mm. The mode matching begins

with aligning the MIM cavity without the membrane to TEM00 mode. Then,

the membrane is carefully inserted without distorting the spatial mode.

4.4.2 Polarimetric measurement and phase adjustment

The converter performance works as a linear-birefringent and linear dichroic

reflector. Dichroism arises from losses in the cavity, which also depends on the

position of the membrane. The signal and reference beams that are produced

and recombined by the beam displacer are referred to as (unbalanced) linearly

polarized beams which have vertical (V) and horizontal (H) polarization. One

of these beams will enter the MIM cavity and variable signal ∆φ is carried
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by their relative phase. Due to lens imperfection alignment or any spurious

birefringence, one can consider a phase offset φ0. In our MIM setup, homodyne

detection is shown in Figure 4.7. The resulting dispersive signal from the

detection which is shown in Figure 4.8 is an output of BPD which represents

the difference between the two inputs. It can be balanced and compensate for

any phase offset by a pair of QWP and HWP. The output polarization can be

visualized as a vector on the Poincaré-sphere as depicted in Figure 4.10. Both

wave plates cause a rotation of the Poincaré-sphere such that any imbalance

in the intensity between the resulting H and V components is maintained to

be ∆φ = 0.

Figure 4.8: The balanced signal as a function of detuning between cavity and laser
beam.

The polarization of the input laser beam until the balanced detection stage

has to be adjusted by waveplates labelled A, B, C and D in Figure 4.7. It is

essential to illustrate how to balance the dispersive signal in BPD which can

be done in three steps:

1. Adjusting plate A to have the desired ratio of intensities for the signal

and reference beams that are produced by the displacer and we balance

them in the absence of plates B and C. We should note that rotating
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plate D may have two outputs and we have to ensure that the output

is the recombination of the signal beam from the MIM cavity and the

reference beam. The effect of rotating plate D is illustrated in Figure 4.9

2. Blocking one of the two beams of the displacer, simply an iris can block

the reference beam, and then insert plate B and balance the signal on

BPD. This ensures that the orthogonal linear polarisations of the signal

and reference beam are converted into orthogonal circular polarisations.

See part (b) of Figure 4.10.

3. Finally, we should have both beams, add plate C in front of BPD, and

balance it to compensate for any phase offset between the two beams,

see part (c) of Figure 4.10.

Figure 4.9: Rotating QWP will change the polarization of the recombined beam
resulting in two beams. The grey beam is undesirable and QWP has to be rotated to
eliminate it.

The action of the correctly adjusted waveplates is such that on the Poincaré

sphere, the measurement of the detection is represented by Stokes vector com-

ponent Ŝz returning from the converter while the converter leads to rotations

about the Ŝx-axis if the cavity produces a phase shift (and changes in Ŝx-

component and overall power due to light absorption in the cavity). The

quantum mechanical Stokes operators follow the definitions for photon flux

differences and a right-handed coordinate system as discussed in Section 2.5.

Adjustment of polarimetric measurement basis on the Poincaré sphere is

illustrated in Figure 4.10 which shows that the imbalanced signal and reference
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beam returning from the cavity are combined in a horizontal/vertical(H/V) ba-

sis with some phase offset φ0 and varying phase difference ∆φ. The combined

polarisation is depicted in (a). A quarter-wave plate introduces a 90-degree ro-

tation about the anti-/diagonal (A/D) axis, shown in (b), transforming signal

and reference to orthogonal circular polarisations (L/R). Finally, a half-wave

plate allows for the compensation of the phase offset by introducing oppo-

site phase shifts to the circular components (and swapping L/R). The phase

difference ∆φ is mapped onto the imbalance between H and V polarisations.

Figure 4.10: Adjustment of polarimetric measurement basis. The imbalanced signal
and reference beam returning from the cavity are combined in a horizontal/vertical
(H/V) basis with some phase offset φ0 and varying phase difference ∆φ. The com-
bined polarisation is depicted on the Poincaré sphere in (a). A quarter-wave plate
introduces a 90-degree rotation about the anti-/diagonal (A/D) axis, shown in (b),
transforming signal and reference to orthogonal circular polarisations (L/R). Fi-
nally, a half-wave plate allows for the compensation of the phase offset by introduc-
ing opposite phase shifts to the circular components (and swapping L/R). The phase
difference ∆φ is mapped onto the imbalance between H and V polarisations
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4.5 Theory of Pound Drever Hall Locking Sys-

tem

Locking the fluctuating laser frequency to the narrow band filter cavity requires

fast feedback, which we achieve using the PDH technique. By extracting an

error signal proportional to the frequency difference between the filter cavity

and the laser beam. The error signal will be feedback via some control actua-

tor, e.g. a piezoelectric actuator, laser current or an electro-optic modulator.

Enhancing the system with a closed feedback loop leads to the laser frequency

will be locked to the cavity resonance when the proportional-integral-derivative

(PID) controller modifies the beam frequency. Conversely, the cavity of res-

onance will be locked to the laser frequency when PID modifies the length

of the cavity[63]. Let us introduce the mathematical description of the PDH

Figure 4.11: The reflected signal from the cavity as a function of frequency. If the
frequency is modulated with a small shift, one can tell from the slope which side of
resonance the frequency is on.

.

technique. The magnitude of the electric field of incident Ei and reflected Er

beam at one point outside of the filter cavity can be described as

Ei = E0e
iωt (4.11)
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Er = E1e
iωt (4.12)

Where E0 and E1 are complex relative phases between the two waves, ω is the

angular frequency of the laser. For a lossless symmetric cavity, the reflection

coefficient rc defines as the ratio of Ei and Er as

rc =
Er
Ei

=
r
[
ei

ω
FSR − 1

]
1− r2ei

ω
FSR

(4.13)

Where r is the mirror reflectivity and FSR = c/2Lcavity is the free spectral

range of the cavity with a length of Lcavity.

The phase of the reflected beam can be measured by modulating the laser

frequency (or phase). It will tell us if the laser frequency is above or below the

cavity resonance. The electric field of the incident beam after passing through

a phase modulator is given by

Ei = E0e
i(ωt+βsinΩt) (4.14)

The modulation creates sideband frequencies which are different from the

frequency of the incident and reflected beams. For small modulation depth

(β < 1), the equation 4.14 can be expanded using Bessel function as follows[64]

Ei = E0

[
J0(β)ei(ωt) + J1(β)ei(Ω+ω)t − J1(β)ei(ω−Ω)t

]
(4.15)

Where Ω is the frequency of the phase modulation β is modulation depth,

and J0 and J1 are the first kinds of Bessel function. Three components of the

incident beam on the cavity appear with different frequencies: a carrier with

ω frequency and sideband frequencies with ω ±Ω [65]. Thus the total electric
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field of the reflected beam is given by

Er = E0

[
rc(ω)J0(β)ei(ωt) + rc(ω + Ω)J1(β)ei(ω+Ω)t − rc(ω − Ω)J1(β)ei(ω−Ω)t

]
(4.16)

The modulation depth determines the relative power in the carrier Pc and

in the sidebands Ps. If the total power of the reflected beam is P0 = |E0|2, then

Pc = J2
0 (β)P0, and the sidebands’ power in each first order is Ps = J2

1 (β)P0.

Most of the power will be in the carrier and the first order sidebands in the

case of small modulation depth; P0 ≈ Pc + 2Ps.

The resultant beam is a wave with an envelope that shows the beat pattern

between the two frequencies of sidebands as

Pr = |Er|2 = Pc|rc(ω)|2 + Ps
{
|rc(ω + Ω)|2 + |rc(ω − Ω)|2

}
+2
√
PcPs

{
Re [rc(ω)r∗c (ω + Ω)− r∗c (ω)rc(ω − Ω)] cos Ωt

+Im [rc(ω)r∗c (ω + Ω)− r∗c (ω)rc(ω − Ω)] sin Ωt
}

+ (2Ω terms)

(4.17)

The Ω term appears as a result of the interference between the sidebands and

the carrier and the 2Ω term originates from the interference of the sidebands

with each other. In the experiment, the laser is modulated at a high frequency

where the modulation is larger than cavity linewidth (Ω�FWHM). Thus, the

sidebands must be perfectly reflected preventing any cavity power to transfer

into the sidebands as we see in Figure 4.12. The error signal is given by

[rc(ω)r∗c (ω + Ω)− r∗c (ω)rc(ω − Ω)] ≈ −i2 Im {rc(ω)} (4.18)

which is purely imaginary. The cosine term is ignored in Equation 4.17 and it

is experimentally blocked by PD signal with a mixer and low pass filter. Thus,

what ends up is the error signal (ε) which is nearly linear, asymmetric near
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resonance and proportional to sinΩt as shown in Figure 4.12, it is given by

ε = −2
√
PcPs Im {rc(ω)r∗c (ω + Ω)− r∗c (ω)rc(ω − Ω)} (4.19)

Figure 4.12: The PDH error signal and the sidebands at frequency modulation at
Ω = 6MHz.

In Figure 4.12, the error signal is zero when the laser is resonant with the

cavity but it has a maximal slope and it scales by
√
PcPs in Equation 4.19. The

following section will show our locking scheme for the filter and MIM cavity.

In our filter cavity locking, the power of the sidebands is adjusted to

obtain a suitable error signal while the most power is still contained in the

carrier. When the cavity is locked, only the carrier is transmitted through

the filter cavity and brought to the MIM cavity setup via the optical fibre

while the sidebands are reflected, because they are far away from the filter

cavity resonance. They are 6MHz away, while the linewidth of the filter is

only 160kHz.
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4.5.1 Locking Scheme

The stability of the laser and the optomechanical system is essential to pave

the way for measuring the thermal noise of the membrane. There are two

schemes for locking in our experiment: Active locking stabilisation of the MIM

cavity using the dispersive signal and locking of the filter cavity by the PDH

technique.

Figure 4.13: Locking setup to lock the MIM cavity via balanced signal.

The locking scheme for the optomechanical system is uncomplicated as

shown in Figure 4.13. The converter’s output polarization that results from

BPD can be utilized directly for active stabilization of the MIM optical cavity.

It is characterized as sufficiently stable due to the geometric robustness and

nearly identical path lengths in the interferometer. The dispersive signal is

our error signal and it is sent to the PI controller that is connected to the

PZT controller to provide the required feedback to keep the MIM cavity in

resonance with the laser.

The schematic of PDH to lock the filter cavity is shown in Figure 4.14.

A dual-channel function generator is used where Ch1 modulates the AC-

modulation input of the DLpro laser to produce sidebands onto the laser via

current modulation and Ch2 provides an RF modulation signal at 6 MHz. The

RF signal which is the reflected signal from the filter cavity is measured with

a highly sensitive photodiode. It is mixed with a local oscillator (LO) which

is in phase with laser modulation. The output of the mixer is phase shifted

and it is split: One part passes through a low pass filter (LPF) to isolate low

frequencies which serve as an input for the PI controller which is fed back to
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Figure 4.14: Active stabilization locking setup to lock the filter cavity using PDH
technique.

the laser to keep it locked on resonance with the filter cavity. The second

part is sent to the PID controller to provide fast feedback to the laser. The

schematic of the PID card is provided in Appendix.C. Applying fast feedback

to the laser current and slow feedback to the filter cavity piezo allows us to

narrow the linewidth of the laser such that it enters the cavity and we are still

able to lock the laser to an atomic transition for the next stage. All electronic

components of the locking system are listed in Table. 4.1

Function generator Siglent, SDG2122X
Photodiode Thorlabs, PDA10A2

Mixer MiniCircuits,
Low pass filter Stanford Research System, RS570

Balanced photodidoe Thorlabs, PDB210A

Table 4.1: Electronics of locking system.

The error signal is shown in Figure 4.15 with generated sidebands at

6MHz. The feedback system is set up to resist changes in the laser frequency

around the resonance. Therefore when the feedback is connected to the DC

modulation laser, the error signal is flattened as the locking signal is attempting

to correct the change in frequency caused by the PZT scanning.



Chapter 4. Theory of Feedback 88

Figure 4.15: The error signal with generated sidebands. Top: when there is no
feedback to the DC modulation laser and the laser is scanned sufficiently fast over
the cavity resonance. Bottom: When there is feedback to the DC modulation laser,
the laser frequency is kept longer in the vicinity of the resonance and fast frequency
fluctuations become visible in the error signal.

4.6 Theory of Feedback

If we have a linear-time invariant system in a closed loop, the output will

control the input that is applied to the system. The control of the output is

achieved by comparing the output to the required input via the feedback path.

As shown in Figure.4.16, the system can be mathematically described by a

transfer function which relates the input to the output [66].

The input in our system is typically the dispersive signal and the error

represents the detuning between laser frequency and cavity resonance which

will add noise to the input signal. Thus, the output signal is defined as

Output = F (ω)× error (4.20)
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Figure 4.16: Feedback block system.

where F (ω) represents the open-loop gain of the system, and G(ω) represents

the gain of the system in the feedback path. Both are functions of frequency.

The detuning is given by (error = Input − G(ω) x Output) and it can be

substituted in Equation.4.20 to construct the transfer function which is the

ratio of the output to its input and it is defined as

S =
Output

Input
=

F (ω)

1 + F (ω)G(ω)
(4.21)

The overall gain of negative feedback closed-loop control system in Equation

4.21 may increase or decrease depending on the value of (1 + F (ω)G(ω)) and

F (ω)G(ω). If the value of (1 + F (ω)G(ω)) > 1, the overall gain will increase

whereas the overall gain will decrease when (1 + F (ω)G(ω)) < 1. The value

of (F (ω)G(ω)) may be negative or positive leading to a negative or positive

gain of the feedback path respectively. In the presence of time delays of the

feedback, one can define F (ω) = eiω(t+τ) where τ is the time delay. In the

case of τ = 0, there is no phase delay however τ 6= 0 leads to phase delay

and ω will increase that phase. Any closed loop system can be fully described

by looking at three parameters: The gain (amplitude), phase and frequency.

Also, the frequency response can be visualized by the Bode plot, Nyquist plot

and Nichols plot [35]. All three plots display the amplitude and phase shift

for every single frequency. The system has to be stable with no damping
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oscillation by checking every frequency in the Bode plot that has a magnitude

of 0dB and ensuring that the phase is not −180◦ [67]. These plots will be

experimentally shown in the following section.

4.6.1 Feedback For Noise Suppression

As shown in Figure 4.17, the MIM cavity is locked to the laser via the dispersive

signal which feeds as an error signal to the PI controller. The output of the

PI is sent to the analogue interface of the DLpro laser to keep the laser locked

to the cavity. The second copy of the dispersive signal passes through an

Figure 4.17: Noise feedback using different attenuators.

attenuator to the DC-modulation input of the DLpro laser. While locking, we

notice a large noise on the error signal. Thus, we used different attenuators to

eliminate that noise and compare the noise level. The noise level is measured

by the voltage divider output and read out by taking the power spectral density

of the dispersive signal.

The noise level of the signal can be seen with different attenuators in

Figure 4.18. At ∞ dB, there is no feedback connected which shows the lowest

noise on the green curve. In the blue curve at 0 dB, feedback is directly

connected with no attenuator. The suppressed noise is seen better at 20 dB

by one order of magnitude.

To ensure the feedback system is stable, we need to check the frequency
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Figure 4.18: Feedback noise level with different attenuators. At ∞dB, there is no
feedback connected and at 0dB is direct feedback with no attenuator.

response of the system in terms of its amplitude (A) and its phase (φ) via

a vector spectrum analyzer. By sweeping the frequency (f) from 20kHz to

2.1MHz with power bandwidth −40dBm, we read out the phase and ampli-

tude at different single frequency values. Thus, the frequency response of the

feedback loop can be visualized by the Bode plot as seen in Figure 4.19. Every

frequency on the Bode plot should have an amplitude of 0dB and the phase is

not −180◦ to be specified as a stable system. Figure 4.19 shows that the gain

is high with phase 0◦ at a low frequency while the amplitude drops with −180◦

phase at a high frequency which tends toward the origin in Nyquist plot, see

Figure.4.20.

To check the stability of a system with feedback, Nyquist plot is shown in

Figure 4.20 where the real part of the transfer function is plotted on the x-axis

and the imaginary part on the y-axis. Stability is determined by achieving

loop gain that is smaller than 1 before we reach −180◦. In another word,
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Figure 4.19: Bode plot for frequency response of the feedback system. Top: The
amplitude 20log(A) versus the frequency log(f). The high gain corresponds to low
frequency whereas the low gain corresponds to high frequency. Bottom: The phase
changes sharply at a higher frequency and it is zero around 5.5 Hz but increases to
180 degrees for lower frequency

the feedback system will be stable as long as the curve on the Nyquist plot

does not cross over the critical point (−1, 0) otherwise the system will undergo

an oscillation. In addition, locking the filter cavity to the DLpro laser with

forward feedback has a time delay. To find how much delay we have, we send

the dispersive signal to the vector spectrum analyzer as input and its output

is sent to DC-modulation input with a 20dB attenuator. From sweeping the

frequency, the time delay simply can be calculated by τ = ∆φ
∆f

1
2π

. It is found

to be ≈ 0.73µs.
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Figure 4.20: Nyquist plot shows the system stability within the amplitude range
which should not exceed the critical point.

This chapter has described our special design of the MIM holder that has

to be thermally stable. It shows the experimental aspect of the optomechanical

setup with its locking scheme. Also, the feedback for noise suppression is

discussed. The next chapter will characterize our optomechanical and present

the measurement of quantum noises.



Chapter 5

Measurement

In this chapter, we present the measurement results that characterize our op-

tomechanical system. The imaging of the output of the position-to-polarization

converter is investigated experimentally to achieve optimum overlap between

the signal and reference beams. Our experiment reads out the thermal noise

of the membrane and compares it to the shot noise level to reach the quantum

regime to see the quantum effects of the membrane. Finally, we will discuss the

improvement of our measurement of thermal noise by eliminating laser noise

with a filter cavity.

5.1 Characterization of MIM optical Cavity

The MIM optical cavity is an asymmetric cavity in several senses. It consists

of a planar front mirror and a concave back mirror with different reflectivities

r1 = 99% and r2 = 99.95% respectively. In the ideal case when there are

no losses considered, a theoretical finesse for the empty optical cavity is F=

595. The total cavity length Lcavity ≈ 30 mm corresponds to free spectral

range of ≈ 5 GHz. Experimentally, the finesse can be found by measuring the

ratio between FSR and FWHM of the TEM00. As shown in Figure 5.1, the

94
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Figure 5.1: Cavity transmission which shows the fundamental mode TEM00.

finesse is found to be F = 311.8 which is reduced due to the optical losses with

FSR= 5 GHz and κ = 16 MHz.

The membrane alignment is very sensitive so the mode matching has to

be optimized before placing the membrane in the middle of the cavity. Then,

the membrane can be attached to the mount of the optical cavity and has

to be aligned with respect to TEM00 mode. Otherwise, any misalignment or

tilting of the membrane will distort the TEM00 and it will couple to higher

modes. Theoretical intensity distributions for transverse modes of the cavity

is corresponding to their imaged MIM cavity which is shown in Figure 5.2.
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Figure 5.2: Transverse mode of the cavity. Theoretical intensity profiles are shown
in the top row and the lower row refers to experimental images for cavity transmis-
sion. Column a→(l=0,m=0) and b→(l=0,m=1) are profile for Hermite-Gaussian
mode whereas c→(p=0,m=1)and d→(p=1,m=1) are profile for Laguerre-Gaussian
mode.

We also estimate the signal beam overlap with the TEM00 mode of the

present cavity by imaging the reflected signal beam for both resonant and off-

resonant conditions. Off resonance, both intensity beams are reflected and it is

shown in Figure 5.3(a). The reflected intensity on resonance in Figure 5.3(b)

will show a drop in the intensity due to the destructive interference between the

amplitude of the beam that leaks inside the cavity and the beam that we send

in (both beams have opposite phases). Fitting two-dimensional Gaussian beam

model functions including beam tilt and relative divergence (see Equation 3.9)

to match the two profiles results in a mode overlap of ≈ 0.93.

Figure 5.3: Intensity profiles of the reflected beam. The near-Gaussian intensity
profile of the signal beam is shown in (a) and the residual reflected intensity for
the resonant cavity is shown in (b). Cuts through the data and modelled intensity
distributions for those profiles as well as the assumed intensity profile of the cavity
are shown in (c).
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The details of the membrane will be discussed in the following section.

5.2 Characterization Of the Membrane

The membrane that is used in the experiment is a stoichiometric Si3N4 mem-

brane and it has a naturally large tensile stress of T ≈ 1GPa with a size of

(1mm x 1mm x 50nm) dimensions [1]. The membrane reflectivity is related to

its thickness by

|rm| =
∣∣∣∣ (n2

m − 1)sin knmdm
2inm cosknmdm + (n2

m + 1)sin knm dm

∣∣∣∣ (5.1)

where nm is the refractive index of the membrane which is estimated to

be |nm| = 2 in the near-infrared wavelengths with low absorption per pass

≈ 10−5 − 10−7[7, 68, 69]. The reflectivity of the membrane theoretically can

Figure 5.4: The amplitude reflectivity is plotted versus laser wavelengths (top)
and versus the membrane thickness (bottom). At λ = 795nm and dm = 50nm, the
amplitude reflection coefficient is estimated to be 0.47.
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be estimated by plotting Equation. 5.1 as a function of the laser wavelengths

or membrane thickness which gives |rm| = 0.47 at wavelength 795nm or at

thickness 50nm. Experimentally, we send a 1.25 mW laser beam to the mem-

brane to measure the transmitted and reflected power of the membrane as

tm = 0.866mW and rm = 0.281mW respectively. Thus, membrane reflectivity

is found to be |rm|2 = 0.22 with 0.01 losses which agreed with our estimation.

5.3 Calibration of the Cavity and Membrane

PZTs

To measure the gain of the PZT that is used to change the length of the cavity

and the position of the membrane by applying DC voltage and reading the

amplification on the PZT controller display. The open-loop piezo controller

(MDT693B) is used to amplify the voltage that is derived to PZT. The input

signal (AC or DC) voltage has to be between 0 V and 10 V. The output signal

will follow the input voltage with a gain of 10 V/V depending upon the output

voltage limit which is 100 V.

Figure 5.5: Setup for measuring the gain of the PZT a)cavity b)membrane.

To calibrate the cavity and membrane PZTs, the gain has to be measured.
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As shown in Figure. 5.5, DC voltage applied to PZT of the cavity Vc to change

its length in (a) and the output voltage V
′
c can be read on the display of PZT

controller. Similar in (b) DC voltage applied to PZT of the membrane Vm to

change its position and the output voltage V
′
m can be read also in the display

of the PZT controller. The output voltage is related to the gain by

V
′

c = VcGc (5.2)

V
′

m = VmGm (5.3)

where Gc and Gm are the gain of the cavity and membrane PZTs respectively.

Figure 5.6: The slope of the two plots estimates the gain of the PZT of the cavity
Gc (top) and of the membrane Gm (bottom).

The Gain of the cavity and membrane PZTs in Figure 5.6 are Gc = 9.94

and Gm=9.86 respectively, which are as expected from the datasheet. The mir-

ror PZT expansion coefficient has a maximum displacement of ∆xc = 2.6µm
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at 150V and experimentally it can be found by

αc =
d(∆xc)

d(V ′c )
=

λ/2

∆V ′c
(5.4)

where ∆V
′
c is the distance between two longitudinal modes in volt which is

equal to 35V. This leads to αc to be 8.92×10−9m/V . Similarly, the membrane

PZT expansion coefficient has a maximum displacement of ∆xm = 3µm and

it can be found by

αm =
d(∆xm)

d(V ′m)
=

λ/4

∆V ′m
(5.5)

∆V
′
m is the difference between the maximum and minimum of the location

of the resonance in volt as shown in Figure 5.8. It is found to be 29.5V resulting

αm to be equal 6.7×10−9m/V.

Figure 5.7: This plot shows the difference between the maximum and minimum of
the location of the resonance which can be used to estimate αm.
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5.4 Estimating the Position Sensitivity

The dispersive signal will accordingly be shifted as the membrane changes its

position. The reading of the location of the dispersive signal or MIM cavity

resonance is recorded in small steps and plotted versus the membrane position

as shown in Figure 5.8. This membrane effect was calibrated by converting

the voltages in Figure 5.7 into frequency versus membrane position. This was

done using the cavity mirror voltage that is required to span one free spectral

range and the fact that the effect of the mirror position repeats every half

wavelength. Then, the maximum slope can be found, which determines the

frequency shift per membrane displacement. It is found to be β= 1.2 ×1010

Hz/m which is taken from the linear fit. In order to find the sensitivity of the

Figure 5.8: The plot shows the position of the dispersive signal versus the membrane
position. The slope is fitted between MIM cavity resonance maxima and minima. The
x and y axis is calibrated by ∆xm = αmV

′
m and f = V ′cFSR/∆V

′
c respectively.

output signal to position, the maximum slope σ of the dispersive signal has to

be found which allows us to estimate the frequency sensitivity which is given
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Figure 5.9: The dispersive signal with the linear fit to estimate σ.

by σf=σ∆V ′c/FSR. From the linear fit to the dispersive signal in Figure 5.9,

σ is found to be 4.20 V/V. Thus, the maximum position sensitivity can be

found by

σx = σfβ (5.6)

For σf= 3.02 × 10−9V/Hz, the maximum position sensitivity is σx = 3.7 ×

107V/m. Therefore, we expect signal amplitudes on the order of microvolts for

membrane displacement as small as picometers. This will be the typical size

of thermal membrane motion.

It is important to note that position sensitivity depends on a number of

varying parameters such as the changing finesse as well as signal and reference

beam powers.
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5.5 Finesses of the optomechanical system

The finesse of the MIM cavity depends strongly on the parallel alignment of

the membrane and front mirror. The membrane changes its location by apply-

ing DC voltage to the PZT of the membrane Vm. Thus, MIM cavity resonance

shifted in small steps as shown at the top of Figure 5.10 with its phase at

the bottom. The shift of the cavity resonance experimentally shows different

Figure 5.10: MIM cavity resonance as a function of the back mirror position.
a)The MIM transmitted resonance at different membrane locations shows low finesse
at Vm = 5.5V and high finesses at Vm = 2.5V . b) It shows the phase of each
resonance. The x-axis is calibrated by ∆Vcαc/∆t.

finesse when the membrane changes its location resulting different losses at

every value of ∆xm as shown in Figure. 5.10. The finesse is found by fitting

all MIM cavity resonances at different membrane locations by Lorentzian to

measure the width of each peak. The relative widths of cavity resonance are

plotted as a function of the membrane position as shown in Figure 5.11 (top)

and the finesse will be high for sharp resonance (narrow width) and low for
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broad resonance (wide width). Figure 5.11(bottom) shows the experimental

cavity response according to this model as a function of membrane position

∆xm for tuned back mirror position ∆xc. The former might be intuitively

understood in terms of decreasing and increasing mode energies of the two

sub-cavities with different finesse. Their coupling by transmission through the

Figure 5.11: Experimental data for resonance locations has been overlayed (black
dots). Corresponding full linewidths, measured as mirror displacement wz, are shown
together with the theoretical expectation for an estimated η1 ≈ 0.994. We attribute
deviations to spurious coupling to higher-order, transversal cavity modes.

membrane leads to avoided crossings. As a result, resonant frequencies as

well as cavity finesse oscillate as a function of membrane displacement ∆xm.

This behaviour corresponds to the maximum field intensity alternating be-
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tween both sub-cavities. As we discuss in Section 2.4, the theoretical model

of the case of tuned mirror position, the mirror position does not influence

the length of the front sub-cavity. Thus, the apparent linewidth of resonance

is determined by a mixture of cavity decay rate and tuning behaviour. This

case is used for comparison with experimental data also shown in Figure 5.11,

where we used a fixed laser frequency referenced to an atomic transition within

the 87rubidium D1-line manifold.

The strongest dispersive coupling to the membrane occurs when the back

sub-cavity is resonant, while the front sub-cavity is anti-resonant (Lfront =

λ/4+mλ/2 and Lback+∆xc = nλ/2 with an integer m,n, see indicating arrow

in Figure. 5.11 (bottom).

For fixed loss, cavity response reaches its maximum exactly for the impedance

matching condition in Equation 2.129. If maximal response is required, the

front mirror reflectivity should thus be chosen for impedance matching [70].

The response then increases monotonously with η1 and first-order expansion

of the effective reflection coefficient 2.127 reduces to

Z1 ≈ iχ∆xm = 8πi
η1

1− η2
1

r2

1− r2

∆xm
λ

(5.7)

for r3 ≈ 1. This expression diverges for η1 → 1 or r2 → 1, which would

both correspond to infinitely sharp resonance width. In scenarios where the

interaction with the membrane should ideally be lossless, in particular, to

retain the quantum properties of the input beam, the resonator should be

undercoupled with a front mirror reflectivity much lower than the internal loss

factor. For zero loss with η1 = r3 = 1, the response would be given by

Z1 ≈ −1 + 8πi
1 + r1

1− r1

r2

1− r2

∆xm
λ

(5.8)
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From fitting the theoretical model to the experimentally obtained linewidths,

(see Figure 5.11), we find an optical instability loss with η1 ≈ 0.994 in our

present system that leads to operating close to the impedance matching con-

dition because η2
1 ≈ 0.988 which is almost equal to the reflectivity of the front

mirror of 0.99.

5.6 Mechanical Motion of the Membrane

To read out the mechanical motion of the membrane, the dispersive signal out

of the voltage divider in Figure 4.17 is sent to the vector analyzer. By sweeping

the frequency of the vector analyzer from 100 kHz-1MHz, we excite the mem-

brane to different modes (mechanical modes) via Bias-T, see appendix D.1.

The frequency of the mechanical modes can be calculated by Equation 2.75,

they are shown in Table 5.1. In this measurement, the MIM cavity is locked

Mode number (i, j) ωij

(1, 1) ω11 = 2π x 397.1 kHz

(1, 2) ω12 = 2π x 627.8 kHz

(2, 2) ω22 = 2π x 794.2 kHz

(3, 1) ω31 = 2π x 887.9 kHz

Table 5.1: Frequency of the membrane for different mode numbers (i, j).

on resonance to the laser. We shake the PZT of the membrane and read out

the corresponding peaks to each mode as shown in Figure 5.16



Chapter 5. Noise Measurements 107

Figure 5.12: Mechanical modes of membrane for different frequencies. The modes
of the membrane in Table 5.1 are indicated

5.7 Noise Measurements

To assess the suitability of our setup for quantum optical experiments, we

observe and evaluate levels of measurement noise. The shot noise level should

be measured which allows for calibration of the detection gain Ge, i.e. signal

voltage per photon flux imbalance. In particular, we can observe thermal

membrane motion, and compare it against laser frequency noise.

5.7.1 Measuring Photon Shot Noise

Photon shot noise is related to the light quantization that limits how precisely

we can measure. photon shot noise has to be measured for allowing us to

calibrate our signals, which is represented in the second term of Equation 2.171.

For signal detection, the BPD pair (Thorlabs model PDB210A) takes the

difference between the two inputs’ light intensities to produce a radio-frequency

(RF) signal. The RF signal is measured with a frequency-dependent electronic

gain Ge such that U(t) = GeSz(t). To measure the shot noise level, the
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reference beam is blocked by an iris and the laser is off-resonance which means

there is no light that can be seen on the camera through cavity transmission.

The balanced signal or RF signal is sent to a spectrum analyzer which takes

the Fast Fourier Transformation (FFT) of that signal. The one-sided power

spectral density is measured at different power with a with 500 Hz effective

bandwidth (100 averages of 2 ms data). As shown in Figure. 5.13, the response

below ≈ 80 kHz is limited by an additional high-pass filter. We typically

observe spurious narrowband signals in the region below 100 kHz. Above

1 MHz, excess noise due to aliasing of higher frequencies at 2.5 MHz sampling

rate becomes visible. The blue signal in Figure 5.13 shows the electrical noises

only with no laser shin on the BPD.

Figure 5.13: Shot noise limited detector response. The spectral response of our
1 MHz-bandwidth balanced detector to photon shot noise is plotted for different power.
One-sided power spectral density GUU (|f |) = 2SUU (f) was measured with a 100 Hz
effective bandwidth.

The linear scaling with laser power (photon flux) is shown in Figure 5.14

for a single frequency of 125, 365, 395, 425 kHz of all these curves. The data
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shows a linear increase in the noise power with the optical power. Thus, the

BPD is photon shot noise-limited performance over its ≈ 1 MHz bandwidth

assured by the noise power spectral density of the RF signal which must linearly

grow with laser power.

Figure 5.14: Noise power dependence of amplified photo-current noise at different
frequency values. It is plotted versus light power which shows that the noise power
will increase linearly with optical power.

The shot noise level allows for calibration of the electronic gain Ge, using

Equation 2.171 and the photon flux arriving at the detector Φd = 2 cos2 α〈Ŝ0〉 =

Pdλ/hc measured as light power Pd. The pure shot noise from the input light

of power Pd with a quantum efficiency of the detector ηd < 1 leads to the

electronic gain Ge and can be defined as

Ge =

√
4SUU
ηdΦd

(5.9)

As the quantum efficiency is ηd = rdhc/eλ, the electronic gain becomes
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Ge =

√
4eSUU
rdPd

(5.10)

where rd = I/Pd is the detector responsivity which is defined as photo-current

per incident optical power. For considering single-sided power spectral density

2SUU = GUU leads to

Ge =

√
2eGUU

rdPd
(5.11)

From the linear scaling with laser power (photon flux) in Figure. 5.14,

we find a slope of GUU/Pd = 2.4 × 10−7 V2Hz−1W−1 with an offset of 4.6 ×

10−12 V2Hz−1 due to electronic noise. The slope corresponds to a detection gain

(voltage per photon flux) of Ge ≈ 3.70×10−13 V/Hz, assuming a quantum effi-

ciency of ηd = 0.88 corresponding to a detector responsivity of rd = 0.56 A/W

at λ = 795 nm which is taken from the photodetector data sheet.

5.7.2 Measuring the Thermal Noise of the Membrane

To observe the thermal noise, the laser power that is sent to the MIM cavity

is in a few microwatts to avoid membrane over-oscillation and the reference

beam has more power than the signal beam. Then, the MIM cavity is locked

on resonance (here done by stabilizing the cavity length) and the thermal noise

can be read out on the BPD.

The power spectral density of the BPD output or the polarimeter Sz-signal

exhibits distinct features that we can identify with thermally excited modes

of oscillation of the square membrane (Brownian motion), see Figure 5.15.

The frequencies are consistent with the modes of an almost square membrane,

matching the expected fundamental frequency ωm = 2π × 397 kHz as shown

in Figure 5.16 with membrane under a tensile stress of T ≈ 1 GPa and with a

density ρm ≈ 3.17 g/cm3.
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Figure 5.15: Thermal noise of the membrane is detected for dispersive coupling
(trace A). For membrane positions near minimal dispersive coupling (trace B), only
higher-order membrane modes remain visible. Here, the combined level (black line) of
photon shot noise (≈ 1.0×10−12 V2/Hz) and electronic noise (≈ 2.3×10−12 V2/Hz)
near 400 kHz at a total light power of 8.3µW is just above the electronic noise (dashed
line). For improved conditions (trace C) with lower membrane damping (lower vac-
uum pressure) and reduced laser frequency noise, signal-to-noise-ratio improves and
near-degenerate modes can be resolved. For comparison, (aliased) expected mode
frequencies for an almost square membrane (1.01 side ratio) with a fundamental
frequency of 397.5 kHz are indicated.

Due to relatively high residual vacuum pressure, the damping rate of

the membrane oscillations is relatively high in this measurement, with a full-

width half maximum (FWHM) γm ≈ 2π × 10.3 kHz. From a model fit to

the experimental data, we find a contribution of the membrane’s fundamental

mode to the variance of the signal voltage of σ2 = 1.25×10−3 V2. It compares

very well with the expected thermal variance of

σ2
fm =

G2
e η

2
d sin 2α 〈Ŝ0,in〉2 χ2 kB T

M(2π fm)2
(5.12)

is approximated to be 1.4 × 10−3 V2 for T = 300K an input power of P ≈

11.1 µW with a measured polarisation angle of α ≈ 37.5◦. The observed

variance is lower than theoretically estimated as we did not include reduced
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Figure 5.16: Fundamental mode of membrane ω11 at 397 kHz at lowered vacuum
pressure.

mode overlap and transversal misalignment of the membrane with respect

to the optical TEM00 mode. The membrane features mostly vanish when the

membrane is positioned at points of minimal dispersive coupling. Some higher-

order membrane modes remain visible, which is likely due to weakly coupled

transversal cavity modes.

Compared to room-temperature thermal noise, the variance of the mem-

brane’s quantum fluctuations will be approximately 6 orders of magnitude

smaller. In the present setup, these are masked by coloured broadband noise,

well above the photon shot noise level. It results from frequency fluctuations

of the illuminating laser.

To show that the thermal noise of the membrane is proportional to the

signal and reference power, the thermal noise is measured by fixing the total

power at 150µW and 300µW but varying the power ratio between the refer-

ence and signal beams. In this measurement, the reference power is reduced

and the signal power is increased, it is clearly seen that the technical noise
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is increased which arises from the technical components of the laser system,

such as fluctuations in the power supply, temperature changes, and mechanical

vibrations. That means the technical noise is also proportional to the signal

and reference power and that is shown in Figure. 5.17 where the blue signal

noise shows less noise than the purple signal.

Figure 5.17: Thermal noise measurement at 150µW and 300µW . The measure-
ment is taken by fixing the total power and changing the ratio between the signal
beam power and reference beam power.

The membrane noise power divided by reference power versus the signal

power must be linear as shown in Figure 5.18. At the total power 150µW, the

membrane noise near 379kHz is linear which means it is proportional to the

signal and reference power. However, the membrane noise near 379kHz (yellow

signal) at the total power 300µW seems to be saturating our RF electronics
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and it is not linear any more. It concludes that we should measure at power

well below 300 µW.

Figure 5.18: The ratio of the noise power and reference power at 150µW and
300µW which is proportional to the cavity signal power.



Chapter 5. Discussion of laser noise and improvement with filter cavity 115

5.8 Discussion of laser noise and improvement

with filter cavity

The laser noise adds an additional noise when the cavity is off-resonance and

only the light reflected from the cavity is sent to the detector. This noise is

beyond the shot noise and it originates from the laser frequency fluctuations.

To improve the thermal noise measurement, the laser beam is sent through a

filter cavity to get rid of all high frequencies. The filter cavity has to be sharper

than 397kHz because we want to see the fundamental membrane oscillation.

Thus, the linewidth of the filter cavity has to be less than 397kHz. The filter

cavity is chosen to be a symmetric cavity with high reflectivity 99.95%. The

finesse of the filter cavity is calculated to be 3140 with Lcavity =180mm, and

FSR= 833MHz. The transmission of the filter cavity is sent to the MIM

optical cavity which provides us with improved measurements. Figure 5.15

(trace C) shows a signal trace for reduced frequency noise as the laser was

passed through a filter cavity of ≈ 160 kHz linewidth. Excess noise in the

region of ≈ 500 kHz arises from the active stabilisation loop (servo bump).

In addition, the vacuum pressure was reduced, which decreased membrane

damping to γm ≈ 2π × 480 Hz and thus contributes a factor of ≈ 20 to the

improvement in signal-to-noise ratio (SNR).

An analysis is similar to Section. 2.4 shows that the first-order response to

laser frequency fluctuations for maximal dispersive coupling matched impedance

and r3 ≈ 1 is given by

iχf =
∂Z1

∂∆f
≈ −4πi

c

(1− r2)L1 + (1 + r2)L2

1− r2

η1

1− η2
1

, (5.13)

and will be suppressed for shorter resonator lengths. The decrease of this

noise for minimal dispersive coupling is consistent with the increase in cavity

linewidth and thus reduced frequency response.
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To have a strong coupling regime the quantum noise of the membrane has

to be larger than the photon shot noise level whereas it will be weak if the

quantum noise of the membrane is smaller than the photon shot noise level.

Also, the coupling will be equal to 1 if both are equal and that is the starting

point toward a strong coupling regime.

Our measurement is still in the weak coupling regime, but since signal

power scales quadratically with laser power while photon shot noise increases

linearly, the optomechanical coupling strength increases with power. Technical

frequency noise power also scales quadratically, such that it will be possible to

observe quantum noise more easily for a higher-order mode of the membrane’s

vibrations at higher signal frequencies where the technical noise will drop below

the shot-noise level, see Figure 5.15. However, increased light power also leads

to back-action noise and cooling or heating of the membrane via radiation

pressure. Lastly, the interaction strength has to be maximized to have a strong

coupling regime which requires more laser power and an additional cooling

laser.
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Conclusion and future work

In conclusion, this thesis has presented the development and demonstration

of an interferometrically stable polarisation interferometer that converts the

phase shift from an optical resonator into beam polarization. This device can

be directly used to stabilise the laser-resonator detuning without the need for

laser modulation. Here, we applied it to detecting the microscopic motion of a

micro-mechanical membrane. The potential for light-membrane interaction at

the quantum level was explored with sufficiently reduced laser frequency noise

or reduced frequency response from a shorter cavity, making this arrange-

ment a powerful tool for hybrid quantum systems development. Depending

on the intended protocol, the cavity design should consider whether a max-

imally coupled read-out of membrane motion or minimal optical loss is re-

quired. The current cavity design uses a plane parallel entrance mirror, which

leads to diffraction loss between that mirror and the membrane and results in

impedance-matched coupling.

To extend this optomechanical system, the optical loss has to be mini-

mized by replacing the front mirror of the optical cavity with a concave mirror

to make the sub-cavity optically stable when operating in the under-coupled

regime. For a mode-matched input beam, alignment to the reference beam will

117
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remain the same as the mirror will act as a field lens in the focal plane of the

imaging lens for beam displacement. The membrane modes can also be cooled

down directly using the dispersive signal but with a carefully adjusted phase.

combined with cold atoms experiments such as a polarisation interferometer

shows the potential to form a strong spin-membrane coupling. This paves the

way for mutual cooling between the membrane and neutral atoms.

Concluding this dissertation, I have presented both the theoretical and

experimental aspects of a stable polarisation interferometer. This work is

expected to be useful in future studies and may guide exciting future discoveries

and commercial products in the field of optomechanics.
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S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a
nanomechanical oscillator into its quantum ground state,” Nature, vol.
478, no. 7367, pp. 89–92, 2011.



BIBLIOGRAPHY 122

[45] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. Allman, K. Cicak, A. J.
Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband
cooling of micromechanical motion to the quantum ground state,” Nature,
vol. 475, no. 7356, pp. 359–363, 2011.

[46] A. Weinstein, C. Lei, E. Wollman, J. Suh, A. Metelmann, A. Clerk, and
K. Schwab, “Observation and interpretation of motional sideband asym-
metry in a quantum electromechanical device,” Physical Review X, vol. 4,
no. 4, p. 041003, 2014.

[47] T. Purdy, P.-L. Yu, N. Kampel, R. Peterson, K. Cicak, R. Simmonds, and
C. Regal, “Optomechanical raman-ratio thermometry,” Physical Review
A, vol. 92, no. 3, p. 031802, 2015.

[48] M. Yuan, V. Singh, Y. M. Blanter, and G. A. Steele, “Large cooperativity
and microkelvin cooling with a three-dimensional optomechanical cavity,”
Nature communications, vol. 6, no. 1, pp. 1–6, 2015.

[49] M. Underwood, D. Mason, D. Lee, H. Xu, L. Jiang, A. Shkarin, K. Børkje,
S. Girvin, and J. Harris, “Measurement of the motional sidebands of a
nanogram-scale oscillator in the quantum regime,” Physical Review A,
vol. 92, no. 6, p. 061801, 2015.

[50] F. Lecocq, J. B. Clark, R. W. Simmonds, J. Aumentado, and J. D. Teufel,
“Quantum nondemolition measurement of a nonclassical state of a massive
object,” Physical Review X, vol. 5, no. 4, p. 041037, 2015.

[51] E. E. Wollman, C. Lei, A. Weinstein, J. Suh, A. Kronwald, F. Marquardt,
A. A. Clerk, and K. Schwab, “Quantum squeezing of motion in a mechan-
ical resonator,” Science, vol. 349, no. 6251, pp. 952–955, 2015.

[52] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optome-
chanics,” Reviews of Modern Physics, vol. 86, no. 4, p. 1391, 2014.

[53] M. Korppi, “Optomechanical coupling between ultracold atoms and a
membrane oscillator,” Ph.D. dissertation, University of Basel, 2014.
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Appendix A

Mathematical Tools

A.1 Fast Fourier Transformation

The fast Fourier transform (FFT) is an efficient algorithm for calculating a
sequence’s discrete Fourier transform (DFT) or its inverse. The FFT is ex-
tensively utilised in a variety of applications, including signal processing, data
analysis, and scientific computing because of its ability to compute the DFT
of an enormous body of data. Useful references can be found in [71, 72]

This chapter discusses the definition of the transform and begins intro-
ducing some of the ways it is useful. Let’s assume that we have a complex
function of time x(t) represents a physical process. The Fourier transform
(FT) is defined as [73]

x(w) =

∫ ∞
−∞

x(t)e−iwtdt (A.1)

and inverse Fourier transform (IFT) can be expressed as

x(t) =

∫ ∞
−∞

x(w)e−iwtdw/2π (A.2)

where w = 2πf is the angular frequency The signal should have finite energy
(i.e.E<∞) and the total energy of the signal is given by

E =

∫ ∞
−∞
|x(t)|2dt (A.3)

Thus, the power of the signal should be zero but most useful functions have
no zero power

P = 〈x(t)2〉 = lim
T→∞

1

T

∫ T/2

−T/2
|x(t)|2dt = 0 (A.4)

Using Parseval’s theorem allows us to compute the total energy in the fre-
quency domain with units of [x]/Hz as
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E =

∫ ∞
−∞
|x(w)|2dw/2π (A.5)

The quantity |x(w)|2 has units of [x]2/Hz2 and it represents the double-
sided energy spectral density. Double-sided means there are positive and nega-
tive frequencies which are involved in the normalization of the density function.

A random function x(t) is an example of a function that has no zero power.
Thus, it can be described by any noisy process like electrons flow in a resistor
or Brownian motion in a cantilever. In this case, x(t) is illustrated by one of
its statistical measures. let’s x(t) be real function with time-shifted value as
x(t+ τ) . The Fourier transform of statistical measure is the auto-correlation
of x(t) defined as double-sided power spectral density as

SUU =

∫ ∞
−∞
〈x(t)x(t+ τ)〉 e−iwτdτ (A.6)

〈x2(t)〉 =

∫ ∞
−∞

SUU(w)dw/2π (A.7)

from this property, we can define the single-sided power spectral density
as

GUU(w) = 2SUU(w) (A.8)

thus

〈x2(t)〉 =

∫ ∞
0

GUU(w)dw/2π (A.9)

The ability to forecast the results of transmitting a noisy signal through a
linear system is a key application of the power spectral density.
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Schematic Of Fast PID Card
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Appendix D

Electronic circuits

D.1 Bias-T
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