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Abstract 

Mining results in significant land cover changes, directly and indirectly affecting local 

communities and the natural landscape via complex, interrelated and often long-lasting 

impacts. With the impending increase in demand for mineral resources, the need for robust 

analyses and clear reporting of data on the local and regional changes is considered essential 

for mining companies to effectively detect, track, sustainably manage and mitigate impacts. 

Remote sensing and GIS methods hold the potential to assist and improve conventional social 

science approaches; they provide the means to spatially capture and triangulate data from the 

dynamic mining landscape to study past and ongoing socio-environmental impacts. This thesis 

aims to investigate the use of spatially explicit GIS and Remote Sensing methods for assessing 

the social and environmental impacts of mining. To achieve this, the chapters (1) extensively 

reviewed prior studies that integrated GIS and remote sensing with social science 

methodologies to evaluate socio-economic and environmental mining impacts, (2) compile 

recommendations on how the integration of GIS, Remote Sensing, and Social Science can be 

enhanced for future research on the socio-economic and environmental implications of mining, 

and (3) characterise the land cover changes in a mining landscape in Didipio, Philippines, and 

its concurrent impacts on socio-environmental land uses. 

Chapter 1 of this thesis introduces the importance of this research and its relevance to 

present societal concerns. The aim and scope of the thesis are also outlined here.  

Chapter 2 comprehensively examines past research efforts by providing a systematic 

review of how GIS and remote sensing approaches have been integrated with social science 

approaches to assess socio-economic and environmental impacts of mining on local 

communities. We found that the integration of GIS and remote sensing applications with social 

science methods is a functional step and often the only means to spatially capture and 

coherently assess the various and complex dimensions of mining impacts. Overall, more 

research is still needed to improve interdisciplinary data capture and analysis, particularly to 

analyse less tangible socio-economic impacts. Concerted efforts must also be made to improve 

data availability, quality, geographic categorisation, consistency, validation, and transparency 

to achieve a more spatially integrated evaluation of socio-economic mining impacts. 
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Multidimensional approaches involving interdisciplinary methods and coordinated efforts 

from all stakeholders are required to effectively capture and coherently analyse the various 

data types needed for a full understanding of mining impacts. 

In Chapter 3, land use and land cover changes in a Philippines mining landscape are 

classified and the concurrent impacts of mining on socio-environmental land uses were 

evaluated. This case study demonstrated how a range of recent and novel methods can be used 

to map socio-environmental mining landscapes. A time series of classified land use and land 

cover (LULC) maps was created using composites of multispectral Landsat images, vegetation 

indices and a Digital Elevation Model (DEM). Landsat historical imagery was used to 

successfully characterize coarse-scale high-level land covers via supervised Random Forest 

classification in Google Earth Engine (GEE). Web-based mapping by local experts was then used 

within selected zones of importance to characterise key fine thematic resolution land use 

categories; such fine resolution is beyond what is possible using only Landsat. Overall, the time 

series accurately estimated LULC change, and revealed significant temporal trends useful for 

studying socio-environmental indicators. The methods developed and their limitations were 

critically evaluated and potential ways to improve the workflow in terms of the quality and 

efficiency of data acquisition are proposed.  

This thesis is concluded in Chapter 4, which synthesizes the contributions made in this 

study. Recommendations and challenges anticipated for future research towards the goal of a 

more spatially integrated assessment of socio-economic mining impacts are outlined.  

Given the upcoming growth in demand, socioeconomic and environmental mining 

consequences must be handled in a multidimensional manner that involves interdisciplinary 

methods and coordinated efforts from all stakeholders. This research reinforces the potential 

that GIS and Remote Sensing holds to facilitate and optimise conventional socio-environmental 

impact assessments. The novel approach of stakeholder engagement via participatory GIS can 

be further enhanced to support successful socio-spatial data integration, inclusive analysis, and 

comprehensive planning throughout the mine life cycle to bring us a step closer in securing a 

sustainable future for mining. 
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Chapter 1. Introduction  

1.1 Background 

Minerals play an important role in modern civilization and affect the lives of millions of people 

globally (Githiria & Onifade, 2020). As the mining sector proliferates, due to pressures from the 

fields of economics and energy (Herrington, 2021; Svobodova et al., 2020; Xiao et al., 2021), 

there is a pressing need for a holistic understanding of the impact of mining on all stakeholders, 

so that informed decisions can be reached which maximise benefits while minimizing threats 

to a region and its population (Arts et al., 2019; Owen et al., 2022; Sonter et al., 2014; Y. Zhang 

et al., 2017). Addressing the conceptual, methodological, and practical limitations that currently 

impede this understanding is vital.  

The impacts of mining on human experiences such as liveability, cultural well-being, 

social cohesion, quality of life and health (Petrov et al., 2018; Vanclay et al., 2015) are dynamic, 

multifaceted, and interwoven, with a range of favourable and unfavourable effects (Braimoh, 

2006; Briones & Sepúlveda-Varas, 2016; Carmona et al., 2010; Shackleton, 2020). Although 

research on mining-related environmental transformations has gained considerable attention, 

uncertainties persist surrounding its socio-economic impacts on neighbouring populations 

(Goodchild et al., 2000). The extractive industries in resource-rich regions can promote 

economic activity, alleviate poverty through job creation and linkages, and improve life and 

well-being through better access to education, healthcare, and other essential utilities 

(D’Odorico et al., 2017; Hajkowicz et al., 2011; Yiran et al., 2012). On the other hand, mining 

regions are plagued with a myriad of social problems, which include increased social tension 

and conflict, increased inequality, and a loss of access to lands (Aragon & Rud, 2013a; Hook, 

2019; Loayza & Rigolini, 2016a; Reeson et al., 2012a). Given these complex and diverse impacts, 

cross-disciplinary techniques have the ability to examine relationships across space, place, and 

time (Arts et al., 2019; Hook, 2019; Horsley et al., 2015; Lechner et al., 2017). 

Mining impacts are typically region-specific because of highly localised variables, often 

disproportionately affect different socioeconomic levels, and frequently vary in their 

geographical extent, extending well beyond the initial location of the mine activity (Franks et 

al., 2010; Lechner, Owen, Ang, & Kemp, 2019; Lechner, Owen, Ang, Edraki, et al., 2019; Owen & 
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Kemp, 2013; Ticci & Escobal, 2015). Despite the existence of multiple case studies illustrating 

the effects of the mining industry on specific cities and communities, less is known about the 

characteristics of large-scale mining impacts from a geospatial perspective (Devenin & Bianchi, 

2019), which encompasses an assessment of space and place (Goodchild et al., 2000). The 

assessment of social impacts frequently faces challenges due to a lack of data and costly data 

collection and processing across large areas. (Horsley et al., 2015; Uhlmann et al., 2014).  

Numerous studies have indicated that including spatial centrality would offer a valuable 

dimension for capturing mining impacts at various scales and phases of the mine life cycle (Arts 

et al., 2019; Hentschel et al., 2000; Kivinen et al., 2018; Lechner, Owen, Ang, & Kemp, 2019; X. 

Y. Li et al., 2014; McIntyre et al., 2016; Rampellini & Veenendaal, 2016; Yiran et al., 2012). 

However, the utility of remote sensing and GIS for capturing the geospatial dimensions of social 

impacts remains under researched and underdeveloped (Werner et al., 2019). Despite their 

potential values, it is uncommon in a mining environment to apply interdisciplinary GIS and 

remote sensing technologies, notably land use and land cover (LULC) change analyses, to 

spatially monitor and characterise social changes (Lechner et al., 2019b; Werner et al., 2019). 

Generally, health impacts are more commonly studied geospatially using GIS as the main part 

of the analysis (DeLemos et al., 2007; Diringer et al., 2015; Shandro et al., 2011; Winkler et al., 

2010) compared to economic and livelihood studies (Devenin and Bianchi, 2019; Hook, 2019; 

Rampellini and Veenendaal, 2016).  

Techniques for satellite-based remote sensing are frequently used to assess and track 

the impacts of mining on the environment as well as to support activities for restoration and 

rehabilitation (Koruyan et al., 2012; Sonter et al., 2014; Xiao et al., 2020). Historical LULC 

change using remote sensing is an established method for understanding past and present 

physical properties of landscapes (Andersen et al., 1996; Briones and Seplveda-Varas, 2016; 

Pan et al., 1999). These studies provide details on the expansion, transformation, and 

abandonment of LULC as well as the environmental effects of these land conversions (Gyawali 

et al., 2004; Yiran et al., 2012). Freely available Landsat satellite imagery (whose historical 

archives date back to the 1970s) is frequently utilised to create time series visualisations due 

to its high temporal and moderate spatial resolution (Gómez et al., 2016; Huang et al., 2017; 
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Young et al., 2017). Time series analysis of land cover change can be used to characterise 

changes in mined land and its surrounding landscapes while keeping track of socioeconomic 

trends like poverty distribution and urbanisation (Hentschel et al., 2000; Mihai et al., 2015) and 

environmental degradation such as pollution and deforestation (Coppin et al., 2004; Yang et al., 

2018). On the other hand, there is also a lot of untapped potential for using remote sensing and 

GIS to enhance social studies in mining environments, particularly historical satellite imagery 

and participatory mapping techniques to capture land use classes with greater thematic 

resolution, such as region-specific agriculture, which is challenging to detect using Landsat 

classification alone. Both coarse and fine thematic resolution land covers and land uses can be 

more successfully recorded by adopting a stakeholder-inclusive and integrated mapping 

perspective. These spatial approaches can support and improve stakeholder-inclusive social 

research on community livelihoods and well-being (Everingham et al., 2018; Kivinen et al., 

2018; Yiran et al., 2012). 

 

1.2 Research Aim and Objectives 

The overarching goal of this research project is to explore the application of spatially explicit 

GIS and Remote Sensing approaches for evaluating the impacts of mining on society and the 

environment.  

With this goal in mind, the objectives of this thesis are:  

1) To provide a systematic and comprehensive compilation of all previous efforts that 

integrated GIS and remote sensing with social science approaches to capture the 

spatial aspects of mining’s impacts on local communities.  

2) To formulate recommendations for areas where further research can be done and 

how the integration of GIS, remote sensing and social science can be improved to 

better understand socio-economic mining impacts. 

3) To characterize and evaluate the land cover changes in a mining landscape and its 

concurrent impacts on socio-environmental land uses. 
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1.3 Research Questions 

1) To what extent has the social, economic, and environmental mining impacts been 

studied in spatially explicit ways? 

2) How can current limitations of GIS and Remote Sensing approaches be improved to 

spatially study socio-economic and environmental impacts?  

3) How can the socio-environmental land use and land cover impacts in a mining region 

(Didipio, Philippines) be best captured using spatially integrated social science 

approaches?  

 

1.4 Thesis Outline 

There are 4 chapters in this thesis. The literature review (Chapter 2) and the main empirical 

chapters (Chapter 3) are written so that they may be read independently as stand-alone 

research articles. Chapter 3 has been published while Chapter 2 is still in preparation for 

publication submission. Except for the formatting, which has been altered to preserve a 

consistent style throughout this thesis, the contents of the Chapter 3 remain the same as the 

published/to be submitted versions; the References for all chapters have been consolidated 

into a single list at the end of the thesis before the Appendix.  

Chapter 2 reviews past empirical research that utilized GIS and remote sensing to 

geospatially study socio-economic and environmental mining impacts. It provides a systematic 

and comprehensive evaluation of all previous efforts that integrated GIS and remote sensing 

with social science approaches to spatially capture and assess mining impacts on local 

communities. This review guides the subsequent chapters by highlighting the limitations and 

advantages of the approaches utilized so far and recommendations for improving future 

research on spatially integrated evaluation of socio-economic mining impacts. 

Chapter 3 investigates the land use and land cover changes of a mining region in 

Philippines to evaluate its the socio-environmental impacts. This case study utilized historical 

Landsat imagery with auxiliary data composites to classify coarse-scale land cover (ie: 

Vegetation, Water Body, Built-Up Area, Mining and Bareland) via a supervised Random Forest 
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classification approach in Google Earth Engine. Stakeholder knowledge was integrated via a 

novel web-based participatory mapping to map key fine-scale land use (ie: Citrus, Rice Paddy, 

and Swidden Agriculture, and Small-Scale Mining) and provide critical local context to the time 

series trends obtained from the mapping process.  

Finally, Chapter 4 summarizes this study's contributions with regard to the  research 

questions: (1) the extent of how social-economic and environmental mining impacts have been 

spatially studied, (2) ways to improve current limitations of GIS and Remote Sensing 

approaches to spatially study socio-economic and environmental impacts, and (3) how socio-

environmental mining impacts can be characterized using spatially integrated social science 

approaches. Recommendations and anticipated challenges for future research that aims at 

more spatially integrated assessment of socioeconomic impacts of mining are highlighted in the 

closing remarks section. 

 

  



2-6 
 

Chapter 2. Systematic Review of GIS and Remote Sensing Applications for Assessing the 

Socio-Economic Mining Impacts 

Paper in preparation: 

Ang, M. L. E., Owen, J. R., Everingham, J., Kemp, D., Gibbins, C., & Lechner, A. M. (in 

preparation). Review of GIS and Remote Sensing Applications for Assessing the Socio-

Economic and Environmental Mining Impacts. The Extractive Industries and Society. 

2.1 Introduction 

Minerals are central to modern society affecting millions of people globally (Githiria & Onifade, 

2020). As the mining industry continues to grow, there is a pressing need for a robust 

understanding of its impacts on all stakeholders, to enable informed decision-making that can 

maximize benefits and minimize risks associated with mineral extraction (Arts et al., 2019; 

Owen et al., 2022; Sonter et al., 2014; Y. Zhang et al., 2017). The first step is to address the 

practical, methodological, and conceptual constraints currently restricting this understanding.  

Social impacts in mining landscapes are dynamic, complex, and interconnected, with 

variations of positive and negative consequences  (Braimoh, 2006; Briones & Sepúlveda-Varas, 

2016; Carmona et al., 2010; Shackleton, 2020) for liveability, cultural well-being, social 

cohesion, quality of life and health (Petrov et al., 2018; Vanclay et al., 2015). While the 

environmental transformations associated with mining have been the subject of much 

attention, questions remain on the socio-economic impact of mineral extraction on local 

communities (Goodchild et al., 2000). On the one hand, mining has great potential to contribute 

to increased economic activity, poverty alleviation through job creation and linkage creation, 

and to overall improved livelihoods and well-being through better access to education, 

healthcare and other basic amenities (D’Odorico et al., 2017; Hajkowicz et al., 2011; Yiran et al., 

2012). On the other hand, social tension, conflicts, inequality, and loss of access to land are 

among the many social issues that arise in mining areas (Aragon & Rud, 2013a; Hook, 2019; 

Loayza & Rigolini, 2016a; Reeson et al., 2012a). Given these positive and negative dimensions, 

cross-disciplinary approaches hold potential to assess interactions across space, place and 
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time, in order  to provide fully integrated overall assessment (Arts et al., 2019; Hook, 2019; 

Horsley et al., 2015; Lechner et al., 2017). 

Mining impacts are generally region specific due to effects of highly localized factors. 

These effects are unevenly felt at various societal levels and often vary in their geospatial 

extent, extending well beyond the mine operation’s initial location (Franks et al., 2010; Lechner, 

Owen, Ang, & Kemp, 2019; Lechner, Owen, Ang, Edraki, et al., 2019; Owen & Kemp, 2013; Ticci 

& Escobal, 2015). Despite numerous case studies of the effects of the mining sector on 

individual towns and communities, little is known about large-scale mining impacts from a 

geospatial perspective (Devenin & Bianchi, 2019), which encompasses the analysis of space and 

place (Goodchild et al., 2000). Limited data availability and high data collection and analysis 

costs often pose challenges to the assessment of social impacts (Horsley et al., 2015; Uhlmann 

et al., 2014). 

The utility of Remote Sensing and GIS for capturing the geospatial dimensions of social 

impacts remains under researched and underdeveloped (Werner et al., 2019). Generally, health 

impacts are more commonly studied geospatially using GIS as the main part of the analysis 

(DeLemos et al., 2007; Diringer et al., 2015; Shandro et al., 2011; Winkler et al., 2010) compared 

to economic and livelihood studies (Devenin and Bianchi, 2019; Hook, 2019; Rampellini and 

Veenendaal, 2016). It can be anticipated that with technical and conceptual advancement in GIS 

and Remote Sensing methods, the increase in frequency of their application is inevitable, and 

insights are likely to improve as a result of improvements in data (e.g. higher resolution). 

Accordingly, a review of the past GIS and Remote Sensing applications to better understand the 

socio-economic impacts is timely.  

This chapter reviews past empirical research that utilized GIS and Remote Sensing to 

geospatially study socio-economic and environmental aspects of mining impacts.  The review 

has a particular focus on assessing the extent to which multidisciplinary approaches have been 

applied within the Social Framework for Projects, to further knowledge of mining’s impacts on 

people’s well-being and the social sustainability of projects (Smyth & Vanclay, 2017). The 

chapter has four objectives: (1) To determine the spatio-temporal distribution of studies 

looking at socio-economic and environmental impacts and types of mining commodities 
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studied. (2) To identify the categories of socio-economic mining impacts that have been studied 

in spatially explicit ways (3) To identify the social science approaches used by these studies and 

the types of stakeholders engaged. (4) To determine the Remote Sensing and GIS approaches 

used by the studies. Upon reviewing the existing state of research efforts, we present an 

overview of the current research developments and spatially integrated approaches for 

capturing mining impacts. We conclude by making recommendations for areas where further 

research can be done and how the integration of GIS, Remote Sensing and Social Science can be 

improved to better understand socio-economic mining impacts. 

 

2.2 Methods 

2.2.1 Search Criteria 

A systematic approach was applied via an online search in the SCOPUS database 

conducted from the 1st September to 31st of October 2021 using a specified search query (Figure 

2.1). This rigorous and explicit methodology was applied to ensure a comprehensive overview 

of existing literature and research gaps (Meerpohl et al., 2012). Only peer-reviewed journal 

articles published in English were queried (Figure 2.1); conference proceedings, books and 

non-peer reviewed articles were not included.  

 

Figure 2.1 A graphical illustration of the systematic literature review search query: TITLE-ABS-KEY ( ( 
“Social Impact”  OR  “Social”  OR  “Socio-economic”  OR  “Socioeconomic” )  AND NOT  ( “social media”  

OR  “social network” ) )  AND  ( TITLE-ABS-KEY ( “geotag*”  OR  “geospatial”  OR  “GIS”  OR  
“Geographic Information System”  OR  “Remote Sensing” ) )  AND  TITLE-ABS-KEY ( ( “mining”  OR  
“mine”  OR  “extractive industr*”  OR  “extractive resources” )  AND NOT  ( “data mining”  OR  “big 

data”  OR  “text mining” ) ). The coloured areas in light blue indicate the focus of the literature search 
query for further filtering. 
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The abstracts of the literature captured by the search query (Figure 2.1) were then 

manually screened. Only studies that meet the following criteria were included in the full 

analysis:  

a) Studies conducted on mining sites, regions, or countries dependent on resource 
extraction.  

b) Studies that specifically examined social and economic mining impacts. Papers that 
studied environmental impacts as well were included if they also analysed 
socioeconomic impacts.  

c) Studies that utilized GIS and/or Remote Sensing methods, either as a major or 
minor component of their methods, to spatially capture these impacts 

The terms ‘spatial’ and ‘geospatial’ were sometimes used interchangeably in the papers, 

and some papers had clear geospatial elements despite not using either term. Therefore, we 

were careful to include all peer-reviewed work that included geospatial elements, irrespective 

of how they defined or used these terms. Papers that simply used GIS or Remote Sensing to map 

or illustrate mining areas or mineral distributions (e.g. (Erb-Satullo, 2021), which represented 

purely technological or methodological advancements (e.g. (Balaniuk et al., 2020; Kamali et al., 

2015; Zhu & Yu, 2016), or which focused on purely ecological mining impacts but did not 

undertake any social-related impact analysis, (e.g. (Cosimo et al., 2021; Kiere et al., 2021; Y. feng 

Li et al., 2009; Peng et al., 2016; Wedding et al., 2013) were not included.   

2.2.2 Data Compilation and Analysis 

An archive was compiled to summarize the literature based on the following key 

variables; ‘General Information’, ‘Mine-Related’ information, ‘Geospatially-Assessed Mine 

Impacts’, ‘Social Science’ method and ‘GIS and Remote Sensing’ applications applied (Table 2.1).  
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Table 2.1. Literature review metadata list for summarizing and categorising the studies. 

 
General Information Mining Related Geospatially-

Assessed 
Mine Impacts 

Social Science  
Scale of 

assessment 
Research 
Approach 

Commodity Stages of 
Mine Life 

Cycle 

Type of 
Extraction 

Stakeholders Participation 
Method 

Social Science 
Data 

collected 

Ca
te

go
ri

es
/C

la
ss

 

• Global 
• Continental 
• Country 
• Regional 
• Mine Sites 
(>1) 

• Mine Site 
(n=1) 

• GIS only 
• GIS and 
Remote 
Sensing 

• GIS and 
Social 
Science 

• GIS, 
Remote 
Sensing 
and 
Social 
Science 

• Coal 
• Metalliferous* 
(ie: zinc, gold, 
diamond, iron, 
tin, and 
mercury 
mines) 

• Quarry (ie: 
ironsand, 
hard rock, and 
limestone) 

• Oil and Gas 
 
* Green 
energy 
minerals will 
be highlighted 

• Pre-Mining 
(ie: 
exploration, 
design and 
planning, 
construction) 

• During 
Mining (ie: 
production) 

• Post-Mining 
(ie: closure 
and 
reclamation/ 
rehabilitation, 
abandoned) 

• Multiple 
(across 
several life 
cycle) 

• NA 
(unspecified 
or not 
applicable)  

• Surface 
Mining (ie: 
quarry/ open 
cut/ pit/ 
cast) 

• Underground 
• Small Scale 
Artisanal 
Mining 

• Unspecified 

• Environment 
• Land 
• People 
• Community 
• Culture 
• Livelihoods 
• Infrastructure 
• Housing 

• Vulnerable 
(ie: elderly/ 
women/ 
children) 

• Indigenous 
Community 

• Local 
Community 
and Visitors 

• Academics 
and Experts 

• NGO 
• Businesses 
and Industry 

• Mining  
• Government 

• PGIS and 
Geovisualization  

• Survey/ 
Questionnaire 

• Interview 
• Meeting 
• Focus Group 
• Workshop 

• Environment 
• Land 
• People 
• Community 
• Culture 
• Livelihoods 
• Infrastructure 
• Housing 

N
ot

es
 a

nd
 R

ef
er

en
ce

s 

  Based on 
(McKenna et 
al., 2020)’s 

mine 
commodity 

categories and 
*(Herrington, 
2021)’s list of 

anticipated 
essential green 

energy 
commodities 

  Based on 
(Smyth & 
Vanclay, 

2017)’s Social 
Framework 
for Projects 

  Based on 
(Smyth & 
Vanclay, 

2017)’s Social 
Framework for 

Projects 

 

Continue from Table 2.1. 

 GIS and Remote Sensing 
 Satellite 

Imagery or 
Sensors used 

Remote Sensing 
and Geospatial 
Data collected 

Spatial 
Resolution 

Temporal Scale Classification 
Method 

Accuracy Spatial Analysis 
Method 

Ca
te

go
ri

es
/C

la
ss

 

• Satellite (ie: 
Landsat, 
SPOT, MODIS)  

• Sensor (ie: 
ASTER) 

• Basemap (ie: 
Google 
basemap) 

• Environment 
• Land 
• People 
• Community 
• Culture 
• Livelihoods 
• Infrastructure 
• Housing  

• Low (>30m) 
• Medium (5-
30m) 

• High (<5m) 

• Uni-temporal 
• Bi-temporal 
• Multi-temporal 

• Supervised (ie: 
Decision Tree, 
Random Forest, 
GEOBIA, Manual 
interpretation) 

• Unsupervised (ie: 
Index) 

• >80 
• 70 to 80 
• <70  
• Not Reported 

• Queries and Reasoning 
• Measurements 
• Transformations 
• Descriptive Summaries 
• Optimization 
• Hypothesis Testing 

N
ot

es
 a

nd
 

Re
fe

re
nc

es
 

 Based on (Smyth & 
Vanclay, 2017)’s 

Social Framework 
for Projects 

    Based on (Longley et al., 
2005)’s six types of 

spatial analysis 
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2.2.2.1 Objective 1: To determine the spatio-temporal distribution of studies looking at socio-

economic and environmental impacts and types of mining commodities studied.  

The ‘General Information’ on the selected papers (title, year of publication, keywords, 

country or region of study and scale of assessment) was used to create a basic data base. We 

present the study areas by geographic regions (Table A 1) instead of individual countries. This 

is especially useful for distinguishing studies in Asia which has around 60% of the world’s 

population (UN DESA, 2018) and is made up of many culturally unique regions, with contrasting 

levels of endemism and biodiversity values (Myers et al., 2000). To summarize the ‘Research 

Approach’, the studies were grouped into four sub-categories: ‘GIS only’, ‘GIS and Remote 

Sensing’, ‘GIS and Social Science’ or ‘GIS, Remote Sensing and Social Science’ (Table 2.2). 

 

Table 2.2 The definition of the four method categories used to group the literature. * The definition of 
data extraction method for each study method category is italicised and bold.  

Study 
Method 

Category 

Methods used Definition 
Data Generation* Data 

Analysis 
Remote 
Sensing 

Social 
Science 

GIS 

GIS only No No Yes Combinations of geospatial and geoprocessing methods were 
used to analyse geospatial data. 

GIS and 
Remote 
Sensing 

Yes No Yes Remote sensing products (ie: climate data, DEM, satellite 
imagery and basemap) were used either directly or 
subsequent image processing techniques were applied (ie: 
land cover classification).  

AND 
Geospatial and geoprocessing methods, with or without 
additional geospatial data, were used to analyse the datasets. 

GIS and 
Social 
Science 

No Yes Yes Data were qualitatively and/or quantitatively collected from 
stakeholders using social science methods such as PGIS, 
survey, questionnaire, interview, meeting, focus group 
sessions and/or workshops.  

AND 
Geospatial and and geoprocessing methods were used to 
analyse the social data with or without additional geospatial 
data. 

GIS only Yes Yes Yes Remote sensing products (ie: climate data, DEM, satellite 
imagery and basemap) were used either directly or 
subsequent image processing techniques were applied (ie: 
land cover classification).  

AND 
Data were also qualitatively and/or quantitatively collected 
from stakeholders using social science methods such as PGIS, 
survey, questionnaire, interview, meeting, focus group 
sessions and/or workshops. 

AND 
Geospatial and geoprocessing methods were used to analyse the 
social and Remote Sensing data with or without additional 
geospatial data. 
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 ‘Commodity’ (type of mineral)’, ‘Stage of Mine Life Cycle’ and ‘Type of Extraction’ were 

determined from papers to assess trends and patterns in the type of mines being studied. The 

sub-categories of the ‘Commodity’ were ‘Coal’, ‘Metalliferous’, ‘Quarry’ and ‘Oil and Gas’ 

(McKenna et al., 2020). Commodities that may be associated with the increasing demand of raw 

materials critical for the green energy revolution (Herrington, 2021) were highlighted as part 

of this categorisation. The ‘Stages of Mine Life Cycle’ studied is divided into the ‘Pre-mining’, 

‘During’ and ‘Post-mining’ phases. Those that studied more than one stage were classified as 

‘Multiple’ and studies with unspecified life cycle stage are marked as ‘NA’. The ‘Type of 

Extraction’ is based on McKenna et al. (2020)’s list, and includes ‘Surface Mining’, 

‘Underground’, and ‘Small-Scale Artisanal Mining’; unreported types are classified as 

‘Unspecified’. 

2.2.2.2 Objective 2: To identify the categories of socio-economic mining impacts that have 

been studied in spatially explicit ways. 

We adopted a framework to help with analysis of the content of the papers. The Social 

Framework for Projects (Smyth & Vanclay, 2017) was built upon existing models and 

frameworks and is applied in this study due to its comprehensive coverage of various socio-

environmental factors making it highly applicable for large projects to understand, assess, plan, 

and manage the diverse social sustainability and well-being issues (Smyth & Vanclay, 2017). 

Additionally, the thoroughly constructed categories within the framework provide a fitting 

summary of the various dynamics of socio-economic and environmental impacts, without 

which would be difficult to discern. Using this framework, we classified the ‘Geospatially-

Assessed Mine Impacts’ studied using the eight categories in the Social Framework for Projects 

(Smyth & Vanclay, 2017): ‘Environment’, ‘Land’, ‘People’, ‘Community’, ‘Culture’, ‘Livelihoods’, 

‘Infrastructure’ and ‘Housing’. 

2.2.2.3 Objective 3: To identify the social science approaches used by these studies and the 

types of stakeholders engaged.  

As social mining impacts most severely affect local and vulnerable groups (Owen et al., 

2022), we were interested to know the proportion of studies that include stakeholders in their 

assessment, in particular, the local and indigenous communities. The types of ‘Stakeholders’ 
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involved, and the ‘Participation Method’ was recorded to determine the extent of public 

engagement and social science approaches used. The categories of ‘Stakeholders’, are divided 

into ‘Vulnerable’ which includes the elderly, women and children, ‘Indigenous Community’ 

which would include natives that are heavily dependent on the land and natural resources, 

‘Local Community and Visitors’ which includes people living and working in the area, ‘Experts 

and Academics’ which includes researchers and field experts, non-governmental organization 

(‘NGO’), ‘Businesses and Industries’ owners such as those in the agricultural sectors, ‘Mining’ 

authorities and employees, and ‘Government’ officials. The ‘Participation Method’ was divided 

into participatory geographic information system ‘(PGIS) and Citizen Science’, 

‘Survey/Questionnaire’, ‘Interview’, ‘Meeting’, ‘Focus Group’ and ‘Workshop’.   

2.2.2.4 Objective 4: To determine the Remote Sensing and GIS approaches used by the studies  

To determine the range and nature of the GIS and Remote Sensing approaches applied 

and to compare the variety of geospatial products used to study various socio-economic and 

environmental impact categories, we extracted information on the ‘Satellite Imagery’ or 

‘Sensors’ used, ‘Remote Sensing and Geospatial Data’ collected, ‘Spatial resolution’, ‘Temporal 

scale’, LULC ‘Classification’ or ‘Spatial’ methods, spectral indices (‘Index’), and reported ‘Data 

Accuracy’.  

‘Sensors’ were grouped into ‘Satellites’ (ie: Landsat, SPOT and MODIS), ‘Sensor’ (ie: 

ASTER), and ‘Basemap’ (ie: Google Earth). For studies that do not utilize sensors and instead 

obtained pre-processed, remotely sensed or geospatial data, the types of data used were 

categorized based on the Smyth & Vanclay (2017)  Social Framework for Projects. The ‘Spatial 

Resolution’ was ‘High’ for resolution less than 5 m, ‘Medium’ for resolution between 5 to 30 m 

and ‘Low’ for resolution above 30 m. The ‘Temporal scale’ of the studies indicates the 

measurement period(s) which are grouped into ‘Uni-temporal’ for single timestep studied, ‘Bi-

temporal’ for studies using two timesteps and ‘Multi-temporal’ for studies with three or more 

timesteps.  

‘Classification method’ was divided into supervised and unsupervised. ‘Supervised’ 

classification includes Geographic Object-Based Image Analysis (‘GEOBIA’) for studies which 

utilized segmentation and image-objects instead of pixels for classification. Methods using 
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training samples and machine learning algorithms such as Random Forests, Support Vector 

Machines (SVM), Classification and Regression Trees (CART), Maximum Likelihood and 

Convolutional Neural Network (CNN) were also classified under ‘Supervised’ classification, as 

were those that digitized polygons to manually create classes. On the other hand, 

‘Unsupervised’ classification includes studies which classified pixels based on indices such as 

Normalized Difference Vegetation Index (NDVI) and Normalized Difference Build-up Index 

(NDBI) or other unsupervised methods such as ISOSEG (using k-Means), self-organization 

cluster analysis (ISOCLUST—from IDRISI), and Iterative Self-Organizing Data Analysis 

(ISODATA).  

‘Accuracy’ assessment is important for assessing the reliability of LULC classification. An 

accuracy of 80% and above is considered high while 70% is the more commonly applied 

threshold (Anderson et al., 1976; Foody, 2002; Lunetta et al., 1991). We assessed reported 

accuracy in papers and used the ‘Not reported’ class for studies which carried out classification 

but did not perform or report the accuracy assessment results. Finally, the ‘Spatial’ methods 

used in papers was classified according to (Longley et al., 2005)’s six types of spatial analyses 

to help summarize the variety of GIS approaches used (Table 2.3).  

 

Table 2.3 Longley et al. (2005)’s six types of spatial analyses and the respective definitions. 

Type of Spatial 

Analysis 

Definition 

Queries and 

reasoning 

Basic data queries are carried out such as overlay analysis and comparing the location or spatial 

distribution of an object    

Measurements Numerical values used to describe the geographical aspects of data through methods such as 

calculating area, proximity analysis, area intersect and buffer analysis   

Transformations Data is altered through spatial interpolation such as Kriging and Inverse distance weight (IDW). 

Descriptive 

summaries 

Spatial descriptive statistics methods to summarize datasets 

Optimization Techniques are implemented to determine ideal locations based on a set of user-defined criteria 

such as weighted overlay for site-location analysis and value compatibility analysis (VCA) 

Hypothesis testing Involves a more complex reasoning process and inferential statistics to determine the likelihood of an 

observed spatial pattern being reflected by the broader population. Examples of this category includes 

studies which utilizes modelling such as Spatial Regression model, conflict potential modelling and 

environmental impact classification model, and indices such as preference and value index (PVS) and 

weighted preference index (WPS). 
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2.3 Results 

The initial search yielded 448 studies published between 1989 and 2021. Of these, only 210 

English language articles were published in peer-reviewed journals. The abstract screening and 

then final checking of the 210 articles to determine if papers undertook GIS/Remote Sensing 

analysis of socio-economic impacts (rather than simply mapping of mineral distributions or 

focusing solely on ecological impacts) returned a total of 71 studies that were included in the 

final review.  

2.3.1 Objective 1: Spatio-Temporal Distribution of Studies 

From this set of 71 studies, the earliest was a study in India, South Asia, published in 1996 

(Figure 2.2) that used Remote Sensing to determine land use and land cover (LULC) changes 

associated with an increase in mining activity over a 20-year period (Jhanwar, 1996). There 

were no other studies captured until 2005 and after 2014, there was a steady increase in 

publications per year. More than three-quarters of the studies were published post 2014, with 

the highest number of 11 papers published per year both in 2020 and 2021. In terms of the 

geographical distribution, the studies are relatively well distributed across the east and the 

west with the highest number of studies carried out in Europe and China (Figure 2.3A). The 

distribution of the first authors’ primary research institutions have been compiled in Figure A 

1 where a higher proportion of authors being based in the western regions compared to the 

east. 

 

Figure 2.2 Spatio-temporal distribution of studies based on study area region (N=71). The total 
number of studies carried out in each region is indicated in brackets, ie: East Asia (n=14) 
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Three quarters of the studies were carried out at the ‘Regional’ scale while the remaining 

covered areas at the ‘Mine Site’, ‘Mine Sites’, ‘Country’ and ‘Multiple Countries and Continental’ 

scale (Figure 2.3B).  

The bulk of the studies focused on impacts during the active mining (ie: production) 

stage (61%), with only 18% of studies analysing impacts across multiple stages of the mine life 

cycle (Figure 2.3C). Only two studies were carried out during the pre-mining stage, both of 

which used the spatial analytical hierarchy process (AHP) to locate the most ideal location 

either for pit development (Risk et al., 2020) or a gilsonite processing plant (Kazemi et al., 

2020). On the other hand, three studies were carried out on post-mining landscapes. These 

three were (a) an assessment of  ecological rehabilitation efforts via community participatory 

methods (Rich et al., 2015), (b) the development of Mining Incidence Documentation & 

Assessment Scheme (MIDAS) which is a geospatial database  for effective, widespread and 

systematic spatial analysis (Werner et al., 2020), and  (c) Remote Sensing image classification-

based, multi-dimensional index system to evaluate the spatio-temporal evolution of 

Production-Living-Ecological Space (PLES) (Tao & Wang, 2021).  

Forty papers (56%) reported on the type of mineral extraction studied which included 

either or a combination of underground, artisanal small-scale mining (ASM) and surface mining 

(Figure 2.3D). The remaining 31 papers did not specify any extraction type. Seven of the studies 

on ASM were linked to gold extraction and were published within the last 4 years (Figure A 2). 

Four out of the six underground mining studies were coal related. The coal mining studies make 

up a large proportion of the literature (Figure 2.3E) and are concentrated within the last seven 

years (81%), peaking in 2021 (n=7) (Figure A 3). The majority of the coal mining studies were 

carried out in China (42%) (Figure 2.4), in line with the increasing amount of coal mined from 

this country (e.g. 50% of the global coal production in 2012 came from China  (Xiao et al., 2017).  

The number of studies capturing metalliferous commodities associated with securing a 

green energy future  (Herrington, 2021) (Table A 2) were more frequent within the last decade 

than prior to this (Figure A 3), even if the intention of studying these minerals is not related 

with Herrington’s (2021)  narrative. 
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Figure 2.3 The general characteristics of the studies (N=71). (A)  the proportions of study area regions; 
(B) The various scales at which the studies were conducted; (C) stage of mining lifecycle; (D) types of 

commodity extraction method; and (E) the categories of commodities extracted.  

 

Figure 2.4 Distribution of commodities and study area location. 
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2.3.2 Objective 2: Categories of Socio-Economic Mining Mining Impacts Spatially Studied 

Overall, all eight categories of the socio-economic and environmental impacts identified by the 

Social Framework for Projects (Smyth & Vanclay, 2017) were successfully captured by the 

literature (Figure 2.5) with the integration of GIS, Remote Sensing and Social Science 

approaches. However, it is observed that the intangible aspects (ie: ‘Culture’) were notably 

unable to be captured, especially using Remote Sensing approaches alone, and as demonstrated 

by the low percentages in Figure 2.6 to be the most difficult category to capture even with other 

approaches.  

A fair portion of the socio-economic and environmental impacts identified by the Social 

Framework for Projects (Smyth & Vanclay, 2017) were successfully captured by the literature 

(Figure 2.5) with the integration of GIS, Remote Sensing and Social Science approaches. It is 

observed that the intangible aspects were notably unable to be captured. Most of the studies 

captured between two and four categories of the Social Framework for Projects (Smyth & 

Vanclay, 2017), with three categories being the modal value (Figure 2.6A). ‘GIS only’ and ‘GIS 

and Remote Sensing’ mostly captured three indicators (light yellow bar) per study (Figure 

2.6A). For ‘GIS and Social Science’ and ‘GIS, Remote Sensing and Social Science’ method 

categories, the studies captured mostly two indicators (orange bar) per study (Figure 2.6A). 

From Figure 2.6A, the highest number of indicators captured per study was six, with only one 

paper in the ‘GIS and Social Science’ category (Pattanayak et al., 2010) successfully captured 7 

indicators (Figure 2.6E).  

The most studied indicator was ‘Land’ followed by ‘Livelihoods’. For the ‘GIS and Remote 

Sensing’ method category, ‘Infrastructure’ was the third most captured indicator while for ‘GIS 

only’, the number of studies that captured ‘People’ were higher than ‘Land’.  The environmental 

(‘Environment’ and ‘Land’), social (‘People’, ‘Community’, ‘Infrastructure’, ‘Housing’) and 

economic (‘Livelihoods’) indicators were well covered by all four Study Method Category. 

‘Culture’ indicator was lacking in most studies, particularly in the ‘GIS and Remote Sensing’ 

group, likely due to the intangible properties of this social impact which requires the 

integration of social science approaches to extract.  
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Figure 2.5 A) [At the centre of the figure] the wheel of gaps in knowledge which demonstrates the 
capabilities of each of the following four method categories to capture the aspects of the Social 

Framework for Projects (Smyth & Vanclay, 2017). Literature coverage is represented by the coloured 
cells within the four circular layers in the wheel: (1) GIS Only (outermost in orange), (2) GIS and 

Remote Sensing (second outermost in yellow), (3) GIS and Social Science (second innermost in green) 
and (4) GIS, Remote Sensing and Social Science (innermost in blue). The black cells are knowledge 

gaps that were not covered by the literature. The five subsegments within each of the eight aspects of 
the Social Framework for Projects (Smyth & Vanclay, 2017) represent (A) the summary coverage for 
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each major segments,  (B) GIS – geospatial data input, (C) SRS – spatially referenced social data input 
(ie: PGIS data and census data that was collated into grids or non-political boundaries or regions of 

interest), (D) RS – Remote Sensing data input both collected and/or pre-processed (ie: climatic 
products and classified LULC), and (E) SS – non-spatial Social Science data input (ie: quantitative or 

qualitative data collected from surveys and interviews with local stakeholders). B) [The grey area 
surrounding the wheel (A)] is the Social Framework for Projects (Smyth & Vanclay, 2017) updated 

with the socio-economic and environmental impacts that were spatially studied by the literature (in 
bold). Additional impacts that were not in the original list but found in this literature review are 

italicised. 

 

 

Figure 2.6 A) The proportions of number of indicators per study for each the overall literature (N=71) 
and by each of the four method categories. B) The proportions of the eight aspects of the Social 

Framework for Projects (Smyth & Vanclay, 2017) being studied by the overall literature (N=71) and by 
each of the four method categories. 
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2.3.3 Objective 3: Social Science Methods and the Types of Stakeholders Engaged 

Social science methods were implemented to capture quantitative and qualitative data from 

stakeholders in 25 out of the 71 studies (Figure 2.7). Majority of the studies were carried out at 

the ‘Regional’ scale with areas mining for ‘Coal’ and ‘Metalliferous’ commodities. The most 

common methods used were ‘Survey/Questionnaire’ and ‘Interview’. Other methods include 

Participatory GIS (‘PGIS’) and Citizen Science, ‘Workshops’, ‘Meetings’ and only one study 

organized a ‘Focus Group’ session (Figure A 4).  

The top four stakeholder groups engaged were the ‘Local Community and visitors’, 

people in the ‘Mining industry’ and ‘Government’ as well as ‘Academics and Experts’, in that 

order. Other stakeholders engaged were ‘Businesses and Industry’ members, non-

governmental organizations (‘NGOs’), ‘Indigenous Community’ and ‘Vulnerable Community’, 

which includes the elderly, women, and children. Although only four studies specifically 

mentioned involving vulnerable community members, the remaining studies that engaged the 

‘Indigenous Community’ and ‘Local Community and Visitors’ most likely also captured the 

elderly and females. Overall, a variety of stakeholders were represented by the studies that 

implemented social science methods. All eight social framework categories (Smyth & Vanclay, 

2017) were captured across all these studies. 
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Figure 2.7 The alluvial shows the proportions and correlations between the variables for studies that implemented Social Science methods (n=25). Note: some studies 
may apply one or more combinations of stakeholders and social science methods. 
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2.3.4 Objective 4: GIS and Remote Sensing Approaches Utilized by Studies 

2.3.4.1 Remote Sensing  

A total of 40 of the 71 papers implemented Remote Sensing via either one of four applications; 

(1) utilized Remote Sensing data in the form of only pre-processed and readily available Remote 

Sensing products (n=4), (2) only used satellite imagery processed  with classification methods 

(n=24) or (3) used a combination of both pre-processed Remote Sensing data and processed 

satellite images (n=12). Based on the alluvial chart (Figure 2.8), the majority of the studies were 

conducted at the regional scale, with only a handful conducted at the ‘country’, ‘multiple 

countries’ and ‘continental’ level. Generally studies were conducted across multiple timescales, 

and included  ‘decadal’, ‘bi-temporal’, ‘tri-temporal’ and ‘multi-temporal’ year assessments. 

Studies that applied change-detection and time-series analysis especially for land use and land 

cover (LULC) assessment usually employ imageries spanning multiple timesteps across 

decades. 

High resolution satellite image (resolution <5m) that were used included ‘Google’ 

basemaps, ‘SPOT’, ‘WorldView’ and ‘IKONOS’. Medium resolution satellite image (resolution 5 

to 30m) used were  ‘ALOS’, ‘Corona’ satellite, ‘Huanjing’ satellite and ‘Landsat’. ‘Landsat’ 

products were used by 70% of the studies that carried out image processing (n=26) (Figure A 

5). The Indian Remote Sensing (‘IRS’) satellites and ‘MODIS’ were among the lowest resolution 

satellites that were used (resolutions above 30m).  

The classification methods applied included ‘Supervised Classification’ using Object-

Based Image Analysis (OBIA), manual visual interpretation and digitization, decision tree, 

random forest and other supervised methods such as Neural Net Interpretation (X. Zhang et al., 

2016), Convolutional Neural Networks (CNN) (Tao & Wang, 2021), Spectral Angle Mapping 

(SAM) algorithm (Boakye et al., 2020) and Supervised Support Vector Machine (SVM) algorithm 

(Schmid et al., 2013). ‘Unsupervised Classification’ included use of the CLASlite software, and 

clustering algorithms (full list and references in Table A 3). Indices such as Normalized 

Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Enhanced 

Vegetation Index (EVI), Normalized Difference Build-up Index (NDBI), Built-up Area Index 
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(BAI) and Normalized Difference Coal Index (NDCI) were classiffied in our analysis as part of 

the ‘Unsupervised Miscellaneous’ category (Table A 4).  

Only 22 out of 37 papers that classified satellite imagery conducted and reported 

accuracy assessment scores. These scores were grouped into 3 categories; ‘60% to 70%’ (n=1), 

‘70% to 80%’ (n=4) and ‘above 80%’ (n=17). Overall, a higher proportion of studies that utilized 

‘Unsupervised’, ‘Supervised’, ‘GEOBIA’  and ‘Manual’ classification methods reported accuracies 

above 80%. Almost half of the studies that conducted ‘Supervised – Manual’ classification using 

visual interpretation of satellite imagery did not conduct or report on the accuracy assessment 

scores. Due to the nature of the human, visual-based interpretation, manual classification is 

assumed to be fairly accurate when compared to machine learning algorithms. 

Remote sensing methods only characterized six out of eight of the categories in Smyth 

& Vanclay’s (2017) Social Framework for Projects (Figure 2.8). The gaps in the indicators that 

were spatially captured and studied by Remote Sensing alone highlights the difficulties in 

translating intangible properties of people’s well-being into spatial ananlysis, as we can see in 

the People and Culture categories. Only one study managed to extract Community indicators in 

the form of social investment project sites (Ang et al., 2020); this was done with the aid of  local 

knowledge and PGIS methods.  
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Figure 2.8 Alluvial chart showing the proportions and correlations between the variables for studies that used Remote Sensing images and classification methods 
(n=40) 
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2.3.4.2 GIS 

All studies in this literature review included some form of spatial analysis (definition of the 

categories can be found in Table 2.3 and the full list of the analyses are compiled in Table A 5). 

The majority of the reviewed studies combined spatial analysis with Remote Sensing (n=26), 

while some analysed GIS data only (n=20), others used a combination of GIS, Remote Sensing 

and Social Science data (n=14), and finally, the smallest group only integrated GIS and Social 

Science methods (n=11) (Figure 2.9 and Figure 2.5). Overall, ‘Measurements’ is the most 

implemented spatial analysis while ‘Optimization’ is the least (Figure 2.9A). 

Of the 20 studies using only ‘GIS’ (Figure 2.9B), the most frequent spatial analyses used 

were ‘Measurements’, ‘Transformation’ and ‘Statistical Analysis’. Based on the cells highlighted 

in orange in the outermost circular layer (Figure 2.5), this literature category successfully 

studied all eight Social Framework for Projects categories (Smyth & Vanclay, 2017). It is also 

clear from Figure 2.5 that there are GIS data for all eight categories, while spatially referenced 

social (SRS) data used in this literature category only covered the ‘People’, ‘Community’, 

‘Culture’, ‘Livelihoods’, and ‘Housing’ aspect of peoples’ wellbeing.  

26 papers combined GIS data and spatial analysis together with Remote Sensing (Figure 

2.5).  A large portion of these studies used ‘Measurements’ (Figure 2.9C). The single study that 

had spatial analysis related to ‘PGIS and Geovisualisation’ did not explicitly engaged 

stakeholders but provided recommendations that geospatial data and imagery be used to 

visualize impact, an in turn use these visualisations to for presentation and engagement with 

stakeholders (Krieger et al., 2012). Overall, the integration of Remote Sensing and GIS analysis 

managed to spatially capture seven of the eight Social Framework for Projects categories 

(Smyth & Vanclay, 2017) as shown by the yellow cells within the second, outermost circle 

(Figure 2.5).  

15% of the literature (n=11) integrated GIS with social science methods (Figure 2.5).  

‘PGIS and Geovisualisation’ and ‘Process Model’ were the most implemented spatial analyses 

(Figure 2.9D). All five studies that carried out ‘PGIS and Geovisualisation’ spatial analysis used 

PGIS approaches and citizen science to engage with stakeholders. The green cells in Figure 2.5 

(second innermost circle) demonstrated that this literature category successfully extracted 
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data and produced spatial outputs of indicators related to all eight Social Framework for 

Projects categories (Smyth & Vanclay, 2017). This is expected as the incorporation of social 

science is key to fully integrate intrinsic and intangible social aspects, especially in the ‘People’, 

‘Community’ and ‘Culture’ categories. Studies in this group mostly combined GIS and social 

science data, with SRS data only available in the ‘Land’, and ‘Community’ category. 

Finally, a total of 14 papers (20%) combined spatial analysis with Remote Sensing and 

social science methods (Figure 2.5). ‘Measurements’ were by far the most common spatial 

analysis used in this group (Figure 2.9D). The second most utilized spatial analysis was ‘PGIS 

and Geovisualisation’ implemented by three studies. All eight Social Framework for Projects 

categories (Smyth & Vanclay, 2017) were captured using this method category as shown in 

Figure 2.5’s blue cells within the innermost, circle. Where GIS, SRS and Remote Sensing data 

were unavailable, Social Science approaches were used instead, as seen in the ‘Culture’ 

category. With the integration of "tacit knowledge embodied in life experiences and reproduced 

in everyday behaviour and speech" (Babidge et al., 2019), cultural indicators, such as historical 

events are more readily discerned. These studies highlight the potential of multidisciplinary 

and integrated approaches, with authors stressing the critical role of stakeholder engagement 

in validating and complementing mapped environmental observations and impact assessment 

outputs via inimitable endemic local knowledge.  

 

Figure 2.9 A comparison of the spatial analysis method(s) applied by the A) overall literature review 
(N=71) and each of the four method categories (full list in Table 2.2); B) GIS Only C) GIS and Remote 

Sensing, D) GIS and Social Science and E) GIS, Remote Sensing and Social Science. 
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2.4 Discussion 

2.4.1 Overview of Current Research Development 

The increase in mining-related studies using some type of spatial analysis (Figure 2.2 and 

Figure A 1) reflects the recently expanding growth in Remote Sensing literature over the last 

decade (Goodchild et al., 2000; McKenna et al., 2020). It can also be potentially linked to the 

increasing relevance of sustainability in the mineral industry as both technological 

advancement and supply and demand have progressively increased (Segura-Salazar & Tavares, 

2018). Recently, research has become focused on the future of coal and other non-renewables, 

as encouraged by the rise of competitive green energy and cheaper renewables (Herrington, 

2021) as well as new commitments being made to phase-out coal (UNFCCC, 2021). Recent 

developments in the mature coal industry may also be a source of motivation, such as the 

decline in productivity due to technological change and decrease in technical efficiency (De 

Valck et al., 2021).  

Despite coal-mining existing for millennia, it is only recently that studies started focusing 

on the social aspects of both underground and surface coal-mining  (Figure A 2 and Figure A 3) 

likely due to international pressures and sustainability and human right movements. The focus 

on understanding social aspects of mining impacts is not confined to coal; e.g.  the Third World 

Conference on Disaster Risk Reduction (DRR) recognized and advocated the participation of 

local stakeholders in DRR management, which in turned motivated the participatory GIS risk 

mapping study in underground salt mines in Solotvyno, Ukraine (Onencan et al., 2018). 

Interdisciplinary approaches such as the hybrid cost-benefit analysis (CBA) supported such 

work, with researchers using a combination of holistic, primary data (socio-economical, 

environmental, land use and ecosystem services data) – combined with weightings from social 

impact risk matrices (De Valck et al., 2021).  

Research on how the mining sector affects towns and communities is common, but 

relatively little is known about the characteristics of large-scale (ie: country, regional and 

global) mining impacts from a geospatial perspective (Devenin & Bianchi, 2019; Goodchild et 

al., 2000). The majority of the studies that included geospatial data collection and analysis at 

the regional scale (Figure 2.3) were enabled by GIS and Remote Sensing approaches. Studies at 
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the regional scale often offer the best compromise between the amount of effort and time 

needed for the analysis versus the extent of captured impacts. Often the co-location of other 

industries (Kotey & Rolfe, 2014) affects socio-economic and environmental impacts of mining, 

so regional studies are important to provide the big picture trends and options, e.g. how 

different mining companies can come together to resolve social conflicts that may arise as a 

result of their combined or interactive effects. Additionally, the importance of capturing mining 

effects across the surrounding system components such as natural environment, geology, 

economy, and community in tandem instead of in isolation (Lechner et al., 2017) may be part 

of the motivating force in encouraging more studies to use an integrated, overall system-

thinking approach. However, a potential cost of large-scale work is level of detail and resolution. 

Small scale studies can sometimes be more cost-effective and are critical for shedding light on 

ground-level social conflicts that affect individual and communities. Thus, although adopting a 

single case-study design may not be easily replicated in other regions or generalized for a wider 

scale (ie: global), it remains essential for understanding and addressing location-specific issues.  

2.4.2 Integrating Across Disciplines and Methods for Capturing Mining Impacts 

A mining operation has a variety of positive and negative effects on receiving environments 

during its lifetime, including nearby biodiversity, water and communities (Lechner et al., 2017; 

Xiao et al., 2021). The most frequently cited hypotheses related to the root causes of community 

conflict centre on the idea that the extractive industries are in competition with settlements, 

agricultural and other forms of alternative livelihood practices (Haslam & Tanimoune, 2016; 

Lechner, Owen, Ang, Edraki, et al., 2019). Seen in these terms, social conflict can be seen to have 

a territorial basis and usually arise when the peoples’ livelihoods and/or well-being are 

threatened or incompatible with mining (Haslam & Tanimoune, 2016; Lechner, Owen, Ang, 

Edraki, et al., 2019) or unrecognised land ownership and indigenous land rights (Haslam & 

Tanimoune, 2016). Geospatially-integrated social science approaches provide possible means 

and evidence to characterize these land conflict and incorporating spatial centrality would 

provide an additional dimension useful for capturing mining impacts at various scales and 

stages of the mine life cycle (Arts et al., 2019; Hentschel et al., 2000; Kivinen et al., 2018; 
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Lechner, Owen, Ang, & Kemp, 2019; X. Y. Li et al., 2014; McIntyre et al., 2016; Rampellini & 

Veenendaal, 2016; Yiran et al., 2012). 

2.4.2.1 Social Approaches 

Local knowledge via stakeholder engagement remains vital to provide meaningful 

context to quantitative spatial evidence.  Direct interaction with the impacted communities is 

required to shed light on the underlying complexities surrounding the socio-economic and 

environmental mining consequences. And the bottom-up approach with spatial integration is 

often more effective at identifying and resolving the fundamental causes of impacts (Pearce et 

al., 2021; Virgone et al., 2018). The significant negative response from the local community is 

easily prompted by the slightest inaction or action by the mining management (Brereton et al., 

2008; Prno & Slocombe, 2014). Although a significant number of community participants 

acknowledged the economic and safety benefits of coal mining, the term "cumulative 

consequences" is more often perceived as adverse than favourable (Bebbington et al., 2008; 

Brereton et al., 2008; Prno & Slocombe, 2014). The main concerns brought up by communities 

are often related but not limited to degradation of ecologically vulnerable territories, water 

consumption, pollution, and environmental hazards such as landslides (Bebbington et al., 2008; 

Werner et al., 2019; Xiao et al., 2021). Although mine rehabilitation is considered a major legal 

requirement, its success is often not guaranteed and subject to many socio-economic and 

environmental variables (Mudd, 2010). The silver lining is that social pressures are often key 

to influence mining rehabilitation directly or indirectly by demanding changes in social 

structures such as through industrial transformation, economic development, and policy 

formulation, (Xiao et al., 2021). Geospatial approaches are critical for measuring and mapping 

such degradation and rehabilitation progress (Cocheci et al., 2015; Lechner, Owen, Ang, Edraki, 

et al., 2019; Rich et al., 2015; Schmid et al., 2013). 

Limitations: The main disadvantages of traditional social science approaches (ie: via 

surveys and interviews) reported is that human memory may often be inaccurate. In the 

absence of the maps or scientific explanations of complex ecological systems, discussions 

amongst the participants tend to be speculative (Babidge et al., 2019). In addition, research 

participants faced difficulties relating ongoing or potential impacts with proposed mining 
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landscape changes because they could not “see” the relationship or understand how their 

livelihoods areas would be compromised (Pearce et al., 2021). Furthermore, qualitative socio-

economic data without geospatial properties (ie: not mapped out) presents a challenge to be 

integrated and analysed with GIS or Remote Sensing data. Hence, quantitative socio-economic 

data (ie: mapped and logged experience) are important to validate and where necessary, guide 

discussions with visual prompts. The development of a more spatially oriented perspective in 

future social scientific research would require coordinated effort to progress and disperse 

geographic technologies and concepts, such as geodatabases and spatial analysis, as central 

theme cutting across the conventional disciplinary boundaries of the social sciences (Goodchild 

et al., 2000).  

Advantages: Public involvement and stakeholder engagement (Figure 2.7 and Figure A 4) 

in Environmental Impact Assessments (EIAs) is seen as a crucial component of the process in 

order to supplement technical expertise with local knowledge, context and environmental 

awareness (Pearce et al., 2021) while also encouraging social acceptance and local 

empowerment (Campbell, 2012; Marais, 2013; Marais & Verna, 2019). Hence, it is encouraging 

that all the studies that implemented social science approaches had included participations 

from one or more stakeholder groups (Figure A 4). The bottom-up approach, a strength of the 

PGIS approach regarding information gathering (Pearce et al., 2021), is more effective at 

targeting root causes of impacts and direct engagement with the affected communities is 

necessary to shed light on underlying intricacies surrounding socio-economic and 

environmental mining impacts. Additionally, integrating spatial approaches would enable the 

visualisation of these impacts. For example, Brereton et al. (2008) mapped the spatial 

distribution of complaints received by the mines over time which enabled the cross analysis of 

the location of complaints and its corresponding period to determine the root cause. Also, 

Pearce et al. (2021) helped the research participants visualize the areas where proposed 

mining activities would overlap with their social values and livelihoods. In one study, maps of 

landcover change were used as an ethnographic tool to elicit and identify people's perceptions 

of landscape change processes and the ways in which landscape change may be connected to 

local socio-cultural processes and political or economic institutions (Babidge et al., 2019).  
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2.4.2.2 Remote Sensing and GIS Approaches 

The multifaceted dimensions of the socio-ecological changes brought on by industrial 

extraction can be uncovered by the spatial integration of environmental indicators such as 

climate data, satellite remote sensing analysis, with local perspective, historical observations, 

and explanations of these changes in the region (Babidge et al., 2019). Remote Sensing 

applications for climate, pollution and LULC change monitoring are well established, with 

relatively high accuracy and access to unaltered historical data (McKenna et al., 2020). Aside 

from capturing natural LULC (ie: vegetation and water body), Remote Sensing applications 

have successfully incorporated socio-economic elements observed in LULC impact studies is 

via urban, settlements, and agriculture land mapping (Figure 2.8 and Figure 2.5). Technological 

advancements such as the availability of high-resolution (<5m) satellite imagery – Ikonos and 

WorldView-2 (Ferring & Hausermann, 2019; Hausermann et al., 2018) – enabled the capture of 

intricate ASM-related LULC changes using Remote Sensing. Additionally, the recent popularity 

of ASM and underground mining studies is likely encouraged by efforts focused on establishing 

mining-related databases. For example, the inventories of mineral sites prepared by the 

National Service of Geology and Mining (Servicio Nacional de Geología y Minería - 

SERNAGEOMIN) (Rivera, 2020) and the Guyana Geology and Mines Commission (GGMC) 

Annual Reports (Hook, 2019) which were used to map ASM locations. Also, the Integrated 

WebGIS in the Republic of Kosovo (Meha et al., 2011) was used for implementing resettlement 

strategies in underground mining areas. 

GIS successfully facilitated the consolidation of various socio-economic and 

environmental indicators such as the case of poverty mapping via socioeconomic outcome 

indicators (Hentschel et al., 2000; Loayza & Rigolini, 2016a; Londono Castaneda et al., 2018), 

risk mapping (Chen et al., 2015; Onencan et al., 2018; Risk et al., 2020; Saedpanah & Amanollahi, 

2019) and landscape ratings in landscape quality assessment (Molina et al., 2016). Multi-

parameter analysis is critical in decision-making for land use planning and natural resource 

management. Incorporating spatio-temporal analyses of different resources (ie: mineral values, 

water resources, and community infrastructure) enables the identification of potential areas of 

conflict between these factors (Craynon et al., 2015) and the interdependencies, causes and 



2-33 
 

trends in both conflict and social acceptance in mining landscapes (Haslam & Tanimoune, 2016; 

W. Liu & Agusdinata, 2020; Pactwa & Górniak-Zimroz, 2021). Other examples of such 

approaches include hybrid cost-benefit analysis (De Valck et al., 2021) and multi-dimensional 

index system to provide a detailed examination of the Production-Living-Ecological Space 

(PLES) Evolution of resource-based urbans cities at different stages of ecological restoration 

(Tao & Wang, 2021). Additionally, mixed methodological techniques are essential to addressing 

the intricate connections between environmental change and infectious disease dynamics 

(Ferring & Hausermann, 2019).  

Incorporating spatial outputs via GIS also enhances the visualization capability and 

increases the assessment efficiency especially where factors are diverse and complex. Such as 

the case of the spatial variability of climate, hydrology, terrain, vegetation, soil and other 

geographic parameters, GIS enables the delineation of areas of various risk ratings for a detailed 

assessment (Chen et al., 2015). GIS also provides the means to spatially visually characterize 

and analyse the unequal spatial distribution of such impacts and values, providing the evidence 

for policy implications, such as wealth concentration, poverty, and environmental inequality 

(Greenberg, 2018). That said in terms of socio-economic impacts, it is often infeasible and non-

functional to present geospatial land use changes in the absence of key local knowledge for 

context. To accommodate this limitation, participatory GIS is a key approach used by several 

studies. For example, for mapping fine-scale LULC and identifying the cause of citrus agriculture 

decline in Didipio through feedback from on-the-ground experts with strong local knowledge 

(Ang et al., 2020), and to discuss landuse changes in a mining landscape and its impact on the 

indigenous community (Babidge et al., 2019). GIS also enabled the mapping of locations of 

complaints received by the mining companies (Brereton et al., 2008). This was achieved 

through workshop, surveys, interviews, and carrying out focus group sessions with a variety of 

stakeholders from welfare organizations, locals, and representatives from mining and other 

industries (Brereton et al., 2008). 

Both participatory GIS and geovisualisation combined allow for the rapid and effective 

communication of data patterns and so are useful for assisting decision making processes to 

evaluate where, how, and why changes have occurred.  Krieger et al. (2012) suggested the use 
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of Remote Sensing for visualisation purposes and object-based imagery analysis to synthesise 

and integrate social, health, and environmental information, including potential resettlement 

strategies. Rampellini & Veenendaal (2016) explicitly describe the use of geospatial analysis 

and geovisualisation to complement other analysis (ie: economic and demographic modelling). 

In addition, incorporating high-resolution satellite imagery into a visual narrative would also 

be helpful to geo-code and rectify field photos, ensuring accurate local knowledge integration 

into satellite-based maps. Overall, spatio-temporal analysis and geovisualisation of socio-

economic and environmental impact factors at appropriate scales can facilitate planning, 

decision making and policy-making processes to better understand “where, how and why” 

these system changes have occurred (Rampellini & Veenendaal, 2016). 

Limitations: Spatial approaches come with their set of disadvantages such as limited 

freely available or paywall-restricted, high-resolution imagery and datasets. Werner et al. 

(2020) pointed out that the creation of national databases for monitoring inactive or 

abandoned mines for restoration and/or rehabilitation has received comparably less scientific 

attention. A variety of prospective GIS and Remote Sensing applications to evaluate mine 

impacts have shown that such databases that include data on mine location and nature can 

supply essential preliminary data needed (Pavloudakis et al., 2009a; Schmid et al., 2013; 

Werner et al., 2020). Researchers with financial limitations are often compelled to work within 

the means of open access datasets (ie: Landsat and Google) at the cost of lower resolution and 

generalization (Figure A 5). The availability of quality datasets at large spatial scales is also 

often a challenge. Also, studies showed that intangible properties of social well-being, especially 

‘People’ and ‘Culture’ are difficult to capture using Remote Sensing alone; there is a need for 

supplementary spatially-reference social (SRS) or GIS data (Ang et al., 2020; Babidge et al., 

2019; Onencan et al., 2018; Pearce et al., 2021; Rich et al., 2015). The integration of local 

perspective and knowledge is imperative to provide meaningful context and data 

interpretation. 

Advantages: The above challenges often result in the innovation of creative, mixed-

methods and analytical approaches. For example, the classification of freely available and 

temporally extensive Landsat imagery is used to overcome the lack of official land utilization 
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investigation data (Tao & Wang, 2021) (Table A 3 to Table A 6) and satellite imagery is 

combined with land function evaluation technology to analyse long term production-living-

ecological space (PLES) (Tao & Wang, 2021). This method overcomes data unavailability and 

enables operation convenience, unfortunately, at the cost of data precision especially between 

coarse (ie: vegetation) and fine scale (ie: natural vs artificial pastures) landuse. In another 

study, using remotely sensed data from the Landsat series, nighttime light, and precipitation 

data gathered through Google Earth Engine, Kimijima et al. (2021) evaluated the change in ASM 

operations in Gorontalo, Indonesia, between 2014 and 2020. The handful of studies that 

managed to produce spatial outputs of indicators for ‘People’ and ‘Community’ were successful 

only due to the integration of available census and demographic GIS or SRS data such as 

population and migration patterns (Fohringer et al., 2021; Valle & Tucker Lima, 2014). In the 

absence of SRS or GIS data, innovative links with LULC data are required. For example, (Boakye 

et al., 2020) manged to extract people’s response to changing economic opportunities through 

LULC change, specifically the conversion of forest and farmland to the more economically 

lucrative mining compared to agriculture, while  (Xiao et al., 2017) were able to link 

immigration and village movement with environmental hazards due to flooding and land 

degradation.    

 

2.4.3 Challenges and Recommendations for Moving Forward 

A multifaceted issue such as mining and its impacts requires analysis from various 

perspectives. Focused, interdisciplinary studies that employ communitarian, behavioural, or 

development economics to assess cost to community is rarely deployed in mining-related 

research but critical (Owen et al., 2021). Geospatial approaches alone are not sufficient to bring 

to light the intricacies of the complex social, cultural, and economic interconnection in a mining 

landscape. Similarly, traditional ethnographic approaches may not be able to accurately 

capture the environmental and geographical changes especially historical changes. The 

integration of both methods is considered key by multiple studies to completely understand 

the complex system. This, however, is a considerable challenge (Lechner et al., 2017). 
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For the successful integration of geospatial approaches, the socio-economic variables of 

interest need to be georeferenced to enable effective national or regionally aggregated analysis 

(Haslam & Tanimoune, 2016), such as spatially referenced social (SRS) data that are derived 

from elicited social survey methods and then mapped (Lechner et al., 2014). Geospatially 

explicit studies which utilizes geographically accurate data are more capable of producing 

location-specific targets for mitigation effects and tracking the movement and spatial patterns 

of socio-economic indicators (ie: poverty and migration) or LULC change. These observations 

can then be related to other spatially fluid data (e.g climate). Geospatial analysis is often more 

cost effective compared to field work and provide reasonably accurate data especially when 

studying areas in remote regions. PGIS can contribute to this immensely to collect both spatial 

and social data without having to deploy scientists on the field.   

Census data can be represented at various spatial scales. However, due to changing 

administrative boundaries or updates in population development, it makes it hard to analyse 

and make comparisons between data. Although potentially requiring a higher cost of data 

collection and long-term planning, high-resolution geospatial data would help lessen this effect 

if the precise location of the data is recorded instead of basing it on the administrative 

boundaries. This is important especially for mobility studies or studies on landscape changes. 

Werner et al. (2020) stresses the importance of systemic, widespread, and formalized 

consistency to effectively document abandoned mines, rehabilitation and/or remediation 

efforts at a national level and worldwide. Commensurability - assessed using the same units of 

measure – is also key. Drawing on (Lechner et al., 2014)’s stance on spatial uncertainty within 

both SRS data and biophysical data, it is vital that uncertainties are addressed or adequately 

reported when conducting analysis.  

Additionally, more efforts are needed to make data easily accessible for scientific 

progress. Xiao et al. (2021) pointed out that data on the distribution and physical 

characteristics of mining locations in China are not open to the public while De Valck et al. 

(2021) pointed out that limited data on ecosystem services are available in the regional areas 

in Central Queensland. Fewer studies have therefore been able to quantify the linked 

relationship between coal resource growth and the state of the social-ecological system at 
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higher spatial resolutions. An example of attempts being made in this direction is the National 

Spatial Data Infrastructure (NSDI) as an organisational strategy being implemented in Kosovo 

to increase the number of applications and availability of spatial data via institutional 

structures, regulations, and standards necessary to disseminate spatial information from a 

variety of sources to prospective users (Meha et al., 2011).  

 

2.5 Conclusion 

Interdisciplinary data capture and analysis is a functional step in this direction and the only 

way to spatially capture and coherently analyse the various key aspects of socio-environmental 

well-being. It is promising that more research has recently focused on socio-economic mining 

impacts while fully or partially utilizing the capabilities that GIS and Remote Sensing has to 

offer to advance traditional social science approaches. The key approaches that can improve 

the integration of GIS, Remote Sensing and Social Science are participatory GIS and 

geovisualization for stakeholder engagement, LULC analysis for extracting socio-economic and 

environmental indicators, and multi-parameter analysis. Concerted efforts would be required 

to address the challenges of data availability, transparency and quality, geographic 

characterisation, commensurability, and validation towards the goal of a more spatially 

integrated assessment of socio-economic mining impacts. More possible approaches to include 

interdisciplinary data capture and analysis, particularly to research intangible socio-economic 

impacts, might be explored in future research as GIS and remote sensing technology and 

applications continue to advance. These are all important for successful data integration, 

inclusive analysis, and comprehensive planning throughout the mine life cycle to bring us a step 

closer in securing a sustainable future for mining. 
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Chapter 3. Socio-Environmental Land Cover Time Series Analysis of Mining Landscapes 

Using Google Earth Engine and Web-Based Mapping 

Published as: 

Ang, M. L. E., Arts, D., Crawford, D., Labatos, B. V., Ngo, K. D., Owen, J. R., Gibbins, C., & Lechner, 

A. M. (2020). Socio-environmental land cover time series analysis of mining landscapes 

using Google Earth Engine and web-based mapping. Remote Sensing Applications: Society 

and Environment. https://doi.org/10.1016/j.rsase.2020.100458  

3.1 Introduction 

Mining directly and indirectly influences both land cover and land use, leading to socio-

environmental transformations at a range of spatial and temporal scales (Briassoulis, 2019; 

Mudd, 2010; Werner et al., 2019). The operational footprint of mining projects is dynamic, and 

operations can trigger socio-economic progression affecting economic flows, social inequality, 

and an intensification of certain types of land use and land cover change, such as land clearance 

for infrastructure development (Aragon & Rud, 2013b; Loayza & Rigolini, 2016b; Reeson et al., 

2012b). Additionally, the poor management of waste can result in long-term physical alteration 

of the landscape, pollution, and disrupted ecosystem processes (Rockström et al., 2009; Sonter 

et al., 2014; Werner et al., 2019). Consequently, local residents are affected by socio-

environmental changes, with land-dependent or low-income populations most at risk (Schueler 

et al., 2011; Shackleton, 2020), if not properly addressed. 

Recent studies have highlighted a clear gap in the availability of data that can be used to 

identify local mining effects, or to monitor mining-inflicted changes over time (Arts et al., 2019; 

McIntyre et al., 2016; Pavloudakis et al., 2009a). Robust sourcing and reporting of data on social 

and environmental changes are considered essential for companies if they are to meet basic 

impact management obligations (Sonter et al., 2014). Furthermore, it is crucial to quantify the 

spatial patterns in these changes, to more effectively understand and predict future trends (Y. 

Zhang et al., 2017). The absence of data greatly limits the development of targeted strategies to 

mitigate site-specific socio-environmental impacts (Lechner et al., 2016; Virgone et al., 2018). 

However, given the complex nature of the dynamic mining landscape, it remains a challenge to 

https://doi.org/10.1016/j.rsase.2020.100458
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effectively and comprehensively describe these patterns of change (Everingham et al., 2018; Y. 

Zhang et al., 2017). Integrating quantitative biophysical data (e.g. land cover changes and 

distribution of settlements) using GIS and remote sensing with qualitative region-specific social 

data (e.g. health and demography) has potential to characterise and manage these landscapes 

for addressing multidisciplinary issues (Everingham et al., 2018; Lechner, Owen, Ang, & Kemp, 

2019) associated with the socio-ecological systems perspective (Polhill et al., 2016; O. R. Young 

et al., 2006).   

Satellite-based remote sensing techniques are widely applied for evaluating and 

monitoring mining impacts on the environment and to support remediation and rehabilitation 

initiatives (Koruyan et al., 2012a; Sonter et al., 2014; Xiao et al., 2020). Historical studies of land 

use and land cover change using remote sensing is an established method for understanding 

past and present physical properties of landscapes (Andersen et al., 1996; Briones & Sepúlveda-

Varas, 2016; Pan et al., 1999), providing details, for example, of intensification, conversion and 

abandonment of specific regions, and the environmental impacts of these transformations 

(Gyawali et al., 2004; Yiran et al., 2012). Landsat satellite imagery, with its historical archives 

dating back to the 1970s, is often used for creating time series depictions due to its high 

temporal and moderate spatial resolution (Gómez et al., 2016; Huang et al., 2017; N. E. Young 

et al., 2017). Characterising changes in mined land and surrounding landscapes can be 

accomplished with time series analysis of land cover change ((Lechner et al., 2019a; Li et al., 

2015) to monitor socio-economic patterns such as urban growth and poverty distribution 

(Hentschel et al., 2000; Mihai et al., 2015), and environmental disturbances, such as vegetation 

clearance and pollution (Coppin et al., 2004; Yang et al., 2018).  

Utilising GIS and remote sensing to complement stakeholder-inclusive social studies, 

such as on community well-being and livelihoods, has often been emphasized (Everingham et 

al., 2018; Kivinen et al., 2018; Yiran et al., 2012). However, the interdisciplinary application of 

GIS and remote sensing tools, specifically land use and land cover change analysis to spatially 

monitor and characterise social changes, is not common in a mining context (Lechner, Owen, 

Ang, & Kemp, 2019; Werner et al., 2019). Published studies concern only assessment of 

cropland and agricultural land use changes on local communities and food security (Matejicek 
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& Kopackova, 2010), deforestation from the expansion of farmlands and livelihood 

consequences (Schueler et al., 2011), influence of coal resource exhaustion on land use change 

(Wen et al., 2018) and potential conflicts from the growing proximity of mining sites to 

settlements and increasing land scarcity (Lechner et al., 2019a). Hence, there is a great 

unexplored potential for utilising remote sensing, especially historical Landsat data, to support 

social studies in mining landscapes. Additionally, participatory mapping approaches can be 

incorporated to capture land use classes with finer thematic resolution, such as region-specific 

agriculture, that are difficult to pick up using Landsat classification alone. Thematic resolution 

describes the level of classification detail within a hierarchy of land cover classes; with finer 

scale classes often more difficult to distinguish (Lechner & Rhodes, 2016). By taking on a unique 

mapping perspective, both coarse and fine thematic resolution land covers and land uses can 

be more effectively captured.  

With all this in mind, the aim of this study was to characterize and evaluate the land cover 

changes in a mining landscape and its concurrent impacts on socio-environmental land uses. 

Historical imagery from Landsat 5 and 8 were used to create a time series of regional-scale land 

cover over the period between 1994 through to 2018 for the Didipio gold-copper mine in the 

Philippines and its environs. The two approaches implemented in this study were (1) a 

supervised classification in GEE to characterise high-level coarse thematic resolution land 

covers for the whole region that can be derived using the moderate Landsat pixel resolution; 

and (2) a web-based mapping survey to capture key, fine thematic resolution land cover 

categories within zones of importance identified by the local experts. We conclude by 

discussing the effectiveness of our approaches for assessing socio-environmental changes and 

its limitations. Refinements of the workflow to improve the quality of data acquired were also 

presented.  

3.2 Materials and Methods  

3.2.1 The Didipio Mine and Study Area  

Didipio is a gold-copper mine located 270 km northeast of Manila on the north of Luzon Island, 

Philippines (Figure 3.1). The Philippine Government granted the Didipio Operation a Financial 

or Technical Assistance Agreement (“FTAA”) in 1994. The FTAA covers an area of 
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approximately 158 km2, located between the Nueva Viscaya and Quirino provinces. 

Construction activities began onsite in 2008 but was put on hold for a few years to allow for 

project re-scoping. Construction was completed in 2012 with commercial production 

commencing in 2013. Mining operation transitioned from open pit to underground in 2016. 

Surrounding the mine are two significant towns, Cabarroguis and Kasibu. An area of 1,006.93 

km2 was selected for the present assessment (Figure 3.1); this area includes these two towns, 

to integrate the key communities within the mine’s social catchment. Social catchments exist 

beyond the mine site and are not necessarily situated within the municipal boundaries. They 

also represent the territories occupied by communities of interest that have important 

implications in the administrative, policy and planning network in the region (Macgregor & 

Hugo, 2001). 

The community in this area is mostly comprised of indigenous people practicing rural 

highland farming cultures and lifestyle (Botengan et al., 2019). Agriculture is an important 

livelihood in this region (Holden, 2015; Schneider, 2017), producing fruits such as citrus, 

mango and banana, vegetables, root crops, rice and corn. Large areas were dedicated to rainfed 

and irrigated rice production. The presence of mining has brought about linear infrastructure 

development, promoting mobility within and outside of the community. This has also led to 

increased access to tertiary education and communication facilities, improving interactions 

between the residents and the wider community (Botengan et al., 2019). The influx of migrants 

and flow of goods and commodities have been observed with economic growth, an increase in 

job availability and business opportunities in the region (Domingo, 2020). A rapid increase in 

population was due to the increase in immigration into Didipio, just before the commencement 

of the mining operation (Resources Environment and Economics Center for Studies (REECS), 

2019).  

The owners of the Didipio mine have put in place various social development 

management programmes such as scholarship grants, electricity, livelihood projects and health 

programs to support communities in close proximity to the mine (Griffiths et al., 2014; 

Schneider, 2017). However, water loss or river quality deterioration and pollution from mining 

waste, damage or loss of lands and consequently the loss of livelihood in the agricultural, small-
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scale mining, fisheries and farming industries, remain as negative mining impacts (Botengan et 

al., 2019; Griffiths et al., 2014; Schneider, 2017). While these are perceived by the communities, 

the link between mining and these changes has yet to be studied and confirmed.  

With the current underlying uncertainties surrounding the project (Chavez, 2020), 

clarity regarding both environmental and socio-economic impacts is key in determining the 

best next steps and a reasonable course of action. An overarching goal of the current work was 

to ensure that quality data depicting the changes in the region is obtained to benefit current 

and future assessments. The methods outlined below were designed in an attempt to achieve 

this goal.   

 

 

Figure 3.1. The 1,006.93 km2 study area surrounding the Didipio gold-copper mine, in the Philippines. 

 

3.2.2 Land Use and Land Cover Classification Scheme and Environmental and Socioeconomic 

Indicators 

Before carrying out the analysis, a hierarchical land use and land cover classification scheme 

was developed to outline the various spatial characteristics of the study area (Figure 2). This 

was based on the coal mining schema developed by Lechner and colleagues (2016) and later 

updated by Lechner and colleagues (2019), for gold copper mines. While previous applications 
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have focused on the mine site (Lechner et al., 2016), and the direct surrounding land covers 

(Lechner, Owen, Ang, Edraki, et al., 2019), this chapter focuses on regional-scale change. The 

idealised schema represents a multi-level hierarchy of land use and cover surface features that 

is formulated from finer thematic resolution land use classes, such as specific agricultural crops 

and social investment projects, to coarser thematic resolution land cover, such as vegetation, 

bareland and water body (refer to (Lechner and Rhodes, 2016) for discussion on thematic 

resolution). In this study, the high-level (Briassoulis, 2019; Fisher et al., 2005), coarse-thematic 

resolution land cover classes were mapped using supervised classification and the key fine 

thematic resolution land use categories within zones of importance were characterized using a 

participatory web-based mapping.  

Positive and negative environmental and socioeconomic impacts are linked to 

transitions within and between several land uses and land covers (Table 3.1). A thorough 

discussion of Table 3.1 and the associations between the land use and land cover with the 

socioeconomic impact indicators are presented in Section 3.3.3. The coarser thematic 

resolution of land covers such as vegetation, water and bareland are essential for capturing 

environmental impacts, while mining and built-up areas are linked to socio-economic 

indicators such as population growth and infrastructure development. The land use classes 

with finer thematic resolution, such as specific agriculture and small-scale mining classes linked 

to economic impacts and livelihoods, cannot be captured using Landsat imagery alone; this is 

due to the difficulties in differentiating the spectral signatures that are homogeneous with other 

land use and land covers. Additionally, the land use classes associated with the Didipio Mine’s 

Corporate Social Responsibility (CSR) impact can only be captured using PPGIS as they do not 

have the unique spectral properties required for remote sensing classification.  
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Figure 3.2. Idealized land use and land cover classification scheme with the land use and land cover classes for regional remote sensing classification in red boxes and 
the web-based classification mapping in green. 
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Table 3.1. The environmental and socioeconomic indicators linked to the land use and land cover. 

Method Land Cover 

Environmental Indicators Socio-Economic Indicators 

Biodiversity, 
Habitat and 
Ecosystem 

Services 

Environmental 
Quality and 

Climate Change 

Human 
Footprint 

Economy 
and 

Livelihood 

Population 
Distribution 

Urban areas, 
Settlements and 

Associated 
Infrastructure 
Development 

Didipio Mine 
Corporate Social 

Responsibility 
(CSR) 

Re
m

ot
e 

Se
ns

in
g 

Primary 
Vegetation x x      

Secondary 
Vegetation x x x     

Water Body x x      

Bareland  x x     

Agriculture  x x x    

Mining   x x x x  

Built-up Area   x  x x  

PP
GI

S 

Small Scale Mining   x x x   

Agriculture - 
Citrus  x x x    

Agriculture - 
Paddy  x x x    

Agriculture - 
Swidden  x x x    

Social 
Development and 
Management 
Program (SDMP) 

  x  x x x 

Community 
Development 
Program (CDP) 

  x  x x x 
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3.2.3 Remote Sensing Data 

Atmospherically corrected, high-level, 30m by 30m Landsat Surface Reflectance data, 

accessed through GEE, were used. The timeframe of the imagery selected for true colour 

mapping was from 1988 to 2018 (Table 3.2a). Two datasets were compiled (Table 

3.2a): (1) True colour time series dates and (2) Classification time series dates. Dataset 

1, with a higher temporal resolution made up of 15 images from 1988 to 2018, was used 

to construct a true colour time series video to provide a general assessment of land 

cover changes for engaging with the local experts (Table 3.2a). The video can be 

accessed via this link: https://youtu.be/DYxEdwZ7Vkw. 

From Dataset 1, five time-steps were selected and compiled as Dataset 2 for the 

classification time series (Table 3.2a). These five time-steps were chosen to provide an 

even coverage of the life of the mine, include key land change events in the study area 

and filtered for the least cloudy imagery available within the time-step range for a more 

efficient change analysis. Another essential criterion for the selection of these dates was 

the availability of high-resolution auxiliary remote sensing data, which could be used to 

ground truth (Table 3.2b). Without field data, higher spatial resolution field data is 

required to validate the lower resolution Landsat imagery and identify finer resolution 

features such as the footprint of houses and crops which is important for distinguishing 

the land use and land cover classes. Dataset 2 was processed next as described in 

Section 3.2.4. 

 

 

 

 

 

 

https://youtu.be/DYxEdwZ7Vkw
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Table 3.2. Landsat sensor and bands used and image dates (day/month) for the true colour 
time series, classification mapping time series, and the auxiliary reference data used as 

ground truth. 

a) Landsat Satellite Data 

Landsat Bands Wavelength 
range (μm) 

Dataset 1: 

True colour 
Time Series 

Dates 

Comments 
Dataset 2: 

Classification 
Time Series Dates 

LS 8 Multispectral Coastal 0.43–0.45 2018 (17/11) cloudy 2018 (17/11) 

OLI/TIRS  Blue 0.45–0.51 2016 (13/02)   

  Green 0.53–0.59 2015 (27/12) cloudy 2015 (27/12) 

  Red 0.64–0.67    

  NIR 0.85–0.88    

  SWIR1 1.57–1.65    

  SWIR2 2.11–2.29    

 Panchromatic Panchromatic 0.50–0.68    

LS 5 Multispectral Green 0.5-0.6 2010 (12/02)  2010 (12/02) 

TM  Red 0.6-0.7 2008 (29/05) cloudy  

  NIR 1 0.7-0.8 2006 (06/09) cloudy  

  NIR 0.8-1.1 

2005 (05/05) 

2004 (05/07) 

2001 (23/03) 

1998 (03/06) 

1997 (22/10) 

1996 (25/03) 
1994 (12/08) 

1990 (10/04) 

1988 (31/01) 

cloudy 

cloudy 

cloudy 

cloudy 

cloudy 

cloudy 

2005 (05/05) 

 

 

 

 

 

1994 (12/08) 

b) Auxiliary Reference Data 

Site Sensor Data type Pixel Size Source Date Comments 

Didipio Landsat 8 Pansharpened 15 m USGS 
2018 (17/11), 

2015 (27/12) 
 

 World view 2 True Colour 0.5 m ArcGIS base 
map 2010 (18/09) High Cloud Cover 

 World view 2 True Colour 0.5 m Google Earth 2015 (31/12)  

 SRTM Digital Elevation 
Model (DEM) 90 m USGS 2001 (Feb) 

Low Cloud Cover 

High Cloud Cover 

 Sentinel Optical Imagery 10 m USGS 
2018 (02/07) 

2016 (09/03) 
Covers only the 

Didipio Mine 
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3.2.4 Regional-Scale Mapping 

Google Earth Engine (GEE) is an open source, cloud-based platform and is particularly 

well-suited for time series analysis because of its access to a virtually unlimited 

processing and storage capacity, and extensive library of multi-temporal remote 

sensing data (Gorelick et al., 2017; Mutanga & Kumar, 2019). Although the GEE platform 

has only been recently developed, there is a growing literature on its application 

(Kumar & Mutanga, 2018); however, very few of these studies relate to mining 

assessments. A Scopus keywords search for “Google Earth Engine” AND “Mining” (21st 

May 2020) identified 10 related papers after filtering for commission errors. Only five 

studies (Dlamini & Xulu, 2019; He et al., 2020; Pericak et al., 2018; Xiao et al., 2020; 

Yang et al., 2018) applied GEE in mining landscapes over a significantly long period and 

all these studies focused on remote sensing of biophysical phenomenon such as mining 

rehabilitation. The links to the codes used in this study are listed in Appendix B2. Three 

processing stages were undertaken to create a time series of classified maps (Figure 

3.3). In the first step (1a), imagery from the Landsat archive in GEE were filtered to 

determine the least cloudy scenes (less than 5% cloud cover). The availability of cloud-

free, single scene Landsat images was constrained by the region’s climate, which is 

prone to high rainfall frequency and typhoons (Holden, 2015). Hence, cloudy years 

were pre-processed to remove cloudy pixels using a cloud masking and mosaicking 

algorithm in GEE (Shelestov et al., 2017; Tsai et al., 2018) to compose cloud-free pixels 

from images throughout the year. Landsat 8 imagery for the year 2015 and 2018 

underwent an additional pan-sharpening step in ArcGIS Pro to be used as auxiliary 

reference data. In addition to the multi-spectral composites, three vegetation indices 

were derived: the Normalized Difference Vegetation Index (NDVI), Normalized 

Difference Water Index (NDWI) and Enhanced Vegetation Index (EVI).  

In the final step of 1a, a composite was created for the next processing step by 

combining three types of data sets: (1) the pre-processed Bands 2 to 7 for Landsat 8 or 

Bands 1 to 5 for Landsat 5, (2) the Global SRTM Landforms slope data layer, and (3) 

NDVI, EVI and NDWI indices layers. This method of compositing stacks of ancillary data 
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such as indices and a digital elevation model (DEM) layer has been found to improve 

overall classification accuracy (Table B 2) in previous studies (Domaç & Süzen, 2006; 

Dorren et al., 2003; Sluiter & Pebesma, 2010; Tsai et al., 2018; Xie et al., 2008).  

In step 1b, a supervised classification was performed first by testing several 

classification algorithms compiled in Table B 3. The Random Forest classifier yielded 

the highest classification accuracy (Table B 3) when tested against the other classifiers 

(CART, GmoMaxEnt, SVM, Minimum Distance and  Naïve Bayes). Other studies 

have also demonstrated that random forest performs better than other classifiers 

(Baltzer & Davies, 2012; Balzter et al., 2015; Belgiu & Drăgu, 2016; Breiman, 2001; 

Dlamini & Xulu, 2019; Kulkarni & Lowe, 2016; Pal, 2005) and are robust against 

potential collinearity and overfitting issues (Belgiu & Drăgu, 2016; Breiman, 2001; 

Matsuki et al., 2016; Teluguntla et al., 2018) that may arise from integrating the 

spectrally similar NDVI and EVI layers. The Random Forest method reduces 

redundancy by effectively selecting relevant spectral properties from a composite when 

classifying features of interest (Abdel-Rahman et al., 2013; Matsuki et al., 2016; 

Rodriguez-Galiano et al., 2012).  

A total of 180 training points was used in the supervised classification. Seventy 

percent (70%) of the training points were used for the classification, while 30% were 

reserved for the accuracy assessment, with both steps carried out in GEE. The classified 

images were exported from GEE to ArcGIS Pro for correction of the line work via 

digitization and reclassification of any misclassified areas, with the aid of the auxiliary 

reference data in Table 3.2b and the land use and land cover classes guidelines in Table 

3.3a. To remove the single, isolated pixels and clean the salt-and-pepper pixel effects 

(Figure B 2), contiguous land use or land cover made up of three pixels or less were 

identified and replaced with neighbouring pixel values using the Majority Filter tool; 

the before-and-after comparison is shown in Figure B 2. Open Street Map (OSM) data 

were used for checking the river and streams which were included under the Water 

Body land cover class after verification in Google Earth Pro. Mining areas were also 

extracted from the classified images at this stage.  
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In Step 2, the same classification methods in Step 1 were repeated with the rest 

of the time series imagery, with the addition of the previously classified images used as 

reference points. This procedure was important to ensure cohesion between the 

classification of each time-step. Linework alteration and attribution were carried out 

for time-steps that showed discrepancies in the classification such as the 

overestimation or underestimation of land use and land cover. This was done by either 

repeating the classifications in Step 1 or via digitization. 

In Step 3, the accuracy assessment for each time-step was carried out using the 

remaining 30% of the training points in Step 1. The auxiliary data in Table 3.2b and the 

original Landsat data were used as ground truths for this analysis. This method of 

validation is commonly practiced (Foody, 2002; X. H. Liu et al., 2002; Plourde & 

Congalton, 2003), especially in studies that involve data spanning lengthy historical 

timeframes, although field or high-resolution data is preferred if feasible (Cohen et al., 

2010; Gómez et al., 2016; Tilahun & Teferie, 2015). An error matrix, user and producer 

accuracy and Kappa accuracy values were generated at the end of this assessment. Local 

experts were consulted for a final review to validate the classified time series. 

 

Figure 3.3. A summary of the processing workflow for creating regional classification time 
series. 
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Table 3.3. Land use and land cover classes classified in this study and specific information 
used for guiding the classification (see Appendix A for detailed description of the SDMP and 

CDP land use classes). 

a) Regional Classification Specific classification rules and definitions 

Water Body Rivers, lakes and reservoirs (both natural and artificial water bodies and aquaculture). 

Vegetation Primary Primary forests and dense, secondary forests and/or abandoned plantations. 

Vegetation Secondary Areas of regrowth, short shrubs and permanent or temporary grasslands. 

Agriculture Irrigated agriculture. 

Mining Large-scale mining. 

Bare land 
Rocks and natural or artificial open-ground areas of land that have no vegetation cover, 

not including mining surfaces. 

Built-up Area Residential/settlements, industrial, commercial, urban and related infrastructure. 

b) Zones of Importance 

Classification 
Specific classification rules and definitions 

Demography Areas with important demographic growth. 

Agriculture - Citrus Citrus plantations. 

Agriculture - Paddy Rice plantations. 

Agriculture - Swidden Areas of swidden agriculture or shifting cultivation or rotational farming activities. 

Small Scale Mining Artisanal and illegal small-scale mining. 

SDMP Social Development and Management Program (SDMP) - mandatory projects 

CDP Community Development Program (CDP) - voluntary projects 

 

3.2.5 Web-Based Participatory Mapping and Stakeholder Involvement 

Web-based and participatory mapping, including Public Participatory Geographic 

Information System (PPGIS), was used to support mapping of land cover and land use 

changes in the study area. Web-based platforms can support collection of PPGIS data 

from various stakeholder groups and over large areas (Brown & Raymond, 2014; 

Kivinen et al., 2018). In mining landscapes, PPGIS has been used for characterising land 

use preferences, experiences, and values to a landscape and/or specific locations 

(Brown & Kyttä, 2014; Kingston et al., 2000; Sieber, 2006). This allows for specific 

placed-based knowledge to be collected from local stakeholders and experts (Kivinen 

et al., 2018). In this study, a web-based mapping survey was carried out using 

Maptionnaire (Figure B 1), an interactive, online, crowdsourcing, geospatial web 

mapping application, to characterise specific land uses of interest within the zones of 

importance. This survey was carried out for three months from August to October 2019. 



3-52 
 

The purpose of the participatory mapping was to engage local experts to 

characterise land uses of interest and zones of importance. These fine thematic 

resolution land uses (refer to (Lechner and Rhodes, 2016) for discussion on thematic 

resolution) such as specific forms of agriculture like citrus, land uses such as small-scale 

mining and land features such as infrastructure projects are challenging to extract from 

30 m moderate resolution Landsat imagery (Gómez et al., 2016). Local experts were 

therefore sourced for the participatory mapping as they provide specific in-situ 

knowledge that greatly exceeds the spatial and temporal resolution of even the most 

advanced remote sensing data. The land uses of interest (listed in Table 3.3b) were first 

compiled and then mapped by Didipio staff members who lived and worked in the 

region. The social investment projects that the respondents identified (Table B 6) were 

split into two categories: Social Development and Management Program (SDMP) and 

Community Development Program (CDP). A more detailed explanation of these two 

classes is compiled in Table B 6. 

The web-based survey mapping responses were digitized by local experts with 

reference to the high-resolution, true colour 2018 satellite basemap in Maptionnaire, 

which matched the latest classification time-step. The mapping was conducted by four 

employees of the Didipio mine in coordination with the Barangay (smallest 

administrative unit in the Philippines) officials of the host and adjacent communities. 

This includes the two provinces neighbouring the Didipio Mine; Alimit, Belet, 

Binogawan, Capisaan, Camamasi, Wangal and Tukod in the Municipality of Kasibu, 

Nueva Viscaya Province and Dibibi, Dingasan and Tucod in the Municipality 

Cabarroguis, Quirino Province. The survey data was validated by cross referencing with 

available high-resolution ground truth and the respective classified timesteps. By 

working in reverse from 2015 to 1994, land use and land cover changes were then 

manually digitized within all 416 polygons; the corresponding levels of certainty (Table 

B 1) across all five timesteps were recorded based on available high-resolution ground 

truth imagery (Table 3.2b) and referring to Table 3.3. The output of this process was a 

time series maps showing the classified land use within the zones of importance. 
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3.2.6 Change Assessments and Transition Matrix 

The time series maps were used to determine spatial land use and land cover changes 

over time. To quantitatively analyse this, the area of each class (Table 3.3) at all five 

timesteps was calculated from the classification time series maps and tabulated. Graphs 

indicating the trends of temporal changes in area (km2) were compiled and analysed. 

In order to provide functional interpretations of the temporal variations observed in 

the time series, land use and land cover transition matrixes (Braimoh, 2006; B. Zhang 

et al., 2017) were tabulated. The five classification time-steps (Table 3.2) were divided 

into two critical timeframes: timeframe 1 was the first 17 years where moderate 

changes were observed before the first visible mining activity started (1994 to 2010), 

while timeframe 2 was the 9 recent years within which prominent land cover and land 

use transformations took place (2010 to 2018). An additional table was tabulated for 

the total 1994 to 2018 timeframe as a reference. The transition matrixes tabulated were 

cross-referenced with Table 3.1 to link the trends observed with the relevant 

environmental and socio-economic indicators.  

 

3.3 Results and Discussion 

3.3.1 Regional Classification Maps and Time Series 

The supervised classification maps are shown in Figure 3.5. A time series video of the 

classification maps was created to provide a visual representation of the land use and 

land cover changes from 1994 to 2018. The video can be accessed via this link: 

https://youtu.be/rYRI1a9YZdY. The supervised classification without the web-based 

mapping provided an accurate estimate of the regional changes that have occurred in 

Didipio and demonstrated significant trends. These changes would have been 

impossible to capture without the capacity of remotely sensed Landsat satellite imagery 

to go back in time. 

The accuracy assessment results of all the timesteps (1994, 2005, 2010, 2015 

and 2018) after the post-classification processing were compiled in Table B 5. This table 

https://youtu.be/rYRI1a9YZdY
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indicates that the supervised classification accurately mapped a significant percentage 

of the six classes that was trained from the Landsat image (water body (Water Body), 

primary vegetation (Vege Primary), secondary vegetation (Vege Secondary), bare land 

(Bareland), built-up area (Built-up Area) and irrigated agriculture (Agriculture)). 

Although using the Majority Filter tool in ArcGIS Pro to rectify the salt-and-pepper issue 

across the classification (Figure B 2) decreased the classification accuracy by 

approximately 1% (Table B 4), it provided a visually improved output and the 

classification accuracies remain relatively high for both the Kappa and Overall Accuracy 

and ranged between 91% and 95% (Table B 5). These values indicate that 9 to 5% of 

the pixels are classified incorrectly; however, accuracies greater than 85% are 

commonly regarded as high (Anderson et al., 1976; Foody, 2008; Lunetta et al., 1991). 

As a comparison, a systematic review by (McKenna et al., 2020) calculated an average 

overall mapping accuracy of 84% for studies on remote sensing of mine site 

rehabilitation for ecological outcomes. The individual land cover classes which were 

inaccurately mapped, as well as the magnitude of the mapping errors, both varied 

between years; this variation is unavoidable in such time series analysis. In some cases, 

accuracies for a single class were as low as 77% (for Built-up Area in 2015) but overall, 

still achieved a high accuracy.   

The analyses indicate that the changes in the Didipio region vary substantially 

by land use and land cover type, with prominent changes observed in the primary and 

secondary vegetation classes. Other changes are less pronounced, (e.g., irrigated 

agriculture), which may be the result of classification inaccuracies from the complex 

land use at fine scales and the comparatively coarse imagery. It is important to note that 

areas classified as belonging to a given class may contain other land use or land cover 

classes that share similar spectral properties. For example, some of the primary 

vegetation class may include abandoned, overgrown plantations and some of the 

secondary vegetation may include agriculture such as individual fruit trees planted on 

grasslands. Additionally, houses or buildings that are sparsely distributed and smaller 

than Landsat’s 30m-by-30m resolution may not be detected as a built-up area and may 
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be misclassified as other land cover classes, depending on their surroundings. Only the 

irrigated agriculture could be distinguished using the classification methods applied 

because the spectral properties of irrigated agriculture differ significantly enough from 

their non-irrigated counterparts which have very similar spectral properties. For 

example, dry, harvested paddy fields are easily confused with bare soil while dryland 

agriculture and plantation appear similar to the non-agriculture grasslands and forest, 

respectively. Additionally, when using only the classification methods and the moderate 

Landsat pixel resolution, small-scale mining could not be automatically distinguished 

alone as their fine scale and spectral properties resembles that of built-up area or bare 

land. 

Overall, there was a 41% decrease in the Vegetation Primary class, compared to 

increasing trends in all other land cover classes (Figure 3.4 and Table 3.4). This is 

discussed further in Section 3.3. By 2018, only 59% of primary vegetation was left intact 

while there was an increase of 23% of water body and 52% of secondary vegetation. 

For the Built-up Area, there was a steady increase over time with the highest rate of 

increase from 1994 to 2005 followed by a slower rate of increase in the most recent 

years. Evidence of a consistent trend in the Bareland class is limited, but it is assumed 

that fluctuations in this land cover class are related to temporary disturbance due to 

transitioning or brief changes from one land cover class to another. The changes in the 

Mining class is in accordance with the Didipio Mine development: mine construction 

began in 2008, with the first appearance of mining activity in the 2010 timestep and an 

exponential increase in 2015. When mining activities went underground in 2016, the 

rate of increase in surface expression of the mining area slowed down.  
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Figure 3.4. Graphs indicating the changes in area (km2) of the regional land use and land cover classes 
from 1994 to 2018. The classes are split into 2 categories: a) Natural and b) Anthropogenic. Note that 
Dual y-axis has been used for both a) and b) due to significant differences in the scales of area (km2). 

 

Table 3.4. The numeric compilation of the area (km2) of all the land cover and land use 
classes from 1994 to 2018. For the Social Development and Management Program (SDMP) 
and Community Development Program (CDP) Class, the numbers in brackets indicate the 
number of project sites identified using auxiliary data (in some cases, these projects were 

smaller than the pixel size of the Landsat sensor so therefore did not contribute to the area 
estimates as shown in the 1994 and 2005 timesteps).   

Regional Classification 1994 2005 2010 2015 2018 

Water Body 13.28 13.15 13.36 16.50 16.40 

Vegetation Primary 573.54 438.57 395.40 346.50 337.22 

Vegetation Secondary 290.02 381.81 456.83 455.73 439.43 

Bareland 88.33 130.34 75.66 119.84 131.43 

Mining 0.00 0.00 0.23 3.71 4.11 

Built-Up Area 1.29 2.75 2.97 3.17 3.43 

Agriculture - Irrigated 29.87 28.10 49.55 47.10 60.83 

Zones of Importance Classification 1994 2005 2010 2015 2018 

Agriculture - Citrus 3.51 4.24 4.43 4.13 3.96 

Agriculture - Rice Paddy 6.20 6.50 6.44 7.25 7.55 

Agriculture – Swidden 2.24 2.71 3.09 2.84 3.45 

Small-Scale Mining 0.00 0.00 0.00 0.0945 0.1098 

SDMP 0.0000 (3) 0.0000 (4) 0.0018 (4) 0.0027 (5) 0.0036 (5) 

CDP 0.11 (4) 0.28 (5) 0.61 (5) 0.72 (8) 0.73 (9) 
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Figure 3.5. The supervised classification maps of the a) 1994, b) 2005, c) 2010, d) 2015 and 
e) 2018 timesteps generated from Google Earth Engine (GEE) using the Random Forest 

Classifier. 
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3.3.2 Zones of Importance: Participatory Mapping and Land Use Time Series  

A total of 416 polygons and 8 polylines made up the zones of importance that were 

mapped by the local experts via the web-based survey (Figure 3.7). From the classified 

zones of importance land use maps that were generated, the areas of each land use class 

were analysed and plotted in Figure 3.6 to illustrate the changes that occurred from 

1994 to 2018.  

Based on Figure 3.6a, the swidden and irrigated rice paddy agriculture showed 

a relatively constant increase over time while citrus only followed the same trend up 

until 2010, after which it declined in 2015 and 2018. These are important trends that 

highlight how the livelihoods of farmers have changed over time. We speculate that the 

underlying cause of the decline in citrus agriculture post 2010 is closely linked to an 

infestation of huang long bing or citrus greening disease and citrus tristeza virus (CTV), 

that was dispersed by the black citrus virus (Capuna, 2007; Lagasca, 2007, 2014). The 

spread of these diseases severely affected citrus production in the region which then 

deterred further expansion of citrus plantations. Additionally, droughts exacerbated by 

climate change are likely to have affected agricultural production (Resources 

Environment and Economics Center for Studies (REECS), 2019). These hypotheses 

could be assessed in future social change assessments. The agricultural production and 

climate data such as rainfall in the region could be cross-examined with these trends 

and spatially mapped for identifying vulnerable regions to efficiently target mitigation 

efforts and prevention strategies.  

Figure 3.6b shows changes in small-scale mining, which includes both artisanal 

and illegal counterparts. Small-scale mining was only evident in 2015. This seems to 

indicate that these mines begun after the construction completion of the Didipio Mine 

in 2012 and the commencement of commercial production in 2013 (OceanaGold, 2019). 

The Social Development and Management Program (SDMP) and Community 

Development Program (CDP) social investment project (in terms of infrastructure 

development) extents and locations were identified as individual polygons in Figure 3.7 

and the details of these projects are listed in Table B 6. It is important to note that apart 
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from infrastructure development, the Didipio Mine contributes funding to education, 

health and sanitation. The changes in the area and number of project sites are 

highlighted in Table 3.4. Figure 3.6b and Table 3.4 show that the SDMP area was small 

compared to area occupied by other classes from 1994 to 2010 and slowly increased 

from 2015 to 2018. The CDP land cover class had a slow rate of area increase from 1994 

to 2010, then slowed down in 2015 and was almost stagnant until 2018, amounting to 

an area of 0.73 km2. Overall, the social investment projects that are categorized under 

SDMP and CDP did not have a large impact on the total study area due to the extent of 

the project sites. 

  

Figure 3.6. Graphs indicating the changes in area (km2) of the land use classes from 1994 to 
2018. The land use classes are split into two categories; a) Agriculture and b) Zones of 

Importance. Dual y-axis has been used for both a) and b) due to significant differences in the 
scales of area (km2). 

The zones of importance land cover classes were acquired at very high resolution 

compared to the study area extent of 1,006.93 km2 (Figure 3.7) so zoom-ins have been 

used to provide a clearer representation. Figure 3.8 demonstrates the land cover and 

land use changes of the specific extent at each of the five time-steps (1994, 2005, 2010, 

2015 and 2018). It is important to note that in some cases, the fine-scale land use, such 

as small-scale mining, were too small to be captured by the moderate 30m2 Landsat 

pixel resolution and are extremely difficult to classify even with auxiliary data as they 
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were often obscured by other land cover, such as vegetation and bare land. Hence, this 

does not confirm an absence of these land use classes in those timesteps.  

Figure 3.8a highlights the changes that occurred in the Didipio Mine site. In 1994, 

there were some built-up areas present, indicating possible settlements, and a variety 

of agricultural activities (mainly paddy and swidden agriculture). In 2005, the SMDP 

and CDP social investment projects were initiated in this area, but the previous built-

up areas have been converted to bare land, irrigated agriculture and vegetation. There 

also seemed to be regrowth of natural vegetation in the area and less irrigated 

agriculture. Over the next ten years, until 2015, the mining land cover developments 

continued at a significant rate, promoting an increase in built-up areas, swidden 

agriculture and small-scale mining in its surrounding area. From 2015 to 2018, the rate 

of development in all the land use and land cover classes appeared to have eased, as 

evident in Figure 3.4 and Figure 3.6. The agricultural patterns of change were 

highlighted in Specific Extent (SE) 2 (Figure 3.8b) which is located to the northwest of 

the Didipio mine site. Citrus and Paddy were popularly grown in this area from 1994. 

The subtle transitions between these two agricultural land use classes and to other land 

uses are evident throughout the time series, from 1994 to 2018.  

The exact locations of these land use changes are clearly presented in the time 

series and can be conveniently compared side-by-side, making it easier for locating 

important areas of change. Having visual representations of landscape changes and 

impacts are useful for engaging with stakeholder groups. Additionally, zooming into 

these specific extents makes it more effective at capturing subtle but possibly important 

changes that would be obscured when analysing changes only at a regional scale. The 

option to select specific extents to focus the time series analysis on is useful for mining 

companies to support specific narratives around social change. Such narratives can be 

identified through a participatory process and/or through the application of qualitative 

GIS (Lechner et al., 2019b) during the company’s social change assessments. However, 

it is crucial that these changes are validated by people on the ground, as the level of 

certainty of the time series decreases the further back in time we go (Table B 1). 



3-61 
 

 

Figure 3.7. A compilation of all the zones of importance land use mapped using Maptionnaire 
for 2018. The green boxes indicate the Specific Extents (SE) chosen to highlight the zoom ins 
of significant regions of interest. Points have been used in addition to polygons to mark the 

Social Development and Management Program (SDMP) and Community Development 
Program (CDP) project areas that are too small to be visualized 
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Figure 3.8. a) SE1 focuses on the land use and land cover changes in the Didipio Mining Site while b) SE2 

focuses on the Agricultural and Built-up Area land use and land cover changes to the northwest of the 

Didipio Mine; these changes are marked by the black arrows. 
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3.3.3 Land Use and Land Cover Transitions  

The time series maps captured information on the spatio-temporal variations in land use and 

land cover change over time. The details of the land use and land cover transitions between the 

1994 and 2010 timesteps (timeframe 1) were compiled in Table 3.5 and Table 3.6 for timeframe 

2 (2010 and 2018). The 24 years of land cover changes that occurred from 1994 to 2018 were 

compiled in Table B 7.  

Based on evidence in Table 3.5 and 6, the largest land cover transition was from primary 

vegetation to secondary vegetation; this was a change of 145.51 km2 for timeframe 1 and 43.33 

km2 for timeframe 2. Changes in the water body class were subtle compared to the primary and 

secondary vegetation classes. The greatest transition from water body were to secondary 

vegetation, followed closely by irrigated agriculture and bare land. Between 1994 to 2010, and 

2010 to 2018 consecutively, 20.84 km2 and 9.40 km2 of primary vegetation, and 30.30 km2 and 

81.21 km2 of secondary vegetation, were converted to bare land; this shows a significantly 

higher proportion of vegetated land cover being cleared in the more recent years post 2010, 

potentially for agriculture or infrastructure development. In fact, a total of 35.01 km2 

(timeframe 1) and 36.09 km2 (timeframe 2) of waterbody, primary and secondary vegetation 

and bare land were converted to agricultural land uses. Transitions between the different 

agricultural land uses were also observed. The conversion was initially balanced between citrus 

and paddy in timeframe 1 but in timeframe 2, the transition leaned towards paddy cultivation 

instead; the highest conversion was 0.53 km2 from citrus to paddy, compared to 0.19 km2 of 

paddy to citrus.  

A total of 0.20 km2 (timeframe 1) and 3.55 km2 (timeframe 2) of primary and secondary 

vegetation, bare land and water body, as well as 0.03 km2 (timeframe 1) and 0.35 km2 

(timeframe 2) of built-up area, social development projects and agricultural land uses, were 

converted to mining. The transition to small scale mining was one of the most minimal, 

amounting to 0.10 km2and only occurred from 2010 onwards; the affected land cover classes 

were water body, primary and secondary vegetation and the agricultural land uses. Finally, the 

land cover transitions to the SDMP and CDP social development projects were too subtle to be 

detected, accumulating up to 0.60 km2 and 0 .73 km2; mostly these were from the secondary 
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vegetation class and some bare land areas. Overall, these changes seemed more prominent in 

the 2010 to 2018 timeframe compared to the 1994 to 2010 one, concurring to the trends 

reported in Section 3.1 and 3.2 (Figure 3.4, Figure 3.6 and Table 3.4). 

Based on Table 3.1, the water body, primary vegetation and secondary vegetation 

classes directly correlate to the bio-physical characteristics of the natural environment. The 

degradation and transformation of these classes into other land cover or land use provide the 

means of assessing environmental quality. Hence, the decrease in primary vegetation indicates 

habitat and biodiversity loss in the area which are likely to have negative impacts on ecosystem 

services such as climate regulation and natural water quality management (Braimoh, 2006; W. 

Liu & Agusdinata, 2020). Changes in the locations of built-up areas, social development projects 

and large or small-scale mining is a good indicator of population distribution (Table 3.1). This 

can be subsequently linked to data on population density, income, loss of land, migration and 

education, to discern socio-economic impacts such as poverty and well-being (Fan et al., 2016; 

Nuissl et al., 2009). Most land converted to mining consisted of natural land covers, but a 

portion of irrigated agriculture land use were also affected in this transition; this may have 

produced a displacement of agricultural lands.  

Trends in agriculture are a useful proxy for climate change, human footprint, economy 

and livelihood (Table 3.1). For example, the patterns of conversions between citrus and paddy 

occurred synchronously with the spread of the citrus greening disease and the black citrus virus 

in the region post 2010 (Capuna, 2007; Lagasca, 2007). This shift was likely triggered by the 

significant decline in productivity and a higher and more costly risk of crop failure (as discussed 

in Section 3.2) despite the existing overseas market demand (Lagasca, 2014). These shifts 

effects can, also be explained by natural disasters such as typhoons which are common in this 

region (Holden, 2015). It is highly likely that natural and anthropogenic factors operate in 

tandem to cause changes in agriculture (Chanthorn et al., 2016). The rural population is largely 

dependent on agriculture, requiring access to natural resources such as a constant supply of 

clean water and fertile lands. Hence, climate change and environmental degradation can have 

detrimental effects on these vulnerable populations, notably an increase in poverty. 
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Table 3.5. Land Use and Land Cover Transition Matrix for timestep 1994 to 2010 in km2. Note that the diagonal line (highlighted in grey) does not track across the 
table because some land use and land cover classes (e.g. SDMP) were not detected in the former timestep but present in the latter timestep. Additionally, the variables 

labelled with 0.00 km2 indicated areas of land use and land cover classes detected that were less than 0.01 km2. 
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Table 3.6. Land Use and Land Cover Transition Matrix for timestep 2010 to 2018 in km2. Note that the diagonal line (highlighted in grey) does not track across the 
table because some land use and land cover classes (e.g. Small-Scale Mining) were not detected in the former timestep but present in the latter timestep. Additionally, 

the variables labelled with 0.00 km2 indicated areas of land use and land cover classes detected that were less than 0.01 km2. 
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3.3.4 Applications of Remote Sensing to Social Change Assessment 

Mining can have intensive and extensive positive and negative impacts on communities 

as a consequence of land use and land change, and these impacts can be effectively 

mapped and quantified with remote sensing technology (Antwi et al., 2008; Koruyan et 

al., 2012b; Lima et al., 2016; Pavloudakis et al., 2009a) to support the characterisation 

of the various elements associated with a mining socio-ecological system. Remote 

sensing with GIS can be used to support and develop complex workflows via data 

management, analysis and visual presentations of land cover change and its 

consequences (Radulescu & Radulescu, 2011). Hence, GIS and remote sensing 

applications are increasingly playing a vital role in mining land management (Antwi et 

al., 2008; Koruyan et al., 2012b; Pavloudakis et al., 2009b; Radulescu & Radulescu, 

2011). However, their application for supporting community development is still in its 

infancy.  

Social changes do not occur in isolation but influence each other in a dynamic 

and systemic manner within a socio-ecological system. These changes can often be hard 

to access solely via ethnographic approaches (the dominant approach used by mining 

companies). Hence, this study could assist by providing an additional element to social 

change assessment by allowing stakeholders to visualize past changes in the mining 

landscape. Additionally, the trends observed from this study can be used to triangulate 

qualitative and quantitative social data using spatially integrated GIS approaches 

(Lechner et al., 2019b). Furthermore, the social data can be used to validate remote 

sensing data and ensure that it is accurate; this is especially important for the older time 

periods when high resolution ground validation data are unavailable. Remote sensing 

data can help stakeholders understand the changes that have occurred, notably through 

the provision of quantitative estimates of land use and land cover change; this facilitates 

collaboration, effective planning and allocation of resources for future projects. For 

example, local experts can identify zones where agriculture threats such as market 

fluctuations, inadequate irrigation supply and extreme weather events are prevalent, 

which can be cross-referenced with the types of land cover maps produced in this study 
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so that spatially explicit programmes to improve the agriculture sector can designed 

and implemented. 

Current and future remote sensing sensors, such as Sentinel, with high spatial, 

temporal, spectral and radiometric resolution, can enable the classification of the land 

covers and land use that we found problematic to identify with Landsat. However, for 

looking into the past, only Landsat and SPOT have the time series data needed to 

characterise historical land cover changes stretching back decades. In our study, we 

were able to classify coarse thematic resolution land cover classes but were unable to 

automate the classification of site-specific land use classes such as the various 

agriculture types and SDMP which are also critical for understanding social change 

trajectories. Due to the high-level and complex nature of these land cover classes, over-

generalization is inevitable when using moderate-resolution sensors such as Landsat 

(Briassoulis, 2019; Comber et al., 2005; Fisher et al., 2005). Further refinement of fine 

thematic resolution land use variations within these high-level land covers was 

attempted but was ultimately constrained by the data resolution. Nonetheless, we 

believe that the benefits of using Landsat data greatly outweighs this limitation due to 

the extent of its historical archives.  

We demonstrated that web-based mapping using current high-resolution true 

colour imagery and historic Landsat can potentially address this issue, although, the 

further we go back in time the less certain we are of the accuracy of the mapped outputs. 

This is one area where local experts are a valuable resource. In the future, technological 

and methodological advances such as computer vision techniques including deep 

learning with super resolution mapping (Ghaffar et al., 2019; Lechner et al., 2020) may 

address these limitations. However, local knowledge from on the ground experts will 

ultimately still play a significant role in identifying high-resolution, site-specific and 

historical land use changes that are important to support social change assessment. 

Nonetheless, memories can fade, hence, it is important to digitally capture useful local 

knowledge to prevent permanent loss. 
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The use of web-based mapping in the present study was in response to the 

inability of Landsat to characterise critical land cover components, especially in older 

images. It was developed through an iterative process that came from discussions with 

collaborators and local experts. This study represents one of the first such documented 

efforts to map regional scale land cover using remote sensing and web-based mapping 

to assess socio-environmental change. With the knowledge and experience gathered, 

an idealised workflow (Figure 3.9) is proposed for future studies. In Step 1a and 1b of 

the workflow, we suggest that the web-based mapping survey would be executed first 

to obtain critical high-resolution ground truth data and for experts to consider whether 

any important land use or land cover classes are missing. Next, supervised classification 

approaches would be carried out (Step 1c) using the ground-truth data identified in 

Step 1a and 1b as training data to map land cover in all the chosen time-steps. This is 

followed by Steps 2a and 2b which involves running a second web-based mapping 

activity to assess the fitness of the classification and to map any missing elements for 

specific locations in the land cover maps. Additionally, land use and land covers that are 

challenging to map using a supervised classification and moderate to coarse resolution 

remote sensing data can be refined using this method. The outputs from the web-based 

mapping and the remote sensing supervised classification will be harmonized in Step 

2c. The final harmonized outputs represent a regional scale map consisting of the coarse 

thematic resolution land use and land cover classified using supervised classification of 

remote sensing imagery and fine thematic resolution mapping using a web-based 

participatory approach. 
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Figure 3.9. An idealized flow chart to incorporate web-based mapping survey data more 
effectively into the classification time series formulation process. 
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3.4 Conclusion 

This study represents one of the few examples of regional mapping of land use and land 

cover changes using remote sensing and web-based mapping to assess and quantify 

socio-environmental impacts for supporting mine planning and social change 

assessments. A high-accuracy time series of the region surrounding the Didipio Mine in 

Philippines between 1994 and 2018 was successfully created using a combination of 

supervised classification in Google Earth Engine and web-based mapping. High-level, 

coarse thematic resolution land cover classes were successfully characterized using a 

supervised Random Forest classification approach and by compositing stacks of 

ancillary data consisting of multispectral and multitemporal Landsat images, vegetation 

indices and a Digital Elevation Model (DEM). This study also highlighted that the 

application of web-based mapping by local experts is necessary to identify key fine 

thematic resolution land uses in the zones of importance.  

The final time series produced using Landsat, accurately identified critical 

temporal trends in the study area. These land use and land cover transitions provide 

important insights for studying socio-environmental indicators. The remote sensing 

mapping can be triangulated with social data (e.g. ethnographic data) for characterising 

ongoing social-environmental impacts, to assist subsequent social change assessments. 

Land cover time series mapping expands the range of possibilities for further analyses, 

to promote a deeper understanding of the dynamic relationship between extractive 

resources and the surrounding landscape through a socio-ecological systems approach. 
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Chapter 4. Synthesis  

4.1 Summary 

This thesis investigated spatially explicit GIS and remote sensing approaches for 

assessing the effects of mining on society and the environment. The pressing need for 

robust analyses and reliable reporting of data on the local and regional changes that 

result from mining is deemed crucial for mining companies to successfully identify, 

monitor, sustainably mitigate, and manage these socio-economic and environmental 

impacts given the impending increase in supply and demand (Chapter 1). Remote 

sensing and GIS methods have the potential to facilitate and optimise conventional 

social science approaches for understanding historical and existing socio-

environmental impacts, by enabling spatial data collection and triangulation (Chapter 

2). Local knowledge acquired through stakeholder participation is emphasised as 

essential for providing meaningful context to quantitative geographical evidence 

(Chapter 2 and Chapter 3). Further research in spatially integrated social science 

approaches can be improved to establish innovative transdisciplinary data collection 

and analysis critical for assessing less tangible socio-economic implications (Chapter 2 

and Chapter 3).  

This final chapter reiterates the thesis's contributions and makes 

recommendations for areas where further research can be done and how future work 

on the integration of GIS, remote sensing and social science can be improved to advance 

the field for a comprehensive understanding of socio-economic mining impacts. Section 

4.2 summarises key findings with respect to the research questions posed in Chapter 1. 

This thesis is concluded in Section 4.3. 
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4.2  Research questions and key findings 

4.2.1 To what extent has the social, economic, and environmental mining impacts 

been studied in spatially explicit ways? 

Mine implications for society, the economy, and the environment are multifaceted, 

necessitating transdisciplinary methods and coordinated efforts from all specialists and 

stakeholders to be addressed efficiently and sustainably. This need is made pressing by 

the imminent increase in demand for mineral resources. It is promising that more 

recent research has focused on socioeconomic mining impacts while completely or in 

part utilising GIS and remote sensing technologies to complement traditional social 

science methods.  

Overall, Chapter 2 demonstrated that the integration of GIS, Remote Sensing and 

Social Science approaches successfully captured all aspects of the socio-economic and 

environmental impacts identified by the Social Framework for Projects (Smyth & 

Vanclay, 2017); ‘Environment’, ‘Land’, ‘People’, ‘Community’, ‘Culture’, ‘Livelihood’, 

‘Infrastructure’ and ‘Housing’. However, it is only through a collaborative spatially 

integrated social science approach that the intangible aspects of social impacts (ie: 

Culture – including historical memories and indigenous knowledge) can be effectively 

captured to understand the underlying intricacies surrounding the socio-economic and 

environmental effects of mining. Additionally, direct interaction with the affected 

communities is imperative and stakeholder participation to acquire local knowledge is 

recognized as vital for providing contextual relevance to quantitative spatial evidence.  

 

4.2.2 How can current limitations of GIS and Remote Sensing approaches be improved 

to spatially study socio-economic and environmental impacts?  

The socio-economic variables of interest must be geospatially recorded to 

enable effective nationally or regionally aggregated analysis (Haslam & Tanimoune, 

2016), for example, spatially referenced social (SRS) data that are derived from elicited 

social survey methods and then mapped (Lechner et al., 2014). Spatially explicit studies 
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employing geographically precise data are particularly capable of establishing location-

specific targets for mitigation plans and are effective at tracking the movement and 

spatial patterns of impacts, which can be triangulated with other spatially fluid 

variables (i.e. climate). Compared to fieldwork, remote sensing technology is more cost-

effective and provides reasonably accurate data, particularly when investigating 

remote locations. On the other hand, PGIS can collect both spatial and social data to a 

great extent, without relying on the need to deploy scientists into the field.  

Werner et al. (2020) stresses the importance of systemic, widespread, and 

formalized consistency to effectively document abandoned mines, rehabilitation 

and/or remediation efforts at a national level and worldwide. Commensurability - 

assessed using the same units of measure – is also key. Additionally, it is vital that 

uncertainties are addressed or adequately reported when conducting analysis (Lechner 

et al., 2014). Census data may be represented at a variety of spatial resolutions; 

however, it is challenging to conduct analysis and comparisons between data due to 

differences in political and geographic borders. Even though it might cost more to 

collect data and plan for the long term, high-resolution geospatial data would help 

lessen this effect if the precise location of the data is recorded instead of basing it on the 

administrative boundaries.  

Additionally, more efforts are needed to make data easily accessible for scientific 

progress. Xiao et al. (2021) pointed out that data on the distribution and physical 

characteristics of mining locations in China are not open to the public while De Valck et 

al. (2021) pointed out that limited data on ecosystem services are available in the 

regional areas in Central Queensland. Fewer studies have therefore been able to 

quantify the relationship between coal resource growth and the state of the social-

ecological system at higher spatial resolutions. An example of an attempt being made in 

this direction is the National Spatial Data Infrastructure (NSDI) as an organisational 

strategy being implemented in Kosovo to increase the number of applications and 

availability of spatial data via institutional structures, regulations, and standards 
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necessary to disseminate spatial information from a variety of sources to prospective 

users (Meha et al., 2011).  

 

4.2.3 How can the socio-environmental land use and land cover impacts in a mining 

region be best captured using spatially integrated social science approaches?  

Remote sensing and participatory mapping approaches were integrated in Chapter 3 to 

map the regional land use and land cover changes for quantifying socio-environmental 

impacts in the mining region of Didipio, Philippines. A high-accuracy time series of the 

area surrounding the Didipio Mine between 1994 and 2018 was produced using the 

successful combination of web-based mapping and supervised Random Forest 

classification in Google Earth Engine. Auxiliary data composites made up of 

multispectral and multitemporal Landsat images, vegetation indices, and Digital 

Elevation Model (DEM) was integrated into the supervised classification approach, and 

high-level, coarse thematic resolution land cover classes (ie: Vegetation, Water Body, 

Built-Up Area, Mining and Bareland) were effectively identified. The work in Chapter 3 

also underlined the significance of validation and mapping inputs by on the ground 

experts to identify essential, fine thematic resolution land uses (ie: Small-Scale Mining, 

Citrus, Rice Paddy, and Swidden Agriculture) in critical zones.  

Critical temporal trends in the study area were accurately identified in the final 

time series generated using Landsat data. These changes in LULC offer crucial insights 

for researching socio-environmental indicators. To facilitate future assessments of 

social change, social data (ie: demographic data) can be triangulated with remote 

sensing mapping to spatially characterise social-environmental impacts. Through a 

socio-ecological systems perspective, LULC time series mapping opens up the 

possibility of additional analyses, fostering a deeper insight of the dynamic relationship 

between mining and the surrounding landscape. 

 



4-76 
 

4.3 Closing Remarks 

Socio-economic and environmental impacts of mining are multifaceted, and so 

require multidisciplinary approaches and collaborative efforts from all different 

experts and stakeholders in order to be addressed effectively and sustainably, 

especially. To fully understand the intricate socio-economic and environmental 

connections in a mining landscape, geospatial techniques alone are insufficient. 

Traditional qualitative methods similarly are unable to fully capture geographical and 

environmental changes, particularly historical impacts. Numerous authors have 

concluded that the key to fully comprehend this complex system is to combine these 

multiple approaches, qualitive and quantitative, social and environmental, which 

nonetheless, presents a significant challenge (Lechner et al., 2017). 

Overall, it is promising that more research has recently focused on socio-

economic mining impacts, and either fully or partially utilized GIS and remote sensing 

to do this.  These tools represent an advancement of traditional social science 

approaches. Integration of GIS and remote sensing applications with social science 

methods is a step in the right direction and the only way to spatially capture and analyse 

complex linkages between the various socio-economic and environmental indicators. 

Remote sensing has enabled both spatio-temporal analysis at medium-resolution for 

regional scale and high-resolution site-scale studies to quantify significant LULC 

changes connected to socio-economic indices. Additionally, Participatory GIS has also 

been shown to be the best socio-spatial tool for geospatially documenting and mapping 

community perceptions for a holistic understanding of the changes and impacts 

occurring within the complex mining landscape. 

It is emphasized that local knowledge via stakeholder engagement remains vital 

to provide meaningful context to quantitative spatial evidence.  Direct interaction with 

the impacted communities is required to shed light on the underlying complexities 

surrounding the socio-economic and environmental consequences of mining. 

Moreover, the bottom-up approach is often more effective at identifying and resolving 

the fundamental causes of impacts. Geovisualization methods enable the rapid and 
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effective communication of data patterns for aiding the decision-making process to 

evaluate where, how, and why changes have occurred. 

As GIS and remote sensing technologies and applications continue to improve, 

more potential ways can be explored to incorporate multidisciplinary data capture and 

analysis, particularly to study socio-economic impacts which are often less tangible 

than e.g. physical ones. In order to achieve a more geographically integrated evaluation 

of socio-economic mining impacts, concerted efforts must also be made to improve data 

availability, quality, geographic characterisation, consistency, validation, and 

transparency. All of these are essential for effective data integration, inclusive analysis, 

and comprehensive planning across the mine life cycle, bringing us one step closer to 

attaining a sustainable future for the extractive industry and its surrounding 

community and landscapes. 
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Appendix A – Chapter 2 

Table A 1 List of study areas (as specified by the original literature authors) were grouped 
into regions based on the categories used in UN DESA (2018). 

North America South America Africa Europe Central, West 
South Asia 

East Asia Southeast Asia 
(SEA) 

Oceania Multiple 
Countries 

• US 
• Canada 

• Brazil 
• Chile 
• Colombia 
• Latin 
America 

• Guyana 
• Peru 

• Ghana 
• Africa 
• Botswana 

• Sweden 
• Portugal 
• Poland 
• UK 
• Switzerland 
• Netherlands 
• Spain 
• Germany 
• Kosovo 
• Belgium 
• Ukraine 
• Finland 
• Romania 
• Turkey 
• Greece 

• Tajikistan 
• Iran 
• India 

• China • Indonesia 
• Malaysia 
• Philippines 

• Australia 
• New Zealand 

• South Africa,  
China, Chile,  
Australia 
and 
Germany  

• Papua New 
Guinea and 
Laos 

 

Table A 2 Full list of commodities as reported by the literature and categorized based on 
McKenna et al. (2020)’s mine commodity categories. The minerals in green, bold and 
italicised text are highlighted as part of Herrington (2021)’s list of top metalliferous 

commodities needed for green energy development. The respective percentage of increase in 
demand of these minerals by 2050 compared to 2018 of are included in brackets.  

Category Commodities (as listed by the original literature authors) 

Coal Coal 

Metalliferous 

• Lithium (+488%) 
• Copper-nickel (+7% to 99%) 
• Nickel minerals (+99%) 
• Silver (+56%) 
• Silver/base metal (+56%) 
• Lead (+18%) 
• Molybdenum (+11%) 
• Aluminum minerals (+9%) 
• Copper (+7%) 
• Mineral 
• Gold 
• Diamond 

• Iron 
• Ironsand 
• Zinc 
• Iodine 
• Natural nitrates 
• Rhenium 
• Amethyst 
• Tin 
• Mercury 
• Polymetallic 
• Uranium 
• Bauxite 
• Chrome minerals 

Quarry 

• Hard rock 
• Igneous and metamorphic dimension stones and crushed rocks (DSCR) 
• Salt 
• Stone 
• Limestone 
• Sandstone 

Oil and Gas 

• Oil 
• Gas 
• Shale oil 
• Gilsonite 

 



105 
 

 

Figure A 1 Distribution of author origin based on study area region (N=71). 

 

Figure A 2 The temporal distribution of the types of extraction studied. The total number of 
studies carried out for each type of extraction is indicated in brackets, ie: open cut/pit/cast 

aka surface mining (n=32). Note that certain studies may have more specified more than one 
type of extraction. 

 
Figure A 3 Distribution of commodities based on year of study. 
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Figure A 4 Social Science methods applied, and the types of stakeholders engaged (n=25). 
The total number of studies of each implemented social science methods and type of engaged 

stakeholders are indicated in brackets. Note: some studies may apply one or more 
combinations of stakeholders and social science methods. 

 

Figure A 5 The list of Remote Sensing imageries (satellite imageries and basemap) and the 
types of classification methods used (n=37). Note that some studies may use more than one of 

these products and methods. The total number of studies for each Remote Sensing 
classification method and satellite imagery are included in brackets, ie: 26 studies utilized 

Landsat imagery and 3 studies carried out object-based classification.  
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Table A 3 The list of Remote Sensing classification methods and keywords used by the 
original literature authors. 

Remote Sensing Classification 
Methods 

Paper Keywords 

Unsupervised Index (Further 
Details In  
Table A 4) 

• Normalized Difference Vegetation Index 
• Enhanced Vegetation Index 
• Normalized Difference Water Index 
• Normalized Difference Build-Up Index 
• Built-Up Area Index 
• Normalized Difference Coal Index 

Unspecified • Unspecified 
• Unsupervised Classification 
• Natural Breaks Classification Method (Jenks Method) 

Supervised Decision Tree • Hierarchical Classification Trees 
• Svm 
• Cart 
• Classification And Regression Tree Algorithm 
• Decision Tree Classifier 
• Supervised Classification Using Regression Tree Algorithm  

Random Forest • Random Forest (RF) Classifier 
• Supervised Random Forest 

Miscellaneous • Principle Component Analysis (PCA) 
• Spectral Angle Mapping Technique 
• Spectral Analysis 
• Convolutional Neural Network (CNN) Method 
• Neural Net Interpretation 

Manual • Visual Interpretation 
• Manual Image Interpretation  

Unspecified • Supervised Classification 
Geobia • Object-Based Classification Using Segmentation 

• Object-Oriented Decision Trees (OODT) 
• Geographic Object-Based Image Analysis (GEOBIA) Classification 

Approach 

 

Table A 4 Summary of indices used by the literature for unsupervised imagery classification. 

Indice
s 

Description Imagery 
used 

Formula No. of 
Studie

s 

Literature applied 

NDVI Normalized Difference Vegetation 
Index 

Landsat NDVI = (NIR − R) / (NIR + R) 10 (Ang et al., 2020; Ferring & Hausermann, 2019; 
Hausermann et al., 2018; Hu et al., 2021; Kimijima 
et al., 2021; Walker et al., 2006; Wohlfart et al., 
2017; Yan et al., 2020; Zeng et al., 2018; Z. Zhang et 
al., 2015) 

NDWI Normalized Difference Water 
Index 

Landsat NDWI = (green band − midinfrared band) / 
(green band + midinfrared band) 

3 (Ang et al., 2020; Ma et al., 2021; Z. Zhang et al., 
2015) 

EVI Enhanced Vegetation Index Landsat EVI = 2.5 [(NIR-R) / (NIR + 6 R -7.5 B + 1)] 2 (Ang et al., 2020; Ma et al., 2021) 
NDBI Normalized Difference Build-up 

Index 
Landsat NDBI = (SWIR1-NIR) / (SWIR1+NIR) 2 (Wohlfart et al., 2017; Xue et al., 2021) 

BAI Built-up Area Index Landsat BAI = (B-NIR) / (B-NIR) 2 (Ma et al., 2021; Zeng et al., 2018) 
NDCI Normalized Difference Coal Index Landsat NDCI = (midinfrared band − nearinfrared 

band) / (midinfrared band + nearinfrared 
band) 

2 (Ma et al., 2021; Zeng et al., 2018) 
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Table A 5 GIS methods used and categorized based (Longley et al., 2005)’s six types of spatial 
analysis 

Categories of 
spatial method 

Methods specified by literature 

Queries and 
reasoning 

• Overlay Analysis 
• Reviewing Spatial Patterns 

Measurements • Area Change 
• Area Trend 
• Buffer Analysis 
• Area Analysis 
• Distance Mapping 
• Distance Analysis 
• Cluster Analysis 
• Spatial Distribution 
• Expansion Scale 
• Proximity Analysis 
• Spatio-Temporal Analysis 
• Intersect Analysis 

Transformations • Aggregate Data To Villages 
• Kernel Density 
• Spatially Align Data To Geo-Located Mine For Statistical Analysis 
• Spatially Referenced Social (SRS) Used To Determine Percentage Of Youth By Age And Sex Who Had Moved To Csg Regions 

Descriptive 
summaries 

• NONE 

Optimization • Weighted Overlay For Site-Location Analysis 
• Land Use Suitability Analysis Based On Indicator Ranking 
• Weight Spatial Data To Identify Land Use Preferences Spatially 
• Gis Database For Planning Resettlement Strategies 
• Analytical Hierarchy Process (AHP) Methodology 

Hypothesis 
testing 

Process Model • Conflict Potential Modeling 
• Fuzzy Cognitive Map (FCM) Method 
• Modified Ecological Footprint (EF) Model 
• Markov Model 
• Multi-Pathogen Geospatial Model 
• Value Compatibility Analysis (VCA) 
• Least-Cost Path 
• Least-Cost Corridor Analysis 

Index • Weighted Preference Index (WPS) 
• Preference And Value Index (PVS) 
• Contingent Valuation Method (CVM) 
• Assess Water Stress Risk 
• Landscape Pattern Indexes: Total Class Area (CA) 
•  Percentage Of Landscape (PLAND) 
• Landscape Metrics 
• Patch Density (PD) 
• Mean Patch Size (MPS) 
• Edge Density (ED) 
• Migration Effectiveness Index (MEI) 
• Mining Intensity Index; 
• Production-Living-Ecological Space (PLES) Analysis Using Proportion Of Ples Function (PPF); And Dominant 

Function (PDF); Landscape Shape Index; Largest Patch Index; Coupling Index And Coordination Index 
• Sustainability Index 
• Naturality Index 
• Binary Change Index 
•  Social-Ecological Resilience Evaluation Index 
• Patch Cohesion Index (COHESION) 

Statistical 
Analysis 

• Comparing Data Spatially For 3 Scenarios For Cost-Benefit Analysis 
• Disaggregated Analysis 
• Multilevel Analysis 
• Interaction Relationship 
• Quantify The Spatial Distribution Of The Driving Forces And Their Relative Importance To Vegetation Changes 
• Spatial Difference-In-Difference (DID) Approach 
• Kernel Density Method Used To Analyze The Spatial Pattern Of Coal Mines In China 
• Spatial Regression Model 
• Spatial Filtering Methodology (Moving Window) 
• Univariate Spatial Autocorrelation Global Moran's I Statistic 

PGIS and 
Geovisualisation 

• Mapped Locations Of Complaints Received By Companies And LULC 
• Participatory GIS (PGIS) 
• On-Site Rapid Appraisal GIS (RAP-GIS) 
• Geospatial Data And Imagery Used To Visualize Impact For Presentation And Engaging With Stakeholders 
• Spatio-Temporal Analysis And Geovisualisation 
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Table A 6 Summary of indices used by the literature for spatial analysis. * For formula 
details, please refer to literature source. 

Method 
Name (if 

applicable
) 

Index Description Method * Summary (if 
different from 
Description) 

Data Input Number of 
literature 

and 
reference 

Geospatial Remote 
Sensing 

Social 
Science 

 
Mining 
intensity 
index 

Represents the 
level of mining 
disturbance to a 
local area 

Normalized statistics 
were weighted and 
summarized 

• Total coal production 
per county 

• Production capacity of 
coal mines per county 

• Number of coal mines 
per county  

• Spatial location of coal 
mines (via big-data 
search engine web 
crawler) 

  
1 (Xiao et 

al., 
2021) 

 
Social-
ecological 
resilience 
evaluation 
index 

Social-ecological 
resilience 
measures system 
adaptation to 
coal mining 
disturbances 

A combination of 
threshold method, 
indicator evaluation 
method, and 
experimental 
modeling was used to 
quantify resilience. 
The entropy weight 
method was used to 
determine the 
indicator weight. 

• Net primary 
production (NPP) 
Population density 
Gross domestic 
product (GDP) 
Soil erosion data 
Proportion of 
construction land  
Proportion of arable 
land 

• Nighttime 
light 
Normalized 
difference 
vegetation 
index 
(NDVI) 
Digital 
elevation 
model 
(DEM) - for 
elevation 
and slope 
meteorologi
cal data - 
Annual 
average 
temperatur
e and 
annual 
average 
precipitatio
n 

 
1 (Xiao et 

al., 
2021) 

Production
-living-

ecological 
space 

(PLES) 
analysis 

Proportion 
of PLES 
function 
(PPF) and 
dominant 
function 
(PDF) 

Used to analyze 
the scores of 
production living 
and ecological 
space (PLES) 
function in the 
study area (PPF). 
Function with 
the highest 
scores in an area 
is the dominant 
function (PDF). 

Scores of PLES 
functions of each unit 
(pixels) were 
calculated based on the 
LULC classification. 

• Administrative 
boundary data 
Socioeconomic 
statistics (Population, 
industrial economy, 
natural resources) 

• Landsat 
imagery - 
LULC 
classificatio
n 

• Socioecono
mic 
statistics 
(Population, 
industrial 
economy, 
natural 
resources) 

1 (Tao & 
Wang, 
2021) 

Coupling and 
coordination 
index 

The interactions 
between the 
different 
production-
living-ecological 
space (PLES) 
functions in each 
city 
 

The degree of 
interdependencies was 
calculated to study 
relationship 

Migration 
Effectiveness 
Index (MEI) 

The spatial 
impact of 
migration flows 
in each industrial 
sector 

The degree of 
imbalance between 
migration flows (in-
migration) and 
counter-flow (out-
migration) was 
calculated 

•  •  • Spatial 
labor 
mobility 
from the 
CHIM 
(CHilean 
Internal 
Migration) 
database 

1 (W. Liu 
& 
Agusdin
ata, 
2020) 
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Continue from Table A 6. 

Method 
Name (if 

applicable
) 

Index Description Method * Summary (if 
different from 
Description) 

Data Input Number of 
literature 

and 
reference 

Geospatial Remote 
Sensing 

Social 
Science 

Landscape 
metrics 

Largest 
patch index 
(LPI) 

Quantifies the percentage of total landscape 
area comprised by the largest patch. 

 • Landsat 
imagery - 
LULC 
classificatio
n 

 3 (L. Liu & 
Zhou, 
2018; 
Tao & 
Wang, 
2021; 
Zeng et 
al., 
2018) 

Mean patch 
size (MPS) 

The average area of all patches in the 
landscape 

2 (L. Liu & 
Zhou, 
2018; 
Zeng et 
al., 
2018) 

 Patch 
density (PD) 

The number of patches per hectare  2 (L. Liu & 
Zhou, 
2018; 
Zeng et 
al., 
2018) 

Edge density 
(ED) 

The total length of all edge segments per 
hectare for the class or landscape of 
consideration 

2 (L. Liu & 
Zhou, 
2018; 
Zeng et 
al., 
2018) 

Landscape 
shape index 
(LSI) 

A modified perimeter-area ratio of the form 
that measures the shape complexity of 
patch. 

3 (L. Liu & 
Zhou, 
2018; 
Tao & 
Wang, 
2021; 
Zeng et 
al., 
2018) 

Area-
weighted 
mean fractal 
dimension 
(AWMFD) 

The patch fractal dimension weighted by 
relative patch area, which measures the 
average shape complexity of individual 
patches for the whole landscape or a specific 
patch type. 

1 (Zeng et 
al., 
2018) 

Mean 
Euclidean 
nearest 
neighbor 
distance 
(NND) 

The distance to the nearest neighboring 
forest patch, based on shortest edge-to-edge 
distance 

1 (Zeng et 
al., 
2018) 

Aggregation 
index (AI) 

Aggregation index is calculated from an 
adjacency matrix, which shows the 
frequency with which different pairs of 
patch types (including like adjacencies 
between the same patch type) appear side-
by-side on the map. 

1 (Zeng et 
al., 
2018) 

 Patch 
cohesion 
index 
(COHESION) 

Reflect the connection between patches 1 (L. Liu & 
Zhou, 
2018) 

 

 

 



111 
 

 

Continue from Table A 6. 

Method 
Name (if 

applicable
) 

Index Description Method * Summary (if 
different from 
Description) 

Data Input Number of 
literature 

and 
reference 

Geospatial Remote 
Sensing 

Social 
Science 

 Weighted 
preference 
index (WPS) 

Calculates conflict potential as a ratio 
between the number of mapped preferences 
for increasing and decreasing a particular 
land use, weighted by the total number of 
mapped preferences in each cell. 

  • Place-based 
values and 
landuse 
preferences 
mapped 
using PGIS 

1 (Brown 
et al., 
2017) 

 Preference 
and value 
index (PVS) 

Calculates conflict potential as a ratio 
between the number of mapped preferences 
for increasing and decreasing a particular 
land use, weighted by the number of 
mapped values. 

1 (Brown 
et al., 
2017) 

 Contingent 
Valuation 
method 
(CVM) 

Eliciting a willingness to pay value (WTP) 
for the preservation of landscape attributes. 
  

  • WTP 
mapped 
using PGIS 

1 (Molina 
et al., 
2016) 

 Spatial 
‘sustainabilit
y index’ 

The potential for 
sustainability 
conflict  

Computed by assigning 
equal weights to eco- 
nomic, environmental 
and social resources 

• Proximity of coal 
mines to streams 
and residents 

   (Crayno
n et al., 
2015) 

 Expansion 
intensity 

Intensity and speed of urban land expansion  • Landsat 
imagery - 
LULC 
classificati
on 

 1 (X. 
Zhang et 
al., 
2016) 

 Barycenter 
of Urban 
Land 
Expansion  

Transformation of urban barycenter can be 
used to describe the direction of urban 
expansion 

1 (X. 
Zhang et 
al., 
2016) 

 Urban 
compactness 

Compactness degree of urban land 1 (X. 
Zhang et 
al., 
2016) 
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Appendix B – Chapter 3 

Appendix B1  

A 5-year Social Development and Management Program (SDMP) is a requirement for 

any mine Permit Holder operating in the Philippines and the program has to be 

approved by the Central Office of the Mines and Geosciences Bureau. The minimum 

expense that the Permit Holder must allocate annually for the SDMP is at least 1.5% of 

the direct costs of mining and milling operations (OceanaGold, 2020). Mining operators 

in the Philippines are obliged to fulfil these mandatory expenses in order to maintain 

their permit. 

On the other hand, Community Development Program (CDP) is the community plan 

relevant to companies doing exploration in certain areas provided that they have the 

permit to explore. The companies’ Corporate Social Responsibility (CSR) is voluntary 

contributions to social development of the local communities which may be through a 

Memorandum of Agreement (MOA). 

Appendix B2 

The links to the Google Earth Engine (GEE) codes are as indicated below. A GEE account 

will be required to view and run the codes: 

Landsat 8: https://code.earthengine.google.com/5541c52ed56134f0342aafe0dcac0919 

Landsat 5: https://code.earthengine.google.com/b4c719dda2b34dab1da8386bd9f0b12c  

Alternatively, you may also access the codes via GitHub 

(https://github.com/michelleangliern/Didipio-Project.git) and Harvard Dataverse 

(https://doi.org/10.7910/DVN/HTYKVP). 

https://code.earthengine.google.com/5541c52ed56134f0342aafe0dcac0919
https://code.earthengine.google.com/b4c719dda2b34dab1da8386bd9f0b12c
https://github.com/michelleangliern/Didipio-Project.git
https://doi.org/10.7910/DVN/HTYKVP
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Appendix B3 

 
Figure B 1 A demo of the Didipio Web-Based Mapping survey using Maptionnaire, an 

interactive, online, crowdsourcing, geospatial web mapping application to obtain feedback 
from the stakeholders at Didipio. The survey can be accessed via this link: 

https://app.maptionnaire.com/en/6771/  

 

 

 

 

 

 

 

 

https://app.maptionnaire.com/en/6771/
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Table B 1 Level of Certainty of the web-based mapping land cover. 

Level of 
Certainty Application Examples 

100% Land use and land cover that can be 
100% validated using available 
ground truth imagery. 

With reference to high resolution ground truth 
imagery. 

50% Land use and land cover that can be 
50% validated due to relation to 
past/present timesteps that has 
available ground truth data (100% 
certainty).  

Land use was agriculture in 2010 according to the 
basemap (100% certainty) so in 2005, if the area in 
the Landsat image appears to be similar to 2010, 
we can assume that it is agriculture as well with a 
50% uncertainty. 

Less than 50% Land use and land cover was based 
mostly on rough estimation using 
only the Landsat Imagery without 
any relation to past/present 
timesteps that has 100% certainty.  

Land use was agriculture in 2010 according to the 
basemap (100% certainty) and also similar in 
2005 (50% certainty). But in 1994, the area in the 
Landsat image appears to be bare land/builtup 
area but there is no way to 100% prove that it is 
what it is. In this case, we'd label it as bare land or 
built-up area (depending on the relation of the 
area to the adjacent land cover) and we have to 
categorize this class with the highest level of 
uncertainty  

 

Table B 2 The list of composites for the 2010 timestep with different combinations of bands 
and their respective accuracy assessment scores. The band combination composite with the 

highest score is highlighted in Green. 

Random 
Forest 
Using 
100 

Trees 

Landsat 8 Bands 2 to 7 and the following Indices 
Landsat 
Bands 2 

to 7 
Only 

NDWI, 
NDVI, 
EVI, 

SRTM 

NDVI, 
EVI, 

SRTM 

NDWI, 
EVI, 

SRTM 

NDWI, 
NDVI, 
SRTM 

NDWI, 
NDVI, 

EVI 
SRTM NDWI, 

SRTM NDWI NDVI, 
SRTM NDVI EVI, 

SRTM EVI NDVI, 
EVI 

Kappa 0.95 0.92 0.90 0.88 0.92 0.86 0.90 0.87 0.91 0.87 0.86 0.89 0.86 0.93 

Overall 
Accuracy 0.96 0.94 0.92 0.90 0.93 0.89 0.91 0.90 0.92 0.89 0.88 0.91 0.88 0.94 

 
 

Table B 3 The classifiers available in Google Earth Engine (GEE) and their respective 
accuracy assessment scores for the 2010 timestep. The classifier with the highest score is 

highlighted in Green. 

    Random 
Forest CART GmoMaxEnt SVM Minimum 

Distance 
Naïve 
Bayes 

Kappa 0.95 0.93 0.93 0.71 0.80 0.87 

Overall Accuracy 0.96 0.94 0.94 0.76 0.83 0.89 
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Table B 4 The accuracy assessment results for the original Google Earth Engine (GEE) 2010 
classified image and after applying the post-classification processing and the Majority Filter. 

2010 Original GEE Classified Image After Majority Filter 

Kappa 0.97 0.96 

Overall Accuracy 0.98 0.97 

Producer 
Accuracy 

Water Body 0.98 0.96 

Vege Primary 0.99 1.00 

Vege Secondary 0.96 0.96 

Bareland 0.96 0.96 

Built-up Area 1.00 0.79 

Agriculture 0.98 1.00 

Consumer 
Accuracy 

Water Body 0.98 1.00 

Vege Primary 0.99 1.00 

Vege Secondary 0.96 0.98 

Bareland 0.96 0.91 

Built-up Area 1.00 1.00 

Agriculture 0.98 0.94 

 

 

 

Figure B 2. A comparison of the original 2010 Google Earth Engine (GEE) classified image 
output (left) vs the processed Majority Filter output (right). 
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Table B 5 A compilation of the accuracy assessment results for all five timesteps after 
applying the post-classification processing. 

Year 1994 2005 2010 2015 2018 

Kappa 0.92 0.89 0.94 0.88 0.93 

Overall Accuracy 0.93 0.91 0.95 0.90 0.95 

Producer 
Accuracy 

Water Body 0.79 0.78 0.98 0.94 0.95 

Vege Primary 0.98 0.95 0.94 0.90 0.97 

Vege Secondary 0.89 0.95 0.94 0.83 0.96 

Bareland 0.96 0.85 0.92 0.96 0.97 

Built-up Area 1.00 0.98 0.84 0.77 0.96 

Agriculture 0.97 0.93 1.00 1.00 0.88 

Consumer 
Accuracy 

Water Body 1.00 0.95 1.00 0.98 0.91 

Vege Primary 0.99 0.96 1.00 0.98 0.97 

Vege Secondary 0.90 0.82 0.93 0.85 0.98 

Bareland 0.89 0.97 0.90 0.79 0.97 

Built-up Area 1.00 0.87 1.00 0.96 1.00 

Agriculture 0.90 0.91 0.92 0.88 0.90 
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Table B 6 A list of the Social Development and Management Program (SDMP), Community 
Development Program (CDP) and Corporate Social Responsibility (CSR) social investment 

projects that were identified by local experts via the Maptionnaire Web-Based Mapping 
Survey. 

Land use Main Description Detailed Description 

Social 
Development 
and 
Management 
Program 
(SDMP) 

SDMP funded project (Solar dryer) Utilized by the community for drying harvested rice. 

SDMP funded project (Solar dryer) Utilized by the community for drying harvested rice. 

SDMP counterpart on building of 
administrative building and covered court 
of Brgy. Capisaan. 

- 

SDMP funded project (day care center) - 

SDMP Project - Box Culvert - 

Community 
Development 
Program (CDP) 

Vegetable farm - 

Vegetable farm - 

Corporate 
Social 
Responsibility 
(CSR) 

 - 

 - 

Old reforestation area OGPI's Old Reforestation Area 

Track oval Part of MOA with BLGU Didipio. 

Kasibu Sanitary Landifill Part of company MOA commitment which instead of building 
in Didipio, was agreed to be placed in Brgy. Lupa in Kasibu to 
cater the whole municipality's residual waste. 

Kasibu SLF construction is on hold due to present situation of 
the company. 

Senior highschool classrooms $US1M, 3 storey, 16 senior high school classrooms. Part of 
MOA with Didipio Barangay Council (CSR). 

Family Health Center PhP10,895,904.67 Barangay Health Center. Part of MOA with 
Didipio Barangay Council (CSR). 

Didipio Water System PhP35,932,209.66 worth Level III water system. Part of MOA 
with Barangay Didipio. 

Gymnasium Didipio Gymnasium P7,500,000 (Phase 1). P21,706,790.00 
(Phase 2). Part of MOA with Didipio BLGU. 
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Table B 7 Land Use and Land Cover Transition Matrix for timestep 1994 to 2018 in km2. Note that the diagonal line (highlighted in grey) does not track across 
the table because some land use and land cover classes (e.g. Mining, Small-Scale Mining and SDMP) were not detected in the former timestep but present in the 

latter timestep. Additionally, the variables labelled with 0.00 km2 indicated areas of land use and land cover classes detected that were less than 0.01 km2. 

  
Land Use and Land Cover 2018 (km2) 
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Water Body 11.37   0.88 0.34 0.02 0.02 0.06 0.00   0.52 0.01 0.07 0.00 13.29 

Vegetation Primary 1.38 337.22 186.18 31.96 1.61 0.00 0.28 
 

0.00 13.89 0.18 0.21 0.28 573.19 

Vegetation Secondary 1.44 
 

202.39 61.84 1.42 0.01 1.12 0.00 0.61 17.71 0.68 1.36 1.19 289.77 

Bareland 0.71 
 

41.71 32.13 0.72 0.00 1.53 0.00 0.02 11.02 0.09 0.27 0.04 88.24 

Built-Up Area 0.12 
 

0.38 0.35 0.07 
 

0.18 
  

0.18 
 

0.00   1.28 

CDP   
 

0.00 0.01 
  

0.00 
 

0.10 0.00 
  

  0.11 

Agriculture - Irrigated 1.27 
 

6.43 4.33 0.26 0.00 0.23 
 

0.00 17.02 0.02 0.26 0.00 29.82 

Agriculture - Citrus 0.01 
 

0.13 0.08 
  

0.00 
  

0.03 2.83 0.33 0.09 3.50 

Agriculture - Paddy 0.07 
 

0.41 0.14 
 

0.00 0.02 0.00 
 

0.38 0.14 5.01 0.02 6.19 

Agriculture - Swidden 0.00   0.22 0.07   0.07 0.00 0.00 0.00 0.01 0.00 0.03 1.83 2.23 

 
Grand Total 16.37 337.22 438.73 131.25 4.10 0.10 3.42 0.00 0.73 60.76 3.95 7.54 3.45 1007.62 
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