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Abstract 

The development of power ultrasound technology had raised interest in the design of 

sonoreactors. Numerical simulations were identified as a promising tool for tackling 

the challenges involved in scaling up and optimisation. The development of simulation 

strategies for sonoreactor acoustics had mainly focused on horn-type configurations, 

and little information was available for bath-type systems. This work evaluated the 

performance of three popular frequency-domain models for the prediction of acoustic 

pressure in bath-type configurations. The results of the pure-liquid, linear Commander 

and Prosperetti (CP), and nonlinear Helmholtz (NH) models were verified against 

hydrophone measurements and antinode characterisation results obtained from 

experiments. Emphasis was placed on the evaluation of the linear CP model, as it was 

hypothesised to best characterise the acoustic behaviour of the studied systems. In 

accordance with the objectives of this work, seven case studies were carried out.  

Case Study 1 explored the suitability of frequency-domain solutions for the 

characterisation of acoustic pressure fields. Predictions of frequency-domain 

solutions compared well with time-domain models and experimental observations, 

notably in terms of antinode locations. The results justified the use of frequency-

domain models to characterise sonoreactors. Case Study 2 explored the acoustic 

boundary conditions used in the modelling strategies of this work. The test cases 

showed that Dirichlet pressure boundaries can be used to represent the vibrating 

walls of studied sonoreactors. Numerical aspects of other boundary conditions were 

also identified to improve confidence in the simulation results.  
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Case Study 3 presented a pressure validation study using a 252 L ultrasonic bath to 

evaluate the performance of selected acoustic pressure models. The pure-liquid 

model was found to yield good agreements for lower-frequency cases (35 and 72 kHz, 

but failed to account for increased attenuation at higher-frequency cases (110 and 

170 kHz). The linear CP model showed mixed results and performance was strongly 

affected by wall reflection. The results were found to depend on the bubble density 

magnitude. Empirically tuned bubble densities significantly improved the 

performance of the linear CP model for the 35 and 72 kHz cases. Preliminary studies 

for the nonlinear CP and NH models resulted in strong deviations from hydrophone 

measurements, which suggested an overtuned attenuation mechanism. 

Case Study 4 presented a novel investigation on the effect of geometry on qualitative 

antinode validation methods. Heuristic and theoretical analysis supported the 

hypothesis which stated that the value of the effective-geometry-to-wavelength ratio, 

𝐷𝑠/𝜆, affects the confidence in the antinode validation results. A simplified standing 

wave model was developed and proposed to show that wavelength-shortening effects 

can only be detected above a certain 𝐷𝑠/𝜆 threshold. The findings of the case study 

were found to strongly influence current interpretations of antinode validation in 

sonoreactors and outlined the effect sonoreactor geometry on the validity of antinode 

verification results. 

Antinode validation was performed for the pure-liquid, linear CP, and NH models in 

Case Study 5, using SCL images of a hexagonal sonoreactor. The performance of the 

selected models in terms of phase-speed prediction was evaluated. The pure-liquid 

model consistently predicted wavelengths longer than those of SCL observations. The 
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outputs of the linear CP model once again showed strong sensitivity to the bubble 

density parameter. The results suggested that the best agreement with the SCL 

standing wave patterns could be obtained using a bubble density magnitude between 

1 × 1010 – 1 × 1011 m-3. The NH model also yielded mixed results. The phase speed 

prediction mechanism of the NH model was found to depend on many factors, in 

which a detailed analysis could not be completed within the scope of this work. 

Case Study 6 served to demonstrate and discuss the proposed semi-empirical 

wavelength tuning approach for the characterisation of the bubble density in a 

sonoreactor. The novel method was developed based on the linear CP model to 

address the uncertainties regarding bubble field characterisation in sonoreactor 

simulations. The method allowed the bubble density parameter to be tuned against 

wavelength measurements which led to remarkable improvements for antinode 

characterisation results using the linear CP model.  

Case Study 7 presents an exploratory study on the use of frequency-domain modelling 

strategies for multi-frequency sonoreactors. Based on Parseval’s theorem, the CP 

model was modified to account for multi-frequency harmonics. The antinode 

verification of the simulation results suggested that the use of linear wave 

superposition was a promising approach for simplifying the characterisation of multi-

frequency acoustic fields. The remarkable agreement with SCL images also further 

supported the viability of the linear CP model.  

 



vi 
 

List of Publications 

Refereed Journals 

Tiong, T.J., Chu, J.K., Lim, L.Y., Tan, K.W., Hong Yap, Y., Asli, U.A., 2019. A 

computational and experimental study on acoustic pressure for ultrasonically formed 

oil-in-water emulsion. Ultrasonics Sonochemistry 56, 46–54.  

Chu, J.K., Tiong, T.J., Chong, S., Asli, U.A., Yap, Y.H., 2021. Multi-frequency 

sonoreactor characterisation in the frequency domain using a semi-empirical bubbly 

liquid model. Ultrasonics Sonochemistry 80, 105818.  

Chu, J.K., Tiong, T.J., Chong, S., Asli, U.A., 2022. Investigation on different time-

harmonic models using FEM for the prediction of acoustic pressure fields in a pilot-

scale sonoreactor. Chemical Engineering Science 247, 116912.  



vii 
 

Acknowledgement  

First, I express my utmost gratitude to my main supervisor, Dr. Tiong Timm Joyce, for 

her guidance, insight, and patience throughout all these years. She has allowed me 

much freedom in following my own initiative to pursue my (sometimes very off-topic) 

ideas, and provided much guidance and continual support. I would also like to thank 

my co-supervisor, Dr. Faye Chong Siew Hui, for her input and support for my work. 

Furthermore, I am very grateful for Dr. Umi Aisah Asli for her support and simulation 

software (COMSOL), and also Dr. Hii Ching Lik for the constructive feedback which led 

to key improvements in this work. I am grateful to my senior, Derick Liew Khong Lit, 

for his contribution in the form of a comprehensive dataset used in parts of this work. 

I would like to express my gratitude to the University of Nottingham Malaysia which 

made this research project possible. I also wish to thank the laboratory technicians 

and faculty staff for the support and assistance given to me throughout these years. I 

would also like to express my thanks to fellow researchers at the 17th Meeting of the 

European Society of Sonochemistry (ESS 2022). I have gained very valuable 

experiences that greatly added to my growth as a researcher. 

I would like to express my gratitude to my parents, grandparents, and sister for their 

love and support throughout this long journey. I thank my family and friends for their 

care and encouragement. I would like to thank God, and my church community for 

their support. Last but not least, a very special thank you to my online friends from all 

over the world, in the group ‘Didn’t Expectus’ on the online platform Discord, for their 

companionship throughout these years. 



viii 
 

Table of Contents 

Chapter 1: Background ............................................................................................... 1 

1.1 Introduction ............................................................................................................... 1 

1.1.1 Power Ultrasound and Acoustic Cavitation ....................................................... 1 

1.1.2 Workings of a Sonoreactor ................................................................................ 3 

1.2 Literature Review ....................................................................................................... 6 

1.2.1 Numerical Simulations for Sonoreactor Modelling ........................................... 6 

1.2.2 Sonoreactor Characterisation and Model Validation ........................................ 8 

1.2.3 Review of Acoustic Pressure Modelling and Validation Works ....................... 13 

1.3 Notable Knowledge Gaps ......................................................................................... 22 

1.3.1 Modelling Strategies for Bath-Type Configurations ........................................ 23 

1.3.2 Large-Scale Validation Studies ......................................................................... 23 

1.3.3 Inter-Model Comparison and Discussion ......................................................... 24 

1.3.4 Bubble Field Characterisation in Sonoreactor Acoustics ................................. 24 

1.4 Problem Statement .................................................................................................. 25 

1.5 Aims and Objectives ................................................................................................. 25 

1.5.1 Research Timeline ............................................................................................ 27 

1.6 Thesis Structure and Case Studies ........................................................................... 28 

Chapter 2: Theory ..................................................................................................... 31 

2.1 The Wave Equation .................................................................................................. 31 

2.2 The Helmholtz Equation........................................................................................... 33 

2.3 Pure-Liquid vs Bubbly-Liquid Models ....................................................................... 34 

2.3.1 Pure-Liquid Approach ...................................................................................... 34 

2.3.2 Bubbly-Liquid Approach ................................................................................... 35 

2.4 The Caflisch Equation for Bubbly-Liquid Acoustics .................................................. 36 

2.4.1 Mathematical Formulation .............................................................................. 36 



ix 
 

2.4.2 Important Assumptions ................................................................................... 38 

2.4.3 Practical Limitations ......................................................................................... 40 

2.5 The Commander and Prosperetti (CP) Model.......................................................... 43 

2.5.1 Formulation of the CP Model ........................................................................... 43 

2.5.2 Variations of the CP model .............................................................................. 45 

2.5.3 Comments on the CP Model ............................................................................ 46 

2.6 The Nonlinear Helmholtz Model .............................................................................. 48 

2.6.1 Formulation of the NH Models ........................................................................ 48 

2.6.2 Comments on the NH Model ........................................................................... 53 

2.7 Bubble Field Characterisation and Bubble Dynamics .............................................. 54 

2.7.1 Specification of Bubble Field Parameters ........................................................ 54 

2.7.2 Bubble Dynamics .............................................................................................. 56 

2.8 Mesh and Solver Considerations in FEM ................................................................. 60 

2.8.1 Meshing Considerations in Sonoreactor Acoustics .......................................... 61 

2.8.2 Convergence Criteria and Solver Framework .................................................. 61 

2.9 Acoustic Boundary Conditions and Perfectly Matched Layers (PML) ...................... 64 

2.9.1 Acoustic Boundary Conditions ......................................................................... 64 

2.9.2 Perfectly Matched Layers (PML) ...................................................................... 67 

Chapter 3: Fundamental Modelling Strategies in FEM ................................................ 68 

3.1 Case Study 1: Time- and Frequency-Domain Acoustic Simulations ......................... 68 

3.1.1 Methodology .................................................................................................... 68 

3.1.2 Results and Discussion ..................................................................................... 70 

3.2 Case Study 2: Investigating the Suitability of Boundary Conditions ........................ 83 

3.2.1 Dirichlet vs. Neumann Transducer Boundary Condition for Horns ................. 83 

3.2.2 Dirichlet vs. Neumann Transducer Boundary Condition for Baths .................. 87 

3.2.3 Dynamics of a Plate-Transducer Assembly ...................................................... 89 



x 
 

3.2.4 Auxiliary Study: Numerical Effects and Level of Constraint ............................. 94 

3.3 Concluding Remarks for Chapter 3 .......................................................................... 98 

Chapter 4: Validation of Acoustic Pressure Models .................................................. 100 

4.1 Case Study 3: Pressure Magnitude Prediction in Large Sonoreactors ................... 100 

4.1.1 Methodology .................................................................................................. 100 

4.1.2 Results and Discussion ................................................................................... 104 

4.2 Case Study 4: The Effect of Geometry on Antinode Characterisation ................... 133 

4.2.1 Defining the 𝐷𝑆/𝜆 Parameter ........................................................................ 133 

4.2.2 Heuristic Approach: Revisiting the Klíma et al. (2007) Validation Study ....... 134 

4.2.3 Analysis of the 𝐷𝑆/𝜆 Parameter .................................................................... 136 

4.2.4 Compilation of the 𝐷𝑆/𝜆 Parameter in Past Studies ..................................... 143 

4.3 Case Study 5: Antinode Prediction in Large Sonoreactor ...................................... 146 

4.3.1 Methods: Experimental Data ......................................................................... 146 

4.3.2 Methods: Numerical Simulation .................................................................... 149 

4.3.3 Results and Discussion ................................................................................... 152 

4.4 Concluding Remarks for Chapter 4 ........................................................................ 174 

Chapter 5: Bubble Field and Multi-Frequency Considerations .................................. 178 

5.1 Literature Review on Bubble Characterisation Strategies ..................................... 179 

5.1.1 Experimental Measurements for Sonoreactor Bubble Fields ........................ 179 

5.1.2 Bubble Field Characterisation Strategies in Past Works ................................ 183 

5.2 Derivation of the Semi-Empirical CP Method ........................................................ 194 

5.2.1 Reviewing Empirical Tuning Practices in Sonoreactor Acoustics ................... 194 

5.2.2 Establishing the Basis of the Semi-Empirical Characterisation Approach ..... 196 

5.3 Case Study 6: Demonstrating the Semi-Empirical Tuning Approach ..................... 201 

5.3.1 Methodology .................................................................................................. 201 

5.3.2 Results and Discussion ................................................................................... 202 



xi 
 

5.4 Case Study 7: Preliminary Investigation for Multi-Frequency Systems ................. 210 

5.4.1 Theoretical Derivation ................................................................................... 213 

5.4.2 Modification of the CP Model for Multi-Frequency Considerations ............. 214 

5.4.3 Methodology .................................................................................................. 218 

5.4.4 Results and Discussion ................................................................................... 222 

5.5 Concluding Remarks for Chapter 5 ........................................................................ 240 

Chapter 6: Conclusions and Future Work ................................................................. 242 

6.1 Key Contributions................................................................................................... 242 

6.2 Summary of Case Studies ....................................................................................... 244 

6.3 Future Work ........................................................................................................... 248 

 

 



xii 
 

List of Figures 

Figure 1.1: Graphical depiction of acoustic cavitation and its effects. .......................... 2 

Figure 1.2: (a) Transducer cross-section; (b) Sonotrode (Hielscher Ultrasonics) 

for horn-type configurations; (c) Wall transducer (Sonictron Malaysia) for 

bath-type sonoreactors. ................................................................................................. 4 

Figure 1.3: Schematic drawing describing: (a) a probe-beaker system; (b) an 

ultrasonic flow cell. ........................................................................................................ 5 

Figure 1.4: Example of: (a) ultrasonic bath with wall transducers; (b) 

ultrasonic bath with a transducer array module (KSONIC, Malaysia). .......................... 6 

Figure 1.5: Validation methods for acoustic pressure models listed based on 

validation quality. .......................................................................................................... 9 

Figure 1.6: Validation result of Klíma et al. (2007) showing that the antinode 

locations coincide with the cavitation bubbles. ........................................................... 14 

Figure 1.7: Summary of the thesis structure. ............................................................... 28 

Figure 1.8: Summary of Case Studies 1 – 4 presented in this work. ............................ 29 

Figure 1.9: Summary of Cast Studies 5 – 7 presented in this work. ............................. 30 

Figure 2.1: Numerical blow-up of the Caflisch solution during preliminary 

testing. (a) – (d) shows the evolution of the acoustic pressure field over time, 

where the red region shows unrealistic pressures. ...................................................... 41 

Figure 2.2: Summary of bubbly-liquid models and common bubble field 

assumptions. ................................................................................................................ 54 

Figure 2.3: The numerical solver set-up in COMSOL. The Damped Newton 

Method (MUMPS) was the main numerical method used in this work. ...................... 63 

Figure 3.1: The simulation geometry for: (a) the 1D study; (b) the 2D 

asymmetric study of Klíma et al. (2007). ..................................................................... 69 



xiii 
 

Figure 3.2: The meshes used for the 2D asymmetric case: (a) frequency-

domain simulation; (b) time-domain simulation. ........................................................ 70 

Figure 3.3: Acoustic pressure plot 𝑃 for the 1D frequency-domain simulation.

...................................................................................................................................... 71 

Figure 3.4: Absolute acoustic pressure plot |𝑃| for the 1D frequency-domain 

result. ........................................................................................................................... 71 

Figure 3.5: Evolution of the 1D time-domain acoustic pressure. ................................. 72 

Figure 3.6: Depiction of the half-cycle of the transient standing wave; note 

that pressures at the antinodes oscillate as the waveform evolved from (a) 

to (d). ............................................................................................................................ 72 

Figure 3.7: Comparison between the: (a) validation result of Klíma et al. 

(2007); (b) frequency-domain simulation results; (c) time-domain simulation 

result. The colour scale is normalised, based on the original work. ............................ 74 

Figure 3.8: Numerical dispersion error in the 1D time-domain results: (a) the 

loss of sinusoidal behaviour; (b) reduced error after mesh refining. ........................... 75 

Figure 3.9: Time evolution of acoustic pressure at x = 40 mm from simulation 

T2. The phase mismatch formed multiple levels of constructive and 

destructive interference between the incident and reflecting waves. ......................... 76 

Figure 3.10: Spectral decomposition of time-dependent acoustic pressure at 

x = 40 mm (T2) obtained using FFT. ............................................................................. 78 

Figure 3.11: Simulation results for the 1D system with a specified attenuation 

of 5 Np/m: (a) acoustic pressure, 𝑃; (b) absolute pressure, |𝑃|. ................................. 80 

Figure 3.12: Simulation results for the 1D system with a non-reflecting right 

boundary: (a) acoustic pressure, 𝑃; (b) absolute pressure, |𝑃|. .................................. 82 



xiv 
 

Figure 3.13: The mesh model used to study the numerical behaviour of 

Dirichlet and Neumann active boundaries. PML was used to eliminate 

reflection effects on the results. ................................................................................... 84 

Figure 3.14: Absolute pressure profile of the active boundary: (a) Dirichlet 

pressure condition; (b) Neumann displacement condition. ......................................... 85 

Figure 3.15: Plots of the pressure and absolute pressure solved using 

Dirichlet (a and c) and Neumann (b and d) active boundaries for the horn-

type configuration. ....................................................................................................... 85 

Figure 3.16: Propagation pattern and absolute pressure profile on the 

boundary, solved for increasing sonotrode width using the Neumann 

boundary. ..................................................................................................................... 87 

Figure 3.17: Effect of discretisation order on the Neumann boundary 

condition. Horizontal linear regression lines visualised the average 

magnitude across the investigated boundary. ............................................................ 87 

Figure 3.18: Plots of pressure and absolute pressure solved using the 

Dirichlet (a and c) and Neumann (b and d) active boundaries for the bath-

type test case. .............................................................................................................. 88 

Figure 3.19: Absolute pressure magnitude at for each boundary condition. .............. 89 

Figure 3.20: Schematics of the plate-transducer system and the boundary 

conditions. .................................................................................................................... 90 

Figure 3.21: (a) Total displacement magnitude with deformation magnified 

40000x; (b) 1D plot of normal displacement magnitude at the top surface. .............. 91 

Figure 3.22: Acoustic pressure 𝑃(𝑟) simulated for three different methods of 

representing the vibrating wall: (a) solid-acoustic simulation; (b) Dirichlet 

pressure boundary; (c) Neumann pressure boundary. ................................................ 92 



xv 
 

Figure 3.23: (a) Depiction of the transducers fitted for the hexagonal 

sonoreactor featured in this work; (b) Acoustic pressure simulation from full 

solid acoustics; (c) Acoustic pressure simulation using simplified Dirichlet 

boundary condition. ..................................................................................................... 93 

Figure 3.24: Graphical depiction of the simulation geometry for the boundary 

condition test. .............................................................................................................. 94 

Figure 3.25: Simulation results when (a) Dirichlet and (b) Neumann 

transducer boundaries are paired with the sound-soft wall boundary. ...................... 95 

Figure 3.26: Methods to reduce discontinuity numerical error using: (a) mesh 

refinement; (b) higher-order shape functions. ............................................................. 96 

Figure 3.27: Simulation results when: (a) Dirichlet; (b) Neumann transducer 

boundaries are paired with the sound-hard wall boundary. ....................................... 97 

Figure 3.28: Results for the non-reflecting case. The Neumann pressure 

boundary resulted in a peak magnitude of nearly 5 Pa. .............................................. 97 

Figure 4.1: Bisection of the model for the physical system studied by Son et 

al. (2009). ................................................................................................................... 101 

Figure 4.2: 2D representation of the simulated system taken as a horizontal 

cross-section of the sonoreactor. ............................................................................... 103 

Figure 4.3: (a) Example of the triangular element mesh generated for the 35 

kHz case; (b) Close-up of the mesh matrix. ................................................................ 104 

Figure 4.4: Comparison between power input calculation and hydrophone 

measurements for: (a) 35 kHz; (b) 72 kHz. ................................................................ 107 

Figure 4.5: Mesh refinement results for the pure-liquid and linear CP model 

(35 kHz). ..................................................................................................................... 109 

Figure 4.6: Maximum mesh sizes against the number of elements per 

wavelength (35 kHz). ................................................................................................. 109 



xvi 
 

Figure 4.7: Absolute pressure for the four frequencies solved using the pure-

liquid model. ............................................................................................................... 110 

Figure 4.8: Pure-liquid model 35 kHz solution: (a) Acoustic pressure; (b) 

Pressure magnitude. .................................................................................................. 111 

Figure 4.9: 35 kHz simulation using fully sound-hard and fully sound-soft 

boundary conditions: (a and c) acoustic pressure plot; (b and d) acoustic 

pressure magnitude plot. ........................................................................................... 111 

Figure 4.10: Compilation of the acoustic pressure magnitude plots |𝑃| for the 

linear CP model. ......................................................................................................... 113 

Figure 4.11: 72 kHz CP model with n = 1 × 1010 m-3: (a) Absolute acoustic 

pressure; (b) Acoustic pressure; (c) Regions above the pressure magnitude 

threshold. ................................................................................................................... 116 

Figure 4.12: (a) Simulation geometry for the PML case; (b) Mesh generation 

for PML. ...................................................................................................................... 117 

Figure 4.13: 72 kHz CP model with n = 1 × 1010 m-3 simulated using perfectly 

matched layers (PML): (a) Acoustic pressure magnitude plot; (b) Acoustic 

pressure plot. ............................................................................................................. 118 

Figure 4.14: Comparison of acoustic pressure magnitude profiles for three 

boundary conditions against hydrophone measurements, solved for CP, n = 

1 × 1010 m-3. ................................................................................................................ 119 

Figure 4.15: The results of the 35 kHz pure-liquid case simulated using PML 

to represent the absorbent boundaries against hydrophone measurements. .......... 120 

Figure 4.16: Absolute pressure comparison for the 35 kHz case against 

hydrophone measurements. ...................................................................................... 123 

Figure 4.17: Absolute pressure comparison for the 72 kHz case against 

hydrophone measurements. ...................................................................................... 125 



xvii 
 

Figure 4.18: Absolute pressure comparison for the 110 kHz case against 

hydrophone measurements. ...................................................................................... 126 

Figure 4.19: Absolute pressure comparison for the 170 kHz case against 

hydrophone measurements. ...................................................................................... 126 

Figure 4.20: Results of the linear CP model solved with tuned bubble density 

parameters from attenuation measurements, compared against 

hydrophone measurements. ...................................................................................... 129 

Figure 4.21: Absolute pressure profiles predicted by the nonlinear CP and NH 

(1 × 1010 m-3) models and the empirical measurements, compared against 

hydrophone measurements. ...................................................................................... 131 

Figure 4.22: The antinode validation results of Klíma et al. (2007), compared 

against a series of simulation results using arbitrary phase speeds. ........................ 135 

Figure 4.23: Depiction of an ideal standing wave model with constant 

wavelength, validation points numbered in red: (a) Pure node at boundary; 

(b) Pure antinode at boundary; (c) Neither a pure node nor pure antinode at 

the boundary. ............................................................................................................. 138 

Figure 4.24: Graphical explanation on the effect of larger effective geometry 

on the detectability of 'wavelength-shortening' in the form of an extra 

validation point. ......................................................................................................... 140 

Figure 4.25: The relation between the 𝐷𝑆/𝜆  parameter and its 

corresponding threshold to successfully capture wavelength-shortening 

effects in the form of a validation point. ................................................................... 141 

Figure 4.26: (a) Physical representation of the dimensions of the hexagonal 

sonoreactor; (b) Top view schematic showing the orientation of the 

transducers corresponding to each frequency. .......................................................... 147 

Figure 4.27: (a) Image showing the physical sonoreactor; (b) The schematic 

describing the method by which the SCL images were captured. ............................. 148 



xviii 
 

Figure 4.28: (a) Mesh for the pure liquid of the 28 kHz simulation with 

229,241 degrees of freedom; (b) Orientation of the boundary conditions of 

single-frequency operations. ...................................................................................... 151 

Figure 4.29: Effect of boundary conditions on predicted standing wave 

characteristics: (a) Sound-hard; (b) Sound-soft; (c) Impedance of stainless 

steel. Arrows represent the emitting walls. ............................................................... 153 

Figure 4.30: SCL results used in this work: (a) 28 kHz; (b) 40 kHz; (c) 70 kHz. 

Design power of 300 W and arrows show the ultrasound emitting walls. ................ 154 

Figure 4.31: Example of possible visual errors metal wall reflection, and the 

region of interest used for antinode validation. ........................................................ 155 

Figure 4.32:The absolute acoustic pressure fields predicted by the pure-liquid 

model for the three studied frequencies. ................................................................... 158 

Figure 4.33: Absolute acoustic pressure fields predicted by the linear CP 

model for three frequencies at different bubble density magnitudes. ...................... 159 

Figure 4.34: (a) Semi-log plot of the real and imaginary parts of the analytical 

wavenumber against bubble density; (b) Variation of the phase speed ratio 

against bubble fraction. Obtained using linear CP model with 5 µm 

equilibrium radius and 40 kHz. .................................................................................. 161 

Figure 4.35: (a) Semi-log plot of attenuation as a function of dimensionless 

pressure for 28, 40 and 70 kHz; (b) Semi-log plot of 28 kHz attenuation as a 

function of dimensionless pressure at studied bubble densities. Vertical line 

represents Blake threshold at 1.05 bar. ..................................................................... 162 

Figure 4.36: The absolute acoustic pressure fields predicted by the NH model 

for three frequencies at different bubble density magnitudes. ................................. 163 

Figure 4.37: Three convergence plots of the nonlinear solver, for the NH 

simulations for the 70 kHz case with 𝑛 = 1 × 1010 m-3. The degree of freedom 



xix 
 

(mesh fineness), solution time, and number of iterations are shown for each 

case. ........................................................................................................................... 165 

Figure 4.38: (a) Graphical description of the defined region of interest; (b) 

Example of the region of interest in the 40 kHz SCL image. ...................................... 165 

Figure 4.39: Qualitative comparison for the 28 kHz standing wave 

characteristics between the SCL image (a) and the investigated simulations 

(b) - (h)........................................................................................................................ 166 

Figure 4.40: Real and imaginary parts of 𝑘𝑐2 predicted by the NH model for 

the 70 kHz case, at n = 1 × 1010 m-3. .......................................................................... 167 

Figure 4.41: Qualitative comparison for the 40 kHz standing wave 

characteristics between the SCL image (a) and the investigated simulations 

(b) - (h)........................................................................................................................ 169 

Figure 4.42: Normalised luminance profile plotted for the centre of the 

regions of interest for the 40 kHz case. Dashed lines mark the approximated 

locations of the SCL antinodes. .................................................................................. 170 

Figure 4.43: Qualitative comparison for the 70 kHz standing wave 

characteristics between the SCL image (a) and the investigated simulations 

(b) - (h)........................................................................................................................ 171 

Figure 4.44: Normalised luminance profile plotted for the centre of the 

regions of interest for the 70 kHz case. Dashed lines mark the approximate 

locations of the SCL antinodes. .................................................................................. 172 

Figure 5.1: Graphical explanation depicting the similarities between the 

constant polydisperse approach and the monodisperse approach. .......................... 190 

Figure 5.2: Representation of the dependencies within an acoustic pressure 

simulation framework. ............................................................................................... 196 



xx 
 

Figure 5.3: Relationship between the phase speed and wavelength as a 

function of the uniform bubble density, plotted at 40 kHz and bubble radius 

of 5 µm. ...................................................................................................................... 200 

Figure 5.4: Graphical description of the proposed semi-empirical approach 

to characterise the hexagonal sonoreactor using SCL image data. .......................... 202 

Figure 5.5: The wavelength measurement process: (a) Distinct and uniform 

standing waves for the 40 and 70 kHz case; (b) Normalised luminosity plots. ......... 203 

Figure 5.6: The effect of different equilibrium bubble radii on the relationship 

between the bubbly-liquid phase speed and the bubble density............................... 205 

Figure 5.7: The comparison of the antinode prediction of the monodisperse 

linear CP model using a tuned bubble parameter of 𝑛 = 6.04 × 1010 m-3 for 

the 40 kHz case. ......................................................................................................... 207 

Figure 5.8: The comparison of the antinode prediction of the monodisperse 

linear CP model using a tuned bubble parameter of 𝑛 = 4.31 × 1010 m-3 for 

the 70 kHz case. ......................................................................................................... 207 

Figure 5.9: (a) Visual representation of the hexagonal sonoreactor 

dimensions; (b) Orientation of the frequencies involved. .......................................... 218 

Figure 5.10: Graphical representation of the nonlinear CP iteration loop. ............... 221 

Figure 5.11: SCL images of multi-frequency combinations; with design power 

of 600 W for dual-frequency and 900 W for tri-frequency. ....................................... 223 

Figure 5.12: RMS acoustic pressure solved using the linear CP approach. ................ 224 

Figure 5.13: Plots of the root-mean-squared acoustic pressure solved for the 

four multi-frequency cases using the nonlinear CP approach. .................................. 226 

Figure 5.14: Bubble density (left axis) and its associated attenuation 

magnitude (right axis) plotted as a function of root-mean-squared pressure 

for the harmonic fields of 28 and 40 kHz. .................................................................. 227 



xxi 
 

Figure 5.15: Attenuation mechanism of the linear and nonlinear approach in 

this investigation. ....................................................................................................... 227 

Figure 5.16: (a) Comparison between 𝑃𝑟𝑚𝑠(𝑟) predicted from simulation 

and SCL data for the 28 – 40 kHz case, (b) Region of interest showing the 

agreement of the 40 kHz standing wave. .................................................................. 229 

Figure 5.17: (a) Comparison between 𝑃𝑟𝑚𝑠(𝑟) predicted from simulation 

and SCL data for the case of 28-40 kHz case; (b) Region of interest showing 

the agreement of the 28 kHz standing wave. ............................................................ 229 

Figure 5.18: (a) Comparison between 𝑃𝑟𝑚𝑠(𝑟) predicted from simulation 

and SCL data for the 40 – 70 kHz case; (b) Region of interest showing the 

weak agreement of the 40 kHz standing wave.......................................................... 230 

Figure 5.19: (a) Comparison between 𝑃𝑟𝑚𝑠(𝑟) predicted from simulation 

and SCL data for the 28 – 70 kHz case superimposed along the 28 kHz 

standing wave; (b) Region of interest showing very good agreement. ..................... 231 

Figure 5.20: (a) Comparison between 𝑃𝑟𝑚𝑠(𝑟) predicted from simulation 

and SCL data for the 28 – 70 kHz case; (b) Region of interest showing very 

good agreement for the fine 70 kHz wave patterns. ................................................. 231 

Figure 5.21: (a) Comparison between 𝑃𝑟𝑚𝑠(𝑟) predicted from simulation 

and SCL data for the tri-frequency case; (b) Region of interest comparing the 

40 kHz standing wave. ............................................................................................... 232 

Figure 5.22: (a) Comparison between 𝑃𝑟𝑚𝑠(𝑟) predicted from simulation 

and SCL data for the tri-frequency case; (b) Region of interest comparing the 

28 kHz standing wave. ............................................................................................... 232 

Figure 5.23: Illustration comparing 𝑃𝑟𝑚𝑠(𝒓)  (horizontal solid line) and 

𝑃𝑚𝑎𝑥(𝒓) (horizontal dotted line). The fine-dotted curves represent different 

frequencies oscillating at magnitudes 𝑃1(𝒓) , 𝑃2(𝒓)  and 𝑃3(𝒓) , and 

𝑝𝑡𝑜𝑡𝑎𝑙(𝒓, 𝑡) is the sum of pressure (solid curve). ...................................................... 235 



xxii 
 

Figure 5.24: The graphical representation in Figure 5.23 plotted in terms of 

absolute pressure. ...................................................................................................... 236 

Figure 5.25: Case study on two different interpretations of the acoustic 

pressure magnitude for the tri-frequency case: Pressure field characterised 

using 𝑃𝑟𝑚𝑠(𝒓) (a and c); Pressure field characterised using 𝑃𝑚𝑎𝑥(𝒓) (b and 

d). ............................................................................................................................... 237 

Figure 5.26: Simulated single frequency components for the triple frequency 

case. Image (a), (b) and (c) represents the 28, 40 and 70 kHz frequency-

domain absolute pressure. Results are plotted using a shared colour legend. ......... 238 

Figure 5.27: Peak absolute pressure for 28, 40 and 70 kHz with increasing 

hexagonal sonoreactor sizes. The physical sonoreactor used in this work has 

a side length of 140 mm, marked as the vertical line. ............................................... 239 

 

 



xxiii 
 

List of Tables 

Table 2.1: Assumptions for the derivation of the Caflisch model. ............................... 38 

Table 2.2: Complex wavenumber calculation for the CP model. ................................. 44 

Table 2.3: Summary of wavenumber formulation for NH models. .............................. 49 

Table 2.4: Louisnard's (2010) formulation of the NH model. ...................................... 50 

Table 2.5: Jamshidi and Brenner (2013) formulation of the NH model. ...................... 51 

Table 2.6: Trujillo’s (2020) formulation of the NH model. ........................................... 52 

Table 2.7: Common boundary conditions in acoustic simulations............................... 64 

Table 3.1: Computational resource requirements for each test simulation. ............... 76 

Table 4.1: Physical properties (25°C) used in Case Study 3. ....................................... 102 

Table 4.2: Dirichlet boundary condition magnitudes for each frequency.................. 102 

Table 4.3: Summary of mesh information for four studied frequencies (pure-

liquid simulations). ..................................................................................................... 108 

Table 4.4: Solution times and memory requirements for simulated cases. ............... 108 

Table 4.5: Bubbly-liquid phase speed and attenuation compared with 

calculated attenuation values of Son. et al. (2009). .................................................. 114 

Table 4.6: Effective bubbly-liquid density for each bubble density. ........................... 115 

Table 4.7: Experimentally tuned bubble density magnitude determined from 

reported attenuation values, using the linear CP model with R0 = 5 um. .................. 128 

Table 4.8: Compilation of past antinode validation works and their 

calculated 𝐷𝑆/𝜆 values. ............................................................................................. 145 

Table 4.9: Physical properties (25°C) used in Case Study 5. ....................................... 150 



xxiv 
 

Table 4.10: Calorimetry data for the calculation of Dirichlet transducer 

boundary condition for single-frequency simulations (Tiong et al., 2017a). ............. 150 

Table 5.1: Compilation of bubble measurements reported for cavitating 

systems in past works. ............................................................................................... 180 

Table 5.2: Compilation of bubble field parameters used in past numerical 

investigations. ............................................................................................................ 184 

Table 5.3: Averaged wavelength measurements from SCL images compared 

to theoretical pure-liquid wavelength. ...................................................................... 204 

Table 5.4: Calorimetry data for the calculation of Dirichlet transducer 

boundary condition for multi-frequency simulations (Tiong et al., 2017a). .............. 219 

Table 5.5: Physical properties (25°C) used in Case Study 7. ....................................... 220 

Table 5.6: Bubble field parameters used for each harmonic in the multi-

frequency simulation.................................................................................................. 224 

Table 5.7: Comparison between peak values of RMS pressure and Maximum 

pressure for frequency combinations. ....................................................................... 236 

 

 



xxv 
 

Nomenclature 

*Variables in bold are vector fields. 

Abbreviations and Acronyms 

CFL  Courant-Friedrichs-Lewy  

FEM  Finite Element Method 

FDM  Finite Difference Method 

FVM  Finite Volume Method 

CP   Commander and Prosperetti (model) 

NH   Nonlinear Helmholtz (model) 

R-P   Rayleigh-Plesset (bubble dynamics) 

K-M  Keller-Miksis (bubble dynamics) 

PML  Perfectly Matched Layer 

Mathematical operators and physical quantities 

〈   〉  Period averaged properties 

𝑓𝐺  ( )   Generalised Gaussian function 

ℑ ( )  Imaginary-part of complex-valued expression 

ℜ ( )   Real-part of complex-valued expression 

𝐵  Arbitrary coefficients for the Helmholtz solution 

𝑐. 𝑐.  Complex conjugate 

∇   Nabla operator, partial derivative in space 

𝜕   Partial derivative 

𝐸  Notation for exponent (× 10n), e.g., 1E5 is equivalent to 1 × 105 

𝑒  Exponential constant 

𝑖  Imaginary constant 

𝒏   Normal vector 

𝜋  Pi constant 

𝒓  Spatial coordinate, (m) 

𝑡   Time dimension, (s) 



xxvi 
 

𝜏  Dimensionless time, (-) 

𝒜  Trujillo’s NH model real part parameter 

𝛼  Attenuation coefficient, (Np/m) 

𝛼′  Modified time-domain attenuation coefficient, (Np/m) 

ℬ  Trujillo’s NH model imaginary part parameter 

𝛽  Bubble fraction, (m3/m3) 

𝛾𝑔  Ratio of specific heats for gas in bubble, (-) 

Δ𝑡𝑚𝑎𝑥   Solver time-stepping interval limit, (s) 

𝜅  Propagation wavenumber, (1/m) 

𝜆  Wavelength, (m) 

𝜆𝑚𝑖𝑛   Smallest wavelength in the system, (m) 

𝜆𝑆𝐶𝐿  Empirically determined wavelength [SCL], (m) 

𝜇𝑙  Liquid dynamic viscosity, (Pa.s) 

Π𝑑𝑖𝑠  Total dissipation density, (W/m3) 

Π𝑡ℎ   Thermal dissipation density, (W/m3) 

Π𝑟  Radiation dissipation density, (W/m3) 

Π𝑣  Viscous dissipation density, (W/m3) 

𝜌0  Mean density, (kg/m3) 

𝜌𝑏𝑑   Boundary density, (kg/m3) 

𝜌𝑒𝑓𝑓   Effective bubbly-liquid density, (kg/m3) 

𝜌𝑔  Gas density, (kg/m3) 

𝜌𝑙    Liquid density, (kg/m3) 

𝜌𝑃𝑈   Polyurethane density, (kg/m3) 

𝜌𝑠   Solid density, (kg/m3) 

𝜎𝐵   Bubble radii standard deviation, (m) 

𝜎𝑙   Liquid surface tension, (N/m) 

𝛷  Dimensionless CP bubble parameter, (-) 

𝛷ℎ  Dimensionless Preston’s heat coefficient, (-) 



xxvii 
 

𝜒  Dimensionless CP thermal diffusion term, (-) 

𝜔  Angular frequency, (rad/s) 

𝜔0  Bubble resonance angular frequency, (rad/s) 

𝐴𝑏𝑑, 𝑎𝑏𝑑 Specified boundary acceleration, (m/s2) 

𝐴𝑡𝑟  Transducer surface area, (m2) 

𝑏  CP damping term, (-) 

𝐶𝑏  Tuning parameter for truncated Gaussian radii relation, (-) 

𝐶𝑣  Specific heat capacity of gas, (J/mol.K) 

𝑐𝑏𝑑  Phase speed at boundary, (m/s) 

𝑐𝑏𝑙  Bubbly-liquid phase speed, (m/s) 

𝑐𝑏𝑑  Phase speed at boundary, (m/s) 

𝑐𝑒𝑓𝑓  Effective phase speed, (m/s) 

𝑐𝑙  Phase speed in liquid, (m/s) 

𝑐𝑃𝑈  Phase speed in polyurethane, (m/s) 

𝑐𝑆𝐶𝐿  Empirically measured phase speed [SCL], (m/s) 

𝐷𝑏𝑑, 𝑑𝑏𝑑 Specified boundary displacement, (m) 

𝐷𝑔  Gas diffusivity in bubble, (m2/s) 

𝐷𝑆  Effective length of sonoreactor, (m) 

𝐸  Error estimate of solver 

𝐸𝐴  Acoustic energy, (J) 

𝑓  Frequency, (Hz) 

𝑓𝐵  Acoustic body forces, (N/m3) 

𝑓𝑒  Wavelength reduction factor, (-) 

𝑓𝑚𝑎𝑥   Maximum frequency in simulation, (Hz) 

𝐺  Foldy’s bubble dissipation per volume 

ℎ  Half-wavelength, (m) 

ℎ𝑆𝐶𝐿   Empirically measured half-wavelength [SCL], (m) 

ℎ𝑇   Heat transfer coefficient, (W/m2.K) 



xxviii 
 

ℎ𝑣𝑎𝑝  Latent heat of vaporisation of water, (J/mol) 

𝐼𝑎𝑐  Acoustic pressure intensity, (W/m2) 

𝐾𝑇  Gas thermal conductivity, (1/m) 

𝑘   Wavenumber, (1/m) 

𝑘𝑐   Complex-valued wavenumber, (1/m) 

𝑘𝑟𝑒𝑎𝑙   Wavenumber [real part, see also: 𝜅], (1/m) 

𝑘𝑖𝑚𝑎𝑔   Wavenumber [imaginary part, see also: 𝛼], (1/m) 

𝑙𝑡ℎ  Diffusion penetration depth, (m) 

𝑀  Foldy’s bubble scattering function 

𝑁  Foldy’s bubble distribution function 

𝑁̇𝐻2𝑂  Vapour rate of change, (mol/s) 

𝑁𝑚𝑒𝑠ℎ  Number of mesh per wavelength, (-) 

𝑁𝑇  Molecular density, (1/m3) 

𝑛   Bubble density, (1/m3) 

𝑂𝑚   Transducer power measure from calorimetry, (W) 

𝑃   Spatial acoustic pressure, (Pa) 

𝑃∗   Spatial acoustic pressure (complex conjugate), (Pa) 

𝑃𝐵   Blake’s cavitation threshold, (Pa) 

𝑃𝑒   Peclet number, (-) 

𝑃𝑏𝑑, 𝑝𝑏𝑑  Specified boundary pressure, (Pa) 

𝑃𝑔0   Initial bubble pressure, (Pa) 

𝑃𝑚   Helmholtz spatial pressure for mth harmonic, (Pa) 

𝑃𝑚𝑎𝑥     Maximum spatial acoustic pressure in a multi-harmonic field, (Pa) 

𝑃𝑟𝑚𝑠   Root-mean-squared acoustic pressure, (Pa) 

𝑃𝑇𝑟   Transducer surface pressure, (Pa) 

|𝑃|   Acoustic pressure magnitude, (Pa) 

|𝑃|𝑎𝑛𝑡   Antinodal pressure magnitude, (Pa) 

|𝑃|𝑛𝑜𝑑   Nodal pressure magnitude, (Pa) 



xxix 
 

𝑝   Transient acoustic pressure, (Pa) 

𝑝∗   Dimensionless pressure amplitude, (-) 

𝑝′   Transient acoustic pressure (perturbation form), (Pa) 

𝑝∞  Mean (far-field) pressure around bubble, (Pa) 

𝑝𝑏𝑑   Boundary acoustic pressure, (Pa) 

𝑝𝐹   Acoustic forcing on bubble, (Pa) 

𝑝𝑔   Bubble pressure, (Pa) 

𝑝𝑔̇   Rate of change in bubble pressure, (Pa/s) 

𝑝𝑇   Total acoustic pressure, (Pa) 

𝑝𝑇̅̅ ̅  Averaged total pressure, (Pa) 

𝑝𝑣   Bubble vapour pressure, (Pa) 

𝑝𝑤   Composite bubble wall pressure, (Pa) 

𝑄̇  First time derivative of heat transfer, (W/s) 

𝑅  Bubble wall radius, (m) 

𝑅0  Equilibrium bubble radius, (m) 

𝑅𝑎𝑐  Reflection coefficient, (-) 

𝑅𝑔𝑎𝑠  Gas constant, (J/mol.K) 

𝑅𝑚, 𝑅𝑚𝑒𝑎𝑛 Mean equilibrium bubble radii, (m) 

𝑅𝑡 , 𝑅̇  Bubble wall velocity, (m/s) 

𝑅𝑡𝑡 , 𝑅̈  Bubble wall acceleration, (m/s2) 

𝑆𝑚𝑒𝑠ℎ  Upper limit of mesh size, (m) 

𝑇∞  Temperature of bubble surroundings, (K) 

𝑇𝐵   Uniform bubble internal temperature, (K) 

𝑼  Spatial acoustic velocity, (m/s) 

𝑼∗  Spatial acoustic velocity (complex conjugate), (m/s) 

𝒖  Acoustic velocity, (m/s) 

𝒖𝒃𝒅  Boundary acoustic velocity, (m/s) 

𝒖′  Acoustic velocity [perturbation form], (m/s) 



xxx 
 

𝒖𝑩  Bubble velocity, (m/s) 

𝑉   Bubble volume, (m3) 

𝑉̇   Rate of change of bubble volume, (m3/s) 

𝑉𝑏𝑑, 𝑣𝑏𝑑 Specified boundary velocity, (m/s) 

𝑋   Nonlinear bubble density scaling parameter, (1/Pa) 

𝑥   Estimated solution 

𝑥0   Exact solution 

𝑍   Specific acoustic impedance, (kg/m2.s) 

 



1 
 

Chapter 1: Background 

The technology of power ultrasound and sonoreactors became increasingly popular in 

recent years. The simulation of acoustic pressure fields within the working fluid was 

noted to be an important aspect of sonoreactor design. Simulation results were found 

to be useful for design and optimisation purposes (Sutkar et al., 2010). Currently, there 

are many knowledge gaps to be explored, notably concerning the modelling of 

acoustic pressure in large-scale ultrasonic baths.   

 

1.1 Introduction 

1.1.1 Power Ultrasound and Acoustic Cavitation 

Ultrasound refers to acoustic waves above 20 kHz (Leighton, 1994), and the 

technology of power ultrasound involves the high-intensity application of ultrasonic 

energy (Yao et al., 2020). The driving force behind power ultrasound is acoustic 

cavitation. Acoustic cavitation generally occurs when a liquid medium is subjected to 

high-amplitude ultrasonic waves (Noltingk and Neppiras, 1950). Figure 1.1 provides a 

graphical description of the acoustic cavitation process. Compression and rarefaction 

pressure cycles cause bubbles to grow in a process called rectified diffusion 

(Ashokkumar et al., 2007). Eventually, the bubbles collapse and release a large amount 

of energy (Flynn, 1964). This can theoretically generate local pressures and 

temperatures up to 500 bar and 5000 K (Leighton, 1994). 

Acoustic cavitation can be used to achieve various physiochemical effects such as 

micromixing, particle size reduction, and radical generation (Lorimer and Mason, 1987; 

Ley and Low, 1989; Pandit et al., 2021). Lower-frequency power ultrasound (20 – 100 
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kHz) had been reported to be more suitable for applications that require mechanical 

effects; while higher frequencies (100 – 1 MHz) were known to perform better in 

chemical applications (Kiss et al., 2018). To date, power ultrasound technology had 

been studied for various applications such as chemical synthesis (Gholami et al., 2019; 

Islam et al., 2019a), nanotechnology (Islam et al., 2019b; Modarres-Gheisari et al., 

2019), separation processes (Chen et al., 2020; Wang et al., 2020), biotechnology (Yin 

et al., 2004; Arefi-Oskoui et al., 2019), food processing (Huang et al., 2020), textile 

treatment (Perincek et al., 2009) and metal melt processing (Lebon et al., 2018). 

 

 

Figure 1.1: Graphical depiction of acoustic cavitation and its effects.  

 

A strong indicator of cavitation performance is the acoustic intensity, which in turn is 

related to the acoustic pressure magnitude (Pandit et al., 2021). The cavitation 

threshold refers to the acoustic pressure at which cavitation begins to occur. This 

threshold had been noted to depend on multiple factors such as operating frequency, 

working fluid properties, and bubble properties (Sutkar and Gogate, 2009). Other 

factors that affect cavitation performance include the effects of temperature and 

pressure in relation to the vapour pressure of the liquid. Conditions that favour lower 

vapour pressures will decrease the cavitation threshold; at the cost of reduced 

cavitation intensities due to condensation losses (Lorimer and Mason, 1987).  
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1.1.2 Workings of a Sonoreactor 

Sonoreactors, or ‘sound reactors’ are set-ups that are used to generate acoustic 

cavitation within a volume of liquid. This can range from laboratory configurations 

with beakers to large industrial vessels. In its simplest form, the basic components of 

a sonoreactor consist of the transducers, the propagation medium, and the 

mechanical vessel.  

 

1.1.2.1 Ultrasonic Transducers 

Ultrasonic transducers provide the main driving force for a sonoreactor. Transducers 

generally consist of metal fittings, electrodes, and piezoceramic stacks (Iula et al., 

2002). The property of piezoelectric materials causes them to mechanically displace 

in response to changes in electric fields (DeAngelis and Schulze, 2016). In sonoreactors, 

the mechanical vibration generated by one or more transducers is used to emit 

ultrasonic waves into the working fluid. 

Figure 1.2 (a) shows a simplified schematic of a transducer assembly. The mechanical 

energy generated by the piezoelectric stack is transmitted into the working fluid 

through the front mass/coupling head. Figure 1.2 (b) shows an example of a sonotrode, 

also known as an ultrasonic horn. The ultrasonic horn is designed to generate strong 

acoustic intensities at the tip of the front mass, which is usually immersed in the 

working fluid. Figure 1.2 (c) shows the image of a wall transducer. These transducers 

are generally attached to the walls of a sonoreactor vessel; for which a common 

example is an ultrasonic cleaning bath (Tangsopa and Thongsri, 2019). An interesting 

caveat of ultrasonic transducers is the need to tune their geometric parameters to 
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achieve optimal performance (Chen, 2011). This is a challenge when scaling up 

sonoreactors. A common workaround is to modify the number of transducers instead 

of changing its size. One such example is the use of a transducer array (Asakura et al., 

2008).  

 

 

Figure 1.2: (a) Transducer cross-section; (b) Sonotrode (Hielscher Ultrasonics) for horn-type 

configurations; (c) Wall transducer (Sonictron Malaysia) for bath-type sonoreactors. 

 

1.1.2.2 Horn- and Bath-Type Sonoreactors 

Conventional sonoreactor designs are categorised into two configurations: horn-type 

and bath-type. The horn-type configuration refers to systems that use an ultrasonic 

horn or sonotrode. An important characteristic of the horn-type configuration is the 

direct contact between the ultrasonic transducer and the working fluid. This design 

allows mechanical energy to be directly transmitted into a small effective volume to 

generate intense cavitation effects (Dahlem et al., 1999). The most common example 

is a probe-beaker system described in Figure 1.3 (a). The probe-beaker system is 

widely used in laboratorial sonochemical research due to its operational simplicity 

(Pokhrel et al., 2016; Modarres-Gheisari et al., 2019; Singla and Sit, 2021). Sonotrodes 
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can also be fitted to ultrasonic flow cells; for which an example configuration is shown 

in Figure 1.3 (b). These configurations attempt to maximise cavitation activity by 

confining acoustic waves within a small volume (Guo et al., 2019). The schematics 

shown are inspired by the sonoreactor studied by Hussain and Janajreh (2017). 

 

 

Figure 1.3: Schematic drawing describing: (a) a probe-beaker system; (b) an ultrasonic flow 

cell. 

 

In bath-type configurations, the acoustic waves are generally emitted into the working 

fluid from large vibrating surfaces, on which wall transducers are attached. Figure 1.4 

(a) shows two example designs for a typical ultrasonic bath. Mechanical energy from 

transducers is transmitted into the working fluid through the solid walls or the floor 

of the vessel (Tangsopa and Thongsri, 2019). Another common design for ultrasonic 

baths uses a transducer array module shown in Figure 1.4 (b). This configuration 

generates ultrasonic waves by submerging the transducer array module into the 

working fluid (Son et al., 2009).  



6 
 

 

Figure 1.4: Example of: (a) ultrasonic bath with wall transducers; (b) ultrasonic bath with a 

transducer array module (KSONIC, Malaysia). 

 

Horn-type and bath-type sonoreactors have different characteristics. Horn-type 

systems generate high acoustic intensities in a conical region under the sonotrode 

(Dahlem et al., 1999; Campos-Pozuelo et al., 2005; Jamshidi et al., 2012), but have 

limited effective volume due to a smaller emission area and the "shielding effect" 

caused by dense bubble clouds (Moussatov et al., 2003). In contrast, bath-type 

systems have larger effective volumes and a more uniform distribution of acoustic 

energy, but lower acoustic intensities at the same input power (Son et al., 2009; 

Tangsopa and Thongsri, 2019). Bath-type systems can also be scaled through the use 

of transducer arrays (Gogate et al., 2011). 

 

1.2 Literature Review 

1.2.1 Numerical Simulations for Sonoreactor Modelling  

Sonoreactor scale-up was found to be a challenging process due to the need to 

consider many interlinked factors such as geometry, transducer designs, operating 
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frequencies, power intensity, and propagation medium (Gogate et al., 2011). Changing 

certain parameters would often interfere with other aspects of the design (Romdhane 

et al., 1997; Asakura and Yasuda, 2021). Difficulties in achieving controlled design 

environments often led to resource-intensive design methods (Gogate et al., 2011) or 

a strong reliance on trial and error (Liu et al., 2008; Sutkar and Gogate, 2009; Bandelin 

et al., 2020).  

The prospects of numerical simulation for sonoreactor design and optimisation had 

caught the attention of researchers since the twentieth century (Ando and Kagawa, 

1989). On paper, well-developed simulation methods can solve complex design 

problems in place of physical experiments. This led to acoustic pressure models 

becoming a major focus in the study of sonoreactor acoustics. The models were used 

to predict cavitation regions (Klíma et al., 2007; Tangsopa and Thongsri, 2019), 

acoustic streaming (Louisnard, 2017), and heat transfer (Chen et al., 2021).  

Early studies mainly focused on simple acoustic models that considered the working 

fluid as a pure liquid (Sáez et al., 2005; Klíma et al., 2007). However, it soon became 

apparent that the presence of bubbles should not be ignored (Servant et al., 2000). 

This led to the adoption of bubbly-liquid acoustic pressure models, henceforth 

referred to as bubbly-liquid models, to model sonoreactor acoustics (Tudela et al., 

2014). Two prominent bubbly-liquid models are the Commander and Prosperetti (CP) 

model (Commander and Prosperetti, 1989) and the nonlinear Helmholtz (NH) model 

(Louisnard, 2012a; Jamshidi and Brenner, 2013; Trujillo, 2018). These frequency-

domain models were shown to provide better predictions compared to pure-liquid 

models (Louisnard, 2012a; Sarac et al., 2020). 
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1.2.2 Sonoreactor Characterisation and Model Validation 

Validation of mathematical models is crucial to evaluate and enhance the 

performance of numerical simulations. The performance of acoustic pressure models 

was often verified and validated using data obtained from experiments (Klíma et al., 

2007; Yasuda et al., 2018). A straightforward method was to compare it to the 

pressure measurements of a hydrophone (Campos-Pozuelo et al., 2005; Sarac et al., 

2020). Some researchers also performed validation using proxy measurements that 

relied on well-understood relations between the acoustic pressure field and the 

measured quantity (Sutkar et al., 2010). Examples include cavitation intensity 

measurements (Yasuda et al., 2018), acoustic streaming analysis (O’Sullivan et al., 

2018), temperature distribution measurements (Chen et al., 2021), and chemical 

reaction rates (Son et al., 2020). Figure 1.5 provides a summary of the various 

validation methods in literature. Some methods allow for a more specific validation 

quality, while others only provide rough estimations on the model performance. 

This work focused on verifying two key mechanisms of the acoustic pressure model: 

phase speed prediction and attenuation prediction. The former was studied using 

antinode validation methods, and the latter required hydrophone data. The prediction 

of phase speed is crucial for the identification of effective/dead zones in the 

sonoreactor, while accurate attenuation modelling is important for energy balance 

calculations (e.g., cooling and rate of reaction).  
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Figure 1.5: Validation methods for acoustic pressure models listed based on validation quality. 

 

1.2.2.1 Antinode Characterisation and Validation Methods 

In classical acoustics, the term ‘antinode’ describes the peaks of a standing wave. In 

this work, the definition was relaxed to refer to regions in the sonoreactor with high 

local pressure magnitudes. The characterisation of antinodes in sonoreactors involved 

visual methods such as sonochemiluminescence (SCL) or foil erosion mapping (Sutkar 

and Gogate, 2009). In foil mapping, the antinodes are inferred from regions that 

exhibit significant foil erosion. On the other hand, the SCL approach identifies 

antinodes as regions that exhibit sonochemiluminescence. Thus, it is imperative to 

note that antinode characterisation methods are often strongly qualitative, and 

resulting interpretations hold an inherent degree of subjectivity. 

Foil mapping had been reported to be a cheap and simple method for characterising 

the antinodal regions (Sutkar and Gogate, 2009). The main limitation of the method is 

that it is invasive, as the presence of the foil in the working fluid could alter the 

pressure field. Additionally, mechanical structures may need to be used to ensure that 
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the foil remains static during testing (Tangsopa and Thongsri, 2019). In contrast, SCL 

is non-invasive and provides information on the relative cavitation intensities in the 

studied system. SCL is also easily scalable for large sonoreactor volumes. The main 

drawbacks of SCL are its relatively higher costs of materials and the need to capture 

optical data under low light conditions.  

 

1.2.2.2 Direct Acoustic Pressure Measurements 

On paper, validating acoustic pressure models against pressure measurements would 

be preferable, as it offers a direct comparison. However, this method can be 

challenging as pressure measurements were found to be highly transient and noisy 

due to the generation of broadbands by the cavitating bubbles (Avvaru and Pandit, 

2009; Moholkar et al., 2000). This led to the need for additional signal processing to 

identify and isolate the required data. Furthermore, acoustic pressure measurements 

were found to depend on many factors such as geometry, reflection surfaces, wave 

interference, calibration data, and equipment condition (Leighton, 1994; Dähnke et 

al., 1999b; Son et al., 2009). Difficulties in maintaining a controlled environment 

further complicate the validation process. Lastly, the risk of cavitation damage also 

limits the range of applicable hydrophones. In light of these limitations, a direct 

pressure verification study is the only way to properly investigate the attenuation 

prediction mechanism of the acoustic pressure model. 
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1.2.2.3 Other Characterisation and Validation Methods 

While not the main focus of this work, the author finds it instructive to discuss some 

other methods used to evaluate the performance of acoustic pressure models. Data 

gathered from calorimetry is often used in the study of sonoreactor acoustics. The 

calorimetric method quantifies the active power of the sonoreactor, which is the 

energy received by the working fluid minus environmental losses (Louisnard et al., 

2009). The method generally assumes that all the acoustic energy is eventually 

converted into heat and that the temperature change over time is used to calculate 

the active power. In sonoreactor acoustics, calorimetry measurements were often 

used to approximate the effective pressure intensity at the vibrating boundaries of 

the simulation model (Tiong et al., 2019).  

In addition to calorimetry, acoustic streaming data was also often analysed along the 

acoustic behaviour of sonoreactors. Acoustic radiation forces in a sonoreactor can 

generate flow fields, and researchers had attempted to verify the acoustic pressure 

model using streaming characteristics (Louisnard, 2017; Fang et al., 2018). The flow 

fields predicted from the acoustic pressure model were compared with data from 

characterisation techniques such as particle image velocimetry (Barthès et al., 2015; 

Lebon et al., 2019). It can be argued that this validation method is less suitable for 

bath-type configurations because the acoustic radiation forces are much weaker. This 

can be shown using simple radiation force calculations (Eckart, 1948), but was omitted 

in this work. 

Last but not least, chemical dosimetry methods often serve as an integral indicator for 

sonochemical efficiency within a sonoreactor based on the change in concentration of 
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a chemical species (Lorimer and Mason, 1987). A comprehensive review on this matter 

can be found in the work of (Sutkar and Gogate, 2009). In the field of sonochemistry, 

chemical dosimetry provides a valuable means to study chemical mechanisms and 

reaction pathways; however, its use for the verification of acoustic pressure models is 

limited.  
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1.2.3 Review of Acoustic Pressure Modelling and Validation Works 

This section reviews past works involving acoustic pressure simulation using pure-

liquid, CP, and NH models. The focus is placed on simulation strategies, mathematical 

implementations, and the performance of the studied models. Comments are 

provided for notable contributions and uncertainties. The main objective is to 

consolidate the available information on the matter and identify key knowledge gaps 

to be addressed in this research. 

 

1.2.3.1 Studies Involving the Pure-Liquid Model 

Before the popularity of the pure-liquid approach, time-domain bubbly-liquid models 

had been used by research groups to study acoustic pressure fields in sonoreactors 

(Dähnke et al., 1999a, 1999b; Servant et al., 2000, 2001, 2002; Vanhille et al., 2004, 

2005). These works involved time-domain simulations solved using FDM. Interestingly, 

these bubbly-liquid methods did not gain significant traction until much later, 

presumably due to the complexity of the methods involved.  

The studies of Sáez et al. (2005) and Klíma et al. (2007) reported promising prospects 

for the pure-liquid approach solved in FEM. Their results led to an increase in interest 

within the community on the topic of sonoreactor modelling. Figure 1.6 shows a 

commonly cited verification result reported by Klíma et al. (2007). The result showed 

strong agreement between the experimentally observed antinodal bubbles and the 

high-pressure regions predicted by the numerical simulation.  
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Figure 1.6: Validation result of Klíma et al. (2007) showing that the antinode locations coincide 

with the cavitation bubbles. [Reprinted from: Ultrasonics Sonochemistry 14, Klíma, J., Frias-

Ferrer, A., González-García, J., Ludvík, J., Sáez, V., Iniesta, J., Optimisation of 20 kHz 

sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and 

qualitative comparison with experimental results. 19–28, Copyright (2007), with permission 

from Elsevier] 

 

Although the effect of bubbles on the acoustic pressure field was known (Wilson et al., 

2005), the pure-liquid approach remains one of the most used modelling strategies to 

date. It was speculated that this was due to the simplicity and accessibility of the 

model. The Helmholtz equation was integrated into many commercial numerical 

solvers, which allowed researchers to easily set up a well-posed simulation. On the 

topic of bubble effects, Sáez et al. (2005) briefly commented on the importance of 

including cavitation in future works, while Klíma et al. (2007) explained that bubble 

attenuation was omitted in their work to reduce model complexity. It was also 

commented that the results should only be taken as rough qualitative estimates. 
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In their study, Yasui et al. (2007) tested several arbitrary attenuation values using the 

pure-liquid model to study the acoustic pressure field of a 100 kHz cylindrical 

sonoreactor. Their simulations considered wall vibrations modelled using solid 

mechanics. They compared the predicted acoustic pressure fields using several 

attenuation values with experimental observations and reported that a value of 5 m-1 

provided the best qualitative agreement with SCL images. In another study, Shao et al. 

(2010) used the pure-liquid model to study ultrasonic melt treatment. They fully 

adopted the methodology of Klíma et al. (2007) but did not further address the issue 

of bubble effects. 

The study of Louisnard et al. (2009) referenced the methods of Yasui et al. (2007) and 

used arbitrary attenuation values to study the effect of solid vibrations in sonoreactor 

design. They stated that the effect of bubbly liquids was excluded from their 

simulation due to difficulties in implementation. A similar study was also reported by 

Tudela et al. (2011) who also provided little discussion on bubbly-liquid effects. 

A series of studies attempted to incorporate viscous attenuation into the pure-liquid 

approach using the dispersion relation presented in Eqn. (1) to better model the 

behaviour of the working fluid (Sutkar et al., 2010; Sutkar and Gogate, 2010; Csoka et 

al., 2011): 

 

𝑘𝑐 =
𝜔

𝑐𝑙

1

√1 + (𝑖𝜔𝜇𝑙/𝜌𝑙𝑐𝑙
2)

 

(1) 

Sutkar et al. (2010) argued that cavitation effects can be neglected in their 

investigation, as they were assumed to be insignificant for the studied range of 

intensities. A scrutiny of the dispersion relation in Eqn. (1) revealed that the 
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attenuation was found to be virtually zero. Since the parameters used in their 

simulation were not specified, common values for pure water were used to support 

this claim (𝑐𝑙 = 1500 m/s; 𝜇𝑙 = 0.001 Pa.s; 𝑓 = 20 kHz; and 𝜌𝑙  = 1000 kg/m3). A simple 

calculation using Eqn. (1) resulted in a complex-valued wavenumber of 83.7 – 2.3E-6i, 

where the attenuation coefficient was calculated to be 2.3×10-6 Np/m. For reference, 

the attenuation values reported by Son et al. (2009) measured for an ultrasonic tank 

were reported to be around 2 Np/m. This showed that viscous attenuation alone is 

not sufficient to characterise the cavitating system.  

Xu et al. (2013) used the pure-liquid model to investigate acoustic streaming using an 

arbitrary attenuation of 1 Np/m and did not comment on bubbly-liquid contributions. 

Wang and Yao (2013) extended the investigations of Klíma et al. (2007) by 

incorporating contributions of solid mechanics and attenuation. They recognised the 

importance of bubble effects, but considered it to be out of scope. Instead, they used 

attenuation values determined by Kinsler et al. (1982). Recently, Wei and Weavers 

(2016) used the pure-liquid approach for the characterisation of a stepped-horn vessel, 

using a similar approach as Tudela et al. (2011) but on a larger scale. The study by 

Yasuda et al. (2018) reported remarkable agreement between their simulation results 

and hydrophone measurements. However, some of their simulation methods were 

omitted, notably the specification of the transducer boundary condition, which limits 

the reproducibility of their results. Tiong et al. (2019) used the pure-liquid approach 

to analyse the ultrasonic mixing of oil-water emulsions. Tangsopa and Thongsri (2019, 

2021) used the model in a comprehensive FEM study for the design of ultrasonic 

cleaning tanks. Rashwan et al. (2020, 2021) also adopted the pure-liquid approach in 



17 
 

a theoretical investigation to determine the best sonoreactor geometry for their 

hydrogen reactor.  

A common observation regarding the pure-liquid model was found to be the 

prevalence of antinode verification (foil mapping and SCL). Interestingly, most studies 

reported good agreement between simulation and experiments. The study of Lewis et 

al. (2007) for an ultrasonic bath showed that the antinode prediction agrees well with 

foil mapping data. Xu et al. (2013) also noted that their simulation managed to 

correctly predict the location of four antinodes in a beaker. More recently, foil 

mapping results of Tangsopa and Thongsri, (2019) also agreed well with their 

simulations. This was noted to be interesting because it was established that the 

presence of bubbles alters the phase speed (Servant et al., 2001b). Thus, the change 

in phase speed should be reflected in the antinode verification results, which 

contradicts the above findings. This led to two possible explanations. It was first 

hypothesised that the changes in phase speeds in the studied sonoreactors were 

negligible. However, Case Study 6 [Section 5.3] showed that the phase-speed 

reduction measured for an investigated sonoreactor was calculated to be around 15 %, 

which contradicts the first hypothesis. This led to a second hypothesis, which states 

that the small geometries studied in past investigations were not able to provide 

sufficient resolution to capture this reduction in phase speed. This matter was 

investigated in Case Study 4 and led to interesting results. 
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1.2.3.2 Studies Involving the CP Model 

The CP model and its variations had a prominent presence in sonoreactor simulations 

prior to the rise of FEM methods. Its earliest documented use in sonoreactor acoustics 

was published by Dähnke et al. (1999a, 1999b) where the model was incorporated 

into a modified wave equation:  

 
𝜕2𝑝

𝜕𝑡2
+ 2𝛼′

𝜕𝑝

𝜕𝑡
− (

𝛼′2 + 𝜔2

𝑘𝑐
2

) 𝛻2𝑝 = 0 

(2) 

Their study proposed two key ideas, which is the nonlinear 𝑛  approach and the 

piecewise bubble density assumption. These ideas would later be adopted in 

subsequent bubbly-liquid studies (Jamshidi and Brenner, 2012; Hussain and Janajreh, 

2017, 2018). A series of sonoreactor simulation works used a similar approach by 

approximating the bubbly-liquid contributions using the linearised Keller-Miksis 

bubble dynamics (Servant et al., 2000, 2001a, 2003). Their studies solved the first-

order Caflisch mass and momentum equations using FDM1, and validation results 

using foil mapping were reported to be promising. The authors also commented on 

the uncertainties related to bubble field parameters and discussed the validity of the 

Caflisch model for sonoreactor acoustics.  

The CP model re-emerged more than a decade later as the importance of bubbly-liquid 

contributions was realised. Jamshidi et al. (2012) showed that pure-liquid models 

were not reliable for the prediction of attenuation in cavitating systems and proposed 

the CP model as an alternative to address bubbly-liquid effects. However, their 

 

1 While their study did not explicitly include the CP model, their model showed many similarities. 
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justification for the suitability of the CP model was lacking. Notably, the fact that the 

CP model was derived for steady bubble fields was not discussed. The study also did 

not consider any form of empirical validation, which made it difficult to assess the 

accuracy of the simulations. A similar work by Jordens et al. (2013) also used the exact 

methodology. The CP model was used to predict the chemical activity in a sonoreactor, 

but the study focused on the aspects of sonochemistry and briefly commented on 

sonoreactor acoustics.  

Several important issues for the linear CP model were noted by Dogan and Popov 

(2016) who performed a simple theoretical comparison against the NH model 

proposed by Jamshidi and Brenner (2013). Both models were studied under controlled 

conditions for a custom sonoreactor in 2D. They noted that the linear CP model 

suffered from unrealistic standing wave predictions that were not found in the NH 

model. They suggested that this was caused by the sensitivity of the phase-speed 

prediction to the bubble density parameter. Similar to Jamshidi et al. (2012), their 

work only involved theoretical discussion and lacked empirical validation.  

Hussain and Janajreh (2017, 2018) adopted the methodologies of Jamshidi et al. (2012) 

to study the design and optimisation of a pilot-scale sonoreactor. Their study briefly 

discussed the aspect of acoustic pressure modelling and focused more on sonoreactor 

design. They justified the use of the nonlinear CP model by validating the simulation 

results against an empirical observation reported by Servant et al. (2001a). Their study 

extended the use of the validated model to design and optimise a much larger 

industrial sonoreactor. It was noted that their simulations predicted a wavelength 

slightly shorter than experimental observations, which was not addressed. Most 
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recently, Fang et al. (2018) used a nonlinear CP model for their study on acoustic 

streaming. They solved the model in OpenFOAM and commented on the difficulties in 

specifying the bubble field parameters. They also noted a surprising result where 

nonlinear 𝑛 assumption seemed to yield bubble fraction values that showed good 

agreement with data reported by Burdin et al. (1999). Since their study focused on 

streaming fields for a very small geometry, the results did not yield any conclusive 

insights on the performance of the CP model. 

 

1.2.3.3 Studies Involving the NH Model 

As a recent addition to the field of sonoreactor acoustics, the NH model had yet to be 

extensively studied in literature. Louisnard (2012a) numerically compared the 

performance of the model against the pure-liquid and linear CP model in 1D, and 

claimed that it provided better attenuation predictions above the Blake threshold; 

however, this claim was made based on a qualitative comparison to the pressure 

measurements of Mettin (2005). In a subsequent study, Louisnard (2012b) showed 

that the NH model was able to correctly predict the ‘bubble cone’ streaming structure 

reported by Moussatov et al. (2003). This was done by coupling the NH model to the 

governing equations for bubble motion. While the results are impressive, they do not 

serve to validate the phase speed or the pressure magnitude prediction of the NH 

model. In the same study, it was also reported that the NH model managed to roughly 

provide pressure magnitudes that agreed with the measurements of Campos-Pozuelo 

et al. (2005). 
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The study by Dogan and Popov (2016) claimed that the NH model is capable of 

predicting the performance of the sonoreactor with greater accuracy compared to the 

linear CP model. However, this claim was based on numerical observations without 

experimental verification. An unexpected area of study that has seen considerable 

adoption of the NH model is ultrasonic melt processing (Beckwith et al., 2021; Subroto 

et al., 2021) where it was used to study power ultrasound technology in metal 

processing. Lebon et al. (2018, 2019a; 2019b) reported extensive investigations on the 

matter. Their studies provided important information on the implementation of the 

NH model; however, most of their validation results were performed at small scales 

using streaming fields measured from PIV.  

One of the most prominent developments of the NH model is the work of Trujillo 

(2020). Not only does it serve as a very good technical documentation for the model, 

but an attempt to validate the model against the measurements of Campos-Pozuelo 

et al. (2005) yielded some interesting insights. Although a good agreement against the 

experimental pressure measurements was achieved, the author reported the need to 

parametrically vary the bubble density parameter. Additionally, the results also 

suggested that the NH model may have overpredicted bubble attenuation. This claim 

was made on the finding that very low bubble densities were required to match the 

experimental measurements.  

Chen et al. (2021) used the NH model to study mass and heat transfer within a 

sonoreactor and reported promising results based on temperature measurements. 

Little can be derived for the performance of the NH model from their study. The study 

of Sarac et al. (2020) showed that Louisnard’s (2012a) NH formulation compared well 
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with hydrophone measurements. However, the methods used to determine the 

bubble field parameters were not discussed. Interestingly, they noted that the NH 

model gave similar antinode predictions to the pure-liquid model. Similar methods 

were used by Delacour et al. (2020) to study a microreactor. They commented that 

their bubble fraction was tuned against hydrophone measurements, and the 

simulations showed good agreement in terms of pressure field distribution and 

maximum pressure magnitudes. Based on recent studies, the use of empirical tuning 

to address uncertainties in bubble field parameters seemed to be a rising trend. This 

matter shall be the focus of Chapter 5 as it was found to be an important topic to 

address current uncertainties for the bubbly-liquid models.  

 

1.3 Notable Knowledge Gaps  

Knowledge about sonoreactor modelling was found to be unconsolidated and lacking 

in terms of streamlined modelling strategies. Additionally, most validation studies only 

considered probe-beaker systems (Tudela et al., 2014) or very small (< 1L) ultrasonic 

baths (Delacour et al., 2020; Sarac et al., 2020). For this work, a large sonoreactor was 

defined as having a working volume of at least 10 L. The need to extend current 

knowledge to larger bath-type systems was driven by two key motivations. First, the 

results of the investigation would greatly contribute to the ongoing effort to develop 

a robust modelling strategy for the purpose of sonoreactor design and optimisation. 

Second, the knowledge generated would open up the possibility of using the bubbly-

liquid models as a scale-up tool. This section discusses the knowledge gaps used to 

form the objectives of this work. 
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1.3.1 Modelling Strategies for Bath-Type Configurations 

Sonoreactor acoustic studies were dominated by horn-type configurations, especially 

for the study of bubbly-liquid models (Jamshidi et al., 2012; Fang et al., 2018; Trujillo 

2020). In contrast, studies involving ultrasonic baths were rare. Since the modelling 

strategies required for bath-type configurations can be drastically different, this 

presented to be an interesting knowledge gap. Current evidence suggests that 

uniform working fluid properties (Lewis et al., 2007; Tangsopa and Thongsri, 2019) in 

bath-type configurations can be sufficiently modelled using a simpler approach, such 

as the linear CP model. Additionally, while bubble clouds generated under sonotrodes 

had been observed to be dense and highly transient2 (Dahlem et al., 1999; Moussatov 

et al., 2003), bath-type configurations had shown more uniform bubble fields (Tiong 

et al., 2017b). This further suggested that quasi-static methods could be sufficient. 

Based on these differences, a comprehensive investigation was carried out to confirm 

the viability of simpler bubbly-liquid models (linear CP) for the characterisation of 

bath-type sonoreactors. 

 

1.3.2 Large-Scale Validation Studies 

There was little evidence in literature to extend the insights gained from small-scale 

validation studies to large-scale systems. Thus, the difference in size between bath-

type sonoreactors and previous horn-type configurations should be considered in the 

 

2 The strong nonlinear relation between the acoustic and bubble field near the tips of the sonotrodes 
often result in rapidly changing acoustic bubble structures. This highly transient behavior makes 
presents a challenging problem when attempting to model the behavior using current models that rely 
on quasistatic (steady-state) analysis. 
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modelling strategies. Model size also affects the simulation in terms of memory and 

computational costs, due to strict mesh requirements for acoustic problems 

(Ihlenburg and Babuška, 1995). Furthermore, it was hypothesised that certain aspects 

such as the wavelength-shortening effect cannot be clearly detected if the 

investigated geometry is small relative to the wavelength. Therefore, this work also 

focused on the validation of sonoreactor simulation strategies at large scales. 

 

1.3.3 Inter-Model Comparison and Discussion 

Current knowledge suggested that there is no ‘one size fits all’ approach, and 

therefore the selection of an appropriate acoustic model based on the studied system 

was found to be crucial. The selection process was impeded by the lack of information 

on how different mathematical models perform under different conditions. Most 

studies only considered one model, with little consideration for alternative strategies. 

Additionally, studies that considered inter-model comparison focused on theoretical 

discussion and lack empirical validation (Jamshidi et al., 2012; Louisnard, 2012a; 

Dogan and Popov, 2016). While this work mainly focused on the applicability of the 

linear CP model in ultrasonic baths, an effort was also made to consider the 

performance of the pure-liquid and NH models to serve as a point of comparison. 

 

1.3.4 Bubble Field Characterisation in Sonoreactor Acoustics 

Several studies have highlighted uncertainties related to the specification of bubble 

field parameters required for bubbly-liquid models (Servant et al., 2000; Fang et al., 

2018). During the course of this work, it was noted that uncertainties related to the 
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bubble-field parameters interfered with the quality of the investigation. To thoroughly 

explore this limitation, Chapter 5 was dedicated to reviewing and discussing this 

matter with the aim of developing a potential solution to address this issue. 

 

1.4 Problem Statement 

This work considered the following research question: 

How does the linear CP model (and, by extension, the pure-liquid and NH model) 

perform for the characterisation of acoustic pressure fields in large ultrasonic baths, 

in terms of predicting the phase speed and attenuation of the system? 

 

1.5 Aims and Objectives 

In this work, the aim is to identify, validate, and improve the modelling strategies for 

large-scale sonoreactors. This work focused on the linear CP model; however, the 

pure-liquid and NH models were also studied to serve as a point of comparison and to 

generate insight on their respective performance at large scales. The main hypothesis 

investigated in this study is that the linear CP model would be able to characterise the 

acoustic pressure field of bath-type sonoreactors. This hypothesis was investigated by 

evaluating the performance of the models in terms of phase speed and attenuation 

predictions against empirical measurements. To increase confidence in the validation 

results, preliminary and auxiliary investigations were also conducted to eliminate key 

uncertainties that affect the main findings. The numerical method used to solve the 

acoustic pressure simulations is the finite element method (FEM). The main expected 

outcome of this work is a comprehensive understanding of the performance of linear 
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CP model for the characterisation of large ultrasonic baths. This includes the strengths, 

limitations, and potential improvements for the model. The key objectives proposed 

to study this matter are as follows: 

1. Establishing the foundational aspects of the modelling framework 

To ensure the accuracy of the empirical verification studies, several foundational 

aspects of the modelling strategy were addressed. This includes investigating:  

• How should frequency-domain simulations be interpreted and compared with 

experimental measurements [Case Study 1]. 

• The suitability of acoustic boundary conditions for the systems of interest, 

notably the vibrating walls in the hexagonal sonoreactor [Case Study 2]. 

 

2. Evaluating the performance of the pure-liquid, linear CP and NH models for the 

characterisation of bath-type sonoreactors  

This objective addressed the main research problem, where acoustic pressure models 

were tested for bath-type sonoreactors in two verification studies: 

• To investigate the pure-liquid, linear CP, and NH models in terms of pressure 

magnitude predictions against hydrophone measurements [Case Study 3]. 

• To investigate the pure-liquid, CP, and NH models in terms of phase speed 

predictions (antinode) against SCL imaging data [Case Study 4 and 5]. 

 

3. Improving the applicability of the linear CP model  

This objective targeted several knowledge gaps identified for the linear CP model. The 

lack of reliable methods to characterise the bubble field and the consideration of 

multi-frequency sonoreactors were addressed: 
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• To develop and demonstrate an empirical λ-tuning approach to address 

uncertainties in bubble field characterisation [Case Study 6]. 

• To extend frequency-domain strategies for multi-frequency acoustic pressure 

fields in sonoreactors, based on linear superposition [Case Study 7]. 

 

1.5.1 Research Timeline 

This work focused on theoretical and numerical investigations based on the research 

question in four phases. The literature review in Phase 1 established a strong 

theoretical foundation and identified knowledge gaps. Phase 2 investigated the 

foundational elements that were crucial for subsequent simulation strategies. Phase 

3 evaluated the governing equations against experimental data in large ultrasonic 

baths. Lastly, Phase 4 proposed and explored improvements for the linear CP model 

to address uncertainties related to bubble field characterisation and multi-frequency 

systems. 
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1.6 Thesis Structure and Case Studies 

Figure 1.7 presents a summary of the thesis chapters. Investigative work carried out 

during the course of this project is reported in the form of case studies. A total of 

seven case studies shall be discussed. Figure 1.8 and Figure 1.9 provide a brief 

summary of the objective and key findings of the seven case studies presented within 

this work. 

 

 

Figure 1.7: Summary of the thesis structure. 
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Figure 1.8: Summary of Case Studies 1 – 4 presented in this work. 
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Figure 1.9: Summary of Cast Studies 5 – 7 presented in this work. 
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Chapter 2: Theory  

2.1 The Wave Equation 

Sonoreactor acoustics is essentially a wave propagation problem and can be modelled 

using the wave equation (Ginsberg, 2018). The wave equation is fundamentally a 

balance of mass and momentum in a fluid. Assuming no source terms, the mass 

conservation is written as: 

 
𝜕𝜌𝑙

𝜕𝑡
+ ∇(𝜌𝑙𝒖) = 0 

(3) 

while the momentum equation is Newton’s second law written in terms of density: 

 

𝜌𝑙 (
𝜕𝒖

𝜕𝑡
+ 𝒖 ⋅ ∇𝒖) =  −∇𝑝 + 𝑓𝐵 

(4) 

Vector fields are represented in bold. The left-hand side of the equation is the mass 

times acceleration for a unit volume of liquid, whereas the right-hand side consists of 

force terms. It is generally useful to write the equation in terms of pressure when 

discussing acoustics. The density can be related to the pressure using: 

 
𝑝 = 𝑐𝑙

2𝜌𝑙 
(5) 

The linear wave equation is a result of applying several simplifying assumptions (Pierce, 

1989): 

1. No body / volume forces (e.g., gravity) and viscous forces.  

2. Negligible relative motion (zero mean velocity) and shear stress. 

3. Homogeneous medium with constant liquid density and compressibility. 

4. First-order linearisation assuming small perturbations for the density, velocity, 

and pressure fields (𝜌𝑙
′ , 𝑢′, 𝑝′) relative to mean values (𝜌0 , 𝑢0 , 𝑝0 ). 
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The last assumption allows the system of equations to be written in terms of linear 

perturbations, while ignoring higher-order terms: 

 
𝜕𝑝′

𝜕𝑡
= −𝑐𝑙

2𝜌0∇𝒖   

(6) 

 

−∇𝑝′ = 𝜌0

𝜕𝒖′

𝜕𝑡
 

(7) 

Eliminating the velocity field yields the well-known linear wave equation:  

 
𝜕2𝑝′

𝜕𝑡2
− 𝑐𝑙

2∇2𝑝′ = 0 

(8) 

It is also common to preserve the density term to allow for source-term considerations: 

 
1

𝜌𝑙

𝜕2𝑝

𝜕𝑡2
−

𝑐𝑙
2

𝜌𝑙
𝛻2𝑝 = 0 

(9) 

Subsequent references to the acoustic pressure variables are written without an 

apostrophe. The variable 𝑝 is used for the time-dependent acoustic pressure, and 𝑃 

for the time-harmonic acoustic pressure. The acoustic pressure should not be 

confused with other forms of pressure, such as static or hydrodynamic pressure. The 

acoustic pressure is the result of acoustic waves, and thus a region with zero acoustic 

pressure should be interpreted as lacking pressure oscillations instead of being a 

vacuum. A similar case can be made for the acoustic velocity, which is essentially a 

particle velocity associated with the acoustic vibrations (Ginsberg, 2018).  
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2.2 The Helmholtz Equation  

The wave equation in Eqn. (9) can be simplified by assuming that the acoustic pressure 

field is a sinusoidal periodic quantity (Pierce, 1989). Mathematically, this assumption 

can be written in complex-exponential form in terms of the angular frequency 𝜔: 

 

𝑝(𝒓, 𝑡) = ℜ[𝑃(𝒓)𝑒−𝑖𝜔𝑡] =
1

2
[𝑃(𝒓)𝑒𝑖𝜔𝑡 + 𝑃∗(𝒓)𝑒−𝑖𝜔𝑡] 

(10) 

The real part of the complex-exponential expression, ℜ[𝑃(𝒓)𝑒−𝑖𝜔𝑡], represents the 

physical pressure 𝑝(𝒓, 𝑡). The variable 𝑃(𝒓) is the spatial, complex-valued pressure 

amplitude. It is evident from Eqn. (10) that the model describes a monoharmonic 

system. This simplifies the wave propagation problem by only requiring the spatial 

acoustic pressure, 𝑃(𝒓), to be solved. The spatial acoustic pressure can be obtained 

as a solution of the Helmholtz equation: 

 
𝛻2𝑃(𝒓) + 𝑘2𝑃(𝒓) = 0 

(11) 

The solution of Eqn. (11) depends on the wavenumber 𝑘 and the boundary conditions 

(Ginsberg, 2018). The wavenumber can be real- or complex-valued and is related to 

the physical properties of the medium. The simplest wavenumber is:  

 
𝑘 = 𝜔/𝑐𝑙 

(12) 

The wavenumber in Eqn. (12) describes an unattenuated wave with the phase speed 

𝑐𝑙. The term ‘phase speed’ refers to the sound speed at a certain frequency. Wave 

attenuation can be modelled using a complex-valued 𝑘: 

 
𝑘 = 𝑘𝑟𝑒𝑎𝑙 + 𝑖𝑘𝑖𝑚𝑎𝑔 

(13) 

Mathematically, the effect of attenuation is clear if one substitutes Eqn. (13) into Eqn. 

(10), giving:  



34 
 

 
𝑝(𝑥, 𝑡) = |𝑃|𝑒−(𝑘𝑖𝑚𝑎𝑔)𝑥𝑐𝑜𝑠 (𝑘𝑟𝑒𝑎𝑙𝑥 − 𝜔𝑡) 

(14) 

As shown in Eqn. (14), the attenuation factor 𝑒−(𝑘𝑖𝑚𝑎𝑔)𝑥 reduces the amplitude of the 

wave as a function of distance travelled, 𝑥. 

 

2.3 Pure-Liquid vs Bubbly-Liquid Models  

In Eqn. (14), the acoustic pressure field 𝑝(𝑥, 𝑡) depends on the phase speed and the 

attenuation. In sonoreactor acoustics, an accurate representation of the phase speed 

and attenuation of the working fluid is important to correctly characterise the 

antinode locations and pressure magnitudes (Servant et al., 2001b). Rewriting Eqn. 

(13) in the form:  

 
𝑘𝑐 = 𝜅 − 𝑖𝛼  

(15) 

The variable 𝜅 is the propagation wavenumber (Ginsberg, 2018) which is related to 

the phase speed, while 𝛼 is the attenuation coefficient.  

 

2.3.1 Pure-Liquid Approach 

Modelling efforts can be categorised into those that considered the working fluid as a 

pure liquid or as a bubbly liquid. In this work, the term ‘pure-liquid model’ refers to 

modelling strategies that do not explicitly consider the effect of the bubble field. In 

works that considered the pure-liquid model, some used the simple wavenumber in 

Eqn. (12) (Sáez et al., 2005; Klíma et al., 2007), while others specified attenuation 

values that were arbitrary (Yasui et al., 2007; Louisnard et al., 2009) or based on 
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empirical models (Rashwan et al., 2020). In their study, Sutkar et al. (2010) considered 

viscous dissipation of pure liquid using Eqn. (1): 

 

𝑘𝑐 =
𝜔

𝑐𝑙

1

√1 + (𝑖𝜔𝜇𝑙/𝜌𝑙𝑐𝑙
2)

 

(1) 

Other formulations had also been developed for various energy losses (Fox and Rock, 

1941; Markham et al., 1951; Wijngaarden, 1972). The main concern of omitting 

bubbly-liquid effects is the issue of incorrectly predicting the acoustic properties of 

the working fluid (Jamshidi et al., 2012). These effects can cause significant errors in 

acoustic pressure predictions if not properly modelled (Chu et al., 2022).  

 

2.3.2 Bubbly-Liquid Approach 

Realistically, the working fluid within a sonoreactor should be considered a bubbly 

liquid (Dähnke and Keil, 1999). Theoretically, one can accurately simulate sonoreactor 

acoustics if the behaviour of every single bubble within the medium is specified. 

However, this is practically impossible given that the acoustic-bubble interaction is 

very complex (Servant et al., 2003). To simplify the problem, researchers assumed that 

the working fluid can be approximated using existing bubbly-liquid models (Dähnke et 

al., 1999a; Servant et al., 2000; Jamshidi et al., 2012; Louisnard, 2012a; Fang et al., 

2018; Trujillo, 2018).  

Specifically, continuum-based models for bubbly-liquid acoustics had been receiving 

attention (Tudela et al., 2014). Developed in the works of Carstensen and Foldy (1947), 

Wijngaarden (1968), and Caflisch et al. (1985a), the continuum-based approach treats 

the bubbly liquid as a single phase. The bubbly liquid can then be characterised using 
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averaged properties, rather than modelling the gas and liquid phases separately 

(Žnidarčič et al., 2015). Adoption of this class of bubbly-liquid models was reported to 

yield improvements in terms of accuracy for sonoreactor simulations (Tudela et al., 

2014). Developments have also been made to modify existing formulations to better 

suit sonoreactor conditions (Louisnard, 2010, 2012a). 

Despite promising results, it should not be overlooked that bubbly-liquid models were 

originally developed for systems that contain stable and uniform bubble fields 

(Caflisch et al., 1985a). The bubble field of a sonoreactor had been shown to consist 

of both stable and transient bubbles depending on the cavitation regime (Church and 

Carstensen, 2001). Therefore, the use of the aforementioned models in sonoreactor 

simulations carries an inherent degree of error, based on the deviation from the stable 

bubble field assumption. Naturally, this deviation is more prominent in systems that 

are strongly cavitating, such as horn-type sonoreactors.  

 

2.4 The Caflisch Equation for Bubbly-Liquid Acoustics 

The development of the CP and NH model (Commander and Prosperetti, 1989; 

Louisnard, 2010) is based on the Caflisch equation. Caflisch et al. (1985a) proposed 

the equation upon performing rigorous derivations based on the idea presented in the 

previous works of Wijngaarden (1968) and (Foldy, 1945).  

 

2.4.1 Mathematical Formulation 

The Caflisch equation is a modified wave equation derived on the basis of bubbly-

liquid acoustics (Caflisch et al., 1985a). The principal assumption treats the 
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propagation medium as a single continuum. This assumption can be argued to be valid 

if the length scales for the state variables (pressure, temperature, etc.) are large 

compared to inter-bubble distances and bubble sizes. This allows for a quasi-static 

analysis of the bubbly-liquid, making it possible to relate averaged acoustic properties 

to averaged bubble parameters (Wijngaarden, 1968). Caflisch et al. (1985a) based 

their model on the first-order mass and momentum balances proposed by 

Wijngaarden (1970), also known as the Wijngaarden-Papanicolaou model: 

 
𝜕𝜌𝑙

𝜕𝑡
+ ∇(𝜌𝑙𝒖) = 𝜌𝑙

𝜕𝛽

𝜕𝑡
  

(16) 

 

𝜌𝑙 (
𝜕𝒖

𝜕𝑡
) =  −∇𝑝  

(17) 

Similar to the wave equation in Eqn. (9), the velocity term can be eliminated and 

Caflisch et al. (1985a) rigorously showed that the model can be written as: 

 
𝜕2𝑝

𝜕𝑡2
− 𝑐𝑙

2𝛻2𝑝 = 𝜌𝑙

∂2𝛽

𝜕𝑡2
 

(18) 

Eqn. (18) is an inhomogeneous wave equation with a source term containing the 

second time derivative of the bubble fraction, 𝛽. To solve the equation, the time-

derivative 
𝜕2𝛽

𝜕𝑡2
 would have to be specified. Based on the assumption that all bubbles 

are spherical, monodisperse, and uniformly distributed, Caflisch et al. (1985a) 

approximated the source term as: 

 
𝜕2𝛽

𝜕𝑡2
=

4

3
𝑛𝜋

𝜕2𝑅

𝜕𝑡2
 

(19) 

From Eqn. (19) it is evident that a description of the evolution of bubble radius 𝑅 in 

the time domain is required to close the model. This can be achieved using bubble 

dynamics, such as the Rayleigh-Plesset equation (Rayleigh, 1917; Plesset, 1949). 
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2.4.2 Important Assumptions  

Table 2.1 lists the assumptions involved in the derivation of the Caflisch equation. This 

section shall discuss these assumptions within the context of sonoreactor acoustics 

with the intent of identifying the limitations of the model.  

 

Table 2.1: Assumptions for the derivation of the Caflisch model. 

 

Num. 

 

Assumptions 

 

Remarks 

1. Constant liquid density, sound speed, and 
irrotational flow. 

Inherited from 

Wijngaarden-

Papanicolaou model  

2. Bubbly liquid is treated as a continuum. 

3. Constant bubble fraction (mass of gas in liquid is 
constant). 

4. Bubbles are fully spherical and have a uniform 
internal pressure. Inherited from bubble 

dynamics 5. Incompressible liquid, negligible heat conduction 
for bubbles. 

6. No bubble fragmentation or coalescence. 

Rigorously shown in 

Caflisch et al. (1985a)   

7. No bubble convection (no bubble velocity field). 

8. Small bubble fractions and neglect inter-bubble 
interactions. 

9. No bubble resonance effects. 

 

Assumption 1 is inherited from the derivation of the linearised wave equation, while 

Assumptions 2 and 3 serve as the basis for treating the acoustic medium as a 

continuum outlined in the study of Wijngaarden (1968). These assumptions allow the 

pressure experienced by the bubbles to be written as the ensemble-averaged pressure. 
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Instead of treating bubbles as individual dissipators (Foldy, 1945), averaged values are 

used to characterise the bulk dissipating fluid. Caflisch et al. (1985b) argued that 

Assumption 2 is valid as long as the wavelength is significantly larger than the bubbles. 

In the context of sonoreactors, bubble measurements generally reported bubble sizes 

in the range of 1-50 µm (Section 5.1). The wavelengths involved in power ultrasound 

tend to be significantly larger (e.g., wavelength of 100 kHz ultrasound is around 15 

mm in pure water), and thus this assumption can be argued to be valid for 

conventional sonoreactors. Possible exceptions include local regions under very 

strong ultrasonic horns, where large air pockets had been reported to form (Žnidarčič 

et al., 2014). In such situations, the assumption of continuum is challenged. 

Assumptions 4 and 5 are inherited from the bubble dynamics model used by Caflisch 

et al. (1985a), which is the Rayleigh-Plesset equation (Rayleigh, 1917; Plesset, 1949). 

Caflisch et al. (1985a) dedicated a larger part of their work to argue the applicability 

of Assumptions 6 and 7. These assumptions allow the bubble density 𝑛 to be treated 

as a constant in time. Assumption 6 enforces bubble conservation, written as: 

 
𝑑𝑛

𝑑𝑡
+ 𝑛(∇ ⋅ 𝒖𝑩) = 0  

(20) 

Assumption 7 causes the bubble velocity field 𝒖𝑩 to vanish, thus making 𝑛 a constant.  

 
𝑑𝑛

𝑑𝑡
= 0  

(21) 

These assumptions allow the model to be closed by simply specifying 𝑅. It is evident 

that when applied to sonoreactor acoustics, Assumption 6 oversimplifies the 

behaviour of the bubble field since bubble generation, coalescence, and 

fragmentation is definitely present in cavitating systems (Ashokkumar, 2011). A case 
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can be made that the deviation from this assumption is smaller in sonoreactors with 

weaker cavitation regimes, such as low-power ultrasonic baths; however, this claim is 

largely anecdotal and lacks supporting evidence. 

The Caflisch model also neglects inter-bubble effects (Assumption 8) and does not 

consider bubble resonance effects (Assumption 9). Assumption 8 simplifies the model 

by limiting the forces experienced by the bubbles to only the fundamental harmonic 

(pressure generated by the transducer). Assumption 8 is clearly violated in 

sonoreactors, as a defining characteristic of cavitating liquids is the strong broadband 

of acoustic pressure generated by transient cavitation (Campos-Pozuelo et al., 2005; 

Avvaru and Pandit, 2009). Regarding Assumption 9, bubble sizes from empirical 

measurements are generally reported to be within the range of 1 – 50 µm [Section 

5.1]. A simple approximation using the Minneart resonance relation (Minnaert, 1933) 

for ideal gas bubbles yields a resonance radius of c.a. 163 µm for a 20 kHz system. 

Thus, the resonance condition is generally avoided unless the frequencies are high, or 

the bubbles are very large.  

 

2.4.3 Practical Limitations  

The Caflisch equation had been reported to be notoriously difficult to solve for 

cavitating systems (Louisnard, 1998; Vanhille and Campos-Pozuelo, 2009a). 

Preliminary tests involving a simplified variation of the model revealed that it is prone 

to numerical errors and requires a rigorous meshing process. Additionally, the full 

model requires bubble dynamics to be solved for each single point in space, which is 

unpractical outside of 1D simulations (Lebon et al., 2017). Prevalent numerical 
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instabilities also led to frequent numerical ‘blow-up’ (Glassey, 1981). The term 

numerical blow-up refers to a phenomenon in which the solution to a mathematical 

model becomes infinite or unbounded as the simulation progresses. This often results 

in extremely large solution values which is unrealistic, and is often caused by an ill-

posed model or inherent instabilities in certain mathematical models.  

An example of a numerical blow-up when solving a variation of the Caflisch equation 

during preliminary testing is presented in Figure 2.1. For yet-to-be-determined 

reasons, the transient solution was found to ‘blow up’ at the corners of the geometry 

and spread to the entire domain. While unproven, the observation was thought to be 

caused by numerical errors in gradient calculations due to the drastic changes in 

acoustic properties. Studies have noted that steep gradients in bubble dynamic 

equations (notably the bubble fraction term) can cause problems during numerical 

differentiation and integration (Trujillo, 2020). 

 

 

Figure 2.1: Numerical blow-up of the Caflisch solution during preliminary testing. (a) – (d) 

shows the evolution of the acoustic pressure field over time, where the red region shows 

unrealistic pressures. 
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The Caflisch model had been subsequently simplified to improve its practicality, 

leading to the development of the Commander and Prosperetti (CP) model and the 

nonlinear Helmholtz (NH) model. The CP and NH approach simplified the Caflisch 

model by reducing it to a frequency-domain model. Both models were reported to 

offer a better prediction of bubbly-liquid attenuation (Louisnard, 2010; Jamshidi et al., 

2012) while being more practical to solve. However, such Caflisch-based models 

should strictly be considered as an approximation in sonoreactor acoustics due to the 

deviations from the intended assumptions identified in Section 2.4.2. 
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2.5 The Commander and Prosperetti (CP) Model 

The Commander and Prosperetti (CP) model was developed by Commander and 

Prosperetti (1989) to study the Caflisch model for linearised bubble dynamics. In the 

original study, the model was well validated against experimental benchmarks 

measured for stable bubble field experiments. This section reviews the formulation of 

the CP model with a focus on the associated simplifying assumptions.  

 

2.5.1 Formulation of the CP Model 

Commander and Prosperetti (1989) used Keller-Miksis bubbly dynamics (Keller and 

Miksis, 1998) to close the Caflisch equation. This inherently assumed that the liquid 

around the bubbles is weakly compressible and introduced radiation damping into the 

attenuation mechanism (Jamshidi and Brenner, 2013). A more robust energy balance 

was also considered using the linearised heat transfer model of Prosperetti (1977). 

The CP model was derived on the basis of three important assumptions. First, the 

bubble source term in Eqn. (18) can be approximated as: 

 
𝜕2𝛽

𝜕𝑡2
≈ 4𝜋 ∫ 𝑅0

2𝑛𝑅𝑡𝑡

∞

0

𝑑𝑅0    

(22) 

Second, all fields were assumed to be periodic, and transient fields were incorporated 

as period-averaged values. Lastly, the model assumed that the bubble dynamics is 

linear. The result is a dispersion relation for the bubbly-liquid, which can be written 

for the monodisperse case as: 

 

𝑘𝑐  
2 =

𝜔2

𝑐𝑙 
2 +

4𝜋𝜔 
2𝑛𝑅𝑜

𝜔0
2−𝜔2+2𝑖𝑏𝜔

  

(23) 
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At first glance, the expression shares similarities with classical linear oscillator systems 

(Ginsberg, 2018), notably the parameter 𝑏 which represents the damping term. Once 

the liquid-gas properties, the frequency, and the two bubble field parameters 𝑛 and 

𝑅0 are specified, the complex-valued 𝑘𝑐
2 can be calculated from a series of parameters 

listed in Table 2.2. The damping factor 𝑏 describes the energy loss calculated from 

linearised bubble dynamics. The three terms on the right-hand-side of Eqn. (28) 

represent the viscous, thermal, and radiation damping terms.  

 

Table 2.2: Complex wavenumber calculation for the CP model. 

Parameter Expression 
 

Initial Bubble 
Pressure, 𝑃𝑔0 

𝑃𝑔0 = 𝑝∞ +
2𝜎𝑙

𝑅0
 (24) 

Dimensionless 
Thermal Diffusion, 𝜒 

𝜒 = 𝐷𝑔/𝜔𝑅0
2 (25) 

Dimensionless 
Complex-valued 

Parameter, 𝛷 

𝛷 =
3𝛾𝑔

1 − 3(𝛾𝑔 − 1)𝑖𝜒[(𝑖/𝜒)1/2 𝑐𝑜𝑡ℎ(𝑖/𝜒)1/2 − 1]
 (26) 

Resonance Frequency 
Squared, 𝜔0

2 
𝜔0

2 =
𝑃𝑔0

2𝜌𝑙𝑅0
2 (ℜ{𝛷} −

2𝜎𝑙  

𝑅0𝑃𝑔0
) (27) 

Damping Factor, 𝑏 
𝑏 =

2𝜇𝑙 

𝜌𝑙𝑅0
2 +

𝑃𝑔0

2𝜌𝑙𝜔𝑅0
2 ℑ{𝛷} +

𝜔2𝑅0

2𝑐𝑙
 (28) 

 



45 
 

2.5.2 Variations of the CP model 

The CP model had been implemented using two main strategies in sonoreactor 

acoustics, henceforth referred to as the linear CP model and the nonlinear CP model. 

The linear CP model assumes that the bubble field does not depend on the acoustic 

pressure field. This was usually implemented by assuming that the bubble density or 

bubble fraction is constant and uniform in the working fluid. The method was 

considered in the work of Jamshidi et al. (2012), as well as Dogan and Popov (2016). 

The linear CP model was selected as the main focus of this work, as it was 

hypothesised that the acoustic behaviour predicted by the model resembles that of 

conventional bath-type sonoreactors. In contrast, the nonlinear CP model is 

formulated using a bubble density or bubble fraction that depends on the local 

acoustic pressure. It was first proposed by Dähnke et al. (1999a) and was adopted in 

several subsequent studies (Jamshidi et al., 2012; Hussain and Janajreh, 2017; Fang et 

al., 2018). In this work, the nonlinear CP model was only considered as a simplified 

alternative to the NH model in Case Study 7.  

Other improvements of the CP model were also proposed in literature, mainly to 

address extreme or fringe conditions. Kargl (2002) proposed that the linearised bubble 

dynamics in the CP model should be written in terms of effective mixture properties 

to provide a better approximation for radiation damping. They reported that 

improvements are only significant for near-resonance systems. Ando et al. (2009) also 

addressed near-resonance behaviour, where some assumptions of the Caflisch model 

were violated. They noted that radiation and compressibility losses become important 

near resonance and showed that very high frequencies (>1 MHz) violate the 

assumption of continuum for the Caflisch model. Fuster et al. (2014) attempted to 
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relax Assumption 8 of the Caflisch equation by modifying the CP model using a bubble 

cluster modelling approach. Their model characterised bubble behaviour as groups 

rather than individual scatterers.  

Other studies considered more robust gas- and vapour-transfer models. Fuster and 

Montel (2015) claimed that the inclusion of vapour transfer resulted in higher 

attenuation and lower phase speed predictions in their modified CP model. 

Prosperetti (2015) also reported similar results when considering the transfer of 

gasses across the bubble boundaries. These observations were restricted to cases 

where the operating frequency is very low and the bubble fraction is very large; which 

allowed more time and surface area for diffusion effects to be significant. 

 

2.5.3 Comments on the CP Model 

The CP model is significantly simpler in terms of formulation and implementation than 

the Caflisch model. When considering the use of the CP model in sonoreactor 

acoustics, the main consideration is the validity of the linearised bubble dynamics in 

representing the effect of the bubble field. This work argues that the CP model can be 

used to approximate the acoustic pressure field of weakly cavitating regimes such as 

bath-type systems. The use of linearised bubble dynamics had been noted to show 

good agreement in low-amplitude applications (Servant et al., 2001b; Vanhille et al., 

2004). Furthermore, measurements had shown that ultrasonic baths can operate at 

pressures lower than the Blake threshold (Moholkar et al., 2000; Tangsopa and 

Thongsri, 2019). The results suggest that the working fluid can be characterised by 

stable cavitation (Leighton, 1994; Young, 1989), which better conformed to linear 
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bubble dynamics (Prosperetti, 1975). Commander and Prosperetti (1989) reported an 

applicable range of bubble conditions for their model. Based on their validation 

studies using stable bubble fields, the CP model was reported to be applicable for 

bubble fractions up to 1-2 %. This condition is usually obeyed in sonoreactor acoustics, 

with reference to bubble fraction measurements that lie well below this threshold for 

horn-type configurations (Burdin et al., 1999).  
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2.6 The Nonlinear Helmholtz Model 

Trujillo (2018) coined the term ‘nonlinear Helmholtz model’ to refer to a specific class 

of bubbly-liquid models applying the strategy proposed by Louisnard (2010, 2012a). 

NH models were mainly developed to address the issue of predicting bubbly-liquid 

attenuation for strongly cavitating systems (Louisnard, 2010), notably for regimes 

above the Blake threshold (Blake et al., 1999).  

 

2.6.1 Formulation of the NH Models 

The formulation of NH models shares similarities with the CP model, notably for its 

early variations (Jamshidi and Brenner, 2013; Louisnard, 2010). Instead of modelling 

bubble effects from linearised bubble dynamics, the NH model relies on solving full 

bubble dynamics to calculate the wavenumber. Developed on the foundations of the 

Caflisch model, the implementation of the NH model is a two-step process. The first 

step involves solving bubble dynamics to obtain bubble dissipation data as a function 

of acoustic pressure magnitude; while the second step solves a nonlinear Helmholtz 

equation by incorporating dissipation data as an interpolation curve. The model was 

reported to predict much higher attenuation than the linear CP model when the 

acoustic pressure exceeds the cavitation threshold (Louisnard, 2012a).  

Unlike the CP model, which uses a single dispersion relation to determine 𝑘𝑐
2, the NH 

models were historically derived to have separate expressions for the real and 

imaginary parts of the wavenumber squared (Trujillo, 2018): 

 
𝑘𝑐

2 = 𝑟𝑒𝑎𝑙(𝑘𝑐
2) + 𝑖[𝑖𝑚𝑎𝑔(𝑘𝑐

2)] = ℜ(𝑘𝑐
2) +  ℑ(𝑘𝑐

2)𝑖  
(29) 
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To date, three variations had been proposed by different authors. Table 2.3 

summarises their similarities and differences compared to the CP model. Louisnard 

(2010) derived bubble dissipation from Rayleigh-Plesset bubble dynamics (Rayleigh, 

1917; Plesset, 1949). Subsequently, the work of Jamshidi and Brenner (2013) 

rederived the bubble dissipation by considering a weakly-compressible fluid using the 

Keller-Miksis bubble dynamics (Keller and Miksis, 1998). In both works, the real part 

of the wavenumber squared was directly adopted from the CP model, while the 

imaginary part was determined from period-averaged dissipation terms calculated 

from bubble ODEs. Recently, Trujillo (2018) reported a rigorous re-derivation of the 

NH model from fundamental energy balances and proposed a new expression for 

ℜ(𝑘𝑐
2).  

 

Table 2.3: Summary of wavenumber formulation for NH models. 

 

Model Real Part, 𝕽(𝒌𝒄
𝟐) Imaginary Part, 𝕴(𝒌𝒄

𝟐) 

CP Linearised Caflisch Model (Keller-Miksis Bubble Dynamics) 

NH (Louisnard) 
Adapted from CP Dispersion 

Relation 

Derived from Rayleigh-

Plesset Bubble Dynamics 

NH (Jamshidi and 

Brenner) 

Derived from Keller-Miksis 

Bubble Dynamics 

NH (Trujillo) 
Rigorously Derived from the Caflisch Model and Keller-Miksis 

Bubble Dynamics 

 

 



50 
 

2.6.1.1 Review of Louisnard’s Formulation  

The initial work of Louisnard (2010) considered isothermal Rayleigh-Plesset bubble 

dynamics. They included the effects of viscosity and surface tension, and the 

formulation of the dissipation terms are summarised in Table 2.4. The two period-

averaged dissipation terms Π𝑡ℎ  and Π𝑣  were calculated from period-averaged 

expressions derived from energy balances. Once the dissipation terms were 

determined, the imaginary part of the wavenumber squared was specified as a 

function of the local acoustic pressure magnitude |𝑃|. Louisnard (2012a) assumed that 

the real part can be approximated using the CP model based on the hypothesis that 

its effect is negligible compared to the imaginary part. This hypothesis was later 

confirmed by Trujillo (2020) who numerically investigated the matter. 

 

Table 2.4: Louisnard's (2010) formulation of the NH model. 

Formulation of Louisnard’s NH Model 

*Rayleigh-Plesset bubble dynamics is used to solve 𝑅, 𝑅̇, 𝑅̈, 𝑉 and 𝑉̇. 

Thermal dissipation term : 𝛱𝑡ℎ = 〈−𝑝𝑔𝑉̇〉 (30) 

Viscous dissipation term : 𝛱𝑣 = 〈16𝜋𝜇𝑙𝑅𝑅̇2〉 (31) 

Imaginary 𝑘-squared:  ℑ(𝑘𝑐
2) = −2𝜌𝑙𝜔𝑛

𝛱𝑡ℎ + 𝛱𝑣

|𝑃|2
 (32) 

Real 𝑘-squared : ℜ(𝑘𝑐
2) =

𝜔2

𝑐𝑙
2 +

4𝜋𝑅𝑜𝜔2𝑛

𝜔0
2 − 𝜔2

 (33) 



51 
 

2.6.1.2 Review of Jamshidi’s Formulation 

Jamshidi and Brenner (2013) considered the Keller-Miksis equation for the bubble 

dissipation calculations, which is summarised in Table 2.5. They also considered a 

more comprehensive energy balance around the acoustic bubble using the approach 

of Toegel et al. (2000). Their bubble dynamics considered a weakly-compressible liquid 

coupled with heat transfer effects, in contrast to the inviscid and isothermal 

assumptions of the predecessor. The main contribution of their work is the extra 

dissipation term that corresponds to radiation losses, Π𝑟.  

 

Table 2.5: Jamshidi and Brenner (2013) formulation of the NH model. 

Formulation of Jamshidi’s NH Model 

*Keller-Miksis bubble dynamics is used to solve R, Ṙ, R̈, V and V̇. 

**Real part of 𝑘𝑐
2 follows Eqn. (33). 

Viscous dissipation term: 𝛱𝑣 = 〈16𝜋𝜇𝑙𝑅𝑅2̇ +
16𝜋𝜇𝑙

𝑐𝑙
𝑅2𝑅̇𝑅̈〉 (34) 

Viscous dissipation term: 𝛱𝑣 = 〈16𝜋𝜇𝑙𝑅𝑅2̇ +
16𝜋𝜇𝑙

𝑐𝑙
𝑅2𝑅̇𝑅̈〉 (35) 

Radiation dissipation term: 
Π𝑟 = 〈

4𝜋

𝑐𝑙
𝑅2𝑅̇2𝑝 +

4𝜋

𝑐𝑙
𝑅3𝑅̇𝑝̇ −

2𝜋𝜌𝑙

𝑐𝑙
𝑅2𝑅̇4

−
4𝜋𝜌𝑙

𝑐𝑙
𝑅3𝑅̇2𝑅̈〉 

(36) 

Imaginary 𝑘-squared: ℑ(𝑘𝑐
2) = −2𝜌𝑙𝜔𝑛

𝛱𝑡ℎ + 𝛱𝑣 + Π𝑟

|𝑃|2
 (37) 
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2.6.1.3 Review of Trujillo’s Formulation 

The latest development for the NH model was published by Trujillo (2018, 2020) who 

rigorously rederived a new set of expressions for the real and imaginary parts of 𝑘𝑐
2 as 

shown in Table 2.6. The more generalised expressions allow the dispersion relation to 

be obtained directly from bubble dynamics without the need to calculate individual 

dissipation terms, making the adoption of the NH model more efficient. Unlike 

previous variations, the generalised formulations are also independent of the bubble 

dynamics, which allows for increased flexibility for the modelling of bubble behaviour. 

 

Table 2.6: Trujillo’s (2020) formulation of the NH model.  

Formulation of Trujillo’s NH Model 

*Keller-Miksis bubble dynamics is used to solve 𝑅, 𝑅̇, 𝑅̈, 𝑉 and 𝑉̇. 

Real-part variable: 

𝒜 = −2𝜌𝑙𝜔2 〈
𝜕2𝛽

𝜕𝜏2
cos (𝜏 +

𝜋

2
)〉 (38) 

𝑜𝑟  

𝒜 =
4𝜌𝑙𝜔2

|𝑃|
〈𝐸𝐴〉 +

𝜌𝑙𝜔

|𝑃|
[ℑ(𝑃∗∇ ⋅ 𝑼 + 𝑼∗ ⋅ ∇𝑃)] (39) 

Imaginary-part variable: 

ℬ = 2𝜌𝑙𝜔2 〈
𝜕2𝛽

𝜕𝜏2
sin (𝜏 +

𝜋

2
)〉 (40) 

𝑜𝑟  

ℬ =
2𝜌𝑙𝜔

|𝑃|
〈Π𝑑𝑖𝑠〉 (41) 

Imaginary 𝑘-squared: ℑ(𝑘𝑐
2) = −

ℬ

|𝑃|
 (42) 

Real 𝑘-squared: ℜ(𝑘𝑐
2) =

𝜔2

𝑐𝑙
2 −

𝒜

|𝑃|
 (43) 
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2.6.2 Comments on the NH Model 

It can be argued that the interpolation curve approach is the key novelty of the NH 

model. Although this approach incurs a slight loss of accuracy (depending on the 

resolution of the interpolation curve), it is balanced by the much-needed boost in 

performance. This feature improves the modelling strategy in two ways. First, the local 

wavenumber can be specified as a function of local pressure, which allows for a more 

comprehensive prediction of the wavenumber. Second, it allows rigorous bubble data 

to be practically incorporated into the acoustic pressure model. The latter opens up 

the possibility of archiving existing bubble data for future simulations.  

From the standpoint of sonoreactor acoustics, the NH model is a practical solution for 

modelling strongly cavitating systems or systems that exhibit strong inhomogeneity 

such as horn-type sonoreactors. In the context of this work, while the model is more 

comprehensive, it is debatable whether the additional complexity is necessary for the 

modelling of ultrasonic baths. Furthermore, unlike the CP model, which had been 

extensively validated (Commander and Prosperetti, 1989), the development of the NH 

models remains in its early stages. Thus, the approach still requires further studies to 

determine its reliability. Recently, validation results reported by Trujillo (2020) suggest 

that the model may overpredict bubbly-liquid attenuation. They also reported 

convergence issues under certain conditions.  
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2.7 Bubble Field Characterisation and Bubble Dynamics 

2.7.1 Specification of Bubble Field Parameters 

When applying the CP and NH bubbly-liquid models, one would need to describe the 

bubble equilibrium radius 𝑅0  and the bubble density 𝑛 . The equilibrium bubble 

fraction 𝛽 can then be determined using: 

 

𝛽 =
4

3
𝑛𝜋𝑅0

3 

(44) 

Figure 2.2 summarises the Caflisch class of bubbly-liquid models, as well as the 

available strategies for characterising the bubble field. Currently, there are two main 

strategies to characterise the equilibrium bubble radius and the bubble density, 

respectively. The following section reviews these methods. In Chapter 5, the topic of 

bubble field characterisation will be comprehensively revisited to address an 

important knowledge gap that was identified during the course of this work. 

 

 

Figure 2.2: Summary of bubbly-liquid models and common bubble field assumptions. 
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2.7.1.1 Bubble Equilibrium Radius  

Past studies characterised the bubble equilibrium radius 𝑅0 using two methods. The 

simpler approach is the monodisperse assumption where all bubbles were assumed 

to have the same equilibrium radius (Jamshidi et al., 2012; Dogan and Popov, 2016; 

Sarac et al., 2020).  

 
𝑅0(𝒓) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(45) 

The second approach characterised 𝑅0 as a distribution of radii sizes, also known as 

the polydisperse approach (Commander and Prosperetti, 1989). A common method 

of implementing a polydisperse 𝑅0 is to assume that the radii distribution follows a 

Gaussian curve (Dähnke et al., 1999a): 

 

𝑓𝐺(𝑅0) =
1

√2𝜋𝜎𝐵
2

𝑒
−

(𝑅0−𝑅𝑚)2

2𝜎𝐵
2

 

(46) 

 

2.7.1.2 Bubble Density  

The bubble density parameter 𝑛 represents the number of bubbles per unit volume of 

bubbly liquid. Recent studies assumed that the bubble density is spatially constant and 

uniform (Delacour et al., 2020; Sarac et al., 2020; Trujillo, 2020): 

 
𝑛(𝒓) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

(47) 

The second approach specified 𝑛 as a spatial variable. Studies had used the acoustic 

pressure field to map the bubble population in sonoreactors (Servant et al., 2001b; 

Vanhille and Campos-Pozuelo, 2009b). Another common method was proposed by 

Dähnke et al. (1999a), who used a nonlinear relation between bubble density and the 
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acoustic pressure magnitude. Henceforth referred to as the nonlinear 𝑛 approach, the 

relationship can be mathematically described as: 

 
𝑛(𝒓) = 𝑋|𝑃(𝒓)| 

(48) 

The parameter 𝑋 depends on the linear scaling relation between the bubble density 

and the pressure magnitude.  

 

2.7.1.3 Bubble Field Characterisation Strategies  

Bubble field characterisation was found to vary between studies that used the CP and 

NH models. The CP model had been solved using more varied methods, such as 

monodisperse - constant 𝑛  (Dogan and Popov, 2016), polydisperse - constant 𝑛 

(Lebon et al., 2017), and monodisperse - nonlinear 𝑛 (Jamshidi et al., 2012; Fang et al., 

2018), and polydisperse - nonlinear 𝑛  (Dähnke, et al. 1999a; Servant et al. 2000). 

Interestingly, the factors that influence these choices remain under-discussed. For the 

nonlinear Helmholtz model, most works considered a monodisperse constant 𝑛 

formulation (Louisnard, 2012b; Dogan and Popov, 2016; Sarac et al., 2020; Trujillo, 

2020). It was speculated that this is because the NH model is relatively new, leaving 

other formulations yet to be explored in literature.  

 

2.7.2 Bubble Dynamics 

Ordinary differential equation (ODE) systems for bubble dynamics were solved to 

obtain the dissipation curves for the NH models. The system of ODEs can be broken 

down into several parts, namely: 
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1) Bubble External Pressure, 𝑝∞(𝑡) 

2) Bubble Radius, 𝑅(𝑡) 

3) Bubble Internal Gas and Vapour Pressure  𝑝𝑔(𝑡) and  𝑝𝑣(𝑡)  

4) Bubble Internal Temperature, 𝑇𝐵(𝑡) 

 

2.7.2.1 Bubble External Pressure (Acoustic Forcing) 

The bubble external pressure 𝑝∞(𝑡) includes the steady-state hydrodynamic pressure 

𝑝0 as well as the pressure generated by the transducers. For monoharmonic cases, the 

pressure field surrounding the bubble is written as (Louisnard, 2012a):  

 𝑝𝐹 = 𝑝∞(1 − 𝑝∗ sin(2𝜋𝑓𝑡)) = 𝑝∞ − 𝑝∞𝑝∗ sin(2𝜋𝑓𝑡)  (49) 

The term 𝑝∗ is the ratio between the driving amplitude and the steady-state pressure 

𝑝∞ . Other potential pressure sources, such as broadbands generated by nearby 

cavitation activity or multi-frequency irradiation (Moholkar et al., 2000; Avvaru and 

Pandit, 2009), were not considered in this work. 

 

2.7.2.2 Bubble Radius 

The two main bubble dynamics equations described in this work are the Rayleigh-

Plesset equation (Rayleigh, 1917; Plesset, 1949): 

 

𝜌𝑙 [𝑅𝑅𝑡𝑡 +
3

2
𝑅𝑡

2] = 𝑝𝑣 + 𝑝𝑔 − 𝑝𝐹 −
2𝜎𝑙

𝑅
−

4𝜇𝑙𝑅𝑡

𝑅
 

(50) 

and the Keller-Miksis equation (Keller and Miksis, 1998): 

 

𝜌𝑙 [(1 −
𝑅𝑡

𝑐𝑙
) 𝑅𝑅𝑡𝑡 + (1 −

𝑅𝑡

3𝑐𝑙
)

3

2
𝑅𝑡

2] = (1 +
𝑅𝑡

𝑐𝑙
) 𝑝𝑤 + (

𝑅

𝑐𝑙
)

𝑑𝑝𝑤

𝑑𝑡
 

(51) 



58 
 

 

𝑝𝑤 = 𝑝𝑣 + 𝑝𝑔 −
2𝜎𝑙

𝑅
−

4𝜇𝑙

𝑅
𝑅𝑡 − 𝑝∞ − 𝑝𝐹 

(52) 

Both were derived on the basis of spherical symmetry, shape stability, and uniform 

bubble pressure. The key difference between the two is that the latter includes a weak 

contribution of liquid compressibility in the form of a compressibility factor (1 −
𝑅𝑡

𝑐𝑙
) 

which incorporates radiation damping into the system.  

 

2.7.2.3 Bubble Internal Pressure 

The internal pressure of the bubble depends on its vapour and gas content which can 

be represented by the vapour pressure 𝑝𝑣 and the gas pressure 𝑝𝑔 respectively. This 

work neglects the vapour pressure contributions based on the reasoning provided by 

Toegel et al. (2000). They argued that cavitation dynamics is much faster than diffusion 

and phase change, and thus the latter can be omitted. The same reasoning was applied 

for gas diffusion across the bubble boundary. With these simplifying assumptions, the 

internal pressure of a bubble can be represented using equations of state for a closed 

system, such as the ideal gas equation of state: 

 
𝑝𝑔 = 𝑝𝑔0 (

𝑇

𝑇∞
) (

𝑅0

𝑅
)

3𝑗

 
(53) 

where the exponent 𝑗 is 1 for isothermal cases and 𝛾 for adiabatic cases. 
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2.7.2.4 Bubble Internal Temperature  

Outside of the isothermal assumption, the internal temperature has to be described 

using an energy balance. Assuming that the internal temperature is uniform, the 

uniform bubble temperature 𝑇𝐵 can be written as (Toegel et al., 2000): 

 𝑑𝑇𝐵

𝑑𝑡
=

𝑄̇

𝑁𝑇𝐶𝑣
+

𝑁̇𝐻2𝑂ℎ𝑣𝑎𝑝

𝑁𝑇𝐶𝑣
−

𝑝𝑔𝑉̇

𝑁𝑇𝐶𝑣
 

(54) 

The right-hand-side source terms describe heat transfer across the boundary, 

enthalpy of vaporisation, and work done from gas expansion, respectively. The work 

done can be calculated from the equation of state, whereas the enthalpy of 

vaporisation is omitted on prior reasoning in Section 2.7.2.3. Therefore, only the heat 

transfer across the bubble, 𝑄̇ needs to be specified. Trujillo (2020) outlined two useful 

methods for this purpose. The first is the formulation of Toegel et al. (2000) who 

proposed a diffusion penetration depth to validate the homogeneous temperature 

assumption and the ODE formulation: 

 

𝑙𝑡ℎ = 𝑚𝑖𝑛 (
𝑅

𝜋
, √

𝑅𝐷𝑔

|𝑅̇|
 ) 

(55) 

The bubble temperature is assumed to be uniform, and the energy balance is: 

 
𝑄̇ =

4𝜋𝑅2𝐾𝑇

𝑙𝑡ℎ
(𝑇∞ − 𝑇𝐵) 

(56) 

The method of Preston et al. (2007) was also studied by Trujillo (2020). The model 

uses a heat transfer coefficient which was determined from the dimensionless Peclet 

number: 
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𝛷ℎ = {[√𝑖𝜔(𝑃𝑒)𝑐𝑜𝑡ℎ√𝑖𝜔(𝑃𝑒) − 1]

−1
−

3

𝑖𝜔(𝑃𝑒) 
}

−1

 
(57) 

where the Peclet number for heat transfer is: 

 𝑃𝑒 = 𝑅0
2/𝐷𝑔 (58) 

The variable heat transfer coefficient ℎ𝑇  can be expressed using the real part of the 

complex-valued transfer function: 

 
ℎ𝑇 =

𝐾𝑇ℜ(𝛷ℎ)

𝑅0
 

(59) 

The imaginary part of the transfer function represents the phase difference between 

heat transfer and bubble oscillations and can be safely neglected in most ultrasound 

applications, as argued by Trujillo (2020). Finally, the energy transfer can be expressed 

as: 

 𝑄̇ = 4𝜋𝑅2ℎ𝑇(𝑇∞ − 𝑇𝐵) (60) 

 

2.8 Mesh and Solver Considerations in FEM 

Early simulations for sonoreactors can be traced back to the late 1990s, where the 

finite difference method (FDM) was primarily used (Dähnke and Keil, 1999a; Servant 

et al., 2000; Vanhille et al., 2004). FEM later became a popular alternative as key 

disadvantages of FDM, such as the modelling of complex geometries, can be easily 

addressed (Louisnard et al., 2009). In this work, the acoustic pressure simulations were 

solved using the commercial FEM software, COMSOL Multiphysics (version 4.2). The 

hardware specifications of the machine used consists of an AMD Ryzen 7 3700X CPU 

(3593 MHz, 8 cores) with 64 GB of available physical memory (RAM). 
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2.8.1 Meshing Considerations in Sonoreactor Acoustics 

The work of Thompson (2006) was used as the main reference for the meshing 

strategies in this work. In acoustic simulations, mesh requirements are commonly 

defined in terms of elements per wavelength:  

 

𝑆𝑚𝑒𝑠ℎ =
𝜆𝑚𝑖𝑛 

𝑁𝑚𝑒𝑠ℎ
   

(61) 

The upper limit of the mesh size, 𝑆𝑚𝑒𝑠ℎ can be obtained for the shortest wavelength 

to be simulated. The software manual recommends 𝑁𝑚𝑒𝑠ℎ  values of 6 to 10 for 

acoustic problems, while Moser et al. (1999) argued that an 𝑁𝑚𝑒𝑠ℎ  up to 20 is 

recommended. These values were used for initial mesh estimates and subsequently 

revised using mesh refinement to satisfy accuracy requirements. The temporal mesh 

in transient simulations also followed software recommendations where estimates 

were obtained based on the Courant–Friedrichs–Lewy (CFL) criterion (Courant et al., 

1928): 

 

Δ𝑡𝑚𝑎𝑥 =
𝐶𝐹𝐿

10𝑓𝑚𝑎𝑥
 

(62) 

Lebon et al. (2017) claimed that a CFL value of 0.2 is sufficient. The parameter 𝑓𝑚𝑎𝑥  

represents the maximum frequency to be solved. Similarly, time-stepping refinements 

were performed to ensure the accuracy of the results.   

 

2.8.2 Convergence Criteria and Solver Framework 

The convergence of the numerical solvers can be characterised using relative 

tolerance (𝑅. 𝑡𝑜𝑙) and absolute tolerance (𝐴. 𝑡𝑜𝑙). Consider two values 𝑋 and 𝑌, the 

definitions of 𝑅. 𝑡𝑜𝑙 and 𝐴. 𝑡𝑜𝑙 are as follows (Helton, 2012): 
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𝑅. 𝑡𝑜𝑙 =
𝑎𝑏𝑠(𝑋 − 𝑌)

min(𝑎𝑏𝑠(𝑋), 𝑎𝑏𝑠(𝑌))
 

(63) 

 

 𝐴. 𝑡𝑜𝑙 = 𝑎𝑏𝑠(𝑋 − 𝑌) (64) 

The relation between 𝑅. 𝑡𝑜𝑙 and 𝐴. 𝑡𝑜𝑙 is also clear: 

 
𝑅. 𝑡𝑜𝑙 =

𝐴. 𝑡𝑜𝑙

min(𝑎𝑏𝑠(𝑋), 𝑎𝑏𝑠(𝑌))
 

(65) 

Both 𝑅. 𝑡𝑜𝑙 and 𝐴. 𝑡𝑜𝑙 were used to specify the convergence criteria in the solvers. For 

a numerical problem with an exact solution 𝑥0  and an estimated solution 𝑥 , the 

absolute error can be written as 𝐸 = 𝑎𝑏𝑠(𝑥 − 𝑥0). In this work, a value of 𝑅. 𝑡𝑜𝑙 of 

0.001 was used for all acoustic pressure simulations, corresponding to a maximum 

estimated deviation of 0.1%. Unless stated otherwise, the solver configuration used 

for the simulations in this work used the Damped Newton method (Deuflhard, 1974) 

using the MUMPS solver. Figure 2.3 shows a graphical breakdown of the relevant 

solver types available in the software based on the software manual (COMSOL AB, 

2018). The linear models solved in this work simply used the default configurations, 

while the settings for nonlinear models were tuned to ensure numerical stability and 

accuracy.  
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Figure 2.3: The numerical solver set-up in COMSOL. The Damped Newton Method (MUMPS) 

was the main numerical method used in this work. 
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2.9 Acoustic Boundary Conditions and Perfectly Matched Layers (PML) 

2.9.1 Acoustic Boundary Conditions 

The boundary conditions used in sonoreactor acoustics can be categorised into active 

(e.g., transducers) and passive (e.g., walls and water-air interfaces) boundaries. The 

boundary conditions can be categorised into Dirichlet, Neumann, and Robin type 

boundaries (Miles, 2020) as shown in Table 2.7. 

Table 2.7: Common boundary conditions in acoustic simulations. 

B.C.  
(Type) 

Time-Domain Frequency-Domain 

Active Boundaries 

Pressure  
(Dirichlet) 

𝑝 = 𝑝𝑏𝑑 (66) 𝑃 = 𝑃𝑏𝑑 (67) 

Pressure 
(Neumann) 

𝒏 ⋅ (
∇𝑝

𝜌𝑙
) =

1

𝜌𝑙𝑐𝑙
(

𝜕𝑝𝑏𝑑

𝜕𝑡
) (68) 𝒏 ⋅ (

∇P

𝜌𝑙
) =

𝑖𝜔𝑃𝑏𝑑

𝜌𝑙𝑐𝑙
 (69) 

Normal 
Acceleration 
(Neumann) 

𝒏 ⋅ (
∇𝑝

𝜌𝑙
) = 𝑎𝑏𝑑 (70) 𝒏 ⋅ (

∇P

𝜌𝑙
) = 𝐴𝑏𝑑 (71) 

Normal 
Velocity 
(Neumann) 

𝒏 ⋅ (
∇𝑝

𝜌𝑙
) =

𝜕𝑣𝑏𝑑

𝜕𝑡
 (72) 𝒏 ⋅ (

∇P

𝜌𝑙
) = 𝑖𝜔𝑉𝑏𝑑 (73) 

Normal 
Displacement 
(Neumann) 

𝒏 ⋅ (
∇𝑝

𝜌𝑙
) =

𝜕2𝑑𝑏𝑑

𝜕𝑡2
 (74) 𝒏 ⋅ (

∇P

𝜌𝑙
) = −𝜔2𝐷𝑏𝑑 (75) 

Passive Boundaries 

Impedance 
(Robin) 

𝒏 ⋅ (
∇𝑝

𝜌𝑙
) =

1

𝜌𝑏𝑑𝑐𝑏𝑑
(

𝜕𝑝

𝜕𝑡
) (76) 𝒏 ⋅ (

∇P

𝜌𝑙
) =

𝑖𝜔𝑃

𝜌𝑏𝑑𝑐𝑏𝑑
 (77) 

Sound-Soft 
(Dirichlet) 

𝑝 = 0 (78) 𝑃 = 0 (79) 

Sound-Hard 
(Neumann) 

𝜕𝑝

𝜕𝑡
= 0 (80) 

𝑖𝜔𝑃 = 0 

𝒏 ⋅ (
∇P

𝜌𝑙
) = 0 

(81) 
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2.9.1.1 Boundary Conditions for Passive Walls 

Literature review revealed an interesting inconsistency among the research 

community on the choice of boundary condition for solid walls in a sonoreactor. Some 

studies opted for the sound-hard boundary condition (Servant et al., 2000; Sáez et al., 

2005; Shao et al., 2010); while others specified the walls as sound-soft (Klíma et al., 

2007; Sutkar et al., 2010; Vanhille and Campos-Pozuelo, 2011; Delacour et al., 2020; 

Sarac et al., 2020). This was found to be interesting, as the numerical and physical 

implications for both specifications are markedly different. Researchers argued that 

the sound-hard boundary should be used if the sonoreactor walls are rigid and do not 

deform. On the other hand, those who selected the sound-soft boundary assumed 

that the walls are thin enough to deform freely. The study of Yasui et al. (2007) shed 

some light on this matter using fully-coupled-solid-acoustics simulations, and reported 

that glass and steel walls with thickness of 2 mm approached that of a free (sound-

soft) boundary, while a 7 mm thick wall approximated a rigid (sound-hard) boundary. 

From their finding, it was clear that the material and thickness of the wall play an 

important role in this decision. 

It is imperative to comment that both sound-hard and sound-soft boundary conditions 

are idealised, and should be used as simplified approximations. The sound-hard and 

sound-soft conditions do not account for energy loss through the walls, which is 

obviously unrealistic. Nonetheless, past studies showed that they are applicable if 

properly understood and applied (Tudela et al., 2014). Recently, Robin-type 

impedance boundary condition saw increased adoption in simulation studies (Xu et al., 

2013; Tiong et al., 2019). The condition is essentially a generalised formulation for 

both hard and soft boundaries, and can be specified from acoustic properties of the 
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boundary. The advantage of the impedance boundary is to be able to partly model 

energy loss through walls (Ginsberg, 2018). In this work, sound-hard, sound-soft, and 

impedance passive boundary conditions were used depending on the studied system 

and the required numerical behaviour. Extensive justification on this topic will be 

given in the respective studies. 

 

2.9.1.2 Boundary Conditions for Vibrating Surfaces 

Active boundary conditions simplify vibrating surfaces when modelling a sonoreactor, 

which is an alternative to fully simulating the solid mechanics (Wei and Weavers, 2016; 

Tangsopa and Thongsri, 2019). Past studies had used a Dirichlet pressure formulation 

(Sutkar et al., 2010; Tudela et al., 2011; Jamshidi et al., 2012; Xu et al., 2013) or a 

Neumann formulation (Louisnard, 2012a; Dogan and Popov, 2016; Lebon et al., 2017). 

Unlike passive boundaries, the physical significance between the two types of active 

boundaries is less distinct. 

Conventional wisdom suggests that the appropriate boundary should be chosen based 

on available information (Miles, 2020). For example, a Dirichlet pressure specification 

is preferred if pressure measurements at the transducer surface are available. 

Likewise, if displacement data at the surface can be obtained, then a Neumann 

boundary condition can be easily implemented. It is also possible to convert between 

pressure and the normal velocity at the surface using the impedance relation: 

 
𝒖𝒃𝒅 =

𝑝𝑏𝑑

𝜌𝑙𝑐𝑙
  

(82) 
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2.9.2 Perfectly Matched Layers (PML) 

Perfectly Matched Layers (PML) was used to address the issue of truncating 

discretised waves (Johnson, 2010). PML is a numerical technique used to artificially 

enforce a non-reflecting condition. It will be shown in Case Study 1, Figure 3.12, that 

a 1D non-reflecting boundary can be achieved using a matched-impedance boundary. 

However, the same approach is not effective for 2D and 3D domains due to 

discretisation (Johnson, 2010). To circumvent this problem, researchers explored 

various strategies from analytical impedance matching algorithms (Hunt et al., 1974) 

to absorbing layers that artificially attenuated the waves (Berenger, 1994). PML is part 

of the latter and became a very common feature in commercial FEM software. The 

use of PML generally involves the generation of an artificial domain at the boundary, 

which would be designated as the PML region. The PML region is then meshed and 

solved along with the acoustic domain. In this work, PML was frequently used for 

numerical analyses, specifically to examine the acoustic pressure solution in the 

absence of reflection behaviour. 
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Chapter 3: Fundamental Modelling Strategies in FEM  

This chapter presents two case studies that focused on exploring the numerical 

properties of acoustic solutions. In Case Study 1, frequency-domain solutions were 

evaluated against a corresponding time-domain approach to investigate their viability 

for sonoreactor acoustics. In Case Study 2, a series of short test cases were conducted 

to investigate the effect of acoustic boundary conditions on the final solutions. The 

findings from the two case studies served as the cornerstone for developing the 

fundamental modelling approaches in this work. 

 

3.1 Case Study 1: Time- and Frequency-Domain Acoustic Simulations 

Case Study 1 investigated the quality of frequency-domain solutions against time-

domain solutions to justify their adoption in this project. Additionally, the 

interpretation of frequency-domain solutions in relation to sonoreactor acoustics and 

experimental data was discussed. It was hypothesised that the frequency-domain 

solution provides sufficient information to characterise a sonoreactor within the 

scope of study, specifically in terms of antinode and acoustic pressure prediction. This 

hypothesis was tested by comparing the solution of a time- and frequency-domain 

solution in a 1D and an asymmetrical 2D model. Further validation against 

experimental observations by Klíma et al. (2007) were also presented.  

 

3.1.1 Methodology 

The time- and frequency-domain solutions were compared in 1D and asymmetric 2D 

by solving the same physical system using the wave equation in Eqn. (9) and the 
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Helmholtz equation in Eqn. (11) respectively. Figure 3.1 depicts the model geometries 

used in this investigation. For the 1D study in Figure 3.1 (a), the left edge was specified 

as a 20 kHz Dirichlet pressure boundary with an arbitrary magnitude of 1 bar. The right 

boundary was specified as a perfectly reflecting sound-hard boundary. The 

propagation medium was treated as a pure liquid (𝜌𝑙  = 1000 kg/m3 and 𝑐𝑙 = 1500 m/s) 

with no explicit attenuation. The asymmetric 2D simulation was modelled using the 

set-up of Klíma et al. (2007) shown in Figure 3.1 (b). The simulation parameters also 

followed the original study. Quadratic Lagrange elements were used for the simulation 

mesh. The mesh of the 1D model was set at 10 nodes per wavelength. For the 

asymmetric 2D study, different meshes were required for the frequency- and time-

domain cases, as shown in Figure 3.2. The mesh sizes were significantly overtuned to 

minimise the impact of numerical uncertainties on the solutions. The frequency-

domain mesh requirements were set at 𝑁 = 70, while the time-domain mesh had to 

be refined until 𝑁 = 85 to properly eliminate numerical errors in transient solutions.  

 

 

Figure 3.1: The simulation geometry for: (a) the 1D study; (b) the 2D asymmetric study of Klíma 

et al. (2007).  
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Figure 3.2: The meshes used for the 2D asymmetric case: (a) frequency-domain simulation; (b) 

time-domain simulation. 

 

3.1.2 Results and Discussion 

3.1.2.1 1D Simulation Results  

Pure-liquid models were used to avoid uncertainties related to attenuation, since 

establishing the same dispersion relation for both frequency- and time-domain 

models was found to be challenging (Ginsberg, 2018). The arbitrary value specified for 

the Dirichlet boundary condition did not affect the findings as the investigated models 

are linear. Figure 3.3 shows the spatial pressure 𝑃(𝒓) from the frequency-domain 

solution. A total of six antinodes and five nodes were observed. The antinodes 

predicted highly cavitating regions, while the nodes were interpreted as ‘dead zones’ 

(Tudela et al., 2014; Tangsopa and Thongsri, 2019). Since the solution was inherently 

time-harmonic, it was useful to analyse the results using the absolute acoustic 

pressure |𝑃|(𝒓), as plotted in Figure 3.4. The prediction of nonzero pressure at the 
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nodes was found to be reduced upon refinement of the mesh, which suggested that 

this was the consequence of discretisation resolution.  

 

 

Figure 3.3: Acoustic pressure plot 𝑃 for the 1D frequency-domain simulation. 

 

 

Figure 3.4: Absolute acoustic pressure plot |𝑃| for the 1D frequency-domain result. 

 

The results of the time-domain solution are shown in Figure 3.5. Figure 3.5 (a) and 

Figure 3.5 (b) show the initial waveform propagating to the right, before fully 

reflecting at the sound-hard boundary in Figure 3.5 (c). Figure 3.5 (d) shows the start 

of standing wave formation (𝑡 = 3E-4 s) as the two opposing waves superimposed. 
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Figure 3.6 shows the oscillating behaviour of the transient standing wave, which was 

comparable to the frequency-domain result in Figure 3.4. Interestingly, there was a 

notable difference in terms of pressure magnitude prediction. This is obvious in Figure 

3.6 (d), where the first antinode on the left reached a pressure magnitude of -2.5 bar, 

which was 0.5 bar lower than the frequency-domain solution in Figure 3.3.  

 

 

Figure 3.5: Evolution of the 1D time-domain acoustic pressure. 

 

 

Figure 3.6: Depiction of the half-cycle of the transient standing wave; note that pressures at 

the antinodes oscillate as the waveform evolved from (a) to (d). 
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3.1.2.2 2D Asymmetric Simulation Results 

The results of a 2D asymmetric simulation for both the time- and frequency-domain 

models were compared with the experimental observations of Klíma et al. (2007). The 

original study only considered the frequency-domain result, and it was hypothesised 

that the time-domain simulation would also produce similar results. Figure 3.7 

compares the frequency-domain solution reported in the original study (Klíma et al., 

2007), as well as the frequency- and time-domain solutions obtained in this 

investigation. In terms of antinode predictions, both the time- and frequency-domain 

results showed good agreement with empirical observations. The two antinodal 

bubble structures in Figure 3.7 (a) correspond to the antinodal locations predicted by 

both solutions. On the other hand, the comparison for the acoustic pressure 

prediction results was not straightforward. Similar to the 1D investigation in the 

previous section, the time-domain result once again predicted differences in terms of 

acoustic pressure magnitude compared to frequency-domain results. This is clear in 

Figure 3.7 (c), where the magnitudes predicted at the antinodal regions are lower 

compared to the frequency-domain results.  
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Figure 3.7: Comparison between the: (a) validation result of Klíma et al. (2007); (b) frequency-

domain simulation results; (c) time-domain simulation result. The colour scale is normalised, 

based on the original work. 

 

3.1.2.3 Discussing the Difference in Acoustic Pressure Predictions  

Initial postulations suggested that the differences in pressure magnitudes predicted 

in the two simulations were caused by numerical errors based on the loss of sinusoidal 

behaviour in Figure 3.5 and Figure 3.6. A clearer example is shown in Figure 3.8 (a). It 

was argued that this was the result of numerical dispersion, which often manifests 

itself as a deterioration of the signal shape (Prikšaitis et al., 2015). Numerical errors 

were prominent in time-domain simulations (Chai and Bathe, 2020; Chai and Zhang, 

2020) and can generate numerical artifacts that do not have physical significance. 
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Figure 3.8: Numerical dispersion error in the 1D time-domain results: (a) the loss of sinusoidal 

behaviour; (b) reduced error after mesh refining. 

 

The numerical artifact was found to be reduced by refining the spatial and temporal 

meshes. This is shown using another simulation, T2, which was carried out using a 

spatial mesh that is 4 times finer and a temporal mesh that is 100 times smaller. The 

result for the same time stamp is shown in Figure 3.8 (b), where it can be seen that 

the sinusoidal shape of the reflected wave was better preserved. This is clear evidence 

that the distortion observed in Figure 3.8 (a) was caused by numerical error. This was 

a costly solution as shown in Table 3.1 which compares the resource usage of the 

frequency-domain simulation (F1) and the two time-domain simulations (T1 and T2). 

It is imperative to state that the refined mesh used in T2 was arbitrarily decided. In 

practice, a comprehensive mesh refinement study would yield a more efficient and 

practical refinement. Compared to a full sonoreactor simulation, the values tabulated 

in Table 3.1 were found to be relatively small since only a 1D linear model was 

considered. The increase in resource requirements was calculated to be exponentially 

larger when considering additional space dimensions and more complex nonlinear 

models.  
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Table 3.1: Computational resource requirements for each test simulation.   

Ref. Simulation 

Type 

Degrees of 

Freedom 

Solver Time 

Step (s) 

Memory 

Req. (MB) 

Solution 

Time (s) 

F1 Frequency-

Domain 

101 N / A 810 MB 1 

T1 Time-

Domain 

101 8.33E-7 1540 MB 5 

T2 Time-

Domain 

401 8.33E-9 1720 MB 241 

 

Interestingly, differences in predicted pressure magnitudes persisted after mesh 

refinement. It was hypothesised that the deviation was caused by transient behaviour 

that was not captured in the frequency-domain solutions. Further testing conducted 

by extending the transient simulation yields an interesting result, as shown in Figure 

3.9. Analysis showed that the transient acoustic pressure at a fixed point in space (x = 

40 mm) experienced different magnitudes in time that appeared to be periodic. 

 

 

Figure 3.9: Time evolution of acoustic pressure at x = 40 mm from simulation T2. The phase 

mismatch formed multiple levels of constructive and destructive interference between the 

incident and reflecting waves. 
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Further analysis of the results in Figure 3.9 strongly suggested that it was caused by a 

unique combination of simulation geometry and perfectly reflecting boundary 

conditions. It was postulated that the observation was caused by the mismatch 

between the simulated frequency and the resonance frequency of the geometry. In 

cases where the simulated frequency was resonant, the phase of the reflected wave 

would match the phase of the emitted wave, leading to large accumulation of energy 

at the antinodes. Instead, the simulated frequency was slightly off-resonant, evident 

by the fact that the left boundary in Figure 3.4 was neither a pure node nor an 

antinode. Thus, each time an emitted wave was reflected at the boundaries, it 

experienced a slight phase difference. Referring to Figure 3.9, (i) represents the 

magnitude when the first travelling wave is emitted, while (ii) shows the magnitude of 

the first standing wave. As multiple reflection cycles accumulate with different phases 

within the geometry, the composite pressure magnitude gradually increases, as seen 

in (iii) and (iv). Eventually, after the (v) mode, some phases coincided and destructively 

interfered with each other. The strongest destructive interference is observed at (vi), 

where all phases of the travelling waves were temporarily cancelled out by their 

counterparts. The cycle was then repeated in a periodic manner. Interestingly, this 

behaviour can only be observed in an unattenuated system in a perfectly reflecting 

geometry. This is an interesting finding from an acoustic standpoint. The finding was 

noted to be relevant when analysing solutions of the pure-liquid model which was 

noted to be a popular choice in sonoreactor acoustics [Section 1.2.3.1].  

The pressure profile in Figure 3.9 was also converted into a spectral distribution using 

the fast Fourier transform (FFT) in MATLAB. Using a sampling rate of 200 kHz for a 

sample size of 16384 (the sample was truncated to reduce spectral leakage), the 
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single-sided spectra depicting the amplitudes for each involved harmonic is plotted in 

Figure 3.10. The resolution was coarse as the sampled signal was short. Expectedly, 

the primary harmonic of interest (20 kHz) was dominant, with a spectral magnitude 

that was slightly higher than 2 bar, which slightly deviated from the results of the 

frequency-domain analysis. The result clearly showed the presence of other 

harmonics, which could be linked to the deviation in terms of pressure magnitude 

predictions between the time- and frequency-domain solutions. However, there was 

no confirmation whether these harmonics were of numerical origin or caused by the 

nonlinear interaction between travelling waves.  

 

 

Figure 3.10: Spectral decomposition of time-dependent acoustic pressure at x = 40 mm (T2) 

obtained using FFT. 

 

3.1.2.4 Justifying the Use of Frequency-Domain Solutions 

Frequency-domain models had been known to be much more efficient for sonoreactor 

acoustics. The main benefit of using frequency-domain models is its cost efficiency 

and the lower risk of numerical error. Tangsopa and Thongsri (2021) reported that 

their time-domain model took 16 times longer to solve when simulating the same 
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system. The benefits of using frequency-domain models are further amplified when 

considering systems with high operating frequencies. The use of time-domain models 

becomes increasingly resource intensive upon considering higher operating 

frequencies due to the stricter temporal and spatial meshing requirements. This 

would lead to not only longer solutions times, but also greater memory requirement 

to store the solution. In contrast, frequency-domain solutions would only need to 

consider the effect of frequency on the wavelength for spatial mesh generation. A 

similar discussion can be made when considering working fluids with different physical 

properties. Notably, working fluids with lower phase speeds would also affect the 

solution time and memory requirements of both time- and frequency-domain 

simulations. This is due to the shorter wavelength, which results in a higher mesh 

count per unit length with reference to Eqn. (61).  

Based on the above findings, it was suggested that frequency-domain solutions can be 

a reliable way to characterise the antinodes, but pressure magnitude predictions 

should be treated as an approximation. Exceptions can be made for cases where very 

accurate pressure magnitude prediction is crucial, or when studying acoustic 

phenomena which are highly transient in nature. For example, it was known that 

acoustic phenomena such as shock waves (Seung and Kwak, 2017), nonlinear 

harmonics (Vanhille and Campos-Pozuelo, 2011), and cavitation broadbands 

(Moholkar et al., 2000; Avvaru and Pandit, 2009) cannot be adequately captured by a 

single frequency-domain simulation. 

 



80 
 

3.1.2.5 Interpretation of Frequency-Domain Results 

The interpretation of the frequency-domain results was also discussed. Literature 

review revealed that some studies only analysed acoustic pressure using spatial 

pressure 𝑃 instead of absolute pressure |𝑃| (Sutkar et al., 2010; Wei and Weavers, 

2016; Tonry et al., 2020). It was argued that this could be misleading and that absolute 

pressure plots should be used as they provide a better representation for the acoustic 

behaviour. This is because the frequency-domain solutions can be complex-valued. 

Prior discussions omitted the complex-valued 𝑃 because the imaginary part of a pure 

attenuated standing wave is zero. A complex-valued 𝑃  indicates the presence of 

travelling wave contributions which manifests when attenuation is considered. Figure 

3.11 shows the same 1D simulation model used in Section 3.1.2.1 with an added 

arbitrary attenuation of 5 Np/m throughout the domain. It can be observed in Figure 

3.11 (a) that the waveform loses amplitude while oscillating around zero.  

 

 

Figure 3.11: Simulation results for the 1D system with a specified attenuation of 5 Np/m: (a) 

acoustic pressure, 𝑃; (b) absolute pressure, |𝑃|. 

 

A better representation of the acoustic behaviour can be shown using a plot of |𝑃| in 

Figure 3.11 (b), where the nodal regions near the left of the geometry show 

significantly higher magnitudes above zero. This can be explained if one considers that 
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a pure standing wave is the result of two opposing travelling waves. When both 

travelling waves have equal amplitudes, destructive interference would perfectly 

cancel out any pressure signal at the nodes (e.g., Figure 3.4). This changes in the 

presence of attenuation, since the amplitudes of the travelling waves decrease with 

propagation distance. For Figure 3.11, the left-propagating reflected waves would 

have a lower amplitude than their right-propagating counterpart. This results in 

weaker destructive interferences near the left of the geometry, and a pure standing 

wave is no longer observed. Some authors referred to this observation as a damped 

standing wave (Yasui, 2018). Leighton (1994) suggested that this phenomenon can be 

characterised in terms of its local standing wave component and its travelling wave 

component, where the standing wave contribution can be calculated from the 

magnitude of the local node |𝑃|𝑛𝑜𝑑 and antinode |𝑃|𝑎𝑛𝑡: 

 
𝑆𝑡𝑎𝑛𝑑𝑖𝑛𝑔 𝑊𝑎𝑣𝑒 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =  

|𝑃|𝑎𝑛𝑡 − |𝑃|𝑛𝑜𝑑

|𝑃|𝑎𝑛𝑡 + |𝑃|𝑛𝑜𝑑
× 100% 

(83) 

The numerical result of Figure 3.11 (b) explains the weak standing wave characteristics 

observed in the simulation of certain systems, such as in ultrasonic horns, where the 

attenuation was reported to be strong (Jamshidi et al., 2012; Louisnard, 2012b). It is 

also instructive to demonstrate the effect of boundary conditions on the travelling 

wave contribution. The pure standing wave in Figure 3.3 was caused by the perfectly 

reflecting right boundary. In contrast, Figure 3.12 shows the pressure plots when the 

unattenuated case was simulated using a perfectly non-reflecting right boundary. This 

was achieved using an impedance boundary that was matched to the acoustic 

properties of the medium [Eqn. (77)]. The right boundary essentially acts as an 

unbounded edge through which the acoustic waves can propagate. Naturally, no 
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standing wave formation was observed. This was confirmed in the absolute pressure 

plots in Figure 3.12 (b), where |𝑃|  is spatially constant, which indicates a pure 

travelling wave. Similarly, if one were to analyse this result using a plot of 𝑃, the 

observation would not be obvious. Based on the above discussion, the frequency-

domain solution should primarily be analysed using the absolute pressure |𝑃|(𝒓). 

 

 

Figure 3.12: Simulation results for the 1D system with a non-reflecting right boundary: (a) 

acoustic pressure, 𝑃; (b) absolute pressure, |𝑃|. 
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3.2 Case Study 2: Investigating the Suitability of Boundary Conditions 

The solution of the Helmholtz equations depends on both the boundary conditions 

and the wavenumber (Ginsberg, 2018). While the choice of common boundary 

conditions in sonoreactor acoustics was summarised in literature (Tudela et al., 2014), 

several key uncertainties remained to be addressed. A series of short numerical tests 

were carried out to investigate the suitability of frequency-domain Dirichlet and 

Neumann active boundaries for the representation of vibrating surfaces in a 

sonoreactor. Additionally, the performance of boundary conditions compared to full 

solid-acoustic simulations was also compared and discussed. 

 

3.2.1 Dirichlet vs. Neumann Transducer Boundary Condition for Horns 

The numerical behaviour of Dirichlet and Neumann active boundaries for horn-type 

configurations was investigated using an arbitrary 2D frequency-domain simulation 

model presented in Figure 3.13. The arbitrary rectangular geometry (20 x 10 mm) was 

used to represent a simple sonotrode in a square acoustic domain (100 x 100 mm). 

The mesh for the domain was drastically overtuned to eliminate mesh refinement 

errors. The model was solved using a Dirichlet pressure specification [Eqn.(67)] and a 

Neumann displacement specification [Eqn. (75)] as the active boundary condition, 

respectively. An arbitrary 1 bar was used for the Dirichlet condition, while an 

equivalent normal displacement of 0.266 µm was used for the Neumann condition. 
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Figure 3.13: The mesh model used to study the numerical behaviour of Dirichlet and Neumann 

active boundaries. PML was used to eliminate reflection effects on the results. 

 

The plot of absolute pressure along the investigated boundary is shown in Figure 3.14. 

Since the models did not consider attenuation, the values specified for the active 

boundaries do not impact the result and can be normalised. A stark difference was 

observed between the two specifications. The Dirichlet specification strongly 

constrained the entire 10 mm boundary to a magnitude of 1 bar, while the Neumann 

specification resulted in a curved profile. Figure 3.15 plots the pressure field 𝑃 and the 

absolute pressure field |𝑃| for each case. The 𝑃 plots in (a) and (b) clearly showed that 

both cases exhibited similar propagation behaviour in the non-reflecting domain. 

Another important observation is the difference in the phase of the solution. In Figure 

3.15 (a), the transducer surface is at positive pressure, while the opposite is observed 

in Figure 3.15 (b). This is a consequence of the constraint imposed by the Dirichlet 

boundary. Another difference was observed in Figure 3.15 (c) and (d), where the 

pressure magnitude |𝑃| for the Dirichlet case resulted in a slightly larger region of high 

acoustic pressure.  
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Figure 3.14: Absolute pressure profile of the active boundary: (a) Dirichlet pressure condition; 

(b) Neumann displacement condition. 

 

 

Figure 3.15: Plots of the pressure and absolute pressure solved using Dirichlet (a and c) and 

Neumann (b and d) active boundaries for the horn-type configuration. 

 

The results strongly suggest that there is a distinct difference between the Dirichlet 

and Neumann active boundaries when used to represent a harmonically vibrating 

surface of a sonotrode. In particular, several studies that closely studied the surface 

dynamics of sonotrodes reported observations similar to the curved pressure profile 
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generated by the Neumann boundary condition in Figure 3.14 (b) (Campos-Pozuelo et 

al., 2005; Tian et al., 2018). These findings suggest that the use of a Dirichlet boundary 

specification for a sonotrode surface slightly overpredicts the pressure field.  

The behaviour of Neumann active boundaries was also affected by the width of the 

sonotrode. As the size of the boundary was increased, the numerical behaviour of the 

Neumann boundary condition approached a uniform distribution, similar to the 

Dirichlet specification. This result is shown in Figure 3.16. The test results showed that 

by increasing the dimensions of the sonotrode by one wavelength, the number of 

‘peaks’ predicted by the Neumann boundary condition doubled. Furthermore, the 

results were affected by the quality of the shape function and the mesh, which is 

shown in Figure 3.17. The quality of the Neumann boundary gradually approximated 

a uniform 1 bar specification when the order of the shape functions was increased. 

This sensitivity was not observed for the Dirichlet boundaries, which consistently 

constrained the pressure magnitude to specified values. Currently, there is yet to be a 

satisfactory explanation for the discretisation sensitivity observed for the Neumann 

boundary condition. A hypothesis can be made suggesting that this was caused by the 

mathematical implementations of the discretisation scheme. An in-depth study of this 

matter was left for future work. 
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Figure 3.16: Propagation pattern and absolute pressure profile on the boundary, solved for 

increasing sonotrode width using the Neumann boundary. 

 

 

Figure 3.17: Effect of discretisation order on the Neumann boundary condition. Horizontal 

linear regression lines visualised the average magnitude across the investigated boundary. 

 

3.2.2 Dirichlet vs. Neumann Transducer Boundary Condition for Baths 

Ultrasonic baths generally rely on the vessel walls to transmit mechanical vibrations 

into the fluid, leading to a larger surface. These aspects need to be considered in the 

modelling strategies of this work. The differences between the Dirichlet and Neumann 

active boundary conditions were tested in an arbitrary simulation domain (600 x 600 
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mm). The entire bottom boundary was specified as the active boundary, and the sides 

of the domain were modelled as sound-hard passive walls, while PML was used at the 

opposite boundary. The results in Figure 3.18 show strongly planar waves with 

negligible reflection at the side walls for both boundary conditions. The region at the 

top of the square test geometry (green) with zero acoustic pressure is the PML region. 

Interestingly, the differences between the Dirichlet and Neumann specifications were 

small, with the only notable difference being the phase of the pressure field. The |𝑃| 

plots in Figure 3.18 (c) and (d) are 2D representations of the travelling wave profile 

previously shown in Figure 3.12, which was caused by the use of PML.  

 

 

Figure 3.18: Plots of pressure and absolute pressure solved using the Dirichlet (a and c) and 

Neumann (b and d) active boundaries for the bath-type test case. 

 



89 
 

Figure 3.19 plots the acoustic pressure magnitude across the bottom boundary. As 

expected, the Dirichlet boundary condition was strongly constrained in Figure 3.19 (a). 

The effect of the shape function was again observed for the Neumann boundary 

condition, and is shown in Figure 3.19 (b) and (c). The observations are consistent with 

the findings of the previous sonotrode test in Section 3.2.1.  

 

 

Figure 3.19: Absolute pressure magnitude at for each boundary condition. 

 

3.2.3 Dynamics of a Plate-Transducer Assembly 

It can be argued that the active boundary conditions should only be used if the 

vibration across the entire sonoreactor wall is uniform. Past studies either did not 

comment on this matter (Delacour et al., 2020; Sarac et al., 2020) or opted to fully 
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simulate the solid walls (Wei and Weavers, 2016; Tangsopa and Thongsri, 2019). 

However, the latter was found to be challenging for larger systems or when accurate 

mechanical data is limited. An investigation was conducted to compare the results 

solved for a solid-acoustic system with the simplified representation provided by 

boundary conditions. The modelling of solid vibrations followed the methods reported 

by Louisnard et al. (2009). A simplified plate-transducer system was simulated to 

generate preliminary insights. The model represents a 2 mm thick stainless-steel plate 

with a wall transducer (Sonictron, Malaysia) attached at the centre as shown in Figure 

3.20. The ends of the plate were set as fixed constraints to represent welded edges. A 

normal displacement boundary of 0.1 μm was specified at the surface contacting the 

main piezoelectric stack, while other edges were left as free boundaries. Linear elastic 

constitutive equations were assumed, and the model was solved at 40 kHz.  

 

 

Figure 3.20: Schematics of the plate-transducer system and the boundary conditions. 

 

The displacement of the steel plate is shown in Figure 3.21 (a) with 40000x scale for 

deformation. The left- and right-most boundaries exhibited zero displacement due to 

the fixed constraints. Figure 3.21 (b) clearly showed flexural Lamb wave characteristics. 

The displacement was uniformly distributed across the plate at c.a. 1 µm, except for 

the centre which was 20% greater in magnitude. An acoustic pressure domain of 

length 1000 mm was coupled to the plate surface and solved using a pure-liquid model 
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(water). The result of the solid-acoustic coupled simulation is shown in Figure 3.22 (a). 

For comparison, Figure 3.22 (b) and (c) plot the results when Dirichlet and Neumann 

active boundaries were used to replace the vibrating plate3. The colour contours of 

the plots were normalised to better compare the propagation behaviour and wave 

characteristics. The differences between the modelling strategies are clear. Both 

Figure 3.22 (b) and (c) resulted in strong plane waves, while Figure 3.22 (a) behaves 

like a point source near the vibrating plate and approximates a plane wave with 

increasing distance. 

 

 

Figure 3.21: (a) Total displacement magnitude with deformation magnified 40000x; (b) 1D plot 

of normal displacement magnitude at the top surface. 

 

3 For all intents and purposes, this value specified for the boundary condition can be regarded as 
arbitrary since it is assumed that energy is equally distributed. 
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Figure 3.22: Acoustic pressure 𝑃(𝑟) simulated for three different methods of representing the 

vibrating wall: (a) solid-acoustic simulation; (b) Dirichlet pressure boundary; (c) Neumann 

pressure boundary. 

 

The finding highlights the shortcoming of using boundary conditions. In particular, the 

cone-like propagation due to imbalances in displacement magnitude near the centre 

of the plate was not captured by the boundary conditions. Nevertheless, the result in 

Figure 3.22 considered a very specific plate-transducer configuration. Much of the 

research conducted within this work revolved around an ultrasonic bath with a 

hexagonal geometry. All six faces of the hexagonal sonoreactor used in this work were 

fitted with a transducer array. The investigation was extended to consider the 

suitability of boundary conditions for the hexagonal sonoreactor. The six walls of the 

hexagonal sonoreactor were measured to be exactly 140 mm in length. The 

orientation of the wall transducers was noted to be arranged with two units along the 

length, as shown in Figure 3.23 (a). The previous 2D plate-transducer model was 

modified to represent the wall of the sonoreactor, and the suitability of the Dirichlet 

boundary condition was studied by comparing the solution obtained from a full solid-

acoustic coupling [Figure 3.23 (b)] to the simplified representation [Figure 3.23 (c)].  
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Figure 3.23: (a) Depiction of the transducers fitted for the hexagonal sonoreactor featured in 

this work; (b) Acoustic pressure simulation from full solid acoustics; (c) Acoustic pressure 

simulation using simplified Dirichlet boundary condition.  

 

The comparison between Figure 3.23 (b) and (c) revealed similar characteristics in the 

predicted acoustic pressure field. This finding suggests that the Dirichlet boundary 

condition provides a good approximation of the propagation behaviour in the 

hexagonal sonoreactor, especially at the centre of the geometry. Based on this finding, 

the use of Dirichlet boundary condition to represent the vibrating wall in subsequent 

simulations can be justified.  
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3.2.4 Auxiliary Study: Numerical Effects and Level of Constraint 

A short study was conducted to investigate the numerical behaviour of an edge shared 

by two different boundary conditions. A test geometry of a 2D square (30 mm sides) 

was solved using the pure-liquid Helmholtz model. The bottom boundary was 

partitioned into three 10 mm sections. The middle section was specified as an active 

boundary, with passive boundaries specified at the sides, as shown in Figure 3.24. 

Several permutations of boundary conditions were studied, and the numerical 

outcome was documented. An overtuned mesh was used similar to previous cases.  

 

 

Figure 3.24: Graphical depiction of the simulation geometry for the boundary condition test. 

 

The first combination considered the Wall Boundary as Dirichlet sound-soft conditions 

[Eqn. (79)] and the Transducer Boundary as Dirichlet pressure [Eqn. (67)] or Neumann 

displacement [Eqn. (75)] boundaries. An arbitrary pressure magnitude of 5 Pa was 
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used for the pressure specification. The pressure magnitude profile across the bottom 

boundary is plotted in Figure 3.25. In Figure 3.25 (a) and (b) the Wall Boundaries were 

strictly constrained to zero because of the constraint imposed by the sound-soft 

condition.  The Neumann active boundary yielded a bell-shaped pressure distribution. 

Figure 3.25 (a), showed that the combination of two Dirichlet specifications resulted 

in numerical artifacts, which was hypothesised to be a discretisation error caused by 

numerical discontinuity. To test the claim, both the mesh and shape function were 

refined, and the results are plotted in Figure 3.26. The finer mesh reduced the size of 

the artifact [Figure 3.26 (a)], while the higher-order shape function (quintic) led to 

curve smoothing [Figure 3.26 (a)]. These observations confirmed the above hypothesis.  

 

 

Figure 3.25: Simulation results when (a) Dirichlet and (b) Neumann transducer boundaries are 

paired with the sound-soft wall boundary. 
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Figure 3.26: Methods to reduce discontinuity numerical error using: (a) mesh refinement; (b) 

higher-order shape functions. 

 

A second permutation used sound-hard (Neumann) boundaries for the Wall 

Boundaries. Figure 3.27 (a) and (b) showed the less constrained sound-hard 

boundaries exhibiting nonzero acoustic pressure. Interestingly, the Neumann active 

boundary in Figure 3.27 (b) showed much lower magnitude than 5 Pa. It was 

hypothesised that this was the result of destructive interference by reflected waves. 

This was tested by simulating the test case using PML, eliminating internal reflection. 

The results in Figure 3.28 confirmed the hypothesis, and the peak was noted to be 

approximately 5 Pa. This result showed that the Neumann active boundaries can be 

affected by factors such as wave reflection. 
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Figure 3.27: Simulation results when: (a) Dirichlet; (b) Neumann transducer boundaries are 

paired with the sound-hard wall boundary. 

 

 

Figure 3.28: Results for the non-reflecting case. The Neumann pressure boundary resulted in a 

peak magnitude of nearly 5 Pa. 
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3.3 Concluding Remarks for Chapter 3 

Chapter 3 presented two short case studies to address several uncertainties regarding 

the foundational aspects of sonoreactor acoustics modelling in FEM. The results were 

used to form the foundational aspects of subsequent simulation strategies. 

In Case Study 1, the viability of frequency-domain acoustic solutions was investigated 

in terms of sonoreactor acoustics. In both the 1D and asymmetric 2D cases, frequency-

domain solutions predicted similar antinode locations compared to time-domain 

models. However, slight differences in acoustic pressure magnitude prediction were 

observed. Further investigation confirmed that the differences were not caused by 

numerical error, but were instead the result of idealised simulation conditions. The 

results of Case Study 1 justified the use of frequency-domain models for sonoreactor 

acoustics. However, it was noted that only pure-liquid models were used in the 

comparisons. Future works should consider conducting the comparison using 

attenuated acoustic models and extend investigations to larger geometries in 3D. 

Another limitation of the current study was the lack of pressure magnitude validation. 

This should be addressed in future work using experimental measurements (e.g., 

hydrophone readings). 

Case Study 2 presented a series of short investigations to address the selection of 

acoustic boundary conditions. Results showed that a full solid-acoustic coupling can 

result in significantly different solutions compared to the use of active boundary 

conditions. For the hexagonal sonoreactor used in this work, test cases had shown 

that the Dirichlet pressure boundary condition can be used to simplify the vibrating 

walls, and its effect on the solution is small if the region of interest was kept near the 
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centre of the geometry. The investigations also showed that the degree of constraint 

is a major consideration in the selection of boundary conditions. Dirichlet boundaries 

were able to strongly enforce specified conditions at the expense of limiting the 

solution space. On the contrary, the Neumann boundaries were found to be less 

constrained. Interestingly, test cases also showed that results solved using the 

Neumann active boundary exhibit inconsistent predictions based on the length of the 

geometry and discretisation parameters. The reason for this remains unclear and was 

left for future work. 
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Chapter 4: Validation of Acoustic Pressure Models  

This chapter addresses the main research question by evaluating the performance of 

acoustic pressure models. Case Study 3 served as a pressure validation study for the 

pure-liquid and linear CP model in a bath-type sonoreactor. Case Study 4 investigated 

the effect of the geometry-wavelength ratio on qualitative antinode validation results. 

Lastly, an antinode validation study was conducted in Case Study 5 for the pure-liquid, 

linear CP and NH models using SCL images for a hexagonal bath-type sonoreactor. 

 

4.1 Case Study 3: Pressure Magnitude Prediction in Large Sonoreactors 

This case study evaluated the performance of acoustic pressure models for predicting 

the pressure magnitude in large ultrasonic baths. The results of the pure-liquid and 

linear CP models were compared with hydrophone measurements for a 252 L 

ultrasonic bath reported by Son et al. (2009). Due to difficulties in numerical 

convergence, only preliminary tests were done for the nonlinear CP and NH models.  

 

4.1.1 Methodology 

4.1.1.1 Acoustic Pressure Models 

The pure-liquid model [Eqn. (12)] and the monodisperse linear CP model [Eqn. (23)] 

were used. The CP model was solved using an assumed equilibrium bubble radius of 

𝑅0 = 5 µm, based on past studies (Dogan and Popov, 2016; Louisnard, 2017). Three 

magnitudes of bubble density 𝑛 of 1 × 1010, 1 × 1011, and 1 × 1012 m-3 were investigated 

to study their effects on the prediction of acoustic pressure. The range of investigated 

magnitudes also referenced past works (Jamshidi et al., 2012; Trujillo, 2020).  
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4.1.1.2 Description of the Physical System 

The sonoreactor used for this study was modelled after the work of Son et al. (2009). 

Figure 4.1 illustrates the vertical bisection of the model. The system is an acrylic tank 

with dimensions of 1.2 m x 0.6 m x 0.4 m, fitted with a transducer array module (0.2 

m x 0.2 m x 0.07 m). The inner walls were layered with polyurethane acoustic 

absorbents. During the experiment, a water level of 350 mm was maintained. With 

this information, a 3D representation shown in Figure 4.1 was constructed to serve as 

a reference for the simulation domain.  

 

 

Figure 4.1: Bisection of the model for the physical system studied by Son et al. (2009). 

 

The physical properties of water were assumed to be at standard values (25°C). The 

effect of temperature on the physical properties of the fluids was assumed to be 

negligible. The main reason lies with the large working volume (and thus heat capacity) 

of the sonoreactor. Properties of air were used to represent the gas content within 

the cavitation bubbles for the bubbly-liquid models. The relevant simulation 

parameters used in this study are summarised in Table 4.1. Based on extensive testing, 
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impedance boundary conditions were used to represent the polyurethane acoustic 

absorbents. The similar acoustic properties between polyurethane and water were 

used to numerically approximate the acoustic absorption. For the transducer pressure 

boundary, a Dirichlet pressure specification was used by taking the hydrophone 

reading 4 cm from the emitting surface. The Dirichlet transducer boundary condition 

differed for each frequency and is summarised in Table 4.2.  

 

Table 4.1: Physical properties (25°C) used in Case Study 3. 

Parameter Value Unit Description 

𝐷𝑔 2.19 × 10-5 m2/s Diffusivity of gas 

𝑐𝑙 1481 m/s Speed of sound in water 

𝑐𝑃𝑈 1520 m/s Speed of sound in polyurethane 

𝛾𝑔 1.41 - Adiabatic index for air 

𝜇𝑙 
 0.001 Pa.s Dynamic viscosity of liquid 

𝑝∞ 101325 Pa Ambient pressure around bubble 

𝑅𝑔𝑎𝑠 8.3145 J/mol.K Gas constant 

𝜌𝑙  997 kg/m3 Density of liquid 

𝜌𝑃𝑈 1050 kg/m3 Density of polyurethane 

𝜎𝑙  0.0725 N/m Surface tension of liquid 

 

Table 4.2: Dirichlet boundary condition magnitudes for each frequency. 

 

Frequency (kHz) 35 72 110 170 

Dirichlet Pressure Magnitude (bar) 2.71 3.87 1.98 0.46 
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4.1.1.3 2D Simulation Set-up 

Preliminary simulations revealed that a full 3D investigation was not possible for the 

studied system, as memory requirements vastly exceeded the limitations of the 

computational set-up. Thus, 2D simulations were used to model the horizontal cross 

section of the sonoreactor. Figure 4.2 shows the simulation domain used in the 2D 

simulations and the corresponding boundary conditions. In terms of mesh 

considerations, default free-triangular meshes were used due to their flexibility and 

the well-optimised mesh generation algorithm. Default quadratic Lagrange shape 

functions were used, and adaptive meshing algorithms were not considered since 

wavenumbers are analytical for the linear models. The maximum mesh size was set to 

satisfy the condition in Eqn. (61). Based on the mesh refinement results, the restriction 

of 10 elements per wavelength was imposed. Figure 4.3 shows an example of the 

simulation mesh generated for the 35 kHz case. 

 

 

Figure 4.2: 2D representation of the simulated system taken as a horizontal cross-section of 

the sonoreactor. 
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Figure 4.3: (a) Example of the triangular element mesh generated for the 35 kHz case; (b) 

Close-up of the mesh matrix. 

 

4.1.2 Results and Discussion 

For this study, it was observed that the RAM requirements for a full 3D simulation 

exceeded machine limits (64 GB) due to the very small mesh size and the large 

simulation geometry. Compared to published works in literature, the system involved 

in this validation study was noted to be the largest sonoreactor to be simulated. The 

largest reported 3D simulation conducted in literature was found to be a 10 L 

ultrasonic bath operating at 28 kHz (Tangsopa and Thongsri, 2019, 2021). In 

comparison, the system considered in this study was found to be approximately 252 L 

with frequencies up to 170 kHz. Even with conservative mesh settings and geometry 

optimisation measures, it was noted that there is insufficient RAM for the generation 

and storage of the meshed 3D model.  
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To represent the simulated system as a 2D model, it was assumed that the acoustic 

behaviour in the sonoreactor can be represented as plane waves. A notable limitation 

of this assumption is the loss of information by omitting a space dimension, notably 

the water-air interface and the floor boundary in Figure 4.1. However, the analyses in 

Figure 4.8 were used to support the plane-wave assumption. The results in Figure 4.8 

showed that the reduced geometric reflection in the simulated geometry resulted in 

strong plane wave characteristics. Thus, it was assumed that a 2D simulation is 

sufficient to characterise the studied system.   

It is imperative to comment on the data reported by Son et al. (2009). A detailed 

description allowed the system to be modelled with minimal uncertainties. The 

sonoreactor geometry also approximated a 1D waveguide; coupled with the use of 

acoustic absorbents, this reduced the effect of internal acoustic reflection. This was 

noted to be important, as it was known to cause uncertainties in hydrophone 

validation studies (Trujillo, 2020). Lastly, they provided comprehensive and uniformly 

spaced pressure readings that allowed a proper evaluation of the attenuation 

mechanisms in the acoustic pressure models.  

 

4.1.2.1 Transducer Boundary Specification 

The transducer module in the study by Son et al. (2009) was reported to consist of 

nine transducers in a square array with a total emitting area of 0.04 m2. The design 

power was reported to be 400 W while the experiments were carried out at 240 W. 

Initially, the transducer boundary condition was specified from the reported input 

power (240 W) using the acoustic intensity relation (Tiong et al., 2019): 
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𝑃𝑇𝑟 = √
2𝜌𝑙𝑐𝑙𝑂𝑀

𝐴𝑡𝑟
 

(84) 

The parameter 𝑂𝑀 represents the power input and 𝐴𝑡𝑟 is the total surface area of the 

pressure-emitting surface; both values were reported in the original study. The value 

of 𝑃𝑇𝑟  was specified as the Dirichlet pressure boundary condition. However, a 

significant deviation from the experimental data was observed when following this 

approach. The method resulted in a pressure magnitude profile that was markedly 

lower than hydrophone measurements, even for the unattenuated pure-liquid model. 

This result showed that the boundary specification was inaccurate. The outcome was 

found to be plausible since the effects of resonance on the transducers, as well as 

mechanical and mismatch losses, were not considered in Eqn. (84). Therefore, it was 

decided that the Dirichlet boundary should instead be specified as the pressure 

magnitude that was measured 4 cm from the transducer surface. This required the 

assumption that the difference between the two is negligible. Figure 4.4 compares the 

1D pressure field profile projected along the bisecting line for the 35 and 72 kHz cases 

solved using the pure-liquid model. The difference between the first approach (dashed 

line) and the second approach (solid line) was found to be obvious. The latter 

approach was chosen to circumvent any errors related to energy transfer between the 

transducer and the working fluid.  
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Figure 4.4: Comparison between power input calculation and hydrophone measurements for: 

(a) 35 kHz; (b) 72 kHz. 

 

4.1.2.2 Mesh and Resource Requirements 

Table 4.3 summarises the 2D meshes used for the four simulated frequencies. Mesh 

restrictions were specified based on acoustic properties of a pure liquid. For the same 

geometry, increasing the frequency by a factor of 𝑥 was found to roughly increase the 

elements by a factor of 𝑥2  in 2D and by 𝑥3  in 3D. Considering that sonochemical 

research can reach frequencies up to 1 MHz (Leighton, 1994), this outlined a potential 

problem concerning mesh generation for high-frequency ultrasonic baths.  
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Table 4.4 compiles the time and memory requirements for several simulated cases. As 

expected, resource requirements increased with frequency as a result of finer meshes. 

It was also noted that the mesh generation algorithm was more resource intensive 

compared to the solvers for high-frequency cases (110 and 170 kHz). 

 

Table 4.3: Summary of mesh information for four studied frequencies (pure-liquid simulations). 

Frequency 
(kHz) 

𝑺𝒎𝒆𝒔𝒉, [𝑵𝒎𝒆𝒔𝒉 = 10] 
(mm) 

Num.  
of Elements 

Min. Element 
Quality 

35 4.23 100094 0.6127 

72 2.06 450996 0.5773 

110 1.35 1078087 0.5608 

170 0.87 2643031 0.5454 

 

 

Table 4.4: Solution times and memory requirements for simulated cases. 

Model 
Frequency 

(kHz) Solution Time (s) Physical Memory (GB) 

Pure-Liquid 

Model 

35 3 1.35 

72 15 3.31 

110 38 6.58 

170 106 [1m 46s] 14.31 

CP Model 

(𝒏 = 1 × 1010) 

35 3 1.49 

72 16 3.59 

110 41 6.8 

170 113 [1m 53s] 15.57 
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Figure 4.5 and Figure 4.6 show the results of mesh refinement for four bubble 

densities at 35 kHz (the pure liquid case has a bubble density of zero). The same study 

was repeated for all frequencies and yielded similar observations. The relative error 

converged around six elements per wavelength, coinciding with software 

recommendations that suggested a range of 6 – 10 for linear acoustics (COMSOL AB, 

2018). For this study, 10 elements were used per wavelength. The linear CP model 

required a new mesh for each magnitude of bubble density because of a change in the 

effective phase speed 𝑐𝑒𝑓𝑓. The meshing process was simple since the effective phase 

speed can be determined before the model was solved. 

 

 

Figure 4.5: Mesh refinement results for the pure-liquid and linear CP model (35 kHz). 

 

 

Figure 4.6: Maximum mesh sizes against the number of elements per wavelength (35 kHz). 
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4.1.2.3 Acoustic Pressure Field Results 

The simulated pressure fields were analysed to investigate the behaviour of wave 

propagation and the distribution of acoustic magnitude. The former was evaluated 

using pressure plots 𝑃(𝒓), and the latter was evaluated using the pressure magnitude 

|𝑃(𝒓)|. Figure 4.7 shows the absolute pressure fields solved from the pure-liquid 

model for the four studied frequencies.  

 

 

Figure 4.7: Absolute pressure for the four frequencies solved using the pure-liquid model. 

 

Across all frequencies, a narrow, high-pressure region was observed along the centre 

of sonoreactor. Side-wall reflection was found to be weakly noticable, especially for 

the two lower frequencies of 35 and 72 kHz. The short wavelengths relative to the 

geometry and the inhibition of standing waves by the impedance boundaries resulted 

in the lack of distinct standing wave formation. To further analyse the behaviour of 

the simulated wave, Figure 4.8 shows the plot of 𝑃(𝒓) and |𝑃(𝒓)| for the 35 kHz case 

of the pure-liquid model. In Figure 4.8 (a), the propagation of the wave in the 

geometry was found to behave like a point source near the transducer and 

approximate a plane wave near the middle of the geometry. Figure 4.8 (b) shows that 

reflections near the side walls are discernible but not significant.  
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Figure 4.8: Pure-liquid model 35 kHz solution: (a) Acoustic pressure; (b) Pressure magnitude. 

 

For comparison, the solutions obtained using idealised and perfectly reflecting wall 

boundaries are shown in Figure 4.9. Figure 4.9 shows the plot of 𝑃(𝑟) and |𝑃(𝑟)| of 

the 35 kHz case, when the boundary conditions at the walls were replaced with the 

sound-hard and sound-soft boundary conditions, respectively. As expected, the 

sound-hard walls resulted in a drastic overprediction of the acoustic pressure 

magnitude (25 bar) in addition to exaggerated internal reflections, forming a highly 

geometric pressure field pattern. 

 

 

Figure 4.9: 35 kHz simulation using fully sound-hard and fully sound-soft boundary conditions: 

(a and c) acoustic pressure plot; (b and d) acoustic pressure magnitude plot. 
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Figure 4.9 highlighted potential errors when combining the unattenuated model with 

fully reflecting boundaries, which essentially resulted in waves that reflect internally 

without energy loss. Nonetheless, the sound-hard simulation was useful for visualising 

propagation patterns, depicted by the pink arrow in Figure 4.9 (a). This can be useful 

when analysing reflection effects. The reflection behaviour of the sound-soft walls was 

markedly different, despite also being a perfectly reflecting boundary. Surprisingly, 

the result solved using the sound-soft boundaries yielded a pressure field pattern 

similar to those in Figure 4.8. The sound-soft results also predicted higher maximum 

pressure compared to the impedance boundaries, albeit much less drastic than in the 

sound-hard case. Current observations suggest that this was caused by standing wave 

formation, as infered from the more distinct antinode bands. 

For the case of the linear CP model, Figure 4.10 shows the absolute acoustic pressure 

fields |𝑃(𝑟)| for each frequency and bubble density. Several interesting observations 

were found. As expected, pressure magnitudes became increasingly attenuated with 

increasing bubble density. Attenuation also increased with frequency because bubbly 

liquids are dispersive mediums. However, the pressure fields of Figure 4.10 (b), (c), 

and (e) showed rather unexpected results. The simulations showed unrealistic 

pressure peaks, particularly in Figure 4.10(b) where the peak pressure magnitude is 

almost 30 bar. The prediction of such a large pressure magnitude was noted to be an 

interesting finding, since the linear CP model was expected to yield lower pressure 

magnitudes than those of the pure-liquid model, because of the consideration of 

bubbly-liquid attenuation. It was hypothesised that this was caused by the interaction 

between the effective phase speed, the geometry, and the wall reflections. To confirm 

the hypothesis, several tests were performed and discussed in the following section. 
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Figure 4.10: Compilation of the acoustic pressure magnitude plots |𝑃| for the linear CP model. 

 

4.1.2.4 Effect of Reflection on Acoustic Pressure Prediction 

The abnormal results in Figure 4.10 suggested that wave reflection may have been 

incorrectly modelled. This brought the suitability of the boundary conditions into 

consideration. The impedance boundary condition was used to model the acoustic 

absorbents because it was able to account for weak reflection effects. In classical 

acoustics, the energy transmission of an incident wave at an interface between two 

acoustic mediums can be described using the reflection coefficient 𝑅𝑎𝑐  calculated 

from the specific acoustic impedance 𝑍 (Ginsberg, 2018): 

 

𝑅𝑎𝑐 = (
𝑍2−𝑍1

𝑍2+𝑍1
)

2

= (
𝜌2𝑐2−𝜌1𝑐1

𝜌2𝑐2+𝜌1𝑐1
)

2

  

(85) 
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For a pure liquid, the reflection coefficient calculated from the properties listed in 

Table 4.1 yielded 𝑅𝑎𝑐 = 0.15, which suggests a weakly-reflecting boundary. However, 

an important caveat of using the impedance representation is that changes in the 

acoustic properties of the working fluid would change the reflection coefficient. Since 

the linear CP model is analytical, the effective phase speed for bubbly liquids modelled 

using different bubble densities was directly tabulated in Table 4.5. With reference to 

the predicted 𝑐𝑒𝑓𝑓, it can be shown that the effective phase speeds decreased with 

increasing bubble densities and frequencies. This would increase the reflection 

coefficient calculated from Eqn. (85), which was noted to be a plausible explanation 

for the increased reflection behaviour observed in Figure 4.10 (b) and (e).  

 

Table 4.5: Bubbly-liquid phase speed and attenuation compared with calculated attenuation 

values of Son. et al. (2009).  

𝑛 
(m-3) 

 
35 kHz 72 kHz 110 kHz 170 kHz 

𝑐𝑒𝑓𝑓 

(m/s) 
𝛼 

(Np/m) 

𝑐𝑒𝑓𝑓 

(m/s) 
𝛼 

(Np/m) 

𝑐𝑒𝑓𝑓 

(m/s) 
𝛼 

(Np/m) 

𝑐𝑒𝑓𝑓 

(m/s) 
𝛼 

(Np/m) 

1× 

1010  
1434.5 0.25 1434.1 1.12 1433.5 2.86 1432.1 8.86 

1× 

1011 
1149.6 2.02 1147.2 8.97 1142.7 22.84 1129.7 70.24 

1× 

1012 
537.1 9.46 533.7 41.84 527.56 106.00 507.9 321.79 

Son et 

al.  
- 0.10 - 0.18 - 0.23 - - 
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Results also showed that the maximum pressure predicted by the case with 𝑛 = 1 × 

1011 m-3 in Figure 4.10 (e) was higher than the case with 𝑛 = 1 × 1010 m-3 in Figure 4.10 

(a). The result contradicted expectations as higher bubble densities would yield 

greater attenuation and thus lower pressure magnitudes. It was suggested that the 

increase in pressure magnitude due to magnified reflection effects was more 

dominant than the increased attenuation in Figure 4.10 (e). This would mean that the 

effect of impedance mismatch may also be present in other cases; however, due to 

the much larger attenuation, the acoustic wave lost most of its energy before wall 

reflection and constructive interference effects can become significant. 

The effect of bubble density on effective density was also considered. Theoretical 

estimates suggested insignificant differences since the bubble fractions were low. The 

effective medium density can be approximated from mixture laws assuming that the 

bubble distribution is uniform (Wijngaarden, 1972): 

 
𝜌𝑒𝑓𝑓 = 𝜌𝑙(1 − 𝛽) + 𝜌𝑔𝛽  

(86) 

Table 4.6 plots the change in bubble density for the investigated cases. It is shown that 

bubbly-liquid density was virtually unchanged for all cases. 

 

Table 4.6: Effective bubbly-liquid density for each bubble density. 

𝒏 (1/m3) 
Bubble vol. fraction, 

𝜷 (m3/m3) 

Effective liq. Density, 
𝝆𝒆𝒇𝒇 (kg/m3) 

𝝆𝒍−𝝆𝒆𝒇𝒇

𝝆𝒍
× 𝟏𝟎𝟎 (%) 

1 × 1010 4.191 × 10-8 9.971 × 102 4.181 × 10-6 

1 × 1011 4.191 × 10-7 9.971 × 102 4.181 × 10-5 

1 × 1012 4.191 × 10-6 9.971 × 102 4.181 × 10-4 
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To confirm that the deviation in Figure 4.10 was a consequence of wall reflection and 

not caused by the acoustic pressure model, additional simulations were solved for the 

72 kHz, 𝑛  = 1 × 1010 m-3 case [Figure 4.10(b)]. In one simulation, the impedance 

boundary conditions were specified to match the acoustic properties of the medium 

calculated in Table 4.5 and Table 4.6. Theoretically, this would yield no reflection with 

𝑅𝑎𝑐 = 0% [Eqn. (85)], and minimise the impedance mismatch to eliminate reflection 

problems. The result of this simulation is shown in Figure 4.11. Interestingly, it was 

observed that even with a perfectly matched impedance, the simulation still predicted 

an unrealistic maximum acoustic magnitude prediction of 16 bar. Scrutiny of the high-

magnitude regions in Figure 4.11 (c) revealed that the highest pressures were found 

near the opposing wall. This result suggested that there is a local standing wave caused 

by wave reflections. Furthermore, the conical shape of the high-pressure region and 

the distinct wall reflection identified in Figure 4.11 (c) strongly showed that perfectly 

tuning the impedance did not result in fully eliminating the reflection effects.  

 

 

Figure 4.11: 72 kHz CP model with n = 1 × 1010 m-3: (a) Absolute acoustic pressure; (b) Acoustic 

pressure; (c) Regions above the pressure magnitude threshold. 
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This finding suggested that Eqn. (85) is not an accurate measure for reflecting walls in 

the numerical solution. Findings in literature confirmed this claim, as the problem of 

acoustic scattering in unbounded (non-reflecting) domains remains one of the largest 

challenges in numerical wave modelling in the past few decades (Thompson, 2006). It 

was found that the use of impedance matching in numerical models is not an effective 

strategy to eliminate boundary reflection effects in 2D problems (Johnson, 2010). This 

explains the results observed in Figure 4.11.  

This study also considered PML to model idealised non-reflecting behaviour at the 

absorbent boundaries. The PML region was specified as a 10 cm thick layer on the 

inner surface of the reactor walls to represent perfect acoustic absorbents. The 

modified simulation domain and the resulting mesh are shown in Figure 4.12. The PML 

mesh was set at 10 layers as shown in Figure 4.12 (b). Default PML settings were found 

to be sufficient based on the software manual for frequency-domain solutions 

(COMSOL AB, 2018). The polynomial coordinate stretching method was selected and 

the PML scaling factor and curvature parameter were set to 10 and 1 respectively.  

 

 

Figure 4.12: (a) Simulation geometry for the PML case; (b) Mesh generation for PML. 
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Figure 4.12 shows the results of simulating the 72 kHz, 𝑛 = 1 × 1010 m-3 CP model using 

PML. The resulting pressure field was markedly different from the previous 

approaches. The PML completely eliminated the problem of unrealistic pressure 

magnitudes and managed to produce a propagation pattern comparable to that of a 

point source in an infinitely far field, as shown in Figure 4.12 (b). The unrealistic 

pressure magnitude from previous predictions was not observed. This strongly proves 

that previous deviations were caused by reflection phenomena. Scrutiny on Figure 

4.13(b) revealed that only the rigid back wall shows slight reflection.  

 

 

Figure 4.13: 72 kHz CP model with n = 1 × 1010 m-3 simulated using perfectly matched layers 

(PML): (a) Acoustic pressure magnitude plot; (b) Acoustic pressure plot. 

 

Figure 4.14 compares the axial acoustic pressure magnitude profile bisecting the 

geometry for the PU-impedance case, the impedance matching case (tuned 
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impedance), and the PML case with the empirical measurements. The circled region 

denotes the artificial attenuation of the PML region. Although it can be argued that 

the PML case best agreed with empirical measurements, it should be noted that the 

y-axis was skewed by the unrealistic values predicted by the other two cases. An 

interesting observation was noted when analysing the pressure profiles predicted by 

the PU-impedance case and the tuned impedance case in Figure 4.14. Both profiles 

were noted to be similar, but with an increasing deviation with distance travelled. This 

result showed that the effects of boundary reflection ‘accumulate’ along the geometry 

with increasing distance from the transducer. This can be used to explain the 

observation presented in Figure 4.11 (c), which showed that the highest pressure 

regions were found near the end of the geometry. With reference to Figure 4.14, the 

tuned-impedance case exhibited a lower reflection coefficient than the PU-impedance 

case, which led to a lower accumulation of reflection effects along the geometry.  

 

 

Figure 4.14: Comparison of acoustic pressure magnitude profiles for three boundary conditions 

against hydrophone measurements, solved for CP, n = 1 × 1010 m-3. 
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It was noted that the strong reflection effects were mainly observed in the 72 kHz, 𝑛 

= 1 × 1010 m-3 case. Nevertheless, the above observations revealed a key consideration 

for the modelling strategy. If the acoustic absorbents implemented in the physical 

system of Son et al. (2009) were perfect, then PML can be a viable approach. However, 

hydrophone measurement results showed otherwise, and that conditions enforced by 

the PML were too ideal to approximate the real system. When applied to other 

simulation cases, it was noted that the PML approach clearly underestimated the 

pressure profiles. Figure 4.15 shows an example for the 35 kHz pure-liquid case. Even 

with no explicit attenuation, the magnitude calculated by the pure-liquid model was 

found to be significantly lower than the empirical data. This finding strongly suggests 

that there is still a significant degree of reflection in the physical experiments, even 

with the use of acoustic absorbents. Thus, wall reflections should not be completely 

neglected in the simulations. 

 

 

Figure 4.15: The results of the 35 kHz pure-liquid case simulated using PML to represent the 

absorbent boundaries against hydrophone measurements. 
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The comprehensive discussion on absorbent boundaries highlighted an important 

limitation for this investigation and possibly other validation studies. This limitation 

was caused by the inability to perfectly model the reflection effects in the simulation. 

Interestingly, similar studies in the past only briefly considered the issue of boundary 

reflections on the accuracy of pressure verification (Louisnard, 2012a; Trujillo, 2020). 

It was speculated that the uncertainties caused by reflection behaviour were less 

obvious in smaller geometries. It can be argued that the issue of reflection becomes 

significantly important at large scales due to the interaction between model geometry 

and standing wave behaviour. This topic shall be discussed in-depth in Case Study 4.  

Extensive investigation of the various methods of modelling the absorbent boundaries 

in the simulations showed that the PU-impedance approach can cause a slight 

overprediction for certain cases, whereas PML vastly underestimated wall reflections. 

For subsequent acoustic pressure verification in this case study, the simulations were 

solved using the PU-impedance approach outlined in the methodology in Section 

4.1.1.3. It was acknowledged that this introduces a degree of uncertainty into the 

pressure verification results. However, the approach was found to be the best 

compromise between perfectly reflecting boundaries and PML. In light of the 

limitations discussed, it should be noted that the validation results are strictly 

qualitative, but extremely valuable for an understudied area of sonoreactor acoustics.  
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4.1.2.5 Pressure Magnitude Validation for Linear Models 

The measurements of Son et al. (2009) were reported in terms of pressure intensity 

𝐼𝑎𝑐  (W/m2) to study cavitation activity. In this study, the measurements were 

converted into acoustic pressure magnitudes using Eqn. (87). 

 
𝐼𝑎𝑐 =

|𝑃|2

2𝜌𝑙𝑐𝑙
 

(87) 

Since the acoustic pressure models are linear, the use of the Dirichlet pressure 

boundary at the transducer normalised any errors introduced by hydrophone 

dimensions. Son et al. (2009) noted that the size of the probe exceeded the studied 

wavelengths, which led to measurements being taken as spatial averages. This effect 

was artificially introduced into the simulation results by plotting the simulated 

pressure profiles as a rolling average based on the diameter of the probe.  

Analysis of pressure field validation results can be separated into low-frequency cases 

(35 and 72 kHz) and high-frequency cases (110 and 170 kHz). The data of Son et al. 

(2009) showed very little attenuation for the low-frequency cases, while the high-

frequency cases showed obvious propagation losses. Figure 4.16 plots the simulation 

results of the 35 kHz system, where the pure-liquid model and the 𝑛 = 1 × 1010 m-3 CP 

simulation predicted pressure magnitudes that compared well with the empirical data. 

The results were found to be interesting for two reasons. First, the results of the pure-

liquid model exhibited remarkable agreement with the empirical measurements. It 

showed the best agreement of all 35 kHz cases, with an averaged relative error of 11 % 

from the hydrophone measurements. This was found to be surprising, as the general 

consensus in recent research suggests that the pure-liquid model is unsuitable for 
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sonoreactor analysis, as it was noted to overpredict the pressure magnitude (Jamshidi 

et al., 2012; Louisnard, 2012a; Sarac et al., 2020).  

This unexpected performance of the pure-liquid model can easily be explained. The 

low bubbly-liquid attenuations reported by Son et al. (2009) suggest that the physical 

system approximated pure-liquid behaviour. Past studies often analysed the pure-

liquid model in conjunction with idealised boundaries (Tudela et al., 2014), which led 

to unrealistic pressure magnitudes, as in Figure 4.9. In this study, the weakly reflecting 

impedance boundary circumvented the infinitely reflecting behaviour. Essentially, the 

good agreement of the pure-liquid model can be attributed to the low bubble 

attenuation in the studied system, and the minimised reflection behaviour at the wall 

boundaries. This main implication of this finding is that the viability of the pure-liquid 

model could be reconsidered. Given the correct conditions (low frequency, low bubble 

fraction and minimal reflection behaviour), the model can be a viable alternative for 

a quick and simple analysis.  

 

 

Figure 4.16: Absolute pressure comparison for the 35 kHz case against hydrophone 

measurements.  
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Figure 4.16 also shows that the linear CP model with 𝑛 = 1 × 1010 m-3 predicted on 

average a higher acoustic pressure magnitude over the pure-liquid model. This was 

unexpected considering that the attenuation of the linear CP model was higher. The 

results in Section 4.1.2.4 suggest that this was caused by increased reflection effects 

from impedance mismatch. Despite the slight deviation, the linear CP model managed 

to provide a relatively good approximation for hydrophone measurements at 𝑛 = 1 × 

1010 m-3, with an averaged relative error of 19 %. On the other hand, the cases of 𝑛 = 

1 × 1011 and 1 × 1012 m-3 overestimated the attenuation, resulting in averaged relative 

error values of 38 and 90 %, respectively.   

Part of the results for the 72 kHz system was discussed in the previous section. In 

particular, the unphysical overprediction in the simulation using the CP model at 𝑛 = 

1 × 1010 m-3 resulted in a large averaged relative error of 281 %. Figure 4.17 compares 

the pressure profile for all simulated cases. Observations were found to be similar to 

35 kHz simulations, where the pure-liquid model showed good agreement with 

hydrophone data at around 30 % averaged relative error, while the CP models show 

significant deviation due to wall reflection. Once again, the values of 𝑛 = 1 × 1011 m-3 

and 𝑛  = 1 × 1012 m-3 overpredicted the attenuation behaviour of the system and 

resulted in a significant deviation from the hydrophone measurements (89 and 98 % 

relative error, respectively). It was noted that the pure-liquid model exhibited a 

markedly larger overprediction compared to the 35 kHz case. This trend was found to 

continue with increasing frequency, since the lack of attenuation in the pure-liquid 

approach would not be able to account for the dispersive nature of the system. 
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Figure 4.17: Absolute pressure comparison for the 72 kHz case against hydrophone 

measurements. 

 

In the 110 and 170 kHz cases shown in Figure 4.18 and Figure 4.19, hydrophone 

measurements indicated clear attenuation behaviour. Thus, it was not surprising that 

the pure-liquid model overpredicted the pressure profile due to the lack of 

attenuation. In general, attenuation varies linearly to the square of frequency (Fox and 

Rock, 1941) and becomes more significant at higher frequencies. The results yielded 

326 % and 96 % averaged relative error values for 110 and 170 kHz, respectively. For 

110 kHz, the CP, 𝑛 = 1 × 1010 m-3 case showed remarkable agreement in the first half 

of the geometry, while a severe deviation was observed in the second half. If only the 

first half of the geometry was considered, simulations managed to yield very good 

agreement with an averaged relative error of 8 %; however, the large deviations at 

the end of the geometry caused the error to increase to 126 %. This was likely caused 

by uncertainties related to internal reflection. This claim is supported by the 

propagation pattern shown in Figure 4.9 and Figure 4.11, which showed that reflection 

effects tend to concentrate at the end of the geometry. 
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The cases for 𝑛 = 1 × 1011 m-3 and 𝑛 = 1 × 1012 m-3 underpredicted of the pressure 

magnitude (avg. relative error of 96 and 99 %, respectively). For the 170 kHz case, the 

pure-liquid model markedly overpredicted the pressure profile with an averaged 

relative error of 96 %. The three bubble densities studied for the linear CP model also 

performed poorly with averaged relative errors of 84, 88 and 100 %, respectively.  

 

 

Figure 4.18: Absolute pressure comparison for the 110 kHz case against hydrophone 

measurements. 

 

 

Figure 4.19: Absolute pressure comparison for the 170 kHz case against hydrophone 

measurements. 
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The results of this pressure validation study have shed light on another issue which 

needs to be further addressed. As discussed in Section 4.1.2.4, the effect of both the 

physical boundary in the experiment and the numerical boundary condition heavily 

influenced the quality of the results. The level of acoustic absorption at the walls of 

the sonoreactor was found to strongly affect the energy balance within the working 

fluid. The impact of this can be derived by analysing the standing wave and traveling 

wave contributions in the numerical solutions. The absolute pressure profiles 

obtained for the sonoreactor of Son et al. (2009) can be said to possess a strong 

travelling wave component even for the pure-liquid model. This was evident, based 

on the nodal pressure magnitude which greatly deviated from zero. This was found to 

be unsurprising as the wall boundaries were specified to be highly non-reflecting, 

which resulted in a magnitude imbalance between incident and reflected waves, as 

shown in Section 3.1.2.5 in Case Study 1.  

 

4.1.2.6 The Effect of Bubble Density on the Results of the Linear CP Model 

Hydrophone measurements for the 35 and 72 kHz cases showed low attenuation 

along the sonoreactor. This suggests that the bubbly-liquid attenuation, and 

subsequently the bubble fractions, were relatively low. This also explains the good 

agreement of the pure-liquid model with the hydrophone measurements in the 35 

and 72 kHz cases. Current knowledge suggests that standing wave characteristics can 

affect the bubble field, where Bjerknes forces may cause an accumulation of 

coalescing bubbles near the antinodal regions of a sonoreactor (Mettin et al., 1999; 

Mettin, 2005). The antinode patterns observed from the simulations were found to be 



128 
 

weak. The inhibition of standing wave formation possibly reduced the bubble content 

in the working fluid. Son et al. (2009) commented that the liquid medium was fully 

degassed prior to the experiment, which further strengthened the above reasoning.  

The lack of a proper method to specify the appropriate value of bubble density, 𝑛 

introduced uncertainties into the verification study. This is obvious in the pressure 

validation results predicted by the linear CP model using three arbitrary bubble 

density values. The reason for assuming a range of arbitrary magnitudes for 𝑛 was the 

lack of a reliable method to characterise the bubble field in the studied system. A 

simple method to obtain a more suitable value for 𝑛 is to reference the attenuation 

values measured in the original study of Son et al. (2009). The analytical dispersion 

relation of the linear CP model allowed the corresponding bubble density magnitude 

to be determined for each reported attenuation value, and the results are plotted in 

Table 4.7. The corresponding bubble densities obtained using this method lie around 

a magnitude of 1 × 109 m-3, which is one magnitude lower than the investigated range 

of 1 × 1010 – 1 × 1012 m-3. Given this finding, the simulated acoustic pressure fields 

were also investigated using experimentally tuned bubble density magnitudes. 

 

Table 4.7: Experimentally tuned bubble density magnitude determined from reported 

attenuation values, using the linear CP model with R0 = 5 um. 

Frequency (kHz) 
Son et al. (2008)  

𝜶, (Np/m) 𝒏, (1/m3) 𝒄𝒆𝒇𝒇, (m/s) 

35 0.10 3.89E+09 1462.37 

72 0.18 1.57E+09 1473.34 

110 0.23 7.81E+08 1477.13 

170 N/A - - 
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Figure 4.20 shows the results of the tuned CP model for the three frequencies. Son et 

al. (2009) did not report on an attenuation value for the 170 kHz case, and hence it 

was omitted. The 35 kHz case and the 72 kHz case showed distinct improvements over 

previous results. This is evident in the improved values of averaged relative error of 

11 and 20 %, respectively. However, the tuned bubble density failed to improve the 

predictions for the 110 kHz case, as a vast overprediction of the pressure profile 

remained (260 % rel. error). Despite using a tuned bubble density parameter, there is 

still a significant deviation from the hydrophone measurements for the 110 kHz case. 

This result suggests that a well-approximated value of attenuation is not sufficient to 

fully model the studied sonoreactor. The exact reason for this remains unclear, but it 

was hypothesised that this could be a combination of factors such as acoustic 

reflection effects, geometry and interference patterns, and errors in hydrophone 

measurements. It was suggested that future studies should attempt to isolate these 

potential factors and investigate their effects in a strongly controlled experiment. 

 

 

Figure 4.20: Results of the linear CP model solved with tuned bubble density parameters from 

attenuation measurements, compared against hydrophone measurements. 
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4.1.2.7 Preliminary Investigations Involving Nonlinear Models 

The performance of nonlinear acoustic pressure models was not investigated using a 

full 2D simulation in this study, as attempts revealed that the NH and nonlinear CP 

models were unable to achieve convergence in the large geometry. The reason for the 

numerical instability was found to be unclear; but analysis of the convergence curves 

revealed oscillating behaviour which suggested the lack of a stable solution for the 

nonlinear problem (Fish and Belytschko, 2007). In light of this, it can be argued that a 

2D simulation was unnecessary, as preliminary tests strongly showed that the model 

predictions greatly deviated from the hydrophone measurements.  

The preliminary investigation was carried out using 1D test cases to represent the 

propagation axis along the length of the sonoreactor. The NH model and the nonlinear 

CP model were simulated for the 35 kHz and 72 kHz cases. The methods of setting up 

the NH model followed Trujillo (2020), while the methods of Jamshidi et al. (2012) and 

Fang et al. (2018) were used for the nonlinear CP model. Due to difficulties in 

converging the 35 kHz case using the NH model, even in a 1D model, the relative 

tolerance of the solver was relaxed from 0.001 (0.1% error) to 0.01 (1% error) to obtain 

the solution. The 1D pressure profiles for the NH and nonlinear CP models are 

presented in Figure 4.21. The overprediction of the bubbly-liquid attenuation relative 

to the hydrophone measurements was noted to be obvious for both models. The 

averaged relative errors for the NH model were found to be 71 and 83 % for the 35 

and 72 kHz cases; while the nonlinear CP model yielded values of 83 and 96 %.  
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Figure 4.21: Absolute pressure profiles predicted by the nonlinear CP and NH (1 × 1010 m-3) 

models and the empirical measurements, compared against hydrophone measurements.  

 

Scrutiny of the attenuation values predicted by the nonlinear models revealed that 

they are up to four magnitudes higher than those measured by Son et al. (2009). 

Interestingly, the large attenuation values compared well with those reported in 

literature (Louisnard, 2012a; Jamshidi and Brenner, 2013). This finding was found to 

be interesting, as it challenged the viability of these models in ultrasonic baths. Since 

past works only validated these models in small-scale sonoreactors (Jamshidi et al., 

2012; Louisnard, 2012a; Fang et al., 2018; Delacour et al., 2020; Sarac et al., 2020), 

these current observations offered a new perspective on model performance.  

The principal mechanism of the nonlinear models is the pressure-dependent 

attenuation, which allows the model to predict a higher attenuation at higher local 

pressure magnitudes. Current results suggest that when the model is applied for more 

uniform cavitating systems such as ultrasonic baths, the model overpredicts the 

attenuation due to differences in working fluid / bubble field properties. Model 

development is still in its early stages and based on simplifying assumptions (Dähnke 
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and Keil, 1999; Louisnard, 2010). It should also be considered that they were 

developed mainly for strongly cavitating sonotrode systems (Louisnard, 2012a; 

Jamshidi and Brenner, 2013; Fang et al., 2018; Trujillo, 2018). This can be a plausible 

explanation for the large deviations observed in the 1D test cases, since the 

attenuation observed under ultrasonic horns was reported to be significantly stronger 

(Campos-Pozuelo et al., 2005).  

These findings suggest that there are still large knowledge gaps that need to be 

addressed for nonlinear models. The results of Trujillo (2020) also suggested problems 

of overestimating attenuation for the NH model, as the bubble density required to 

match the pressure profile under an ultrasonic horn was found to be much lower than 

conventional values. To fully characterise the deviations exhibited by the nonlinear 

models would require an in-depth analysis on various factors ranging from the validity 

of model assumptions to the technical implementation of the simulation. The matter 

was deemed outside the scope of this work and shall be left for future work. 
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4.2 Case Study 4: The Effect of Geometry on Antinode Characterisation 

Antinode validation of sonoreactors can be used to provide insights on the phase-

speed reduction caused by bubble fields (Wijngaarden, 1968; Servant et al., 2000). 

Theoretically, this would result in shorter wavelengths and is henceforth referred as 

the ‘wavelength-shortening effect’. This effect was clearly observed in the SCL images 

of Case Study 5. It was noted that similar observations were rarely reported in past 

works, which was suspected to be due to the small geometries used. It was 

hypothesised that sonoreactor geometry significantly affects the ability to detect 

wavelength-shortening in antinode validation results. This hypothesis was tested in 

this case study in two parts. First, the effect of varying phase-speed deviation on the 

antinode predictions of a small-scale simulation was compared against known 

validation results. Next, a theoretical analysis was conducted to consider the 

relationship between the geometry, wavelength, and the detection of wavelength-

shortening. This case study also characterised the minimum geometry-to-wavelength 

ratio, 𝐷𝑆/𝜆, required to show the wavelength-shortening effect in qualitative studies. 

 

4.2.1 Defining the 𝐷𝑆/𝜆 Parameter 

Studies have shown that the reactor geometry and its associated wave reflection 

behaviour can significantly affect the pressure field (Yasui et al., 2007; Rashwan et al., 

2020). In addition, the wavelength governs the characteristics of a standing wave and 

subsequently the location of antinodes within a sonoreactor. For this investigation, a 

new dimensionless ratio, 𝐷𝑆/𝜆, was introduced. The parameter 𝐷𝑆 was defined as the 

effective length of a sonoreactor, which is the distance that a wave has to travel before 
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reflecting and potentially forming a standing wave. In a simple 1D waveguide problem, 

it was set as the distance between an emitting surface and its opposing reflecting 

surface. As a system approaches a 1D waveguide, the dimensionless parameter 𝐷𝑆/𝜆 

would better characterise its standing wave. 

 

4.2.2 Heuristic Approach: Revisiting the Klíma et al. (2007) Validation Study 

It was hypothesised that antinode validation studies carried out in systems with low 

𝐷𝑆/𝜆  values may not fully capture phase speed deviation effects. A numerical 

demonstration was used to show that the antinode prediction of a system with low 

𝐷𝑆/𝜆 would not change significantly even at large phase speed deviations. For this 

case, the validation result of Klíma et al. (2007) was selected for their detailed 

experimental set-up. The study considered a sonotrode-beaker set-up at 20 kHz. The 

effective length measured from the surface of the sonotrode to the floor of the beaker 

was reported to be 0.077 m. The 𝐷𝑆/𝜆 value calculated for the studied system is 1. 

The pure-liquid Helmholtz model was solved for water (𝑐𝑙 = 1500 m/s, 𝜌𝑙  = 998 kg/m3). 

Figure 4.22 (a) shows the validation result of Klíma et al. (2007), where they reported 

that the formation of bubble structures at the antinodes coincided well with the high-

pressure regions predicted in their simulation. To investigate the effect of phase speed 

deviation on the solution, Figure 4.22 (b) – (g) presents the cases solved using arbitrary 

phase speeds with varying degrees of deviation from 𝑐𝑙 = 1500 m/s. Other simulation 

parameters were unchanged. The plots of the solution used a normalised scale to 

highlight the antinode predictions. The results clearly showed that even with phase 

speed / wavelength deviations of up to +20%, Figure 4.22 (g) can be argued to show 
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qualitative agreement with the experimental observation in Figure 4.22 (a). Figure 

4.22 (b) and (c) also compared well with the experimental observations of Klíma et al. 

(2007), as the high-pressure regions coincided with the 3 cavitation clouds highlighted 

by the blue arrows.  

 

 

Figure 4.22: The antinode validation results of Klíma et al. (2007), compared against a series 

of simulation results using arbitrary phase speeds. [Image in (a) is Reprinted from: Ultrasonics 

Sonochemistry 14, Klíma, J., Frias-Ferrer, A., González-García, J., Ludvík, J., Sáez, V., Iniesta, J., 

Optimisation of 20 kHz sonoreactor geometry on the basis of numerical simulation of local 

ultrasonic intensity and qualitative comparison with experimental results. 19–28, Copyright 

(2007), with permission from Elsevier] 

 

The above results led to two key points for discussion. First, it showed that even if 

there is a large reduction in phase speed by bubbly liquids, the effect on antinode 

locations would not be obvious if 𝐷𝑆/𝜆 is small. This finding was found to support the 

main hypothesis of this study, and explained why previous studies did not distinctly 

observe wavelength-shortening effects in smaller systems (Lewis et al., 2007; Hussain 

and Janajreh, 2017; Tangsopa and Thongsri, 2019). To elaborate, antinode validation 

results were mainly evaluated by comparing the antinodal regions in the simulations 
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with experimental visual data (foil maps and SCL). Results mainly considered the 

number and location of antinodes. Unless the number of antinodes in the experiments 

was found to deviate significantly from the simulations (due to changes in wavelength), 

the phase-speed prediction error cannot be clearly detected.  

The second point of discussion relates to the use of antinode measurements to 

validate the performance of acoustic pressure models. A well-posed antinode 

validation result can provide important insights on the combined effects of phase 

speed prediction and reflection behaviour in a sonoreactor. With the growing 

popularity of bubby-liquid models, it can be used to validate the performance of 

modelling strategies. However, the results in Figure 4.22 suggest that antinode 

validation studies conducted with low 𝐷𝑆/𝜆 should not be used to validate the phase 

speed prediction mechanism for bubbly-liquid models. It was clearly shown that the 

validation study of Klíma et al. (2007) compared well with simulations solved with 

clear phase speed deviations. This implies that small 𝐷𝑆/𝜆 antinode validation studies 

cannot adequately characterise prediction errors in the acoustic pressure model, and 

could lead to incorrect conclusions regarding the validity of the phase-speed 

prediction mechanisms of the studied model.  

 

4.2.3 Analysis of the 𝐷𝑆/𝜆 Parameter 

A theoretical analysis was performed to quantitatively analyse the relationship 

between the 𝐷𝑆/𝜆 value and the condition that allows the phase speed deviation to 

be detected in an antinode validation study. For the analysis, the term ‘validation 

point’ was defined. The term ‘validation point’ refers to a region with a high acoustic 
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pressure magnitude relative to its surroundings. In experimental observations, 

validation points refer to visual aspects that represent cavitation zones, such as 

eroded regions in foil mapping and areas of high luminance in SCL. In simulation 

results, validation points refer to the local antinodal regions predicted by the acoustic 

pressure model. In qualitative antinode validation studies, the validation points from 

experimental observations are compared against those predicted by simulation 

results to evaluate the performance of the acoustic model.  

The behaviour of standing waves in relation to the 𝐷𝑆/𝜆  parameter was also 

established. A pure-liquid homogeneous Helmholtz equation with constant phase 

speed [Eqn. (11)] was considered for this analysis. For a 1D geometry, the general 

solution can be written as (Ginsberg, 2018): 

 𝑃(𝑥) = 𝐵1𝑒−𝑖𝑘𝑥 + 𝐵2𝑒𝑖𝑘𝑥 (88) 

The solution depends on the wavenumber 𝑘 (containing phase speed and attenuation 

information) and the arbitrary coefficients 𝐵1  and 𝐵2  (dependent on boundary 

conditions). Thus, the characteristics of a standing wave depend on both the 

wavelength and the boundary conditions.  

To characterise the behaviour of a 1D standing wave at the boundaries, a 1D 

monoharmonic system with an arbitrary effective length 𝐷𝑠  of 20 units was 

considered. A 𝐷𝑆/𝜆 value of 1 was used, which corresponded to a wavelength of 20 

units. The parameter ℎ, defined as the half-wavelength 𝜆/2, governs the separation 

between adjacent nodes and antinodes in a pure standing wave. The potential 

standing wave patterns that could form within the example geometry are illustrated 

using pressure magnitude plots, |𝑃| in Figure 4.23. Since the geometry fits two half-
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wavelengths, the pure standing wave would have a minimum of two antinodes, 

corresponding to two validation points as shown in Figure 4.23 (a). However, this 

would only occur when at least one of the boundaries is a pure node (zero pressure at 

the edge). Instead, most systems tend to exhibit one more validation point, which 

occurs when the boundaries exhibit a nonzero pressure. This was found to change the 

shape of the standing wave, forming 3 validation points in the system. For the example 

geometry, Figure 4.23 (b) shows the case where the left and right boundaries were set 

as pure antinodes. Based on anecdotal observations, it was postulated that systems 

are more likely to exhibit the behaviour in Figure 4.23 (c), where the boundaries are 

neither pure nodes nor pure antinodes. In this case, the number of validation points 

remains to be three. Since the qualitative nature of foil mapping and SCL results makes 

it difficult to know if a validation point is a pure antinode, both cases in Figure 4.23 (b) 

and Figure 4.23 (c) would yield three validation points when analysed. 

 

 

Figure 4.23: Depiction of an ideal standing wave model with constant wavelength, validation 

points numbered in red: (a) Pure node at boundary; (b) Pure antinode at boundary; (c) Neither 

a pure node nor pure antinode at the boundary. 
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From the simple standing wave model above, it was shown that the lowest possible 

number of validation points for a system is 2𝐷𝑆/𝜆 (rounded up). This occurs when a 

node lies on the boundary [Figure 4.23 (a)]. However, heuristics suggest that it is more 

likely for the standing wave to exhibit the behaviours depicted in Figure 4.23 (b) or (c), 

forming (2𝐷𝑆/𝜆 + 1)  validation points. In this study, this behaviour was used to 

predict the number of validation points for a certain wavelength and geometry.  

Assuming that standing waves would result in (2𝐷𝑆/𝜆 + 1)  validation points, the 

phase speed prediction error was related to the 𝐷𝑆/𝜆  parameter. The following 

analysis only considered the wavelength-shortening effect due to the reduction of 

phase speed in bubbly liquids. An obvious indication of a reduction in phase speed is 

the formation of additional validation points in the geometry as a result of the reduced 

half-wavelength. To elaborate, a system which showed more validation points than 

that predicted by a pure-liquid approximation would strongly indicate the presence of 

wavelength-shortening.  

It was hypothesised that systems with large 𝐷𝑆/𝜆 values are more likely to form an 

additional validation point when the wavelength-shortening effect is present. This is 

best explained using the graphical example shown in Figure 4.24. Consider a small 

geometry depicted in Figure 4.24 (a); a small reduction in wavelength would not 

significantly change the qualitative result in terms of the number of validation points, 

despite wavelength-shortening effects. On the contrary, a qualitative study conducted 

using the large geometry of Figure 4.24 (b) would be able to capture the wavelength-

shortening effect in the form of an additional validation point.   
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Figure 4.24: Graphical explanation on the effect of larger effective geometry on the 

detectability of 'wavelength-shortening' in the form of an extra validation point. 

 

Since the relationship between phase speed and wavelength is linear, it is intuitive to 

use the wavelength 𝜆 and the half-wavelength ℎ in the following analysis. It should 

also be noted that the wavelength-shortening effect is referenced from the pure-

liquid phase speed. Consider an unreduced pure-liquid half-wavelength ℎ , and a 

phase-speed/wavelength reduction factor 𝑓𝑒  which has an upper limit at unity. A 

system that experiences a phase-speed reduction by a factor of 𝑓𝑒  would exhibit a 

reduced half-wavelength of ℎ𝑓𝑒. In order for this wavelength deviation to manifest in 

one or more validation points in the geometry, as shown in Figure 4.24 (b), the total 

accumulated error across the geometry must exceed ℎ𝑓𝑒. This condition results in at 

least one additional validation point. Mathematically, this can be written as: 

 𝐷𝑆(1 − 𝑓𝑒) > ℎ𝑓𝑒  (89) 

Writing the relation in terms of wavelength 𝜆 and rearranging the inequality results in: 

 𝐷𝑆

𝜆
> (

𝑓𝑒

2(1 − 𝑓𝑒)
)  

(90) 
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Figure 4.25 plots the relation between the detection threshold for the additional 

validation point, and the corresponding 𝐷𝑆/𝜆 requirement defined in Eqn. (90). Based 

on the defined relation, for a phase speed or wavelength reduction of 20 % (𝑓𝑒 = 0.8) 

to be detected as an extra validation point, 𝐷𝑆/𝜆 should at least be greater than 2. For 

a 20 kHz system, this would require an effective geometry greater than 0.15 m.  

 

 

Figure 4.25: The relation between the 𝐷𝑆/𝜆 parameter and its corresponding threshold to 

successfully capture wavelength-shortening effects in the form of a validation point. 

 

For a more intuitive explanation, Figure 4.25 suggests that if the 𝐷𝑆/𝜆 of the studied 

system is 2, a phase speed deviation of < 20% would result in the same number of 

validation points as the pure-liquid case. Interestingly, to capture a 1% reduction in 

phase speed, one would require a 𝐷𝑆/𝜆 value more than 49.5 (c.a. 3.7 m @ 20 kHz). 

This was noted to be not practical, since attenuation would become a dominant factor 

at such lengths and standing wave formation may not occur.  

Regarding the results presented in Figure 4.25, several important caveats were 

identified. First, it was noted that Figure 4.25 was calculated on the premise that at 

least one additional validation point should form in the geometry. It should be noted 
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that phase speed deviations can be detected by other means, such as measuring the 

distance between validation points using image processing software. Such methods 

could quantify wavelength reduction without relying on qualitative validation points. 

Second, it should also be considered that an additional validation point can also be 

observed from the boundary mechanism outlined in Figure 4.23. This aspect becomes 

important if the system exhibits a characteristic shown in Figure 4.23 (a). An example 

is the case of Klíma et al. (2007) in Figure 4.22, the original study tuned the geometry 

to approximate the antinode formation of Figure 4.23 (a). This becomes clear when 

one observes that the region under the horn in Figure 4.22 (a) is a nodal region (blue). 

The extra validation point formed in Figure 4.22 (b) and (c) is caused by a shift in 

boundary behaviour from Figure 4.23 (a) to Figure 4.23 (c), and not by the 

accumulation of wavelength-shortening error. This highlights the shortcoming of the 

simple model proposed in Eqn. (89), in which it does not account for the possibility of 

additional validation points forming due to boundary behaviour.  

The presented analysis was performed for a waveguide assuming pure standing wave 

formation. In practice, acoustic pressure fields are often much more complex. It was 

noted that, while the derivation was conducted using a pure standing wave, the 

applicability of the model for systems with a combination of standing and travelling 

waves is not affected. This is because the model is strictly constructed upon the 

wavelength of the working fluid, which is strictly dependent on the phase speed. 

However, it should be noted that systems with dominant travelling wave contribution 

may not exhibit clear validation points during experiment measurement. Similarly, the 

presented discussions were also applicable for more complex reactor configurations 

such as flow-through reactors. Although the presence of a flow field within the 



143 
 

sonoreactor can affect the distribution of the bubbles (and subsequently the medium 

properties), current studies tend to treat the pressure field to be independent from 

the fluid velocity (Louisnard, 2017).  

Nevertheless, the proposed 𝐷𝑆/𝜆  parameter should strictly be treated as a rough 

approximation to improve the accuracy of validation studies. One possible use of the 

𝐷𝑆/𝜆 parameter is to characterise confidence levels of antinode validation results. The 

finding also suggests that simulation frameworks that had been validated at a certain 

𝐷𝑆/𝜆, should provide the same performance for other systems with similar or less 

𝐷𝑆/𝜆 . The only consideration is that the medium properties (notably the bubble 

fraction) should be similar between the two systems, and that other factors such as 

boundary effects in Figure 4.23 (a) should not be present. 

 

4.2.4 Compilation of the 𝐷𝑆/𝜆 Parameter in Past Studies 

During the course of this research, the 𝐷𝑆/𝜆 values for the systems studied in past 

works were compiled and tabulated in Table 4.8. The information was found to be 

useful for comparing systems with similar 𝐷𝑆/𝜆 values. Some liberty was taken when 

determining the effective length of systems with complex geometries. Table 4.8 only 

considered studies that have explicitly validated simulation results against 

experimental antinode characterisation.  

It was found that most of the antinode validation studies in past works had been 

carried out using small geometries with relatively large wavelengths (low frequencies), 

which was characterised with low 𝐷𝑆/𝜆 values. Table 4.8 shows that the sonoreactors 

in most studies have 𝐷𝑆/𝜆 < 4. The compiled information also shows the lack of large-
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scale validation studies, with reference to the compiled effective geometries used in 

past works. This information highlights the key knowledge gaps addressed in this work, 

and established a strong need to perform larger-scale validation studies. This should 

not be limited to evaluating bubbly-liquid models in terms of phase-speed prediction 

mechanisms, but also to develop and reveal important heuristics and practical know-

how when simulating large geometries. This issue should be addressed if sonoreactor 

simulations are to be used as a design tool for commercial and industrial designs.  

Lastly, it should be noted that while the 𝐷𝑆/𝜆 values can be increased by using a higher 

operating frequency, the approach is limited to a certain frequency threshold. This is 

because antinode verification methods such as foil mapping and SCL become 

unpractical when the frequency is too higg, as the short wavelength makes it difficult 

to distinctly identify the validation points (Yasui et al., 2007).  
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Table 4.8: Compilation of past antinode validation works and their calculated 𝐷𝑆/𝜆 values. 

Author(s) 
Validation 

Method Studied System 
A. P. 

Model 
𝒇 

(kHz) 
𝑫𝑺 

(mm) 
𝑫𝑺

/𝝀 

Campos-Pozuelo 
et al., (2005) 

Pressure Probe; 
Bubble Structure 

Sonotrode Vessel NW 20 150 2.0 

Sáez et al., 
(2005) 

Foil Map, 
Thermal Map 

Ultrasonic Cell PL 20 41 0.6 

Klíma et al., 
(2007) 

HD Photography Sonotrode - Beaker PL 20 77 1.0 

Wang and Yao, 
(2013) 

HD Photography Sonotrode Vessel PL 20 163 2.2 

Wei and 
Weavers, (2016) 

Pressure Probe Sonotrode Vessel PL 20 340 4.6 

Dähnke, et al., 
(1999b) 

Pressure Probe Ultrasonic Bath NW 23 90 1.4 

Sarac et al., 
(2020) 

Pressure Probe Ultrasonic Bath NH 27 60 1.1 

Laborde et al., 
(1998) 

Foil Map 
Floor Irradiated 

Cylindrical Reactor 
LW 28 120 2.3 

Servant et al., 
(2001a) 

Foil Map 
Floor Irradiated 

Cylindrical Reactor 
NW 28 107 2.0 

Zhang et al., 
(2018) 

Foil Map Ultrasonic Bath PL 28 180 3.4 

Hussain and 
Janajreh, (2017) 

Foil Map 
Floor Irradiated 

Cylindrical Reactor 
CP 28 80 1.5 

Tangsopa and 
Thongsri, (2019) 

Foil Map Ultrasonic Bath PL 28 200 3.8 

Lais et al., (2018) Pigment Cleaning 
Ultrasonic Pipe 

Cleaning 
LW 40 50 1.4 

Delacour et al., 
(2020) 

SCL Microreactor NH 40 40 1.1 

Lewis et al., 
(2007) 

Foil Map Ultrasonic Bath PL 44 c.a. 50 1.5 

Yasui et al., 
(2007) 

SCL 
Floor Irradiated 

Cylindrical Reactor 
PL 100 139 9.4 

*LW = Linear Wave Equation, NW = Nonlinear Wave Equation, CAF = Caflisch Model, PL = Pure-

Liquid Helmholtz Model, CP = Commander and Prosperetti Model, NH = Nonlinear Helmholtz Model 
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4.3 Case Study 5: Antinode Prediction in Large Sonoreactor 

This case study focused on the phase-speed prediction aspect of the pure-liquid, linear 

CP, and NH models in a 16.5-L hexagonal sonoreactor previously reported by Tiong et 

al. (2017a). Antinode validation was carried out using SCL images. It was hypothesised 

that the properties of the linear CP model would give a good approximation for the 

uniform standing wave patterns observed in the studied system. The pure-liquid 

model was solved without attenuation, whereas the bubbly-liquid models were 

assumed to be monodisperse and solved for three bubble density magnitudes. This 

study revealed valuable insights into the effectiveness of popular frequency domain 

models in predicting the phase speed in large ultrasonic baths. 

 

4.3.1 Methods: Experimental Data 

4.3.1.1 Physical Characteristics of the Sonoreactor 

The hexagonal sonoreactor involved in this case study had been reported in past 

literature (Manickam et al., 2014; Tiong et al., 2017a). The 16.5 L sonoreactor 

(Sonictron, Malaysia) possesses six vertical interior surfaces fitted with wall 

transducers, with each opposing wall having the same operating frequency. The 

sonoreactor is capable of operating at 28, 40 and 70 kHz which corresponds to 𝐷𝑆/𝜆 

values of 4.6, 6.6 and 11.5 respectively. The design power for each frequency was 

reported to be 300 W. A simplified model illustrating the key geometrical dimensions 

of the sonoreactor is shown in Figure 4.26 (a). Figure 4.26 (b) outlines the position of 

the transducers corresponding to each operating frequency from a top view 

perspective. All images depicting the hexagonal geometry followed this orientation to 



147 
 

ensure consistency. It should be noted that the representation of the wall transducers 

in Figure 4.26 (b) is merely a schematic and should not be taken to scale. 

 

 

Figure 4.26: (a) Physical representation of the dimensions of the hexagonal sonoreactor; (b) 

Top view schematic showing the orientation of the transducers corresponding to each 

frequency.  

 

4.3.1.2 Sonochemiluminescence (SCL) Data 

The sonochemiluminescence (SCL) images used in this validation study are part of a 

data set that was published by Tiong et al. (2017b). Luminol was used as the 

chemiluminescence agent. Due to the mechanical design of the sonoreactor, the only 

way to obtain the SCL images was from a top view perspective, as shown in Figure 4.27 

(b). Photography was carried out using a digital, single lens reflex camera (dSLR, Nikon 

D5100) with an exposure time of 30 seconds. To minimise optical noise, the images 

were captured in a dark environment. This was achieved by shielding the vessel with 
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a black cardboard box. Multiple images were taken for each case to ensure that 

steady-state behaviour was characterised. Raw SCL images were preconditioned using 

the image processing software, ImageJ. First, background measurements were 

subtracted using a dark frame image without any SCL activity. Next, the pixel noise 

was reduced using a Gaussian blur filter using the ‘Smoothen’ function of the software. 

The contrast was also adjusted to a saturated pixel value of 6%, which allowed the 

standing wave patterns to appear more distinct. To facilitate better alignment for 

comparison, the edges of the hexagonal geometry were detected and highlighted 

using ImageJ. Lastly, the ‘Plot Profile’ function of the software was used to extract 

luminance profiles for quantitative data. 

 

 

Figure 4.27: (a) Image showing the physical sonoreactor; (b) The schematic describing the 

method by which the SCL images were captured. 
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4.3.2 Methods: Numerical Simulation  

4.3.2.1 Acoustic Pressure Models and Simulation Parameters 

Three acoustic pressure models were validated against SCL standing wave data. The 

pure-liquid model was solved without attenuation, whereas the linear CP and NH 

models were formulated using identical bubble field characteristics. Implementations 

of the pure-liquid [Eqn. (12)] and linear CP [Eqn. (23)] models were identical to Case 

Study 3 [Section 4.1.1.1] and will be omitted for conciseness. For the NH model, the 

real part of 𝑘𝑐
2 adopted the approach of Louisnard (2012a), while the imaginary part 

was calculated using a more efficient formulation of Trujillo (2018) [Section 2.6.1.3]. 

The bubble ODE system used to calculate the interpolation curves used the Keller-

Miksis equation in Eqn. (51), ideal gas model in Eqn. (53) and the heat transfer model 

of Preston et al. (2007) in Eqn. (60). The contribution of water vapour was neglected 

according to the reasoning in Section 2.7.2.3.  

The bubble field was assumed to be monodisperse for both bubbly-liquid models with 

𝑅0 of 5 µm. Three magnitudes of bubble density 𝑛 (1 × 1010, 1 × 1011, 1 × 1012 m-3) 

were assumed similar to Case Study 3. The gasses within the bubbles were assumed 

to exhibit ideal gas behaviour, and the properties resembled those of air. The liquid 

density, surface tension, and viscosity were assumed to be constant. The physical 

parameters used in this investigation are listed in Table 4.9. The acoustic pressure 

models were solved using the Coefficient Form PDE module in COMSOL, while the 

bubble ODE calculations were solved using the ode15s function in MATLAB. The 

methods used to solve for the bubble ODE system referenced the comprehensive 

work of Pandit et al. (2021). 
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Table 4.9: Physical properties (25°C) used in Case Study 5. 

Parameter Value Unit Description 

𝐷𝑔 2.19 × 10-5 m2/s Diffusivity of gas 

𝑐𝑙 1481 m/s Speed of sound in water 

𝛾𝑙 1.41 - Adiabatic index for air 

𝐾𝑇 24.35 × 10-3 W/m.K Thermal conductivity of gas 

𝜇𝑙  
 0.001 Pa.s Dynamic viscosity of liquid 

𝑝∞ 101325 Pa Ambient pressure 

𝑅𝑔𝑎𝑠 8.3145 J/mol.K Gas constant 

𝜌𝑙  997 kg/m3 Density of liquid 

𝜎𝑙  0.0725 N/m Surface tension of liquid 

 

4.3.2.2 Boundary Conditions 

The specification of boundary conditions was straightforward, with a Dirichlet 

pressure boundary used for the active walls of the operating frequency, and a sound-

hard boundary for the non-vibrating passive walls. Table 4.10 tabulates the Dirichlet 

pressure 𝑃𝑡𝑟  used for each studied frequency. The values were calculated from 

calorimetric measurements by Tiong et al. (2017a) using the relation in Eqn. (84).  

 

Table 4.10: Calorimetry data for the calculation of Dirichlet transducer boundary condition for 

single-frequency simulations (Tiong et al., 2017a). 

Frequency 
(kHz) 

Power, 𝑶𝒎 
(W) 

Total Surface Area, 
𝑨𝒕𝒓 (m2) 

𝑷𝑻𝒓,𝟐𝟖  
(bar) 

𝑷𝑻𝒓,𝟒𝟎  
(bar) 

𝑷𝑻𝒓,𝟕𝟎  
(bar) 

28 215.90 0.083 0.89 - - 

40 207.10 0.083 - 0.87 - 

70 283.10 0.083 - - 1.01 
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4.3.2.3 Geometry and Meshing Considerations 

A full hexagonal 2D geometry was used to model the sonoreactor. Free triangular 

elements were used, and the mesh size was determined from the acoustic pressure 

model that was being solved. Mesh adjustments were simple for the analytical pure-

liquid and linear CP models and a refinement curve similar to Section 4.1.2.2 was used. 

In contrast, the nonlinear nature of the NH model posed an interesting challenge. 

Since phase speed is a function of local pressure, regions with a higher local pressure 

magnitude would technically require a smaller mesh. For this study, a blanket solution 

was used by setting the mesh size to account for the lowest possible phase speed 

determined from the limits of the interpolation curves. In hindsight, this was 

inefficient, as FEM meshing techniques such as adaptive mesh refinement would be 

preferred. Nevertheless, this decision does not affect the accuracy of the simulation 

results, but only the solution time. Figure 4.28 (a) shows an example of the free 

triangular mesh generated for hexagonal geometry (pure liquid, 28 kHz simulation), 

while Figure 4.28 (b) outlines the boundary orientation for each active frequency. 

 

 

Figure 4.28: (a) Mesh for the pure liquid of the 28 kHz simulation with 229,241 degrees of 

freedom; (b) Orientation of the boundary conditions of single-frequency operations. 
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4.3.3 Results and Discussion 

4.3.3.1 Modelling Strategy 

This study argues that a 2D model was sufficient for the purpose of this study. This 

was supported by the SCL data shown in Section 4.3.3.2 that suggest strong plane-

wave characteristics. The results of Figure 3.23 in Case Study 2 [Section 3.2.3] showed 

that the dynamics of the vibrating walls can be approximated using the Dirichlet 

pressure boundary conditions. This simplifying step was shown to be justifiable if the 

region of interest lies near the centre of the geometry. In this study, the Dirichlet 

pressure boundary conditions were specified from calorimetry measurements, which 

had been shown in Case Study 3 [Section 4.1.2.1] to better represent the effective 

energy emission into the working fluid. 

The decision to model inactive walls as sound-hard boundaries was a simplifying 

assumption. A simple calculation of the reflection coefficient using the acoustic 

properties of 304 stainless steel (𝜌𝑠.𝑠 = 7930 kg/m3, 𝑐𝑠.𝑠 = 5790 m/s) using Eqn. (85) 

gives a reflection coefficient of around 0.9, which slightly deviated from a perfectly 

reflecting boundary. However, to avoid uncertainties related to impedance mismatch 

when using bubbly-liquid models, as in Case Study 3 [Section 4.1.2.4], the sound-hard 

boundary was used. As the analyses were focused near the centre of the geometry, 

the impact of this decision on the main findings was found to be small. Figure 4.29 

supports this claim by plotting the antinode patterns of different passive boundaries 

for the 28 kHz case, solved using the pure-liquid model. The standing wave 

characteristics near the centre showed nearly identical results, with little difference 

between the impedance and the sound-hard boundary condition.  
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Figure 4.29: Effect of boundary conditions on predicted standing wave characteristics: (a) 

Sound-hard; (b) Sound-soft; (c) Impedance of stainless steel. Arrows represent the emitting 

walls. 

 

Constant physical properties were assumed in the simulations because the reactor 

was kept at a constant temperature of 25°C by cooling (Tiong et al., 2017a). The 

original study also revealed that the temperature change within the system was 

relatively small, with a maximum temperature increase of 15°C per hour. Since the SCL 

images were obtained within a short time frame, it was deemed that the use of 

constant physical properties at a constant temperature was sufficient to represent the 

physical system. The design of the physical hexagonal sonoreactor also enhanced 

standing wave formation by emitting ultrasonic waves from opposite walls. Such 

conditions strengthened the standing wave characteristics of the pressure field, which 

was important to increase confidence in the antinode verification results. The 

transducer arrays on each wall were noted to be driven using the same ultrasonic 

generator to match the phase of oscillation. This was found to be important because 

it allowed both vibrating walls to be simulated using the same Dirichlet boundary 

condition in the same frequency-domain simulation4. 

 

4 If there is a phase mismatch between the opposing vibrating walls, the Dirichlet boundaries would 
need to be corrected for phase difference. 
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4.3.3.2 SCL Characterisation  

The presented SCL dataset was used not only for this case study, but also in Case 

Studies 6 and 7. Therefore, it is important to discuss the quality of the dataset. Figure 

4.30 shows examples of SCL images obtained for single-frequency operations at 28, 

40, and 70 kHz, respectively. The captured standing wave characteristics, represented 

by the bright and dark bands, were noted to be quite distinct, especially for the 40 kHz 

case. Slight visual smearing was observed in the SCL images, which was hypothesised 

to be the combined result of fluid motion and long-exposure photography. To reduce 

the impact of transient effects on the verification study, multiple images were taken 

and the image with the best representation of the distinct standing wave was selected. 

 

 

Figure 4.30: SCL results used in this work: (a) 28 kHz; (b) 40 kHz; (c) 70 kHz. Design power of 

300 W and arrows show the ultrasound emitting walls. 

 

A region of strong luminance was observed near the emitting walls for the 28 kHz case 

in Figure 4.30 (a). One possibility is to attribute this observation to the ‘shielding effect’ 

(Moussatov et al., 2003; Klíma et al., 2007). It was possible that the lower frequency 

of the 28 kHz transducers generated a higher local intensity near the walls due to the 

higher displacement amplitude, which resulted in said observation. The validity of SCL 
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visual data near the edges was also found to be prone to errors and uncertainties. The 

most prominent being the effect of the reflecting metal walls, which led to unreliable 

luminance data near the edges. Figure 4.31 shows an enlarged SCL image for the 40 

kHz case. It is unclear whether the luminance data in the regions circled in red were a 

product of SCL or a result of reflection from the metal walls. To exclude possible errors 

caused by this uncertainty, the analysis in this work was restricted to the region of 

interest near the centre of the geometry (highlighted in yellow).  

 

 

Figure 4.31: Example of possible visual errors metal wall reflection, and the region of interest 

used for antinode validation. 

 

Another reason to focus on the results near the centre of the geometry is related to 

optical distortion. The image of the standing wave was essentially transmitted from 

the volume of liquid, past the water-air interface, and into the camera lens. As 

refraction is minimum at normal incidence and increases with the incidence angle, the 

representation of the standing waves was considered to be more accurate near the 

centre of the geometry.  
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Other considerations were also addressed using image processing techniques (Jähne, 

2004). In this investigation, quantitative measurements had to be obtained from the 

SCL images, notably for the investigations in Chapter 5. Therefore, the integrity of the 

geometric data in the SCL images was confirmed, and possible sources of error were 

addressed. Lens effects such as barrel and pincushion distortion were determined to 

be negligible by verifying that the edges in the images are straight5 (Jähne, 2004). It 

was assumed that the pinhole camera model is valid, as it is for most conventional 

cameras (Forsyth and Ponce, 2002). The main concern was noted to be human error, 

where the camera position may have slightly deviated from the intended angle of 

capture for each experimental set-up, which can lead to perspective distortion and 

vignetting.  

To obtain a measure of perspective distortion, the standard deviation of the edges of 

the hexagonal sonoreactor was analysed. Refraction effects were neglected because 

the edges of the metal vessel were not submerged. The edges of the hexagonal 

geometry were measured to be exactly 140 mm for the physical sonoreactor. The pixel 

deviation for all six edges was used to quantify the error from perspective distortion 

by analysing the difference in pixel length captured for each edge. The edge detection 

function in ImageJ was used, and the uncertainties were quantified in terms of 

standard error. With reference to the SCL data used in this study, the length-scale of 

140 mm corresponded to pixel values of 1381.5 ± 13.8, 1373.7 ± 13.2, and 1376.7 ± 

8.8, for the 28, 40, and 70 kHz case, respectively. These results suggest that the 

 

5  Generally, lens distortion manifests by ‘bending’ straight lines. A good example is the curved 
perspective of wide-angle photography. By verifying that the edges of the hexagonal geometry are 
straight allows a confident claim that the lens distortion effect is negligible. 
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perspective distortion error is very small, and the geometrical integrity of the 

hexagonal geometry was largely preserved. For the quantitative measurements in this 

work, the mean pixel length was set as the reference scale of 140 mm.  

 

4.3.3.3 Acoustic Pressure Solution of the Pure-Liquid Model 

Figure 4.32 shows the 2D absolute pressure field solved using the pure-liquid model 

for the three investigated frequencies. The large overprediction in terms of pressure 

magnitudes is evident in the colour scales. This outcome was expected due to the lack 

of attenuation and the specification of perfectly reflecting boundaries for all six 

hexagonal edges. The same conditions resulted in strong standing wave characteristics 

for all frequencies. Considering that the Dirichlet boundaries were only around 1 bar, 

these pressure magnitude predictions of up to 34 bar can be argued to be unrealistic. 

An interesting observation is the magnitude of the 40 kHz system, which is noticeably 

higher than the other two cases despite having similar Dirichlet pressure specifications 

[Table 4.10]. This observation coincides with the 40 kHz SCL results, which also showed 

higher luminance and clearer standing waves. Further analysis in Chapter 5 [Section 

5.4.4.6] suggests that this was caused by constructive interference. The pure-liquid 

model was included in this study, as it had been reported to show good antinode 

predictions in previous work (Lewis et al., 2007; Xu et al., 2013; Tangsopa and Thongsri, 

2019). It was included in this study to reconfirm these findings in systems with larger 

𝐷𝑠/𝜆; which had been determined to be 4.6, 6.6, and 11.5 respectively, for the 28, 40, 

and 70 kHz system.  
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Figure 4.32:The absolute acoustic pressure fields predicted by the pure-liquid model for the 

three studied frequencies. 

 

4.3.3.4 Acoustic Pressure Solution of the CP Model 

The linear CP model was specified as a monodisperse model with a uniform bubble 

density 𝑛. There are two main reasons for adopting this formulation. First, it was 

argued that the linear variation of the CP model holds promising prospects in the 

characterisation of ultrasonic baths. This claim was made based on the assumption 

that ultrasonic baths exhibit uniform and well-distributed acoustic behaviour, as 

observed in previous studies (Kumar et al., 2007; Son et al., 2009; Tangsopa and 

Thongsri, 2019). The well-distributed luminescence activity in the SCL results in Figure 

4.30 also supported this claim. The other reason was to facilitate a controlled 

comparison with the NH model, which had been gaining popularity in sonoreactor 

acoustics. This allowed a clearer comparison in terms of acoustic pressure prediction 

mechanisms for the two bubbly-liquid models. The meshing considerations for the 

linear CP model used the same strategy reported in Case Study 3, where the effective 

phase speed was used to refine the mesh [Section 4.1.2.2].  

Figure 4.33 shows the absolute pressure fields solved using three different magnitudes 

of 𝑛 . It was noted that there was neither sufficient data nor reliable methods in 

literature to confidently specify the value of the bubble density 𝑛  for the studied 
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system. Thus, three magnitudes of 𝑛 were parametrically tested, similar to Case Study 

3. This topic was identified as a key knowledge gap for the adoption of bubbly-liquid 

models and will be addressed in Chapter 5. In terms of acoustic pressure magnitude, 

the solutions of the linear CP model yield lower predictions compared to those of the 

pure-liquid model. This observation, albeit qualitative, conformed to the findings of 

previous works (Jamshidi et al., 2012; Louisnard, 2012a). The lack of hydrophone 

measurement data for the hexagonal sonoreactor restricts further analysis of the 

results.  

 

 

Figure 4.33: Absolute acoustic pressure fields predicted by the linear CP model for three 

frequencies at different bubble density magnitudes. 
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An interesting observation in Figure 4.33 is the drastic reduction in the predicted 

wavelength with increasing magnitude of 𝑛. As shown in Table 4.5, the linear CP model 

predicted lower effective phase speeds as 𝑛 was increased. It was also shown that 

increasing 𝑛  resulted in a higher attenuation for the entire domain. Thus, the 

observations in Figure 4.33 were expected. The results highlight the strong 

dependence of the simulation results on the specified bubble density 𝑛. The work of 

Dogan and Popov (2016) noted that the highly sensitive phase-speed prediction of the 

linear CP model is a disadvantage, as it can lead to unrealistic results. However, this 

study argues that the model is viable and preferred for bath-type configurations if the 

uncertainties around 𝑛 can be addressed.  

The linear CP model predicts an analytical phase speed and attenuation, which 

allowed the characteristics of the solution to be easily plotted and analysed. The 

variation of the real and imaginary parts of the wavenumber 𝑘𝑐 against 𝑛 is shown in 

Figure 4.34 (a). The phase speed ratio that quantifies phase-speed reduction against 

the pure liquid phase speed, 𝑐𝑒𝑓𝑓/𝑐𝑙 is also plotted against bubble fraction in Figure 

4.34 (b). It was noted that these characteristic curves can be used as a tool for 

empirical tuning, which was proposed as a solution to address uncertainties revolving 

around 𝑛. This potential improvement for the modelling strategy is demonstrated in 

Case Study 6 [Section 5.3]. 
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Figure 4.34: (a) Semi-log plot of the real and imaginary parts of the analytical wavenumber 

against bubble density; (b) Variation of the phase speed ratio against bubble fraction. 

Obtained using linear CP model with 5 µm equilibrium radius and 40 kHz. 

 

4.3.3.5 Acoustic Pressure Solution of the NH Model 

The NH model uses interpolation curves to represent the acoustic property of the 

working fluid (Louisnard, 2012a; Trujillo, 2018). Figure 4.35 shows examples of the 

attenuation interpolation curves used in this study. The calculated attenuation curves 

were in agreement with those reported in previous studies that used similar bubble 

characteristics (Louisnard, 2012a; Jamshidi and Brenner, 2013; Dogan and Popov, 

2016; Trujillo, 2018). The attenuation predicted by the NH model in Figure 4.34 was 

found to increase sharply around the Blake threshold (Blake et al., 1999). For 5 µm 

bubbles, the Blake threshold was calculated to be 1.05 bar using:  

 
𝑃𝑏𝑙𝑎𝑘𝑒 = 𝑝0 (1 + (

4

27

𝑆3

1 + 𝑆
)

0.5

) 
(91) 

where the dimensionless Laplace tension 𝑆 = 2𝜎/(𝑝0𝑅0).  
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Figure 4.35: (a) Semi-log plot of attenuation as a function of dimensionless pressure for 28, 40 

and 70 kHz; (b) Semi-log plot of 28 kHz attenuation as a function of dimensionless pressure at 

studied bubble densities. Vertical line represents Blake threshold at 1.05 bar.  

 

Figure 4.35 (a) showed that attenuation increased with frequency just before the 

Blake threshold, and tends toward a linear approximation above it. In the simulations, 

this linear behaviour was used to extrapolate the wavenumber when 𝑃∗ exceeds the 

upper limits of the interpolation curve. The effects of frequency on attenuation were 

found to be quite small for the range of studied frequencies. A case can be made that 

the effect of frequency is only important when resonance effects are significant, as 

discussed by Jamshidi et al. (2012). In this study, the range of resonance frequencies 

for an equilibrium bubble of 𝑅0 = 5 µm was approximated to be around 791 – 795 kHz 

(Commander and Prosperetti, 1989), which explained the reduced impact of 

frequency on the attenuation curves. In Figure 4.35 (b), the attenuation was noted to 

increase with higher bubble density magnitudes. This linear behaviour was expected 

since the model approximates the bulk attenuation by multiplying the dissipation of a 

single bubble by the bubble density in Eqn. (32).  
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Figure 4.36 shows the simulation results of the nonlinear Helmholtz model. The results 

showed lower acoustic pressure magnitudes compared to those of the pure-liquid and 

linear CP models due to the higher attenuation predictions. This observation is 

consistent with the results of pressure verification in Case Study 3. Similar to the linear 

CP case, three magnitudes of bubble density 𝑛 were tested. As expected, the results 

showed that increasing the bubble density increased attenuation prediction, evident 

in the dimmer standing waves in Figure 4.36 (g), (h) and (i). 

 

 

Figure 4.36: The absolute acoustic pressure fields predicted by the NH model for three 

frequencies at different bubble density magnitudes. 
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A notable drawback of the model was discovered during the solution phase. Numerical 

instability was observed when solving the NH model. In Case Study 3, it was reported 

that the NH model was unable to reach the required convergence error threshold of 

0.1% [Section 4.1.2.7]. This issue was not encountered in this study. However, 

preliminary tests revealed that the speed of convergence depends on the quality of 

the interpolation curves. The NH interpolation curves in this study were obtained for 

a 𝑃∗  interval of 0.1, with the exception of the region around the Blake threshold, 

where this interval was halved to account for the steep gradients shown in Figure 4.35. 

The dissipation interpolation curves were explicitly solved up to a 𝑃∗ value of 2.5, in 

which higher values would result in difficulties in obtaining satisfactory solutions for 

the bubble dynamics, similar to the findings of Trujillo (2020). The implementation of 

the dissipation curves in the simulation software used a piecewise cubic interpolation 

function. Linear extrapolation was used for data points above the upper limit of the 

interpolation curve. 

Out of all the studied frequencies, it was also noted that the 70 kHz cases took the 

largest number of nonlinear iterations to converge. On average, successful cases were 

found to converge within 60 iterations, even with 𝑛 = 1 × 1012 m-3. Additional test 

cases revealed that the quality of the mesh had a negligible effect on the convergence 

of the solver. This is shown in Figure 4.37, which describes the effect of mesh fineness 

(degrees-of-freedom, d.o.f.) on the convergence speed of the NH model solved for the 

70 kHz, 1 × 1010 m-3 case. It was noted from the convergence plots that increasing the 

d.o.f. did not affect the number of iterations required to converge the simulation. This 

is clearly seen in Figure 4.37, where the number of iterations was found to be 45 for 

all three test cases.  
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Figure 4.37: Three convergence plots of the nonlinear solver, for the NH simulations for the 70 

kHz case with 𝑛 = 1 × 1010 m-3. The degree of freedom (mesh fineness), solution time, and 

number of iterations are shown for each case. 

 

4.3.3.6 Qualitative Verification Results 

A qualitative comparison was made to compare the standing wave patterns predicted 

by the studied models with the SCL images. Figure 4.38 describes the region of interest 

considered for the comparison. Due to uncertainties related to luminance data near 

the edges, the qualitative analysis only considered the rectangular region of interest 

(182 × 70 mm) along the propagation axis, as shown in Figure 4.38 (a). Figure 4.38 (b) 

shows an example of the investigated region of interest for the 40 kHz SCL image. 

 

 

Figure 4.38: (a) Graphical description of the defined region of interest; (b) Example of the 

region of interest in the 40 kHz SCL image. 
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The region of interest defined in Figure 4.38 was cropped for all SCL images and 

absolute pressure plots. Figure 4.39 compares the regions of interest for the 28 kHz 

case. Standing wave formation cannot be distinctly identified for the 28 kHz SCL 

images, even with extensive image processing, as seen in Figure 4.39 (a). This result 

was previously discussed in Section 4.3.3.2. The presence of the ‘shielding effect’ near 

the vibrating walls was suspected to be the main reason, although there is no evidence 

to support this claim. However, several interesting observations can be made 

regarding the simulation results. The results in Figure 4.39 show an interesting result 

between the two bubbly-liquid models. The results of the linear CP model in Figure 

4.39 (c), (d), and (e) clearly predicted the wavelength-shortening phenomenon when 

the bubble density was increased. On the other hand, the results of the NH model in 

Figure 4.39 (f), (g), and (h) resulted in qualitatively similar standing waves when the 

bubble density was increased. This result was found to be interesting since both 

models were solved using the same bubble field characteristics. 

 

 

Figure 4.39: Qualitative comparison for the 28 kHz standing wave characteristics between the 

SCL image (a) and the investigated simulations (b) - (h). 
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It was hypothesised that the lack of obvious wavelength-shortening prediction in the 

NH model results was caused by the pressure-dependent wavenumber. To support 

the hypothesis, the variation of the wavenumber squared, 𝑘𝑐
2 predicted by the NH 

model was plotted and shown in Figure 4.40. Figure 4.40 shows the real and imaginary 

parts of the wavenumber squared along the propagation axis for the 70 kHz case, 

obtained from the solution of the NH model. The axes on the left represents the 

acoustic pressure magnitude, while the axes on the right show the complex 

components of the wavenumber squared. 

 

 

Figure 4.40: Real and imaginary parts of 𝑘𝑐
2 predicted by the NH model for the 70 kHz case, at 

n = 1 × 1010 m-3. 
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It can be seen that the NH model only predicted high wavenumber values (which 

correspond to higher phase-speed reduction and attenuation) locally near the 

antinodes. Large spikes in 𝑘𝑐
2 were noted when the local pressure magnitude is near 

or above the Blake threshold of 1.05 bar. The acoustic pressure magnitudes predicted 

by the NH model for the studied system were mostly below the Blake threshold. 

Naturally, the wavenumber predictions converged to lower values, which led to the 

wavelength-shortening effect to be less distinct. This result outlines the difference 

between the prediction mechanism of the linear CP and the NH model. The linear CP 

model treats the entire working fluid as a uniform bubbly liquid. On the other hand, 

the NH model uses the Blake threshold to determine the magnitude of the bubbly-

liquid effect using the wavenumber, which governs the phase-speed prediction. 

Figure 4.41 compares the region of interest for the 40 kHz case. The SCL image of the 

40 kHz case in Figure 4.41 (a) was found to show the clearest standing wave pattern 

of the three studied frequencies, for which yellow lines were added to mark the 

antinodes to facilitate a better qualitative analysis. The pure-liquid model was found 

to predict wavelengths that are longer than those of the SCL image. This observation 

is strong evidence for the need to consider bubble-field effects (which cause phase-

speed reduction) in sonoreactor acoustics. Without the consideration of bubbles in 

the acoustic field of the sonoreactor, it will not be possible to characterise the phase 

speed-reduction effect. Interestingly, little emphasis had been placed on this topic in 

previous works. Analysis in Case Study 4 [Section 4.2] suggested that this is due to the 

small values of 𝐷𝑠/𝜆  used, which did not clearly capture wavelength-shortening 

effects.  



169 
 

The prediction of phase-speed reduction is clear in the results of the linear CP model 

in Figure 4.41 (b), (c), and (d), albeit with noticeable deviations from the SCL 

observations in Figure 4.41 (a). A clearer representation of this deviation is shown by 

plotting the normalised luminance along the centre of each cropped image in Figure 

4.42. The 1D profiles represent a normalised luminance value, in which the peaks can 

be used to approximately determine the antinode locations. Purple dashed lines were 

added to mark the antinodes captured in the SCL image. It was noted that the antinode 

separations are approximately uniform from the SCL luminance profile. This supports 

the assumption that the phase speed (and possibly the acoustic property) of the 

medium is uniform. This improved the viability of the linear CP model to characterise 

the sonoreactor, as the model assumes uniform acoustic properties in the domain. 

The results in Figure 4.42 show that the distances between the antinodes captured in 

the SCL image are longer than those of the CP, 𝑛 = 1 × 1010 m-3 case, but shorter than 

those of the 𝑛 = 1 × 1011 m-3 case. This finding suggests that the value of 𝑛 that best 

characterises the bubble field of the 40 kHz system lies within the two values.  

 

 

Figure 4.41: Qualitative comparison for the 40 kHz standing wave characteristics between the 

SCL image (a) and the investigated simulations (b) - (h). 
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Figure 4.42: Normalised luminance profile plotted for the centre of the regions of interest for 

the 40 kHz case. Dashed lines mark the approximated locations of the SCL antinodes. 

 

Comparisons involving the predictions of the NH model were less straightforward, as 

the phase speed varied across the simulation domain. Interestingly, the results in 

Figure 4.42 suggest that the antinode predictions of the NH model were similar to 

those of the pure-liquid model, albeit with slight deviations. This result was expected 

since the model only predicted a significant phase-speed reduction for regions that 

exhibit pressure magnitudes close to the Blake threshold, as shown in Figure 4.40. The 

NH model was found to predict some degree of phase-speed reduction, which is 

evident in Figure 4.42. Analysis of the edges of the profiles noted phase differences 

compared to the pure-liquid case, showing the presence of phase speed changes. 

Figure 4.43 shows the side-by-side comparison for the 70 kHz case, and the normalised 

luminance profiles are plotted in Figure 4.44. The qualitative analysis of the antinode 



171 
 

prediction results yields findings similar to the 40 kHz case; however, the standing 

wave observed in the 70 kHz SCL image is less consistent in terms of antinode spacing. 

The thinner antinodal bands also made it difficult to clearly identify standing wave 

patterns. This increased the degree of uncertainty for the results of the verification 

study. It is clear from Figure 4.43 (e) and (h) that when the bubble density magnitude 

𝑛 = 1 × 1012 m-3, both the linear CP and NH models over-predicted the attenuation, 

which eliminated any standing wave formation in the simulations. The pure-liquid 

model once again predicted a wavelength that was longer than that of the SCL image, 

and the wavelength-shortening effect was clearly found for three simulated cases of 

the linear CP model.  

 

 

Figure 4.43: Qualitative comparison for the 70 kHz standing wave characteristics between the 

SCL image (a) and the investigated simulations (b) - (h). 
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Figure 4.44: Normalised luminance profile plotted for the centre of the regions of interest for 

the 70 kHz case. Dashed lines mark the approximate locations of the SCL antinodes. 

 

The antinode verification results yield several important findings. The following 

discussion is based on the 40 and 70 kHz cases, as the standing wave characteristics 

of the 28 kHz case were deemed insufficient for a confident analysis. For the pure-

liquid approach, the antinode verification results showed that the model deviated 

from the SCL observations, as the predicted wavelengths were observed to be slightly 

larger. This is an expected outcome, as the pure-liquid model used did not account for 

any changes in phase speed due to bubbly-liquid effects.  

The linear CP model managed to account for a uniform decrease in wavelength across 

the simulation domain. The characteristics of the solution predicted by the linear CP 

model strongly suggest that it is suitable for characterising systems that exhibit very 

uniform acoustic behaviours. For the bath-type configuration used for this work, this 
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is supported by the consistent antinodal separation observed in the SCL standing 

waves. Quantitative characterisation in Chapter 5 yields further information on this 

claim, as the antinode separations for the 40 and 70 kHz standing waves were noted 

to give a coefficient of deviation of 17 % and 21 % from the mean value. Nevertheless, 

the model still showed significant deviation in terms of wavelength prediction. It was 

hypothesised that deviations of the linear CP model from the SCL data were caused by 

an inaccurate specification of the bubble density 𝑛, rather than inaccuracies of the 

model itself. 

Standing wave predictions of the NH model also resulted in qualitative deviation for 

the 40 and 70 kHz cases. Unlike the linear CP model, the more complex wavenumber 

prediction mechanism of the NH model made it difficult to pinpoint the exact reasons 

for the observations. The wavenumber squared 𝑘𝑐
2  that governs the phase speed 

prediction is nonlinear, as shown in Figure 4.40. This nonlinear mechanism is a 

complex result derived from energy balances of bubble dynamics (Louisnard, 2010; 

Trujillo, 2018). It remains unclear whether the deviations observed for the NH model 

can be attributed to inaccuracies in bubble field characterisation or caused by other 

factors. Currently, the validation efforts for the NH model were insufficient to fully 

understand the reliability of the model, particularly for large-scale sonoreactors. There 

was also sufficient reason to doubt the accuracy of the wavenumber prediction of the 

NH model, as it had not yet been fully validated under controlled conditions. Thus, 

limited remarks were made on the performance of the NH model.  

The findings presented in this case study yielded important insights on not only the 

antinode prediction aspects of the studied models, but also on the methods involved 
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in the validation study. It should be emphasised that the orientation of the transducers 

in the hexagonal sonoreactor greatly enhanced standing wave contribution. This led 

to clearer antinodal regions to be captured in the SCL images. If such orientation was 

not used in large-scale validation, the travelling wave component would likely be 

dominant, leading to SCL images that shows streaming patterns (Choi et al., 2019). 

Last but not least, the findings presented in this case study would be applicable even 

in the presence of fluid flow, such as in a large flow-through sonoreactor. In general, 

given that the flow magnitude is relatively low and exhibits laminar characteristics, 

the pressure field can be modelled independently from the velocity field (Louisnard, 

2017). It was strongly believed that the knowledge gained from this case study 

strongly contributed to the development of sonoreactor modelling strategies for 

large-scale applications, while also uncovered important knowledge gaps that should 

be addressed in the future. 

 

4.4 Concluding Remarks for Chapter 4 

Chapter 4 presented a comprehensive investigation into the performance of current 

acoustic pressure models in large ultrasonic baths. Pressure and antinode validation 

studies were presented in Case Studies 3 and 5 respectively, while Case Study 4 

showed that the effect of geometry should be an important consideration when 

analysing antinode validation results. 

Case Study 3 validated acoustic pressure models using hydrophone measurements for 

a 252 L bath-type sonoreactor. The pure-liquid model showed good agreement at 

lower frequency cases (35 and 72 kHz), but failed to account for increased attenuation 
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at higher frequencies (110 and 170 kHz) due to the lack of an explicit attenuation 

mechanism. The linear CP model showed mixed results. The model was found to 

exhibit the best performance at 𝑛 = 1 × 1010 m-3 except for the 72 kHz case due to the 

effects of internal reflection. The model was found to be strongly dependent on the 

bubble density specification 𝑛. This became evident when the agreement of the model 

was greatly improved upon tuning the bubble density. For the NH and nonlinear CP 

models, only preliminary insights were obtained from 1D simulations. Results 

suggested that current implementations of the nonlinear models overtuned the 

attenuation mechanism for the case of bath-type sonoreactors. This was evident in 

the significantly larger attenuations predicted by the models.  

A major limitation encountered in Case Study 3 was the size of the model geometry, 

which limited the investigation to simplified simulation strategies. Future studies 

should address this by using better simulation hardware or by exploring more efficient 

simulation strategies. Another important limitation concerns the inability to properly 

model the effects of internal wall reflection. This greatly affected the validation results 

for the linear CP model. Both the PU-impedance and the matched-impedance 

methods failed to eliminate unrealistic pressure magnitude predictions of the 72 kHz, 

𝑛 = 1 × 1010 m-3 case, while PML results were found to be too ideal for real systems. 

Current findings suggested a complex acoustic behaviour resulting from the effective 

phase speed, geometry, constructive interference, and reflection at the boundaries. It 

was noted that these effects should be minimised or eliminated in future studies to 

improve confidence in the results. One suggestion is to use very large geometries 

(open tanks) where reflection effects can be neglected. 
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Case Study 4 presents an interesting discussion on the effect of the geometry-to-

wavelength ratio, 𝐷𝑆/𝜆, on the qualitative result of antinode validation studies such 

as SCL and foil mapping. The presented heuristic demonstration showed that even 

when the acoustic pressure field of a probe-beaker system (𝐷𝑆/𝜆 = 1) was solved using 

phase speed deviations of up to 20 %, the result still managed to yield qualitative 

agreement with experimental observations. The findings strongly showed that the 

effect of phase-speed reduction by bubbly liquids cannot be clearly captured by 

antinode characterisation methods in studies with small 𝐷𝑆/𝜆, both in simulations and 

experiments. The results also support the hypothesis which stated that the effect of 

wavelength-shortening in sonoreactors can be better detected if 𝐷𝑆/𝜆 is large.  

Based on extensive discussion on the topic, it was suggested that validation of phase 

speed mechanisms for acoustic pressure models should be done using large 𝐷𝑆/𝜆 to 

minimise uncertainty. This claim was supported using an idealised 1D standing wave 

model which can be used to approximate the 𝐷𝑆/𝜆 required to clearly the wavelength-

shortening effect. Nonetheless, the model was noted to possess several key 

limitations, such as the neglection of boundary effects and the assumption of a pure 

standing wave. These limitations should be addressed in future work, and the model 

should be validated against physical test systems to better understand the effect of 

𝐷𝑆/𝜆 on antinode validation. 

In Case Study 5, a comprehensive antinode validation was performed using SCL 

images obtained for a hexagonal sonoreactor. Observations suggested that phase-

speed reduction in the bubbly liquid is significant. Validation results for the pure-liquid 

model outlined clear deviations in terms of antinode prediction due to neglecting 
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phase-speed reduction effects. The findings strongly suggest the need to account for 

phase-speed reduction when considering large sonoreactors to reduce antinode 

prediction errors. Among the studied models, the linear CP model best represented 

the phase-speed reduction effect observed in the SCL images, evident in the uniform 

wavelength reduction across the geometry. Similar to Case Study 3, the bubble density 

parameter 𝑛 was noted to greatly affect the simulation results. It was suggested that 

the quality of the solution can be improved by tuning for a more suitable value for 𝑛. 

In contrast, the solutions of the NH model were less straightforward. The wavenumber 

predictions depended not only on the local pressure magnitude, but also on the Blake 

threshold and bubble field parameters. This made targeted analysis difficult and was 

left for future work. The results suggested that the NH model slightly underestimated 

the average phase-speed reduction. However, it remains unclear whether it was 

caused by inaccuracies in the model or by other factors. Based on these results, it was 

suggested that the linear CP model exhibited the strongest prospects in properly 

characterise the studied sonoreactor.  

A key limitation of this study was the restricted region of analysis due to uncertainties 

in the SCL data. Future work should focus on obtaining higher-quality antinode 

validation data by employing strongly controlled test systems. Another limitation 

relates to data acquisition as SCL images were restricted to a 2D top-down perspective. 

Future work should consider the effect of sonoreactor depth on acoustical and optical 

reflections in the system. Last but not least, the uncertainties around the specification 

of bubble density parameter 𝑛 in the bubbly-liquid models should be addressed. This 

was outlined as a key topic and was addressed in the subsequent chapter. 
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Chapter 5: Bubble Field and Multi-Frequency Considerations 

Chapter 5 of this thesis documents the research efforts to further improve current 

modelling strategies by building upon knowledge gained from previous case studies. 

The linear CP model had shown promising potential in both validation studies 

presented in Chapter 4. However, model performance was found to be strongly 

affected by uncertainties related to bubble field parameters. The findings of Case 

Studies 3 and 5 strongly suggested the need to further address a key limitation related 

to the lack of a reliable method to specify the bubble field parameters. Thus, an in-

depth review of this problem was carried out, and a potential solution was proposed. 

Additionally, it was also noted that the technology of multi-frequency power 

ultrasound had become increasingly popular within sonochemistry research. Thus, it 

was investigated whether the linear CP model could be extended to such use cases. 

To achieve the above objective, the chapter begins by critically reviewing the topic of 

bubble field characterisation to identify current strategies used for bubble field 

characterisation in literature. This is followed by a theoretical derivation process to 

propose a novel semi-empirical approach for bubble field characterisation in large 

ultrasonic baths. The proposed strategy is subsequently demonstrated in Case Study 

6. Last but not least, Case Study 7 presents an extensive investigation on the use of 

the linear CP framework for the modelling of multi-frequency acoustic pressure fields 

in a preliminary investigation. 
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5.1 Literature Review on Bubble Characterisation Strategies  

The relationship between the acoustic pressure field and the bubble field in a 

sonoreactor is a well-researched topic (Mettin et al., 1999; Mettin, 2005). From a 

numerical modelling standpoint, a full model of the bubble field is a very complex 

problem and remains an active field of research (Ashokkumar, 2011; Naudé and Ellis, 

2011; Sander et al., 2014; Pokhrel et al., 2016). For the bubbly-liquid models studied 

in this work, the problem was simplified using period-averaged properties and bubble 

field assumptions [Section 2.7.1]. In Case Studies 3 and 5, the specification of bubble 

field parameters mainly referenced past literature. In light of this, it was observed that 

current methods involve a significant degree of uncertainty, notably for the 

specification of 𝛽 and 𝑛. This knowledge gap is a major problem for the applicability 

of bubbly-liquid models because the parameters strongly affect the accuracy of the 

solution as shown in previous validation results. This section presents an in-depth 

review to further shed light on this matter, with the goal of understanding current 

limitations, and to propose a novel solution in the subsequent section.  

 

5.1.1 Experimental Measurements for Sonoreactor Bubble Fields 

Data from experimental measurements of cavitation bubble fields are crucial to 

facilitate better modelling decisions. They also serve as important references when 

developing strategies for bubbly-liquid models. The measurement of cavitation 

bubble fields is an active field of research that spans multiple techniques. Table 5.1 

summarised the relevant findings available in literature. Direct measurements of the 

bubble field mostly relied on optical techniques such as laser diffraction, X-ray, and 
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high-speed photography to obtain data. However, data resolution was found to be 

restricted by the detection limits of optical tools (Lee et al., 2005). Indirect methods 

such as the pulsed-ultrasound-sonochemiluminescence (PU-SCL) technique address 

this limitation by calculating bubble field properties using established mathematical 

models.  

 

Table 5.1: Compilation of bubble measurements reported for cavitating systems in past works. 

Author(s) Description Notable Results 

Burdin et al., 

(1999) 

 

• 20 kHz 

• LD and PD 

• Sonotrode in 

glass vessel  

• LD Sauter mean radius = 3.8 µm 

• PD Sauter mean radius = 5.0 µm 

• Bubble fraction noted to reduce with 

distance from the horn, in the magnitude of 

1 × 10-5. 

Mettin et al., 

(1999) 

• 20 kHz 

• Photography 

• Rectangular 

sonoreactor  

• Radius of 3.0 – 40.0 µm reported 

• No bubbles measured above 70.0 µm radius 

• Radius < 5.0 µm cannot be detected 

• Based on K-M bubble dynamics, equilibrium 

radius calculated reported to be around 1.0 

– 5.0 µm 

Tsochatzidis et 

al., (2001) 

• 20 kHz 

• PD 

• Sonotrode in 

tank  

• Arithmetic mean radius = 3.3 µm 

• Sauter mean radius = 5.3 µm 

• Mostly considered bubble velocity 

measurements 

Burdin et al., 

(2002) 

• 20 kHz 

• LD and PD 

• Sonotrode in 

glass vessel  

• Three different methodologies were studied, 

and it was reported that the bubble radius is 

around 5 µm for the 20 kHz system 

• Bubble fraction reported around 1 × 10-4 

Avvaru and 

Pandit, (2009) 

• 20 kHz 

• Hydrophone – 

FFT 

• Used the Minneart equation to infer bubble 

equilibrium radius based on broadband 
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• Ultrasonic bath measurements, reported mean radius of 50-

80 µm. 

• Unfortunately, the use of linear resonant 

models is often inaccurate, as pointed out by 

(Mettin, Luther and Lauterborn, 1999) 

Kuroyama et 

al., (2011) 

 

• 50 kHz 

• Optical 

Spectrometer 

• Floor irradiated 

glass cell (bath) 

• Mean radius reported to be around 2.5 µm. 

• Should be noted that the margin of 

uncertainty is quite large. 

Cairós and 

Mettin, (2017) 

 

• 23 and 36.5 kHz 

• SL 

• Cavitation in 

Xenon 

saturated 

phosphoric acid 

• Largest radii reported up to 75.0 – 240.0 µm 

(23 kHz) and 50.0 – 80.0 µm (36.5 kHz), 

which is 1 – 10% of total bubbles. 

• 23 kHz data was found to be modelled well 

using equilibrium radius of 36.7 µm. 

Reuter et al., 

(2019) 

• 27.5 kHz 

• High-speed 

imaging 

• Floor irradiated 

sonoreactor 

(bath) 

• Informative study on the measurement of 

bubble sizes for difference bubble structure 

formations. 

• Despite vast differences in study conditions, 

the measured bubble sizes are reported to be 

in the range of 2 – 4 µm. 

Kuroyama, 

(2021) 

• 27 kHz 

• Stroboscopic 

Imaging 

• Sonotrode in 

Vessel (horn) 

• Reported the bubble size profile below a 

sonotrode 

• Bubble size decreases with distance from 

sonotrode 

• Size ranges from 10 – 60 µm. 

Labouret and 

Frohly, (2002) 

 

• 308 kHz 

• Void rate 

dissipation 

• Resonant 

electro-

magnetic cavity 

(microreactor) 

• Bubble radius reported to be in range of 9.5 

– 29.5 µm. 

• Bubble fraction during irradiation reported 

to be in the magnitude of 3E-4. 

• Variation covers a range of irradiation power 

and irradiation time. 
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Lee et al., 

(2005) 

• 525 kHz 

• PU-SL 

(configuration 

unclear) 

• Bubble equilibrium radius reported to be in 

range of 2.8 – 3.7 µm. 

• Time taken for bubble to dissolve reported to 

be around 400 ms. 

Iida et al., 

(2010) 

• 443 kHz 

• LD 

• Floor irradiated 

glass vessel 

(bath) 

• Parametric study covering a range of 

irradiation power and irradiation time. 

• Mean radius reported to be within range of 

7.5 – 27.0 µm. 

Xu et al., 

(2017) 

• 1.2 and 5 MHz 

• Bubble 

dissolution 

• High-frequency 

focused 

ultrasound 

• Parametric study over several irradiation 

power and irradiation time. 

• Average bubble radius reported to be within 

1 – 5 µm range. 

Pflieger et al., 

(2021) 

• 362 kHz 

• PU – SL 

• Glass 

sonoreactor 

• Equilibrium radius reported to be around 3 

µm. 

*LD = Laser Diffraction, PD = Phase Doppler Technique, PU = Pulsed Ultrasound, SL = 

Sonoluminescence, SCL = Sonochemiluminescence, FFT = Fast Fourier Transform 

 

 

Most studies focused on bubble-radii measurements, which were commonly reported 

in terms of a Sauter or arithmetic mean. The reported values for a wide investigated 

range of frequencies were similar, although smaller measurements were observed at 

higher frequencies. The mean radii were reported to be within the range of 1-10 um. 

Some studies also explicitly reported the value of equilibrium bubble radii, usually in 

the range of 1-5 um (Mettin et al., 1999; Lee et al., 2005; Pflieger et al., 2021). On the 

contrary, data for the bubble fraction 𝛽 or the bubble density 𝑛 were found to be rare. 

Notable studies that have provided data for bubble fraction are those of Burdin et al. 
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(1999, 2002), who reported values measured near sonotrodes to be in the magnitude 

of 1 × 10-5 to 1 × 10-4 m-3. Although the values were referenced in previous simulation 

works (Louisnard, 2012a; Jamshidi and Brenner, 2013; Fang et al., 2018), this study 

argues that they are at best an approximation due to the small sample size.  

Most of the measurements summarised in Table 5.1 were carried out for small-scale 

systems, primarily using horn-type configurations. The lack of data for larger, bath-

type systems is once again a matter of concern, since there is little evidence which 

supports extending small-scale data for larger geometries. Current knowledge 

suggests that the bubble field characteristics of horn- and bath-type sonoreactors are 

noticeably different (Mettin et al., 1999; Žnidarčič et al., 2015; Ma et al., 2017; Reuter 

et al., 2019). In light of this, there is little choice in this work but to rely on educated 

assumptions and extrapolated data until further information is available. 

 

5.1.2 Bubble Field Characterisation Strategies in Past Works 

Table 5.2 presents a compilation of the values used to characterise the parameters 𝑅0, 

𝑛 and 𝛽 in past simulation works. Specifications for 𝑅0 were found to lie within the 

range of values reported in Table 5.1. Additionally, earlier studies favoured the 

polydisperse radii specification, while the simpler monodisperse assumption is more 

popular recently. The impact of this choice has not yet been fully explored, and shall 

be discussed in Section 5.1.2.1. 
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Table 5.2: Compilation of bubble field parameters used in past numerical investigations.  

Author(s) Study Description Bubble Characterisation Parameters Remarks 

𝜷 𝑹𝟎 𝒏 

Dahlem et 

al., (1999) 

Exp. Valid. w/ 

Dosimetry; 

Sonotrode-Beaker; 

20 kHz; 

300 and 1000 W 

0.01 3 – 3000 

µm 

Polydisp. 

(Gaussian) 

- Linear CP 

model 

Dähnke and 

Keil, (1999) 

Theoretical Design w/ 

Simulation; 

Cylindrical Vessel w/ 

Floor Transducer; 

20 kHz and 50 kHz; 

Variable power. 

Nonlinear 𝑛; 

𝛽 = 𝑓(|𝑃|); 

[1E-4 to 1E-1]; 

Upper |𝑃| 5 MPa 

and 10 MPa 

100 – 3000 

µm 

Polydisp. 

(Gaussian) 

- 

Wave eqn. 

w/ 

attenuation 

calculated 

from 

nonlinear CP 

model 

Dähnke et 

al., (1999b); 

Exp. Valid. w/ 

sonotrode; 

Ultrasonic Tank w/ 

Floor Transducer, 23 

kHz 

Nonlinear 𝑛; 

𝛽 = 𝑓(|𝑃|); 

1E-4 < 𝛽 < 1E-1; 

𝑃𝐵𝑙  < |𝑃| < 50 

MPa 

5 – 3000 

µm 

Polydisp. 

(Gaussian) 

- 

Servant et 

al., (2000; 

2001; 

2003), 

Exp. Valid. w/ SCL; 

Foil Test; 

Sarvazyan Method; 

Cylindrical Reactor w/ 

Floor Transducer; 

28, 200, 477, 540 kHz 

Nonlinear 𝑛; 

𝛽 = 𝑓(|𝑃|); 

Unspecified range 

1 – 1000 

µm 

Polydisp. 

(Gaussian) 

- 

Jamshidi et 

al., (2012) 

Theoretical Design w/ 

Simulation; 

Sonotrode 

Microreactor; 

10 – 30 kHz; 

20, 110, 200 W 

Nonlinear 𝑛; 

𝛽 = 𝑓(|𝑃|); 

𝛽 = 2 × 1E-9 |𝑃|; 

1 bar < |𝑃| < 50 

MPa 

150 µm 

Monodisp. 

- Compared 

PL, linear CP, 

and 

nonlinear CP 

models. 

Louisnard, 

(2012a) 

Valid. w/ Bubble Data; 

Theoretical 1D 

Simulation 

𝛽 = 5E-5 5 µm 

Monodisp. 

9.5E10 

m-3 

NH model 

(Louisnard 

formulation) 

Jordens et 

al., (2013) 

Theoretical Design w/ 

Simulation; 

Microchannel Reactor; 

20 kHz; 30 W 

Nonlinear 𝑛; 

𝛽 = 𝑓(|𝑃|); 

𝛽 = 2 × 1E-9 |𝑃|; 

1 bar < |𝑃| < 100 

bar 

Minneart 

Eqn. 

Estimation: 

R = 3/f 

Monodisp. 

- Nonlinear CP 

model 

Dogan and 

Popov, 

(2016) 

Theoretical Model 

Testing; 

Custom Sonoreactor 

Bath; 

20 kHz 

Parametric 𝛽; 

1E-5, 5E-5, 2E-4 

5 µm 

Monodisp. 

- Compared 

linear CP vs 

NH model 

(Jamshidi 

formulation) 

Lebon et 

al., (2017) 

Exp. Valid. w/ Design; 

Sonotrode - Beaker 

- 1-10 µm 

Polydisp. 

1E11 

m-3 

First-order 

N-S w/ 

bubble 

attenuation 
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Hussain 

and 

Janajreh, 

(2017; 

2018) 

Theoretical Design w/ 

Simulation; 

Custom Horn 

Sonoreactor; 

20 kHz; 100W 

Nonlinear 𝑛; 

𝛽 = 𝑓(|𝑃|); 

𝛽 = 2 × 1E-9 |𝑃|; 

𝑃𝐵𝑙  < |𝑃| < 100 

MPa 

Minneart 

Eqn. 

Estimation: 

R = 3/f 

- 

Nonlinear CP 

model Fang et al., 

(2018) 

Streaming Study w/ 

PIV; 

Sonotrode – Beaker 

System; 

20 kHz; 240 W 

Nonlinear 𝑛; 

𝛽 = 𝑓(|𝑃|); 

𝛽 = 2 × 1E-9 |𝑃| 

200 µm 

Monodisp. 

- 

Lebon et 

al., (2019) 

Streaming Study w/ 

PIV; 

Sonotrode – Tank 

System; 

20kHz 

𝛽 = 1E-5; 1E-4; 

1E-3; 

If  𝑃𝐵𝑙  < |𝑃| 

5 µm 

Monodisp. 

- 

NH model 

(Trujillo 

formulation) 

 

Trujillo, 

(2018; 

2020) 

 

Model Validation w/ 

Bubble Data; 

Pressure Valid.; 20 kHz; 

Sonotrode – Beaker 

System 

- 3 µm 

Monodisp. 

3E7 – 

3E8 

m-3 

Chen et al., 

(2021) 

Streaming Study w/ 

PIV; 

Ultrasonic Tank System 

- 5 µm 

Monodisp. 

5E9 

m-3 

 

With reference to Table 5.2, the choice of bubbly-liquid model was found to be related 

to the specification of bubble parameters. Those that involved the linear CP and NH 

models tend to treat 𝑛 or 𝛽 as a constant, while the nonlinear 𝑛 specification forms 

the basis for the nonlinear CP model and its variants. The popularity of the nonlinear 

𝑛  approach is interesting considering that it was developed based on simplified 

assumptions by Dähnke et al. (1999a).  

It is clear that the range of values used for 𝑛 and 𝛽 varied greatly across studies, which 

was hypothesised to be the result of limited experimental data. Most recent studies 

specified 𝑛 within the magnitudes of 1 × 108 – 1 × 1011 m-3 (a similar range was used 

in Case Studies 3 and 5). The uncertainties surrounding the bubble-field parameters 

had also been commented upon by several authors. Servant et al. (2001b) noted that 
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one should exercise caution when adapting data that did not explicitly report the 

bubble equilibrium radius. Recent studies also explicitly highlighted the difficulties of 

specifying a reliable value for the bubble fraction or bubble density (Delacour et al., 

2020; Sarac et al., 2020; Trujillo, 2020).   

 

5.1.2.1 Monodisperse vs. Polydisperse Approach for Bubbly-Liquid Models 

A brief discussion provided on the specification of the radii distribution for 𝑅0 shall be 

provided. The following only considered the CP model, since a polydisperse NH model 

remains an unexplored problem, which is left as a suggestion for future work. The 

linearisation efforts of Commander and Prosperetti (1989) yield two wavenumber 

formulations for the CP model. The monodisperse formulation previously introduced 

in Section 2.5.1: 

 
𝑘𝑐

2 =
𝜔2

𝑐𝑙
2 + 4𝜋

𝜔2𝑅0𝑛

𝜔0
2 − 𝜔2 + 2𝑖𝑏𝜔

 
(23) 

and the polydisperse formulation that accounts for a radii distribution for 𝑅0:  

 
𝑘𝑐

2 =
𝜔2

𝑐𝑙
2 + 4𝜋 ∫

𝜔2𝑅0𝑛(𝑅0)

𝜔0
2 − 𝜔2 + 2𝑖𝑏𝜔

𝑑𝑅0

∞

0

 
(92) 

Although both formulations had been used in the past, there is surprisingly little 

discussion about the impact of this choice. The following presents a simple analysis, 

which attempts to show that current implementations of the polydisperse formulation 

in literature (Dähnke et al., 1999a; Servant et al., 2000) are similar to the 

monodisperse assumption.   
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The CP dispersion relation is just a variation of a linear scattering model proposed by 

Foldy (1945), who postulated that the acoustic wavenumber for stable bubble fields 

can be generalised as: 

 
𝑘𝑐

2 =
𝜔2

𝑐𝑙
2 + 4𝜋𝐺 =

𝜔2

𝑐𝑙
2 + 4𝜋[𝑀(𝒓, 𝑅0)𝑁(𝒓, 𝑅0)] 

(93) 

The parameter 𝐺 relates to the dissipation per unit volume. It is the product of the 

bubble scattering function 𝑀(𝒓, 𝑅0) and the bubble distribution 𝑁(𝒓, 𝑅0). Equating 

the monodisperse assumption in Eqn. (23) to Foldy’s generalised formulation yields 

the following: 

 
𝐺𝑚𝑜𝑛𝑜 =  𝑀(𝒓, 𝑅0)𝑁(𝒓, 𝑅0)  =

𝜔2𝑅0𝑛

𝜔0
2 − 𝜔2 + 2𝑖𝑏𝜔

 
(94) 

The bubble dissipation factor 𝑀(𝒓, 𝑅0)  and the bubble distribution 𝑁(𝒓, 𝑅0) 

corresponds to: 

 

𝑀(𝑅0(𝒓))  =  
𝜔2𝑅0

𝜔0
2 − 𝜔2 + 2𝑖𝑏𝜔

  

(95) 

 
𝑁(𝑅0(𝒓)) = 𝑛 

(96) 

𝑀(𝑅0(𝒓))  can be interpreted as the dissipation effect of a single bubble with 

equilibrium radius 𝑅0. Multiplying this factor by the density of bubbles with the same 

𝑅0 (in this case, 𝑛) gives the total dissipation per unit volume. Since 𝑅0 is a constant, 

the dissipation factor 𝑀𝑅0
 is also constant. Thus, for the monodisperse assumption, 

the dissipation per unit volume 𝐺𝑚𝑜𝑛𝑜  depends on the local bubble density 𝑛. The 

specification of 𝑛 is usually done using two methods. A spatially constant bubble 

density assumption, 𝑁(𝑅0(𝒓)) = constant, yields the simplest characterisation of the 

bubble field which results in an analytical CP wavenumber. On the other hand, the 
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bubble density can also be a function of space, 𝑁(𝑅0(𝒓)) = 𝑛(𝒓). In bubbly-liquid 

models, this results in inhomogeneous dissipation effects in the domain.  

A similar analysis can be done for the polydisperse formulation in Eqn. (92). It is 

instructive to note that the equilibrium radius takes the form of a time-averaged 

polydispersity, which is the result of the continuity assumption [Section 2.4]. 

Essentially, the average contribution of multiple equilibrium radii is considered for a 

single point in the domain6. Although the expression for 𝑀(𝒓, 𝑅0) and 𝑁(𝒓, 𝑅0) is 

similar to the monodisperse case, the main difference lies in how the total dissipation 

effect per unit volume, 𝐺𝑝𝑜𝑙𝑦 is defined. The polydisperse CP formulation requires the 

contribution of each equilibrium radius to be summed: 

 
𝐺𝑝𝑜𝑙𝑦 = 𝑠𝑢𝑚[𝑀(𝒓, 𝑅0)𝑁(𝒓, 𝑅0)]  = ∫

𝜔2𝑅0𝑛(𝑅0)

𝜔0
2 − 𝜔2 + 2𝑖𝑏𝜔

𝑑𝑅0

∞

0

 
(97) 

It is clear that this approach added an additional layer of complexity for the bubble 

field characterisation, since the bubble density is now a function of both space and 

equilibrium radius, 𝑛(𝒓, 𝑅0). If 𝑛(𝒓, 𝑅0) is assumed to be spatially constant, then the 

following condition would also have to be satisfied: 

 
𝑛(𝒓) = ∫ 𝑛(𝑅0)𝑑𝑅0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

∞

0
  

(98) 

Realistically speaking, the bubble equilibrium radii in real systems are undeniably 

polydisperse in nature, as reported by the studies compiled in Table 5.1. An important 

distinction to be made is that empirical evidence only suggests spatial polydispersity 

 

6 Instead of multiple bubble radii existing at a single infinitesimal point in space, the expression instead 
considers a time-averaged contribution of multiple bubble sizes (e.g. average contribution of various 
bubble sizes passing through a single point in space). 
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and not time-averaged polydispersity. A case can be made that spatial polydispersity 

and time-averaged polydispersity are equivalent only when perfect mixing is achieved 

in the bubble field7. This could be the case for small, horn-type configurations where 

strong mixing effects had been observed (Tiong et al., 2019). The complexity further 

increases if one considers that the radii distribution can also be fixed in space 

(constant polydispersity) or vary as a function of space (spatial polydispersity). There 

are several suggestions in which spatial polydispersity could be implemented; 

however, many of them remain impractical within the scope of this work and are left 

for future discussions. Only constant polydispersity methods had been applied in 

sonoreactor simulations. The studies of Dähnke et al. (1999a, 1999b) and Servant et 

al. (2000) characterised 𝑅0 as a fixed Gaussian distribution. The approach was inspired 

by the work of Commander and Prosperetti (1989) who used a truncated distribution: 

 
𝑛(𝑅0) =  𝐶𝑏 exp [−

(𝑅0 − 𝑅0,𝑚𝑒𝑎𝑛)
2

𝜎𝐵
2   ]   ,  

 

 𝑅0,𝑚𝑖𝑛 < 𝑅 < 𝑅0,𝑚𝑎𝑥 
(99) 

The method involves specifying a mean bubble equilibrium radius 𝑅0,𝑚𝑒𝑎𝑛 , and a 

standard deviation 𝜎𝐵
2 . The distribution was truncated at 𝑅0,𝑚𝑖𝑛  and 𝑅0,𝑚𝑎𝑥  and a 

tuning parameter 𝐶𝑏 is necessary to satisfy bubble fraction specifications such as Eqn. 

(98). Further scrutiny revealed that this approach is not much different from the 

monodisperse assumption. To elaborate, if the radii distribution is fixed, then 

𝐺𝑝𝑜𝑙𝑦/𝑛(𝒓) is essentially a constant. Thus, the total dissipation per volume for both 

methods varies linearly with the spatial bubble density 𝑛. A graphical representation 

 

7 Under perfect mixing conditions, all bubble radii in the domain can be assumed to travel through all 
space coordinates when view from a time-averaged perspective. 
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of this argument is shown in Figure 5.1. The main difference is that the constant 

polydisperse approach relies on a scattering function calculated for a fixed bubble 

group instead of a single bubble. Thus, the Gaussian radii specification can be thought 

to be analogous to a monodisperse assumption, specified using an effective 

equilibrium radius representing the dissipation of a group of bubbles. 

 

 

Figure 5.1: Graphical explanation depicting the similarities between the constant polydisperse 

approach and the monodisperse approach. 

 

Based on this heuristic analysis, it is argued that there is currently little incentive to 

use the spatially constant polydisperse approach over the much simpler monodisperse 

assumption. Coincidentally, recent applications of the CP model opted for the latter, 

albeit with limited discourse on this matter (Fang et al., 2018; Hussain and Janajreh, 

2017, 2018). This argument also justifies the constant equilibrium radius used in Case 

Studies 3 and 5. 
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On paper, a polydisperse formulation can better approximate real bubble fields. 

However, its implementation in bubbly-liquid models remains understudied. 

Additionally, given that there are larger sources of uncertainties, such as bubble 

density specifications, it is not clear whether the added accuracy would be significant. 

However, with developments in bubble measurement and modelling studies, it is 

expected that the polydisperse formulation will become increasingly feasible in the 

future.  

 

5.1.2.2 Uniform vs. Pressure-Dependent Bubble Density 

The simplest approach specifies 𝑛  as a constant, which assumes that the bubble 

distribution is perfectly uniform. This assumption was used in Case Studies 3 and 5. 

This study argues that this simplified assumption of uniform bubble distribution is 

applicable when considering bath-type configurations. This claim is supported by the 

uniform SCL activity observed in Case Study 5, which can be related to the distribution 

of cavitation bubbles in the system (Sutkar and Gogate, 2009).  

Another common specification for the bubble density was proposed by Dähnke et al. 

(1999a) in light of limited experimental data. In their work, the bubble fraction / 

bubble density was specified as a function of acoustic pressure magnitude, |𝑃|. From 

a modelling perspective, this method incurs a large numerical cost since it introduces 

nonlinearity into the bubbly-liquid model (Jamshidi et al., 2012). However, it allowed 

the CP model to exhibit mechanisms similar to the NH model, where attenuation is 

‘self-regulating’. This causes the bubbly-liquid model to predict larger attenuation in 

regions with higher pressure magnitudes. 
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The perceived motivation behind the nonlinear 𝑛  approach is attributed to the 

common observation that high-pressure regions tend to result in stronger cavitation 

behaviour, which translates to larger bubble fractions. Alternatively, one could also 

attribute the increased bubble density to Bjerknes motion towards antinodal regions 

(Mettin et al., 1997). Even then, there remains the problem of accurately defining the 

relation between bubble density and pressure magnitude. Currently, most studies 

adopted the original assumption of Dähnke et al. (1999a) who assumed a linear 

relationship by allocating 𝛽 = 0.1 to a pressure magnitude of 500 bar (Jamshidi et al., 

2012; Fang et al., 2018). Similar to the NH model, current evidence suggests that the 

attenuation predicted by the nonlinear CP approach is overtuned, as shown in Case 

Study 3. Although the errors from the overtuned attenuation may not be obvious 

when modelling sonotrodes, the results in Case Study 3 suggest that the linear 

relationship between 𝑛 and |𝑃| requires further fine-tuning if it is to be used for large-

scale baths.  

 

5.1.2.3 Piecewise Specification of Bubble Density / Fraction 

Another commonly adopted strategy proposed to characterise the bubble field was 

also first used in the simulation work of Dähnke et al. (1999a). The piecewise 

specification defines an additional characteristic for 𝛽  or 𝑛  which can be 

mathematically represented as: 

 
𝑛 = {

𝑛 , 𝑖𝑓 |𝑃| > 𝑃𝐵

0 , 𝑖𝑓 |𝑃| < 𝑃𝐵
 

(100) 

The parameter 𝑃𝐵 is the Blake threshold which is a minimum theoretical pressure to 

achieve transient cavitation (Blake et al., 1999). The piecewise condition was noted to 
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be quite popular in past works (Servant et al., 2000; Louisnard, 2012a; Jamshidi et al., 

2012; Hussain and Janajreh, 2017). This work argues against the applicability of this 

assumption, as it strongly contradicts observations obtained from bubble field 

experiments reviewed in Section 5.1. The specification essentially constrains 𝛽 or 𝑛 to 

be zero when the local pressure magnitude is below the Blake threshold 𝑃𝐵. A simple 

review of experimental measurements reported by the studies in Table 5.1 revealed 

that this is unlikely, as physical bubbles do not simply disappear if the pressure 

magnitude falls below a specific threshold.  

The specification was hypothesised to be a result of contradicting interpretations for 

the purpose of bubbly-liquid models. The piecewise assumption would be valid if one 

considers the bubbly-liquid model to only account for cavitating transient bubbles. 

From this perspective, the ‘vanishing’ of bubbles below the Blake threshold is 

applicable. Instead, this study argues that the bubbly-liquid models serve as an 

approximation to model the effects of both stable and transient bubbles in the 

sonoreactor. Even in the absence of transient cavitation, the effect of stable bubbles 

on the acoustic field is significant, and thus must be included. Other arguments include 

considerations for numerical stability, since the piecewise specification would cause a 

strong discontinuity in the wavenumber due to setting the bubble fraction to zero. 

Based on these arguments, the piecewise specification was not used in the modelling 

strategies of this work.  
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5.2  Derivation of the Semi-Empirical CP Method 

The results of Case Studies 3 and 5 have highlighted the promising potential of the 

linear CP model as a suitable choice for the modelling of large-scale sonoreactor 

acoustics. However, there is still a need to address uncertainties related to the 

specification of bubble field parameters, notably the bubble density 𝑛. To address this 

limitation, an attempt to improve the linear CP modelling strategy was developed and 

proposed by considering a semi-empirical approach. 

 

5.2.1 Reviewing Empirical Tuning Practices in Sonoreactor Acoustics 

The phrase ‘empirical tuning’ henceforth constitutes a justified and educated 

manipulation of certain aspects of a simulation model against an experimental 

benchmark. Semi-empirical models are common in acoustics, especially in the field of 

atmospheric and ocean acoustics to characterise complex changes in acoustic 

properties (Ginsberg, 2018; Yu et al., 2021). The prospects of empirical methods in 

sonoreactor acoustics constitute an interesting discussion. Currently, it can be argued 

that empirical tuning is necessary to obtain some of the required physical properties 

of the bubble field, as current developments suggest that the knowledge gaps outlined 

in Sections 5.1 and 5.1.2 would not be resolved in the near future. The urgency that 

prompted this suggestion was the impact of bubble-field parameters on the 

simulation results. This section presents a well-defined framework for a semi-

empirical approach which can be easily reproduced in future studies. 

Historically, attempts to circumvent the uncertainties surrounding the specification of 

𝑛 and 𝛽 using empirical tuning methods had been published. Vanhille and Campos-
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Pozuelo (2005) tuned the value of 𝑛 against hydrophone profiles obtained for a probe-

beaker system for a simplified inhomogeneous wave equation model. The work of 

Yasui et al. (2007) also roughly determined the attenuation magnitude for a pure-

liquid model by qualitatively comparing simulation results against SCL images. 

Recently, Trujillo (2020) adopted a similar approach as Campos-Pozuelo et al. (2005), 

where the NH model was parametrically solved for a range of 𝑛 and compared against 

hydrophone measurements. The characterisation study of Delacour et al. (2020) also 

tuned the bubble fraction 𝛽 in the NH model by matching the pressure magnitude 

predicted at the centre of the sonoreactor to a hydrophone measurement.  

It is interesting to note that all the above works tuned either 𝛽 or 𝑛 against pressure 

measurements, except the work of Yasui et al. (2007). Several comments are provided 

on this matter. Assuming that the goal is to characterise the acoustic property of the 

bubbly liquid, this work argues that using acoustic pressure as a tuning reference is 

not preferred. The main problem stems from the fact that the acoustic pressure field 

prediction is not a sole function of the acoustic property, but also the boundary 

conditions, geometry, mesh, and solver configuration. Figure 5.2 shows the 

dependencies within the framework of an acoustic pressure simulation. It is clear that 

by tuning the acoustic pressure solution against hydrophone measurements, one risks 

‘tuning over’ the need to properly model other variables, which could compromise 

simulation integrity. Instead, it is suggested that empirical tuning should be restricted 

to measurements that depend solely on the acoustic property of the working fluid, 

such as the wavelength. This is because the wavelength is strictly a function of the 

sound speed. Based on this idea, the following section presents a semi-empirical 
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approach, which involves tuning the bubble density parameter from wavelength 

measurements.  

 

 

Figure 5.2: Representation of the dependencies within an acoustic pressure simulation 

framework. 

 

5.2.2 Establishing the Basis of the Semi-Empirical Characterisation Approach  

It is proposed that the value of the bubble density, 𝑛  can be determined from 

empirical wavelength observations. The scope of this method is restricted to the 

characterisation of simple bath-type configurations with strong standing wave 

characteristics, for which the reason shall be made clear. The full semi-empirical 

characterisation method consists of two main steps. The first step involves the tuning 

of the bubble density parameter 𝑛, and the second step uses the tuned 𝑛 to solve the 

acoustic pressure model. The proposed method depends on the theoretical 

foundations of the monodisperse linear CP model, and thus all associated assumptions 
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of the model are inherited. Another key prerequisite is that reliable wavelength 

measurements should be obtainable for the system of interest. 

 

5.2.2.1 Key Assumptions of the Proposed Framework 

The assumption of the monodisperse linear CP model is reiterated:  

▪ The bubble liquid behaves as a continuum. 

▪ Acoustic bubble behaviour approximated using linearised bubble dynamics. 

▪ The monodisperse assumption is applicable for 𝑅0. 

▪ The bubble distribution is perfectly uniform in space, so 𝑛 is constant. 

▪ The liquid is incompressible, thus 𝜌𝑙  is constant. 

▪ The properties of the gas within the bubbles resemble those of air. 

 

The analytical dispersion relation of the linear CP model is important for the proposed 

tuning method. Previous results in Case Studies 3 and 5 had shown that the model 

offered a good balance between practicality and reliability when considering large-

scale ultrasonic baths. It was also noted to be sensitive, yet predictable, to changes in 

bubble-field parameters, which was found to be a useful property for tuning. The CP 

model was also more comprehensively validated within its range of applications by 

Commander and Prosperetti (1989), as opposed to the newer NH model.  

 

5.2.2.2 Establishing the 𝜆-Tuning Strategy for Bubble Density 𝑛 

Several ways of obtaining the bubble density 𝑛 for a sonoreactor were considered in 

this work. A straightforward bubble field measurement using the methods discussed 

in Section 5.1 can be impractical if one considers large sonoreactors. However, if the 
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bubble field can be assumed to be uniform and homogeneous, the average phase 

speed can be related to 𝑛  using the dispersion relation of the linear CP model. 

Interestingly, this concept had been applied in commercial bubble field measurement 

tools (Duraiswami et al., 1998). The problem with obtaining the average phase speed 

is that most conventional methods require acoustic measurements. While they work 

well in stable bubbly liquids (e.g. aerated tanks), it was hypothesised that their use in 

sonoreactors is limited by cavitation noise. Large broadbands reported by hydrophone 

measurements in sonoreactors support this claim (Campos-Pozuelo et al., 2005; 

Avvaru and Pandit, 2009; Yasuda et al., 2018).  

Instead of measuring the phase speed in the working fluid, it is proposed that 

wavelength measurements are obtained and then related to the phase speed. The 

wavelength and phase speed are related using the simple equation (Pierce, 1989): 

 𝜆 =
𝑐𝑙

𝑓
 (101) 

Methods that allow the wavelength to be determined, such as SCL and foil mapping, 

are already well established in sonoreactor research [Section 1.2.2.1]. Case Study 4 

already introduced the variable ℎ which is the half-wavelength. The measurement for 

ℎ can be obtained from SCL and foil mapping results. The main caveat is that reliable 

measurements for ℎ  can only be obtained if distinct and uniform standing wave 

characteristics can be observed.  
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5.2.2.3 Relating 𝜆 to 𝑛 Using the CP Dispersion Relation 

The monodisperse, linear CP model allows the working fluid to be characterised using 

a single phase-speed, which can be related to wavelength measurements in Eqn. (101).  

The dispersion relation of the model in Eqn. (23) also allow the value of 𝜆 to be directly 

related to a corresponding value of 𝑛. For the complex valued wavenumber 𝑘𝑐, the 

predicted phase speed can be obtained from the real part of the wavenumber 

(Commander and Prosperetti, 1989): 

 𝑐𝑐 =
𝜔

𝑟𝑒𝑎𝑙(𝑘𝑐)
 (102) 

A useful way to visualise this relationship is to plot the phase speed and wavelength 

as a function of bubble density, as shown in Figure 5.3. The data shown were plotted 

using the physical properties in Table 4.9 used in Case Study 5 for the 40 kHz system. 

The plot clearly established how the wavelength measurement can be related to a 

corresponding value of bubble density.  
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Figure 5.3: Relationship between the phase speed and wavelength as a function of the uniform 

bubble density, plotted at 40 kHz and bubble radius of 5 µm. 

 

5.2.2.4 Procedure for the Proposed Semi-Empirical Approach 

It is henceforth summarised the procedure for applying the semi-empirical approach: 

1. Standing wave data are obtained for the sonoreactor of interest, using 

methods such as SCL and foil mapping. 

2. Obtain the measurements for the wavelength as twice the distance between 

the antinodal points in the standing wave (𝜆 = 2ℎ). 

3. The corresponding value for 𝑛 is determined using the dispersion relation of 

the monodisperse linear CP model using interpolation plots (Figure 5.3). 

4. Lastly, solve the sonoreactor acoustics model along with other modelling 

aspects (boundary conditions, meshes, etc.) using the linear CP model and the 

tuned bubble density. 
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5.3 Case Study 6: Demonstrating the Semi-Empirical Tuning Approach  

This short study briefly demonstrates and discusses the 𝜆-tuning approach proposed 

in the previous section. The hexagonal sonoreactor investigated in Case Study 5 shall 

be used for this purpose. Previously in Case Study 5, the results revealed that the linear 

CP model suffered from uncertainties surrounding the bubble density parameter, 

which led to deviations from the experimental observation. In the following 

demonstration, this issue is shown to be addressed using the 𝜆-tuning approach. 

 

5.3.1 Methodology 

The same hexagonal sonoreactor studied in Case Study 5 was used. The strong 

standing wave characteristics previously observed in the SCL images in Figure 4.30 

were found to be suitable for the wavelength measurements. The uniform 

characteristics of standing waves also support the assumptions of the 𝜆 -tuning 

approach. The methods followed the procedure outlined in Section 5.2.2.4 . The 

average wavelength for each frequency was extracted from SCL images using the 

image processing software, ImageJ. After smoothing and establishing the reference 

scale, the ‘Plot Profile’ function was used to quantify the distances between the 

luminance peaks of standing waves that correspond to bright bands in the SCL images. 

The wavelength was taken as twice the average distance between peaks, as: 

 
𝜆𝑆𝐶𝐿 = 2ℎ𝑆𝐶𝐿  

(103) 

The corresponding tuned phase speed was determined from: 

 
𝑐𝑆𝐶𝐿 = 𝜆𝑆𝐶𝐿,𝑓𝑖

× 𝑓𝑖   
(104) 
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Acoustic pressure simulations were performed using the monodisperse linear CP 

model and followed the same strategy presented in Case Study 5 [Section 4.3.2]. The 

complete procedure for this demonstration is graphically summarised in Figure 5.4. 

Only the 40 kHz and 70 kHz cases were considered due to the lack of a distinct standing 

wave pattern for the 28 kHz SCL images.  

 

 

Figure 5.4: Graphical description of the proposed semi-empirical approach to characterise the 

hexagonal sonoreactor using SCL image data. 

 

5.3.2 Results and Discussion 

5.3.2.1 Wavelength Measurement from SCL Images 

The value of ℎ𝑆𝐶𝐿  was determined as an averaged value from well-formed SCL 

standing waves. Figure 5.5 describes the measurement process for the 40 and 70 kHz 

standing wave. After image processing for noise reduction and contrast adjustment, a 

luminosity profile was extracted from the region of interest, as shown by the yellow 

lines in Figure 5.5 (a). The luminance profile was defined parallel to the direction of 

wave propagation to minimise error. The luminosity profiles plot the brightness of the 

pixels as shown in Figure 5.5 (b). The ‘peaks’ of the luminosity profile were used to 
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quantify the distance between the bright bands, allowing ℎ𝑆𝐶𝐿  to be averaged across 

the region of interest.  

 

 

Figure 5.5: The wavelength measurement process: (a) Distinct and uniform standing waves for 

the 40 and 70 kHz case; (b) Normalised luminosity plots. 

 

Note that the standing wave pattern (and subsequently ℎ𝑆𝐶𝐿 ) was not perfectly 

uniform, which was to be expected for a real system. With reference to Table 5.3, the 

mean values of ℎ𝑆𝐶𝐿  measured for the 40 and 70 kHz systems were noted to be 1.57 

and 0.94 cm, respectively. These values correspond to wavelengths of 3.14 and 1.87 

cm. The luminosity plots in Figure 5.5 (b) showed that the distance between the 

antinodes were consistent within the regions of interest. For the 40 kHz case, the 

variance was found to be 0.06 cm2 while the coefficient of variation is 17 % across 8 

measurements. On the other hand, the 70 kHz case exhibits a variance of 0.04 cm2 

and a coefficient of variation of 21 % across 9 measurements. The measurements 
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revealed a wavelength-shortening effect of 15.1 % and 11.4 % for the 40 and 70 kHz 

cases, which correspond to reduced phase speeds of 1256 and 1309 m/s respectively. 

 

Table 5.3: Averaged wavelength measurements from SCL images compared to theoretical 

pure-liquid wavelength. 

Frequency 

(kHz) 

Avg. Wavelength, 

𝝀𝑺𝑪𝑳 (cm) 

Theoretical Wavelength, 

𝝀 =
𝒄𝒍

𝒇
 (cm) 

Difference 

(%) 

28 N/A* 5.29 N/A* 

40 3.14 3.70 -15.12 

70 1.87 2.12 -11.43 

* Data unavailable due to lack of clear standing wave patterns in the 28 kHz case. 

 

5.3.2.2 Empirical Tuning of the Bubble Density Parameter 

The measured wavelength was used to determine the corresponding value of 𝑛 using 

the dispersion relation in Figure 5.3. The empirically determined bubble density 

magnitude for the 40 kHz case is 𝑛 = 6.04 × 1010 m-3, while the 70 kHz system resulted 

in a value of 𝑛 = 4.31 × 1010 m-3. Interestingly, the difference between the values of 𝑛 

determined for both frequencies was relatively small. Furthermore, it is also 

remarkable that the values compared well with the common range of magnitudes 

used in recent bubbly-liquid studies (Delacour et al., 2020; Sarac et al., 2020; Trujillo, 

2020; Chen et al., 2021). As shown in Table 5.2, recent works had used 𝑅0  values 

within 3-10 µm, and the bubble density magnitudes within 1 × 109 to 1 × 1011 m-3. The 

findings of this case study support the use of these simulation parameters for bath-

type systems.   
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The reported values of 𝑛 were calculated for an equilibrium bubble radius of 5 µm, as 

assumed in Case Study 5. With reference to the CP dispersion relation, the effect of 

the equilibrium radius 𝑅0  on the 𝜆 -tuning approach was also studied. Figure 5.6 

illustrates the effect of the 𝑅0 on the phase speed predicted for a range of 𝑛. It was 

noted that a larger 𝑅0 would result in a larger phase-speed reduction for the same 

bubble density. The formulation of the dispersion relation described by Eqns. (23) - 

(28) revealed a rather complex dependency on 𝑅0. In contrast 𝑛 has a more linear 

effect on the dispersion relation, the parameter 𝑅0 not only determines the effect of 

resonance, but also the individual contributions of viscous, thermal, and radiation 

damping (Commander and Prosperetti, 1989). The main takeaway from this result is 

that the bubble-field parameters should not be considered separately, but instead the 

entire specification has to be evaluated as a whole when compared between studies. 

 

 

Figure 5.6: The effect of different equilibrium bubble radii on the relationship between the 

bubbly-liquid phase speed and the bubble density. 
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5.3.2.3 Sonoreactor Characterisation Using Tuned Bubble Density 

An obvious concern with regard to the tuning of 𝑛 is that it may invalidate the integrity 

of the simulation. It is reiterated that the wavelength is solely a function of the 

acoustic property. The acoustic pressure field solutions would still depend on other 

factors, such as the performance of the bubbly-liquid model, boundary conditions, and 

mesh quality. In fact, it was argued that the tuning method would allow other aspects 

of the bubbly-liquid model to be better studied since the uncertainties related to 

bubble field parameters can be addressed. Furthermore, characterisation methods 

such as SCL or foil mapping can provide a better bulk representation of the working 

fluid, as opposed to using pressure measurements at a single point (Delacour et al., 

2020) or a single profile (Trujillo, 2020). This consideration becomes particularly 

important in models that assumed uniform bubble fields, such as recent applications 

of the linear CP and NH models [Table 5.2]. Additionally, such methods were well 

established among researcher, further improving its accessibility.  

Figure 5.7 shows the 40 kHz acoustic pressure field of the hexagonal sonoreactor 

simulated using the tuned value of 𝑛 = 6.04 × 1010 m-3. The qualitative agreement of 

the antinode prediction across the standing wave compared well with the SCL data. 

Although slight deviations can be observed, the standing wave was approximately 

uniform across the geometry. This agreement supports the viability of the 

monodisperse linear CP model for the characterisation of the standing wave in the 

studied sonoreactor. The observation also suggests that the previously observed 

deviations in Case Study 5 were the result of incorrectly specifying the bubble field 

parameters. For the 70 kHz case validated in Figure 5.8, the simulation results solved 

using a tuned value of 𝑛 = 4.31 × 1010 m-3 were found to be less conclusive due to the 
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thinner standing wave patterns in the SCL image. It was noted that future studies 

should explore more reliable methods to capture the experimental antinode at higher 

frequencies. 

 

Figure 5.7: The comparison of the antinode prediction of the monodisperse linear CP model 

using a tuned bubble parameter of 𝑛 = 6.04 × 1010 m-3 for the 40 kHz case. 

 

 

Figure 5.8: The comparison of the antinode prediction of the monodisperse linear CP model 

using a tuned bubble parameter of 𝑛 = 4.31 × 1010 m-3 for the 70 kHz case. 
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Despite the promising outlook, it was noted that there was much room for 

improvement. Current results only showed experimental agreement in terms of 

standing wave (phase speed) predictions. Pressure magnitude validation was omitted 

due to the lack of hydrophone measurements for the hexagonal sonoreactor. The 𝜆-

tuning approach was also based on the theoretical foundations of the monodisperse 

linear CP model. This led to certain restrictions on its applicability, which can be 

considered a key limitation. In particular, the approach was noted to be restricted to 

systems that comply with the key assumptions outlined in Section 5.2.2.1.  

Nonetheless, the results suggested that the proposed approach can be viable if the 

assumptions are obeyed. Based on observations from previous antinode 

characterisation works (Lewis et al., 2007; Tangsopa and Thongsri, 2019), a case can 

be made that conventional bath-type configurations approximate the key 

assumptions well. In contrast, past observations for sonotrode configurations (Dahlem 

et al., 1999; Vanhille and Campos-Pozuelo, 2006; Žnidarčič et al., 2014) suggest that 

the assumption of bubble field uniformity would be violated due to the large gradients 

in bubble field distribution.  

While the need to perform experimental measurements was noted to be a drawback 

of the 𝜆-tuning approach, this additional step was argued to be a reasonable cost to 

improve the accuracy and practicality of the linear CP model. Taking into account the 

large knowledge gaps that currently limit bubble field characterisation efforts, the 

proposed approach was able to strike a good balance between accuracy and 

practicality. Ultimately, the application of this method for a larger sample size of 

sonoreactors is required to provide key insights for its viability. It is also possible that, 
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with enough empirical data, a consolidated databank for bubble field characteristics 

could be created to serve as a reference for future simulation work. Until better 

methods are developed for the purpose of characterisation of the bubble field in large 

sonoreactors, the 𝜆-tuning approach was argued to be a promising alternative to 

bypass the uncertainties of bubble field characterisation. 
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5.4 Case Study 7: Preliminary Investigation for Multi-Frequency 
Systems 

A notable rising trend in the field of sonoreactor and power ultrasound research is the 

application of multi-frequency systems. There have been an increasing number of 

studies that reported better performance for multi-frequency operations as opposed 

to mono-frequency sonoreactors (Brotchie et al., 2008; Son et al., 2010). These 

findings were supported by higher cavitation potential measurements in experiments 

(Avvaru and Pandit, 2008; Guédra et al., 2015) and stronger cavitational dynamics in 

theoretical studies (Suo et al., 2018; Ye et al., 2019). The increased popularity of multi-

frequency ultrasound also raised interests in the simulation and design of multi-

frequency sonoreactors (Matafonova and Batoev, 2020; Wongwuttanasatian and 

Jookjantra, 2020; Wang et al., 2021).  

Literature review identified several key knowledge gaps that need to be addressed. 

The biggest problem remains to be the lack of modelling strategies, as past 

developments mainly considered mono-frequency systems. When considering multi-

frequency systems, frequency-domain models face a key limitation due to the 

assumption of periodicity [Section 2.2]. Thus, a conventional approach to simulate 

multi-frequency systems is to use a time-domain model. There were only two known 

works that considered multi-frequency acoustic pressure fields in sonoreactors. The 

first is an early study published by Servant et al. (2003), who very briefly commented 

on the topic. Using a modified Caflisch equation, their study solved for the 3D time-

dependent pressure fields of multi-frequency systems in a 1-L sonoreactor. However, 

the discussion and validation of the accuracy of their results were limited. Another 

recent study by Tangsopa and Thongsri (2021) used the pure-liquid model to optimise 
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an ultrasonic cleaning tank. They noted that the multi-frequency time-domain 

simulations took 16 times longer to solve compared to frequency-domain simulations 

of single-frequency cases. Their findings showed that the time-domain strategy was 

more resource intensive, which was supported by the results in Case Study 1.  

Although they are a straightforward solution to the problem, time-domain methods 

present a glaring number of drawbacks and challenges. As suggested by the results in 

Case Study 1, stricter solver tuning, longer simulation times, and larger memory 

requirements make the approach less desirable compared to frequency domain 

counterparts. Furthermore, nonlinear bubbly-liquid models in the time domain were 

found to be prone to numerical blow-up [Figure 2.1] and other instabilities (Louisnard, 

1998). Compared to frequency-domain models, dispersive behaviour such as 

attenuation is also harder to mathematically implement (Ginsberg, 2018). This is clear 

in the work of Dähnke et al. (1999a), who went to great lengths to incorporate the CP 

dispersion relation into a wave equation. Lastly, transient bubbly-liquid models are 

very demanding for large geometries. The modified wave equation proposed by 

Dähnke et al. (1999a) remains the most practical approach to this day for the 

consideration of ultrasonic baths. Other time-domain models such as variations of the 

Caflisch (Caflisch et al., 1985), Westervelt (Doinikov et al., 2013) and Korteweg–de-

Vries–Burgers (KdBV) equations were considered. However, these models are still 

restricted to 1D simulations (Kanagawa et al., 2021) or are only applicable for very low 

amplitudes and small geometries (Tejedor-Sastre and Vanhille, 2017).   

In light of this, a simplified method of approximating the multi-frequency acoustic 

pressure based on acoustic theory was proposed. Studies on waves and signals used 
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frequency-domain methods to characterise time-domain problems, even in 

nonharmonic cases (Prinn, 2021). Similarly, if the acoustic behaviour in the 

sonoreactor satisfies linear wave theory, the sum of frequency-domain solutions can 

be a good prediction for the multi-frequency response. In this study, the frequency-

domain solutions were used to characterise a multi-frequency sonoreactor using the 

root-mean-squared pressure based on Parseval’s theorem (Ginsberg, 2018). This 

study argues that this approach can be used as a preliminary characterisation 

technique to circumvent the difficulties of time-domain models in the early design and 

optimisation stages. 

This study also extended the semi-empirical CP model demonstrated in Case Study 6 

to address multi-frequency acoustic pressure fields. For the consideration of multi-

frequency attenuation, a linear and nonlinear strategy were studied. This investigation 

consists of three main parts. First, the theory involved in the proposed method is 

presented and the assumptions are outlined and discussed. The second part involves 

evaluating the performance of the method against multi-frequency SCL standing wave 

patterns obtained from the hexagonal sonoreactor. A total of three dual-frequency 

cases and one triple-frequency case were studied. Lastly, several aspects related to 

multi-frequency attenuation and pressure field characterisation are discussed.
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5.4.1 Theoretical Derivation 

The relationship between the multi-frequency acoustic pressure 𝑝𝑇(𝒓, 𝑡)  to the 

frequency-domain solutions, 𝑃(𝒓) is presented. Consider a space domain (𝒓) which 

experiences two sinusoidal time-harmonic pressure fields 𝑝1  and 𝑝2  at angular 

frequencies of 𝜔1 and 𝜔2 respectively: 

 
𝑝1(𝒓, 𝑡) = ℜ[𝑃1(𝒓)𝑒𝑖𝜔1𝑡] 

(105) 

 
𝑝2(𝒓, 𝑡) = ℜ[𝑃2(𝒓)𝑒𝑖𝜔2𝑡] 

(106) 

The space-dependent pressure amplitudes 𝑃1(𝒓)  and 𝑃2(𝒓)  can be obtained by 

solving the Helmholtz equation for each harmonic: 

 
∇2𝑃1(𝒓) + 𝑘1

2𝑃1(𝒓) = 0 
(107) 

 
∇2𝑃2(𝒓) + 𝑘2

2𝑃2(𝒓) = 0   
(108) 

An important assumption is that the system obeys linear wave theory (Ginsberg, 2018), 

where the superposition principle allows the total pressure, 𝑝𝑇 to be written as the 

sum of two pressure fields: 

 

𝑝𝑇(𝒓, 𝑡) = 𝑝1(𝒓, 𝑡) + 𝑝2(𝒓, 𝑡) =
1

2
(𝑃1(𝒓)𝑒1𝜔1𝑡 + 𝑃2(𝒓)𝑒𝑖𝜔2𝑡 + 𝑐. 𝑐. ) 

(109) 

where 𝑐. 𝑐. denotes the complex conjugates. The time-averaged mean-squared value 

of 𝑝𝑇(𝒓, 𝑡) can be directly obtained using Parseval’s theorem, where 𝑃𝑚  represents 

the frequency-domain solution for the 𝑚𝑡ℎ harmonic: 

 

(𝑝𝑇̅̅ ̅)2 =
1

2
∑ |𝑃𝑚|2

𝑀

𝑚=1

=
1

2
(|𝑃1|2 + |𝑃2|2) 

(110) 
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It is also assumed that the steady-state time-averaged acoustic pressure in the 

sonoreactor can be interpreted as the root-mean-squared pressure. This can be 

written for two harmonics as follows: 

 

𝑃𝑟𝑚𝑠(𝒓) = √
1

2
(|𝑃1|2 + |𝑃2|2)   

(111) 

A generalised formulation for more than two harmonics is: 

 

𝑃𝑟𝑚𝑠(𝒓) = √
1

2
∑ |𝑃𝑚|2𝑀

𝑚=1    

(112) 

It is clear from Eqn. (111) and (112) that 𝑃𝑟𝑚𝑠(𝒓) is a function of space, calculated 

directly from the frequency-domain solutions 𝑃𝑚 . This is valid if the total pressure 

does not depend on the phase of the components8.  

 

5.4.2 Modification of the CP Model for Multi-Frequency Considerations 

The lack of information on the approximation of multi-frequency bubbly-liquid effects 

in the frequency domain presents a significant challenge. This matter has yet to be 

explored in literature. The methods used in this study take inspiration from the work 

of Dähnke et al. (1999a), who modified a frequency-domain model to approximate 

acoustic behaviour in their transient simulations. It is imperative to state that the 

following methods are preliminary and based on simplifying assumptions.  

 

8 This is also commonly known as incoherent waves, as opposed to coherent waves where the phase 
difference between components can affect the sum of the solution (Ginsberg, 2018).  
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5.4.2.1 Semi-Empirical Monodisperse Linear CP Model 

Initial investigations in this case study used a linear CP model to characterise the 

acoustic pressure fields of the individual harmonics. The method followed the 

procedures demonstrated in Case Study 6. The specifications of the bubble field 

parameters warrant an interesting discussion. Previously, the 𝜆-tuning approach had 

been suggested to be able to provide a good estimation of the bubble density 

parameter 𝑛 . In this investigation, the approach was adopted with a slight 

modification to account for multi-frequency effects. It was assumed that the multi-

frequency bubbly liquid in the hexagonal sonoreactor can be approximated using the 

acoustic properties averaged from single frequency measurements in Case Study 6. 

This was done to use the same acoustic property to characterise the entire working 

fluid, instead of using different properties for each harmonic. Since the working fluid 

was simultaneously irradiated by multiple frequencies, it makes sense that all 

harmonics were travelling through the same acoustic domain, and thus should be 

simulated using the same acoustic properties.  

 

5.4.2.2 Consideration of Nonlinear Attenuation 

This investigation also considered the nonlinear CP approach presented in Section 

5.1.2.2. An attempt to incorporate the mechanisms of the NH model led to several 

challenging issues that were unable to be resolved, and thus were left for future work. 

It was hypothesised that incorporation of the NH model would require re-establishing 

the entire theoretical foundation using multi-frequency bubble dynamics, which was 

noted to be out of the current scope.  
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The nonlinear CP formulation was adopted by applying only the nonlinear mechanism 

on the imaginary part of the wavenumber. The real part of the wavenumber (the 

propagation wavenumber 𝜅) was assumed to be constant in space for all simulated 

frequencies. The main reason for this implementation was to ensure numerical 

stability and consistency. Preliminary tests using a full nonlinear CP model for the 

multi-frequency simulation would fail to achieve convergence even after rigorous 

solver tuning. It was also noted that the convergence of the simulations showed strong 

sensitivity to the changes in simulation geometry. Scrutiny of the convergence plots 

strongly suggested that this was caused by the nonlinear phase speed similar to that 

discussed in Sections 4.1.2.7 and 4.3.3.5.  

The formulation of multi-frequency bubbly-liquid attenuation was challenging 

because of the strong dependence of bubble attenuation on the frequency and the 

lack of information in literature. Even within the restricted framework of quasilinear 

sonoreactor acoustics, the number of knowledge gaps is large and could not be fully 

explored within this work. For this work, the attenuation mechanism was simplified to 

serve as an exploratory investigation on this matter. In multi-frequency systems, the 

pressure fields share the same spatial domain. Thus, it makes sense to model the 

attenuation using a single bubble field. It was assumed that the bubbly-liquid 

attenuation can be characterised by using the frequency loading of the dominant 

harmonic (brightest standing wave) observed from the SCL images. Clearly, this is an 

oversimplification of the matter. However, there is yet to be a more suitable 

alternative due to the limited knowledge on this matter. 
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Another key assumption was to consider the nonlinear attenuation as a function of 

the local root-mean-squared pressure (effective pressure). A modified variation of the 

nonlinear formulation presented by Dähnke et al. (1999a) was used. The method 

assumes a linear relationship between the bubble fraction 𝛽 and the local absolute 

pressure |𝑃| as: 

 
𝛽 = 𝑋|𝑃|    

(113) 

For a monodisperse system, 𝑋 can be written as: 

 

𝑋 =
𝛽

|𝑃|
=

4𝜋𝑛𝑅0
3

3|𝑃|
   

(114) 

In this investigation, the linear relationship specified for the bubble fraction was 

assumed to depend on the effective pressure, 𝛽 = 𝑓(𝑃𝑟𝑚𝑠(𝒓)) . The modified 

relationship can then be written as: 

 
𝛽 = 2 × 10−9𝑃𝑟𝑚𝑠 

(115) 

For a monodisperse system, the relationship can also be written in terms of bubble 

density parameter 𝑛 as: 

 

𝑛(𝒓) =
6×10−9𝑃𝑟𝑚𝑠

4𝜋𝑅0
3    

(116) 

Outside of the above modifications to account for multi-frequency effects, the 

framework of the nonlinear CP model used in this study followed past investigations. 

The value of the linear coefficient 𝑋 = 2 × 10−9 𝑃𝑎−1  directly referenced past 

literature (Jamshidi et al., 2012; Fang et al., 2018). In this study, the piecewise 

condition of 𝑛 was not considered, according to the reasoning presented in Section 

5.1.2.3. 
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5.4.3 Methodology 

5.4.3.1 Multi-Frequency SCL and Calorimetry Data 

In this investigation, the same sonoreactor from Case Study 5 was used (Manickam et 

al., 2014; Tiong et al., 2017b). Figure 5.9 shows a simplified representation of the 

sonoreactor and defines the orientation of the frequencies associated with the 

pressure-emitting walls used in subsequent discussions. 

 

 

Figure 5.9: (a) Visual representation of the hexagonal sonoreactor dimensions; (b) Orientation 

of the frequencies involved. 

 

The acquisition and pre-processing methods of SCL images were described in Case 

Study 5 and omitted here. Calorimetry data for the specification of pressure 

boundaries are shown in Table 5.4. The pressure magnitude values were obtained 

under the assumption that the pressure intensity is equally distributed across the 

entire emitting wall of the sonoreactor.  
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Table 5.4: Calorimetry data for the calculation of Dirichlet transducer boundary condition for 

multi-frequency simulations (Tiong et al., 2017a).  

Frequency 

(kHz) 

Power, OM 

(W) 

Total Surface Area, As 

(m2) 

PTr,28 

(bar) 

PTr,40 

(bar) 

PTr,70 

(bar) 

28 + 40 403.7 0.165 0.86 0.86 - 

28 + 70 528.5 0.165 0.98 - 0.98 

40 + 70 446.8 0.165 - 0.90 0.90 

28 + 40 + 70 657.3 0.248 0.89 0.89 0.89 

 

5.4.3.2 Numerical Simulation  

All acoustic pressure simulations were carried out using 2D models with full-scale 

geometry in the frequency domain. Only harmonics that correspond to the 

frequencies of active transducers in the multi-frequency system were considered (e.g., 

only 28 and 40 kHz harmonics were simulated for the 28-40 kHz operation). The 

frequency response of other harmonics in the system, such as cavitation broadbands 

(Avvaru and Pandit, 2009), were not considered. Streaming effects were also assumed 

to be negligible, based on the minimal streaming activity observed in the SCL data. The 

meshing step essentially followed Case Study 5. Pressure-emitting boundary 

conditions for the simulated harmonics were specified in terms of Dirichlet pressure 

from the calorimetry data in Table 5.4. In contrast to Case Study 5, sound-soft 

boundaries were used to represent inactive walls. This was done to ensure numerical 

consistency with the Dirichlet pressure-emitting boundaries. The previous results in 

Case Study 5 [Figure 4.29] confirmed that the differences are minimal and do not 

affect the key observations of this study. The physical parameters used for the multi-

frequency simulations are listed in Table 5.5. All parameters were assumed to be 

constant in the domain, and the gas within the bubbles was modelled using properties 

of air. All properties were taken at standard values at 25°C. For the investigation using 



220 
 

the linear CP model, an equilibrium bubble radius of 5 μm was used. The value of the 

bubble density 𝑛  used in this study referenced the 𝜆 -tuning results for single-

frequency operations in Section 5.3.2.1. 

 

Table 5.5: Physical properties (25°C) used in Case Study 7. 

Parameter Value Unit Description 

𝐷𝑔 2.19 × 10-5 m2/s Diffusivity of air within bubble 

𝑐𝑙 1481 m/s Speed of sound in pure water 

𝛾𝑙 1.41 - Adiabatic index for air 

𝜇𝑙 0.001 Pa.s Dynamic viscosity of water 

𝜌𝑙  997 kg/m3 Density of water 

𝜎𝑙  
 0.0725 N/m Surface tension of water 

 

In the second half of this study, an exploratory investigation was carried out using a 

modified nonlinear CP model outlined in Section 5.4.2.2. The propagation 

wavenumber was assumed to be a constant tuned phase speed of 𝑐𝑎𝑣𝑔= 1277.5 m/s 

for all simulated harmonics. It was also assumed that the dispersive nature of the 

studied system is negligible, which was supported by simulation results. For the 

nonlinear attenuation, it was assumed that the attenuation curve can be 

approximated using the dominant harmonic. The 28-40, 40-70, and 28-40-70 kHz 

cases were characterised using the 40 kHz attenuation curve, while the 28 kHz was 

assumed to be dominant in the 28-70 kHz case. The following outlined the steps 

involved for the multi-frequency nonlinear CP approach: 
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1. Bubble density magnitudes were obtained for a range of root-mean-squared 

pressures using Eqn. (116). Monodisperse CP attenuation curves were 

prepared.  

2. Frequency domain simulations were performed for each harmonic to obtain 

their corresponding frequency domain solutions. 

3. The root-mean-squared pressure field, 𝑃𝑟𝑚𝑠(𝒓)  was calculated from time-

harmonic solutions using Eqn. (112). 

4. The bubble density field 𝑛(𝒓) and by extension the attenuation field 𝛼(𝒓) in 

the simulation domain was determined from 𝑃𝑟𝑚𝑠(𝒓)  based on the 

attenuation curve prepared in Step 1. 

5. Steps 2 to 4 were iterated until the nonlinear pressure and attenuation fields 

achieved convergence. 

 

To better represent the iteration loop of the modified nonlinear CP approach, a 

graphical representation is provided in Figure 5.10. 

 

 

Figure 5.10: Graphical representation of the nonlinear CP iteration loop. 
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5.4.4 Results and Discussion 

5.4.4.1 Analysis of Multi-Frequency SCL Images 

Figure 5.11 depicts the top-down SCL images captured for four multi-frequency 

configurations of the studied sonoreactor. The frequency combinations considered in 

this study were 28-40, 28-70, 40-70, and 28-40-70 kHz. The presence of standing wave 

patterns was found to be more distinct compared to single-frequency cases in Case 

Study 5. Similar to Case Study 5, a focus was placed on the region of interest near the 

centre of the reactor, as data near the edges suffer from uncertainties caused by metal 

wall reflections. With reference to Figure 5.11 (a), (c), and (d), 40 kHz standing waves 

were observed to be most distinct and dominant, followed by 28 kHz standing waves. 

Standing waves of 70 kHz were dim for all images and could not be distinctively 

characterised, with the only exception being the 28-70 kHz shown in Figure 5.11 (b). 

 

5.4.4.2 Linear CP Approach 

Bubble field characterisation for the multi-frequency operation brought up several 

interesting considerations. When applying the linear CP approach, the main challenge 

lies in the question of whether to simulate each frequency using the same value of 𝑛. 

Realistically, all harmonics share the same bubble field. The problem remains in 

obtaining the value of 𝑛 that characterises this behaviour. One possibility was to tune 

the value of 𝑛 for each multi-frequency operation. However, the multi-frequency SCL 

images contain the superposition of multiple standing waves, which made the 

luminosity plots quite unreliable for multi-frequency tuning.  
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Figure 5.11: SCL images of multi-frequency combinations; with design power of 600 W for dual-

frequency and 900 W for tri-frequency. 

 

Alternatively, it was noted that the 𝑛 tuned from single frequency operations did not 

exhibit significant differences between the 40 and 70 kHz operation. Thus, it was 

hypothesised that an averaged value of 𝑛 approximated from previous measurements 

would be able to characterise the multi-frequency system. Table 5.6 summarises the 

acoustic properties of the bubbly liquid for each considered harmonic. A value of 𝑛 = 

5.2 × 1010 m-3 was assumed. This value was obtained by taking the average bubble 

density measured from single frequency operation in Case Study 6. As shown later, 

this assumption resulted in surprisingly good agreement in terms of antinode 

comparisons.  
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Table 5.6: Bubble field parameters used for each harmonic in the multi-frequency simulation. 

Frequency 

(kHz) 

Equi. Bubble 

Rad. 𝑹𝟎 (µm) 

Uniform Bubble 

Density, 𝒏 (m-3) 

Phase Speed 

𝒄𝒃𝒍 (m/s) 

Att. Coeff. 

𝜶 (Np/m) 

28  

5 5.2 × 1010 

1278.1 0.75 

40 1277.8 1.535 

70 1276.5 4.89 

 

Figure 5.12 shows the root-mean-squared pressure field predicted for the four 

frequency combinations using the linear CP approach. The dominance of the 40 kHz 

standing wave is apparent. Subsequent investigations in Section 5.4.4.4 suggest that 

this was caused by constructive interference. It will also be shown in Section 5.4.4.4 

that the predicted antinodes show remarkable agreement with the SCL images. This 

was interesting as these results support the hypothesis that the averaged value of 𝑛 = 

5.2 × 1010 m-3
 can be used to approximate the multi-frequency bubble field. 

 

 

Figure 5.12: RMS acoustic pressure solved using the linear CP approach. 



225 
 

5.4.4.3 Nonlinear CP Approach 

A different perspective was explored for the modelling strategy of multi-frequency 

attenuation by considering a nonlinear CP approach. This approach assumed bubble 

density to vary with the local effective pressure magnitude. The motivation was to 

explore key concepts that might be useful for future work, such as incorporating 

pressure-dependent attenuation strategies. The implementation of the nonlinear CP 

and NH models was found to be similar during the course of this work. The ultimate 

goal of this approach is to establish a modelling strategy that depends on a 

wavenumber derived from multi-frequency bubble dynamics. 

The propagation wavenumber was assumed to be constant for all harmonics at 𝑐𝑏𝑙 = 

1277.5 m/s. This value was averaged from Table 5.6 as it had been shown to give a 

good approximation of the phase speed. Naturally, this assumes that the real and 

imaginary parts can be considered separately. This approach is comparable to studies 

that assumed the pure liquid phase speed but considered separate attenuation effects 

(Yasui et al., 2007; Rashwan et al., 2020). The assumption was used to simplify the 

modelling strategy, and future studies should attempt to investigate a more 

comprehensive approach based on theoretical derivation. Figure 5.13 shows the root-

mean-squared pressure field solved using the nonlinear CP approach. From the 

perspective of phase speed prediction, the standing wave profiles observed were 

similar to those obtained using the linear CP approach in Figure 5.12. This was 

expected because the values of the phase speeds used were similar. The key 

differences were found to be the lower pressure magnitudes predicted by the stronger 

attenuation, which changed the scaling of the colour legend.  
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Figure 5.13: Plots of the root-mean-squared acoustic pressure solved for the four multi-

frequency cases using the nonlinear CP approach. 

 

The nonlinear CP attenuation mechanism used in this study was based on methods 

discussed in Section 5.1.2.2, where a linear relation was used for the pressure-

dependent bubble density. For this study, the incorporation of the pressure 

dependent bubble density, 𝑛(|𝑃|), also drew inspiration from the NH model by using 

an interpolation curve to reduce the load on the nonlinear solver. Figure 5.14 plots 

the pressure-dependent bubble density parameter 𝑛  and the corresponding 

attenuation coefficient plotted against 𝑃𝑟𝑚𝑠 . Since the CP dispersion relation is 

essentially monoharmonic, the 40 kHz attenuation curve was assumed for the 28-40, 

40-70, and 28-40-70 kHz cases, while the 28 kHz attenuation was assumed in the 28-

70 kHz simulation. One could consider this to be an extension of the concept first 

demonstrated in the work of Dähnke et al. (1999a). Naturally, the approach is a major 

simplification and should be considered as a novel exploration of this concept. The 



227 
 

linear CP and nonlinear CP methods ultimately explored two different strategies of 

modelling multi-frequency attenuation. As implied, the key differences relate to the 

linearity of the model as graphically described in Figure 5.15. The linear CP model 

assumed that the harmonic fields are strictly independent, and the attenuation is a 

function of separate frequencies in the bubble field. This allowed the attenuation to 

be defined independently for each harmonic using the dispersion relation. The only 

constraint that was imposed is that all harmonics share the same local bubble field.  

 

 

Figure 5.14: Bubble density (left axis) and its associated attenuation magnitude (right axis) 

plotted as a function of root-mean-squared pressure for the harmonic fields of 28 and 40 kHz. 

 

 

Figure 5.15: Attenuation mechanism of the linear and nonlinear approach in this investigation. 
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The nonlinear CP approach explored the idea that energy dissipation at a local point 

in space affects all harmonics. The validity of this assumption in relation to the 

dispersive nature of the working fluid remains to be investigated. The approach also 

assumes that the individual harmonic fields are nonlinearly related, for which the 

extent of this heuristic modification on the integrity of the framework is unknown. The 

lack of experimental data to verify this matter restricts the current discussion. In light 

of this, this work mainly considered the numerical aspects of the results.  

 

5.4.4.4 Antinodal Verification of Standing Wave Profiles 

The simulation outputs were compared with SCL images. Considering that both the 

linear and nonlinear methods yield similar standing wave profiles, the following 

verification study used the results of the latter. The smaller contrast between different 

harmonics allowed for better observation of the composite standing wave pattern.  

Figure 5.16 (a) shows the superimposition of the simulated effective pressure field 

𝑃𝑟𝑚𝑠(𝒓) onto one of the SCL images for the 28-40 kHz case. A magnified view of the 

region of interest is shown in Figure 5.16 (b), where it can be seen that the high 

𝑃𝑟𝑚𝑠(𝒓) regions aligned well with bright SCL bands captured for the standing wave of 

40 kHz. Figure 5.17 shows another image that better captured the 28 kHz standing 

wave, where it can be seen that the 28 kHz standing waves exhibit similar agreement, 

albeit with dimmer and less obvious bands. 
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Figure 5.16: (a) Comparison between 𝑃𝑟𝑚𝑠(𝑟) predicted from simulation and SCL data for the 

28 – 40 kHz case, (b) Region of interest showing the agreement of the 40 kHz standing wave. 

 

 

Figure 5.17: (a) Comparison between 𝑃𝑟𝑚𝑠(𝑟) predicted from simulation and SCL data for the 

case of 28-40 kHz case; (b) Region of interest showing the agreement of the 28 kHz standing 

wave. 

 

The results for the 40-70 kHz dual-frequency case were less conclusive. SCL bands 

were significantly dimmer compared to other frequency combinations, and the 

standing waves were less distinct. The low intensity of the 70 kHz standing wave made 

it indistinguishable from the surrounding visual noise, and thus qualitative comparison 
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was limited. However, a detailed inspection revealed that the 40 kHz standing wave 

bands agreed well with the simulated antinode locations, as shown in Figure 5.18 (b).  

 

 

Figure 5.18: (a) Comparison between 𝑃𝑟𝑚𝑠(𝑟) predicted from simulation and SCL data for the 

40 – 70 kHz case; (b) Region of interest showing the weak agreement of the 40 kHz standing 

wave. 

 

Compared to the previous two cases, where a single standing wave dominates, the 

28-70 kHz SCL images managed to yield clear dual-frequency standing waves. Figure 

5.19 (b) shows a very clear superimposition between the 28 and 70 kHz standing 

waves. The 28 kHz bands in Figure 5.20 were also much more distinct, arguably more 

than the single frequency cases shown in Case Study 5. Comparison results in Figure 

5.19 and Figure 5.20 showed the best agreement between simulation and SCL of all 

studied cases. It is worth noting that this was an unexpected observation, as the 70 

kHz SCL standing wave formations in previous cases were difficult to be characterised. 

It was hypothesised that the good characterisation in this case was due to the larger 

frequency difference. However. The exact mechanism that led to this observation 
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remains unclear. Current knowledge suggests that it could be related to multi-

frequency synergistic effects in cavitation studies (Suo et al., 2018).  

 

 

Figure 5.19: (a) Comparison between 𝑃𝑟𝑚𝑠(𝑟) predicted from simulation and SCL data for the 

28 – 70 kHz case superimposed along the 28 kHz standing wave; (b) Region of interest showing 

very good agreement. 

 

 

Figure 5.20: (a) Comparison between 𝑃𝑟𝑚𝑠(𝑟) predicted from simulation and SCL data for the 

28 – 70 kHz case; (b) Region of interest showing very good agreement for the fine 70 kHz wave 

patterns. 
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Tri-frequency SCL images showed 40 kHz standing waves to be the most dominant, 

followed by 28 kHz and 70 kHz. The results in Figure 5.21 and Figure 5.22 reconfirmed 

previous findings in dual-frequency cases where standing wave patterns coincided 

well with the SCL data, notably with a clear dominance of the 40 kHz standing waves. 

  

 

Figure 5.21: (a) Comparison between 𝑃𝑟𝑚𝑠(𝑟) predicted from simulation and SCL data for the 

tri-frequency case; (b) Region of interest comparing the 40 kHz standing wave. 

 

 

Figure 5.22: (a) Comparison between 𝑃𝑟𝑚𝑠(𝑟) predicted from simulation and SCL data for the 

tri-frequency case; (b) Region of interest comparing the 28 kHz standing wave. 
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The characterisation of multi-frequency composite standing waves in sonoreactors at 

this scale has yet to be reported in literature. The results presented in this case study 

provided valuable insights to the behaviour of multi-frequency standing waves in large 

sonoreactors. The strong agreement in the results suggests that the multi-frequency 

standing wave patterns can be characterised by linear superposition of frequency-

domain solutions. This is an interesting finding because studies on multi-frequency 

sonoreactor acoustics had predominantly focused on nonlinear effects using time-

domain models (Tejedor-Sastre and Vanhille, 2017; Zhang et al., 2017). It should, of 

course, be noted that previous works only considered horn-type configurations or very 

small geometries.  

The good agreement observed across multiple antinode comparison images suggests 

that future modelling strategies for bath-type configuration should account for the 

possibility of a more linear acoustic behaviour. The implication of this is significant, as 

it suggests that the use of resource intensive time-domain models to characterise 

multi-frequency sonoreactors can be circumvented. This would greatly improve the 

efficiency of the design and optimisation process for multi-frequency sonoreactors. 

The good agreements also strongly support the characterisation method used to 

predict standing waves in the simulations, which is the linear CP model. This result 

further supports the hypothesis that the linear CP model is capable of providing good 

characterisation of bath-type sonoreactors.  

Another finding that further supports the applicability of the linear CP model is that 

the phase speed tuned from Case Study 6 managed to correctly characterise the 

acoustic behaviour. The agreement for all three studied frequencies using a single 
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bubble density (5.2 × 1010 m-3), which approximately corresponds to a phase speed of 

1277.5 m/s, is an interesting finding. The results further support the viability of the 𝜆-

tuning approach. The finding also suggests that the acoustic property of the working 

fluid does not change significantly between single- and multi-frequency operations. 

Additionally, the results also imply that the working fluid exhibits similar acoustic 

behaviour for all three frequencies, and dispersive effects in the bubbly-liquid are 

weak. Nevertheless, it is proposed that further investigation on this matter should be 

carried out using a larger sample size of bath-type sonoreactors, before strong 

conclusions can be drawn.  

 

5.4.4.5 Interpretation of the Multi-Frequency Pressure Field 

The lack of hydrophone measurements to validate the attenuation mechanism of the 

model limited the following section to a theoretical discussion. Nevertheless, the 

interpretation of the multi-frequency results presents several points of discussion. In 

monoharmonic studies, cavitation activity can be interpreted using the absolute 

acoustic pressure field, |𝑃|. The same rationale was not suitable for multi-frequency 

systems, since the domain experiences multiple pressure fields simultaneously. The 

total pressure is dependent on the phase differences between harmonics and is no 

longer sinusoidal. In this case study, it was assumed that the potential for cavitation 

activity can be characterised using the root-mean-squared pressure 𝑃𝑟𝑚𝑠(𝒓), which 

can be interpreted as the effective pressure (Ginsberg, 2018). It is of interest to 

compare this method to interpreting the cavitation potential using the sum of 

absolute pressures, or the maximum achievable local pressure magnitude: 
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 𝑃𝑚𝑎𝑥(𝒓) = ∑𝑎𝑏𝑠(𝑃(𝒓)𝑖) (117) 

To illustrate the two ideas, Figure 5.23 graphically describes the pressure variation at 

a single point in space experiencing three harmonic acoustic pressure fields oscillating 

at their respective amplitudes of 𝑃1(𝒓) , 𝑃2(𝒓)  and  𝑃3(𝒓) . The total pressure 

𝑝𝑡𝑜𝑡𝑎𝑙(𝒓, 𝑡)  is the sum of the three harmonics, and it is clear that it is no longer 

sinusoidal. The difference between the root-mean-squared pressure 𝑃𝑟𝑚𝑠(𝒓) and the 

maximum achievable magnitude 𝑃𝑚𝑎𝑥(𝒓) is graphically represented. Figure 5.24 plots 

the same pressure profiles in terms of their absolute value. The absolute total pressure 

clearly shows the point where the sum of three harmonics reached their highest 

pressure-potential, which is essentially 𝑃𝑚𝑎𝑥(𝒓) . Figure 5.24 shows that 𝑃𝑟𝑚𝑠(𝒓) 

better represents the variation of local pressure across time, |𝑝𝑡𝑜𝑡𝑎𝑙|. Furthermore, it 

is shown in Figure 5.24 that using 𝑃𝑚𝑎𝑥(𝒓) is less representative of the mean transient 

behaviour, as it only characterises the acoustic pressure at a specific time. 

 

  

Figure 5.23: Illustration comparing 𝑃𝑟𝑚𝑠(𝒓)  (horizontal solid line) and 𝑃𝑚𝑎𝑥(𝒓)  (horizontal 

dotted line). The fine-dotted curves represent different frequencies oscillating at magnitudes 

𝑃1(𝒓), 𝑃2(𝒓) and 𝑃3(𝒓), and 𝑝𝑡𝑜𝑡𝑎𝑙(𝒓, 𝑡) is the sum of pressure (solid curve). 
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Figure 5.24: The graphical representation in Figure 5.23 plotted in terms of absolute pressure. 

 

To extend this discussion to include the simulation results, the peak values in the 

domain for both 𝑃𝑟𝑚𝑠(𝒓) and 𝑃𝑚𝑎𝑥(𝒓) are tabulated in Table 5.7. It should be noted 

that only the nonlinear CP attenuation model was considered. It is clear that the 

problem with using 𝑃𝑚𝑎𝑥(𝒓) is that the magnitude becomes larger as the number of 

summed frequencies increases. One could see how using 𝑃𝑚𝑎𝑥(𝒓)  to characterise 

cavitation potential can lead to overprediction when considering many harmonics. 

 

Table 5.7: Comparison between peak values of RMS pressure and Maximum pressure for 

frequency combinations. 

Simulation 

Peak root-mean-squared 
pressure, 𝑷𝒓𝒎𝒔,𝒑𝒆𝒂𝒌 (bar) 

Peak maximum pressure, 
𝑷𝒎𝒂𝒙,𝒑𝒆𝒂𝒌 (bar) 

28 – 40  1.365 2.478 

28 – 70  1.358 2.715 

40 – 70  1.121 2.203 

28 – 40 – 70  1.185 3.168 

 

Investigations were also extended to consider the effects of 𝑃𝑚𝑎𝑥(𝒓) and 𝑃𝑟𝑚𝑠(𝒓) on 

the nonlinear attenuation mechanism. To visualise how the use of 𝑃𝑚𝑎𝑥(𝒓) instead of 
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𝑃𝑟𝑚𝑠(𝒓) in Eqn. (112) would differ from the current methods, a simulation of the 

triple-frequency set-up was carried out by setting: 

 𝛽 = 2 × 10−9𝑃𝑚𝑎𝑥(𝒓) (118) 

The results are summarised in Figure 5.25. It is clear that the pressure fields predicted 

for Case 2 were significantly lower than those for Case 1. This was caused by the 

dependance of attenuation on 𝑃𝑚𝑎𝑥(𝒓). The spatial plot of 𝑃𝑚𝑎𝑥(𝒓) in Figure 5.25 (b) 

and (d) yields similar observations. Qualitatively, it is interesting to note that Figure 

5.25 (a) best represents the standing wave characteristics observed in the SCL image 

in Figure 5.11 (d). In particular, the dominance and shape of the 40 kHz standing wave 

compared well with the tri-frequency SCL images in Figure 5.21 and Figure 5.22.  

 

 

Figure 5.25: Case study on two different interpretations of the acoustic pressure magnitude 

for the tri-frequency case: Pressure field characterised using 𝑃𝑟𝑚𝑠(𝒓) (a and c); Pressure field 

characterised using 𝑃𝑚𝑎𝑥(𝒓) (b and d). 
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5.4.4.6 Analysis of the Multi-Frequency Standing Wave Characteristics 

In this work, the dominance of the 40 kHz standing waves over the 28 and 70 kHz 

standing waves was clearly observed in the SCL images. Figure 5.26 plots the individual 

harmonics simulated for the triple frequency operation using the nonlinear approach. 

Even in the simulations, it is evident that the 40 kHz harmonic showed higher absolute 

pressure magnitudes. A plausible reason for this observation is the effect of geometry 

on the interference patterns for each operating frequency. 

 

 

Figure 5.26: Simulated single frequency components for the triple frequency case. Image (a), 

(b) and (c) represents the 28, 40 and 70 kHz frequency-domain absolute pressure. Results are 

plotted using a shared colour legend. 

 

The different wavelengths for each harmonic can result in various degrees of 

constructive / destructive interference due to differences in phase. For the physical 

hexagonal sonoreactor used in this study, the 40 kHz standing wave was found to 

experience stronger constructive interference over the other two harmonics. This is 

shown by simulating the same system using different sizes of hexagonal geometry. 

Figure 5.27 shows the maximum pressure magnitude calculated for each frequency 

component as the side length of the hexagonal geometry was varied from 10 to 20 cm. 
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By varying the side length, the distance between two opposing transducers changes 

in the hexagonal geometry, resulting in different interference behaviours.  

 

 

Figure 5.27: Peak absolute pressure for 28, 40 and 70 kHz with increasing hexagonal 

sonoreactor sizes. The physical sonoreactor used in this work has a side length of 140 mm, 

marked as the vertical line. 

 

It was observed that the peak absolute pressures exhibit a slight downward trend as 

the size of the reactor increased because attenuation effects became greater with 

propagation length. Figure 5.27 shows an oscillating pattern for the pressure 

magnitude as the dominance of constructive and destructive interference effects 

alternated with changes in the effective geometry. The physical hexagonal 

sonoreactor used in this work has a side length of 140 mm, where it can be clearly 

shown that the 40 kHz frequency experiences strong constructive interference effects. 

On the other hand, the 70 kHz standing wave was noted to experience strong 

destructive interference, and the 28 kHz case was noted to be neither. These findings 

explain the dominance of 40 kHz standing waves observed in the SCL images. The 
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results also shed light on the observations in Figure 5.19 and Figure 5.20 where the 

composite standing wave of 28 and 70 kHz was found to be very distinct. Results 

suggests that the observation was caused by their similar peak pressures. The results 

presented in Figure 5.27 were also noted to be useful for the optimisation of similar 

systems.  

 

5.5 Concluding Remarks for Chapter 5 

In Chapter 5, a series of investigations and discussions were presented to address 

current limitations surrounding the linear CP model. An in-depth review on the topic 

of bubbly-liquid characterisation was conducted, and a novel semi-empirical approach 

for determining the bubble density parameter was derived and proposed.  

Case Study 6 demonstrated the proposed semi-empirical approach and validated 

antinode prediction results using existing SCL data. The proposed 𝜆-tuning method 

was argued to be a better alternative to hydrophone tuning methods, and was shown 

to provide a simple way to circumvent the uncertainties of bubble field 

characterisation while preserving the integrity of the simulation framework, while also 

using fewer resources. Validation results were positive, where the tuned bubble 

densities improved antinode characterisation results in the simulations. Despite 

promising prospects, several limitations need to be addressed to improve confidence 

in the method. This includes validation studies for pressure magnitude prediction and 

the consideration of more complex geometries. The strict assumptions imposed upon 

the approach also restricted its applicability for horn-type configurations.  
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Case Study 7 presented a novel exploratory investigation on the concept of 

characterising multi-frequency pressure fields using frequency-domain simulations. 

The investigation was the first to characterise multi-frequency sonoreactors at such 

scales. The linear and nonlinear CP methods were considered under monodisperse 

conditions, and modified to account for multi-frequency effects. Multi-frequency 

validation results using SCL showed that standing wave profiles exhibit remarkable 

agreement. The observations strongly support the viability of the CP model. The 

results also supported the hypothesis which stated that the multi-frequency pressure 

field can be characterised using linear superposition and Parseval’s theorem. This 

outcome suggests that the novel modelling strategy can be a promising substitute for 

transient methods, while offering faster solution time, lower memory consumption, 

and more streamlined simulation strategies.  

The SCL verification results also suggested that the use of a single phase speed to 

characterise multi-frequency systems to be viable. The study also presented an in-

depth discussion on the potential simulation strategies that can be applied to multi-

frequency systems. This included the use of a root-mean-squared pressure for 

cavitation modelling and attenuation modelling for composite pressure fields. 

Nevertheless, current prospects remain preliminary, as future work had to be done to 

consider a wider range of configurations and conditions. It was suggested that future 

studies should consider more experimental validation, as the lack of hydrophone 

measurements was noted to be a key limitation.  
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Chapter 6: Conclusions and Future Work 

6.1 Key Contributions  

The aim of this research is to identify, validate, and improve modelling strategies for 

large-scale sonoreactors. The scope of this work focused on the performance of 

frequency-domain modelling strategies in bath-type sonoreactors, specifically for the 

pure-liquid, linear CP, and NH models in FEM simulations. Compared to horn-type 

configurations which dominated current literature, bath-type sonoreactors remain to 

be understudied. This research project reports several in-depth investigations on the 

topic of modelling in large, bath-type sonoreactors. Across the seven case studies 

reported in this thesis, the key contributions of this work can be summarised under 

three main topics.  

The first key contribution pertains to the topic of the wavelength-shortening effect. In 

Case Study 5, the wavelength-shortening effect was systematically documented in the 

SCL images obtained for the hexagonal sonoreactor. This finding was noted to be 

important, as the effect had not been experimentally characterised in past literature 

which used smaller geometries. The reduction of phase speed and subsequent 

wavelength shortening in sonoreactors was found to be an important consideration 

when modelling sonoreactor behaviour, evident in Case Studies 4, 5, 6 and 7. The work 

in Case Study 4 comprehensively analysed the importance of considering geometric 

properties when applying traditional antinode validation methods. The implications 

on past and current antinode validation results were also discussed, notably when 

used for the validation of modelling strategies. In Case Studies 5, the prediction of the 

wavelength shortening effect was shown to be strongly tied to the bubble density 

term in bubbly-liquid models. The work in Case Studies 6 and 7 improved current 
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modelling strategies in terms of predicting the wavelength shortening effect. This was 

achieved using the 𝜆 – tuning method developed in Chapter 5. 

The pressure and antinode validation results in Case Studies 3 and 5 revealed 

important information on the performance of popular modelling strategies in bath-

type sonoreactors. In-depth comparison of the pure-liquid, linear CP, and NH models 

was noted to be useful for future modelling efforts. The validation results strongly 

suggested that bath-type configurations can be modelled using simpler linear models; 

in contrast to horn-type configurations which required much comprehensive acoustic 

and numerical considerations. This claim was further supported by the applicability of 

linear superposition for the multi-frequency sonoreactor, which showed remarkable 

agreement in Case Study 7. These insights were found to be useful, as they support 

the use of more efficient strategies to model bath-type sonoreactors.  

In addition to the performance of acoustic pressure models, this work also provided 

useful information on other aspects of sonoreactor modelling. In particular, the large 

geometries involved required simplified representations to be explored. The resource 

requirements highlighted in Case Studies 1 and 3 were found to be useful for future 

reference. The results of Case Study 2 revealed interesting numerical behaviour 

exhibited by acoustic boundary conditions in FEM simulations which should be 

considered in modelling strategies. Furthermore, the need to consider the effective 

acoustic properties when solving bubbly-liquid models was highlighted.  

Chapter 5 of this work presented an in-depth consideration on the topic of bubble 

field characterisation for bubbly-liquid models. This work revealed a large knowledge 

gap regarding the applicability of current bubbly-liquid models, which was caused by 
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the lack of data for bubble density. A novel method to address this knowledge gap was 

presented in the form of the 𝜆-tuning method, albeit only with limited applicability. 

Last but not least, the preliminary idea presented in Case Study 7 showed promising 

prospects in light of remarkable antinode validation results. It was found that the 

proposed methods can significantly simplify the modelling process of multi-frequency 

bath-type sonoreactors. 

 

6.2 Summary of Case Studies  

Case Study 1 showed that frequency-domain models compared well with time-

domain models in terms of antinode prediction, but showed slight deviations in terms 

of pressure magnitude prediction. The deviations in pressure magnitude were shown 

to be caused by idealised conditions of the test simulation, which led to periodic 

phase-cancelling behaviour. Case Study 2 showed that Dirichlet boundary conditions 

can be used to model sonoreactor walls in Case Studies 5, 6 and 7. Results showed 

that the added accuracy of a fully coupled simulation was not significant for the 

regions of interest investigated in this work. Interestingly, test cases also revealed that 

Neumann boundary conditions behave differently depending on the size of the 

boundary, mesh, and shape function. The uncertainties caused by this behaviour 

should be considered in future studies.  

Case Study 3 validated the pure-liquid, linear CP, and NH models using hydrophone 

measurements for a large ultrasonic bath. Results for the pure-liquid model suggest 

that it can be considered for systems with low attenuation and negligible reflection 

effects. At high-frequencies and idealised wall reflections, the model risks predicting 
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unrealistic pressure magnitudes. The linear CP model yielded mixed results, as 

performance was strongly dependent on the bubble density. Tuning the bubble 

density yielded significant improvements for the pressure predictions. The result 

highlighted the need to focus on improving the bubble field characterisation aspect of 

bubbly-liquid models. 1D validation of the NH and nonlinear CP models suggested that 

current implementations overpredict the attenuation in bath-type systems. The 

investigation also brought attention to a key concern regarding pressure validation 

studies. Tests using several wall boundary types coupled with the linear CP model 

suggest a complex behaviour resulting from the effective phase speed, geometry, 

constructive interference, and boundary reflection which could affect result quality.  

Case Study 4 reported a novel investigation on the effect of the geometry-to-

wavelength ratio, 𝐷𝑆/𝜆, on the qualitative result of antinode validation studies. The 

study identified the importance of geometry and scale in existing antinode validation 

methods. This issue becomes an important issue when studying large-scale 

sonoreactors. Both heuristic and theoretical analyses presented strong evidence that 

the effect of phase-speed reduction by bubbly liquids cannot be clearly captured by 

antinode characterisation methods if the studies were conducted with a small 𝐷𝑆/𝜆. 

The findings provide a good explanation for the lack of wavelength-shortening 

observations in past studies. Additionally, results also implied against the use of small-

scale antinode measurements to validate acoustic pressure models. The study 

involved the development of a simple idealised model which was used to approximate 

the geometry threshold in which the wavelength-shortening effect can be captured as 

additional validation points. The proposed model was noted to be a useful metric for 
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comparing and characterising antinode validation results between sonoreactors of 

different geometries. 

Case Study 5 reported an antinode validation study for a hexagonal bath-type 

sonoreactor using SCL data. Validation was carried out at frequencies of 28, 40 and 70 

kHz with 𝐷𝑆/𝜆  values of 4.6, 6.6 and 11.5 respectively. The SCL images strongly 

showed the presence of wavelength-shortening, notably for the standing wave of 40 

kHz. This finding was deemed important as it was yet to be documented in literature 

due to the lack of comprehensive large-scale validation. The pure-liquid model 

overpredicted the wavelength due to the neglection of bubbly-liquid effects. The 

linear CP model was able to clearly characterise phase-speed reduction in the 

simulation results. The predicted wavelength reduction was uniform across the 

domain, similar to that observed in the SCL results. Similar to Case Study 3, the 

performance of the linear CP model was strongly dependent on the bubble density 

specifications. Limited discussion can be made for the NH model due to its complex 

wavelength prediction mechanism. Antinode validation results showed that the model 

underestimated the average phase-speed reduction in the studied system, but the 

main causes were unclear.  

Case Study 6 demonstrated the 𝜆 -tuning approach derived in Chapter 5 to 

characterise the bubble density parameter for the hexagonal sonoreactor. The 

approach managed to circumvent the uncertainties related to bubble field data and 

better preserved the integrity of the simulation framework. Antinode validation 

results using SCL images showed remarkable agreement which strongly supported the 

validity of the proposed approach. The 𝜆 -tuning method was identified to be a 
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promising tool to support current simulation strategies until better bubble density 

data can be made available for sonoreactors. A key limitation of the approach is that 

it was developed using heuristics and simplifying assumptions. Further tests such as 

hydrophone validation were suggested to further confirm its viability. 

Case Study 7 explored a novel concept for characterising multi-frequency 

sonoreactors using frequency-domain models. The assumption of linear superposition 

was used to approximate the multi-frequency solution. The linear and nonlinear CP 

models were modified using several key assumptions to predict multi-frequency 

pressure fields. Antinode verification results showed remarkable agreement for the 

composite standing waves, which suggest that the strategy can be a promising 

substitute for transient methods when tackling multi-frequency problems. This was 

an important discovery, as the proposed method was noted to be more efficient 

compared to transient methods. Nevertheless, prospects remained to be strongly 

preliminary, as future work needs to be done to study a wider range of configurations 

and conditions. The multi-frequency validation results also further supported the 

viability of the CP model for the characterisation of bath-type configurations, 

consistent with findings in Case Study 5 and 6. Ancillary simulations also revealed the 

effect of geometry on standing wave magnitudes of each harmonic, which explained 

the dominance of the 40 kHz standing wave in both SCL and simulation results.
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6.3 Future Work 

Several knowledge gaps were identified and suggested for future work: 

First, future work should further validate the acoustic pressure models by addressing 

the limitations encountered in this project. In particular, the acoustic pressure 

validation study can be improved by considering a more controlled experimental set-

up to limit the effects of wall reflection on the acoustic pressure. In terms of antinode 

validation studies, future work should consider investigating the wavelength-

shortening effect in more sonoreactor systems to better understand its effects on 

sonoreactor acoustics. The lack of hydrophone measurement data for the hexagonal 

sonoreactor used in this work should also be addressed, and additional validation 

should be carried out using the obtained measurements. If possible, a full 3D 

simulation model could also be considered in future investigations. In general, the 

acoustic pressure models should also be validated for a larger number of systems to 

strengthen the findings of this work.  

The consideration of empirical methods to characterise the bubble field parameters 

required for the bubbly-liquid models also presents an interesting topic for future 

research. In this work, the 𝜆-tuning method had shown to be promising in terms of 

characterising a suitable bubble density parameter for the hexagonal sonoreactor. 

Additional tests should be performed to investigate the viability of the proposed 

method in more sonoreactor systems. Future work should also consider extending the 

proposed idea to consider more wavelength measurement methods (e.g., foil maps) 

or to improve the dispersion relation used to relate the wavelength to the bubble 

density.  
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Last but not least, the idea of characterising the acoustic pressure of a multi-frequency 

system using frequency-domain models based on linear superposition was shown to 

be promising in Case Study 7. However, further validation in terms of pressure 

prediction is still required. There is also a large knowledge gap on the topic of 

modelling multi-frequency attenuation effects using bubble dynamics. The use of 

more comprehensive wavenumber predictions similar to the NH model can be 

considered to improve the proposed method. 
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