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Abstract

This thesis covers an attempt to construct a supervised machine learning

model, for use in prediction of formation enthalpy values for novel metal

hydride compositions. Further work, making use of static density functional

theory calculations as well as ab initio and machine learning force field

molecular dynamics simulations, to model oxygen transport in a La-Mg

co-doped barium titanate system is also reported.

Utilising open-source, readily available repositories of previously calculated

results, two gradient boosting regression models are developed; separately

trained to qualitatively predict formation enthalpy data for metal hydrides,

and for intermetallic alloys. Once developed, such predictions are

compared to enthalpy values, calculated from first principles, for held-

out samples from the original database, and known experimental values

for select materials. A process is outlined for generating new ternary

hydride compositions, previously unseen to the model, from which a

select sample of promising predictions are subjected to crystal structure

prediction processes. By introducing structural information, first principles

calculations are used to determine formation enthalpies for comparison to

predictions.

Intentionally trained using descriptors derived solely from chemical

composition, without any dependence on crystal structure, the resultant
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model ultimately struggles to generalise prediction of formation enthalpies

across the diverse geometry space of hydride materials. The decades-

long quest for reliable crystal structure prediction simply from chemical

composition proves to be a challenge for effective model validation by

calculation, given the range of hydride classes.

Oxygen transport through the prototypical perovskite system of barium

titanate is studied to investigate the methodology of characterising oxide

ion diffusion through the bulk of such a material. Inspired by unpublished

experimental results, this system is then co-doped with lanthanum and

magnesium, thus introducing titanium and oxygen vacancies, allowing

for investigation of oxygen diffusion by means of dynamic simulation

methods. This is performed using the relatively new method of on-the-

fly machine learning force field molecular dynamics, an approach to the

modelling of dynamical systems which, in theory, drastically reduces the

time and computational cost of traditional methods based solely on ab

initio molecular dynamics.

Approximations of low-energy transition paths for oxygen movement in

the local vicinity of point defects suggest energetically favourable diffusion

pathways introduced by lanthanum doping. Molecular dynamics simulation

methods are used to construct oxygen self-diffusion trajectories, from which

diffusion mechanics can be determined. These results suggest higher rates

of diffusion events in magnesium-doped barium titanate than when co-

doped with magnesium and lanthanum. Additionally, mobility in the

co-doped system is shown to be influenced by geometry of lanthanum

dopants.
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Chapter 1

Introduction

1.1 Global climate concerns

With an increasing global impetus to reduce, and ultimately eliminate,

carbon emissions in a technically challenging time scale, the need to shift

the energy industry away from a dependence on fossil fuels is of great

importance. From an engineering perspective, development of alternative

energy technologies is the crux of this issue and, as such, there is interest

in a solution, or combination of methods, that would be able to satisfy

the needs of both developed and developing countries [1], and be practical

enough to be adopted and implemented for a range of uses.

1.2 Potential of hydrogen as a fuel

It is proposed that a contributing factor to this necessary paradigm shift

could be the increased utilisation hydrogen in many aspects of life. The

most abundant element in the universe, only trace amounts of the gas are
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1.2. POTENTIAL OF HYDROGEN AS A FUEL

found in the air on Earth but it is plentiful in the planets organic life and

far-reaching oceans. Possessing one of the highest specific energy density

values per mass compared to other fuels, the potential is clear to see [2].

However, to its detriment, low pressure in ambient conditions results in

a low energy density per volume. Due to this, efforts are being made to

develop storage solutions that would offer an energy-dense hydrogen store,

whilst also taking into consideration the weight of such a system [3].

An approach for integrating hydrogen fuel into the current energy mix

would be the introduction of fuel cells into pre-existing appliances as a

clean and renewable energy carrier [4]. Fuel cells are electrochemical devices

which generate direct current electricity by reacting hydrogen with oxygen,

forming water as a sole by-product. These differ from batteries in that they

are not a closed system, and require a continuous supply of reactants in

order to maintain performance. Therefore, suitable storage and supply

mechanisms are crucial aspects which can impact the performance of the

system as a whole.

As with any technology, there is an ever-present objective to further

improve performance and efficiency, but in such a developing market there

is also the need to facilitate the uptake by means such as improving

practicality and ease of conversion. A key point of interest with regards

to storage is for mobile applications, such as light-duty fuel cell vehicles.

To incentivise commercialisation, factors which include performance and

driving experience are sought to be comparable to road vehicles that

are currently available on the market or, with time, to even surpass

them. Additionally, aspects such as range between refuelling stops, the

ease of such a refuelling process, and maintenance and running costs,

require consideration to encourage adoption. These matters are intrinsic

to the architecture of the system and can be viewed as a material

2



1.3. TECHNICAL CHALLENGES OF TRANSITION

challenge of components throughout a system’s design. Nonetheless, the

opportunity to mitigate the emissions from transport, which accounts for

approximately 20% of global CO2 emissions, exists as strong motivation for

such development [5].

1.3 Technical challenges of transition

Technical performance targets, as set out by a partnership of the United

States Department of Energy (DOE) and the United States Council for

Automotive Research (USCAR), along with energy and utility companies

and organisations, provide industry-level system objectives for the near-

future and an ultimate commercially viable target [6]. As of 21-Jan-2022,

these are:

Storage Parameter Units 2020 2025 Ultimate

System Gravimetric Capacity

Usable specific-energy from H2

(net useful energy/max system energy)
kWh/kg

(kg H2/kg system)
1.5

(0.045)
1.8

(0.055)
2.2

(0.065)

System Volumetric Capacity

Usable energy density from H2

(net useful energy/max system volume)
kWh/L

(kg H2/L system)
1.0

(0.030)
1.3

(0.040)
1.7

(0.050)

Storage System Cost

Storage system cost
$/kWh net
($/kg H2)

10
(333)

9
(300)

8
(266)

Table 1.1: Light-duty fuel cell vehicle system storage targets, per the US
Office of Energy Efficiency & Renewable Energy.

As can be seen, there is an emphasis on gravimetric and volumetric

capacity as well as acknowledgement that the overall cost of the system

is a key limiting factor as to adoption rates. It should be noted that these

3



1.4. ON-BOARD HYDROGEN STORAGE SYSTEMS

targets are given for light-duty fuel cell vehicles such as a private passenger

vehicle. With respect to other applications, different targets may apply on

a situational basis.

Industrial vehicles, for example forklift trucks and excavators, make use of

counterweights to balance heavy loads. There is the potential to utilise the

weight of the fuel cell and hydrogen store for this purpose [7]. Elsewhere,

efforts are being made to decarbonise the global freight network, with

cargo ships, heavy goods vehicles, and trains all shown to be convertible to

hydrogen power - again, being applications with a reduced dependence on

system weight [8]. Similarly for stationary stores, the volumetric capacity

and cost take priority.

Considering this, the multivariable optimisation of both gravimetric and

volumetric capacity, along with system cost and performance, can be seen

to have a range of solutions dependent on use case and tolerance, allowing

for investigation of a broad selection of component materials. This thesis

will focus on the storage materials gravimetric and volumetric capacities,

as opposed to system capacity, which may include the weight and volume

of components such as the physical tank and cooling apparatus, amongst

others.

1.4 On-board hydrogen storage systems

The phase diagram of hydrogen as a function of temperature and pressure is

presented in Figure 1.1. It shows three lines which represent condensation,

freezing and sublimation, where hydrogen transitions between its solid,

liquid and gas phases. Also specified are the triple point, boiling point and

critical point. The first of these, the triple point, represents the required

4



1.4. ON-BOARD HYDROGEN STORAGE SYSTEMS

temperature and pressure in which hydrogen can exist in all three phases

simultaneously (13.8 K, 7.2 kPa). The boiling point represents the normal

boiling point (NBP); the temperature at which the substance boils at

atmospheric pressure, which is 20.3 K for hydrogen. The critical point,

denotes the conditions for the coexistence of the liquid and vapour phases

(33.145 K, 1.3 MPa) [9].

Figure 1.1: Sketch of the phase diagram for hydrogen as a function of temperature and
pressure.

1.4.1 Physical-based methods

Physical storage methods refer to the notion that hydrogen can be

contained by a material such that there are no strong chemical bonds

between the hydrogen and the host compound. The most prevalent

technologies of such class are compressed gaseous hydrogen (CGH2), and

liquid hydrogen (LH2). Both of these methods tend to take the form of a

physical tank system simply filled with the corresponding fuel.

5



1.4. ON-BOARD HYDROGEN STORAGE SYSTEMS

The low energy density of hydrogen gas at ambient conditions lends itself to

being stored as a compressed gas, in order to allow for a sufficient capacity

energy store within a practical footprint. It is necessary for a light-duty

vehicle to carry 5-6 kg of hydrogen to give a range of approximately 500 km.

In order to maintain the available cabin space that might be expected from

such a vehicle, it is required to store this gas in the region of 350-700 bar.

The upper limits of viability for compression are dictated by the flattening

of the mass energy density at these high pressures [10]. The inherent risks

and energy costs of compressing and storing high pressure gas requires

stringent safety solutions and development of lightweight storage tanks.

Liquid hydrogen utilises the vast increase in mass density when compared

to the gaseous state. A comparable energy density of CGH2 systems at 700

bar can be achieved at −253◦C and 1 bar. Obvious practicability concerns

revolve around the initial liquefaction and ability to maintain the store at

these low temperatures. Hydrogen liquefaction is a very energy intensive

process with 30% of the stored chemical energy consumed in doing so [11].

Heat transfer from external sources can lead to evaporation at which point

any boil-off gas must be vented so as to maintain a certain temperature,

resulting in a non-trivial loss of fuel unless these very low temperatures can

be maintained. Ultimately, with the additional requirement of an effective

cryogenic tank, the total cost of LH2 systems are at least comparable to

that of CGH2 systems.

1.4.2 Materials-based methods

Alternatively, storage solutions that utilise interatomic interactions are

often referred to as materials based methods. Be it by adsorption in

porous or otherwise large surface area systems, making use of liquid

6



1.5. METAL HYDRIDES AS A STORAGE SOLUTION

organic hydrogen carriers, or by creating chemical, interstitial, and complex

hydrides; utilising chemical systems to store hydrogen has the potential for

much higher volumetric densities than physical-based methods [12]. Whilst

operating conditions for CGH2 and LH2 are largely reliant on the properties

of hydrogen itself in the corresponding physical state, conditions for these

chemical systems can vary significantly as a function of the chemical species

involved, with the energy and/or temperature required for sorption and

desorption reliant on the strength of the hydrogen interactions with the

rest of the material.

1.5 Metal hydrides as a storage solution

In this work, the focus will be on metal hydride materials, which are usually

interstitial or complex hydride species. These take the form of a solid-state

fuel with higher hydrogen volumetric density than physical-based stores

whilst operating at safer, more accessible temperatures and pressures.

Usually consisting of a metallic crystalline host structure, hydrogen anions

bond to these less electronegative elements to form a stable hydride species.

The transition from a metallic to hydride form is characterised by three

stages of reaction. The first (α) entails hydrogen in a solid solution with the

metal, and the final (β) is the complete hydride phase. The intermediary

state (α + β) is the phase of ongoing reaction, where both such states co-

exist and transition from one to the other. On a pressure-composition (PCI)

isotherm plot (see sketch in Figure 1.2), this transformation is represented

by a flattening of the curve to a so-called plateau pressure. The system

can exist exclusively in α or β phase for very low or high hydrogen to

metal ratio (H/M), respectively. Another caveat is that with an increase
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1.5. METAL HYDRIDES AS A STORAGE SOLUTION

Figure 1.2: Sketch of a PCI plot for a range of temperatures, with relative hydrogen
capacity against pressure for several temperatures.

in temperature the plateau pressure rises, narrowing the region of co-

existence. It is ultimately eliminated if this exceeds the critical temperature

(Tc). The parameterisation of such plots are composition specific. If the

hydrogenation and dehydrogenation processes, which are exothermic and

endothermic respectively, can be consecutively performed with minimal

hysteresis or degradation, then a given system may be deemed practically

cyclic.

The change in Gibbs free energy (J mol−1) of a system at a given

temperature (K) relates to the change in standard enthalpy ∆H (J mol−1)

and the change in standard entropy ∆S (J K−1 mol−1), defined as:

∆G = ∆H − T∆S. (1.1)

The strength of the bond between hydrogen and metal is related to the

enthalpy term, and the entropy term accounts for the transition from

molecular to bound hydrogen, along with contributions from the metal
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atoms. For many metal hydrides, the value of ∆S is approximated to be

the standard entropy value of hydrogen (S300K = 130.77 J K−1 mol−1
H2
),

corresponding approximately to contributions from the loss of degrees of

freedom when gas phase hydrogen is absorbed into the metallic crystal

[13, 14].

Whilst metal hydrides have been of consideration for decades [15], the

search for an ‘optimal’ hydride as a storage solution is by no means trivial.

Dependent on the application, operating requirements and conditions are

situational. Important parameters include extrinsic factors, for example

the practicality of a system in a given scenario as a function of volumetric

and gravitation densities. Additionally, factors intrinsic to material choice

such as uptake/discharge mechanics and kinetics, and hysteresis must be

considered [16].

Low temperature hydrides are suggested to be cyclable storage solutions

that operate at a reasonably low pressure, so as to reduce reliance on

hydrogen compressors, whilst at, or just above, ambient temperature [17].

This would be useful in reducing the amount of external energy required

to be input, improving the total system efficiency. For light-duty vehicles,

this might allow for more efficient recycling of otherwise waste heat energy

from fuel cell operation so as to assist the hydrogen supply mechanism.

Properties sought after for these materials include being lightweight, with

high gravitational and volumetric densities, to have a suitable plateau

pressure at a near-ambient temperature, and to have sufficiently stable

hydrogenation and dehydrogenation products.
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1.6 Fuel cell systems

Solid oxide fuel cell (SOFC) technologies offer a means of sustainable,

environmentally friendly energy production. Through the utilisation of

fuels such as hydrogen or synthesis gas, this technology allows for conversion

of chemical energy into electrical energy by use of an electrochemical device,

with negligible emissions. The structure consists of the nominative solid

oxide ceramic electrolyte that separates an anode and a cathode, which

are in a fuel rich and oxygen rich environment respectively, as depicted

in Figure 1.3. Catalytic membranes, selectively permeable with respect to

oxygen or hydrogen, are used to construct a membrane electrode assembly

on either side of the electrolyte.

Figure 1.3: Schematic of a solid oxide fuel cell system.

Fuel is decomposed at the anode into protons and electrons, and an external

circuit carries the free electrons to the cathode, where they are used for

the reduction of oxygen. Oxygen ions move across the dense electrolyte,

10
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combining with hydrogen ions at the anode side of the device to complete

the circuit, producing water as a result [18].

1.6.1 Importance of oxygen transport for fuel cell

systems

One of the rate-limiting factors for electrochemical activity in a SOFC

system is the oxygen ionic transport mechanics of component materials.

Electrolyte design requires a mechanically stable dense material with

sufficient ionic conductivity to maintain good performance of the cell, whilst

minimising the electrical conductivity to prevent leakage current or short

circuiting [19]. SOFCs typically operate at temperatures of between 600◦C

and 1000◦C, at which temperatures oxygen transport kinetics allow for a

reasonable output. At temperatures towards this lower limit, common

electrolyte materials display ionic transport resistances that drastically

impact overall performance of the device [20].

An element of the oxygen ionic transport of an electrolyte, oxygen mobility,

is a function of the movement of oxygen ions through the bulk of the

material: self-diffusion. The nature of crystalline solid state materials allow

for diffusion processes to be characterised by atomic hopping throughout

the lattice. Macroscopic diffusion can be viewed as the collective effect of

many such displacements throughout the crystal structure and is a function

of the physical quantities of these microscopic hops. These include hop

distance, jump rates, as well as geometric and correlation factors [21].

Lattice point defects, including substitutions, interstitials, or vacancies, act

to influence these factors, and can combine to facilitate complex diffusion

mechanisms.
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1.7 Material discovery

A material challenge exists to find solid-state hydrogen storage materials

that satisfy high density targets whilst also being thermodynamically suited

to operate at the low temperatures congruent with on-board applications.

Similarly, performance of fuel cell electrochemical devices is also subject to

development of materials for components.

A poorly conceived notion of theoretical material science is that it is

antagonistic to experimental work - vying for the same spot at the top

of the hierarchy of modern science. This could not be more wrong. The

reality is that simulations and calculations have become ingrained in the

scientific process and a largely theoretical approach to a problem works in

complement to experiment.

Experimental testing across a test sample space can be an arduous task,

expensive both in terms of man-hours and the cost of resources required to

effectively explore a large range of different chemical compositions due to

the inherent trial-and-error process required. Upon consideration of more

complicated chemical forms, we observe a combinatorial explosion of the

chemical domain when accounting for all combinations of a sample space,

e.g. chemical systems of the form A → A-B → A-B-C, for any elements

A, B, C. The challenge in assessing the full domain of possibilities risks

missing best-in-class performance, and incomplete knowledge of material

behaviour [22]. Experimental exploration of these materials may also

present practical issues. These processes involve many wet experiments,

producing a large amount of harmful chemicals and waste, which would

obviously be amplified by a huge testing operation.

Computational approaches allow for a mathematical analysis of large

12
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combinatorial spaces, accelerating the screening of a complex chemical

domain in a representative world. Whilst both methods have their own

advantages and pitfalls, they are mutually complementary [23]. Accurate

mathematical representations of the real world may highlight correlations

and interactions, which might be excluded from current theory, facilitating

further experimentation, whereas experiments have more potential to focus

on new phenomena [24]. Given this, material discovery as a whole

can be accelerated by supplementation of computational modelling with

experimental work. Beyond considerations regarding in-lab safety and

environmentally unfriendly by-products, efficient screening of potential

combinations and further analyses at more accurate levels of theory

increases the throughput of candidate material nomination.

1.7.1 Evolution of discovery approach

Classically, academia has always put a great emphasis on the notion

of confidentiality. Intellectual property and unpublished results, in situ

equipment and infrastructure - access to such resources have historically

been reserved for those connected to the appropriate powers through one

means or another. Over time, the academic world has gained access to

developments in IT infrastructure, providing more effective means to share

knowledge and practices, and we have seen behaviours change toward

the sharing of work and collaboration. Scientists have opened up to the

concept of accessibility of research being an important part of progress,

appreciating the mutual benefits of assisting each other without quid pro

quo, to the extent that data management plans are now commonplace, if

not mandatory, for most funding agencies.

A milestone in this paradigm shift has been the development of the internet,
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the global adoption of which has allowed for easy sharing of massive

amounts of data at an archival level. Advancements in computing power

has also spurred the generation of more data, bolstering the capabilities of

computational science. This has facilitated evermore complex calculations

at an expanding rate in line with developments in computing resources,

whilst simultaneously seeing improvments in ease of use and access.

1.7.2 ‘Big data’ approach

From both experimental and theoretical work, this wealth of information

must be properly archived and available for access in a quick and efficient

manner. This has led to the development of materials databases; collated

banks of calculated properties accessible via the internet. These repositories

have helped to revolutionise the exchange of information on a worldwide

scale, providing this data in a quickly accessible and easy-to-use manner.

These databases may allow for more focused computational analysis of

scientific trends, some of which may take a complex mathematical form,

thus proving difficult for interpretation by human intelligence. In turn,

statistical methods can be used to create predictive models to extend such

patterns to new materials of interest. This open access approach to data

collection also allows for more corroborative measures, assisting efforts in

data curation and quality assurance. By combining data collection, AI-

assisted modelling methods and computational simulations for material

prototyping, testing and validation, development of an informatic inspired

workflow for material science could lead to a much higher throughput of

analysis than ever before [25].
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1.8 Aims and objectives

1.8.1 Aims

This thesis includes work on materials that relate to two distinct areas

of hydrogen research. The first of these being construction of a machine

learning model to qualitatively predict the formation enthalpy of novel

ternary hydride compositions, greatly narrowing down the compositional

space to be considered, allowing for more focused further analyses with the

scope of assessing feasibility as solid-state hydrogen storage systems. This

involves construction of multiple models, to predict formation enthalpy of

metal hydrides, and metal alloys. In addition to this, perovskite structures

are modelled so as to study oxygen mobility through the crystal and

consequential phenomena, and how this process could be used to analyse

materials for fuel cell systems. Whilst not itself a candidate electrolyte

material, a La-Mg doped barium titanate was used to qualitatively

present the methodology for simulating such dynamic behaviour, where

the chemistry of non-stoichiometric materials can be adjusted to either

increase or suppress oxygen diffusion.

1.8.2 Objectives

1. Develop regression machine learning models to predict enthalpy of

formation for metal hydrides, and metal alloys (Chapter 3)

2. Validate the hydride model’s performance against known ground

truth data, sourced from theory and experiment (Chapter 3-4)

3. Use these models to predict potential storage materials, and further

analyse (Chapter 4)
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4. Simulate oxygen mobility in the prototypical perovskite structure

of barium titanate, before expanding the investigation to a system

formed by the co-doping of barium titanate with lanthanum and

magnesium (Chapter 5)
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Chapter 2

Theory

2.1 Statistical learning

The theory of statistical learning concerns prediction and pattern

recognition in order to deduce mathematical reasoning for data distribution

or for data mapping. This is most commonly categorised as being either

supervised or unsupervised learning. The former works by analysing input

and output data and determining a mapping function for the process

at hand in order to predict results when confronted with new inputs.

Unsupervised learning, however, is a means of hypothesising patterns

and correlations when only presented with input values, from which data

structure is devised without pre-existing results for comparison.

The approach to the material discovery task presented in this work is to use

a supervised machine learning method, fitted to data for materials whose

ground truth values have been calculated through the means of density

functional theory. Producing such a model should aid in identifying new

materials to analyse to a more accurate theoretical degree such that they
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might later be studied in realistic experimental conditions.

A key statistical tool to this task is regression analysis, a means of

mathematically investigating the relationships between variables. By

applying a set of statistical processes, one can ascertain the relative

causal effect of several independent variables (‘descriptors’, ‘predictors’

or ‘features’) upon a given dependent variable (‘criterion variable’ or

‘response’), the target value.

These techniques have seen use primarily for predictive means by comparing

data points with known ground truth data. An important aspect of

regression analysis, as alluded to earlier, is the ability to assess the effect

that variation in the value of a model’s descriptors has upon the criterion

variable. This can help provide insight into the relationship between the

two classes of data and can be investigated further by certain methods to

facilitate estimation of relative dependencies.

In general, a regression model relates the criterion variable y to a function

of the independent variables X and unknown parameters β (which may be

vector or scalar values depending on the model used) through an equation

of the form

H(X) = f(X,β). (2.1)

These parameters help to define the form of the function acting as our

hypothesis. If the form of the function f is not known then one assumes

an easily adjustable form, such as a linear combination i.e.

H(X) = β1x1 + β2x2 + ...+ βnxn (2.2)

where X = (x1, x2, ...xn) for any n descriptors.

The training process is intrinsically a mathematical optimisation problem.
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In order to accomplish this, data must be represented numerically and

suitable algorithms must be defined. In most supervised regression

scenarios, a loss function is used to define a difference in prediction and

known results, whilst an iterative process works to minimise such loss.

For the sake of efficiency and to hone the ability to generalise, these

optimisation algorithms are parameterised so as to scale the learning

process. Called hyperparameters, these are often algorithm-specific and

can be used to balance the speed and quality of model construction.

Different machine learning algorithms may have differing predictive

performance on various datasets, even when considering consistent

descriptors. As such, it is often required to test and benchmark a range

of algorithms for a given dataset so as to identify the best-performing

case. For a chosen algorithm, optimal performance is dependent on an

optimised parameterisation of the fitting function. This is done by fine

tuning hyperparameters.

Training Data

Machine Learning
Algorithm

Hypothesis:
H

Test Data:
X

Output:
y = H(X)

Feedback

Figure 2.1: Sketch of the machine learning training process.

A generalised sketch of the construction of a supervised machine learning

process is shown in Figure 2.1. The central column of the diagram depicts
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the construction of a learner, be it a single learner, or a learner built from

several which are combined together through a statistical process. This is

trained on known data in order to formulate a mapping from independent

to dependent variable, a function known as either a classifier or a regressor

depending on its purpose. These two functions take an input and predict

an output based on the determined hypothesis. A key aspect of the

training process is the feedback, or validation, that can be ascertained

by comparison of the known ground truth value for the test data inputs to

the predicted value. This provides information as to a model’s predictive

performance on pseudo-‘unseen data’, allowing for further tuning of the

model building process to more accuratly reflect the relationship in the

data being investigated.

2.1.1 Regression methods

2.1.2 Decision trees

Decision trees, illustrated in Figure 2.2, are a very lightweight and intuitive

learner. Starting with a source set of data, recursive partitioning occurs

along the length of the tree, splitting data along branches at each node

according to some known greedy (locally optimal) splitting rules. When

used for regression, the hypothesis H, which estimates the mapping of

descriptor data to the target function, is too large to feasibly search for

exhaustively. As such, a heuristic search algorithm is used to find a

hypothesis that minimises training error through the minimisation of a

loss function.

At each node, the presented data is split into two branches according to

some threshold, and an impurity value is calculated from a given function
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for each possible split. A greedy choice of threshold and split point is

selected so as to minimise the impurity before the process is repeated until

a stopping rule is reached, such as a maximum tree depth or minimum

number of instances at a node. The value of the final estimator is given as

the mean value across all terminal nodes.

Descriptor xi

Leaf node

Split rule

xj

xk

Leaf node Leaf node

Leaf node

Figure 2.2: Sketch of a decision tree, denoting characteristic features.

2.2 Ensemble learning methods

One may also run several iterations of a base learner, either in series or in

parallel, to construct what is called an ensemble. Whilst a single learner

searches hypothesis space for a good prediction hypothesis, an ensemble

combines multiple hypotheses in an attempt to reach a better result still.

This technique can be used to bolster weaker learning algorithms or can

be utilised by relatively fast algorithms, such as decision trees, to reinforce

their predictions.
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2.2.1 Bagging

The concept of bootstrap aggregating (referred to as ‘bagging’) was

proposed as a way to improve the accuracy of both regression and

classification machine learning algorithms by combining results from

randomly sampled training sets taken from the input dataset [26].

Generating a number of training sets sampled with replacement from the

original, known as a bootstrap sample, the algorithm is run on each of

these sets before outputting the mean prediction. This method allows for

the analysis of measures of accuracy to sample estimates, many of which

are of interest including prediction error, bias and variance, and facilitates

with the derivation of standard errors.

One application of this technique is that of tree bagging. Random bagged

samples of the training set are taken and used to fit decision trees, following

which predictions can be made at a specified point by averaging values given

by the multitude of constructed trees. This helps to reduce the impact of

correlated trees by making use of a wide range of training sets. Given this

decrease in correlation, it can be seen that a tree bagging method reduces

the models variance whilst not having a negative effect on the bias.

2.2.2 Random forests

Random forest regression (RFR) is an ensemble technique created using the

random subspace method which is a feature bagging mechanic, training

each learner on a randomly bootstrapped subset of the total descriptor

space, and calculating the optimal branch (with respect to impurity) to

take at each node from a random selection of the feature subspace [27]. This

helps to decorrelate the trees further than simply tree bagging by allowing
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more diversity in the descriptors being considered across different trees.

As well as this, strong predictors that would otherwise be selected quite

frequently while analysing a large number of trees have such dominance

lessened by the feature bagging process, allowing a more rounded analysis

of all descriptors.

2.2.3 Extremely randomised trees

The ExtraTrees regression (ETR) ensemble method is trained in a similar

way to random forests but differs in that each tree is trained with the

full training sample, and it introduces a randomisation of the top-down

splitting process. Instead of taking the optimal splitting rule for each

feature (based on aforementioned impurity calculations), this algorithm

generates thresholds at random for each feature and the highest impurity

value of these is selected as the splitting rule. This explicit randomisation of

predictor and value at a cut-point, combined with averaging of the output

over the ensemble, provides a greater reduction in variance as opposed to

regimes with less randomisation, such as random forests. Additionally the

random selection process as opposed to optimal split choice at each node

is computationally preferable, something that may prove favourable upon

dealing with very large systems.

2.2.4 Gradient boosting

A different approach to an ensemble system, gradient boosting regression

(GBR) is a mechanism that sees the combination of weak learners to form

a strong learner, with the aim of optimising an arbitrary loss function

L (y, F (x)) to approximate the criterion variable. By defining an upper
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bound of iterations (N), each step starts with an imperfect model F̂n−1 (x),

where 1 ≤ n ≤ N , and at each stage a learner h is found such that it

combines with F̂n−1 (x) to improve the overall estimator with respect to

the loss function. An approximation of the final model is taken to be a

weighted sum of these weak learners and a specified learning rate, a fixed

step length which dictates the rate of change per iteration.

F̂ (x) =
∑
N

γmhm (x) + const. (2.3)

Here it can be seen that the approximation iterates in a greedy manner

so as to minimise the empirical risk relative to the immediately preceding

step:

Fn (x) = Fn−1 (x) + argmin
hn

[
k∑

i=1

L (yi, Fn−1 (xi) + hm (xi))

]
(2.4)

From here, a steepest descent algorithm is used to numerically approximate

the minimisation operator, which is given as the negative gradient local to

Fn−1 (x).

Maintaining the approximation of linearity by use of a small step length γ,

Equation 2.4 becomes:

Fn (x) = Fn−1 (x)− γ

k∑
i=1

∇Fn−1L (yi, Fn−1 (xi)) , γ > 0. (2.5)

This methodology can be applied to decision trees in what is referred

to as gradient tree boosting. Given a set of base learners of consistent

size, a similar process takes place where one can fit a tree hm to pseudo-

residuals (gradients of the loss function). The depth of the trees can be

adjusted to account for interactions between descriptors, with the price

being the operation speed of the algorithm. It is suggested that a depth
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ranging anywhere from 4 to 8 is sufficient to incorporate interdependencies

of variables, with higher values providing negligible additional contribution

[28].

2.2.5 Out-of-bag error and feature importance

Bagging data provides access to additional useful tools for assessing

prediction error in resultant models. Out-of-bag (OOB) error is determined

by calculating the error on a given data point di = (xi, yi) using predictive

learners trained without di in their bagged sample. This can be assessed

for all i in the initial dataset. It is possible to utilise the out-of-bag

error in order to rank the importance of the variables in the dataset

[29]. Selecting OOB data corresponding to each constructed tree in the

ensemble, these OOB data points are computed along each tree and an

error value determined. By randomly permuting the features in this OOB

set and repeating the process, another error value is obtained. Using

the standard deviation of the differences as a normalisation factor, we

can compare these scores, providing a new tool for interpretation of our

data [30]. Descriptors with higher scores are those that have a relatively

significant contribution to the model’s predictive ability. Another method

of evaluating feature importance is Gini Importance (GI), or Mean Decrease

in Impurity (MDI). In this case, feature importance is given as the total

decrease in node impurity, weighted by the proportion of samples reaching

that node, averaged across all trees in the ensemble.
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2.3 Caveats of statistical learning

Predictive ability of a machine learning model is developed through the

process of quantitative learning of patterns from training sample data.

The fidelity of a model is reliant on several factors. Those intrinsic to

the machine learning algorithm include the selection of algorithm, selection

of features, and parameterisation of the fitting process. For the training

process, one must consider both the method used as well the training

dataset used.

2.3.1 Input data sample size

Mathematical patterns, sought to be captured by a machine learning

process, involves evaluation of the training data presented before the

algorithm. Scarcity of data makes such a task more difficult, impacting the

ability for a model to train, and ultimately affecting predictive performance

for an unexplored test domain. Such model bias may be mitigated by means

such as retraining with the inclusion of more data samples, consistent with

any previously used data. In literature, some ML based investigations

into thermodynamic properties of solids have reported predictive accuracy

to scale monotonically with training dataset size, systematically reducing

prediction error [31, 32].

2.3.2 Quality of input data

In order to ascertain correlations and relationships between the data,

reliable input data is required. By the form of the hypothesis given in

Equation 2.2, it can be seen to have an inherent risk of contamination
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from noisy, incorrect or otherwise troublesome data. Issues may arise

with example data that contradict other samples or require an increase

in the algorithm complexity in order to accommodate. Such situations

can drastically impact the model’s ability to generalise, or may lead to

overfitting.

In order to build a robust learner, training data should be curated to a

certain extent, eliminating troublesome data points which may compromise

understanding the fidelity of the mechanism under investigation.

Data pruning methods include rudimentary outlier identification and

elimination, as well as more involved iterative processes used to improve

generalisation. However, pruning may lead to bias and so should be handled

carefully.

2.3.3 Generalisation

A key concept in statistical learning is that of generalisation and how well

a trained learner can perform when predicting results for unseen data.

Ideally, a model would work well when presented with any new sample.

However, there are reasons why this might not be the case.

Data diversity is important within the training sample. Deciphering

the mathematical relations between variables presented during model

construction may result that only new data samples similar to those

included in the original dataset can be predicted sufficiently. The extent

of this extrapolatory limitation is situational, but can be mitigated by

ensuring the training sample contains enough consistent data across the

sample space to be investigated.
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2.3.4 Bias-variance tradeoff

A dilemma faced when using any supervised learning method is the notion

of attempting to minimise mutually conflicting sources of model error: bias

and variance.

Bias error is rooted in underfitting a model to training data. This

causes an erroneous fitting to known data, incorrectly capturing relations

between variables. High bias can often be detected by analysis of a

suitable performance metric, identifying poor predictive ability on training

data. Conversely, variance error occurs when a model is trained to be

too sensitive to noise or random fluctuations in the sample data. By

focusing upon these small changes within the data the model is said to

be overfit, negatively impacting its ability to generalise which can lead

to poor predictive performance on unseen data points. Cross-validation

is useful for assessing overfitting by running multiple performance tests

against random splits of the training sample.

This balance between high bias vs high variance, or overly simplified vs

overly complex, is important in statistical learning and is susceptible to

a variety of other factors, such as availability of training data, choice of

descriptors, and reliability of source data.

2.4 Machine learning for material discovery

Machine learning is a useful tool for recognition of patterns and

relationships in data. Such processes can be applied to material discovery

to mathematically characterise underlying chemical mechanisms in an

interpretable manner.
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By systematically studying similar systems, a robust model can

theoretically be developed to describe a class of materials through a

computationally efficient process. This can then be further expanded upon

using higher levels of theory to validate prediction. Having used ML on a

broad selection of compositions, one can hone in on specific examples and

more efficiently utilise expensive computational resources.

Further analyses include the use of density functional theory to directly

model atomic structures. By introducing specific electronic and ionic

considerations, structures can be relaxed into ground state configurations

via geometry optimisation, from which material properties can be

calculated.

2.5 Density functional theory

2.5.1 Approximation of the many-body Hamiltonian

In principle, a given system can be exactly described by its wavefunction.

If modelled analytically, this would allow for exact understanding of

how the system behaves. Alas, the Schrödinger equation for an N-body

system cannot be solved with current understanding and as accurate an

approximation as possible is required in order to depict an atomic scale

environment.

By introducing the Born-Oppenheimer approximation, an assumption is

made that the nuclear motion and the electronic motion in a given molecule

can be separated. This allows the molecule to be described by the nuclear

and electron positions [33]. An early attempt to simplify this complex

system was by Hohenberg and Kohn [34]. The first Hohenberg-Kohn
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theorem states that the external potential on a system is a unique functional

of the electron density. The second theorem states that the functional

that admits the ground state energy of the system gives the lowest energy

if and only if the input density is the true ground state density. This

spatially dependent electron density is a functional which is used to describe

electronic behaviour in a many-body electronic system in only three spatial

dimensions, rather than the 3N degrees of freedom given by an N-body

electronic wavefunction.

The Hohenberg-Kohn theorems can thus be built upon to determine

the ground state electron density. By starting with an explicit energy

functional, E[ρ(r)], and varying the spatially dependent electron density,

ρ(r), the energy can be minimised. This functional can be decomposed

into a kinetic term, and terms for electron interaction with either nuclei or

other electrons. The electron-electron interaction consists of Coulomb and

exchange terms, with the former easily calculated as a system of repulsive

terms. The nuclei-electron component can be found in a similar sense;

attractive forces in this case. The remaining terms, kinetic energy and

exchange, remain unknown and so must be modelled.

2.5.2 Kohn-Sham method

A formalism was established by Kohn and Sham to approximate the

kinetic energy of a given system of N interacting electrons to the kinetic

energy of a fictitious system of non-interacting electrons of the same spatial

density [35]. Such a system admits a set of independent particle equations,

molecular orbits (MOs), that collectively give the exact electron density.

ρ (r) =
∑
i

|ϕi (r)|2 (2.6)
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Each electron equation has its own ground state energy functional as

outlined by the Hohenberg-Kohn theorems and, as such, the system energy

is a functional of these Kohn-Sham MOs. The total energy of the system

is given by

E[ρ] =

∫
drν (r) ρ (r) +

1

2

∫∫
drdr′

ρ (r) ρ (r′)

|r − r′|
+ T [ρ] + EXC [ρ] (2.7)

= Eext [ρ] + Ecoul [ρ] + Ekin [ρ] + EXC [ρ] , (2.8)

comprised of energy terms respectively corresponding to an external

potential, classical Coulomb self-interaction of the electron density, kinetic

energy of the particles, and many-body interactions between electrons

collected into a term coined the exchange-correlation functional.

By use of the variational principle, the ground state energy can be found

by minimising this energy functional with respect to the electron density.

As the system has been shown to be composed of KS MOs, this means to

minimise the energy with respect to such orbitals. Doing so admits the KS

Hamiltonian, ĥKS, comprised of the kinetic and potential terms derived

from Equation 2.8.

ĥKS = −1

2
∇2 + νeff (r) (2.9)

νeff (r) = νext (r) + νcoul (r) + νXC (r) (2.10)

ĥKSψi(r) = εiψi (r) , (2.11)

where the effective potential, νeff , consists of external, Coulombic and

exchange-correlation components.

Upon consideration of the effective potential given by Equation 2.10, it

can be seen that the Coulomb and XC interaction terms are dependent

on the orbitals sought from the calculation of the Kohn-Sham Schrödinger
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equations. The common approach to tackle this quandary is an iterative

method known as the Self-Consistent Field (SCF) procedure, as outlined

in Figure 2.3. Following an initial supposition of an orbital set the electron

density can be calculated and, from this, the Hamiltonian generated. This

can then be used to calculate a new generation of orbitals in order to repeat

the cycle. At each pass, the new energies calculated are compared to those

of the previous generation, and the process is said to have converged should

these values differ by less than some predefined threshold.

Select initial wavefunction set{
ψ

(n)
i

}
, n = 0

Construct Kohn-Sham operator

ĥ
(n)
KS = ĥKS

[{
ψ

(n)
i

}]

Solve
ĥ
(n)
KSψ

(n+1)
i = ε

(n+1)
i ψ

(n+1)
i

to obtain{
ψ

(n+1)
i

} Set:{
ψ

(n)
i

}
→

{
ψ

(n+1)
i

}
n → n + 1

Are
{
ψ

(n+1)
i

}
and{

ψ
(n)
i

}
within predefined

tolerance of each other?

Convergence has been achieved

No

Yes

Figure 2.3: Workflow diagram of the Self-Consistent Field (SCF) cycle.
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2.5.3 The exchange-correlation term

The exchange energy comes from the fermionic nature of electrons and the

Pauli Exclusion Principle. This necessitates that electron wavefunctions

be antisymmetric in order to accommodate the interchange of any two

electrons in space. The correlation energy is less well defined, accounting for

the dynamics of many electronic phenomena, including Fermi correlation

and Coulomb correlation. The exact form of the EXC term is not known

but, by definition, is given to be the difference between the exact total

energy and the other known quantities. As such, it is the only term in the

Kohn-Sham energy functional that cannot be solved exactly and must be

modelled. Whilst still a non-trivial feat, this is the crux of the Kohn-Sham

approach to DFT.

The biblical notion of Jacob’s Ladder is often invoked and used as analogy

to the pursuit for perfect chemical accuracy. Each rung introduces new

complexity by considering more exact terms in a trade off for higher

computational cost. Taking approximations of EXC [ρ], of varying order of

ρ and complexity, allows one to fine tune a calculation in order to optimise

accuracy and efficiency.

Local-density approximations (LDA) of EXC are functionals solely

dependent on the electron density at a point in space, ρ (r), approximated

by the XC energy of electrons in a uniform electron gas (UEG) of the same

density.

ELDA
XC [ρ (r)] =

∫
drρ (r) εUEG

XC (ρ (r)) (2.12)

Despite the apparent simplicity of this approach, LDA is an effective

method when investigating systems with a slowly varying charge density

such as bulk metals. However, this approach proves less useful in more
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inhomogeneous systems, such as where ionic and covalent bonding is more

prevalent. LDAs usually overbind molecules, underestimating bond lengths

and the cell volume, resulting in unacceptable errors in geometry for more

generalised applications.

Generalised gradient approximation (GGA) is an improvement on LDA,

accounting for both the electron density at a point in space, ρ (r), as well

as the gradient, ∇ρ (r). This can now encapsulate information regarding

the non-uniformity of the electron density at a given point by considering

how charge density changes through space.

EGGA
XC [ρ (r)] =

∫
drρ (r) εGGA

XC (ρ (r) , |∇ρ(r)|) (2.13)

Typically GGAs are more accurate than LDAs as to transition-state

barriers and bond dissociation energy, but come with an appropriately

increased computational cost. A wide range of such functionals exist, of

varying construction. Non-empirical GGAs are the most widely applicable,

built around the general rules of quantum mechanics, so as to satisfy as

many exact conditions as possible without being fit to specific molecular

properties. There also exists a scale of functionals which incorporate a

range of empirically fitted parameters characteristic to certain chemical

forms. These can incorporate more accurate depictions of certain dynamics,

and can often do so more quickly than a non-empirical method, though at

the cost of generalisability. The Perdew-Burke-Ernzerhof (PBE) functional

is a popular choice due its time-tested applicability to a wide range of

systems, yielding a reasonable accuracy in most practical cases [36].

The ladder extends further; with meta-GGA additionally incorporating

∇2ρ, hybrid DFT complementing previous tier approximations with

a portion of exact exchange from Hartree-Fock theory, and random
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phase approximation (RPA) involving exact exchange and partial exact

correlation.

2.6 Plane-wave pseudopotential method

2.6.1 Plane waves basis sets and reciprocal space

A mathematical representation of the Kohn-Sham orbitals is required

to convert the information encoded in the electronic wavefunction into

algebraic equations for computational use. A choice of basis set should

be able to encapsulate most of the dynamics of the wavefunction as a finite

length linear combination of basis functions. A basis set can be localised

which is to say that the functions are fitted to each atom or, especially of

use in periodic systems, a set of plane waves which can span the system with

the same periodicity. The choice of basis set impacts all further algorithms,

and the complexity of the linear combination of functions is adjustable to

tune for efficiency or accuracy in the final calculation.

Bloch’s theorem states that solutions to the Schrödinger equation within

a perfectly periodic potential can be given by a plane wave and a function

that exhibits the periodicity of the potential,

ψ (r) = eik·ru (r) , (2.14)

where u (r) is a modulatory periodic function of the same period as the

lattice, and eik·r is a plane wave characterised by the crystal momentum of

the system. This theorem is true for any propagating particle in the lattice,

independent of atomic positions, and has no dependence on the strength

of the potential.
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Such a wavefunction can be expanded to take the form of a three-

dimensional Fourier series obeying the Born-von Karman periodic

boundary conditions, ensuring the whole function reflects the translational

symmetry of the lattice,

ψ (r) =
∑
G

cGke
iG·r, (2.15)

where cGk are complex Fourier coefficients, summed over all reciprocal

lattice vectors. The sum is infinite in theory, however the coefficients cGk are

inversely proportional to the squared norm of the vector G. This allows one

to define an upper energy limit for the plane-waves to be used, represented

by a maximum radius in reciprocal space, expressed as a cut-off energy,

Ecut =
h̄

2m
|G|2 . (2.16)

Considering this set of independent valid wavefunctions, one for each

possible k value, the electron density can be constructed by integrating the

norm of all wavefunctions over k-space. By virtue of the periodicity of the

lattice, all information regarding the repeating symmetry is encapsulated in

the first Brillouin zone (BZ), centred around the gamma point. As a result

of this, wavefunctions need only be considered at values of k within this

BZ. The wavefunction evolves slowly as a function of k and so, to evaluate

this in a computationally efficient manner, this integral is converted to a

weighted sum over a specific set of k-points in the form of a density grid,

ψ (r) =

∫
ΩBZ

d3k |ψk (r)|2 (2.17)

≈
∑
j

wjψkj (r) . (2.18)
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2.6.2 Pseudopotentials and the Projector

Augmented Wave method

The cut-off energy defined in Equation 2.16 provides an elegant

parameterisation of the plane-waves to be used in a given calculation.

Increasing the variable corresponds to an increase in the maximum

frequency of plane-wave to be included, providing improved accuracy but at

the price of further computational cost. With this in mind, the high kinetic

energy, and thus high frequency plane-waves, of core electrons would prove

expensive to be captured accurately, both in terms of time and computing

resources. Compounded by the limited participation of these electrons in

the reactions or chemical bonding often investigated by these methods,

tools have been developed to incorporate core dynamics in a more efficient

manner for calculations using non-localised basis sets. By encapsulating the

Coulomb potential of core electrons into a smoother pseudopotential of a

lower frequency, a smaller cut-off energy can be used. This pseudopotential

is constructed to represent the screening effects of core electrons on the

nuclear potential and presents this net core interaction to valence electrons.

A further evolution upon this approach is the projector augmented-

wave (PAW) method [37]. Upon an assertion that the true all-

electron wavefunction can be linearly transformed onto pseudised valence

wavefunctions, this formalism defines an augmentation sphere centred

around the nucleus of a given radius. At distances within this sphere,

the all-electron wavefunction is transformed by projector functions so as

to smooth the waves, whilst outside the sphere the pseudised valence

wavefunctions are exact. By introducing an explicit linear transformation,

physical quantities are similarly transformed, allowing for all-electron

energies to be determined from the pseudised wavefunction.
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First principles calculations presented in this work will make use of the

Vienna Ab initio Simulation Package (VASP). Implementing the PAW

method, VASP uses a proprietary scheme of real-space projectors, whilst

providing a near-complete database of elemental PAW pseudopotentials,

compatible for PBE calculations.

2.7 Utilisation of DFT

2.7.1 The potential energy surface and geometry

optimisation

The potential energy of a system may be defined as a function of atomic

coordinates, E(x). This can be interpreted in the form of a hypersurface

in multiple dimensions, which describes the potential energy of the

system at each point along its surface for different atomic arrangements.

This potential energy surface, or energy landscape, can yield structural

information and corresponding energies for many systems in an intuitive,

mathematical representation which can then be interpreted in terms of

physical meaning.

Points of interest on the potential energy surface are often stationary points.

Minima represent a net inter-atomic force of zero, suggesting stability

of a given structure, whilst saddle points may be investigated to yield a

transition state. Standalone maxima describe unstable states, which are

often overshadowed in importance. There may be many stable states due to

several minima on the energy surface, but the state with the lowest energy

is represented by the global minimum.

In essence, locating these minimum points can be considered as a purely
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mathematical optimisation problem seeking an arrangement such that the

derivative of E(x) with respect to the position vector, x, is zero and the

second derivatives are all positive. A range of optimisation algorithms may

be used to try to minimise the forces at play by using E(x), as well as

its first and second positional derivatives. However, in many cases the

full Hessian matrix may prove unjustifiably expensive to compute. Many

minimisation algorithms work to only locate a local minimum for the given

starting point. In order to search for a global minimum the algorithm

must be able to span the hypersurface, analysing many starting points and

optimising in turn or traversing the surface by other statistical means.

When investigating properties of a solid, it is imperative that the system

being simulated is in its optimised ground state geometry as many processes

and interactions are dependent on lattice parameters and exact positioning.

Such calculations on non-equilibrated structures can lead to inaccurate

results. Another consideration is that structures, and thus calculated

values, will vary based on the level of accuracy of the calculation. Different

functionals and parameterisation of the DFT code used may result in

differences in results, which in turn may differ from empirical results.

2.7.2 Crystal structure prediction

When an initial structure or energy landscape is not known, sampling

of multiple possible geometries is required in order to search for the

minimum-energy atomic arrangement for a given composition. A

concept known as crystal structure prediction (CSP), this process involves

combinatorial sampling methods and knowledge of chemical interactions

between constituent atoms to generate a range of chemically feasible

structures, before calculating energies and outputting any resultant stable
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or metastable structures. CSP has uses in the study of both organic

and inorganic materials; systematically analysing, without human bias,

multiple crystal packing possibilities that are potentially previously unseen

by theory or experiment.

The Crystal structure AnaLYsis by Particle Swarm Optimization

(CALYPSO) software [38, 39] uses the particle swarm optimization

(PSO) algorithm and is an effective metaheuristic global optimisation

method which starts from an initial guess of a set of geometries

before traversing a parameterised energy landscape, repeatedly performing

structural optimisations. Whilst ensuring specified minimal inter-atomic

distances are maintained, multiple local minima are probed in order to

map the potential energy surface. Genetic algorithms are used to maintain

structural diversity, introducing randomly generated structures to each

generation of the PSO algorithm in order to reduce the chance of stagnation

in potential wells.

2.8 Molecular dynamics calculations

Whilst the aforementioned process of Kohn-Sham DFT calculations are

performed for a static crystal, and so is independent of temperature related

energy contributions and quantum fluctuations, it is often the case that

such finite temperature dynamical trajectories are of interest. The notion

of molecular dynamics (MD) is that of using atomic forces, determined from

consecutive electronic structure calculations, to analyse the microscopic

time evolution of a many-body system. This allows for analysis of time

dependent processes such as transport properties, or energy and mass

transfer.
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In many cases, the inter-atomic or inter-molecular forces are pre-emptively

parameterised in the form of a force field. These are empirical models

tailored to specific individual, or specific classes of, materials and are

tried-and-tested methods of encapsulating observed behaviours of certain

systems.

An intrinsic limitation of this is that these force fields are fitted using

previously observed or calculated results regarding specific systems and

scenarios. For example, a force field parameterised to fit static observables

may not accurately model dynamic properties, and vice versa. As such

there is limited transferability of use for classical force fields. The bespoke

nature of these interatomic potentials, and thus niche applicability, means

that if no appropriate force field exists for the system at hand then the

dynamics at play must be determined from first principles.

2.8.1 Ensembles and Ergodicity

The parameterisation of a realistic system to one suitable for computational

calculation requires a degree of simplification. This can be done by the

introduction of constraints, separating a system from the surrounding

environment, whilst allowing for control of interactions between them, or by

reducing an otherwise lengthy calculation required to exhaustively observe

time evolution of a system into a large, yet manageable, number of discrete

calculations representing possible states.

An ensemble is an exhaustive collection of states that are macroscopically

identical but differ at the microscopic level (atomic positions, r, and

momenta, p). These microstates are described by a selection of variables,

most commonly; N particles, volume V , energy E, pressure p, temperature
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T and chemical potential µ. By keeping some of these values constant,

and relating the system to its external environment, a range of statistical

ensembles may be defined such that each constituent microstate conforms

to the macroscopic constraints of the system.

The process of molecular dynamics generates a trajectory where each point

admits a set of 3-dimensional coordinates rN , as well as momenta pN , for

the N particles in the system. By defining a 6N -dimensional phase space,

an observable property A for the ensemble as a whole, is given by the value

of the property, weighted by the probability density, as calculated at a

point in phase space:

⟨A⟩ens =
∫∫

dpNdrN ρ
(
rN ,pN

)
A
(
rN ,pN

)
. (2.19)

An important tool in statistical physics is the ergodic hypothesis. The

notion of ergodicity is a property of a mathematical system where by the

entirety of a space that the system is said to exist in is traversed in a

uniform but random manner. That is to say that a single trajectory will,

over sufficient time evolution, sample the whole space. Equally, given a

sufficiently large number of samples, a similar mapping can be obtained.

The ergodic hypothesis assumes that over a reasonably long period of time,

all available microstates are equiprobable and so the assumption is made

to equate the time average and the ensemble average

⟨A⟩ens = ⟨A⟩time = lim
τ→∞

1

τ

∫ τ

0

dtA
(
rN(t),pN(t)

)
. (2.20)

The implication of this is that rather than observing many microstates of

a given system, one can observe a time evolution of a single microstate

over a sufficiently long time and obtain the same expectation value for an

observable A.
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2.8.2 Thermostats

Classical molecular dynamics are calculated with a constant number of

particles, volume, and energy. Often denoted as the NVE ensemble in

reference to these conserved quantities, this statistical ensemble is called

the microcanonical ensemble. By modelling the system to be isolated from

any external environment outside the simulation box, the conservation of

energy ensures the total system energy is maintained constant.

More realistically, it is not feasible to completely control the energy

of a system in an experimental scenario, whereas external factors such

as pressure and temperature may be reasonably tightly regulated. An

attempt to mimic conditions of an experiment requires an alternative

ensemble method. Controlling the number of particles and volume, along

with simulation temperature, the constant-temperature, constant-volume

ensemble (also referred to as the NVT or canonical ensemble), is a better

representation of experimental conditions, and works by introducing a heat

exchange process with the external environment of the system without any

transfer of matter. In order to model the energy transfer at the boundaries

of an MD system it is modelled to be weakly coupled to a thermal reservoir.

Thermostat algorithms are introduced as a modification to the classical MD

calculation to facilitate the transfer of energy between the system and the

reservoir in order to maintain a system temperature.

Many other ensembles exist, often characterised by conserved values of a

selection of properties, as well as thermostats which will not be introduced

here as they are not used in this work.
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2.8.3 Nosé-Hoover thermostat

Outlined in Section 2.8.2, the conversion of a microcanonical ensemble to

the more realistic canonical ensemble requires a numerical modification

of the molecular dynamics approach so as to maintain the system

temperature. One thermostating approach presented by Nosé and Hoover

[40, 41] is to incorporate the notion of the heat bath into the system as an

additional degree of freedom - a fictitious variable, ζ, with an associated

coordinate, r, and effective mass, Q.

Introduced as an extension to the Newtonian equations of motion analogous

to a friction term, this addition acts to keep the total kinetic energy

constant:

dv (t)

dt
=
F (t)

m
− ζv (t) (2.21)

dζ (t)

dt
=

1

Q

[∑
i

mivi (t)
2 − (X − 1)kBT

]
, (2.22)

where Q determines the rate of temperature fluctuations, and X is the

number of degrees of freedom.

A deterministic process, this approach does not impair correlated motions

and thus is effective for describing kinetics and diffusion properties [42].

2.8.4 Ab initio molecular dynamics

As previously mentioned, classical molecular dynamics requires information

regarding inter-atomic or inter-molecular forces at play in a given system.

In many cases, this is specified in the form of a force field, constructed

in a manner to be tailored to a given material, or class of materials, and

for an explicit scenario. Otherwise, in situations without an a posteriori
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description of the forces present, the method of ab initio molecular

dynamics (AIMD) offers a process of calculating dynamical trajectories

using forces obtained in a procedural manner as the simulation progresses.

Ab initio molecular dynamics, as implemented in VASP, generates

dynamical trajectories by means of evaluating the time evolution of a

system at a finite temperature via the numerical integration of classical

equations of motion. By discretising these equations of motion in terms

of a specified time step, ∆t, the simple, yet effective integration scheme of

Verlet is used to determine successive velocities and positions of particles:

v

(
t+

∆t

2

)
= v

(
t− ∆t

2

)
+
f (r (t))

m
∆t+O

(
∆t3

)
(2.23)

r

(
t+

∆t

2

)
= r (t) + v

(
t+

∆t

2

)
∆t+O

(
∆t4

)
(2.24)

Here the forces at each velocity evaluation stage are evaluated from first

principles, obtained from electronic structure calculations. These forces are

used to update particle velocities and in turn positions, a process repeated

until a desired simulation time is reached. For small ∆t, higher order terms

can be ignored.

Initial velocities are randomly generated which, when coupled with a

thermostat, means the simulation requires an initial time period in order

to equilibrate to a required temperature. Another consideration is the size

of the time step; too large a step may not allow for correct sampling of

high-frequency modes which may cause numerical issues such as problems

with SCF convergence, however too small can result in inefficient sampling,

which could be a waste of computing resources whilst not gathering enough

useful statistics of time evolution.
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2.8.5 ‘On-the-fly’ machine learning force field

molecular dynamics

The need to calculate forces for each step from first principles with AIMD

means that the method can accrue a sizeable cost, both computationally

and timewise. An emerging method offering an alternative approach is a

molecular dynamics scheme utilising on-the-fly machine learning force field

generation [43, 44, 45].

This method constructs a force field in the background of a molecular

dynamics simulation, using the information computed from first principles.

Trained using structure datasets, these consist of information regarding

the Bravais lattice, and atomic positions, as well as energies, forces,

and stresses obtained from ab initio calculation steps. From this data,

local configurations around each atom can be probed for radial and

angular relationships with neighbours, and the force field appropriately

parameterised with such descriptors.

The algorithm for on-the-fly machine learning force field molecular

dynamics (MLFF / MLFF MD) implemented in VASP works to adjudge

at each MD step whether to calculate forces from first principles, or not.

Through methodology akin to an AIMD step, doing so involves analysing

new structures and gathering new data for the structure dataset, which can

be used to further bolster the training of the force field in the background,

hence ‘on-the-fly’ learning. Alternatively, the MD step can be assessed by

using said force field, skipping a training step, but drastically reducing the

time taken to evaluate the equations of motion. By interweaving the two

options the dynamics of a system can theoretically be captured in a bespoke

force field, which may be extracted for further use, whilst also making use

of it throughout the training process to speed up the MD simulation.
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2.8.6 Mean square displacement

The random movement of particles diffusing through a system can be

compared to the mathematical notion of a random walk. By taking a series

of steps in random directions throughout the available degrees of freedom, a

näıve sum of displacement of particles would admit an average displacement

of zero. In order to capture the gross movement of particles over time,

the square of the displacement for each particle between each time step is

averaged over the number of particles being considered to disclose the mean

square displacement (MSD). The Einstein formula for MSD evaluated at a

given time t0, for N particles with n-dimensional coordinates x is given as

MSD =

〈
1

N

N∑
i=1

|xn − xn (t0)|2
〉

t0

. (2.25)

For n-dimensional Brownian motion over a given time, t, the MSD is related

to a coefficient of diffusion D which can be shown to be

MSD = 2nDt. (2.26)

From here it can be seen that in an isotropic, three-dimensional medium, a

diffusion coefficient can be determined by dividing a calculated MSD value

by 6t.

When considering MSD calculations for individual particles, displacements

corresponding to certain time intervals, or time lags, between positions

allows for maximisation of samples garnered from the MD calculation.

Defining a time interval τ, time lags are given as

τ, 2τ, 3τ, ..., Nτ (2.27)
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where Nτ ≤ the total calculation time, T . Taking MSD as a function of

time invervals, τ, results in data collected for each length interval regardless

of position throughout the duration of the simulation,

MSD (τ) =

〈
1

N

N∑
i=1

|xn (t0 + τ)− xn (t0)|2
〉

t0

. (2.28)

For large T and τ ≪ T , one may assume ergodicity and evaluate an

ensemble average MSD. Such an approach greatly increases statistical

performance, providing many values from a single trajectory. A

consequence of averaging over time lags is that the data has ballistic regions

corresponding to small and large τ values, whilst statistically significant

information is gleaned from the linear trend obtained across a truncated

central region. By plotting MSD as a function of time-lags, the slope of

such linear trend can be calculated and Equation 2.26 admits

D =
1

2n

MSD

τ
. (2.29)
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Chapter 3

Metal hydride predictive

modelling

3.1 Introduction

As outlined in Section 1.5, the potential for metal hydride storage systems

relies on the intrinsic material properties that govern performance, for

example storage capacity, as well as how a use case might accommodate

such a system’s size and weight. With regards to a solid-state hydrogen

storage material, the material weight of interest refers to the mass of

constituent atoms, whilst the material gravimetric capacity corresponds

to the relative mass of hydrogen to the other atoms involved. A crucial

thermodynamic factor that governs the conditions under which such a

storage material will absorb and desorb hydrogen is the dehydrogenation

enthalpy, or enthalpy of formation, of the metal hydride species (∆Hf ).

Intuitively, this is the measure of the change of enthalpy during the

formation of a substance from its constituents, given a specified reaction

pathway.
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The operating conditions permissible for on-board chemical storage for a

light-duty vehicle suggests desirable dehydrogenation enthalpy in the region

of -10 to -60 kJ/molH2 [46, 47]. Experimentally investigating this enthalpy

value for a wide range of materials would require many material synthesis

and characterisation processes, as well as numerous hydrogenation cycles

of these hydrides.

The aim of this chapter is to construct a machine learning model using

readily available data, independent of structural information, in order

to predict the enthalpy of formation for a presented metal hydride

composition. This would be useful for identifying novel hydride materials

or for further analysing metal hydrides that may have already been

synthesised, but have yet to have their hydrogen storage properties properly

characterised. If of a reasonable predictive accuracy, this tool could provide

a means of drastically narrowing the compositional space when searching

for a compound with a target enthalpy value, whilst doing so at a relatively

low expense.

3.2 Hydride storage materials literature

3.2.1 Miedema model

Miedema and others worked to devise a semi-empirical model, seeking to

match known experimental results for enthalpy of formation [48, 49, 50, 51].

An assumption is made that the Wigner-Seitz atomic cells of metals, A

and B, within a binary alloy structure are similar to the atomic cells of

the corresponding pure metals. The hydrogenation mechanism is taken

to be an interaction along the interface between atomic cells of A and B,
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raising two main energetic contributions. The first is a contribution of

negative value, representing the loss of atomic contact between A and B

metals, which corresponds to the binary compound’s formation enthalpy.

The second results from an approximation that the contact surface for A-H

and B-H is the same. It therefore follows that ABnHx+y can be given to be

energetically equivalent to a mixture of AHx and BnHy [52]. Often referred

to as the ‘rule of reversed stability’, ∆Hf of a ternary ABnHx+y can thus

be given as

∆Hf (ABnHx+y) = ∆Hf (AHx) + ∆Hf (BnHy)−∆Hf (ABn) . (3.1)

As the informal name implies, this equation suggests an inversely

proportional relationship between the stability of a ternary hydride and

a binary alloy consisting of the corresponding intermetallic species.

Further development of this concept introduces a modification based on

empirical results for systems where hydrogenation does not break all bonds

between A and B. More generally, and particularly for small n,

∆Hf (ABnHx+y) = ∆Hf (AHx)+∆Hf (BnHy)−(1−F )∆Hf (ABn) . (3.2)

Here, F is dependent on the composition of the alloy and empirically derived

values for F are often used, relating to the B element involved [13].

This model has been shown to work reasonably well for binary hydrides,

however it has issues with predictions for alkali metal hydrides. For ternary

hydrides, the model generally over predicts the enthalpy value, proposing

higher stability than seen in experiment, through a non-systematic trend

of deviations [13]. A predictive machine learning model trained on known

stability information may have improved predictive accuracy, as well as
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the potential to incorporate any underlying relationships that may be

responsible for the irregular deviations seen here.

3.2.2 Machine learning material discovery for

hydride materials

In recent years, general approaches to the task of material discovery

have shifted from a more Edisonian approach of trial-and-error to a more

systematic regime of utilising theoretical data to rationalise experimental

choices (see Section 1.7.1). This is true in many branches of materials

science and engineering, and has been demonstrated in the field of metal

hydride systems for solid-state hydrogen storage.

A publication by Hattrick-Simpers et al. covers the development

and implementation of a regression model to predict the enthalpy of

hydrogenation of metal hydrides for high pressure compressors [53]. Data

regarding a wide range of storage materials was used from the Hydrogen

Storage Materials Database, a collaborative effort between the International

Energy Agency (IEA) and the U.S. Department of Energy (DOE) to

collate results from their funded research projects, non-DOE research,

and computational models into a comprehensive repository [54]. Material

classes including interstitial Laves phase material hydrides, complex

hydrides, and solid solution interstitial hydrides are included in the mixed

theoretical-experimental search space. After reducing this sample space to

only reversible metal alloys, with explicitly reported formation enthalpy

values, a random forest regression model is constructed using the Weka

software platform to predict hydrogenation enthalpy for each corresponding

intermetallic species. Following this, binary, ternary, and quaternary alloys

are generated using the elements Ca, Al, Si, Fe, Mg, Na, Mn, Zn, Cr,
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Mo and Ti, filtered by constraints such as an upper limit to the cost per

kilogram for the alloy, confining chemistries to AB, AB2, A2B or AB5 Laves

phases, and predicted enthalpy values ranging from -18 kJ/molH2 to -30

kJ/molH2 . Using a genetic algorithm for structure and phase prediction,

phase space for target compositions was sampled and DFT calculations

used to verify predictions with limited success at validation.

Rahnama et al. reported an investigation involving two separate machine

learning approaches concerning hydrides for storage applications, released

as consecutive journal entries [55, 56]. The first involved testing a range

of regression processes to predict hydrogen weight percentage. Training

data is again collected from the Hydrogen Storage Materials Database,

however only the entry with highest hydrogen concentration result for a

given intermetallic is taken. The predictive performance of four regression

models are compared, namely linear regression, neural network, Bayesian

linear regression and boosted decision tree regression, as implemented in

Microsoft Azure Machine Learning Studio. It was found that the best

predictive performance corresponded to boosted decision tree regression,

and feature importance analysis admitted the highest ranking descriptor to

be material class, followed by temperature and then the heat of formation,

whilst composition formula was shown to be an insignificant variable. The

second entry by Rahnama et al. instead focused on developing a model

to classify metal hydrides into materials classes based on the values of

properties collected from the Hydrogen Storage Materials Database.

Work by Witman et al. rather uses an entirely experimental hydride

database to construct an empirical based machine learning model to

predict the natural logarithm of the equilibrium pressure of H2 at

ambient temperature (lnP ◦
eq) [57]. Using the HydPARK database,

a repository of experimental metal hydride information and empirical
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results constructed through collaboration between the International Energy

Agency (IEA) and the U.S. Department of Energy (DOE) [58], data

pruning removes compositions with incomplete data such that lnP ◦
eq cannot

be calculated, and duplicate entries for a given composition are represented

by their median value. Building a gradient boosting regression model as

implemented in scikit-learn [59], and using Magpie descriptors [60], the

resultant model admits strong feature importance for the mean volume per

atom in the ground state structure. This is further expanded on, using this

structure-property relationship as justification for DFT analysis of similar

materials, examining A-site substitutions in the LaNi5 series.

3.3 Model training methodology

In principle, the construction and subsequent use of a machine learning

model is procedural. As sketched in Figure 3.1, this process consists of

three main regimes; data collection and processing, model construction

and testing, and ultimate application.

Data collection: All models require training data from which to analyse

any form of underlying mathematical pattern. This data may take many

forms, and can be obtained from a range of sources. For regression

applications in material science, this encompasses experimental results,

theoretical calculations, or a combination thereof. In addition to this,

descriptor variables must be chosen and the corresponding information

collected or generated along with, in the case of supervised learning, data

to be taken as the ground truth values of the target variable.

In order to obtain a robust model boasting a strong mathematical
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representation of the thermodynamic mechanisms that govern the target

variable, this data must be reliable, as covered in Section 2.3.2.

Inconsistency in simulation or experimental methods between data points,

or simply incorrect results, can contaminate the dataset and impact the

predictive ability of the resultant model. Data must therefore be cleaned,

pruning the training dataset of troublesome results.

An appropriate algorithm should be used to construct the model. Learners

perform differently on different datasets and so a suitable choice of

algorithm may require investigation of multiple candidates, whilst also

considering optimisation of corresponding hyperparameters.

Model construction: With a finalised, cleaned dataset, the results are

split into subsets so as to enable testing of the model’s performance at a

variety of stages throughout construction. The majority will be used for the

actual training of the model, providing information of the chemistry of these

systems as encoded by descriptor values, whilst a random sample should be

held-out in order to test the predictive ability of the final model. A portion

of training data is used during construction to evaluate performance at

various stages during the training process, however cross-validation may

be performed instead. Throughout this work, this is quantified by the

mean absolute error (MAE) of prediction relative to ground truth values.

Once the model has been built according to the initial parameterisation

of the estimator, the held-out test set can be used to assess accuracy

of prediction when the model is presented with previously unseen

compositions, which should be indicative of the model’s ability to generalise

to new data.
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Application: After the model has been built, it can be used to predict

the target variable for any composition. For this work, new compositions

are generated by a heuristic process. Descriptor values are determined for

each formulae and run against the trained model, outputting a predicted

enthalpy value. From here, a variety of filtering criteria are established to

reduce the sample space of these candidate materials.

Once reduced sufficiently, structure prediction processes are used to expand

upon the information known about sampled compositions, allowing for

further analysis by means of first principles calculations. By evaluating

energies for the final hydride compound, as well as possible dehydrogenation

product species, the accuracy of the enthalpy prediction for such materials

can be verified.

Whilst Figure 3.1 depicts a generalised model construction process, the

work presented in this chapter requires slight deviation to compensate

for nuances in our investigation. To account for the limited size of

the available training dataset, cross-validation is used as an alternative

to an independent validation set. Additionally, the descriptor data is

suitably formatted for input to the relevant algorithms, so as to bypass the

pre-processing of data that may otherwise be required for non-explicitly

numerical descriptor information.
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Generation or
collection of data

Cleaning of data

Select algorithm
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Pre-processing of data
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Final model
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New
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generation

Filtering conditions

Structure prediction
from composition

Geometry optimisation
and enthalpy calculation

Figure 3.1: Workflow diagram for data collection, followed by model construction,
testing, and application.
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3.3.1 Cross-validation

Constructing a machine learning model involves parameterisation of the

fitting function with respect to the set of training data presented. Testing

performance, and thus these parameters, using the samples involved in

training would bias the model to these results. This causes overfitting

of the learner and can lead to poor predictive accuracy when presented

with yet-unseen data. Common practice is to partition the input dataset

into training, validation, and testing sets. From here, the test set is kept

aside whilst the model learns from training data, evaluating and adjusting

fitting parameters according to accuracy with relation to known validation

results. Once optimised, final evaluation against the test sample space

provides quantification of performance according to chosen metrics. When

dealing with smaller sets of data, a three-way splitting of samples may have

a notable impact on the model by limiting the amount of available data

points for the learning process. Additionally, prediction issues may arise

as a result of correlations between training and validation data.

Figure 3.2: Schematic of a k-fold splitting of training data, in this case 5-fold.

58



3.3. MODEL TRAINING METHODOLOGY

An alternative method is by performing cross-validation (CV). For this,

data need only be split into train and test sets, allowing what would have

been the independent validation samples to be included in the learning

process. A simple CV scheme is that of k-fold CV which intuits splitting

the training set into k subsets. The model is constructed using k − 1

subsets, whilst validated against the remaining one. This is repeated k

times such that each fold is used to validate the rest of the data, after

which parameters are averaged across all splits in the loop, as shown in

Figure 3.2. This fitted model is then used against the separate test set to

determine predictive performance.

3.3.2 Hyperparameter optimisation

The parameterisation of a predictive function, such as Equation 2.1, is

determined by the machine learning algorithm being used. As explained in

Section 2.1, such an algorithm itself can be controlled by hyperparameters

in order to parameterise the optimisation procedure. Scikit-learn, the

toolkit used in this work for construction of a variety of machine learning

models, provides sets of default hyperparameters for each of its regression

functions. However, in order to maximise predictive ability and build a

more robust model, one should investigate methods of selecting optimal

hyperparameters, given the dataset and method.

One method used early in this investigation is to exhaustively train models

over a grid of specified hyperparameters. GridSearchCV, as implemented in

scikit-learn, operates in a fairly self-explanatory manner; given a dictionary

of hyperparameter names and possible values, a k-fold cross-validated grid-

search over combinations of such possible values is performed and the

optimal choice presented. This approach requires some intuition as to
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the values certain hyperparameters may take, and it can be seen that the

consideration of additional variables, values, or combinations of such, can

greatly add to time complexity.

Another process used is that of a black box Bayesian optimisation of a

given hyperparameter space, as implemented in scikit-optimize [61]. One

defines target ML algorithm variables and an appropriate range for each,

as well as an objective function to minimise, which in this work is set

to be the MAE of a 5-fold GBR model trained on the input data. The

function is approximated using a Gaussian process whilst optimising a

cheap acquisition function - expected improvement, by default. This is

performed by iteration over the antecedent distribution at each step for a

specified number of calls.

3.4 Data representation

As outlined in Section 2.1, the machine learning process works to ascertain

a relationship between a set of variables, fitting a function to evaluate

a target property. By this definition, the process can be used to study

materials where these values encode information about the system, being

correlated with material properties and combining to portray macroscale

or microscale mechanisms [62].

A mathematical representation of materials data, theoretical descriptors

are based on symbolic representations of molecules. This can vary from

low-dimensional data such as information regarding constituent atoms

and relative stoichiometry, to topological information including structural

features, distance and Coulomb matrices, and even further to spatially

dependent descriptors, encoding atomic coordinates [63]. As the complexity
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and scope increases, so does the complexity of respective calculations to

obtain the descriptor values.

For the work presented in this thesis, machine learning models are

constructed using descriptors which are independent of crystal structure

information. By using a descriptor generation system based on constituent

elements, stoichiometry, and atomic structure, the model can be used to

predict results for unseen compositions for which the crystal structure is

unknown. This is because the patterns and correlations interpreted by

the ML training process is based on information implicitly encoded by the

elements involved, and relative quantities.

Magpie, or Materials AGnostic Platform for Informatics and Exploration

[60], uses elemental property databases and ratios of elements present, along

with electronic and ionic attributes, to construct a set of 131 descriptors.

The diverse range of attributes covered results in a widely applicable set of

values to describe many different classes of materials [64, 65, 66]. By using

Magpie to generate features for initial training compositions and fitting to

ground truth property values, we can then repeat the process to featurise

either test compositions or unseen data.

3.4.1 Data source - OQMD

The material-related ground truth enthalpy data and compositional

information used to construct our machine learning models is acquired

from the Open Quantum Materials Database (OQMD) [67, 68]. It contains

plentiful data on relevant inorganic compounds, including thermodynamic

and structural properties. This can be downloaded as a searchable SQL

database. Calculations for OQMD entries are performed using VASP,
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making use of the PBE GGA approximation of exchange and correlation

referred to in Section 2.5.3. A range of relaxation schemes are used to

initially test physical feasibility and to consider inclusion of magnetism,

before an iterative process of refinement involving higher cut-off energies

and denser k-point meshes are implemented.

With the latest version, as of writing, boasting approximately 300,000

structures [69], approximately 10% of these are obtained in partnership

with the Inorganic Crystal Structure Database (ICSD) [70, 71]. The

world’s largest database for identified inorganic structures, ICSD is a

collection of experimental and theoretical inorganic structures, collated

and catalogued alongside their method of synthesis or calculation. This

internal methodological inconsistency is a key motivation behind the

OQMD approach of standardising the calculation parameterisation across

all structures.

The remaining ∼90% of data is computed from prototypical structures

generated for a range of Strukturbericht types [69]. A process known

as crystal structure prediction by analogy, this includes many unary,

binary, ternary and quaternary compositions fit to realistic symmetries

and stoichiometries, similar to known examples. Resultant systems are

then processed in the same systematic manner as existing data to provide

approximation of convex hulls and relative stabilities. Whilst this approach

greatly improves the sample size of materials data, the large proportion

of data generated for newly generated compositions and configurations

potentially poses issues for the integrity of statistical learning tools built

upon this foundation.

Understanding the derivation of formation enthalpy as implemented for

OQMD entries is of great importance for this work. As presented by Kirlin
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et al. [68], the formation enthalpy is generally given as

∆Hf = Etot −
∑
i

µixi, (3.3)

where Etot is the DFT total energy of a given compound, and µ and x

are the chemical potential and quantity of an element i in the compound,

respectively. The convention used consistently throughout the database is

to equate the chemical potential of a given species to the DFT total energy

calculated for the elemental ground state. Doing so assumes a reaction

pathway of

αA+ βB + γC → AαBβCγ, (3.4)

for any elements A, B, C. Implications of this will be further discussed.

3.4.2 Hydride data

Data from OQMD is downloadable as a MySQL database dump from

https://www.oqmd.org/download/ and accessed by use of the qmpy

Python backend [72]. Results for hydride compositions were collected by

exhaustively searching for combinations of compositions of varying chemical

complexity, comprised of metallic elements and hydrogen. Querying a

Composition object for the delta e entry value admits the lowest enthalpy

of formation for that particular stoichiometry, considering the possibility of

multiple structures for a given chemical formula. The work in this chapter

utilises OQMD version 1.3.0 for hydride compositions and corresponding

ground truth formation enthalpy values. Released in October 2019, data

was collected for hydrides of three degrees of complexity; binary (AxHi),

ternary (AxByHi), and quaternary (AxByCzHi) compounds, for any metals

A, B, C. The availability of information for each such class of composition
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is shown in Table 3.1.

Binary Ternary Quaternary Total
336 451 59 846

Table 3.1: Availability of results for each class of hydride composition
collected from OQMD v1.3.0.

A range of hydride chemistries are included in this sample set, including

those based on A2B, AB AB2 and AB5 alloys, as well as alanate structures,

and other miscellaneous systems generated through the prototypical

generation method.

3.4.3 Caveats of such data

It should be noted that there is scope for possible inaccuracies in the

database results. It is possible that the prototype-based method for the

generation of new compositions and structures simply outputs an incorrect,

or unrealistic structure, or that it doesn’t contain the most stable crystal

structure for a given composition. There is also a chance of issues with

the calculations performed on such structures. The SCF calculations may

have been incorrect, or improperly converged, thus admitting an incorrect

ground state structure from which material property values have been

calculated. In addition to all of this, there may be correctly calculated

results admitting extreme values that may skew the fitting of a model. A

data pruning method for cleaning the dataset prior to model construction

will be covered later in this chapter.
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3.5 Comparative testing of ML algorithms

Supervised learning is an ever-developing field and algorithms have been

designed for a multitude of use cases [73]. For the problem at hand, it is

important to consider the performance of a selection of such methods, in

order to find an optimal process for the final predictive model. A range of

nonlinear processes, as well as standard linear regression, were selected in

order to compare predictive performance for the nonlinear hydrogenation

mechanism [74].

Multiple models were constructed using training data obtained from version

1.3.0 of the OQMD database. They were developed using the below

methods as implemented in scikit-learn [59]. Each method had certain

characteristic hyperparameters cross-validated via the GridSearchCV

process across a suitable range and the predictive error recorded for the

optimal combination.

• Linear regression.

– Default hyperparameters.

• Kernel ridge regression.

– ‘alpha’ = 10−n, for n ∈ [0, 10]

– ‘gamma’ = 10−m, for m ∈ [0, 10]

– All else, default hyperparameters.

• Lasso cross-validation.

– ‘n alphas’ = n, for n ∈ [1, 71]

– All else, default hyperparameters.
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• Random forest regression.

– ‘max depth’ = n, for n ∈ {1, 2, 3, 4, 8, 10}

– All else, default hyperparameters.

• ExtraTrees regression.

– ‘max depth’ = n, for n ∈ {1, 2, 3, 4, 8, 10}

– All else, default hyperparameters.

• Gradient Boasting regression.

– ‘max depth’ = n, for n ∈ {1, 2, 3, 4, 8, 10}

– ‘learning rate’ = 10−m, for m ∈ [0, 10]

– All else, default hyperparameters.

Additionally, this entire process was calculated for a variety of train/test

cuts, using 5-fold cross-validation, as well as across five separate seeds of

initial data randomisation.

From the results shown in Table 3.2, it can be seen that the tree-based

ensemble approaches performed best amongst the methods tested. There

is similar performance from ExtraTrees Regression and Random Forest

Regression, however Gradient Boosting Regression is best-in-class with

the lowest test error across all test splits. GBR also appears to better

capture the mechanics aimed to be represented by the fitting process, with

a noticeably smaller train error than other methods. As such, it shall be

used going forward.
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Method
Test split
proportion

Average test MAE,
eV/atom

Average train MAE,
eV/atom

GBR 0.33 0.2066 0.0368
0.25 0.1949 0.0422
0.20 0.1976 0.0427
0.15 0.1920 0.0367
0.10 0.1870 0.0398

ETR 0.33 0.2117 0.0595
0.25 0.1968 0.0625
0.20 0.1991 0.0622
0.15 0.2064 0.0655
0.10 0.2004 0.0662

RFR 0.33 0.2088 0.0588
0.25 0.1987 0.0634
0.20 0.2004 0.0623
0.15 0.2075 0.0657
0.10 0.2008 0.0664

Linear 0.33 0.3199 0.2402
0.25 0.3131 0.2588
0.20 0.2669 0.2300
0.15 0.2718 0.2325
0.10 0.2666 0.2390

KRR 0.33 0.2890 0.2250
0.25 0.3131 0.2588
0.20 0.2669 0.2300
0.15 0.2718 0.2325
0.10 0.2556 0.2334

LASSO 0.33 0.3175 0.2978
0.25 0.3135 0.3016
0.20 0.3141 0.3016
0.15 0.3183 0.3016
0.10 0.3036 0.3050

Table 3.2: Average test and train MAE values for the selection of
algorithms, averaged over five instances of randomised test and train set
allocations for each test split value.
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3.6 Data cleaning process

3.6.1 Noise in data

By the motivation outlined in Section 2.3.2, for the benefit of the

generalisability of the final model, it is important to consider the quality of

data used in the model training process. This is accomplished by identifying

and removing troublesome outliers from the base OQMD dataset.

3.6.2 Procedure

The original hydride data acquired from OQMD, as summarised in Table

3.1, is represented by the histogram plot in Figure 3.4. Divided into 35

bins according to the given ground truth enthalpy values, it can be seen

to have a long upper tail representing a proportionally small number of

highly unstable compounds. An initial gradient boosting regression model

was built using this data, as implemented in scikit-learn and optimal

hyperparameters generated with scikit-optimize.

Using 5-fold cross-validation across the whole dataset, each data point is

presented on the prediction error plot Figure 3.3. With a mean absolute

error of 114.4 meV/atom, the data points can be seen to be fairly spread

out, with a degree of correlation but poorly represented by this model.

Further to this, the line plot overlaid on top of the histogram in Figure

3.4 depicts the average MAE for data points with formation enthalpy

corresponding to each bin. It is clear that the model has two main regimes

of predictive performance; a consistent predictive error for more populated

regions of enthalpy values, and a sparsely represented region of enthalpy

data with much higher error values.
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Figure 3.3: Prediction error plot for GBR model constructed using the base hydride
data obtained from OQMD.

Figure 3.4: Histogram of formation enthalpy distribution for base hydride data obtained
from OQMD, overlaid with MAE for data in each bin per the GBR model represented
in Figure 3.3.
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As suggested in Section 3.4.3, there may be several reasons for the existence

of outlier data points amongst this theoretical data. In order to improve the

quality of data, a three-stage pruning process was undertaken to remove

outliers. The first stage consists of removing hydride compositions with

unrealistic stoichiometry with regards to having a low hydrogen content.

Compounds were filtered to remove any with a gravimetric density of less

than 0.5 wt% of hydrogen, or any composition where hydrogen represents

less than 25% of constituent atoms. This process not only helps to remove

some rogue compounds that may have been generated as part of the

prototype-based generation routine, but also removes those with notably

poor hydrogen wt% that would be unfeasible as storage materials. Doing

so further consolidates the compositional space to metal hydrides with non-

trivial hydrogen content, the class of materials intended to be represented

by such a model.

This reduces the sample size to 722 compositions, which were then used to

generate a new GBR model, again with the same methodology of scikit-

learn and scikit-optimize. Admitting a MAE = 102.5 meV/atom, Figure

3.5 suggests a stronger correlation between model output and known values,

as shown by a reduction in the general spread of points, symbolising

prediction error for data along an x = y relationship. Remaining outlier

results appear to follow an alternative linear relationship, and must be

accounted for by either inclusion to the model, or removal from the training

set.

The MAE plot in Figure 3.6 shows that this GBR model still presents

relatively high errors in less represented enthalpy ranges, but appears to

perform well elsewhere. Making use of this generalisation relationship, a

new filtering procedure was developed. Taking the remaining materials

data, two hundred independent GBR models were constructed using a 25%
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Figure 3.5: Prediction error plot for GBRmodel constructed using the remaining hydride
data following the first filtering stage.

Figure 3.6: Histogram of formation enthalpy distribution for the remaining hydride data
following the first filtering stage, overlaid with MAE for data in each bin per the GBR
model represented in Figure 3.5.
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test split, each using a different random seed to assign training/testing

data. For each iteration, the test MAE for each material included in that

model’s test set is noted. After the two hundred models have been built

and errors recorded, the MAE scores are averaged per composition, and

the compounds with an error greater than 0.4 eV/atom are discarded from

the dataset. This entire process was iterated until the maximum average

MAE result was less than 0.4 eV/atom.

In order to produce results in a timely fashion, but at the risk of introducing

further variance, hyperparameters were generated for a one-off build of a

GBR model using the initial dataset. The hyperparameters defined to

deviate from default values are given in Table 3.3, the first of which was

chosen to ensure a good fit, whilst the others were optimised by use of

scikit-optimize.

n estimators 1000
max depth 200
learning rate 0.013510
max features 90
min samples split 8
min samples leaf 1
loss ‘lad’

Table 3.3: Hyperparameters chosen or generated for iterative data cleaning
process.

This process reduces the composition set down to 694 compounds. A

model was constructed using the resultant dataset from this method and

predictive errors can be seen in Figure 3.7, showing a much more robust

relationship with a reduced prediction error of 74.9 eV/atom. Seen here,

as well as in Figure 3.8, the majority of samples possessing larger positive

enthalpy values have been removed, consistent with the outliers observed in

the previous stage of filtering. The binned MAE chart continues to suggest
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Figure 3.7: Prediction error plot for GBRmodel constructed using the remaining hydride
data following the second filtering stage.

Figure 3.8: Histogram of formation enthalpy distribution for the remaining hydride data
following the second filtering stage, overlaid with MAE for data in each bin per the GBR
model represented in Figure 3.7.
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a suitable ability to generalise to the bulk of the samples, yet still shows

poor predictive performance for sparsely sampled enthalpy values.

Doing so consolidates the composition space used in the construction of

the model to approximately ± 0.75 eV/atom, as per the histogram in

Figure 3.8. However, the error for higher positive value ground truth

enthalpy results is still comparatively large. Referring to the ultimate

objective of this model, that being to predict formation enthalpy for

stable metal hydrides, the positive values corresponding to unstable

compounds are potentially superfluous to the model. A second cycle of

the iterative GBR filtering process was conducted, using the same method

and parameterisation as the previous step.

The error thresholds for the average MAE required for removal of a data

point as well as the termination condition, were both reduced to a value

of 0.2 eV/atom. The resultant filtered dataset, to be used going forward

in the construction of the final model, consists of 623 compositions and

admits a GBR model with a MAE of 58.7 meV/atom.
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Figure 3.9: Prediction error plot for GBRmodel constructed using the remaining hydride
data following the third filtering stage.

Figure 3.10: Histogram of formation enthalpy distribution for the remaining hydride
data following the third filtering stage, overlaid with MAE for data in each bin per the
GBR model represented in Figure 3.9.

75



3.7. CONSTRUCTION OF FINAL METAL HYDRIDE PREDICTIVE
MODEL

3.7 Construction of final metal hydride

predictive model

Having now consolidated the training data into a dataset well representative

of the majority of the data obtained from OQMD, the final model can be

constructed. A small sample of data points were taken from the training

data and held aside to be used as a final test set to assess performance

on unseen data for which there is ground truth data. Considering the

already small dataset size, and concerns regarding performance as a result

of this (see Section 2.3.1), the withheld test set consisted of six samples;

two randomly selected compositions for each binary, ternary, or quaternary

hydrides (Table 3.4).

Composition
OQMD ∆Hf ,
eV/atom

LaH3 -0.573
La4H9 -0.073
AlMgH5 -0.364
CoSr2H6 -0.622

LaNiMg2H7 -0.483
LiAlK2H6 -0.275

Table 3.4: Held-aside test compositions and corresponding ground truth
enthalpy values, to seven decimal places.

As the models trained during the data cleaning process all used the

same predefined hyperparameters, it was possible to further improve the

predictive error admitted by the final pruning stage by reconsidering

hyperparameter generation. Utilising the final cleaned dataset, a GBR

model was built for the dataset without the held-aside validation data

points, with newly generated optimised hyperparameters using scikit-

optimize (see Table 3.5).
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n estimators 1000
max depth 90
learning rate 0.097294
max features 56
min samples split 2
min samples leaf 25
loss ‘lad’

Table 3.5: Hyperparameter values used in the GBR model constructed
without held-aside validation data.

A 5-fold cross-validation was performed, as implemented in scikit-learn,

resulting in a predictive model, with a MAE of 61.5 meV/atom (see Figures

3.11 & 3.12). This model will have limited use, implemented only in

prediction of enthalpy values for these select validation compositions.

Composition
OQMD ∆Hf ,
eV/atom

Predicted ∆Hf ,
eV/atom

Absolute Error,
eV/atom

LaH3 -0.579 -0.573 0.006
La4H9 -0.616 -0.622 0.006
AlMgH5 -0.058 -0.073 0.015
CoSr2H6 -0.475 -0.483 0.008

LaMg2NiH7 -0.333 -0.364 0.031
AlK2LiH6 -0.255 -0.275 0.020

Table 3.6: Compositions held out from training dataset used to validate
the trained model, to seven decimal places.

As can be seen in Table 3.6, the predictive ability for these unseen data

points is satisfactory. The largest absolute error value of 31 meV/atom,

corresponding to the composition LaMg2NiH7, is less than the mean

absolute error of 61.5 meV/atom admitted through the model construction.

With this confidence in the model to predict enthalpy data similar to the

DFT-based values sourced from OQMD, the model can be used further for

predicting results for novel materials, previously unseen to the model.

As such, a final GBR model can be built using the full filtered dataset along
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Figure 3.11: Prediction error plot for GBR model constructed using the final hydride
dataset minus the held-aside validation set.

Figure 3.12: Histogram of formation enthalpy distribution for the final hydride dataset
minus the held-aside validation set, overlaid with MAE for data in each bin per the
GBR model represented in Figure 3.11.
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with the held-aside data, which will be used in future prediction steps on

data unseen to model construction. Admitting an ultimate predictive MAE

of 57.9 meV/atom, this model is represented in Figures 3.13 & 3.14.

3.8 Construction of a binary alloy predictive

model

3.8.1 Motivation

In Section 3.4.1, equations 3.3 & 3.4 outline the formalism used in the

OQMD scheme for calculation of formation enthalpy values for a given

species. From a bank of previously-calculated elemental ground-state

energies, the convention is to follow a reaction pathway consisting of

elemental crystals combining to form a species that is the sum of its parts.

However this reaction mechanism, assumed a priori, is less realistic for the

formation of metal hydrides. Whilst, by definition, appropriate for binary

hydride compounds, empirical studies show alternative reactions to be more

prevalent - for example; combining multiple hydride species, destabilising

an initial hydride species by combining with another metal, or hydriding

an alloy [75, 76].

A decision was made to investigate the more commonly occurring case of

interstitial hydrides. To facilitate investigation of this reaction mechanism

based on hydriding an alloy, more information is required regarding the

initial intermetallic species. In particular, the stability of such an alloy

is an important factor as to the ability to repeatedly hydrogenate and

dehydrogenate. In order to check this, a secondary predictive model was

constructed in a very similar manner to the hydride model, but this time

79



3.8. CONSTRUCTION OF A BINARY ALLOY PREDICTIVE MODEL

Figure 3.13: Prediction error plot for the final GBR model for hydride formation
enthalpy prediction.

Figure 3.14: Histogram of formation enthalpy distribution for the final GBR model for
hydride formation enthalpy prediction, overlaid with MAE for data in each bin per the
GBR model represented in Figure 3.13.
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using alloy data.

Considering the objective of this investigation is to search for novel ternary

hydride compounds, the model will be used to predict enthalpy of formation

for the initial binary alloys. To be useful as a cyclable hydrogen store, both

the base alloy and the resultant hydrogenated species must be stable.

3.8.2 Data cleaning and model construction

Initial results were garnered from OQMD v1.3.0 in the same manner as

outlined in Section 3.4.2 - taking the lowest formation enthalpy value for

each binary (AxBy), ternary (AxByCz), and quaternary (AxByCzDq) alloys,

for any metals A, B, C, D. The availability of information for each such

class of composition is shown in Table 3.7.

Binary Ternary Quaternary Total
11,769 191,136 25,397 228,302

Table 3.7: Availability of results for each class of alloy composition collected
from OQMD v1.3.0.

It is clear to see that the range of alloy compositions is a vast increase

compared to the data handled when constructing the hydride predictive

model. As alluded to in Sections 2.3.3 & 2.3.1, a larger unbiased training

data set is usually beneficial to a model’s performance. Being introduced to

a much wider sample of a given population can greatly improve the ability

to generalise to unseen data. Nonetheless, the dataset still requires some

degree of pruning to remove any outliers and ensure it is still adequately

representative of alloy results.

First, a rudimentary filter is created to remove any compositions with wildly
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skewed stoichiometry. Removing data points for which

maximum molar ratio

total number of atoms
≥ 0.9 (3.5)

removed 212 outliers, leaving 228,090 alloy compounds. Considering the

size of the training set and the iterative nature of the GBR filtering

process used twice in Section 3.6, only the second stage of this method

is implemented, with the MAE threshold set to 0.2 eV/atom. A GBR

model was trained on the remaining data, as implemented in scikit-learn,

and with hyperparameters optimised by use of scikit-optimize, given in

Table 3.8. As can be seen with the prediction error results in Figures 3.15

& 3.16, predictive ability is impacted by a non-trivial number of extremely

high ground truth values. Whether these data points are incongruous

calculation values or not, they must be addressed in order to make the

model practicable.

n estimators 1000
max depth 38
learning rate 0.048372
max features 32
min samples split 15
min samples leaf 33
loss ‘lad’

Table 3.8: Hyperparameter values used in the GBR model constructed
without held-aside validation data.

This results in a final pruned dataset of 216,255 alloy compositions which

was used to construct a final GBR model with a MAE of 38.8 meV/atom

(Figures 3.17 & 3.18).
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Figure 3.15: Prediction error plot for GBR model constructed using the base alloy data
obtained from OQMD.

Figure 3.16: Histogram of formation enthalpy distribution for base alloy data obtained
from OQMD, overlaid with MAE for data in each bin per the GBR model represented
in Figure 3.15.
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Figure 3.17: Prediction error plot for the final GBR model for alloy formation enthalpy
prediction.

Figure 3.18: Histogram of formation enthalpy distribution for the final GBR model for
alloy formation enthalpy prediction, overlaid with MAE for data in each bin per the
GBR model represented in Figure 3.17.
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3.9 Discussion

3.9.1 Choice of training data source

As alluded to in Section 3.4.1, the entries of OQMD are approximately 10%

structures from ICSD, whilst the remainder consists of generated structures

constructed by analogy, based upon prototypical structures obtained from

ICSD. The sample space from this database is a medley of structures

obtained from experimental reports - either fully characterised with

specified coordinates, or with a known structure type such that coordinates

and parameters can be inferred - as well as theoretical structures, collated

from journal publications. These entries are then iterated upon according

to certain chemistry rules to produce the remaining samples.

An appealing consequence of this is that OQMD offers a wider selection

of structural entries than a solely experimental database would. As seen

in the work reported by Witman et al. [57], the mostly-experimental

HydPARK database admitted 570 hydride compositions with values for

∆Hf prior to data cleaning methods, whilst the approach taken in

this work collected 846 compounds from OQMD. In addition, reported

empirical results are dependent on the experimental processes used for

synthesising these materials. Inherent inconsistency in methodology

between entries introduces some intrinsic error within this collated data.

Whilst experimental errors may be encoded in ICSD structures that are in

turn included in OQMD, the standardised approach to calculations taken

may work to mitigate such an error, with consistent DFT methods applied

universally. Considering the dependence on the quantity and quality of

training data for most ML methods (see Sections 2.3.1 & 2.3.2), this choice

of database was intuited to be useful for this investigation.
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Descriptor data was chosen to be solely composition dependent to

investigate whether a model could be trained over data for a wide range of

hydride material classes and geometries, with the aim of associating hydride

chemistry with intrinsic thermodynamical properties, whilst providing

chemical insight via the fitting process. Preliminary work used handmade

archives of textbook data, but Magpie was soon settled on for ease of use

due to the implementation in the Matminer Featurizer package [77].

3.9.2 Algorithm selection

Performance of a selection of machine learning algorithms over a range

of train/test splits is presented in Section 3.5. The selection includes

multiple ensemble-based methods which have been shown to be useful

in regression of DFT-calculated energies and properties from geometry-

only and composition-only descriptors [78, 79], as well as linear regression

methods that have shown success [80]. Such a range of methods have been

used for validation of algorithm performance, as in the work by Faber at

al. [81].

It can be seen that the ensemble methods generally performed better, as

quantified by the average MAE result across the five iterations of each

train/test split for both training and testing. ETR and RFR perform

similarly for both error values but GBR is shown to have a slightly lower

test error across the board, as well as a much better fit during the cross-

validation process during construction. Respective testing and training

errors averaged 0.1956 eV/atom and 0.0396 eV/atom across the test splits

examined, compared to the next best in class of 0.2029 eV/atom and

0.0632 eV/atom for ETR. Gradient boosting regression has been shown

to be effective for the study of material properties, and has demonstrated

86



3.9. DISCUSSION

provable success in material discovery [82, 83]. These results and those

from literature can be used to justify the choice to use gradient boosting

regression as the machine learning algorithm of choice in this work.

It may be noted that the algorithm selection process and the data cleaning

stage are presented in a different order to that in Figure 3.1. This is due

to the test of algorithm choice having been previously performed using an

older version of OQMD (v.1.2.0) which also justified the use of GBR, as

was consequently used in the filtering processes to clean results from the

updated database.

3.9.3 Feature importance

The use of a bagging-based algorithm allows for the determination of

relative importance of features in the fitting function of a constructed ML

model via the out-of-bag error (see Section 2.2.5). Relative importance of

variables in the final hydride model were determined and the 20 highest

values are presented in Figure 3.19. Due to the ever-present nature of

hydrogen in all compositions by definition, statistical elemental features

may be seen to describe the metal species involved. For example, hydrogen

has a high electronegativity value and Mendeleev number, as well as

the small atomic and covalent radii. Considering periodic trends, the

statistical concepts of mean, minimum, range etc. of certain features

can be interpreted as indicative of these properties in the intermetallic

components.

The two most significant results are shown to be the minimum

electronegativity value and the average deviation from the mean for

the number of unfilled s valence electrons among elements, followed by
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Figure 3.19: The top 20 results of variable importance for the final metal hydride model.

a selection of statistical variations on electronegativity and Mendeleev

number.

Electronegativity is known to play a role in the thermodynamic

stability of binary hydride species such that elements with low Pauling

electronegativities can form very stable ionic hydrides (e.g. lithium) whilst

those with electronegativity values closer to hydrogen can form stable

covalent hydrides (e.g. carbon) [84]. This property is also correlated to

atomic and ionic radii in metals, generally having an inverse relationship.

Deviation from the mean value of unfilled s valence electrons is a more

nuanced variable. As the s-block is composed of the Group I and II

elements, along with hydrogen and helium, one can deduce that such

deviation refers to these certain metals. Hydride compounds of Group

I metals tend to form saline, or salt-like, hydrides with ionic character that
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increases down the group, whilst Group II metal hydrides can take the form

of electron deficient covalent compounds, or ionic structures. It is possible

that these distinct differences from simple interstitial hydride forms may

be implicitly encoded within a Magpie descriptor.

Mendeleev number is defined as a simple enumeration process, traversing

down each group of the periodic table in numerical order consecutively,

with each element assigned an incremental number [85]. This metric

can introduce trends as a function of group number. The descriptor of

Mendeleev number range can impart information as to types of component

metallic elements, from a coarse level of mostly alkali, alkaline earth, or

transition metals, to a finer degree of traversal across transition metal,

whilst also capturing information regarding trends down a given group, in

terms of mass, volume, and various radii variables.

3.9.4 Alloy model

Whilst the main goal of this work was to develop a predictive model with

regards to metal hydrides, the construction of a similar model trained on

metal alloy data could allow for further interpretation of possible reaction

pathways for hydrogenation or dehydrogenation. Alloy data was much more

widely available from OQMD, and used to train a model that admitted a

lower predictive error to the hydride model. With such abundant training

data, the hyperparameters generated are tuned to mitigate overfitting,

broadening the tree constraints of minimum samples per split and leaf,

whilst reducing tree depth and learning rate to lower the chance of overtly

biasing the fit.

During the generation of new hydride compositions, this model would
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primarily be used qualitatively to predict whether a metal alloy is stable

or not. With this considered, a test set and further validation was not

performed for this model, whilst the cross-validation process was presumed

to be sufficient in parameterising the model to our needs.

3.9.5 Qualitative prediction

The ML models generated here can be used to predict the formation

enthalpy values for a range of compositions previously unseen to the model.

It should be emphasised that the intention of this tool is to provide

an initial means of screening a large combinatorial composition space.

By first assessing samples independent of structure in a computationally

efficient manner, such an approach would allow for focused investigation of

highlighted candidate materials at higher levels of theory.

3.10 Conclusion

In this chapter, methodology for constructing a machine learning model and

a process for comparative testing of performance for a range of algorithms is

outlined. Of these, nonlinear ensemble methods were shown to perform best

on average, and this was used to justify the selection of gradient boosting

regression for the construction of models in this work.

The workflow of data acquisition and cleaning of this dataset was defined,

filtering outlier data by implementing a threshold error for prediction,

ensuring that the data retained is well represented by the model. This is

performed for data regarding both metal hydrides and metal alloys, before

the pruned data is used in the development of final production models,
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shown to have mean absolute errors of 57.9 meV/atom and 38.8 meV/atom

respectively through the cross-validation stage of model construction.

A separate hydride predictive model was built by excluding a selection

of compositions sampled across the space of chemical complexity involved

with the data, to allow for further validation of prediction using such a

held-out test dataset. Initial comparison between prediction and ground

truth data suggests good predictive ability to results at the standard of the

database, but corroboration shall be tested further by use of first principles

calculations.

Analysis of relative feature importance offers insight into the weighting

of variables in the fitting process, which appears to encapsulate factors

known to influence thermodynamical properties of metal hydrides such

as the electronegativity of the intermetallic component and periodic table

group trends relating to mass and radii.
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Chapter 4

Density functional theory

validation of machine learning

predicted hydride systems

4.1 Introduction

Having constructed machine learning models for the prediction of formation

enthalpy for both metal hydride compositions and intermetallic alloys, this

chapter will cover validation of predictions by means of first principles

calculations. Initially, calculations for the held-out validation dataset and

known experimental storage systems will be used to determine predictive

performance. Following this, new ternary compositions will be generated

and subjected to a range of filtering stages to reduce the sample space.

For select results, stable structures will be determined by crystal structure

prediction methods and first principles calculations used to determine

enthalpy of formation, from which predictions and calculated values can

be compared.
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4.2 DFT calculation process

Further use of the ML models initially requires proof of validation of

prediction when compared to known theoretical results, after which they

can be justified in use as a shortcut to study further results. In order to

study these materials we use first principles calculations and the method

of geometry optimisation to calculate ground state energies for both the

ultimate metal hydride materials as well as any constituent species.

To ensure consistency with the OQMD regime, any comparison to their

data will be calculated by means of constituent elemental ground state

energies, as per Equation 3.4. The ground state energy for each simulation

cell is then reduced to an energy per atom, and the formation enthalpy

can be calculated as the energy difference between products and reactants,

normalised per atom. For a compound AαBβHγ:

∆Hf =
E (AαBβHγ)−

[
αE (A) + βE (B) + γ

2
E (H2)

]
α + β + γ

, (4.1)

where E(X) is the DFT energy of a species X in a minimised energy

structure.

4.2.1 DFT settings

Calculations are performed using the Vienna Ab initio Simulation Package

(VASP), using a plane-wave basis set with an energy cutoff of 400 eV. Using

a generalised gradient approximation (GGA) of exchange and correlation

through the use of the Perdew-Burke-Ernzerhof (PBE) functional [36],

the projector augmented wave method is used to solve the Kohn-Sham

equations [37, 86]. For elemental metals or intermetallic alloys, a first-
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order Methfessel-Paxton smearing scheme [87] is employed with a width of

0.2 eV, otherwise a Gaussian smearing process is used with width 0.05 eV.

The energy convergence threshold to break the electronic self-consistency

loop is set to 10−4 eV, whilst the break condition for the ionic relaxation

loop is set to −5×10−2 eV/Å. The values for the k-point mesh are defined

with a spacing of approximately 0.20 Å−1.

These geometry optimisations were performed on the ARCHER2 UK

National Supercomputing Service using the implemented standard VASP

5 software, assigned to a single node on the standard partition [88].

4.3 Validating model using theoretical

calculations

In Section 3.7, a validation method was used to compare the predicted

enthalpy from the model to that of the ground truth data collected from

the OQMD database. Whilst suggesting relatively good alignment, further

validation is required to suggest that the model works sufficiently as to

predict results from first principles calculations.

By calculating the formation enthalpy for the compositions in Table 3.4

as per the procedure used for OQMD data generation, we may gain

some insight into the effectiveness of the predictive model. The final

hydride structure is directly taken from the database to facilitate energy

calculations, and reference elemental DFT energies are also determined for

each elemental species involved (see Table 4.1).

Elemental crystals are subjected to geometry optimisation and DFT

energies normalised per atom, along with the final hydride structures.
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Compound
Atoms in

simulation cell
Total energy,

eV
Energy per atom,

eV/atom

H2 2 -6.759 -3.379
Al 4 -16.337 -4.084
La 4 -21.178 -5.294
Ni 4 -23.506 -5.876
Co 4 -28.717 -7.179
K 4 -4.057 -1.014
Sr 4 -7.306 -1.827
Li 2 -4.136 -2.068
Mg 2 -3.577 -1.789

AlK2LiH6 20 -64.336 -3.217
AlMgH5 28 -94.205 -3.365
CoSr2H6 36 -145.159 -4.032
LaH3 16 -72.168 -4.511
La4H9 28 -120.920 -4.319

LaMg2NiH7 88 -345.031 -3.921

Table 4.1: DFT energies, to three decimal places.

Hydrogen is simulated as a dimer in a 10 Å3 simulation box. Using

Equation 4.1, some examples are shown in Equations 4.2-4.7 and presented

in Table 4.2.

La + 1.5H2 → LaH3 ∆Hf = −0.653 eV/atom (4.2)

4La + 4.5H2 → La4H9 ∆Hf = −0.634 eV/atom (4.3)

Al + Mg + 2.5H2 → AlMgH5 ∆Hf = −0.112 eV/atom (4.4)

Co + 2Sr + 3H2 → CoSr2H6 ∆Hf = −0.576 eV/atom (4.5)

La + 2Mg + Ni + 3.5H2 → LaMg2NiH7 ∆Hf = −0.430 eV/atom (4.6)

Al + 2K + Li + 3H2 → AlK2LiH6 ∆Hf = −0.371 eV/atom (4.7)

These calculated enthalpy values are shown in Table 4.2, alongside the

ground truth values from the source data, and the predicted value from

the model trained on the finalised dataset, but excluding the withheld

validation data points.
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Ternary

hydride

Predicted ∆Hf ,

eV/atom

Calculated ∆Hf ,

eV/atom

Database ∆Hf ,

eV/atom

LaH3 -0.579 -0.652 -0.573

La4H9 -0.616 -0.633 -0.622

AlMgH5 -0.058 -0.112 -0.073

CoSr2H6 -0.475 -0.576 -0.483

LaMg2NiH7 -0.333 -0.430 -0.364

AlK2LiH6 -0.255 -0.371 -0.275

Table 4.2: Comparison of enthalpy values for the hydride compositions
given in Table 3.4.

For comparative purposes, data for known hydrogen storage materials

was gathered from the HydPARK database, a repository of experimental

metal hydride information and empirical results constructed through

collaboration between the International Energy Agency (IEA) and the U.S.

Department of Energy (DOE) [58].

Composition Frequency
Lowest enthalpy
ternary hydride

Mg2Ni 36 Mg2NiH4

NaAlH4 18 NaAlH4

LaNi5 18 LaNi5H7

Na3AlH6 11 Na3AlH6

ZrCr2 11 ZrCr2H3

Table 4.3: Most frequently occurring ‘Composition’ samples obtained from
the HydPARK database. Accessed 21-October-2020.

Whilst not possible to directly compare thermodynamic results calculated

by first principles to those obtained by experiment (see Section 3.9.5),

it is worthwhile to consider the predictive ability of the model versus

both the OQMD value for formation enthalpy as well as that directly
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obtained from ab initio calculations. To do this, a rudimentary search

of the HydPARK database was performed to highlight the most commonly

studied compositions. Taking the five lowest enthalpy ternary hydride

compositions of these samples as per OQMD entries (see Table 4.3),

first principles calculations are used to determine elemental ground state

energies for all constituent elements as well as the final species, using

structure files obtained from the ICSD.

It is worth noting that the only Zr-Cr-H species in the OQMD database,

ZrCr2H3, is not presented as stable, having a positive theoretical formation

enthalpy of 0.13 eV/atom. Results of Zr-Cr hydrides in the HydPARK

database suggest hydrogen loading of H/M=1.8-2.1. This will be expanded

upon in the discussion section later in this chapter.

Compound
Atoms in

simulation cell
Total energy,

eV
Energy per atom,

eV/atom

H2 2 -6.759 -3.379
Mg 2 -3.577 -1.789
Al 4 -16.337 -4.084
Cr 2 -19.878 -9.939
La 4 -21.178 -5.294
Na 2 -2.919 -1.459
Ni 4 -23.506 -5.876
Zr 2 -18.091 -9.045

LaNi5H7 26 -124.271 -4.780
Mg2NiH4 36 -123.727 -3.437
NaAlH4 24 -80.184 -3.341
Na3AlH6 20 -62.255 -3.113
ZrCr2H3 24 -153.646 -6.402

Table 4.4: DFT energies, to three decimal places.
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2Mg + Ni + 2H2 → Mg2NiH4 ∆Hf = −0.294 eV/atom (4.8)

Na + Al + 2H2 → NaAlH4 ∆Hf = −0.164 eV/atom (4.9)

La + 5Ni + 3.5H2 → LaNi5H7 ∆Hf = −0.293 eV/atom (4.10)

3Na + Al + 3H2 → Na3AlH6 ∆Hf = −0.239 eV/atom (4.11)

Zr + 2Cr + 1.5H2 → ZrCr2H3 ∆Hf = 0.108 eV/atom (4.12)

Energies for the relevant species are presented in Table 4.4, which are

then used in Equations 4.8-4.12 to determine formation enthalpies for these

hydride compositions. Enthalpy data is presented for comparison in Table

4.5, with predictions computed by use of the finalised model containing all

cleaned data.

Ternary
hydride

Predicted ∆Hf ,
eV/atom

Calculated ∆Hf ,
eV/atom

Database ∆Hf ,
eV/atom

Mg2NiH4 -0.234 -0.294 -0.249
NaAlH4 -0.149 -0.164 -0.149
LaNi5H7 -0.203 -0.293 -0.235
Na3AlH6 -0.230 -0.239 -0.206
ZrCr2H3 -0.217 0.108 0.130

Table 4.5: Comparison of enthalpy values for hydride compositions in Table
4.3.

4.4 Crystal structure prediction

Up until this point, first principles calculations have been performed using

known crystal structures. Utilisating the ICSD catalogue of results, as

well as OQMD’s prototypical structures, that are ultimately derived from

them, the starting structures from which to study these systems are readily
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available. However, upon the generation of novel compositions without any

prior structural insight, an alternative predictive methodology is required.

Following the methodology outlined in Section 3.4, this machine learning

model was intentionally designed to be independent of explicit crystal

structure information. In doing so, the model is trained to interpret

the underlying chemistry encoded in the composition representation of

a compound. Nonetheless, in order to verify and utilise the capability

of this predictive tool, a conversion from mere chemical formulae to a

crystal structure suitable for initiating geometry optimisation calculations

is required.

4.4.1 CALYPSO

One process uses the CALYPSO method, as described in Section 2.7.2; a

means of predicting energetically stable or metastable crystal structures

for a target composition by directly interfacing with the VASP code. The

global optimisation process works to find many structures across a potential

energy surface. By providing a selection of INCAR files, consecutive

geometry optimisation calculations are performed on found structures,

gradually increasing in precision, until converged results are obtained from

the finest of these processes.

In addition to these INCAR * files (one for each optimisation stage,

where * indexes the level of refinement), an appropriate POTCAR file

to enable these calculations, and the executable file calypso.x, this process

is parameterised using the file input.dat. Here the system is introduced,

constraints such as minimal distances between atoms of each species are

imposed, and settings for the PSO algorithm and the VASP calculations
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4.4. CRYSTAL STRUCTURE PREDICTION

can be adjusted.

An iterative process, this method involves a global or local optimisation

algorithm with a large number of steps, as well as multiple geometry

optimisation calculations for structures found along the way, resulting in a

non-trivial cost of computational resources and time.

CALYPSO settings

Calculations are parameterised such that one formula unit is present per

simulation cell. Minimal distances between each chemical species is set

to be 0.1 Å less than the minimum distance between the given ions in

the respective binary compound (rounded down to one decimal place).

This is determined from the crystal structures of such compositions as

presented in OQMD. A local PSO algorithm is used, with 60% of structures

systematically constructed in this fashion. Twenty iterative steps are

used, and each structure is optimised four times, over increasingly refined

settings; with the energy convergence threshold monotonously reducing

from 3×10−2 eV to 1×10−4 eV, the threshold for interatomic forces to

be considered converged reducing from 4×10−2 eV/Å to 1×10−2 eV/Å,

and a k-point sampling grid spacing of 0.25 Å−1 initially used before

being reduced to 0.25 Å−1 for the final stage. Using the proprietary

CALYPSO ANALYSIS KIT script, results are ranked in terms of energies,

and the lowest energy structure is taken.

4.4.2 Tetrahedral atomic structure search algorithm

A more efficient, yet more rudimentary, approach to constructing an initial

crystal structure to be further refined is to use a degree of chemical
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4.5. GENERATION OF TERNARY COMPOSITIONS

intuition. In a heuristic approach as developed by colleagues [89], should

the crystal structure be known for the intermetallic component of a ternary

hydride, the atomic structure of the alloy is explored and favourable

hydrogen binding sites identified and systematically occupied.

For all atoms in the alloy, local geometry is determined as a function

of atomic covalent radii and electronegativity. Tetrahedral arrangements

of atoms are identified from which a central coordinate is identified.

Additionally the tetrahedra are ranked by average electronegativity of their

constituent atoms. For an AB2 alloy, it is known that hydrogen occupies

these tetrahedral holes, energetically favourable for lower electronegativity.

In other alloys, hydrogen may occupy octahedral holes instead.

A minimum distance, dmin, is defined and enforced between hydrogen

instances - usually dmin = 1.4 Å. This hole-hole distance within the alloy

structure can be taken to be shorter than the minimum H-H distance

quoted in literature due to the volume expansion that occurs during

hydrogenation. Hydrogen atoms are sequentially inserted at the central

coordinate of the tetrahedral holes in order of ascending electronegativity,

unless a new site falls within dmin of an existing H atom, in which case

that site is skipped. This process shall henceforth be referred to as a ‘tetra

search’.

4.5 Generation of ternary compositions

Having constructed a machine learning model validated for the prediction of

formation enthalpy values on known data, it can be presented with unseen

compositions and offer insight into their thermodynamical properties. From

here, materials suggesting promising results can be processed further. The
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4.5. GENERATION OF TERNARY COMPOSITIONS

use of crystal structure prediction can expand upon this simple text-based

form of a given composition, offering structural information to facilitate

analysis at a higher level of theory.

With the combinatorial explosion of chemical space for each additional

element introduced to the system, a decision is made to investigate novel

ternary compositions. Given the limitations of the extrapolatory nature of

machine learning (see Section 2.3.4), candidate materials are generated as

a combination of binary hydrides collected from the OQMD database.

This combination method consists of concatenation and linear combination

processes. By selecting the binary hydride composition with the

lowest ∆Hf value corresponding to each metal (see Figure 4.1), linear

combinations of two of these compounds are constructed with coefficients

for each term varying from one to ten:

αAxHy + βBiHj = AαxBβyHαy+βj 1 ≤ α, β ≤ 10, (4.13)

for any two given binary hydrides, AxHy and BiHj, in this set.

For the 67 metals considered, this results in 221,000 compositions. To

remove any doubly counted compounds as a result of the linear combination

process (for example, Mg2Li2H4 as well as MgLiH2), these are then filtered

for only unique compositions by taking reduced formulae and extracting

unique elements of the set.

4.5.1 Filtering of predicted compositions

Given the context of searching for realistically applicable hydrogen storage

materials for on-board applications, remaining results are filtered by their
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4.5. GENERATION OF TERNARY COMPOSITIONS

gravimetric hydrogen content, removing those whose mass is less than 3%

hydrogen. This is done by calculating the proportion of the material’s total

mass for which hydrogen is responsible, as a function of atomic mass for

each constituent element, narrowing the field further to 8,440 samples. This

lower limit was chosen so as to aim for storage materials with a reasonably

high gravimetric capacity whilst also implicitly targeting less heavy, and

often less expensive, intermetallic components.

A final constraint implemented is for the formation enthalpy to be defined

between -50 and -30 kJ mol−1
H2
, consistent with values suggested for on-

board applications [46, 47]. Whilst convention is to regard standard entropy

changes for hydrides as constant, intrinsically linked to the entropy of

hydrogen gas (see Section 1.5), it has been reported that this may not be

the case and that standard entropy changes for alloy-based metal hydrides

are in the range of -100 to -150 J K−1 mol−1
H2

[90]. From Equation 1.1, for

a system in equilibrium such that ∆G = 0, it can be seen that these two

factors directly relate to the temperature required for a plateau pressure of

1bar of H2:

T (1 bar) =
∆H

∆S
. (4.14)

Whilst enthalpy values output by the predictive model are given in

eV/atom, this can be readily converted to kJ/molH2 :

[kJ/molH2 ] = [eV/atom] ∗ 96.484934... ∗ total # of atoms

# of hydrogen atoms / 2
(4.15)

Upon consideration of the range of entropy change values that might

apply to the hydride samples in the data set, this chosen enthalpy range

corresponds to a highest lower limit of ~27
◦C and a lowest upper limit of

~60
◦C, suitable for low-temperature storage solutions. This step admits a

final pool of 727 candidate materials.
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As alluded to in Section 3.8.1, the reaction pathway based on the combining

of elemental crystals is a less realistic approach to hydride synthesis.

We now also consider the mechanism of hydriding a metal alloy. A

cyclable store of this form would require materials sufficiently stable such

that the products for neither the hydrogenation nor dehydrogenation

processes would spontaneously decompose. Nonetheless, the underlying

alloy chemistry is sought to facilitate the generation of example hydride

structures from just a composition representation.

The remaining dataset is processed and the intermetallic species extracted

from the ternary hydride compositions. Using the second of the ML models

- that trained on alloy data (see Section 3.8) - as well as the hydride

model, formation enthalpies are predicted for both the ternary composition,

and the alloy form admitted by the omission of the hydrogen component.

Taking data entries for which both values are negative left 439 results.

Figure 4.2: Sketch of filtering procedure for generated ternary hydride compositions.
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A more involved approach was used for any further filtering of candidate

compositions. Considering the remaining materials, constituent elements

were assessed as to feasibility and removed as deemed necessary. Whilst

all filtering stages up to this point have been rooted in intrinsic chemical

or technical performance-based reasoning, certain extrinsic properties

should also be considered. Rhodium, platinum, gold, silver, iridium,

palladium, ruthenium, technetium, and scandium were all removed due

to scarcity and/or wholesale cost which would make implementation as a

practical hydrogen store unrealistic. Aluminium-containing compositions

are removed on the basis that many ternary complex alanate hydrides are

known to form through pathways involving the destabilising of a binary

hydride with a second metal species, as opposed to via an alloy [91].

Beryllium is excluded due to its toxic effects and the risks involved with

exposure [92].

Alloy chemistry Frequency

Mg-Ni 29
Mg-Zn 18
Co-V 16
Ni-V 10
Mo-V 7
Ca-Sn 5
Sn-Ti 4
Mg-Sn 4
Na-Sn 3
Cd-Mg 3
Li-Sn 2
Fe-V 1
Cu-Mg 1
Bi-Mg 1

Table 4.6: Chemistry of the intermetallic component of remaining
generated ternary hydrides following explicit element removal.
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The outcome of this is 104 results, shared across a range of intermetallic

chemistries, as presented in Table 4.6. From here, these compositions can

either be taken in their exact form as given, or their alloy chemistry used to

inspire a broader investigation into further possible hydride compositions

of such a form. Of these results, only 56 are already in a charge neutral

composition, split as per Table 4.7, suggesting that either approach may

be used.

Alloy chemistry Frequency

Mg-Ni 29
Co-V 16
Ni-V 10
Cu-Mg 1

Table 4.7: Alloy chemistries from Table 4.6 with charge neutral
compositions.

This may be further refined by only considering alloys predicted to have a

formation enthalpy of less than -0.1 eV/atom. Given the prediction error

in this ML model, predictions of borderline metastable cases may in fact

not be reliable. Thus, the sample space further reduces to the list of 36

compositions in Appendix B, which is summarised in Table 4.8.

Alloy chemistry Frequency

Mg-Ni 20
Co-V 15
Ni-V 1

Table 4.8: Remaining charge neutral alloy chemistries such that ∆Hf (alloy)
< −0.1 eV/atom.
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4.6 Systems of interest

Calculation of DFT energies for materials known only by a compositional

form requires an appropriate crystal structure geometry (see Section 4.4).

For elemental crystals, alloys, or hydrides represented in the ICSD or

OQMD repositories, these structures can be directly found. In many cases,

alloy or hydride compositions may not have a known geometry in these

databases. If there is structure for an intermetallic but not a corresponding

hydride, a tetra search can be used to generate a starting point for further

geometry optimisation. If neither are present, then a CALYPSO calculation

is required for the alloy from which a tetra search can be performed.

4.6.1 Known alloy structures

Considering the systems presented in Table 4.8, OQMD possesses data for

stable alloys of the form Mg2Ni, MgNi2, Co3V, CoV3, Ni2V, Ni3V, and

NiV3, as well as data for stable ternary hydrides Co3VH, and Mg2NiH4.

Of the generated compositions, two correspond to the above alloy

stoichiometries: CoV3H7 and NiV3H7. These examples lend themselves

to the use of the tetrahedral structure search algorithm for generation of

a possible initial hydride structure. Other compounds will require more

involved structure prediction of hydride form and/or alloy crystal.

Extracting the geometries of elemental reference structures, and

dehydrogenation products across various other possible reaction pathways,

DFT energies can be calculated. Product species consist of elemental

crystals, the corresponding alloy to directly hydrogenate into the ternary

species, and the most stable binary hydride constructed from constituent

elements.
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Exact alloys known for generated compositions

The alloy structures of CoV3 and NiV3 are taken from OQMD and a

tetra search is used to insert hydrogen atoms into tetrahedral holes. The

maximum capacity is seven H atoms, conveniently admitting the same

composition as the predicted ternary hydride.

Compound
Atoms in

simulation cell
Total energy,

eV
Energy per atom,

eV/atom

H2 2 -6.759 -3.379
Co 4 -28.717 -7.179
Ni 4 -23.506 -5.877
V 2 -19.273 -9.637

CoV3 8 -74.463 -9.308
NiV3 8 -71.011 -8.876
VH2 12 -68.700 -5.725

CoV3H7 22 -114.426 -5.201
NiV3H7 22 -111.558 -5.071

Table 4.9: DFT energies from relevant species using structures available in
OQMD, to three decimal places.

Co + 3V → CoV3 ∆Hf = −0.286 eV/atom (4.16)

V + H2 → VH2 ∆Hf = −0.260 eV/atom (4.17)

Ni + 3V → NiV3 ∆Hf = −0.180 eV/atom (4.18)

Co + 3V + 3.5H2 → CoV3H7 ∆Hf = 0.230 eV/atom (4.19)

CoV3 + 3.5H2 → CoV3H7 ∆Hf = 0.334 eV/atom (4.20)

Co + 3VH2 + 0.5H2 → CoV3H7 ∆Hf = 0.443 eV/atom (4.21)

Ni + 3V + 3.5H2 → NiV3H7 ∆Hf = 0.242 eV/atom (4.22)

NiV3 + 3.5H2 → NiV3H7 ∆Hf = 0.307 eV/atom (4.23)

Ni + 3VH2 + 0.5H2 → NiV3H7 ∆Hf = 0.455 eV/atom (4.24)
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Composition
Predicted ∆Hf ,

eV/atom
Calculated ∆Hf ,

eV/atom

VH2 -0.199 -0.260
CoV3 -0.168 -0.286
NiV3 -0.112 -0.180

CoV3H7 -0.132 0.230
NiV3H7 -0.161 0.242

Table 4.10: Comparison of enthalpy values for compositions in Table
4.9; predicted by respective alloy or hydride model and calculated from
elemental DFT energies.

For the hydride structures, and possible dehydrogenation products, energies

were calculated and are presented in Table 4.9. These values were used in

Equations 4.16-4.24 to calculate corresponding formation enthalpies, which

were then compared to predictions and are presented in Table 4.10.

This process and presentation format was repeated for the remaining

intermetallic pairings.
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Mg-Ni

The stable Mg-Ni alloy species in OQMD are Mg2Ni and MgNi2. A glitch in

the tetra search failed to conserve stoichiometry of the base Mg2Ni system

on expansion for new tetrahedra. The process only correctly admitted

results for MgNi2, and as such a ternary composition of MgNi2H5.75.

Compound
Atoms in

simulation cell
Total energy,

eV
Energy per atom,

eV/atom

Mg2Ni 18 -60.307 -3.350
MgNi2 24 -115.077 -4.795
MgH2 6 -18.468 -3.078

MgNi2H5.75 70 -265.917 -4.542

Table 4.11: DFT energies from relevant species using structures available
in OQMD, to three decimal places.

Mg + H2 → MgH2 ∆Hf = −0.229 eV/atom (4.25)

Mg + 2Ni → MgNi2 ∆Hf = −0.281 eV/atom (4.26)

2Mg + Ni → Mg2Ni ∆Hf = −0.199 eV/atom (4.27)

Mg + 2Ni + 2.875H2 → MgNi2H5.75 ∆Hf = −0.031 eV/atom (4.28)

MgNi2 + 2.875H2 → MgNi2H5.75 ∆Hf = 0.066 eV/atom (4.29)

Composition
Predicted ∆Hf ,

eV/atom
Calculated ∆Hf ,

eV/atom

MgH2 -0.146 -0.229
MgNi2 -0.213 -0.281
Mg2Ni -0.118 -0.199

MgNi2H5.75 -0.111 -0.031

Table 4.12: Comparison of enthalpy values for compositions in Table
4.11; predicted by respective alloy or hydride model and calculated from
elemental DFT energies.
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Co-V

The only other stable Co-V alloy species in OQMD not yet covered is

Co3V.The tetra search admits a ternary composition of Co3VH6.

Compound
Atoms in

simulation cell
Total energy,

eV
Energy per atom,

eV/atom

Co3V 24 -196.790 -8.200
VH2 12 -68.700 -5.725

Co3VH6 60 -272.492 -4.542

Table 4.13: DFT energies from relevant species using structures available
in OQMD, to three decimal places.

3Co + V → Co3V ∆Hf = −0.406 eV/atom (4.30)

3Co + V + 3H2 → Co3VH6 ∆Hf = 0.603 eV/atom (4.31)

Co3V + 3H2 → Co3VH6 ∆Hf = 1.209 eV/atom (4.32)

3Co + VH2 + 2H2 → Co3VH6 ∆Hf = 0.681 eV/atom (4.33)

Composition
Predicted ∆Hf ,

eV/atom
Calculated ∆Hf ,

eV/atom

Co3V -0.406 -0.086

Co3VH6 0.015 0.603

Table 4.14: Comparison of enthalpy values for compositions in Table
4.13; predicted by respective alloy or hydride model and calculated from
elemental DFT energies.
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Cu-Mg

The stable Cu-Mg alloy species in OQMD are Cu2Mg and CuMg2. The

tetra search admits ternary compositions of CuMg2H5 and Cu2MgH5.

Compound
Atoms in

simulation cell
Total energy,

eV
Energy per atom,

eV/atom

CuMg2 48 -131.043 -2.730
Cu2Mg 24 -86.543 -3.606
MgH2 6 -18.468 -3.078

CuMg2H5 128 -404.892 -3.163
Cu2MgH5 64 -210.439 -3.288

Table 4.15: DFT energies from relevant species using structures available
in OQMD, to three decimal places.

Cu + 2Mg → CuMg2 ∆Hf = −0.099 eV/atom (4.34)

2Cu + Mg → Cu2Mg ∆Hf = −0.132 eV/atom (4.35)

Mg + H2 → MgH2 ∆Hf = −0.229 eV/atom (4.36)

Cu + 2Mg + 2.5H2 → CuMg2H5 ∆Hf = −0.065 eV/atom (4.37)

CuMg2 + 2.5H2 → CuMg2H5 ∆Hf = −0.027 eV/atom (4.38)

Cu + 2MgH2 + 0.5H2 → CuMg2H5 ∆Hf = 0.107 eV/atom (4.39)

2Cu + Mg + 2.5H2 → Cu2MgH5 ∆Hf = 0.127 eV/atom (4.40)

Cu2Mg + 2.5H2 → Cu2MgH5 ∆Hf = 0.176 eV/atom (4.41)

2Cu + 2Mg + 1.5H2 → Cu2MgH5 ∆Hf = 0.212 eV/atom (4.42)

113



4.6. SYSTEMS OF INTEREST

Composition
Predicted ∆Hf ,

eV/atom
Calculated ∆Hf ,

eV/atom

MgH2 -0.146 -0.229
CuMg2 -0.041 -0.099
Cu2Mg -0.091 -0.132

CuMg2H5 -0.060 -0.065
Cu2MgH5 -0.071 0.127

Table 4.16: Comparison of enthalpy values for compositions in Table
4.15; predicted by respective alloy or hydride model and calculated from
elemental DFT energies.
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Ca-Sn

The stable Ca-Sn alloy species in OQMD are CaSn, Ca2Sn, and CaSn3.

The tetra search admits ternary compositions of Ca2SnH6 and CaSn3H9,

as CaSn does not have many available tetrahedral structures to allow for a

useful amount of hydrogen atom placements.

Compound
Atoms in

simulation cell
Total energy,

eV
Energy per atom,

eV/atom

Ca2Sn 12 -42.318 -3.527
CaH2 12 -43.495 -3.625
CaSn 8 -30.918 -3.865
CaSn3 4 -16.489 -4.122

Ca2SnH6 36 -117.881 -3.275
CaSn3H9 13 -41.242 -3.173

Table 4.17: DFT energies from relevant species using structures available
in OQMD, to three decimal places.

2Ca + Sn → Ca2Sn ∆Hf = −0.704 eV/atom (4.43)

Ca + Sn → CaSn ∆Hf = −0.715 eV/atom (4.44)

Ca + 3Sn → CaSn3 ∆Hf = −0.481 eV/atom (4.45)

Ca + H2 → CaH2 ∆Hf = −0.649 eV/atom (4.46)

2Ca + Sn + 3H2 → Ca2SnH6 ∆Hf = −0.081 eV/atom (4.47)

Ca2Sn + 3H2 → Ca2SnH6 ∆Hf = 0.154 eV/atom (4.48)

2CaH2 + Sn + H2 → Ca2SnH6 ∆Hf = 0.352 eV/atom (4.49)

Ca + Sn + 4.5H2 → CaSn3H9 ∆Hf = 0.287 eV/atom (4.50)

CaH2 + 3Sn + 3.5H2 → CaSn3H9 ∆Hf = 0.437 eV/atom (4.51)

CaSn + 2Sn + 4.5H2 → CaSn3H9 ∆Hf = 0.397 eV/atom (4.52)

CaSn32 + 4.5H2 → CaSn3H9 ∆Hf = 0.435 eV/atom (4.53)
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Composition
Predicted ∆Hf ,

eV/atom
Calculated ∆Hf ,

eV/atom

CaH2 -0.541 -0.649
CaSn -0.703 -0.715
Ca2Sn -0.605 -0.704
CaSn3 -0.485 -0.481

Ca2SnH6 -0.404 -0.081
CaSn3H9 -0.073 0.287

Table 4.18: Comparison of enthalpy values for compositions in Table
4.17; predicted by respective alloy or hydride model and calculated from
elemental DFT energies.

4.6.2 Generated alloy structures

Arbitrarily selecting compositions from the sample represented in Table 4.7,

alloy structures are generated using CALYPSO, and interstitial hydrogen

atoms inserted by means of the tetra search process. Relaxing these

structures provides a low energy geometry from which elemental reference

energies can be used to calculate an enthalpy of formation.

The data is presented in the same format as used in Section 4.6.1, with

the addition of figures depicting the initial generated alloy structure, the

alloy crystal with rudimentary interstitial occupation and the final relaxed

geometry.
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Mg-Ni

Compound
Atoms in

simulation cell
Total energy,

eV
Energy per atom,

eV/atom

Mg10Ni7 34 -85.295 -2.509
Mg10Ni7H10 54 -160.536 -2.973

Table 4.19: DFT energy for predicted species using the most energetically
favourable alloy structure from CALYPSO, occupied with interstitial
hydrogen by use of the tetra search process, to three decimal places.

10Mg + 7Ni → Mg10Ni7 ∆Hf = 0.963 eV/atom (4.54)

10Mg + 7Ni + 5H2 → Mg10Ni7H10 ∆Hf = 0.089 eV/atom (4.55)

Composition
Predicted ∆Hf ,

eV/atom
Calculated ∆Hf ,

eV/atom

Mg10Ni7 -0.119 0.963
Mg10Ni7H10 -0.230 0.089

Table 4.20: Comparison of enthalpy values for the composition in Table
4.19; predicted by hydride model and calculated from elemental DFT
energies.

Figure 4.3: Mg10Ni7H10: lowest energy generated alloy structure, occupied by interstitial
hydrogen via tetra search and final relaxed hydride structure, respectively.
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Co-V

Compound
Atoms in

simulation cell
Total energy,

eV
Energy per atom,

eV/atom

CoV2 6 -51.694 -8.616
CoV2H5 16 -88.056 -5.504

Table 4.21: DFT energy for predicted species using the most energetically
favourable alloy structure from CALYPSO, occupied with interstitial
hydrogen by use of the tetra search process, to three decimal places.

Co + 2V → CoV2 ∆Hf = 0.076 eV/atom (4.56)

Co + 2V + 2.5H2 → CoV2H5 ∆Hf = −0.085 eV/atom (4.57)

Composition
Predicted ∆Hf ,

eV/atom
Calculated ∆Hf ,

eV/atom

CoV2 -0.141 0.076
CoV2H5 -0.133 -0.085

Table 4.22: Comparison of enthalpy values for the composition in Table
4.21; predicted by hydride model and calculated from elemental DFT
energies.

Figure 4.4: CoV2H5: lowest energy generated alloy structure, occupied by interstitial
hydrogen via tetra search and final relaxed hydride structure, respectively.
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Ca-Sn

Compound
Atoms in

simulation cell

Total energy,

eV

Energy per atom,

eV/atom

Ca5Sn7 12 -45.943 -3.829

Ca5Sn7H7 19 -70.032 -3.6859

Table 4.23: DFT energy for predicted species using the most energetically
favourable alloy structure from CALYPSO, occupied with interstitial
hydrogen by use of the tetra search process, to three decimal places.

5Ca + 7Sn → Ca5Sn7 ∆Hf = −0.515 eV/atom (4.58)

5Ca + 7Sn + 3.5H2 → Ca5Sn7H7 ∆Hf = −0.348 eV/atom (4.59)

Composition
Predicted ∆Hf ,

eV/atom
Calculated ∆Hf ,

eV/atom

Ca5Sn7 -0.653 -0.515
Ca5Sn7H7 -0.396 -0.348

Table 4.24: Comparison of enthalpy values for the composition in Table
4.23; predicted by hydride model and calculated from elemental DFT
energies.

Figure 4.5: Ca5Sn7H7: lowest energy generated alloy structure, occupied by interstitial
hydrogen via tetra search and final relaxed hydride structure, respectively.
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4.7 Discussion

4.7.1 DFT settings

It should be noted that the DFT calculations in this work are conducted to

a somewhat lenient level of precision, as outlined in Section 4.2.1. Whilst

production level calculations are usually parameterised with an energy cut-

off of no less than 520 eV, lower k-point spacing, and often reduced loop

convergence thresholds, an approach was taken to perform preliminary

calculations so as to gauge approximate energy values from which to

determine formation enthalpy values. Upon verification of predictions from

the model, these calculations would be refined to more comprehensively

assess the accuracy of prediction.

4.7.2 Validation to known compositions

Calculated enthalpy values for the compositions in the withheld test set

suggest reasonable agreement between the predicted values and the ground

truth data from the database, as shown in Table 4.25. Calculations

were performed by the DFT process outlined in Section 4.2, using

crystallographic information obtained directly from Composition entries

in OQMD, whilst the machine learning model built with hydride data

minus the validation data points was used. Predictive errors appear to

be generally smaller than calculated errors, however this is potentially due

to the precision of these first principles calculations, as mentioned above,

and could well be further mitigated.
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Ternary
hydride

Prediction error,
eV/atom

Calculation error,
eV/atom

LaH3 0.006 0.079
La4H9 0.006 0.011
AlMgH5 0.015 0.039
CoSr2H6 0.008 0.093

LaMg2NiH7 0.031 0.066
AlK2LiH6 0.020 0.096

Table 4.25: Prediction and calculation absolute errors for data in Table
4.2, to three decimal places.

Of these samples, LaH3, AlMgH5, and AlK2LiH6 are structures generated

from prototypical structures, whilst the others are from known ICSD

entries. It is also worth noting that the two binary hydrides which

were randomly selected are both La-H species and both admit reasonable

prediction error, which may suggest good predictive ability for similar

species of slightly varying stoichiometry. Overall this suggests good

predictive ability, with the largest error of prediction in this test set being

31 meV/atom. The systematically lower calculated value to the database

results is likely as a result of the elemental reference data used.

These results are useful, and suggest the model is suitably trained to the

standard of structures and calculated values presented by the database

that it was trained on. This, however, is not proof of ability to generalise.

As mentioned in Section 3.4.1, the methodology used by the OQMD

database is rooted in derivation of enthalpy of formation exclusively from

elemental reference energies. In order to analyse whether this is a realistic

approach to such a problem and, by extension, to test the accuracy and

generalisability of the model, experimental enthalpy values were gathered

from a mostly-empirical database for alternative validation. The top

five most commonly occurring ‘Composition’ entries from the HydPARK

database were subjected to the same calculation and prediction process
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as the above test set. If this was a hydride species, the entry with the

lowest enthalpy value in OQMD was used to obtain a structure for the

calculations. If a binary alloy, the structure with the lowest enthalpy

value for any corresponding ternary hydride was used instead. The final

machine learning model constructed using the full pruned dataset was used

for predictions.

Ternary
hydride

Prediction error,
eV/atom

Calculation error,
eV/atom

Mg2NiH4 0.015 0.045
NaAlH4 0 0.015
LaNi5H7 0.032 0.058
Na3AlH6 0.024 0.033
ZrCr2H3 0.347 0.022

Table 4.26: Prediction and calculation absolute errors for data in Table
4.5, to three decimal places.

Predictive and calculation errors relative to the database values are mostly

comparable to that of the test set, with the exception of the prediction

for ZrCr2H3 (see Table 4.26). Of these selections from the HydPARK

database, several entries for the alloy ZrCr2 exist with H/M ratios ranging

from 1.8-2.1, yet the only Zr-Cr-H species in OQMD is ZrCr2H3, where

H/M=1. Further still, the OQMD entry implies a theoretical enthalpy

values of 0.13 eV/atom, suggesting this is an unstable hydride species and

as such unlikely to be of use as a hydrogen store. This discrepancy might

be explained by the structure generation process used by OQMD. The

method of iterating upon prototypical geometries does not ensure complete

coverage of a combinatorial space, and could lead to missing potential best-

in-class results. It is also possible that not all experimental results are

collected and/or converted correctly, as multiple entries for ZrCr2H4 can

be found in ICSD. Another explanation, which may also be more widely
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applicable to other entries in OQMD, is that the hydride structure stored

may not be in the ground state, or hydrogen atoms not located at the

optimal interstitial sites. If so, this could impact the model’s performance

if trained on incorrect or inaccurate data. These reasons demonstrate the

need to sufficiently ‘clean’ the OQMD dataset before productive machine

learning training can take place.

4.7.3 Ternary composition generation and filtering

When determining a method of generating new compositions, a systematic

process is required so as to drastically narrow down the exhaustive

combinatorial space across a range of stoichiometries. The method

presented here, being to concatenate multiples of the most stable binary

hydride result for each metal, is based on the presumption that the H/M

ratio of such compositions should implicitly encode information regarding

the oxidation states and electronegativity of the metallic component. If this

were the case, the resultant combinations have a good likelihood of being

charge neutral with respect to the most common metal oxidation states.

Once reduced to a unique set, prior to any prediction process, these ternary

compositions required filtering by means of empirically justified reasoning

so as to reduce the space to a more manageable size.

For an on-board hydrogen store, weight is at a premium. Weight

considerations of all aspects of system design are of great importance for

such an application - from fuel cell stack, to fuel tank - as it can greatly

impact the fuel consumption, and as such range, of the vehicle [93]. Whilst

overall system weight is of importance, and the extent of cooling required is

a function of the heat of reaction for the dehydrogenation process, this work

focuses solely on material weight of these hydrides. A lower limit of 3%
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hydrogen by mass, determined by the mass of hydrogen atoms as a fraction

of the total mass of constituent atoms, is chosen as a preliminary filtering

stage. This is towards the lower end of gravimetric capacity of known useful

complex and metal hydride storage materials, whilst still being significantly

below technical targets [94].

To determine a window for enthalpy values of interest the aforementioned

range of entropy values for metal hydrides is used. By using Equation

4.14, it can be seen that the -50 to -30 kJ mol−1
H2

envelope corresponds

to 300K - 500K (26.85◦C - 226.85◦C), and 200K - 333K (-73.15◦C -

59.85◦C), for dS equal to -100 and -150 J K−1 mol−1
H2

respectively. The

mutually encompassed region of temperature for 1 bar hydrogen release is

approximately 27◦C to 60◦C which corresponds to a range from a near-

ambient value, up to a typical PEM fuel cell operating temperature.

At this stage, formation enthalpy predictions are made for the ternary

hydrides and the corresponding dehydrogenated intermetallic species, from

which only those ternary materials within the above enthalpy range, and

with a stable alloy component, are taken. This was decided to facilitate

several reaction pathways, being the combination of elemental reference

species, direct hydrogenation of an alloy, or introducing a secondary

metal and appropriate hydrogen to combine with a known binary hydride.

Theoretically, each of these scenarios would thus correspond to stable

product materials throughout the cycling process.

A degree of chemical intuition was then required to reject certain elements

from the resultant set. With the target of effective, yet affordable,

renewable technologies, expensive components should be avoided where

possible. An example of this is ongoing research to substitute the

pricey platinum-based materials used to catalyse fuel cell reactions with
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a cheaper, more sustainable alternative. By this logic, it was decided

to exclude precious metals such as those in the platinum group, as well

as some similarly costly noble metals. Regardless of results with respect

to predicted energies, such systems would simply be impractical for the

use case at hand. As previously mentioned, beryllium is not considered

due to health hazards. Technetium, whose isotopes are all radioactive, is

excluded for a combination of cost and safety issues. Compositions with an

aluminium component are an exceptional case. Group I and II elements can

form a ternary complex hydride - a salt-like structure with anions of AlH−
4

tetrahedra, and cations of the secondary metal. Such materials have very

high gravimetric densities of hydrogen storage but have proven difficult to

cycle due to high kinetic barriers to hydrogenation and dehydrogenation

[84]. Considering the interstitial nature of most other metal hydrides, a

presumption was made that the machine learning model might struggle to

generalise to these alanates.

Somewhat surprisingly given the construction process from known binary

hydrides, only around half of the remaining candidates were charge neutral,

suggesting that an alternative process of ternary composition generation,

more stringent in cross-referencing stoichiometry to ionisation energies,

may have been more appropriate. Of these, alloys were filtered to have a

predicted formation enthalpy of less than -0.1 eV/atom in order to remove

any predicted metastable values which may have fallen within the margin

of error of the predictive model. Whilst this might be considered a large

threshold value, the results admitted were identical to when considering a

threshold of -0.05 eV/atom.
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4.7.4 Crystal structure prediction methodology

The ability to predict a material’s structure solely from its composition

has been sought after for decades [95, 96]. Whilst chemical rules and

stipulations can be defined and considered in such a process, no perfectly

reliable process has been developed as of yet.

Similar workflows to that presented here have been reported for a range of

material types: construction of a machine learning model from previously

calculated and collated data sources, followed by property prediction for

novel compositions coupled with structure prediction, and finally validation

by means of first principles calculations. This includes work for oxides

and nitrides, amongst others [82, 97]. However, such materials are very

widely studied, and often have systematic geometries similar to prototypical

structures. The wider availability of data facilitates better trained machine

learning models, improving prediction capabilities, and if certain samples

exist naturally, it is more likely that this information closely describes

ground state structures. This more accurate data, and any similar

geometries (e.g. perovskites), allows for better use of methods for structure

prediction by analogy. In this case, metal alloys and hydrides have great

diversity in atomic configuration and, as such, do not lend themselves to

substitution via prototypical systems. Coupled with the limited training

data available, this may limit the effectiveness of resultant predictive

models.

CALYPSO is used to predict the intermetallic crystal structure,

before interstitial hydrogen is inserted into tetrahedral holes. The

parameterisation of these calculations searched for systems with one

formula unit of the alloy per unit cell, which may be insufficient in finding

the ground state structure by assuming a particularly high symmetry of
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the species. Further, the tetra search process assumes the formation of

an interstitial hydride. Whilst relatively commonplace, various chemistries

exist for hydride compounds which may require consideration on a case-

by-case basis.

4.7.5 Predictions for new compositions

In this section, alloy structures were first either sourced from

crystallographic information available in OQMD if available, or

predicted using CALYPSO if not. These were then occupied with

interstitial hydrogen atoms after which geometry optimisation, consistently

parameterised to the validation stages, was used to calculate enthalpy

values with respect to elemental reference DFT energies.

Whilst the method outlined by the OQMD data calculation protocol is the

reaction process that these machine learning models are trained upon (see

Section 4.2), and as such will provide the mathematical rules for prediction,

other possible dehydrogenation reaction pathways were also considered and

used to determine formation enthalpy values for the ternary species. Due to

the proposed generalisation of the machine learning models, it would also

allow for prediction of these binary compounds from elemental reference

energies. Ultimately, prediction will only be analysed for calculation from

elemental DFT energies.

Of the ternary compositions which remain following the filtering process,

two of them contain an intermetallic component corresponding to a stable

alloy structure found in OQMD, as well as two entries for stable hydrides

of these chemistries. Using the alloy crystallographic data, a tetra search

was performed which admitted a maximum of seven tetrahedral holes
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that could be occupied with interstitial hydrogen atoms. Conveniently,

this directly coincides with exact generated compositions with these alloy

stoichiometries. Alternatively, the broad intermetallic chemistries are

searched for in the database and stable alloy structures collected, for which

the tetra search method is used to provide a ternary hydride form to be

further relaxed.

Composition
Absolute prediction

error, eV/atom

VH2 0.061
CoV3 0.118
NiV3 0.058

CoV3H7 0.362
NiV3H7 0.403

MgH2 0.083
MgNi2 0.068
Mg2Ni 0.081

MgNi2H5.75 0.080

Co3V 0.320
Co3VH6 0.588

MgH2 0.083
CuMg2 0.058
Cu2Mg 0.041

CuMg2H5 0.005
Cu2MgH5 0.198

CaH2 0.108
CaSn 0.012
Ca2Sn 0.099
CaSn3 0.004

Ca2SnH6 0.323
CaSn3H9 0.360

Table 4.27: Prediction absolute errors for data in Section 4.6.1, to three
decimal places.
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The absolute errors of prediction are presented in Table 4.27. In general,

these error values are noticeably greater for ternary species compared

to the binary compounds. This could perhaps be a function of the

rudimentary insertion of hydrogen atoms into the metallic crystal; assuming

an interstitial nature of the hydride, or failing to consider other geometries.

Issues also arise from the uncertainty as to the true ground state of such

species. Whilst the precision of these first principles calculations may have

an impact on the accuracy of these values, as highlighted earlier, these

error values are strikingly large. For example, the largest absolute error for

a ternary species is that of Co3VH6, where 0.588 eV/atom corresponds to

189 kJ/molH2 .

Composition
Absolute prediction

error, eV/atom

Mg10Ni7 1.082
Mg10Ni7H10 0.319

CoV2 0.217
CoV2H5 0.048

Ca5Sn7 0.138
Ca5Sn7H7 0.048

Table 4.28: Prediction absolute errors for data in Section 4.6.2, to three
decimal places.

A handful of compositions were selected from the set of generated ternary

compounds and CALYPSO was used to generate a stable structure for the

intermetallic component. The same process as above was then used to

generate a hydride species, and DFT energies calculated so as to determine

formation enthalpy data (see Table 4.28).

Albeit considered across only a small sample of compositions, it is evident

that calculated enthalpy values are not all qualitatively consistent with
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predicted values. Relatively large disparities can be seen in results for the

alloy structures; issues which could carry over when introducing interstitial

hydrogen. Some large error values were found, with errors as high as

1.082 eV/atom for the metal alloy model, and 0.319 eV/atom for the

hydride model with the Mg-Ni systems. The other chemistries analysed

offer more appropriate predictive errors for the hydride species, in line

with the test error expected from construction, but admit large errors for

the intermetallic species. This would suggest poor accuracy in prediction

of stable alloy structures.

A clear limiting factor in accurate evaluation of predictive accuracy is the

prediction of crystal structures for both the alloy and hydride species.

Without a more reliable method of structure prediction, it is difficult to

definitively judge the model’s performance. Unfortunately, this is not a

simple task. The approach in this work has been to assume an intermetallic

form of hydride structure by occupying interstitial holes with no significant

phase transition between the alloy and hydride state. It is likely that the

OQMD data used to develop the model is based on cases where a phase

transition occurs from the metallic species to the hydride form. As a result,

the model may generalise poorly for compositions that would realistically

take another geometry. A more robust crystal structure prediction

method, or direct prediction of the hydride phase, could potentially provide

more accurate results for validation. Heuristic processes for independent

determination of alloy and hydride structures may prove more effective,

but come with the associated increase in computational cost.

As previously discussed, machine learning models can only be expected to

perform well for predictions similar to the data they are trained with. The

predictive accuracy relative to the withheld test set proved to be reasonable,

as with the compositions inspired by experimental results. That is to
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say, it has been shown to work well with known structures and for the

reaction pathway of combining elemental reference materials. Alas, it is

when using this model on new data that we see poor performance. The

most likely culprit is the crystal structure prediction method used. Success

stories are aplenty for prediction software such as CALYPSO, USPEX [98],

and AIRSS [99], but calculations require correct parameterisation. In this

work, the choice of a single formula unit per cell is likely to be insufficient

for the systems at hand, resulting in incorrect assumed symmetry and

final geometries. Additionally, the assumption of an intermetallic hydride

form without meaningful phase transition may also limit validation. Good

prediction of structures is required to appropriately validate the predictions

of the model for the pathway on which it was trained, and to comment on

its ability to extrapolate to alternative reaction mechanisms.

4.8 Conclusion

In this chapter, the previously built predictive models, for determination of

formation enthalpy from composition alone, are presented with new data

previously unseen to the models. Model prediction is initially validated

by comparison to calculated enthalpy values for the withheld test set and

known experimental data for storage materials.

New ternary hydride data points were generated by a linear combination

and concatenation process of binary hydride compositions obtained from

the database, before being filtered in an iterative process to identify

36 hydrides with a suitable predicted enthalpy for on-board applications

(between -50 and -30 kJ mol−1
H2
), along with a reasonable gravimetric density

of hydrogen (>3 wt%) and stable dehydrogenation products.
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Of these results, those with known structures of their intermetallic

component had crystallographic information collected from the database.

Otherwise, sample compositions have the structure of their alloy component

predicted by a heuristic crystal structure prediction algorithm. These

structures are occupied with interstitial hydrogen and the systems of

maximal occupancy are relaxed, allowing for calculation of enthalpy data.
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Chapter 5

Oxygen transport in

perovskite materials

5.1 Introduction

As mentioned in Section 1.6.1, the movement of oxygen ions through an

electrolyte material is fundamental to the operation of a solid oxide fuel

cell. The discovery of new cathode and electrolyte materials which cater for

more improved oxygen transport dynamics is crucial in the development

of more efficient, durable and financially viable fuel cell systems. The

mechanics of oxygen self-diffusion can be analysed through a range of

simulation techniques on a given candidate material.

The aim of this chapter is to investigate such oxygen transport dynamics in

the prototypical perovskite system of barium titanate, before introducing

the co-doping of lanthanum and magnesium on the A-site and B-

site, respectively, with the intention of studying how such changes in

stoichiometry and point defects might influence oxygen self-diffusion.
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Static methods will be used to isolate and investigate energy barriers

for localised diffusion around a single defect instance in an otherwise

perfect barium titanate structure. These systems will then be extended

to include multiple different point defects, from which molecular dynamics

simulations, at a range of finite temperatures, will be used to qualitatively

compare systems with varying arrangements.

5.2 Background

5.2.1 Technical challenge

In the world of semiconductors, fine tuning of composition can drastically

affect electrical and magnetic properties. Doping and co-doping, as well as

defect chemistry, are useful tools in this respect [100, 101]. Substitution

with dopant species could cause changes in the crystal structure and

microstructure, modifying ferroelectric and dielectric properties [102].

Anion transport can be influenced by such practices to the extent of having

a significant contribution to electrical conductivity through a bulk material.

As explained in Section 1.6.1, oxide ion conductivity can be a rate

limiting factor for fuel cell performance. Conversely, applications in

the fields of capacitors and thermistors requires suppression of such

mobility. Doped barium titanate has been shown to perform well in these

applications, as well as for purposes such as photocatalysis [103, 104].

Understanding diffusion processes through these materials, as a function

of defect concentration and distribution, would be a valuable tool for

comparing ion conductivity between systems, and may help to develop

processes to further suppress or enhance oxide conductivity for a range of
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applications.

Investigations of diffusion in oxide ion conductors, even across a wide

range of applications, ultimately revolve around the same methodologies

- directly analysing the movement of oxide ions through a simulation

cell of a bulk material. Aims of tuning such a system to minimise or

maximise diffusion can then tailor a material for a particular use case.

Low levels of non-stoichiometry in metal oxides can result from several

processes, such as deliberate doping, natural impurities, or contamination

during sample processing. The consequential changes in local geometry

and coordination can drastically impact electrical and ionic conduction

mechanisms, as well as introduce electrical inhomogeneity. By considering a

prototypical perovskite structure, a series of point defects can be introduced

and qualitatively compared so as to characterise their influence on localised

oxygen diffusion.

5.2.2 Oxygen mobility mechanics

The potential energy surface can be used to conceptualise the movement

of oxygen ions between two stable system configurations. The energetics of

traversal between neighbouring minima of the potential energy surface is

characterised by an intermediary saddle point. Representing a transition

state configuration, the increase in the potential energy at this point,

relative to the value of the surface corresponding to initial and final

geometries, defines a potential barrier between the stable states. This

barrier admits the activation energy required to traverse such a transition

path. In the context of oxygen diffusion through a perovskite crystal, this

barrier would dictate the minimum energy required for an oxygen ion to

diffuse to a nearby vacant site. Intuitively, a lower activation barrier would
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facilitate a higher rate of diffusion through the bulk material and thus

increase ionic mobility.

In solids, activation energy for diffusion can be extracted from the

Arrhenius equation by use of diffusion coefficient results calculated at a

range of temperatures:

D = D0 exp

(
−EA

RT

)
, (5.1)

where D is the diffusion coefficient determined for a temperature T, D0

is the maximal diffusion coefficient (a pre-exponential factor, theoretically

corresponding to infinite temperature), R is the universal gas constant, and

EA is the diffusion activation energy. By using diffusion coefficient results

from MSD data, plotting reciprocal temperature against the natural log of

the corresponding diffusion coefficients reveals the activation energy to be

the slope multiplied by (-R).

5.2.3 Nudged elastic band

A method of investigating both the transition path and activation energy,

as introduced in Section 5.2.2, by means of ab initio calculations, is to make

use of the nudged elastic band (NEB) method. This process approximates

the minimum energy path (MEP) between stable states via a transition

state and evaluates the corresponding potential energy barrier. Fixed initial

and final states, both optimised to stable geometries, are connected by an

interpolated reaction path, as defined by the use, along which a set of

equidistant images are defined. These transition images are connected to

neighbours by a spring force which acts to maintain separation and prevent

images from falling into the nearest minima.
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All images are simultaneously optimised. The forces imparted on an image

by the potential energy minimisation that are perpendicular to the band, in

conjunction with the spring forces parallel to the band, are used to nudge

the estimated transition path towards the true pathway [105]. This process

is depicted in Figure 5.1. The number of NEB calculation cycles required

is dependent on how close the initially defined path is to the low-energy

path, and the cut-off thresholds specified for the DFT calculations.

Figure 5.1: Nudged elastic band example between two minima [106].

A widely used modified version of NEB, not yet included in the latest

version of VASP, is the climbing image nudged elastic band method [107].

Actively driving the image with the highest energy toward the saddle point,

facilitated by allowing for variable spring constants along the length of the

band to alter the spacing of images, one of the images will then converge

to a geometry and energy near to that of the transition state.
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5.3 Barium titanate systems

5.3.1 Unit cell structures

Room-temperature BaTiO3 has a tetragonal perovskite phase consisting

of TiO6 octahedra, and Ba2+ on the A-site that is 12-fold coordinated

to oxygen (see Figure 5.2). As temperature decreases, the orientation of

the octahedral units adjusts through tilting and rotating to stabilise the

structure, undergoing transitions through orthorhombic and rhombohedral

phases [108, 109, 110, 111]. We shall be assuming a cubic-type perovskite

structure (Pm3̄m), for the sake of computational ease, to investigate oxygen

vacancy formation and migration.

Figure 5.2: Barium titanate crystallographic structure. Ba (green), Ti (blue), O (red).
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5.3.2 Defects of interest

Inspired by unpublished experimental results, a system of interest is

developed by co-doping barium titanate with lanthanum and magnesium,

where such point defects are used to tweak the base stoichiometry. Mg2+

is used as an isovalent acceptor dopant on the B-site, substituting directly

for a Ti4+ ion, which is compensated by oxygen vacancy formation. An

aliovalent La3+ species is a donor dopant assumed to occupy the A-site in

place of a Ba2+ ion, whilst introducing a quarter of a titanium vacancy,

1
4
VT i, in recompense.

5.4 Static calculations

5.4.1 Determining a primitive transition path

Initially, the geometry of the lower-energy pathways for oxygen ion diffusion

in BaTiO3 were investigated. A simulation cell was created of 2×2×2

unit cells of barium titanate, and an oxygen vacancy introduced by

simply deleting an oxygen atom. Now with the system Ba8Ti8O23, NEB

calculations were used to investigate and compare energy barriers related

to the two shortest possible oxygen diffusion paths, determined intuitively

from local coordination. The first of these involves movement around a

neighbouring B-site atom, rounding a ‘corner’ of a (2 2 1) sample of the B-

site sublattice, whilst the second sees traversal ‘across’ to an opposite side

of such sublattice sample (see Figure 5.3). Calculations employ the static

NEB method as implemented in VASP, and make use of the climbing image

NEB functionality and NEB analysis tools of the VTST-Tools package

[112]. The initial and ultimate structures are generated and relaxed by

139



5.4. STATIC CALCULATIONS

F
ig
u
re

5.
3:

S
ke
tc
h
of

th
e
tw

o
sh
or
te
st

ox
y
ge
n
m
ig
ra
ti
o
n
p
a
th
s
in

B
a
T
iO

3
a
n
d
co
rr
es
p
o
n
d
in
g
lo
w
-e
n
er
g
y
p
a
th
s.

B
a
(g
re
en
),
T
i
(b
lu
e)
,
O

(r
ed
).

140



5.4. STATIC CALCULATIONS

Transition
Activation
energy, eV

Migration path
length, Å

Corner 0.93 2.93
Corner,
with VBa

0.91 3.51

Across 4.87 4.86
Across,
with VBa

4.76 5.16

Table 5.1: Activation energy barriers and migration path length for each
of the transition path types, with and without the neighbouring VBa.

geometry optimisation, parameterised consistently to that seen in Section

4, before five intermediary images are generated by linear interpolation

between these two coordinate sets. The spring constant, responsible for

the nudging of the band, is kept at the default value of -5 eV/Å.

The low-energy pathways predicted for these two cases are also shown in

Figure 5.3 with energy barriers of 0.93 eV and 4.87 eV. The process was

repeated for a near-identical system, but now introducing a barium vacancy

on the A-site adjacent to the oxygen diffusion process (the central ion in

the sketches in Figure 5.3). As before, the vacancy was näıvely introduced

by simply deleting the Ba2+ ion from the system and thus charge was not

correctly compensated. Results are presented in Table 5.1.

5.4.2 NEB calculations for single defect instances

Each individual point defect was investigated as to how each influences the

energy of the base barium titanate structure, and how they may impact

the activation energy of local oxygen diffusion. Starting with a periodic

simulation box consisting of 3×3×3 unit cells, a single instance of each

defect was introduced, and a single oxygen vacancy at a coordinated site. A

larger supercell was used in an attempt to reduce self-interaction between
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the resultant distortions across the periodic boundary. With an aim to

use NEB to study the transition path around the defect site - a ‘corner’

transition akin to that in Section 5.4.1 - a corresponding second cell was

constructed with the oxygen vacancy manipulated to an adjacent oxygen

site around the local TiO6 octahedron, equidistant to the defect. Both

initial and final position structures are relaxed and energies are presented

in Table 5.2.

Climbing image nudged elastic band calculations are performed between

these terminal states, with five images generated between them. Figure 5.4

presents schematics for each defect system, and their corresponding energy

barrier plots. These migration barriers are further quantified in Table 5.3.

Defect
Atoms in

simulation cell
Total energy,

eV
Energy per atom,

eV/atom

None 134 -1091.609 -8.146
Ba vac 133 -1084.953 -8.158
La 134 -1096.739 -8.185
Mg 134 -1084.143 -8.091

Ti vac 133 -1074.353 -8.078

Table 5.2: DFT energy for initial NEB structures, possessing a specified
point defect and neighbouring oxygen vacancy.

Jump index
Activation
energy, eV

a 1.20
b 1.13
c 2.03
d 1.13
e 0.75

Table 5.3: Activation energy barriers for each of the transition paths around
respective defect types, corresponding to index values given in Figure 5.4.
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It should be noted that only the energy of the relaxed initial state is given

due to the inherent symmetry of the cell. Shown in Table 5.2, it can

be seen that the energy of the system decreased upon the substitution of a

lanthanum ion onto an A-site. The local defect structure around the oxygen

vacancy migration path affects the migration barrier and trajectory, in

turn offering favourable migration paths which, if extrapolated throughout

a bulk sample, would likely have a noticeable effect on the material’s

conduction properties.

5.4.3 System energy dependant on lanthanum

positioning

As per the doping mechanism being investigated, four lanthanum ions

further introduce a titanium vacancy. Given this, there is interest as to

how lanthanum ions positioned relative to such a vacancy site might impact

the system energy. Possible positioning of four lanthanum ions in the

immediate vicinity of the resultant B-site vacancy in a 3×3×3 supercell

were exhaustively determined (see Figure 5.5) and DFT total energies

calculated.

Whilst only a small difference in energy, admittedly within calculation

tolerances, the lowest calculated system energy was for cell number 1.

This suggested, albeit only slightly, an energetically favourable positioning

of lanthanum ions local to the vacancy site in the form of a planar

configuration (the full simulation cell is shown in Figure 5.6). Questions as

to whether this would scale with further increases in doping and cell size,

and any resultant impact on the isotropy of oxygen diffusion in the bulk

material, are taken forward and considered with dynamic calculations.
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Figure 5.5: All possible geometries of four lanthanum ions substituted into a (2 2 2)
sample of the A-site sublattice surrounding a B-site vacancy. Systems obtained by
symmetry of these cases are energetically equivalent. Ba (green), O (red), La (yellow).

Figure 5.6: Planar lanthanum configuration of interest in an unrelaxed 3×3×3 supercell.
Ba (green), Ti (blue), O (red), La (yellow).
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TEMPERATURES

5.5 Molecular dynamics simulations at

finite temperatures

The NEB calculations above reveal information regarding the transition

path of oxygen, and the respective transition energy barriers, as it travels

around each defect proposed for the larger system. This is presented in

the form of spatially separated ab initio calculations along a presupposed

trajectory, between which a path is interpolated. These calculations are

categorised as a ‘static’ approach, and are calculated at 0 K. Whilst

useful for understanding localised dynamics for a predetermined cell

configuration, these calculations are less representative of the bulk structure

with inhomogeneous defect distribution, and also have no consideration

of temperature effects. Additionally, the computational cost of running

numerous calculations at the required level of accuracy to develop these

trajectories is a major limiting factor in continuing to evaluate more

reasonable time evolution of these dynamics.

Molecular dynamics, as outlined in Section 2.8, introduces ion velocities

and makes use of classical mechanical calculations discretised over time

to construct dynamic particle trajectories by an iterative process. With

this method, temperature dependent dynamics can be introduced to the

system.
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5.6 Dynamics calculations

5.6.1 Method

As aforementioned, it is possible to develop a more realistic understanding

of oxygen mobility dynamics through the use of molecular dynamics. To

expand upon the static calculations of these systems, the simulation cell

was increased to a system of 4×4×4 unit cells of Ba3Ti3O9, resulting in

320 total ions. Periodic boundary conditions were applied, and the NVT

ensemble was considered by use of the Nosé-Hoover thermostat.

As the length of primitive lattice vectors in real-space are inversely

proportional to those in reciprocal space, the use of a larger simulation cell

means that fewer intersections are necessary for an equally spaced mesh.

As a result of the size of the supercell used here, a k-point mesh of (1 1 1) is

sufficient. This equates to consideration of only a single k-point, located at

the gamma-point, in turn allowing the use of the gamma-point only VASP

executable which can run up to 1.5 times faster than the standard version.

Point defects were introduced by removing or replacing appropriate

ions from randomly selected sites. Total charge is conserved through

combinations of various defects. The much larger simulation cell allows for

implementation of a reasonable defect concentration, randomly distributed

across the cell, when compared to the previous static calculations.

The molecular dynamics functionality implemented in the VASP code

is used to perform a succession of calculations. Upon introducing the

appropriate defects to an initial barium titanate (henceforth referred to

as BTO) structure, a geometry optimisation calculation is required to

relax the structure and accommodate the resultant changes in chemistry.
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Initialisation of the molecular dynamics simulation involves introducing

velocities to particles and equilibrating to a target temperature. This was

done by means of a 1,000 step AIMD run. Once at temperature and

the atoms set in motion, the output files are used to initiate a 50,000

step MLFF MD simulation. By extracting atomic coordinates from each

step, dynamical trajectories for each particle can be constructed and MSD

statistics can be analysed. If such statistics are deemed insufficient to

characterise movement, the MLFF MD process is continued from its final

state for a further 50,000 steps, when possible.

These molecular dynamics calculations were performed on the ARCHER2

UK National Supercomputing Service using the implemented VASP 6.3.0

gamma-point executable, assigned to 8 nodes on the highmem partition

[88].

5.6.2 Initial supercell geometries

Starting from a 4×4×4 supercell of barium titanate, dopants are introduced

with sufficient concentrations as to hopefully observe a reasonable degree

of oxygen diffusion. Given the computation cost of a large timescale

simulation, it is reasonable to exaggerate dopant levels in order to evaluate

the qualitative impact that they might have on the overall dynamics of the

system by increasing the likelihood of diffusion events occurring.

Taking inspiration from unpublished experimental results, the level of

doping is chosen to be La0.25 (16 La3+ on A-site), and Mg0.125 (8 Mg2+

on B-site); thus introducing 8 VO (O0.9583̇) and 12 VT i (Ti0.8125)

Three simulation cells were created; one with magnesium doping but

without lanthanum substitution (x=0, y=0.125, Ti0.875), another with both
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dopants present (x=0.25, y=0.125, Ti0.8125), and a final cell with the same

level of doping as the last, but with geometry inspired by the ground state

energy results seen in Section 5.4.3 which suggested the possibility of an

energetically favourable planar configuration of lanthanum.

• Mg-BTO: Ba64Ti56Mg8O184

– Starting with an initial 4x4x4 BTO supercell; Mg atoms are

randomly distributed onto B-sites, Ti vacancies are randomly

introduced on B-sites, and O vacancies are randomly distributed.

• La-Mg-BTO: Ba48La16Ti52Mg8O184

– Using the Mg-BTO cell as an initial structure; La atoms

are randomly substituted onto A-sites, and corresponding Ti

vacancies onto B-sites.

• La-Mg-BTO o: Ba48La16Ti52Mg8O184

– Using the Mg-BTO cell as an initial structure; identical Ti

vacancy positioning to La-Mg-BTO cell, but with La introduced

to form a (4 4 1) plane.

Diagrams of these systems are presented in Appendix D, visualised using

the VESTA software package [113]. An example of the La-Mg-BTO system

is shown in Figure 5.7.

It should be noted that these simulation cells represent idealised bulk

crystalline structures, possessing only the point defects that have been

outlined. Realistic oxide crystals are likely to possess extended defects

within the microstructure of the material which will provide a variety of

paths for diffusing species. These factors were not considered for this work.
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Figure 5.7: An off-axis view of the relaxed La-Mg-BTO system.

5.6.3 Calculations

The systems are initially equilibrated using AIMD as implemented in

VASP, using the same energy cut-off value and convergence criteria for

energy and ionic relaxation as outlined in Section 4.2.1. Calculated in a

canonical NVT ensemble, a Nosé-Hoover thermostat is used to drive the

system to, and maintain at, a target temperature which is parameterised

by a Nosé mass of 1.0. In all cases, the equations of motion are solved

using the Verlet scheme, discretised by a time step of 2 fs, which has been

demonstrated to be suitable for capturing oxygen diffusion mechanics in

oxides [114, 115]. This is calculated for 1000 steps, over 2 ps, to relax the

lattice at the target temperature and establish ion velocities.

Having established ionic dynamism, the final states of these AIMD runs can

be carried over and used to initiate MLFF MD simulations. This is run for
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50,000 steps, utilising the on-the-fly process of replacing most ab initio

calculation steps with machine learning trained force-field calculations,

whilst updating the structure sample set at each AIMD stage.

The system predicts the energy, forces, and stress tensor, as well as their

uncertainties, for each consecutive step using the MLFF process. By

comparing to built-in error thresholds, the algorithm decides whether to

continue using the current version of the force-field to calculate the above

values, or to perform an ab initio step; adding the calculated structure

to the sample set from which a new force-field is generated to use going

forward. At each AIMD step, errors in energy, forces and stress of the

force-field are compared to the calculated structure results in the sample

set. An example of this for La-Mg-BTO is given in Appendix Table C.1 &

C.2. The error in force for all calculations were found to be of the same

order of magnitude as those presented in literature [44]. As these systems

consist of four/five elements, the training process might be expected to

take longer than for simpler systems, and/or yield larger errors in force

field construction. Once sufficiently trained, characterising the system at

hand, this force-field can be extracted and used in further calculations

without the need for further AIMD steps.

After 50,000 steps, outputs are analysed to check that the simulation is

running correctly, and is then continued for a further 50,000 steps. A

simulation of this length should provide sufficient movement statistics to

assess some degree of self-diffusion. In order to analyse the movement of

oxygen atoms, ionic coordinates for each elemental species are isolated at

each calculation step, allowing for the construction of trajectories for each

individual atom. Visual representations of the dynamic paths for oxygen

are presented in Appendix E, by means of the VMD software package [116].
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5.7 Discussion

5.7.1 Static calculations

Research into the minimum energy path for oxygen ion migration in

perovskite structures suggests a curved path around the adjacent B-site

cation, which appears to corroborate the nudged elastic band calculations

in Section 5.4.1, as well as results in literature [117, 118, 119, 120]. The

activation energies for both potential paths are shown to be decreased by

the introduction of an adjacent A-site vacancy. Oxide ion diffusion in

pure barium titanate has been widely investigated experimentally, giving

activation energies in the range of 0.5-1.28 eV [121, 122]. Previous DFT

simulations have given migration energies of ≈0.89 eV (discussed in ref.

[122]). Despite potential incomparability between experimental results and

such rudimentary simulations presented here using NEB, the results are

seen to be qualitatively similar to those in literature, which are within the

margin of error for these calculations.

Table 5.3 presents the activation energies of NEB calculations for each

individual defect case. The difference in energy and reaction coordinate

between the systems in Section 5.4.1 and the 3×3×3 scaled equivalents

could potentially be as a result of the strain effects across periodic boundary

conditions. Further scaling of supercell size would be required to further

mitigate any self-interaction between such diffusion events. In a similar

result to the smaller cell, the energy barrier is slightly reduced in the

presence of a neighbouring barium vacancy. The oxygen vacancy associated

with the doped magnesium ion admits a significantly larger energy barrier

of 2.03 eV, comparable to values seen in literature for larger systems [123].

A B-site vacancy presents a different geometry of low-energy path, mostly
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following the rounded nature of other examples, but instead curves in the

other direction closer to the B-site coordinate. This case also presents a

local minima at the midpoint of the path suggesting a local potential well,

which would be worth further investigation. Of all defects, the lowest

energy barrier corresponded to a path in the vicinity of a lanthanum-

substituted A-site. In theory, as this admits the most energetically

favourable transition path, it could be implied that lanthanum doping of the

base barium titanate material may increase oxygen ion movement through

the bulk by facilitating diffusion events.

In Section 5.4.3, an investigation into how lanthanum can be positioned

around a titanium vacancy was initially motivated by curiosity as to

how a high density of these defects may impact the system energy and

geometry. The results suggested a slightly lower energy for the (2 2 1)

planar configuration, as presented in Figure 5.6. By only introducing

asymmetry in one axis direction, it may well be the case that this scenario

introduces less stress on the structure due to lattice distortion. This may

be worth further investigation, extensively mapping lattice distortion and

system energy as a function of doped ion positioning and density.

5.7.2 Dynamic calculations

Whilst the use of MLFF MD in this work has been justified to relieve

some of the computational demand of exclusively AIMD calculation steps,

there are some caveats to using this method. The force-field is only able

to describe structures similar to those collected in its training set. There

is a non-trivial concern of reliability if undertrained, as this would bias the

model to only the dynamic events that may have been observed up to that

stage.
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It is also possible that resultant force-fields from such a process may

have limited generalisability with regards to further application to similar

systems with different geometries. The notion of a force-field is to provide

information regarding properties such as interatomic bond lengths, bond

angles and torsions and electrostatic interactions, to name but a few.

The MLFF will only have captured these details for structures presented

throughout training. Separate MLFFs were trained for each case for this

reason, despite the identical stoichiometry of the five-species systems, in

the event that the interactions local to the lanthanum sites differed for the

random distribution or planar geometry.

Initially, this process is parameterised with a target temperature of 1500 K.

In Appendices E.1-E.3, it can be seen that oxygen diffusion events are few

and far between. The linear profile expected along the time-lag vs. MSD

plot is not evident for the La-Mg-BTO system but seems more apparent

in the La-Mg-BTO o and Mg-BTO cases, following the nomenclature in

Section 5.6.2. This is likely an issue with the training of the force-field

failing to correctly describe oxygen movement. From the trajectory images

for all cases, it can be seen that most diffusion events appear to be fairly

localised to certain B-sites, and diffusion is not seen throughout the bulk

of the simulation cell. Instead, most oxygen movement is naturally shown

to be local oxygen vibration. A possible cause being that diffusion events

at this temperature may be infrequent, and the training of the force-field

rarely captures structures undergoing these dynamic processes. This causes

the training to stagnate. Another option might be that the simulation

simply has not run long enough to gather statistics on sufficient diffusion

events.

The aim of these calculations was to gain qualitative information as to

diffusion rates through these cells by use of these methods, rather than
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quantitatively exact values. The calculations and training processes were

repeated, with the target temperature raised to 2100 K. Increasing the

temperature of simulation to observe less common events more frequently

is a commonly used technique in molecular dynamics. Introducing more

energy to these systems increases the velocities of ions, in theory increasing

the chance of diffusion events occurring. With simulations run using the

same methodology - equilibrated to the target temperature, and then

used to train an MLFF for 100,000 steps - the trajectories presented in

Appendices E.4-E.6 reveal a much greater amount of movement throughout

the bulk of the cell.

Determining and plotting the time-lag MSD for oxygen species in each cell

reveals the characteristic linear regime expected from the data. Truncating

the ballistic periods for both small and large time-lags, the diffusion

coefficient is determined by calculating the slope using a linear fit between

time steps of 25ps and 125ps. These values are presented in Table 5.4,

along with the respective coefficients of determination.

La-Mg-BTO La-Mg-BTO o Mg-BTO
D 1.15e-6 1.29e-6 2.26e-6
R2 0.997 0.997 0.999

Table 5.4: Coefficient of diffusion (D) and coefficient of determination (R2)
for each MLFF MD simulation at 2100 K, each to three significant figures.

The results suggest that the magnesium doped system facilitates more

oxygen diffusion events compared to the co-doped system. These

simulations also appear to show that the planar lanthanum substructure

facilitates the movement of oxygen through the system more so than the

randomly doped system. Whilst the La-Mg-BTO system admits little

in the way of order, showing fairly unstructured diffusion paths as per

the trajectories in Appendix E.4, the system with ordered lanthanum
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atoms suggests oxygen diffusion predominantly throughout this plane.

Figures 5.8a & 5.8b, looking along the axes of the lanthanum plane,

reveal oxygen diffusion pathways to be mostly concentrated within the

lanthanum substructure. This seems to agree with the above static

calculations, suggesting such a pathway to be the most energetically

favourable amongst the possibilities in this system. The Mg-BTO system

admits more widespread oxygen diffusion throughout the simulation cell,

with a diffusion coefficient almost double that of the systems co-doped

with La. It has regions of localised diffusion around select B-site ions,

which does not correspond to magnesium substitution sites. Quantitative

comparison to literature results is difficult due to the exaggerated levels

of doping in these simulation cells. Whilst such co-doped systems have

not been previously simulated, MD results for a barium titanate system

with 1% Mg doping have been reported, and suggests activation energies

of approximately double that of undoped BaTiO3 [123].

(a) (b)

Figure 5.8: Oxygen trajectories for the La-Mg-BTO o simulation at 2100 K, viewed
along the x-axis and z-axis, respectively.

For further analysis of the system with planar lanthanum geometry, oxygen

species MSD data can be determined with respect to each Cartesian axis by

simply considering movements projected onto each axis individually. The
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determination of separate axial diffusion coefficients can then be used to

comment on the isotropy of diffusion in the system. The time-lag vs. MSD

plots for each axis are presented in Appendix F. As above, the slope of

the linear fit between 25ps and 125ps is used to calculate D. However, it is

apparent that the z-axis plot has a non-trivial deviation from a background

linear trend between 60ps and 140ps. It is probable that this is due

to limited simulation length, and that running the molecular dynamics

calculations for a longer period of time would collect more statistics from

diffusion events, averaging to the expected form. As an exception, the slope

for the z-axis data is evaluated between 25ps and 150ps so as to circumvent

this issue, and results are shown in Table 5.5.

x-axis y-axis z-axis
D 2.57e-6 1.65e-6 1.66e-6
R2 0.999 0.998 0.983

Table 5.5: Coefficient of diffusion (D) and coefficient of determination (R2)
in each axis in the La-Mg-BTO o system, each to three significant figures.

By recalling the construction of the supercell, the ordered lanthanum

positions form an x-z plane. With this, any consequential anisotropy of

diffusion might be expected to be characterised by comparable diffusion

rates in the x and z axes, with disparity to movement in the y-axis. Here,

we instead observe near identical rates of movement in the y and z axes with

approximately a 55% increase in movement in the x direction. Considering

the geometry of the trajectories admitted for this system, this is perhaps

counter-intuitive. It is possible that this simulation has not sufficiently

sampled diffusion events and would need to be continued for longer to

yield more conclusive statistics regarding the isotropy of diffusion.

Given the uncharacteristic diffusion dynamics admitted by the MLFF MD

process at 1500 K, it was not possible to use these results to construct
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an Arrhenius plot from MSD data and determine activation energies.

This may be possible with a further round of simulations at a higher

temperature than 2100 K. However, the training process for this latest

set of simulations proved to be vastly memory-intensive, even with the

available high-performance computing resources. Considering the size of

the simulation cell, and the large amount of unique elements involved, the

structure set developed throughout the force field training grew to be very

large. Additionally, higher temperatures may require a reduced time step

size, as ions move faster. Nonetheless, such memory demand issues pales

in comparison to the resources saved compared to AIMD.

5.8 Conclusion

In this chapter, the general methodology for simulation of oxygen self-

diffusion in a prototypical perovskite structure is described, from which

the diffusion coefficient and activation energy can be determined, and how

to approximate the minimum energy path between stable states via a

transition state. These processes are applied to a nonstoichiometric co-

doped barium titanate system inspired by unpublished experimental work.

The activation energy for an oxygen diffusion event near to each individual

point defect in this system is calculated, using NEB to determine a low-

energy path immediately adjacent to the corresponding A-site or B-site

defect in a 3×3×3 supercell. Lanthanum substitution for a barium ion

admitted the lowest energy barrier of 0.75 eV, whilst resultant energies

are comparable to those found in literature for barium. Oxygen vacancy

jumps involving magnesium-oxygen octahedra are calculated to have an

activation barrier of 2.03 eV. A titanium, or B-site, vacancy suggested an
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intermediary local minima which could be interesting to investigate further.

The positional dependence of lanthanum doping site on system energy

is investigated to a limited degree, suggesting an energetically favourable

planar configuration which is carried forward to be considered in dynamical

simulations. Given the lower calculated energy barrier local to lanthanum,

a more exhaustive investigation of lanthanum positioning as a function of

system size and doping concentration, and how this might impact oxygen

self-diffusion could be of interest.

The MLFF MD method implemented in VASP is used, following initial

AIMD equilibration, to simulate the dynamics of oxygen movement through

a 4×4×4 simulation cell at 1500 K and 2100 K. Expected diffusion

behaviour was not seen at the lower of these temperatures, with analysis of

trajectories suggesting the training process to have become biased toward

local vibrational motion. Increasing the temperature, thus encouraging

more frequent diffusion events, resulted in more characteristic self-diffusion

profiles. Mean squared displacement statistics over a range of time-lags was

used to calculate diffusion coefficients. Due to difficulties in reliable MLFF

MD simulation at multiple temperatures, it was not possible to develop

Arrhenius plots and as such calculate activation energy values.
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Chapter 6

Conclusions

6.1 Machine learning for discovery of novel

hydride storage materials

In an attempt to produce a machine learning model to predict formation

enthalpy that would be generalisable to many metal hydride materials,

a supervised gradient boosting regression learner was developed, trained

on DFT calculated data. This model was validated to a withheld

dataset and to a selection of known materials, which are commonly

studied experimentally. To use the model to predict new storage

materials suitable for operating conditions corresponding to on-board

storage applications, a methodology for generating and filtering novel

ternary hydride compositions is outlined. An attempt to validate enthalpy

predictions for such systems by crystal structure prediction proved difficult

as a result of the inherent challenge of such a task.

Determination of thermodynamic properties for these materials is

ultimately reliant on sufficient knowledge of the ground state of the
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system. Prediction of such quantities by use of a machine learning

model requires confidence in the training procedure and the initial

data used for development. Alternatively, direct calculation from first

principles requires information regarding the crystallographic structure.

This work sought to investigate a method to allow for prediction of

such characteristics via a high-throughput process, reducing the need for

exhaustive DFT calculations when sampling a composition space. The

developed model proved useful in predicting formation enthalpy values for

systems comparable to the training data, that being following a reaction

pathway involving the combination of elemental reference crystals.

Difficulty in model validation arises through the generation of structures for

calculation of energies. The diversity amongst metal hydride geometries,

from interstitial Laves phase based structures to salt-like complex hydrides,

proves a challenge for crystal structure prediction, as well as generalisation

of a predictive model trained on such varied data. Similar methodological

approaches in literature have been shown to find more success in

determination of new structures by analogy when investigating material

types with more similar, prototypical geometries. The large predictive

errors are most likely due to the structure prediction procedure used, and

as such should not be used as an indictment against the machine learning

model without further analysis. Until this happens, the generalisability

of the learner to alternative hydriding pathways cannot be accurately

assessed.
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6.2 Modelling how defects in barium

titanate impact oxygen mobility

By outlining the procedure for determination of oxide ion diffusion in

a prototypical perovskite structure, analysis of how the manipulation of

system chemistry, in the form of point defects, can impact oxygen self-

diffusion rates was presented. This work centres around computational

analysis of a lanthanum-magnesium co-doped barium titanate system,

inspired by as-yet unpublished experimental results. Activation energies

were calculated for oxygen in the vicinity of single instances of each point

defect, quantitatively suggesting the existence of energetically favourable

diffusion pathways local to a lanthanum dopant. Further analysis is

conducted by means of dynamics simulations, using machine learning force

field molecular dynamics to alleviate the cost of many ab initio calculation

steps, whilst considering a selection of doped barium titanate systems.

Machine learning force field molecular dynamics calculations at 1500 K

appeared to struggle to provide sufficient statistics of diffusion events

to reliably characterise mean squared displacement. These simulations

suggest the development of a bias during training towards local vibrational

motion, most apparent in the system with a random distribution of the

co-doping species, where diffusion events are shown to be infrequent.

Increasing the simulation temperature to 2100 K across these systems

admits more distinctive self-diffusion behaviour.

A cell constructed with a planar substructure of the lanthanum dopant

atoms is shown to have oxygen movement more concentrated to diffusion

pathways throughout this plane, as suggested by the energetics of the

previous static calculations. However, this apparent anisotropy does not
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seem to be represented in MSD analysis along each axis of this system.

The diffusion coefficient of a barium titanate system doped solely with

magnesium is found to be 75-130% greater than that of the two co-doped

systems.

6.3 Future avenues for this work

The intentionally structure-independent approach presented here is

perhaps not suitable considering the range of hydride forms. Other machine

learning approaches may well prove more effective by incorporating a

priori information regarding local coordination. However, it should be

noted that this would require knowledge of the crystal structure, which is

only available for very limited compositions. Local fingerprint descriptor

systems which can encode interactions between neighbouring atoms, such

as Atom-Centred Symmetry Functions (ACSF) [124] or Smooth Overlap of

Atomic Positions (SOAP) [125], used alongside an appropriate algorithm,

may result in more accurate and/or more generalised prediction across the

chemical environment space of hydride materials.

Developments in reliable and affordable crystal structure prediction

methods will allow for more stringent validation practices of similar

machine learning models to those presented here. In addition to this,

it would facilitate high-throughput calculations for the determination of

properties of predicted species. An alternative approach for construction

of a predictive model could be to isolate known hydride geometries within

training datasets and develop separate models trained on each class. Whilst

perhaps more cumbersome to construct, this may prove more effective in

generalising to new samples should a structure type be explicitly known or
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reasonably intuited. An obvious caveat to this is the scarcity of training

data currently available, and as such is a compromise that one cannot afford

to make at this time.

As for the perovskite systems studied, it appears that the distribution

of lanthanum dopant ions objectively influenced the diffusion pathways

between the molecular dynamics simulations of the two co-doped systems.

This could be interesting to probe further as to how concentration of doping

and distribution of such ions through the lattice might influence system

energy and diffusion dynamics.

Inspection of the axial MSD results within the ordered planar lanthanum

substructure suggested the potential for further analysis as to possible

anisotropic diffusion behaviour. A longer simulation, possibly also at an

increased temperature, would likely exhibit more diffusion events, providing

more data points to characterise this phenomena. Additionally, running a

new set of simulations for all systems at other simulation temperatures

would allow for construction of an Arrhenius plot to determine activation

energies for diffusion through the cells.

Whilst not resulting in a provably generalisable machine learning model,

nor a new best-in-class novel electrolyte material, the findings in this work

contribute in the wider sense of the scientific process. By attempting to

tackle a technical challenge through a particular method, insight can be

gained into alternative, and potentially more effective, approaches to such a

task, whilst potentially uncovering new lines of investigation worth further

attention. Nonetheless, this has proven to be a worthwhile endeavour.
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Biljana D Stojanović. Electrical properties of lanthanum doped

barium titanate ceramics. Materials characterization, 62(10):1000–

1006, 2011.
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Appendix A

VASP input files
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Essential input files for a VASP calculation are POSCAR, POTCAR, and

INCAR. Some further control of calculations is provided with an additional

KPOINTS file.

POSCAR: This is the file used for system geometry information. Easily

converted to from other crystallographic data representations, such

as commonplace CIF files, this is the input for lattice geometry, ionic

positions and, optionally, starting velocities. The starting geometry

for calculations, it shares a filetype with the CONTCAR output

file, enabling easy continuation of calculations and analysis of final

structures.

POTCAR: Pseudopotentials for each atomic species in the target

compound, as provided by the VASP PAW PBE file repository, must

be concatenated into this file. Ensuring they are in the same order

and the elements are declared in the POSCAR file, this will facilitate

the plane augmented wave calculation method used in VASP (see

Section 2.6.2).

INCAR: The main input file for VASP, the INCAR file is used to

parameterise the calculation process. A wide array of tags can be

called and corresponding values given will allow for tuning of the

entire process, including algorithm selection and settings. For many,

the correct parameterisation of this file is essential for an accurate

depiction of the physics involved (e.g. magnetism). There are many

important tags for particular use cases, which will be introduced in

this work when relevant.

KPOINTS: More intuitively named, this optional file can be used to

specify the mesh density of the k-point grid used to sample the

Brillouin zone (see Section 2.6.1). A number of subdivisions can
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be specified along each reciprocal lattice vector. For larger periodic

systems, a reduced number of k-points may be used which can help to

ease the taxing calculations of ever-larger systems (as mentioned in

Section 5.6.1). In most cases in this work, a gamma centred k-point

grid is generated for a corresponding POSCAR by means of the kgrid

python package [126].
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Appendix B

Final set of non-metastable

filtered generated ternary

compositions in Section 4.5
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a b c d e f

Co1 H5 V2 -38.245 3.04 Co1 V2 -0.141 62.50
Co3 H17 V7 -38.366 3.11 Co3 V7 -0.156 62.96
Co4 H22 V9 -38.413 3.10 Co4 V9 -0.148 62.86
Co2 H16 V7 -39.789 3.29 Co2 V7 -0.154 64.00
Co3 H23 V10 -39.864 3.27 Co3 V10 -0.156 63.89
Co1 H7 V3 -40.137 3.22 Co1 V3 -0.168 63.64
Co1 H9 V4 -40.780 3.34 Co1 V4 -0.151 64.29
Co3 H19 V8 -40.803 3.17 Co3 V8 -0.139 63.33
Co2 H12 V5 -41.300 3.14 Co2 V5 -0.158 63.16
H25 Mg9 Ni7 -41.743 3.85 Mg9 Ni7 -0.114 60.98
Co1 H11 V5 -42.629 3.41 Co1 V5 -0.125 64.71
Co2 H20 V9 -42.987 3.38 Co2 V9 -0.137 64.52
H19 Mg7 Ni5 -43.653 3.97 Mg7 Ni5 -0.112 61.29
Co1 H13 V6 -43.699 3.47 Co1 V6 -0.116 65.00
Co1 H15 V7 -44.110 3.51 Co1 V7 -0.117 65.22
Co1 H17 V8 -44.130 3.54 Co1 V8 -0.111 65.38
Co1 H19 V9 -44.185 3.57 Co1 V9 -0.106 65.52
H28 Mg9 Ni10 -44.628 3.38 Mg9 Ni10 -0.252 59.57
H3 Mg1 Ni1 -44.681 3.52 Mg1 Ni1 -0.168 60.00
H14 Mg5 Ni4 -45.143 3.81 Mg5 Ni4 -0.123 60.87
H17 Mg6 Ni5 -45.301 3.75 Mg6 Ni5 -0.140 60.71
H27 Mg10 Ni7 -45.327 4.00 Mg10 Ni7 -0.119 61.36
H20 Mg7 Ni6 -45.606 3.72 Mg7 Ni6 -0.140 60.61
H23 Mg8 Ni7 -45.708 3.69 Mg8 Ni7 -0.149 60.53
H25 Mg8 Ni9 -46.452 3.37 Mg8 Ni9 -0.251 59.52
H26 Mg9 Ni8 -46.700 3.67 Mg9 Ni8 -0.148 60.47
H29 Mg10 Ni9 -46.851 3.65 Mg10 Ni9 -0.146 60.42
H13 Mg4 Ni5 -47.633 3.25 Mg4 Ni5 -0.233 59.09
H16 Mg5 Ni6 -47.852 3.29 Mg5 Ni6 -0.252 59.26
H22 Mg9 Ni4 -47.992 4.66 Mg9 Ni4 -0.122 62.86
H17 Mg7 Ni3 -48.109 4.72 Mg7 Ni3 -0.127 62.96
H19 Mg6 Ni7 -48.126 3.33 Mg6 Ni7 -0.253 59.38
H22 Mg7 Ni8 -48.501 3.35 Mg7 Ni8 -0.254 59.46
H7 Ni1 V3 -48.799 3.23 Ni1 V3 -0.111 63.64

H23 Mg7 Ni9 -49.671 3.21 Mg7 Ni9 -0.240 58.97
H10 Mg3 Ni4 -49.816 3.17 Mg3 Ni4 -0.238 58.82

Table B.1: (a) Ternary composition, (b) Predicted hydride ∆Hf , kJ/molH2 ,
(c) Hydrogen wt%, (d) Intermetallic component of hydride, (e) Predicted
alloy ∆Hf , eV/atom, (f) H/M ratio
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Appendix C

MLFF error log for each ab

initio calculated step
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nstep
rmse energy,
eV/atom

rmse force,
eV/Å

rmse stress,
kB

1 4.73169189E-02 3.14446610E-01 1.77266159E+02
2 1.37872159E-04 2.18034148E-01 7.93165204E-02
3 2.25198327E-04 1.69173053E-01 7.85855691E-02
4 2.81093562E-04 1.56099813E-01 1.13375647E-01
5 2.74662032E-04 1.39031700E-01 1.60515729E-01
6 2.54792294E-04 1.25941339E-01 1.66408840E-01
7 2.42860424E-04 1.18297887E-01 1.68840157E-01
8 2.75115184E-04 1.10916523E-01 1.61964420E-01
9 3.02245071E-04 1.09519022E-01 1.58200538E-01
10 3.12625338E-04 1.08970021E-01 1.44062372E-01
11 2.91008889E-04 1.08037064E-01 1.35012779E-01
21 8.80999242E-04 1.28452311E-01 2.57049575E-01
40 8.25760019E-04 1.41961356E-01 4.06355956E-01
47 8.54961325E-04 1.47289428E-01 3.91209924E-01
61 1.12160397E-03 1.54837219E-01 4.62571380E-01
71 9.38580781E-04 1.59019400E-01 5.63018262E-01
93 1.04425249E-03 1.63619651E-01 6.29525416E-01
102 1.12114725E-03 1.66678387E-01 7.05369289E-01
152 1.27852124E-03 1.75728133E-01 7.70140788E-01
202 1.12231284E-03 1.80186738E-01 8.71223128E-01
261 1.39298205E-03 1.83680294E-01 9.22509983E-01
324 1.39155711E-03 1.84820036E-01 9.72894079E-01
404 1.42183905E-03 1.86443856E-01 9.96348685E-01
656 1.50161533E-03 1.89804412E-01 1.03809682E+00
849 1.54840413E-03 1.90873433E-01 1.04875258E+00
1070 1.54482945E-03 1.92707916E-01 1.11519571E+00
1408 1.51137816E-03 1.92741448E-01 1.10143455E+00
1950 1.51296327E-03 1.93406152E-01 1.10312126E+00
2232 1.49047395E-03 1.93680083E-01 1.11608396E+00
3255 1.49047785E-03 1.94723147E-01 1.12772442E+00
3547 1.44072264E-03 1.95557927E-01 1.15962545E+00
5286 1.52377707E-03 1.95937932E-01 1.14839875E+00
5937 1.57701849E-03 1.95503335E-01 1.13909981E+00
7468 1.56183191E-03 1.95581368E-01 1.13491865E+00
12571 1.55527814E-03 1.95490484E-01 1.13431880E+00
17501 1.57342339E-03 1.95340998E-01 1.12323740E+00
20778 1.56438543E-03 1.96280071E-01 1.12587030E+00
22193 1.57716618E-03 1.95625620E-01 1.11940999E+00
30565 1.57094541E-03 1.95189770E-01 1.11921366E+00
40270 1.54914127E-03 1.94824309E-01 1.11686875E+00
50000 1.50705631E-03 1.95012580E-01 1.11382422E+00

Table C.1: Error log for first round of MLFF for La-Mg-BTO at 1500K.
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nstep
rmse energy,
eV/atom

rmse force,
eV/Å

rmse stress,
kB

0 1.50705658E-03 1.95012550E-01 1.11382071E+00
1 1.52589293E-03 1.88656424E-01 1.07754306E+00
2 1.52697885E-03 1.85467396E-01 1.06194167E+00
3 1.52385938E-03 1.84034496E-01 1.05517727E+00
4 1.52397665E-03 1.83066625E-01 1.04587314E+00
5 1.52062205E-03 1.82005883E-01 1.03448070E+00
6 1.51016703E-03 1.81013266E-01 1.02533324E+00
7 1.49666943E-03 1.79887688E-01 1.01561553E+00
8 1.46015424E-03 1.78873983E-01 1.00567805E+00
9 1.43634192E-03 1.77865618E-01 9.95133616E-01
10 1.42549891E-03 1.77138793E-01 9.93294624E-01
31 1.41823121E-03 1.77059425E-01 9.89971930E-01
81 1.44743593E-03 1.77322644E-01 9.88979487E-01
141 1.42053002E-03 1.77716588E-01 9.91773121E-01
191 1.43733562E-03 1.77722331E-01 9.97854174E-01
241 1.42530230E-03 1.77692683E-01 1.00755784E+00
296 1.39005944E-03 1.77579757E-01 1.00876095E+00
372 1.37532908E-03 1.77524093E-01 1.01228600E+00
646 1.35955201E-03 1.77946322E-01 1.02075959E+00
784 1.36211131E-03 1.77936763E-01 1.02546237E+00
1193 1.35755999E-03 1.77688822E-01 1.02365805E+00
1555 1.34237633E-03 1.77542266E-01 1.01788241E+00
2191 1.35497896E-03 1.77735633E-01 1.02263265E+00
2682 1.36868091E-03 1.77918735E-01 1.03037482E+00
3490 1.36503010E-03 1.78093442E-01 1.03314768E+00
5884 1.36528884E-03 1.77760308E-01 1.03244406E+00
11879 1.38029529E-03 1.77874340E-01 1.04059158E+00
13247 1.37365458E-03 1.77957232E-01 1.04431868E+00
14215 1.36188634E-03 1.77973204E-01 1.04162864E+00
20578 1.35644301E-03 1.77950724E-01 1.03988896E+00
29212 1.35157586E-03 1.77781529E-01 1.03842597E+00
32094 1.34565245E-03 1.77474202E-01 1.03970096E+00
37533 1.36006178E-03 1.77423052E-01 1.04144157E+00
41761 1.34584699E-03 1.77529268E-01 1.04480398E+00
49914 1.34911407E-03 1.77645336E-01 1.04621018E+00

Table C.2: Error log for second round of MLFF for La-Mg-BTO at 1500K.
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Appendix D

Supercell structures for

molecular dynamics

calculations in Section 5.6

Starting structures used for molecular dynamics calculations following

initial geometry optimisation, visualised using VESTA [113]. Ba (green),

Ti (blue), O (red), Mg (orange), La (yellow).
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D.1 Mg-BTO: Ba64Ti56Mg8O184

Figure D.1: Mg-BTO: a-b plane.

Figure D.2: Mg-BTO: b-c plane.
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Figure D.3: Mg-BTO: a-c plane.

Figure D.4: Mg-BTO: off-axis.
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D.2 La-Mg-BTO: Ba48La16Ti52Mg8O184

Figure D.5: La-Mg-BTO: a-b plane.

Figure D.6: La-Mg-BTO: b-c plane.
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Figure D.7: La-Mg-BTO: a-c plane.

Figure D.8: La-Mg-BTO: off-axis.
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D.3 La-Mg-BTO o: Ba48La16Ti52Mg8O184

Figure D.9: La-Mg-BTO o: a-b plane.

Figure D.10: La-Mg-BTO o: b-c plane.
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Figure D.11: La-Mg-BTO o: a-c plane.

Figure D.12: La-Mg-BTO o: off-axis.
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Appendix E

Oxygen trajectories for MLFF

simulations in Section 5.6

Trajectories of oxygen atoms for each system at a specified temperature

- visualised using VMD, with a ‘trajectory smoothing window size’ of 50

[116]. Each section shows the given system along each axis, as well as a

plot of time-lags vs. mean squared displacement.
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E.1 La-Mg-BTO at 1500K

Figure E.1: Oxygen trajectories, viewed along the x-axis.

Figure E.2: Oxygen trajectories, viewed along the y-axis.
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Figure E.3: Oxygen trajectories, viewed along the z-axis.

Figure E.4: Time-lag vs. MSD plot.
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E.2 La-Mg-BTO o at 1500K

Figure E.5: Oxygen trajectories, viewed along the x-axis.

Figure E.6: Oxygen trajectories, viewed along the y-axis.
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Figure E.7: Oxygen trajectories, viewed along the z-axis.

Figure E.8: Time-lag vs. MSD plot.
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E.3 Mg-BTO at 1500K

Figure E.9: Oxygen trajectories, viewed along the x-axis.

Figure E.10: Oxygen trajectories, viewed along the y-axis.
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Figure E.11: Oxygen trajectories, viewed along the z-axis.

Figure E.12: Time-lag vs. MSD plot.
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E.4 La-Mg-BTO at 2100K

Figure E.13: Oxygen trajectories, viewed along the x-axis.

Figure E.14: Oxygen trajectories, viewed along the y-axis.
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Figure E.15: Oxygen trajectories, viewed along the z-axis.

Figure E.16: Time-lag vs. MSD plot.
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E.5 La-Mg-BTO o at 2100K

Figure E.17: Oxygen trajectories, viewed along the x-axis.

Figure E.18: Oxygen trajectories, viewed along the y-axis.
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Figure E.19: Oxygen trajectories, viewed along the z-axis.

Figure E.20: Time-lag vs. MSD plot.
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E.6 Mg-BTO at 2100K

Figure E.21: Oxygen trajectories, viewed along the x-axis.

Figure E.22: Oxygen trajectories, viewed along the y-axis.
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Figure E.23: Oxygen trajectories, viewed along the z-axis.

Figure E.24: Time-lag vs. MSD plot.
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Appendix F

Axial MSD plots for oxygen

diffusion in the La-Mg-BTO o

system at 2100K, as shown in

Section 5.6
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F.1 La-Mg-BTO o at 2100K

Figure F.1: MSD vs time-lag plot in the x-axis.

Figure F.2: MSD vs time-lag plot in the y-axis.
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Figure F.3: MSD vs time-lag plot in the z-axis.
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