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Abstract

In this thesis we study an inverse problem arising in Magnetic Resonance

Elastography (MRE) which is a noninvasive method for quantifying soft tissue

stiffness. We develop a Bayesian formulation of this problem which involves

inferring (heterogeneous) elastic properties in the time-harmonic purely elastic

or viscoelastic wave equation. We apply modern Ensemble Kalman Inversion

(EKI) algorithms which are derivative-free and provide robust approximations

of the Bayesian posterior in a computationally tractable manner. Moreover, we

show how parametrisations of EKI can be used to design effective inversions of

properties with complex geometries relevant to the detection of diseased tissue

via MRE.

In in-silico experiments, we showcase under the viscoelastic and purely

elastic modelling assumptions that EKI can provide accurate estimates of

the unknown local tissue stiffness and we also discuss limitations of both

models. In particular we test EKI using the viscoelastic model in virtual

experiments with complex geometries and unknown elastic properties that

occur, for example, in brain MRE. We demonstrate how our algorithms are

able to successfully discover cancer tissue and provide confidence intervals for
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the estimates and predictions of tissue stiffness, which can be diagnostically

valuable for physicians. Furthermore, we analyse the influence of the prior,

the amount of noise in the data and the ensemble size on posterior estimates

provided by EKI and discuss the design of informative priors for EKI.
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αn regularisation parameter in EKI, page 88

‖·‖B Operator norm, page 77

B Covariance of the noise, page 76
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η Noise in measurement data, page 63

F Forward map from parameter space K to measurements, page 75
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page 62

H3/2(Ω) Fractional Sobolev space of order 3/2 , page 36
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k(j)
n j-th particle of the ensemble after n iterations in the parameter space K

in EKI, page 92
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λ 1st Lamé Parameter, page 53
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I N T R O D U C T I O N

Inverse problems arise when physical quantities are not directly accessible for

measurements, and other quantities are connected with the unknown quantities

by physical laws. Gaining indirect access to the unknown quantities by inverting

these laws is an inverse problem [35, 83] .

Modelling a radio channel in telecommunications that introduces many

modifications to the information signal is a direct problem that involves physi-

cal phenomena like reflection, interference, refraction, diffraction, absorption,

polarisation, and scattering [79]. Reconstructing the information signal from

the measurements made at the receiver is an inverse problem.

The physical laws that connect the unknown with the measurements are

often expressed by a system of differential equations [45], which is a formal

problem within the inverse problem setting. The unknowns are the boundary

conditions, the initial conditions or the parameters of the differential equations.

Even if the forward problem is well-posed and the solution of the differential

12
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equations exists and is unique and changes continuously with its parameters

or boundary conditions, the inversion is not necessarily well-posed [85].

The solution of an inversion can change drastically for small changes in the

measurements. For example, in the just mentioned radio channel in telecom-

munication due to the modifications like reflection, interference, refraction,

diffraction, absorption, polarisation, and scattering measurements can be sim-

ilar even though the information signal is very different. This makes inverse

problems ill-posed and difficult to solve, especially in the presence of noise in

the measurements [45, 86].

The inverse problem in this thesis has measurements v which are assumed

to be corrupted by additive noise η and the unknown µ is the parameter of a

differential equation which is denoted as a forward operator G. We have an

equation of the form

v = G(µ) + η

and the inversion problem is to find µ from given v. In the inverse problem in

this thesis the solution depends sensitively on v and therefore the problem is

ill-posed.

This thesis approaches an inverse problem arising in magnetic resonance

elastography (MRE). MRE is a non-invasive technology that quantitatively

assesses the mechanical properties of soft tissue in vivo [69]. It can be regarded



introduction 14

as ”virtual palpation” [55], an imaging-based equivalent to manual palpation, a

technique used by physicians to determine location, shape, size and firmness of

diseased tissue which is in many cases stiffer than healthy tissue [26]. The anal-

ysis of soft tissue stiffness can provide valuable diagnostic information about

diseases that affect the tissue stiffness like cancer, fibrosis and inflammation,

even at an early stage of the disease [59].

In MRE, the idea is to perturb tissue using mechanical vibration applied

to the skin and infer mechanical properties from the displacements which

are measured using Magnetic Resonance Imaging (MRI) [14]. The measured

displacements are the consequence of the mechanical properties of the tissue,

so, inferring them from a certain measured displacement is an inverse problem.

In this thesis, we will develop a Bayesian formulation of the inverse problem

arising in MRE and approximate the Bayesian posterior on the elastic properties

by applying Ensemble Kalman Inversion (EKI) algorithms which trace back to

Ensemble Kalman Filters [36, 19, 1]. The Ensemble Kalman Filter is a derivative

free sampling based method that gives Gaussian approximations of the Bayesian

posterior in data assimilation [18, 44]. In recent years it has been applied to

the parameter estimation in inverse problems [37, 78, 40, 38]. An ensemble of

random samples is used in order to represent distributions and is updated by

Ensemble Kalman Filter rules which makes EKI computationally cheap and
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allows for high-dimensional unknowns. Furthermore, it allows for advanced

black box models because it is derivative free.

In MRE, we usually model biological soft tissue as heterogeneous, isotropic

and linearly viscoelastic [63, Chapter 3]. Many approaches simplify this model

further and assume that there is no time lag between deforming forces and

the induced deformation. In other words this simplification models soft tissue

as a Hookian material which is purely elastic and not viscoelasticity [14]. In

this thesis the Bayesian approach is applied to MRE for both purely elastic and

viscoelastic model, and we show that for this approach the viscoelastic model

is clearly preferred over the purely elastic model.

The development of a Bayesian formulation of the inverse problem arising

in MRE and the application of an approach from Bayesian inversion theory [83]

to time harmonic MRE in this thesis is a novelty.

The Bayesian approach not only takes the noise in the data into account but

also provides uncertainty of the provided estimates and allows for straightfor-

ward incorporation of prior knowledge.

In this thesis we provide confidence intervals for the estimates and introduce

a quantity called ”probability of tumour” which is useful measure to quantify

uncertainty of estimates.
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Another novelty in this thesis is incorporation of MRI data into inversion

algorithms for MRE. In other approaches to the inverse problem for MRE, like

direct algebraic inversion or the least squares approach [14, 32], incorporation

of knowledge available prior to the inversion is difficult. One of the advantages

of Bayesian approaches is an easy implementation of the prior knowledge about

the unknown that is available before the inversion and that remains unused in

most of the other approaches to MRE [14], especially in connection with the

parametrisation used in this thesis.

We will show how the use of prior knowledge and parametrisation consid-

erably impacts the quality of inversion results.

The parametrisation can be freely designed due to the fact that Ensemble

Kalman Inversion allows for advanced black box models [12] and can therefore

be used to incorporate knowledge about the hydrogen density in the tissue

into the prior. Usually, in application of MRE, MRI data which estimates the

hydrogen density are available.

The parametrisation of the unknown used in this thesis, the two-level

parametrisation, is relatively new in application with EKI and has been used

in this context in [61] before. The first level of this parametrisation allows for

discontinuities in the unknown, the second level of parametrisation adds spatial

variability of the unknown. While in [61] the authors parametrise a real valued
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unknown, in MRE with a viscoelastic model we are required to parametrise a

complex valued unknown with a comparatively difficult geometry.

In Chapter 2, we recall some basic mathematical definitions and theorems

used throughout this thesis. After that, in Chapter 3, we introduce the notion of

elastography, the inverse problem arising in MRE, the models we use and give

an overview of recent approaches to the inverse problem for MRE. In Chapter

4 we describe EKI, the inversion method we apply to MRE. Chapter 5 and

Chapter 6 showcase EKI in various experimental setups using both the purely

elastic and viscoelastic model. Finally, in Chapter 7 we give a conclusion and

describe potential extensions to the work done in this thesis.
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P R E L I M I N A RY M AT H E M AT I C A L C O N C E P T S

In this chapter we introduce basic notions and theorems used throughout

this thesis. We will cover basic Calculus and Linear Algebra in Section 2.1,

Integration Theory in Section 2.3, Probability Theory in Section 2.4 and Partial

Differential Equations in Section 2.5. The variable names used in this Chapter

should only be understood in the context of this chapter and have no connection

to variable names in Chapter 3 and onward.

2.1 differential operators

In this Section we repeat basic definitions of differential operators used through-

out this thesis. Apart from the definition of the curl, all definitions are taken

from [3] and adapted to our less general setting.

It is worth noting at this point that in this thesis, functions v : Rn →

Cm, m, n ∈ N will be treated as functions Rn → R2m and we then consider

18
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differentiability of v in the way we introduced it in this section only and never

complex-differentiability.

Definition 1. Let v : Rn → R be a function, n ∈ N, and x0 ∈ Rn. We write ∂k for

the derivatives in the direction of the standard basis vectors ek for k = 1, . . . , n and call

∂kv(x0) := lim
t→0

v(x0 + tek)− v(x0)

t
, for k = 1, . . . , n,

the partial derivative with respect to xk of v at x0.

Let Ω ⊂ Rn be an open subset and v : Ω → R be (totally) differentiable [3] at

x0 ∈ Ω. We define the gradient of v in x0 to be

∇v(x0) = (∂1v(x0), . . . , ∂2v(x0)) ∈ Rn.

We generalise the notion of gradients to higher dimensions and also intro-

duce the divergence.

Definition 2. Let Ω ⊂ Rn be an open subset and v : Ω → Rn be (totally) differen-

tiable at x0 ∈ Ω. We define the gradient (or Jacobian) of v in x0 to be

∇v(x0) =


∂1v1(x0) · · · ∂nv1(x0)

... . . . ...

∂1vn(x0) · · · ∂nvn(x0)

 ∈ Rn×n.

We define the divergence of v in x0 to be

∇ · v(x0) = ∂1v1(x0) + · · ·+ ∂nvn(x0) ∈ Rn.
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For v : Ω→ Rn×n we generalise the notion of divergence to matrix valued

functions in the following way:

∇ · v(x0) =


∂1v11(x0) + · · ·+ ∂nv1n(x0)

...

∂1vn1(x0) + · · ·+ ∂nvnn(x0)

 ∈ Rn.

Finally, we introduce the definition of the curl function.

Definition 3. For v : Ω→ R2 we define the curl to be

∇× v(x0) = ∂1v2(x0)− ∂2v1(x0) ∈ R.

We generalise the curl to higher dimensions and matrix valued functions.

For the case v : Ω→ R4 we define

∇× v(x0) =

 ∂1v2(x0)− ∂2v1(x0)

∂3v4(x0)− ∂4v3(x0)

 ∈ R2.

If v : Ω→ R2×2, we define

∇× v(x0) =

 ∂1v12(x0)− ∂2v11(x0)

∂3v22(x0)− ∂4v21(x0)

 ∈ R2.
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2.2 norms and spaces

We recall some definitions of norms and spaces in this section. We follow

mostly [2] in the first part of the section and [3] for the definition of (Fréchet)

differentiability. In this section, let K be alternatively R or C.

Definition 4. A metric space X is a set with a function d : X× X → R≥0 defined

on, satisfying

• d(x, y) = 0, if and only if x = y.

• d(x, y) = d(y, x), x, y ∈ X (symmetry).

• d(x, y) ≤ d(x, z) + d(z, y), x, y, z ∈ X (triangle inequality).

A metric space X is called complete if every Cauchy sequence in X con-

verges. A sequence (xn) in X is Cauchy if, for each ε > 0, there is some N ∈N

such that d(xn, xm) < ε for all m, n ∈ N with m, n > N. A sequence (xn)

converges in X if each neighbourhood of some a ∈ X contains almost all terms

of the sequence.

Definition 5. A vector space over K is a nonempty set V with an inner operation +

on V and an outer operation

K×V → V, (λ, v) 7→ λ · v,
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satisfying

• V and the inner operation + is an Abelian group, i.e.:

– u + (v + w) = (u + v) + w for u, v, w ∈ V (Associativity).

– u + v = v + u for u, v ∈ V (Commutativity).

– There is 0 ∈ V such that v + 0 = v (Neutral Element).

– For every v ∈ V there exists an −v ∈ V such that v + (−v) = 0 (Additive

Inverse).

• The distributive law holds:

λ · (v + w) = λ · v + λ · w, (λ + µ) · v = λ · v + µ · v, λ, µ ∈ K, v, w ∈ V.

• λ · (µv) = (λµ) · v and 1 · v = v for λ, µ ∈ K, v ∈ V.

At this point we add the definition of dual spaces.

Definition 6. Let V be a vector space over K. The dual space V∗ is defined as the

set of all linear maps ϕ : V → K.

Definition 7. Let V be a vector space over K and let ‖·‖ : V → R+ be a function

satisfying:

• ‖x‖ = 0⇐⇒ x = 0.

• ‖λx‖ = |λ|‖x‖, for x ∈ V and λ ∈ K (positive homogeneity).
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• ‖x + y‖ ≤ ‖x‖+ ‖y‖, for x, y ∈ V (triangle inequality).

Vector space V together with function ‖·‖ is called a normed vector space.

The function ‖·‖2 : Rn → R, n ∈N defined by

x 7→ ‖x‖2 :=
√

x2
1 + · · ·+ x2

n,

defines a norm and is called Euclidean norm.

The norm ‖·‖ of a normed vector space (V, ‖·‖) induces a metric d : V ×

V → R≥0 by d(x, y) := ‖x− y‖.

Definition 8. Let V be a vector space over K and let (·|·) : V ×V → K, (x, y) 7→

(x|y) a function satisfying:

• (x|y) = (y|x) for x, y ∈ V, where z denotes the complex conjugate of z ∈ C.

• (λx + µy|z) = λ(x|z) + µ(y|z), for x, y, z ∈ V, λ, µ ∈ K.

• (x|x) ≥ 0, x ∈ V and (x|x) = 0⇐⇒ x = 0.

Vector space V together with function (·|·) is an inner product space.

A complete inner product space is called a Hilbert space. A complete

normed vector space is called a Banach space.

Let A, B ∈ Cm×n complex valued matrices, m, n ∈N. The Frobenius inner

product A : B is defined as

A : B = ∑
i,j

AijBij = tr(ATB),
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where tr is the trace, i.e. tr(C) = ∑n
i=1 cii for a square matrix C ∈ Cn×n.

We will need derivatives in a more general setting than introduced in Section

2.1.

Definition 9. Let (E, ‖·‖) and (F, ‖·‖) be Banach spaces over C and X be an open

subset of E. The function v : X → F is called (Fréchet) differentiable in xo ∈ X if

there is bounded linear operator Ax0 : E→ F such that

lim
x→x0

v(x)− v(x0)− Ax0(x− x0)

‖x− x0‖
= 0.

Ax0 : E→ F is then called the (Fréchet) derivative and denoted by Dv(x0).

An operator A is bounded if bounded subsets of its domain are mapped to bounded

subsets of its image Im(A).

2.3 integration theory

In this section we repeat the basic notions and definitions from integration

theory. All definitions are taken from [47] and adapted to our setting. The

central notion in this section is the integral of a function over a measure space.

We begin with the definition of a σ-algebra.

Definition 10. Let X be a set and let P(X ) denote its power set. A subset Σ ⊂ P(X )

is called σ-algebra if
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1. If S is an element of Σ then so is its complement Σ \ S.

2. X is an element of Σ.

3. If S1, S2, S3, . . . are elements of Σ then so is their union
⋃∞

i=1 Si ∈ Σ.

Definition 11. A measure is a mapping µ : Σ → [0, ∞] from a σ-algebra Σ to the

positive extended real number line such that

1. The empty set has measure zero µ(∅) = 0.

2. For a countable collection {Si}∞
i=1 of pairwise disjoint sets, i.e. Si ∩ Sj = ∅ for

i 6= j the measure µ is countable additive, that is µ (
⋃∞

i=1 Si) = ∑∞
i=1 µ(Si)

A measure space is a triplet (X , Σ, µ) consisting of set X called the sample space,

a σ-algebra Σ containing sets S ⊂ X called events and the measure µ.

Let f , g : X → R ∪ {∞} functions on a measure space (X , Σ, µ). We write

f ≤ g if f (x) ≤ g(x) for x ∈ X .

Let fX → R functions on a measure space (X , Σ, µ). We call f measurable,

if f−1(S) is an element of Σ for every open set S ∈ R.

Let (X , Σ, µ) be a measure space and f : X → [0, ∞] be measurable, i.e. the

preimage of any open interval in [0, ∞] is measurable. The integral of f with

respect to µ is defined by

∫
f dµ := sup{I(g) : g ∈ E+, g ≤ f }.
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where E+ is the vector space of simple positive functions, i.e.

E+ := { f : X → R| f =
n

∑
i=1

αi1Si , mutually disjoint Si ∈ Σ, αi ∈ R, αi ≥ 0},

and I : E+ → [0, ∞] the map defined by

I( f ) =
m

∑
i=1

αiµ(Si).

More general, let f : X → R measurable and the integral
∫
| f |dµ < ∞. We

call f µ-integrable and define the integral of f with respect to µ to be

∫
f (x)µ(dx) :=

∫
f dµ :=

∫
f+ dµ−

∫
f− dµ, (2.3.1)

where f+ and f− are signed functions defined by

f+(x) =


f (x) if f (x) > 0

0 if otherwise

, f−(x) =


f (x) if f (x) < 0

0 if otherwise

.

For S ∈ Σ we define

∫
S

f dµ :=
∫
( f1S)dµ.

Definition 12. Let µ and ν be measures on (X , Σ), where X is a set and Σ is a

σ-algebra on X . Let f : X → [0, ∞) be a measurable function such that

ν(S) =
∫

f1S dµ for all S ∈ Σ.

In this case f is called density of ν with respect to µ and we call f = dν
dµ the Radon-

Nikodym derivative.
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For example the normal distribution ν = N0,1 has density f (x) = 1
2π exp(−x2/2)

with respect to Lebesgue measure µ = λ on R, which will be introduced in the

next section.

We also need the definition of a special type of measure, the Dirac measure

δx. Let X be a set with a σ−algebra Σ defined and x ∈ X . We define the Dirac

measure δx : Σ→ [0, ∞] as

δx(S) =


0, x /∈ S

1, x ∈ S

.

Definition 13. Let Ω ⊂ Rn be measurable and p an integer with 1 ≤ p < ∞. The

Lebesgue space Lp(Ω) is defined as

Lp(Ω) =

{
f : Ω→ C|

(∫
Ω
| f (x)|p dx

)1/p
< ∞

}
.

The mapping < ·, · >: L2(Ω)× L2(Ω)→ C with

< f , g >=
∫

Ω
f (x)g(x)dx,

defines an inner product on L2(Ω).

Furthermore, we define the space of locally integrable functions on an

open subset Ω ⊂ Rn as

L1,Loc(Ω) = { f : Ω→ C| f |K ∈ L1(K) for every compact K ⊂ Ω}.

Finally, we define the Lebesgue space

L∞ =
{

f : Ω→ C|ess supx∈Ω| f (x)| < ∞
}

,
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where ess supx∈Ω| f (x)| denotes infinum of all K ∈ R such that | f (x)| < K for

almost every x ∈ Ω, i.e. for all x ∈ Ω \ N where N ⊂ Ω is a set with µ(N) = 0.

2.4 probability

In this section we go through necessary definitions and theorems from the

probability theory. We follow the introduction from [47] for all the definitions

and [48] for Bayes Theorem.

Definition 14. Let (X , Σ, µ) be a measure space. Measures that satisfy µ(X ) =

1 are called probability measures and in this case the triplet (X , Σ, µ) is called

probability space.

Definition 15. Let (X , Σ, µ) be a probability space. A real-valued random variable

V is a mapping

V : X → Rn,

that is measurable.

A real-valued random variable V generates a probability measure µV : B →

R through

µV(B) = µ(V−1(B)),
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and defines together with the sample space Rn and the σ-algebra B a probability

space. Here, B is the smallest σ-algebra containing the open sets of Rn, called

the Borel σ-algebra and λ is the Lebesgue measure assigning to a set its

volume [47]. For a cube [a, b]n, a < b the Lebesgue measure is given by

λ([a, b]n) = (b− a)n. The measure µV is called the probability distribution of

V.

Let B ∈ B. We use the common notation {V ∈ B} := V−1(B), {V ≥ 0} :=

V−1([0, ∞]) and {V ≤ b} := V−1([−∞, b]) and also µ(V ∈ B) := µ(V−1(B),

µ(V ≥ 0) := µ(V−1([0, ∞]) and µ(V ≤ b) := µ(V−1([−∞, b]).

Definition 16. For a real-valued random variable V, the map FV : Rn → [0, 1],

x 7→ µ(V ≤ x) is called the distribution function of V.

For any distribution function F, there exists a real random variable V with

FV = F [47]. Both distribution functions and - if existent - density functions are

important functions that describe a random variable.

Definition 17. Let m ∈ Rd and Σp be a positive definite symmetric d× d matrix. Let

V be an Rd-valued random variable such that

µ(V ≤ x) = det(2πΣp)
−1/2

∫
(−∞,x]d

exp
(
−1/2〈k−m, Σ−1

p (k−m)〉
)

λd(dk),

for x ∈ Rd where λd denotes the d-dimensional Lebesgue measure and (−∞, x]d =

∏d
i=1(−∞, x] the d-dimensional interval. The distribution N (m, Σp) := µV is called
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Gaussian normal distribution with mean m and Covariance Σp ∈ Rd×d. The

density of V with respect to Lebesgue measure is

f (k) = det(2πΣp)
−1/2 exp

(
−1/2〈k−m, Σ−1

p (k−m)〉
)

.

Definition 18. Let (X , Σ, µ) be a probability space and V and W be n- and m-

dimensional real random variables. We define

FJ : Rn+m → [0, 1], (v, w) 7→ µ (V ≤ v and W ≤ w) .

FJ is called the joint distribution function of V and W the probability measure

µV,W : B → R on Rn+m is called joint distribution of V and W. The two random

variables V and W are independent if

FJ(x) = FV(x) · FW(x).

If FJ has a density πJ with respect to Lebesgue measure we call this density the joint

density. If, in addition, V and W are independent and have densities πV and πW

with respect to Lebesgue measure, then πJ = πV · πW.

Let (X , Σ, µ) be a measure space. We denote for any p ≥ 1

Lp(µ) := { f : X → R| f measurable and
(∫
| f |p dµ

)1/p
< ∞},

which is the Lebesgue space Lp(Ω) if µ = λ is the Lebesgue measure.
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Definition 19. Let (X , Σ, µ) be a probability space and V ∈ L1(µ) be a real-valued

random variable. The mean or expected value of V is defined as

E(V) =
∫
X

V(x)dµ.

If E(V) = 0, then V is called centred.

Definition 20. Let V ∈ L2(µ), then V is called square integrable and

Var(V) := E(V2)− E(V)2,

is the variance of V. The quantity σ :=
√

Var(V) is called the standard deviation

of V.

Definition 21. Let V, W ∈ L2(µ), then we call

Cov(V, W) := E((V− E(V))(W− E(W))).

the covariance.

Let (X , Σ, µ) be a probability space. Let U and V be a pair of jointly

distributed real-valued n− and m−dimensional random variables and assume

they have a density ρ(U, V) with respect to Lebesgue measure. Then Bayes

formula [48] describes the conditional density ρ(U|V = v) = ρ(U|V) : Rn →

[0, ∞) of U given V = v in terms of the conditional density ρ(V|U = u) =
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ρ(V|U), an unconditioned density ρ(U) and a normalisation that only depends

on V, in the following way:

ρ(U|V) =
ρ(V|U)ρ(U)∫

Rn ρ(V|U)ρ(U)λ(du)
.

Definition 22. A stochastic process/random field f = { f (x), x ∈ X} is a collec-

tion of random variables indexed by elements of a parameter set X .

If the parameter space X of a stochastic process is the Cartesian plane or a

higher-dimensional Euclidean space the term random field is commonly used.

Definition 23. A Gaussian random field is a random field f = { f (x), x ∈ X} with

the property that for each x1, . . . , xd with some d ∈ N, the vector ( f (x1), . . . , f (xd))
T ∼

Nd(µ, Σ) is Gaussian distributed with some mean µ and covariance Σ.

If the distribution of a Gaussian random field f = { f (x), x ∈ X} is the

normal distribution and f (x1) and f (x2) are independent for x1 6= x2 the

random field is called white Gaussian noise.

2.5 partial differential equations

In this section we recall the relevant definitions and theorems from the partial

differential equations theory and cover the definitions of Sobolev spaces, Lips-
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chitz domains, weak and classical solutions and state the trace theorem. We

follow [6] in this section.

Let α = (α1, α2, . . . , αd) ∈ Nd be a multi-index. We define the following

differential operator

Dα =

(
∂

∂x1

)α1

. . .
(

∂

∂xd

)αd

,

and define |α| = α1 + α2 + . . . αd.

Definition 24. Let Ω ⊂ Rn be an open subset. We denote the space of smooth

functions with compact support by

C∞
0 (Ω) = { f ∈ C0(Ω) : Dα f ∈ C0 for α ∈N and supp( f ) is compact},

where C0(Ω) denotes the set of continuous functions on Ω and supp( f ) = {x ∈ Ω :

| f (x)| > 0} the support.

Definition 25. Let Ω ⊂ Rn be a domain and m ≥ 0 be an integer. The m-th order

Sobolev space in L2(Ω) is defined by

Hm(Ω) = { f ∈ L2(Ω) : Dα f ∈ L2(Ω) for all multi-indices α such that |α| ≤ m}.

Definition 26. Let Ω ⊂ Rn and u, v ∈ L1,Loc(Ω) and α some multi-index. We say v

is the αth-weak derivative of u if

∫
U

uDαφ dx = (−1)|α|
∫

U
vφ dx, for all φ ∈ C∞

0 (Ω).
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Definition 27. Let Ω ⊂ Rn be a set. We call ∂Ω = Ω \ int(Ω) the boundary of the

set, where Ω denotes the closure and int(Ω) the interior.

Definition 28. Let Ω ⊂ Rn be a domain, i.e. a connected and open subset in Rn. For

R > 0 and x0 ∈ Rn let us define BR(x0) := {x ∈ Rn|‖x − x0‖ < r}. We say Ω

is a Lipschitz domain or has a Lipschitz boundary if there exists sets Ωj ⊂ Rn,

j = 1, . . . , N with N ∈N∪ {∞}, such that

• Ωj ⊂ Rn, ∂Ω ⊂ ⋃j Ωj, and only finitely many of the sets intersect BR(0) for

all R > 0.

• There are Lipschitz continuous functions φj : Ωj → B1(0) that are one-to-one

and φ−1
j is Lipschitz as well, i.e. there exists C > 0 such that ‖φ−1

j (x) −

φ−1
j (y)‖ ≤ C‖x− y‖ for all x, y ∈ Ω.

• φj(Ωj ∩Ω) = B1(0) ∩Rn
+ and φj(Ωj ∩ ∂Ω) = B1(0) ∩Rn

+ ∩ ∂Rn
+.

The intuition behind this definition is that a Lipschitz boundary is locally

the graph of a Lipschitz continuous function.

Let Ω ⊂ Rn be some bounded Lipschitz domain. A second order elliptic

partial differential equation is an equation of the form

−∇ · (a∇v + bv) + cv = f x ∈ Ω, (2.5.1)

where v : Ω → C is an unknown function, a is a n × n uniformly positive

definite matrix-valued function, b is a n-vector-valued function, and c and f are
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functions with c ≥ 0. A matrix function a : Ω → Rn×n is uniformly positive

definite if there is some a∗ > 0 such that for almost every x ∈ Ω,

ξTa(x)ξ ≥ a∗|ξ|2, ∀ξ ∈ Rn.

A description of a dynamic system requires the quantification of the external

interaction with the world through its boundary ∂Ω in form of boundary

conditions. More specifically let ∂Ω = (∂Ω)D ∪ (∂Ω)N be a partition into

Dirichlet- and Neumann-boundary of the boundary with (∂Ω)D ∩ (∂Ω)N = ∅.

The boundary conditions are given by

v = vD, on (∂Ω)D, (2.5.2)

(a∇v + bv) · n = gN on (∂Ω)N, (2.5.3)

where uD and gN are functions and n is the outer unit normal vector on Ω, i.e.

‖n‖ = 1 and for a tangent vector w at a point xB ∈ ∂Ω we have n · w = 0.

The problem of finding functions u that satisfy (2.5.1)-(2.5.3) is called a

boundary value problem (BVP). A classical solution to this BVP is a v that

satisfies (2.5.1)-(2.5.3) in every x ∈ Ω which requires v to be twice differentiable.

Also, we require v to be continuous in Ω, so classical solutions are v ∈ C2(Ω)∩

C0(Ω). This then requires f , c ∈ C0(Ω), a ∈ (C1(Ω))n×n, b ∈ (C1(Ω))n and

vD, gN ∈ C0((∂Ω)D).

These requirements are too strong in many applications. Therefore, we

usually relax the requirements to v ∈ H1(Ω) only which then require f , c, a, vD
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and gN to be not continuous or continuously differentiable anymore. Also, we

will see in Chapter 3.3 that this enables us to find a variational problem called

the weak form that is equivalent to finding a solution v ∈ H1(Ω) for the BVP

(2.5.1)-(2.5.3). We do not derive the weak form for general elliptic PDEs here

but we will derive it for the specific PDE we use in Section 3.3. The solution

v ∈ H1(Ω) is called a weak solution of (2.5.1).

Weak solutions v ∈ H1(Ω) by definition only represent an equivalence

class of functions. The boundary ∂Ω is a null set with respect to Lebesgue

measure and therefore values of weak solutions v can be arbitrary. So, it is not

apparent, in which way v ∈ H1(Ω) should satisfy v = vD on (∂Ω)D. We define

an operator λ0 that defines values on the boundary for a weak solution v, i.e.

λ0v = vD. The trace theorem states under which conditions this operator exists

and extends the classical trace, i.e. how this operator extends v ∈ H1(Ω) to the

boundary of the domain. In order to state this theorem we need the following

definition of fractional Sobolev spaces:

Definition 29. Let s ∈ R. We define

Hs(Rn) = {u ∈ S ′ : Λsu ∈ L2(R
n)},

where S ′(Rn) is the dual space of S(Rn) which is defined to be

S(Rn) = {ϕ ∈ C∞(Rn) : sup
x∈Rn

|xαDβ ϕ(x)| < ∞ for all multi-indices α and β}.
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and Λs is the Bessel potential of order s ∈ R, i.e.

(Λsu)(ξ) = (1 + |ξ|2)s/2û(ξ),

where û is the Fourier transform of u, i.e.

û(ξ) = (2π)−n/2
∫

Rn
u(x) exp(−x · ξ)dx.

Theorem 1. Let Ω ⊂ Rd be a Lipschitz domain. The trace operator λ0 : C0(Ω) →

C0(∂Ω) defined by (λ0u)(x) = u(x) for x ∈ ∂Ω, extends to a bounded linear map

λ0 : Hs(Ω)→ Hs−1/2(∂Ω),

for any s ≥ 1, i.e. for all u ∈ Hs(Ω) ∩ C0(Ω) we have (λ0u)(x) = u(x). Here,

Hs−1/2 or Hs can be fractional Sobolev spaces which was defined above.

We will need these definitions and theorems in the description of our model

in the following chapter.



3

P R O B L E M D E S C R I P T I O N

In this chapter we describe the idea of elastography, we introduce the model

that is used and the inverse problem that arises in elastography. Central parts

of this Chapter is Section 3.2 where we mathematically describe the model we

use in MRE and Section 3.1 gives context and background information about

MRE. Finally, in Section 3.5 we give a brief overview of popular methods that

approximate solutions of the inverse problem arising in MRE.

3.1 elastography

In this section we introduce the concept of elastography. In Section 3.1.1 we

describe the basic idea and the context in which elastography is usually used.

Section 3.1.2 describes the fundamental idea of magnetic resonance elastography.

We will only give a short qualitative description of this imaging modality as we

will use MRI data only to provide a mask for one of our algorithms in Chapter

6. After that, we outline in Section 3.1.3 the acquisition of our displacement

38
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data using a standard MRI machine. These displacements will be the input

for our algorithms later. Finally, in Section 3.1.4 we deduce and explain the

equations of motion we deploy in our approach to elastography.

3.1.1 Introduction

The idea of Elastography ([51], [14]) is to perturb the tissue using mechanical

vibration and infer mechanical properties from the measured displacements. It

follows the same principles as manual palpation which is used in medicine to

determine location, size, shape and firmness of an object in the body (Figure

3.1.1). The difference is that MRE is using a pneumatic vibrator in order to

trigger displacements of the tissue and a doctor is pushing his fingers into

the tissue. Instead of measuring the displacements by using the sense of

touch, MRE is using Magnetic Resonance Imaging (MRI) as imaging modality

(Figure 3.1.1). In some applications of elastography, ultrasound is used as

imaging modality [52] which is cheaper and easier to implement. Ultrasound

imaging of some parts of the body, e.g. the brain, can be difficult whereas

MR imaging can be applied to the whole body. Also, MR elastograms are

operator independent whereas ultrasound elastography depends on the skill of
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the person operating the ultrasound device. These are the reasons why in brain

and liver elastography, MRE is preferred over ultrasound elastography [77].

The displacement data provided by MRI can be then used in order to infer

mechanical properties of the tissue by either using a continuum mechanical

model or a simplified model that relates deformations and mechanical proper-

ties.

The result of an MRE scan is an elastogram, i.e. a 2D or 3D map of

mechanical properties of the tissue.

Figure 3.1.1: Left: Magnetic Resonance Elastography Right: Palpation

The big advantage of MRE over palpation is that one can obtain quantitative

and objective measures with MRE as opposed to subjective and qualitative

assessment from palpation. Furthermore, MRE allows exploration of sites deep

inside the body which are impossible for palpation, such as the brain.
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MRE can provide high resolution stiffness images of soft tissue areas and

is therefore diagnostically useful in imaging of diseases that affect the tissues

stiffness like cancer, fibrosis and inflammation [78]. Elastic properties of tumour

change at an early state of the disease [90] and therefore, MRE can be used to

detect and locate early cancer tissue.

MRE is a well-established technique or is being actively researched for

application to the liver [90, 14], brain [84], breast [64, 77], skeletal muscle [15],

heart [17], lung [27], kidney [75] cartilage [54] and prostate [46] tissue. In this

thesis we will focus mainly on brain, liver and kidney tissues.

3.1.2 Magnetic Resonance Imaging

Magnetic Resonance Imaging makes use of the nuclear magnetic resonance of

the hydrogen atom [63]. The nucleus of the hydrogen atom has an intrinsic

angular momentum called spin. Moreover, the nucleus of the hydrogen atom is

made up of one proton carrying a positive electric charge and the spin makes

it a rotating electric charge which induces a magnetic field with a magnetic

dipole moment. In the presence of an external magnetic field with magnetic

field strength B0, the magnetic dipole moment of the nucleus can align with or

against the field and interacts like a bar magnet with the field.
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Radio waves (electromagnetic energy waves) of the appropriate frequency

induce the transition from being aligned with the field to being aligned against

the field. The radiowave frequency ωL that induces the transition is called

Larmor frequency and is proportional to the magnetic field strength, i.e.

ωL = γG · B0, (3.1.1)

where γG is a (hydrogen-specific) constant called gyromagnetic ratio.

After this transition of the proton of the nucleus to a higher energy state

where it is aligned against the magnetic field, it returns - after a few milliseconds

[21] - to the lower energy state where it is aligned with the field. During this

transition the nucleus emits electromagnetic radiation at the Larmor frequency

ωL of the current magnetic field. So, if the magnetic field B0 is not changed

after transition of the proton of the nucleus, Eq. (3.1.1) holds for the radio

waves emitted. If the magnetic field is changed after transition the radio waves

resonate at frequency ωR given by

ωR = γG · B, (3.1.2)

where B is the magnetic field.

MRI uses this resonance effect in order to approximate the local hydrogen

density. More specifically, on top of the (spatially) constant magnetic field

B0 one applies additional magnetic fields that vary locally, called gradients.
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Usually, three gradients are applied: The slice selecting gradient, the phase

encoding gradient and the frequency encoding gradient. These gradients are

orthogonal to each other and the variation of field strength is linear. Further-

more, these gradients are applied in the following order from the time the

transition inducing radio waves are sent out by the MRI machine until the time

the receiver coils measure the incoming radiosignal emitted by the nuclei.

The slice selecting one is applied at the same time as the radio waves are

sent out by the MRI machine. As a consequence, only the hydrogen nuclei in

one slice of the object of interest resonate. While sampling the incoming radio

signal another gradient orthogonal to the slice selecting one is applied. This is

the frequency encoding gradient. Subsequently, due to (3.1.2) the frequency of

the already resonating nuclei in the selected slice is changed depending on their

location along the direction of the frequency encoding gradient. In other words,

due to the frequency encoding gradient, there are lines in the selected slice,

orthogonal to the frequency encoding gradient and nuclei along each of these

lines emit radio waves at the same frequency and after Fourier transform of the

incoming radio signal at a receiver coil, different frequencies can be assigned

to locations along these lines. The frequency encoding gradient introduces

equifrequent lines in the slice selected by the slice selecting gradient.
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The third gradient applied is the phase encoding gradient. This gradient

is turned on and off between the slice selecting and the frequency encoding

gradient. As this gradient is orthogonal to the other two gradients the emitted

radio waves from one equifrequent line have different phases when measured

in the receiver coil.

This sequence of sending out radio waves while applying a slice selecting

gradient, then turning on and off a phase-encoding gradient and measuring the

incoming radio signal while applying a frequency encoding gradient is repeated

several times with different slopes in the linear phase encoding gradients.

By comparing the phase offsets induced by different (linear) phase-encoding

gradients in a certain location, a nucleus can be located along the direction of

the phase-encoding gradient. Big differences in phase-offsets correspond to a

bigger distance to the isocentre of the phase-encoding gradient, i.e. the location

where the phase encoding gradient is zero. A small difference corresponds to a

small distance to the isocentre. The amplitude of the radio signal in a location

corresponds to the density of emitting radiation.

By application of this sequence of radiowave pulses and time-dependant

gradients, the density of hydrogen nuclei in a certain location in the object of

interest can be estimated. The sequence of gradients and radiowave pulses in

the description above only describes the basic idea of MRI. Recent MRI devices
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use more advanced sequences of radiowave pulses and gradients in order to

achieve images faster and with higher accuracy (Spin Echo Pulse, Gradient Echo

Pulse, Fast Gradient Echo Pulse, Fast Spin Echo Pulse [89]). The puls-sequence

diagram of a spin echo puls sequence is shown in Figure 3.1.2.

In order to create a map of hydrogen density, the incoming electromagnetic

radiation at receive coils is described using a model. More specifically, measur-

ing the incoming electromagnetic radiation y ∈ Rn, n ∈N, at the boundary of

the domain of interest leads to an inverse problem [21]:

y = Af+ εN,

where εN ∈ Rn is (usually Gaussian) noise and A is a known linear operator

comprising the forward model for MR signals, f ∈ Rm, m ∈N, is the unknown

vector of magnetisation immediately after excitation at locations in the body.

The magnitude of this magnetisation is proportional to the product of local

strength of the magnetic field and the local density of Hydrogen atoms and

therefore, f can be used to obtain images of the hydrogen density distribution

in the body [21].
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Figure 3.1.2: MRE pulse sequence diagram. RF = radiofrequency, GPhase = phase-

encoding gradient, GRead = readout gradient or frequency-encoding gradient, Gslice =

slice selective gradient. In a spin echo sequence motion sensitizing gradients (MSGs)

are inserted before and after the second RF impulse. The phase offset between MSG

and mechanical excitation is in this picture α (in this thesis the phase shift is denoted

by β). (Reprinted with permission from U. Hamhaber, F. Grieshaber, J. Nagel, U.

Klose, “Comparison of quantitative shear wave MR-elastography with mechanical

compressiontests”, Magn Reson Med. 49 no. 1 (2003):71-7.)
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3.1.3 Displacement Data from MRI

In this subsection we give a description of the acquisition of displacement

data of the tissue in MRE using a standard MRI machine. On top of the three

gradients applied in standard MRI pulse sequences a slowly oscillating fourth

gradient is applied. We start this subsection with the quantitative description

of (general) gradients.

Let G(t) be a magnetic field gradient that only modifies the x1-component

of a magnetic field B, i.e.

G(t) =


Gx1(t)

Gx2(t)

Gx3(t)

 =


∂Bx1 (t)

∂x1

∂Bx1 (t)
∂x2

∂Bx1 (t)
∂x3

 . (3.1.3)

This magnetic field gradient is added to a constant magnetic field B0 which

results in a total magnetic field at position x(t) = (x1(t), x2(t), x3(t)) given by

B(x, t) = (B0 + G(t)x(t)).

Let the position of the nucleus be x(t) = x0 + vt(t) with x0 being the position

at rest and vt the displacement. Due to (3.1.2), a resonating nucleus in magnetic

field B is emitting radio waves of frequency

ωR(x, t) = γG · (B0 + G(t) · x(t)) = ω0 + γGG(t)x0 + γGG(t)vt(t),



3.1 elastography 48

where ω0 is the frequency of radio waves emitted by the nucleus in magnetic

field B0 defined in (3.1.1). Let

ω1(t) = ω0 + γGG(t)x0,

the frequency emitted by the nucleus at the position at rest when the gradient

G is applied.

The amount of accumulated phase of the nucleus resonating at frequency

ωR(x, t) due to displacement vt relative to the frequency ω1(t) at time t is given

by [65]

θ(x, t) =
∫ t

t0

(ωR(x, t′)−ω1(t′))dt′ = γG

∫ t

t0

G(t′)vt(x, t′)dt′. (3.1.4)

Let us assume that a harmonic boundary excitation v̂(x) cos(ωt), ω ∈ R

generates a wave field in the object MRE is applied to and that the generated

wave field is in stationary state after time t0 and can be described by v(x) =

vr(x)− jvc(x) for functions vr, vc : R2 → R and complex quantity j :=
√
−1.

We will later explain how these assumptions stem from the model we are using

for MRE. The time-dependant wave field after time t is described by [14]

vt(x, t) = Re [v(x) exp(−jωt)]

= Re [(vr(x)− jvc(x)) (cos(ωt) + j sin(ωt))]

= vr(x) cos(ωt) + vc(x) sin(ωt).
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In MRE, we apply a motion-sensitizing gradient in the chosen pulse se-

quence of MRI (see Figure 3.1.2), i.e. a gradient of the form

G(t) = G0 cos(ωt− β), (3.1.5)

where ω is the angular frequency of the motion-sensitizing gradient which is

chosen to be the same as that of the harmonic oscillation in the tissue, β is a

phase shift between the motion-sensitizing gradient and the external excitation.

This gradient is included into the normal pulse sequence of the MRI machine

after the first radio frequency pulse. If two or more radio frequencies pulses

are used in a pulse sequence the motion sensitizing gradient is added after the

first and before the second radio frequency pulse [63].

Choosing the time t = t0 + 2πNg/ω and using trigonometric product-to-

sum identities result in a phase shift θβ(x):

θβ(x) = γG

∫ t0+2πNg/ω

t0

G(t′) · v(t′)dt′ (3.1.6)

= γG

∫ t0+2πNg/ω

t0

G0 cos(ωt′ − β)
(
vr(x) cos(ωt′) + vc(x) sin(ωt′)

)
dt′

(3.1.7)

=
πNgγG

ω
[(vr ·G0) cos β + (vc ·G0) sin β] . (3.1.8)

Here we denote by Ng the number of gradient cycles. By using motion-

sensitizing gradients G0 = (G0, 0, 0), G0 = (0, G0, 0) or G0 = (0, 0, G0), we
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can obtain the phase shifts θ
(i)
β in each coordinate i = 1, 2, 3 in MRE measure-

ments given by

πNgγGG0

ω
(vri(x) cos β + vci(x) sin β) = θ

(i)
β (x) i = 1, 2, 3.

Let β = 0 or β = π/2, we have

vri(x) =
ω

πNgγGG0
θ
(i)
0 , vci(x) =

ω

πNgγGG0
θ
(i)
π/2 i = 1, 2, 3.

We assume our measurements later to be of the form v = vr + jvc at some

discrete measurement points and assume the measurements to be corrupted by

noise. We will give a more detailed description of this in Section 3.4.

3.1.4 Elasticity - Equations of Motion

In this section we briefly describe the physics leading to the equations of

motion of soft tissue under small harmonic deformation. In Section 3.2 we give

a mathematical description of these equations and their boundary conditions.

The momentum transport in a continuum that is not in motion and has a

constant density ρ, is described in the Lagrangian form by the following system

of partial differential equations

1
ρ
∇ · σel = f, (3.1.9)
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where σel is the stress tensor and f is a vector containing all the accelerations

caused by body forces. These equations are a special case of the Cauchy

momentum equations [49] but in (3.1.9) we assume a vanishing flow velocity

[8].

Stress expresses the loading in terms of the force applied to a certain cross-

sectional area of an object which then causes the material to deform. Let us

denote by vt these displacements caused by stress. In the case of infinitesimal

deformations in an isotropic linearly elastic solid we can relate the stress with

the resulting deformations vt in the following way that only involves the two

mechanical parameters µ and λ [14]:

σel = µ
(
∇vt +∇vT

t

)
+ λ (∇ · vt) I. (3.1.10)

Elasticity describes the reversibility of deformations caused by stress, i.e. if

stress components vanish, the displacement components drop to zero as well

[66]. Linearly elastic materials deform proportional to applied load. Isotropic

materials deform independent of direction.

We will later distinguish between purely elastic and viscoelastic material.

For purely elastic materials the relation between stress and displacements is

instantaneous, i.e. there is no time lag between a change in stress and the

deformations caused by the stress. The response of viscoelastic materials on the
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other hand is time dependent. Viscoelastic materials have a certain resistance

to deform and this damping introduces a time dependency in the material’s

response. We will have a closer look at viscoelasticity in Section 3.2.1. Also,

we will discuss in Section 3.5.1 how these underlying assumptions about soft

tissue can influence elastography results.

Using f = (∂2vt/∂t2) [14] results in

∇ ·
(

µ
(
∇vt +∇vT

t

)
+ λ (∇ · vt) I

)
= ρ

∂2vt

∂t2 ,

and assuming that the displacements are time harmonic [14], i.e. there is a time

independent v(x) such that

vt(x, t) = Re [v(x) exp(−jωt)] ,

results in the equations of motion of soft tissue for harmonic displacements

∇ ·
(

µ
(
∇v +∇vT

)
+ λ (∇ · v) I

)
= −ρω2v.

In the following section we will introduce boundary conditions and describe

preconditions under which there exist unique weak solutions to the boundary

value problem.
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3.2 modelling assumptions

In this section we describe the model of harmonic mechanical deformations

in the soft tissue of a living body and its underlying modelling assumptions.

Let Ω be a non-empty bounded, open and connected set in R2 with Lipschitz

continuous boundary ∂Ω. Let v(x) ∈ C2 be the displacement field describing

small mechanical deformations in the soft tissue. The displacement field

under harmonic deformation satisfies the following system of elliptic partial

differential equations (see [25], [41]):

∇ · [σel(v)] = −ρWω2v, for x ∈ Ω, (3.2.1)

v = v̂, for x ∈ ∂ΩD, (3.2.2)

[σel(v)] · n = 0, for x ∈ ∂ΩN, (3.2.3)

with Cauchy stress tensor [14]

σel(v) = µ
(
∇v +∇vT

)
+ λ (∇ · v) I

= µS

(
∇v +∇vT

)
+ λ (∇ · v) I + jµL

(
∇v +∇vT

)
,

(3.2.4)

where j :=
√
−1,∇vT = (∇v)T, µ = µS + jµL ∈ L∞(Ω, C) is the shear modulus,

I = diag(1, 1) the identity matrix, µS is the storage modulus , µL ∈ L∞(Ω, R) is

the loss modulus, λ ∈ L∞(Ω, R) is the first Lamé parameter, ρW ∈ R , ρW > 0,

is the density, ω ∈ R, ω > 0 the frequency of the sinusoidal excitation , x ∈ Ω
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spatial coordinate and n the outer unit normal vector on body Ω. We denote by

∂ΩD and ∂ΩN the Dirichlet (∂Ω)D and Neumann (∂Ω)N part of the boundary

∂Ω. Furthermore, we assume ∂Ω = ∂ΩD ∪ ∂ΩN and ∂ΩD ∩ ∂ΩN = ∅. We also

assume

µS, µL > 0 and λ + µS > 0.

If the Dirichlet input v̂(x) ∈ H3/2(∂ΩD) there exists a unique weak solution

v ∈ H1(Ω) to the problem (3.2.1)-(3.2.3) (see [41]). Here H3/2(∂ΩD) denotes

the Sobolev space of fractional order 3/2 [56].

Note that the problem (3.2.1)-(3.2.3) corresponds to the time-harmonic case

where it is assumed that all waves propagating through the tissue are oscillating

with angular frequency ω. The time-dependent wave field vt is related to the

time-harmonic v in the following way

vt(x, t) = Re [v(x) exp(−jωt)] .

We call the set of points x ∈ ∂ΩD on the Dirichlet boundary with v̂(x) 6= 0

loading edge boundary. This models the sinusoidal excitation of angular

frequency ω and amplitude v̂(x) applied by some external source. We call the

set of points x ∈ ∂ΩD on the Dirichlet boundary with v̂(x) = 0 fixed edge

boundary. This models fixed points like bones in the body where any incoming

waves bounce off.
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The set of points x ∈ ∂ΩN with zero surface traction are called free edge

boundary. Traction is defined to be Tel = σel · n. It can be shown that if no

external forces are applied at a point x ∈ ∂ΩN then the traction vanishes at this

point. So, it is natural to impose this traction Neumann boundary condition if

no external force is applied.

A free edge boundary assumes vacuum and a fixed edge boundary assumes

infinitely stiff enclosure. This is not physical, however the classical boundary

conditions used here are used as approximations of real world boundary

conditions.

The shear modulus µ is a measure of the elastic shear stiffness. It describes

how the material deforms under stress. The SI unit is Pascal. In the human

body it varies on the order of 2000% under the presence of diseases like cancer

or fibrosis and is therefore diagnostically useful [92].

The density ρW varies only on the order of 8% [59] and is therefore consid-

ered as a constant in our model.

Common frequencies used in MRE lie in range between 25Hz and 250Hz

[43]. We will later also discuss low frequency MRE experiments with less

common frequency < 4Hz.

In Figure 3.2.1 we illustrate the model given by (3.2.1)-(3.2.3).
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Figure 3.2.1: Example for a distribution of parameter µ across a square domain Ω of

size 70mm by 70mm and corresponding wave field v ∈ C2 solving (3.2.1) - (3.2.3). The

sinusoidal excitation has amplitude Re[v̂1] = 0.001mm along the horizontal direction

inducing shear waves. Frequency for the sinusoidal excitation is 60Hz (ω ≈ 377 rad/s)

at the bottom edge. The top edge is a fixed edge. Left and right edge is a traction

free Neumann boundary. Furthermore, ρW = 1kg/l, ν = 0.499. The amplitude of the

displacement field is given in mm. Top left: Plot of the storage modulus distribution.

The background value of µS is 3500Pa and the inclusion value is 5000Pa. Top middle:

Plot of the loss modulus distribution. The background value of µL is 2800Pa and

the inclusion value is 4000Pa. Top right: Horizontal displacement Re[v1]. Bottom

left: Horizontal displacement Im[v1]. Bottom middle: Vertical displacement Re[v2].

Bottom right: Vertical displacement Im[v2].
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3.2.1 Viscoelastic and Purely Elastic Model

Viscosity of a fluid is a measure of its resistance to deformation at a given rate.

In (3.2.1) - (3.2.3) the viscous contribution to the shear modulus µ is quantified

by µL(x) ∈ R. For a purely elastic material, i.e. a material without any viscosity,

the equations of motion are given by

∇ ·
[
µS

(
∇v +∇vT

)
+ λ (∇ · v) I

]
= −ρWω2v, for x ∈ Ω,

v = v̂, for x ∈ ∂ΩD[
µS

(
∇v +∇vT

)
+ λ (∇ · v) I

]
· n = 0, for x ∈ ∂ΩN.

So, in this viscosity free case we assume µL = 0, the Cauchy stress tensor

becomes real-valued

σel(v) = µS

(
∇v +∇vT

)
+ λ (∇ · v) I. (3.2.5)

In the viscosity free case we have v(x) ∈ R2 and we assume the measurements

to be real-valued as well. We discuss assumptions on the measurements in

MRE in Section 3.4.

In purely elastic materials both stress σel(v) and strain µS
(
∇v +∇vT) +

λ (∇ · v) I (see 3.2.5), are in phase.

In viscoelastic fluids stress and strain are out of phase [57], i.e. there is

a time lag between stress and displacements caused by the stress when the
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material is subjected to oscillatory displacements. Due to the time-harmonic

nature of stress and strain, this time lag can be described by a phase angle

between stress and strain. Conveniently, this can be expressed using complex

variables for strain and stress which then results in a complex shear modulus µ

[57, Chapter 2].

The real part µS is negatively correlated with the phase angle between stress

and strain and describes the elastic part, i.e. how much in-phase the stress and

strain component is and is a measure of the stored energy. The complex part

µL is correlated to the phase angle between stress and strain and describes the

viscous part, i.e. how much out-of-phase the stress and strain component is

and is a measure of the energy lost as heat. We have µL = ωµl where µl is the

so called shear viscosity [42].

In Figure 3.2.2 we illustrate the purely elastic model.
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Figure 3.2.2: Example for a distribution of parameter µ across a square domain Ω of

size 70mm by 70mm and corresponding wave field v ∈ R2 solving (3.2.1) - (3.2.3) for the

purely elastic case, i.e. µL = 0. The sinusoidal excitation has amplitude v̂1 = 0.001mm

along the horizontal direction inducing shear waves. Frequency for the sinusoidal

excitation is 60Hz (ω ≈ 377 rad/s) at the bottom edge. The top edge is a fixed edge.

Left and right edge is a traction free Neumann boundary. Furthermore, ρW = 1kg/l,

ν = 0.499. The amplitude of the displacement field is given in mm. Left: Plot of the

storage modulus distribution. The background value of µS is 3500Pa and the inclusion

value is 5000Pa. Middle: Horizontal displacement v1. Right: Vertical displacement

v2.

3.3 weak formulation of the viscoelastic helmholtz equation

In this section we derive a weak formulation for problem (3.2.1)-(3.2.3) which is

then used to describe how we can find approximations of the solutions using

the standard Galerkin finite element method. We homogenise the problem
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(3.2.1)-(3.2.3) (see for example [33]). We take Φ̃ ∈ H1(Ω) such that Φ̃|∂ΩD = v̂

and seek ṽ := v− Φ̃ such that

∇ · σel(ṽ) = −ρWω2ṽ +∇ · σel(Φ̃), for x ∈ Ω, (3.3.1)

ṽ = 0, for x ∈ ∂ΩD (3.3.2)

σel(ṽ) · n = −σel(Φ̃) · n, for x ∈ ∂ΩN. (3.3.3)

In order to get the weak form we multiply the residual by a test function

w ∈ H1
0(Ω) defined by

H1
0(Ω) :=

{
w ∈ H1(Ω); w

∣∣
∂ΩD

= 0
}

,

and integrate over the domain Ω

∫
Ω

w
(
∇ · σel(ṽ) + ρWω2ṽ−∇ · σel(Φ̃)

)
dΩ = 0. (3.3.4)

By applying integration by parts [50], i.e.

−
∫

Ω
w∇ · σel(ṽ)dΩ = −

∫
∂Ω

wσel(ṽ) · n d(∂Ω) +
∫

Ω
∇w : σel(ṽ)dΩ,

where A : B, the Frobenius inner product for matrices A and B defined in

Chapter 2. As the test function is zero on ∂ΩD, we get

−
∫

Ω
w∇ · σel(ṽ)dΩ = −

∫
∂ΩN

wσel(ṽ) · n d(∂ΩN) +
∫

Ω
∇w : σel(ṽ)dΩ,

We note that [50]

∫
Ω
∇w : σel(ṽ)dΩ =

∫
Ω

2µ · ε(ṽ) : ε(w)dΩ +
∫

Ω
λ (∇ · ṽ) (∇ · w)dΩ,
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can be written symmetrically, where we used the notation

ε(ṽ) :=
1
2

(
∇ṽ +∇ṽT

)
.

We define the Hermitian forms âher, aher : H1
0 × H1

0 → C with

âher(w, ṽ) :=
∫

Ω
2µ · ε(ṽ) : ε(w)dΩ +

∫
Ω

λ (∇ · ṽ) (∇ · w)dΩ,

and

aher(w, ṽ) := âher(w, v̂)−
∫

Ω
wρWω2ṽdΩ.

We also define the linear form llin : H1
0 → C with

llin(w) =
∫

∂ΩN

w · σel(Φ̃) · n d(∂ΩN).

We can rewrite (3.3.4) now in the following way

aher(w, ṽ) = âher(w, Φ̃)− 2l(w). (3.3.5)

We call a function ṽ ∈ H1
0(Ω) satisfying this variational problem (3.3.5) for all

w ∈ H1
0(Ω) a weak solution of the elasticity problem.

In order to find approximations of the weak solutions, we consider a sub-

space HN
0 of H1

0 and try to find ˜̃v ∈ HN
0 (Ω) satisfying this variational problem

(3.3.5) for all w̃ ∈ HN
0 (Ω). We assume HN

0 to be finite-dimensional with linear

tent [60] basis functions wi, i = 1, . . . , N. We can write w̃ = ∑N
i wiwi and

˜̃v = ∑N
i ṽiwi in (3.3.5) which then leads after some calculation (for example

found in [9]) to a linear system of equations that can be solved for wi.
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3.4 inverse problem

In this subsection we describe the inverse problem arising in MRE and the

modelling assumptions underlying this inversion. We go back to (3.2.1)-(3.2.3)

in order to describe the inverse problem. We usually replace λ by an expression

containing the dimensionless constant Poisson’s ratio ν defined as follows [14]

λ =
2µSν

1− 2ν
.

Then (3.2.1) can be written as

∇ ·
[

µ
(
∇v +∇vT

)
+

2µν

1− 2ν
(∇ · v) I

]
= −ρWω2v, for x ∈ Ω. (3.4.1)

We assume Poisson’s ratio ν = 0.499 to be constant which models the near

incompressibility of human tissue [62].

LetM := L∞(Ω, C). The only remaining unknown variables in (3.2.1)-(3.2.3)

are µ and v. Equation (3.4.1) defines a (nonlinear) parameter-to-output map

assigning each µ ∈ M the solution v of (3.4.1) with boundary conditions (3.2.2)

and (3.2.3). Let x1, . . . , xm ∈ Ω be measurement locations and let us define the

map

G :M→ Cm, µ 7→ G(µ) := (v(x1), . . . , v(xm)) , (3.4.2)

where v is the solution v of (3.4.1) with boundary conditions (3.2.2) and (3.2.3)

evaluated at the measurement points.
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Our modelling assumption is that our measurement v ∈ Cm is a solution

v of (3.2.1)-(3.2.3) for an unknown parameter µ evaluated at the measurement

points x1, . . . , xm ∈ Ω. Furthermore, we assume that v is corrupted by noise

and that the noise is an m-dimensional mean zero Gaussian random variable.

In other words, when using the forward operator defined in (3.4.2), we assume

v = G(µ) + η, (3.4.3)

where η denotes the measurement noise. The inverse problem consists of

finding µ ∈ M from measurements v.

This problem is ill-posed that means the solution µ does not depend contin-

uously on the data v. Small changes in v lead to big changes in the solution µ

for this inversion [92].

We also assume that the noise η ∈ Cm in MRE is the sum of many, mostly

independent sources of noise. The central limit theorem states that the nor-

malised sum of independent random variables with some overall mean and

finite variance tends to be Gaussian. So, the central limit theorem modifies our

assumption of additive Gaussian noise in the model. However, we only have a

finite number of sources of noise and therefore, the central limit theorem cannot

applied exactly. Sources of noise in MRE might be, among others, motion of the

body, respiration, movement of the table and signal noise in MRI, which goes
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back to radiofrequency noise from external sources and increased temperature

(thermal agitation) of the body and the electronics inside the MRI system [91].

3.5 common approaches to inversion in mre

In this section we describe the two commonly applied approaches to the inverse

problem in MRE (4.1.1). Both approaches do not take into account the statistics

of the noise η unlike the approaches from the inversion theory discussed later

in Section 4.1.5. The first one solves for µ after applying an operation of curl

to (3.2.1). In Section 3.5.1 we describe this approach which is called direct

inversion. The other approach will be described in Section 3.5.2 and tries

to minimise the difference between the measured wave field and those wave

fields computed by a finite element method. A common modification of this

computationally expensive approach is to split the minimisation problem into

smaller sub-problems. We describe this method in general in Section 3.5.3 and

how to combine it with the least-squares optimisation in Section 3.5.4.
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3.5.1 Direct Algebraic Inversion

A widely used approach for solving the MRE inverse problem is direct algebraic

inversion [23, 14]. In order to derive the algebraic inversion formula for soft

tissue stiffness from equation (3.2.1), we rewrite it using the fact that ∇ ·

λ (∇ · v) I = ∇ (λ∇ · v) which gives us

∇ · µ
(
∇v +∇vT

)
+∇ (λ∇ · u) = −ρWω2v. (3.5.1)

Now, an operation of curl performed on equation (3.5.1), which results in

∇×∇ · µ
(
∇v +∇vT

)
+∇×∇ (λ∇ · u) = −ρWω2(∇× v), (3.5.2)

and then using the fact that the curl of the gradient of any smooth f is always

zero [30], i.e. ∇×∇f = 0, simplifies (3.5.2) to

∇×∇ · µ
(
∇v +∇vT

)
= −ρWω2(∇× v).

In the next step of the algebraic direct inversion approach we assume that µ is a

constant which is usually referred as the ”local homogeneity assumption” [80].

It can be shown that ∇×∇
(
∇v +∇vT) = ∇2(∇× v), where ∇2 = ∇ · ∇ is

the Laplace operator. We can now write

µ∇2(∇× v) = ρWω2 · (∇× v). (3.5.3)
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We can interpret this as the wave equation for the propagating shear wave

[14] and µ as a factor in the wave number. Rearranging 3.5.3 yields the direct

inversion formula which is

µ =
ρW ·ω2(∇× v)
∇2(∇× v)

. (3.5.4)

In algebraic direct inversion approaches like [23, 14] the measurement data

v ∈ Cm is then used to calculate the finite-dimensional approximation µ̂ ∈ Cm

of the shear modulus by

µ̂ =
ρW ·ω2(∇̂ × v)
∇̂2(∇̂ × v)

, (3.5.5)

where a discrete curl operator that uses finite differences is applied.

This approach is one of the computationally cheapest approaches to the

inverse problem in MRE and inversions for real world data sets only take a

few seconds [22]. However, there are several weaknesses of this approach: We

assume v is corrupted by noise and gets differentiated twice in (3.5.5). In the

presence of a high noise level the accuracy of direct inversion is poor. Usually,

smoothing is applied to the data v before the inversion or after the inversion to

µ̂.

Also, direct inversion is restricted to model (3.2.1) and suffers from the

modelling errors attached to this model. The differential equation (3.2.1) is a

reasonable choice for modelling soft human tissue. However, [42] discusses
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various viscoelastic models for the soft tissue in a living body and each of them

results in different equations of motion. In [70], [28] the authors show how the

application of a poroelastic model instead of the linear elastic model (3.2.1)-

(3.2.3) can improve inversion results in real world experimental setups with tofu.

The poroelastic model models fluids inside organs, such as blood and interstitial

fluid. The governing equations contain a term for pore water pressure and

direct inversion cannot be applied anymore. Also, if MRE is applied to other

materials direct inversion (3.5.5) might not be applied. In applications of MRE

to materials that are incompressible, the model (3.2.1)-(3.2.3) changes and we

have ∇ · v = 0.

In the application of the discrete curl (3.5.5) the numerical derivatives contain

errors which make approximations µ̂ less accurate. In regions with significant

heterogeneity, the accuracy of direct inversion suffers [23]. We will see in the

experiments in Section 6.4 that this is the main weakness of this approach.

3.5.2 Least-Squares - General Introduction

Another commonly used approach to the inverse problem in MRE is to find the

optimiser of the least-squares function: [23]

min
µ∈M

π(µ), (3.5.6)
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where

π(µ) = ‖(G(µ)− v)‖2.

Algorithms that try to find solutions or approximations are usually iterative,

the most common one is Gauss-Newton [31]. We discuss several weaknesses of

least-squares approaches and the specific least-squares approach in [31] in the

context of inverse problems later in this Chapter and in Section 4.1.

Finding an optimiser of (3.5.6) ignores the distribution of noise and therefore,

the distribution of measurements v. If we have a very high noise level at only a

few measurement locations vi and low noise level otherwise, the euclidean norm

in (3.5.6) is dominated by these few locations and iterative methods tune updates

to these outliers only. Even though this is an extreme example illustrating the

weakness of this approach, it is realistic however, that displacement data in one

direction in MRE might be more corrupted by noise than in other ones.

In the statistical approach explained below the precision operator coming

from the distribution of the noise is used in the least square function which

takes into account the distribution of noise in the measurements.
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3.5.3 Subzones

In this subsection we describe the subzone inversion approach which was

introduced by van Houten in [32] and [31] in the context of least-squares min-

imisation described above. We give a description of this idea in this subsection

that enables us to use it later on in statistical inversion approaches. The key

idea is to circumvent high computational costs by dividing the field-of-view

into a series of overlapping subzones Ωz.

More specifically, we define non-empty, open and connected subsets Ωz ⊂

Ω in the domain of interest Ω such that they cover the whole domain, i.e.

Ω = ∪Ωz. In each subzone Ωz we define a boundary value problem

∇ · σelz(v) = −ρWω2vz, for x ∈ Ωz, (3.5.7)

vz = v̂, for x ∈ ∂ΩD ∩ ∂Ωz, (3.5.8)

vz = vC, for x ∈ ∂Ωz \ (∂ΩN ∪ ∂ΩD), (3.5.9)

σelz(v) · n = 0, for x ∈ ∂ΩN ∩ ∂Ωz, (3.5.10)

where σelz(v) := µ
(
∇vz +∇vT

z
)
+λ (∇ · vz) I and vC is obtained from measure-

ments v by interpolation in Ωz, e.g. bilinear interpolation. So, measurements
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are used to pose boundary conditions on the subzone. Similarly to (3.4.2) we

can define a subzone forward map

Gz : L∞(Ωz, R)→ Rmz , µ 7→ (vz(x1), . . . , vz(xmz)) , (3.5.11)

where Gz(µ) is the solution vz of the boundary value problem above for µ and

x1, . . . , xmz are measurement points inside subzone Ωz. The inverse problem

(4.1.1) can now be approximated in a subzone ΩZ by using Gz instead of G|ΩZ .

The noise in the data v and the fact that we use interpolation in order to get vC

introduce an error on the subzone boundary (3.5.9) which is carried further to

an error between the subzone solution vz using Gz and the global solution v

when restricted to the subzone ΩZ, in other words v|ΩZ .

The quantification of this error as well as the development of methods to

minimise the error is an open problem.

3.5.4 Subzone-Least-Squares

In this subsection we describe further details of one of the most commonly

used approaches to the inverse problem in MRE next to direct inversion.

In the least squares approach in [31], [32] the authors consider the unknown

µ in (4.1.1) and µz in (3.5.11) only on a discrete mesh in Ω even in the formula-

tion of the inverse problem. Let points {x̂i}n̂
i=1 ∈ Ω correspond to the chosen
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computational mesh of the discretisation scheme used in the finite element

method described at the end of Section 3.3 and define

µ̂ := (µ(x̂1), . . . , µ(x̂n̂)) . (3.5.12)

The least-squares function considered in [31] is

min
µ̂∈M̂

π̂(µ̂), (3.5.13)

where M̂ := Rn̂ is the space of all n̂-dimensional approximations of µ and

π̂(µ̂) = ‖(Ĝ(µ̂)− v)‖2. (3.5.14)

Here, we use Ĝ : Rn̂ → Rm that maps from the finite-dimensional approxima-

tion µ̂ of µ to the the finite-dimensional approximation ṽh of ṽ described at the

end of Section 3.3, i.e. Ĝ(µ̂) is the finite element approximation of G(µ) for

computational mesh {x̂i}n̂
i=1 ∈ Ω. The mapping π̂ is mapping Rn̂ → R.

In [31] the authors then use the subzone idea described in Section 3.5.3

and define non-empty, open and connected subsets Ωz ⊂ Ω in the domain of

interest Ω such that they cover the whole domain, i.e. Ω = ∪Ωz. Subzones

might overlap. In Figure 3.5.1 we give an example on a domain division into

several overlapping subzones on an rectangular grid of discretisation. In each

subzone Ωz we define an objective function

π̂Z(µ̂) := ∑
z

π̂z(µ̂z) := ∑
z
‖vz − Ĝz(µ̂z)‖2, (3.5.15)
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where vz := v|Ωz ∈ Rmz is the measurement data and µ̂z ∈ Rn̂z the shear

modulus in the corresponding subzone z. π̂z denotes the least square functional

(3.5.14) in subzone Ωz. We denote the mapping Ĝz : Rn̂z → Rmz maps the finite-

dimensional approximation µ̂ of µ given on the nodes x̂i ∈ Ωz of the chosen

computational mesh inside the subzone Ωz to the displacements vz in points

x1, . . . , xmz .

Figure 3.5.1: After discretisation, subzones are defined on the mesh. Subzones might

overlap. In this picture subzones overlap by one point.

In [31] the authors use the assumption that the minimiser of the sum in

equation (3.5.15) is equivalent to the sum over the minimisers in each sub-zones

and we have :

arg min
µ̂∈M̂

π̂Z (µ̂) = arg min
µ̂∈M̂

{
∑
z

π̂z (µ̂z)

}
= ∑

z
arg min

µ̂∈M̂
π̂z (µ̂z) = arg min

µ̂∈M̂
π̂(µ̂),
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for the minimiser. In [31] the authors then use the Levenberg–Marquardt

method to update the parameter in the following way

µ̂i+1
z = µ̂i

z + ∆µ̂z,

where the update ∆µz is the solution of the following matrix system:

[Hi
z + α̂I][∆µ̂z] = −gradzπ(µ̂i),

where approximations of the gradient gradzπ(µ̂i) and the Hessian Hi
z which

involve the derivative ∂Ĝz(µ̂i))l
∂µ̂zj

can be found by approximating a modified

version of (3.2.1)-(3.2.3) [32].



4

B AY E S I A N I N V E R S I O N

In this section we describe the Bayesian inversion approach we use to solve

the inverse problem arising in MRE. In Section 4.1 we introduce the two main

approaches from inversion theory called Bayesian and deterministic inversion,

and explain the properties and advantages of each approach. In Section 4.2 we

explain the specific Bayesian approach that we have chosen which is EKI. The

key part in this Chapter is Algorithm 1 which is the version of EKI that we use

in this thesis. In Section 4.3 we show how we define the prior in our Bayesian

approach. Finally, in Section 4.4 and Section 4.5 we show how our approach

can be modified using a different parametrisations so that it can capture well

complex geometries in the unknown.

4.1 basic approaches for inverse problems

In this section we describe the two main approaches to inversion and why we

have chosen one over the other. In Section 4.1.3 we introduce deterministic

74
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inversion and in Section 4.1.4 and 4.1.5 we describe Bayesian inversion. In

Section 4.1.6 we explain why we follow a Bayesian approach. We start this

section with an overview over inversion approaches in Section 4.1.2. but before

we do that we give a more general formulation of the inverse problem (3.4.3)

that includes a parametrisation of the unknown. This general framework will

be useful later on when we use parametrisations in Sections 4.4 and4.5.

4.1.1 Formulation of the Inverse Problem that includes a parametrisation

Before we describe basic approaches from the inversion theory we give a more

general formulation of the inverse problem (3.4.3) by allowing for a class of

suitable parametrisations P : K →M for our estimate of the unknown µ ∈ M.

These parametrisations characterise the physical properties inM in terms of an

input k ∈ K. The space of parameters K will be specified later depending on

the chosen parametrisation. For now, we assume K is a (infinite-dimensional)

Hilbert space. When using a parametrisation, inversion approaches try to

estimate the parameters k ∈ K instead of the physical property µ ∈ M. We

define F := G ◦ P and write down the general formulation of the inverse

problem (3.4.3) as finding k ∈ K from measurements v with

v = F (k) + η. (4.1.1)
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Choosing P := id we have (3.4.3) as special case of (4.1.1).

4.1.2 Overview

The inversion approaches described in Section 3.5 do not take into account

the distribution of noise. Due to the aforementioned ill-posedness of inverse

problems two outcomes of the same experiment can therefore lead to very

different inversion results in their approaches. We want to deploy and develop

methods that give similar inversion results if they are applied to the same

experiment. Also, approaches in Section 3.5 assume the real world could be

exactly represented by fairly simple models like (3.2.1) and do not allow for

modelling errors.

Methods in inversion theory try to incorporate the statistics of the noise or

modelling errors into their methods [45, 86]. More precisely, they consider the

measurements v in (4.1.1) as realisation of a (finite-dimensional) random vari-

able V. We assume the noise η ∼ N (0, B) is centred Gaussian with covariance

operator B ∈ Cm×m and denote its probability density function with respect to

Lebesgue measure as ρn. From (4.1.1) we conclude that the density ρ of v given

k is given by

ρ(v|k) := ρn(v−F (k)) =
1√

(2π)m|B|
exp

(
−1

2
‖(v−F (k))‖2

B

)
,
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and therefore, the data likelihood LV for k given observation V = v is

LV(k; v) := ρ(v|k) = 1√
(2π)m|B|

exp
(
−1

2
‖(v−F (k))‖2

B

)
, (4.1.2)

where ‖·‖B := ‖B−1/2·‖ .

If LV(k1; v) > LV(k2; v) then the observation v is more likely to occur under

k1 than k2 so that k1 can be considered as more plausible than k2.

Approaches from inversion theory can be split into two groups: Determinis-

tic inversion and Bayesian inversion.

4.1.3 Deterministic Approach to Inversion

In the classical or deterministic approach to inversion k is a fixed unknown

constant which is inferred utilising the distribution ρ(v|k) (or more precisely

the covariance B of the noise) after V = v has been observed [45]. The centre of

interest is to construct good methods of inference and the unknown k is not

treated as a random variable. A familiar method of deterministic inversion is

to find the k∗ ∈ M that is maximising the likelihood and is therefore the most

plausible estimate given the data v. In other words we are solving for given

observation v the optimisation problem of finding the optimiser

k∗MDL := arg max
k∈K

LV(k; v) = arg min
k∈K

‖v−F (k)‖2
B, (4.1.3)
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which is in the case of Gaussian noise with covariance operator B a generalised

(nonlinear) least square problem.

In (finite-dimensional) parameter estimation theory of deterministic infer-

ence the quantity (4.1.3) is called the maximum likelihood estimator [45].

Solving or approximating (4.1.3) is a difficult optimisation task since the

functional that needs to be minimised is not a quadratic one with respect to

k because F is nonlinear. If the minimisation problem is ill-posed, iterative

numerical approaches may fail finding updates [72]. If maxima exist optimi-

sation methods may only converge to a local maximum rather than the global

maximum. Also, they might overfit the data v if the of the noise is not known

exactly, i.e. F (k∗MDL) is almost exactly v. In this case, we try to explain the noise

in the measurement which is not a goal of inversion. Therefore, it is common in

deterministic inversion to replace (4.1.3) by similar optimisation problems with

better properties, e.g. regularised optimisation problems before (Tikhonov) or

iteratively while solving the problem (Levenberg-Marquardt, see Section 4.2.6

and [45]).

The Tikhonov optimisation problem for problem (4.1.3) is finding the opti-

miser [45]

k∗Tk := arg min
k∈K

‖v−F (k)‖2
B + δTk · GTK(k), (4.1.4)
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where δTk is a regularisation parameter and GTk : M → R some functional.

Depending on the problem, some choices of GTk and δTk can enforce existence,

uniqueness and continuity with respect to the measurements of the solution of

this problem [45].

Deterministic statistical inversion requires the knowledge of the distribu-

tion or the covariance of the noise ρn and many approaches like Tikhonov-

regularisation allow further incorporation of prior knowledge through the

choice of the regularisation parameter [11].

4.1.4 Motivation for Bayesian Inversion

The inversion approaches in Section 3.5 and deterministic inversion methods

return a single estimate for the unknown without information about how

certain these results are. Due to the presence of noise in the input of these

algorithms it is clear that their output is fraught with uncertainty as well even if

the distribution of the noise is taken into account like in deterministic inversion

methods. It is therefore desirable to rather use an approach that attempts to

attach a measure of uncertainty or a probability statement to the inversion

result which is what Bayesian (or statistical) inversion does. The central idea
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of statistical inversion is to consider data as partial information representing a

larger context and to make conclusions that try to involve this context.

4.1.5 Bayesian Inversion

Bayesian inversion enables us to code prior knowledge directly into our algo-

rithms. Not only measurements are treated as random variable but also k is

treated as random. The uncertainty about the parameter k prior to observing

V = v is represented by a prior distribution on k. This prior should incorporate

all the structural knowledge we have about the problem prior the acquisition

of the data. Let us assume the density of the prior with respect to Lebesgue

measure exists and let us denote it by π0(k). Bayes’ theorem states that the

posterior distribution, that is, the conditional probability distribution πk(v)

with respect to Lebesgue measure of k given V = v is given by [83]

πk(v) =
ρ(v|k)π0(k)∫
K ρ(v|k)π0(k)dk

. (4.1.5)

In Bayesian inversion, the inference statement about the unknown k in form

of the posterior distribution condenses all that is known about k following the
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measurement of v. It is worth noting that for each choice of prior distribution

π0 the mapping

v 7→ πk(v),

that assigns the posterior for measurement v defined by (4.1.5), is different.

We will see later in Chapter 5 in Figure 4.3.2 how different priors in the

same experiment with the same measurement v yield different posteriors in a

Bayesian inversion approach.

One of many challenges in Bayesian inversion is to specify a suitable prior

for the problem and calculate the posterior in (4.1.5) involving the usually

high-dimensional integral in the denominator which is both usually non-trivial.

Unlike the deterministic approach that assumes that the parameter k has

one true value, Bayesian methods believe k is fixed but has been drawn from

some probability distribution.

4.1.6 Choice Between Deterministic Approach and Bayesian Approach

The choice of school of inversion can be based on practical, theoretical, com-

putational and sometimes even philosophical aspects. In the inverse problem

arising in MRE we will apply algorithms that belong to Bayesian inversion.

One of the main downsides and critiques of Bayesian inversion is that the
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prior is subjective and different priors for the same experiment with the same

measurements may produce different posteriors. In the Bayesian approach

to MRE we have to specify a prior on the shear modulus µ which describes

mechanical properties of the human tissue. The mechanics in human tissue

follow physical laws and there is plenty of empirical data on how the shear

modulus distributes across tissue. This enables us to give informative priors

and also specify the assumptions for them. For example, one of the parameters

k of the prior determines the range of values µ. Due to the fact that we apply

MRE to human tissue, we are able to narrow down the possible values of µ

in the prior to a relatively small range. So, it can be considered as a positive

aspect of the Bayesian approach that we can make use of this detailed prior

knowledge and that we can incorporate it into our algorithms in a such simple

and direct way that even non-mathematicians are able to adapt it to different

MRE-experiments.

Throughout this thesis we consider the inversion that we develop from a

Bayesian viewpoint. However, it is important to note that many approaches

from deterministic inversion can be interpreted from a Bayesian perspective and

vice versa [11]. The Bayes formula should be merely seen as a starting point

for the development of the algorithm in this thesis. Later, we will see how the

Bayesian approach used in this work can be related to the Levenberg-Marquardt
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approach and that iterative regularisation ideas from Levenberg-Marquardt are

used as well in this approach.

4.2 ensemble kalman inversion

In this section we explain the Bayesian approach we follow in the inversion

problem in MRE: Ensemble Kalman Inversion (EKI). In Section 4.2.2 and 4.2.3

we explain how the Ensemble Kalman update in Section 4.2.4 can be deduced

from the Bayes formula (4.1.5). After that in Section 4.2.5 we introduce a

loss function that is used in Section 4.2.6 to explain the connection between

Levenberg-Marquardt method and EKI and in Section 4.2.7 to define the adap-

tive regularisation of EKI. We start with Section 4.2.1 which describes the idea

of EKI.

4.2.1 Overview

We go back to the assumption that the noise in (4.1.1) is Gaussian η ∼ N (0, B)

and so the Likelihood for k given the observation V = v is given by (4.1.2).
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Furthermore, let π0(k) denote the prior density with respect to Lebesgue

measure again. From Bayes formula (4.1.5) we have

πk(v) =
ρ(v−F (k))π0(k)∫
K ρ(v−F (k))π0(k)dk

∝ ρ(v−F (k))π0(k),

and using the bespoken Gaussianity of Likelihood yields

πk(v) =
1
Z

exp
(
−1

2
‖v−F (k)‖2

B

)
· π0(k), (4.2.1)

with normalising factor Z given by

Z =
∫
K

exp
(
−1

2
‖v−F (k)‖2

B

)
· π0(k)dk. (4.2.2)

In (4.2.1) the posterior is known up to the constant Z which involves inte-

gration over K. Considering the high dimensionality of the parameter space -

in three-dimensional MRE the dimension of K can be of order 108 and greater -

common quadrature methods are computationally intractable.

The Bayesian approach used in this work is EKI which is a derivative-

free iterative regularisation algorithm that produces a sequence of Gaussian

distributions approximating the posterior in (4.2.1) [40].

Being regularised iteratively means that regularisation is chosen while

inverting which is different from approaches where regularisation is chosen

before inverting, for example Tikhonov regularisation in deterministic inversion.

Iterative regularisation is powerful because convergence speed is often coupled
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with regularisation. Iterative regularisation algorithms can be efficient and

accurate at the same time.

Many iterative deterministic inversion approaches (Levenberg-Marquardt,

Newton) require Fréchet-derivatives and their associate adjoint of the (nonlin-

ear) function F [40]. EKI, the iterative Bayesian approach used in this thesis, is

derivative free and it is not necessary to numerically approximate derivatives

or adjoints which demonstrates another advantage of some Bayesian inversion

over deterministic inversion. Being derivative free can be handy when work-

ing with commercial software where only the forward solution F (k) but no

derivatives are provided.

An underlying key idea [83] in the development of EKI is to avoid dis-

cretisation of K until the last possible moment. This results in a discretisation

invariant model, i.e. the way how we determine the posterior is the same for

all discretisations and is not changing under grid-refinement.

4.2.2 Tempering Approach

Rather than approximating the posterior in (4.2.1) in one big leap EKI follows

the idea of tempering approaches [10] and defines a sequence of intermedi-
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ate posterior distributions πk
0, πk

1, . . . , πk
N+1 that evolve from the prior to the

posterior as

πk
n+1(v) =

1
Zn+1

exp
(
−φn+1

2
‖v−F (k)‖2

B

)
· π0(k), n = 0, 1, . . . N,

(4.2.3)

with

Zn+1 =
∫
K

exp
(
−φn+1

2
‖v−F (k)‖2

B

)
· π0(k)dk, (4.2.4)

and tempering parameter {φn}N+1
n=1 satisfying

φ0 := 0 < φ1 < φ2 < · · · < φN < 1 =: φN+1.

It is clear from the definition (4.2.3) that the first iterate is the prior and that

the last iterate πk
N+1 = πk is the posterior. The bridging parameter φn reduces

the ”peakiness” of the Likelihood and makes it flatter with larger variance in

the first iterates. This can be seen in the definition (4.2.3). So, the tempering

approach gradually includes more certainty about the data into the intermediate

posterior distributions. Figure 4.2.1 illustrates the idea of tempering in a simple

one-dimensional example and it can be seen how the intermediate posterior

distributions evolve from the prior to the posterior.
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Figure 4.2.1: Illustration of tempering in a one-dimensional case. Left: Prior π0(k) and

intermediate likelihoods L(n)
V ∝ exp

(
− φn

2 ‖v−F (k)‖2
B

)
for some bridging parameter

φn have larger variance and are ”flatter” than likelihood LV ∝ exp
(
− 1

2‖v−F (k)‖2
B
)
.

Right: The intermediate posterior distributions πk
n+1 ∝ L(n+1)

V · π0(k) evolve from the

prior to the posterior. In this illustration of tempering the six bridging parameters

ϕ0, . . . , ϕ5 split the interval between 0 and 1 into equi-distant intervals. This choice

is only used in this example. The choice of tempering parameters for EKI is later

discussed in Section 4.2.7.
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The tempering distributions (4.2.3) can be transformed into an iteration:

πk
n+1(v) =

1
Zn+1

exp
(
−φn+1

2
‖v−F (k)‖2

B

)
· π0(k)

=
Zn

Zn+1
· 1

Zn
exp

((
−φn+1 − φn

2
− φn

2

)
· ‖v−F (k)‖2

B

)
· π0(k)

=
Zn

Zn+1
exp

(
−φn+1 − φn

2
· ‖v−F (k)‖2

B

)
· 1

Zn
exp

(
−φn

2
· ‖v−F (k)‖2

B

)
· π0(k)

=
Zn

Zn+1
exp

(
−φn+1 − φn

2
· ‖v−F (k)‖2

B

)
· πk

n−1(v)

=
Zn

Zn+1
exp

(
−α−1

n
2
· ‖v−F (k)‖2

B

)
· πk

n−1(v)

=
Zn

Zn+1
exp

(
−1

2
· ‖v−F (k)‖2

(αn·B)

)
· πk

n(v),

(4.2.5)

where we have defined

α−1
n = φn+1 − φn. (4.2.6)

4.2.3 Gaussianisation and Linearisation

A central idea of EKI is to approximate each distribution in the iterative scheme

(4.2.5) by a Gaussian distribution with density ϕk
n [39]. This idea can be imple-

mented by choosing a Gaussian prior and by linearising F in the Likelihood.

So far, F is non-linear and therefore, the Likelihood in (4.2.5) is non-Gaussian.
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Let us assume the density with respect to Lebesgue measure of the Gaussian

approximation ϕk
n has mean mn and covariance Σn , i.e. ϕk

n is the density of

some random variable kn ∼ N (mn, Σn) and we have ϕk
n ∝ exp

(
−‖k−mn‖2

Σn

)
.

By ϕ0 we denote the density of the chosen Gaussian approximation of the prior

π0(k) which we assume has mean m0 and covariance operator Σ0.

These quantitative approximations are useful as Gaussian densities are fully

characterised by only the mean and the covariance. Later in Section 4.3, we will

see that they are easy to construct and versatile, which will allow us to code

our prior knowledge into the algorithm.

We linearise F in each iteration around the mean of ϕk
n, so [39]

F (k) ≈ F (mn) + DF (mn)(k−mn) = Fn + DFn(k−mn), (4.2.7)

where DF (mn) : K → Rm denotes the Frechet derivative of F evaluated at the

mean mn. We use the notation Fn := F (mn) and DFn := DF (mn).

Starting the iteration with a Gaussian approximation ϕk
0 of the prior, we can

express the update (4.2.5) as product of two Gaussian density functions for k if

we use linearisation (4.2.7). The resulting sequence of Gaussian approximations

of (4.2.5) given by [39]

ϕk
n+1(v) =

Z̃n

Z̃n+1
exp

(
−1

2
· ‖v−Fn −DFn(k−mn)‖2

(αn·B)

)
· ϕk

n(v), (4.2.8)
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where

Z̃n =
∫
K

exp
(
−φn

2
‖v−Fn −DFn(k−mn)‖2

(αn·B)

)
· ϕ0dk.

In (4.2.8) using ϕk
n ∝ exp

(
−‖k−mn‖2

Σn

)
enables us to calculate the mean and

the covariance of the product of these two Gaussian densities by adding the two

inner products in the exponent. This calculation called completing the square

can be found, for example, in [83]. The product ϕk
n+1 ∝ exp

(
−‖k−mn+1‖2

Σn+1

)
has mean and covariance given by

mn+1 = mn + ΣnDF ∗n (DFnΣnDF ∗n + αnB)−1 (v−Fn),

Σn+1 = Σn + ΣnDF ∗n (DFnΣnDF ∗n + αnB)−1 DFnΣn.

(4.2.9)

We used DF ∗n which denotes the adjoint of DFn in mn.

From (4.2.7) we conclude that the expected value is approximated by [39]

En [F (kn)] ≈ En [Fn] + DFn(En [kn −mn])

= Fn + DFn(En [kn]−En [mn])

= Fn,

(4.2.10)

where En denotes the expected value with respect to the Gaussian measure

N (mn, Σn). Using this approximation and (4.2.7) again we also conclude [39]

F (kn)−En [F (kn)] ≈ F (kn)−Fn

≈ DFn (kn −mn) .

(4.2.11)
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These two approximations can be used to replace derivatives in (4.2.9). From

the definition of the covariance we know that [39]

Σn = En [(kn −En(kn))⊗ (kn −En(kn))] = En [(kn −mn)⊗ (kn −mn)] ,

where ⊗ denotes the outer product. We can now conclude using (4.2.11)

and the linearity of the expectation En that a cross-covariance can be used to

approximate [36]

ΣnDF ∗n = En [(kn −mn)⊗ (kn −mn)] ·DF ∗n

= En [(kn −mn)⊗ (DFn(kn −mn))]

≈ En [(kn −mn)⊗ (F (kn)−En [F (kn)])] =: Covn(kn,F (kn)),

(4.2.12)

and a covariance to approximate [36]

DFnΣnDF ∗n = DFnEn [(kn −mn)⊗ (kn −mn)] ·DF ∗n

= En [(DFn(kn −mn))⊗ (DFn(kn −mn))]

≈ En [(F (kn)−En [F (kn)])⊗ (F (kn)−En [F (kn)])] =: Covn(F (kn)).

(4.2.13)
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Thus, by substituting (4.2.13) for DFnΣnDF ∗n and (4.2.12) for ΣnDF ∗n in (4.2.9),

we can approximate the updates of the mean and covariance free of derivatives

in the following way [36]

mn+1 = mn + Covn(kn,F (kn)) (Covn(F (kn)) + αnB)−1 (v−En [F (kn)]),

Σn+1 = Σn + Covn(kn,F (kn)) (Covn(F (kn)) + αnB)−1 Covn(kn,F (kn)).

(4.2.14)

4.2.4 Particle Approximation

Although, (4.2.14) is derivative free both (4.2.12) and (4.2.13) cannot be calcu-

lated analytically. We use particle approximations, i.e. each kn is approximated

by [39]

kJ
n =

1
J

J

∑
j=1

δ
k(j)

n
, k(j)

n ∼ N (mn, Σn),

where we used the Dirac delta measure δ. The idea of using this particle

approximation now is to update particles {k(j)
n }j=1,...,J , J ∈ N in such way

that {k(j)
n+1}j=1,...,J is distributed according to N (mn+1, Σn+1). Because of the

Gaussianisation and the linearisation that we have already introduced this is

straightforward. We update particles in the following way
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k(j)
n+1 = k(j)

n + CkF
n

(
CFFn + αnB

)−1 (
v−
√

αnξn −F (k(j)
n )
)

, (4.2.15)

where ξn ∼ N (0, B) and we use the sample covariance and cross-covariance

defined by

CFFn =
1
J

J

∑
j=1

(
F (k(j)

n )−Fn

)
⊗
(
F (k(j)

n )−Fn

)
(4.2.16)

CkF
n =

1
J

J

∑
j=1

(
k(j)

n − kn

)
⊗
(
F (k(j)

n )−Fn

)
, (4.2.17)

which uses the two definition of

kn =
1
J

J

∑
j=1

k(j)
n , Fn =

1
J

J

∑
j=1
F (k(j)

n ). (4.2.18)

We define the ensemble covariance

Ckk
n =

1
J

J

∑
j=1

(
k(j)

n − kn

)
⊗
(

k(j)
n − kn

)
. (4.2.19)

It can be shown (informally or rigorously in finite dimensions in [58]) that

the mean and covariance of the ensemble updated in (4.2.15) is converging

to kn+1 → mn+1 and Ckk
n → Σn+1 for J → ∞ [39]. Hence the particle update

introduced in (4.2.15) is actually approximating (4.2.14) which updates mean

and covariance of the Gaussian approximation of the sequence πk
n.
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4.2.5 Loss Function

We deploy the negative log-likelihood (4.1.2) as loss function L : K×Rm → R+,

so [40]

L(k, v) := − log LV(k; v) =
1
2
‖v−F (k)‖2

B. (4.2.20)

This function is used in application to monitor the progress of the ensemble

mean kn in EKI. From the fact that this is the negative log-likelihood we conclude

that small values correspond to a high likelihood. Furthermore, the loss function

is used in order to update regularisation parameter αn which will be explained

below. Also, it can be considered as objective function when putting EKI in

the context of deterministic inversion with the Levenberg-Marquardt approach

which is explained in the following section [39].

4.2.6 Connection to Levenberg-Marquardt

Although, we consider EKI from the Bayesian viewpoint in this thesis relating

it to classic inversion can provide interesting insights. It can be shown [39] that

mn+1 in (4.2.9) is the minimiser of

mn+1 = arg min
k∈K

‖v−F −DFn (k−mn)‖2
B + αn‖Σ−1/2

n (k−mn)‖2
K. (4.2.21)
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If the infinite-dimensional space of the parameters K is finite-dimensional

and if Σn is the identity operator and B a diagonal matrix, then (4.2.21) is

the regularised optimisation task that iteratively replaces the least-squares

functional (4.2.20) in the Levenberg-Marquardt approach [29]. The resulting

iterative scheme is (4.2.9). Due to the fact that the ensemble mean is converging

to kn+1 → mn+1 the update for the ensemble mean which is given by

kn+1 = kn + CkF
n

(
CFFn + αnB

)−1 (
v−
√

αnξn −F (kn)
)

, (4.2.22)

can be interpreted as derivative free approximation of the Levenberg-Marquardt

scheme and can be therefore also be interpreted as derivative-free minimiser for

the linear least-square functional (4.1.3). Convergence of Levenberg-Marquardt

is well understood [94], convergence of EKI is an open problem. Therefore, the

viewpoint of deterministic inversion is useful to explain convergence of EKI. In

this context αn can be interpreted as Tikhonov regularisation parameter and

(4.2.21) can be interpreted as Tikhonov regularisation applied to the linearisation

of F [38].
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4.2.7 Regularisation

In this work, we continue considering EKI from a Bayesian viewpoint and αn is

not motivated by Levenberg-Marquardt regularisation but by some statistical

discrepancy principle. We define αn to be

α0 = max
{

2
m
· Ξ({k(j)

0 }j=1,...,J , v), 1
}

, (4.2.23)

and

αn = max

 2
m
· Ξ({k(j)

n }j=1,...,J , v),

[
1−

n−1

∑
j=1

α−1
j

]−1
 , n > 0, (4.2.24)

where the definition of the average data misfit Ξ : K J ×Rm → R+ is used

which is defined by

Ξ({k(j)}j=1,...,J , v) =
1
J

J

∑
j=1
L(k(j), v).

This adaptive choice of regularisation is introduced in [39] and does not need

any additional tuning parameters. Also in [39] the authors show that this

parameter makes EKI efficient and accurate and it comes with a natural stopping

rule. EKI is stopped after NS iterations if

NS

∑
n=0

α−1
n = 1. (4.2.25)

We can see that this definition is consistent with (4.2.6).
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This choice of regularisation is motivated in [39] by requiring the ”dif-

ference” between two consecutive distributions updates of the intermediate

distributions πk
0, πk

1, . . . , πk
N+1 to be bounded above which ensure a certain level

of smoothness of the transition. In order to define an appropriate upper limit

for change of the distribution from one iterate to the next in [39] the authors

apply Morozov’s discrepancy principle [13].

It is worth noting that there are other ways to adaptively choose the temper-

ing parameter in EKI [38].
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We summarise the EKI method with adaptive regularisation in Algorithm 1.

Algorithm 1: Regularising Ensemble Kalman Algorithm
Require: K Hilbert Space, model F : K → Rm

Input: Initial ensemble {k(j)
0 }

J
j=1; error covariance Γ; data v ∈ Rm.

Output: Posterior Ensemble {k(j)
n }J

j=1

1 Set α0 = 0

2 repeat

1. Prediction Step. Define Fn = 1
J ∑J

j=1F
(j)
n where

F (j)
n = F (k(j)

n ), j ∈ {1, . . . , J}.

2. Update Regularisation Parameter αn+1. Set

α∗n+1 =
1
m

1
J

J

∑
j=1
‖B−1/2(v−F (k))‖2.

if ∑n
i=0 α−1

i + α∗
−1

n+1 ≥ 1. then αn+1 = 1/
(

1−∑n
i=0 α−1

i

)
else αn+1 = α∗n+1.

3. Analysis Step. Compute empirical covariance and cross-covariances

CFFn =
1
J

J

∑
j=1

(
F (k(j)

n )−Fn

)
⊗
(
F (k(j)

n )−Fn

)
CkF

n =
1
J

J

∑
j=1

(
k(j)

n − kn

)
⊗
(
F (k(j)

n )−Fn

)
,

Update the ensemble:

k(j)
n+1 = k(j)

n + CkF
n (C(FF )n + αnB)−1(vm +

√
αξ

(j)
n −F (k

(j)
n )).

with ξ
(j)
n ∼ N (0, B).

n + 1→ n

3 until ∑i=0,...n+1 α−1
i = 1;
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4.3 prior

The linear Gaussian update (4.2.15) together with regularisation αn transforms

a set of J particles into a new one until the stopping rule applies and a Gaussian

approximation of the posterior is found. The user has to choose an informative

prior to draw the initial set of particles from. This is an essential step in

Ensemble Kalman and Bayesian inversion in general. Adequate priors improve

accuracy of the estimate provided by EKI and improve convergence in EKI.

We draw this initial ensemble from some prior N (m0, Σ0) with some mean

m0 and covariance Σ0 which comprises prior knowledge of the unknown. We

can use the mean m0 to inform our algorithms about prior knowledge about the

values of the mechanical parameters and Σ0 to incorporate knowledge about

the regularity and the structural distribution of the mechanical parameters

across the domain of interest. As Gaussian distributions are characterised by

the mean and the covariance only, it is essential to define them in a way that

allows the incorporation of prior knowledge.
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4.3.1 Definition of Prior Covariance and Mean

For this purpose we use an Whittle-Matérn autocorrelation function defined by

([73], [82])

ACF(x) =
21−r

Γ(r)

(
|x|
l

)r

Kr

(
|x|
l

)
, (4.3.1)

for x ∈ R2, where Γ is the gamma function, l is the characteristic length scale

and Kr is the modified Bessel function of the second kind of order r.

It can be shown that [82]

Cov(x1, x2) := σ2 ·ACF(x1 − x2), x1, x2 ∈ R2, (4.3.2)

defines a covariance operator. Here σ2 is an amplitude scale.

The Whittle-Matérn autocorrelation function gives us the opportunity to

design a wide range of Gaussian priors. We use this covariance operator to

define our prior N (m0, Σ0). More specifically let Σ0 : R2 ×R2 → R be the

covariance operator defined by Σ0(x1, x2) = Cov(x1, x2) for x1, x2 ∈ R2.

In order to draw samples from the prior we use Karhunen-Loève expansion

([87], [67]).In Section 4.5 we discuss another way of drawing samples from

Gaussian distributions with Whittle-Matérn covariances. Using the compu-

tationally more expensive Karhunen-Loève expansion allows for non-integer

orders r.
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Let (λE(i)
, ψ(i)) be the corresponding eigenpair of Σ that is

Σ0ψ(i) = λE(i)
ψ(i). (4.3.3)

Using the Karhunen-Loève expansion ( [87], [67]), samples k(j)
0 can be drawn

from N (m0, Σ0) by using the following formula

k(j)
0 = m0 +

∞

∑
i=1

λ1/2
E(i)

ψ(i)r
(j), (4.3.4)

with r(j) ∼ N (0, 1).

In the experiments in Chapter 5 we use the Karhunen-Loève expansion in

order to define our prior sample. More precisely we choose points {x̂i}n̂
i=1 ∈ Ω

corresponding to the chosen computational mesh of the discretisation scheme.

After choosing a mean m0 and hyperparameters l, r and σ2 of the autocorrela-

tion function (4.3.1) we can define a covariance matrix using (4.3.2) and produce

prior samples from (4.3.4).

4.3.2 Parameters of Prior

The parameters of the autocorrelation function (4.3.1) and the mean m0 can now

be used to form informative priors. Firstly, it is worth noting that the covariance

operator (4.3.2) is a function of the distance |x1 − x2|. Therefore, a value of

a sample drawn from N (m0, Σ0) is related to nearby values. The statistical
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relationship of values decreases with increasing distance. The definition of

’nearby’ in this context is determined by the length scale l. This length scale

should be chosen such that areas of similar values in a sample drawn from

N (m0, Σ0) form structures of similar size to the size of the structures we expect

to explore in the tissue (cancer, fibrosis). In Figure 4.3.1 it can be seen how l

affects the samples.

Figure 4.3.1: Samples drawn from N (0, Σ0) with Σ0 being a covariance operator that

arises from the auto-correlation function (4.3.1) with r = 2 and different length scales l.

Left: l = 1/2. Mid: l = 1/4. Right: l = 1/8

The parameter r in (4.3.1) controls the smoothness of the samples and can

be used to further tune the occurring shapes and structures in the samples

drawn from the prior such that they are similar to the expected unknown in

size and smoothness. The amplitude scale σ2 in (4.3.1) should be chosen such

that samples drawn from N (m0, Σ0) cover the range of values the unknown k

has.
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Furthermore, the mean in (4.3.4) can be also used to inform the algorithm

about expected values of the unknown. Using the result of other inversion

approaches like direct inversion as (non-homogeneous) mean in the prior is a

way to easily combine EKI with other approaches. Also, a function describing

the elastic parameter of a healthy organ can be used as mean to form an

informative prior for detection of diseased tissue within the organ.

There are other correlation functions that can be used to define useful

covariances. The correlation function ACF(x) = exp(−|x|2/l2) tends to be too

smooth for the experiments run in Chapter 5.

In Figure 4.3.2 it can be seen how different priors affect the result of EKI.

The size of the structures in Figure 4.3.1 match the size of the structures in the

ground truth in Figure 3.2.2 for length scale l = 1/4. Indeed, the results of EKI

is the best for this length scale in the prior.

Figure 4.3.2: Inversions results for parameter k in Figure 3.2.2 of EKI using priors with

different length scales l in Figure 4.3.1. The detailed problem description can be found

in Section 5.2 and 5.4. Left: l = 1/8. Mid: l = 1/4. Right: l = 1/2
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4.4 level-set parametrisation

In this section we consider a class of level-set-based parametrisations P that we

have already considered in the formulation of the inverse problem in Section

3.4. We call this parametrisation P1 : K → M and will introduce in Section

4.5 another class of parametrisation. Particles drawn from a Gaussian prior

are continuous. EKI updates k(j)
n 7→ k(j)

n+1 in (4.2.15) retain the continuity of

the particles over the domain Ω after an ensemble update and pass on the

regularity to the next iterate. Also, the fact that we are often reporting the

sample mean kn as the result of the inversion implies a high level of regularity

in the outcome of our algorithm.

The level-set parametrisation [37] introduced in this section allows charac-

terising discontinuous properties. This can be considered as a further way to

incorporate prior knowledge into the Bayesian approach because the knowledge

about discontinuities in the parameter is usually available prior to the inversion.

For example, it is known that diseases like cancer and cirrhosis have relatively

sharp interfaces between the stiffness of diseased and healthy tissue [59]. So, if

the presence of these diseases is investigated, this prior knowledge about the

nature of these diseases can be coded into the inversion using parametrisation

P1.
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We will only use this parametrisation in the context with the purely elastic

model described in Section 3.2.1, so µL = 0 and µ = µS and introduce this

parametrisation only for this case and do not parametrise the loss modulus. In

order to define P1 we assume we have prior knowledge about the geometric

structure of the data and incorporate that knowledge into a function µ ∈ L∞(Ω)

of the form

µ(x) =
l

∑
i=1

k(i)S 1D(i)(x). (4.4.1)

Here, {k(i)S }
l
i=1 is a set of known constants in R, 1D is the indicator function in

Ω and {D(i)}li=1 is a partition of Ω defined by

D(i) = {x ∈ Ω|c(i−1) ≤ k(x) < c(i)},

where c(i) ∈ R are constant thresholds with −∞ = c(0) < c(1) < · · · < c(l) = ∞

for some k ∈ C(Ω, R). We define the level set map P1 : K →M which maps

(P1(k))(x) 7→ µ(x). (4.4.2)

Note that the level set map (4.4.2) is discontinuous because (4.4.1) is and

therefore also G is discontinuous.

Now, in (4.1.1) we consider

F : K → Rm, k 7→ F (k) := (G ◦ P1)(k),
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as forward map and solve the inverse problem of approximating k ∈ K for

measurement v ∈ Rm given by

v = F (k) + η. (4.4.3)

Figure 4.4.1: Illustration of level set map L. Top: Centred Gaussian random fields k.

Bottom: Indicator function 1D of level set map P1(k) with constants c0 = −∞, c1 = 0

and c2 = ∞ defining D.

Figure 4.4.1 illustrates how the level set map P1 enforces discontinuities

using Gaussian random fields.

In Section 5.6 we give a detailed explanation how we use the level set

parametrisation in MRE in order to parametrise the unknown geometry of

shear modulus µ.
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4.5 two-level-parametrisation

In this section we introduce a two-level parametrisation P (2) and improve

the level-set parametrisation of the unknown introduced in Section 4.4. Level

P (2)
2 of the two-level parametrisation is a modified version of the level-set

parametrisation introduced in Section 4.4. Also, we will be using a mask

carrying information about different regions in the organ. This mask can be

provided by MRI prior to inversion. From the definition of this parametrisation

in Section 4.4 and also in Figure 4.4.1 it is clear that the shear modulus has no

spatial variability inside the regions D(i).

We therefore add the other and first level P (1)
2 of parametrisation which

parametrises a Gaussian random field.

The two-level approach makes us less dependant on the choice of the

parameters for the prior compared to the approach described in Section 4.3.
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Figure 4.5.1: Mask provided by MRI that is used for the two-level parametrisation. The

dark blue region D1 of background matter surrounds the brain tissues cerebrospinal

fluid (CSF) matter D4 in light blue, grey matter D2 in yellow and white matter D3 in

dark brown.

We use this parametrisation in context with the viscoelastic model and

therefore, we also parametrise the loss modulus µL.

The second level of parametrisation is a map P (2)
2 that parametrises the

partly unknown geometry of the discontinuous distribution of the unknown

shear modulus µ ∈ M. Parts of the geometry is assumed to be known, which

will be described below. It is a mapping

P (2)
2 :

11

∏
i=1

C(Ω, R)→M. (4.5.1)

The eleven level set functions which are parameters for P2 are smooth fields

with variability introduced by the first level of parametrisation explained below.
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Five of the eleven smooth fields kα,S, α ∈ {1, . . . , 5} are used as parameters

for the storage modulus µS. Then, we have another five smooth fields kα,L,

α ∈ {1, . . . , 5} that are parameters for the loss modulus µL.

The last field kC is used as a parameter for the unknown geometry of the

cancer. Similar to Section 4.4, let c ∈ R be a parameter and define

DkC = {x ∈ Ω|kC(x) > c}, and Ω \ DkC .

Also, we define the indicator function

1DkC
(x) =


1 if x ∈ DkC ,

0 if x /∈ DkC .

(4.5.2)

We assume to have prior knowledge about regions Di ⊂ Ω, i = 1, 2, 3, 4, in our

domain of materials with different mechanical properties. So Ω =
⋃4

i=1 Di with

and Di ∩ Dj = ∅ for i 6= j is a (known) partition of Ω. In Figure 4.5.1 we give

plots that show the partition we are using for the brain.

We assume that the storage and loss modulus µs and µL have a region D1

(dark blue in Figure 4.5.1) where the storage and loss modulus have values

exp(k1,S(x)) and exp(k1,L(x)). Outside this region, that is in Ω \ D1, storage

and loss modulus have distribution µ
(1)
S and µ

(1)
L . In other words, we assume

µS(x) = exp(k1,S(x))1D1(x) + µ
(1)
S (x)1Ω\D1

(x), (4.5.3)

µL(x) = exp(k1,L(x))1D1(x) + µ
(1)
L (x)1Ω\D1

(x), (4.5.4)
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Furthermore, we assume that storage and loss modulus in Ω \ D1 have distri-

bution exp(k5,S(x)) and exp(k5,L(x)) in an unknown area DkC within Ω \ D1.

Outside DkC we assume the storage and loss modulus to be distributed µ
(2)
S

and µ
(2)
L . Note that DkC is the region of the brain, i.e. D2, D3 and D4 and the

unknown location of the tumour inside the brain DKC . In other words, we

assume

µ
(1)
S (x) = exp(k5,S(x))1DkC

+ µ
(2)
S (x)1Ω\(D1∪DkC )

,

µ
(1)
L (x) = exp(k5,L(x))1DkC

+ µ
(2)
L (x)1Ω\(D1∪DkC )

.

Finally, we assume the region Ω \ (D1 ∪ DkC) of healthy brain tissue is split

into the three domains D2, D3 and D4 with the following distributions for loss

and storage modulus

µ
(2)
S (x) = exp(k2,S(x))1D2(x) + exp(k3,S(x))1D3(x) + exp(k4,S(x))1D4(x),

µ
(2)
L (x) = exp(k2,L(x))1D2(x) + exp(k3,L(x))1D3(x) + exp(k4,L(x))1D4(x).

Note, that D2 ∪ D3 ∪ D4 is the region of brain tissue which is made up of grey

matter, white matter and CSF matter, so the yellow, dark brown and the light

blue regions in the mask in Figure 4.5.1.

So, (4.5.3)-(4.5.4) maps kF := ({kα,S}a∈{1,...,5}, {kα,L}a∈{1,...,5},kC) to a shear

modulus distribution µ = µS + j · µL. Mapping (4.5.1) is

kF 7→ P
(2)
2 (kF) = µ. (4.5.5)
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For the first level of parametrisation, let w be stochastic process, for example

Gaussian white noise, and let us assume r ∈ N. The function k is defined to be

the solution of the fractional stochastic PDE [34]I −∇ ·

l2
1 0

0 l2
2

∇

(r+1)/2

(k(x)− log m) =

[
4
√

l1l2σ2π
Γ(r + 1)

Γ(r)

]1/2

w(x),

(4.5.6)

where I is the identity and Γ is the gamma function, k’s smoothness is controlled

by parameter r and it’s amplitude by parameter σ2. Furthermore, l1, l2 > 0 is

the intrinsic length scale along the horizontal and vertical direction.

The solution k(x) of the stochastic PDE 4.5.6 is a Gaussian random field

with mean log m and a covariance operator given by an Whittle-Matérn auto-

correlation function that was already defined in Section 4.3.1 [61]. Instead of

having only one lengthscale like in Section 4.3.1, we allow for more flexibility

in the incorporation of prior knowledge by considering different length scales

along vertical and horizontal directions, so

ACF(x) =
‖x‖l1,l2

2r−1Γ(r)
Kr
(
‖x‖l1,l2

)
,

where Kr is the modified Bessel function of the second kind of order r, and

‖x‖l1,l2 =

√
x2

1
l2
1
+

x2
2

l2
2

.
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Equation (4.5.6) can be considered as mapping

(m, σ, r, l1l2, w) 7→ k,

We use this mapping as parametrisation of smooth fields kα,S, kα,L and kC in

(4.5.5) with parameters (m, σ, r, l1l2, w). More specifically, we define

kα,S := (mα,S, σα,S, rα,S, lα,S,1lα,S,2, wα,S) α = 1, . . . , 5,

kα,L := (mα,L, σα,L, rα,L, lα,L,1lα,L,2, wα,L) α = 1, . . . , 5,

kC := (mC, σC, rC, lC,1lC,2, wC).

Let kF := ({kα,S}a∈{1,...,5}, {kα,L}a∈{1,...,5}, kC). We define the first level of parametri-

sation P (1)
2 to be the mapping that maps the hyperparameters kF to the Gaussian

random fields kF, so

kF 7→ P
(1)
2 (kF) = kF.

We concatenate P (1)
2 and P (2)

2 to define the following operator P2 mapping

input kF to loss and storage modulus (µL, µS). This two-level parametrisation

of the shear modulus is defined a

kF 7→ P2(kF) := P (2)
2 (P (1)

2 (kF)) = µ. (4.5.7)

We use this two-level parametrisation in the context of the experiments done

in Chapter 6. More precisely we choose points {x̂i}n̂
i=1 ∈ Ω corresponding to

the chosen computational mesh of the discretisation scheme. In order to define
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a prior we choose for each sample of the prior ensemble the hyperparameters

kF of the three Gaussian random fields in kF and draw white Gaussian noise

samples wα,S, wα,L, wC ∼ N (0,1n̂×n̂) , where 1n̂×n̂ is the n̂ by n̂ unit matrix.

When using the two-level parametrisation P2 in each update of EKI we

need to calculate the Gaussian random fields kF for hyperparameters kF. In-

stead of using the Whittle-Matérn autocorrelation function in order to define

a covariance matrix and the Karhunen-Loève expansion to define Gaussian

random fields as described in Section 4.3.1, in Chapter 6 we use the solution

of 4.5.6 which is a Gaussian random field. In practice, we do that by applying

the finite difference method approximation of this differential equations which

is described in [74] and [34]. This is computationally much cheaper than the

approach with the Karhunen-Loève expansion in Section 4.3.1. However, the

approach using the stochastic PDE 4.5.6 only allows for integer smoothness

parameters r of the Gaussian random field.

4.6 summary

In this Chapter we have described EKI, the Bayesian inversion approach we

apply to the inverse problem arising in MRE. We have discussed the properties

and advantages of EKI and showed how we define the prior. Finally, we showed
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the different parametrisation we use. In the remaining part of this thesis we

will describe and analyse the application of EKI to MRE introduced in this

Chapter.



5

N U M E R I C A L T E S T I N G - P U R E LY E L A S T I C M O D E L

Algorithm 1 is implemented in MATLAB. For most of this Chapter we will be

using the forward map F = G ◦ id, i.e. we are using no parametrisation and

K =M and id : K →M is the identity onM. In Section 5.6 we will then use

P1 introduced in Section 4.4, where the details of the parametrisation will be

explained.

Throughout this whole Chapter we work with the purely elastic model.

That is, we assume µL = 0 and we work with the stress tensor (3.2.5) when

considering G or F .

In this Chapter we use the Karhunen-Loève expansion to define the prior

sample described in Section 4.3.1. We discussed the advantages and disadvan-

tages of Karhunen-Loève expansion in Section 4.3.1.

115
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5.1 implementation

The forward solution G(µ) which requires the solution of boundary value

problem (3.2.1)-(3.2.3) is approximated using a finite element method provided

by ABAQUS FEA using plane strain, bilinear, hybrid elements with 4 nodes

and constant pressure and we use a direct solver. On a mesh with 490000

elements, synthetic data are generated in the square shaped domain of size

70mm by 70mm enclosing the domain Ω. This very dense mesh avoids any

pollution which will be discussed in Section 5.7.1. For inversion, a mesh of

4900 elements is used. The inversion has high enough resolution and EKI has

low computational costs. The measurements v ∈ Rm are given in 702 = 4900

nodes, so m = 9800 in (3.4.2).

5.2 basic setup and synthetic data

We choose a distribution of the parameter µ across the domain with two values,

a background value and inclusion value as shown in Figure 5.2.1 (left). The

background value of the shear modulus µ to be 1000Pa and the inclusion value

to be 4000Pa. The measured shear modulus in MRE depends on the frequency

of the sinusoidal excitation [76]. The chosen background and inclusion values
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could model the difference between healthy tissue and tissue that is affected by

cancer for frequency 1Hz.

Figure 5.2.1: Left: Distribution of the parameter µ across the domain Ω. The red line

indicates the location that is used for cross-sectional plots. Right: Distribution of the

parameter µ in the cross-section and a mean of a posterior ensemble as an example.

The experiments were all run with a frequency of 1Hz (ω ≈ 6.28rad/s)

in (3.2.1)-(3.2.3) which is also used in other studies ([95],[81]). Due to high

pollution in standard Galerkin finite element method approximations in high

frequency MRE which will be discussed in Section 5.7.1 we can only run

inversion up to a frequency of 10Hz.

The top edge of the domain is the Dirichlet boundary with v̂top = 0. Har-

monic deformation of frequency 1Hz and amplitude v̂bot = 0.001mm is applied

to the bottom edge. Left and right edge are traction free boundaries.
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In all experiments Poisson’s ratio is set to 0.499 and density ρW = 1kg/l

which is discussed in Section 3.

In (3.4.2) we defined G(µ) to be the quantity that is obtained by evaluating

the solution v of the boundary value problem (3.2.1)-(3.2.3) for some µ ∈ M

at 4900 measurement points. This density of measurements is one that can be

found in many real-world applications [14]. We construct data by evaluating

the finite element method approximation v† of F(µ) at the measurement points

and define measurements to be v = v† + η. The noise η is drawn from a centred

Gaussian distribution η ∼ N (0, B), where we choose B = diag(b1, . . . , bm) with

bi =
(

σN · 10−2|v†
i |
)2

+
(

10−3|max{v†
i }m

i=1 −min{v†
i }m

i=1|
)2

, i = 1, . . . , m.

(5.2.1)

The first term on the right hand side of this definition tunes the noise at each

point i = 1, . . . , m to the amplitude of the displacement [39]. Considering (4.3.3)

and (4.3.4) it can be seen that the first term in (5.2.1) corresponds to adding σN%

Gaussian noise at each point. The second term ensures that small variances

are avoided which could result in numerical instabilities when using noise

covariance B in EKI.

We sometimes refer to σN as the noise level and say the data has σN% noise

level if the noise added to the data is drawn from centred Gaussian distribution

with Covariance described in (5.2.1).
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5.3 convergence of ensemble for sample size J = 150

In the first series of experiments we apply EKI to the synthetic data described

in Section 5.2. In the autocorrelation function (4.3.1) that is used to define the

prior we choose the length scale to be l = 1/4 and smoothness r = 1. The

autocorrelation function is evaluated on a 70 by 70 mesh on a unit square

in order to obtain the prior covariance Σ0. The prior mean is set to constant

m0 = 2500Pa which is the average of the inclusion and background value of the

ground truth µ. The prior ensemble has ensemble size J = 150.

Figure 5.3.1: The evolution of the ensemble mean from the prior to the posterior. Left:

Initial Ensemble mean. Centre left: Ensemble mean after one iteration. Centre right:

Ensemble mean after three iterations. Right: Posterior ensemble mean.

In Figure 5.3.1 we show the ensemble mean for the prior, the ensemble after

one iteration, after three iterations and for the posterior ensemble. In the left

column of Figure 5.3.2 we show plots for five members of the initial ensemble.

In the second and third column we show plots for these members after iteration
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one and three. The right column shows plots for these members in the posterior

ensemble.

Figure 5.3.2: The evolution from the prior to the posterior of five exemplary samples in

the ensemble. First Column: Initial Ensemble. Second Column: Ensemble after one

iteration. Third Column: Ensemble after three iterations. Fourth Column: Posterior

Ensemble.
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The stopping criterion (4.2.25) is met after 11 iterations. On a standard office

computer with a four core 3.4GHz CPU this takes around 2 hours. This is

the case if B in the EKI ensemble update (4.2.15) is defined by (5.2.1) in the

synthetic data. The exact knowledge of the noise and therefore B is unrealistic.

Increasing the noise level - e.g. by multiplying B with a constant > 1 in (4.2.15)

has the consequence that stopping criterion (4.2.25) is met after fewer iterations.

However, the approximation of the ground truth by the posterior ensemble and

the posterior ensemble mean is less accurate. Decreasing the noise level in EKI

updates increases the amount of iterations until the stopping criterion is met.

Results can be compared to the ground truth in Figure 5.2.1 which has the

same scaling.

The cross-sectional plots shown in Figure 5.3.3 reveal how the ensemble

approaches the posterior over the iterates. The approximation of the ground

truth by the mean of the ensemble gets better in every iteration. Also, it can

be seen that the variance of the ensemble at each point is decreasing over the

iterates.
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Figure 5.3.3: Cross-sectional plot in the location indicated in Figure 5.2.1 of 50 members

of the ensemble after various iterations. The thick line indicates the sample mean. Top

left: Prior ensemble. Top right: Ensemble after one iteration. Bottom left: Ensemble

after three iterations. Bottom right: Posterior ensemble.

5.4 inversions using different priors

In this experiment we draw the prior ensemble from priors with different length

scales and try to understand how this influences the posterior ensemble. An
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ensemble of size J = 150 is drawn from a prior with smoothness r = 2 and

length scale l = 1/8, l = 1/4 and l = 1/2 in autocorrelation function (4.3.1). In

Figure 4.3.1 we show a plot for one member of the initial ensemble for each

lenght scale.

In Figure 4.3.2 the corresponding plots of the posterior ensemble mean

are shown. It can be seen that for length scale l = 1/4 in the prior the

posterior ensemble mean captures well the overall shape of the inclusion in the

distribution of µ across the domain. However, values of the posterior inside

the area of inclusion are very high. The mean of the posterior ensemble for

l = 1/8 in Figure 4.3.2 (left) is capturing the shape of the inclusion worse

than for l = 1/4. However, values of the posterior are closer to the ground

truth. The euclidean distance between the posterior ensemble mean and the

ground truth is lower for the posterior obtained from length scale l = 1/8.

However the distribution of the parameter µ across the domain in posterior is

very heterogeneous and there are some peaks in the inclusion. These peaks

might be misinterpreted as diseased tissue and therefore, the posterior for

length scale l = 1/4 might be diagnostically more useful in an application.
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Figure 5.4.1: Cross-sectional plot in the location indicated in Figure 5.2.1 of 50 members

of the posterior ensemble for different length scales l in the prior. Samples of the

corresponding priors can be found in Figure 4.3.1. Left: l = 1/8. Mid: l = 1/4. Right:

l = 1/2.

In the cross-sectional plot of this experiment shown in Figure 5.4.1 it can

be seen in the left plot that the spread in the posterior ensemble is very high.

The spread of the posterior ensemble is high in locations where the ensemble is

further away from the ground truth. All plots show that the posterior ensemble

is close to the ground truth between 10mm and 15mm in the cross-section

(shown on the x-axis). The spread of all posterior ensembles is low there. The

spread of all ensembles is high in the left peak of the plot where the ensemble

is further away from the ground truth. This expresses the uncertainty about the

inversion in this location.
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5.5 inversions using various ensemble sizes

We run the Algorithm 1 in the basic setup described in Section 5.2 for different

choices of ensemble sizes J: 50, 150 and 250. For the prior described in Section 5.2

stopping criterion is usually met after 10 iterations for sample size J = 50, after

11 iterations for J = 150 and after 13 iterations for J = 250. The computational

time grows approximately linearly with sample size J. In Figure 5.5.1 we show

plots of the posterior ensemble mean.

Figure 5.5.1: Posterior ensemble mean for different ensemble sizes J. Left: J = 50.

Centre: J = 150. Right: J = 250

Also in the cross-sectional plots in Figure 5.5.2 it can be seen how the sample

mean seems to give the best approximation for the ground truth distribution of

µ for J = 250.
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Figure 5.5.2: Cross-sectional plot in the location indicated in Figure 5.2.1 of the posterior

ensemble for different ensemble sizes J. Left: J = 50. Centre: J = 150. Right: J = 250

5.6 inversions using level set parametrisation and different

priors

In this series of experiments we apply EKI with level-set parametrisation to

synthetic data coming from a ground truth distribution of µ across the domain

shown in Figure 5.6.1.
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Figure 5.6.1: Ground Truth distribution of µ across the domain. The domain is of size

70mm by 70mm.

We wish to estimate the interface between the region D(1) with background

value of µ and the region D(2) with inclusion value of µ. The distribution

of shear modulus µ across the domain can be described by a discontinuous

function µ(x) = k(1)S 1D(1) + k(2)S 1D(2) . The level set map P1 is now used in

order to parametrise the unknown geometry D(1), D(2) and the discontinuous

function µ. EKI applied to (4.4.3) provides an approximation k of the posterior

in the space K of the level set function. The field P1(k) is giving us a quantity

that could be called the ”level-set posterior” approximating the discontinuous

field µ and therefore the unknown geometry.
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Figure 5.6.2: Samples drawn from N (0, Σ0) (dimensionless) with Σ0 being a covariance

operator that arises from the autocorrelation function (4.3.1) with r = 2, amplitude

scale σ2 = 1 and different length scales l. Left: l = 1/10. Mid: l = 1/5. Right:

l = 1/2

We define priors with different lengthscales in the space K of the parameter

functions. In Figure 5.6.2 we show a plot for one member of the initial ensemble

for lengthscale l = 1/10, l = 1/5 and l = 1/2 and smoothness r = 2 in the

autocorrelation function (4.3.1) of the prior. We assume to have prior knowledge

about k(i)S and set k(1)S = 1000 and k(2)S = 4000 in the level set map P1. Also, we

set c(0) = −∞, c(1) = 0 and c(2) = ∞. In this case the primary unknown is the

geometry D(1) and D(2) and we are interested in 1D(2) .

In Figure 5.6.3 we can see plots of both the field k in the space of the level-set

function and 1D(2) of the level-set posterior for priors with different lengthscales.

A lengthscale of l = 1/5 in the prior seems to be the best choice for this ground

truth. The inversion is good for lengthscale l = 1/5 in the prior in this case.
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Figure 5.6.3: Inversions results for parameter µ in Figure 3.2.2 of EKI with level-set

parametrisation and corresponding priors with different length scales l in Figure 4.3.1 .

Top: EKI inversion k ∈ K. Bottom: Indicator function 1D(2) (dimensionless) of level set

map P1(k) with constants c0 = −∞, c1 = 0 and c2 = ∞. Left: l = 1/10. Mid: l = 1/5.

Right: l = 1/2

In Figure 5.6.4 we provide plots for 1D(2) of the level-set posterior in the case

of different distributions of parameter µ in the domain. All of them use a prior

with length scale l = 1/5.
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Figure 5.6.4: Inversions results using EKI with level-set parametrisation for various

distributions of parameter µ across the domain. Top: Ground Truth distribution of µ.

Bottom: Indicator function 1D(2) (dimensionless) of level set map of the corresponding

posterior ensemble mean after applying EKI with level set parametrisation.
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5.7 conclusion : limitations and problems with a purely elastic

model

In this section we want to draw interim conclusions from the experiments

conducted in Section 5.1 to 5.6 and further discuss and analyse the limitations

and problems of using the purely elastic model that became apparent by the

experiments in this chapter.

The experiments used Algorithm 1 without any parametrisation or the

parametrisation P1 introduced in Section 4.4. We could see how the choice

of the prior has a crucial influence on the accuracy of the posterior. Also, we

analysed the influence of ensemble size on convergence speed and accuracy

of the posterior ensemble. Overall, without parametrisation, EKI estimates

were too smooth and could not capture sharp interfaces. We therefore used the

parametrisation P1 introduced in Section 4.4 which delivered highly accurate

estimates. However, when using parametrisation P1 in EKI, prior knowledge

about k(1)S and k(2)S is necessary, which cannot be assumed in application usually.

Also, in all experiments, regardless of the parametrisation used, there is a

high dependency of the posterior on the prior. We could demonstrate this

dependency specifically for the length scale l. There is no straight-forward way

for how to choose these parameters prior to inversion. In the experiments in
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Chapter 6 we therefore use the two-level parametrisation introduced in Section

4.5.7. When using this parametrisation, the length scale and mean become part

of the unknown in the inversion and we only need to choose an interval of

values for the prior, not one value. If we are not sure about the length scales

when choosing the prior, the interval can be chosen to be big.

High frequency MRE using a purely elastic model turned out to be more

difficult than low frequency MRE. The numerical approximation of the forward

map (3.4.2) using standard Galerkin finite element method is affected by pollu-

tion which is described in Section 5.7.1. A potential solution to this problem is

described in Section 5.7.2.

Furthermore, the direct application of Algorithm 1 without a modification

turned out to be unsuccessful because of resonating wave fields. This problem

is described on the basis of a simple 1-D version of EKI and a solution to this is

described in Section 5.7.3.

It will become obvious however that using a viscoelastic model is solving

both the problem of pollution and resonating wave fields. Extended high

frequency experiments using this model will be then shown in Chapter 6.
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5.7.1 Pollution

Figure 5.7.1: Plot for the finite element method approximation of the first component

of the solution to boundary value problem (3.2.1)-(3.2.3) using various mesh sizes and

high frequency of 60Hz. The setup described in Section 5.2 is used. The domain size is

70mm by 70mm and µ is distributed across the domain like shown in Figure 5.6.4 (top

left). Left: 100 by 100 nodes. Middle: 300 by 300 nodes. Right: 600 by 600 nodes.

The simulation of the purely elastic Helmholtz equation (3.2.1), i.e. µL = 0, at

high frequencies suffers from the pollution effect [24] and it is proven that for

standard Galerkin finite element method it cannot be removed completely [7].

In the finite element space, for low frequencies, the Galerkin approximation and

the best approximation only differs by a constant factor. For increasing ω or

wave number however, the ratio of the error of the Galerkin approximation and

the error of the best approximation tends to infinity [7]. This lack of robustness

is called the pollution effect.
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In Figure 5.7.1 we show plots obtained using the standard Galerkin finite

element method approximations implemented in ABAQUS for high frequency

of 60Hz, various mesh sizes and a ground truth distribution of parameter µ

across the domain is shown in Figure 5.6.4 (top left). A very small mesh size

is necessary until the error between the Galerkin approximation and the best

approximation has converged. This is the case in the right plot.

It is worth noting at this point that the pollution occurs for any set up of

(3.2.1) that results in a high wave number. High densities ρW , small parameters

µ and λ or solving (3.2.1) on a large domain result in the pollution effect. In

fact, both

∇ ·
[(

µ/ω2
) (
∇v +∇vT

)
+
(

λ/ω2
)
(∇ · v) I

]
= −ρWv, for x ∈ Ω,

and

∇ ·
[
µ
(
∇v +∇vT

)
+ λ (∇ · v) I

]
= −ρWv, for x ∈ ω ·Ω,

result in the same wave field as (3.2.1) and therefore, contain the same wave

number and the same amount of pollution. The solutions of the PDEs above

have the same number of waves inside the domain. Here, we use ω ·Ω =

{ω · x|x ∈ Ω}.

In practice, the pollution effect requires the usage of very small mesh sizes

for Galerkin approximations to be accurate for high frequencies [88]. In the



5.7 conclusion : limitations and problems with a purely elastic model 135

context of EKI this exceeds the computational capacity of today’s computer. For

EKI with sample size J = 200 and convergence after 11 updates, the solution of

boundary value problem (3.2.1)-(3.2.3) needs to be approximated at least 2200

times.

A possible solution to this problem when using the purely elastic model is

therefore, to split both the numerical forward solution method and the inversion

into subzones, described in the following section.

However, pollution is very small for the viscoelastic model. In Figure 5.7.2

we show plots of the finite element method approximation for various mesh

sizes at a high frequency and use a constant loss modulus of µL = 400Pa in

the ground truth distribution. It can be seen in Figure 5.7.2 that finite element

method approximations are very accurate for coarse grids already.
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Figure 5.7.2: Plot for the finite element method approximation of the real part of the

first component of the solution to boundary value problem (3.2.1)-(3.2.3) using various

mesh sizes and a high frequency of 60Hz. The setup is similar to the basic setup

described in Section 5.2, however, the shear modulus is complex and we assume to

have a constant loss modulus of µL = 400Pa across the domain. The domain size is

70mm by 70mm and µ is distributed across the domain like shown in Figure 5.6.4. Left:

100 by 100 nodes. Middle: 200 by 200 nodes. Right: Cross-sectional Plot.

5.7.2 Subzone Inversion

One way of avoiding the problem of pollution introduced in Section 5.7.1 is

to split both the numerical forward solution method and the inversion into

smaller sub-problems with very high resolution and thereby adapt the subzone

approach discussed in Section 3.5.3 to EKI.

The application of EKI to inverse problem (4.1.1) on a subzone using (3.5.11)

as a forward map turns out to be successful and robust regarding noise on
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the boundary coming from measurements. In Figure 5.7.3 we show plots of

subzone ensemble Kalman algorithm, i.e. EKI applied in four subzones using Gz

instead of G in each subzone. In this experiment we used P = id, so we are not

using any parametrisation. The plot at the top shows the inversion result that

is obtained by applying EKI without subzones in this basic one-dimensional

set up with a sinusoidal excitation of 1Hz, a noise level of 5% in the data and

a mesh size of 1 mm. The bottom plot shows the result using four subzones

which is about as accurate as the result obtained from EKI without subzones.
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Figure 5.7.3: Top: EKI. Bottom: Subzone EKI.
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5.7.3 Resonance

Another challenge that arises when applying EKI to high frequency MRE

using the purely elastic model is described in this section. For µL = 0 the

model (3.2.1) does not take into account viscosity which describes the resistance

of solid to deformation. Therefore, we model wave propagation without

damping. As a consequence, we can show in experiments that the forward

map G turns out to be not continuous with respect to parameter µ, which is

required [83]. Some members of the ensemble µ(j) produce wave fields that

have very big amplitudes, even though they are very similar to other members

in the ensemble.

Figure 5.7.4: Left: Different distributions of µ across the domain. Right: Correspond-

ing solutions of the boundary value problem (3.2.1)-(3.2.3) in the same colour.
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In one dimension (3.2.1) is solved for constant µ on Ω = [x0, xJ ] with

Dirichlet boundary v(x0) = v0 and v(xJ) = vJ by

v(x) =
vJ − v0 · cos

(√
k · µ−1 · (xJ − x0)

)
sin
(√

k · µ−1 · (xJ − x0)
) · sin

(√
k

µ
(x− x0)

)

+v0 · cos

(√
k

µ
(x− x0)

)
,

where k := (1−2ν)·ρW ω2

2−2ν . For high frequencies, even a small change in µ can

increase or decrease the amplitude of the wave field a lot. The same applies to

non-constant µ, see Figure 5.7.4.

The same observation is made in the two-dimensional setup for MRE de-

scribed in Section 5.2. For a high frequency of 60Hz, a cross-sectional plot in

the location indicated in Figure 5.2.1 of the wave fields G(µ(j)
0 ) of some prior

ensemble {µ(j)
0 }

J
j=1 can be seen in Figure 5.7.5. The left plot is showing the

wave fields for an ensemble of size J = 100 drawn from a prior with variance

σ2 = 10 and the right with variance σ2 = 0.5. It can be seen that the amount of

members in the ensemble that produce resonating wave fields increases with

variance.

One way to tackle the problem of resonating wave fields: At every iteration

n after the forward solution G(µ(j)
n ) of the ensemble is approximated (this is

step 3 in Algorithm 1), every member of the ensemble that is producing a

wave field with more than twice the amplitude of the measured wave field v
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is removed from the ensemble. In Figure 5.7.6 we show a plot of wave fields

G(µ(j)
0 ) after all members µ

(j)
0 that produced resonating wave fields in Figure

5.7.5 (left) have been removed.

However, because we are removing members of the ensemble in each itera-

tion, this approach requires a prior ensemble of large size, especially if the prior

has big variance. Therefore, the model (3.2.1)-(3.2.3) incorporating viscosity, i.e.

µL 6= 0 is used in Chapter 6, which does not produce resonating wave fields as

described in the beginning of this subsection.

Figure 5.7.5: Cross-sectional plot in the location indicated in Figure 5.2.1 of the wave

fields G(µ(j)
0 ) of some prior ensemble µ

(j)
0 with various variances. Left: Variance

σ2 = 10. Right: Variance σ2 = 0.1
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Figure 5.7.6: Wave fields G(µ(j)) after all members µ(j) that produced resonating wave

fields in Figure 5.7.5 (left) have been removed.

5.7.4 Viscoelastic Model

Due to the limitations and problems discussed in Section 5.7 so far, we use a

viscoelastic model for MRE in the following chapter. Viscoelasticity takes into

account the resistance of the solid soft tissue to deformation and wave fields in

this model are damped. A viscoelastic model is capturing more accurately the

behaviour of real world soft tissue than the purely elastic model [57].

In Fig. 5.7.2 we show the real part of the displacement field in horizontal

direction deploying the viscoelastic model and we can clearly see the damping

in the wave field. As a result we do not have highly oscillating wave fields



5.7 conclusion : limitations and problems with a purely elastic model 143

described in Section 5.7 and also we do not observe pollution in the numerical

forward solution.

Figure 5.7.7: Setup for this experiment described in Section 5.1 at a frequency of 60Hz.

This experiment however, was run with the viscoelastic model (3.2.1) - (3.2.3) with

constant µL = 200Pa throughout the domain. Left: Ground Truth Storage Modulus

Right: Posterior ensemble mean.

The experiments described in Chapter 5 could be run at 60Hz when deploy-

ing this new model. In Figure 5.7.7 we show plots for the experiment described

in Chapter 5 but we use the viscoelastic model with a constant loss modulus

µL = 200Pa throughout the domain and a frequency of 60Hz. In Figure 5.7.8

we show cross-sectional plots of the prior and the posterior ensemble. It can

be seen that the values of the ground truth are within the values of the prior

across the whole cross section. Also, it can be seen how the posterior ensemble

gives a smooth approximation of the ground truth.
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Figure 5.7.8: Cross-Sectional Plot of Prior Ensemble (left)) and Posterior Ensemble

(right; after 3 iterations) for the experiment in Figure 5.7.7.



6

N U M E R I C A L T E S T I N G - V I S C O E L A S T I C M O D E L

The application of a purely elastic model uses a real valued Cauchy stress

tensor (3.2.5) and is therefore a relatively simple model. However, this is not

a very accurate model of the real world where soft tissue exhibits viscoealstic

behaviour [80]. Furthermore, in experiments in Section 5.7.1, we could show

that in comparison with the purely elastic model the Galerkin method applied

to a viscoelastic model is less polluted and does not allow for highly resonating

wave fields. We show in this Chapter that the application of a viscoelastic

model enables us to apply EKI to high frequency MRE.

Viscosity of a solid is a measure of its resistance to deformation at a given

rate [57]. In the experiments in Chapter 5 we assume a viscosity free solid

which simplifies the Cauchy stress tensor.

In this section we test the performance of EKI Algorithm 1. Throughout this

Chapter we use the viscoelastic model, i.e. µL 6= 0 in (3.2.1) - (3.2.3). Also, we

use the two-level-parametrisation P2 introduced in Section 4.5. Furthermore,

145
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in this Chapter we run experiments at common MRE frequencies [23] between

50Hz and 60Hz.

In Section 6.1 we discuss implementation aspects and how we measure

performance of EKI. In Section 6.2 we discuss numerical results and analyse the

performance of EKI for various ensemble sizes J, the influence of different noise

levels σN in the data and influence of various priors. Section 6.3 looks at that

posterior ensemble that we receive from the application of EKI and calculates

sample variances, confidence intervals and probabilities of tumour. Section

6.4 compares the performance of EKI with direct Inversion. In Section 6.5 we

show some ideas how to further improve the prior for EKI applied to MRE by

combining it with direct inversion.

Throughout this chapter we use the two-level parametrisation introduced in

Section 4.5 and we calculate Gaussian random fields using the stochastic PDE

(4.5.6) and not Karhunen-Loève expansions.

6.1 implementation

Algorithm 1 was implemented in MATLAB using the two-level-parametrisation

P2 as defined in (4.5.7). So F = G ◦P2 is the formal problem used in Algorithm

1. The forward problem F (k) requires approximations of solutions of the
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boundary value problem (3.2.1)-(3.2.3). These approximations are calculated

by using MATLAB’s inbuilt Partial Differential Equation Toolbox which is an

implementation of the finite element method. The main reason for preferring

this toolbox over ABAQUS FEA is that the toolbox is much faster than ABAQUS

FEA in our application.

We use the function generateMesh to create a mesh with triangular elements

with maximum edge length of 0.2cm and linear shape functions. The domain

size is 18.5cm by 15.7cm for the brain experiment and 18cm by 18cm for the

kidney experiment. generateMesh creates in this setup a mesh with 10502 nodes

and 20622 elements for the brain and 5266 nodes and 10262 elements for the

kidney.

The function solvepde returns the finite element approximation at the nodes

and we interpolate this result onto a regular 100 by 100 rectangular grid in

the domain Ω. Also, the centred Gaussian noise wα in the ensemble {k(j)
n }

inversion from Algorithm 1 is considered on the 100 by 100 rectangular mesh

and interpolated onto the mesh generated by generateMesh for the forward

solution. As shown in Section 5.7.1 we only observe little pollution for the

viscoelastic model (3.2.1)-(3.2.3) for these resolutions. Measurements v ∈ Rm

are given on the same mesh of 10000 nodes, so m = 40000 in (3.4.2).
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EKI Algorithm 1 gives us a sequence of ensembles {k(j)
n } where n = 0

corresponds to the prior ensemble and n = nS is defined to be the posterior

ensemble, i.e. the ensemble that we get after the last iteration before the

stopping criteria is met.

We are interested in approximating the shear modulus µ. We estimate this

quantity by the physical ensemble mean or level set posterior mean given by

µNS = P2

(
1
J

J

∑
j=1

k(j)
n

)
.

We often use the level set posterior mean µNS in plots.

We measure the accuracy of our estimate by comparing it to the ground

truth shear modulus µ† given by

µ† = P2(k†),

where k† is the ground truth that will describe in the next section. More

precisely, we monitor the relative error with respect to the truth which is

εn =
‖µNS − µ†‖L2(Ω)

‖µ†‖L2(Ω)
. (6.1.1)

Also, we consider the average data misfit

ADM =
1
J
‖B−1/2(v− G(k(j)

n ))‖2,

which indicates poor inversion results if the average data misfit is high above 1

after the stopping criterion of Algorithm 1 is met.
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6.1.1 Basic Setup and Synthetic Data (Brain)

In the brain experiment we assume we have five types of tissue: Grey matter

D2, white matter D3, background tissue D1, cerebrospinal fluid matter (CSF)

D4 and tumour tissue D5. We partition the domain into the four non-tumour

tissues and add two tumours in random locations within grey, white and CSF

matter. We use the two-level parametrisation introduced in Section 4.5 and the

parameters as in Table 6.1.1

Table 6.1.1: Parameters of the ground truth for the brain experiment.

rα,S, rα,L σα,S, σα,L mα,S mα,L lα,S,1, lα,L,1 lα,S,2, lα,L,2

Grey Matter 1 0.05 1865 723 0.035 0.035

White Matter 1 0.035 2688 1333 0.3 0.075

Background 1 0.025 3000 2992 0.1 0.1

CSF 1 0.05 212.2 2200 0.15 0.15

Tumour Tissue 1 0.05 2360 2553 0.05 0.05

For all types of tissue α ∈ {1, . . . , 5}, we choose wαS, wα,L ∼ N (0, 1). Note

that smoothness rα, amplitude scale σα, and length scale lα,1 and lα,2 are the

same for both loss and storage modulus parametrisation and the parameters
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only differ for the means mα,S, mα,L of the fields. In Figure 6.1.1 (b) we show a

plot of a resulting ground truth distribution of the loss modulus and in Figure

6.1.1 (a) of the distribution of the storage modulus.

It is worth noting at this point that our ground truth distributions of storage

and loss moduli is only an approximation to real-world MRE. The human

brain is usually encased in the skull which is surrounded by air. In brain MRE

mechanical waves are delivered by vibrating the skull. Our setup models an ex

vivo (i.e. outside an organism) brain that has been set into a gel (background

tissue D1). In this case the CSF D4 would drain away, however.

(a) Ground truth storage modulus (b) Ground truth loss modulus

Figure 6.1.1: Ground Truth Distribution of Shear Modulus

The examples in this chapter were all run with a frequency of 50Hz (ω ≈

314rad/s). Due to the absence of high pollution levels for the viscoelastic
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model discussed in Section 5.7.1, we are able to run experiments now at high

frequencies, even higher than 50Hz.

The top edge of the domain Ω is a loading edge. Harmonic deformation

of frequency 50Hz and amplitude v̂top = 0.001mm is applied. The other three

edges are traction free boundaries.

The domain is 157mm wide and 185mm high. Measurements v = v† + η

are created by using the finite element method approximation v† of G(k†
F) for

ground truth k†
F as defined above. The noise η is drawn again from a Gaussian

distribution η ∼ N (0, B) as defined in (5.2.1).

6.1.2 Prior (Brain)

In the first series of experiments we apply EKI to synthetic data described in

Section 6.1.1. We leave σα,S, σα,L, rα,S and rα,L fixed to the values of the ground

truth, i.e. both in the prior and in each update we use σα,S = σα,L = 1 and rα,S

and rα,L as in the table for the ground truth in Section 6.1.1. For each of the five

types of tissue the unknown consists of the two length scales lα,1 and lα,2, the

mean mα and the function wα that we discretise on a 100× 100 grid. Each of

these parameters exists twice, once for the parametrisation of the loss modulus

and once for the parametrisation of the storage modulus.
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Also, we have the level set functions kC as unknown which is used to

parametrise the location of the cancer. For kC only lC,1, lC,2 and the function

wC that we discretise on a 100× 100 grid are unknown. The mean is chosen to

be mC = 0 for this random field.

The total dimension of the unknown is dim(K) = 2 · 5 · 10003+ 10000+ 2 =

110032.

We select an initial ensemble by drawing for each tissue type α = 1, . . . , 4

the parameters for loss and storage modulus k(j)
0,α,S := (mα,S, lα,S,1, lα,S,2, wα,S)

and k(j)
0,α,L := (mα,L, lα,L,1, lα,L,2, wα,L) from

k(j)
0,α,S ∼ U[mα,S,mα,S]

U[0.035,0.3] ⊗U[0.035,0.3] ⊗N (0, 1),

k(j)
0,α,L ∼ U[mα,L,mα,L]U[0.035,0.3] ⊗U[0.035,0.3] ⊗N (0, 1),

(6.1.2)

where we used the uniform distribution U[a,b] on the interval [a, b]. Note that

for loss and storage modulus for every tissue type α the length scale in x and

y direction is drawn from the same uniform distribution. For the mean we

choose the values from Table 6.1.2 depending on the tissue type and loss or

storage modulus parametrisation
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Table 6.1.2: Parameters of the prior for Brain MRE experiments

mα,L mα,L mα,S mα,S

Grey Matter 500 900 1500 2000

White Matter 1000 1800 2300 3000

Background Matter 2600 3300 2500 4000

CSF Matter 2000 2800 180 300

Tumour Tissue 2200 2700 2300 3000

Also, a part of the initial ensemble is k(j)
0,C ∼ U[0.035,0.3] ⊗ N (0, 1) for the

parametrisation of the location of the cancer. The mean for this random field is

set to zero. We use c′ = 1.5 in this parametrisation throughout the inversion. Let

us denote the prior ensemble as k(j)
0,F := ({k(j)

0,α,S}α∈{1,...,5}, {k
(j)
0,α,L}α∈{1,...,5}, k(j)

0,C).

In Table 6.1.3 we show plots of loss and storage moduli that correspond to

five members of the resulting prior ensemble, i.e. we plot µ
(j)
0 = P(k(j)

0,F) for

j ∈ {1, . . . , 5}.
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Table 6.1.3: Five members from the prior ensemble {µ(j)
0 }

J
j=1 described in this section.

Top row: storage modulus. Bottom row: loss modulus.

Ground

Truth
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

µS

µL

6.1.3 Basic Setup and Synthetic Data (Kidney)

In the kidney experiment we assume we have four types of tissue: Cortex

tissue D2, medulla tissue D3, background tissue D1 and tumour tissue D5.

We partition the domain into the three non-tumour tissues and include one

tumour at a random location within cortex or medulla tissue. We use the

two-level parametrisation introduced in Section 4.5, assume D4 = ∅ and use

the parameters from Table 6.1.4
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Table 6.1.4: Parameters of the ground truth for the brain experiment.

rα,S, rα,L σα,S, σα,L mα,S mα,L lα,S,1, lα,L,1 lα,S,2, lα,L,2

Cortex Tissue 1 0.05 3000 3000 0.15 0.15

Medulla Tissue 1 0.025 1600 1800 0.035 0.1

Background 1 0.01 4500 2200.4 0.1 0.1

Tumour Tissue 1 0.035 212 2292.5 0.1 0.05

For all types of tissue α ∈ {1, . . . , 4}, we choose wα,S, wα,L ∼ N (0, 1). Like

in the ground truth for the brain, we note that smoothness rα, amplitude scale

σα, length scales lα,1 and lα,2 are the same for both loss and storage modulus

parametrisation and the parameters only differ for the means mα,S, mα,L of the

fields. In Figure 6.1.2 (b) we show a plot of a resulting ground truth distribution

of the loss modulus and in Figure 6.1.2 (a) of the distribution of the storage

modulus.
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(a) Ground truth storage modulus (b) Ground truth loss modulus

Figure 6.1.2: Ground Truth Distribution of Shear Modulus

The examples for the kidney were all run with a frequency of 60Hz (ω ≈

372rad/s). Due to the absence of high pollution levels for the viscoelastic

model discussed in Section 5.7.1, we are able to run experiments now at high

frequencies, even higher than 60Hz.

The top edge of the domain Ω is a loading edge. Harmonic deformation

of frequency 60Hz and amplitude v̂top = 0.001mm is applied. The other free

edges are traction free boundaries.

The domain is 120mm wide and 120mm high. Measurements v = v† + η are

created by using the finite element approximation v† of G(k†
F) for ground truths

k†
F as defined above. The noise η is drawn again from a Gaussian distribution

η ∼ N (0, B) as defined in (5.2.1).
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6.1.4 Prior (Kidney)

In the second series of experiments we apply EKI to synthetic data described in

Section 6.1.3. Although, EKI can be used to estimate smoothness parameter rα

[38] and amplitude scale σα, for simplicity we leave σα,S, σα,L and rα,S, rα,L fixed

to the values of the ground truth, i.e. both in the prior and in each update we

use σα,S, σα,L = 1 and rα,S, rα,S as in Table 6.1.4 for the ground truth in Section

6.1.3. This is due to simplicity. In Chapter 7 we discuss that experiments might

be interesting that show that spatial variability can be captured by wα alone

and analyse and quantify how various fixed choices of σα and rα in the prior

affect the posterior.

For each of the four types of tissue the unknown consists of the two length

scales lα,1 and lα,2, the mean mα and the function wα that we discretise on a 100×

100 grid. We need each of these parameters twice, once for the parametrisation

of the loss modulus and once for the parametrisation of the storage modulus.

Also, we have the level set functions kC as unknown which is used to

parametrise the location of the cancer. For kC only lC,1, lC,2 and the function

wC that we discretise on a 100× 100 grid are unknown. The mean is chosen to

be mC = 0 for this random field.
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The total dimension of the unknown is dim(K) = 2 · 4 · 10003+ 10000+ 2 =

90032.

In the experiments run with kidney MRE data, we select an initial en-

semble by drawing for each tissue type α = 1, . . . , 4 the parameters k(j)
0,α,S :=

(mα,S, lα,S,1, lα,S,2, wα,S) and k(j)
0,α,L := (mα,L, lα,L,1, lα,L,2, wα,L) for loss and storage

modulus from

k(j)
0,α,S ∼ U[mα,S,mα,S]

U[0.035,0.3] ⊗U[0.035,0.3] ⊗N (0, 1), (6.1.3)

k(j)
0,α,L ∼ U[mα,L,mα,L]U[0.035,0.3] ⊗U[0.035,0.3] ⊗N (0, 1), (6.1.4)

where we used the uniform distribution U[a,b] on the interval [a, b]. Note that

for loss and storage modulus for every tissue type α the length scale in x and

y direction is drawn from the same uniform distribution. For the mean we

choose the values from Table 6.1.5 depending on the tissue type and loss or

storage modulus parametrisation
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Table 6.1.5: Parameters of the prior for the Kidney MRE experiments

mα,L mα,L mα,S mα,S

Cortex Tissue 2500 3500 2500 3500

Medulla Tissue 1000 1800 1500 2200

Background Matter 4000 6200 2000 4000

Tumour Tissue 2000 2700 100 300

Also, a part of the initial ensemble is k(j)
0,C ∼ U[0.035,0.3] ⊗ N (0, 1) for the

parametrisation of the location of the cancer. The mean for this random field is

set to zero. We use c′ = 1.5 in this parametrisation throughout the inversion. Let

us denote the prior ensemble as k(j)
0,F := ({k(j)

0,α,S}α∈{1,...,4}, {k
(j)
0,α,L}α∈{1,...,4}, k(j)

0,C).

In Table 6.1.6 we show plots of loss and storage moduli that correspond to

five members of the resulting prior ensemble, i.e. we plot µ
(j)
0 = P(k(j)

0,F) for

j ∈ {1, . . . , 5}.
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Table 6.1.6: Five members from the prior ensemble {µ(j)
0 }

J
j=1 described in this section.

Top row: storage modulus. Bottom row: loss modulus.

Ground

Truth
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

µS

µL

6.2 influence of prior , noise and ensemble size on the posterior

In this section we conduct experiments that analyse the affect of the prior, the

noise and the ensemble size on the posterior ensemble mean in the brain MRE

experimental setup described in Section 6.1.1. In Section 6.2.1 we run EKI for

various ensemble sizes J. In Section 6.2.2 we determine the effect of the noise

level σn in the data on the posterior ensemble mean. In Section 6.2.3 we examine

performance of EKI for a range of mα,S and mα,L in the prior which entails a

range of physical ensemble means. In Section 6.3 we will then also consider

quantities like the sample variance and confidence intervals of the posterior.
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6.2.1 Ensemble Size

We run Algorithm 1 in the setup described in Section 6.1.1 with prior described

in Section 6.1.2 for different choices of ensemble sizes J : 50, 100, 200, 400, 600,

800, 1000. For each choice of J, we run 20 experiments with different random

selections of the initial ensemble.

In Table 6.2.1 we show plots of the physical posterior ensemble mean µNS

and the ground truth µ† for one of these experiments for the brain. A noise

level of 5% is used in this series. In most experiments, stopping criterion is met

after NS = 6 iterations for sample size J = 50 and after NS = 4 iterations for

the other sample sizes.
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Table 6.2.1: Physical ground truth shear modulus µ† and physical posterior ensemble

means µNS for various ensemble sizes and a noise level σN = 0.05. Top row: Storage

Modulus. Bottom row: Loss modulus.

Ground

Truth
J = 50 J = 100 J = 200 J = 400 J = 1000

µS

µL

It can be seen that for ensemble size J = 50 the second (smaller) tumour

is not captured by the inversion. For J = 200 the small tumour is located at

a wrong location. This accuracy of the EKI estimate for this ensemble size is

clearly too poor. Also, the error in the EKI-reconstruction seems to be significant

in areas of white matter and tumour. For J = 100 and J = 200, there seems to be

a significant error in the shape of the big tumour. From these plots an ensemble

size of at least J = 400 is necessary to capture all the details accurately.
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(a) Brain: Average Data Misfit over Ensemble

Size

(b) Brain: relative error of storage modulus w.r.t

ground truth over Ensemble size

(c) Brain: relative error of loss modulus w.r.t

ground truth over Ensemble size

Figure 6.2.1: Brain MRE. Noise level is 0.05. Boxplots for relative errors in 20 experi-

ments.

In Figure 6.2.1 we show box plots of the data misfit and the relative error

of the storage and loss modulus over the various ensemble sizes for the brain.
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These plots confirm a large rate of error in the case of ensemble size J = 100

and J = 200. We can conclude that an ensemble size of J = 600 is a good

trade-off between computational costs and accuracy. Also, the relative error

with respect to (w.r.t) the truth for J = 600 barely improves as we increase J.

We run the same series of experiments with the same ensemble sizes J : 50,

100, 200, 400, 600, 800, 1000 and and noise levels 5% for the kidney. The setup

is described Section 6.1.3 and we use the prior described in Section 6.1.4. We

run 20 experiments with random selections of the prior ensemble.
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(a) Kidney: Average Data Misfit over Ensemble

Size

(b) Kidney: relative error of storage modulus

with ground truth over Ensemble size

(c) Brain: relative error of loss modulus with

ground truth over Ensemble size

Figure 6.2.2: Kidney MRE. Noise level is 0.05. Box-plots for relative errors and data

misfits in 20 experiments.

In Figure 6.2.2 we show box plots of the data misfit and the relative error of

the storage and loss modulus over the various ensemble sizes for the kidney.
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The results are similar to the results in the brain experiments: These plots show

large errors for ensemble size J = 100 and J = 200. Although, the accuracy

for J = 400 is higher than for the brain experiment we can conclude that an

ensemble size of J = 600 is a good trade-of between computational costs and

accuracy. Also, the relative error with respect to the truth for J = 600 barely

improves as we increase J.

6.2.2 Results from Inversion Using Various Noise Levels (Brain)

In this series of 20 experiments we run Algorithm 1 with data coming from

the basic setup described in Section 6.1.1 for various levels of noise σn : 0.01,

0.05, 0.1, 1, 32 corresponding to a noise level of 1%, 5%, 10%, 100%, 3200%. A

constant ensemble size of J = 600 is used throughout this series of experiments.

We use an initial ensemble defined in Section 6.1.2 which is the same for all

noise levels but is chosen randomly for each of the 20 experiments.

In Table 6.2.2 we show plots of the physical posterior ensemble mean µNS

and the ground truth µ† for one of these experiments for the brain. Up to

a noise level of 100% we can see a high accuracy in the reconstruction. For

σn = 32 the shape of the big tumour is inaccurate and the small tumour cannot



6.2 influence of prior , noise and ensemble size on the posterior 167

be seen. We conclude that Algorithm 1 cannot cope with this noise level in this

application.

In most experiments, stopping criterion is met after NS = 6 iterations for

noise level σn = 0.01, after NS = 3 iterations for σn = 32 and after NS = 4

iterations for the other noise levels.

Table 6.2.2: Physical ground truth shear modulus µ† and physical posterior ensemble

means µNS for various noise levels and constant ensemble size J = 600. Top row:

Storage Modulus. Bottom row: Loss modulus.

Ground

Truth
σn = 0.01 σn = 0.05 σn = 0.1 σn = 1 σn = 32

µS

µL

In Figure 6.2.3 we show box plots of the data misfit and the relative error of

the storage and loss modulus with respect to the ground truth over the various

noise levels for the brain. These plots confirm a large rate of error for noise

level σn = 32 and a small rate of error for noise levels σN = 0.01, 0.05, 0.1 in
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the data. We can conclude that for a noise level below σn = 1 that is 100% or

SNR = 1, EKI delivers accurate estimates.

(a) Brain: relative error of storage modulus with

ground truth over Noise level

(b) Brain: relative error of loss modulus with

ground truth over Noise level

Figure 6.2.3: Brain MRE. Ensemble Size is 600. Box-plots for relative errors in 20

experiments.

6.2.3 Results from Inversion using Various Priors

In this series of 20 experiments we run Algorithm 1 with data coming from the

basic setup described in Section 6.1.1 for various priors. A constant ensemble

size of J = 600 noise level σn = 0.05 in the data is used throughout this series

of experiments.
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For each of the 20 experiments we draw an initial ensemble as defined in

(6.1.2) and in this series we do not use the fixed uniform distributions on the

intervals defined in Table 6.1.2. Instead, we vary the size of the interval and

define this interval with the ground truth value defined in Table 6.1.1 as the

midpoint of the interval. More specifically in (6.1.2) we set

mα,L = mα,L −
p1

100
·mα,L, mα,L = mα,L +

p1

100
·mα,L,

mα,S = mα,S −
p1

100
·mα,S, mα,S = mα,S +

p1

100
·mα,S.

In Figure 6.2.4 we show box plots of the data misfit and the relative error of

the storage and loss modulus with respect to the ground truth over the various

priors used. We can record only a very slight loss in accuracy for big intervals of

the uniform distribution. In Figure 6.2.4 (d) an increase in number of iterations

until the stopping criterion is met can be analysed for increasing sizes of the

interval [mα,L, mα,L] and [mα,S, mα,S].
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(a) Brain: Average Data Misfit over different

priors.

(b) Brain: relative error of storage modulus with

ground truth over different priors.

(c) Brain: relative error of loss modulus with

ground truth over different priors.

Figure 6.2.4: Performance of EKI applied to brain MRE for various priors defined in

this chapter with p1 = 10, 20, 30, 40, 50, 60, 70, 80. Noise level is 0.05, ensemble size is

600. Box-plots for relative errors and data misfits in 20 experiments.

We run this series of experiment also with other priors. For each of the 20

experiments, we draw an initial ensemble as defined in (6.1.2) and in this series
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we do not use the fixed uniform distributions on the intervals defined in Table

6.1.2. Instead, we vary the midpoint of a fixed sized interval. More specifically

in (6.1.2) we set

mα,L = mα,L −
20

100
·mα,L +

p2 · 10
100

·mα,L,

mα,L = mα,L +
20

100
·mα,L +

p2 · 10
100

·mα,L.

mα,S = mα,S −
20

100
·mα,S +

p2 · 10
100

·mα,S,

mα,S = mα,S +
20

100
·mα,S +

p2 · 10
100

·mα,S.

(6.2.1)

So, in this series we choose the fixed uniform distribution on an interval

with p1 = 20 and move the midpoint of the interval it further away from the

ground truth value in order to get different priors. It can clearly be seen in

Figure 6.2.5 how bad priors, i.e. priors that are far away from the ground truth,

result in low accuracy in the posterior ensemble.



6.2 influence of prior , noise and ensemble size on the posterior 172

(a) Brain: Average Data Misfit over different

priors

(b) Brain: relative error of storage modulus with

ground truth over different priors

(c) Brain: relative error of loss modulus with

ground truth over different priors

Figure 6.2.5: Performance of EKI applied to brain MRE for various priors defined in

this chapter with p2 = −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5. Noise level is 0.05, ensemble

size is 600. Box-plots for relative errors and data misfits in 20 experiments.

The two series of experiments with results shown in Figure 6.2.4 and Figure

6.2.5 demonstrate that a prior with a big interval of the mean hyperprior should
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be preferred over a prior with an interval of the mean hyperprior that does

not contain the ground truth. The plots in Figure 6.2.4 show that estimates

coming from EKI with a prior with a big interval of the mean hyperprior have

similar relative errors as estimates that go back to a prior with small interval

of the mean hyperprior. Plots in Figure 6.2.5 illustrate that the relative error

drastically increases if the interval of the mean hyperprior does not the contain

the unknown which is the case for p2 < −2 or p2 > 2 in (6.2.1).

6.2.4 Conclusion

EKI in application to MRE with in silico model data as input can provide

robust approximations of shear moduli for high noise levels in the data. Prior

ensembles with a mean far off the ground truth lead to high relative error

between the unknown and the posterior mean. The two worst cases in our

experiments in this chapter is if the interval of the mean hyperprior does not

contain the unknown and small ensemble size. In these case the relative errors

and data misfit have high values. In these cases estimates can not accurately

recover the unknown and are not useful for the detection of cancer.
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6.3 posterior variance and confidence intervals

In this section we will have a closer look at the posterior distribution provided

by EKI in the experimental set up for brain MRE described in Section 6.1.1.

More precisely, we use the physical ensemble at the n-th iteration

µ
(j)
n = P2

(
k(j)

n

)
,

and the physical ensemble mean

µn =
1
J

J

∑
j=1

µ
(j)
n ,

in order to calculate the following sample variance

s2
n =

1
J − 1

J

∑
j=1

(
µ
(j)
n − µn

)2
,

and in order to approximate the following 95% sample confidence intervals

CI95,n ≈
[

µn −
1.96sn√

J
, µn +

1.96sn√
J

]
.

Furthermore, we define a probability of cancer which is similarly defined as

the ”probability to find a defect” in [61]. This quantity reflects the confidence

for whether we have cancer tissue in a certain point x ∈ Ω or not. For a fixed

x ∈ Ω, the probability of kC(x) in (4.5.2) to be above the user defined threshold

c that defines the region of the cancer is

PC(x) = P(kC(x) > c).
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We consider kC(x) as a random variable with density πkC and can therefore

rewrite

PC(x) =
∫ ∞

c
πkC(y)dy =

∫ ∞

−∞
1y>cπkC(y)dy,

Using the posterior ensemble
(

k(j)
n

)J

j=1
we can now consider the ensemble with

ensemble members defined by

k
(j)
C := P (1)

2 (k(j)
n ).

The ensemble
(
k
(j)
C (x)

)J

j=1
is a sample distribution of kC(x) and can be used

to approximate the probability of cancer by using (4.5.2) again

PC(x) =
∫ ∞

−∞
1y>cπkC(y)dy ≈ 1

J

J

∑
j=1
1
k
(j)
C (x)>c

=
1
J

J

∑
j=1
1D

k
(j)
C

(x).

We calculate all these quantities for posterior ensembles
(

k(j)
n

)J

j=1
stemming

from the application of EKI to synthetic data described in Section 6.1.1. We

consider these quantities for different noise levels in the data and a number of

different relatively good and bad priors.

In Figure 6.3.1 we give plots of the ground truth. In these plots we also

indicate two locations with two lines in which we plot 95% sample confidence

intervals. One line covers a location with tumour the other line not.
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(a) Ground truth storage modulus µ†
S (b) Ground truth loss modulus µ†

L

Figure 6.3.1: Ground Truth Distribution of Shear Modulus. The two lines indicate the

location of the cross-sectional plots.

As before, we leave σα,S, σα,L, rα,S and rα,L fixed to the values of the ground

truth, i.e. both in the prior and in each update we use σα,S = σα,L = 1 and rα,S

and rα,L as in the table for the ground truth in Section 6.1.1. The unknown

consists for each of the five types of tissue of the two length scales lα,1 and lα,2,

the mean mα and the function wα that we discretise on a 100× 100 grid. Each

of these parameters exist twice, one for the parametrisation of the loss modulus

and one for the parametrisation of the storage modulus.

Again, we have the level set functions kC as unknown which is used to

parametrise the location of the cancer. For kC only lC,1, lC,2 and the function

wC that we discretise on a 100× 100 grid are unknown. The mean is chosen to

be mC = 0 for this random field.
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The total dimension of the unknown is, as before, dim(K) = 2 · 5 · 10003 +

10000 + 2 = 110032.

6.3.1 Good Prior, Large Ensemble and Low Noise Level

In this experiment we select an initial ensemble by drawing for each tissue

type α = 1, . . . , 4 the parameters k(j)
0,α,S := (mα,S, lα,S,1, lα,S,2, wα,S) and k(j)

0,α,L :=

(mα,L, lα,L,1, lα,L,2, wα,L) for loss and storage modulus from

k(j)
0,α,S ∼ U[mα,S,mα,S]

U[0.035,0.3] ⊗U[0.035,0.3] ⊗N (0, 1),

k(j)
0,α,L ∼ U[mα,L,mα,L]U[0.035,0.3] ⊗U[0.035,0.3] ⊗N (0, 1),

(6.3.1)

where we used the uniform distribution U[a,b] on the interval [a, b]. Note that

for loss and storage modulus for every tissue type α the length scale in x and

y direction is drawn from the same uniform distribution. For the mean we

choose the values from Table 6.3.1 depending on the tissue type and loss or

storage modulus parametrisation
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Table 6.3.1: Parameters of the prior for Brain MRE experiments

mα,L mα,L mα,S mα,S

Grey Matter 508 945 1304 2423

White Matter 933 1732 2300 3000

Background Matter 2600 3300 2500 4000

CSF Matter 2000 2800 180 300

Tumour Tissue 2200 2700 2300 3000

Also, a part of the initial ensemble is k(j)
0,C ∼ U[0.035,0.3] ⊗ N (0, 1) for the

parametrisation of the location of the cancer. The mean for this random field is

set to zero. We use c′ = 1.5 in this parametrisation throughout the inversion. Let

us denote the prior ensemble as k(j)
0,F := ({k(j)

0,α,S}α∈{1,...,5}, {k
(j)
0,α,L}α∈{1,...,5}, k(j)

0,C).

We run Algorithm 1 in the setup described in Section 6.1.1 with prior

described above with an ensemble sizes J = 600. A noise level of 5% is used in

this series.
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Figure 6.3.2: Prior ensemble µ
(j)
0 in cross-sections indicated in Fig. 6.3.1. The yellow line

indicates the ground truth µ†. Top left: Prior ensemble for storage modulus in vertical

cross-section. Top right: Prior ensemble for loss modulus in vertical cross-section.

Bottom left: Prior ensemble for storage modulus in horizontal cross-section. Bottom

right: Prior ensemble for loss modulus in horizontal cross-section.

In Figure 6.3.2 we can see the physical prior ensemble µ
(j)
0 in the cross-

sections indicated in the plots in Figure 6.3.1. In Figure 6.3.3 we show the 95%

sample confidence intervals CI95,0 calculated from the physical prior ensemble
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µ
(j)
0 . We will compare these confidence intervals with the confidence intervals

in other experiments later.

Figure 6.3.3: 95% Confidence Intervals CI95,0 in cross-sections indicated in Fig. 6.3.1 for

the prior ensemble µ
(j)
0 . We plot the lower and the upper bound of the 95% confidence

interval as well as the ensemble mean µ0 and the ground truth µ†. Top left: Storage

modulus in vertical cross-section. Top right: Loss modulus in vertical cross-section.

Bottom left: Storage modulus in horizontal cross-section. Bottom right: Loss

modulus in horizontal cross-section.
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In Figure 6.3.4 we show plots of the physical posterior ensemble mean µNS

for the storage and loss modulus. It can be seen that the posterior ensemble

mean shows cancer tissue in the locations of the cancer tissue in the ground

truth. Also, the probability of cancer PC shown in the plot in Figure 6.3.5 is

close to 1 and the variance s2
NS

shown in plots also in Figure 6.3.5 is relatively

low. Only around the interface between cancer tissue and no cancer tissue we

see a high sample variance s2
NS

.

Figure 6.3.4: Physical Posterior Ensemble Mean µNS . Left: Storage modulus. Right:

Loss Modulus

This high sample variance in the posterior ensemble around the interface

between cancer and healthy tissue can also be seen in plots in Figure 6.3.6 in

form of a higher variability of loss and storage modulus values in posterior

ensemble around the interface in the two cross-sections. In Figure 6.3.7 we give

plots of the 95% sample confidence interval CI95,NS of the posterior ensemble
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in the two cross-sections which can barely be seen because it is so small. Only

around the interface of tumour tissue and healthy tissue the confidence interval

is a bit larger. It can clearly be seen that the 95% sample confidence intervals of

the posterior ensemble µ
(j)
NS

. is smaller than the one of the prior µ
(j)
0 .

Figure 6.3.5: Top: Probability of Cancer PC. Bottom Left: Sample variance sn for

posterior ensemble µ
(j)
NS

; storage modulus. Bottom Right: Sample variance sn for

posterior ensemble µ
(j)
NS

; loss modulus.
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Figure 6.3.6: Posterior ensemble µ
(j)
NS

in cross-sections indicated in Fig. 6.3.1. The yellow

line indicates the ground truth µ†. Top left: Posterior ensemble for storage modulus

in vertical cross-section. Top right: Posterior ensemble for loss modulus in vertical

cross-section. Bottom left: Posterior ensemble for storage modulus in horizontal

cross-section. Bottom right: Posterior ensemble for loss modulus in horizontal

cross-section.
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Figure 6.3.7: 95% Confidence Intervals CI95,NS in cross-sections indicated in Fig. 6.3.1

for the posterior ensemble µ
(j)
NS

. We plot the lower and the upper bound of the 95%

confidence interval as well as the ensemble mean µNS and the ground truth µ†. Top

left: Storage modulus in vertical cross-section. Top right: Loss modulus in vertical

cross-section. Bottom left: Storage modulus in horizontal cross-section. Bottom right:

Loss modulus in horizontal cross-section.
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6.3.2 Good Prior, Large Ensemble and High Noise Level

In this section we run Algorithm 1 in the setup described in Section 6.1.1 with

the prior described in Section 6.3.1 and ensemble size J = 600. However, this

time we use a noise level of 40% which slightly exceeds the noise level of most

real-world applications [14].

Figure 6.3.8: Physical Posterior Ensemble Mean µNS . Left: Storage modulus. Right:

Loss Modulus

In Figure 6.3.8 we show plots of the physical posterior ensemble mean µNS

for the storage and loss modulus. It can be seen that despite the higher noise

level the posterior ensemble mean shows cancer tissue in the locations of the

cancer tissue in the ground truth. Also, the probability of cancer PC shown

in the plot in Figure 6.3.9 is close to 1 in the location of cancer in the ground

truth and the variance s2
NS

also shown in Figure 6.3.9 is higher than the sample
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variance of the posterior ensemble in Section 6.3.1 where the data was only

corrupted by noise with noise level of 5%. Around the interface between cancer

tissue and no cancer tissue we see a high sample variance s2
NS

.

Figure 6.3.9: Top: Probability of Cancer PC. Bottom Left: Sample variance sn for

posterior ensemble µ
(j)
NS

; storage modulus. Bottom Right: Sample variance sn for

posterior ensemble µ
(j)
NS

; loss modulus.

This high sample variance in the posterior ensemble around the interface

between cancer and healthy tissue can also be seen in plots in Figure 6.3.10 in

the form of a higher variability of loss and storage modulus values in posterior
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ensemble around the interface in the two cross-sections. In Figure 6.3.11 we give

plots of the 95% sample confidence interval CI95,NS of the posterior ensemble in

the two cross-sections. The confidence intervals of the posterior ensemble are

larger than the confidence intervals of the posterior ensemble in Section 6.3.1

where the data was corrupted by noise with a noise level of 5%.
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Figure 6.3.10: Posterior ensemble µ
(j)
NS

in cross-sections indicated in Fig. 6.3.1. The

yellow line indicates the ground truth µ†. Top left: Posterior ensemble for storage

modulus in vertical cross-section. Top right: Posterior ensemble for loss modulus

in vertical cross-section. Bottom left: Posterior ensemble for storage modulus in

horizontal cross-section. Bottom right: Posterior ensemble for loss modulus in

horizontal cross-section.
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Figure 6.3.11: 95% Confidence Intervals CI95,NS in cross-sections indicated in Fig. 6.3.1

for the posterior ensemble µ
(j)
NS

. We plot the lower and the upper bound of the 95%

confidence interval as well as the ensemble mean µNS and the ground truth µ†. Top

left: Storage modulus in vertical cross-section. Top right: Loss modulus in vertical

cross-section. Bottom left: Storage modulus in horizontal cross-section. Bottom right:

Loss modulus in horizontal cross-section.
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6.3.3 Good Prior, Small Ensemble and Low Noise Level

In this section we run Algorithm 1 in the setup described in Section 6.1.1 with

prior described in Section 6.3.1 with an ensemble sizes J = 50. A noise level of

5% is used in this series.

Figure 6.3.12: Physical Posterior Ensemble Mean µNS . Left: Storage modulus. Right:

Loss Modulus

In Figure 6.3.12 we show plots of the physical posterior ensemble mean µNS

for the storage and loss modulus. It can be seen that the posterior ensemble

mean does not show cancer tissue at the smaller cancer location. The posterior

ensemble mean shows cancer tissue at the bigger cancer location but the shape,

size and location does not resemble the ground truth. Also, the probability of

cancer PC shown in the plot in Figure 6.3.13 is 1 in areas where we do not have

cancer tissue in the ground truth. The variance s2
NS

shown in Figure 6.3.13 is
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very low compared to the sample variance of the posterior ensemble in Section

6.3.1 where the ensemble size was J = 600. Even around the interface between

cancer tissue and no cancer tissue we see a low sample variance s2
NS

.

Figure 6.3.13: Top: Probability of Cancer PC. Bottom Left: Sample variance sn for

posterior ensemble µ
(j)
NS

; storage modulus. Bottom Right: Sample variance sn for

posterior ensemble µ
(j)
NS

; loss modulus.
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Figure 6.3.14: Posterior ensemble µ
(j)
NS

in cross-sections indicated in Fig. 6.3.1. The

yellow line indicates the ground truth µ†. Top left: Posterior ensemble for storage

modulus in vertical cross-section. Top right: Posterior ensemble for loss modulus

in vertical cross-section. Bottom left: Posterior ensemble for storage modulus in

horizontal cross-section. Bottom right: Posterior ensemble for loss modulus in

horizontal cross-section.

The low sample variance in the posterior ensemble around the interface

between cancer and healthy tissue can also be seen in Figure 6.3.14 in the form

of a no variability of loss and storage modulus values in posterior ensemble
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around the interface in the two cross-sections. In Figure 6.3.15 we give plots of

the 95% sample confidence interval CI95,NS of the posterior ensemble in the two

cross-sections. The confidence intervals of the posterior ensemble are smaller

than the confidence intervals of the posterior ensemble in Section 6.3.1 where

the ensemble size was J = 600. In all the cross-sectional plots it can be seen

that the posterior ensemble has values far off the ground truth. We will discuss

and interpret these results in Section 6.3.8.
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Figure 6.3.15: 95% Confidence Intervals CI95,NS in cross-sections indicated in Fig. 6.3.1

for the posterior ensemble µ
(j)
NS

. We plot the lower and the upper bound of the 95%

confidence interval as well as the ensemble mean µNS and the ground truth µ†. Top

left: Storage modulus in vertical cross-section. Top right: Loss modulus in vertical

cross-section. Bottom left: Storage modulus in horizontal cross-section. Bottom right:

Loss modulus in horizontal cross-section.
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6.3.4 Good Prior, Small Ensemble and High Noise Level

In this section we run Algorithm 1 in the setup described in Section 6.1.1 with

prior described in Section 6.3.1 with an ensemble sizes J = 50. However, this

time we use a noise level of 40%.

Figure 6.3.16: Physical Posterior Ensemble Mean µNS . Left: Storage modulus. Right:

Loss Modulus

In Figure 6.3.16 we show plots of the physical posterior ensemble mean µNS

for the storage and loss modulus. In the posterior ensemble we cannot see any

cancer tissue. Also, the probability of cancer PC shown in Figure 6.3.17 is close

to 0 everywhere. The variance s2
NS

shown in Figure 6.3.17 is very low compared

to the sample variance of the posterior ensemble in Section 6.3.1 where the

ensemble size was J = 600 and Section 6.3.3 where we used the same ensemble

size J = 50 as in this section but used a smaller noise level of 5% in the data.
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Figure 6.3.17: Top: Probability of Cancer PC. Bottom Left: Sample variance sn for

posterior ensemble µ
(j)
NS

; storage modulus. Bottom Right: Sample variance sn for

posterior ensemble µ
(j)
NS

; loss modulus.
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Figure 6.3.18: Posterior ensemble µ
(j)
NS

in cross-sections indicated in Fig. 6.3.1. The

yellow line indicates the ground truth µ†. Top left: Posterior ensemble for storage

modulus in vertical cross-section. Top right: Posterior ensemble for loss modulus

in vertical cross-section. Bottom left: Posterior ensemble for storage modulus in

horizontal cross-section. Bottom right: Posterior ensemble for loss modulus in

horizontal cross-section.

The low sample variance in the posterior ensemble around the interface

between cancer and healthy tissue can also be seen in plots in Figure 6.3.18

in form of a no variability of loss and storage modulus values in posterior
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ensemble around the interface in the two cross-sections. In Figure 6.3.19

we give plots of the 95% sample confidence interval CI95,NS of the posterior

ensemble in the two cross-sections. The confidence intervals of the posterior

ensemble are smaller than the confidence intervals of the posterior ensemble

in Section 6.3.1 where the ensemble size was J = 600. In all the cross-sectional

plots it can be seen that the posterior ensemble has values far off the ground

truth.
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Figure 6.3.19: 95% Confidence Intervals CI95,NS in cross-sections indicated in Fig. 6.3.1

for the posterior ensemble µ
(j)
NS

. We plot the lower and the upper bound of the 95%

confidence interval as well as the ensemble mean µNS and the ground truth µ†. Top

left: Storage modulus in vertical cross-section. Top right: Loss modulus in vertical

cross-section. Bottom left: Storage modulus in horizontal cross-section. Bottom right:

Loss modulus in horizontal cross-section.
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6.3.5 Bad Prior, Large Ensemble Size and Low Noise Level

Table 6.3.2: Parameters of the prior for Brain MRE experiments

mα,L mα,L mα,S mα,S

Grey Matter 218 654 560 1677

White Matter 400 1200 806 2419

Background Matter 897 2692 900 2700

CSF Matter 660 1960 63 190

Tumour Tissue 765 2297 708 2124

In this experiment we select an initial ensemble by drawing for each tissue

type α = 1, . . . , 4 the parameters k(j)
0,α,S := (mα,S, lα,S,1, lα,S,2, wα,S) and k(j)

0,α,L :=

(mα,L, lα,L,1, lα,L,2, wα,L) for loss and storage modulus from the same uniform and

normal distributions as defined in (6.3.1). However, for the uniform distribution

for mean mα,S and mα,L, this time we use the values from Table 6.3.2 depending

on the tissue type and loss or storage modulus parametrisation. This choice

allows us to track the performance of Ensemble Kalman Inversion applied to

MRE for ”bad” priors.
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Figure 6.3.20: Prior ensemble µ
(j)
0 in cross-sections indicated in Fig. 6.3.1. The yellow

line indicates the ground truth µ†. Top left: Prior ensemble for storage modulus in

vertical cross-section. Top right: Prior ensemble for loss modulus in vertical cross-

section. Bottom left: Prior ensemble for storage modulus in horizontal cross-section.

Bottom right: Prior ensemble for loss modulus in horizontal cross-section.

Again, a part of the initial ensemble is k(j)
0,C ∼ U[0.035,0.3] ⊗N (0, 1) for the

parametrisation of the location of the cancer. The mean for this random field is

set to zero. We use c′ = 1.5 in this parametrisation throughout the inversion. Let

us denote the prior ensemble as k(j)
0,F := ({k(j)

0,α,S}α∈{1,...,5}, {k
(j)
0,α,L}α∈{1,...,5}, k(j)

0,C).
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We run Algorithm 1 in the setup described in Section 6.1.1 with prior

described in this section above with an ensemble sizes J = 600. A noise level of

5% is used in this series.

Figure 6.3.21: 95% Confidence Intervals CI95,0 in cross-sections indicated in Fig. 6.3.1

for the prior ensemble µ
(j)
0 . We plot the lower and the upper bound of the 95%

confidence interval as well as the ensemble mean µ0 and the ground truth µ†. Top

left: Storage modulus in vertical cross-section. Top right: Loss modulus in vertical

cross-section. Bottom left: Storage modulus in horizontal cross-section. Bottom right:

Loss modulus in horizontal cross-section.
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In Figure 6.3.20 we can see the physical prior ensemble µ
(j)
0 in the cross-

sections indicated in the plots in Figure 6.3.1. In Figure 6.3.21 we show the 95%

sample confidence intervals CI95,0 calculated from the physical prior ensemble

µ
(j)
0 .

Figure 6.3.22: Physical Posterior Ensemble Mean µNS . Left: Storage modulus. Right:

Loss Modulus

In Figure 6.3.22 we show plots of the physical posterior ensemble mean µNS

for the storage and loss modulus. It can be seen that despite the mean of the

prior physical ensemble being far off the ground truth, the posterior ensemble

mean has cancer tissue in the locations of the cancer tissue in the ground truth.

Also, the probability of cancer PC shown in Figure 6.3.23 is almost 1. However,

around the location of the smaller cancer tissue the cancer probability is almost

1 even in some adjacent regions which have no cancer tissue. The variance

s2
NS

shown in Figure 6.3.23 is high only around the interface between cancer
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tissue and healthy tissue. There the sample variance is similar in amplitude to

the sample variance in this location of the posterior ensemble in Section 6.3.1,

where we used the same noise level and the same ensemble size but the mean

of the prior physical ensemble was close to the ground truth.

Figure 6.3.23: Top: Probability of Cancer PC. Bottom Left: Sample variance sn for

posterior ensemble µ
(j)
NS

; storage modulus. Bottom Right: Sample variance sn for

posterior ensemble µ
(j)
NS

; loss modulus.

The low sample variance in the posterior ensemble around the interface

between cancer and healthy tissue can also be seen in Figure 6.3.24 in form
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of a no variability of loss and storage modulus values in posterior ensemble

around the interface in the two cross-sections. In Figure 6.3.25 we give plots of

the 95% sample confidence interval CI95,NS of the posterior ensemble in the two

cross-sections. The confidence intervals of the posterior ensemble are about the

same size as the confidence intervals of the posterior ensemble in Section 6.3.1

where the mean of the physical prior ensemble was close to the ground truth.

In all the cross-sectional plots it can be seen that the posterior ensemble has

values close to the ground truth.
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Figure 6.3.24: Posterior ensemble µ
(j)
NS

in cross-sections indicated in Fig. 6.3.1. The

yellow line indicates the ground truth µ†. Top left: Posterior ensemble for storage

modulus in vertical cross-section. Top right: Posterior ensemble for loss modulus

in vertical cross-section. Bottom left: Posterior ensemble for storage modulus in

horizontal cross-section. Bottom right: Posterior ensemble for loss modulus in

horizontal cross-section.
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Figure 6.3.25: 95% Confidence Intervals CI95,NS in cross-sections indicated in Fig. 6.3.1

for the posterior ensemble µ
(j)
NS

. We plot the lower and the upper bound of the 95%

confidence interval as well as the ensemble mean µNS and the ground truth µ†. Top

left: Storage modulus in vertical cross-section. Top right: Loss modulus in vertical

cross-section. Bottom left: Storage modulus in horizontal cross-section. Bottom right:

Loss modulus in horizontal cross-section.
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6.3.6 Bad Prior, Large Ensemble and High Noise Level

In this section we run Algorithm 1 in the setup described in Section 6.1.1 with

prior described in Section 6.3.5 with an ensemble sizes J = 600. However, this

time we use a noise level of 40%.

Figure 6.3.26: Physical Posterior Ensemble Mean µNS . Left: Storage modulus. Right:

Loss Modulus

In Figure 6.3.26 we show plots of the physical posterior ensemble mean µNS

for the storage and loss modulus. It can be seen that despite the higher noise

level in the data the posterior ensemble mean has cancer tissue in the bigger

location of cancer tissue. However, the physical posterior ensemble mean does

not have cancer tissue in the small cancer location. The probability of cancer

PC shown in the plot in Figure 6.3.27 is almost 1 in the large cancer location

but also in many other regions without cancer. The sample variance s2
NS

of the
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posterior ensemble shown in Figure 6.3.27 is higher than the sample variance

of the posterior ensemble in Section 6.3.5, where the data were corrupted by

noise with noise level of 5%. Around the interface between the cancer tissue

and non cancer tissue we see a high sample variance s2
NS

. The variance is low

around the small cancer location where the posterior ensemble mean does not

show cancer tissue.

Figure 6.3.27: Top: Probability of Cancer PC. Bottom Left: Sample variance sn for

posterior ensemble µ
(j)
NS

; storage modulus. Bottom Right: Sample variance sn for

posterior ensemble µ
(j)
NS

; loss modulus.
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Figure 6.3.28: Posterior ensemble µ
(j)
NS

in cross-sections indicated in Fig. 6.3.1. The

yellow line indicates the ground truth µ†. Top left: Posterior ensemble for storage

modulus in vertical cross-section. Top right: Posterior ensemble for loss modulus

in vertical cross-section. Bottom left: Posterior ensemble for storage modulus in

horizontal cross-section. Bottom right: Posterior ensemble for loss modulus in

horizontal cross-section.

The slightly higher sample variance of the posterior ensemble compared

to the sample variance in Section 6.3.5 around the interface between cancer

and healthy tissue can also be seen in Figure 6.3.28 in the form of a higher
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variability of loss and storage modulus values in posterior ensemble around

the interface in the two cross-sections. In Figure 6.3.29 we give plots of the

95% sample confidence interval CI95,NS of the posterior ensemble in the two

cross-sections. The confidence intervals of the posterior ensemble are larger

than the confidence intervals of the posterior ensemble in Section 6.3.5, where

the data was corrupted by noise with a noise level of 5%.

In general, however, the variance in the posterior ensemble is lower com-

pared to variance in the posterior ensemble in Section 6.3.2 where the increase

of the noise level in the data lead to considerable increase in variance compared

to variance in the posterior ensemble in Section 6.3.1. In other words, the fact

that the physical prior ensemble has a mean that is far off the ground truth

entailed a smaller sample variance in the posterior ensemble for high noise

levels.
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Figure 6.3.29: 95% Confidence Intervals CI95,NS in cross-sections indicated in Fig. 6.3.1

for the posterior ensemble µ
(j)
NS

. We plot the lower and the upper bound of the 95%

confidence interval as well as the ensemble mean µNS and the ground truth µ†. Top

left: Storage modulus in vertical cross-section. Top right: Loss modulus in vertical

cross-section. Bottom left: Storage modulus in horizontal cross-section. Bottom right:

Loss modulus in horizontal cross-section.
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6.3.7 Prior with Large Variance, Large Ensemble Size and High Noise Level

Table 6.3.3: Parameters of the prior for Brain MRE experiments

mα,L mα,L mα,S mα,S

Grey Matter 1 867 1 2236

White Matter 1 1600 1 3255

Background Matter 1 3590 1 3600

CSF Matter 1 2640 1 254

Tumour Tissue 1 3062 1 2832

In this experiment we select an initial ensemble by drawing for each tissue

type α = 1, . . . , 4 the parameters k(j)
0,α,S := (mα,S, lα,S,1, lα,S,2, wα,S) and k(j)

0,α,L :=

(mα,L, lα,L,1, lα,L,2, wα,L) for loss and storage modulus from the same uniform and

normal distributions as defined in (6.3.1). However, for the uniform distribution

for mean mα,S and mα,L, this time we use the values from Table 6.3.3 depending

on the tissue type and loss or storage modulus parametrisation. This choice

allows us to track the performance of EKI applied to MRE for priors with high

sample variance.
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Again, a part of the initial ensemble is k(j)
0,C ∼ U[0.035,0.3] ⊗N (0, 1) for the

parametrisation of the location of the cancer. The mean for this random field is

set to zero. We use c′ = 1.5 in this parametrisation throughout the inversion. Let

us denote the prior ensemble as k(j)
0,F := ({k(j)

0,α,S}α∈{1,...,5}, {k
(j)
0,α,L}α∈{1,...,5}, k(j)

0,C).

Figure 6.3.30: Prior ensemble µ
(j)
0 in cross-sections indicated in Fig. 6.3.1. The yellow

line indicates the ground truth µ†. Top left: Prior ensemble for storage modulus in

vertical cross-section. Top right: Prior ensemble for loss modulus in vertical cross-

section. Bottom left: Prior ensemble for storage modulus in horizontal cross-section.

Bottom right: Prior ensemble for loss modulus in horizontal cross-section.
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We run Algorithm 1 in the setup described in Section 6.1.1 with prior

described in this section above with an ensemble sizes J = 600. A noise level of

40% is used in this series.

Figure 6.3.31: 95% Confidence Intervals CI95,0 in cross-sections indicated in Fig. 6.3.1

for the prior ensemble µ
(j)
0 . We plot the lower and the upper bound of the 95%

confidence interval as well as the ensemble mean µ0 and the ground truth µ†. Top

left: Storage modulus in vertical cross-section. Top right: Loss modulus in vertical

cross-section. Bottom left: Storage modulus in horizontal cross-section. Bottom right:

Loss modulus in horizontal cross-section.
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In Figure 6.3.30 we can see the physical prior ensemble µ
(j)
0 in the cross-

sections indicated in the plots in Figure 6.3.1. In Figure 6.3.31 we show the 95%

sample confidence intervals CI95,0 calculated from the physical prior ensemble

µ
(j)
0 .

Figure 6.3.32: Physical Posterior Ensemble Mean µNS . Left: Storage modulus. Right:

Loss Modulus

It can clearly be seen that the variance in the prior ensemble µ
(j)
0 in the

sample is much larger than the variance in the prior ensemble in Section 6.3.5

and Section 6.3.1. Also, the 95% sample confidence intervals CI95,0 is larger

than in Section 6.3.5 and Section 6.3.1. The prior physical ensemble mean is

similar to the physical ensemble mean in Section 6.3.5.
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Figure 6.3.33: Top: Probability of Cancer PC. Bottom Left: Sample variance sn for

posterior ensemble µ
(j)
NS

; storage modulus. Bottom Right: Sample variance sn for

posterior ensemble µ
(j)
NS

; loss modulus.

In Figure 6.3.32 we show plots of the physical posterior ensemble mean µNS

for the storage and loss modulus. It can be seen that despite the mean of the

prior physical ensemble being far off the ground truth, the posterior ensemble

mean has both cancer tissue in the locations of the cancer tissue in the ground

truth. Also, the probability of cancer PC shown in the plot in Figure 6.3.33 is

almost 1 in the two cancer regions. The variance s2
NS

shown in Figure 6.3.33 is
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high around the interface between cancer tissue and healthy tissue but also has

higher values in other areas. The sample variance s2
NS

in the posterior ensemble

is in many regions higher than the sample variance in the posterior in Section

6.3.5 where we used the same noise level in the noise, the same ensemble size

and a similar prior ensemble with a higher variance in the physical ensemble,

however.



6.3 posterior variance and confidence intervals 219

Figure 6.3.34: Posterior ensemble µ
(j)
NS

in cross-sections indicated in Fig. 6.3.1. The

yellow line indicates the ground truth µ†. Top left: Posterior ensemble for storage

modulus in vertical cross-section. Top right: Posterior ensemble for loss modulus

in vertical cross-section. Bottom left: Posterior ensemble for storage modulus in

horizontal cross-section. Bottom right: Posterior ensemble for loss modulus in

horizontal cross-section.

The variance in the posterior ensemble around the interface between cancer

and healthy tissue can also be seen in plots in Figure 6.3.34 in form of variability

of loss and storage modulus values in posterior ensemble around the interface



6.3 posterior variance and confidence intervals 220

in the two cross-sections. In Figure 6.3.35 we give plots of the 95% sample

confidence interval CI95,NS of the posterior ensemble in the two cross-sections.

The confidence intervals of the posterior ensemble are larger than the confidence

intervals of the posterior ensemble in Section 6.3.5 and Section 6.3.1, where the

sample variance in the physical prior ensemble was smaller than in this section.

In all the cross-sectional plots it can be seen that the posterior ensemble has

values close to the ground truth.
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Figure 6.3.35: 95% Confidence Intervals CI95,NS in cross-sections indicated in Fig. 6.3.1

for the posterior ensemble µ
(j)
NS

. We plot the lower and the upper bound of the 95%

confidence interval as well as the ensemble mean µNS and the ground truth µ†. Top

left: Storage modulus in vertical cross-section. Top right: Loss modulus in vertical

cross-section. Bottom left: Storage modulus in horizontal cross-section. Bottom right:

Loss modulus in horizontal cross-section.

In general the prior in this section leads to a posterior ensemble that is closer

to the ground truth than the posterior in Section 6.3.5.
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6.3.8 Conclusion Posterior Variance and Confidence Intervals

The series of experiments with the focus on confidence intervals and variance

conducted in Section 6.3.1-6.3.7 first of all confirmed some results seen in

Section 6.2: EKI in application to MRE with in silico model data as input can

provide robust approximations of shear moduli for high noise levels in the data.

Prior ensembles with a physical ensemble mean far off the ground truth lead

to posteriors that do not detect the cancer or its location. In every experiment

a smaller ensemble sizes significantly increase the difference between the

posterior ensemble mean and the ground truth and therefore, produce results

that are not useful for the detection of cancer.

Additional to these findings that confirm results in Section 6.2, we can

observe that the sample variance in the physical posterior ensemble increases

when the noise level in the noisy data is increased. Furthermore, we can notice

a dependency of the sample variance in the physical posterior ensemble and

the ensemble size. We find a smaller sample variance in the physical posterior

ensemble for smaller ensemble sizes. Moreover, we noticed that a higher sample

variance in the physical prior ensemble leads to a higher variance in the physical

posterior ensemble.
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However, we cannot see a link between the variance and the quality of

the posterior ensemble as approximation of the unknown. In cases where the

posterior ensemble and the posterior ensemble mean is far off the unknown,

the variance in the posterior ensemble is low and the probability of cancer is

low even in areas with cancer tissue. We can see that the sample variance in

the posterior ensemble is even lower if the posterior ensemble is far off. We

show in Section 6.2 that when making a statement on the level of certainty of

an approximation using the EKI we should also take the average data misfit

into account.

The definition of the probability of cancer seems to be a useful summary of

the results.

Finally, we have shown that a prior with a large sample variance leads to

posterior ensembles that give accurate approximations of the unknown even if

the mean of the physical prior ensemble is far off the unknown. This can be

used in situations where we are uncertain about what shear modulus can be

expected before the inversion in an experiment.
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6.4 direct inversion

In this section we look at strength and weaknesses of direct inversion, a widely

used approach to the inverse problem arising in MRE [14] which we described

in Section 3.5. Furthermore, we compare the performance of direct inversion

with EKI in different experimental setups.

Direct inversion is computationally the cheapest common inversion ap-

proach to MRE [14] and gives good approximations of storage and loss modulus

distributions if the ground truth distribution of these quantities have areas of

constant values. In Figure 6.4.1 we show plots of direct inversion applied to in

silico model data coming from various ground truths in an experimental setup

already described in Section 5.1. In Figure 6.4.1 (b) and (c) we can see that the

shear modulus approximation provided by direct inversion is accurate in areas

with constant ground truth distribution.

Direct inversion performs poorly if the ground truth distribution of shear

modulus contains heterogeneity, i.e. these quantities vary in a local neigh-

bourhood. This is due to the fact that the ”local heterogeneity assumption”

discussed in Section 3.5.1 does not hold. Adding to this, the derivatives used

in this approach contain errors when calculated using finite differences on a

relatively coarse computational grid. The ground truth distribution of the shear
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modulus of the experiment shown in the plot in Figure 6.4.1 (d) varies smoothly.

The direct inversion estimates of the shear modulus shown in Figure 6.4.1 (e)

and (f) contain significant inaccuracies.

In the presence of discontinuities in the ground truth distribution of shear

modulus we observe a considerable error in the inversion estimate provided

by direct inversion. In Figure 6.4.1 (a) the ground truth distribution of the

shear modulus has a discontinuous jump from a background value of 3500Pa

to 5000Pa. The direct inversion estimate around this jump is as low as 800Pa.

Also, we can see in Figure 6.4.1 (h) and (i) that around points of steep changes

in the gradient of the ground truth distribution of the shear modulus lead

to high errors in the estimate provided by direct inversion there. We can see

considerable spikes in the direct inversion reconstruction around the beginning

and the end of the slope between the background and the inclusion value of

the shear modulus.
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(a) Ground Truth (b) Direct Inversion (c) Cross-Sectional Plot

(d) Ground Truth (e) Direct Inversion (f) Cross-Sectional Plot

(g) Ground Truth (h) Direct Inversion (i) Cross-Sectional Plot

Figure 6.4.1: Direct Inversion of displacement fields without noise coming from dif-

ferent ground truth distributions of the shear modulus across the domain. The basic

setup of this experiment is described in Section 5.1. Apart from the different ground

truth distribution and the absence of noise, the domain size is changed to 60mm by 60

mm and displacements are given on an 80 by 80 grid. The frequency of the sinusoidal

excitation is 60Hz. The cross-section of the cross-sectional plot is a horizontal line right

in the middle of the domain
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Plain algebraic inversion as described in Section 3.5 without modifications

does not cope with the presence of noise in the data. In Figure 6.4.2 (b) and

(c) we show plots of direct inversion approximations of the shear modulus for

data corrupted by noise with a noise level of 5% which we defined in (5.2.1).
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(a) Ground Truth µ

(b) Direct Inversion w/o filter (c) Cross-Sectional Plot

(d) Imgaussfilt before Direct Inversion (e) Cross-Sectional Plot

(f) Meanfilter after curl (g) Cross-Sectional Plot

Figure 6.4.2: Direct Inversion applied to displacement fields corrupted by noise with a

noise level of 5% defined in (5.2.1). Basic setup is the same as in Figure 6.4.1 and is

described there. The data is given on a 120 by 120 grid.
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Direct inversion is often used in combination with filtering methods [68]. In

Figure 6.4.2 (d)-(g) we show plots of direct inversion results where common

filtering methods are combined with direct inversion. Both the filter using a

Gaussian smoothing kernel with standard deviation 5 (Figure 6.4.2 (d); matlab

inbuilt function Imgaussfilt [53]) and the mean filter (Figure 6.4.2 (f); [20]) are

applied in a 10 by 10 nodes neighbourhood and successfully remove the noise.

However, they introduce new errors due to filtering, especially around the

boundary of the domain. The use of Gaussian smoothing kernels with other

standard deviations does not change the result.

In Figure 6.4.3 we show plots of the posterior mean of the EKI that we get

in experiments described in Chapter 6. We compare them to direct inversion

results we get for these experimental setups. It is clear that even in the best

case scenario for direct inversion, that is, without any noise in the data, EKI

estimates outperform the accuracy of direct inversion. The main reason apart

from the weaknesses of direct inversion described in this Section already is, that

there is no straight forward way to code in prior knowledge into this approach

unlike in EKI.
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Figure 6.4.3: First Column: Ground truth distribution of storage modulus µS across

domain. Second Column: Posterior mean of EKI (5 % noise in data). Third Column:

Direct inversion (without filtering) applied to data without noise. Fourth Column:

Direct Inversion (without filtering) applied to data with 5 % noise added.

6.5 further improvements for the prior

In this section we describe two ideas to design informative priors for EKI

by using direct inversion results. They both turned out to be less successful

than expected. Nonetheless, we give a short description of them because it is

interesting to see why they fail.
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6.5.1 Preconditioning on Direct Inversion

In order to find good priors for EKI gpstuff was used in order to find maximum

a posteriori estimates of the parameters of a Whittle-Matérn Gaussian random

field approximating data coming from direct inversion. In Appendix A we

describe how gpstuff finds a posteriori estimates of the parameters. The a

posteriori estimates of the parameters are then used as parameters described

in Section 4.3.2 in the Whittle-Matérn autocorrelation function defining the

Covariance of the prior and the direct inversion result as the non-homogeneous

mean of the prior.

In middle plot of Fig. 6.5.1 we can see a cross-sectional plot of the prior

ensemble obtained by applying this hyperparameter estimation. In many

cases the maximum a posteriori estimates of the parameters were similar to

the hyperparameters we have chosen before. In almost every application of

this way of finding good priors the direct inversion result was too poor. The

prior conditioned on this result did not reduce the amount of iterations in EKI

or increased the accuracy of the EKI-estimates. In the right plot in Fig. 6.5.1

we can see the EKI estimate using a prior from a Gaussian random field with

hyperparameter estimation.
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Figure 6.5.1: Set up of this experiment is the same as the one for Figure 5.7.7. Left:

Ground truth storage modulus distribution Mid: Initial Ensemble, Direct Inversion

(Orange) and Ground Truth(Yellow) in a vertical cross-section (drawn from GRF with

hyperparameter estimation). Right: Posterior Ensemble Mean

The main problem with this approach of defining good priors is, that direct

inversion results are not good enough for priors to be conditioned on. Even the

direct inversion result for a relatively simple ground truth seen in Figure 6.5.1

has large errors around the interface and therefore, priors conditioned on that

tend to be not useful.

6.5.2 EKI applied to the Identity

Due to the high sensitivity to noise of direct inversion, we apply Algorithm 1

to data v but we use the identity map G := id : Cm → Cm as forward operator.

The idea is to use EKI in order to remove noise in the data and to get a prior

ensemble for the application of EKI for estimating the shear modulus.
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In the first application of EKI a prior for the displacement data is chosen

using a Whittle-Matérn auto-correlation function described in Section 4.3. Then

Algorithm 1 is run with this prior, data v and forward operator G = id. The

posterior ensemble (which is estimating the displacement data) is then inverted

by using direct inversion (3.5.5). The inverted posterior ensemble then becomes

the prior ensemble for the second application of EKI that uses (3.4.2) as the

forward map as before.

In fact, EKI is successfully removing noise from displacement data for

various priors and noise levels. In Figure 6.5.2 we provide plots of an pos-

terior ensemble mean that gives a good approximation of the ground truth

displacement data.

Figure 6.5.2: Left: Real part of the second component of the ground truth displacement

data Right: Posterior Ensemble Mean of EKI applied to data with 5% noise level.
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However, the posterior ensemble has a very small variance. In Figure 6.5.3

we provide a cross-sectional plot of the posterior and can see the small variance.

There are ways to artificially add variance to the ensemble before inverting

it using direct inversion, e.g. by stopping EKI early. However - as discussed

in Section 6.4 - direct inversion does not only cope well with noise but also

with heterogeneity. Noise could be removed from the data but direct inversion

remains inaccurate for discontinuous or heterogeneous distributions of the

shear modulus. Therefore, this method does not provide informative priors.

Figure 6.5.3: Left: Cross-sectional plot prior ensemble, ground truth (blue) and mean

of the prior ensemble (red). Right: Cross-sectional plot posterior ensemble.
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6.6 summary and conclusion

EKI was successfully applied to in silico model examples of Brain and Kidney

MRE. The influence of ensemble size and noise in the data on accuracy of the

estimate was quantified. It was shown that EKI is robust and computational

cheap in this application. It outperformed direct inversion in accuracy of

the estimates for most priors chosen, especially in the presence of noise and

heterogeneity in the ground truth. This is not only due to the fact that EKI copes

better with noisy data but also because EKI with two-level-parametrisation can

capture sharp discontinuities and high levels of heterogeneity in the spatial

distribution of the physical parameters. A key contribution to the high accuracy

of EKI estimates is the fact that prior knowledge about the unknown can be

incorporated into the inversion approach in a simple fashion. Non-Bayesian

inversion approaches usually do not have the feature to incorporate detailed

prior knowledge.

The idea to use direct inversion in order to provide informative priors for

EKI and by that combine these two inversion approaches turned out to be

unsuccessful, mainly because of the inaccuracy of direct inversion estimates in

many scenarios.
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C O N C L U S I O N A N D F U T U R E W O R K

In this Chapter’s first section we summarise the main findings of this thesis

and have a look at potential extensions and future work in the second section.

7.1 conclusion

We showed in in silico model examples that EKI applied to the inverse problem

arising in MRE can provide accurate estimates of the unknown local soft tissue

stiffness when the viscoelastic model is used. For the viscoelastic model, EKI

together with the two-level parametrisation is capable of giving estimates of

unknowns with complex geometries found in, for example, brain MRE, and it

can deliver confidence intervals for these estimates. In the virtual experiments

with brain geometries in the unknown EKI could successfully discover cancer

tissue with good accuracy.

Some other main findings in this thesis are:

236
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• We showcased the advantages of various parametrisations of the unknown

and the design of informative priors. The parametrisations enable us to

fully utilise the MRI data that is available prior to inversion in EKI.

• The viscoelastic model should be preferred over the purely elastic model

when EKI is applied to time-harmonic MRE at common frequencies.

• A sufficiently large ensemble size is essential. Then EKI with the two-

level parametrisation can provide accurate estimates of unknowns with

complex geometries even for high amounts of noise and priors relatively

far off the ground truth.

• Direct inversion is unsuitable to design informative priors. This is due

to the fact that direct inversions are too inaccurate if the unknown soft

tissue has spatial variability.

The main reason why the viscoelastic model should be preferred over the

purely elastic model is, that soft tissue exhibits viscoelastic behaviour and,

in order to minimise modelling errors, it should therefore be modelled as

such despite the purely elastic model being mathematically simpler. Besides,

the efficient numerical approximation of solutions of the purely elastic wave

equation for a high wave number is still an open problem and makes the

application of EKI difficult because an accurate approximation of the forward
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operator is needed. On top of this, we could show that when using the purely

elastic wave equations in the ensemble of wave fields corresponding to the

ensemble of elastic parameters there can be resonating wave fields with high

amplitudes which lead to outliers in the ensemble of wave fields that make the

whole ensemble diverge.

The level set parametrisation used in experiments in Chapter 5 enables EKI

to approximate sharp interfaces between different tissue types for example

diseased tissue and healthy tissue. However, this parametrisation does not allow

for heterogeneous approximations within a tissue type and in the version used

in this thesis it requires the prior knowledge of mechanical parameters of certain

tissue types, i.e. EKI with this level set parametrisation only approximates the

location and shape of certain tissue types, not the mechanical parameters of the

tissue.

The two-level parametrisation used in Chapter 6 which extends the level

set parametrisation by a second level, allows for heterogeneity within different

tissue types. Also, EKI with the two-level parametrisation approximates the

mechanical parameters of different tissue types and does not require exact prior

knowledge of them. We use this parametrisation in EKI in order to approximate

the unknown shape and location of the heterogeneous mechanical parameters

of cancer tissue which has a sharp interface with healthy tissue.
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7.2 future work

A natural extension to this work would be the analysis of noisy boundary

conditions. In real-world applications we would define our domain of interest Ω

to be a certain organ or part of the body, meaning that the boundary conditions

would be Dirichlet boundaries given by the measurements along the boundary

of Ω. These measurements are corrupted by noise which carries through to

the approximated wave field for each sample in the ensemble which then

affects the ensemble updates. The authors in [16] analyse EKI for another

elliptic inverse problem with uncertain boundary conditions but not the inverse

problem arising in MRE.

Another direction would be to further exploit the fact that EKI is computa-

tional cheap and extend the experiments to three-dimensions. The code could

then be applied to real-world data as well.

A further extension to the experiments shown in Chapter 6 would be to run

these experiments with unknown smoothness and amplitude hyperparameters.

We have fixed them to the values of these hyperparameters in the ground

truth because we believe that the lengthscale and mean hyperparameter is

sufficient to capture spatial variability. However, this needs to be confirmed in

experiments.
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An interesting theoretical problem connected to this thesis is to study

forward map F defined in (4.1.1) for continuity. More precisely, [83] reviews

conditions under which the solution of Bayesian inversions is well posed. They

show that the Bayesian posterior is well-posed if a certain continuity assumption

on the forward map F holds, i.e. the forward map changes continuously with

respect to parameter k. In experiments, we could observe that F in the purely

elastic case behaves like a discontinuous map due to resonating wave fields. For

the viscoelastic case we did not make this observation. So the natural question

that arises is if these properties of the viscoelastic and purely elastic forward

map can be rigorously proven.

Finally, a modification of EKI, the stochastic ensemble Kalman inversion

could be considered instead. We could show in Chapter 6 that the posterior

ensemble can lie far off the ground truth in cases with small ensemble size and

large noise level and the posterior ensemble variance is very low. In fact, it is a

known problem of Ensemble Kalman Inversion and Ensemble Kalman filters in

general that in the case of a small ensemble size and a large amount of noise in

the data the ensemble collapses, the ensemble variance becomes very small and

iterates can end up in a deadlock [4, 5]. [93] shows how a variance inflation

approach can reduce this problem.



A
G P S T U F F

In this Chapter of the appendix we want to give a short description of the

matlab software gpstuff used in Section 6.5.1 in order estimate hyperparameters.

We follow [71] in this Chapter.

In all our applications of EKI we need to somehow give an estimate of the

hyperparameters lengthscale l, amplitude scale σ2 and smoothness parameters

r in the autocorrelation function (4.3.1) that is used to define the prior, either in

form of a single estimate like in Chapter 5 or in form of an interval of a uniform

distribution like in Chapter 6 for the lengthscale. In Section 6.5.1 we try to

give estimates for these hyperparamters by using gpstuff with direct inversion

results as inputs.

More precisely, let µdI
Si

be the result from direct inversion given in points

xi ∈ Ω ⊂ R2, i = 1, . . . , n̂. Here, µSi is the storage modulus because we assume

in Section 6.5.1 the loss modulus to be a known constant.

241
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In GP regression observation pairs D = {(xi, µSi), i = 1, . . . , n̂} are assumed

to be modelled by an unknown function g in the following way

µdI
Si
= g(xi) + η̂i, (A.0.1)

with noise assumed to be η̂i ∼ N (0, b̂) independent identically Gaussian

distributed.

The idea of GP-regression is to make also the assumption that g : Ω→ Rn̂

is a Gaussian process GP(m∗GP, Σ∗GP) with some mean mGP ∈ Rn̂ and covari-

ance ΣGP ∈ Rn̂ ×Rn̂, that is, for each x1, . . . , xn̂ we have (g(x1), · · · g(xn̂)) ∼

N (m∗GP, Σ∗GP) . In addition, we follow an Bayesian approach, so we seek a

posterior distribution of g given data D. The likelihood based on D in this

scenario is LGP(g, b̂) = ∏n̂
i=1N (g(xi), b̂). We choose a Gaussian process as prior

of g with mean function mGP and covariance function ΣGP. This makes the

posterior a Gaussian process as well as mentioned before. The posterior mean

in x ∈ Ω is given by

m∗GP(x) = ΣGP(x, x)
[
ΣGP(x, x) + b̂I

]−1
µSi ,

and the covariance in (x, y) by

s∗(x, y) = s(x, y)− ΣGP(x, x)
[
ΣGP(x, x) + b̂I

]−1
ΣGP(x, x),
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where ΣGP(x, x) = (s(x, x1), . . . , s(x, xn̂))
T, I is the n̂-dimensional identity ma-

trix and ΣGP(x, x) is the covariance matrix based on evaluations of k at pairs

(xi, xj), i, j = 1, . . . , n̂.

The covariance ΣGP of a Gaussian process depends on parameters. In the

case of Section 6.5.1 they are the parameters ΘGP := (l, σ2, r) of the Whittle-

Matérn autocorrelation function.

Instead of finding the mean m∗GP and covariance Σ∗GP of the posterior Gaus-

sian process GP(m∗GP, Σ∗GP) we now try to estimate the parameter Θ∗GP of the co-

variance Σ∗GP. The posterior distribution of Θ∗GP given data (x, µS) = {(xi, µSi),

i = 1, . . . , n̂} is given by

ρ(ΘGP|x, µS) =
L(g, ΘGP)ρ(ΘGP)∫

ΘGP
L(g, ΘGP)ρ(ΘGP)

,

where L(g, ΘGP) is the likelihood function depending on ΘGP and ρ(ΘGP) =

ρ1(l)ρ2(σ
2)ρ3(r) is the prior. In section 6.5.1 we used uniform distributions

ρ1, ρ2, ρ3 on various intervals. We maximise ρ(ΘGP|x, µS) with respect to ΘGP

in order to obtain a maximum a posteriori estimate. It can be shown [71] that

maximising ρ(ΘGP|x, µS) with respect to ΘGP is equivalent to maximise

−1
2

µTΘ−1
GPµ− 1

2
log |ΘGP| −

n
2

log 2π + log ρ(ΘGP)

for ΘGP for chosen prior ρ(ΘGP) where ΣΘGP is the Whittle-Matérn covariance

using parameters ΣΘGP . Maximisation is carried out by gpstuff by gradient-

based algorithms.
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