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Abstract

Over the last few decades, numerical tensor networks have revolutionized the study of
quantum many-body systems. Despite this success, their application to classical stochas-
tic problems has not yet been extensively explored. This thesis investigates how tensor
network methods can be applied to studying the slow dynamics and the dynamical fluc-
tuations of kinetically constrained models used in the modelling of structural glasses.

This thesis is divided into three parts. It first gives a brief introduction to stochastic
dynamics, and explains how the statistics of dynamical observables can be understood
through the framework of large deviations. Various approaches to calculating the dy-
namical large deviations are explained, including the estimation of leading eigenvectors
of deformed Markov generators, and trajectory path sampling. It is then followed by an
overview of tensor networks in one and two dimensions, which can be used to extract
extremal eigenvectors from stochastic generators and simulate time evolution.

The second part then investigates two kinetically constrained models: the “XOR-
Fredrickson-Andersen” model, inspired by Rydberg atoms in their anti-blockade regime,
and a stochastic Fredkin model, a direct stochastic generalization of the quantum spin
model. Their steady-state properties and non-equilibrium dynamics are studied through
theoretical and numerical techniques, including tensor networks and Monte Carlo sam-
pling. Both models display slow and glassy dynamics, motivating the study of their
dynamical large deviations. This is done to a high precision via tensor network methods,
uncovering and detailing first-order dynamical phase transitions for each model.

The final part of this thesis aims to further develop the application of tensor net-
works to dynamical fluctuations in classical stochastic dynamics. To this end, a novel
method of directly sampling the rare trajectories associated with the large deviations in
one-dimensional stochastic dynamics is developed. This is then accompanied by a method
which directly simulates the evolution of the master equation using time evolution meth-
ods with matrix product states, allowing for the study of biased dynamics at arbitrary
times. The development of these new approaches allow for detailed characterizations of
dynamical phase transitions of kinetically constrained models. This is demonstrated for
the East, Fredrickson-Andersen and symmetric simple exclusion process, where the spa-
tial and temporal finite-size scalings of their first-order phase transitions are determined.
Finally, the methods are extended to two-dimensions via projected entangled-pair states.
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Chapter 1

Introduction

The connection between statistical mechanics and quantum many-body problems is a
fruitful one. On one hand, methods of statistical mechanics can be exploited to classically
simulate and investigate quantum mechanics. A key example of this is quantum Monte
Carlo algorithms, whereby the properties of the ground states [1], thermal states [2, 3]
and the spectrum [4, 5] of quantum Hamiltonians can be estimated. On the other hand,
quantum mechanical phenomena can be conscripted to improve the sampling methods of
classical statistical mechanics [6, 7], such as exploiting quantum tunneling to overcome
large barriers in the energy landscape [8]. This thesis aims to further this connection, with
a focus on the connection between ideas in classical stochastic dynamics and quantum
many-body problems. Specifically, it will focus on the application of tensor networks
(TNs), e.g. Refs. [9–13], in classical stochastic lattice models. Moreover, it will show how
TNs can be used to determine the statistics and fluctuations of dynamical observables.

TNs have transformed the numerical study of quantum many-body models. The first
works came fromWhite in 1992 [14], introducing the density matrix renormalization group
(DMRG) to estimate the ground state properties of finite and infinite one dimensional
(1D) Hamiltonians. It was later discovered the DMRG could be naturally formulated as
an optimization problem on the matrix product state (MPS) ansatz, e.g. Refs. [15, 16].
Following these advances, it was found that MPSs could also act as a platform to simulate
real-time evolution on timescales where the entanglement remains sufficiently small [17].
Furthermore, the same methods could be applied to higher ranking TNs, such as matrix
product operators (MPOs), to estimate properties of the Boltzmann distribution at non-
zero temperatures [18–20]. Due to the immense success of MPSs, they have become the
standard for studying quantum many-body systems, providing state-of-the-art results for
various models. Since the invention of MPSs, the ideas have been extended to many other
architectures, such as those able of capturing long-range correlations such as tree tensor
networks (TTNs) [21], and those capable of describing entanglement beyond area laws,
such as the multi-scale entanglement renormalization ansatz (MERA) [22]. Furthermore,
MPSs have been generalized to higher dimensions: a particular important example is the
projected entangled-pair state (PEPS) [23], an ansatz able to capture area-law states in
two dimensions (2D).

Naturally, TNs have found their use in other areas of science, including classical sys-
tems [24–27] and machine learning [28–38]. An application of TNs which has not yet been
extensively explored is in classical stochastic many-body problems, and, in particular, the
study of their dynamical fluctuations. Large deviation (LD) theory, e.g. Refs. [39–42], is a
useful framework which enables the study of the long-time statistics of dynamical observ-
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ables within stochastic dynamics. For the case of stochastic lattice models, determining
the long-time statistical properties is made possible through the leading eigenvectors of a
deformed Markov generator which highly resembles quantum many-body Hamiltonians.
By exploiting this connection, TN methods for estimating ground state properties of 1D
quantum Hamiltonians can be used instead to find the leading eigenvectors of deformed
Markov generators [43, 44], providing high-precision results for system sizes well beyond
the usual sampling methods. However, there are still many unanswered questions. Can
TNs be implemented to efficiently sample the dynamics responsible for the fluctuations
of interest? How can the fluctuations at finite times be investigated? To what extent can
TNs be used to study LDs in dimensions larger than one [45]? These are questions this
thesis aims to address.

While the techniques discussed throughout this thesis are generally applicable to a
broad class of stochastic lattice models, there will be a strong focus on kinetically con-
strained models (KCMs) [46–48]. KCMs were originally introduced for the dynamical
modelling of structural glasses. When amorphous materials are supercooled below some
glass transition temperature, there is a transition into the “glass state”. While the struc-
ture of the supercooled liquids in the glass state look almost identical to that of a high-
temperature liquid, there is a super-Arrhenius slowing of the dynamics [49]. Furthermore,
there exist regions of space within the system with strong dynamical correlations. While
there is no widely agreed consensus on the universal mechanisms responsible for the glass
transition [50], one theoretical perspective for understanding this phenomenon is dynam-
ical facilitation [51]. In particular, a region of space which is undergoing fast relaxation
can facilitate the relaxation of neighbouring regions of space. This results in strong dy-
namical heterogeneity. That is, there is a coexistence of regions of space which are quickly
relaxing and those which are not.

Perhaps one of the simplest ways to study such systems is to encode the properties of
glasses into the dynamics of an Ising model with explicit kinetic constraints which capture
the facilitated relaxation properties of glasses. This is at the heart of the prototypical
East [48] and Fredrickson-Andersen (FA) [46] KCMs. While it is still an open question as
to how one can arrive at such models from fundamental principles (e.g. through coarse
graining), they are able to qualitatively reproduce some key properties of supercooled liq-
uids, such as super-Arrhenius relaxation and dynamical heterogeneity [40]. Furthermore,
these simple models allow for unique insights by means of LD theory. In particular, con-
sidering the fluctuations of the dynamical activity (a natural quantity to measure the level
of “glassiness” in the system [40]) reveals the existence of a “dynamical phase transition”
from an active-to-inactive dynamics [52]. The existence of the transition has dramatic
consequences on the dynamics of interest. For KCMs — which undergo a first-order dy-
namical phase transition [52] — this is related to the existence of “space-time bubbles”:
regions of space and time which have strong dynamical correlations, demonstrating large
amounts of dynamical heterogeneity in the system. Since these discoveries, ideas from
LD theory and dynamical phase transitions have been used to better understand many
interesting dynamical phenomena in the physical sciences, such as active matter [53, 54]
and dissipative quantum many-body systems [55].

The first portion of this thesis provides a background to the physics and methods
used throughout. First, an overview of stochastic dynamics is outlined in Chapter 2,
with a focus on Markov Jump Processes. This section provides perspectives from both
the evolution of a probability distribution under a master equation, and its unravelling
onto random physical realizations of the dynamics (referred to as trajectories), explaining
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details such as detailed balance, stationary states and efficient sampling algorithms. The
object of interest will be the fluctuations of dynamical observables. In order to study these,
it is necessary to consider the probability distribution over the observable. While this is
typically difficult to calculate, it is made possible in the limit of large times where ideas
and methodology from LD theory can be applied. It is explained how the LD statistics can
be retrieved from spectral methods and from path sampling approaches. Subsequently,
the two classes of models studied in this thesis are introduced: KCMs [46–48] and simple
exclussion processes (SEPs) [56]. The former are used in the modelling of structural glasses
(as described above). The latter describes the non-equilibrium transport of particles on
a discrete lattice [57]. The dynamical observable typically of interest here is the particle
current [44, 45, 58–63]. It is often the case that cooperative and collective behaviour can
lead to dynamics which is not well described by the average. The explanation of this
behaviour from the LD perspective is similar to that of KCMs. Also of interest is the
dynamical activity [41, 60, 63, 64], which will be considered for the symmetric simple
exclusion process (SSEP) in this thesis. As is the case for KCMs, evidence is provided
for dynamical phase transitions at equilibrium, indicating large amounts of dynamical
heterogeneity.

Chapter 3 then takes a detour to introduce the concept of TN states. It first intro-
duces MPSs, explaining how they can be used to approximate vectors in many-body 1D
system. It also explains how to efficiently contract MPSs, and optimize the MPS by varia-
tional means for approximating extremal eigenstates, and also simulating time evolution.
Finally, a brief discussion is provided for extending these ideas to 2D with PEPS.

The next portion of the thesis is devoted to studying the dynamics and fluctuations
of two KCMs. The first model introduced is the XOR-Fredrickson-Andersen (XORFA)
model [65], motivated by Rydberg atoms in their “anti-blockade” regime [66–76], with a
kinetic constraint shared by many other classical [77] and quantum [78–82] studies. As
is the case for the closely related FA [46] and East [48] models, this model exhibits slow
and glassy dynamics, which is shown through theoretical arguments and Monte Carlo
simulations. It is also explained how moving to the domain wall (DW) picture allows a
SEP representation of the model. The second model considered is the Fredkin model [83],
inspired by quantum Fredkin spin chains [84–98]. Through comparisons to the ground
state of the quantum model, it can be shown that the stationary state of the model
displays an interesting transition between three different phases. It is again demonstrated
that the model has glassy dynamics with slow relaxation properties. By means of LD
theory and MPSs, the fluctuations of the dynamical activity in the long-time limit are
calculated. The fluctuations in one of the stationary states of the Fredkin model displays
evidence for a hierarchy of dynamical phase transitions close to equilibrium, providing a
theoretical perspective on the observed metastability within the dynamics. Each of these
works provide a further understanding to how kinetic constraints of varying strength can
lead to the broadening of the probability distribution function of dynamical observables,
and have links to other known systems of interest.

The final portion of the thesis aims to advance the algorithmic side of calculating dy-
namical fluctuations and rare event sampling through the use of TNs. The first of these
works [99]—presented in Chapter 6—shows how the results of variational MPS can be
used to implement a dynamics capable of generating the trajectories which are respon-
sible for the fluctuations, but are not typical at equilibrium. In contrast to the MPS,
which provides only the time-averaged properties of the dynamics, having access to the
full dynamics associated with the fluctuations allows one to calculate arbitrary dynamical
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properties of the fluctuations. Furthermore, by incorporating known path sampling tech-
niques, this dynamics can be used to sample fluctuations at finite time events. This was
further demonstrated with the works presented in Chapter 7, where time-evolved MPSs
are used to calculate the finite-time canonical statistics of dynamical observables [100].
This approach is more optimal than the sampling approach due to the fact it evolves the
entire ensemble of trajectories simultaneously, at the cost of systematic MPS error. Nev-
ertheless, the results of this method can be used in tandem with the previous to correct
on these errors, providing a reliable and efficient way to sample finite time events. Indeed,
the investigation of finite time events, which were previously difficult to access, provides
an interesting avenue for future exploration. Finally, the ideas and methods presented
throughout this thesis are generalized to 2D with PEPS [101] in Chapter 8.
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Chapter 2

Stochastic dynamics & fluctuations

Dynamical and complex processes in nature often have too many degrees of freedom to
allow for an exact modelling. If just one of these degrees of freedom are slightly modified,
the system can be in a vastly different state than expected at some later time. One
approach to studying such systems is to model them as stochastic (random) dynamics
[102]. This dynamics makes use of the known information in the system while assuming
the incomprehensible degrees of freedom to be white noise. It is then possible to model
the system by a probability distribution through which we can understand the average
properties and their fluctuations. In the case of discrete systems, their dynamics are
often modelled by a Markov Jump Processes, whereby the system will randomly and
instantaneously transition between the discrete states of the system. The aim of this
chapter is to give an introduction to Markov Jump Processes, providing perspectives
from both the evolution of a probability vector, and random realizations of the dynamics.

2.1 Markov Jump Processes

Consider a finite and discrete space made up of the set of configurations, {x}. Now
suppose that at some time t, the system is in the configuration (or state) x. Then the
system is able to randomly and instantaneously transition into some other state y ̸= x with
the transition rate wx→y. While the transitions are random, the transition rates define
the average frequency at which transitions can occur, i.e. the times of the transitions
are drawn from the exponential distribution Px→y(t) = wx→ye

−wx→yt. For simplicity, it is
assumed these rates to be independent of time. The probability vector at some time t is
then described by

|Pt⟩ =
∑

x

Pt(x) |x⟩ , (2.1)

where Pt(x) is the probability that the system is in state x at time t, and |x⟩ the Dirac
bra-ket notation. Furthermore, the normalization

∑
x Pt(x) = 1 is enforced, which can

be written as ⟨−|Pt⟩ = 1 in Dirac notation, where ⟨−| = ∑
x ⟨x| is the flat state. The

evolution of the dynamics is determined by the master equation,

dPt(x)

dt
=

∑

y ̸=x

[wy→xPt(y)− wx→yPt(x)] . (2.2)

The first term in the sum describes the increase in probability via some other configu-
ration y transitioning to x, and the second term describes the loss in probability by the
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transitioning away from state x to y. A convenient way of writing Eq. (2.2) is to define
the stochastic generator

W =
∑

x

∑

y ̸=x

wy→x |x⟩ ⟨y| −
∑

x

Rx |x⟩ ⟨x| , (2.3)

where Rx =
∑

y ̸=xwx→y is referred to as the escape rate from configuration x. This matrix
representation then allows one to write the master equation as

d

dt
|Pt⟩ = W |Pt⟩ . (2.4)

It then follows that the evolution of the probability vector is exponential with respect to
the stochastic generator,

|Pt+τ ⟩ = eτW |Pt⟩ , (2.5)

where τ > 0. Furthermore, it can be shown that ⟨−|W = 0 and thus the normalization
is preserved under time evolution,

⟨−|Pt+τ ⟩ = ⟨−|eτW|Pt⟩ = ⟨−|Pt⟩ . (2.6)

2.1.1 Steady state solutions & detailed balance

Now further assume that the state space is irreducible. That is, for all configurations x0
and xk, there exists a path x0 → x1 → · · · → xk with ωxi→xi+1

̸= 0 for some k > 0. Then
by the Perron-Frobenius theorem, there exists a unique steady state solution

|Pss⟩ = lim
t→∞

etW |P ⟩ , (2.7)

for all possible initial distributions, |P ⟩ [103]. 1 This steady state annihilates the stochas-
tic generator W |Pss⟩ = 0. Furthermore, the dynamics described by W is said to obey
detailed balance if and only if the condition

wx→yPss(x) = wy→xPss(y), ∀x, y (2.8)

is satisfied [104], with Pss(x) = ⟨x|Pss⟩. Equivalently, for any path x1 → x2 → · · · →
xn → x1, detailed balance is obeyed if the product of transition rates is equal to the
reverse path [103],

wx1→x2wx2→x3 · · ·wxn→x1 = wx1→xnwxn→xn−1 · · ·wx2→x1 . (2.9)

If Eqs. (2.8-2.9) are satisfied, then |Pss⟩ is often referred to as an equilibrium steady-state,
and can be related to some Boltzmann distribution through the expression

wx→y

wy→x

= e−(ϵy−ϵx)/kBT , (2.10)

where ϵx is an energy for state x, kB is Boltzmann’s constant and T is a temperature. If
Eq. (2.8) is not satisfied, then |Pss⟩ is said to be a non-equilibrium steady state. This thesis
will only consider models which obey detailed balance, and can thus be transformed onto
a Hermitian matrix through the similarity transformation [52]

H = P−1/2WP1/2, (2.11)

where P1/2 =
∑

x

√
Pss(x) |x⟩ ⟨x| and P−1/2 is the inverse. This will be a useful trick used

throughout, as the expectation value of Eq. (2.11) is bounded by a Raleigh-Ritz principle,
allowing for variational methods to be faithfully applied.

1This assumes that the initial probability distribution is defined only on the irreducible space.
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Figure 2.1: Three state system. A stochastic dynamics over a three state system with
the transition rates chosen such that (a) the system obeys detailed balance and (b) the
system does not obey detailed balance. The evolution of the probability vector elements,
Pt(j), are shown in (c, d) respectively. The dashed line shows their steady state values.
The probability current, ⟨Jt⟩, is shown for each in (e, f). For the first system, the value
eventually diminishes to zero as required by detailed balance. On the contrary, the second
system maintains a constant current throughout.

Example: Three state system

As a simple example, consider a three state system with state space {|1⟩ , |2⟩ , |3⟩} and
all-to-all transitions, as demonstrated in Figs. 2.1(a, b) for a system which obeys detailed
balance and a system which does not, respectively. The stochastic generator for this
system is

W =



−w1→2 − w1→3 w2→1 w3→1

w1→2 −w2→1 − w2→3 w3→2

w1→3 w2→3 −w3→1 − w3→2


 . (2.12)

It is then easy to verify that W annihilates the steady-state |Pss⟩

|Pss⟩ =
1

N



w2→3w3→1 + w2→1w3→1 + w2→1w3→2

w1→2w3→1 + w1→2w3→2 + w1→3w3→2

w1→2w2→3 + w1→3w2→3 + w1→3w2→1


 , (2.13)

where N is the normalization factor to ensure ⟨−|Pss⟩ = 1. Now suppose for both cases,
the system is initiated with |P0⟩ = |1⟩. Then the evolution of the probability vector, |Pt⟩,
is determined by the master equation Eq. (2.2). This can be determined numerically and
is shown for both systems in Figs. 2.1(c, d). In both cases, the system relaxes to their
steady state values shown by the dotted lines. The average current at some time t can be
determined through ⟨Jt⟩ = ⟨−|J|Pt⟩, where

J =




0 −w2→1 w3→1

w1→2 0 −w3→2

−w1→3 w2→3 0


 (2.14)
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is the operator which measures the net rate of transition in the direction 1→ 2→ 3→ 1.
This is shown in Figs. 2.1(e, f) for both systems. The system which obeys detailed balance
starts with a net current due to its out-of-equilibrium initial state, but eventually relaxes
to a state with no net current. On the contrary, the system which does not obey detailed
balance maintains a net current at all times.

2.1.2 Trajectories

The description for continuous-time Markov Jump Processes has so far been presented in
terms of the probability vector and its evolution under the master equation. However,
an alternative description can be provided in terms of trajectory ensembles of random
realizations of the dynamics, where the properties are determined through the trajectory
average. Consider some dynamics described by the stochastic generator W and the initial
probability distribution |P ⟩. The partition function for the dynamics with some time t is
then calculated by

Zt = ⟨−|etW|P ⟩ . (2.15)

Notice that while the value of Eq. (2.15) is trivial (Zt = 1), this is an important object
to consider as it encodes all the possible realizations of the dynamics. At this point, it is
convenient to express the stochastic generator as W = K−R, where K is the off-diagonal
components (transition rates), and R is the matrix of diagonal components (escape rates).
Then one can perform a Dyson series expansion [105] of the exponential operator

Zt =
∞∑

k=0

∫
dt1 · · · dtk ⟨−|e−(t−tk)RKe−(tk−tk−1)RK · · ·Ke−t1R|P ⟩ , (2.16)

where the integrals are done over the limits t ≥ tk ≥ · · · ≥ t1 ≥ 0. One can then
repeatedly insert the resolution of identity, I =

∑
x |x⟩ ⟨x|, resulting in

Zt =
∞∑

k=0

∑

{xi|i=0,··· ,k}

∫
dt1 · · · dtk ⟨−|e−(t−tk)R|xk⟩ ⟨xk|Ke−(tk−tk−1)R|xk−1⟩ · · ·

⟨x1|Ke−t1R|x0⟩ ⟨x0|P ⟩ . (2.17)

Each ⟨·⟩ can now be resolved, giving

Zt =
∞∑

k=0

∑

{xi|i=0,··· ,k}

∫
dt1 · · · dtk e−(t−tk)Rxk wxk−1→xk

e−(tk−tk−1)Rxk−1 · · ·

wx0→x1 e
−t1Rx0P (x0). (2.18)

The paths within the path integral can be identified as trajectories of states, with the
time records

ωt = {(0, x0), (t1, x1), · · · , (tk, xk)},
where the system will instantaneously transition into the state xi at time ti. The proba-
bility for each trajectory to occur is given by

π(ωt) = e−(t−tk)Rxk

k∏

i=1

[
wxi−1→xi

e−(ti−ti−1)Rxi−1

]
P (x0). (2.19)
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In this description, an initial configuration x0 is chosen from the distribution P (x0),
followed by many dwells and transitions. The dwell times ∆ti = ti − ti−1 are drawn from
the exponential distribution, P (∆ti) = Rxi−1

e−Rxi−1∆ti , and the transitions xi−1 → xi
are chosen with weightings wxi−1→xi

/Rxi−1
. After the final transition, the configuration

xk survives with probability PS(t − tk) = e−Rxk
(t−tk). It is often convenient to write the

partition sum as a sum over all trajectories, Zt =
∑

ωt
π(ωt), as a shorthand for the path

integral.

2.1.3 Continuous-time Monte Carlo

The distribution Eq. (2.19) can be exactly and independently sampled through a continuous-
time Monte Carlo (CTMC) algorithm. The algorithm often goes by the name Doob-
Gillespie algorithm [106, 107], originally formulated for simulating models of dynamical
chemical and biochemical systems. It was independently proposed by Bortz, Kalos and
Lebowitz [108] as a rejection-free approach to sampling the Boltzmann distributions of
Ising models (see Eq. (2.10)).

The algorithm begins by using a random number generator to randomly draw an initial
configuration x from the distribution P (x). The system is initialized at the time τ = 0,
with a total trajectory time t. Then the following steps are repeated until τ ≥ t:

1. Calculate the escape rate Rx =
∑

y ̸=x ωx→y.

2. Draw a uniformly distributed random number r ∈ [0, 1]. Use this to determine the
transition time

∆τ = − log r

Rx

, (2.20)

and increment the trajectory time τ ← τ +∆τ .

3. If τ > t, set τ = t and end the simulation. Otherwise, update the system configu-
ration to x← y with the weightings ωx→y/Rx.

2.2 Dynamical fluctuations & large deviations

Consider the trajectory ensemble formulation of stochastic dynamics, which describes
random realizations of the dynamics. To understand the properties of the system, one
often considers some trajectory observables, Ô(ωt). These operators can take many forms,
but two important ones are static observables, which are the time-integration of a quantity
which depends only on the system configuration at some time, Ô(ωt) =

∫ t

0
dτ Ô(x(τ)), and

dynamical observables, K̂(ωt), which depend on the transitions which occur in a trajectory.
An important example for the latter is the dynamical activity [40, 52, 109, 110], a simple
but rich observable which counts the number of transitions which occur. The dynamical
activity quantifies the level of motion in a system and is thus the natural observable to
quantify the “glassines” of a dynamics [40]. This will be considered extensively throughout
this thesis.

Often, the important quantity considered is the trajectory average of an observable,

⟨Ô⟩ =
∑

ωt

π(ωt)Ô(ωt). (2.21)
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This is typically easy to measure due to the accessibility of trajectories through CTMC
sampling. However, it can frequently be the case that the average of some observable is
not representative of the typical behaviour. In this case, one would have to investigate its
fluctuations. The fluctuations of the dynamical observables are contained in its probability
distribution function (PDF),

Pt(O) =
∑

ωt

π(ωt)δ[Ô(ωt)−O], (2.22)

where δ(x) is the delta function. For some given value, O, Eq. (2.22) is sometimes referred
to as the microcanonical ensemble, as all trajectories without the desired value have zero
contribution to the sum. Having access to the full PDF allows for the calculation of the
moments of the observables, and thus allows one to learn about its fluctuations. On one
hand, exactly calculating Eq. (2.22) is tricky due the path integral one has to carry out
in Eq. (2.22). On the other hand, well estimating the PDF at its tails can require a large
number of samples, which is increasingly costly in both the size of the configuration space,
and in time.

As is the case in standard statistical mechanics [111], one can formulate an alternative
canonical ensemble,

Zt(s) =
∑

ωt

π(ωt)e
−sÔ(ωt). (2.23)

This ensemble, often called the moment generating function (MGF), allows all possible
trajectories to contribute to the ensemble, but exponentially reweighs them by −sÔ(ωt),
where s is a conjugate variable to the observable Ô, which can be used to fix the ensemble
average. The MGF contains essentially the same information as the PDF, and the two are
related by a Laplace transform: while in theory this allows one to calculate one ensemble
from the other, this can be difficult to do in practice. However, it becomes possible in the
large time limit t → ∞, where the Laplace transform becomes the Legendre transform
[39].

The properties of the MGF and PDF in the long time limit t→∞ can be calculated
through the framework of LDs [39]. In particular, the MGF and PDF go as exponentials
in time,

Pt(O) ≍ e−tφ(o), (2.24)

Zt(s) ≍ etθ(s), (2.25)

where φ(o) is the rate function and θ(s) is the scaled cumulant generating function
(SCGF), whose derivatives at s = 0 give the cumulants of the observable. Here the
symbol ≍ means that the functions on the left-hand side will asymptotically tend towards
the right-hand side in the large time limit. The quantity o = O/t is the time-averaged
value of the observable. The two LD functions are connected by a Legendre transform,

θ(s) = −mino [so+ φ(o)] . (2.26)

In practice, one typically aims to calculate the SCGF and then determine the rate func-
tion through Eq. (2.26). This is due to the convenience of the MGF formulation: if
sampling approaches are used, all trajectories which contribute with non-zero probability
in the original dynamics also contribute to the MGF, whereas in the PDF, contributions
only come from the trajectories with the desired observable value. Furthermore, as ex-
plained below, the MGF admits a master equation calculation, which can be exploited to
determine the SCGF.
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2.2.1 Spectral approaches to the master equation

It is now demonstrated how spectral considerations allow for the calculation of the SCGF.
This thesis will focus only on dynamical observables which are cumulative in the trajectory
transitions, K̂(ωt) =

∑K
i=1K(xi−1, xi), where K(xi−1, xi) incorporates dependence on

the types of transition. For the case of the dynamical activity, K(xi−1, xi) = 1 for all
transitions. Generalizations to time-integrated static observables as defined earlier are
obvious, but for brevity will not be discussed here. Notice that if one was to expand the
MGF, Eq. (2.23), to retrieve the path integral formulation, then for every transition that
occurs, there is also a factor of e−sK(xi−1,xi). Thus it is possible to group this factor with
the transition probability ωxi−1→xi

, and reverse the steps of the Dyson series expansion. It
is at this point the tilted Markov generator (sometimes referred to as a biased or deformed
generator) is defined,

Ws =
∑

x

∑

y ̸=x

e−sK(x,y)wx→y |y⟩ ⟨x| −
∑

x

R(x) |x⟩ ⟨x| . (2.27)

The MGF can then be calculated through the evolution of a probability vector under the
tilted Markov generator,

Zt(s) = ⟨−|etWs|P ⟩ . (2.28)

While this looks equivalent to the previous considerations of the master equation, see
Eq. (2.15), it is important to note that Ws is not a proper stochastic generator (except
for at s = 0, where Ws=0 = W). It does not conserve probability, ⟨−|Ws ̸= 0, and its
maximum eigenvalue is not zero. Nevertheless, by the Perron-Frobenius theorem, it is
guaranteed that its leading eigenvalue Λ is real. Suppose that the leading left and right
eigenvectors associated with Λ are ⟨ls| and |rs⟩. Then it follows ⟨−| etWs ≍ etΛ ⟨ls| and
etWs |P ⟩ ≍ etΛ |rs⟩, and the leading eigenvalue of the tilted Markov generator is the SCGF,
Λ = θ(s). Thus in the long time limit, it is not necessary to calculate Eq. (2.28), but only
determine the leading eigenvalue of the tilted generator.

A number of methods have been developed to estimate the SCGF by exploiting the
long-time limit. One class of methods are variational methods. These methods often
have some form of functional approximation, |ψ⟩, such as TNs [43–45, 60–62, 65, 83,
99–101, 112–114] or neural networks [30, 115–120], to approximate the left/right leading
eigenvector. This is most optimal when the titled generator produces a dynamics which
obeys detailed balance, and can be similarity transformed onto a Hermitian operator - this
is not always possible, for example, if the original dynamics does not obey detailed balance,
or if the biasing observable imposes net probability currents. When the resulting dynamics
does obey detailed balance, however, one is able to define the Hermitian operator Hs =
P−1/2WsP1/2 where P1/2 is again the diagonal matrix of the square root of steady state
probabilities of the original dynamics. This Hermitian operator then obeys the Raleigh-
Ritz variationial principle, and the leading eigenvalue and its corresponding eigenvector
can be retrieved through the optimization of

θ̃ =
⟨ψ|Hs|ψ⟩
⟨ψ|ψ⟩ ≤ θ(s).

This approach will be used extensively throughout this thesis, with TNs as the functional
approximation.

Another possibility for optimizing the functional approximation is to estimate the
time-evolution of some initial probability vector

|rs⟩ = lim
t→∞

etWs |P ⟩ . (2.29)
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Figure 2.2: Dynamical large deviations of the three state system. (a, b) Three
state systems with the mean activity per unit time k(s = 0) = 1.2, and the transition
rates as depicted. (c) The SCGF over a range of s for both systems. The first system has
the Poisson statistics as explained in the main text, while the second system has a sharp
change around s = 0. (d) The average dynamical activity of the trajectory ensembles
k(s) = −θ′(s). (e) The rate function φ(k) determine through the Legendre transform. (f)
The probability of finding the system in the state x = 1 in the s-ensemble.

Indeed, this is a promising alternative for the case where detailed balance is not obeyed.
For neural networks, this is made possible using natural gradient decent methods [121],
and for TNs, can be done through a variety of approximate time evolution methods (e.g.
Ref. [122]). This approach is adopted in Chapter 8 for PEPSs.

Example: Three state system

Again consider the three state systems shown in Figs. 2.2(a, b). In this instance, both
systems have the property wx→y = wy→x for all x and y, and thus the steady state
solution is the equal superposition between all configurations, |Pss⟩ = 1

3
(|1⟩+ |2⟩+ |3⟩).

Furthermore, the transition rates have been chosen such that the average dynamical
activity per unit time k̄ = ⟨−|K|Pss⟩ is equal for both systems. Despite these similarities,
it should be clear that both systems will highly differ on the level of their dynamics.

Now consider the fluctuations in the dynamical activity, K(x, y) = 1∀x, y. The tilted
generator then takes the form

Ws =



−w1→2 − w1→3 e−sw2→1 e−sw3→1

e−sw1→2 −w2→1 − w2→3 e−sw3→2

e−sw1→3 e−sw2→3 −w3→1 − w3→2


 , (2.30)
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which can be exactly diagonalized to determine the leading left and right eigenvectors
⟨ls| and |rs⟩, along with their associated eigenvalue (SCGF) θ(s). The SCGF is shown in
Fig. 2.2(c) for both systems. For the first system, which is a simple Poisson process, the
probability distribution goes as

Pt(K) =
(k̄t)Ke−k̄t

K!
. (2.31)

The MGF can then be calculated as

Zt(s) =
∞∑

K=0

Pt(K)e−sK = ek̄t(e
−s−1). (2.32)

Thus the SCGF takes the exponential form θ(s) = k̄(e−s − 1). The second process,
however, is more complicated due to its spatial heterogeneity. The results of numerical
exact diagonalization is shown in Fig. 2.2(c). Notice the kink in the SCGF around s = 0:
there is a sharp change in the gradient. Indeed, the gradient of the SCGF gives the
average activity per unit time for the s-ensemble, k(s) = −θ′(s), as shown in Fig. 2.2(d).
For the first system, the activity is clearly exponential in s. For the second, however,
we see a sharp drop in activity around s = 0. Despite the fact that this sharp drop
occurs over a range of s, and the true dynamics of the system only occurs at s = 0, this
sharp change has drastic consequences on the dynamics of the system. It is a hallmark
of dynamical heterogeneity in stochastic dynamics - in this case, a coexistence of high
and low dynamical activity. This becomes more obvious when one considers the rate
function. In the case of the first system, one can approximate the rate function using
Stirling’s formula to be φ(k) ≃ k ln(k)− k ln(k̄)− k + k̄. For the second system, this can
be retrieved numerically through the Legendre transformation. This is shown for both
systems in Fig. 2.2(e). Notice that the rate function for the second system is more broad
than the first, showing a larger variance in activity than the simple Poisson distribution.

As was alluded to earlier, the broadening of the probability distribution is a conse-
quence of the spatial dependence of the transition rates; the most probable trajectories
for a low activity spend a significant amount of time in the state x = 1. This can be
probed through the s-ensemble by measuring the probability of finding the system in the
state x,

Ps(x) =
⟨ls|x⟩ ⟨x|rs⟩
⟨ls|rs⟩

. (2.33)

This is shown in Fig. 2.2(f) for the state x = 1: notice that the sharp change in probability
corresponds to the sharp change in activity.

2.2.2 Auxiliary & Doob dynamics

The methods mentioned previously make use of optimization methods to estimate prop-
erties of the leading eigenvector(s) of a tilted generator. An alternative approach is to
directly sample the path integral Eq. (2.23). Naively, this could be done by brute force
sampling trajectories via CTMC, with the addition of importance sampling to account
for the weighting e−sK̂(ωt). In particular, the mean of some trajectory observable Ô(ωt)
in the biased trajectory ensemble would be

⟨Ô⟩s =
∑

ωt
Ô(ωt)π(ωt)e

−sK̂(ωt)

∑
ωt
π(ωt)e−sK̂(ωt)

≈
∑Nsp

i=1 Ô(ω
i
t)e

−sK̂(ωi
t)

∑Nsp

i=1 e
−sK̂(ωi

t)
, (2.34)
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where Nsp is the number of trajectories sampled, and ωi
t are the trajectories sampled from

the original dynamics. While some success could come from this approach, it is ultimately
doomed due to the exponential cost in time (and increasing cost in the size of the state
space). The objective of this section is to explore alternative sampling dynamics which
improve the could the sampling convergence.

Auxiliary dynamics

As is often the case in statistical mechanics, the sampling can be improved on by consid-
ering a different PDF to sample from. For continuous time stochastic dynamics, one can
propose a new auxiliary dynamics, or reference dynamics. This dynamics must respect
the transitions of the original dynamics, meaning all (non-)zero transition rates must also
be (non-)zero in this new dynamics. Other than this restriction, there is complete freedom
in the choosing of transition rates,

wref
x→y = fs(x, y)wx→y, (2.35)

where fs(x, y) > 0. The escape rate for this reference dynamics then goes as

Rref
x =

∑

y ̸=x

fs(x, y)wx→y. (2.36)

As was the case for sampling with the original dynamics, the reference dynamics might
have inconsistencies with the target dynamics, which must be accounted for with impor-
tance sampling. 2 The estimation of the mean of the observable Ô now goes as

⟨Ô⟩s =
∑

ωt
πref(ωt)

π(ωt)e−sK̂(ωt)

πref(ωt)
Ô(ωt)

∑
ωt
πref(ωt)

π(ωt)e−sK̂(ωt)

πref(ωt)

≡
∑

ωt
πref(ωt)g(ωt)Ô(ωt)∑
ωt
πref(ωt)g(ωt)

, (2.37)

where πref(ωt) is the probability that the trajectory ωt was sampled from the reference
dynamics. The factor g(ωt) accounts for the ratio of probabilities,

g(ωt) =
π(ωt)e

−sK̂(ωt)

πref(ωt)
=
e−sK̂(ωt)e−

∫ t
0 dt′R(x(t′))−Rref(x(t′))

∏k
i=1 f(xi−1, xi)

P (x0)

P ref(x0)
, (2.38)

where R(x(t′)) and Rref(x(t′)) return the escape rates Rx and Rref
x for the configuration

x of the system at some time t′. Notice that the reference dynamics also allows for the
possibility of an alternative initial distribution, P ref(x0), to sample from. Then the ob-
servable can be estimated from a finite number of trajectories sampled from the reference
dynamics,

⟨Ô⟩s ≈
∑Nsp

i=1 g(ωt)Ô(ωt)∑Nsp

i=1 g(ωt)
. (2.39)

To gain any benefit from the auxiliary dynamics, a smart choice of f(x, y) is required.
3 Finding this choice is difficult, and is usually inspired by some physical knowledge of
the system [123–126] or the optimization of “control forces” [115, 127, 128].

2More precisely, the reference dynamics might not generate trajectories with the same probability as
the target dynamics.

3One requirement for a good choice of f(x, y) would be for the variance of g(ωt) to be small.
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Doob dynamics

While the tilted generator is the object required to generate the desired dynamics, it
cannot be used to directly sample trajectories due to the fact that the dynamics is un-
normalized (except for the case s = 0). Nevertheless, it is is possible to define a proper
stochastic dynamics which generates trajectories with the same probabilities as the tilted
generator, πs(ωt) = π(ωt)e

−sK̂(ωt)/Zt(s). In this sense, this dynamics is the most opti-
mal auxiliary dynamics. The dynamics is defined by its transition rates, which can be
calculated using Eq. (2.27). Suppose at some time 0 ≤ τ ≤ t, the system is in some
configuration x. Given this fact, the instantaneous transition rate onto some configura-
tion y is calculated as the probability that the system transitions from x → y, divided
by the probability that the system is in configuration x (to account for the conditional
probability),

w̃x→y(τ) =
⟨−|e(t−τ)Ws|y⟩ ⟨x|eτWs|P ⟩
⟨−|e(t−τ)Ws|x⟩ ⟨x|eτWs|P ⟩e

−sK(x,y)wx→y

=
⟨−|e(t−τ)Ws|y⟩
⟨−|e(t−τ)Ws|x⟩e

−sK(x,y)wx→y, (2.40)

where the factor e−sK(x,y)wx→y comes from the off-diagonal transition rate in the tilted
generator. This dynamics is sometimes referred to as the Doob dynamics [55, 126, 129–
135]. While Eq. (2.40) gives the optimal transition rate for all times, it is not always useful
for a variety of reasons, the predominant one being it requires one to carry out the explicit
time-evolution of the master equation (this is made clear if the numerator/denominator
in Eq. (2.40) is compared to Eq. (2.28) with the initial distribution |y⟩). These time-
dependant dynamics are dealt with in Chapter 7 by simulating the evolution of the master
equation with TNs.

It is at this point the results of the previous sections can be applied by considering
the large time limits t→∞ and t− τ →∞ (only considering times sufficiently far from
the time-edges of the trajectories). The transition rates, Eq. (2.40), then go as

w̃x→y ≍
⟨ls|y⟩
⟨ls|x⟩

e−sK(x,y)wx→y ≡
ls(y)

ls(x)
e−sK(x,y)wx→y. (2.41)

This long-time limit Doob dynamics is much simpler than the true Doob dynamics due
to the fact one must only calculate the leading left eigenvector of the tilted generator.
Furthermore, it is time independent, meaning trajectories can be sampled from CTMC
in its standard form. It is easy to show that the escape rate for the Doob dynamics is
related to the escape rate of the original dynamics by the expression

R̃x ≡
∑

y ̸=x

w̃x→y = Rx + θ(s). (2.42)

Together, the transition rates and escape rates of the true biased dynamics can be com-
pactly written as the generalized Doob transformation,

W̃s = L [Ws − θ(s)]L−1, (2.43)

where L is the maximal left eigenvector, ⟨ls|, as a diagonal matrix. It is easy to verify that
the leading eigenvalue of W̃s is zero with the eigenvectors ⟨−| and |P̃ ⟩ = ∑

x

√
⟨ls|x⟩ ⟨x|rs⟩ |x⟩.

Thus it follows that Eq. (2.43) is a proper stochastic matrix.

19



The Doob transition rates Eq. (2.41) motivate the auxiliary dynamics with

wref
x→y = e−sK(x,y) l

ref
s (y)

lrefs (x)
wx→y. (2.44)

While this restricts the possibility of allowed dynamics, it naturally incorporates the bias
e−sK(x,y). Indeed, the better lrefs (x) estimates the left eigenvector, ls(x), the better the
dynamics will be (for large times). The probability that some trajectory ωt is generated
under Eq. (2.44) us

πref(ωt) = P ref(x0)e
−

∫ t
0 dτ Rref(x(τ))

K∏

i=1

wref
xi−1→xi

= P ref(x0)e
−

∫ t
0 dτ Rref(x(τ)) l

ref
s (xK)

lrefs (x0)

K∏

i=1

[
e−sK(xi−1, xi)wx→y

]
, (2.45)

where Rref(x(τ)) denotes the escape rate of the reference dynamics when the system
is in configuration x at the time τ , and the intermediate lrefs (x) terms cancel through
telescoping. Equation (2.45) can then be used to calculate the reweighting factor used in
importance sampling,

g(ωt) =
π(ωt)

πref(ωt)
=

lrefs (x0)P (x0)

lrefs (xK)P ref(x0)
e−

∫ t
0 dτ [R(x(τ))−Rref(x(τ))]. (2.46)

Notice that Eq. (2.46) has two contributions. The first is from the time-edges of the trajec-
tories. These account for the fact the dynamics is (an approximation to) the infinite-time
Doob dynamics, whereas the true dynamics is a finite time one. The exponential factor
comes from the fact that the true Doob dynamics is only being approximated. Indeed, in
the case the approximation is exact, the exponent goes as

∫ t

0
dτ

[
Rs(x(τ))−Rref

s (x(τ))
]
=

−tθ(s), and thus only serves as a constant.

2.2.3 Transition path sampling

Auxiliary dynamics with importance sampling in the manner described previously can
often fall short if the auxiliary dynamics does not closely resemble the true dynamics.
The sampling can be improved on, however, by introducing more advanced methods of
trajectory sampling. The approach described here, known as transition path sampling
(TPS), e.g. Refs. [115, 123, 124, 136–141], can be considered the Markov chain Monte
Carlo (MCMC) for trajectory sampling. Suppose there is some trajectory generated from
some dynamics, ωt. The objective is to perturb the trajectory, and then accept/reject
it using the Metropolis rule. As is the case with standard MCMC, the choice of update
is not unique, but has the requirements that it obeys detailed balance and is ergodic in
trajectory space. Once an update to the trajectory has been proposed, the new trajectory
is accepted with the probability

P (ωt, ω
prop
t ) = min

(
g(ωprop

t )

g(ωt)
, 1

)
. (2.47)

This procedure is then repeated until the required termination conditions have been met.
There are many trajectory updates one could propose. One effective and popular

method of proposing trajectories for dynamics which obey detailed balance is the shifting
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(a) (b) (c)

Figure 2.3: Transition path sampling. An illustration of the shifting method for
proposing new trajectories. (a) A trajectory is split at some random time 0 ≤ τ ≤ t, and
only the (top) first portion or (bottom) second portion is kept, highlighted in red. (b) The
other portion of the trajectory is removed and the remaining trajectory is shifted to the
(top) end or the (bottom) beginning. (c) The empty part of the trajectory is rejuvenated.
For the first case (top), the trajectory is initiated with the configuration at time t − τ ,
and is generated over the time t − τ . It is then reversed. For the second case (bottom),
the trajectory is initiated with the configuration at time t − τ and is generated over the
time τ .

method [115, 123, 124, 138]. The first step is to uniformly sample some time to split the
trajectory, τ ∈ [0, t], see Fig. 2.3(a). It is then randomly chosen to either keep the first
part of the trajectory, [0, τsplit], or the second part, [τsplit, t], discarding the part which is
not chosen. If the first part is kept, the trajectory is then shifted by time t − τ . If the
second part is kept, the trajectory is shifted by −τ . These two options are illustrated in
Fig. 2.3(b). The remaining part of the trajectory is then rejuvenated using the sampling
dynamics. If the first part was kept, then the trajectory must be regenerated such that
configurations match at time t− τ . Since detailed balance is obeyed, the configuration at
time t−τ can be used as the initial state for the rejuvenated trajectory. The dynamics are
then run for a time of t− τ . The trajectory is then reversed, satisfying this requirement
they meet at time t− τ . This process is illustrated in Fig. 2.3(c). If the second part was
kept, then the trajectory can be regenerated without the need to reverse it.

The shifting method provides a way to propose trajectory updates which can be ac-
cepted or rejected, keeping the parts of the trajectory which might be desirable to the
biased ensemble. The updates can be proposed over only a small portion of the trajec-
tory, reducing the exponential cost in time. Notice it does little to hinder the cost of
in the configuration space. However, for systems which can be partitioned into various
subsystems (such as the lattice models considered in this thesis), it is sometimes possible
to also localize the updates in space too [124, 142, 143].
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TPS with an approximate Doob dynamics

The reference dynamics Eq. (2.41) can be incorporated with TPS to provide an efficient
route to sampling the biased trajectories. One can easily show the reference dynamics has
the stationary dynamics P ref(x) = lrefs (x)2Pss(x), where Pss(x) is the steady state of the
original dynamics. Assuming the initial probability distribution of the original dynamics
is its stationary state, P (x) = Pss(x), then the reweighting factor goes as

g(ωt) =
π(ωt)

πref(ωt)
=

1

lrefs (x0)lrefs (xK)
e−

∫ t
0 dτ [Rs(x(τ))−Rref

s (x(τ))]. (2.48)

This thesis will only deal with dynamics at equilibrium, but it is worth noting that it is
easy to modify this approach for dynamics with different initial distributions.

2.2.4 Hybrid approaches

Three different approaches to sampling a biased dynamics have been presented, each with
their own advantages and flaws. Spectral approaches can be used to directly determine
the time-averaged properties of biased dynamics, but exact calculations are often limited
to systems with small configuration spaces. Importance sampling methods can be used
with trajectory sampling to estimate properties from the ensemble of biased trajectories.
These are exponentially costly in time, but can be improved by sampling from a different
auxiliary dynamics. Finally, path sampling methods, such as TPS, can be used to propose
new trajectories with acceptance and rejection. While these methods slightly hinder the
exponential cost of trajectory sampling, they can require many iterations to converge,
and have no promise of converging onto the true dynamics. In practice, it is often the
case that a hybrid of methods is used. Examples of these have already been demonstrated
in the previous sections. For example, one can propose an auxiliary dynamics and use
TPS to better sample it. An appropriate dynamics is often difficult to find: sometimes
known physical properties of the system are exploited to construct a dynamics [123–126].
Alternatively, feedback strategies can be employed to find an optimal dynamics, where
the results of path sampling methods are used to directly improve the sampling dynamics
[115]. The approach used in this thesis is to use the approximate spectral results to
propose an auxiliary dynamics which approximates the Doob dynamics, and then use
TPS to account for errors in the approximation.

2.3 Kinetically constrained models

A significant class of lattice models considered throughout this thesis is KCMs [46–48].
Consider a lattice of N sites (or spins), which can take the binary values nj = 0, 1 for
j = 1, . . . , N , which are labelled down/up or unexcited/excited. Excited sites have an
energy cost of J , and thus the total lattice energy is E = J

∑
i ni. Through standard

thermodynamics, the average excitation density can be calculated to be c = eJ/T/(1 +
eJ/T ), where T is the temperature and the Boltzmann constant is set to kB = 1 . It is
possible to define a set of stochastic lattice models which obey detailed balance, with a
stationary state with the same properties as the Boltzmann distribution,

W =
N∑

i=1

fi
[
cσ+

i + (1− c)σ−
i − c(1− ni)− (1− c)ni

]
, (2.49)
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(a) East (b) FA

Figure 2.4: Kinetically constrained models. (a) The East model and (b) the FA
model in 1D (top) and 2D (bottom). The circles represent excitations at sites, and the
coloured tiles indicate the site is dynamically active.

where fj is the kinetic constraint for the site j. This constraint has no explicit dependence
on the site j. It instead depends on the lattice sites neighbouring j. Indeed, one can easily
verify that the stationary state goes as

|ss⟩ =
N⊗

i=1

[(1− c) |0⟩i + c |1⟩i] . (2.50)

The averaged properties of this stationary state correspond with the thermodynamic
properties of the system, irregardless of the kinetic constraint, fj.

4 That is, the long-
time averaged properties of the model have the required thermodynamics. However, the
choice of fj allows for vastly varying behaviour on the level of the dynamics.

Two popular choices of kinetic constraint used in the modelling of structural glasses
are the one-dimensional East [48] and Fredrickson-Andersen (FA) [46] models, with the
kinetic constraints

fEast
i = ni−1, (2.51)

fFA
i = ni−1 + ni+1, (2.52)

which describes the “activation” of a local transition. For the East, the site is only allowed
to flip if its neighbouring left site is excited, while the FA allows for excitations in either
direction. The generalization for both models to higher dimensions is obvious - the East
model becomes the “North-or-East” model in 2D [117, 144–146], where an excitation can
facilitate a jump to the East or to the North, and the “North-or-East-or-Front” in 3D [145,
147]. For the FA model, a neighbouring excitation can facilitate a jump in any direction
[145, 148, 149]. These constraints are illustrated in Fig. 2.4. This thesis will deal mostly
with 1D lattices, but there will be some consideration of 2D lattices in Chapter 8.

One theoretical perspective of the formation of glasses is dynamical facilitation [51,
150]. It is easy to understand why KCMs are prototypical models of glasses if one con-
siders an excitation to be a region of space which is undergoing fast relaxation. This

4This is only true if the kinetic constraint does not restrict the dynamical space the system can explore:
in the case of the East and FA models, the constraint restricts the configuration nj = 0 for all j. For the
XORFA, which is introduced later in the thesis, there is a U(1) conservation of DWs, and the stationary
properties thus look vastly different from the thermodynamics.
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(a)

(b)

Figure 2.5: Simple exclusion processes. The (a) ASEP in 1D and (b) the SSEP in 2D.
The balls represent particles, and the opaque balls at the boundaries illustrated particles
can be injected or removed at the boundaries. The black arrows show a particle hopping
to neighbouring sites, and the red arrows show the insertion or removal of particles at the
boundaries. For the ASEP, the hopping rates are directional dependant, in contrast to
the SSEP, which is isomorphic in space.

region is able to facilitate the relaxation of its neighbouring regions through the activa-
tion of the kinetic constraints, Eqs. (2.51, 2.52). There are many consequences of having
such a constrained dynamics. One consequence is when the system is quenched from a
high-to-low temperature, the relaxation time scales with the inverse temperature. In-
deed, the KCMs exhibit large amounts of metastability on their road to relaxation, with
increasing timescales between each metastable regime [151]. These relaxation times are
super-Arrhenius with respect to the inverse temperature of the system [152]. A closely
related property, relevant to structural glasses, is dynamical heterogeneity [150, 153, 154]:
highly varying dynamics which are highly correlated in space and time.

The study of dynamical LDs have proved a useful tool for probing the properties of
KCMs. On one hand, they have allowed for a thorough investigation of the probability
distribution over dynamical observables through a variety of theoretical [155–159] and
numerical [43, 52, 145, 157, 158, 160] techniques. This has revealed the existence of
“dynamical phase transitions”: the coexistence of highly active and inactive dynamics
at equilibrium, indicating large amounts of dynamical heterogeneity [43, 52, 117, 145].
While this transition in the dynamics occurs in the parameter space defined by s, its very
existence has severe consequences on the true dynamics (the dynamics defined by s = 0).
For the East and FA models, the transition point between active and inactive dynamics
occurs at s → 0+ for N → ∞ [43]. At the point of transition, there is a coexistence
between a globally active and inactive phase. However, at s = 0, this manifests as “space-
time bubbles” [51]: the coexistence of local regions of space-time which are active or
inactive. On the other hand, LD theory has been used to investigate the metastable
regimes of KCMs. In the case of the East model, LD methods reveal a hierarchy of
metastability close to equilibrium [43, 117, 157], related to the hierarchical ageing of
the dynamics [151]. The typical timescales to reach these metastable states increase
exponentially between metastable regimes; LD theory provides a way to more easily study
these timescales.
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2.4 Exclusion processes

Exclusion processes, which describe the movement of volume excluded particles on discrete
lattices, have become a prototypical model of transport in non-equilibrium physics [57].
Like KCMs, SEPs are defined on a discrete lattice of N sites, where each site can contain
a particle, nj = 1, or a hole, nj = 0. Each particle is able to hop to a neighbouring site if
the target site is not already occupied. Consider the case of a 1D lattice, where particles
hop to the right with the rate q, and to the left with the rate p. Also consider that the
particles can be removed (inserted) at the lattice site j = 1 with rate α (β). Similarly,
particles can also be removed (inserted) at the lattice site j = N with rate γ (δ). The
stochastic generator for such a process is written as

W =
N−1∑

i=1

[
p
(
σ+
i σ

−
i+1 − (1− ni)ni+1

)
+ q

(
σ−
i σ

+
i+1 − ni(1− ni+1)

)]
+ α

(
σ−
1 − n1

)

+ β
(
σ+
1 − (1− n1)

)
+ γ

(
σ−
N − nN

)
+ δ

(
σ+
N − (1− nN)

)
. (2.53)

The local particle currents are controlled by the parameters p and q. When p = q, the
model is named the SSEP, with no net difference in the current between two neighbouring
sites. On the other hand, when p ̸= q, the model is named the asymmetric simple exclusion
process (ASEP) and maintains a net current. Furthermore, the rates of insertion and
removal of the particles at the boundaries control the average particle density within the
lattice, and can also be used to drive currents through the boundaries [161, 162]. The
ASEP is illustrated in Fig. 2.5(a).

Despite only being a simple model, the SEP allows for very rich dynamical behaviour.
Regions of space can become compact in particles, restricting the transport of particles
and halting any local currents. This phenomena is often referred to as dynamical jamming
[86], and leads to rich phase diagrams in the steady steady [163], and a broadening in the
probability distribution of currents [44, 45, 60–62, 164–167] and the dynamical activity
[60, 63, 64, 168]. Furthermore, SEPs have already served as a famous example where
analytical tensor network techniques can be applied to exactly determine the stationary
state (e.g. Refs. [163, 169]).

Throughout this thesis, SEPs will be used as a toy model for non-equilibrium be-
haviour. In Chapters 6, 7 and 8, the activity fluctuations of the SSEP will be considered,
including for the SSEP on a 2D lattice, shown in Fig. 2.5(b). Furthermore, in Chapter
4, where the XORFA model will be introduced. It will be shown that the XORFA has a
mapping onto a SEP, where neighbouring particles have alternative and asymmetric hop-
ping rates. In Chapter 5, the “Fredkin” model will be studied, which can be understood
to be an ASEP with additional kinetic constraints.
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Chapter 3

Tensor networks

The study of quantum many-body dynamics is an important area of research in many
of the physical sciences, including condensed matter [170], quantum chemistry [171], and
quantum computation [172]. However, numerical studies through standard linear algebra
approaches are often limited to just a few spins due to the curse of dimensionality; the
computational space on which calculations are performed grows exponentially with system
size. However, in many cases of interest, the wavefunction (or the density matrix) can be
well approximated by an ansatz with a lower dimensionality. This is the fundamental idea
behind tensor networks: to decompose a large tensorial object, such as the wavefunction of
a many-body system, into a product over many smaller tensors (for reviews, see Refs. [9–
13]).

Typically, each degree of freedom, such as a subsystem or a spin, is allocated its own
tensor which contains the essential local information. Correlations with other spins on
the lattice can be obtained through the contraction of virtual dimensions between the
tensors. While in theory one is free to choose any tensor decomposition to model their
system, in practice it is convenient to choose one which matches the geometry of the
system. For example, the appropriate and popular choice of TN for a 1D lattice is the
MPS, shown in Fig. 3.1(a), where the shapes correspond to the tensors, the red open lines
to their local physical dimensions, and the closed black lines to the virtual dimensions
which are contracted over. The decomposition of this TN connects each tensor to the
tensors of its neighbouring sites, allowing it to efficiently account for local interactions.
Furthermore, the MPS is also a natural ansatz [173] to perform variational methods, such
as DMRG [14], which is used in the estimation of the ground states properties of local 1D
quantum many-body Hamiltonians. Alternative ansätze capable of capturing long range
correlations or larger amounts of entanglement are the TTN [21] and the MERA [22,
174, 175]. These decompositions have a hierarchical structural to allow for information
to be easily propagated across the chain, as illustrated for the TTN in Fig. 3.1(c). For
2D lattices, the direct generalization of the MPS is the PEPS [23], shown in Fig. 3.1(b).

The first step of any TN approach is to pick a relevant ansatz for the problem. The
second step is to define a contraction scheme: a way to contract over tensors within
a TN to measure some quantity. For the case of TNs which are absent of loops, such
as MPSs and TTNs, there exist straightforward and efficient ways to exactly contract
them. PEPSs on the other hand are harder to contract [176], and rely on approximate
contraction schemes [177, 178]. Once the contraction scheme has been chosen, one is then
in a position to optimize the TN. The approach taken highly depends on the objective
at hand. If one wishes to study the ground state properties of a 1D lattice, for example,
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(a)

(b)
(c)

Figure 3.1: Tensor Networks. A schematic drawing of (a) MPS, (b) PEPS and (c)
TTNs. The shapes represent tensors, with the lines the dimensions of the tensors. Black
lines represent virtual dimensions, and red (open) lines represent physical dimensions.

DMRG (or variational MPS) can be applied to optimize the tensors within an MPS.
This approach has proven to be highly efficient for gapped 1D local Hamiltonians [179,
180], and can also be effective for gapless systems [181]. On the other hand, if one
wanted to estimate the unitary time evolution of a wavefunction, they could employ a
time evolution approach [122] such as the time-evolving block decimation [17] method or
the time-dependant variational principle [182]. This can also be applied to calculating the
statistical canonical properties of a quantum Hamiltonian [20, 183], with some application
also to the microcanonical properties [5]. Finally, once the TN is optimized, one can
measure observables. This entire process is demonstrated in this chapter for MPSs, with
a brief discussion on how the approach is extended to PEPSs.

While the growing popularity of TN ansätze is a consequence of their success in study-
ing many-body quantum problems, they have also proven to be highly effective for the
study of classical statistical systems [7, 27], including some application in stochastic dy-
namics [24–26, 169], with recent attention on studying their dynamical fluctuations [43–
45, 60–62, 112–114]. This chapter will focus on providing an overview of TN methods
with the intention of applying them to dynamical LDs and rare event sampling in the
later chapters.

3.1 Matrix product states

Matrix product states (MPS), e.g. Refs. [9, 12, 184, 185], are a 1D TN ansatz used to
represent a vector over a 1D space of N subsystems, each with a local physical dimension
d. It is composed of N rank-3 tensors (except for the edge tensors, which are rank-2),
with the j-th tensor denoted as Aj

dj ,µj−1,µj
. Some general vector on the system can be

written as
|ψ⟩ =

∑

{dj}

αd1...dN |d1 · · · dN⟩ , (3.1)

where the coefficients αd1...dN are retrieved by contracting over the virtual indices {µj} of
the tensors,

αd1...dN = A1
d1,µ1

A2
d2,µ1,µ2

· · ·AN−1
dN−1,µN−2,µN−1

AN
dN ,µN−1

. (3.2)

27



(a) (b)

Figure 3.2: 1D Tensor Networks. A schematic drawing of some (a) MPO, Ô, and (b)
the inner product of the MPO with some wavefunction, ⟨ψ|Ô|ψ⟩.

This thesis will adopt the Einstein summation convention, where an index appearing
twice in an equation implies a sum over the index. The virtual dimensions, µj — which
are often referred to as the bond dimensions — are of dimension D, and control the
complexity of the MPS. In particular, the number of parameters needed to describe the
MPS scales as O(ND2), and the entanglement entropy (and thus the mutual information)
between two partitions of the system is bound by S ≤ O(logD) [9, 180]. To describe any
arbitrary vector across the full space, one would require D = d⌊N/2⌋, and would gain
no computational benefit from using an MPS. However, vectors with low amounts of
entanglement between subsystems can be well estimated with a finite bond dimension
[9]. This is the case for ground states of 1D local Hamiltonians with a non-zero gap
[179, 180], which are said to obey an area law [186], whereby the bipartite entanglement
entropy between any two neighbouring subsystems grows as O(1). Vectors which satisfy
this property are often said to live in a small “corner” of the exponentially big Hilbert
space, and can be well estimated by a low entanglement ansatz.

The decomposition of a vector into an MPS can be easily extended to higher ranking
tensorial objects. The most common extension is to a rank-2 tensor (a matrix), such as a
1D Hamiltonian. In general, some matrix over a 1D system can be written as

Ô =
d∑

d1=1

d∑

d′1=1

· · ·
d∑

dN=1

d∑

d′N=1

O
d′1...d

′
N

d1...dN
|d1 . . . dN⟩ ⟨d′1 . . . d′N | , (3.3)

where the coefficients O
d′1...d

′
N

d1...dN
once again take the tensor decomposition

O
d′1...d

′
N

d1...dN
= B1

d1,d′1,µ1
B2

d2,d′2,µ1,µ2
· · ·BN−1

dN−1,d
′
N−1,µN−2,µN−1

BN
dN ,d′N ,µN−1

. (3.4)

We call this tensor decomposition a matrix product operator (MPO) [9, 187]. An operator,
Ô, is said to be local if it can be exactly described by some MPO with some constant finite
bond dimension DO for any system size: this is the case for many 1D Hamiltonians of
interest, and many stochastic generators [40]. It will not be explained here how to choose
the tensors Bj

dj ,d′j ,µj−1,µj
– instructions on how to systematically construct the MPO for a

1D Hamiltonian can be found at in the literature, e.g. Refs. [9, 188]. A schematic drawing
of the MPO can is shown in Fig. 3.2(a).

To perform a calculation such as calculating the expectation value ⟨Ô⟩ = ⟨ψ|Ô|ψ⟩ of
an operator Ô with respect to the vector |ψ⟩, one simply needs to contract over all tensors
of each object,

⟨Ô⟩ = (αd1...dN )
∗O

d′1...d
′
N

d1...dN
αd′1...d

′
N
. (3.5)
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Figure 3.3: Contracting the expectation value. The tensor network is contracted
from the left. The three leftmost tensors are contracted to give L1

µ1,ν1,τ1
. The next three

tensors are then contracted to give L2
µ2,ν2,τ2

. This is repeated until all tensors have been

contracted yielding the expectation value ⟨ψ|Ô|ψ⟩.

Indeed, inserting the tensor decomposition for each of these terms makes the expression
rather cumbersome. Instead, it is convenient to use the pictorial description to represent
the contracted network, as shown in Fig. 3.2(b). Nevertheless, it is not immediately
obvious what the optimal way to contract the network is.

3.1.1 Contracting matrix product states

With every TN ansatz, it is important to devise a scheme to efficiently contract it. For
the case of 1D TNs which are absent of loops, calculating quantities such as expectation
values can be done efficiently and exactly with a computational cost which scales only as
a polynomial of the system size and the bond dimensions. Consider the expectation value
Ô = ⟨ψ|Ô|ψ⟩. The most optimal way to contract this is from the left-most (or right-most)
edge of the TN, as is demonstrated in Fig. 3.3. The three left-most tensors are contracted
to give

L1
µ1,ν1,τ1

= (A1
d1,µ1

)∗O1
d1,d′1,ν1

A1
d′1,τ1

, (3.6)

where {µj}, {νj} and {τj} are the index sets for the virtual dimensions of ⟨ψ|, Ô and |ψ⟩,
respectively. The TN is then further contracted one column at a time,

Lj+1
µj+1,νj+1,τj+1

= Lj
µj ,νj ,τj

(Aj+1
dj+1,µj ,µj+1

)∗Oj+1
dj+1,d′j+1,νj ,νj+1

Aj+1
d′j+1,τj ,τj+1

, (3.7)

until the TN is fully contracted. This process is depicted in Fig. 3.3. Notice that at
each stage of the contraction, the intermediate tensors Lj

µj ,νj ,τj
have O(D2DO) number of

parameters. It is also convenient to define the contraction of the TN from the right,

RN
µN−1,νN−1,τN−1

= (AN
dN ,µN−1

)∗ON
dN ,d′N ,νN−1

AN
d′N ,τN−1

, (3.8)
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Figure 3.4: Canonical representations of MPS. (a, b) The tensors A1 and AN are
orthonormal if they give the identity matrix when contracted with their conjugates. (c,
d) The same for tensors Ai for i < j and i > j respectively, where j is the center of
orthogonality of the MPS. (e) The center of orthogonality can be moved across the MPS.
(f) The center is moved from Aj to Aj+1 through a SVD. The singular matrix S and the
orthonormal matrix V are contracted with the matrix Aj+1 to give the updated matrices.

with subsequent blocks defined as

Rj−1
µj−2,νj−2,τj−2

= Rj
µj−1,νj−1,τj−1

(Aj−1
dN ,µj−2

, µj−1)
∗ON

dj−2,d′j−2,νj−2,νj−1
AN

d′j−2,τj−2,τj−1
. (3.9)

For contracting an expectation value it does not matter whether it is contracted from
the left or the right, but it will later be convenient to calculate both when variationally
optimizing some MPS.

3.1.2 Canonical representations

Consider the MPS decomposition Eq. (3.2). By defining the identity matrix as Î =∑
τ,τ ′ δτ,τ ′ , it is possible to write Eq. (3.2) as

αd1...dN = A1
µ1,d1
· · ·Aj

µj−1,τ,dj
δτ,µj

Aj+1
µj ,µj+1,dj

· · ·AN
µN−1,dN

, (3.10)

where the identity has been inserted between the tensors at j and j+1. This equivalence
can be exploited by noting that the identity matrix can be expressed as Î = Û−1Û for
some invertible matrix Û . In particular, one can define the transformed tensors

Ãj
dj ,µj−1,µj

= Aj
dj ,µj−1,τ

U−1
τ,µj

, (3.11)

Ãj+1
dj+1,µj ,µj+1

= Uµj ,τA
j+1
dj+1,τ,µj+1

, (3.12)

as the new tensors at positions j and j + 1. While the tensors within the MPS have
changed, the coefficients in Eq. (3.1) have not. This gauge transformation allows one to
move the center of orthogonality of the MPS [9, 184]. The first (last) tensors within an
MPS are said to be in left-canonical (right-canonical) form if they respectively satisfy the
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following conditions,

(A1
d1,µ1

)∗A1
d1,ν1

= δµ1,ν1 , (3.13)

(AN
dN ,µN−1

)∗AN
dN ,νN−1

= δµN−1,νN−1
, (3.14)

or put more simply, if the contraction between the tensors and their conjugates give the
identity matrix. This is shown in Figs. 3.4(a, b). This analogy can be extended to the
remaining tensors in the MPS, where each can take a left- or right-canonical form if they
respectively satisfy the following conditions,

δµi−1,νi−1
(Ai

di,µi−1,µi
)∗Ai

di,νi−1,νi
= δµi,νi (3.15)

δµi,νi(A
i
di,µi−1,µi

)∗Ai
di,νi−1,νi

= δµi−1,νi−1
, (3.16)

as shown in Figs. 3.4(c, d). Then it can be said that the center of orthogonality of an
MPS is at site j (or the MPS is in mixed-canonical form around site j) if all tensors
for i < j are in left-canonical form and all tensors for i > j are in right-canonical form.
Having the center of orthogonality around j is useful in updating and optimizing MPSs in
the later algorithms. For example, for the variational methods discussed later, having the
center of orthogonality at site j allows for a huge simplification for updating the tensor
Aj. On the other hand, for time evolution methods, local “gates” can be applied to
tensors without the need to consider the other tensors of the MPS. Fortunately, moving
the center of orthogonality in an MPS can be easily achieved through the singular value
decomposition (SVD). For some matrixM , the SVD allows one to writeM = USV , where
U and V are orthonormal matrices, and S is a diagonal matrix with non-negative entries
(the “singular values”). By remapping the tensors of the MPS onto a rectangular matrix
with one dimension being the virtual bond in the direction we wish to move the center,
and the other index containing all other dimensions, it is possible to use the SVD to put
the tensors in left- or right-canonical form. Consider Fig. 3.4(e), which describes an MPS
with the center of orthogonality at the second tensor. The center of orthogonality of the
MPS can be moved to the third site by forcing the second tensor into left-canonical form.
This process is illustrated in Fig. 3.4(f), where a SVD is applied at site j. The matrices S
and V are then absorbed into the tensor at site j+1. Similarly, the center of orthogonality
can be moved left by applying the SVD in the opposite direction.

3.1.3 Variational matrix product states

Now that a suitable ansatz with the appropriate contraction scheme has been specified,
a suitable optimization algorithm is necessary to calculate the MPS. The first class of
optimization algorithms discussed here will be variational algorithms, with the objective
of minimizing the expectation value of an observable with respect to a vector [9, 14, 189–
191]. For quantum problems, this vector is the wavefunction, and the observable is an
MPO representation of a Hamiltonian. However, for the stochastic problems considered in
this thesis, the object of interest is determining the SCGF through the maximal eigenvalue
of tilted stochastic generatorsWs, where here the vector is the probability distribution over
configurations. As described previously, for the fluctuations of interest here, it is possible
to transform the tilted generator onto a Hermitian operator (which we will refer to as the
Hamiltonian) through the similarity transformation Hs = −P−1/2Ws P1/2, where a minus
sign has been introduced to change the problem from a maximization to a minimization.
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(a)

(b)

Figure 3.5: Variational matrix product states. (a) The eigenproblem to be solved
to optimize the tensor Aj in pictorial form. (b) The effective Hamiltonian, Heff , can be
contracted from the relevant left Lj−1 and right Rj+1 respectively, where the subscript
indices have been omitted. When the center of orthogonality is at site j, the effective
norm becomes the identity operator N eff = Î.

Then by the Raleigh-Ritz variational principle, it follows that the expectation of the vector
with respect to the Hamiltonian is

E =
⟨ψ|Hs|ψ⟩
⟨ψ|ψ⟩ ≥ −θ(s). (3.17)

Thus by minimizing the expectation of some vector |ψ⟩, it is possible to have a bound on
the SCGF. For the MPS representation of |ψ⟩, a strategy can be devised to sequentially
update each tensor within the MPS, with each update decreasing the energy.

Suppose the tensor to be updated is the tensor at site j, Aj, where the subscripts have
been dropped for brevity. To find the optimal update for the tensor while keeping all
other tensors fixed, one would need to minimize the Eq. (3.17). By differentiating with
respect to the tensor Aj, one finds the eigenproblem

HeffAj = EN effAj, (3.18)

where the effective Hamiltonian, Heff , and the effective norm, N eff , are obtained by con-
tracting over every tensor but Aj in ⟨ψ|H|ψ⟩ and ⟨ψ|ψ⟩ respectively, where again the sub-
scripts have been omitted. These partially contracted networks are shown in Fig. 3.5(a).
It is obvious Eq. (3.18) is a generalized eigenproblem if one considers Aj to be a vector,
and Heff and N eff to be matrices. Then the optimal choice for Aj is the solution to
Eq. (3.18) with the smallest eigenvalue.

The problem can be made far simpler if the center of orthogonality of the MPS is
placed at j. In this instance, the effective norm N eff reduces to the identity matrix, and
Eq. (3.18) reduces to a standard eigenproblem. Furthermore, determining the solution to
Eq. (3.18) requires an iterative eigensolver, such as the Lanczos method [192]. 1 Each
iteration requires contracting Heff with the current guess of Aj. Therefore it is optimal
to calculate the blocks Lj−1 and Rj+1 beforehand, allowing them to be reused in the
update procedure. The reduced equation is illustrated in Fig. 3.5(b). Once the minimal

1While in practice one can use a standard eigensolver, it is important to note that only the eigenvector
with the smallest eigenvalue is required. Using an iterative eigensolver is necessary for an implementation
with minimal cost.
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Figure 3.6: Time-evolved matrix product states. (a) The time evolution of an MPS
for a small time step δ can be approximated by the application of local Trotter gates,
shown by the orange rectangles. (b) The application of the Trotter gates can be approxi-
mately described by an MPS with the original bond dimension, D, using truncation. (c)
The application of a Trotter gate on two sites, with the center of orthogonality at the left
site. (d) The gate is then contracted with the two MPS tensors. (e) A truncated SVD is
performed to restore the MPS representation. (f) The singular values are contracted with
the rightmost tensor to move the MPS into canonical form on the right tensor.

eigenvector has been found (or well estimated up to some tolerance), it is substituted in
the MPS. This procedure is conducted over each tensor in the MPS, sweeping from left-
to-right and then right-to-left, until convergence in the energy is achieved. This algorithm
is dubbed variational matrix product states (vMPS), but is often referred to as DMRG
[14] due to their similarities. Indeed, vMPS can just be considered DMRG on the MPS
ansatz [189].

3.1.4 Trotterized time-evolution

An alternative approach to optimizing an MPS is to use approximate time evolution
methods. These days, there is a whole ensemble of methods which can be used to estimate
the time evolution of an MPS [17, 122, 182, 183, 193–196]. A simple but versatile approach
is the so-called Trotter approach [17, 183, 195]. At the heart of this method is the Trotter-
Suzuki decomposition [197] of the time-evolution operator. In particular, suppose the
objective is to time evolve an MPS by some time, t. The first step is to split the time
evolution operator into a sequence of smaller operators,

U(t) = etWs =
T∏

i=1

eδWs =
T∏

i=1

U(δ), (3.19)

where T = t/δ is the number of time steps. Now suppose the operatorWs is local, meaning
it can be decomposed into the sum of operators over local sites. In this instance we will
consider the operator to be a sum over nearest neighbour interactions, Ws =

∑
iWi,i+1,

although generalizations to interactions with a larger number of sites is possible. Then,
for small δ, the evolution operator can be estimated by

U(δ) = eδ
∑

i Wi,i+1 ≈ eδ
∑

i even Wi,i+1eδ
∑

i odd Wi,i+1 =
∏

i even

eδWi,i+1

∏

i odd

eδWi,i+1 , (3.20)
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where the expression is inexact due to the fact that terms with even i do not commute
with terms with odd i. The last equality follows from the fact that all terms in both sums
commute. Notice that since each matrix exponential in Eq. (3.20) is defined over just two
sites, it can be calculated exactly. These matrices are given the name “Trotter gates”,
and can be contracted with the MPS |ψ⟩ to estimate time evolution over the small-time
step δ. This is shown in Fig. 3.6(a).

The Trotter gates allow a way to estimate the time evolution operator as a TN made
of local tensors, but their application to the MPS is not obvious. Indeed, contracting
one of the gates with the relevant tensors within the MPS will destroy the structure of
the MPS. Through an SVD, the MPS structure can be retrieved, but with a larger bond
dimension between the two tensors (which grows exponentially with the number of gates
applied). To maintain a finite bond dimension, it is crucial to truncate the tensors. This
means when an SVD is applied, only the largest D singular values are kept. For this
update to be optimal with respect to D, it is important that the centre of orthogonality
of the MPS is at one of the tensors contracted with the gate beforehand. The process of
applying the gate to the MPS is depicted in Figs. 3.6(c-f). The result of an application
of all the gates is the approximately time-evolved MPS, Fig. 3.6(b).

Notice that time evolution through Trotter gates introduces a few systematic errors.
The first error, referred to as the “Trotter error”, is introduced through the Trotter-Suzuki
decomposition of the time evolution operator. For a first-order decomposition, this error
goes as O(δ2) per time step, entailing a total error of O(δt). Indeed, one can use higher
order approximations which introduce more Trotter gates, but with a reduced error. For
example, the commonly used second order Trotter decomposition has an error O(δ3) per
time step, and a total error O(δ2t). In practice, these errors can often be made negligible
on timescales typically investigated by MPS by using a small-time step, with an increase
in the computational cost, where one has to apply O(tδ−1) gates. The second, more
dominant error, is acquired through the SVD truncation of the MPS. Each application
of a Trotter gate will increase the local bond dimensions of the tensors, leading to an
exponential increase in bond dimension with time. The truncation of the MPS keeps this
bond dimension bounded, at the cost of loosing some information. While there is no easy
way to avoid this error, it highly depends on the amount of entanglement in the vector:
some instances may have manageable amounts of entanglement, whereas others might
quickly spiral out of control. Approaches to deal with this for stochastic fluctuations are
discussed in Chapter 7.

3.2 Projected entangled-pair states

The natural generalization of the MPS is the projected entangled-pair state (PEPS),
e.g. Ref. [23]. As was the case for the MPS, each subsystem is assigned its own tensor,
with virtual dimensions which connect it to the tensors of each neighbouring subsystem.
However, unlike MPSs, PEPSs cannot be contracted exactly in the large system size limit,
and require approximate contraction schemes. The most popular choice for finite systems
is the “MPS boundary” scheme [178]. The fundamental idea is to equate the boundary
of the PEPS to a 1D system, and approximate it by an MPS. The subsequent rows (or
columns) in the network can then be interpreted as MPOs which act on the MPS: the
MPO-MPS network can then be approximately represented by another MPS through
SVDs or by variational minimization [178].

While in principle one can formulate a method to optimize the tensors in a PEPS with
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respect to the minimization of some Hamiltonian, in practice this is often too expensive to
do efficiently, with the approximate contraction schemes sometimes making this approach
unstable [178]. Instead, the standard approach is to use Trotterized time-evolution with
large enough times to converge to the steady state (or ground state for quantum problems).
There are a variety of methods to achieve this task, which range from low-complexity and
low-accuracy [198] to high-complexity and high-accuracy [199, 200]. While a detailed
explanation of the methods used to optimize PEPS is omitted from this thesis, some
basic detailed can be found in Appendix B. More detailed explanations can be found in
the literature, e.g. Ref. [178], which details the many strategies to optimize PEPS, and
gives insights onto improving the stability of the algorithms. These approaches are used
in Chapter 8 to deal with LDs of 2D problems.
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Chapter 4

Dynamics and large deviation
transitions of the
XOR-Fredrickson-Andersen
kinetically constrained model

The following work is from the publication “Dynamics and large deviation transitions
of the XOR-Fredrickson-Andersen kinetically constrained model” by Luke Causer, Mari
Carmen Bañuls, Igor Lesanovsky and Juan P. Garrahan, published in Physical Review E
102 (5), 052132 (2020).

This work introduces a 1D kinetically constrained model in stochastic classical dy-
namics. The constraint is inspired by Rydberg atoms in their “anti-blockade” regime,
only allowing spins to flip if their neighbouring spins are in different states. The model
can be expressed by its DW representation, allowing for it to be studied as an exclusion
process, with each neighbouring particle having alternating asymmetries.

The steady state properties and non-equilibrium dynamics of the model are determined
by means of Monte Carlo simulations and analytical MPSs, which demonstrate the model
undergoes highly non-trivial and glassy relaxation. The slow relaxation properties of
the model motivates the investigation of its dynamical fluctuations through LD theory
and numerical MPSs. As is the case for many other KCMs, the model exhibits a first
order phase transition in the dynamical activity, indicating large amounts of dynamical
heterogeneity and the existence of “space-time bubbles” in the dynamics: the coexistence
of regions in space-time which display small and large amounts of activity, confirming the
glassy behaviour of the model. An accurate finite-size scaling analysis is done, revealing
a scaling exponent which differs from other KCMs of interest (such as the East of FA),
placing this model in a different universality class. This difference in the exponent is
explained by the diffusive nature of the dynamics.
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We study a one-dimensional classical stochastic kinetically constrained model (KCM) inspired by Rydberg
atoms in their “facilitated” regime, where sites can flip only if a single of their nearest neighbors is excited.
We call this model “XOR-FA” to distinguish it from the standard Fredrickson-Andersen (FA) model. We
describe the dynamics of the XOR-FA model, including its relation to simple exclusion processes in its domain
wall representation. The interesting relaxation dynamics of the XOR-FA is related to the prominence of large
dynamical fluctuations that lead to phase transitions between active and inactive dynamical phases as in other
KCMs. By means of numerical tensor network methods we study in detail such transitions in the dynamical large
deviation regime.

DOI: 10.1103/PhysRevE.102.052132

I. INTRODUCTION

Systems with constraints often display interesting coop-
erative dynamics [1–4]. This is true both in classical and
quantum settings. Broadly speaking there are three classes
of constrained systems. One is that of problems where state
space is constrained. The canonical example is lattice cover-
ings, for example dimers on a square lattice [5–11]. In such
systems, the constrained nature of configuration space im-
plies constraints in the allowed transitions, making both their
classical and quantum dynamics very rich. A second class
encompasses systems where constraints in the dynamics are
emergent, such as in classical and quantum “fracton” models
where the motion of certain effective excitations is severely
impeded [12–16]. A third class comprises systems known
as kinetically constrained models (KCMs) with explicit con-
straints in the allowed dynamical transitions. Here we focus
on KCMs.

KCMs were first introduced [1,2] in the 1980s as models of
classical glasses. The ones studied most throroughly, such as
the Fredrickson-Andersen (FA) [1] and East models [3], are
stochastic lattice spin systems with the interesting combina-
tion of a trivial thermodynamics and a strongly fluctuating co-
operative dynamics (under appropriate conditions—typically
low temperatures and/or high densities) due to the constraints.
For reviews on classical KCMs, see, e.g., Refs. [17–19].
Like their classical counterparts, quantum KCMs also display
complex nonequilibrium dynamics, both under closed unitary
[20–22] or open dissipative [23] evolution.

Modeling dynamics via KCMs can be motivated in
many different areas. For example, in classical soft matter,

specifically for glasses [24,25], kinetic constraints are meant
to encode the local steric interactions of dense fluids. Another
application is in the context of ensembles of Rydberg atoms
in optical lattices, modeled as a collection of local two-level
systems (representing for each atom their ground and some
high-lying Rydberg state). When driven on resonance, due
to “Rydberg blockade” [26], their dynamics is subject to a
kinetic constraint where an atom can change state only if
all their nearest neighbors are in their ground state. In a
one-dimensional lattice such constraint gives rise to the much
studied PXP model [27–30], the quantum counterpart of the
classical “two-spin facilitated” FA model [17].

Here we study a one-dimensional classical KCM which to
our knowledge has not been considered in the past. We call
it the XOR-FA model to distinguish it from the standard FA
model (i.e., the “one-spin facilitated” FA model). The kinetic
constraint in the XOR-FA is such that a spin can flip only
if one of its nearest neighbors is in the excited state, but
not if both are (which is allowed in the FA). Such condition
makes the XOR-FA more constrained than the standard FA
model. Conversely, the XOR-FA is less constrained than the
PXP, whose transitions require the two neighboring sites to be
simultaneously down. The constraint in the XOR-FA model
can be motivated by Rydberg atoms in their “facilitated” (or
“antiblockade”) regime [31–41]: When driven out of reso-
nance, specifically when blue-detuned, conditions can be such
that an atom may change state only if a single neighbor is in
the excited state, but not both.

The paper is organized as follows. In Sec. II we intro-
duce the XOR-FA model and discuss its connection to simple
exclusion processes. In Sec. III we consider the relaxation
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dynamics of the model. In Sec. IV we study the dynamical
large deviations by means of numerical tensor networks, and
show the existence of a phase transition between active and
inactive dynamical phases. In Sec. V we draw comparisons
between the FA, XOR-FA, and PXP models. In Sec. VI we
give our conclusions.

II. MODEL

We consider a system of binary variables n j = 0, 1 (we
call these states down/up or unexcited/excited) on the sites
i = 1, . . . , N of a one-dimensional lattice (with boundary con-
ditions to be specified below). Similar to other KCMs [17,42]
the dynamics will be that of singe-spin flips subject to a
constraint. Specifically, the allowed transitions are

001 → 011 rate = c,
011 → 001 rate = 1 − c,
100 → 110 rate = c,
110 → 100 rate = 1 − c,

(1)

where c ∈ (0, 1). That is, a site can flip only if both nearest
neighboring sites are in different states. This means that the
constraint is a boolean XOR operation on the nearest neigh-
bors of the site that is attempting to flip. We therefore call this
model the XOR-FA (short for XOR-Fredrickson-Andersen) to
distinguish it from the standard Fredrickson-Andersen (FA)
model, where a site can flip if either of its nearest neighbors
is up, which in this nomenclature would correspond to the
OR-FA (while the PXP would be the AND-FA).

The generator of the continuous-time Markov dynamics is
the operator

W =
N∑

j=1

P j[cσ
+
j + (1 − c)σ−

j − c(1 − n j ) − (1 − c)n j],

(2)
where σ±

j are Pauli operators acting on site j, n j = σ+
j σ−

j ,
and the kinetic constraint P j on site j reads

P j = (n j−1 + n j+1 − 2n j−1n j+1) = 1
2

(
1 − σ z

j−1σ
z
j+1

)
, (3)

where σ z
j = 2n j − 1. The operator Eq. (3) enforces the im-

possibility of the transitions ruled out in Eq. (1). Note that
Eq. (2) has an explicit symmetry between up/down spins
and is unchanged under the transformation c → 1 − c and
nj → 1 − n j .

Dynamics with the kinetic constraint Eq. (3) is naturally
motivated [39] in quantum many-body systems, specifically in
the context of Rydberg atoms in their facilitated/antiblockade
regime [31–41], whereby an up (down) spin represents an
atom in its excited Rydberg (ground) state, and the drive is
such that an atom can get excited resonantly only when one
of its nearest neighbors is also excited, but not both (as that
would make the transition off resonant). The constraint Eq. (3)
has also been studied in certain quantum spin chains [43,44] in
particular in relation to “quantum scars” (special nonthermal
states in constrained quantum systems [30,45,46]) [47–49],
and additionally in the context of quantum cellular automata
[50]. Our aim here is to consider the classical stochastic dy-
namics of a system with such a constraint, thus extending the
set of known KCMs.

Conservation of the number of domain walls and relation to
simple exclusion processes

The dynamical rules Eq. (1) impose a conservation law in
the dynamics, that of the total number of domain walls (DWs)
[39,43]. Consider two neighboring domains of, say, up and
down spins

· · · 11110000 · · · .

Due to the constraint Eq. (3) the only allowed changes are
to the spins next to the DW, since inside the domains both
neighbors to every spin are the same. This means that the
possible moves are

· · · 11100000 · · ·
· · · 11110000 · · · ↗

↘
· · · 11111000 · · ·

,

where we have underlined the sites that changed in each
allowed transition.

We can perform a duality transformation to have an explicit
DW representation of the problem. We write

σ x
j = XjXj+1, (4)

σ
y
j = (−1) j+1

j−1∏
k=1

ZkYjXj+1, (5)

σ z
j = (−1) j+1

j∏
k=1

Zk, (6)

where Xj,Yj, Zj are Pauli operators for the DW between sites
j − 1 and j. Notice that this is a canonical (rather than unitary)
transformation that preserves the commutation relations be-
tween the Pauli operators. The generator in this representation
is then

W DW =
N∑

j=1

PDW
j

[
1

2
XjXj+1

− i

(
1

2
− c

)
(−1) j+1

j−1∏
k=1

ZkYjXj+1

−
(

1

2
− c

)
(−1) j+1

j∏
k=1

Zk − 1

2

]
, (7)

where the constraint is

PDW
j = 1

2 (1 − ZjZ j+1), (8)

and we have used the superscript “DW” to indicate operators
in the domain wall representation. Combining the factors we
can simplify the generator to

W DW =
N∑

j=1

1

2

[
1

2
(XjXj+1 + YjYj+1)

− i

(
1

2
− c

)
(−1) j+1

j−1∏
k=1

Zk (YjXj+1 − XjYj+1)
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+ 1

2
(ZjZ j+1 − 1)

−
(

1

2
− c

)
(−1) j+1

j−1∏
k=1

Zk (Zj − Zj+1)

]
. (9)

The conservation law is now explicit, as the kinetic term
simply corresponds to DW hopping. That is, we conserve
the quantity NDW = 1

2

∑
j I + Zj . For the special case of c =

1/2, the generator simplifies to that of the symmetric simple
exclusion process (SEP) [51,52],

W DW
c=1/2 =

N∑
j=1

1

4
(XjXj+1 + YjYj+1 + ZjZ j+1 − 1). (10)

In the XOR-FA language this is the “infinite temperature
limit,” where the cost of creating and destroying an excitation
is the same. Away from c = 1/2, the dependence of c in
the DW-representation generator Eq. (9) encodes the fact that
moving left or right a DW depends on whether it is energet-
ically favorable to extend or contract the corresponding spin
domain.

For c �= 1/2 the generator Eq. (9) corresponds to a SEP
with particles with alternating asymmetries in their hopping
rates. That is, we have a model where particles (DWs) can
hop to neighboring sites if the sites are not already occupied:
the odd particles (DWs) hop left with rate c and right with
rate 1 − c, while the even particles hop left with rate 1 − c and
right with rate c. Since particles (DWs) cannot cross due to the
exclusion, these rates are maintained. This is a special case of
the general model introduced in Ref. [53], where each particle
is given an individual hopping rate which is maintained under
the dynamics. Independently from Ref. [53], this exclusion
process was studied in Ref. [54]. In that paper the authors
use a transformation onto a representation which coincides to
our spin model, allowing them to find a hydrodynamic limit
with a nontrivial diffusion rate for the exclusion process with
alternating hopping rates.

III. EQUILIBRIUM AND RELAXATION

A. Equilibrium properties

We consider the XOR-FA with N sites, NDW domain walls
and periodic boundary conditions (PBC), which formally
corresponds to setting n0 = nN . The dynamics generated by
Eq. (2) obeys detailed balance and therefore any initial con-
dition eventually relaxes to an equilibrium state. Since the
dynamics conserves the number of DWs, there is one such
equilibrium probability for each DW sector. For PBC the num-
ber of DWs is even, and the sectors can be classified by the
number p of up/down (one/zero) domains, p = NDW/2. One
can then construct the equilibrium state within each sector in
the following way.

Consider a configuration for fixed p where the zero (or
down) domains and the one (or up) domains have lengths dm

and um, respectively, for m = 1, . . . , p, with the first domain
being a down one,

∣∣0..0d1 1..1u1 . . . 0..0dp1..1up

〉
.

Note that the total length of the domains must be equal to the
system size, so in the state above we have

p∑
m=1

(dm + um) = N, (11)

and each domain must have at least one site, so that

dm, um � 1 ∀m. (12)

We now define a state which is the translationally invariant
superposition of all possible translations of the state above,

|d1, u1, . . . , dp, up〉 =
N∑

m=1

Tm
∣∣0..0d1 1..1u1 . . . 0..0dp1..1up

〉
,

where the operator T shifts the chain by a single site.
The equilibrium probability vector for the sector with 2p

DWs is given by

|eqp〉 = N
γ∑

d1=1

· · ·
γ∑

dp=1

γ∑
u1=1

· · ·
γ∑

up=1

δ(d1 + · · · + up − N )

(1 − c)
∑

m dm c
∑

m um |d1, u1, . . . , dp, up〉 ,

(13)

where γ = N − 2p + 1 and N is a normalization constant.
One can check that the state Eq. (13) is annihilated by all
terms of the generator Eq. (2). This state corresponds to
the equilibrium state with noninteracting energy E = ∑

j n j

(i.e., each up spin costs a unit of energy) at temperature T
such that c = e−1/T /(1 + e−1/T ), and subject to the conditions
Eqs. (11) and (12).

We now study the basic properties of the equilibrium
state Eq. (13). In Fig. 1 we show two average observables
in equilibrium. The first one is the average excitation den-
sity, 〈n〉 = N−1 ∑

i 〈−|ni|eqp〉, where 〈−| = ∑
n 〈n| is the flat

state and 〈n| = 〈n1, . . . , nN |, see Fig. 1(a). We show 〈n〉 for
several values of the filling fraction defined as nDW = 2p/N
(note that the mean domain length is 1/nDW). The symbols
are numerical results from standard Monte Carlo simulations.
Note that in contrast to the FA or East models [17,42], 〈n〉 is
not just equal to c, due to the conservation of the number of
DWs. Figure 1(a) shows the agreement of the numerics with
an analytical prediction in the N → ∞ limit described in the
Appendix.

The second observable coincides with the average dynam-
ical activity (per site) in equilibrium, 〈k〉. While the activity
is an observable at the level of trajectories (see Sec. IV for
further details), its average in equilibrium is given by the
average escape rate per site, which is a static observable [55].
The escape rate operator R is (minus) the diagonal part of
the generator Eq. (2). Since R is a local operator we can also
obtain analytically its equilibrium average in the large size
limit, see the Appendix. In Fig. 1(b) we show the agreement
between 〈k〉 from simulations and the analytic result. Note that
〈n〉 and 〈k〉 are symmetric around c = 1/2 as functions of c
as a consequence of the up/down symmetry of the model, cf.
Eq. (2) (while there is no corresponding symmetry in terms of
DW filling nDW).
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FIG. 1. Equilibrium properties of the XOR-FA model. We show
various properties of the XOR-FA at equilibrium for both finite-size
systems (N = 1000, symbols) obtained via Monte Carlo simulations,
and N = ∞ (solid lines) obtained through the analytical consider-
ations from the Appendix. (a) The average excitation density for
various DW fillings as a function of c. (b) The average dynamical
activity 〈k〉 as a function of c for the same DW fillings of panel (a).
(c) The average dynamical activity 〈k〉 as a function of DW filling
nDW for various c. Note that the peak in the dynamical activity with
respect to nDW varies with c (dotted line).

B. Relaxation dynamics

The dynamics of the XOR-FA model is entirely deter-
mined by expansion and contraction of the domains (or the
movement of domain walls which cannot cross). The system
behaves like an “accordion.” Depending on the value of c there
may be an energetic preference to expand or contract domains
of one orientation or the other. Figure 2 shows typical trajecto-
ries sampled from the XOR-FA model by running continuous
time Monte Carlo at various conditions. The trajectories of
the figure are at a quarter filling for three values of c. The top
row of Fig. 2 is for c = 0.4, the middle one for c = 0.5, and
the bottom one, c = 0.6. The columns correspond to different
initial conditions. Column (a) shows equilibrium trajectories,
i.e., those that start from an initial condition sampled from
Eq. (13). They show pronounced space-time fluctuations in
the dynamics associated to the breathing of domains. Column
(b) corresponds to the most unfavorable initial state, where
DWs are maximally clustered. Relaxation to equilibrium in
this case is slow, as DWs within the bulk of the cluster
cannot move until the DWs on the outside of cluster diffuse
away. Column (c) shows an opposite nonequilibrium initial
condition, where DWs are maximally spread out. In this case
relaxation to equilibrium is faster, cf. Fig. 2(c). The large
space-time fluctuations that are evident in these example tra-
jectories anticipate the large deviation phase transitions that
we uncover in the next section.

The different timescales involved in the relaxation of the
XOR-FA model can be quantified using time-correlation func-
tions. In particular we focus on two different correlators in
the equilibrium dynamics. The first one is the autocorrelation
function, C(t ), which measures how many sites that were in

FIG. 2. Trajectories of the XOR-FA model. Representative tra-
jectories from continuous-time Monte Carlo simulations using
generator Eq. (2) with a time of t = 103. The rows are for different
values of c, with c = 0.4 (top), c = 0.5 (middle), c = 0.6 (bot-
tom). All trajectories are at quarter filling, nDW = 1/4. The columns
correspond to different initial conditions: (a) typical equilibrium con-
figuration, (b) DWs maximally clustered, (c) DWs maximally spread
out. Column (b) shows the slowest approach to equilibrium.

the excited state at time 0 are also in an excited state at a later
time t . Subtracting the disconnected part, and normalizing so
that it takes values between 1 and 0, it reads

C(t ) = 1

N

N∑
j=1

〈n j (t )n j (0)〉 − 〈n〉2

〈n〉 − 〈n〉2 , (14)

where the average is over realisations of the dynamics in equi-
librium, i.e., starting from a configuration sampled from the
equilibrium state Eq. (13) and evolved according to Eq. (2).

The second correlator we study is the persistence function,
P(t ), which quantifies the average probability for a randomly
selected site to have not changed state up to time t . We can
define it in terms of a local dynamical variable pj (t ) at each
site j, where p j (t ) = 1 if the site has never changed from its
initial state at time t , and pj (t ) = 0 as soon as it changes for
the first time. The resulting aggregate function is then

P(t ) = 1

N

N∑
j=1

〈p j (t )〉 . (15)

This function is automatically normalized between 1 at the
initial time and 0 eventually when all sites flip at least once.

In Fig. 3 we show results for time-correlators. We fo-
cus mostly on the persistence function as it better captures
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FIG. 3. Time correlations of the XOR-FA model. All results are
done for N = 400. We show the persistence function P(t ) plotted
for (a) nDW = 1/4 and (b) nDW = 1/2. In both cases we show for
various c. The black dashed line also shows the autocorrelator C(t )
for c = 0.1 to compare. (c) We plot the same functions as shown for
(a) but with a double-logarithmic scale on the ordinate. (d) We show
the time taken τ for the persistence function to drop to P(τ ) = e−1

(crosses) for c = 0.5 (blue, bottom), c = 0.1 (red, top) and various
nDW. We also show our estimate τ (solid lines) given in Eq. (17).

overall relaxation. Figure 3 shows P(t ) for various c and two
filling fractions of DWs, nDW = 1/4 (a) and nDW = 1/2 (b).
For comparison we also show the autocorrelator for c = 0.1
(dashed). We see that decreasing c away from c = 0.5 leads to
slower relaxation times. The same can be said for decreasing
the density of the DWs. Figure 3(c) shows the same functions
as in Fig. 3(a) but in a double-logarithmic scale on the ordi-
nate. The change in slope in this representation emphasises
the change from exponential decay at short times, to stretched
exponential decay at long times [56].

From the persistence function we can extract a characteris-
tic relaxation time, τ , customarily from the time the function
decays to e−1, that is, P(τ ) = e−1. These times are shown in
Fig. 3(d) for two values of c and as a function of the DW
filling. Their behavior can be understood approximately with
simple heuristic arguments.

We first note that for c � 1, we can treat the dynamics of
the XOR-FA model as small up domains diffusing around a
“vacuum” of down domains. To move, the up domain must
first expand by exciting a neighboring spin. This happens
slowly at rate c. Following this, the domain then shrinks at rate
1 − c ≈ 1. It can either shrink back to its original position, or
shrink such that it shifts by one site across, each happening
with equal probability. Thus, we say it diffuses around the
lattice with diffusion constant Dc ≈ c/2. The time taken for
the system to fully relax can then be estimated as the time
it takes for the DWs to diffuse from their original positions
around the available space surrounding them, until they hit
another DW. On average, the length of each zero domain is
given by the average number of down spins split among the

number of zero domains. Namely,

l0 = 2

nDW
(1 − 〈n〉). (16)

It then follows that the timescale for the system to relax
goes as

τ ∼ (l0/2)2

Dc
= 2

c

(1 − 〈n〉)2

nDW
2

(17)

for c small. As Fig. 3(d) shows, this prediction works well
for c small in the whole nDW range, while for c ≈ 0.5 it
qualitatively accounts for τ for small DW density [57].

Thinking of the dynamics in this way can also explain the
two timescales in Fig. 3(c). At some small time after t � 0,
the first successful shift of domain(s) will occur. When this
happens for c � 1/2, the original site is no longer excited,
but the site next to it is. In the language of the persistence, this
means two sites have flipped from their initial state. For both
the persistence and the autocorrelator, this gives a fast initial
relaxation, and as these are random uncorrelated events, the
initial decay is exponential. Further successive moves of the
domain only change at most one more site from its initial state
(or in the case of the autocorrelator, will only slightly reduce
the probability that the domain may end up in its original
position). Thus, the rate at which relaxation occurs is reduced,
the time is longer, and the decay of the correlators is stretched
as the relaxation becomes more collective.

IV. DYNAMICAL LARGE DEVIATIONS AND MATRIX
PRODUCT STATES

In this section we study the statistics of trajectories of
the XOR-FA model in the long-time regime where we can
apply large deviation (LD) methods [19,58,59]. Recent work
[60–62] has shown the effectiveness of numerical tensor net-
work methods for studying the LDs of KCMs. Here, by means
of numerical matrix product states (MPS) we are able to study
the LDs of the XOR-FA for large systems to high accuracy.
As we show below, the XOR-FA has a trajectory-space phase
transition between between dynamical phases with very dis-
tinct characteristics, similar to what occurs in several other
KCMs.

A. LDs and tilted generators

The dynamical activity [19,63–65] is a trajectory observ-
able which counts the number of configuration changes (in
our case the number of spin flips) in some given time. It is
the natural trajectory observable to quantify the amount of
motion in the dynamics. A question one can ask is what is
the probability of observing the activity K for trajectories ωt

which run for a total time t . The probability distribution for K
is given by

Pt (K ) =
∑
ωt

π (ωt ) δ[K (ωt ) − K], (18)

where π (ωt ) is the probability of observing trajectory ωt . For
long times this obeys a large deviation (LD) principle Pt (K ) ≈
e−tϕ(K/t ) where ϕ(K/t ) is the LD rate function [58]. One can
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also consider the moment generating function

Zt (s) =
∑

K

Pt (K ) e−sK =
∑
ωt

π (ωt ) e−sK (ωt ), (19)

which also obeys a LD principle, Zt (s) ≈ etθ (s) where θ (s)
is the scaled cumulant generating function (SCGF) whose
derivatives at s = 0 give the cumulants of K , scaled by time
[58]. The SCGF plays the role of the thermodynamical free
energy and is related to the LD rate function by a Legendre
transform θ (s) = − mink[sk + ϕ(k)] [58].

We can deform the generator given in Eq. (2) by multi-
plying the off-diagonals by a factor of e−s to give the tilted
generator,

Ws =
N∑

j=1

P j{e−s[cσ+
j + (1 − c)σ−

j ]

− c(1 − n j ) − (1 − c)n j}, (20)

whose largest eigenvalue is the SCGF θ (s) [58]. It has
the associated left and right eigenvectors, 〈ls|Ws = θ (s) 〈ls|
and Ws |rs〉 = θ (s) |rs〉 , respectively. As the dynamics obeys
detailed balance, we can transform the generator into a Her-
mitian one by using a similarity transformation independent
of s [55]. We first define the diagonal matrix Q with matrix
elements 〈n|Q|n〉 = (1 − c)N/2[c/(1 − c)]

∑
i ni/2. The tilted

Hamiltonian Hs = −Q−1WsQ is then given by

Hs = −
N∑

j=1

P j
[
e−s

√
c(1 − c)σ x

j − c(1 − n j ) − (1 − c)n j
]
,

(21)
which has the ground state Hs |ψs〉 = −θ (s) |ψs〉. As was
done for the generator, one can write the tilted Hamiltonian
in the DW representation

HDW
s = −

N∑
j=1

1

2

[
e−s

√
c(1 − c)(XjXj+1 + YjYj+1)

+ 1

2
(ZjZ j+1 − 1)

−
(

1

2
− c

)
(−1) j+1

j−1∏
k=1

Zk (Zj − Zj+1)

]
. (22)

The eigenvector |ψs〉 of Hs is related to the left and right
eigenvectors of Ws by

|ψs〉 =
∑

n

√
ls(n)rs(n) |n〉 , (23)

where ls(n) = 〈ls|n〉 and rs(n) = 〈n|rs〉. Thus, studying the
LDs reduces to diagonilizing Eq. (21) to find θ (s) and |ψs〉.

B. Matrix product states

A matrix product state (MPS) is an ansatz for the vector
state of a many-body system [66–68]. For a chain of N finite
dimensional subsystems (of dimension d), it corresponds to
states of the form

|�〉 =
d∑

i1,...,iN

Tr
(
Ai1

1 Ai2
2 . . . AiN

N

) |i1 i2 . . . iN 〉 , (24)

where ik labels the states of the physical basis for the kth
subsystem and each Ak is a rank-3 tensor with dimensions
d × D × D, with D the so-called bond dimension. Thus, the
MPS is described by O(NdD2) parameters. Notice that by
increasing D, any arbitrary state can be exactly written in the
form of Eq. (24), although this may require up to D = d�N/2�.

The bond dimension D limits the entanglement within
the state. More precisely, in a MPS with bond dimension
D, the entanglement entropy for a subchain L (defined as
SE = −TrρL log ρL where ρL = TrN\L |�〉 〈�| is the subchain
reduced density matrix) is upper-bounded by SE � 2 log D,
independent of the subchain length. This implies that the
MPS satisfies an entanglement area law, which is intimately
related to their success at approximating relevant physical
states [69]. In particular, ground states of local gapped Hamil-
tonians, which in one spatial dimension are known to satisfy
an area law [70], but also of critical models, can be effi-
ciently approximated by MPS [70,71]. Furthermore, MPS
constitute the basis of efficient numerical methods, including
the celebrated density matrix renormalization group (DMRG)
algorithm [72,73] which we use to approximate the ground
state of Hs.

The DMRG, originally formulated in Ref. [72], can be un-
derstood as a variational minimization of energy over the set
of MPS. By writing the operator Eq. (21) as a matrix product
operator (MPO) [74,75], one can perform a local optimization
on a single tensor within the MPS to minimize the energy.
We iterate through each tensor, applying local updates until
convergence. This variational MPS search (vMPS) is well de-
tailed in many reviews (e.g., Refs. [68,76]). For completeness,
we give a brief description in the Appendix.

When applying the vMPS to study the LD statistics of the
XOR-FA model, we use open boundary conditions (OBC)
which formally corresponds to setting n0 = nN+1 = 0, as this
allows for the most efficient MPS calculations, with computa-
tional cost O(D3). In our problem, the number of DWs defines
a global conserved quantity, and we need to find the ground
state in a particular sector. Although it is possible to encode
this symmetry in the tensors [77–79], as other local constraints
have [80], we opt here for a simpler approach. Namely, we
add an energy penalty to the Hamiltonian to favor the desired
sector. Specifically, the penalty is λ(NDW − NDW)2 where
λ > 0 is some Lagrange multiplier and NDW = ∑N

i=0 ni(1 −
ni+1) + (1 − ni )ni+1 is the operator which counts the number
of DWs.

C. Results

As we now show, the MPS ansatz combined with the vari-
ational search proves to be very efficient for studying the LDs
of the XOR-FA model, just like for other KCMs and exclusion
processes [60–62]. In this way we are able to achieve results
for system sizes superior to traditional methods such as exact
diagonalization or importance sampling.

1. First-order phase transition in the SCGF

A key property of other KCMs such as the FA or the East
model is the presence of a first-order dynamical phase tran-
sition [64] in the thermodynamical limit N → ∞, manifested
as a singularity in the SCGF θ (s) at s = 0. Consequentially
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FIG. 4. First-order phase transition in the SCGF. We consider the finite-size scaling of the phase transition for N ∈ [20, 100] and nDW =
1/2. (a) A linear-linear plot of the SCGF θ (s)/N . There is an apparent change in behavior at some critical point sc(N ) > 0. (b) The SCGF
θ (s)/N for s > 0 on a log-log plot. On the first branch, θ (s)/N follows a LR (dashed line) up to sc(N ) after which it follows another branch,
which is no longer linear or scales with system size. The dotted lines show the value of the SCGF at s → ∞. (c) The activity k(s) = −θ ′(s)/N
has a drop around s = sc(N ) which becomes sharper with system size. (d) The dynamical susceptibility χ (s) = θ ′′(s) which peaks at sc(s). The
peaks become narrower and larger as N becomes larger. (e) The critical point sc(N ) extracted from the peak of the susceptibility plotted against
system size, for the DW densities nDW = 1/2 (blue circle) and nDW = 1/4 (red diamonds). We fit the data the the power law sc(N ) ∝ N−α

(solid line) and to the polynomial sc(N ) = aN−2 + bN−3 + cN−4 (dashed lines) which are the subleading corrections to N−2.

there are two dynamical phases—the active phase for s < 0
and the inactive phase for s > 0. We look for evidence for this
transition in the XOR-FA model.

Figures 4(a) and 4(b) show the SCGFs obtained numer-
ically for system sizes N ∈ [20, 100], in linear and log-log
scales, respectively. The upper row of Fig. 4 is for c = 0.5
while the lower row corresponds to c = 0.1. For finite size,
near enough s = 0 the SCGF should obey the linear response
(LR), θ (s) ∼ −skeq, where keq is the average activity per unit
time in the equilibrium state. For the FA and East models,
the equilibrium activity is straightforward to calculate exactly
(see, e.g., Ref. [81]). For the XOR-FA, it is more difficult due
to the conservation of DWs. In the Appendix we give a way to
compute it to a good approximation. As we see from Fig. 4(b),
the SCGF we obtain numerically does obey LR close to s = 0.

Still for s � 0, beyond the LR regime the SCGF changes
behavior, notably stops scaling with system size, see Figs. 4(a)
and 4(b). This change in behavior becomes even more appar-
ent when one considers the activity per unit time as a function
of s, k(s) = −θ ′(s)/N , Fig. 4(c). We see a sudden drop close
to s = 0 that becomes more pronounced with system size, a
hallmark of a first-order phase transition. From the point of the
numerics, this occurs when where there two smallest energy
levels of Eq. (21) cross.

The transition point sc can be estimated from the peak of
the susceptibility χ (s) = θ ′′(s); see Fig. 4(d). The peaks be-
come higher and sharper with system size. From the numerics
we can make a finite-size scaling analysis of the critical point.
We find that sc(N ) seems to obey sc(N ) ∝ N−α as shown in
Fig. 4(e). For nDW = 1/2, we find that the best fit exponent
is α ≈ 2.123 for both c = 0.5 and c = 0.1. Furthermore, for
nDW = 1/4 we find that α ≈ 2.056 and α ≈ 2.188 for c = 0.5
and c = 0.1, respectively. In each case α is close to the value 2
expected from a diffusive behavior of the gap in the spectrum

of Eq. (21). It could be that these are subleading corrections
to N−2; see Fig. 4(e).

2. Spatial structure of active and inactive phases

The singularity in the SCGF represents a phase transition
in the trajectories of the dynamics at the level of fluctua-
tions: The behavior at s < 0 corresponding to dynamics with
activity that is larger than the typical (equilibrium) one is
fundamentally different from that at s > 0 corresponding to
dynamics which is less active than typical. This difference is
also manifested in the configurations that are predominantly
visited by the different trajectories. That is, active and inactive
dynamical phases are associated with very different spatial
structures.

We mean the following. At s = 0 there is no tilting in the
ensemble of trajectories which is the one given by the orig-
inal dynamics. It corresponds to typical behavior. Dynamics
is ergodic over configuration space, and over long-times the
distribution of configurations that are visited—for some fixed
value of the number of DWs—is given by the equilibrium
probability Eq. (13). The state Eq. (13) is the leading right
eigenstate of generator Eq. (20) at s = 0.

At s �= 0 the probability of a trajectory is reweighted by the
exponential of its activity, cf. Eq. (19). How often configura-
tions are visited in such reweighted ensembles depends on s,
and for long times the distribution over configurations is given
by the leading eigenstate of Eq. (20), or equivalently Eq. (21)
for the detailed balance-obeying XOR-FA. We have access to
these states, |ψs〉, from our MPS numerics.

The easiest way to characterise the spatial structure of
the characteristic configurations associated with dynamics
tilted by s is to study the average local occupations 〈ni〉s =
〈ψs|ni|ψs〉 [82]. In Figs. 5(a) and 5(b) we show these local
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FIG. 5. Spatial structure of the active and inactive phases. (a) The average occupation of each site for a system with c = 0.5, N = 40 and
NDW = 10. For s < 0 there is a clear localization of domains. Each domain becomes (on average) equally sized and hence the DWs are equally
spread. For s > 0, we see the DWs gather at the edge(s). (b) The same as (a) but for c = 0.1. (c) The average distance between neighboring
DWs for a systems with c = 0.5 and nDW = 1/2. This shows there is a maximal separation between DWs in the active phase, and only one
site separating DWs for the inactive phase. Inset: The average excitation density as a function of s. (d) The same as (c) but with c = 0.1 and
nDW = 1/4. Here we observe multiple plateaus in the growth. Inset: The average excitation density as a function of s.

densities as a function of s for two values of c and nDW = 1/4.
For s large and negative we see that that domains becomes
maximally sized, that is, DWs become maximally spaced
apart, maximizing the activity, as expected. In contrast, for
s large and positive DWs become localized at either edge
of the system. When DWs become minimally separated and
clustered together, only the sites next to the last DW are
allowed to move and activity becomes subextensive and thus
minimal.

We can further quantify the average distance between
neighboring DWs by considering the operator

Dd =
N+1∑
i=1

ni−1(1 − ni )(1 − ni+1) . . . (1 − ni+d−1)ni+d

+ (1 − ni−1)nini+1 . . . ni+d−1(1 − ni+d ), (25)

which measures the likelihood of observing two neighboring
DWs at distance d apart. The average distance between neigh-
boring DWs is then given by

〈d〉s = (NDW − 1)−1
∑

d

〈ψs|Dd |ψs〉 (26)

(as we have NDW − 1 pairs of neighboring DWs). In Fig. 5(c)
we show 〈d〉s as a function of s for c = 0.5 and nDW = 1/2. It
is evident from the plot that the dynamical transition at sc ≈ 0
is also one where there is a singular change in the distance
between DWs in the corresponding characteristic configura-
tions, from maximal distance between DWs at s negative, to
minimal at s positive.

Figure 5(d) shows the same for c = 0.1 and nDW = 1/4.
We see that away from the SEP limit of the XOR-FA, there is
even richer spatial structure due to the energetic cost associ-
ated with domains. At small s < 0 there is an initial plateau
in the growth of the average distance between DWs. This
is an extension of the equilibrium behavior, where domains
are randomly sized according to the behavior described in
Sec. III. As we move further into the active phase, we observe

another plateau. At this point, the excitation density 〈n〉s =
N−1 ∑

i 〈ni〉s (as shown in the inset) has not varied much from
the equilibrium value. This leads us to believe that this change
in structure is due to the excited domains spreading apart and
becoming localized as shown in Fig. 5(b). This maximizes
the activity without having to grow the excited domains as
is energetically favorable for c < 1/2. Following this plateau,
there is a steady growth to the maximum 〈d〉s corresponding
to the growth of the one domains, such that every DW is
on average equally spaced. This is further supported by the
fact that following this plateau, the excitation density rapidly
grows.

3. Maximally and minimally active limits

While we cannot calculate the SCGF analytically in
general, there are limits where the calculation becomes
tractable [apart from the obvious case of θ (0) = 0]. These
are the s → ±∞ limits corresponding to the tilting of the
dynamics that maximizes and minimizes the activity. For
the former we can easily calculate the ground state of
Eq. (21) via vMPS to obtain the rescaled SCGF θ̃/N =
lims→−∞ esθ (s)/[N

√
c(1 − c)] using only a small bond di-

mension of O(10). The numerical data is shown in Fig. 6(a)
for various filling fractions. Note that for s → −∞ the de-
pendence on c is irrelevant and can be scaled out as in our
definition of θ̃ .

We can extrapolate from the numerical results for finite size
to obtain an estimate of limN→∞ θ̃/N as a function of the den-
sity of domain walls nDW. This large-size limit of the SCGF
can be obtained analytically. For s → −∞, after scaling out
the e−s and

√
c(1 − c) factors, the Hamiltonian Eq. (22) be-

comes that of the XX model. Being noninteracting, the ground
state can be obtained exactly by standard means [83], to give:
limN→∞ θ̃/N = π

2 sin(π nDW). Figure 6(a) shows the agree-
ment between the numerical extrapolation and the exact result.
The structure of the state in the maximally active limit for
a system with N = 40 sites and NDW = 20 domain walls is
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FIG. 6. Maximally and minimally active limits. (a) Top: The
rescaled SCGF θ̃/N = lims→−∞ esθ (s)/

√
c(1 − c) for various num-

ber of DWs. We fit the data with the curves θ̃/N = a + bN−1.
Bottom: θ̃/N in the limit N → ∞ obtained by extrapolating the fitted
curves in top figure, plotted against the density of domain walls
nDW. We fit the data using limN→∞ θ̃/N = π

2 sin(πnDW ). (b) The
average occupation at each site for systems a system with N = 40
and NDW = 20 in the limits s → −∞ (top) and s → ∞ (bottom).
For the latter, we show only one of the degenerate ground states. In
this case, DWs localize at the left.

shown in Fig. 6(b). In the limit N → ∞ we would expect that
lims→−∞ 〈n〉s = 1/2, and lims→−∞ 〈d〉s = nDW

−1 which are
both in excellent agreement with the numerical vMPS data.

For the minimally active limit s → ∞, the Hamiltonian
given in Eq. (21) becomes a diagonal one. Each configuration
is an eigenstate and one can easily show that the configuration
with the least energy is the one where all the DWs are clus-
tered at the edge of the system (which is doubly degenerate).
The SCGF at this limit is given by θ (s → ∞) = −c and the
exact structure for N = 40 and NDW = 20 is given in Fig. 6(b)
for just one of the degenerate states (in practice the vMPS
prefers to converge onto just one to keep the bond dimension
minimal). Additionally, the excitation density and the distance
between DWs are given by lims→∞ 〈n〉s , 〈d〉s = nDW/2, 1,

respectively.

V. COMPARISON BETWEEN THE FA, XOR-FA,
AND PXP MODELS

As discussed above, the kinetic constraint of the XOR-FA
model is stronger than that of the FA model (which is a binary
OR operation on the spins neighboring the one attempting to
flip), but weaker than that of the PXP model (which is a binary
AND operation on the neighboring spins). This has significant
consequences on the dynamics.

In the case the FA model [17], configuration space is
all connected by the dynamics, except for the configuration
with ni = 0 for all i. This means that in practice dynam-
ics is irreducible and there is one giant ergodic component
(as the probability of starting from the unique all-zero site
is suppressed exponentially with size). Despite the rela-
tive weakness of the constraint, the dynamics of the FA is
strongly fluctuating [84]. Figure 7 (top left) shows an ex-
ample trajectory in equilibrium, displaying the characteristic

FIG. 7. Comparison between FA, XOR-FA and PXP models.
The top panels show sample equilibrium trajectories for the FA
model (left, taken from Ref. [84], c ≈ 0.27, N = 100), the XOR-FA
(middle, 1/4 filling, c = 0.5, N = 200), and the PXP model (right,
no pairs of contiguous up spins, c = 0.5, N = 100). The bottom
panels show the corresponding LD rate functions for the activity in
the three models (c = 0.5 for each) obtained via numerical MPS. The
data for the FA model is from Ref. [60] (N = 200), and that for the
PXP is from Ref. [80] (N = 400). Both the FA and XOR-FA (1/2
filling, N = 100) rate functions show first-order transitions close to
the typical dynamics (flatness of the bottom of the curves), while the
PXP has a continuous transition for highly atypical low values of the
activity (kink at left of curve, see Ref. [80]). The dashed curves are
Poisson rate functions for comparison.

“space-time bubbles” responsible for dynamic heterogeneity
[24,85]. This preponderance of fluctuations is manifest in the
form of the LD rate function for the dynamical activity, see
Fig. 7 (bottom left), corresponding to a (dynamical) first-order
transition [64].

On the other extreme of this comparison is the PXP model
[27–30]. In the stochastic terminology this corresponds to the
two-spin facilitated FA model in one-dimension [17]. Here
the constraint is such that configuration space is broken into
exponentially many dynamically disconnected components.
Specifically, pairs of sites with up spins, ni = ni+1 = 1 cannot
be flipped and are conserved by the dynamics. This means that
dynamics is reducible as configuration space is partitioned
into an exponential in size number of irreducible components,
classified by local conservation laws (i.e., the location of
the unmovable contiguous clusters of up spins). The largest
ergodic component is that where no two up spins are adja-
cent. But despite the strength of the constraint, the resultant
dynamics is much less interesting than for the FA or the XOR-
FA models, see for example the sample trajectory of Fig. 7
(top right). Correspondingly, a detailed quantification of the
statistics of the dynamics shows no significant fluctuations,
see the LD rate function of Fig. 7 (bottom right).

The middle panels of Fig. 7 show the XOR-FA for com-
parison. Given that its constraint is somewhat in between
that of the FA and PXP model, we see that trajectories dis-
play less pronounced “bubbles” than the FA but are more
fluctuating that the PXP. Specifically, the constraint does
break configuration space, but the number of disconnected
ergodic components is only linear in the system size. These
components are classified by the globally conserved number
of domain walls. This allows for rich dynamics within the
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components, leading to singular LD behavior as demonstrated
in this paper; see LD rate function Fig. 7 (middle bottom).

The key observation is that both FA and XOR-FA models
have trajectory transitions which manifest in fluctuating dy-
namics, while the PXP does not. In both the FA and XOR-FA
models there are configurations which are completely void of
dynamics, the all-zero state in the FA, and the state with max-
imal number of domain walls in the XOR-FA. But while these
configurations are disconnected dynamically, many other con-
figurations have finite regions that resemble them locally.
Such spatial rare regions can only be relaxed from the outside,
and thus give rise to the dynamical bubbles of the trajectories,
see Fig. 7, and are at the source of the large fluctuations in
the dynamics. In contrast, the PXP constraint makes inactive
configurations local rather than global, and they can either
be relaxed locally or not. In the PXP there are no space-time
bubbles and no LD transition close to s = 0 (close at the edge
of typical dynamics, see discussion of previous sections).

VI. CONCLUSIONS

We have studied a new classical stochastic KCM, the one-
dimensional XOR-FA model, which could be experimentally
realized with a laser-driven dissipative Rydberg lattice gas un-
der facilitation (antiblockade) conditions [33–35]. The kinetic
constraint in this model is stronger than that of the standard
FA model, as spins can flip if only one nearest neighbor is
in the excited state, in contrast to the FA where spins can
also flip if more than one neighbor is excited. It is also less
constrained than the PXP, or two-spin facilitated FA, model
which requires both neighbors to be simultaneously in the
same state. As such it shares features with both these mod-
els. The constraint imposes a conservation law, that of the
total number of domain walls, breaking configuration space
into a number of disconnected components that scales with
system size. This contrasts to the FA model where all but
one configuration are dynamically connected, and is closer to
the PXP where configuration space is also disconnected. The
distinction with the PXP is that in the XOR-FA the conserved
quantity is global, while in the PXP there are many local
conserved quantities and configuration space is broken into
exponentially many disconnected components. This less se-
vere disconnection of state space makes the dynamics within
connected components in the XOR-FA still interesting as
there is scope for large dynamical fluctuations (in contrast
to the PXP). An interesting question would be to study the
analogous problem in constrained lattice gases, considering
variants of the Kob-Andersen (KA) model [4] or the triangular
lattice gas (TLG) [86] but where constraints are “selective”
(as in Ref. [87]). The KA and the TLG are models where
particles can hop as long as a minimum number of neighbors
are unoccupied (cf. the FA model where at least one neighbor
has to be up for the spin to flip). A “selective” [87] version
of such models where the number of required unoccupied
neighbors is fixed would be slightly more constrained, just
like the XOR-FA is slightly more constrained than the FA
model. Studying such models in the manner of the current
paper would require, however, to extend the tensor network
methods to dimensions higher than one.

The XOR-FA is a “thermal” model, in the sense that it
obeys detailed balance with respect to the Boltzmann dis-
tribution of a noninteracting binary gas, where each excited
spin costs a unit of energy, and subject to the conservation of
the number of DWs. In analogy to other KCMs like the FA
and East models [17], the XOR-FA has a trivial (up to the
conservation law) thermodynamics, but complex relaxation
dynamics due to the constraint. The conservation law allows
the XOR-FA to be represented in terms of the dynamics of its
DWs. This establishes a connection to exclusion processes.
At infinite temperature the XOR-FA can be mapped via a
duality transformation to the SEP [39,43,44], while at finite
temperature this mapping leads to a dynamics of hopping
DWs with long-range interactions (in contrast to the original
spin representation which is always local).

Like in other KCMs [19,55,64,81], we have shown here
that the XOR-FA has a trajectory level phase transition be-
tween active and inactive dynamical phases. We have proved
this to high accuracy via numerical MPS. This adds to recent
work [60–62] demonstrating the effectiveness of numerical
tensor network methods for studying the full counting statis-
tics of stochastic systems. One of the many advantages of this
approach is the direct availability of spatial structural informa-
tion in the various dynamical phases. For the XOR-FA we find
spatial structure as expected from its connection to the SEP
[88,89]: a change from repulsion of DWs in the active phase,
maximizing the possibility of motion, through structureless
configurations in the typical equilibrium dynamics, to DW
clustering in the inactive phase. Away from the strict SEP
limit, these structures remain overall, with further richness due
to energetics.

Here we have studied the XOR-FA in one-dimension. It
is easy to generalise the model to higher dimensions, once
again motivated for example by the problem of atoms interact-
ing strongly in Rydberg states. For example, in the blockade
regime, when going from one dimension to a, say, two dimen-
sional square lattice, the PXP model becomes the hard square
model [90]. Similarly, in the antiblockade regime of Ryd-
bergs, the XOR-FA would generalise to a model that is less
constrained than that of hard squares, but more constrained
than the two-spin facilitated FA model in two dimensions [17].
From the results here it is safe to speculate that such higher
dimensional generalisations of the XOR-FA will also display
very rich dynamics. Additionally, the structure of the ground
state observed at s > 0 is reminiscent of the localized ground
states found in quantum KCMs [22], which has dramatic
consequences for the quantum dynamics of the model. It may
be interesting to investigate whether an analogous localization
can be characterized in the ground state of the XOR-FA model
in the inactive regime.
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APPENDIX

1. Variational MPS

The vMPS algorithm used in Sec. IV goes as follows.
We have some MPS, |�guess〉 as defined in Eq. (24), which
is our guess to the true ground state. See Fig. 8(a) for the
diagrammatic representation, where the shapes represent the
local tensors and the legs represent contractions over tensors.
One can then write the Hamiltonian in Eq. (21) as a matrix
product operator (MPO) [74,75],

Hs =
∑

i1,..,iN

∑
j1,.., jN

Tr(Mi1 j1
1 Mi2 j2

2 . . . MiN jN
N ) (A1)

|i1 i2 . . . iN 〉 〈
j1 j2 . . . jN

∣∣ ,
where Mk is a rank-4 tensor with dimensions d×d×DH×DH .
The locality of Hs allows us to exactly represent it in MPO
form with only a small bond dimension DH = 4, where each
tensor is identical. As with the MPS, this can be represented
in the diagrammatic form Fig. 8(b). The energy of the guess
with respect to Eq. (A1) is then given by

Eguess = 〈�guess|Hs|�guess〉
〈�guess|�guess〉 � Es, (A2)

where Es = −θ (s) is the true ground state energy. The ex-
pectation value and inner product can be expressed as tensor
network contractions, as illustrated in Figs. 8(c) and 8(d).
This allows for an efficient calculation that exploits the MPS
structure.

At each step, a single tensor is optimized by minimizing
equation Eq. (A2) with respect to Ak , which gives

HkAk = Eguess NkAk, (A3)

where Nk and Hk are the effective norm and effective Hamil-
tonian computed by contracting over all tensors except for
Ak within 〈�guess|�guess〉 and 〈�guess|Hs|�guess〉 , respectively.

Both effective operators can be expressed also as tensor net-
works, as shown in Figs. 8(e) and 8(f). If we treat Ak as a
(D2d )-vector and Nk , Hk as (D2d )-matrices, then Eq. (A3)
is simply a generalized eigenvalue problem which should be
solved using a sparse eigensolver to keep the computational
scaling to O(D3). The solution to Eq. (A3) with the smallest
Eguess is our new choice for Ak .

We sweep back and forth through each tensor in the MPS,
applying local updates in the way detailed above. Since each
local minimization can be solved exactly, the energy can only
decrease at each step, and the algorithm is guaranteed to con-
verge. However, it may do so to a local minimum. As a quality
criterion, we require that the (efficiently computable) vari-
ance of the Hamiltonian in the guess state falls below some
specified value 〈H2

s 〉 − 〈Hs〉2 < ε, where here 〈·〉 denotes an
expectation with respect to the |�guess〉. If |�guess〉 does not
satisfy this criterion for a run of the algorithm at some bond
dimension D, then we run it again with an MPS with a higher
bond dimension, typically using the previous run as our initial
guess.

2. MPS steady-state solutions

Here we follow the workings of Ref. [54] to present an
MPS steady-state solution to Eq. (13) in the thermodynamic
limit, N → ∞, with which we can determine the equilibrium
properties of the model. We consider the XOR-FA model with
N sites and PBC, and describe the probability vector |ν〉 as
an MPS, cf. Eq. (24), where of course we have translational
invariance and each tensor is identical, Ak = A for all k. Let
us now guess the solution

A0 =
[

0 0
1 − p0 p0

]
, A1 =

[
p1 1 − p1

0 0

]
, (A4)

where 0 < p0, p1 < 1. We first require that our solution anni-
hilates the generator, W |ν〉 = 0. It is easy to verify that this
is the case if we have

p1

p0
= c

1 − c
. (A5)

Additionally, we require that |ν〉 is normalized. The partition
function is calculated by taking the inner product with the flat
state,

Z = 〈−|ν〉 = Tr(MN ), (A6)

where MN = A0 + A1. It is easy to show via induction that

Mt =(2 − p0 − p1)−1

([
1 − p0 1 − p1

1 − p0 1 − p1

]

+ (p0 + p1 − 1)t

[
1 − p1 −(1 − p1)

−(1 − p0) 1 − p0

])
. (A7)

It follows that the partition function is already normalized in
the infinite limit

lim
N→∞

Z = 1. (A8)

The average DW density 〈nDW〉 can be calculated as the
DW occupation between any two neighboring sites in the
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lattice,

〈nDW〉 = 1

Z
〈−|[ni(1 − ni+1) + (1 − ni )ni+1]|ν〉

= 1

Z
Tr([A1A0 + A0A1]MN−2). (A9)

Taking the infinite limit, one finds that

lim
N→∞

〈nDW〉 = 2(1 − p0)(1 − p1)

2 − p0 − p1
. (A10)

We can now determine the p0, p1 necessary to have the re-
quired DW density by substituting Eq. (A5) into Eq. (A10)
and solving as a quadratic equation. Thus, we have found
an MPS steady-state solution with bond dimension 2, which
also has the required DW density in the thermodynamic
limit.

To calculate other local observables, we can again simply
use the procedure described above. The average excitation

density can be calculated using a local MPO on just one site,

lim
N→∞

〈n〉 = lim
N→∞

1

Z
〈−|ni|ν〉 = lim

N→∞
1

Z
Tr(A1MN−1)

= 1 − p0

2 − p0 − p1
. (A11)

Likewise, the average dynamical activity can be calculated as
the escape rate of just a single site, which can be calculated
using the three-body operator

ri = c[ni−1(1 − ni )(1 − ni+1) + (1 − ni−1)(1 − ni )ni+1]

+ (1 − c)[ni−1ni(1 − ni+1) + (1 − ni−1)nini+1]. (A12)

After a lengthy calculation, we find

lim
N→∞

〈k〉 = lim
N→∞

1

Z
〈−|ri|ν〉

= 2(1 − p0)(1 − p1)

2 − p0 − p1
[(1 − c)p1 + cp0]. (A13)

We compare our analytical results to numerical data obtained
for large, but finite system sizes in Fig. 1. Both results show
excellent agreement.
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Chapter 5

Slow dynamics and large deviations
in classical stochastic Fredkin chains

The following work is from the publication “Slow dynamics and large deviations in classi-
cal stochastic Fredkin chains” by Luke Causer, Juan P. Garrahan and Austen Lamacraft,
published in Physical Review E 106, 014128 (2022).

This paper generalizes the quantum many-body system known “Fredkin spin chains”
to classical stochastic dynamics. In a classical sense, it can be considered an ASEP
equipped with kinetic constraints which only allow jumps if the neighbouring sites take
certain configurations. The steady state properties and non-equilibrium dynamics are
uncovered, as was done for the XORFA model. As is the case for the ground state of the
quantum model, the steady state admits an equilibrium phase transition. Furthermore,
when quenched from particular initial states, the Fredkin model undergoes hierarchical
relaxation, similar to other KCMs such as the East model.

The dynamical LDs for the model reveals dynamical phase transitions for each of the
equilibrium phases. Where possible, a finite-size scaling analysis is done, which indicate
that for each equilibrium phase, there exists a first-order phase transition. Furthermore,
a scaling exponent in system size is extracted where possible, demonstrating different
university classes which are intrinsically related to the equilibrium fluctuations. One of
the equilibrium phases has a hierarchy of dynamical phase transitions, each corresponding
to intermediate levels of dynamical activity. Indeed, these phases are related to the
hierarchical relaxation of the model due to its strong localization properties.

The work done here is an important step to understanding the quantum dynamics
of a “tilted” Fredkin chain, similar to that done for the “Quantum East model” [146].
While not shown in this thesis, the quantum version of the model has various properties
related to many-body localization, along with anomalous eigenstates with small amounts
of entropy and non-thermal properties (often referred to as “many-body quantum scars”).
This behaviour can be explained by the localization properties associated with the inactive
dynamical phases, and the strong kinetic constraint.

Corrections to the manuscript:

1. The label of the x-axis in Figure 3(b) should read “Site, i”. The caption should
read ⟨nDW

N/2+i⟩.

2. The sum in Equation A1 should be in the range i = 1, . . . , N .

50



PHYSICAL REVIEW E 106, 014128 (2022)

Slow dynamics and large deviations in classical stochastic Fredkin chains

Luke Causer ,1,2 Juan P. Garrahan,1,2 and Austen Lamacraft3
1School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom

2Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham,
Nottingham NG7 2RD, United Kingdom

3TCM Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom

(Received 24 March 2022; accepted 5 July 2022; published 21 July 2022)

The Fredkin spin chain serves as an interesting theoretical example of a quantum Hamiltonian whose ground
state exhibits a phase transition between three distinct phases, one of which violates the area law. Here we
consider a classical stochastic version of the Fredkin model, which can be thought of as a simple exclusion
process subject to additional kinetic constraints, and study its classical stochastic dynamics. The ground-state
phase transition of the quantum chain implies an equilibrium phase transition in the stochastic problem, whose
properties we quantify in terms of numerical matrix product states (MPSs). The stochastic model displays slow
dynamics, including power-law decaying autocorrelation functions and hierarchical relaxation processes due to
exponential localization. Like in other kinetically constrained models, the Fredkin chain has a rich structure in its
dynamical large deviations—which we compute accurately via numerical MPSs—including an active-inactive
phase transition and a hierarchy of trajectory phases connected to particular equilibrium states of the model. We
also propose, via its height field representation, a generalization of the Fredkin model to two dimensions in terms
of constrained dimer coverings of the honeycomb lattice.

DOI: 10.1103/PhysRevE.106.014128

I. INTRODUCTION

The Fredkin spin chain [1,2] is a one-dimensional lattice
model with local three-body interactions, whereby hardcore
particles can hop to adjacent sites if allowed by constraints
involving next-to-nearest neighbors. This model has been of
interest in the quantum many-body community over the last
few years for a number of reasons. In its original formu-
lation [1,2], the Fredkin chain can be expressed exactly as
an equal superposition of all Dyck paths, i.e., random walk
(RW) excursions, with appropriate endpoints, with an entan-
glement entropy which scales logarithmically in system size,
thus violating the area law [1–4]. Furthermore, the model
has slow unitary evolution [5–8] due to dynamical jamming.
With the addition of particular potential energy terms, the
model features a ground-state phase transition between states
of bounded and extensive entanglement entropy [9,10]. These
interesting properties have brought about further studies into
generalized Fredkin models [11], including versions which
present quantum scars [12].

Dynamical constraints, such as those present in the Fredkin
model, are responsible more generally for many interesting
phenomena in many-body dynamics. A striking example of
this are the kinetically constrained models (KCMs) of struc-
tural glasses [13,14]—simple lattice models equipped with
local dynamical constraints, leading to slow relaxation and
dynamical heterogeneity [15,16]. Such models can also be
considered as systems under closed unitary [17–20] and open
dissipative [21–23] quantum dynamics. A recent example of
these is the quantum PXP model [24,25] of Rydberg atoms

in optical lattices under blockade conditions, which has been
shown to exhibit nonthermal eigenstates (often called quan-
tum scars [26]). Another area where dynamical constraints
lead to interesting nonequilibrium dynamics is in determin-
istic cellular automata [27–43] (for a review, see Ref. [44]).
Recently, cellular automata circuits have also been used to
study Fredkin-like systems [45,46], revealing a universality
class of hydrodynamics. While the connection of the Fredkin
quantum spin chain to stochastic dynamics has been previ-
ously mentioned [2], it has not yet been extensively explored
(other than briefly in Ref. [47]). Here we provide such sys-
tematic study of both typical dynamics and rare fluctuations.

Classically, the Fredkin model resembles the simple ex-
clusion process (or SEP, for reviews see Refs. [48,49]). Like
the SEP, it describes particles hopping stochastically to neigh-
boring empty lattice sites with at most one particle per site.
The key difference is the presence of further local kinetic
constraints to motion. These, together with specific boundary
conditions, specifically that of an open segment with fixed
boundaries, restrict the dimensionality of the state space.
For example, for a length N = 2M chain half filled with
M particles, the dimensionality is the Catalan number CN =

1
M+1

(2M
M

)
rather than the binomial coefficient

(2M
M

)
. Although

the difference in configurational entropy is not extensive, this
constrained state space plays an important role in the dynam-
ics, as we explain below.

SEPs and KCMs display interesting dynamical properties
which can be studied with large deviation (LD) methods (for
reviews, see Refs. [50–53]). A central result in the dynamics
of these systems is the existence of phase transitions in the

2470-0045/2022/106(1)/014128(13) 014128-1 ©2022 American Physical Society
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space of trajectories, indicated by singularities in the LD func-
tions that quantify the dynamical fluctuations in the long-time
limit, both in terms of time-integrated currents [54–57], or
dynamical activities [58–62]. In the case of the Fredkin model,
a preliminary study [47] indicated that it also displays LD
transitions. Here we make this finding concrete by studying
LD functions using matrix product states (MPSs).

The paper is organized as follows. In Sec. II, we start
by defining the model and reviewing its basic properties.
We highlight its relationship to Catalan combinatorics and
RW excursions [63]. In Sec. III, we consider the equilibrium
states which follow from the properties of the ground state
of the quantum problem [1,9]. We study the properties of the
equilibrium phases in detail by means of numerical density
matrix renormalization group (DMRG) [64]. An interesting
observation is that there are three distinct equilibrium phases
and a transition between them, despite the fact that this is
a one-dimensional system with local dynamical rules. This
apparent contradiction with the Landau principle is a conse-
quence of the constrained configuration space of the model.
In Sec. IV, we study the relaxation dynamics. As in the case
of the quantum model [8], the stochastic Fredkin spin chain
exhibits slow dynamics. We provide evidence for power-law
decaying autocorrelations, and for a pattern of hierarchical
relaxation when quenched from extremal initial states into
the different equilibrium phases. In Sec. V, we study the LD
statistics of dynamical observables by means of numerical
MPSs. As in other constrained models, the phase transitions
at the LD level underpin the slow dynamics and fluctuations
seen in typical relaxation trajectories. We reveal the existence
of an active-inactive transition, as in other KCMs, but also
a hierarchy of trajectory transitions connected to hierarchical
relaxation dynamics. In Appendix B, we speculate on a possi-
ble generalization of the Fredkin model to a two-dimensional
setting defined in terms of fully packed dimers on the honey-
comb lattice (that is, rhombus coverings of the plane). We give
our conclusions in Sec. VI.

II. MODEL

The Fredkin model is defined in terms of particles hopping
on a lattice of N sites with binary occupation, n j = 0 (for
empty or down) or 1 (for occupied or up) with j = 1, · · · , N .
The system evolves under stochastic continuous-time Markov
dynamics with generator

W =
N−2∑
i=2

fi{c[σ+
i σ−

i+1 − (1 − ni )ni+1]

+ (1 − c)[σ−
i σ+

i+1 − ni(1 − ni+1)]}, (1)

where σ±
i are Pauli creation and annihilation operators on site

i. The factor in curly brackets in each term is the same as
the local generator of the asymmetric SEP (ASEP) [48,49],
with rates for hops to the left or right given by c and 1 − c,
respectively. What distinguishes the Fredkin model from the
ASEP is the kinetic constraint

fi = ni−1 + (1 − ni+2), (2)

FIG. 1. Fredkin spin chains. (a) The local stochastic transition
rates for neighboring occupied and unoccupied sites, given by all
choices of their neighbors. The fourth transition is not allowed.
(b) The disallowed configuration change in the height representation.
The troughs (· · · 0011 · · · ) are locally immobile. (c) An example
configuration in the chosen symmetry sector. The top shows the
RW representation of the height field, which must always satisfy
h > 0. The middle is the corresponding particle representation. The
bottom is in terms of Dyck words, where opening “(“ must always
be matched with a closing ”)”.

which means that hopping between sites i and i + 1 is not
allowed if ni−1 = 0 and ni+2 = 1, see Fig. 1(a) [65]. In Eq. (1),
we are considering open boundary conditions on a segment
[1, N] with no injection/ejection of particles at the bound-
aries. The fixed sites at the edges, which are not acted on by
the generator, we fix to be n1 = 1 and nN = 0.

Note that at c = 1/2, Eq. (1) is equivalent to the quantum
Hamiltonian of the original Fredkin model defined in Ref. [1],
up to a minus sign and boundary terms. For c �= 1/2, the gen-
erator Eq. (1) obeys detailed balance despite the asymmetry
in the hopping rates [66], meaning that for all values of c we
expect to find an equilibrium stationary state of W . Notice
that under a similarity transformation (see below), it becomes
equivalent to the deformed Fredkin model of Ref. [9].

The model discussed here has various symmetries. The
most obvious one is the conservation of the total number
or particles (or occupied sites): M = ∑

i ni. This property is
shared with the SEP. The constraint Eq. (2) gives rise to a
further subdivision of each subspace of fixed M, which is most
easily understood by a representation of the allowed moves in
terms of matched brackets [1]. In this representation, particles
and holes correspond to opening and closing parentheses, and
the dynamics respects normal matching rules. Thus the move

· · · 0101 · · · ←→ · · · 0011 · · · , (3)

· · · )()(· · · ←→ · · · ))((· · · (4)

is forbidden because both sides cannot simultaneously be
matched configurations [this forbidden transition is shown
in Fig. 1(b)]. Thus a complete specification of a subspace
of allowed configurations involves specifying the M pairs of
matched brackets, a unmatched opening brackets (particles),
and b unmatched closing brackets (holes) for a total N =
2M + a + b.
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For concreteness, here we will focus on the case of half
filling by fully matched particles and holes, i.e., M = N/2 a =
b = 0. In this case, the accumulated number of particles start-
ing from the left is never smaller than the accumulated number
of holes (that is, the sector that is dynamically connected to
having all particles to the left and all holes to the right, see
below), cf. Ref. [1]. We call this sector D.

It is convenient to represent a configuration x = n1:N also
in terms of a height field defined as

hi(x) =
i∑

j=1

Zj = hi−1(x) + Zi, (5)

with boundary condition h0 = 0, and where Zi = 2ni − 1. For
all configurations x ∈ D, we have hi(x) � 0 for all i. If we
think of the space direction as time and a particle (hole)
representing a step up (down), then D is the space of all paths
that correspond to RW excursions [63], that is, random paths
that return to the origin while never crossing the horizontal
axis. (In contrast, for the SEP in the height representation at
half filling, the space of dynamically connected configurations
is that of RW bridges, which are also constrained to return to
the origin but can cross the horizontal axis.). Excursions are
also known as Dyck paths. An example configuration is shown
in Fig. 1(c) with each of the representations.

III. EQUILIBRIUM STATICS

To determine the equilibrium properties of the model, we
need to find the state |ss〉 annihilated by Eq. (1). Let us con-
sider as an observable the area under the height profile of a
configuration x,

A(x) =
N∑

i=1

hi(x) =
N∑

i=1

(N + 1 − i) Zi. (6)

It is then easy to see that the the stationary state to the dynam-
ics Eq. (1) is given by [9]

|ss〉 = Nc

∑
x∈D

(
c

1 − c

) 1
2 A(x)

|x〉 , (7)

with Nc a c-dependent normalization constant to make
〈− |ss〉 = 1, where 〈−| = ∑

x∈D 〈x| is called the flat state.
The connection to RW excursions means that this prob-

ability distribution is related to the Airy function [63,67].
The properties of the stationary state at arbitrary c can also
be understood from the properties of the ground state of the
corresponding quantum model [1,9]. That is, if we perform
a similarity transformation of Eq. (1) (cf. the ASEP with the
same boundary conditions, e.g., Ref. [68]),

H = −P−1/2 W P 1/2, (8)

where P 1/2 is the diagonal matrix of the square root of con-
figuration probabilities,

〈x|P 1/2|x〉 = N 1/2
c

(
c

1 − c

) 1
4 A(x)

, (9)

we get the Hamiltonian

H = −
N−2∑
i=2

fi[
√

c(1 − c)(σ+
i σ−

i+1 + σ−
i σ+

i+1)

− c(1 − ni )ni+1 − (1 − c)ni(1 − ni+1)], (10)

whose ground state is |ψ〉 = P 1/2 ∑
x∈D |x〉. The transforma-

tion to a Hermitian form shows that, despite the asymmetric
hopping when c �= 1/2, the Fredkin model obeys detailed
balance and consequently the stationary state Eq. (7) is an
equilibrium one.

The properties of the ground state of Eq. (10) are well un-
derstood from previous studies [10,11]. Here we restate them
from the point of view of the equilibrium state of the stochas-
tic model, using MPSs (see reviews, e.g., Refs. [69–71]).

A. Exact equilibrium MPS at c = 1/2

From the connection to RW excursions at c = 1/2 the
equilibrium state |ss〉 can be written exactly as an MPS,

|ss〉 =
∑
{n1:N }

(
i|B(1)

n1
· · · B(N )

nN
| f

)|n0:1〉, (11)

where B( j)
n are site-dependent tensors and (i| and | f ) appro-

priate boundary vectors in the auxiliary (or bond) space of
the MPS (we use rounded brackets to distinguish them from
vectors in configuration space).

Consider first the slightly simpler problem of the symmet-
ric SEP (SSEP), whose generator is given by an operator like
Eq. (1) but without a constraint, fi = 1. If we consider the
same boundary conditions as for the Fredkin model, but with
extra terms in Eq. (1) that allow particle hops between sites
j = 1, 2 and N − 1, N (no longer prevented in the absence of
a constraint), then the SSEP configurations at half filling are
those of RW bridges. If the height field hj describes the posi-
tion of the RW after step j, the exact transition probabilities
at step j for generating bridges of N steps are

T br
j (h → h ± 1) = 1

2

(
1 ∓ h

N + 1 − j

)
(12)

for |h| � N + 1 − j, or zero otherwise. (These are obtained
from the naive symmetric RW transition probabilities via a
Doob transform, see, e.g., Ref. [72].) The equilibrium MPS
for the SSEP is then given by the (2N + 1) × (2N + 1)
matrices

B( j),SSEP
0 =

N∑
h=−N

|h)(h − 1| T br
j (h → h − 1), (13)

B( j),SSEP
1 =

N∑
h=−N

|h)(h + 1| T br
j (h → h + 1), (14)

with boundaries (i| = (0| and | f ) = |0). It is easy to
see that the matrices above satisfy B( j),SSEP

0 B( j+1),SSEP
1 −

B( j),SSEP
1 B( j+1),SSEP

0 = 0 for all j, which means that the MPS
Eq. (11) with tensors Eqs. (13) and (14) is annihilated by the
SSEP generator.

The construction for the equilibrium state of the stochastic
Fredkin chain at c = 1/2 is similar, but the relevant paths are
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RW excursions. In this case the Doob transition probabilities
that guarantee an excursion are (cf., e.g., Ref. [72])

T ex
j (h → h ± 1) =

⎧⎨
⎩

1
2

(
1 + 1

h+1

)(
1 − h

N+1− j

)
1
2

(
1 − 1

h+1

)(
1 + h+2

N+1− j

) (15)

for 0 � h � N + 1 − j, or zero otherwise. The corresponding
matrices now have bond dimension N + 1 and read

B( j)
0 =

N∑
h=0

|h)(h − 1| T ex
j (h → h − 1), (16)

B( j)
1 =

N∑
h=0

|h)(h + 1| T ex
j (h → h + 1), (17)

with the same boundary vectors (i| = (0| and
| f ) = |0). The relevant relations in this case
are B( j−1)

1 B( j)
0 B( j+1)

1 − B( j−1)
1 B( j)

1 B( j+1)
0 = 0 and

B( j−1)
0 B( j)

1 B( j+1)
0 − B( j−1)

1 B( j)
0 B( j+1)

0 = 0 for all j. Given
these, one can show that the MPS Eq. (11) with tensors
Eqs. (16) and (17) is annihilated by the Fredkin generator
Eq. (1). In fact, the MPS is annihilated by every local term
in the spatial sum that defines Eq. (1), so W can be said to
be a parent generator (cf. parent Hamiltonian [71]) of the
MPS Eq. (11).

Note that from the definition of the tensors B( j)
n above in

terms of transition probabilities, the MPS is in right canonical
form, and Eq. (11) therefore satisfies 〈− |ss〉 = 1. Away from
c = 1/2, we can also write Eq. (7) as an MPS if we reweigh
the coefficients in Eqs. (16) and (17) as

T ex
j (h → h ± 1) →

(
c

1 − c

)− 1
2 (h±1)

T ex
j (h → h ± 1).

These reweighed coefficients are not transition probabilities in
the height (they do not add up to one), meaning that the result-
ing MPS is not in canonical form. Finding the normalization
Nc in this case is nontrivial.

B. Equilibrium phase diagram from numerical MPS

To overcome the difficulty above, to study the equilibrium
properties for all c we resort to numerical MPS approxima-
tions. This we implement with the ITensor library [73] and
make use of the DMRG [64,74,75] to find the leading eigen-
vector of Eq. (10). We employ an adaptive bond dimension,
which is at most D = 2000 with a truncation cutoff error
ε = 10−12. Furthermore, we exploit the U(1) symmetry which
conserves the number of particles and initialize the MPS with
a product state which lies in D. We then carefully check
the relevant observables to ensure they satisfy the properties
associated with D, such as a positive height field.

By looking at various observables at stationarity, it be-
comes clear that there are three distinct equilibrium phases in
the Fredkin model: (i) c < 0.5, (ii) c = 0.5, and (iii) c > 0.5.
We denote the expectation value of an observable O with
respect to the equilibrium state as 〈O〉, with

〈O〉 = 〈−|O|ss〉 = 〈ψ |O|ψ〉 . (18)

The appropriate order parameter to characterize the equi-
librium phases is the average area 〈A〉. In Fig. 2(a), we
show 〈A〉 as a function of c for a range of system sizes
N ∈ [20, 400]. For c < 1/2, the area becomes minimal, while
for c > 1/2, the area is maximal. If we consider the area as a
function of system size N we find that 〈A〉 grows as a power
law 〈N〉 ∼ N−β , as shown in Fig. 2(b). This reveals three
distinct behaviors: the exponent β takes the values β = 1, 3/2,
and 2 for c < 1/2, c = 1/2 and c > 1/2, respectively [9].

For each phase, we show the average of the spatial oc-
cupation profile, 〈ni〉, and the average height field, 〈hi〉, in
Figs. 2(c) and 2(d), respectively. For c < 1/2, the particles
take an antiferromagnetic arrangement, Fig. 2(c) (red circles),
thus minimizing the height and therefore the area, Fig. 2(d)
(red circles). We sometimes refer to this as the flat phase (in
analogy with interacting dimers [76,77]).

At c = 1/2, all configurations occur with equal probability,
cf. Eq. (7). In terms of the RW representation of configu-
rations, this corresponds to the set of RW excursions. The
average occupation, Fig. 2(c) (blue squares) interpolates be-
tween 1 and 0, and in the thermodynamic limit, N → ∞,
the average occupation density in the bulk is 1/2 [11].
In turn, the average height field takes a semicircu-
lar form, Fig. 2(d) (blue squares). Note that this is
a phase of large fluctuations and this average height
field is not representative of typical sample profiles. This
is in contrast to the other two phases which are ex-
ponentially dominated by extremal area configurations,
cf. Eq. (7).

For c > 1/2, the particles (holes) localize to the left (right)
edge of the system [10], with a sharp change in average
occupation, Fig. 2(c) (green triangles), and with an average
height profile in the shape of a tent (with a rounded top, a finite
residue of the fluctuations of the c = 1/2 phase), Fig. 2(d)
(green triangles). This behavior is similar to that seen in the
ASEP in an open segment with fixed boundaries [68]. Simple
arguments (see Appendix A) give the profile [10]

〈nj〉 = 1

exp(( j − N/2)/λ) + 1
, (19)

with an inverse localization length λ,

λ = ln

(
c

1 − c

)−1

. (20)

We sometimes refer to the c > 1/2 phase as the tilted phase
(also in analogy with interacting dimers [76,77]). Note that
this shares no connection with the tilted generator later intro-
duced in Sec. V.

An observable which will be of importance later is the
dynamical activity 〈k〉, which measures the average number of
configuration changes per unit time in stochastic trajectories
[59,60,78]. At equilibrium, it can be measured as the average
escape rate, 〈k〉 = 〈−|R|ss〉, where R is the diagonal part of
Eq. (1). We show this in Fig. 2(e) as a function of c for
various system sizes N ∈ [20, 400]. It is immediately clear
that the dynamical activity scales with system size (up to small
finite size effects) for c � 1/2 where occupation is spread
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FIG. 2. Equilibrium properties of the Fredkin model. (a) The average area (scaled by maximum area) 〈A〉 /Am as a function of c for various
systems sizes N ∈ [20, 400]. The dashed line shows the extrapolated value for N → ∞. (b) The average area (symbols) for c = 0.4 (red/dark
grey), c = 0.5 (blue/medium grey) and c = 0.6 (green/light grey). The lines show the power laws 〈N〉 ∼ N−β with β = 1, 1.5, 2, respectively.
(c), (d) The spin occupation 〈n〉i and height profiles 〈hi〉 for each equilibrium phase with a system size N = 60. (e) The average dynamical
activity (per unit time and system size) as a function of c for various systems sizes N ∈ [20, 400]. The dashed line shows the extrapolated value
for N → ∞. All results are calculated using numerical DMRG.

out in equilibrium, cf. Fig. 2(c), leading to less constrained
and therefore more dynamics throughout the entire system.
Conversely, the activity for c > 1/2 is subextensive in system
size as expected due to the much more inactive conditions
given to the localization of the equilibrium state, cf. Fig. 2(c):
motion is limited to the center of the lattice (the tip of the tent),
where particle hops are not restricted by exclusion. By fitting
the activity with a linear form 〈k〉 = a + bN (for c � 1/2),
one can extrapolate to infinite size to determine 〈k〉 /N in
the thermodynamic limit. We show this as the black dashed
line, peaking around c ≈ 0.36. Notice that for c > 1/2, the
activity goes as O(1) and is suppressed by the scaling in N .
The differences in the active (c � 1/2) and inactive (c > 1/2)
dynamics are directly related to the dynamical LDs in Sec. IV.

C. Localization of the tilted phase

The equilibrium state for c > 1/2 is exponentially domi-
nated by maximal area configurations, that is, configurations
in which particles cluster toward the left edge of the system,
and holes cluster at the right edge. Figure 3(a) shows the
average occupation profile 〈ni〉 for various c > 1/2: for sites
beyond the halfway point, i > N/2, we observe an exponential
decay of the average occupation, 〈ni〉 ∼ e−i/λ. [Note that the
same occurs for the density of holes, 1 − 〈nN+1−i〉, coming
from the right, due to fact the generator Eq. (1) is invariant
under i → N + 1 − i and |0〉 ↔ |1〉.]

This localization can be further characterized by the den-
sity of domain walls (DWs):

〈
nDW

i

〉 = 〈ni(1 − ni+1)〉 + 〈(1 − ni )ni+1〉 . (21)

This is shown in Fig. 3(b): The DW density is close to 1 at the
center of the lattice, and decays exponentially when moving
away from it in both directions, 〈nDW

i 〉 ∼ e−| N
2 −i|/λ. Notice that

the localization is consistent for increasing system size. As we
discuss further in the next sections, exponential localization
of DWs at the center of the lattice has important implications
for the dynamics in the tilted phase: particle hops can only
occur when there are DWs, and thus activity is exponentially

suppressed away from the midpoint, and is subextensive in
system size, cf. Fig. 2(e).

The localization length λ decreases with increasing c. We
show this in Fig. 3(c) for both particle and DW densities. The
agreement with the theoretical prediction Eq. (20) is excellent.
The numerically extracted lengths here are from DMRG with
N = 100. For smaller system sizes, the localization length be-
comes comparable to system size for c ≈ 1/2, and one might
expect to see small deviations from the theoretical prediction.

FIG. 3. Localization in the Fredkin chain. (a) The occupation
profile 〈ni〉 of the steady state for c > 0.5 and N = 20. The occu-
pations exhibit an exponential decay for i > N/2. (b) The average
domain-wall occupations 〈nDW

N/2−i〉 for c = 0.75 and N = 20, 40, 60.
We see the same exponential decay of domain-wall density as we
move away from the center of the lattice. (c) The localization length λ

as a function of c. The line shows the result from the theory, Eq. (20),
and the blue circles and red crosses the numerically extracted lengths
from the occupation and DW profiles, respectively. The numerical
data is from DMRG with N = 100.

014128-5



CAUSER, GARRAHAN, AND LAMACRAFT PHYSICAL REVIEW E 106, 014128 (2022)

FIG. 4. Stochastic trajectories and dynamics. (a) Representative trajectories with initial states sampled from equilibrium for c = 0.4 (top),
c = 0.5 (middle), and, c = 0.6 (bottom), respectively, for system size N = 100 and time t = 103. (b) The autocorrelation functions Eq. (22)
for each of the three distinct equilibrium phases. At large times, the autocorrelator for c = 0.5 decays as the power law t−0.464 (from size
N = 100). (c) The same autocorrelation functions plotted on a double-log ordinate scale. For small times, they show exponential decay in
the three phases. For large times, they take a stretched-exponential form for c < 1/2 and c > 1/2. (d) The numerically estimated timescales
Eq. (23) as a function of c (for N = 40, 100, and 400). (e) Example trajectories after a quench from the initial state 1010 · · · 1010 for c = 0.5
(left) and c = 0.6 (on a logarithmic time scale). The former relaxes to equilibrium quickly, while the latter shows hierarchical relaxation (both
panels for N = 100 and t = 105). (f) The area (scaled by system size) 〈A〉 /N after the same quench, for various system sizes N ∈ [20, 100]
and c = 0.6. The dashed line shows log t . All data is obtained using continuous-time Monte Carlo.

IV. TYPICAL DYNAMICS

A. Dynamics in equilibrium

Figure 4(a) shows representative trajectories in the station-
ary dynamics of each of the three equilibrium phases (with
the initial states sampled from equilibrium). The largest fluc-
tuations occur for c = 0.5. Dynamics in equilibrium can be
quantified through the (density) autocorrelation function,

C(t ) = 1

N

N∑
i=1

〈ni(0)ni(t )〉 − 〈ni〉2

〈ni〉 − 〈ni〉2 , (22)

which provides a measure of the memory of a initial configu-
ration after time t in an equilibrium trajectory. We show C(t )
for the three equilibrium phases in Figs. 4(b) and 4(c). It is
apparent from Fig. 4(b) that for c = 1/2 the autocorrelation
decays asymptotically as a power law, with a numerically
extracted exponent of just under a half. This power-law decay
can also be observed for intermediate times at c > 1/2 [cor-
responding to fluctuations of the top of the tent, cf. Fig. 2(d)],
with this intermediate regime becoming longer as c gets
closer to 1/2. While at short times, decay is exponential, see
Fig. 4(c), for long times relaxation is stretched exponential in
both the flat and tilted phases. These are signatures of slow
dynamics.

We can extract a timescale for relaxation of correlations
from C(t ) from its integral:

τeq =
∫ ∞

0
C(t )dt . (23)

This is shown in Fig. 4(d) for a range of c. This equilibrium
timescale spikes at c = 1/2, as expected from the slow law
decay of C(t ). Notice that the spike is less sharp for smaller
system sizes due to the finite-size effects from the boundaries.

B. Relaxation toward equilibrium

Also of significance is the relaxation toward the equilib-
rium state when starting from nonequilibrium conditions. We
explore this behavior by considering dynamics following from
an initial state of minimal area, x0 = 1010 · · · 1010, corre-
sponding to a quench from deep in the flat phase (c0 � 0) to
finite c > 0. When c < 1/2, equilibrium is achieved quickly
as the initial state is not far from typical states in the flat phase.
Interesting nonequilibrium dynamics occurs when quenching
to c = 1/2 or to the tilted phase at c > 1/2. In Fig. 4(e), we
show two relaxation trajectories, one for c = 1/2 (left) and
another for c = 0.6 (right) [79]. The system size is N = 100
and the overall time of trajectories t = 105 (note that the time
axis is shown on a logarithmic scale). For the case of a quench
to c = 1/2, after a slow early regime, equilibrium is reached
in reasonable times.

For a quench to c > 1/2, we observe a slow hierarchical re-
laxation, with a progressive coarsening of clusters of particles
and holes. The target state is a tilted one, cf. Fig. 2(d), and in
the height representation this hierarchical process is the merg-
ing of smaller tents in the profile into larger ones. Due to the
constraint, Eq. (2), local configurations of · · · 0011 · · · , cor-
responding to troughs in the height field, are locally trapped,
and require particles from the right edge of clusters to diffuse
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away to allow clusters to merge. This process is exponentially
scarce in the separation distance, as occupations are exponen-
tially localized, cf. Sec. III C.

The time to complete each stage of relaxation in the tilted
phases grows exponentially with the stage. This hierarchy
is evident in the growth of the average area normalized by
system size, 〈A(t )〉 /N , as shown in Fig. 4(f), where we see
the area increasing logarithmically in time. This reveals the
hierarchical nature of the relaxation process: while smaller
systems may have relaxed to equilibrium, larger systems re-
quire the merging of larger clusters, and so the growth of the
area continues.

V. DYNAMICAL LARGE DEVIATIONS

We now study the statistical properties of the stochastic
trajectories ωt = x0:t of the Fredkin model, in particular, the
LD statistics of dynamical observables.

If K (ωt ) is a trajectory observable, the probability of it
taking a value K is

Pt (K ) =
∑
ωt

π (ωt )δ[K (ωt ) − K], (24)

where π (ωt ) is the probability of the trajectory ωt being
realized under the stochastic dynamics. For a dynamical ob-
servable K that is time extensive, in the long-time limit, the
probability of K obeys a LD principle [50–53],

Pt (K ) 
 e−tϕ(K/t ), (25)

where the function ϕ(k) is called the LD rate function. The
above asymptotic equality holds as long as the spectral gap is
nonvanishing (which it is in the Fredkin model for finite size
N [2]). A LD principle also holds for the moment generating
function,

Zt (s) =
∑

K

Pt (K ) e−sK =
∑
ωt

π (ωt ) e−sK (ωt ) 
 etθ (s),

where θ (s) is the scaled cumulant generating function (SCGF)
whose derivatives at s = 0 give the cumulants of K , scaled
by time [50]. In analogy with what occurs in equilibrium
thermodynamics, the rate function and SCGF are related by
a Legendre transform:

θ (s) = − min
k

[sk + ϕ(k)]. (26)

We consider as observable K the dynamical activity. Its
SCGF is given by largest eigenvalue of the tilted generator,
Ws, which for the Fredkin model reads

Ws =
N−2∑
i=2

fi{c[e−sσ+
i σ−

i+1 − (1 − ni )ni+1]

+ (1 − c)[e−sσ−
i σ+

i+1 − ni(1 − ni+1)]}, (27)

with s being counting field. As Ws is in general non-
Hermitian, the leading eigenvalue θ (s) has right and left
eigenvectors |rs〉 and 〈ls|.

We can write the generator in a Hermitian form with the
same similarity transformation as before, Eq. (8),

Hs = −
N−2∑
i=2

fi[e
−s

√
c(1 − c)(σ+

i σ−
i+1 + σ−

i σ+
i+1)

− c(1 − ni )ni+1 − (1 − c)ni(1 − ni+1)], (28)

with ground state Hs |ψs〉 = −θ (s) |ψs〉, related to the leading
eigenvectors of Ws by

|ψs〉 =
∑

x

√
ls(x)rs(x) |x〉 , (29)

where ls(x) = 〈ls|x〉 and rs(x) = 〈x|rs〉.

A. Active-inactive trajectory transitions at c � 1/2

From the ground state of Eq. (28), we can study statistical
properties of the trajectory ensemble of the Fredkin model
for long-time trajectories. We do this by means of numerical
tensor networks along the lines of similar recent work in
KCMs [80–85]. Figure 5 shows the LD statistics obtained nu-
merically. The top row gives this for the flat phase at c = 0.4,
and the middle row for the c = 1/2 phase. These results are
for system sizes in the range N ∈ [20, 400] obtained using
DMRG.

Figure 5(a) shows the SCGF as a function of s = 0 for
a range of sizes. For small s � 0, the SCGF follows linear
response (LR), θ (s) ≈ −sk(0), where k(s) = −θ ′(s) is the
average dynamical activity in the ensemble tilted by s, shown
in column (b). The LR prediction is shown by the dashed black
line for N → ∞, calculated by fitting the dynamical activity
for finite sizes at s = 0 with a power law and extrapolating.
Notice that at some sc(N ) > 0, which becomes smaller for
increasing N , the behavior deviates from LR to one which no
longer scales with N (this is most apparent for c < 1/2). The
step in the average activity, Fig. 5(b), top and center, indicates
a phase transition between dynamical phases of high and low
activity. The change in activity tends to a discontinuity with
increasing size, indicative of a first-order transition.

The point sc(N ) at which the crossover occurs at finite size
can be estimated from the peak in the corresponding dynami-
cal susceptibility, χ (s) = θ ′′(s), shown in column (c) of Fig. 5.
As the system size is increased, the crossover point shifts
towards s = 0 and becomes sharper. The change in dynamics
can be seen in the broadening of the LD rate function ϕ(k)
around the equilibrium average, shown in Fig. 5(d). The rate
functions show the characteristic Maxwell construct of a first-
order transition between two phases, an active one with large
k and an inactive one with vanishing k. Note that while the
transition in activity looks less sharp for c = 0.5, we expect
to recover the usual first-order behavior for increasing system
sizes as seen by the broadening of the rate function.

For c � 1/2, the location of the crossover can be fit by a
power law sc(N ) ∼ N−α . The upper panel of Fig. 5(e) shows
this for c = 0.4 and c = 1/2. The lower panel of Fig. 5(e)
shows the dynamical exponents α as a function of c. When c is
far from 1/2, we have approximately α ≈ 1.2. The exponent
increases quickly as we approach c = 1/2, to around α ≈ 2.5,
a value similar to that found in other exclusion processes [83].
It could be that for values close to (but not equal to) c = 1/2,
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FIG. 5. Finite-size scaling of dynamical LD transitions. The dynamical LD statistics for each equilibrium phase. The top (middle) row of
(a)–(d) shows c = 0.4 (c = 0.5) with N ∈ [20, 400] obtained via DMRG and the bottom row shows c = 0.9 obtained through ED. (a) The
SCGF θ (s) as a function of s. The upper and middle panels are scaled by system size, with dotted lines showing the value for s → ∞ and
the dashed line showing the linear response prediction (see the main text). (b) The average dynamic activity k(s) as a function of s. The
top and bottom panels are shown on log-log scales, whereas the middle one is shown in linear scale. The dashed lines in the bottom panel
correspond to integer multiples of k(0). (c) The dynamical susceptibility χ (s) = θ ′′(s) as a function of s. (d) The LD rate function scaled by
system size ϕ(k)/N as a function of activity k. The black dashed lines show a Poisson distribution with mean k(0)/N in the thermodynamic
limit N → ∞, extrapolated from finite-size DMRG data. (e) We estimate the critical point as a function of system size from the peaks of the
dynamical susceptibility for c = 0.4, 0.5 in the top panel. The dashed lines shows a fitted power law sc ∼ N−α , with the bottom panel showing
the obtained α for various c.

the measured exponent would be lower if we accounted for
larger system sizes.

B. Dynamical phases for c > 1/2

Obtaining accurate estimates of θ (s) for c > 1/2 at large
system sizes is difficult due to a proliferation of dynamical
phases. In particular, it is hard for DMRG to converge to the
correct phase due to a large density of states. For this reason,
for c > 1/2 we limit our studies to system sizes N = 6, 12, 18
with large c = 0.9 � 1/2, which allows us to effectively
study the hierarchy of dynamical phases using exact diago-
nalization (ED) [86]. The bottom row of Fig. 5 shows these
results.

Since the typical dynamics (s = 0) of the tilted c > 1/2
phase is itself inactive, cf. Fig. 2(e), we expect transitions to
the active phase to occur at s < 0 for finite size systems. In
fact, Fig. 5(b) shows several points where the behavior of the
SCGF changes. The number of these points seems to increase
with system size. In each case, this change in behavior corre-
sponds to transitions in the dynamics. At each of these points,
we see a sharp drop in the activity, this becoming sharper with
increasing N . The values at which the activity plateaus are
multiple integers of the equilibrium activity, k(s = 0), and are

shown by the black dashed lines. With the limited range of
sizes accessible via ED, it is not possible to do a finite-size
scaling analysis as we did for c < 1/2. From the systems stud-
ied, we observe that the first away from equilibrium inactive
behavior happens at increasing s (that is, getting closer to 0)
for increasing N , which shows in the flattening of the rate
function, see bottom panel in Fig. 5(d).

C. Structural properties of the dynamical large deviations

The difference in the behavior of the various dynamical
phases also manifests in the structural properties of the con-
figurations visited by the trajectories. The eigenvector |ψs〉
obtained from either DMRG and ED contains the probability
amplitudes for each configuration, making it easy to calculate
averages of configuration observables O(x) in the tilted en-
semble [87]:

〈O〉s = 〈Ls| O |Rs〉 =
∑

x

O(x)ψs(x)2. (30)

In Fig. 6, we show the local occupations 〈ni〉s (top panels),
and the average area 〈A〉s (middle and bottom panels), for
(a) c = 0.2, (b) c = 1/2, and (c) c = 0.9. It is clear that the
limit of large activity (s < 0 with |s| large) particles spread out

014128-8



SLOW DYNAMICS AND LARGE DEVIATIONS IN … PHYSICAL REVIEW E 106, 014128 (2022)

FIG. 6. Structural properties of the LDs. We show observables for each equilibrium phase with (a) c = 0.2, (b) c = 0.5, and (c) c = 0.9.
The top row shows the average occupations 〈ni〉s for site i (with differing system sizes and ranges of s). The middle row shows the area scaled
by system size 〈A〉s /N for s < 0. Finally, we show the area scaled by system size squared 〈A〉s /N2 for s > 0 in the bottom row.

to maximize the activity. This is evident by the average area
〈A〉s, which scales linearly with system size N , resembling
the structures associated with the equilibrium flat phase for
c < 1/2. Thus, the active phase for all values of c is also a
structurally flat one. Conversely, in the inactive limit for all
values of c (large s > 0), particles cluster at the left edge of
the system and maximize the area, which scales as N2. Thus,
irrespective of the equilibrium static phase, the inactive phase
of the dynamics is structurally tilted.

Interestingly, we observe very sharp transitions for c �= 1/2
even at smaller sizes—this is unusual when compared to other
constrained models [80,83]. This could be due to the sharp
transition in activity at equilibrium, cf. Fig. 2. Indeed, for
c > 1/2 we notice sharp structural changes at the location of
the sharp points of Fig. 5. It is clear that the corresponding
structures are related to the assembly of excited states at
equilibrium (s = 0) obtained by joining multiple ground states
of smaller system sizes (compared to what occurs in the ex-
cited states of the quantum East model [19]). Of course this
makes sense, as despite the scarcity of the configurations asso-
ciated with these states, they have large lifetimes (as discussed
in Sec. III) with impactful consequences on the relaxation
behavior.

D. Entanglement entropy

We now consider the bipartite von Neumann entanglement
entropy of the MPS approximations to Eq. (28). We parti-
tion the system into two subsystems A and B, which denote
the spins i ∈ [1, N/2] and i ∈ [N/2 + 1, N] respectively. The
bipartite entanglement entropy between the two partitions is
then calculated by

SE (s) = −Tr[ρA log ρA], (31)

where ρA = TrB[ρ] denotes the reduced density matrix for A,
and ρ = |ψs〉 〈ψs| is the density matrix for the full system.

The Hamiltonian Eq. (28) exhibits a ground-state phase
transition in the bipartite entanglement entropy for s = 0. In
particular, it scales as SE (0) ∼ log N for c = 1/2 and SE (0) ∼
1 for c �= 1/2 [1–4]. We now extend this analysis to s �= 0.
Figure 7 shows the entanglement entropy for increasing sys-
tem size N ∈ [20, 200] for c = 0.4 (top) and c = 0.5 (bottom)
and a range of s. Notice that for c < 1/2, the entropy obeys
an area law for all s (although we observe spikes around
the transition from active to inactive dynamics). For c = 1/2,

FIG. 7. Entanglement entropy of the LD eigenvectors. The bi-
partite entanglement entropy SE (s) for c = 0.4 (top) and c = 0.5
(bottom) and system sizes N ∈ [20, 200]. For c = 0.5, the entangle-
ment entropy scales as approximately SE ∼ log N .
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FIG. 8. Extreme active limit. (a) The rescaled SCGF θ̃/N (top)
and the area 〈A〉−∞ /N (bottom) as functions of N measured via
DMRG. We fit the SCGF as a + bN−1, allowing us to extrapolate the
value in the thermodynamic limit N → ∞ (see main text), shown by
the dashed line. The value for the area quickly settles with increasing
system size, indicated by the dashed line. (b) The occupation profiles
〈ni〉−∞ for N = 40.

we observe for large magnitude s < 0 the states clearly also
obey an area law. As s approaches s = 0, the entanglement
entropy appears to grow significantly toward SE (0), and looks
to scale logarithmically. It is important to note, however, we
only show a small range of system sizes, and it is most likely
that for some fixed s < 0, the entanglement entropy will be
bounded as N → ∞, and thus obeys an area law. This can be
seen by the branching behavior seen in Fig. 7. An important
consequence is that for large enough N , one is able to con-
struct a state with arbitrarily high entropy by tuning the value
of s toward s = 0. For the inactive phase s > 0, ψs clearly
also obeys an area law, again with the entanglement entropy
spiking as s approach s = 0.

E. Limits of maximal and minimal activity

The limit of maximum activity is that at s → −∞. In
this limit, the diagonal parts of Ws (and Hs) are suppressed
and only the off-diagonals are left. Notice that for Hs, the
dependence on c falls out as a prefactor. As the tilting in Ws

grows exponentially with −s for negative s, we rescale the
SCGF as

θ̃ = lim
s→−∞

esθ (s)√
c(1 − c)

, (32)

when taking the limit. The (rescaled) eigenvalue θ̃ coincides
with the (similarly rescaled) dynamical activity. We show this
in Fig. 8(a) as a function of N ∈ [10, 400] (circles, shown
divided by N), and fit it with the function of aN + b (blue
dashed line, shown divided by N). By extrapolating to infinity,
we find that

lim
N→∞

θ̃/N ≈ 0.691. (33)

The average area 〈A〉−∞, see Fig. 8(a) takes an almost constant
value, with small fluctuations for small system sizes:

lim
N→∞

〈A〉s /N ≈ 0.835. (34)

Notice that the area scales linearly with system size and is
similar to the equilibrium states found for c < 1/2. This is
further seen from the average occupations 〈ni〉−∞, see

Fig. 8(b), showing the antiferromagnetic pattern of the flat
equilibrium phase.

The opposite limit of s → ∞ gives the most inactive state.
In this limit, only the diagonal escape rate part of Eq. (27)
[or Eq. (28)] remains and each configuration x ∈ D is an
eigenstate. The configurations with the smallest escape rates
dominate. Depending on c and N , this is either the maximal
area (i.e., fully tilted) configuration, 1111 · · · 0000, which has
escape rate R = 2(1 − c), or the minimal area configuration
1010 · · · 1010, which has escape rate R = c(N − 2). The latter
dominates if N > 2c−1, and the former dominates if N < 2c−1

(with degeneracy at N = 2c−1).

VI. CONCLUSIONS

Here we have provided a detailed study of the statics
and dynamics of the stochastic Fredkin model. Despite being
one-dimensional and having local transition rules, this model
displays phase transitions between three distinct equilibrium
phases. This is a consequence of the constraints in the dynam-
ics which restrict the state space to that of RW excursions,
with these static transitions controlled by the asymmetry in the
particle hopping rates. Two of these phases are ordered, one
being flat and another one tilted (in terms of the height field
representation), with an intermediate disordered and fluctuat-
ing phase. This phase behavior is in some ways reminiscent
of interacting two-dimensional dimer coverings [76,77,88].

The constraints in the local transitions of the Fredkin
model lead to a rich dynamics, both in equilibrium and in
the relaxation after a quench. This richness can be seen as a
consequence of a nontrivial phase structure of the ensemble of
stochastic trajectories. Using numerical MPSs with DMRG,
we compute the LDs of the dynamical activity and show
the existence of active-inactive space-time phase transitions,
something that is also observed in other KCMs. The overall
picture is one where the static phases extend into dynamical
ones, with the flat phase also being a dynamical active phase,
and the tilted phase a dynamical inactive one, with first-order
transitions between them.

There are many possible continuations of the work here.
One is to go beyond one dimension. As an initial step, in
Appendix B we propose a two-dimensional generaliza-
tion of the Fredkin model: By focusing on the fact that
Fredkin configurations are RW excursions, we proposed a
two-dimensional model in terms of packed dimers on the hon-
eycomb lattice with constraints in the dynamics which enforce
configurations to be excursion surfaces. It will be interesting
to study this and similar stochastic models in future work.
Another interesting area of exploration would be to study the
Hamiltonian Eq. (28) under unitary dynamics, in analogy with
recent work that studied other quantum KCMs. As occurs with
the quantum East model [19], we expect the constraints in
Fredkin models to provide mechanisms for localization and
nonthermal eigenstates. We hope to report on this in the near
future.
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FIG. 9. Two-dimensional generalization of the Fredkin model. (a) Dimer covering of the honeycomb lattice. (b) Equivalent rhombus tiling
of the plane. (c) Definition of the height field: Given a tiling, moving along the edges of the rhombi the height increases of decreases by one
unit as shown. For example, the path in (b) shows that the start and end points have a height difference of +2. (d) The elementary local moves
that preserve the perfect tiling character (i.e., no tiling defects or no monomers in the dimer representation) are rotations of a triplet of tiles
forming an elementary hexagon. These are the dimer/tiler equivalent of the particle-hole exchange in the SEP. These moves change the height
field of the central site by three units. (e)–(g) Constrained moves: Requiring the presence of the extra tile guarantees that the height of the
central site (indicated by the filled circle) never goes below the lowest height of the arrangement (indicated by the open circle). These are the
two-dimensional equivalents of the allowed moves in the Fredkin chain, see Fig. 1(a).
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APPENDIX A: THE DENSITY PROFILE FOR c > 1/2

Simple statistical mechanical considerations can be used
to compute the density profile for c > 1/2 in the thermody-
namic limit. Recall that the probability of a configuration x
is weighted by a factor that depends on the area A(x) under
the path

P(x) ∝
(

c

1 − c

) 1
2 A(x)

= exp(−βA(x)),

where β ≡ 1
2 log[(1 − c)/c]. The entropy associated with a

configuration is just the sum of the binary entropies:

S(x) = −
∑

i

[ni log ni + (1 − ni ) log(1 − ni )].

After writing the area as

A(x) =
N∑

i= j

h j (x) =
N∑

i= j

(N + 1 − j) Zj (A1)

(Zi = 2ni − 1), we arrive at the free energy,

N∑
j=1

[(ξ − j)Zj] − β−1S,

where ξ is a Lagrange multiplier introduced to fix the overall
particle number

∑
j n j . Extremizing the free energy gives

Zj = tanh(β[ξ − j]).

Thus Zj has a DW profile with a location ξ that is determined
by the particle number (ξ = N/2 for half filling), and a width

λ ≡ (2β )−1 =
[

ln

(
c

1 − c

)]−1

.

APPENDIX B: POSSIBLE TWO-DIMENSIONAL
GENERALIZATION

The height representation of the Fredkin model suggests
several possible generalizations to two dimensions by analogy
with dimer coverings. One possibility is the following.

Consider a fully packed dimer covering of the honeycomb
lattice, see Fig. 9(a), where each link connecting any two
neighboring sites of the lattice is occupied by a dimer. Such
coverings have a height representation in terms of a height
field hi, j , which becomes apparent in the equivalent rhombus
tiling of the plane, see Fig. 9(b): From some origin (0,0) where
h0,0 = 0, the height of a site is computed by moving along
the edges of the rhombi with �h at each step according to
Fig. 9(c). For example, in the covering of Fig. 9(b), the two
initial and final sites connected by the path with the arrows
differ in height by �h = 2. For fully packed dimer configura-
tions (also called perfect tilings), it is easy to verify that any
path that connects two sites gives the same height difference
and the height field is uniquely defined. Honeycomb dimer
coverings (rhombus tilings) therefore define surfaces in two
dimensions. In a configuration with an equal amount of the
three kind of tiles, the height field is pinned at zero at the
boundaries (for example, in three sites at angles of 2π/3
within a hexagonal region). This is a two-dimensional version
of the one-dimensional height field from a lattice of particles
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and holes at half filling which is bound to return to the origin.
In the one-dimensional case, the elementary local move

that preserves the filling fraction is to exchange a particle with
an adjacent hole. The analogous move for a rhombus tiling
is shown in Fig. 9(d) and corresponds to rotating a triplet
of tiles forming an elementary hexagon. This move changes
the height of the central site by �h = ±3. To prevent the
height field from becoming negative, which is the defining
property of the dynamics of the Fredkin model, transitions
like those of Fig. 9(d) have to be constrained, cf. Fig. 1(a).
Figures 9(e)–9(g) show the corresponding allowed transitions
in the two-dimensional case: the exchange of tiles is only

possible if either of the extra green/blue/red tiles as in ar-
rangement Figs. 9(e)–9(g), respectively, is present, and not
allowed otherwise. This constraint implies that in the transi-
tion the height of the site at the center of the hexagon cannot
go below that of the site indicated by a circle. With this
dynamical rule, it is guaranteed that the height field of the
dimer/rhombus arrangement never becomes negative at any
point, a two-dimensional version of the RW excursions that
define the configurations of the Fredkin model. Furthermore,
giving different rates to the forward and backward moves in
Figs. 9(e)–9(g) should lead to flat and tilted phases weighted
by the volume under the surface.
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Chapter 6

Optimal sampling of dynamical large
deviations via matrix product states

The following work is from the publication “Optimal sampling of dynamical large de-
viations via matrix product states” by Luke Causer, Mari Carmen Bañuls and Juan P.
Garrahan, in Physical Review E 103, 062144 (2021).

Previous efforts, including the previous two chapters, make use of MPSs to character-
ize the dynamical LDs for KCMs. The MPS contains information about the long-time
averaged properties associated with the dynamical LDs. However, they do not contain
any of the dynamical information of the rare events (other than the average number of
jumps). To retrieve this information, one must consider the trajectories associated with
the rare events. Generating these trajectories on-hand is a much harder task. This prob-
lem is tackled here by using MPS to estimate the so-called “Doob” dynamics, the true
dynamics responsible for generating the rare trajectories.

The constructed dynamics only approximates the Doob dynamics, but can be used
in tandem with trajectory sampling algorithms, such as TPS, to efficiently sample rare-
events directly from the Doob dynamics. Our work shows this can be easily achieved
with little computational power. The method can be used to sample from trajectory
ensembles at finite times, in contrast to the purely MPS approaches, which only provide
time-averaged information at infinite times. This approach allowed for an investigation
of the temporal scaling of first-order dynamical phase transitions.

Corrections to the manuscript:

1. Equation 7 should read Pt(K) ∼ e−tφ(K/t).
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The large deviation statistics of dynamical observables is encoded in the spectral properties of deformed
Markov generators. Recent works have shown that tensor network methods are well suited to compute accurately
the relevant leading eigenvalues and eigenvectors. However, the efficient generation of the corresponding rare
trajectories is a harder task. Here, we show how to exploit the matrix product state approximation of the dominant
eigenvector to implement an efficient sampling scheme which closely resembles the optimal (so-called “Doob”)
dynamics that realizes the rare events. We demonstrate our approach on three well-studied lattice models, the
Fredrickson-Andersen and East kinetically constrained models, and the symmetric simple exclusion process. We
discuss how to generalize our approach to higher dimensions.
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I. INTRODUCTION

The complex behavior of the nonequilibrium dynamics of
stochastic systems can be characterized by studying trajectory
ensembles, that is, the set of all possible trajectories alongside
the probability that they occur under the evolution defined via
a stochastic master operator. This is analogous to standard
thermodynamics, where static properties are entirely deter-
mined by the equilibrium ensemble of all microstates and
the probabilities [1]. Often the dynamical behavior of interest
is dominated not by trajectories that are typical under the
dynamics, but by “rare events” which are exponentially (in
time and in system size) scarce. Studying these rare events
is made possible by using the framework of large deviations
(LDs) [2–7], where in large time limits time-extensive dy-
namical observables obey a LD principle, and their statistics
is encoded in functions which play for dynamics the role
that thermodynamic potentials play for statics (see below for
definitions).

LD functions can be obtained in principle from a defor-
mation or tilting of the dynamical generator (in the case of
continuous-time dynamics) or the Markov matrix (in the case
of discrete-time dynamics), through its largest eigenvalue.
Obtaining this eigenvalue is not always an easy—or even
possible—task, and often one needs to resort to numerical
methods. Methods to overcome this difficulty often include
techniques based on population dynamics, namely cloning
or splitting [8–11], and importance sampling [12–16] which
provide information about the configurations frequently vis-
ited by the rare events. Notice that even if one manages to
diagonalize the tilted generator (or the Markov matrix), the
generation of rare trajectories is nontrivial: While rare trajec-

tories are “generated” by the tilted operator, this is not a proper
stochastic operator and these trajectories cannot be directly
sampled.

The efficient sampling of rare events can be achieved
by searching for another stochastic dynamics which gen-
erates trajectories with desirable probabilities that are the
same as (or a close approximation to) those of the tilted
generator (with any small discrepancy corrected via impor-
tance sampling techniques). Methods for doing so currently
include optimal control [17,18] and machine learning ap-
proaches, where one attempts to “learn” this convenient
sampling dynamics [19–21]. The optimal choice for a refer-
ence dynamics is the so-called generalized Doob dynamics
[22–27], which generates trajectories with the exact tilting
corresponding to the deformed generator. The Doob dynam-
ics thus produces rare trajectories of the original dynamics
“on demand.” To construct such optimal dynamics, however,
requires knowledge of the leading eigenvector of the tilted
generator.

Variational tensor network (TN) techniques [28–34], origi-
nally devised as a tool to study quantum many-body systems,
are also convenient for studying classical statistical systems
[35–38]. More recently, they have been shown to be useful
in the context of LDs in stochastic dynamics [39–43]. In
particular, it is often both possible and easy to approximate the
leading eigenstate of the tilted generator of a one-dimensional
stochastic lattice system using a matrix product state (MPS)
ansatz, even those with dynamical (i.e., LD) phase transitions.
Recent works have made use of this eigenstate to determine
the statistical properties of the dynamics [39–43]. However,
such TN approach has not yet been exploited to sample effi-
ciently rare trajectories. This is what we do in this paper. We
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CAUSER, BAÑULS, AND GARRAHAN PHYSICAL REVIEW E 103, 062144 (2021)

present a scheme to use the MPS approximation to the leading
eigenvalue of the tilted generator to construct a dynamics
which very closely resembles the optimal Doob dynamics, and
we show how we can use this dynamics to efficiently sample
rare events.

We focus on three paradigmatic models. The first two cor-
respond to kinetically constrained models (KCMs) [6,44,45],
specifically the Fredrickson-Andersen (FA) and the East [46]
model, two well-studied models known for their connection
to structural glasses [47,48]. The third model is the symmetric
simple exclusion processes (SSEPs) [49,50]. All these mod-
els have interesting LD statistics, including trajectory phase
transitions controlled by their activities and/or currents (in the
case of the SSEP) [3,5,51–54].

The paper is organized as follows. In Sec. II, we review
continuous-time Markov dynamics and LDs. We also recap
how one can apply an MPS ansatz to study KCMs. In Sec. III,
we define the Doob dynamics and introduce a scheme to
approximate it with a reference dynamics, constructed us-
ing an MPS approximation to the leading eigenstate of the
tilted generator. In Sec. IV we present the numerical results
from our method applied to the three models. We show how
our approach can effectively be used to accurately measure
the statistics of time-extensive observables. We provide an
outlook on possible generalizations and our conclusions in
Sec. V.

II. LARGE DEVIATIONS AND MATRIX PRODUCT STATES

In this section we introduce continuous-time Markov dy-
namics, giving specific examples in the context of kinetically
constrained models (KCMs) and exclusion processes. We then
also review the framework of large deviations (LDs) and how
variational matrix product states (MPS) can be used to deter-
mine the LD statistics.

A. Continuous-time Markov dynamics for
KCMs and exclusion processes

We consider stochastic Markov dynamics which evolves
continuously in time. Suppose we have some system with the
set of configurations {x1, x2, . . . , xM} where M is the size of
the configuration space. The probability that the system is in
some configuration x at the time t is encoded in the proba-
bility vector |P(t )〉 = ∑

x P(x, t ) |x〉 which evolves under the
stochastic master equation

d

dt
|P(t )〉 = W |P(t )〉 . (1)

Here, the generator of the dynamics W is given by

W =
∑

x,x′ �=x

wx→x′ |x′〉 〈x| −
∑

x

Rx |x〉 〈x| , (2)

where wx→x′ are the transition rates from configuration x to x′
and Rx = ∑

x′ �=x wx→x′ is the escape rate from x. The largest
eigenvalue of the generator is zero, with the left eigenvec-
tor the flat state 〈−| = ∑

x 〈x|, and the right eigenvector the
steady state |ss〉 = ∑

x P(x) |x〉, which describes the probabil-
ity of finding any configuration at equilibrium. If our system
obeys detailed balance, then we are guaranteed that any initial

state will eventually relax to some equilibrium state given
enough time. Here, we assume this to be the case.

We will focus on two broad areas of one-dimensional (1D)
constrained systems. The first is KCMs (for reviews, see
Refs. [6,44,45]), for which configuration changes are gov-
erned by a kinetic constraint which is explicitly encoded in
the generator. For concreteness, we focus on the 1D spin facil-
itation Fredrickson-Andersen (FA) [55] and East [46] models.
Both models are defined on a 1D lattice of N binary variables
(spins) n j = 0, 1 for j = 1, . . . , N , and configuration changes
are only allowed via single-spin flips. The Markovian genera-
tors for both models are given by

W East/FA =
N∑

i=1

PEast/FA
i [cσ+

i + (1 − c)σ−
i

− c(1 − ni ) − (1 − c)ni] (3)

where σ±
i are the Pauli raising/lowering operators acting on

site i and c ∈ (0, 0.5] controls the rates at which spins flip,
given they satisfy the kinetic constraints

P FA
i = ni−1 + ni+1, PEast

i = ni−1, (4)

where the first only allows a transition if the spin attempting
to flip has a neighboring excitation, and the second only
if the neighboring spin to the left is excited. (For the FA
model the constraint is sometimes defined as the projector
ni−1 + ni+1 − ni−1ni+1, but in practice it makes little differ-
ence with the definition above.)

The second area we consider are exclusion processes
[49,50]—particles hopping around sites on a lattice, with a
hardcore exclusion such that we can have at most one particle
per site. We focus on the 1D symmetric simple exclusion pro-
cess (SSEP), adopting the lattice notation we used for KCMs,
where now n j = 1(0) implies the site is occupied (empty). In
the SSEP, a particle can hop left or right to its neighboring
sites, both with the same rate (γ = 1/2) if the neighboring
site is not already occupied. The generator for the dynamics is

W SSEP = 1

4

N∑
i=1

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + σ z

i σ z
i+1 − 1

)
, (5)

where σ a
i are the Pauli operators acting on site i.

For the entirety of this paper, we will assume open
boundary conditions (OBCs), which will later reduce the com-
putational cost of tensor network contractions. This formally
means that we set n0 = nN+1 = 0. Furthermore, we impose
certain restrictions on the state space. For the FA model, we
simply exclude the disconnected zero state ni = 0, ∀i. On the
other hand, we set n1 = 1 for the East model which ensures
the state space remains fully connected on each dynamical site
i > 1. Finally, we restrict SSEP such that the total number of
particles Np = ∑

i ni is fixed, with particle density np = Np/N
which will be assumed to be np = 1/2.

B. Trajectories and large deviations

Consider some general trajectory ωt = {x0 → xt1 →
· · · → xtK } where the system moves into the configuration
xti at time ti and has the total time t > tK . The dynamical
activity K̂ [3–6,56] is a trajectory observable which measures
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the number of configuration changes for a given trajectory.
The probability of observing some activity K can then be
calculated as the sum over all trajectories with K configuration
changes, and the probability they occur,

Pt (K ) =
∑
ωt

π (ωt )δ[K̂ (ωt ) − K], (6)

where π (ωt ) is the probability of observing ωt . For large
times, this obeys the large deviation (LD) principle [2–5]

Pt (K ) ∼ etϕ(K/t ), (7)

where ϕ(K/t ) is called the LD rate function and plays the
role of entropy density for trajectories. Alternatively, one can
consider the moment generating function (MGF) [2]

Zt (s) =
∑

K

Pt (K )e−sK =
∑
ωt

π (ωt )e
−sK̂ (ωt ), (8)

which contains equivalent information to Eq. (7) and can be
considered the partition function. From Eq. (8), we see that
the weighting of each trajectory is the probability that the
trajectory occurs, exponentially reweighted by its dynamical
activity. The MGF also obeys a LD principle,

Zt (s) ∼ etθ (s), (9)

where θ (s) is the scaled cumulant generating function
(SCGF), whose derivatives evaluated at s = 0 give the cu-
mulants of K scaled by time. The SCGF plays the role of
the thermodynamical free energy of trajectories and is re-
lated to the LD rate function by a Legendre transform θ (s) =
− mink[sk + ϕ(k)] [2].

The MGF Eq. (8) can be expressed as

Zt (s) = 〈−|etWs |in〉 , (10)

where |in〉 is some initial probability vector and Ws is an op-
erator which we name the tilted generator, and is a deformed
version of Eq. (2) where we tilt with respect to the dynamical
observable of interest [2–5]. For the case of the dynamical
activity [3–5], we simply tilt the off-diagonals of W with the
same factor to obtain

Ws =
∑

x,x′ �=x

e−swx→x′ |x′〉 〈x| −
∑

x

Rx |x〉 〈x| . (11)

The largest eigenvalue of Ws is the SCGF θ (s), with asso-
ciated left and right eigenvectors 〈ls| and |rs〉. Since 〈ls| in
general is not the flat state, Ws is not a proper stochastic
generator for s �= 0 [3–5]. If one could exactly diagonalize
Eq. (11) to find its leading eigenvalue and eigenvectors, then
they would entirely unravel the LD statistics. We now briefly
recap how this can be achieved using numerical TN tech-
niques [40–43].

C. Variational matrix product states

A matrix product state (MPS) is an ansatz for describing
vector states of many-body systems [28–30,57,58],

|	〉 =
d∑

i1,...,iN

Tr
(
Ai1

1 Ai2
2 · · · AiN

N

) |i1 i2 · · · iN 〉 , (12)

where each subsystem k has its own rank-3 tensor Ak with the
dimensions d × D × D. The allowed entanglement within the
state is controlled by the bond dimension D [32]. It is often
convenient to represent tensor networks in a diagrammatic
form using shapes to represent tensorial objects, and (connect-
ing) lines to represent contractions over tensors. For example,
the corresponding diagram for an MPS is

|Ψ〉 = ,
(13)

where each circle corresponds to one of the tensors Ak . Sim-
ilarly, one can also attempt to write some operator Ô as
a matrix product operator (MPO) [33,34,59–62]. Operators
which act locally on the subsystems, such as Eqs. (3)–(5),
can be efficiently described as a MPO. That is to say, we
can represent them exactly in MPO form with only a small
constant bond dimension. The diagrammatic representation
for MPOs is

Ô = . (14)

MPSs allow for the easy and efficient implementation
of the widely used density matrix renormalization group
(DMRG) method [63,64], an algorithm designed to iteratively
minimize the energy of a state E	 with respect to some
Hamiltonian Ĥ . In the language of MPS [30], we start with
some guess at some fixed bond dimension, and sweep through
each tensor applying local optimizations with all other tensors
fixed. This is done until we reach convergence, which is
usually when the change in energy of the state per sweep is
small. At the end of the routine, one can efficiently calculate
the variance of the state with respect to the Hamiltonian

δE	
2 = varĤ (	) = 〈Ĥ2〉	 − 〈Ĥ〉2

	 , (15)

where 〈·〉	 = 〈	| · |	〉 denotes an expectation value. We
check to see if it has fallen below some desired value ε; if
not, we run the algorithm with an increased bond dimension,
where we typically use the state from the previous run as an
initial guess. For more details on the workings of variational
MPS (vMPS) algorithms, see the reviews [30,65].

Many recent works have shown that vMPS algorithms are
very effective for studying the LD statistics of classically
constrained systems which obey detailed balance [40,41,43].
In particular, if we write the tilted generator in a way such
that it is Hermitian, then the state we are searching for is the
ground state. This guarantees each update is an improvement
upon the last. For dynamics obeying detailed balance, the
activity-tilted generator can be brought to a Hermitian form
using a similarity transformation that is independent of s [5],

Hs = −Q−1WsQ. (16)

For the case of the East/FA models [5], the diagonal operator
Q is given by

QFA/East = [
√

1 − c |0〉 〈0| + √
c |1〉 〈1|]⊗N , (17)

and for the SSEP by QSSEP = I. The Hamiltonian Hs has
the ground state |ψs〉 with energy −θ (s). The ground state is
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related to the left and right eigenvectors of Ws in the following
way [40],

|ψs〉 = Q−1 |rs〉 , (18)

〈ψs| = 〈ls| Q, (19)

|ψs〉 =
∑

x

√
ls(x)rs(x) |x〉 , (20)

where ls(x) = 〈ls|x〉 and rs(x) = 〈x|rs〉.

III. DOOB TRANSFORMATION AND OPTIMAL
SAMPLING

We now define the so-called generalized Doob transforma-
tion [19,22–25,27,66], and show how one can use our MPS
solution to Eq. (16) to construct a reference dynamics which
closely resembles the true Doob dynamics. We then present a
method to optimally sample the rare events of our toy models
using these dynamics.

A. Generalized Doob dynamics

The goal is to find a proper stochastic generator which
generates trajectories with the same probabilities as those in
the tilted dynamics Ws, cf. Eq. (11). This can be achieved us-
ing the (long-time) generalized Doob transformation [19,22–
25,27,66], defined as

W Doob
s = L[Ws − θ (s)I]L−1, (21)

where L = diag(〈ls|) is the left eigenvector 〈ls| as a diagonal
matrix. It is easy to check that Eq. (21) is annihilated by the
flat state 〈−|, which means that W Doob

s is a stochastic operator.
Its stationary state is

|ss〉Doob
s =

∑
x

P̃(x) |x〉 =
∑

x

ls(x)rs(x) |x〉 . (22)

The generator W Doob
s can also be expressed as a sum of its

diagonal and off-diagonal elements

W Doob
s =

∑
x,x′ �=x

ls(x′)
ls(x)

e−swx→x′ |x′〉 〈x|

−
∑

x

[Rx + θ (s)] |x〉 〈x| . (23)

Thus our dynamics has the transition rates and escape rates

w̃x→x′ = ls(x′)
ls(x)

e−swx→x′, (24)

R̃x = Rx + θ (s), (25)

respectively. That is to say, the transition rates are reweighted
by e−s and by some ratio ls(x′)/ls(x) which depends on the
structure of the configurations, and the escape rate is shifted
by θ (s).

We now consider some general time-dependent observable
Â, and ask what is the expectation value in the tilted dynamics,

〈Â〉s ≡ 〈Âe−sK 〉
〈e−sK 〉 = Zt (s)−1

∑
ωt

π (ωt )Â(ωt )e
−sK̂ (ωt ). (26)

One can now apply importance sampling to arrive at

〈Â〉s = Zt (s)−1
∑
ωt

π̃ (ωt )
π (ωt )

π̃ (ωt )
Â(ωt )e

−sK̂ (ωt )

= Zt (s)−1
〈π
π̃

Âe−sK̂
〉
Doob

, (27)

where π̃ (ωt ) is the probability of observing ωt in the dynamics
generated by W Doob

s and 〈·〉Doob denotes an expectation value
with respect to trajectories with probabilities from the Doob
dynamics. At a first glance, it might appear that we have not
gained much from expressing the expectation of A using the
Doob generator W Doob

s . However, if one calculates the ratio
of probabilities in Eq. (27), then the power of this expression
becomes apparent.

Let us first consider the original dynamics described by
Eq. (2). If we have some system in configuration x, then the
probability it flips to some other state x′ at the time �t is

Px→x′ (�t ) = wx→x′e−Rx�t . (28)

It then follows that the trajectory ωt occurs with probability

π (ωt ) = P(x0)e−RxK (t−txK )
K∏

i=1

wxi−1→xi e−Rxi−1 (txi −txi−1 ), (29)

where we have also accounted for the fact that the system must
remain in the same state after the final flip for the remainder of
the time and the probability of the initial configuration P(x0)
(where we assume it is in the steady state). The probabil-
ity of the trajectory under the Doob dynamics has a similar
form, with the substitutions wx→x′ → w̃x→x′ , Rx → R̃x, and
P(x0) → P̃(x0),

π̃ (ωt ) = P̃(x0)e−sK e−tθ (s) ls(xK )

ls(x0)
e−Rxk (t−tk )

×
K∏

i=1

wxi−1→xi e−Rxi−1 (txi −txi−1 ), (30)

where all but the endpoint factors of ls(x) cancel out telescop-
ically. The ratio of probabilities then goes as

π (ωt )

π̃ (ωt )
= esK etθ (s)

ls(x0) ls(xK )
, (31)

where we have used P̃(x0) = P(x0) ls(x0)2. Substituting
Eq. (31) back into Eq. (27) cancels out the exponential tilting
esK . Furthermore, for large times, Zt (s)−1 ≈ e−tθ (s), giving the
final result

〈Â〉s =
〈

1

ls(x0)ls(xK )
Â

〉
Doob

. (32)

And so it follows that one can exactly sample the expectation
value of a trajectory observable in the tilted ensemble defined
by the nonstochastic tilted generator, by sampling it directly
from trajectories generated by the stochastic Doob dynamics
Eq. (21), up to factors at the endpoints of each trajectory
(which become negligible in the long-time limit if Â is time
extensive). We note that Eq. (32) can also be derived by means

062144-4



OPTIMAL SAMPLING OF DYNAMICAL LARGE … PHYSICAL REVIEW E 103, 062144 (2021)

of linear algebra, using Eq. (21) and the ratio P(x0)/P̃(x0) (see
Ref. [67] for details).

B. Reference dynamics

While the above shows how to optimally sample if one has
access to the Doob generator, which is obtained from the exact
minimization of the tilted generator, we now consider how to
approximate it efficiently.

Suppose we have an MPS approximation |ψ ref
s 〉 to the

ground state of the Hermitian operator Hs, where our choice
of bond dimension D controls the error. By applying the
operator Q−1 to |ψ ref

s 〉, as is done in Eq. (19), one can also
retrieve an approximation to the left eigenvector. This is easily
done as an MPS-MPO product,

(33)

We then construct the generator of the so-called reference
dynamics, which goes as Eq. (2) with the transition rates and
escape rates given by

wref
x→x′ = l ref

s (x′)
l ref
s (x)

e−swx→x′, (34)

Rref
x =

∑
x′ �=x

wref
x→x′, (35)

respectively. Note that here we have not used Eq. (25) for
the escape rates, as these reference dynamics only act as an
approximation to the Doob dynamics, and thus would not
give a true stochastic dynamics. In Appendix A, we show the
steady-state solution to the reference dynamics is given by

|ss〉ref
s =

∑
x

ψ ref
s (x)2 |x〉 , (36)

where ψ ref
s (x) = 〈x|ψ ref

s 〉.
If we repeat the steps between Eqs. (27) and (32) but for

the reference dynamics, the expectation Eq. (27) appears as

〈Â〉s =
〈

1

l ref
s (x0)l ref

s (xK )
e−tθ (s)+∫

dt�R̂Â

〉
ref

, (37)

where
∫

dt�R̂ is the time integral of the difference of escape
rates between the reference dynamics and the original dynam-
ics, with �R̂x = Rref

x − Rx. We can estimate a sampling error
when using Eq. (37) in the following way [66]. First, let us
assume the effects of the time-edge factors are negligible (as
they are not exponential in time) and try to sample the quantity

〈e−sK̂ 〉 = 〈Re−sK̂ 〉ref ≈ 1

Nsp

Nsp∑
α=1

R(ωα )e−sK̂ (ωα ), (38)

where R(ωα ) = esK̂ (ωα )+∫
dt�R̂(ωα ) is the umbrella which com-

pensates for change in the sampling dynamics and we estimate
for a fixed number of samples Nsp. The variance of Eq. (38)

gives a way to quantify the sampling error,

ε2
ref =

Varref
(

1
Nsp

∑Nsp

α=1 R(ωα )e−sK̂ (ωα )
)

〈
1

Nsp

∑Nsp

α=1 R(ωα )e−sK̂ (ωα )
〉2
ref

= 1

Nsp

[
〈R2e−2sK̂ 〉ref

〈Re−sK̂ 〉2
ref

− 1

]

= 1

Nsp

[〈
e2

∫
dt ′�R̂

〉
ref〈

e
∫

dt ′�R̂
〉2
ref

− 1

]
. (39)

In Appendix B we show

ε2
ref ≈ etδE2 − 1

Nsp
≈ tδE2

Nsp
. (40)

The last approximation holds for δE small enough (tδE2 �
1). In Eq. (40), δE2 is the calculated variance on our MPS
approximation of the leading eigenvector [see Eq. (15)].

C. Simulating trajectories

We are now in a position to efficiently simulate trajectories
from our reference dynamics. The sampling of trajecto-
ries from a classical generator is usually achieved using a
continuous-time Monte Carlo [CTMC, otherwise known as
the Bortz-Kalos-Lebowitz (BKL) algorithm] [68]. Given that
our system is in some configuration x at time t ′, we need to
calculate the next jump in the trajectory. That is, we need
to decide the next configuration the system will move into,
and the time it does so. Calculating this can be split into five
separate steps:

(1) Find each configuration x′ the system can move into
from x.

(2) Calculate the transition rates wx→x′ for each x′.
(3) Calculate the escape rate Rx as the sum of all transition

rates.
(4) Randomly choose one x′, each with the probability

wx→x′/Rx

(5) Randomly choose the jump time �t with probability
P(�t ) = Rxe−Rx�t .

By starting at a configuration sampled from equilibrium
(which in the case of the reference dynamics can be efficiently
done using the MPS |ψ ref

s 〉 [69,70]), or otherwise, one can sim-
ply repeat this procedure until some total time t has elapsed.

We can use this method for our reference dynamics, where
the only step that needs slight adjustment is the second. While
one must still calculate the transition rates of the original dy-
namics in the usual way, we must also calculate the left vector
components l ref

s (x) and l ref
s (x′). Let us assume the former is

carried over from the previous jump in the algorithm. Then all
one needs to do is calculate each l ref

s (x′). We start by noting
that any configuration x can be written in MPS form with bond
dimension 1,

(41)
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and then we can simply calculate the left component as a
MPS-MPS contraction

(42)

The transition rates for the reference dynamics are then cal-
culated using Eq. (34), and the method proceeds as before.
The total computational cost for calculating each l ref

s (x) is
O(D2N ), and thus the total cost of each Monte Carlo (MC)
step is O(D2NNF ), where NF is the total number of configu-
rations x′ for a given step.

Let us now consider our KCMs where we have single-
spin-flip dynamics. We first note that the number of possible
configuration changes from x is bounded by the number of
sites, that is, 1 � NF � N . Using the method described above,
the computational cost for each step is, at worst, quadratic in
the system size. However, by realizing that the tensor network
contractions 〈l ref

s |x〉 and 〈l ref
s |x′〉 are identical apart from just

one tensor (corresponding to the spin which would flip), we
can reduce the computational cost by recycling partial con-
tractions from the edges. We first need to identify the first
and last sites on the lattice which are able to flip, which we
label il and ir , respectively. In a similar fashion to variational
algorithms, we then contract from the left edge of the tensor
network 〈l ref

s |x〉 up to ir − 1, and saving each tensor block
along the way,

We do the same but from the right and up to il + 1. This
initialization of partial contractions has a one-time cost of

O(D2(N + ir − il − 2)) < O(2D2N ). (43)

Calculating each l ref
s (x′) at site j is then easy. We just

contract our remaining tensors at site j with the previously
saved left and right blocks,

This is done for each possible site which can flip, and thus
entails a computational cost O(D2NF ). Once a choice is made
for which site to flip, which we will label i, we must update
the blocks of partial contractions up to (the now possibly
different) il and ir . Note that this time we do not have to start
from the edges of the MPS, but just from site i as the previous
partial contractions that come before do not change. The total
cost of updating the partial contractions is

O(D2[(ir − i) + (i − il )]) = O(D2(ir − il )). (44)

The total computation cost for each MC step is the sum of the
cost for calculating each l ref

s (x) and updating the partial blocks
after a choice is made,

O(D2(NF + ir − il )) � O(2D2N ). (45)

Consequentially, the cost of each MC step is reduced to one
which is at most linear in system size.

IV. NUMERICAL RESULTS

A. Approximating the Doob dynamics

We put to the test the general method presented above by
approximating the Doob dynamics of each model defined in
Sec. II. We show that the Doob dynamics is well estimated
using the MPS reference dynamics, and can even be well
approximated with truncated MPS.

Each of the three models is known to exhibit a trajectory
phase transition (when tilted against the activity) for long
times and in the thermodynamic limit N → ∞, manifested
in the SCGF θ (s) at s = 0 with a discontinuous drop in the
dynamical activity K̂ (s) = −θ ′(s)/N [3,5,43,52,54]. We call
the dynamical phase for s < 0 the active phase, and that
for s > 0, the inactive phase. One is able to do a detailed
investigation of this first-order phase transition by considering
the finite-size scaling of the model [40,43,53,71,72]. We can
estimate a critical point sc(N ) � 0 by finding the peak of the
dynamical susceptibility χ (s) = θ ′′(s), which shows a drastic
change in a small region around the transition point.

We start by taking the usual approach of approximating the
ground states |ψs〉 using vMPS. That is, we run the algorithm
allowing the bond dimension to increase until the variance of
the energy (with respect to the Hamiltonian) falls sufficiently
[cf. Eq. (15)]. The resultant MPS is then used to construct the
reference dynamics, which approximates the Doob dynamics
to a high accuracy, as explained in the previous section. Note
that because the vMPS tries to keep entanglement as low as
possible, for s > sc(N ) the approximated ground state exhibits
localization at just one edge of the system [40]. While for
the East case this corresponds to the structure of the ground
state in the sector with fixed occupation 1 in the leftmost site,
the FA and SSEP models have reflection symmetry, spon-
taneously broken for s > 0 and large N . Thus, in order to
maintain the symmetry in the latter two cases, we construct an
MPS which is a superposition of the result from vMPS and its
spatially reflected state to obtain our dynamics in the inactive
phase.

1. Direct sampling with the reference dynamics but without
reweighting

We first check that the CTMC algorithm with our MPS
reference dynamics gives the expected results. We do this
without using the trajectory reweighting [cf. Eq. (37)]. This
amounts to only considering infinite-time dynamics, and as-
suming that our approximation is actually exact. Despite this
strong assumption, we find that it produces excellent results as
shown in Fig. 1. The expected dynamical activity (per unit site
and time, dashed lines) can be calculated as a TN contraction
over our MPS and MPO,

k̃(s) = 1

N
〈ψs|dHs

ds
|ψs〉. (46)

The same quantity can be calculated on a trajectory level
(symbols) by counting the total number of configuration
changes, 〈K〉 and taking its time (and spatial) average,

〈k〉s = 〈K〉
Nt

, (47)
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FIG. 1. The dynamical activity from brute-force Monte Carlo. We show the dynamical activity measured for (a) the FA model with c = 0.5,
(b) the East model with c = 0.2, and (c) SSEP with np = 0.5. A variety of system sizes N ∈ [20, 400] are shown for each. The dashed lines
show expected activity calculated directly from the MPS k̃(s), whereas the markers show the activity measured via CTMC 〈k〉s with a time
t = 100/k̃(s). The inactive phase is shown with a log s scale in the insets. We also show representative trajectories at s = −1, 1 for each model.

where t is the run time for each trajectory. We show results
for each model, for a range of system sizes of N ∈ [20, 400].
The expected and measured results have excellent agreement.
This simplified algorithm struggles most around the transition
point sc(N ) due to the required large bond dimension (see
Refs. [40,43]).

We also show representative trajectories for the active
(s = −1) and inactive phases (s = 1). Each model excellently
demonstrates the difference in dynamics between the two
phases. The active phase displays very rapid changes with
structures that allow for unconstrained dynamics. For the FA
and East models this means having a large number of ex-
citations, while SSEP requires particles to be spaced apart.
Conversely, this inactive phase has just few configuration
changes with highly constrained dynamics. This means mini-
mizing the number of excitations for the FA and East resulting
in the dynamics responsible for the so-called “space-time
bubble” in local regions of space [5,47,73], while for SSEP
we restrict the activity by clustering the particles [54,74]. To
our knowledge, direct dynamical sampling of trajectories for
these system sizes and values of s �= 0 is different for these
three models.

2. Reference dynamics with truncated bond dimensions

While in the extreme active/inactive limits we can achieve
a good MPS description with just a bond dimension of O(10),
one may need a bond dimension of O(100) for the more

difficult regions such as around s = 0 [40,43]. One reason
for the necessity of this high bond dimension could be that
the state has longer-ranged spatial correlations. Another could
be that when one runs the vMPS, we run it against some
constraint in the state space. For the FA model, this is the
weak constraint that restricts to the connected component of
all configurations but the one with ni = 0 for all i. For the
SSEP, we have the stronger constraint that we are within the
state space with fixed Np particles.

The goal is to look for a state with a smaller bond di-
mension than we currently have which still contains all the
necessary interactions, but, if necessary, discards the infor-
mation which enforces the constraint. Then, by starting our
CTMC algorithm in a state which satisfies the constraint, we
will automatically enforce it for the rest of the trajectory, as
the dynamics keeps the system in the constrained subspace.

Approximating a TN by another one with a small bond
dimension is known as truncation. For MPS as we use, this can
be achieved via a singular value decomposition across each
bond, where only the largest D′ < D singular values are kept.
We show this truncation in Fig. 2(a) for SSEP (as this typically
requires the largest bond dimension), where we run the vMPS
to at least (but higher if required) D = 50 to find the state
|ψD〉, and then truncate to |ψD′ 〉 with the bond dimension D′ <

D. We measure the truncation error ε = 1 − | 〈ψD|ψD′ 〉 |2 be-
tween the two states, where we assume both are normalized.
We find that when far from the critical point, we can describe
the original state to a high accuracy with bond dimensions as
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FIG. 2. Reference dynamics from a truncated MPS. All data are for the system size N = 100. (a) The truncation error ε = 1 − | 〈ψD|ψD′ 〉 |2
as a function of the truncated bond dimension D′ for SSEP at various values of s. (b) The measured average dynamical activity 〈k〉s with a
reference dynamics constructed with truncated MPS. The dashed line shows the expected value obtained through vMPS with a large (D � 50)
bond dimension, and the inset shows the same but on a log scale around the critical point. (c) The same but for the East model. (d) The
measured dynamical activity 〈k〉s as a function of D for s = 10−3 close to the critical point sc. The purple circles show the values measured
using the reference dynamics alone, whereas the blue squares show values obtained using the reference dynamics and TPS to incorporate
umbrella sampling. The dashed line shows the expected value obtained from vMPS. Each point is done for a trajectory time of t = 100 and
Nsp = 106 trajectories.

small as D′ ∼ 20. Conversely, we cannot attain the same level
of accuracy for s ∼ sc, where the state exhibits larger amounts
of entanglement.

There are multiple reasons that one may want to find
a state with a truncated bond dimension. The first is that
our Monte Carlo algorithm scales quadratically with the
bond dimension—this could hinder the convergence of time-
dependent observables at large times, which can require a
large sample size to be determined with sufficient accuracy.
For such situations, reducing the scaling of the algorithm
would be desired. Another reasoning could be that we want
to investigate a system which requires a higher complexity of
TN, such as a 2D system with projected entangled pair states
(PEPS) [65,75]. Not only would the scaling of our CTMC
algorithm increase, but so would the scaling of the variational
algorithm used to find the reference dynamics. In this case,
one may not be able to reach a bond dimension large enough
to give a desirable variance.

We show the measured dynamical activity for SSEP and
the East model (symbols), with a reference dynamics con-
structed from states with a truncated bond dimension in
Figs. 2(b) and 2(c), and compare to the expected result from
the nontruncated MPS (dashed line). Surprisingly, we find
that for the most part, even for bond dimensions as small as
D = 2, we can accurately reproduce the correct dynamical
activity for each of the models. As expected, the truncation
struggles mostly around the transition point. Nevertheless, we
can achieve good results for the FA (not shown) and East with
a truncated bond dimension of D = 4, and D = 10 for SSEP.

The calculations done thus far have been with a refer-
ence dynamics constructed using a truncated bond dimension
without any trajectory reweighting. In principle, Eq. (37) is
exact and thus allows for further improvements by using the
umbrella

g(ω) = e−tθ (s)+∫
dt�R̂(ω). (48)

We implement this reweighting via transition path sampling
(TPS) with the shifting method (see Refs. [12,66] for further
details). Figure 2(d) shows the results of this umbrella sam-
pling for the FA model with an s value close to the critical
point sc. It is here the discrepancy is the largest, and we can do
a more detailed analysis by looking at a larger range of bond
dimensions. We see a significant improvement when using the
reweighting factor Eq. (48). It might be that we could see
further improvements with more TPS iterations.

The main point to take from this is that we are able to
achieve accurate results for the dynamical activity (the ob-
servable we are tilting) and some local observables with a
relatively small bond dimension. This of course comes at a
cost, however, as when we truncate we discard some of the
information that accounts for the long-ranged spatial corre-
lations. For the case of SSEP, even though apparently we
are discarding a large amount of information when truncating
[cf. Fig. 2(a)], it seems that we keep the relevant information
needed to reproduce the correct dynamics, but at the cost of
not maintaining the conservation law. We note, however, that
it is possible to explicitly implement the conservation laws in
the MPS [76], but it is not clear how this will affect the quality
of the reference dynamics in the CTMC algorithm.

B. Sampling rare events of finite times

For the previous results, we disregard finite-time effects
by considering our sampled trajectories to be a “slice” of
a larger infinite-time trajectory. We now look to incorporate
these effects back into our sampling by considering the full
reweighting factor

g(ω) = e−tθ (s)+∫
dt�R̂(ω)

l ref
s (x0)l ref

s (xK )
. (49)

Note that previously, for a large bond dimension, the part of
Eq. (49) which accounts for the difference in escape rate had
a negligible effect, and could be ignored. This is not always
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FIG. 3. Sampling finite-time trajectories. All results are done for the FA model with c = 0.5. (a) The measured dynamical activity 〈k〉 as
a function of time t for s = −0.1 (top) and s = 0.1 (bottom) for Nsp = 106 trajectories and system size N = 40. The circles show the values
obtained via TPS with the normal dynamics, and crosses TPS with the reference dynamics. The dotted lines show the expected value at infinite
times. (b) The local occupations 〈ni〉 as a function of time in the inactive regime s = 0.1 and N = 40. (c) The average excitation density 〈n〉 as
a function of time in the active regime, s = −0.1. The value approaches the expected value in the Doob dynamics (dotted line) in the bulk, but
moves towards the equilibrium value (s = 0, dashed line) at the edges and N = 40. (d) The dynamical activity as a function of s and time t .
The data for t = ∞ are obtained directly from the MPS, whereas finite t is obtained using TPS. Note that the sharp drop in activity shifts with
time. The dynamics are run at the system size N = 100.

the case here, as the umbrella sampling at the time edges of
the trajectory causes the system to visit configurations which
are atypical in the Doob dynamics, and not well described by
our MPS approximation.

As a proof of principle, we start by comparing results
from TPS with the original dynamics against TPS with the
reference dynamics for a small system size N = 40, and a
variety of times, as is shown for the FA model at s = ±0.1
in Fig. 3(a). For small times, both show excellent agreement.
For large times, however, the normal dynamics struggles to
correctly account for the expected activity shown by the dotted
lines, a result of the exponential time dependence in Eq. (26)
(as K̂ is time extensive). While sampling with our reference
dynamics reduces the exponential cost in time, the time edges
still suffer from an exponential sampling difficulty in the sys-
tem size. This is most noticeable for the inactive phase, where
each model exhibits an exponential localization [40,43,77] at
the spatial edge(s) of the system. This causes the l ref

s (x) values
to exponentially vary. Nevertheless, it is still a significant im-
provement on the previously exponential cost in space, time,
and s.

The average occupations 〈ni〉s (at site i) for s = 0.1 and
t = 100 is shown in Fig. 3(b), while Fig. 3(c) shows the
average excitation density 〈n〉s = N−1 ∑

i 〈ni〉s for s = −0.1
and t = 10. It is here the time-edge effects become obvious;
we start at a state which lies somewhere between the expected
s = 0 (dashed line) dynamics and the expected long-time
dynamics, which depends on the whole spectrum of Ws, as
well as the total trajectory time. The system quickly evolves
and resembles the Doob dynamics. Note that at the end of
trajectory, it is again described by the original probability
vector, as is expected due to the time symmetry in Eq. (37).

Finally, Fig. 3(d) shows the average dynamical activity as
a function of s and time t . We show the expected activity
in the infinite time limit t = ∞ as a black dashed line, and
the measured activity for finite times as symbols. Notice that
as time decreases, the drop in activity becomes less sharp.
Furthermore, the transition from the active to inactive phase
happens at decreasing s. While the methods presented here

could allow for a detailed investigation into the temporal scal-
ing of the critical point [52,53,71,72], doing so for desirable
system sizes would be at a large computational cost. We
hope to investigate this more extensively using time-evolution
methods (see, e.g., Refs. [30,65,78]).

V. CONCLUSIONS

We have expanded on previous applications of TNs to
classical constrained models [40–43], using the MPS ap-
proximation of the leading eigenstates of a tilted stochastic
generator in 1D to construct a reference dynamics which well
approximates the exact Doob dynamics. This allows us to
(nearly) optimally sample the rare events of 1D constrained
systems with just a polynomial cost in both space and time,
rather than the exponential cost of most sampling methods.
We have demonstrated here the efficiency of this approach
by generating tilted trajectory ensembles for the FA and
East KCMs and the symmetric simple exclusion process. Our
simulations are for sizes and times different for such large
deviation studies.

Furthermore, our results show that it is possible to obtain
an accurate dynamics away from the dynamical transitions
of the models we studied with a truncated bond dimension,
which enables close to optimal sampling simulations at lit-
tle cost. Further extensions of our work include generalizing
our methods to higher dimensions, for example, by using
two-dimensional variational tensor network techniques, such
as PEPS [65,75] to approximate the leading eigenvectors of
2D classical generators, as is done in Ref. [42]. From the
associated leading eigenvectors, as we have shown here, we
can in turn construct a reference dynamics which is nearly
optimal for sampling rare trajectories. While PEPS algorithms
do not currently allow for bond dimensions comparable to
vMPS, they remain a fruitful area of research which is con-
stantly being improved on [79–87]. Recent works [88] have
shown the effectiveness of using recurrent neural networks
(RNNs) to approximate the leading eigenstates of tilted gen-
erators in two dimensions. The methods presented here can be
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generalized to RNN to allow for the efficient sampling of 2D
rare events.

Another area that deserves exploration is to apply sim-
ilar TN methods to systems which do not obey detailed
balance, and for which their generators cannot be brought
to a Hermitian form. While this would damper the ef-
fectiveness of variational algorithms, approaches based on
time evolution may offer a promising solution (see, e.g.,
Refs. [30,65,78]). Such approaches could also offer further
insights into intermediate-time rare events, where both usual
sampling methods and large deviation approaches fall short.
We hope to report on such studies in the near future.
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APPENDIX A: STEADY STATE SOLUTION IN THE
REFERENCE DYNAMICS

The generator of the reference dynamics defined by
Eqs. (34) and (35) can be written as

W ref
s =

∑
x,x′ �=x

e−swx→x′
l ref
s (x′)
l ref
s (x)

[|x′〉 〈x| − |x〉 〈x|]. (A1)

By definition, the stationary state |ss〉ref
s = ∑

z Pref
s (z) |z〉 is

annihilated by Eq. (A1). It follows that

W ref
s |ss〉ref

s =
∑

x,x′ �=x

e−swx→x′
l ref
s (x′)
l ref
s (x)

Pref
s (x)[|x′〉 − |x〉]

=
∑

x,x′ �=x

e−s

[
wx→x′

l ref
s (x′)
l ref
s (x)

Pref
s (x)

−wx′→x
l ref
s (x)

l ref
s (x′)

Pref
s (x′)

]
|x′〉

= 0, (A2)

where we have used a change of variables in the second and
third line. Let us assume our original dynamics obeys detailed
balance, and that the state space is connected (that is, the
dynamics is irreducible). Then it follows that if wx→x′ = 0,
so does wx′→x, in which Eq. (A2) is satisfied. Otherwise, we
must have that

Pref
s (x)

Pref
s (x′)

= wx′→x

wx→x′

l ref
s (x)2

l ref
s (x′)2

. (A3)

Given detailed balance we can use a similarity transformation
to write the generator in a Hermitian form [cf. Eq. (16)]. In

particular, let us define the diagonal transformation matrix as

Q =
∑

z

Q(z) |z〉 〈z| . (A4)

One can easily show that for H to be Hermitian, we must have

Q(x)2

Q(x′)2
= wx′→x

wx→x′
. (A5)

Substituting this back into Eq. (A3), we find

Pref
s (x)

Pref
s (x′)

= Q(x)2 l ref
s (x)

2

Q(x′)2 l ref
s (x′)2 , (A6)

and it follows the stationary state is given by

|ss〉ref
s =

∑
x

l ref
s (x)

2
Q(x)2 |x〉 . (A7)

For the case of our MPS dynamics, we defined 〈ls| = 〈ψs| Q−1

of our solution 〈ψs|. It follows that Eq. (A7) can be written as
|ss〉ref

s = ∑
x ψ ref

s (x)2 |x〉, where ψ ref
s (x) = 〈x|ψs〉.

APPENDIX B: SAMPLING VARIANCE IN THE
REFERENCE DYNAMICS

We start by assuming that we are always at the stationary
state of the dynamics. This allows us to calculate the trajectory
ensemble average of some observable (per unit time) as the
average over all configurations with respect to the stationary
state,

〈Ô〉ref ≡ 1

t

〈∫ t

0
dt ′Ô(t ′)

〉
ref

= 〈
l ref
s

∣∣Ô∣∣rref
s

〉
. (B1)

The aim is to calculate the expectation value and the variance
of the time-integrated difference in escape rates [cf. Eq. (39)].
Using Eq. (B1), we can write

〈�R̂〉ref =
∑

x,y �=x

lx

(
ly
lx

e−sωx→y − ωx→y

)
rx

=
∑

x,y �=x

lye−sωx→yrx − lxωx→yrx

= 〈
l ref
s

∣∣Ws

∣∣rref
s

〉 = θ ref(s), (B2)

where we have written lx ≡ l ref
s (x) and rx ≡ rref

s (x) for brevity.
Performing the same calculation for �R̂2, we find

〈�R̂2〉ref = 〈
l ref
s

∣∣Ws
2
∣∣rref

s

〉
, (B3)

giving the variance

Varref�R̂ ≡ 〈�R̂2〉ref − 〈�R̂〉2
ref = δE2, (B4)

where δE2 is the measured variance of the MPS used to
construct the reference dynamics with respect to the tilted
generator (or tilted Hamiltonian).

We are now in a position to estimate the sampling error
Eq. (39). From Eqs. (B2) and (B4) we have that the integrated
difference in escape rate,∫ t

0
dt ′�R̂(t ′), (B5)
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has the average

t 〈�R̂〉 = tθ ref(s), (B6)

and variance

tδE2. (B7)

If we also assume this integrated difference to be normally
distributed, then we get Eq. (39),

ε2
ref = 1

Nsp

[〈
e2

∫
dt ′�R̂

〉
ref〈

e
∫

dt ′�R̂
〉2
ref

− 1

]
≈ etδE2 − 1

Nsp
. (B8)
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Chapter 7

Finite time large deviations via
matrix product states

The following work is from the publication “Finite time large deviations via matrix product
states” by Luke Causer, Mari Carmen Bañuls and Juan P. Garrahan, in Physical Review
Letters 128 (9), 090605.

The previous efforts to investigate biased finite time trajectory ensembles included
using the long time Doob dynamics alongside TPS to sample the finite time dynamics.
Here, the finite time trajectory ensembles are directly targeted by simulating the time
evolution of a probability vector under the biased master equation using MPS. This allows
for a systematic way to study dynamical phase transitions at arbitrary times. It is also
shown how the resulting MPS can be used to construct a dynamics which directly targets
the finite time trajectory ensembles, thus generalizing the methods of the previous section
to finite times.

The work shown here demonstrates how TNs can be used beyond ground state ap-
proximation methods to study stochastic dynamics, while also investigating the finite time
properties of dynamical phase transitions. The methods are applied to the FA and East
KCMs, and also the SSEP. For each model, the dynamical phase diagram is uncovered,
allowing the determination of the temporal scaling exponent. Previous works [201, 202]
have shown that the s-ensemble can be used to prepare glassy states similar to those
found in the hierarchical relaxation of glasses. The methods introduced in this paper are
used to demonstrate the trajectory times one would need to simulate in the s-ensemble
to prepare such states.

Further details of the numerical methods and an error analysis can be found in Ap-
pendix A.
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Recent work has shown the effectiveness of tensor network methods for computing large deviation
functions in constrained stochastic models in the infinite time limit. Here we show that these methods can
also be used to study the statistics of dynamical observables at arbitrary finite time. This is a harder problem
because, in contrast to the infinite time case, where only the extremal eigenstate of a tilted Markov
generator is relevant, for finite time the whole spectrum plays a role. We show that finite time dynamical
partition sums can be computed efficiently and accurately in one dimension using matrix product states and
describe how to use such results to generate rare event trajectories on demand. We apply our methods to the
Fredrickson-Andersen and East kinetically constrained models and to the symmetric simple exclusion
process, unveiling dynamical phase diagrams in terms of counting field and trajectory time. We also discuss
extensions of this method to higher dimensions.

DOI: 10.1103/PhysRevLett.128.090605

Introduction.—Large deviation (LD) theory provides a
powerful framework to investigate the statistical fluctua-
tions of time-averaged observables in stochastic systems
(for reviews, see, e.g., Refs. [1–4]). At long times (assum-
ing finite correlation times) the probabilities of such
observables obey a LD principle, and the corresponding
scaled cumulant generating function (see below) can be
retrieved from the leading eigenvalue of the “tilted” (or
deformed or biased) generator [1]. For large systems,
estimating this eigenvalue is difficult, so one resorts to
sampling the corresponding biased trajectory ensemble via
numerical methods, such as trajectory importance sampling
[5–8], population dynamics [9–11], optimal control
[12–18], or machine learning approaches [19–24]. For
lattice models, recent work has focused on the use of
tensor network (TN) techniques to approximate the leading
eigenvector of the tilted generator through variational
means [25–27] or power methods [28].
A harder problem is that of computing the statistics of

time-averaged observables for finite time [29–31]. The
reason is that away from the long time limit the corre-
sponding dynamical partition sums (i.e., moment generat-
ing functions) do not obey a LD principle in time—only
obeying a LD principle in space for large sizes—and, as a
consequence, they are not determined only by the leading
eigenvalue of the tilted generator, but by their whole
spectrum. If time is very short, one can get away with direct
sampling, but for intermediate times the usual sampling
approaches fall short [32]. Here we develop a scheme to
study these rare events by implementing well-developed TN

techniques to simulate time evolution. This allows us to
calculate dynamical partition functions for trajectories of
arbitrary time extent. Furthermore, we show how to use the
results here to directly simulate stochastic trajectories in
finite time tilted ensembles at small computational cost, thus
generalizing the method of Ref. [32].
We focus for concreteness on one-dimensional kinetically

constrained models (KCMs)—often used in the modeling of
structural glasses [2,33–35]—specifically the Fredrickson-
Andersen (FA) [36] and the East [37] models, as well as on
the symmetric simple exclusionprocess (SSEP). BothKCMs
and SEPs display phase transitions in their dynamical LDs in
the long time limit [38–44]. With the methods developed
here, we are able to construct the dynamical phase diagram
both as a function of counting field and of trajectory time,
determining finite time scaling of active-inactive phase
transitions in these models and uncovering the emergence
with time of the correlated structure of the active phase in the
East model and the SSEP.
Models.—The three models we consider live in a one-

dimensional lattice of N sites, with binary variables nj ¼
0; 1 for each j ¼ 1;…; N, evolving under continuous-time
Markov dynamics with local transitions. The probability
for each configuration jxi ¼ jn1;…; nNi at time t, encoded
in a vector jPðtÞi ¼ P

x Pðt; xÞjxi, evolves deterministi-
cally via a master equation, ∂tjPðtÞi ¼ WjPðtÞi, where W
is the Markov generator. Being a stochastic operator,W has
a structure W ¼ K − R, with an off-diagonal matrix of
transition rates K and a diagonal matrix of positive escape
rates R.
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For the KCMs the generator reads

WKCM ¼
X

i

fi½cσþi þ ð1 − cÞσ−i

− cð1 − niÞ − ð1 − cÞni�; ð1Þ

where c ∈ ð0; 1=2� defines the site occupation at equilib-
rium, and σ�i are the Pauli raising and lowering operators at
site i. Spin flips are only permitted if the kinetic constraint
fi is satisfied. We consider two paradigmatic KCMs, the
Fredrickson-Andersen [36] model and the East [37] model.
They are defined by the respective constraint functions

fFAi ¼ ni−1 þ niþ1; fEasti ¼ ni−1: ð2Þ

We consider lattices with open boundary conditions
(OBCs) to allow for efficient tensor network contractions.
For numerical convenience, we choose the fixed boundaries
n1 ¼ nN ¼ 1 for the FA [45] model and n1 ¼ 1 for the East
model. The corresponding stationary states (SS) are prod-
uct states,

jSSFAi ¼ j1i ⊗ ½ð1 − cÞj0i þ cj1i�⊗N−2 ⊗ j1i; ð3Þ

jSSEasti ¼ j1i ⊗ ½ð1 − cÞj0i þ cj1i�⊗N−1: ð4Þ

The third model we consider is the symmetric simple
exclusion process whose generator reads

WSSEP ¼ 1

2

X

i

½σþi σ−iþ1 þ σ−i σ
þ
iþ1

− ðni þ niþ1Þ þ 2niniþ1�: ð5Þ

For the SSEP we consider OBCs such that particles can
enter and leave at the boundaries with rate 1=4. The
stationary state is jSSSSEPi ¼ 2−N j−i ¼ 2−N

P
x jxi, with

the “flat” state h−j being the leading left eigenvector of each
generator above.
Dynamical rare events and LDs.—We now consider the

ensemble of all possible trajectories fωαg with trajectory
time t, where ωα ¼ fx0 → xt1 → � � � → xtg defines jumps
to configurations xtk at times tk. The probability of
observing the value KðωαÞ ¼ K of some time-integrated
observable K is

PtðKÞ ¼
X

α

πðωαÞδ½KðωαÞ − K�; ð6Þ

where πðωαÞ defines the probability of observing the
trajectory. The corresponding moment generating function
(or trajectory partition sum) is

ZtðsÞ ¼
X

α

πðωαÞe−sKðωαÞ ð7Þ

where the “counting field” s is conjugate to the observable.
For large times, both Eqs. (6) and (7) take a large

deviation form in time [1,38,41,46], PtðKÞ ≍ e−tφðK=tÞ and
ZtðsÞ ≍ etθðsÞ. The LD rate function φðK=tÞ and the scaled
cumulant generating function θðsÞ play the roles of a
trajectory entropy density and a free-energy density,
respectively, and are related through the Legendre trans-
form θðsÞ ¼ −mink½skþ φðkÞ�.
The partition sum Eq. (7) can be written as

ZtðsÞ ¼ h−jetWs jssi ð8Þ

in terms of the tilted generator Ws [1,38,41,46]. In what
follows we focus on the dynamical activity [38,41,46,47]),
that is, the total number of spin flips, as a trajectory
observable. In this case, Ws ¼ e−sK −R. While for large
times all that is needed to determine Eq. (8) is the dominant
eigenstate ofWs, for finite times the whole spectrum ofWs
is required.
Finite time statistics from MPS.—The models we con-

sider obey detailed balance. This allows us to write Ws in a
Hermitian form through a similarity transformation inde-
pendent of s [41], Hs ¼ P−1=2WsP1=2, where P1=2 is a
diagonal matrix of probability amplitudes at equilibrium (for
the SSEP, P is the identity). As a consequence, the leading
eigenvalue of H obeys a Rayleigh-Ritz variational principle,
allowing the application of variational methods such as the
density matrix renormalization group [48]. We then write
Eq. (8) as

ZtðsÞ ¼ hψ0jetHs jψ0i; ð9Þ

where jψ0i ¼ P−1=2jssi ¼ ½h−jP1=2�†. It is useful to define
the time-evolved vector jψτi ¼ eτHs jψ0i (τ ≤ t). The parti-
tion function can then bewritten asZtðsÞ ¼ hψ t−τjψτi and, in
particular, can be determined by only evolving the vector
by τ ¼ t=2.
The average dynamical activity (per unit time and site) of

the biased ensemble of trajectories follows from the
partition sum,

kðsÞ ¼ −
1

Nt
d
ds

log½ZtðsÞ�: ð10Þ

We can also calculate time-dependent configurational
observables for any 0 ≤ τ ≤ t,

hOðτÞis ¼ ZtðsÞ−1hψ0jeðt−τÞHsOeτHs jψ0i
¼ ZtðsÞ−1hψ t−τjOjψτi: ð11Þ

In order to compute the time-evolved state jψ ti, we use
methods from quantum many-body physics, in particular,
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matrix product states (MPS) (for reviews, see Refs. [49,50])
[51]. Here we use both variational optimization of MPS
(vMPS, e.g., [25,49]) and time-evolved MPS (tMPS, e.g.,
[53]). Notice that, for long times, jψτi becomes close to the
leading eigenvector of Ws. We exploit this fact to simulate
evolution for long times with higher precision; see
Supplemental Material [54] for details.
In Ref. [32], we used the MPS approximation (from

vMPS) to the leading eigenstate of Hs to construct a near-
optimal dynamics, which when supplemented with trajec-
tory importance sampling [specifically, transition path
sampling [5] (TPS)] allowed us to efficiently simulate
trajectories in large time tilted ensembles. Here we apply
the same scheme, but instead use the time-evolved state
jψ t=2i. We construct a time-independent dynamics that
approximates the optimal (or Doob) dynamics at the center
of finite time trajectories under tilting [57].
Figure 1(a) compares various sampling methods in the

East model at s > 0. The dynamics is active at short times
(due to initial conditions) and inactive at large times
[25,38,41]. We show the activity from the partition sum
calculated via MPS time evolution (black line) as a function
of trajectory length. We also show sampling with TPS with
the original dynamics (red circles); this method only
accounts for the dynamical activity hki at short times
and fails at long times. The methods introduced in
Ref. [32] construct the long time optimal (Doob) dynamics
with the approximate leading eigenstate from vMPS. We
then apply TPS with this dynamics to sample trajectories
for arbitrary time. This accounts for hki at long times [32],
but fails at short times. If we adopt this method, but replace
the MPS used in the auxiliary dynamics with the time-
evolved state (green pentagons), we get accurate results for
the activity for all trajectory lengths. Despite the fact
that the exact Doob dynamics for finite time is, in general,

time-dependent [58], this latter approach with a time-
independent dynamics for each trajectory length t is efficient
enough for TPS to converge to the actual finite time
tilted ensemble, thus correcting any discrepancies. In the
Supplemental Material, we provide a detailed comparison
[54]. Figure 1(b) shows the averaged time-dependant occu-
pations (top) hnðτÞis and instantaneous activity (bottom)
hkðτÞis for some fixed trajectory time t ¼ 100, generated
from the s ensemble at s ¼ 0.1 for both tMPS and
tMPSþ TPS.
Finite time scaling of active-inactive transition.—The

three models we study here display a LD phase transition
[38,40,41,43] in the long time and large size limit between a
dynamical phasewhere activity is extensive in space and one
where activity is subextensive. The finite size scaling
analysis of this transition in the long time limit has been
studied theoretically [40,42,59–61] and numerically [25,60]:
for finite size, the active-inactive transition is smoothed
into a sharp crossover located at scðN; t ¼ ∞Þ > 0, which
decreases as an inverse power of the system size. In general,
however, the location of the transition point depends both on
time and size, scðN; tÞ, but a detailed numerical analysis of
the finite time scaling has not been possible to date due to the
difficulty of simulating efficiently rare trajectories at inter-
mediate times [32]. With the approach presented above we
can now investigate this issue in detail.
Figure 2(a) shows the dynamical activity kðsÞ as a

function of s and inverse time t−1 (East model, top row;
FA model, middle; SSEP, bottom). There is a transition
from a high activity (light) to low activity (dark) as s is
increased, which becomes sharper and moves to smaller s
with increasing time. The point scðN; tÞ (shown by the red
dashed line) is that of the peak in the dynamical suscep-
tibility χðs; tÞ ¼ dkðsÞ=ds. These dynamical phase dia-
grams are reminiscent of those of (first-order) quantum
phase transitions [62], with s as an applied field and the
inverse time as temperature.
The scaling of the transition point is shown as a function

of (inverse) time for multiple system sizes N ∈ ½20; 200� in
Fig. 2(b). For small times the transition point scales
approximately as sc ∼ t−1 for the three models. When time
becomes large enough, finite size effects start to dominate.
For simplicity, we use the approximate form

scðN; tÞ ≈ scðNÞ þ scðtÞ; ð12Þ

where scðNÞ ∼ N−α can be extracted from vMPS [25,27].
For the FA and East models, the exponent α > 1 [25], while
for the SSEP we find the expected α ≈ 2 [40]. In Fig. 2(c),
we show how the scðN; tÞ curves can be collapsed,
allowing us to estimate scðtÞ ∼ t−β. We find β ≈ 1 for all
models.
Also important to the rare event statistics is the prob-

ability distribution of the dynamical activity PtðKÞ. While
for finite times ZtðsÞ and PtðKÞ do not obey a LD principle

(a) (b)

FIG. 1. Demonstration of the methods. East model at c ¼ 0.5,
N ¼ 100, and s ¼ 0.1. (a) Dynamical activity hki from tMPS
(black line), TPS with no auxiliary dynamics (red circles), TPS
with the LD eigenvector auxiliary dynamics via vMPS (blue
squares), and TPS with a tMPS reference dynamics (green
pentagons). (b) Time-dependent occupations (top) and instanta-
neous activity (bottom) from MPS time evolution (black line)
from direct sampling with a tMPS auxiliary dynamics (green
pentagons and bars).
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in time, for large sizes they still obey one in system size,
ZtðsÞ ≍ eNΘðs;tÞ and PtðKÞ ≍ e−NΦtðK=NÞ. We can therefore
obtain the time-dependent rate function ΦtðKÞ through the
Legendre transform

ΦtðkÞ ¼ −max
s

½Θðs; tÞ þ sk�; ð13Þ

where Θðs; tÞ ¼ N−1 logZtðsÞ. From the numerical esti-
mate of ZtðsÞ we can therefore estimate ΦtðK=NÞ for all
times. Figure 2(d) shows the corresponding rate functions

for system size N ¼ 100. For small times, the distribution
of the activity is close to Poissonian (dashed line), in
agreement with the absence of a transition. As time
increases, the rate function broadens into the characteristic
shape of a first-order phase transition [25,38].
Structure of the active phase.—Long time trajectories

with an atypically large activity are known to display an
interesting structure in two of the models we consider here
[25,43,63]. Our finite time method allows us to study how
such structure depends on the trajectory length.

(a) (b) (c) (d)

FIG. 2. Rare event statistics. The rare event statistics for the East model with (top) c ¼ 0.5 and the FA model with (middle) c ¼ 0.2
and (bottom) SSEP. (a) The dynamical activity kðs; tÞ as a function of s and inverse time 1=t for N ¼ 100. The red dotted line indicates
our estimate of the transition point. (b) The transition point for various system sizes N ∈ ½10; 200�. The dotted lines indicate the infinite
time value (see Refs. [25,27]), and the dashed line shows scðN; tÞ ∼ t−1. (c) The same data are shown in (b) but with scðN; tÞ scaled by
scðNÞ and time scaled by N−α, where α is the critical exponent extracted from scðNÞ. The dotted line shows where the y axis is one, and
the dashed line shows t−β. The sum of both lines is given by the dash-dotted line. (d) The estimate of the rate function ΦtðkÞ defined in
Eq. (13). The dashed line shows a Poisson distribution with the equilibrium average as its mean. All of the data are calculated using the
dynamical partition sum ZtðsÞ from tMPS.

(a) (b) (c)

FIG. 3. Structures in the active phase. We show the average occupations at the center of the trajectory hniðt=2Þis for s ¼ −0.1 for the
(a) East model and (b) FA models. The left panels of each show the lattice average for a range of s and t with c ¼ 0.05, while the right
panels show the occupations at each site for (top) c ¼ 0.05 and (bottom) c ¼ 0.5, with s ¼ −0.1. We show the same for the SSEP in
(c) but with the nearest-neighbor correlations Ciðt=2Þ. The right panels are for (top) s ¼ −0.1 and (bottom) s ¼ −1.0. Dotted lines show
the expected value at infinite times. All observables are calculated from the time-evolved MPS jψ t=2i.

PHYSICAL REVIEW LETTERS 128, 090605 (2022)

090605-4



In Fig. 3(a), we show the average occupation at the
midpoint of the dynamics. The left panel shows the lattice-
averaged occupations hnðt=2Þis at time τ ¼ t=2 for ensem-
bles of trajectories with total time t, as a function of s for
various t, at c ¼ 0.05. The panels on the right show the
average spatial profile hniðt=2Þis at s ¼ −0.1 for (top)
c ¼ 0.05 and (bottom) c ¼ 0.5. In both cases, the average
density is spatially featureless at short times, but arranges to
maximize activity at long times. For c ¼ 0.05 it does so by
forming an anticorrelated structure, while these anticorre-
lations are absent for c ¼ 0.5 (cf. the long time case [63]).
Figure 3(b) shows the same for the FA model, where there
is no appreciable structure forming for small c. Notice also
from the left panels the longer times needed to reach the LD
behavior in the East compared to the FA model.
In Fig. 3(c) we quantify the local structure of the SSEP in

terms of the nearest-neighbor correlations

CiðtÞ ¼ hniniþ1ðtÞis − hniðtÞishniþ1ðtÞis; ð14Þ

and the lattice average CðtÞ ¼ ðN − 1Þ−1 PN−1
i¼1 CiðtÞ. The

right panels show a growth of anticorrelated order with
increasing trajectory length toward the “hyperuniform”
arrangement at long times, cf. Ref. [43].
Conclusions.—We have implemented a time evolution

scheme using MPS to study the rare events of one-
dimensional KCMs in finite time trajectories. In this way
we have extended recent efforts on the long timeLD statistics
via TNs to the arguably harder problem of the LDs away
from the long time limit. We showed how to directly
compute dynamical partition sums, and we derived an
efficient sampling scheme for finite time rare trajectories.
Understanding the finite time behavior of dynamical systems
is significant, as the times required to observe long time
behavior can be too large to implement experimentally.
A next step would be to extend these ideas to dimensions
larger than 1. A possibility could be to implement sampling
through two-dimensional TNs, such as projected entangled-
pair states (e.g., [64,65]), which have already proven useful
in studying the LDs in the long time limit of two-dimensional
exclusion processes [28]. While bond dimensions will be
limited in this case, using a time evolution scheme like we
presented here one could approximate the reference dynam-
ics for the center of trajectories (i.e., evolve by etWs=2)
alongside a scheme such as TPS to obtain reliable results.
Another direction would be to apply the methods demon-
strated here to driven problems, such as currents in exclusion
processes. Here we cannot exploit Hermiticity and would
have to compute the time-evolved left and right eigenvectors.
We hope to report on such studies in the near future.
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Chapter 8

Optimal sampling of dynamical large
deviations in two dimensions via
tensor networks

The following work is from the arXiv pre-print (arXiv:2209.11788) “Optimal sampling of
dynamical large deviations in two dimensions via tensor networks” by Luke Causer, Mari
Carmen Bañuls and Juan P. Garrahan.

This final chapter generalizes the previous work (including that shown in this thesis)
involving TNs to study stochastic dynamics to two-dimensions. Studying dynamical LDs
of models in dimensions larger than one is difficult, with current methods limited to
approaches from machine learning [115, 117] and TNs [45], which are expanded on here
by applying PEPS to determine the dynamical LDs, as was done in 1D with MPS. It
is also shown how the results of PEPS can be used to implement a trajectory sampling
algorithm, generalizing the results of Chapter 5 to 2D.

The methods are applied to the 2D East model, and the 2D SSEP. Evidence is provided
for first- and second- order dynamical phase transitions with respect to the activity for
each model. These works help further our understanding of KCMs in higher dimensions,
and introduce advanced methods for trajectory sampling in higher dimensions using TNs.

Further details of the numerical methods can be found in Appendix B. Following the
submission of this thesis, a modified version of this preprint was accepted for publication
in the journal “Physical Review Letters”.

Corrections to the manuscript:

1. The Legendre transform defined in the “Dynamical LDs” section should read φ(k) =
−maxs [θ(s) + sk].
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Optimal sampling of dynamical large deviations in two dimensions via tensor networks

Luke Causer,1, 2 Mari Carmen Bañuls,3, 4 and Juan P. Garrahan1, 2

1School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
2Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems,

University of Nottingham, Nottingham, NG7 2RD, UK
3Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany

4Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München

We use projected entangled-pair states (PEPS) to calculate the large deviations (LD) statistics
of the dynamical activity of the two dimensional East model, and the two dimensional symmetric
simple exclusion process (SSEP) with open boundaries, in lattices of up to 40 × 40 sites. We
show that at long-times both models have phase transitions between active and inactive dynamical
phases. For the 2D East model we find that this trajectory transition is of the first-order, while for
the SSEP we find indications of a second order transition. We then show how the PEPS can be
used to implement a trajectory sampling scheme capable of directly accessing rare trajectories. We
also discuss how the methods described here can be extended to study rare events at finite times.

Introduction.- Over the last few years we have seen
progress in the application of numerical tensor network
(TN) techniques to compute statistical properties of dy-
namical trajectories in classical stochastic systems. The
first such application was to long time statistics—the dy-
namical large deviation (LD) regime—of one-dimensional
lattice systems using variational algorithms (such as den-
sity matrix renormalization group [1], or DMRG) to ap-
proximate the leading eigenvectors of tilted Markov gen-
erators by matrix product states (MPS, e.g. Ref. [2])
[3–10]. Building on these results, we introduced a sam-
pling method which exploited such MPS to efficiently
sample rare trajectories, and then presented a method
based on MPS time-evolution to precisely compute tra-
jectory statistics at finite times [11]. For more than one
spatial dimension, a more suitable variational class is that
of projected-entangled pair states (PEPS) [12], which ful-
fills an entanglement area law [13] and was recently ap-
plied to the classical asymmetric exclusion process in two
dimensions in Ref. [14]. A computationally cheaper al-
ternative, without an area law, but accommodating more
entanglement than MPS, is that of tree tensor networks
(TTN) [15], used for example in Refs. [16, 17] , in com-
bination with a time-dependent variational principle [18]
to study driven problems.

Here we use PEPS to study the large deviations of the
dynamical activity in two paradigmatic two-dimensional
models, the 2D East model (also known as North-or-East
model) [19–22], and the 2D symmetric simple exclusion
process (SSEP) with open boundaries where particles can
be injected and removed [23]. We are able to accurately
estimate the leading eigenvector of the tilted generator,
and thus the LDs, of these models using the simple update
(SU) algorithm for PEPS, see e.g. [24], and verify that
further improvements can come from more complex up-
date schemes, such as full update (FU), see e.g. [25, 26].
We then use the approximate leading eigenvector to con-
struct an auxiliary dynamics which can directly sample
the corresponding rare trajectories. Such an algorithm

(a) (b)

FIG. 1. Models. (a) The 2D East model. An occupation,
shown by the black circles, can facilitate flips marked by the
red-coloured cells at the neighbouring sites, but only in two
directions. (b) The 2D SSEP. The sites on the lattice can be
occupied by particles which can hop in any direction, as long
as the target site is not occupied. Particles can enter or leave
at the boundaries, as shown by the red arrows.

requires efficient sampling from the PEPS, and we show
how to do this in the context of trajectory sampling. We
benchmark our methods, showing how the bond dimen-
sion of the PEPS allows for a controlled accuracy of op-
timal dynamics. We demonstrate that both models have
a phase transition between active and inactive dynami-
cal phases, a first-order transition for the 2D East and a
second-order transition for the 2D SSEP.
Models.- The models we study here live in a two-

dimensional square lattice of size N = L × L, with each
site being occupied by a binary variable nk = 0 or 1,
where k = (kx, ky) denotes the position of the site for
kx, ky = 1 · · ·L. Their continuous-time dynamics is de-
fined by a Markov generator (e.g. see Refs. [27, 28]),

W =
∑

x,y ̸=x

wx→y |y⟩ ⟨x| −
∑

x

Rx |x⟩ ⟨x| , (1)

where |x⟩ and |y⟩ are configurations on the lattice, wx→y

the transition rate from x to y, and Rx =
∑

y ̸=x wx→y

the escape rate out of x. We can write this as W = K−R,
where K contains the off-diagonal transition rates, and R
the diagonal escape rates.
The first model we consider is the 2D East model [19–

22], often studied in the context of the glass transition.



2

This is a kinetically constrained model (KCM) such that
an excited site nk = 1, allows (“facilitates”) a site to its
North or East to flip stochastically, see Fig. 1(a). The
generator of the 2D East model reads

WEast =
∑

k

Pk

[
c
(
σ+
k − (1− nk)

)

+ (1− c)
(
σ−
k − nk

) ]
, (2)

where c ∈ (0, 1/2] controls the average occupation den-
sity, and the kinetic constraint is P(kx,ky) = n(kx−1, ky) +
n(kx, ky−1). In addition, we choose open boundary con-
ditions (OBC) with n(1,1) = 1 fixed. This ensures the
entire state space remains dynamically connected [20].

The second model is the 2D SSEP. This describes par-
ticles hopping to neighbouring sites on a 2D lattice with
unit rate, but only if the target site is not already occu-
pied by a particle. We also allow particles to be injected
or removed at the boundaries of the lattice with rate 1/2,
see Fig. 1(b). The generator for the SSEP is

WSSEP =
∑

⟨k,l⟩

[
σ+
k σ

−
l − (1− nk)nl + σ−

k σ
+
l

− nk(1− nl)
]
+

1

2

∑

k∈∂

[
σx
k − 1

]
, (3)

where ⟨k, l⟩ denotes a pair of nearest neighbours, and ∂
the boundary of the lattice.

Dynamical LDs.- We consider the statistics of some
dynamical observable K̂ through its probability distribu-
tion Pt(K) =

∑
ωt
π(ωt)δ[K̂(ωt)−K], where ωt denotes

a stochastic trajectory and π(ωt) is the probability it oc-
curs under the stochastic generator W. Essentially the
same information is encoded in the moment generating

function (MGF), Zt(s) =
∑

ωt
π(ωt)e

−sK̂(ωt), where we
have introduced the counting field s. In the t → ∞
limit, the two obey LD principles Pt(K) ≍ e−tφ(K/t)

and Zt(s) ≍ etθ(s), with the rate function φ(K/t) and
scaled cumulant generating function (SCGF) θ(s) being
time-independent. The LD functions are related through
a Legendre transform, φ(k) = −mins [θ(s) + sk(s)] , for
k = K/t. For reviews, see Refs. [28–31].

A convenient way to determine the SCGF is to con-
struct a biased or tilted generator [29, 32–34], a (non-
stochastic) deformation of the Markov generator W such
that the associated trajectories are exponentially biased

by e−sK̂(ωt). We consider as an observable the dynamical
activity [32, 35], which counts the number of jumps in a
stochastic trajectory and thus quantifies the overall level
of motion. The corresponding tilted generator then takes
the form Ws = e−sK − R. The SCGF can be retrieved
by calculating the largest eigenvalue and eigenvector(s),

Ws |rs⟩ = θ(s) |rs⟩ , ⟨ls|Ws = θ(s) ⟨ls| . (4)

FIG. 2. Optimization of PEPS. The error in measured
energy for the SU and the FU compared to the high accuracy
2D DMRG (with a MPS bond dimension up to DMPS = 1024)
for various values of s and a 10 × 10 lattice. The left panel
shows the 2D East model with c = 0.5, and the right panel
shows the 2D SSEP. The PEPS environment in the FU uses
a boundary dimension χB = 4D2 for the East and χB = 6D2

for the SSEP.

For the models and dynamical observable considered
here, we can introduce a similarity transformation in-
dependent of s, Hs = −P−1WsP, where P is a diagonal
matrix with the square roots of the steady state prob-
abilities [34]. This results in a Hermitian matrix with
minimal eigenvalue and associated eigenvector

Hs |ψs⟩ = −θ(s) |ψs⟩ , (5)

where |ψs⟩ is related to the original eigenvectors by
|rs⟩ = P |ψs⟩ and ⟨ls| = ⟨ψs|P−1. This representation
is convenient as the minimum eigenvalue is bounded by
the Rayleigh-Ritz principle.
PEPS.- Determining the minimal eigenvalue and

eigenvector of Hs boils down to an optimization problem.
We approach this using TN methods. A natural ansatz
choice in this case is PEPS, the direct two-dimensional
generalization of MPS [12]. PEPS are known to obey the
area law in 2D [36], with the amount of entanglement
controlled by its virtual bond dimension DPEPS. To cal-
culate observables we also need a scheme to contract the
TN. For the case of PEPS, this cannot be done efficiently
and thus we have to use an approximate scheme. We use
the boundary MPS scheme [12, 37], where we contract
from the edge of a PEPS network with an MPS with
some boundary dimension χB which controls the accu-
racy of contraction. A common heuristic choice for local
problems is χB ∼ O(D2

PEPS) (see e.g. Ref. [38]).
The final step is to choose an update scheme to esti-

mate the wavefunction |ψs⟩. Broadly speaking, there are
three popular approaches. The computationally cheap-
est but least precise is the SU scheme [24], which we use
for the most part here. SU makes use of imaginary time
evolution, with updates which only consider the local en-
vironment. It is not optimal but only entails compu-
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(a) (b) (c) (d)

FIG. 3. Dynamical large deviations and active-inactive transitions from PEPS. (a) The SCGF θ(s)/L2 for the 2D
East with c = 0.3 (top) and the SSEP (bottom) for system sizes N ∈ [102, 402]. The black dashed line shows the linear response
for small s, and the colour dotted lines show the value for s → ∞. (b) The dynamical activity k(s)/L2 for the systems in (a).
The East is on a log-log scale, and the SSEP a log-linear scale. (c) The rate function φ(k)/L2 as a function of activity k/L2 for
the systems in (a). The dashed line shows the Poisson distribution with mean k(s = 0)/L2. (d) The transition points sc(L) for
the 2D SSEP (black circles) and the 2D East for c ∈ [0.2, 0.5]. The solid lines show the fitted power-law curves sc(L) ∼ L−2α,
with the exponents shown in the inset. The black dashed line is the exponent for the SSEP, and the symbols are for the East.
The symbols can be used to read the value of c in the main figure. The bottom panel shows the dynamical susceptibility
χ(s) = θ′′(s) for the 2D SSEP. All the data was acquired using the SU except for the black markers, which show 2D DMRG
data for a N = 10 lattice for comparison.

tation cost of O(D5
PEPS) [39]. A more efficient update

which also relies on imaginary time evolution is the FU
[25, 26]: here we have to contract the whole TN (ex-
cept for the tensors which are being updated). While
this costs O(χ3

BD
4
PEPS + χ2

BD
6
PEPS), with a good ap-

proximate environment it ensures the update is optimal.
The final class of updates are Variational Updates (VU)
[40, 41] which we do not consider here. For details see
e.g. Ref. [42].

Figure 2 compares the SU and FU schemes [43] for
both models against 2D DMRG [44] for small 10×10 lat-
tices, where almost exact results can be determined with
DMRG [45]. We show the relative difference in energy
∆E = (EPEPS − EDMRG)/EDMRG. We find that the SU
is able to achieve accuracy δE < 10−3, which is enough
for our study. Even though the FU could improve the
results, we thus proceed with SU with a maximal bond
dimension DPEPS = 4, which allows us reaching large
sizes at low computational cost.

Large deviations from PEPS.- The East and SSEP
in 1D are known to have LD transitions in terms of the
activity or other dynamical observables [6, 8, 32, 46–
52]. In two-dimensions, the SSEP has a transition in
the LDs of the current [14]. We now provide evidence

by means of PEPS for both the 2D East and 2D SSEP
having active-inactive phase transitions. Figure 3(a-c)
shows the LD statistics for both the 2D East model (top)
and the 2D SSEP (bottom). For the East model, we see
from Fig. 3(a) that the SCGF follows linear response,
θ(s) ≈ sk(0), for small s, but at sc(L) it sharply changes
to another branch. This point corresponds to a sudden
drop in activity, k(s) = −θ′(s), which becomes discontin-
uous in the limit N →∞, see Fig. 3(b). Having access to
both the SCGF and the dynamical activity allows us to
estimate the rate function φ(k), shown in Fig. 3(c). We
see broadening of the rate function around the mean, in-
dicating the coexistence of active and inactive dynamics.
All this behaviour is characteristic of a first-order phase
transition.

For the SSEP we see something different: Fig. 3(a)
shows no sharp change in θ(s), and the activity in
Fig. 3(b) has no discontinuity. This is indicative of a
second-order transition, with the rate function showing
critical broadening, see Fig. 3(c), and a divergence in the
susceptibility χ(s) = θ′′(s), see Fig. 3(d). Note that this
is different from the 1D SSEP with open boundaries [8]
in which this transition is first-order.

For both models we can extract a transition point from
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the drop in either first or second cumulant. The top panel
of Fig. 3(d) shows how the transition point scales with L
for both models (for a range of c for the 2D East). We are
able to fit the data with the power laws sc(L) ∼ L−2α,
as shown by the solid lines. We find the exponents α ≳ 1
for the 2D East and α ≲ 1 for the SSEP, see inset to the
top panel of Fig. 3(d).

Optimal sampling of rare trajectories from
PEPS.- Sampling trajectories corresponding to the s ̸=
0 phases is difficult as they are exponentially rare in
system size and time. The optimal sampling dynam-
ics at long times is given by the so-called generalized
Doob transform [53–57], which maps the tilted generator
into a true stochastic generator for the rare trajectories,
WDoob

s = L [Ws − θ(s)I]L−1, where L is the leading left
eigenvector of Ws as a diagonal matrix. This gives a new
dynamics with the transition rates

w̃x→y =
ls(y)

ls(x)
e−swx→y, (6)

with ls(x) = ⟨ls|x⟩. InWDoob
s the counting field s appears

as a physical control parameter, and running dynamics
with rates (6) gives trajectories at s ̸= 0 on demand.
While optimal, WDoob

s is difficult to construct in general
as one needs the exact left leading eigenvector. However,
we can exploit our PEPS approximation to estimate the
rates Eq. (6), similar to Ref. [58] for 1D and MPS.

To obtain Eq. (6) for the transitions out of a state x we
calculate ls(y) from the PEPS using a boundary dimen-
sion χB = DPEPS [41, 59–61], thus entailing a maximum
cost O(ND6

PEPS). If we neglect the time edges of trajec-
tories, we can estimate an time-extensive observable by
importance sampling

⟨O⟩s ≈
∑

αt
O(αt)g(αt)∑
αt
g(αt)

, (7)

where αt denotes a trajectory generated with (6) (the ref-
erence dynamics), and O(αt) is the trajectory observable.
The re-weighting factor g(αt) is

g(ωt) = e−
∫ t
0
dt′R(t′)−R̃(t′), (8)

where R(t′) and R̃(t′) are the escape rates of the system
at time t′ in the original dynamics and the approximate
Doob dynamics, respectively. Notice that with a large
enough number of trajectories, Eq. (7) can be used to
correct on the imperfections in the reference dynamics
due to an imperfect PEPS approximation.

Figures 4 show results from our sampling algorithm for
the 2D East with c = 0.5 and the 2D SSEP, both for sys-
tem sizes N = 22 × 22. The average dynamical activity
measured in trajectories (symbols) [with umbrella sam-
pling (7,8)] coincides with that obtained directly from
the PEPS (solid line), except for DPEPS = 1 for the East
model. The accuracy of our dynamics is quantified by the

(a)

(b)

FIG. 4. Optimal sampling of trajectories. The average
dynamical activity from CTMC with importance sampling
(symbols) for the (a) 2D East model with c = 0.5 and (b)
the 2D SSEP respectively on a 22× 22 lattice. We show data
over a range of s, and DPEPS ∈ [1, 4]. The trajectory times
are chosen such that on average we expect 100 transitions per
trajectory. The solid black line shows the activity measured
directly from the PEPS with D = 4 for comparison. The
insets show the variance in the time-integrated difference of
escape rates, δR2 (see main text). For the East model, we
show results over the dynamical phase transition s > 0, while
the SSEP shows results for over negative and positive s. Each
data point is calculated from Nsp ∈ [103, 104] trajectories. For
visualisations of representative trajectories see Ref. [62].

variance of the time integrated difference in escape rates,
cf. Eq. (8), which vanishes for the exact Doob rates. We
show this for each D in the insets of Figs. 4: increasing
the DPEPS consistently reduces the variance, indicating
a better sampling dynamics and less need for importance
sampling.

Conclusions.- We have shown that the dynamical
large deviations of two-dimensional stochastic models can
be studied efficiently with PEPS, including the quasi-
optimal sampling of rare trajectories. We showed here
that both the 2D East model and the 2D SSEP have
active-inactive trajectory transitions, of the first-order
and second-order, respectively, the latter in contrast to
the case of the 1D SSEP. Our work adds to the continu-
ously expanding application [3–11, 14, 16, 17, 63] of ten-
sor network methods to study the dynamical fluctuations
in classical stochastic systems.
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There are several interesting avenues to pursue build-
ing on this work. One is to integrate 2D trajectory sam-
pling via tensor networks with a method such as tran-
sition path sampling (TPS) [64] for investigating statis-
tics of fluctuations at finite times, cf. [11, 65]. While
the current implementations with PEPS are too demand-
ing to reasonably incorporate TPS, tree tensor networks
(TTNs) [15] are a promising alternative that could allow
to reliably investigate finite time scaling. We hope to
report on this is the near future.
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Chapter 9

Conclusions & outlook

This thesis has furthered the development of the application of TNs to stochastic dy-
namics, with a strong focus on dynamical LDs. It began by introducing two new classes
of KCMs. The first was the XORFA model, which has experimental relevance through
its connection to Rydberg atoms in their “anti-blockade” regime. The slow relaxation
properties of the model can be attributed to the fact its dynamical degrees of freedom are
limited to the diffusion of its DWs, allowing a SEP description of the model. The second
model was the stochastic generalization of the Fredkin model. This model behaves like an
ASEP with additional kinetic constraints on the neighbouring sites, and can be considered
a generalization of the East model to a SEP. For each model, evidence was provided of
first-order dynamical phase transitions, highlighting the predominance of dynamical het-
erogeneity in the stationary dynamics. These works have introduced further examples of
stochastic dynamics with dynamical phase coexistence, with links to well studied models
with quantum dynamics. Furthermore, they demonstrate how TN methods can be used
within stochastic dynamics, with local and global dynamical constraints which must be
adhered to. An important discovery not yet fully explored is that the inactive phase of
each of the models exhibits localization. This could motivate the future study of their
tilted stochastic generators under closed unitary evolution, as was done for the “quan-
tum East model” [146]. This exponential localization, along with the strong dynamical
constraints, are known mechanisms for anomalous non-thermal eigenstates: eigenstates
with properties which are inconsistent with the canonical ensemble at the energy of the
eigenstate [146, 203]. These often include eigenstates with low amounts of entanglement
throughout the energy spectrum, resembling those of “quantum scars” [204–207].

The remainder of the thesis was devoted to the algorithmic developments of the ap-
plication of TNs to dynamical LDs. It was first shown how the variational MPS results
can be used to construct an auxiliary dynamics capable of optimally and almost exactly
sampling the Doob dynamics. This is useful for a few reasons. One application was to
use the approximate variational MPS results with trajectory path sampling methods to
correct on any errors. This was used to incorporate efficient path sampling with limited
computational resources. However, it could also be used for systems where MPS are not
able to estimate the leading eigenvectors to a high precision. On the other hand, the
trajectories provide much more information than the time-average MPS, including that
of time-correlations. This approach was used to study finite-time trajectory ensembles.
Previously, finite-times were mostly limited to small times, due to the exponential cost
of rare trajectory sampling in time. Indeed, very long times are made possible by the
framework of LDs. However, the intermediate times where transitions between fast and
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slow dynamics occur were previously inaccessible; investigating these times helps to paint
a complete picture of the full phase diagram.

The study of finite time ensembles then inspired the application of MPS time-evolution
methods to better study finite time LDs. Through a hybrid of variational and time-
evolution methods, it was possible to precisely determine the time-evolution of probability
vectors under the stochastic evolution of tilted Markov generators, and in turn determine
the finite time dynamical fluctuations. This approach was superior to the previous, as
the time-evolution approach considers the evolution of the entire ensemble of trajectories
(whereas the previous was a sampling based approach). However, the results of this
method could be easily integrated into the sampling approach to more effectively perform
trajectory sampling at finite times. This allows for the benefits of the time-evolution
approach, and also to use sampling to correct on systematic errors introduced through the
approximate time-evolution MPS methods. The new methods to investigate finite time
ensembles enabled a more detailed characterization of the first-order dynamical phase
transitions for various lattice models, namely the East, FA and SSEP.

The final part of this work addressed the generalization of the MPS methods to 2D
systems. This problem was tackled through numerical PEPSs, the natural 2D generaliza-
tion of MPSs. The dynamical LDs for the East and SSEP models were estimated using
well studied optimization methods of PEPSs, revealing first- and second- order dynam-
ical phase transitions in activity for each respectively. As was done in 1D, the PEPSs
results were incorporated with trajectory sampling methods, generalizing the methods
from MPSs. While the trajectory sampling approach was efficient at sampling the dy-
namical large deviations at large times, it was not powerful enough to deal with finite
times. This problem was recently approached using recurrent neural networks for small
system sizes [208]. An interesting avenue for exploration would be to study how PEPS,
or other TN architectures, such as TTNs, compare to these methods.

The models and methods considered here have furthered the understanding of dynam-
ical phase transitions in KCMs. In particular, they allowed detailed finite-size scaling
analyses of numerous KCMs in one- and two- spatial dimensions, enabling the determi-
nation of the order of their respective transitions, and their scaling exponents. Many
theoretical works have demonstrated that prototypical spin facilitated models of glass
formers, such as the East and FA model, have first-order phase transitions in their activ-
ity in 1D [52, 145]. Ref. [43] made use of the MPSs to confirm this to a high accuracy,
finding the point of transition from active-to-inactive dynamics scales as sc(N) ∼ N−α

with α ≳ 1. This was also argued to be the case for the FA model in 2D [117], and
for the North-or-East model in Chapter 8 of this thesis. On the contrary, the results for
the XORFA model in Chapter 4 demonstrated a first-order transition but with a scaling
exponent α ≳ 2. This difference in this exponent might be explained through a geometric
picture (e.g. see Ref. [209]). While the first-order transition is indicative of space-time
bubbles in the East, FA and the XORFA, the difference is in the way the boundaries of
the bubbles evolve in each model. For the FA (and East) model, the boundaries grow
linearly in time; that is, for example, the bubbles of slow domains are penetrated by fast
domains with linear slopes [209]. Conversely, the dynamics of the XORFA is attributed to
the diffusion of DWs, much like in the SSEPs (but with particles). DWs from the active
regions only diffusively penetrate inactive regions which are empty of DWs (and similarly
inactive regions which are rich in DWs penetrate active regions in the same way). Thus,
one might expect the slow domains to persist for a longer time. This perspective is sup-
ported by the larger exponent: the position of the transition point is indicative of how
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“slow” the dynamics is. The closer the transition point is to s = 0, the slower one can
expect the dynamics to be. 1 Hence, a larger exponent indicates a slower penetration of
domains.

Similarly, the Fredkin model with c = 0.5 also has a first-order transition, with an
exponent of α ∼ 2.5. While it is not entirely clear if this would hold in the large size
limit, it was shown to be the case for the range of system sizes available by means of MPS.
Indeed, this larger exponent might not be too surprising. The model behaves diffusively
like the SSEP, and as such, one might expect the exponent α ∼ 2. However, here are
additional kinetic constraints, making the dynamics even slower, and thus yielding a
larger exponent. Nevertheless, it is still an open question to explain the exact nature of
the exponent. For c < 0.5, it was found the systems behave similarly to the East and
FA models, with exponents α ≳ 1. One plausible explanation for this is that inactive
regions penetrate the neighbouring active regions linearly due to the asymmetry of the
hopping. Furthermore, the stationary state has much smaller fluctuations for c < 0.5 due
to the choice of boundary conditions. It would be interesting to see how (if at all) the
dynamical fluctuations are affected for a choice of boundaries which have greater amounts
of stationary fluctuations.

Interestingly, the work presented in Chapter 8 showed that the SSEP in 2D had a
second-order phase transition in the activity, despite the fact the SSEP in 1D appears to be
first-order. While this still indicates large amounts of dynamical fluctuations, the physical
intuition is not as clear. The continuous nature of the transition suggests that there are
algebraically decaying correlations in the space-time dynamics of the model (in analogy to
criticality in a static classical 2D system). It might be instructive to investigate the two-
point correlation functions of the dynamics in space-time (auto-correlation functions over
a region of space) to better understand the significance of the transition. The difference in
the nature of the transition is likely a consequence of the dimensionality of the problem.
Generally speaking, consider a cluster of jammed particles. Particles at the middle of the
cluster must first wait for particles at the edge to disperse (which happens diffusively)
before they can become dynamically active. In 2D, there are more directions for this to
happen, and thus one might expect the dispersion to be quicker than the 1D case. One
possible route to investigate this premise could be to consider the SSEP on various 2D
geometries which allows for a range of coordination numbers. The exponent, α ≲ 1, is
also smaller than that found in the 1D SSEP. Consider the inactive phase in 2D (which
is devoid of particles), with the boundary conditions in Chapter 8. Particles can enter at
the boundaries of the system, and then diffuse throughout. To relax to equilibrium, the
particles only need to diffuse a distance l ∼ L, i.e. the linear dimension of the lattice.
As such, it could be reasonable to suggest the scaling sc(N) ∼ L−2 = N−1 (where the
exponent −2 comes from the fact the particles are diffusive).

Additionally, the methods introduced here allow for the determination of the scaling
of the transition point with respect to time, sc(t) ∼ t−β. For each of the 1D models
investigated in Chapter 7, it was shown that the exponent goes as β ∼ 1. This is surprising
given the differences in the value of α for each model. More work is required to investigate
if this exponent is universal to all models with a dynamical phase transition in activity
(and extensions to other standard non-equilibrium observables, such as currents).

1This argument can be made more concrete by considering the position of the Lee-Yang zeroes of
the biased partition sum in the complex space, e.g. Ref. [160]. The cumulants of the dynamics can
be determined exactly by the Lee-Yang zeroes, with the zeros closest to s = 0 giving the dominant
contributions.
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The methods developed here enabled the investigation of dynamical fluctuations of
stochastic lattice models. The focus was on the dynamical activity due to its significance
in glass forming systems and because of the numerical simplifications, namely that the
dynamics under the biasing of dynamical activity will still respected detailed balance (as-
suming the original system obeyed detailed balance). However, it is possible to adapt
the methods presented here to non-equilibrium (driven) systems, e.g. see Refs. [44, 45].
One future application of this to KCMs could be to consider initial probability distri-
butions which are out-of-equilibrium, such as quenches in temperature. Previous works
have shown that the s-ensemble can be used to probe dynamics of intermediate timescales
[202]. Chapter 7 also demonstrated this, and also gave indications to the trajectory times
required to probe these dynamics using the s-ensemble. It would be interesting to see
if TNs could provide a more straightforward way to study the metastable dynamics at
times which are inaccessible, e.g. not knowing the expected behaviour of the dynamics at
some time a priori.

It is important to note that these approaches have been restricted to models with a
discrete number of (spatial) degrees of freedom. An important future direction would
be to adapt these approaches for a broader class of systems, such as those which are
continuous in space (e.g. simulations of liquids). While one should not expect the same
level of accuracy as is seen for lattice models, TNs might still provide benefits to trajec-
tory sampling through approaches similar to Chapters 6 and 8. Furthermore, the focus
of this thesis was on the canonical ensemble – the true dynamical fluctuations are de-
scribed by the PDF of a given dynamical observable. While the two are related through
a Laplace transform, they are in practice difficult to disentangle. One possible solution is
to sample the microcanonical ensemble through TNs. In particular, MPS can represent a
probability distribution over configurations. By performing a Dyson series expansion, we
can represent an entire ensemble of trajectories with fixed transition times by a 2D TN.
This approximately considers all spatial possibilities, but restricts the temporal degrees
of freedom. To account for time, one could design a Monte Carlo algorithm similar to
TPS, which adjusts the transition times, allowing us to sample the full microcanonical
ensemble. Alternatively, one could attempt to target the full ensemble by designing an
approximate ensemble. This could be of the form of a Gaussian ensemble, whereby the
probabilities of trajectories with values different to the target value decay as a Gaussian
distribution. Formulating the problem in this way could allow the application of meth-
ods used in closed quantum systems to target the microcanonical properties of quantum
Hamiltonians [5].

Another possibility for future investigation is the study of dynamical LDs in open
quantum systems. Many efforts have gone towards generalizing the framework of LDs
to open quantum systems, including: (i) finding the “tilted Lindbladians” whose leading
eigenvalues correspond to the LDs [55], (ii) the formulation of a “quantum Doob dy-
namics” [55, 210–212] which exploits the leading eigenmatrix of the tilted Lindbladian
to construct a dynamics whose statistics are the same as the those of interest, and (iii)
constructing an auxiliary dynamics (Doob dynamics) capable of sampling the true rare
quantum trajectories [134, 211]. These methods have been applied to various systems of
interest for small system sizes to uncover dynamical phase transitions [213–216]. Indeed,
one could try to apply MPS methods for larger system sizes, as has done for classical
stochastic systems in this thesis. However, there are many difficulties in doing so. The
tilted generator is non-Hermitian, and thus are not bound by a Raleigh-Ritz variational
principle. This could hinder the performance of variational algorithms [217, 218]. One
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could try to use time-evolution methods [219–223], however, the intermediate states before
reaching the long-time limit could have too much entanglement to be faithfully captured
by an MPS, and thus the truncation of the MPS could destroy the positivity require-
ments of the density matrix. Future works would require the development of methods
which enforce positivity [224], but are also expressive enough to well describe the true
density matrix.
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Appendix A

Supplemental material for “Finite
time large deviations via matrix
product states”

The following document is the “Supplemental material” for the publication “Finite time
large deviations via matrix product states” by Luke Causer, Mari Carmen Bañuls and Juan
P. Garrahan, in Physical Review Letters 128 (9), 090605. It includes some extra details
on how to perform time-evolution using MPS in the context of rare-event sampling, and
quantifies the errors.
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This document provides details about the numerical methods and their associated errors.

METHODS

The vector |ψt⟩ is given as a matrix product state (MPS) ansatz,

|Ψ⟩ =
d∑

i1···iN
Tr(Ai1

1 A
i2
2 · · ·AiN

N ) |i1 i2 · · · iN ⟩ (S1)

where each Ak
j is a rank-3 tensor with dimensions (d,D,D), with the variational parameter D (known as the bond

dimension) and k = 1 . . . d. We implement time evolution using a hybrid approach. We start with the equilibrium
steady state, |ψ0⟩, which can be written as a product state (an MPS with D = 1),

|ψFA
0 ⟩ = |1⟩ ⊗

[√
1− c |0⟩+√c |1⟩

]⊗N−2 ⊗ |1⟩ , (S2)

|ψEast
0 ⟩ = |1⟩ ⊗

[√
1− c |0⟩+√c |1⟩

]⊗N−1
. (S3)

The first step is to find the leading eigenvector |ψLD⟩ of Hs. This can be achieved by employing variational MPS
(vMPS, see e.g. Ref. [1] for details). We then project the initial state |ψ0⟩ onto the (unnormalized) LD vector and its
orthogonal complement,

|ψLD
0 ⟩ = P |ψ0⟩ , (S4)

|ψrem
0 ⟩ = (1− P) |ψ0⟩ , (S5)

where P = |ψLD⟩ ⟨ψLD|. The two states are then evolved separately. The first is an eigenstate of the evolution
operator (up to some small error given by the variance from vMPS), |ψLD

t ⟩ = etθ(s) |ψLD
0 ⟩. The remaining state is a

mixture of all other eigenstates in the spectrum and cannot be easily evolved in the same way. Fortunately, a range
of techniques have been developed for MPS to allow for time-evolution (see Ref. [2] for comparisons). We will focus
on the method introduced in [3], with details below.

The time-evolution of a MPS (tMPS) can be achieved by sequentially applying the time evolution operator U(δ) =
eδHs to the MPS. This is approximated using (second order) Trotter-Suzuki decomposition [4] with small times δ ≪ 1.
We find a Trotter step of δ ∈ [0.01, 0.1] to be sufficient. To avoid exponential growth of the bond dimension, we
apply a full truncation scheme through singular value decomposition and variational sweeps to minimize the distance
between the truncated and un-truncated MPS, keeping only a maximum of D = 400 states (although in practice we
never reach this) and with a truncation error ϵ = 10−12 [5]. Note that when we perform the variational truncation,
we must also project out the leading eigenvector again, as it may be re-introduced through truncation. The full
time-evolved state is then brought back together by summing the two separate states. The method is outlined in Fig.
S1.

We now offer a few comments to the effectiveness of this method. Firstly, the time evolution is in real time (by this
convention, quantum evolution is imaginary time). In the large time limit, the leading eigenvector will dominate as the
other vectors will be exponentially dampened. The methods here allow us to accurately unravel the contribution of the
leading eigenvector up until the times it becomes dominant. Furthermore, this approach often allows us to simulate
large times by only having small simulation times in tMPS. That is, the remaining state can quickly converge onto
the second leading eigenvector (which we determine through the change in norm), allowing us to stop the simulation
early and extrapolate to large times. This is particularly useful when determining the transition from active-to-
inactive dynamics for small s > 0, where timescales diverge but all but the leading two eigenvectors are exponentially
dampened. Notice that one can adapt this method to allow for multiple leading eigenvectors of the generator, which
can be determined variationally. Indeed this could provide a more precise determination of the partition sums, but
we find this not to be necessary here.
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|ψ0⟩
|ψLD

0 ⟩

|ψrem
0 ⟩

P

1 − P

etθ |ψLD
0 ⟩

|ψrem
t ⟩

|ψt⟩

etθ

tMPS

FIG. S1. A schematic drawing of the time evolution methods used here. We project the initial state onto the LD vector and
the remainder. The former can be evolved exactly as itself up to the exponential pre-factor etθ(s), whereas the remainder must
be evolved approximately using tMPS. We then add the two back together to give the overall state.

Errors

Due to the numerical nature of the methods used here, errors are unavoidable. The first error is introduced due to
the approximation of the leading eigenvector. In particular, |ψLD⟩ has an error which can be measured through the
variance with respect to the generator [1]. In practice, for the times considered here, this error is small and can be
considered negligible. The dominant sources of error come from our approximation to the remainder, |ψrem

t ⟩. This
is calculated by evolving the initial state forward in time using a Trotter-decomposed MPO approximation to the
evolution operator U(δ) = eδHs . Here we use a second order Trotter decomposition which entails an error O

(
Nδt3

)

per time step (and system size N), resulting in the accumulated error O
(
tδt2

)
for M = t/δt time steps. Furthermore,

after each time step we then truncate the MPS to an upper-bounded bond dimension. In practice, we measure these
truncation errors to be very small. Figure S2 compares the measured (log) partition sum for against numerically exact
results for small system sizes (left panel), with the inset showing the error

δZ =

∣∣∣∣
ln(Zexact)− ln(ZMPS)

ln(Zexact)

∣∣∣∣ . (S6)

We observe the largest discrepancy around the time where the |ψrem
t ⟩ becomes less dominant than |ψLD

t ⟩. At large
times of course, the leading eigenvector exponentially dominates and thus the error drops.

FIG. S2. Demonstration of the errors accumulated using the time evolution scheme here. The left panel compares results from
exact numerics (line) and MPS (crosses) for a small system size. The inset shows the error (S6). The right panel compares the
measured activity through determination of the partition sum (line), and sampling using the MPS reference dynamics (symbol)
for various times and a large system size N = 100.

As discussed in the main text, an attempt can be made to correct on some of these errors by using the MPS
retrieved after time evolution of half the trajectory time as a reference dynamics for umbrella sampling, see Ref. [6].
Granted enough simulations, if the reference dynamics well approximates the true dynamics, then we could see slight
improvements on the measured dynamical activity - if the expected activity from the partition sum largely differs from
this result however, it could indicate substantial errors. The right panel of the figure below shows this comparison for
the FA model with N = 100. Notice the overwhelming agreement between results, with only small errors around the
transition point at large times, although it still correctly predicts the location of the transition point.



3
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Appendix B

Supplemental material for “Optimal
sampling of dynamical large
deviations in two dimensions via
tensor networks”

The following document is the “Supplemental material” to the arXiv pre-print (arXiv:
2209.11788) “Optimal sampling of dynamical large deviations in two dimensions via tensor
networks” by Luke Causer, Mari Carmen Bañuls and Juan P. Garrahan. It includes some
basic details on defining a stochastic dynamics on a 2D space, and a simple update scheme
for optimizing PEPS.
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STOCHASTIC DYNAMICS

We consider systems that live on a two-dimensional square lattice of size N = L× L, where each site can take the
binary values nk = 0 or 1, and k = (kx, ky) denotes the position of the lattice sites, kx, ky = 1 · · ·L. The system
evolves under continuous-time Markov dynamics, defined by the transition rates wx→y from configuration x to y. The
average dynamics of the system can be encoded by a probability distribution Px(t), which describes the probability
for the system to be in some configuration x at time t. This can be compactly written as a vector of probabilities,
|P (t)⟩ = ∑

x Px(t) |x⟩, where
∑

x Px(t) = 1. The evolution of the probability distribution is given by the master
equation,

d

dt
Px(t) =

∑

y ̸=x

wy→xPt(y)−RxPt(x), (S1)

where Rx =
∑

y ̸=x wx→y is the escape rate out of the configuration x. It is convenient to write the master equation
in terms of a Markov generator,

W =
∑

x,y ̸=x

wx→y |y⟩ ⟨x| −
∑

x

Rx |x⟩ ⟨x| , (S2)

which yields ∂t |P (t)⟩ = W |P (t)⟩. The Markov generator W conserves probability, ⟨−|W = 0, with the flat state
⟨−| = ∑

x ⟨x|, and has maximal eigenvalue zero.
For the models considered here, the Markov generator can easily be written in terms of local operators. The first

model we consider is the 2D East model, with the Markov generator

WEast =
∑

k

Pk

[
c
(
σ+
k − (1− nk)

)
+ (1− c)

(
σ−
k − nk

) ]
, (S3)

where σ±
k are the Pauli raising/lowering operators at site k, c ∈ (0, 1/2] parameterizes the transition rates, and the

kinetic constraint is P(kx,ky) = n(kx−1, ky) + n(kx, ky−1). The second model we consider is the 2D symmetric simple
exclusion process (SSEP),

WSSEP =
∑

⟨k,l⟩

[
σ+
k σ

−
l − (1− nk)nl + σ−

k σ
+
l − nk(1− nl)

]
+

1

2

∑

k∈∂

[
σx
k − 1

]
, (S4)

where ⟨k, l⟩ denotes a pair of nearest neighbours, σx
i = σ+

i + σ−
i , and ∂ denotes the boundary of the lattice. See the

main text for a description of each.

Mapping the tilted generator onto a Hermitian operator

The long time statistics for the models are encoded in the leading eigenvalue θ(s) and eigenvectors of the tilted
Markov generator, Ws, retrieved by multiplying the off-diagonal components of Eqs. (S3-S4) by e−s,

⟨ls|Ws = θ(s) ⟨ls|Ws, (S5)

Ws |rs⟩ = θ(s)Ws |rs⟩ . (S6)
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The probability distribution over the configuration space under these biased dynamics then behaves as

P (x) ≍ ⟨ls|x⟩ ⟨x|rs⟩⟨ls|rs⟩
(S7)

for sufficiently large times. The tilted Markov generator provides an efficient way to estimate the time-averaged
dynamical properties by directly targeting its leading eigenvectors. However, we can exploit the fact that each of the
models considered here obeys detailed balance. We define P as the diagonal matrix whose elements are the square
roots of the steady state probability of W. Then we can use the similarity transformation Hs = P−1WsP, to define
the Hermitian matrix Hs, with maximal eigenvalue and associated eigenvector

Hs |ψs⟩ = θ(s) |ψs⟩ , (S8)

where |ψs⟩ is related to the original eigenvectors by |rs⟩ = P |ψs⟩ and ⟨ls| = ⟨ψs|P−1. The models considered here
allow for a simple representation as a Hermitian matrix,

HEast
s =

∑

k

Pk

[
e−s

√
c(1− c)σx

i − c(1− nk)− (1− c)nk
]
, (S9)

HSSEP
s =

∑

⟨k,l⟩

[
e−sσ+

k σ
−
l − (1− nk)nl + e−sσ−

k σ
+
l − nk(1− nl)

]
+

1

2

∑

k∈∂

[
e−sσx

k − 1
]
. (S10)

This representation is convenient due to the fact its expectation with any vector |ψ⟩ is bounded by the maximal
eigenvalue through the Rayleigh-Ritz variational principle,

⟨ψ|Hs|ψ⟩
⟨ψ|ψ⟩ ≤ θ(s). (S11)

Furthermore, using this Hermitian matrix means that we only need to determine one eigenvector. Notice that in this
representation, the leading eigenvector encodes the probability amplitudes of each configuration, |ψs⟩ =

∑
x ψ(x) |x⟩,

with |ψ(x)|2 = P (x).

PROJECTED ENTANGLED-PAIR STATES

The long-time dynamics of deformed Markov generators can be encoded by the probability amplitude, ψ(n), with
configurations n = (nk1

, nk2
, · · · , nkN

). This can be written more compactly as a vector of probability amplitudes,
|ψ⟩ = ∑

n ψ(n) |n⟩. This vector has the size 2N for N lattice sites, and quickly becomes intractable to store. However,
it is often the case that the components ψ(n) are not independent of each other, such that it is possible to efficiently
approximate the vector by an object with a smaller dimensionality (described by a number of parameters less than
dN ). This realisation is at the heart of tensor network (TN) approximations. A TN representation of ψ(n) amounts
to decomposing the N -dimensional object into a network of many smaller tensors, connected along additional virtual
dimensions, which are contracted (i.e. multiplied and summed over) to retrieve the original global tensor.

For the case of a 2D square lattice with N = L×L sites, the most natural TN ansatz is the projected entangled-pair

state (PEPS). In this ansatz, each system (lattice site) is assigned its own rank-5 tensor, A
dj

kj
, where kj denotes the

position of system j, and dj the state of the system. One of the dimensions corresponds to the physical dimension
of the subsystem with size d, and the other four dimensions are virtual ones which connect the tensor to the tensors
of the four neighbouring lattice sites. These virtual dimensions are of size DPEPS (often referred to as the bond
dimension), which controls the amount of mutual information shared between the lattice sites. It follows that each
tensor is parameterized by dD4

PEPS parameters, with a maximum of Np = NdD4
PEPS parameters for the whole PEPS.

By specifying the local configuration of each site, nk, and contracting over the network, one is able to determine ψ(n),

ψ(n) = F
(
A

nk1

k1
A

nk2

k2
· · ·AnkN

kN

)
, (S12)

where F is a function which represents the contraction over all virtual bond dimensions. It is convenient to represent
the TN pictorially, as illustrated for |ψ⟩ in Fig. S1(a). Notice that we refer to this as |ψ⟩, as none of the physical
dimensions are specified. The green cubes correspond to the tensors, the grey lines represent the virtual bond
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(a) (b)
(c) (d)

=

FIG. S1. PEPS. (a) The vector |ψ⟩ as a PEPS. The green cubes represent tensors within the PEPS, the (open) purple lines
are their physical dimensions, and the (closed) grey lines are the virtual dimensions between tensors. (b) The same for its

conjugate, ⟨ψ|. The conjugate tensors are represented by red cubes and black lines. (c) The two-body operator, Ô, as a tensor.
(d) The probability amplitude ψ(n) can be retrieved by specifying the local dimension of each tensor, as shown by the grey
cubes. This results in a network of rank-4 tensors, which give ψ(n) when contracted.

dimensions to be contracted over, and the pink lines represent the physical dimensions. Similarly, we show the
conjugate, ⟨ψ|, in Fig. S1(b). It is also possible to represent local operators as a tensor, such as the two-body
operators in the tilted generators. Local two-body operators can be represented by a rank-4 tensor, as shown in
Fig. S1(c). Figure S1(d) shows how the probability amplitude ψ(n) can be retrieved from the PEPS by specifying
the local dimension for each system. This reduces the PEPS to a network of rank-4 tensors, which give ψ(n) when
contracted.

Contracting PEPS

PEPS allow for an efficient representation of probability amplitude vectors for large system sizes. However, to
perform any tractable calculations, such as calculating the expectation of observables, it is necessary to have a way
to efficiently contract the networks. Figures S2(a, b) show the networks which must be contracted to determine the
inner products ⟨ψ|ψ⟩ and ⟨ψ|Ô|ψ⟩ respectively, for some two-body operator Ô. In general, contracting exactly such
a two-dimensional TN is an intractable problem [1], as any exact contraction strategy has a cost that scales at least
exponentially in L. For the ansatz to be of practical use, one needs ways to approximately (but precisely) contract
the TN with a tractable cost.

A popular approach, and the one we will take here, is the boundary matrix product state (MPS) scheme [2, 3]. This
involves contracting from the edge of the TN, one row (column) at a time, and approximating the result by an MPS
(in this case, a collection of rank-4 tensors), whose bond dimension χB controls the accuracy of the approximation.
We demonstrate this process in Figs. S3(a-d). The tensors at the boundary can be contracted to form the first
boundary MPS, see Fig. S3(a). This boundary MPS is then contracted with the subsequent layer, and approximated
by another boundary MPS, again with bond dimension χB, see Fig. S3(a). Applying the procedure from two opposing
edges of the network up to the rows (or columns) of lattice sites neighbouring the two-body operator, one is able to
approximate the expectation value depicted in Fig. S2(b) by the one shown in Fig. S3(e). This network can then be
contracted from the edges exactly, resulting in Fig. S3(f), which can be easily and exactly contracted to determine
the approximation of ⟨ψ|Ô|ψ⟩. Contracting the networks in Fig. S3 scales as O(χ3

BD
4
PEPS + χ2

BD
6
PEPS).

A heuristic choice for χB is χB ∼ O(D2), in which case gives the total complexity O(D10). Figure S4 demonstrates
the role of the bond dimension of the boundary MPS, χB . We optimize the MPS using the simple update described
below, and calculate its expectation value with respect to Hs, E(χB) = ⟨ψs|Hs|ψs⟩, measured with the bond dimension
χB . We compare the measurement to that using χ = 128, which can be considered to be quasi-exact,

∆E(χB) =

∣∣∣∣
E(χB)− E(128)

E(128)

∣∣∣∣ . (S13)

Indeed, the results confirm that χB ∼ O(D2) is a reasonable choice for approximating the environment. We use the
bond dimension χ = 50 when checking for convergence in observables during the optimization procedure, and χ = 200
when taking the final measurements to ensure convergence in the boundary approximation.
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(a) (b)

FIG. S2. PEPS networks. (a) The inner product ⟨ψ|ψ⟩ and (b) the expectation value ⟨ψ|Ô|ψ⟩ as TNs. For visual
convenience, the operator and the tensors which it is connected to are show in full colour, while the remaining tensors are
semitransparent.

(a) (b)

(c) (d)

(e)

(f)

FIG. S3. Contracting PEPS networks. (a) The edge of a PEPS network can be approximated by (b) a boundary MPS
with the auxiliary bond dimension χB . (c) The boundary MPS can be contracted with subsequent layers within the PEPS
network, and approximated by (d) another boundary MPS also with the auxiliary bond dimension χB . By contracting from
two opposite edges of the PEPS network, we have the reduced network shown in (e). One can then exactly contract from both
edges of the reduced network to receive the network shown in (f). This can be exactly contracted to give the approximation of

⟨ψ|Ô|ψ⟩.

Time evolution

To find a PEPS approximation for the leading eigenvector of the tilted generator, one needs to find a suitable
optimization procedure. There are many approaches to optimizing TNs, but the one taken here will be to employ
time evolution (often referred to imaginary time evolution for quantum many-body systems). The main idea is to
project some probability amplitude vector onto the leading eigenvector of the tilted generator Hs by applying the time
propagator operator, U(δ) = eδHs , to |ψ⟩ until convergence is met, |ψs⟩ = limt→∞ U(t) |ψ⟩ (up to normalization). In
practice, the complete time propagation operator is difficult to compute, as it requires the matrix exponentiation of
the tilted generator on the complete state space. However, for small δ ≪ 1, we can approximate the time propagation
by a sequence of Trotter gates,

U(δ) ≈
∏

⟨k,l⟩
Uk,l(δ), (S14)

where Uk,l(δ) = eδHk,l , and Hk,l are the terms in Hs which act only on the lattice sites k and l. This approximation
is often referred to as a first-order Trotter decomposition, with each set of gates having an error of O(δ2). This is the
approach we take. However, it is possible to improve the accuracy by using higher order Trotter decompositions [4].

Each gate can be individually applied to the PEPS, see Fig. S5(a). The goal is to approximate the application of the
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FIG. S4. Accuracy of the boundary approximation. We show the relative difference in the expectation value, ∆E(χB),
when a boundary MPS bond dimension χB is used, compared to χB = 128. Results are for the 2D East model with N = 10×10,
c = 0.5 and s = −1.0.

=
SVD

(a) (b) (c) (d)

(e)

FIG. S5. Time evolution. (a) The PEPS |ψ⟩ can be updated at a local neighbouring pair of sites through the application
of a Trotter gate (shown by the yellow cuboid). (b) This can be approximated by a PEPS with same bond dimension. (c) The
updated tensors can be retrieved using the SU. The small turqouise cubes are the “λ-matrices” retrieved from SVDs of the
neighbouring tensors (see e.g. Ref. [5]). (d) First, we contract the lattice site tensors and the surrounding λ-matrices with the
Trotter gate. (e) Then, through an SVD, we can restore the PEPS manifold. The λ-matrices outside of the pair of tensors are
restored to their original values, while the λ-matrix between the two tensors is updated.

gate to PEPS by another PEPS with the same bond dimension, see Fig. S5(b). Naively contracting the gate moves
the PEPS away from the PEPS manifold, as shown in Figs. S5(c, d). In order to restore the PEPS, we need an update
scheme which restores the form of the original two tensors from the PEPS used in the contraction. Two popular
approaches to achieving this task are the Simple Update (SU) [5] and the Full Update (FU) [6–8]. In general, to find
the optimal truncation, which optimizes the overlap of the new PEPS with the untruncated TN, the environment
of the pair of tensors (i.e. the contraction of the remaining PEPS tensors) needs to be taken into account. This is
however a costly computation, and the SU includes only a primitive, but computationally inexpensive approximation
of it as a product [9], and performs a truncated singular value decomposition (SVD) to split the resulting tensor, see
Figs. S5(d, e). This results in a simple algorithm, with computational cost scaling as O(D5

PEPS). [10].

In contrast, the FU takes into account the full environment, but requires the approximate contraction of the
complete TN, as illustrated in Figs. S2 and S3. This update has a greater accuracy, but with a much steeper scaling
of O(χ3

BD
4
PEPS + χ2

BD
6
PEPS).

In what follows, we demonstrate the effectiveness of both methods for the system sizes N = 10 × 10. For both
approaches, we use an update schedule which reduces the time step from in the range δ ∈ [10−3, 10−1]. After many
iterations of time evolution, we estimate the expectation value of the state, E = ⟨ψ|Hs|ψ⟩. This process is repeated
until we find convergence. Figures S6(a, b) show the difference in the expectation value, ∆E = (E−EDMRG)/EDMRG,
with respect to the quasi-exact results of 2D density matrix renormalization group (DMRG) for the 2D East and 2D
SSEP respectively, and various values of s. The circles show the results of the SU, and the squares show the results of
the FU. While it is clear in most instances the FU can provide significant improvements on the SU, it is worth noting
that even the SU provides precise results for bond dimension D = 4, with errors δE ≲ O(10−3). We find these errors
to be sufficiently small, and thus proceed using only the SU to allow us to reach large system sizes.
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FIG. S6. Optimization of PEPS. The error in the measured expectation value for the SU and the FU compared to the high
accuracy 2D DMRG (with an MPS bond dimension up to DMPS = 1024) for various values of s and a 10 × 10 lattice. The left
panel shows the 2D East model with c = 0.5, and the right panel shows the 2D SSEP. The PEPS environment in the FU uses
a boundary dimension χB = 4D2 for the East and χB = 6D2 for the SSEP.

OPTIMAL SAMPLING OF DYNAMICS

The long time statistics of dynamical observables are encoded in the deformed Markov generator Ws. While in
principle this object can be used to generate the trajectories which correspond to the statistics, it is difficult to do in
practice due to the unnormalized nature of Ws. That is, ⟨−|Ws ̸= 0, and in general, the leading eigenvalue θ(s) ̸= 0.
In the long time limit, we are able to overcome this difficulty using the so-called Doob dynamics, which maps the
tilted generator onto a proper stochastic dynamics through the transformation WDoob

s = L [Ws − θ(s)I]L−1, where
L =

∑
x ls(x) |x⟩ ⟨x| is the left eigenvector as a diagonal matrix, ls(x) = ⟨ls|x⟩. It is simple to check that the flat state

⟨−| is an eigenvector of WDoob
s with the maximal eigenvalue zero. The Doob dynamics has the transition rates

w̃x→y =
ls(y)

ls(x)
e−swx→y, (S15)

and escape rates R̃x = Rx + θ(s).
While the Doob dynamics provides an efficient way to simulate the biased dynamics at long times, it is dependent

on the fact that one has access to the leading eigenvector of the tilted generator. Using the PEPS optimization
methods described above, we are able to estimate the left eigenvector ⟨ls| ≈ ⟨ψs|P−1, where ⟨ψs| is our approximation
to the leading eigenvector of Hs. Note that retrieving ⟨ls| as a PEPS is simple due to the fact that P acts locally.
This allows us to implement an efficient sampling algorithm which can estimate the dynamics Eq. (S15) by sampling
ls(x) directly form our PEPS.

Extracting ls(x) from the PEPS is done similarly to estimating the contraction of the PEPS networks in Fig. S2.
The first thing to notice is that we can reduce the PEPS to a network of rank-4 tensor by specifying the value of the
local index of each tensor, which is defined by the configuration x (that is, the configuration x specifies each local
nk), see Figs. S7(a, b). The values ls(x) are then retrieved by contracting the network. As was done for the networks
in Fig. S3, we can estimate the exact contraction of the network using the boundary MPS method, with some bond
dimension χB . However, this time the boundary MPS are composed of rank-3 tensors, and a heuristic choice for the
bond dimension is χB ∼ O(DPEPS), see Fig. S7(c). By contracting from two opposing edges of the network, we can
then estimate ls(x) through the exactly contractable MPS-MPS product, see Fig. S3(d).

Unlike the networks in Fig. S2—which are composed of two PEPS layers—the sampling of ls(x) only requires us to
contract over a single PEPS. This leads to a significant reduction in computational cost, with each calculation of ls(x)
only costing O(ND6

PEPS). At each Monte Carlo step in the stochastic simulation algorithm, we need to calculate ls(x)
for a maximum of N configurations, and thus the cost is O(N2D6

PEPS). However, by recycling our partial contractions
when calculating each ls(x), it is possible to reduce this to a cost of O(ND6

PEPS) for each Monte Carlo step, see
Refs. [8, 11]. While our approach provides a way to nearly optimally sample the Doob dynamics, the PEPS used in
the sampling is only approximate. These errors must be accounted for through the use of umbrella sampling, see the
main text and Ref. [11] for further details.

Figures S8, S9 demonstrate trajectories sampled for the 2D East and the 2D SSEP respectively, using the approx-
imate Doob dynamics. The vertical plot in the left shows a light yellow line each time a transition occurs, and the
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(a)

(b)
(c) (d)

FIG. S7. Optimal sampling from PEPS. (a) The component ls(x) = ⟨ls|x⟩ can be extracted from the PEPS. (b) The
physical dimensions can be contracted to give a PEPS composed of rank-4 tensors. (c) As is the case in Fig. S3, the contraction
of the PEPS can be estimated through a boundary MPS, this time composed of rank-3 tensors and bond dimension χB . (d)
By contracting from two opposing edges of the network, we can reduce approximate the contraction as an MPS-MPS product.

(a) (b) (c)

FIG. S8. Representative trajectories for the 2D East. Trajectories sampled from the approximate Doob dynamics for L =
10, c = 0.5, and (a) s = −0.1, (b) s = 0.01 and (c) s = 0.1. The vertical bars show the times when jumps occur (yellow/bright
lines). The snapshots show the configurations at the marked times (black/white indicates a occupied/unoccupied).

right panels demonstrate a configuration snapshot at some points in time, as marked in the figures. We show (a) an
active trajectory, (b) a trajectory close to the transition point sc and (c) an inactive trajectory.

COMPARISON TO OTHER METHODS

A full detailed comparison to the other methods via their numerical implementation is beyond the scope of this work.
However, we will provide a brief discussion explaining how this approach compares to other approaches. One popular
approach to estimating large deviations is cloning methods. This approach has an exponential cost in system size,
and is known to suffer from bias. This is most apparent around the transition point, meaning that while the method
allows for a way to probe dynamical phase transitions, it is not reliable for an accurate finite size scaling analysis
as performed here. Another popular approach is trajectory sampling methods. While this approach is unbiased, it
suffers an exponential cost in both time and space. Methods such as transition path sampling [12] can be used to
hinder the cost, reducing the exponent in the exponential. Nevertheless, the cost is still exponential, and can be
problematic where large times are required.

Tensor network approaches estimate the long time statistics of the dynamics by directly targetting the maximal
eigenvalue of a deformed Markov generator. Each iteration of the optimization methods scales only polynomially in
system size for a fixed bond dimension. In the case of time evolution, the number of iterations required to reach
convergence is expected to scale as the inverse gap between the two leading eigenvalues of the deformed Markov
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(a) (b) (c)

FIG. S9. Representative trajectories for the 2D SSEP. Trajectories sampled from the approximate Doob dynamics for
L = 10 and (a) s = −0.1, (b) s = 0.1 and (c) s = 1.0. The vertical bars show the times when particle hops occur (yellow/bright
lines). The snapshots show the configurations at the marked times (black/white indicates a particle/hole).

generator. Furthermore, whereas the required bond dimension for a fixed precision is not known a priori, PEPS allow
for a controlled way to systematically increase the accuracy of the method by increasing the bond dimension at a cost
which is only polynomial in bond dimension. As shown in these works, the PEPS can be combined with trajectory
sampling algorithms. This allows us to approximate the most optimal sampling dynamics at a cost which again scales
only polynomially in both space and PEPS bond dimension. In practice, the dynamics is only approximate, and
errors will still exponentially propagate in time. However, the prefactor is hugely reduced from the usual setting.
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4S. Lu, M. C. Bañuls, and J. I. Cirac, “Algorithms for Quantum Simulation at Finite
Energies”, PRX Quantum 2, 020321 (2021).
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Model: Localization, Nonthermal Eigenstates, and Slow Dynamics”, Phys. Rev. X 10,
021051 (2020).

116

https://doi.org/10.1088/1742-5468/2016/07/073208
https://doi.org/10.1063/1.5143144
https://doi.org/10.1103/PhysRevE.104.014108
https://doi.org/10.1007/s10955-021-02799-x
https://doi.org/10.1007/s10955-021-02799-x
https://doi.org/10.1016/j.jcp.2022.111025
https://doi.org/10.1063/1.476378
https://doi.org/10.1063/1.476378
https://doi.org/10.1146/annurev.physchem.53.082301.113146
https://doi.org/10.1146/annurev.physchem.53.082301.113146
https://doi.org/10.1007/3-540-35273-2_10
https://doi.org/10.1007/3-540-35273-2_10
https://doi.org/10.1063/1.3525099
https://doi.org/10.1002/adts.202000237
https://arxiv.org/abs/2209.11116
https://doi.org/10.1103/PhysRevB.78.134428
https://doi.org/10.1103/PhysRevE.85.036710
https://doi.org/10.1088/1751-8113/42/7/075007
https://doi.org/10.1103/PhysRevX.10.021051
https://doi.org/10.1103/PhysRevX.10.021051


147L. Berthier and J. P. Garrahan, “Numerical Study of a Fragile Three-Dimensional
Kinetically Constrained Model”, J. Phys. Chem. B 109, 3578–3585 (2005).

148S. Butler and P. Harrowell, “The origin of glassy dynamics in the 2D facilitated kinetic
Ising model”, J. Chem. Phys. 95, 4454–4465 (1991).

149I. Hartarsky, F. Martinelli, and C. Toninelli, “Fredrickson–Andersen model in two
dimensions”, arXiv preprint (2022).

150G. Biroli and J. P. Garrahan, “Perspective: The glass transition”, J. Chem. Phys. 138,
12A301 (2013).

151D. J. Ashton, L. O. Hedges, and J. P. Garrahan, “Fast simulation of facilitated spin
models”, J. Stat. Mech.: Theory Exp 2005, P12010 (2005).

152S. Kim, D. G. Thorpe, C. Noh, J. P. Garrahan, D. Chandler, and Y. Jung, “Study of
the upper-critical dimension of the East model through the breakdown of the Stokes-
Einstein relation.”, eng, J. Chem. Phys 147, 084504 (2017).

153M. D. Ediger, “Spatially Heterogeneous Dynamics in Supercooled Liquids”, Annu. Rev.
Phys. Chem. 51, 99–128 (2000).

154S. C. Glotzer, “Spatially heterogeneous dynamics in liquids: insights from simulation”,
J. Non-Cryst. Solids 274, 342–355 (2000).

155T. Bodineau, V. Lecomte, and C. Toninelli, “Finite Size Scaling of the Dynamical
Free-Energy in a Kinetically Constrained Model”, J. Stat. Phys 147, 1–17 (2012).

156T. Bodineau and C. Toninelli, “Activity Phase Transition for Constrained Dynamics”,
Commun. Math. Phys 311, 357–396 (2012).

157R. L. Jack and P. Sollich, “Large deviations of the dynamical activity in the east model:
analysing structure in biased trajectories”, J. Phys. A: Math. Theor. 47, 015003 (2013).

158T. Nemoto, R. L. Jack, and V. Lecomte, “Finite-Size Scaling of a First-Order Dynamical
Phase Transition: Adaptive Population Dynamics and an Effective Model”, Phys. Rev.
Lett. 118, 115702 (2017).

159R. L. Jack, T. Nemoto, and V. Lecomte, “Dynamical phase coexistence in the Fredrick-
son–Andersen model”, J. Stat. Mech.: Theory Exp 2020, 053204 (2020).

160C. Flindt and J. P. Garrahan, “Trajectory Phase Transitions, Lee-Yang Zeros, and
High-Order Cumulants in Full Counting Statistics”, Phys. Rev. Lett. 110, 050601
(2013).

161L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, “Large Deviations
for the Boundary Driven Symmetric Simple Exclusion Process”, Math. Phys. Anal.
Geom. 6, 231–267 (2003).
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195R. Orús and G. Vidal, “Infinite time-evolving block decimation algorithm beyond uni-
tary evolution”, Phys. Rev. B 78, 155117 (2008).

196M. P. Zaletel, R. S. K. Mong, C. Karrasch, J. E. Moore, and F. Pollmann, “Time-
evolving a matrix product state with long-ranged interactions”, Phys. Rev. B 91,
165112 (2015).

197M. Suzuki, “Generalized trotter’s formula and systematic approximants of exponential
operators and inner derivations with applications to many-body problems”, Commun.
Math. Phys. 51, 183–190 (1976).

198H. C. Jiang, Z. Y. Weng, and T. Xiang, “Accurate Determination of Tensor Network
State of Quantum Lattice Models in Two Dimensions”, Phys. Rev. Lett. 101, 090603
(2008).
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