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Abstract 
 

Cancer is a complex, heterogeneous disease that arises from genomic instability causing molecular 

alterations at multiple levels, making it notoriously difficult to treat. Computational methods are being 

applied to discover predictive biomarkers of drug response, which aim to resolve these challenges by 

focusing on the genotype, rather than the phenotype of tumours. Latent factor methods enable 

simultaneous analysis of multiple omics datasets and so hold unprecedented opportunity to understand 

the relationship between molecular layers. These methods have been successfully applied in biomarker 

discovery, however, there are many different methods available. In this study two latent factor methods, 

multi-omics factor analysis (MOFA) and multiple co-inertia analysis (MCIA), are benchmarked using 

baseline cancer cell line data. Performance is evaluated using three objectives. The first investigates 

quality control of multi-omics data processing, the second compares the latent representation of data, 

and the final evaluates and compares method ability to predict anticancer drug response. Our analysis 

shows different underlying statistical frameworks result in contrasting model sensitivity to noise and 

bias, and as a result, produce different low-dimensional representations of data. Both methods were 

equally able to explain variance in drug response across cell lines, however, not enough to be able to 

predict response. We conclude that further studies are required to determine whether this result is due 

to inadequately processed data, or due to true inability of either method to predict drug response. 
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Chapter 1. Introduction 

 

Cancer is one of the leading causes of death worldwide making it a major area of focus in research and 

the pharmaceutical industry. Due to the complexity and heterogeneity of tumours, there is no one-size-

fits-all therapy, making cancer challenging to treat. There has been a shift in current approaches to 

therapy as a result of genome-wide screening. This has enabled patient stratification using molecular 

biomarkers to help inform on diagnosis and treatment. By targeting specific proteins, drugs are 

delivered with higher specificity and lower toxicity, resulting in improved patient outcomes. However, 

there are limitations to targeted therapies. A key example being, despite patients having presence of a 

specific target, drugs remain ineffective or only partially effective [1]. This can be related to the 

complex mutational landscape and molecular cross-talk driving cancer progression [1, 2]. 

 

Molecular alterations must occur at many levels (e.g. genome, transcriptome, proteome) for cells to 

undergo malignant transformations [3]. Thus, looking at single-level omics data in isolation is not 

enough to establish causal relationships between phenotype and molecular alterations. To fully 

understand the development of cancer, the complexity of interactions that take place between dynamic 

molecular layers and the influence of environmental factors must be deciphered. This encompasses a 

systems biology approach, where integrating multidisciplinary data can capture different aspects of 

cellular function to understand biological interactions holistically and systematically [3].  

 

1.1. Multi-Omics in Oncology 
 

Over the past decade there have been significant advances in cost-effective high-throughput omics 

technologies, enabling large-scale data generation in each field. Omics technology refers to biochemical 

assays that measure biological molecules of the same type. Each omics offers a different view of 

biological function and organisation of molecular systems [4]. The development of these technologies 

has followed the central dogma, starting by capturing alterations of the genome (genomics), 

differentially expressed genes driving disease (transcriptomics) and protein expression profiling and 

post-translational modifications (proteomics). Beyond this, there has been expansion to investigating 

modifications in epigenetic regulation of the genome (epigenomics) and metabolic regulation of the cell 

(metabolomics) (see Table 1.1) [5, 6]. The number of omics fields has continued to grow over time, to 

areas such as lipidomics (analysis of lipids), glycomics (analysis of sugars) and microbiomics (analysis 

of microbiota), to name a few [7]. These more recent areas of research are gaining traction in oncology, 

however, fall out of scope for this project. Common assays used for omics analysis are RNA sequencing 

(RNA-seq) for transcriptome profiling, assay for transposase-accessible chromatin sequencing (ATAC-
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seq) for epigenome profiling and mass spectrometry (MS) for metabolome and proteome profiling. 

RNA-seq provides fast, precise quantification of transcripts and their isoforms by converting long 

RNAs to cDNA fragments and harnessing high-throughput sequencing technology to output sequence 

reads that are aligned to a reference genome [8]. ATAC-seq is one of many methods used to investigate 

the epigenome, specifically it assesses chromatin accessibility. Epigenomic assays vary in specificity, 

alternatives assess other forms of regulation such as DNA modifications or histone modifications, which 

impact chromatin dynamics and structure. Chromatin can exist in several different states which 

associate with particular patterns of gene regulation. ATAC-seq is a simple, scalable technique that uses 

in vitro transposition of sequencing adapters into chromatin to create sequenceable DNA fragments. 

Following fragment alignment, peaks of accessible chromatin are identified by enrichment of 

transposition events in genomic regions [9]. Lastly, MS provides diverse utility in metabolomics, 

proteomics, phosphoproteomics and the emerging field of lipidomics. The biomolecule of interest is 

separated, ionised and vaporised to form gas phase ions, which are input into the mass spectrometer. 

Ions are sorted according to their mass-to-charge ratio to produce a mass spectrum of ion abundance 

that can be mapped back to peptides/metabolites based on mass [10].  

 

As previously mentioned, the synergistic interactions and complementary effects between omics layers 

cannot be assessed by the reductionist approach of single-omics analysis. Multi-omics offers an 

integrated approach to understand the relationship between molecules and the flow of information in 

dynamic multi-dimensional biological networks [13]. This approach holds promise to bridge the gap 

Table 1.1. Overview of omics data types and technologies applied in cancer research.  

Table adapted from Gallo Cantafio, M.E., et al. 2018 and Hasin,Y., et al. 2017 [11, 12].  
 

CNV = copy number variation; SNP = single-nucleotide polymorphism; MNase = micrococcal nuclease; ATAC = assay for transposase-

accessible chromatin; 4C = chromosome conformation capture-on-chip; HiC = high-throughput chromosome conformation capture; LC-

MS/MS = liquid chromatography-tandem mass spectrometry; NMR = nuclear magnetic resonance; RPPA = reverse phase protein array 
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from genotype to phenotype [3]. A major challenge in cancer is distinguishing the small number of 

driver mutations that provide selective advantage to tumourigenic cells from the vast number of 

passenger mutations that do not alter the phenotype. Integration of omics data can intensify relevant 

signals underlying disease mechanism and cancer progression to uncover driver somatic mutations and 

thus enabling dissection of the heterogeneity of cancer cells. This in turn contributes to revealing cancer 

subtypes, finding reliable biomarkers and discovering potential drug targets (see Figure 1.1) [3, 14]. In 

silico techniques, such as this, are key in modern drug development to help prioritise new targets and 

stratify patients using biomarkers in clinical decision support [3, 15]. Biomarkers assist earlier diagnosis 

to prevent cancer-related deaths, improve the prognostic and predicative accuracy of disease 

progression and clinical outcomes and lastly, advance clinical subtyping. It is common within cancer 

subtypes for patients to have varying degrees of responsiveness to therapies, thus better patient 

stratification utilising preserved clinical and molecular biomarkers are required to predict suitable 

interventions for patient groups. This in turn can help to improve patient outcomes, increase 

understanding of drug mode of action and prevent development of drug resistance [2, 3, 14-16]. An 

additional interesting application of multi-omics in the pharmaceutical industry is in drug repurposing 

(also known as drug repositioning). This strategy aims to expand opportunities for approved drugs 

outside of the original medical use, providing potential benefits of lower development costs and shorter 

development times by using already de-risked compounds. Computational approaches like multi-omics 

Figure 1.1. Conceptual model of single-omics analysis compared to multi-omics analysis and its applications in 

oncology.  

Each coloured rhomboid represents a molecular layer (genomics, epigenomics, transcriptomics, proteomics and 

metabolomics). Solid arrows depict interactions of features (white dots) within the same molecular layer and dashed arrows 

depict interactions between molecular layers. Figure adapted from Hasin,Y., et al. 2017  and Yugi, K., et al. 2016 [12,19]. 
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can help in formulating drug repurposing hypotheses to speed-up shortlisting candidates for assessment 

in preclinical models [17]. This is of particular interest in oncology, where drug attrition rates are higher 

relative to other therapeutic areas [18]. 

 

1.2. Multi-Omics Data Integration Approaches 
 

Depending on the focus of the investigation, integrative analysis can be approached in two different 

ways: bottom-up or top-down. A bottom-up strategy can also be thought of as phenotype-first, where 

the investigation is centred on a given disease and seeks to understand the pathways associated, rather 

than focusing on a particular locus. Alternatively, a top-down strategy tries to determine how a GWAS 

locus of interest contributes to disease, hence this is also referred to as a genome-first approach [3, 12, 

20]. There have been an enormous variety of integration techniques developed over the years, that can 

be categorised in a multitude of ways. Here, integration techniques are categorised in three tiers: 1) type 

of machine learning, 2) type of model and 3) statistical approach. Additional documented ways of 

categorising are, using biological objective (e.g. biomarker prediction, disease subtyping or disease 

insights) or method of data ensemble (i.e. whether integration occurred before or after data analysis) 

[15, 21]. There are two main types of machine learning, supervised and unsupervised. For supervised 

data integration, the model is trained with data labelled with known outcome variables for prediction. 

In contrast, unsupervised data integration aims to draw inferences and find patterns in unlabelled data, 

where the outcomes are unknown. Currently in the field, the number of unsupervised methods 

outweighs the number of supervised, with the majority showcasing methods for disease classification 

or biomarker discovery [21-23]. The next level of categorisation looks at the type of model, which refers 

to how the method derives actionable insight from data. Categories for unsupervised methods include 

association-based, clustering-based and networks-based (see Table 1.2). Association-based methods 

look for correlations between different molecular assays, while clustering-based methods group data to 

Table 1.2. Categorisation of unsupervised multi-omics data integration techniques to date.  

Table adapted from Vahabi, N. and G. Michailidis. 2022 [21]. 
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discover biologically relevant subgroups of features or samples. Lastly, network-based methods seek to 

build networks of functional relationships between features from different modalities i.e. data types 

with different formation methods and internal structures [21]. The plethora of methods spanning various 

statistical approaches presents both an opportunity and a challenge. It is recommended to benchmark 

data integration methods, doing a rigorous performance comparison using the same multi-omics 

datasets. This highlights the strengths of each method and potential advantages for usage when 

investigating a particular biological objective [15, 24].  

 

Regardless of multi-omics strategy or integration technique, the field still presents many challenges 

across data collection and data integration. Non-uniform missing data is a common challenge during 

data collection. Missing values can arise from features failing to be measured or whole sample 

measurements being unavailable either as a result of quality control (QC) procedures or potential 

unbalanced study design. It is possible for feature values to be imputed or re-measured using alternative 

technologies, while missing samples are more disruptive. Another challenge is heterogeneity in signal-

to-noise ratio between assays. Differing precision levels between assays could potentially lead to false 

conclusions, as a weak association between molecules could be due to a true lack of relationship or as 

a result of poor detection. Lastly, inefficient computation and storage is creating a bottleneck in analysis, 

as the cost per unit measurement is reducing, large volumes of data are being generated with expensive 

long-term storage requirements. Cloud computing infrastructures have multicore central processing 

units available for parallel computing, however implementing this efficiently on high-dimensional data 

is problematic [25, 26].  

 

1.2.1. Latent Factor Methods 
 

This project focuses on unsupervised latent factor methods of integration, these can also be referred to 

as dimensionality reduction methods. Dimension reduction aims to map data to a lower dimensional 

space that is represented by a set of new variables, which aim to explain that the majority of variance 

present across the data. These new variables are referred to as latent factors, as they are linear 

combinations of the original variables that are not directly observable in the data. Latent factor methods 

involve using matrix decomposition, reducing the data into a small number of latent factors, which 

represent the underlying biological processes that are being measured, and a set of loadings which 

represent the weights of features in the model, thus indicating the relative importance of each feature in 

explaining the variation in the data. The factors and loadings are chosen to minimise the reconstruction 

error, which is the distance between the original data point and its projection in the lower-dimensional 

space [27].  
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Each omics dataset in an analysis can be viewed as a matrix (Xi) of dimension n × p with pi features 

and n samples, where p ranges from thousands to millions thus presenting a large dimensional space. 

Matrices are decomposed into the product of weight matrices (Ai) of dimensions pi × k, and a factor 

matrix (F) of dimensions k × n, where k represents the number of latent factors (see Figure 1.2). Latent 

factors in each derived matrix (Ai or F) represent projections of biological signals on different spaces 

and so can extract different insights. Factors from weight matrices represent projections on the feature 

space and so top-ranked features can inform on markers or pathways associated with the variance 

explained. Meanwhile, the factor matrix represents the relationships defined by all omics datasets i.e.  

projections on the sample space, where factors can be interpreted similarly to principal components for 

sample clustering [28, 29]. Dimension reduction is advantageous as it offers more robust and sensitive 

conclusions that are less likely to reflect technical or batch effects [28]. 

 

Two key considerations when inputting data to latent factor methods are feature variance and feature 

filtering (also known as feature selection). Number of variables and count scales vary between different 

omics data which results in different variance. This can potentially cause latent factors to be dominated 

by more variable datasets. Hence, pre-processing is required to centre and normalise features prior to 

integration to prevent overlooking small sources of biological variance [28]. Only a small set of features 

Figure 1.2. Latent factor model overview.  

Multi-omics are measured from a matched set of samples. Each omics corresponds to a matrix Xi, which is factorised into 

the product of weight matrices Ai and factor matrix F. These products can then be used for sample clustering and 

gene/pathway enrichment to identify molecular processes. Figure adapted from Cantini, L., et al. 2021 [29]. 
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contribute to major biological processes and tend to be correlated across modalities [30]. Additionally, 

modalities with larger numbers of features are often over-represented in latent factors [29]. Together 

this highlights the requirement of feature filtering during data processing, ideally based on variability, 

to make feature number and variance comparable and reduce noise entering the model [21, 29, 31].  

 

Table 1.2 highlighted the vast range of software available to execute unsupervised multi-omics analysis. 

Within the subset of unsupervised latent factor methods there are different aspects that differentiate 

them beyond statistical approach (see Table 1.3). For example, ability to integrate datasets with mis-

matched features and samples. It is common for multi-omics datasets to have overlapping samples but 

varying numbers of unmatched features, making integration more complex. Datasets with matched 

features are rare but can be created by converting all features to the same molecular level (e.g. genes), 

however this is not always feasible. For example, miRNAs can’t be converted to gene symbols. The 

vast majority of methods are able to cope with unmatched features, however very few can handle 

unmatched samples i.e. samples must be profiled for all omics [28]. Model sparsity is another aspect 

that differentiates methods. Sparsity essentially follows the concept of “less is more” and aims to have 

a small number of non-zero parameters or weights in the model by implementing an implicit feature 

selection. This can be use useful for high-dimensional datasets, such as multi-omics, where it can help 

to reduce overfitting, increase efficiency and improve the overall interpretability of the model. There 

are several techniques that can be used to encourage sparsity in a model, such as regularisation methods, 

that penalise the model for having a large number of non-zero parameters. These methods can be used 

 

Table 1.3. Subset of unsupervised latent factor methods for multi-omics data integration. 

Table adapted from Cantini, L., et al. 2021 [29] 
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to automatically select a small number of important features from the data and set the weights for other 

features to zero [32]. This investigation will focus on benchmarking MOFA and MCIA, two high 

performing but statistically divergent techniques. 

 

MOFA [33] is simultaneously an extension of factor analysis and a generalisation of PCA, that captures 

major sources of variation across omics datasets. MOFA differs from other methods by having a noise 

model and a sparsity constraint. The noise model aims to understand and reduce the impact of random 

error, i.e. noise, on the accuracy and precision of estimates. While the sparsity constraint is a type of 

regularisation added to the loss function of the model, where the loss function measures the error 

between the predicted output and the true output. It encourages the model to have fewer non-zero 

parameters, by penalising the loss function proportional to the number of non-zero parameters. During 

training, the model will try to minimise the loss function, to prune away less important parameters and 

become more sparse [32]. This means many of the loadings for latent factors will be zero or close to 

zero, which in turn means latent factors only strongly associate with a small number of omics data types, 

rather than all of them. Another important characteristic of MOFA is that latent factors can be correlated 

and are not constrained to orthogonality. Imposing orthogonality would infer omics are independent, 

which may not be a realistic assumption on the data. Factor correlations are a disadvantage of having a 

sparse model, therefore it is important to select an optimal number of latent factors whereby they capture 

independent sources of variation [33]. The MOFA R package has built-in functionalities for 

downstream analysis, such visualisation, annotation of latent factors and imputation of missing values. 

MOFA has been successfully applied to a wide range of biological questions. For example, in the study 

of chronic lymphocytic leukaemia (CLL) MOFA was able to extract already known clinical markers in 

addition to novel biomarkers, of which some were found to be predictive of clinical outcome [33]. In 

microbiology MOFA was able to derive molecular signatures partitioning the microbiome compositions 

of critically ill patients, healthy patients and patients on antibiotic treatment [34] and lastly in systems 

toxicology MOFA robustly extracted molecular mechanisms activated by cigarette smoking in mouse 

lungs [35]. In 2020 Argelaguet et al published MOFA+ [36], a new implementation of MOFA with all 

the same features but with a new multi-group framework and incresed computation speed. Analysis 

aims to find factors shared across groups or explanatory of single groups, importantly, factors do not 

separate groups.  Furthermore, the ability to investigate spatial and temporal relationship has been added 

to MOFA+ since release [37]. For clarity, MOFA and MOFA+ will be referred to synonymously as 

MOFA.  

 

MCIA [38] is an extension of co-inertia analysis (CIA), which was originally applied in environmental 

and ecological studies. It aims to find latent factors, also called co-inertia axes, by finding the linear 

combinations of variables in the different datasets that maximise the co-inertia, which is the measure of 

similarity between datasets. The resulting linear combinations are the latent factors, while the 
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correlation between the variables and latent factors form the loadings. A key difference between MCIA 

and MOFA is that MCIA has no sparsity constraint in the model, so is not required to have many zero 

or near-zero loadings, thus reducing interpretability. Another key difference is that latent factors in 

MCIA are typically constrained to orthogonality, which means they are uncorrelated and independent 

of one another [32, 38]. MCIA has proven success in biomarker prediction and disease subtyping, being 

shown to discriminate four previously described subtypes of high-grade serous ovarian cancer and 

uncover robust subtype biomarkers. This investigation additionally demonstrated that integration using 

MCIA improved knowledge of pathways in leukaemia over analysis of gene expression alone [38]. 

MCIA has also been applied outside of bioinformatics. Afshari et al showed MCIA was able to detect 

and characterise relationships between microbiome and metabolome that were explanatory of quality 

attributes of cheese. Though this sounds trivial, the signatures found could be used to monitor cheese 

quality and product authenticity, which highlights the potential versatility of method applications [39].  

 

In 2021, Cantini et al benchmarked nine multi-omics dimensionality reduction techniques 

representative of the most prevalent underlying mathematical frameworks. Three complementary 

benchmarks were used to evaluate methods: 1) sample clustering on simulated multi-omics data, 2) 

association of latent factors with survival, clinical annotations and biological annotations using real 

cancer datasets, and 3) ability to integrate single-cell datasets. The first benchmark found that the two 

methods designed for clustering, integrative non-negative matrix factorisation (intNMF) and iCluster, 

expectedly performed the best at clustering simulated datasets. Of the seven remaining methods, MCIA 

and MOFA were the top performing across simulated scenarios, where a k-means consensus clustering 

was applied to the factor matrix. The second benchmark used three Cancer Genome Atlas (TCGA) 

omics datasets for ten different cancer types. MCIA performed very well in this benchmark, finding 

factors significantly associated with survival in 70% of cancers, scored amongst the top 3 methods for 

associating with clinical annotations in 50% of cancer and performed well in finding associations with 

MsigDB hallmarks annotation and gene ontology (GO) annotations in 80% of cancers. MOFA also 

performed well, finding factors predictive of survival in 50% of cancers, also scored amongst the top 3 

methods for associating with clinical annotations in 50% of cancer, and found metagene associations 

with biological annotations in 50% of cancers. Interestingly, this analysis showed the number of factors 

associated with survival was more dependent on cancer type than method. In addition, during evaluation 

of associations with biological processes and pathways, methods ranked variably depending on the 

biological annotation database being used. All methods in this study, except MOFA, were designed to 

be applied to bulk multi-omics datasets, therefore the authors believed investigating integration of 

single-cell data would be a valuable benchmark. All nine methods performed extremely well in this 

benchmark, with MCIA ranking third and MOFA sixth. Methods were also compared to single-cell 

analysis methods, which revealed all methods to perform equally well or better than Seurat or LIGER. 

Overall, this study showed both MCIA and MOFA performed well across all three interdependent 
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benchmarks, particularly when assessing factor-level information i.e. survival and clinical annotation 

associations. It also highlighted MCIA to be a slightly more versatile method, performing better across 

multiple applications and data types [29].   

 

A similar comparison to Cantini et al was performed by Pierre-Jean et al in 2020, but with a panel of 

13 unsupervised multi-omics data integration methods, including MCIA and MOFA. This investigation 

had a more exhaustive list of evaluation metrics, covering computation time, subgroup clustering 

performance and feature importance evaluation (i.e. how much the model uses that feature to make 

accurate predictions) for both real and simulated data. Contrastingly to previous studies, the authors 

found it difficult to calibrate MOFA parameters and were unable to get model convergence on any 

simulation benchmarks. As a result MOFA was discarded from the study and not included in the results. 

This study found MCIA to have low computation time and comparatively poor clustering performance, 

where the method appeared to have consistent stability issues with varying subgroup number and 

composition. For investigation of method ability to select important features driving clusters, three 

likelihood models were simulated. MCIA performed very well with gaussian and beta-like datasets but 

failed to recover relevant variables on binary data. Therefore, MCIAs feature selection performance 

appears to depend on the heterogeneity of the data. Lastly, the authors summarised the user-friendliness 

of methods, where MCIA was deemed one of the most user friendly [40].  
 

In summary, both methods of interest have varying underlying statistical frameworks, but overall 

perform very similarly (see Table 1.4). Literature review found there are limited benchmarking studies 

including both MOFA and MCIA to be able to directly compare methods. From the two direct 

comparisons available, MCIA appears to be the best allrounder and is easily implemented. While 

Table 1.4. Summary of MOFA and MCIA applications and performance within previous studies.  

Good performances are denoted by +++ and bad performances by -. NA means not available. Table adapted from Cantini, 

L., et al. 2021 and Pierre-Jean, M., et al. 2020 [29, 40] 
 

CLL = chronic lymphocytic leukaemia 
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MOFA performed well in factor-based analysis in the Cantini et al study, it had to be excluded in in the 

Pierre-Jean et al study due to inability to converge and the authors noted difficulty tuning parameters 

[29, 40]. In literature, both methods are strongly documented for application in predictive biomarker 

discovery and improving understanding of disease,  but only MCIA was found to have successful usage 

in disease subtyping [38]. Despite MOFA performing poorer in benchmarking studies to date, its 

statistical framework is the most interpretable and has attractive built-in analysis capabilities, which 

MCIA is comparatively lacking [33]. 

 

1.3. Predicting Anticancer Drug Response 
 

Discovery of predictive biomarkers for drug response is gaining a lot of traction in research and 

computational tool development. Such biomarkers are driving the field of precision oncology, which 

aims to understand molecular mechanisms of response to ultimately be able to account for patient 

genotype when making treatment decision [41, 42]. Additionally, this opens up opportunity for 

recommendation on early-phase clinical trial design and the repurposing of existing drugs for different 

cancers [43]. However, there are currently very few established biomarkers for anticancer drugs and 

use of genomic status of drug target as a therapeutic indicator is not always effective for molecular 

targeted therapies [44]. Machine learning methods have been used to build drug response prediction 

models from multi-omics data. Each omics layer brings different value to anticancer drug response 

prediction as a result of molecular alterations having varying impacts on drug response. For example, 

metabolic re-wiring has been shown to influence drug response to chemotherapy in several cancers, for 

instance lung and ovarian cancer in response to Cisplatin treatment. Therefore, metabolomics can 

inform on alterations in cellular metabolism that are essential to sustain tumour cell growth and 

proliferation [45]. Meanwhile, mass spectrometry-based proteomic and phosphoproteomic profiling has 

shown capability to improve drug sensitivity predictions through yielding proteome-wide cancer cell 

signalling activity [46]. In addition, an investigation of gene expression, DNA methylation, somatic 

mutations and copy number variations in 11,289 tumours across 29 tissues was able to be mapped to 

1,001 human cancer cell lines and correlated with response to 265 anticancer compounds. This 

investigation went on to explore the relative importance of data types in predicting drug response, where 

gene expression was found to have the best predictive power and 85% of multi-input predictive models 

performed better than the best single-predictor model [43]. Therefore, by combining these data in multi-

omics analyses more stable and reliable predictions can be made compared to analysing datasets in 

isolation. Large volumes of cell model data are available in public databases, offering the ability to test 

multiple drugs and combinations in parallel [42]. Inevitably, as greater volumes of multi-dimensional 

data become available, so will the demand for new, more sophisticated bioinformatics tools [47].  
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Typically, computational approaches to drug response prediction have three key steps. Firstly, datasets 

are obtained from public data resources, such as the Cancer Cell Line Encyclopaedia (CCLE) or the 

Genomics of Drug Sensitivity in Cancer (GDSC) project. Data is then normalised, and features are 

selected to filter out noisy or irrelevant data. It is possible for feature selection/dimension reduction to 

be embedded into the model training [47]. This is a crucial step, as a high feature to sample ratio can 

lead to model overfitting, whereby the model will perform well on the training data but have poor 

generalisability to the evaluation data [42]. Secondly, the model is trained to create a mathematical 

representation of the relationship between features and drug response, and the final step comprises 

evaluation of the selected model on the new data [47]. As inferred from the steps above, supervised 

learning techniques are most widely used for building models for drug response prediction. 

Neighbourhood component analysis [48], deep neural networks [49-51] and random forests [52] are all 

examples of supervised learning techniques used in literature. It is possible for unsupervised learning 

techniques to provide the basis for generation of predictive models. For example, Cai et al [53] showed 

multiple multi-omics data integration techniques are able to accurately predict drug response assisted 

by random forest.  

 

1.4. Research Aims 
 

This work seeks to execute an in-depth comparison of multi-omics latent factor methods in the context 

of cancer data analysis. MOFA and MCIA have proven their ability to find predictive biomarkers and 

molecular mechanisms from complex omics datasets in a variety of different contexts [33-35, 38, 39]. 

Cantini et al showed MCIA to perform the most consistently and effectively across three 

complementary benchmarks, highlighting strong potential for application in research with diverse and 

open biological questions [29]. While MOFA performed less consistently, it possesses a more stable 

and interpretable framework for uncovering insights into drivers of variation [33]. Thus, these methods 

show great promise to find predictive biomarkers of response to anticancer drugs. Here, a neutral stance 

is taken to benchmark approaches against three objectives, using omics data from baseline cancer cell 

lines. The first objective aims to quality control multi-omics data processing. This will enable better 

interpretation of the second objective, comparing and evaluating the statistical frameworks of methods. 

In the literature, no benchmarking reviews discussed the impact of different statistical approaches on 

variance decomposition or the implementation of methods, which proved a gap in the field. The final 

objective evaluates the ability of methods to recover and explain responder and non-responder cell lines 

to anticancer therapies, without assistance from supervised learning.  
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Chapter 2. Materials & Methods 

 

2.1. Omics Datasets 
 
Methods were tested on five omics datasets covering, transcriptomics, epigenomics, metabolomics, 

expression- and phosphoproteomics. These datasets were available for 46 untreated, unstimulated 

(baseline) cancer cell lines spanning lung, breast and ovarian cancer (refer to Supplementary Table S1 

for the list of cell lines). Omics datasets were prepared, processed and quality controlled by GSK, prior 

to data retrieval for use in this investigation.  

 

Cell cultures were divided into three sub-cultures to produce three biological replicates, which were 

each aliquoted for omics measurement. The transcriptome was investigated using bulk RNA sequencing 

(RNA-Seq), epigenome using Assay of Transposase Accessible Chromatin sequencing (ATAC-Seq), 

while mass spectrometry (MS) was used to analyse metabolomics, expression- and phosphoproteomics. 

In instances when there was a low cell count, specific omics measurements were prioritised over others. 

All raw data was processed using internally standardised computational pipelines, followed by QC,  

normalisation and batch-correction. Datasets underwent variance stabilising normalisation (VSN) using 

the vsn R package [54], other than transcriptomics which was normalised and transformed by 

calculating the binary logarithm of the transcript count per million (TPM). Next, datasets were batch 

corrected using the limma R package [55], however, for epigenomics data, no batch correction could be 

performed due to confounding with the cancer type. Lastly, replicate measurements for each cell line 

were aggregated by taking the mean, except epigenomics where the median was taken. Due to the 

proprietary nature of this data, it is unable to be shared. 

 

Additional filtering was applied following data retrieval to handle missing values across datasets. This 

involved removing cell lines missing one or more omics measurements and within each omics dataset, 

removing features with missing measurements for one or more cell lines. Details on data pre-processing 

and additional processing steps are outlined below.  

 

2.1.1. Transcriptomics 
 

Bulk RNA-seq reads were mapped to the full human genome, GRCh38.p13 from the National Center 

for Biotechnology Information (NCBI) [56], using STAR [57]. Mapped reads were counted at the gene-

level using featureCounts [58] and an in-house workflow management tool applet calculated gene TPM 

values using the featureCounts output and total mapped reads from the samtools flagstat [59] output. 
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Prior to data retrieval, genes with zero variance or missing counts were removed and lowly expressed 

genes were removed, where lowly expressed genes were defined as having a mean log2(TPM+1) less 

than 1 for all samples.  

 

2.1.2. Epigenomics 
 
ATAC-seq reads were mapped to the full human genome, GRCh38.p13 from the NCBI [56], using 

Bowtie2 [60]. Genomic regions of open chromatin, or peaks, were called using Genrich [61] in ATAC-

seq mode. This tool was configured to use an interval length of 100bp, a minimum AUC for a peak of 

20 and a maximum FDR-adjusted p-value of 0.05 (per sample). Peaks were quantified using 

featureCounts [58], which used an internally generated universal chromatin accessibility reference. This 

reference is a comprehensive feature space of accessible regions across multiple biological contexts. 

Following sample QC, bedtools [62] was used to naïvely merge common peaks across samples where 

there was a 1bp overlap, resulting in larger, more diverse peak widths. The new BAM files output were 

then used to re-quantify peaks and peaks with missing values in at least one cell line were removed.  
 
To reduce noise and improve the biological interpretability of epigenomics data, promoter peaks were 

filtered for inclusion in the analysis. Since it can be assumed that an open promoter corresponds to a 

higher expression of the gene, peaks were filtered for those in a promoter region. This was done using 

the ChIPseeker package in R [63], where the promoter region was defined as ±200 base pairs from the 

transcription start site with a flank distance of 200 base pairs. The 

TxDb.Hsapiens.UCSC.hg38.knownGene transcript annotation object [64] and org.Hs.eg.db annotation 

R package [65] were used to define promoters. Peaks in the same promoter region were not combined. 

 

2.1.3. Expression- and Phospho-proteomics 
 

MS based expression- and phoshoproteomics data were processed as described previously [66]. Briefly, 

proteins were digested and resulting peptides were subjected to tandem mass tags (TMT) enabling 

relative quantification of up to ten conditions in one MS run. Labelled samples were measured using 

liquid chromatography-tandem mass spectrometry (LC-MS/MS) on an Orbitrap Fusion Lumos and a Q 

Exactive (Thermo Fisher Scientific). Mascot 2.5 was used for protein identification using a customised 

version of the SwissProt protein database (https://www.uniprot.org/) [67], from December 2018. 

Protein quantification values were calculated from individual spectra matching unique peptides using 

sum-based bootstrap algorithm. Phosphoproteomics employed an additional phospho-enrichment step 

before TMT labelling to enrich for phosphorylated peptides. Spectra quantification values were 
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combined to phosphosites using the median yielding quantification values per sample and phosphosite 

in a specific protein.  

 

2.1.4. Metabolomics 
 

Untargeted metabolomics were performed as described previously [68]. Samples were measured on an 

LC-MS platform using a Q Exactive. The resulting raw data were processed using an in-house built R 

pipeline. Detected ions were tentatively matched to metabolites using the Human Metabolome Database 

(HMDB) (https://hmdb.ca/) [69], where annotation was solely based on accurate mass, therefore 

isomers or other metabolites within a given tolerance cannot be distinguished. Log10-transformed ion 

intensities were used as measure of quantification. 

 

2.1.5. Feature Filtering 
 

For each dataset, a feature selection step was performed to remove features (i.e. genes, genomic regions, 

proteins or metabolites) with low variance from input to methods [36]. Thresholds were set arbitrarily 

based off the assumption that a higher number of total features in a dataset requires a higher number of 

selected features to capture a similar minimum variance (see Table 2.1). Therefore, varying numbers of 

features in datasets will result in different numbers of selected features. Datasets with less than 1,000 

features are presumed to capture a small amount of variance in too few features to be included in the 

model.  

 

 

 

2.2. Drug Response Data 
 
Drug response data was accessed (August 2022) from the Genomics of Drug Sensitivity in Cancer 

(GDSC) database (www.cancerRxgene.org/) [70], where the GDSC2 dataset (release 8.4) was 

Table 2.1. Thresholds for feature filtering 
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downloaded for analysis. This dataset contains data on 288 anticancer drugs for a total of 969 cell lines. 

The authors use a non-linear mixed effect model to fit dose-response curves of all available cell 

line/drug combinations to obtain area under the dose response curve (AUC) estimates, which are utilised 

for prediction of drug response (see section 2.5).  

 

2.3. Software and Packages 
 
All analyses were performed using R statistical software (v4.0.2) [71]. See R Session Information in 

the supplementary information for details of all software packages used during this investigation. 

Source code available at https://github.com/shannonkatrina/benchmarking-mofa-mcia. 

 

2.4. Data Integration Approaches 
 
Detailed below are the two unsupervised latent factor methods benchmarked in this investigation, 

MOFA and MCIA. Default parameters were selected for each approach. Although each method can 

optimise the number of latent factors detected, for the sake of comparison, the same number of factors 

were imposed on both methods. Datasets were decomposed into ten factors as a starting point, based on 

recommendations by Argelague et al [36].  

 

2.4.1. Multi-Omics Factor Analysis  
 

MOFA [33, 36], can be viewed as a generalisation of (sparse) PCA applied to multiple omics datasets. 

Although, technically it is an extension of Bayesian group factor analysis, meaning Bayesian inference 

and probabilistic models are used to estimate the latent factors and their loadings [72]. The matrix 

factorization framework in MOFA+ can be described as: 

 

 

 

𝑌!" =	𝑍!𝑊" 	+ 	𝜀!" 
 
 
𝑌!" = matrix of observations for the mth modality and the gth group 
𝑍! = factor matrix for the gth group 
𝑊" = weight matrix for the mth modality 
𝜀!" = residual noise for the mth modality and the gth group 

(1) 

 

 

The model is able to efficiently handle missing values and can flexibly combine different likelihood 

models for different data modalities. The noise term (𝜀!") contains unexplained variance for each 

feature in each modality and varies depending on the types of data input into the method. A combination 
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of different noise models are supported to integrate different data types, such as binary (Bernoulli), 

discrete (Poisson) and continuous data (Gaussian). Following a Bayesian framework, a prior 

distribution is assigned to the factor matrix, weight matrix and parameters of the noise term. MOFA 

applies a two-step symmetric regularisation of the weights and factors to account for structure in both 

the sample and feature space. It first boosts view- and factor-wise sparsity to enable distinction of active 

factors in omics datasets using an automatic relevance determination (ARD) prior. A spike-and-slab 

prior is then applied to induce feature-wise sparsity to highlight small sets of features with active 

weights.  

 

The core of MOFA+ is implemented in Python package mofapy2, while the R package MOFA2 is 

recommended for use as an interface for model training and downstream analysis. The code to run 

MOFA+ is available at https://github.com/bioFAM/MOFA2.  

 

2.4.2. Multiple Co-Inertia Analysis 
 
MCIA [38], is an extension of co-inertia analysis (CIA) [73] that enables analysis of two or more omics 

datasets. It requires a set of matrices where either samples or features are matched with equal weights 

and can accommodate both discrete and continuous data. MCIA factorises omics data into latent factors 

in two steps. Firstly, an ordination technique, such as PCA or correspondence analysis (COA), is applied 

to each matrix (Mi) separately, transforming data into new, comparable, lower dimensional datasets 

(Xi). In this analysis PCA was used. 

 

 

 

𝑥!" =	
𝑝!"
𝑟!
− 𝑐" 

 
 
xij = relative abundance of element to the measurement’s weight 
pij = single element contribution to the total variance in matrix (Mi) 
ri = relative contribution of row i over the total variance in matrix (Mi) 
cj = relative contribution of column j over the total variance in matrix (Mi) 

(2) 

 

 

The second step is derived from CIA, which aims to maximise the sum of squared co-variance, i.e. the 

co-inertia, between scores of each matrix (Xi). This maximisation means the norm constraint (ǁ𝑢ǁ=ǁ𝑣ǁ=1)	
is applied on orthogonal directions (u and v). For each latent factor the problem is defined as: 
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𝑎𝑟𝑔𝑚𝑎𝑥#!!…#"! 	1 𝑐𝑜𝑣%(𝑋&!𝑞&! , 𝑋!𝑞!	)

'

&()

 

 
 
𝑞# = global PCA projections 

(3) 

 

 

Features and samples with similar trends are closely projected in the latent space. MCIA is implemented 

in the R package omicade4 (https://bioconductor.org/packages/release/bioc/html/omicade4.html). 
 

2.5. Prediction Evaluation 
 
Cell lines were categorised into drug response categories using the AUC normalised to zero mean and 

unit variance across the available data for the 46 cell lines (z-score) for easier interpretation of results. 

As AUC is dependent on the range of tested drug concentrations, in the event a drug was tested across 

multiple concentration ranges, these were treated as separate drug entities for z-score calculation [74]. 

As described previously [75], cell lines with a z-score less than 0.8 standard deviations (SD) away from 

the mean were defined as a responder whereas cell lines more than 0.8 SDs away from the mean were 

classified as a non-responder. Cell lines that fell between these thresholds were classified as 

intermediate. To evaluate the ability of latent factor approaches to predict drug response the coefficient 

of determination (R2) was calculated for every latent factor/drug combination within each method (see 

equation 4). It is inferred that ability to explain the variance driving differences in drug response enables 

prediction of response using unsupervised learning. 

 

 

 

𝑅% = 	1 −
𝑆𝑆*+,
𝑆𝑆-.-

 

 
R2 = coefficient of determination 
SSRES = sum of squares of residuals 
SSTOT = total sum of squares 

(4) 

 

 

P-values were derived using an F-test from the linear fit used to calculate the R2. The p-values were 

adjusted for multiple testing using the method of Benjamini and Hochberg [76]. 
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Chapter 3. Results 

 

In this project, baseline transcriptomics, epigenomics, expression- and phosphoproteomics and 

metabolomics data from 46 cancer cell lines were used to benchmark MOFA and MCIA, two multi-

omics latent factor methods. The aim was to quality control multi-omics data processing followed by 

evaluation and comparison of statistical frameworks of the methods, particularly the similarities and 

differences in captured variance. Lastly method ability to predict anticancer drug response using the 

AUCs from 288 anticancer drugs was evaluated and compared. This chapter summarises the analyses 

performed to answer the above outlined objectives. 

 

3.1. Data Processing 
 

At the point of data retrieval, data had already been quality controlled, normalised, filtered and, where 

applicable, batch corrected (refer to section 2.1 for more information). A total of 447,149 features were 

measured across all assays, of which there were 28,389 genes, 383,854 genomic regions, 22,285 

phosphorylated proteins, 10,116 proteins and 1,505 metabolites. This showed epigenomics to be over-

represented and metabolomics to be under-represented, though this was expected given ATAC-seq 

Figure 3.1. Overview of multi-omics datasets following processing.  

Upset plot depicting the overlap in cell lines assessed by each omics technology. Rows correspond sets of omics data and 

columns correspond to possible intersections of cell lines. Filled cells represent datasets composing an intersection and the 

bar chart above shows the number of cell lines in an intersection. The table on the right shows the number of features (i.e. 

genes, genomic regions, proteins or metabolites) in each omics dataset before (complete) and after (filtered) additional 

processing.  processing. 



 

 20 

identifies multiple genomic regions per gene and there are vastly less metabolites relative to other 

biomolecules.  Additional data processing was required prior to input into the models (see Figure 3.1). 

This consisted of removing features with missing values, which affected 16,032 phosphorylated 

proteins, 5,512 proteins and 60 metabolites, whereas genes and genomics regions were already filtered 

during pre-processing. Secondly, epigenomics data was filtered to retain only promoter regions, which 

removed 353,734 genomic regions (see section 2.1.2 for more details). Lastly, only cell lines with 

measurements from all omics layers were kept resulting in a total of 42 out of 46 remaining for data 

integration. The resulting data were five complete data matrices with no requirement for imputation.   

 

Metabolomics, expression proteomics and phosphoproteomics were successfully normalised 
but some systematic mean-SD bias remained in transcriptomics and epigenomics 

 

Following processing, the quality of data normalisation was assessed by plotting SD as a function of 

rank mean for each feature in their respective datasets (see Figure 3.2). Well normalised data should 

Figure 3.2. Assessing systematic bias within omics datasets using standard deviation as a function of rank mean.  

Each point represents a feature, and the colouring scale depicts the count (abundance). The x-axis is rank of the mean, 

therefore high abundance features are on the left and low abundance features on the right. The red line represents the 

running median estimator of variance. If there is no variance-mean dependence, the line should be approximately 

horizontal. 
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contain no systematic mean-SD bias; the variance should not be dependent on feature abundance. This 

can be seen for expression proteomics, phosphoproteomics and metabolomics data, exhibited by the flat 

running median estimator of variance. Contrastingly, the median estimator of variance deviated from 

straight for transcriptomics and mildly for epigenomics. This showed some systematic bias remained in 

these data, which could introduce unwanted variance into data integration models. Ideally, data 

normalisation would have been redone, however, raw counts data was unavailable. Thus, 

transcriptomics and epigenomics datasets were unaltered and retained in the analysis, considering small, 

estimated impacts on model learning and downstream analysis.   

 

Selected highly variable features had discordant minimum variance across omics datasets 

 

When running unsupervised data integration methods it is strongly recommended to filter highly 

variable features (HVFs) to remove uninformative features and reduce imbalances between modalities 

[36].  Arbitrary thresholds were used to determine the number of selected features based off the total 

number of features in the dataset (outlined in section 2.1.2). As modalities varied in size, the number of 

selected features varied (transcriptomics = 5,000; epigenomics = 5,000; expression proteomics = 2,000; 

phosphoproteomics = 2,000; metabolomics = 1,000) and the resulting minimum variance of feature 

subsets also differed (transcriptomics = 1.11; epigenomics = 1.19; expression proteomics = 0.49; 

phosphoproteomics = 0.37; metabolomics = 0.01) (see Figure 3.3).  Details of the impact removing 

features and cell lines with missing data had on HVFs selected for each assay can be found in the 

supplementary information (Supplementary Figure S1). The vastly lower feature variance in the 

metabolomics data poses challenges of being under-represented during data integration. Despite this, 

data was retained to see how well methods cope with disparity in variance between modalities.  

 

3.2. Method Evaluation and Comparison 
 

After checking normalisation and selecting the HVFs for each of the five datasets, the data were ready 

to be stacked into a multi-assay experiment for input into data integration methods. The explained 

variance across modalities was investigated prior to evaluating the methods. Both MOFA and MCIA 

were run with the same input data, respective default model parameters and learned ten latent factors. 

The cumulative proportion of variance explained across the ten factors by each assay, and proportion 

of total variance explained by individual factors for each assay was then explored (see Figure 3.4). The 

total variance explained by all factors gives a good indication of the model fit to the data. It is desirable 

for each assay to have a cumulative variance explained greater than 10% and, for the purposes of 

identifying functions across modalities and data integration, learnt factors to have a proportion of total 

variance explained by two assays or more. Otherwise, it is likely the factor is capturing technical 

variance [36]. 
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Metabolomics data introduced noise to latent factor models 

 

Overall the variance decomposition looked quite different between the two methods. MCIA had a 

higher cumulative variance explained for all assays compared to MOFA, meaning MCIAs latent 

representation explained more cell line heterogeneity per assay (see Figure 3.4A). Cumulative variance 

explained varied more between modalities for MOFA than MCIA (R2 range: MOFA = 16.3% to 50.2% 

; MCIA = 33.0% to 48.4%). Metabolomics had the smallest representation in the latent space for both 

methods, which could mean the dataset was introducing noise to the model, particularly in MOFA due 

to only explaining 16.3% of the variance. To investigate this further, the proportion of total variance 

explained by individual factors was explored (see Figure 3.4B). All MCIA factors explained a 

proportion of variance for all assays, whereas each MOFA factor explained variance for a fraction of 

assays i.e. factors explained near zero variance for some assays. For MOFA, metabolomics was the 

only assay to be solely explained by a single factor (factor 4, R2 = 15.5%), while all other assays shared 

factors. This gave a strong indication that the data was introducing technical variance and would likely 

Figure 3.3. Filtering of highly variable features across each of the five omics datasets.  

Features were ranked in descending order based on their variance estimate for the 42 cell lines. The vertical dashed line 

represents the feature rank threshold used for filtering highly variable features and the horizontal dashed line represents the 

minimum variance of selected features. The colour corresponds to whether a feature is included as input for latent factor 

models (blue) or removed (red).  
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require removal. For MCIA the opposite occurred, where metabolomics had a consistently low variance 

explained by all factors, ranging from 2.7% to 4.5%. Altogether this inferred that metabolomics was 

not integrating well with other datasets and was contributing little biologically relevant variance in 

either method. As a result metabolomics data was removed for subsequent analyses evaluating methods.  

 

 

Variance decomposition by view and by factor presented differently in each method 

 

After metabolomics was dropped, both methods were re-run with respective default model parameters 

and learned ten latent factors from the remaining four omics datasets. During this analysis the 

correlation of factors was explored (Figure 3.5A). This is another recommended assessment for MOFA 

model fitting, where many correlations between factors indicates poor model fit [36]. MOFA had a 

moderate correlation between factor 1 and factor 4 (r = 0.43), but otherwise all Pearson correlation 

coefficients were below 0.21. When numerous correlations are found, it is advised to reduce the number 

of factors or check data normalisation to reduce correlations between learnt factors. As normalisation 

Figure 3.4. Evaluation and comparison of total variance explained by MOFA (left) and MCIA (right) models. 

A Cumulative proportion of total variance explained by each assay. B Proportion of total variance explained by individual 

factors for each assay. Colour density represents the proportion of the variance explained. 

  
RNA = Transcriptomics; ATAC = Epigenomics; EP = Expression proteomics; PP = Phosphoproteomics; Met = Metabolomics 
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Figure 3.5. Evaluation and comparison of latent factor correlations and variance explained by MOFA (left) and MCIA 

(right) models using refined inputs.  

A Plot of correlation matrix for latent factors. The areas of circles show the absolute value of corresponding Pearson correlation 

coefficients. Colour depicts the direction (positive correlations are displayed in blue and negative correlations in red) and size 

(low correlations have low colour intensity and high correlations have high colour intensity) of correlation coefficients. B 

Cumulative proportion of total variance explained by each assay. C Proportion of total variance explained by individual factors 

for each assay. Colour density represents the proportion of the variance explained. 

  
RNA = Transcriptomics; ATAC = Epigenomics; EP = Expression proteomics; PP = Phosphoproteomics 

 



 

 25 

had already been considered, a reduction in factors was investigated but did not impact the correlation 

between factors 1 and 4 (see Supplementary Figure S2). Given the size and number of correlations, the 

MOFA model fit was suboptimal but adequate to continue. As expected, MCIA factors showed no 

correlation. 

 

Similar to the previous analysis, the cumulative proportion of variance explained across the ten factors 

by each assay, and proportion of total variance explained by individual factors for each assay was 

explored (Figure 3.5B and Figure 3.5C, respectively). The removal of metabolomics data affected the 

total variance explained per assay in both methods by only a small amount, where the largest effects 

were seen in epigenomics for MOFA (+3.5%) and phosphoproteomics and expression proteomics for 

MCIA (+3.1% and +2.7%, respectively). Thus, this provided further evidence that metabolomics had 

not integrated well, and it made reasonable to remove the dataset from analysis for model evaluation 

and comparison. Each method emphasised variance of different assays, shown by different cumulative 

explained variance. Epigenomics had the greatest variance explained across MOFAs ten learnt factors 

(53.7%), followed by transcriptomics (34.9%). Whereas phosphoproteomics and expression proteomics 

jointly had the greatest cumulative variance explained in MCIA (51.3% and 51.1%, respectively). 

Interestingly, for both MCIA and MOFA, expression proteomics and phosphoproteomics had almost 

identical cumulative variance explained within each method, differing by 0.2% in MCIA and 0.7% in 

MOFA, but between methods total variance differed by approximately 30%. Inspecting more closely at 

a factor level, similarly to in the previous analysis, all MCIA factors explained a proportion of variance 

for all assays, but all MOFA factors, except factor 6, explained almost zero variance for at least one 

assay. The average range of variance explained by factors was 8.0% for MOFA and 2.3% for MCIA, 

emphasising that the proportion of variance explained by each factor in MCIA was less divergent across 

assays compared to MOFA. The first factor of MOFA captured a strong source of variability present 

across transcriptomics (15.5%), phosphoproteomics (9.9%) and expression proteomics (10.2%). 

Correspondingly, factor 1 of MCIA captured a strong signal from all data modalities (transcriptomics 

= 11.4% ; epigenomics = 7.7% ; expression proteomics = 14.3% ; phosphoproteomics = 14.2%). Factors 

that capture strong variance across multiple modalities, such as these, are likely to be important sources 

of variability in the data.  

 

Latent factor combinations were unable to cluster by cancer type in either method 

 

The relationship between factors was investigated by visualising pairwise combinations of factors and 

evaluating is clusters align with cancer type. Factors 1 and 2 are shown as an example (see Figure 3.6), 

but the full set of pairwise combinations can be found in the supplementary information (see 

Supplementary Figure 3). All factor combinations for both methods poorly formed clusters, indicating 
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neither method was able to identify groupings of similar cell lines. As a result, both methods were 

unable to cluster cell lines by cancer type. 

 

 

Strongly correlated latent factors could be identified between the two methods 

 

To investigate the relationship between the two models further, pairwise Pearson correlation 

coefficients between the latent factors from the two models were calculated and plotted (see Figure 3.6). 

In general, there was little to no correlation between each methods factors, with some exceptions. Strong 

negative correlations were found between factor 1 (r = -0.89) and factor 2 (r = -0.78) with their relative 

factor. Whereas, strong positive correlations were found between MOFA factors 5 and 6 and MCIA 

factors 3 and 5, respectively (r = 0.79; r = 0.87). It is assumed that strong absolute correlation (r > 0.8) 

between method factors showed both methods were able to find factors explanatory of the same 

variance.  

Figure 3.6. Visualisation of cancer cell lines using MOFA (left) and MCIA (right) latent factors 1 and 2. 

Each point represents a cancer cell line and colour denotes the cancer type. 
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3.3. Evaluation of Drug Response Prediction 
 

Model factors were unable to confidently predict anticancer drug response 

 
Next, the ability of both methods to predict anticancer drug response in the 42 cell lines was assessed. 

Using trained model outputs, the relationship between latent factors and drug response was explored by 

calculating the proportion of variance for drug response that is explained by factor values (R2). Drug 

response values range between zero and one, where one shows a low responsiveness to a drug and zero 

shows high responsiveness to a drug. The GDSC2 dataset contained data for 288 anticancer drugs across 

38 of the 42 cell lines, though the data were incomplete as some drugs had data on less than 38 cell 

lines. To ensure there were sufficient data for drug response prediction, only drugs with data for at least 

20 cell lines were considered for the analysis. In addition, some drugs appeared multiple times in the 

dataset with different dose response concentrations. In these instances the drugs were treated separately, 

which resulted in a total of 285 compounds being analysed. This resulted in a total of 5,700 comparisons 

made. 

 

MOFA and MCIA performed very similarly, as neither of the model factors were able to explain more 

than approximately 30% variance in drug response across cell lines and the majority of drugs had less 

Figure 3.7. Investigation of correlation between latent factors of MOFA and MCIA.  

A correlation plot for MOFA (top) and MCIA (left) latent factors. The size of the dots indicates the absolute value of the 

corresponding Pearson correlation coefficients. Colour depicts the direction (positive correlations are displayed in blue and 

negative correlations in red) and size (low correlations have low colour intensity and high correlations have high colour 

intensity) of correlation coefficients. B Relationship between cell line factor values for highly correlated latent factors 

shown in A. MOFA factor values are on the x-axis and MCIA factor values on the y-axis. Left shows the relationship 

between MOFA factor 1 and MCIA factor 1 and on the right shows the relationship between MOFA factor 6 and MCIA 

factor 5. 
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than approximately 10% variance explained (see Figure 3.8). In this instance, outliers are a positive 

result as they indicate drugs whose response could be better predicted using the latent factors than the 

majority of the drugs. MOFA was able to mildly predict response (R2 > 0.3) of two drugs, Redmodelin 

Figure 3.8. Evaluation of MOFA (top) and MCIA (bottom) latent factor ability to explain variance in anticancer 

drug response. 

Boxplots depict the spread of explained variance (R2) between factor value and drug response. Boxes represent the 

interquartile range (IQR) and whiskers represent the minimum (Q1-1.5*IQR) and maximum (Q3+1.5*IQR). Dots represent 

outliers that fall beyond the minimum or maximum. Drugs with an R2 greater than 0.3 are labelled. 
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(R2 = 0.32) and AZD7762 (R2 = 0.32), while MCIA was only able to predict one, AZD6482 (R2 = 0.33). 

These three drugs were inspected more closely for significance using p-values derived from the linear 

regression model and compared to the best prediction (highest R2) in the respective other method (see 

Table 3.1). Between methods there was a difference of approximately 10% of variance explained for 

each drug and interestingly, moderate correlations were found between best performing factors for 

Remodelin (r = -0.51) and AZD7762 (r = 0.61). However, no factors predictions were significant 

following Benjamini & Hochberg correction [76]. Although not significant, MOFA factor 8 was 

characterised in relation to AZD7762 drug response for demonstrative purposes (see Figure 3.8). 

AZD7762 was chosen over Remodelin and AZD6482 due having the lowest adjusted p-value whilst 

having a similar R2 value. From this point on, factor 8 will refer to MOFA factor 8 and drug response 

will refer to AZD7762 drug response.  

 

 

Epigenomic signatures of MOFA factor 8 were unable to explain AZD7762 drug response 

 

Cell lines were categorised into responder and non-responder groups for easier interpretation of results 

(see section 2.5 for more information). Out of the 38 cell lines there was data available for, eight were 

classified as responder (x̄ - 0.8SD) and ten as non-responder (x̄ + 0.8SD). The remaining 20 cell lines 

were classified as intermediate, meaning drug response did not deviate far enough from the mean to be 

classified in either group (see Figure 3.9A). Factor 8 and drug response had a moderate positive 

correlation (r = 0.56), however factor value was unable to separate the three drug response categories 

(see Figure 3.9B). The top ten weighted epigenomic features in factor 8 were then explored (see Figure 

3.9C). Data showed that factor 8 explained the most variance in the epigenomics dataset (3.8%) and so 

this assay had the greatest likelihood of finding biologically relevant signal to drug response within this 

factor. Weights indicate how much a single feature contributes to the latent factor, enabling biological 

interpretation of factors. Weights range from zero to one, where zero indicates no association to a factor 

and one shows high association. The direction of effect is represented by the sign of the weight, positive 

Table 3.1. Summary of best performing drug response predictions by model factors.  

P-values were derived using an F-test from the linear fit used to calculate the R2 and adjusted for multiple comparisons within 

methods and factors using the Benjamini & Hochberg correction [76]. 
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Figure 3.9. Epigenomic characterisation of factor 8 in relation to AZD7762 response using MOFA.  

A Density of AZD7762 drug response across 38 cell lines. Drug response values range between 0 and 1, where 1 shows a 

low responsiveness to a drug and 0 shows high responsiveness to a drug. The vertical dashed line represents the mean drug 

response for AZD7762 and dotted lines represent ±0.8SD from the mean. Coloured areas correspond responders (blue), non-

responders (green) and intermediate (red). B Relationship between factor 8 values (x-axis) and AZD7762 drug response (y-

axis). Colour represents drug response category and shape represents primary disease. C Absolute weight of top 10 features 

of MOFA factor 8 in the epigenomics data. The corresponding weight sign is depicted on the right, where positive signs 

depict higher levels of abundance in cell lines, and vice-versa. D Relationship between MOFA factor 8 values (x-axis) and 

peak count (y-axis) for the top 4 peaks with largest absolute weight. Cell lines are coloured by response category. 
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indicates the feature has higher abundance in cell lines with positive factor values, and negative 

indicates the feature has lower abundance in cell lines with positive factor values. The top ten features 

had weights over 0.8, showing high association to factor 8. Lastly, the relationship of the top four 

features with factor values and response categories of cell lines was investigated (see Figure 3.9D). All 

features had a moderate correlation with factor values (abs(r) = 0.48 to 0.65), however, showed no 

relationship with drug response category, indicated by lack of separation of categories.  
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Chapter 4. Discussion 

 

In this study, where transcriptomics, epigenomics, metabolomics, expression- and phosphoproteomics 

datasets from 46 baseline cancer cell lines were used to benchmark latent factor methods, MOFA and 

MCIA, three objectives were completed. The first objective comprised quality control of multi-omics 

data processing prior to model input, such as normalisation and highly variable feature filtering. The 

second aimed to compare the low dimensional representations of the five omics datasets produced by 

MOFA and MCIA, in addition to the computational implementation of methods. Lastly, the third 

objective was dedicated to evaluating the ability of model factors to predict anticancer drug response, 

and if applicable, whether molecular signatures associated with drug response could be found. 

 

Several insights were gained from this study, as follows. Prior to model fitting, selecting the number of 

highly variable features based on total number of features is not sufficient to capture a consistent 

minimum variance across datasets. Following model training, MOFA and MCIA derive different 

amounts of signal from each dataset and so produce contrasting latent representations of the same data. 

Despite these differences, both found the metabolomics dataset to be noisy, though portrayed in 

different ways, and were able to find latent factors that explained the same variance. When investigating 

the variance explained by factors, neither of the model factors were able to confidently predict cell line 

response to any anticancer drug and no molecular signatures of response could be found in the single 

example explored. 

 

4.1. Model Inputs  
 
Below, limitations of data processing impacting results are reviewed. As in most multi-omics datasets, 

the five omics datasets retrieved for analysis had both unmatched features and unmatched samples. To 

enable a fair comparison of both MCIA and MOFA, only cell lines with measurements across all omics 

were kept and features with any missing measurements across samples were removed. By filtering the 

datasets to complete matrices, this may have limited the ability to see strengths of MOFA over MCIA, 

in terms of integration and imputation capability. Unlike MCIA, MOFA can handle unmatched, 

incomplete datasets as input i.e. samples do not need to be matched across datasets and missing 

measurements are tolerated within datasets. Therefore, a limitation of this study was that there was 

unnecessary data loss to the MOFA model by removing cell lines and features with missing 

measurements, which impacted the subset of HVFs selected for all omics datasets (Supplementary 

Figure S1). As a result, it is plausible that different sources of biological variation across modalities 

could have been discovered and differentiated performance of MOFA from MCIA, for better or worse. 
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If time permitted, a comparison of the impact of removing missing data on the latent space and drug 

response predictions would have been very interesting. It should be noted that when missing data is 

present, MOFA simply ignores the missing values from the likelihood estimations and there is no hidden 

imputation step. Rather, as part of the downstream analysis values can be imputed for biological 

interpretation, which has been shown to be more accurate than other established imputation strategies 

[33]. To avoid data loss in the first instance, methods are available that handle missing rows in multiple 

omics datasets through exploiting the correlation structure across datasets [77]. However, these methods 

risk reducing the variability in the low-dimensional representation and breach modality independence 

assumptions required by underlying statistical approaches of many methods. Thus, although imputation 

can be performed as part of data pre-processing, it is best avoided given the unknown impact on 

downstream analyses [25].  

 

During data processing it was noted that the transcriptomics data had a deviated running median 

estimator and so there was some systematic bias present (Figure 3.2). It is probable that this is the result 

of normalisation using the TPM method opposed to the variance stabilising transformation (VST) 

method. Argelaguet et al [36] state that appropriate normalisation during data processing is critical for 

MOFA and recommend data should be normalised according to the likelihood model used. For example, 

counts-based data should undergo size factor normalisation followed by VST to fulfil a Gaussian 

distribution [36]. Meng et al do not make any explicit recommendations on data normalisation for 

MCIA, but note from their analysis that the variance in transcriptomics data was sensitive to pre-

processing [38]. It is likely that any bias remaining after normalisation would be captured strongly in 

an early factor and downweight other sources of variation. Interestingly, transcriptomics contributes the 

most variance explained in MOFA factor 1, whereas in MCIA factor 1, transcriptomics only captures a 

small amount of signal relative to expression- and phosphoproteomics. This finding could suggest that 

MOFA is more sensitive to data normalisation, which would be reasonable given the noise term that 

relies on likelihood models. This hypothesis could be tested by investigating the relationship between 

raw RNA counts and gene rank in top loadings for factor 1 in each model, where a high correlation 

would suggest inadequate normalisation for the given model. 

 

It is advised to subset HVFs during data processing to decrease large imbalances in size between 

modalities, simply interpretation and speed up model training [36]. In this analysis, arbitrary thresholds 

were chosen to select HVFs. Thresholds for transcriptomics and epigenomics were set at 5,000 features, 

in line with implementation by Argelaguet et al [33], and altered accordingly to the reduced size of 

other omics datasets. This selection method successfully reduced the imbalance of size between 

modalities, however, the minimum variance of feature subsets differed (Figure 3.3). This potentially 

means that modalities with higher minimum variance (transcriptomics and epigenomics) are over-

represented in factors, causing smaller sources of biological variation from other modalities 



 

 34 

(metabolomics, expression- and phosphoproteomics) to be missed. If this were the case, the total 

variance explained by each assay would be expected to follow the same pattern as the minimum 

variance of feature sets, i.e. low minimum variance results in low total variance explained and vice-

versa. However, this does not occur for either method. This means that either the minimum variance 

does not impact the total variance explained of modalities, or other sources of technical variance are 

having a greater effect. Arguably, more sophisticated methods for feature selection could have been 

used, based on the variance of each dataset. A heuristic approach would be to use the elbow method, a 

technique often used to determine the optimal number of clusters in a dataset during clustering analysis. 

The method consists of plotting sum squared error (SSE) as a function of the number of clusters and 

using the “elbow” on the curve to decide number of clusters to use [78]. This can be translated to this 

analysis by using the “elbow” on the feature variance/rank curves (Figure 3.3) to determine the optimal 

number of features, which would produce omics-specific thresholds and likely reduce the range of 

minimum variance between selected feature sets. However, this method could be problematic due to 

the high number of features causing difficulty in unambiguously identify at which feature rank the 

“elbow” falls. An alternative method could be defining a minimum variance threshold to apply across 

all omics and determine the number of kept features for each dataset by looking at which rank the 

threshold line crosses the variance/rank curve (Figure 3.3). Although these methods have stronger 

influence over the minimum feature variance across modalities, there is no control over the number of 

features selected. Therefore, this could result in extremely small datasets or even removal of whole 

datasets, which would be the case for the metabolomics data in this investigation. It is plausible that 

having too few features in a dataset, despite having high variance, could impact representation in factors 

and ability to extract functional insights. Altogether, this raises the question of where the balance should 

be struck between quality and quantity of features for optimal data integration and downstream analysis. 

If time permitted, it would be interesting to look at the impact of different feature selection methods on 

model outputs. 

 

4.2. Implementation 
 

MCIA and MOFA are implemented and available in the R/Bioconductor packages omicade4 and 

MOFA2, respectively. MCIA was first released in 2014, being built on top of the ade4 R package.  

Whereas MOFA was first released more recently in 2018 and has since been re-released under the name 

MOFA+ (R package MOFA2) in 2020. In terms of documentation, MOFA benefits from having a 

GitHub Pages website, covering installation, troubleshooting, tutorials and much more. In addition, 

there is a MOFA community Slack group for quick, personalised help. Contrary to this, MCIA has 

limited documentation and user support. Running both models was very simple in this investigation as 

default parameters were used and the number of factors were pre-defined. MOFA has a multitude of 
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parameters for defining data, model and training options, whereas MCIA has very few. Therefore, 

MOFA is better equipped to be fine-tuned for a given analysis, but greater complexity and risk of 

overfitting are a consequence. Though, MOFA has been shown to lack overfitting in large-sample 

settings, however stability reduces with smaller sample size [79]. For downstream interpretation, MCIA 

has limited built-in capabilities compared to MOFA. The package produces a 4-panel figure that 

summarises the sample space, feature space and factor values, but can only view the relationship 

between two latent factors at a time. Thus, custom libraries need to be built to produce more 

customisable outputs. MCIA imposes no sparsity on results, so interpretation requires additional 

methods, such as enrichment analysis, to be able to reveal functional insights. In comparison, MOFA 

has functions available for data extraction, plotting and enrichment analysis,  plus the sparsity constraint 

means that results are more interpretable. To note, the additional capabilities of MOFA such as multi-

group analysis, spatio-temporal relationships and GPU acceleration were not applicable for 

investigation during this project.  

 

4.3. Performance of Data Integration 
 
At present, latent factor method benchmarking studies have evaluated methods by investigating 

clustering, outcome prediction, classification into sub-groups and ability to find relevant variables in 

data types [29, 40]. However, performance of data integration has not been benchmarked and is rarely 

included in published multi-omics studies. It is important to assess the variance decomposition of 

factors to understand how well factors are capturing variance across modalities, and so, how well the 

data is integrating and whether technical variance is being introduced. In the first integration of all five 

omics datasets, metabolomics data was considered to integrate poorly and introduce noise to the model 

(Figure 3.4). This conclusion was primarily driven by the presentation of the metabolomics data in 

MOFA, where the dataset was explained by a single, unshared factor with high variance explained. 

Whereas in MCIA metabolomics had a consistently low variance explained across all factors. 

Argelaguet et al noted that MOFA factors capture variance of multiple modalities, which can help to 

mitigate assay noise. Therefore it can be inferred that a factor driven by a single modality will be noisy 

[33]. In addition, the tutorial for MOFA analysis of CLL cohort data highlights noisy datasets with 

strong non-linearities will have low total variance explained, which the is exhibited by metabolomics 

data [80]. Alternatively, it is possible that metabolomics doesn’t introduce noise and rather biologically 

doesn’t co-vary with other omics datasets. However, this is unlikely given multiple studies have 

successfully integrated metabolomics with other abundance-based modalities in multi-omics analyses 

[81-83]. It is important to account for differing numbers and weights of features, which can introduce 

bias towards the modalities with a large number of variable features. Without proper scaling issues can 

arise with datasets such as metabolomics, due to inherently having a reduced number of features relative 
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to other omics such as transcriptomics and proteomics [84]. Processing of datasets showed the HVFs 

selected for metabolomics had vastly lower variance than selected features from other modalities, 

making feature selection and scaling the most plausible reasons why the data failed to integrate. 

Moreover, metabolomics differs to other omics technologies as cell culture media can heavily influence 

cell metabolism, particularly when cells are in a steady state [85]. Therefore, metabolite measurements 

may have been more representative of differences in growth media opposed to biologically meaningful 

differences. This could have been another contributing factor to the poor integration. The differing 

presentation of suspected noisy data between methods is likely due to the sparsity constraint imposed 

in MOFA, which reduces non-zero loadings in latent factors. This in turn causes MOFA factors to 

strongly associate with a small number of modalities [32]. It is possible that the sparse model considered 

the majority of metabolomic loadings to be unimportant due to having  comparatively low variance to 

other omics and so were pruned away. This would result in a small number of features representative 

of the modality, which are less likely to explain overall variance or co-vary with other modalities, thus 

resulting in a single latent factor strongly associated with metabolomics. Whereas in MCIA, loadings 

were not pruned so the model was able to find a higher total variance explained across all modalities. 

Variance in the metabolomics data was able to be related to variance in other datasets and the imposed 

orthogonality of factors meant that a small amount of variance was distributed across all latent factors.  

 

Given the above observations, data integration was rerun with the metabolomics data removed, which 

formed the basis for evaluation and comparison of the low dimensional representations produced by the 

methods. Removal of metabolomics appeared to have no impact on the variance decomposition of other 

modalities when compared to the first set of results, which is further evidence that this dataset was likely 

an outlier. Furthermore, it could be argued that this shows both MOFA and MCIA are relatively stable 

in the presence of noisy data, however, this may only be the case as metabolomics had such low 

variance. The first comparison made between the two methods was investigating the intra-model factor 

correlations. Expectedly, MCIA factors had no correlation to one-another, while some MOFA factors 

were mildly correlated due to no orthogonality constraints (Figure 3.5A). As it is possible for MOFA 

factors to be correlated, it is important to check factor correlations as part of model QC. Correlation 

between two factors indicates that they are partially representative of the same variability in the data, 

and so the model is not optimally fitted. This can be a result of poor normalisation causing factors to 

share systematic bias or due to too many factors being learnt causing overlap in captured variability 

[33]. In this investigation, factors 1 and 4 of MOFA were correlated and a reduction in number of factors 

did not reduce factor correlations (Supplementary Figure S2). Therefore, this leaves inadequate 

normalisation to be the most likely cause. Looking closely at these factors’ variance decomposition, 

factor 1 is most active in the transcriptomics, while factor 4 is most active in the epigenomics. Both 

transcriptomics and epigenomics displayed a degree of systematic bias, so poor normalisation is a 

plausible explanation for this correlation. It would have been preferable to redo the data normalisation 
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during data processing to attempt to correct this, however the raw counts data was not available for 

either dataset. 

 

Further differences can be seen in the cumulative proportion of total variance explained by each assay 

between methods. MOFA found the most signal in the epigenomics data, followed by transcriptomics 

and lastly expression- and phosphoproteomics. Meanwhile, MCIA found the most variation equally in 

the expression- and phosphoproteomics data, followed by epigenomics and transcriptomics (Figure 

3.5B). It was previously discussed that MOFA appears sensitive to technical variance. The emphasis of 

variation in the epigenomics and transcriptomics data could be another representation of this. Both 

datasets had technical variance remaining after normalisation, in addition, no batch correction was 

performed on the epigenomics dataset, which likely explains why it has the highest captured variance. 

Epigenomics is most strongly explained in factor 3 and factor 4, which notably capture little variance 

in other modalities. After investigating factor correlations it was hypothesised that factor 1 and factor 4 

are representative of systematic bias in the transcriptomics and epigenomics, respectively. Therefore, it 

is possible that factor 3 is explanatory of technical batch effects present in the epigenomics. 

Interestingly, MOFA factor 3 was found to weakly correlate with all MCIA factors, so it possible that 

the noise from the batches has been spread across all factors at a low level of variance. This is a similar 

to how the metabolomics data presented in the first data integration, so would have been interesting to 

investigate in more depth to assess whether this dataset should have been removed from analysis. As 

batch and cancer type are confounded, the three cancer types could be analysed separately to see 

whether there is an increase in shared variance of epigenomics with other modalities in factors, which 

would suggest a reduction in technical variation. Alternatively, to look more specifically at whether 

MOFA factor 3 was representative of batch effect, the association between top epigenomics feature 

loadings of factor 3 and batch/cancer type could be investigated. However, this may not be possible 

with this data given latent factors in neither model were able to cluster by cancer type (Supplementary 

Figure S3). There is increasing evidence that cancers are comprised of many subpopulations of cells, 

termed cancer heterogeneity, which means even cell lines of the same cancer type are biologically 

divergent [86]. This is a possible reason for failure of cell types to cluster in this analysis, however there 

is no clustering of cell lines in any pairwise factor plots. Heterogeneity exists across multiple omics 

layer, thus data integration offers potential to decipher subpopulations of cancer cells or highlight 

similarities in subpopulations of different cancer types [87]. Meng et al demonstrated capability of 

MCIA to cluster nine different cancer types using transcriptomic and proteomic datasets [38], however 

Argelaguet et al did not investigate this capability [33, 36]. This raises minor concern with this analysis 

and again highlights the possibility of noise or technical variation being introduced into the models’ 

preventing factors from explaining biologically relevant variation. Figure 3.5B also exhibited that 

MCIA captures over double the amount of variance present in expression- and phosphoproteomics 

compared to MOFA, despite selected HVFs having lower minimum variance than transcriptomics and 
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epigenomics. Phosphoproteomics constitutes changes in both protein abundance and phosphorylation, 

therefore it can be described as dependent on expression proteomics [88]. This relationship means that 

expression- and phosphoproteomics violate MCIAs assumption of independence and are highly likely 

to explain the same variance. This is a possible explanation for why MCIA appears to upweight the 

variance explained in these two modalities. To test this theory, it would have been interesting to assess 

if correcting for protein abundance in the phosphoproteomics data lowered expression- and 

phosphoproteomics total variance explained in MCIA and if this de-coupled the two datasets in the 

variance decomposition of both methods. Overall, these findings suggest that MOFA is more sensitive 

to noise and the benefits of sparsity are reliant on proper removal of technical variance. Whereas MCIA 

appears more sensitive to fulfilment on underlying statistical assumptions. However, these are only 

preliminary hypotheses that require further investigation to fully understand the impact on downstream 

analyses. 

 

Although MOFA and MCIA appear very different, some factors in MOFA and MCIA were highly 

correlated (Figure 3.7). This indicates that despite statistical differences, both methods are able to 

capture very similar variance.  It is important to note that the factor values produced during dimension 

reduction are note directly interpretable, rather they should be interpreted analogously to principal 

components, where the relative positioning is most important. Therefore, when interpretating factor-

factor correlations, it is the absolute correlation that should be focused on and not the direction. High 

absolute correlations were found between factors 1 and 2 to their respective factor in the other model, 

showing they are representative of extremely similar variance. Finding correlated factors increases the 

likelihood of finding biologically relevant data, however this is heavily reliant on data processing 

removing all sources of technical variance. 

 
 

4.4. Performance of Drug Response Prediction  
 
The final objective of this investigation was to evaluate the ability of MOFA and MCIA to predict 

anticancer drug response in cancer cell lines. AUC was used as the measure of drug response as it 

combines information on efficacy and potency and can be calculated for any dose-response curve, 

therefore there are never missing values. Also it has been shown to be robust when making comparisons 

across cell lines [89]. A disadvantage of this metric is that AUC is dependent on the range of drug 

concentrations tested, which can vary between experiments and studies. In this investigation, this 

resulted in some drugs having multiple predictions. R2 values were calculated for all drug and factor 

combinations, which were used to assess the performance of prediction (Figure 3.8). Neither model 

factors were able confidently predict response for any drug, as only a total of three drugs had an R2 
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greater than 0.3, which was considered a threshold for weak predictions. Comparison of method 

performance was difficult as there were no strong predictions (R2 > 0.8). It would have been preferable 

to compare the total number of strong predictions, assess the overlap of drugs predicted and how well 

highly predictive factors of drugs correlate from each method. However, as this was not possible, the 

difference in R2 and correlation between MOFA and MCIAs best predictive factor of each of the three 

drugs was investigated (Table 3.1). This showed the respective methods to differ by approximately 10% 

of variance explained, but two out of the three of the predictive factor pairs were moderately correlated. 

This showed that despite varying ability to predict, both methods extracted similar biological variance 

to explain differences in drug response. However, this small subset of examples not sufficient to make 

a robust comparison between methods. It is possible that benchmarking drug response prediction using 

an alternative method might have been more successful. Due to latent factor methods being 

unsupervised, common performance evaluation metrics such as precision, recall, F1-measure and 

balanced accuracy could not be used [90]. Cox proportional-hazards regression model is a possible 

alternative method to test the association between factors and drug response. This technique was 

successfully applied in multi-omics analysis by Cantini et al to benchmark survival prediction, which 

found both MOFA and MCIA could find predictive latent factors. Although, none of the nine models 

investigated were unable to find predictive factors for lung or ovarian cancer [29]. This is evidence that 

MOFA and MCIA are capable of prediction, but the cancers being investigated might be more difficult 

to predict, possibly due to being particularly heterogeneous [91]. 

 

In this analysis model factors were only explored in isolation for drug response prediction, opposed to 

additionally investigating how combinations of factors can explain data. Looking at pairs of latent 

factors in multi-omics data is similar to looking at PCA plots, where samples will cluster based on their 

similarity [92]. These visualisations are useful to uncover major axes of heterogeneity and align them 

to biological variables. As the axes represent variation across multiple modalities, multiple sets of 

loadings can be investigated to build a more holistic and reliable view of drivers of biological variation 

[93]. For example, Meng et al utilised factors 1 and 2 generated by MCIA to distinguish four subtypes 

of ovarian cancer using transcriptional data from multiple platforms. This enabled consensus genes 

commons across platforms to be identified and associated to ovarian subtypes, forming robust 

biomarkers [38]. Argelaguet et al also looked at the relationship between factors during MOFA analysis 

of CLL data, which found factors 1 and 2 distinguished samples based on somatic mutation status of 

the immunoglobulin heavy-chain variable region gene and chromosome 12 trisomy status. Investigation 

of factor loadings of transcriptomics data found gene associations consistent with literature, reinforcing 

these as important clinical markers in CLL [33]. Although this type of investigation would be very 

valuable for evaluation of drug response prediction, it would be impractical to execute due to the number 

of drugs included in this study. As this type of analysis is unsupervised it requires manual inspection 

for agreement of clusters with biological variables, which in this study would result in a multitude of 
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plots to evaluate. Cantini et al and Pierre-Jean et al evaluated the clustering of methods using Jaccard 

index and adjusted rand index on simulated and real datasets [29, 40]. Therefore, a way to partially 

circumvent the requirement to evaluate all individual plots could be to use a quantitative measure such 

as Jaccard index, adjusted rand index or silhouette score [94]. These coefficients provide a measure for 

how well data is clustered, and so could be applied to subset high scoring factor combinations for 

manual evaluation of whether clusters align with response categories for any anticancer compounds. 

 

For demonstrative purposes, the top epigenomics loadings of MOFA factor 8 was investigated in 

relation to AZD7762 response (Figure 3.9). Unsurprisingly, given the small R2, this investigation was 

unable to find separation of drug response categories in any of the top four feature loadings. This 

demonstrated that none of these four peaks alone, would be able to explain variance in drug response, 

despite being highly associated with factor 8. Should a factor-drug combination have had a high R2, it 

would have been interesting to do gene set enrichment analysis and pathway enrichment analysis on the 

genes associated with the most weighted epigenetic features to improve understanding of molecular 

signatures and pathways associated with drug response [95, 96].  

 

These findings altogether show that although some variance in cell line drug response can be explained 

by methods, neither MOFA nor MCIA are able to predict drug response using baseline omics data. 

However, it is difficult to tell if the models truly can’t predict drug response or whether the data input 

was not good enough to be able to extract biologically relevant variance. Literature shows success of a 

variety of algorithms, such as deep learning [97], random forests [98], naïve bayes classifier [52] and 

manifold learning [99], to predict drug response using publicly available omics and drug response data. 

Although manifold learning is the only example of an unsupervised learning technique, this points 

towards the data being the reason for poor drug response predictions. Common data types present in 

these studies are mutation and/or copy number variation, which aren’t present in this analysis. One 

element contributing to low predictive power could be a lack of genomic profile data, such as these. 

Additionally, these studies use a range of 3 to 4 modalities. Thus it is possible that reducing the data 

input to models, for example only including transcriptomic and proteomic data, could improve ability 

to predict. In future work it would be interesting to investigate combinations of different modalities and 

how this alters predictive power in each model. Another impacting factor could be the small number of 

cell lines included in this study. A pharmacogenomic study showed that downsampling subsets of cell 

lines rapidly reduced the number statistically significant associations between cancer functional events 

and drug sensitivity [43]. This highlights the benefit of a large collection of cell lines to increase 

statistical power. 

 

This analysis has presented that there was likely to be remaining systematic bias and technical variance 

in the data following data processing, as well as probable low statistical power due to only having 
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complete data on 42 cell lines. Furthermore, feature selection prior to model training resulted in unfair 

feature subsets with differing variance. Consequently, these factors together plausibly interfered with 

both models’ ability to find smaller sources of more relevant variation to derive functional insights. If 

time permitted, it would have been interesting to see the impact of the following on drug response 

prediction performance: 1) revised normalisation for transcriptomics and epigenomics data (pending 

raw counts data retrieval), 2) protein abundance correction of phosphoproteomics data and 3) revised 

feature selection using a minimum variance threshold. Improvements in experimental design could have 

also been made, such as analysing each cancer type separately. This would not only have removed noise 

introduced by epigenomic batches, but also potentially improved predictions. This is evidenced by 

Cantini et al finding that the number of latent factors associated with survival was driven more by cancer 

type than data integration method during their benchmarking study [29]. Additionally, this would have 

doubled up as a good use case to test the multi-group function of MOFA. The drug response data is 

another variable that might have impacted the ability of methods to predict response. This analysis used 

data from the public database GDSC. Instantly, a potential issue using public data in combination with 

in-house data is that it isn’t guaranteed cell lines used for drug response analysis come from the same 

source as those used for omics analysis. Different sources can be considered as different strains of the 

same cell line, where vast differences in gene expression, morphology and, importantly, drug response 

can be observed [100]. Therefore, it is possible that the drug response values used during this analysis 

might differ to the true drug response of cells analysed, thus impacting the accuracy of predictions. 

Secondly, using a single drug response dataset may reduce the robustness of predictions. There are 

multiple public datasets available that use different viability assays for response profiling and contain 

varying cell lines and drugs, therefore ability to predict may vary depending on the dataset used. 

Examples of other datasets available include the National Cancer Institute 60 (NCI60), Cancer Cell 

Line Encyclopaedia (CCLE) and Cancer Therapeutics Response Portal (CTRP) [101]. Multiple data 

harmonisation approaches exist that could be implemented on public datasets to provide a more accurate 

and robust measure of drug response for use in this analysis [74, 102-104].   
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Chapter 5. Conclusion 

 

This research aimed to give an in-depth comparison of MOFA and MCIA, divided into three objectives. 

The first objective comprised investigating quality control of multi-omics data processing, for example  

data normalisation to remove systematic bias and feature selection to reduce imbalances between 

modalities. This complemented the second objective of evaluating and comparing the similarities and 

differences in captured variance by factors and assays. This research highlighted adequate data 

processing to be very important prior to training models, though the extent of impact appeared to depend 

on the statistical framework of methods. Differing underlying assumptions meant each method was 

more sensitive to different parts of data processing, and so decomposed variance very differently. For 

instance, MOFA was found to be more sensitive to bias and noise introduced through poor 

normalisation and batch correction, which related to the sparsity constraint of the method. This showed 

the benefits of sparsity require proper data processing. On the other hand, MCIA was found to be more 

sensitive to the relationship between modalities, due to the assumption of independence between 

datasets when maximising covariance. Considering this, it was difficult to detect the impact of 

inconsistent minimum variance between modalities. Nonetheless, additional investigation into 

alternative feature selection methods could bring value to understanding the impact on data integration 

once data processing concerns have been rectified. To summarise, this showed the importance of good 

data processing and that underlying statistics govern how variance is captured in the latent 

representation of data. 

 

The final objective aimed to assess and compare the ability of trained models to predict anticancer drug 

response, unassisted by supervised learning. This analysis found both methods derived latent factors 

that were able to explain variance in drug response. The distribution of variance explained by factors 

was very similar between the two methods, showing both performed equally. However, neither model 

sufficiently explained variance at a level to be able to predict response. Given the results from the first 

objectives, further research is required to ascertain if this result occurred due to lack of data and/or 

inadequate data. Improvements in data normalisation, batch correction, feature selection and 

experimental design should be able to give a better determination if the models truly can’t predict drug 

response. 
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Supplementary Figures 
 
 
 

 
 

 

Supplementary Figure S1. Overlap of selected highly variable features before and after filtering features and cell 

lines missing data for the five omics datasets.  

min(var) = minimum variance of the feature subset. 

Supplementary Figure S2. Evaluation of reducing number of learnt features on MOFA factor correlations.  

Plots of correlation matrix for latent factors (left = 8 learnt factors, right = 6 learnt factors). The areas of circles show the 

absolute value of corresponding Pearson correlation coefficients. Colour depicts the direction (positive correlations are 

displayed in blue and negative correlations in red) and size (low correlations have low colour intensity and high correlations 

have high colour intensity) of correlation coefficients.  
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Supplementary Figure S3. Visualisation of cancer cell lines using all pairwise comparisons of MOFA 

(top) and MCIA (bottom) latent factors 

Each point represents a cancer cell line and colour denotes the cancer type. 
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Supplementary Tables 

Supplementary Table S1. List of 46 cell lines used in analysis 


