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Abstract

Local Fields, complete discrete valuation fields with a finite residue field, are

an important mathematical tool in number theory; in particular in the topics

of Class Field Theory and Arithmetic Geometry. However, while a lot of work

has been done on when the residue field, F , of the complete discrete valuation

field, F , is finite; dealing with less restrictions on the fields is also an incredibly

fruitful undertaking. This enterprise, both examining some of the work already

done on this topic and also expanding on them, is the focus of the thesis.

In this thesis we look at two important aspects of the theory of complete

discrete valuation fields. To begin with we examine local class field theory

on complete discrete valuation fields whose residue field is an imperfect field of

positive characteristic p. We investigate for which finite abelian totally ramified

p-extensions L/F is the map, ΨL/F , an isomorphism; as before we only knew

it was an isomorphism when L/F was a finite cyclic extension.

We then move onto abelian varieties, A, over complete discrete valuation

fields. The research on this topic focuses on generalising a result by Barry Mazur

about the rational points of an abelian variety with good ordinary reduction

over a complete discrete valuation field with finite residue field, A(F ), to also

deal with complete discrete valuation fields whose residue field is perfect and

has positive characteristic p.

We finish off the thesis by then bringing up further directions to take both

topics in the future. The work here opens up several new avenues in the subjects

to explore and plenty of new research opportunities to be investigated later on.
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Chapter 1

Introduction

An important concept in algebra, and in particular algebraic number theory, is

the process of localisation. The exact process is not important right now, and

is likely known to the reader, but in essence it involves taking a multiplicatively

closed set of a ring, often a prime ideal, and using it to create a set of denom-

inators of a different ring. This new ring is a complete discrete valuation ring

into which the original ring naturally injects. Readers who need a refresher on

the subject can read section 4 of Chapter II of Serge Lang’s “Algebra” [6].

A simple example of localisation is taking a prime number p from the in-

tegers, Z, to form the ring: Z(p) = {a
b

: a, b ∈ Z, p - b}. This ring is now a

discrete valuation ring, with valuation ν(a
b
) being equal to the highest power of

p that divides a, containing the single prime ideal (p).

David Eisenbud described the importance of localisation in his book “Com-

mutative Algebra with a View Toward Algebraic Geometry”:

“The technique of localization reduces many problems in commutative alge-

bra to problems about local rings. This often turns out to be extremely useful:

Most of the problems with which commutative algebra has been successful are

those that can be reduced to the local case.” [1]

Of course we can do more than just localise around a point in a field; we

can then complete the resulting field with respect to its respective valuation.

For example the completion of the above Z(p) makes the p-adic integers Zp.
This gives the benefit of making every Cauchy sequence convergent, giving rise

to properties that were not necessarily there before, such as Hensel’s Lemma.

Taking the field of fractions of such complete discrete valuation rings gives us

complete discrete valuation fields, which are the subject of this thesis.

In the case of this piece of work, we shall only be looking at the subject of

local class field theory and abelian varieties. Both of which can be done over
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CHAPTER 1. INTRODUCTION 7

both “global fields” and, in the case of this work, “local fields”.

Before we go any further we should clarify a piece of terminology. Though

one of the topics we are focusing on is called “local class field theory” we

shall be calling the objects “complete discrete valuation fields”; this is because

the term “local field” is sometimes used to refer exclusively to a complete

discrete valuation field with a finite residue field, see for instance “Algebraic

Number Theory” by Jürgen Neukirch [10]. As we are going to be extensively

talking about complete discrete valuation fields with non-finite residue fields

we should head off any confusion by being more exact in our terminology. The

one exception to this rule is in chapter titles for the purely aesthetic reason

that “complete discrete valuation fields” is a lot more unwieldy when it comes

to a title than “local fields”.

We shall be assuming that the reader already has a basic knowledge of com-

plete discrete valuation fields, local class field theory and algebraic geometry.

Chapter 2, “Literature Review”, directs you to where you can find out about

those topics while also going over other important definitions and results which

you are not expected to already know.

As noted previously, this document focuses on two different topics in the

subject of complete discrete valuation fields. Chapter 3, “Local Fields with Im-

perfect Residue Fields”, is on local class field theory and investigating whether a

fundamental result still holds when we assume that the base field has an imper-

fect residue field. Meanwhile Chapter 4, “Abelian Varieties Over Local Fields”,

is about Arithmetic Algebraic Geometry and generalising a result that is known

to hold over a discrete valuation field with a finite residue field to work over

fields with perfect residue fields. A more extensive summary of the main results

that we investigate of these topics will happen later in this “Introduction”.

An example of the importance of there work undertaken here, is the po-

tential applications of the chapter on local class field theory where the residue

field has an imperfect residue field has on the subject of higher local fields.

The exact definition of such constructs does not matter at this moment, as we

do not go over this subject in the document, but basically K is a higher local

field if K is a complete discrete valuation field whose residue field K is also

a complete discrete valuation field. In fact one can form a chain of complete

discrete valuation fields, with each field being the residue field of the previous

field, as long as the inner-most complete discrete valuation field has a finite

residue field [2]. More information can be found in “Geometry and Topology

Monographs, Volume 3: An Invitation to Higher Local Fields” [2], however one

thing to note here is that if K is equal to, for example, Fp((X)), it is imperfect
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and thus the local class field theory that we talk about in Chapter 3 would be

very useful for when discussing K.

1.1 Overview of the Thesis

There are four chapters, not including the “Introduction”, in this thesis. Chap-

ter 2, “Literature Review”, goes over important background that is required in

order to properly understand the rest of this document. It contains little orig-

inal mathematics, other than some considerations into tying different sections

together.

As noted in the previous section it is Chapter 3, “Local Fields with Imperfect

Residue Fields”, that discusses the main topic of this thesis. Our consideration

of local class field theory when the residue field is imperfect produces several

important results.

We will now go over the important results of this chapter. While this will be

self-contained, with all of the relevant definitions and notations stated, readers

are advised to go over Chapter 3, and the relevant sections of the “Literature

Review”, to get the full picture of the work.

We will let p > 0 be a prime number and set F as a complete discrete

valuation field whose residue field, denoted by F , has characteristic p. The

principal units of F , those elements of the ring of integers of F reduced to 1

when mapped to F , will be written as U1,F .

Assume that F is perfect and let L1/F and L2/F be two finite abelian

totally ramified p-extensions. It is known, and gone over in Lemma 2.3.4, that

if a prime element, π, of F is contained in NL1/F (L∗1)∩NL2/F (L∗2) then L1L2/F

is a totally ramified extension.

Now, we will now longer require that F is perfect and we will construct a,

not necessarily unique, field extension F/F such that F is a complete discrete

valuation field with the following properties:

1) The ramification index of F/F , denoted as e(F | F ), is equal to 1.

2) We have that F =
⋃
n≥1 F

p−n

, so F is the perfection of F .

Theorem 1.1.1. Let F be a field, which may be imperfect, of characteristic p

and let L1/F and L2/F be two finite abelian totally ramified p-extensions and

π be a prime element of F . Theorem 3.3.2 states that if π ∈ NL1F/F((L1F)∗)∩
NL2F/F((L2F)∗), then L1L2/F is a totally ramified extension.

Still keeping that F may be imperfect, let L/F be a finite abelian totally

ramified p-extension. Let F̂ /F be the maximal unramified p-extension of F .
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Define L̂/L in the equivalent way, we do that L̂ = LF̂ . Denote the group of

homomorphisms HomZp (Gal (F̂ /F ),Gal (L/F )) by Gal(L/F )∧.

If F is finite then classical local class field theory tells us there is an iso-

morphism ΨL/F : F ∗/NL/F (L∗) → Gal (L/F ). This has an analogue if F is

perfect as now there is a map ΨL/F : U1,F/NL/F (U1,L)→ Gal (L/F )∧, properly

described in Definition 2.3.5. From Theorem 2.3.1 we have that this version of

ΨL/F has also been shown to always be an isomorphism.

Let F be imperfect and denote U1,F∩NL̂/F̂ (U1,L̂) by U(L/F ) and NL/F (U1,L)

by N(L/F ). In this case, as defined by Definition 2.4.5, there is a map ΨL/F :

U(L/F )/N(L/F ) → Gal (L/F )∧, which is a generalisation of the map we saw

where F was assumed to be perfect. It is not currently known whether the

version of the map is always an isomorphism.

Theorem 1.1.2. Let F be a field, which may be imperfect, of characteristic p

and set L/F as a totally ramified Galois extension whose Galois group is iso-

morphic to (Z/pZ)2. Theorem 3.4.1 shows that ΨL/F must be an isomorphism.

Keeping F as imperfect, let L/F be a finite abelian totally ramified p-

extension, with Galois group denoted by G. Denote by Gi, with i ≥ 0, the

Lower Ramificaion Groups of G and say that G has a ramification jump at a if

Ga 6= Ga+1.

Theorem 1.1.3. Let F be a field, which may be imperfect, of characteristic p

and set L/F as a finite abelian totally ramified p-extension whose Galois group,

G, has a single ramification jump; this means that there exists a non-negative

integer a with G = Ga 6= Ga+1 and Ga+1 = 1. Theorem 3.7.1 tells us that ΨL/F

is an isomorphism.

It is still an open, and interesting, question about for what abelian finite

totally ramified p-extensions, L/F , has ΨL/F as an isomorphism. While we are

not able to determine the nature of ΨL/F for all such extensions we are able to

make some inroads on certain types of extension.

Theorem 1.1.4. Let F be a field, which may be imperfect, of characteristic p

and set L/F as a finite abelian totally ramified p-extension whose Galois group,

G, has two ramification jumps. This means that there are non-negative integers

b > a such that G = Ga 6= Ga+1 and Gb 6= Gb+1, with Gb equally Ga+1 and

Gb+1 = 1. Sections 8 and 9 of Chapter 3 is able to reduce the question of
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whether ΨL/F is an isomorphism or not to whether a certain property holds for

the extension.

The property mentioned in the above theorem is a bit too intricate to be

included in this summary and thus sections 8 and 9 should be read for the

details.

Chapter 4, titled “Abelian Varieties over Local Fields”, deals with the sub-

ject of Arithmetic Algebraic Geometry. Again, readers are recommended to

study Chapter 4 and the last section of the “Literature Review”, to properly

understand the following mathematics.

Let p > 0 be a prime number and F/Qp be a finite extension. Set A as a

d-dimensional abelian variety with good ordinary reduction over F , where d is

a positive integer. Denote by Â the formal group over the rings of integers OF
and A(F )p the p-torsion points of A(F ). Finally, let L/F be a totally ramified

Zp-extension.

Jonathan Lubin and Michael Rosen’s paper “The Norm Map for Ordinary

Abelian Varieties” [7] shows that we can find a “twist matrix” of Â, a non-

singular d × d matrix, denoted by u, over Zp. How to construct u is given in

Definition 2.5.3.

They go onto to show that the following exact sequence, described in The-

orem 2.5.1, can be constructed:

Zdp/((I − u)Zdp)→ A(F )/NL/F (A(L))→ A(F )p → 1

The nature of the map Zdp/((I −u)Zdp)→ A(F )/NL/F (A(L)) shall be explained

in Lemma 2.5.3 and Theorem 2.5.1.

We should note that the above exact sequence by Rosen and Lubin is not

original and [7] instead offers an alternate proof to a result by Barry Mazur,

which they call “Mazur’s Proposition 4.39”, in his paper “Rational Points of

Abelian Varieties with Values in Towers of Number Fields” [8]. However, the

work in this thesis is building on the mathematics of [7] so that is the source

that we will mainly be referencing.

Chapter 4 is exploring the subject of generalising the result of [7] to when

F is only assumed to be a perfect field of positive characteristic p. While a

complete generalisation is not achieved in this thesis the following result is

found:

Theorem 1.1.5. Let F be a complete discrete valuation field such that F is

perfect and has positive characteristic p. Let F̂ /F be the maximal unramified
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p-extension of F . Next, let A be a d-dimensional abelian variety with good

ordinary reduction over F such that the formal goup associated to A has an

isomorphism to Ĝd
m over OF̂ . Finally, assume that L/F is a totally ramified

Zp-extension.

We can construct the group Q and create the following exact sequence:

Q→ A(F )/NL/F (A(L))→ A(F )p

While the definition of the group Q is given in Theorem 4.2.2 and Notation

4.2.2, its exact properties are currently unknown, though some analysis is given

in the last two sections of Chapter 4.

After Chapter 4 the final chapter, which is called “Conclusion” briefly goes

over how to continue the research that we have already done in this thesis. It is

there to provide some ideas for mathematicians, either myself or someone else,

to explore in the future.



Chapter 2

Literature Review

This chapter shall be briefly going over the background information for local

class field theory and arithmetic geometry that I used for my own research.

Full proofs and explanations shall not be provided but we will be talking about

the relevant documents where the information can be found.

As a reminder we shall be assuming that readers are familiar with the basics

of complete discrete valuation fields, local class field theory and algebraic ge-

ometry. If the reader is not proficient in such matters they are directed towards

the first four chapters of Professors Ivan Fesenko and Sergei Vostokov’s book

“Local Fields and their Extensions” [5], an invaluable resource on the first two

subjects and the course notes on “Algebraic Geometry” by Professor Emeritus

James S. Milne, the latest version of the notes can be found on Milne’s official

website, for the last [9].

2.1 Preliminary Matters

Before we can begin the proper review of other mathematician’s work there

are a few of notations and definitions that we use in this thesis and must be

established. These are all from “Local Fields and their Extensions” but we

explain them here in case the reader is not familiar with them.

Notation 2.1.1. Let F be a complete discrete valuation field. We will set OF
to be the ring of integers of F and MF to be the maximal ideal of OF .

We will next let F be the notation for the residue field of F , so F = OF/MF .

Finally, for α ∈ OF , we will let α be the image of α under the natural map

from OF to F = OF/MF .

Notation 2.1.2. Let F be a complete discrete valuation ring with fixed prime

element πF . For non-negative integers i define the λi-maps as follows:

12
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• λ0 : UF → F
∗

with λ0(α) = α.

• λi : Ui,F → F sends λi(1 + απiF ) = α, for i ≥ 1.

Definition 2.1.1. Let F be a complete discrete valuation field. We will denote

by F ur the maximal unramified extension of F . This makes F ur the minimal

extensions of F such that e(F ur/F ) = 1 and F ur is the separable closure of F .

Notation 2.1.3. Let F be a complete discrete valuation field with F having

positive characteristic p. Let L/F be a totally ramified cyclic extension of

degree p, with σ as a generator of Gal (L/F ). Finally let πL be a prime element

of L.

Define s(L/F ) as νL((σ(πL)/πL)− 1).

Note 2.1.1. For details about the properties of s(L/F ), such as how it is a well

defined construction, please look at sections (1.4) and (1.5) Chapter III of [5].

Notation 2.1.4. Let F be a complete discrete valuation field with characteristic

0 and whose residue field has positive characteristic p. We will define e(F ) to

be νF (p).

There is also the following basic definition that we should clarify.

Definition 2.1.2. Let F be a complete discrete valuation field. An extension

L/F is called abelian if it is a Galois extension and Gal (L/F ) is an abelian

group.

With the above necessities out of the way we can start the overview of Local

Class Field Theory where the residue fields are not finite.

2.2 Review of Local Class Field Theory with

Quasi-Finite Residue Fields

This section shall be focusing on the work done on local class field theory where

the base field is assumed to have a quasi-finite residue field. It is the next step

up from local class field theory where the base field has a finite residue field.

Most of the information has can be found in George Whaples’ series of

papers on the subject [11] [12] [13] [14] [15], however there is a summary of

Whaples’ work in the first three sections Chapter V of [5].
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We should note that despite the fact that “Local Fields and their Exten-

sions” is not the primary source of this information that is what we are going

to be referring to in this section. This is because one of the authors of the

book also wrote the papers we discuss in the next two sections. He uses the

same terminology and types of mathematics throughout his work on local class

field theory, which makes it much easier to relate what is written here to the

mathematics of the later sections.

Definition 2.2.1. A field K is quasi-finite if it has the following two properties:

1) K is a perfect field.

2) For each integer n > 0, there is precisely one extension N/K of degree

n. We also have that N/K is a Galois cyclic extension.

Note 2.2.1. It is clear that if K is a finite field then it is quasi-finite.

Note 2.2.2. Throughout this section we will be assuming that F is a complete

discrete valuation field whose residue field, F , is quasi-finite. We will also be

assuming that char (F ) = p > 0 as it more closely relates to the work we will

do later. Finally, we will assume that L/F is an arbitrary finite Galois field

extension of F .

Note 2.2.3. It should be stated that nearly everything we will be initially looking

at here is the same as if F was finite. The main difference between local

class field theory when F is finite and when we assume only that F is quasi-

finite comes with the Existence Theorem; only when F is finite is every open

subgroup of F ∗ with finite index a norm group. We will however be going over

the mathematics again in order to refresh any readers on the subject and to

showcase the similarity.

Definition 2.2.2. We will let F be equal to either F ur or its completion, as

the situation demands. This option is because F ur is not necessarily a complete

discrete valuation field. For a finite Galois extension L/F we will set L to be

LF .

Note 2.2.4. For a finite Galois extension L/F we have that F ⊆ L and that L/F
is Galois with Gal (L/F ) ∼= Gal (L/L0), here L0/L is the maximal unramified

subextension of L/F .
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Definition 2.2.3. Let us fix an isomorphism t : Gal (F
sep
/F ) → Ẑ, which

exists as the definition of quasi-finite fields means the absolute Galois group of

F is isomorphic to Ẑ. We will denote the element of Gal (F
sep
/F ) mapped to 1

under t by ϕ. We know that we have Gal (F ur/F ) ∼= Ẑ ∼= Gal (F
sep
/F ), and thus

we call the element of Gal (F ur/F ) mapped to ϕ the Frobenius automorphism

and denote it by ϕF .

Note 2.2.5. There is no canonical unique Frobenius automorphism of F unless

F is finite. As such we need to fix which Frobenius automorphism of F we are

using ahead of time.

Definition 2.2.4. Using the Frobenius automorphism in Definition 2.2.3 define

the following set:

Frob (L/F ) = {σ̃ ∈ Gal (Lur/F ) : σ̃ |Fur= ϕnF , n ∈ Z>0}

Note 2.2.6. It should be clear that every element of Frob (L/F ) is an extension

of a unique element of Gal (L/F ). We will denote σ̃ |L, for σ̃ ∈ Frob (L/F ), by

σ.

We will now define a proto-Neukirch homomorphism, denoted by Υ̃L/F .

Definition 2.2.5. Let σ̃ be an element of Frob (L/F ). We have that σ̃ ∈
Gal (Lur/F ) and let Σ be the fixed field of σ̃ in Lur. Fix a prime element of Σ,

denoted by πΣ, and define Υ̃(σ̃) as being NΣ/F (πΣ) mod NL/F (L∗).

Lemma 2.2.1. We have that Υ̃L/F : Frob (L/F ) → F ∗/NL/F (L∗) is a well

defined homomorphism.

Proof. The proof of this lemma can be found in two chapters, Lemma (2.2)

Chapter IV and section (1.3) Chapter V in [5].

Note 2.2.7. Since we are using the mathematics in [5] we are going to be follow-

ing the methods Professor Ivan Fesenko use. This means that at the moment

we will define the Neukirch homomorphism, and show that it is an isomor-

phism, only in the cases where L/F is a finite unramified extension. We should

point out that since F is quasi-finite all finite unramified extensions of F are

abelian. We shall deal with the other finite Galois extensions of F after we

have discussed and defined the map ΨL/F .
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Lemma 2.2.2. Let L/F be a finite unramified extension, we have that Υ̃L/F is

independent of what element of Frob (L/F ) extends a given element of Gal (L/F ).

As such if σ̃ and θ̃ are two elements of Frob (L/F ) such that σ̃ |L= θ̃ |L then

Υ̃L/F (σ̃) = Υ̃L/F (θ̃).

Proof. The proof of this lemma can be found in two chapters, Theorem (2.4)

Chapter IV and section (1.3) Chapter V in [5].

Definition 2.2.6. From the above lemma we may define the Neukirch Ho-

momorphism for all finite unramified extensions L/F as ΥL/F : Gal (L/F ) →
F ∗/NL/F (L∗). This is defined by taking an element σ ∈ Gal (L/F ) extending

it to an element σ̃ ∈ Frob (L/F ) and applying Υ̃L/F to σ̃.

Theorem 2.2.1. For a finite unramified extension L/F , the Neukirch homo-

morphism:

ΥL/F : Gal (L/F )→ F ∗/NL/F (L∗)

is an isomorphism.

Proof. The proof of this theorem can be found in two chapters, Theorem (2.4)

2 Chapter IV and section (1.3) Chapter V in [5].

In order to be able to define ΥL/F for all finite abelian extensions of F we

also have to establish a few functorial properties of Υ̃L/F .

Proposition 2.2.1. Υ̃L/F has the following three functorial properties:

1) Fix σ ∈ Gal (F sep/F ) and let L/M be a finite Galois extension, with

M/F being a finite seperable extension. Define the map σ∗ : Frob (L/M) →
Frob (σL/σM) as σ∗(ρ̃) = σρ̃σ−1 |Lur for ρ̃ ∈ Frob (L/M). The following

diagram:

Frob (L/M)

σ∗

��

Υ̃L/M
//M∗/NL/M(L∗)

σ

��

Frob (σL/σM)
Υ̃σL/σM

// (σM)∗/NσL/σM((σL)∗)

is commutative.
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2) Let L/F be a finite Galois extension and let M/F and E/L be finite

seperable extensions such that E/M is a finite Galois extension. The following

diagram:

Frob (E/M)

��

Υ̃E/M
//M∗/NE/M(East)

N∗
M/F

��

Frob (L/F )
Υ̃L/F

// F ∗/NL/F (L∗)

is commutative. Here the left vertical homorphism sends σ̃ ∈ Frob (E/M) to

σ̃ |Lur, this is surjective if M = F , and the right vertical homomorphism is

induced by the norm map NM/F : M∗ → F ∗.

3) Let L/F be a finite Galois extension with subextension M/F . The fol-

lowing diagram:

Frob (L/M)

Υ̃L/M
��

// Frob (L/F )

Υ̃L/F
��

// Frob (M/F )

Υ̃M/F
��

M∗/NL/M(L∗)
N∗
M/F
// F ∗/NL/F (L∗) // F ∗/NM/F (M∗) // 1

is commutative. Here the map F ∗/NL/F (L∗) → F ∗/NM/F (M∗) is induced by

the identity map of F ∗.

Proof. The proof of this lemma can be found in two chapters, the Lemma,

Proposition and Corollary of (2.5) Chapter IV and section (1.3) Chapter V in

[5].

We will now define the map ΨL/F : F ∗/NL/F (L∗)→ Gal (L/F )ab in the case

where L/F is a finite Galois totally ramified extension. We will use this to

deduce that ΥL/F exists in the case where L/F is finite and totally ramified,

and is an isomorphism when L/F is abelian.

For the time being we will be assuming that L/F is a finite totally ramified

Galois extension.

Definition 2.2.7. Define U(L/F) as the subgroup of U1,L generated by the

elements uσ−1. where u runs through every element of U1,L and σ runs through

all elements of Gal (L/F).
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Definition 2.2.8. Let E/F be the maximal abelian subextension of L/F and

let ϕL be any fixed Frobenius automorphism of Lur. Next, let ϕ be an extension

of ϕL to L. Finally, let π be an arbitrary prime element of L.

Fix α ∈ F ∗, we know that there is a β ∈ L∗ such that NL/F(β) = α. As

NL/F(βϕ−1) = αϕ−1 = 1 we also know that there is a unique σ ∈ Gal (L/F)

such that:

βϕ−1 ≡ πσ−1 mod U(L/F)

We have that Gal (L/F) ∼= Gal (L/F ) and thus we may say that σ is con-

tained in Gal (L/F ). We will let ΨL/F (α) be equal to σ |E, with σ being thought

of as an element of Gal (L/F ).

Lemma 2.2.3. For a finite totally ramified extension L/F , the map ΨL/F :

F ∗/NL/F (L∗)→ Gal (L/F )ab is a well defined homomorphism.

Proof. The proof of this lemma can be found in two chapters, Lemma (3.1)

Chapter IV and section (1.3) Chapter V in [5].

Theorem 2.2.2. Let L/F be a finite totally ramified Galois extension then

ΨL/F is an isomorphism. We also have that Υ̃L/F does not depend on the

choice of σ̃ for σ ∈ Gal (L/F ), so ΥL/F is well defined in this case, and that the

inverse of ΨL/F is equal to Υab
L/F . Here Υab

L/F is the map between Gal (L/F )ab

and F ∗/NL/F (L∗) induced by ΥL/F .

Proof. The proof of this theorem can be found in two chapters, Theorem (3.2)

Chapter IV and section (1.3) Chapter V in [5].

The following lemma is important for the proof of the next theorem.

Lemma 2.2.4. Let L/F be a finite abelian extension. We have that there exists

a finite unramified extension M/L such that M/F is abelian and M = M0K.

Here K/F is a abelian totally ramified extension and M0/F is an unramified

extension.

For all M that have the above properties we have that:

NM/F (M∗) = NM0/F (M∗
0 ) ∩NK/F (K∗)
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Proof. The proof of this lemma can be found in two chapters, Lemma (3.3)

Chapter IV and section (1.3) Chapter V in [5].

We can use the above lemma and Proposition 2.2.1 to finish our description

of ΥL/F for all finite Galois extensions L/F .

Theorem 2.2.3. Let L/F be a finite Galois extension. We have that Υ̃L/F

does not depend on the choice of σ̃ ∈ Frob (L/F ) for σ ∈ Gal (L/F ). This

means that we get a well defined Neukirch homomorphism ΥL/F : Gal (L/F )→
F ∗/NL/F (L∗).

We also have that ΥL/F induces an isomorphism, Υab
L/F , between Gal (L/F )ab

and F ∗/NL/F (L∗).

Proof. The proof of this theorem can be found in two chapters, Theorem (3.3)

Chapter IV and section (1.3) Chapter V in [5].

Although there is more that can be discussed about ΥL/F and ΨL/F in the

case where F is assumed to be quasi-finite it is not necessary to bring it up in

this thesis. Those who wish to find out should check out Chapters IV and V

of [5].

2.2.1 Additive Polynomials

This will be an aside looking at additive polynomials over quasi-finite and

perfect fields. The part about quasi-finite fields shall be coming from section

2 Chapter V of [5]. We will also be referencing Professor Fesenko’s paper

“Local Class Field Theory: Perfect Residue Case” [3] in this subsection. This

is because [5] only talks about additive polynomials with how they relate to

local class field theory with quasi-finite residue fields and as such we need to look

at the paper about perfect residue fields in order to get the rest of information

we want.

We should note that work on perfect fields is not necessary to understand

this section, which is only about complete discrete valuation fields with quasi-

finite residue fields. That being said it will come up when we look at local class

field theory when F is assumed to be perfect in the next section. Discussing

the topic here will help relate the coming section back to this one.
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Definition 2.2.9. Let K be a field. If f(X) ∈ K[X] has the property that

for all α and β in K we have f(α + β) = f(α) + f(β) then f(X) is called an

additive polynomial.

Lemma 2.2.5. Let K be a field with characteristic 0 then a polynomial f(X)

over K is additive if and only if f(X) = αX for some α ∈ K.

Now let K be a field with positive characteristic p. This time the polynomial

f(X) over K is additive if and only if it has the form
∑n

i=0 αiX
pi, where αi ∈ K

for all i.

Proof. The proof of this lemma can be found in Lemma (2.1) Chapter V in

[5].

Note 2.2.8. As it is a lot less trivial, and relates to the work we are talking

about on local class field theory, from now on we will assume that the field, K,

we are working with has positive characteristic p.

Notation 2.2.1. We shall denote the additive polynomial Xp − X as ℘(X). If

K is a field then ℘(K) is equal to the image of Xp − X when applied to the

elements of K.

Note 2.2.9. We will occasionally refer to the derivative of a polynomial f(X),

written as f ′(X). In this case we are talking about the formal derivative. Here

if f(X) =
∑

n∈Z αnX
n then f ′(X) =

∑
n∈Z nαnX

n−1.

We should note that as we are dealing with fields, K, of positive charac-

teristic p and the polynomials we are talking about are of the form f(X) =∑
n≥0 αnX

pn we always have that f ′(X) =
∑

n≥0 p
nαnX

pn−1 = α0, which is a

constant.

Definition 2.2.10. While the sum of two additive polynomials is additive the

product does not have to be. As such if f(X) and g(X) are two additive

polynomials over K we will define the product of f(X) and g(X), denoted by

(f ◦ g)(X), as f(g(X)).

Lemma 2.2.6. If f(X) and g(X) are two additive polynomials over K then so

is (f ◦ g)(X).

Additive polynomials over K have a ring structure with addition being reg-

ular polynomial addition and multiplication being ◦. The additive identity of

the ring of additive polynomials is the constant polynomial f(X) = 0, while the

multiplicative identity is f(X) = X.
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Proof. The proof of this lemma can be found at the beginning of section (2.2)

Chapter V in [5].

Note 2.2.10. General polynomials over K do not have a ring structure, as dis-

tribution often fails, the fact that we are working with the restriction that the

polynomials must be additive solves that problem. For instance if f(X) is of

the form Σi≥0αiX
pi , and the same holds for g(X) and h(X), then we will always

get that f ◦ (g + h)(X) = (f ◦ g + f ◦ h)(X).

Definition 2.2.11. If f(X) ∈ K[x] is of the form (g◦h)(X) = g(h(X)) then we

say that g(X) is an outer component of f(X) while h(X) is an inner component

of f(X).

Definition 2.2.12. An additive polynomial f(X) ∈ K[X] is called K-decom-

posable if the kernel of f over K is contained in K. We shall denote the set of

K-decomposable polynomials by DPK .

Lemma 2.2.7. Let K be a perfect field and set f(X) ∈ DPK with f ′(0) 6= 0.

Then there is a set {α1, α2, ...αn+1} of elements of K such that:

α−1
i ∈ (℘(X) ◦ αi+1X ◦ ℘(X) ◦ αi+2X ◦ ... ◦ αn+1X)(K)

for all i and:

f(X) = α1X ◦ ℘(X) ◦ α2X ◦ ℘(X) ◦ ... ◦ ℘(X) ◦ αn+1X

Conversely every polynomial of the above form is K-decomposable.

Proof. The proof of this lemma can be found in Lemma 2.2 of [3].

Lemma 2.2.8. The ring of additive polynomials over K is a left euclidean

principal ideal ring, if K is a perfect field then it is also a right euclidean

principal ideal ring.

This means that if f(X) and g(X) are additive polynomials over K then

there exists additive polynomials h1(X) and q1(X), with the degree of q1(X)

being less than the degree of g(X), such that f(X) = (h1 ◦ g)(X) + q1(X). If K

is perfect then there are also polynomials h2(X) and q2(X), with the degree of

q2(X) being less than the degree of g(X), such that f(X) = (g◦h2)(X)+q2(X).
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Proof. The proof of this lemma can be found in Lemma (2.2) and Proposition

(2.2) Chapter V in [5].

Note 2.2.11. Lemma 2.2.8 means that when talking about additive polynomials

over K, where K is a perfect field, the least common outer (inner) multiple and

the greatest common outer (inner) divisor of two additive polynomials is a well

defined thing we can discuss.

Corollary 2.2.1. Let K be a perfect field and let f1(X) and f2(X) be two ad-

ditive polynomials over K. Denote by f3(X) the greatest common outer divisor

of f1(X) and f2(X). This means that f3(X) is the unique polynomial, up to

multiplication by a constant, with the maximal degree such that there exists ad-

ditive polynomials h1(X) and h2(X) over K with f1(X) = f3(X) ◦ h1(X) and

f2(X) = f3(X) ◦ h2(X). We have the equality f3(K) = f1(K) + f2(K).

Next denote the least common outer multiple of f1(X) and f2(X) by f4(X).

As such f4(X) is the unique polynomial, up to multiplication by a constant,

with the minimal degree such that there exists additive polynomials h1(X) and

h2(X) over K with f4(X) = f1(X) ◦ h1(X) and f4(X) = f2(X) ◦ h2(X). We

have that f3(K) = f1(K) ∩ f2(K).

Proof. The proof of this corollary can be found in Corollary (2.2) Chapter V

in [5].

Proposition 2.2.2. Let H ⊆ K be a finite additive subgroup, so H is a sub-

group of the additive group over K. Then there is a unique additive polynomial,

up to multiplication by a constant, f(X) over K such that H is the set of roots

of f(X) and the degree of f(X) is equal to |H|.

Proof. The proof of this proposition can be found in Proposition (2.3) Chapter

V in [5].

Corollary 2.2.2. Let H be a finite additive subgroup of Ksep with the property

that for all σ ∈ Gal (Ksep/K) we have σ(H) = H, then H is the set of roots of

some additive polynomial f(X) over K.

Proof. The proof of this corollary can be found in Corollary 1 of section (2.3)

Chapter V in [5].
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Corollary 2.2.3. Considering K as a Fp-vector space, let {α1, α2, ...αn} be a

set of elements of K that are linearly independent over Fp. Next, let {β1, β2, ...βn}
be a set of arbitrary elements of K. We have that there exists an additive

polynomial, f(X), over K with degree at most pn such that for all i we have

f(αi) = βi.

Proof. The proof of this corollary can be found in Corollary 2 of section (2.3)

Chapter V in [5].

Proposition 2.2.3. Let K be a perfect field and let f(X) be a K-decomposable

additive polynomial. Then there is an isomorphism:

λ : K/f(K)→ HomZp (Gabp
K , ker(f(X)))

Here Gabp
K represents the Galois group Gal (Kabp/K), with Kabp being the max-

imal abelian p-extension of K, and, if f(b) = a, we have λ(a)(φ) = φ(b)− b.

Proof. The proof of this proposition can be found in Proposition 2.3 of [3].

Corollary 2.2.4. Let K be a perfect field, let f(X) ∈ DPK be such that f ′(0) 6=
0 and finally let g(X) be an additive polynomial over K. We have that f(X) is

an outer component of g(X) if and only if g(K) ⊆ f(K).

Proof. The proof of this corollary can be found in Corollary 2.3 of [3].

We can change the result of Corollary 2.2.4 to talk about inner components

if we expand the field we are over.

Lemma 2.2.9. Let K be a perfect field and let f(X) and g(X) be additive

polynomials over K with f ′(0) 6= 0. If we expand the domain of f(X) and g(X)

to all of Ksep then we have that ker(f(X)) ⊆ ker(g(X)) if and only if f(X) is

an inner component of g(X).

Proof. The proof of this lemma can be found in Proposition (2.5) Chapter V

in [5].

Before we state the next result we need a few new definitions.
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Definition 2.2.13. Let K be a field. We can create the notion of general-

ized additive polynomials over K. These are equations of the form g(X) =∑
βmXp

m, with m ∈ Z and βm ∈ K for all m. Like with regular additive

polynomials over K, we call a generalized additive polynomial over K, g(X),

K-decomposable if the kernel of g(X) belongs to K. We again denote this by

g(X) ∈ DPK .

Let f(X) be an additive polynomial over the field K. We can write f(X) as∑
n≥0 αnX

pn and we will denote by f ∗(X) the generalized additive polynomial∑
n≥0 α

p−n
n Xp−n .

Proposition 2.2.4. Let K be a perfect field and let f(X) be an additive poly-

nomial over K. Then f(X) ∈ DPK if and only if f ∗(X) ∈ DPK.

Proof. The proof of this proposition can be found in Proposition 2.4 of [3].

Corollary 2.2.5. If we let K be a perfect field and set f(X) ∈ DPK then

there is a set of cardinality | ker(f(X))| consisting of αi ∈ K such that f(K) =

∩iαi℘(K).

Proof. The proof of this corollary can be found in Corollary 2.4 of [3].

Proposition 2.2.5. Let K be a perfect field and let f1(X) and f2(X) both be

elements of DPK. The following statements are true:

1) The least common inner (outer) multiples and greatest common inner

(outer) divisors of f1(X) and f2(X) are all K-decomposable.

2) Let f3(X) be the least common outer multiple of f1(X) and f2(X), then

f3(K) = f1(K) ∩ f2(K).

3) The set {α ∈ K : f1(α) ∈ f2(K)} is equal to h(K), where h(X) ∈ DPK.

Proof. The proof of this proposition can be found in Proposition 2.5 of [3].

Proposition 2.2.6. Let K be a quasi-finite field and let f(X) be an additive

polynomial over K. Then there exists g(X) ∈ DPK such that g′(0) 6= 0 and

g(K) = f(K). We also have that g(X) is an outer component of f(X), so

f(X) = g(X) ◦ h(X) for some additive polynomial, h(X), over K.
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Proof. The proof of this proposition can be found in Proposition (2.6) Chapter

V in [5].

Corollary 2.2.6. Let K be a quasi-finite field and let f(X) be an additive

polynomial over K. The number of roots of f(X) in K coincides with the index

of f(K) in K.

Proof. This result falls out when you combine Proposition 2.2.6 with Proposi-

tion 2.2.3, taking into account that:

HomZp (Gabp
K , ker(f(X))) ∼= ker(f(X))

since K is quasi-finite and hence Gabp
K
∼= Zp.

Corollary 2.2.7. Let K to be a quasi-finite field and let f(X) be an additive

polynomial over K, then there is a finite set of αi ∈ K such that f(K) =

∩iαi℘(K).

Proof. This result comes about from combining the result of Corollary 2.2.5

with the result of Proposition 2.2.6.

Corollary 2.2.8. Let K be a quasi-finite field and set f(X) to be a non-zero

additive polynomial over K. Then the following statements are equivalent:

1) f(K) 6= K.

2) f(X) has a non-zero root in K.

3) There exists an α ∈ K∗ such that α℘(X) = αXp − αX is an outer

component of f(X).

4) There exists an β ∈ K∗ such that ℘(βX) = βpXp − βX is an inner

component of f(X).

Proof. The proof of this corollary can be found in Corollary (2.6) Chapter V

in [5].

Proposition 2.2.7. Let K be a quasi-finite field and set f(X) ∈ K[X] to be

an additive polynomial. We know that S = f(K) is a subgroup of finite index

in the additive group K. Treating K/S as a finite dimensional Fp-vector space;

the endomorphisms of K/S are induced by additive polynomials.
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Proof. The proof of this proposition can be found in the beginning of section

(2.7) and Proposition (2.7) Chapter V in [5].

Corollary 2.2.9. Let K be a quasi-finite field and let f(X) be a non-zero

additive polynomial over K. Taking K as an additive group, with f(K) as a

subgroup, every intermediate subgroup between f(K) and K is equal to g(K)

for some is an additive polynomial, g(X), over K.

Proof. The proof of this corollary can be found in Corollary 1 of section (2.7)

Chapter V in [5].

Corollary 2.2.10. Let K be a quasi-finite field and set f1(X) and f2(X) to

be two additive polynomials over K. The homomorphisms from K/f1(K) to

K/f2(K) are induced by additive polynomials.

Proof. The proof of this corollary can be found in Corollary 2 of section (2.7)

Chapter V in [5].

We will now briefly discuss the idea of additive polynomials forming a topol-

ogy on a quasi-finite field.

Definition 2.2.14. Let K be a quasi-finite field; the results of Proposition 2.2.7

and its attendant corollaries show that the set of all f(K), where f(X) ∈ K[X]

runs through all the additive polynomials over K, form a basis of neighbour-

hoods of a linear topology over K. We call this topology an additive topology

over K and any neighbourhood of 0 can be written as T = f(K) for some

additive polynomial f(X) over K.

Proposition 2.2.8. Let K be a quasi-finite field and let us consider it having

the additive topology defined in the above definition. In this case additive poly-

nomials over K define continuous endomorphisms of K. Also if we consider the

ring of all continuous endomorphisms of K then the subring defined by additive

polynomials is dense.

Proof. The proof of this proposition can be found in Proposition (2.8) Chapter

V in [5].
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Lemma 2.2.10. Let K be a perfect field and set f(X) ∈ K[X] to be non-

zero and have the property f(0) = 0. Also we will let g(X) be any non-zero

additive polynomial element of DPK. There exists finite sequences of polyno-

mials hi(X) and qi(X) such that
∑

i qi(X) is a non-zero element of DPK and

both
∑

i f(hi(X)) and
∑

i f(qi(X)) are additive polynomials. We next have that

g(X) is an outer component of both
∑

i f(hi(X)) and
∑

i f(qi(X)) and finally

that
∑

i f(hi(X)) 6= 0.

Proof. The proof of this lemma can be found in Lemma 2.6 of [3].

Note 2.2.12. This is a stronger version of a similar result, namely Proposition

(2.9) Chapter V in [5]. For example this result talks about perfect fields rather

than just quasi-finite fields. As such there would be no point in going over the

result from [5] here, but there are a couple of corollaries brought up after that

proposition, one of which shows that there is a even a third version of Lemma

2.2.10 that applies only to quasi-finite fields.

Corollary 2.2.11. Let K be a quasi-finite field and set f(X) ∈ K[X] to be non-

zero and have the property f(0) = 0; likewise let g(X) be any non-zero additive

polynomial over K. There exists finite sequences of polynomials hi(X) and

qi(X) such that
∑

i qi(X) is non-zero and both
∑

i f(hi(X)) and
∑

i f(qi(X))

are additive polynomials. We also have that g(X) is an outer component of

both
∑

i f(hi(X)) and
∑

i f(qi(X)) and finally that
∑

i f(hi(X)) 6= 0.

Proof. The proof of this corollary can be found in Corollary 1 of section (2.9)

Chapter V in [5].

Note 2.2.13. The difference between Corollary 2.2.11 and Lemma 2.2.10 is that

the requirement for g(X) to be K-decomposable is dropped. However the fact

that we only know that
∑

i qi(X) is a non-zero additive polynomial, and not

necessarily an element of DPK , means that Corollary 2.2.11 is only a variation

on Lemma 2.2.10 and not a stronger version.

Corollary 2.2.12. Let K be a quasi-finite field and look at the additive topology

on K, as described in Definition 2.2.14. A neighbourhood of 0 in that topology

can be considered as a vector subspace over Fp that contains the set of values

of a non-zero element f(X) ∈ K[X] with the property f(0) = 0.

Proof. The proof of this corollary can be found in Corollary 2 of section (2.9)

Chapter V in [5].
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2.2.2 Back to Local Class Field Theory

We will now move onto a brief look at the modified Existence Theorem that

occurs with complete discrete valuation fields with quasi-finite residue fields.

This is the first place that any substantial difference between this topic and

regular local class field theory appears.

Note 2.2.14. We will be going back to the assumptions that we made in Note

2.2.2. These are that F is a complete discrete valuation field whose residue

field is both quasi-finite and has positive characteristic p. We will also have

that L/F is an arbitrary finite Galois field extensions of F .

Definition 2.2.15. Let πF be any prime element of F . An open subgroup

N of F ∗ is called Normic if for all i > 0 we have that there exists a poly-

nomial fi(X) ∈ OF [X] such that the residue polynomial f i(X) ∈ OF [X] is

non-constant and 1 + fi(OF )πiF ⊆ N .

Note 2.2.15. The definition of Normic subgroups is independent of the choice

of prime element of F . If π and π′ are two prime elements of F then we know

that π′ = απ for some α ∈ UF . As such if N ⊆ F ∗ is a Normic subgroup

such that for a given i > 0 we have that 1 + fi(OF )(π′)i ⊆ N where f i(X) is

non-constant then we see that 1 + αfi(OF )πi ⊆ N . We know that α 6= 0, as

α ∈ UF , and thus αf i(X) is also a non-constant polynomial.

Note 2.2.16. Section (3.1) Chapter V in [5] shows that when dealing with any

Normic subgroup we can always choose a family of fi(X) such that for each

i > 0 we have f i(X) is a non-zero additive polynomial over F with fi(0) = 0.

Note 2.2.17. If F is finite, and thus we are dealing with regular local class field

theory, then open and Normic subgroups of F ∗ have the same definition. It is

trivial from the definition that Normic subgroups are open so we must show

that open subgroups are Normic. Assume that F has cardinality q ∈ Z>0,

where q is some positive power of prime number p, and let N be an open

subgroup of F ∗. We know that, since N is an open subgroup of F ∗, that there

exists a t ∈ Z>0 such that Ut,F ⊆ N . Let α ∈ OF , we know that αq = α and

thus (αq − α) ∈ πFOF , where πF is a prime element of F . This means that

(αq − α)p
t ∈ πtFOF . If, for all i > 0, we set fi(X) to equal (Xq −X)p

t
we have

that f i(X) = (Xq −X)p
t
, which is not a constant, and 1 + fi(OF ) ⊆ Ut,F ⊆ N

and thus 1 + fi(OF )πiF ⊆ N for all positive i. This is all that is required to

show that N is a Normic subgroup of F ∗. This result was taken from section

(3.1) Chapter V in [5].
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Lemma 2.2.11. Let N1 and N2 be two Normic subgroups of F ∗, then N1 ∩N2

and N1N2 are also Normic subgroups of F ∗.

Proof. The proof of this lemma can be found in the proof of Proposition (3.3)

Chapter V of [5] and the fact that an open subgroup of F ∗ that contains a

Normic subgroup clearly has the requirements for a Normic subgroup.

Note 2.2.18. Lemma 2.2.11 means the Normic subgroups of F ∗ form a lattice

with respect to product, N1N2, and intersection, N1 ∩ N2. This is in fact a

sublattice of the lattice that all open subgroups of F ∗ already naturally creates.

Lemma 2.2.12. Let L/F be a finite abelian extension, then NL/F (L∗) is a

Normic subgroup of finite index in F ∗.

Proof. The proof of this lemma can be found in Proposition (3.2) Chapter V

of [5].

We are now ready to state the modified Existence Theorem that occurs

when we assume that F is quasi-finite.

Theorem 2.2.4. The map L/F 7→ NL/F (L∗) is an order reversing bijection

between the lattice of finite abelian extensions of F and the lattice of Normic

subgroups of finite index in F ∗.

Proof. The proof of this theorem can be found in Theorem (3.4) Chapter V of

[5].

Note 2.2.19. We have shown, in Note 2.2.17, that if F is finite, then open and

Normic subgroups of F ∗ are equivalent. Likewise, Note 2.2.18 showcases that

the lattice of Normic subgroups of F ∗ is a sublattice of the lattice of open

subgroups of F ∗. Therefore, it is clear that the above Existence Theorem is

just a generalisation of the one we have when F is finite.

There is a lot more about local class field theory discussed, both in George

Whaples’ papers and Professors Fesenko and Vostokov’s book, however it is

not obvious how it would help the reader understand this thesis so we will

not discuss the topic further here. Those who wish to understand more are

recommended to look at the both of them.
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2.3 Review of Local Class Field Theory with

Perfect Residue Fields

In the following section we shall be discussing local class field theory when the

only requirements on the base field, F , is that F is perfect and has positive

characteristic. As such for the remainder of this section we shall assume that F

is a complete discrete valuation field with a perfect residue field of characteristic

p > 0.

We shall be getting most of our results from Professor Ivan Fesenko’s paper

“Local Class Field Theory: Perfect Residue Case” [3]. However, it should

be noted that there is a mistake in this paper which was corrected when the

summary of the subject was written in section 4 Chapter V of [5]. This change

shall be explained when we get to it.

Note 2.3.1. In this section, and in the following section where we deal with

imperfect residue fields, we only deal with totally ramified p-extensions. This

is because it is there that things change from what we have already seen. No

matter the properties of F , if L/F is an unramified extension of degree n then

NL/F (L∗) = 〈πnF 〉 · UF , where πF is a prime element of F . Meanwhile, if L/F

is a totally tamely ramified extension of degree n, let T be the subgroup of UF

such that if α ∈ T then α ∈ F n
and for every θ ∈ F there is a unique α ∈ T

such that α = θ. In this case NL/F (L∗) = 〈π〉 · T · U1,F .

Since the rest is already known to us the only thing that needs to be inves-

tigated is when L/F is a finite abelian totally ramified p-extension.

Note 2.3.2. In the case when we are dealing with perfect residue fields we only

deal with U1,F/NL/F (U1,L) and not the full F ∗/NL/F (L∗). This is okay as we

are only dealing with finite abelian totally ramified p-extensions, L/F , and we

know that, for all totally ramified fields, NL/F (L∗) ∩ U1,F = NL/F (U1,L). We

also know, in the cases where F is perfect, that both a prime element, πF , of F

is contained in NL/F (L∗) and that λ0(NL/F (UL)) = F , the λ0-map is taken from

Notation 2.1.2. This gives us that the group NL/F (L∗) is uniquely determined

by the subgroup NL/F (U1,L).

Definition 2.3.1. We will define F̂ as the maximal unramified p-extension of

F . We also construct L̂ to be the equivalent for L.

Note 2.3.3. If L/F is a finite abelian totally ramified p-extension then we have

that L̂ = LF̂ , this means that F̂ ⊆ L̂.
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Note 2.3.4. This is where [3] contains the error that was mentioned earlier. It

was originally thought that we only needed to define F̂ , which was in the paper

denoted by F̃ , to be the maximal abelian unramified p-extension of F , and not

the maximal unramified p-extension of F [3]. Luckily by the time of the later

publication, [5], it had been realised what properties F̂ /F needed to posses, as

seen in section 4 Chapter V in [5].

Note 2.3.5. From now on when referring to [3] we shall be assuming, except

when explicitly noted, that every instance of F̃ is replaced by F̂ .

Note 2.3.6. The original [3] deals with generic field extension L/F , where it is

a finite totally ramified p-extension [3]. As such a lot of statements and proofs

of that paper involve the abelianisation of Gal (L/F ); this will not be necessary

for our work as we will always be assuming that L/F is an abelian extension.

This means, as it is not necessary, that we will be missing out the abelianisation

of the Galois groups when going over the mathematics of the paper.

Definition 2.3.2. Let L/F be a finite abelian totally ramified p-extension. We

shall denote the homomorphism group HomZp (Gal (F̂ /F ),Gal (L/F )) as

Gal (L/F )∧.

Note 2.3.7. The above definition replaces the Gal (L/F )∗ found in [3], that

construct is not used as it uses Gal (F̃ /F ) rather than Gal (F̂ /F ).

Note 2.3.8. Since the extensions we are dealing with are abelian we do have

that Gal (L/F )∧ = Gal (L/F )∗. However it is still important that we deal with

F̂ /F , as the mathematics does not work if we are only dealing with the maximal

abelian unramified p-extension of F , even if in this summary of definitions and

results it is not obvious that is the case.

Note 2.3.9. Let L/F be a finite abelian totally ramified p-extension but as-

sume that F is quasi-finite. By the nature of quasi-finite fields we know that

Gal (F̂ /F ) ∼= Zp. This means that:

Gal (L/F )∧ = HomZp (Gal (F̂ /F ),Gal (L/F )) ∼= HomZp (Zp,Gal (L/F ))

∼= Gal (L/F )

Definition 2.3.3. Let L/F be a finite abelian totally ramified p-extension. We

want to create a Neukirch homomorphism:

ΥL/F : Gal (L/F )∧ → U1,F/NL/F (U1,F )
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that is a generalisation of the Neukirch homomorphism we have seen when there

are more restrictions on F .

Let χ be an element of Gal (L/F )∧. Next, let Σχ be the field in L̂ fixed

by the elements τϕ ∈ Gal (L̂/F ) such that τϕ |F̂= ϕ and τϕ |L= χ(ϕ) while ϕ

varies through all the elements of Gal (F̂ /F ). We have that L̂/Σχ is unramified

while Σχ/F is a finite totally ramified p-extension.

Let πL be a prime element of L and πχ be a prime element of Σχ, then

define ΥL/F (χ) to be:

NΣχ/F (πχ)NL/F (π−1
L ) mod NL/F (U1,L)

Note 2.3.10. In the above definition we do not need ϕ to vary through every

element of Gal (F̂ /F ) but instead just through a topological basis of Gal (F̂ /F ).

By the definition of a basis it will lead to the same fixed field Σχ.

Lemma 2.3.1. Let L/F be a finite abelian totally ramified p-extension, then

the Neukirch map ΥL/F : Gal (L/F )∧ → U1,F/NL/F (U1,F ) is a well defined

homomorphism.

Proof. The proof of this lemma can be found in Lemma 1.2 of [3].

Note 2.3.11. Suppose we assume that L/F is a finite abelian totally ramified

p-extension but that F is quasi-finite. We know that in this case Gal (L/F )∧ ∼=
Gal (L/F ), because of Note 2.3.9. Thus we now have a map:

ΥL/F : Gal (L/F )→ U1,F/NL/F (U1,L)

Now fix σ ∈ Gal (L/F ) and choose τ ∈ Gal (L̂/F ) such that τ |L= σ and

τ |F̂= 1F̂ , which is a topological generator of the group Gal (F̂ /F ) ∼= Zp. Let

Σσ be a the fixed field of τ in F̂ , then from the definition of ΥL/F we can see

that:

ΥL/F (σ) = NΣσ/F (πσ)NL/F (π−1
L ) mod NL/F (U1,L)

where πL is a prime element of L and πσ is a prime element of Σσ.

However, F is a totally ramified field with quasi-finite residue field, and

looking at the definition of the Neukirch homomorphism in that case, via Def-

inition 2.2.6, we can see that τ is an element of Frob (L/F ) that extends σ.

So it is easy to see that the quasi-finite residue field version of the Neukirch

homomorphism maps σ to the same value in U1,F/NL/F (U1,L) as the perfect
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field case. Finally, we can then send it to the value over NL/F (L∗) by the map

U1,F/NL/F (U1,L)→ F ∗/NL/F (L∗).

This shows that the Neukirch homomorphism that has just been defined is

a generalisation of what we have seen before.

For L/F , a finite abelian totally ramified p-extension, we wish to create a

new map ΨL/F : U1,F/NL/F (U1,L)→ Gal (L/F )∧ which is an inverse of the map

ΥL/F and a generalisation of the map, also denoted by ΨL/F , found in the case

where we have more restrictions on F .

Notation 2.3.1. We have that if L/F is a finite abelian totally ramified

p-extension then Gal (L̂/L) ∼= Gal (F̂ /F ). As such if ϕ is an element of

Gal (F̂ /F ), we shall denote its extension to Gal (L̂/L) as ϕ as well. For an

in-depth proof of why Gal (L̂/L) ∼= Gal (F̂ /F ), in both the case where F is

perfect and the case where it is imperfect, you can read section 2 of Chapter 3

of this thesis, and in particular Corollary 3.2.2.

Definition 2.3.4. Let L/F be a finite abelian totally ramified p-extension. We

shall denote the subgroup generated by:

{ασ−1 : α ∈ U1,L̂, σ ∈ Gal (L̂/F̂ )}

with the symbol V (L | F ).

Note 2.3.12. Remember that if F is quasi-finite then we have U(L/F), which

is equal to the subgroup generated by:

{ασ−1 : α ∈ U1,L, σ ∈ Gal (L/F)}

Now F is a complete discrete valuation field with residue field equal to the

algebraic closure of F . This means that we can take F̂ ⊆ F , from the definition

of F̂ , and we also have L̂ ⊆ L. Since both Gal (L̂/F̂ ) and Gal (L/F) are iso-

morphic to Gal (L/F ), and the restriction homomorphism between Gal (L̂/F̂ )

and Gal (L/F) is an isomorphism, we have that V (L | F ) ⊆ U(L/F).

With the above definition we have the following exact sequence:

1→ Gal (L̂/F̂ )→ U1,L̂/V (L | F )→ U1,F̂ → 1

where the map U1,L̂/V (L | F )→ U1,F̂ is induced by NL̂/F̂ .
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Lemma 2.3.2. Let L/F be a finite abelian totally ramified p-extension. Let ϕj,

j ∈ J , be Zp-linearly independent elements of Gal (F̂ /F ). Let σ be an element

of Gal (L̂/F ) such that σ |F̂∈ Gal (F̂ /F ) is Zp-linearly independent of every ϕj.

Then set T to be the fixed subfield of L̂ corresponding to {ϕj}j∈J and finally

have β be an element of T . Then there exists a γ ∈ U1,T such that γσ−1 = β.

Proof. The proof of this lemma can be found in Lemma 1.4 of [3].

We are now ready to define the map ΨL/F .

Definition 2.3.5. Let L/F be a finite abelian totally ramified p-extension.

Let ε ∈ U1,F , ϕ ∈ Gal (F̂ /F ) and fix a prime element, πL, of L . By Lemma

2.3.1 we have that there exists an α ∈ U1,L̂ such that NL̂/F̂ (α) = ε. Since ϕ

commutes with the elements of Gal (L̂/F̂ ) we have that NL̂/F̂ (α−1ϕ(α)) = 1.

We can now use the exact sequence that we have previously seen in order to get

that there is a σ ∈ Gal (L̂/F̂ ) such that α−1ϕ(α) ≡ πLσ(π−1
L ) mod V (L | F ).

We next define a map χ : Gal (F̂ /F ) → Gal (L/F ) by setting χ(ϕ) = σ |L.

We have that χ is in fact a member of Gal (L/F )∧, and we can define ΨL/F :

U1,F/NL/F (U1,L)→ Gal (L/F )∧ by having ΨL/F (ε) being equal to χ.

Note 2.3.13. Let us now assume that F has a quasi-finite residue field and that

L/F is a finite abelian totally ramified p-extension; finally set t′ as an element

of F ∗.

Like in Note 2.3.11 we can simplify ΨL/F to being:

ΨL/F : U1,F/NL/F (U1,L)→ Gal (L/F )

Since both a prime element of F is in NL/F (L∗) and λ0(NL/F (UL)) = F we have

that for all α ∈ F ∗ there is a β ∈ U1,F such that α ≡ β mod NL/F (L∗). As

NL/F (U1,L) ⊆ NL/F (L∗) we can now make ΨL/F a map between F ∗/NL/F (L∗)

and Gal (L/F ).

Let t ∈ U1,F be such that t′ ≡ t mod NL/F (L∗). From the definition of ΨL/F

we know that there is an η ∈ U1,L̂ such that NL̂/F̂ (η) = t and NL̂/F̂ (η−1ϕ(η)) =

1, where ϕ is a topological generator of Gal (F̂ /F ) ∼= Zp. This means that

NL̂/F̂ (η−1ϕ′(η)) = 1, where ϕ′ is any element of Gal (F̂ /F ).

So, if we let πL be a prime element of L we see that ηϕ−1 ≡ πσ−1
L mod V (L |

F ) for some σ ∈ Gal (L/F ). By the isomorphism between Gal (L/F )∧ and

Gal (L/F ) that sends χ to χ(ϕ), we may count ΨL/F (t) as σ.
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However, we have already seen in Note 2.3.12 that when F is quasi-finite

V (L | F ) ⊆ U(L/F). This means that we have that NL/F(η) = t and ηϕ−1

≡ πσ−1
L mod U(L/F). So if we take the map, ΨL/F , that was defined for quasi-

finite residue fields and apply it to t we get the same value of Gal (L/F ) as we

did when we used the version for perfect residue fields.

This shows that ΨL/F we have just defined is a generalisation of the map

with the same notation that we have seen for quasi-finite residue fields.

Theorem 2.3.1. Let L/F be a finite abelien totally ramified p-extension, then

the map ΨL/F : U1,F/NL/F (U1,L)→ Gal (L/F )∧ is well defined and an isomor-

phism. We also get that the Neukirch map:

ΥL/F : Gal (L/F )∧ → U1,F/NL/F (U1,L)

is the inverse of ΨL/F .

Proof. The proof of this theorem can be found in Lemma 1.5, Proposition 1.6

and Theorem 1.7 of [3].

Lemma 2.3.3. The map ΨL/F , has the following functorial properties:

1) Let L/F and L′/F ′ be finite abelian totally ramified p-extensions, with

F ′/F and L′/L being finite totally ramified extensions. The following diagram

is commutative:

U1,F ′/NL′/F ′(U1,L′)

NF ′/F
��

ΨL′/F ′
// Gal (L′/F ′)∧

��

U1,F/NL/F (U1,L)
ΨL/F

// Gal (L/F )∧

Here the right vertical homomorphism is induced by the restriction Gal (L′/F ′)→
Gal (L/F ) and the isomorphism between Gal (F̂ /F ) and Gal (F̂ ′/F ′).

2) Let L/F be a finite abelian totally ramified p-extension and let σ be an au-

tomorphism of Gal (F sep/F ). Define the map σ∧Gal (L/F )∧ → Gal (σL/σF )∧

as:

(σ∧ (χ))(σϕσ−1) = σχ(ϕ)σ−1
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where χ ∈ Gal (L/F )∧ and ϕ ∈ Gal (F̂ /F ). Then the following diagram is

commutative:

U1,F/NL/F (U1,L)

��

ΨL/F
// Gal (L/F )∧

σ∧

��

U1,σF/NσL/σF (U1,σL)
ΨσL/σF

// Gal (σL/σF )∧

3) Let L/F be a finite abelian totally ramified p-extension with subextension

M/F . Let the map Ver∧ : Gal (L/F )∧ → Gal (L/M)∧ be induced by Ver :

Gal (L/F )→ Gal (L/M). Then the following diagram is commutative:

U1,F/NL/F (U1,L)

��

ΨL/F
// Gal (L/F )∧

Ver∧

��

U1,M/NL/M(U1,L)
ΨL/M

// Gal (L/M)∧

Proof. The proof of this lemma can be found in Proposition 1.8 of [3].

The next result is in neither [3] nor [5], however it follows quite simply from

the above lemma and we will be using it in Chapter 3.

Corollary 2.3.1. Let L/F be a finite abelian totally ramified p-extension with

M/F being a subextension. We have that the kernel of the map NM/F : U1,M →
U1,L is contained in the image of the map NL/M : U1,L → U1,M .

Proof. Let us use part 1) of Lemma 2.3.3 with L′ = L and F ′ = M . This will

give us the following commutative diagram:

U1,M/NL/M(U1,L)

NM/F

��

ΨL/M
// Gal (L/M)∧

��

U1,F/NL/F (U1,L)
ΨL/F

// Gal (L/F )∧

The map from Gal (L/M)∧ to Gal (L/F )∧ is induced by the inclusion from

Gal (L/M) to Gal (L/F ) and is therefore injective. We also have that both

ΨL/M and ΨL/F are isomorphisms which gives us that the map:
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NM/F : U1,M/NL/M(U1,L)→ U1,F/NL/F (U1,L)

is injective.

This gives us that if a ∈ U1,M is such that NM/F (a) = 1, which is contained

in NL/F (U1,L), then a ∈ NL/M(U1,L). This is precisely what we were looking

for.

Corollary 2.3.2. Let L1/F and L2/F be finite abelian totally ramified

p-extensions such that L3/F , where L3 = L1L2, is also totally ramified. Denote

L1 ∩ L2 as L4. We have the following equalities:

1) NL3/F (U1,L3) = NL1/F (U1,L1) ∩NL2/F (U1,L2)

2) NL4/F (U1,L4) = NL1/F (U1,L1)NL2/F (U1,L2)

We also have that L1 ⊆ L2 if and only if NL1/F (U1,L1) ⊇ NL2/F (U1,L2).

Proof. The proof of this corollary can be found in Corollary 1.8 of [3].

We are next going to talk about the Existence Theorem for when we only

assume F is perfect. We will be taking information from subsection 1 of section

2 in the this chapter, in which we took a look at additive polynomials in the

following work.

Definition 2.3.6. Let K be a field. Taking K as an additive group, a subgroup

N of K is called polynomial if N = f(K) for some non-zero

K-decomposable polynomial f(X).

Definition 2.3.7. Let N be a subgroup of U1,F . We call N a Normic subgroup

if the following three criteria are met:

1) N is an open subgroup of U1,F .

2) For all i > 0, there exists a polynomial fi(X) ∈ F [x] such that f i(X) is

a non-zero F -decomposable polynomial and we have that 1 + fi(OF )πiF ⊆ N ,

here πF is any prime element of F .

3) Let i be any positive integer, then the image of the subgroup

(N ∩ Ui,F )/Ui+1,F under the λi-map is polynomial.
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Note 2.3.14. The name “Normic subgroup” is the same name we used in the

previous section, in Definition 2.2.15, when talking about quasi-finite residue

fields.

It is in fact possible to show that this version of Normic subgroup is in fact

a generalisation, of a sort, of the previous one we saw. However, rather than

prove it here it would be simpler if we did it a bit later on, in Note 2.3.19, once

we have got a few more results.

Proposition 2.3.1. Let N be a Normic subgroup of U1,F , by definition 2.3.7,

and let L/F be an abelian totally ramified p-extension. Then N−1
L/F (N) is a

Normic subgroup of U1,L, again as in Definition 2.3.7.

Proof. The proof of this proposition can be found in Proposition 3.2 of [3].

Definition 2.3.8. Let π be a fixed prime element of F . We shall denote by Fπ

the set of all finite abelian totally ramified p-extensions of F , L/F , such that

π ∈ NL/F (L∗).

We will denote the composition of all elements of Fπ by Fπ. Thus Fπ/F is

the composition of Li/F , i ∈ I, for all Li/F ∈ Fπ.

Note 2.3.15. The reason Fπ needs to be constructed is because of the fact that

we are only dealing with totally ramified extensions. If L1/F and L2/F are

two finite abelian totally ramified p-extensions then L1L2/F is a finite abelian

p-extension but not necessarily totally ramified. Fπ helps deal with this, as the

next lemma shows.

Lemma 2.3.4. If we let π be a fixed prime element of F then Fπ is closed

under intersection and composition. As such if both L1/F and L2/F are in Fπ,

and thus π ∈ NL1/F (L∗1) ∩NL2/F (L∗2), then so is L1L2/F and (L1 ∩ L2)/F .

Proof. The proof of this lemma can be found in section 3.3 of [3].

Note 2.3.16. Lemma 2.3.4 means that Fπ is a lattice with respect to composition

and intersection. Also, as Fπ is closed under composition any finite subextension

of Fπ/F is an element of Fπ.

Lemma 2.3.5. If we let π be a fixed prime element of F then there is a bijec-

tion between extensions in Fπ and Normic subgroups of U1,F that is created by

L/F 7→ NL/F (U1,L).
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Proof. The proof of this lemma can be found in Proposition 3.4 and Theorem

3.5 of [3].

Note 2.3.17. Lemmas 2.3.4 and 2.3.5, combined with Corollary 2.3.2, show that

the Normic subgroups of U1,F form a lattice with respect to multiplication and

intersection.

Summarizing the work we have done gives us the Existence Theorem as it

pertains to local class field theory when we only assume that F is perfect and

has positive characteristic p.

Theorem 2.3.2. Let π be a fixed prime element of F . We have that the map

L/F 7→ NL/F (U1,L) is an order reversing bijection between the lattice consisting

of elements of Fπ and the lattice of Normic subgroups of U1,F .

Proof. The proof of this theorem is a combination of Lemma 2.3.5 and Corollary

2.3.2 of this section.

Corollary 2.3.3. As a reminder, from Note 2.3.4, we have that F̃ /F is the

maximal unramified abelian p-extension of F . Let π be a fixed prime element

of F , then we have that Fπ/F is totally ramified and FπF̃ /F is the maximal

abelian p-extension of F , which we denote by F abp.

This means that Gal (F abp/F ) ∼= Gal (F̃ /F )×Gal (Fπ/F ).

Proof. The proof of this corollary can be found in Corollary 3.4 of [3].

Note 2.3.18. Let T/F be the maximal abelian extension of F . As Gal (T/F ) is

an abelian group we know that Gal (T/F ) ∼= Gal (A/F )×Gal (F abp/F ), where

A/F is the composition of all finite abelian extensions of F whose degrees are

coprime to p.

From Corollary 2.3.3 above we have that:

Gal (F abp/F ) ∼= Gal (F̃ /F )×Gal (Fπ/F )

As such Gal (T/F ) ∼= Gal (A′/F )×Gal (Fπ/F ), where A′/F is the composition

of A/F and F̃ /F , and is thus the composition of all abelian unramified and

tamely ramified extensions of F .
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Note 2.3.19. Let F be a complete discrete valuation field with quasi-finite

residue field. We know that F is perfect so the results from this section will

apply to F .

Let N be a Normic subgroup of F ∗, by Definition 2.2.15, and set N ′ =

N ∩ U1,F . Let Q = 〈πF 〉 · B · N ′, where πF is a prime element of F and B

is a group of multiplicative representatives of F . We have that N fits the

requirements of being a Normic subgroup and N ⊆ Q so, trivially, Q is a

Normic subgroup of F ∗.

By Theorem 2.2.4 there is a finite abelian extension L/F such that NL/F (L∗)

= Q. Since Q is of the form 〈πF 〉 · B ·N ′ we have that L/F is a finite abelian

totally ramified p-extension, by section 1 Chapter III of [5], and thusNL/F (U1,L)

is a Normic subgroup of U1,F , by Definition 2.3.7. We know that:

N ′ = Q ∩ U1,F = NL/F (L∗) ∩ U1,F = NL/F (U1,L)

and that N ′ = N ∩ U1,F , with N being a generic Normic subgroup of F ∗. This

gives us that for any Normic subgroup N of F ∗ we have that N ∩ U1,F is a

Normic subgroup of U1,F .

Let N ′ be a Normic subgroup of U1,F , by Definition 2.3.7. We have that

F ∗ = 〈πF 〉 · B · U1,F and set N = 〈πF 〉 · B ·N ′, thus N ∩ U1,F = N ′. We know

that N ′ is an open subgroup of U1,F and thus N is an open subgroup of F ∗.

Also as N ′ fits the second property of Normic subgroups of U1,F we trivially

get that N is a Normic subgroup of F ∗, by Definition 2.2.15. Thus we get that

every Normic subgroup of U1,F is the intersection of a Normic subgroup of F ∗

and U1,F .

The above results show that the Normic subgroups described in Definition

2.3.7 are indeed a generalisation of the Normic subgroups described in Definition

2.2.15. This proves the result that Note 2.3.14 promised would be dealt with.

Note 2.3.20. It is relatively easy to show that the Existence Theorem we saw

in Theorem 2.3.2 is a generalisation, of a sort, of the Existence Theorem of

Theorem 2.2.4 which with deals quasi-finite residue fields.

Let F be quasi-finite, as such F is perfect and thus all results of this section

apply to F , and fix π as a prime element of F . We will be looking at L/F ∈ Fπ

and let B be the group of multiplicative representatives of F . By definition

we have 〈π〉 ⊆ NL/F (L∗). Likewise, from the fact that F = ∩n≥1(F ∗)p
n
, from

Proposition (7.1) Chapter I of [5], and NL/F (F ∗) = (F ∗)p
t
, where pt is the

degree of L/F , we have that B ⊆ NL/F (L∗). So, from the above and Theorem

2.2.4 we have that NL/F (L∗) is equal to a unique Normic subgroup of F ∗ of the

form 〈π〉 ·B ·N , where N is a Normic subgroup, by Note 2.3.19, of U1,F .
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Keeping π and B from above we can see that any finite abelian extension,

L/F , such that 〈π〉 · B ⊆ NL/F (L∗) is an element of Fπ, the description shows

that L/F is a totally ramified p-extension and that π ∈ NL/F (L∗). Let N be

a Normic subgroup of U1,F ; then we can extend N ′ to be a subgroup of F ∗ by

setting N ′ = 〈π〉 · B · N , a group that is a Normic subgroup of F ∗ by Note

2.3.19. By Theorem 2.2.4 there is a unique abelian extension L/F such that

NL/F (L∗) = N ′. We know that L/F ∈ Fπ and thus, by Theorem 2.3.2, we have

that L/F is the unique element of Fπ such that NL/F (U1,L) = NL/F (L∗)∩U1,F =

N .

By combining the above two paragraphs together we can see that the Exis-

tence Theorem of Theorem 2.3.2 is a generalisation of the Existence Theorem

of Theorem 2.2.4. However, there are the caveats that we have to restrict our-

selves to elements of Fπ, for a fixed prime element of F , rather than deal with

all finite abelian extensions of F and that we nnow look at NL/F (U1,L) rather

than NL/F (L∗).

Though there has been a lot more discussion on this subject, in particular

in Professor Fesenko’s paper, it is not relevant for the work we do here and thus

we will not go over it at this juncture.

2.4 Review of Local Class Field Theory with

Imperfect Residue Fields

The first main parts of independent research of the thesis, and the whole of

Chapter 3, is on trying to answer open problems in local class field theory with

arbitrary residue fields of positive characteristic, so the residue fields can be

imperfect.

We build on the work done by Professor Ivan Fesenko in the paper “On

General Local Reciprocity Maps” [4], in particular the first part. Please note

that the original paper, published in 1996 in “Journal für die reine und ange-

wandte Mathematik”, has a few errors in the first section so we will be working

from a corrected version that can be found online.

Throughout this section we will be assuming that F is a complete discrete

valuation field with the only restriction on its residue field, F , is that it has

positive characteristic p. This means that F may be imperfect.

Notation 2.4.1. We again will let F̂ /F be the maximal unramified p-extension

of F . Likewise, for finite abelian totally ramified p-extensions we will again
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denote the group HomZp(Gal (F̂ /F ),Gal (L/F )) by Gal (L/F )∧.

If L/F is a finite abelian totally ramified p-extension, we have that L̂ = LF̂ ,

giving us that F̂ ⊆ L̂.

Unlike when we require that F be perfect we unfortunately do not always

have that NL̂/F̂ (U1,L̂) = U1,F̂ . As such we require further notation.

Definition 2.4.1. Let L/F be a finite abelian totally ramified field extension,

then define U(L/F ) as U1,F ∩NL̂/F̂ (U1,L̂).

Note 2.4.1. If F is perfect we get that U(L/F ) = U1,F ∩ NL̂/F̂ (U1,L̂) = U1,F .

This tracks with how we deal with the case where F is perfect.

Notation 2.4.2. Let L/F be a finite abelian totally ramified p-extension, we

shall denote NL/F (U1,L) as N(L/F ).

We can now define the Neukirch homomorphism: ΥL/F : Gal (L/F )∧ →
U(L/F )/N(L/F ).

Definition 2.4.2. Let L/F be a finite abelian totally ramified p-extension and

set χ as a an element of Gal (L/F )∧. Denote by Σχ ⊆ L̂ the fixed field of the

elements τϕ ∈ Gal (L̂/F ), where τϕ |L= χ(ϕ) and τϕ |F̂= ϕ and ϕ runs through

every element of Gal (F̂ /F ). We have that L/Σχ is unramified while Σχ/F is

a totally ramified p-extension. Let πχ be a prime element of Σχ and πL be a

prime element of L. Set:

ΥL/F (χ) = NΣχ/F (πχ)NL/F (π−1
L ) mod N(L/F )

Note 2.4.2. Like in the previous section we do not need ϕ to vary through every

element of Gal (F̂ /F ) but instead just through a topological basis of Gal (F̂ /F ).

By the definition of a basis it will yield the same fixed field Σχ.

Lemma 2.4.1. If L/F is a finite abelian totally ramified p-extension, then the

Neukirch map ΥL/F is a well defined homomorphism.

Proof. The proof of this lemma can be found in Lemma 1.2 of [4].
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Note 2.4.3. If we have that F is a perfect field and that L/F is a finite abelian

totally ramified p-extension then we know that U(L/F ) = U1,F and thus ΥL/F

becomes a map between Gal (L/F )∧ and U1,F/N(L/F ). It is also clear that

ΥL/F is the same map that we defined in the perfect residue field case meaning

that the Neukirch map that we have just defined is a generalisation of what we

have already seen.

Definition 2.4.3. Let F/F̂ be a field extension such that F is a complete

discrete valuation field with the following properties:

1) The ramification index of F/F̂ , so e(F | F̂ ), is equal to 1.

2) We have that F =
⋃
n≥0 F̂

p−n

. This means that F is the perfection of F̂ .

If L/F is a finite abelian totally ramified p-extension define L as being LF.

This gives L the same properties as F, but substituting L for F , while also

making sure that F ⊆ L.

Note 2.4.4. If F is perfect then F is unique and is the completion of F̂ ; the

uniqueness of F cannot be assumed if we do not require F to be perfect.

Definition 2.4.4. Let L/F be a finite abelian totally ramified p-extension. We

will define I(L | F ) as a subgroup of U1,L̂ equal to the intersection of U1,L̂ and

the subgroup of U1,L generated by the elements ε−1σ(ε), where ε ∈ U1,L and

σ ∈ Gal (L/F ).

Definition 2.4.5. We can now define the map, ΨL/F , which is the left-hand

inverse of ΥL/F , for a finite abelian totally ramified p-extension L/F .

Define the map c : Gal (L/F )→ U1,L̂/I(L | F ) as follows:

c(σ) = π−1
L σ(πL) mod I(L | F )

where σ ∈ Gal (L/F ) and πL is any prime element of L.

We now have the exact sequence:

1 // Gal (L/F ) c // U1,L̂/I(L | F )
N
L̂/F̂
// NL̂/F̂ (U1,L̂) // 1

For reasons why this sequence is exact please check section 1.4 of [4].

Next we can define ΨL/F :

Let α ∈ U(L/F ) and ϕ ∈ Gal (F̂ /F ), with ϕ̂ ∈ Gal (L̂/F ) being a fixed

extension of ϕ. Choose an element β ∈ U1,L̂ such that NL̂/F̂ (β) = α. We know

that NL̂/F̂ (β−1ϕ̂(β)) = 1, so from the above exact sequence we get β−1ϕ̂(β) ≡
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c(σ−1) mod I(L | F ), for an element σ ∈ Gal (L/F ). Define ΨL/F (α) as

the map in Gal (L/F )∧ that sends ϕ to σ as ϕ varies through elements of

Gal (F̂ /F ).

Lemma 2.4.2. Let L/F be a finite abelian totally ramified p-extension. Then

ΨL/F is a well defined homomorphism and ΨL/F ◦ΥL/F is the identity map on

Gal (L/F )∧, thus making ΥL/F injective and ΨL/F surjective.

Proof. The proof of this lemma can be found in Lemma 1.4. and Proposition

1.5 of [4].

Definition 2.4.6. Let F/F be a field extension such that F is a complete

discrete valuation field with the following properties:

1) The ramification index of F/F , so e(F | F ), is equal to 1.

2) F =
⋃
n≥0 F

p−n

. This means that F is the perfection of F .

If L/F is a finite abelian totally ramified p-extension. Fix a field to be F
and define L as being LF .

This definition of L fits the requirements we have shown for F while also

having the property that F ⊆ L.

Note 2.4.5. Like with F, there are possibly multiple fields that fit the require-

ments of F . Likewise, if F is perfect then F is unique but in this case is equal

to F .

Lemma 2.4.3. Let L/F be a finite abelian totally ramified p-extension. Denote

the map U(L/F )/N(L/F )→ U1,F/NL/F(U1,L) induced by inclusion with λL/F .

Then the following two diagrams are commutative:

Gal (L/F )∧

��

ΥL/F
// U(L/F )/N(L/F )

λL/F
��

Gal (L/F)∧
ΥL/F

// U1,F/NL/F(U1,L)

and:

U(L/F )/N(L/F )

λL/F
��

ΨL/F
// Gal (L/F )∧

��

U1,F/NL/F(U1,L)
ΨL/F

// Gal (L/F)∧
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Proof. The proof of this lemma can be found in section 1.6 of [4].

We know from previous work that since F is a perfect field then ΨL/F is an

injective map. This gives us that λL/F is surjective and that the kernel of ΨL/F is

the kernel of λL/F , which is equal to (U1,F ∩NL̂/F̂ (U1,L̂)∩NL/F(U1,L))/N(L/F ).

Notation 2.4.3. Denote U1,F∩NL̂/F̂ (U1,L̂)∩NL/F(U1,L) by the notationN?(L/F ).

We now have that ΨL/F induces an isomorphism between U(L/F )/N?(L/F )

and Gal (L/F )∧.

Notation 2.4.4. In order to differentiate between when we are dealing with

the map from U(L/F )/N∗(L/F ) and the map from U(L/F )/NL/F (U1,L), we

shall denote the map from U(L/F )/NL/F (U1,L) to Gal (L/F )∧ as ΨL/F and the

induced isomorphism from U(L/F )/N∗(L/F ) to Gal (L/F )∧ as Ψ∗L/F .

Note 2.4.6. If F is perfect we have already seen that U(L/F ) = U1,F and it is

easy to see from the definition that N?(L/F ) = N(L/F ). This gives us that

ΨL/F is an isomorphism between U1,F/N(L/F ) and Gal (L/F )∧ like we should

expect.

Let L/F be a finite abelian totally ramified p-extension and set M/F as a

subextension, then from the working in section 1.7 of [4] we have the following

properties:

1) λ−1
L/F (N(M/F)) = NM/F (U(L/M)N?(L/F ))

2) ker(NM/F) ⊆ N(L/M)

3) U(L/F ) ∩N?(M/F ) = NM/F (U(L/M)N?(L/F ))

We can use the above in the proof of the following proposition.

Proposition 2.4.1. Let L/F be a finite abelian totally ramified p-extension.

Then the following properties are equivalent:

1) Both ΥL/F and ΨL/F are isomorphisms.

2) ΨL/F is a monomorphism.

3) ΥL/F is a surjective map.

4) N?(L/F ) = N(L/F ).

5) Fix ε ∈ U1,L̂, then if for every σ ∈ Gal (L̂/L) we have εσ−1 ∈ I(L | F ),

then we also have that εσ−1 ∈ I(L | F )σ−1 for all σ ∈ Gal (L̂/L).

6) U(L/F ) is equal to the set of elements which have the form:



CHAPTER 2. LITERATURE REVIEW 46

NΣχ/F (πχ)/NL/F (πL)

where Σχ, πχ and πL are as in the definition of ΥL/F , see definition 2.4.2, and

χ runs through all of the elements of Gal (L/F )∧.

Proof. The proof of this proposition can be found in Proposition 1.8 of [4].

Note 2.4.7. The above proposition means that if L/F is a finite abelian totally

ramified p-extension we only need to prove one of the conditions in order to

show that ΨL/F is an isomorphism.

From the previous proposition we get the following theorem:

Theorem 2.4.1. Let L/F be a finite cyclic totally ramified p-extension; then

ΨL/F is an isomorphism with ΥL/F being its inverse.

Proof. The proof of this theorem can be found in Theorem 1.9 of [4].

Note 2.4.8. The above theorem means that if L/F is a finite totally ramified

cyclic p-extension then:

Gal (L/F )∧ ∼= U(L/F )/N(L/F ) = (U1,F ∩NL̂/F̂ (U1,L̂))/NL/F (U1,F )

Theorem 2.4.2. Let L1/F and L2/F be finite abelian totally ramified

p-extensions such that L1L2/F is totally ramified. Then L1 ⊆ L2 if and only if

N(L2/F ) ⊆ N(L1/F ).

Proof. The proof of this theorem can be found in Theorem 1.10 of [4].

Note 2.4.9. The above theorem is an analogue to one of the results in Corollary

2.3.2, which applies when we assume that F is perfect.

Proposition 2.4.2. Let F be a complete discrete valuation field with no re-

strictions on F other than that char (F ) = p > 0. Next let L1/F and L2/F be

a pair of finite abelian totally ramified p-extensions such that there is a prime

element, π, of F , with π ∈ NL1/F (L∗1)∩NL2/F (L∗2). Then we have that L1L2/F

is also a totally ramified extension.
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Proof. The proof of this proposition can be found in Proposition 2.1 of [4].

Note 2.4.10. Unlike the previous two sections, we will not be discussing the

Existence Theorem in this case. It is not necessary for the work in this document

so there is no point in going over it here.

We will note that like with ΥL/F and ΨL/F , where we can only prove they

are an isomorphism in limited cases, the current Existence Theorem is a lot

less complete than in cases with more restrictions on the residue field of F .

For instance [4] only describes the one-to-one correspondence between certain

subgroups of U1,F and finite cyclic totally ramified p-extensions of F ; rather

than all finite abelian totally ramified p-extensions of F .

Like with the previous parts of this chapter there is a lot more in Profes-

sor Fesenko’s paper about local class field theory when dealing with imperfect

residue fields, however it is not relevant to this work so we will not be discussing

it here.

2.5 Review of the Norm Map for

Ordinary Abelian Varieties

In this section we shall have a brief look at the paper “The Norm Map for Ordi-

nary Abelian Varieties” by Jonathan Lubin and Michael Rosen [7]. This paper

offers an alternate proof of a result that is in Barry Mazur’s paper “Rational

Points of Abelian Varieties with Values in Towers of Number Fields” [8]; we

shall not be looking at that paper however as the result and method we are

interested in is all contained in [7].

Notation 2.5.1. Let p be a prime number and let F/Qp be a finite field extension.

This means that F is a complete discrete valuation field with finite residue field.

We will denote the cardinality of F by q ∈ Z.

We will be assuming, for the rest of this section, that d is a positive integer.

Let A be a d-dimensional abelian variety over F with good ordinary reduc-

tion.

Finally, fix L as a totally ramified Zp-extension of F .

Notation 2.5.2. Let E/F be either an algebraic extension of F or the completion

of such an extension. We shall denote the ring of integers of E by OE and the

maximal ideal of E by ME.
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Notation 2.5.3. We will let F̂ denote the completion of the maximal unramified

extension of F . Since F has a finite residue field there exists an unique F -

Frobenius automorphism of F̂ which we shall denote by φ.

Note 2.5.1. We said in Notation 2.5.1 that q is the cardinality of F . This means

that for all a ∈ OF̂ we have that φ(a) ≡ aq mod MF̂ ).

Definition 2.5.1. Let n be a positive integer, denote by Ln the fields such that

F ⊆ Ln ⊆ L and [Ln : K] = pn. Denote by NL/F (A(L)) the intersection:

⋂
n≥1

NLn/F (A(Ln))

Definition 2.5.2. Let K be a d-dimensional formal group over OF . We call

K toroidal if we have K ∼= Ĝd
m, over OF̂ .

Definition 2.5.3. Let H be a d-dimensional toroidal formal group over OF
and let k : H → Ĝd

m be an isomorphism over OF̂ .

We can represent k as d power series and we can form another d power series,

denoted by kφ, by applying the Frobenius automorphism φ to the coefficients

of k.

kφ ◦ k−1 is an automorphism on Ĝd
m. This automorphism corresponds to a

non-singular d×d matrix over Zp, which we shall denote by u. A matrix of the

form u is called a twist matrix of H.

Note 2.5.2. If H is a d-dimensional toroidal formal group over OF then any two

twist matrices of H will by similar, so it does not matter which twist matrix

we use in our later work.

Definition 2.5.4. Let H be a a d-dimensional toroidal formal group over OF
and set u as a twist matrix of H. Next, let L/F be a totally ramified Galois

extension and extend the F -Frobenius automorphism, φ to LF̂ by having it fix

elements of L. We define the following set:

V (L) = Vu(L) = {α ∈ Ud
LF̂

: αφ = αu}

Lemma 2.5.1. Keeping the notation of Definition 2.5.4; we have that Vu(L)

is a Gal (L/F )-module and is isomorphic to H(OL), as Gal (L/F )-modules.
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Proof. The proof of this lemma can be found in, and slightly before, the first

lemma of section 1 of [7].

Lemma 2.5.2. Let A be a d-dimensional abelian variety over F with good

ordinary reduction. Denote by Â the formal group over OF that corresponds to

A. Then Â is a toroidal formal group over OF̂ .

Proof. The proof of this lemma can be found in Lemma 4.27 in [8].

Lemma 2.5.3. Let A be a d-dimensional abelian variety over F with good

ordinary reduction. Denote by Â the formal group over OF that relates to A.

From Lemma 2.5.2 we know that Â is toroidal and let u be a twist matrix of

Â. Finally, fix Ln/F as a finite totally ramified Galois p-extension and denote

by Gn the Galois group of Ln/F , with Vu(F ) and Vu(Ln) being as described in

Definition 2.5.4.

We then have the following isomorphism:

Vu(F )/NLn/F (Vu(Ln) ∼= (Gab
n )d/((I − u)(Gab

n )d)

Proof. The proof of this lemma can be found in Theorem 1 of [7].

From the above lemma we now come to the main theorem of the paper,

which the paper calls “Mazur’s Proposition 4.39” [7]:

Theorem 2.5.1. Keep the notation that we have in the above lemma and now

let L/F be a totally ramified Zp-extension, we have that the following is an

exact sequence:

Zdp/((I − u)Zdp)→ A(F )/NL/F (A(L))→ A(F )p → 1

Here the map Zdp/((I − u)Zdp) → A(F )/NL/F (A(L)) is constructed using the

isomorphism in Lemma 2.5.3 and the natural map:

Â(OF )/NL/F (Â(OL))→ A(F )/NL/F (A(L))

Proof. The proof of this theorem is gone over in the first two sections of [7].

Though there is more in the paper the above is all that we will need for this

document. This makes the rest of the paper irrelevant for us at the time being.



Chapter 3

Local Fields with Imperfect

Residue Fields

This chapter is about furthering our understanding of local class field theory.

In particular, it advances the knowledge imparted by Professor Ivan Fesenko’s

“On General Local Reciprocity Maps” [4], which is on the subject of local class

field theory when the residue field is not necessarily perfect. We shall be using

the aforementioned paper as well as Ivan Fesenko’s paper “Local Class Field

Theory: Perfect Residue Field Case” [3] and the book he co-authored, “Local

Fields and their Extensions” [5], to explore several different avenues on the

topic.

[4], [5] and [3] have already been discussed in the “Literature Review”. [4]

deals with local class field theory with imperfect residue fields, which will of

course be useful for this topic. Meanwhile, [3] deals with local class field theory

when the residue field is required to be perfect, an area of mathematics with a

lot more concrete results than when we let the residue field be imperfect. There

are a few results in that paper that are useful in the study of the following

mathematics.

In [5], Chapter III is our main resource as it deals with the nature of norm

maps and the Hasse-Herbrand function, hL/F .

Over the course of the chapter, unless explicitly stated otherwise, we will be

letting F be a complete discrete valuation field with no restrictions on F other

than it having positive characteristic p, and will be looking at field extensions,

L/F , which are finite abelian totally ramified p-extensions.

We shall be briefly looking at the structure of the norm group NL/F , as

well as how the N∗ groups, defined in section 1.7 of [4], and in section 3 of the

“Literature Review”, intersect and compose with one another.

The main topic of consideration however is the map ΨL/F and when it is

50
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an isomorphism. We shall prove that ΨL/F is an isomorphism if Gal (L/F ) ∼=
(Z/pZ)2, or if L/F has a single ramification jump.

We shall also look at what happens if L/F has two ramification jumps.

Unfortunately, the problem of establishing the isomorphism property of ΨL/F

remains open. We will, however, explain what we can prove and show where

the problem presents itself. This is then followed by a failed idea of trying to

resolve the problem and an idea of where to go in the future.

The final sections of this chapter deals with extensions created by adjoining

the p’th-root of elements to F . We deal with both the basic nature of such

extensions and look at if we can relate them back to the mathematics we have

already done on ΨL/F .

3.1 Notation

Throughout this chapter we will be using the same notation and definitions

that Professor Fesenko uses in the first section of [4]. This has already been

gone over in section 3 of the “Literature Review”, but as a refresher we will go

back over them here.

Notation/Definition 3.1.1. Let F and L/F be as described in the previous

section. We let F̂ be the unramified extension of F corresponding to the max-

imal separable

p-extension of F and define L̂ to be equal to LF̂ .

We next define F to be a complete discrete valuation field which is an

extension of F with the following two properties. Firstly, we have that

e(F | F ) = 1 and secondly F =
⋃
n≥1 F

p−n

, this means that F is the perfection

of F . We again let L equal LF .

We finally define N∗(L/F ) to be equal to U1,F ∩NL̂/F̂ (U1,L̂)∩NL/F(U1,L) and

write NL/F (U1,L) as N(L/F ) and let Ψ∗L/F : U(L/F )/N∗(L/F ) → Gal (L/F )∧

be the isomorphism induced by ΨL/F : U(L/F )/N(L/F )→ Gal (L/F )∧.

Proposition 2.4.1, and by extension Proposition 1.8 of [4], also tells us that

ΨL/F is an isomorphism if and only if N∗(L/F ) = N(L/F ).

3.2 An Important Exact Sequence

The first thing we shall do is show that an important exact sequence in local

class field theory holds when the residue field of a complete discrete valuation



CHAPTER 3. LOCAL FIELDS WITH IMPERFECT RESIDUE FIELDS 52

field F is assumed to be perfect, and then we shall show that the sequence still

holds when the residue field is imperfect.

Proposition 3.2.1. Let F be an arbitrary complete discrete valuation field.

There is an order and degree preserving bijection between finite separable un-

ramified extensions of F and finite separable extensions of F .

If L/F is sent to T/F by the bijection then L/F is Galois if and only if

T/F is Galois, in that case we have Gal (L/F ) ∼= Gal (T/F ).

Proof. As a reminder a finite extension of L/F is unramified if L/F is a sepa-

rable extension with the same degree as L/F , taken from section (3.1) Chapter

II in [5].

If L/F is a finite unramified Galois extension then, by Proposition (3.3)

Chapter II in [5], we have that L/F is Galois and that Gal (L/F ) ∼= Gal (L/F ).

This isomorphism takes σ ∈ Gal (L/F ) to σ ∈ Gal (L/F ), where for α in L we

define σ(α) as σ(α).

Let L1/F , L2/F and L/F be finite separable unramified extensions of F with

L1 ⊆ L2 ⊆ L and L/F being Galois. We have that Gal(L/F ) ∼= Gal (L/F ), and

that Gal(L/L1) ∼= Gal (L/L1) and Gal(L/L2) ∼= Gal (L/L2). From Proposition

(3.2) Chapter II in [5] we may choose α1 and α2 be such that L1 = F (α1) and

L2 = F (α2), with both α1 and α2 are contained in OF with L1 = F (α1) and

L2 = F (α2).

Now L1 ⊆ L2, which means that α1 ∈ L2. This gives us that α1 ∈ L2 and

thus L1 ⊆ L2. Since we have that Gal(L/L1) ∼= Gal (L/L1) and Gal(L/L2) ∼=
Gal (L/L2) we have that the degree of L2/L1 is equal to the degree of L2/L1.

Next suppose L1 6⊆ L2 but both are still contained in L with L/F being a

finite unramified Galois extension. We thus have that L1L2/L2 has an degree

greater than 1. By Corollary (3.2) Chapter II in [5] we have that L1L1/F =

L1 L2/F is unramified. Since L contained both L1 and L2 we get that it contains

L1L2 and by the previous paragraph we have that L2 ⊆ L1 L2 and that the

degree of L1 L2/L2 is greater than 1. From this we get that L1 6⊆ L2 and

thus the natural map from finite unramified extensions of F to finite seperable

extensions of F is both order and degree preserving and injective.

Conversely, let T/F be a finite separable extension with T = F (θ) and

g(X) ∈ F [X] being the monic seperable irreducible polynomial which has θ as

a root. Next, let f(X) ∈ OF [X] be a monic polynomial such that f(X) = g(X).

Since g(X) is both monic and separable then, by Proposition (3.2) Chapter II in

[5], we have that F (β), where β is any root of f(X), is an unramified extension

of F .
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Let M/F be the splitting field of f(X) over F . Then, by Corollary (3.2)

Chapter II in [5], we get that M/F is unramified and Galois. We also have,

by Proposition (3.3) Chapter II in [5], that M/F is Galois with Gal (M/F ) ∼=
Gal (M/F ). Letting βi be the root of f(X) such that βi = θ we have that

F (βi)/F is an unramified extension with the degree of F (βi)/F being equal to

the degree of T/F . Since θ ∈ F (βi) we have that T ⊆ F (βi) and thus T = F (βi).

This gives us that the natural map from finite unramified extensions of F to

finite separable extensions of F is surjective.

Summing up what we have worked out, we have that the map L/F 7→ L/F

is an order and degree preserving bijection from finite unramified extensions of

F and separable extensions of F .

Finally, if the T/F is Galois then, by Proposition (3.3) Chapter II of [5], we

see, as F (βi) = T , that F (βi)/F is also a Galois extension. This combined with

what we did earlier in the proof shows that the bijection induces a bijection

between finite Galois extensions of F and finite Galois extensions of F and that

the bijection preserves Galois groups.

Corollary 3.2.1. Let F be an arbitrary complete discrete valuation field with

residue field of characteristic p. Remembering that F̂ /F is the maximal un-

ramified p-extension of F , we have that it is Galois and F̂ /F is the maximal

p-extension of F with Gal (F̂ /F ) ∼= Gal (F̂ /F ).

Proof. Let α be an arbitrary element of F̂ . This means that α is contained in

a separable p-extension of F . Let f(X) ∈ F [X] be the minimal polynomial of

α. As α ∈ F̂ we have that the degree of f(X) must be of the form pn for some

non-negative integer n.

Let σ be a field automorphism of F
sep
/F . We have that σ(α) must also be

a root of the irreducible polynomial f(X). This means that F (σ(α))/F must

have degree pn. If L/F is an unramified extension such that L = F (σ(α)) then

the degree of L/F is also equal to pn and thus, by definition, L ⊆ F̂ . This gives

us that σ(α) is contained in F̂ , so the field extension F̂ /F contains the Galois

closure of F (α)/F .

By Proposition (3.2) Chapter II in [5] we get that F̂ contains the Galois

closure of F (α)/F . Since α was an arbitrary element of F̂ we see that F̂

contains the Galois closure of any finite subextension of F̂ /F and thus, as F̂ /F

is the limit of all of its finite subextensions, F̂ /F is a Galois extension.

Likewise, if we let γ be an element of the separable p-closure of F then

using similar mathematics to the above, and Proposition (3.2) again, we get
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that there exists a θ ∈ F̂ such that θ = γ. This means that F̂ contains the

separable p-closure of F . Next, if σ is not in the separable p-closure of F

then F (γ)/F has degree equal to mpt, where m is an integer greater than 1

and coprime to p. Therefore, if L/F is a separable extension that contains an

element θ such that θ = γ we have that F (γ)/F is also a separable extension

and it has degree mpt; which means L 6⊆ F̂ . So F̂ is contained in the separable

p-closure of F and thus is the separable p-closure of F .

Now, the Galois group of F̂ /F is equal to the limit of the Galois groups of

all of its finite subextensions and the same holds for the Galois group of F̂ /F .

From Proposition 3.2.1 we see that the map L/F 7→ L/F induces a bijection

between finite Galois unramified extensions of F and finite Galois extensions

of F , and this bijection preserves Galois groups and order. From the bijection

we see that, by taking the limits, Gal (F̂ /F ) ∼= Gal (F̂ /F ).

Corollary 3.2.2. Let F be an arbitrary complete discrete valuation ring whose

residue field has characteristic p. Next, let L/F be a finite totally ramified

extension. We have that Gal (F̂ /F ) ∼= Gal (L̂/L).

Proof. As L/F is totally ramified we have that L = F and thus by Corollary

3.2.1 we get that F̂ = L̂, since both are equal to the maximal p-extension of F ,

and:

Gal (F̂ /F ) ∼= Gal (F̂ /F ) = Gal (L̂/L) ∼= Gal (L̂/L)

Note 3.2.1. The above corollary was already assumed to be true when were

writing up about the generalisation of classic local class field theory in the

“Literature Review”, see Notation 2.3.1 for us explicitly assuming that Corol-

lary 3.2.2 held. However, none of the maths we have used in this section so

far relies on local class field theory. Therefore, there should be no issue with

us proving the corollary here; in fact Notation 2.3.1 directs readers here to get

a proof of the fact that Gal (F̂ /F ) ∼= Gal (L̂/L), for a finite abelian totally

ramified p-extension L/F .

With the groundwork out of the way we can start on the exact sequence.

This will be done in two parts, first when F is perfect and then when it is

imperfect.
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Lemma 3.2.1. Let F be an arbitrary complete discrete valuation field with

perfect residue field of characteristic p. Let L/F be a finite abelian totally

ramified p-extension with M/F being a subextension of L/F . There is the

following exact sequence:

1→ Gal (L/M)∧ → Gal (L/F )∧ → Gal (M/F )∧ → 1

here the two middle maps exist from the result of Corollary 3.2.2 that identifies

Gal (F̂ /F ) with Gal (L̂/L) and Gal (M̂/M). The map from Gal (L/M)∧ to

Gal (L/F )∧ is induced by the natural inclusion from Gal (L/M) to Gal (L/F )

and the map from Gal (L/F )∧ to Gal (M/F )∧ arises from the restriction of

Gal (L/F ) to Gal (M/F ).

Proof. It is clear that the map from Gal (L/M)∧ to Gal (L/F )∧ is injective and

the kernel of the map to Gal (M/F )∧ is the image in Gal (L/F )∧ of Gal (L/M)∧.

The only thing left to do is to show that the map to Gal (M/F )∧ is surjective.

As we have that F is a perfect field we can use the mathematics of section

3 of the “Literature Review”.

We shall use the first diagram of Lemma 2.3.3 to get the following:

U1,F/NL/F (U1,L)

��

ΨL/F
// Gal (L/F )∧

��

U1,F/NM/F (U1,M)
ΨM/F

// Gal (M/F )∧

with the left downward arrow being induced by the identity on U1,F and the

right downward arrow being induced by the restriction map from Gal (L/F ) to

Gal (M/F ). We also have that both ΨL/F and ΨM/F are isomorphisms.

We can use Corollary 2.3.2 to get that, as M ⊆ L, we have NL/F (U1,L) ⊆
NM/F (U1,M). This combined with the mathematics from earlier in the proof

shows that the map from Gal (L/F )∧ to Gal (M/F )∧ is surjective, like we

wanted.

Theorem 3.2.1. We shall keep the assumptions of Lemma 3.2.1 other than

we will now assume that F is imperfect. The exact sequence described, with the

same maps, in Lemma 3.2.1 still holds.
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Proof. Like with Lemma 3.2.1 the only thing that is not clear is that the map

Gal (L/F )∧ → Gal (M/F )∧ is surjective. Fix a F , as in Notation/Definition

3.1.1, and let L = LF andM = MF . As the ramification index of F/F is equal

to 1, and the same holds for L/L and M/M , with L/F being totally ramified

we have that Gal (L/F) ∼= Gal (L/F ), with the map being the restriction map

of automorphisms of L to L. There are similar results for Gal (L/M) and

Gal (M/F). We also see that the isomorphism from Gal (L/F) to Gal (L/F )

induces the isomorphisms between Gal (L/M) and Gal (L/M) and between

Gal (M/F) and Gal (M/F ).

Now, let T/F be a finite Galois extension. As F/F is a purely inseparable

extension, by definition, we have that there exists a Galois extension T ′/F

such that T ′F = T and Gal (T/F) ∼= Gal (T ′/F ). Likewise for all finite Galois

extensions S/F we have that SF/F is also Galois and has a Galois group

isomorphic to the Galois group of S/F .

Finally, it is clear that if S/F is a Galois extension, with S ′/F being a

subextension, then S ′F/F is a subextension of the Galois extension SF/F .

We also have that Gal (S/S ′) ∼= Gal (SF/S ′F). The same holds when going

from Galois extensions of F to Galois extensions of F .

The above all combines to mean that there is an order, and Galois group,

preserving bijection between finite Galois extensions of F and finite Galois

extensions of F . Since we can take infinite Galois extensions of F to be the

composition of finite Galois extensions we get a bijection from infinite Galois

extensions of F and F .

Now, we know that F̂ is the maximal p-extension of F , with F̂ /F being

Galois, and that the same holds for F̂ and F . So then, from the previous para-

graph and Corollary 3.2.1, we have that Gal (F̂/F) is isomorphic to Gal (F̂ /F ).

The extension F̂ /F is Galois, so letting elements of Gal (F̂/F) act on F̂ creates

elements of Gal (F̂ /F ). Likewise, we have that the restriction map induces an

isomorphism between Gal (F̂/F) and Gal (F̂ /F ) and thus the restriction map

induces an isomorphism between Gal (F̂/F) and Gal (F̂ /F ).

Combining the previous paragraph with the isomorphism from Gal (L/F ) to

Gal (L/F), we have that Gal (L/F )∧ ∼= Gal (L/F)∧. Using the same methods

we also get that Gal (L/M)∧ ∼= Gal (L/M)∧ and Gal (M/F )∧ ∼= Gal (M/F)∧.

Now we need to show that as the map from Gal (L/F )∧ to Gal (M/F )∧,

which is induced by the restriction map from Gal (L/F ) to Gal (M/F ), is

surjective. Let Φ be an element of Gal (M/F )∧, and let Φ′ denote the ele-

ment of Gal (M/F)∧ the isomorphism between Gal (M/F )∧ and Gal (M/F)∧

sends Φ to. We know, from Lemma 3.2.1, that the map from Gal (L/F)∧ to
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Gal (M/F)∧, induced by the restriction map, is surjective; so let Ψ′ be an ele-

ment of Gal (L/F)∧ that is mapped to Φ′ and let Ψ be the image of Ψ′ under

the isomorphism between Gal (L/F)∧ and Gal (L/F )∧.

We have that the domain of all of these homomorphism groups are iso-

morphic to each other, so for the sake of simplicity we shall have them all

map from Gal (F̂ /F ). Let α be an element of Gal (F̂ /F ) then we have that

Φ′(α) = β′, with β′ being an element of Gal (M/F). As the map Gal (L/F)∧ →
Gal (M/F)∧ is induced by the restriction map from Gal (L/F) to Gal (M/F)

there is a t′ ∈ Gal (L/F) such that Ψ′(α) = t′. We have t′Gal (L/M) 7→ β′

under the natural isomorphism from Gal (L/F)/Gal (L/M) to Gal (M/F).

Let Φ(α) = β ∈ Gal (M/F ) and let Ψ(α) = t ∈ Gal (L/F ). We know that

the isomorphism from Gal (L/F) to Gal (L/F ) induces the isomorphisms be-

tween Gal (L/M) and Gal (L/M) and between Gal (M/F) and Gal (M/F ).

This gives us that tGal (L/F ) 7→ β under the natural isomorphism from

Gal (L/F ) to Gal (M/F ). As α is an arbitrary element of F̂ /F , this is precisely

what we wanted to show that Ψ maps to Φ and thus that map Gal (L/F )∧ →
Gal (M/F )∧ is surjective.

3.3 Intersection and Composition of Extensions

Theorem 3.3.1. Let L1/F , L2/F be finite abelian totally ramified p-extension

such that L1L2/F is a finite abelian totally ramified p-extension. Then we have

N∗(L1L2/F ) = N∗(L1/F )∩N∗(L2/F ) and N∗((L1∩L2)/F ) = N∗(L1/F )N∗(L2/F ).

We also have that L1 ⊆ L2 if and only if N∗(L2/F ) ⊆ N∗(L1/F ).

Proof. Let L/F be a finite abelian totally ramified p-extension with subexten-

sion M/F . We have that both:

Ψ∗L/F : U(L/F )/N∗(L/F )→ Gal (L/F )∧

and:

Ψ∗M/F : U(M/F )/N∗(M/F )→ Gal (M/F )∧

are isomorphisms. We also have, from Theorem 3.2.1, a natural surjective

map from Gal (L/F )∧ to Gal (M/F )∧, whose kernel is Gal (L/M)∧, and which

commutes with:

U(L/F )/N∗(L/F )→ U(M/F )/N∗(M/F )
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So, if we allow L = L1L2, then we have that Gal (L/L1) ∩ Gal (L/L2) = 1.

This gives us that:

N∗(L/F )/N∗(L/F ) = (Ψ∗L/F )−1(Gal (L/L1)∧ ∩Gal (L/L2)∧ )

This is then equal to, as Ψ∗L/F is an isomorphism, (Ψ∗L/F )−1(Gal (L/L1)∧ ) ∩
(Ψ∗L/F )−1(Gal (L/L2)∧ ), which equals (N∗(L1/F ) ∩ N∗(L2/F ))/N∗(L/F ). We

therefore get the result we want of N∗(L1/F ) ∩N∗(L2/F ) = N∗(L/F ).

For N∗((L1 ∩ L2)/F ), remember that Ψ∗L/F is an isomorphism and

Gal (L/(L1 ∩ L2)) = Gal (L/L1)×Gal (L/L2), we get:

N∗((L1 ∩ L2)/F )/N∗(L/F ) ∼= (Ψ∗L/F )−1(Gal (L/(L1 ∩ L2))∧ )

∼= (Ψ∗L/F )−1(Gal (L/L1)∧ ×Gal (L/L2)∧ ) ∼= (N∗(L1/F )N∗(L2/F ))/N∗(L/F )

This then gives us N∗((L1 ∩ L2)/F ) = N∗(L1/F )N∗(L2/F )..

We obviously have that if L2 ⊆ L1, then N∗(L1/F ) ⊆ N∗(L2/F ). Mean-

while, if N∗(L1/F ) ⊆ N∗(L2/F ), then N∗(L1/F ) = N∗(L/F ). As Ψ∗L/F is an

isomorphism this would mean that Gal (L/F )∧ ∼= Gal (L1/F )∧ and therefore

that L1 = L, thus L2 ⊆ L1.

Note 3.3.1. The above theorem is a separate result from the result proved in

theorem 1.10 of [4], which says that L1 ⊆ L2 if and only ifN(L2/F ) ⊆ N(L1/F ),

as seen in Theorem 2.4.2.

Corollary 3.3.1. If L/F is a finite abelian totally ramified p-extension such

that L = L1...Ln/F , where each Li/F is a cyclic subextension, then N∗(L/F ) =

∩ni=1N∗(Li/F ) = ∩ni=1N(Li/F ).

Proof. Suppose that for i 6= j, we have that Li ∩ Lj = F . We then get that

Gal (L/F ) ∼= ⊕ni=1Mi where Mi = Gal (Li/F ). From Theorem 3.3.1 we get

that N∗(L/F ) =
⋂n
i=1 N∗(Li/F ) =

⋂n
i=1N(Li/F ), since N∗(Li/F ) = N(Li/F )

when Li/F is a cyclic extension, by Theorem 2.4.1.

Theorem 3.3.2. Let F be a complete discrete valuation field with imperfect

residue field of positive characteristic, and fix L1/F and L2/F as two finite

abelian totally ramified p-extensions. Next .let F/F be as defined in Nota-

tion/Definition 3.1.1 and be chosen such that L1F ∩ L2F = (L1 ∩ L2)F .

Suppose there is a prime element π of F such that π ∈ NL1F/F((L1F)∗) ∩
NL2F/F((L2F)∗). Then L1L2/F is a totally ramified extension.
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Proof. We have that π is a prime element of F and that π ∈ NL1/F(L∗1) ∩
NL2/F(L∗2). We can now use local class field theory on F , which has a perfect

residue field, to get that L1L2/F is a totally ramified extension, with degree

equal to that of L1L2/F and with π ∈ NL1L2/F((L1L2)∗), see Lemma 2.3.4.

This gives us that L1L2/F is a totally ramified extension.

Note 3.3.2. As NL1/F (L∗1) ⊆ NL1F/F((L1F)∗) ∩ F ∗ and the same thing holds

for L2, the above result in Theorem 3.3.2 is a stronger version of Proposition

2.1 from [4].

We shall now prove an analogue to a result in section (3.3) of [3]; however

only in the limited case where char (F ) = char (F ) = p.

Proposition 3.3.1. Let F have characteristic p > 0. Then we can construct

a fixed F such that for all finite abelian totally ramified p-extensions L1/F and

L2/F we have L1F ∩ L2F = (L1 ∩ L2)F .

Proof. Now char (F ) = char (F ) = p so by Proposition (5.4) Chapter II of [5]

there is a field of coefficients M contained in F such that under the natural

map between F and F we have that M is mapped isomorphically onto F .

We can let the field F ′ to be equal to F (
⋃
i≥0M

p−i). As char (F ) = p we

have that F ′/F is a purely inseparable extension.

Let α be such that αp ∈ M but α 6∈ M and look at the polynomial Xpαp.

Since the natural map between F and F isomorphically sends M to F we get

that, as α 6∈ M , then α 6∈ F . This means that F (α)/F contains a non-trivial

extension of the residue fields. Since char (F ) = p we have that the only root of

Xp−αp is α and thus Xp−αp is irreducible over F ; which means F (α)/F is an

extension of degree p. By Proposition (2.4) Chapter II of [5], since F (α)/F has

a non-trivial extension of residue fields and has degree p we get that F (α)/F

has degree p while the ramification index of F (α)/F is 1.

We can then iterate the above, extending F to a field that is a finite exten-

sion of F when necessary, to get that F ′/F = F (
⋃
i≥0M

p−i)/F has a ramifica-

tion index of 1. The extension F ′/F is generated by the roots of polynomials

of the form Xpt − β. As char (F ) = p we get that F ′/F is a purely inseparable

extension. F ′/F is purely inseparable, so we have that F ′ ⊆
⋃
i≥0 F

p−i

; the

latter field is the perfection of F .

Let γ ∈ F . As the characteristic of F if p we have that γ has a single pt-th

root for all t ≥ 0. By the isomorphism from M to F we see that there exists an
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element of M that is mapped to γ by the natural map from F to F ; we shall

call this element γ. As F also has characteristic p we have that γ also has a

single pt-th root, that we shall labal γ′. From how we constructed F ′ we have

that γ′ ∈ F ′ and we find out that γ′ is the unique pt-th root of γ.

Since γ was an arbitrary element of F and t was an arbitrary non-negative

integer, we have
⋃
i≥0 F

p−i ⊆ F ′. Combining this with what we have seen earlier

we get that
⋃
i≥0 F

p−i

= F ′, and thus F ′ is the perfection of F .

This means that we have that e(F ′ | F ) = 1 and that F ′ =
⋃
i≥0 F

p−i

and

thus, by definition, we may make F ′ be the fixed F that we use. Naturally, for

the rest of this proof we will refer to F ′ with F .

Now, let L1/F and L2/F be two finite abelian totally ramified p-extensions.

Now L1/F and L2/F are both separable extensions while F/F is a purely

inseparable, this means that we have that L1F ∩ L2F = (L1 ∩ L2)F .

Since L1/F and L2/F were arbitrary finite abelian totally ramified p-extensions

we get that the F that we constructed has the property we want.

Definition 3.3.1. Suppose char (F ) > 0 and let L/F be a finite abelian totally

ramified p-extension. Let us fix F for all such extensions and define N∗(L/F )

as NLF/F((LF)∗) ∩ F ∗.

Corollary 3.3.2. Let us keep the requirement that char (F ) > 0. Fix a prime

element π of F . Let Fπ be the family of all finite abelian totally ramified p-

extensions L/F such that π ∈ N∗(L/F ). This family is closed under composi-

tion and intersection.

Proof. Let L1/F and L2/F be members of Fπ so that we have that π is con-

tained in N∗(L1/F ) ∩N∗(L2/F ). From Theorem, 3.3.2 we know that L1L2/F

is a finite abelian totally ramified p-extension and, as:

NL1L2F/F((L1L2F)∗) = NL1F/F((L1F)∗) ∩NL2F/F((L2F)∗)

we have that π ∈ N∗(L1L2/F ) = N∗(L1/F ) ∩N∗(L2/F ).

Likewise, we already know that (L1∩L2)/F is a finite abelian totally ramified

p-extension and, as:

N(L1∩L2)F/F(((L1 ∩ L2)F)∗) = NL1F/F((L1F)∗)NL2F/F((L2F)∗)

we have that π ∈ N(L1∩L2)F/F(((L1 ∩L2)F)∗). This gives us that π ∈ N∗((L1 ∩
L2)/F ).

This means that Fπ is closed under intersection and composition.
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Unfortunately, although the above corollary is an extension of the results of

section 3.3. in the paper on the perfect residue fields [3], we talked about them

in Definition 2.3.8, it should be reiterated that the result has only been shown

for when char (F ) > 0.

3.4 (Z/pZ)2-Extensions

Let L/F be a abelian totally ramified extension with Galois group isomorphic

to Z/pZ × Z/pZ. We want to know what properties L/F is required to have

for ΨL/F to be an isomorphism.

Let M/F be a subextension of L/F of degree p, so L/M also has degree p,

and are thus cyclic. We know, from Theorem 2.4.1, that both ΨL/M and ΨM/F

are isomorphisms. This means that N∗(L/M) = N(L/M) and N∗(M/F ) =

N(M/F ). What does it therefore mean for:

N∗(L/F ) = U1,F ∩NL̂/F̂ (U1,L̂) ∩NL/F(U1,L) 6= NL/F (U1,L) = N(L/F )?

Lemma 3.4.1. Keeping the assumptions and notation outlined above, we have

that N∗(L/F ) 6= N(L/F ) if and only if there exists an α contained in N∗(L/F ) ⊆
NM/F (U1,M) such that N−1

M/F (α) ∩NL̂/M̂(U1,L̂) = ∅.

Proof. N(L/F ) ⊆ N∗(L/F ), so if the two groups are not equal it always means

that there is an element of the latter that is not in the former. Therefore, let

us suppose N∗(L/F ) 6= N(L/F ) by saying there is an α in N∗(L/F ) but not in

N(L/F ). Now ,α ∈ N∗(L/F ) means that there exists a t1 ∈ U1,L̂ and t2 ∈ U1,L

such that NL̂/F̂ (t1) = NL/F(t2) = α.

N∗(L/F ) ⊆ N∗(M/F ) = N(M/F ), and thus there is a β ∈ U1,M such that

NM/F (β) = α. We also have, from Corollary 2.3.1, that the kernel of NM/F

is contained in the image of NL/M. Next, as NM/F(NL/M(t2)) = α, we have

that if r ∈ U1,M is such that NM/F (r) = α, then r ∈ NL/M(U1,L). Hence

U1,M ⊆ U1,M, this means that β ∈ NL/M(U1,L).

Now if β ∈ NL̂/F̂ (U1,L̂), then:

β ∈ U1,M ∩NL̂/M̂(U1,L̂) ∩NL/M(U1,L) = N∗(L/M)

This latter group is equal to N(L/M), which means that there is a γ ∈ U1,L

such that NL/M(γ) = β. Obviously we therefore have that NL/F (γ) = α, which



CHAPTER 3. LOCAL FIELDS WITH IMPERFECT RESIDUE FIELDS 62

contradicts the fact that α 6∈ N(L/F ). This means that β 6∈ NL̂/M̂(U1,L̂). As β

was an arbitrary element of N−1
M/F (α) we get that N−1

M/F (α) ∩NL̂/M̂(U1,L̂) = ∅;
this is the “if” part of the statement of this lemma.

If N∗(L/F ) = N(L/F ), then every α ∈ N∗(L/F ) is contained in N(L/F )

and thus there exists a β ∈ N(L/M) such that NM/F (β) = α. We trivially have

that β ∈ NL̂/M̂(U1,L̂), which gets us the “only if” part of the statement.

Lemma 3.4.2. Keeping the same notation as the previous lemma, now let

s1 = s(M/F ) and let s2 = s(L/M), as described in Notation 2.1.3. Then ΨL/F

is an isomorphism if s1 ≥ s2.

Proof. We shall let σ be a generator of Gal (M/F ), and therefore of Gal (M̂/F̂ )

and Gal (M/F). The following proof will be by contradiction and therefore we

shall start off by assuming that ΨL/F is not an isomorphism.

So, from the above lemma, we have that there exists an α ∈ N∗(L/F ) such

that N−1
M/F (α) ∩N−1

L̂/M̂
(U1,L̂) = ∅. Let β ∈ U1,M be such that NM/F (β) = α.

Looking at the diagrams in Proposition (1.5) Chapter III of [5], and re-

membering that L̂ is separably p-closed, we see that Us2,M̂ ⊆ NL̂/M̂(U1,L̂) and

that ker(NM̂/F̂ ) ⊆ Us1,M̂ . We have that s1 ≥ s2, so then the kernel of NM̂/F̂

would be contained in the image of NL̂/M̂ .

The previous paragraph means that β 6∈ Us2,M ⊆ Us2,M̂ . It also means that

we could not find γ ∈ U1,M̂ , such that β(γσ−1) ∈ Im (NL̂/M̂). This is because

γσ−1 is contained in the kernel of NM̂/F̂ , and β is not in the image of NL̂/M̂ .

Now α ∈ N∗(L/F ) = U1,F ∩ NL̂/F
(U1,L̂) ∩ NL/F(U1,L) and therefore α ∈

NL̂/F̂ (U1,L̂). This means that there is a t′1 contained in U1,L̂ such thatNL̂/F̂ (t′1) =

α. let t′′1 = NL̂/F̂ (t′1). Now NM̂/F̂ (t′′1) = α and by Corollary (4.1) Chapter III

of [5] we have that t′′1 is of the form β(γσ−1), for γ ∈ U1,M̂ . This contradicts

what we concluded in the previous paragraph. This means that such a β can-

not exist and therefore by contradiction we have that N∗(L/F ) = N(L/F ), if

s1 ≥ s2.

There is one final result we must establish before we can prove the main

theorem of this section. This is Exercise 2 part b) of section 3 of Chapter III

of [5]. Since this is not proved in the book we will state and prove the result in

the next lemma.

Lemma 3.4.3. Let F still be a complete discrete valuation field where the only

restriction on F is that it has positive characteristic p. Let M1/F and M2/F
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be two totally ramified Galois extensions of degree p with M1 ∩M2 = F . Let

L = M1M2 be such that L/F is also totally ramified and set s1 = s(L | M2)

and s2 = s(L |M1).

We have that s1 ≡ s2 mod p. Also, if s(M2 | F ) > s(M1 | F ), then

s1 = s(M1 | F ) and s2 = ps(M2 | F )− (p− 1)s1. Meanwhile, if

s = s(M2 | F ) = s(M1 | F ), then s1 = s2 ≤ s.

Proof. Let σ be a generator of Gal (L/M1) and φ be a generator of Gal (L/M2);

finally set G as Gal (L/F ). We have that L/F is a totally ramified Galois

extension and thus, in terms of lower ramification groups of G, we have that

there is an i, j ≥ 1 such that σ ∈ Gi but not in Gi+1 and φ ∈ Gj but not in

Gj+1. We can use knowledge of lower ramification groups to help us.

Let πL be a prime element of L. From how ramification groups are calculated

we know that there are units, α and β, of L such that σ(πL)/πL = 1 + απiL
and φ(πL)/πL = 1 +βπjL. Looking at Notation 2.1.2, we see that, by definition,

s1 = i and s2 = j. From the definition of i and j in the previous paragraph they

are two ramification jumps of G, it has been established that in this case i ≡ j

mod p. This gives us the first statement of the lemma that s1 ≡ s2 mod p.

The rest of this proof shall be relying heavily on the properties of the Hasse-

Herbrand function, hL/F , which are described in detail in section (3) of Chapter

III of [3]. We are going to be using the following properties:

• hL/F = hL/M1 ◦ hM1/F = hL/M2 ◦ hM2/F .

• As L/M1 is an extension of degree p we have that hL/M1 is formulated as

follows:

hL/M1(x) =

x if x ≤ s2

px+ s2(1− p) if x ≥ s2

We have similar properties for hL/M2 , hM1/F and hM2/F .

• All Hasse-Herbrand functions are bijections that maps, though not nec-

essarily surjectively, the set of non-negative numbers into itself.

• If E/P is a finite Galois extension with Q/P being a Galois subextension,

then for every x ≥ 0 we have that the image of Gal (E/P )hE/Q(x) in

Gal (Q/P ) is equal to Gal (Q/P )x. This is Theorem (3.5) Chapter III in

[5].
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From hL/F = hL/M1 ◦ hM1/F = hL/M2 ◦ hM2/F we have that hL/F has one or

two points where its derivative does not exist. These points are at s(M2 | F )

and when hM1/F (x) = s1, the latter is at x = s1 if s1 ≤ s(M2 | F ) or at x =

(s1 +(p−1)s(M2 | F ))/p if s1 > s(M2 | F ). The same property also holds when

we decompose hL/F into hL/M1 ◦hM1/F . So the points where the derivative does

not exist must also be at s(M1 | F ) and either s2 or (s2 + (p− 1)s(M1 | F ))/p.

Now suppose that s(M2 | F ) > s(M1 | F ). From the previous paragraph we

have that hL/F has up to two points where the derivative does not exist; one at

s(M2 | F ) and one, which may be the same as the previous point, at s(M1 | F ).

As s(M2 | F ) 6= s(M1 | F ) we see that hL/F has two points where the derivative

does not exist; x = s(M2 | F ) and x = s(M1 | F ) are the two separate points.

From the work earlier in this proof we therefore get that s(M1 | F ) is

equal to s1, if s1 ≤ s(M2 | F ), or equal to (s1 + (p − 1)s(M2 | F ))/p, if

s1 > s(M2 | F ). If s1 > s(M2 | F ), then s1 + (p − 1)s(M2 | F ) > ps(M2 | F )

and thus s(M1 | F ) > s(M2 | F ). This contradicts what we know which gives

us that s1 ≤ s(M2 | F ) and s1 = s(M1 | F ).

We can see that the other point where the derivative does not exist is

s(M2 | F ), which is equal to (s2 + (p − 1)s(M1 | F ))/p, we get a similar

contradiction as before if s2 ≤ s(M1 | F ). By rearranging this gives us that:

s2 = ps(M2 | F )− (p− 1)s(M1 | F ) = ps(M2 | F )− (p− 1)s1

as required.

Let us now suppose that s(M2 | F ) = s(M1 | F ) = s. By construction we

end up with hM1/F = hM2/F . A Hasse-Herbrand function is a bijection between

the set of non-negative numbers to itself and thus inverses exist. Since we have

that hL/F = hL/M1 ◦ hM1/F = hL/M2 ◦ hM2/F we can use the inverse of hM1/F to

get that hL/M1 = hL/M2 . We therefore get that s1 = s2 = t, for some positive

integer t.

Suppose that t > s. Since s + 1 ≤ t we have, by the nature of hL/M1

and hL/M2 , that hL/M1(s + 1) = hL/M2(s + 1) = s + 1. We can now use the

aforementioned Theorem (3.5). This tells us that the image of Gal (L/F )s+1 in

Gal (M1/F ) is equal to Gal (M1/F )s+1. The last group is equal to 1 as

s(M1 | F ) = s, and from how lower ramification groups are worked out. Like-

wise we have that the image of Gal (L/F )s+1 in Gal (M2/F ) equals 1.

From earlier in this proof we got that σ and φ must both be in Gal (L/F )s+1,

since they both help generate s1 and s2 respectively; which are both greater

than or equal to s + 1. We also cannot have φ = σn, for some n, as otherwise

φ and σ would have the same fixed field in L and thus M1 = M2; making
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L = M1M2 = M1. Since Gal (L/F ) ∼= (Z/pZ)2 and σ and φ are independent

elements of that group we see that they generate Gal (L/F ). This gives us,

since φ, σ ∈ Gal (L/F )s+1, that Gal (L/F )s+1 = Gal (L/F ).

Going back to what we had previously. We worked out that the image of

Gal (L/F )s+1 = Gal (L/F ) in Gal (M1/F ) is equal to 1. This of course cannot

be the case as the image of Gal (L/F ) in Gal (M1/F ) is Gal (M1/F ). From this

contradiction we get that s1 = s2 = t ≤ s = s(M1 | F ) = s(M2 | F ), just like

we wanted to show.

Theorem 3.4.1. ΨL/F is always an isomorphism if L/F is a totally ramified

extension whose Galois group is isomorphic to (Z/pZ)2.

Proof. Lemma 3.4.3 gives us a few results for when L1/F and L2/F are two

totally ramified extensions of degree p such that L/F , where L = L1L2, is to-

tally ramified. The results include that if s(L1/F ) > s(L2/F ), then s(L2/F ) =

s(L/L1), and that if s(L1/F ) = s(L2/F ) we have that s(L/L1) = s(L/L2) ≤
s(L2/F ). This is important, as it means that we have s(L1/F ) ≥ s(L/L1) or

s(L2/F ) ≥ s(L/L2) for every possible L/F that we could have.

Combining this with the result of Lemma 3.4.2 tells us that if L/F is Galois

a totally ramified extensions whose Galois groups is isomorphic to Z/pZ×Z/pZ,

then ΨL/F is always an isomorphism.

3.5 General Abelian Extensions

Lemma 3.5.1. Let F be a complete discrete valuation field such that F is not

separably p-closed, where p > 0 is the characteristic of F . We will still allow

F to be imperfect. Fix L/F as a finite abelian totally ramified p-extension such

that G = Gal (L/F ) and Gn is the n’th ramification group. Assume that we

have that there exists an a > 0 such that Ga = G and Ga+1 = 1. In other words

G has one ramification jump.

If F = L0 ⊂ L1 ⊂ ... ⊂ Ln = L is a chain of subextensions such that

Li+1/Li has degree p for all i, then s(Li+1/Li) = a for all i.

Proof. We shall use Proposition (3.6) Chapter III of [5]. We know that if the

degree of L/F equals p then, by definition, s(L/F ) = a. Let us inductively

suppose that for [L : F ] ≤ pn, for some positive integer n, then if F = L0 ⊂
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L1 ⊂ ... ⊂ Ln = L, with Li+1/Li being a degree p extension, we have that

s(Li+1/Li) = a for all 0 ≤ i ≤ n− 1.

Let L/F now have degree pn+1 and let M/F be a subextension of degree

p, we know one exists as L/F is abelian. Let G′ = Gal (L/M). From how

ramification groups are calculated, and the fact that G′ is a subgroup of G,

we know that G′a = G′ and G′a+1 = 1, just like it is for G. This means, from

Proposition (3.6). that for m ≤ a we have both hL/M(m) = m and hL/F (m) =

m. Now hL/F = hL/M ◦ hM/F , and this means that for m ≥ a we must have

that hM/F (m) = m. Since M/F has degree p we know, from

hM/F =

x if x ≤ s(M/F )

px+ s(M/F )(1− p) if x ≥ s(M/F )

that s(M/F ) ≥ a.

Now let us suppose that s(M/F ) = s > a. From Proposition (3.6) Chapter

III in [5] we have that, as s > a, then NL/M induces a bijection between

UhL/F (s),L/UhL/F (s)+1,L and Us,M/Us+1,M . Likewise, NL/F induces a bijection

between UhL/F (s),L/UhL/F (s)+1,L and Us,F/Us+1,F . Now, NL/F = NM/F ◦ NL/M

and hM/F (s) = s, so the fact that hL/F = hL/M ◦ hM/F means we have that

NM/F induces a bijection between Us,M/Us+1,M and Us,F/Us+1,F . This can not

be true, since s = s(M/F ) and M/F has degree p, which means that the

induced map from Us,M/Us+1,M to Us,F/Us+1,F is not injective. From this we

get that s(M/F ) ≤ a, and thus s(M/F ) = a. This is what we need to prove

the lemma by induction.

Theorem 3.5.1. Let L/F be a finite abelian totally ramified p-extension. Set

G = Gal (L/F ). Let ai, i ∈ I, be the ramification jumps. This gives us a chain:

G = Ga1 > Ga2 > ... > Gan > Gan+1 = 1

Let Lt be the fixed field of Gt in L.

Then if Lt = M0 ⊂M1 ⊂ ... ⊂Mkt = Lt+1 is a chain of subextensions such

that Mr+1/Mr has degree p for all r, then s(Mr+1/Mr) = at for all r.

Proof. Let us inductively suppose that for all n ≤ m − 1 and 1 ≤ t ≤ n, we

have that s(Mr+1/Mr) = at.

Let us set n = m. Now La2 is the fixed field of Ga2 in G and we have that

the extension L/La2 is Galois, as L/F is an abelian extension, and has Galois

group Ga2 . We also have, from how the groups are computed, that the lower
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ramification groups of Ga2 are precisely Gat , for 2 ≤ t ≤ m. So by the inductive

assumption we have the result we want holds for 2 ≤ t ≤ m.

The only thing left to show is that if:

F = La1 = M0 ⊆M1 ⊆ ... ⊆Mk = La2 = La1+1

is a chain of field extensions such that Mr+1/Mr has degree p for all 0 ≤ r < k,

then s(Mr+1/Mr) = a1. By Proposition (3.6) Chapter III in [5], Gal (La2/F )

is a Galois extension such that Gal (La2/F )a1 = Gal (La2/F ). Therefore, we

can get the result that we want, namely that for 0 ≤ r < k1 we have that

s(Mr+1/Mr) = a1, by applying the same methods as used in the proof of Lemma

3.5.1.

3.6 Structure of Norm Groups when there is

One Ramification Jump

Theorem 3.6.1. Let L/F be a abelian totally ramified extension of degree pn,

here n ≥ 1, with one ramification jump. This means there exists an a > 0 such

that if G = Gal (L/F ) we have that Ga = G, while Ga+1 = 1.

The norm group NL/F (U1,L) has the following structure:

• If i < a then λi(NL/F (U1,L) ∩ Ui,F )) = F
pn

.

• If i = a we have that λi(NL/F (U1,L) ∩ Ua,F )) = g(F ). Here g(X) ∈ F [X]

is equal to (Xp + η1X) ◦ ... ◦ (Xp + ηnX) for some non-zero η1, η2, ...ηn

contained in F .

• If i > a then we have λi(NL/F (U1,L) ∩ Ui,F )) = F .

Proof. From Lemma 3.5.1 we know that if F = L0 ⊆ L1... ⊆ Ln = L is a

chain of field extensions such that [Lt+1 : Lt] = p, then s(Lt+1/Lt) = a for all

0 ≤ t < n.

From Proposition (1.5) Chapter III of [5] we have that for 1 ≤ t < n and

for i ≥ 1 we get NLt+1/Lt induces the following map :

UhLt+1/Lt
(i),Lt+1/UhLt+1/Lt

(i)+1,Lt+1 → Ui,Lt/Ui+1,Lt

as follows:

• If i < a then θ is mapped to θ
p
, and hLt+1/Lt(i) = i.
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• If i = a then θ is mapped to θ
p−µt+1

p−1θ for some fixed non-zero µt+1 ∈ F ,

and hLt+1/Lt(i) = i.

• If i > a then θ is mapped to −µt+1
p−1θ for the same fixed µt+1 ∈ F as

the i = a case. In this case hLt+1/Lt(i) = a(1− p) + pi.

We also have that if i > 0 and p does not divide i then:

NLt+1/Lt(Up+i,Lt+1) = NLt+1/Lt(Up+i+1,Lt+1)

For simplicity we shall replace −µt+1
p−1 with ηt+1, and will do the same in

similar cases, as it is still a fixed non-zero element of F .

The fact that s(Lt+1/Lt) = a for all 0 ≤ t < n means that we can iterate

the above n times to get the map NL/F induces from UhL/F (i),L/UhL/F (i)+1,L to

Ui,F/Ui+1,F :

• If i < a then θ is mapped to θ
pn

, and hL/F (i) = i.

• If i = a then there exists non-zero η1, η2, ...ηn ∈ F such that θ is mapped

to g(θ). Here g ∈ F [X] is equal to (Xp + η1X) ◦ ... ◦ (Xp + ηnX). Here

we also have that hL/F (i) = i.

• Finally if i > a then, using the same non-zero η1, η2, ...ηn ∈ F as above, θ

is mapped to η1η2...ηnθ. We shall let η denote η1η2...ηn, and note that it

is also a non-zero element of F . Here we have that:

hL/F (i) = a(1−p)+p(a(1−p)+p(...p(a(1−p)+pi))...)) = a(1−pn)+pni

From working out all the cases of i we can finally get the structure of the

norm group that we wanted:

• If i < a then λi(NL/F (U1,L) ∩ UiF )) = F
pn

.

• If i = a we have that λi(NL/F (U1,L)∩Ua,F )) = g(F ), where g(X) ∈ F [X]

is defined earlier in this proof.

• If i > a then, as η 6= 0, we have λi(NL/F (U1,L) ∩ Ui,F )) = F .
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3.6.1 An Important Aside about g(X)

Lemma 3.6.1. g(X) ∈ F [X], which was defined in the proof of Theorem 3.6.1

to be equal to (Xp + η1X) ◦ ... ◦ (Xp + ηnX), is a F -decomposable polynomial,

as explained in Definition 2.2.12.

Proof. By definition, g(X) is the map NL/F induces from Ua,L/Ua+1,L to

Ua,F/Ua+1,F . Therefore, by statement (3) of section 3.1 from [3], if F is a

perfect field we have that g(X) is F -decomposable. As a reminder, g(X) being

F -decomposable means that it is an additive polynomial over F and every root

of g(X) is contained in F .

Suppose that F is imperfect and let F and L = LF be the complete discrete

valuation fields with perfect residue fields that can be constructed as per Nota-

tion/Definition 3.1.1. Likewise, for 0 ≤ t ≤ n, fix Lt as LtF . Since Lt ⊆ Lt+1,

and Lt+1/Lt is a non-trivial totally ramified extension, we see that Lt+1/Lt is

a non-trivial totally ramified extension. We also have that [Lt : F ] = [Lt : F ],

and from this we get that F = L0 ⊆ L1 ⊆ ... ⊆ Ln = L is a chain of totally

ramified extensions such that for 0 ≤ t < n we have [Lt+1 : Lt] = p.

Let πt+1 be a prime element of Lt+1, for some 0 ≤ t < n, then πt+1 is a

prime element of Lt+1. We also have that Gal (Lt+1/Lt) ∼= Gal (Lt+1/Lt), via

the restriction map. This means that if σt is a generator of Gal (Lt+1/Lt) then

there is a generator, σ′t, of Gal (Lt+1/Lt) such that σ′t(πt+1) = σt(πt+1).

This gives us that σ′t(πt+1)/πt+1 = σt(πt+1)/πt+1, and thus s(Lt+1/Lt) =

s(Lt+1/Lt) = a. We also get, from how it is computed, that the map from

Ua,Lt+1/Ua+1,Lt+1 to Ua,Lt/Ua+1,Lt , induced by NLt+1/Lt is the same polynomial

as the map from Ua,Lt+1/Ua+1,Lt+1 to Ua,Lt/Ua+1,Lt . This means that the map

from Ua,L/Ua+1,L to Ua,F/Ua+1,F , induced by NL/F , is also g(X). Note that

these above results hold, for the same reasons, if we instead look at NL̂/F̂ ,

instead of NL/F .

F is a perfect field, and we are assuming that F is an infinite field as well; it

is imperfect so F must have infinite cardinality. Therefore, we have that g(X)

is a F -decomposable polynomial. This means that g(X) =
∑n

i=0 αiX
pi and

thus the formal derivative of g(X) is the constant α0, since F has characteristic

p. Since g(X) = (Xp + η1X) ◦ ... ◦ (Xp + ηnX), we can see that in this case

g′(X) = η1 · η2 · ... · ηn = η 6= 0.

This means that g(X) has no repeated roots and therefore its roots are

contained in F
sep

, since g(X) ∈ F [X]. We also know that the roots of g(X) are

contained in F and that, by definition, F/F is a purely inseparable extension.

This means that the roots of g(X) are contained in F and we have that g(X)
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is an additive polynomial when counted over F and thus it is additive when

regarded over F . Therefore g(X) is an F -decomposable polynomial.

3.7 Extensions with One Ramification Jump

Theorem 3.7.1. Let L/F be a finite totally ramified p-extension with one

ramification jump, so there is an integer a > 0 such that, if we set Gal (L/F )

as G, we have G = Ga and Ga+1 = 1. In this scenario ΨL/F is an isomorphism.

Proof. We will let g(X) ∈ F [X] be as described in the previous section.

Now, ΨL/F is an isomorphism if and only if:

U1,F ∩NL/F(U1,L) ∩NL̂/F̂ (U1,L̂) = NL/F (U1,L)

This is equivalent to saying that for all i > 0 we have that:

λi(Ui,F ∩NL/F (U1,L)) = λi(Ui,F ∩NL/F(U1,L)) ∩ λi(Ui,F ∩NL̂/F̂ (U1,L̂))

The above is true because we know that there is a b > 0 such that:

Ub,F ∩NL/F (U1,L) = Ub,F ∩NL/F(U1,L) = Ub,F ∩NL̂/F̂ (U1,L̂) = Ub,F

Note, we already know U1,F ∩NL/F(U1,L)∩NL̂/F̂ (U1,L̂) ⊇ NL/F (U1,L). This

means all we need to show is that if:

α ∈ λi(Ui,F ∩NL/F(U1,L)) ∩ λi(Ui,F ∩NL̂/F̂ (U1,L̂))

then α is in λi(Ui,F ∩NL/F (U1,L)).

First let i > a. We have NL/F (Ua+1,L) = Ua+1,F , and the same holds of F̂

and F . This means that if i > a we get:

λi(Ui,F ∩NL/F (U1,L)) = F

and likewise both λi(Ui,F ∩NL/F(U1,L)) and λi(Ui,F ∩NL̂/F̂ (U1,L̂)) are equal to

F . This makes this matter trivial.

Next, let i = a. This first thing to note is that if j < a, then the map

from Uj,L/Uj+1,L to Uj,F/Uj+1,F is an injective map, and the same thing holds

for NL/F and NL̂/F̂ . This means that if γ ∈ Uj,L, for j < a, then NL/F (γ) ∈
Uj,F . So Ua,F ∩NL/F (U1,L)) = Ua,F ∩NL/F (Ua,L) and λa(Ua,F ∩NL/F (U1,L)) =
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λa(Ua,F ∩NL/F (Ua,L)) = g(F ). Meanwhile, by the same logic, we also have that

λa(Ua,F ∩NL/F(U1,L)) = F ∩ g(F) and λa(Ua,F ∩NL̂/F̂ (U1,L̂)) = F ∩ g(F̂ ).

By Corollary 3.2.1 we have F̂ is the separable p-closure of F and thus, since

g(X) is a separable polynomial over F , we have that g(F̂ ) = F̂ . This means

that F ∩ g(F̂ ) = F . Since F/F is a purely inseparable extension and g(X) is

separable over F , we get F ∩g(F) = g(F ). These two facts tell us that we have

that result that we wanted, since F ∩ g(F ) = g(F ).

Finally, let i < a. Again we have that, if j < i, then the map from

Uj,L/Uj+1,L to Uj,F/Uj+1,F is an injective map, and the same thing holds for

NL/F and NL̂/F̂ . This means that λi(Ui,F ∩ NL/F (U1,L)) = F
pn

, where pn =

[L : F ]. We also have that λi(Ui,F ∩ NL/F(U1,L)) = Fp
n

∩ F and λi(Ui,F ∩

NL̂/F̂ (U1,L̂)) = F̂
pn

∩ F .

F is a perfect field and thus Fp
n

= F , and therefore Fp
n

∩ F = F . Mean-

while, F̂ /F is a separable extension; as such if β ∈ F̂ is such that β
p ∈ F

then β ∈ F . This tells us that F̂
pn

∩ F = F
pn

. Since we can conclude that

F ∩ F pn

= F
pn

, we again have the result that we wanted.

Putting the three above cases together tells us that:

U1,F ∩NL/F(U1,L) ∩NL̂/F̂ (U1,L̂) ⊆ NL/F (U1,L)

and we already know:

U1,F ∩NL/F(U1,L) ∩NL̂/F̂ (U1,L̂) ⊇ NL/F (U1,L)

This leads us to the conclusion:

U1,F ∩NL̂/F̂ (U1,L̂) ∩NL/F(U1,L) = NL/F (U1,L)

This is enough to show us that ΨL/F is always an isomorphism in this case.

As L/F was an arbitrary extension we have that the map ΨL/F is an iso-

morphism whenever L/F is a finite abelian totally ramified p-extension with

one ramification jump.

3.8 Extensions with Two Ramification Jumps

Suppose that L/F is a finite abelian totally ramifiedp-extension that has two

ramification jumps. This means that there exists b > a > 0 such that, if

G = Gal (L/F ), we haveG = Ga 6= Ga+1 andGb 6= 1, whileGb+1 = 1. LetM be

the fixed field of Gb and let [M : F ] = pn1 , while [L : M ] = pn2 ; for non-negative
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integers n1 and n2. We can use Theorem 3.6.1 to get the structure ofNL/M(U1,L)

and NM/F (U1,M). Finally, let g1(X) be the F -decomposable polynomial that is

the map from Ua,M/Ua+1,M to Ua,F/Ua+1,F induced by NM/F , while g2(X) is the

F -decomposable polynomial that is the map from Ub,L/Ub+1,L to Ub,M/Ub+1,M

induced by NL/M . We get a and b from the aforementioned Theorem 3.6.1.

All of the notation in the previous paragraph will be fixed throughout our

talk about extensions with two ramification jumps.

We will be using the fact that NL/F = NM/F ◦ NL/M , the fact that both

L/M and M/F have only a single ramification jump and that we have hL/F =

hL/M ◦ hM/F . This means we can use the mathematics we have already done,

and the fact that a < b to work out what λi(NL/F (U1,L)∩Ui,F ) is for any i > 0;

we will also be able to do the same for L/F and L̂/F̂ .

Aim 3.8.1. We want to find out for which be i ≥ 1 we have the equality:

λi(Ui,F ∩NL/F (U1,L)) = λi(Ui,F ∩NL/F(U1,L)) ∩ λi(Ui,F ∩NL̂/F̂ (U1,L̂)) (∗)

Towards the Aim: We should first note that if i > b then NL/F (U1,L) ∩
Ui,F = Ui,F , and the same result holds for L/F and L̂/F̂ . we therefore trivially

get what we want.

This means we just have to check what happens when i ≤ b. We should

remember that hM/F (i) = i, for i ≤ a, and hM/F (i) = a(1 − pn1) + pn1i, for

i ≥ a. We get a similar formula for hL/M .

Lemma 3.8.1. If i < a, then λi(Ui,F ∩NL/F (U1,L)) satisfies the equality (∗).

Proof. The first thing to say is that, because i + 1 ≤ a < b, we have hL/F (i +

1) = hL/M ◦ hM/F (i + 1) = i + 1. This means, by the definition of hL/F , that

NL/F (Ui+1,L) ⊆ Ui+1,F ; thus λi(NL/F (U1,F )∩Ui,F ) depends only on NL/F (α) for

α 6∈ Ui+1,L.

If j ≤ i then, as j < a < b, we know that the map from Uj,L/Uj+1,L

to Uj,M/Uj+1,M , induced by NL/M , is θ 7→ θ
pn2

. Likewise, the map from

Uj,M/Uj+1,M to Uj,F/Uj+1,F , induced by NM/F , is θ 7→ θ
pn1

. This makes the

map from Uj,L/Uj+1,L to Uj,F/Uj+1,F , induced by NL/F , send θ to θ
pn1+n2

, which

is injective.

So, we see that if α ∈ U1,L, but not in Uj+1,L, then NL/F (α) 6∈ Uj+1,F .

Therefore, we have that λi(NL/F (U1,L) ∩ Ui,F ) = F
pn1+n2

. The same result

comes about with L/F and L̂/F̂ . We can use the same mathematics that we

used in the proof of Theorem 3.7.1 to get the equality that we want.
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Lemma 3.8.2. If i = a, then λi(Ui,F ∩NL/F (U1,L)) satisfies the equality (∗).

Proof. From the mathematics in the proof of Lemma 3.8.1 we know that

NL/F (U1,L)∩Ua,F = NL/F (Ua,L). We also have that hM/F (a) = a and hL/M(a) =

a which means that hL/F (a) = a. This gives us that λi(NL/F (U1,L) ∩ Ua,F ) is

isomorphic to the image of the map from Ua,L/Ua+1,L to Ua,F/Ua+1,F , induced

by NL/F .

We next have that NL/M(U1,L) ∩ Ua,M = NL/M(Ua,L) and NM/F (U1,M) ∩
Ua,F = NM/F (Ua,M). Since hL/M(a) = hM/F (a) = a, we get that the map

from Ua,L/Ua+1,L to Ua,F/Ua+1,F , in the previous paragraph, is the map from

Ua,L/Ua+1,L to Ua,M/Ua+1,M , induced by NL/M , followed by the map from

Ua,M/Ua+1,M to Ua,F/Ua+1,F , induced by NM/F . The former map is θ 7→ θ
pn2

;

while the latter is θ 7→ g1(θ). This gives us that the map from Ua,L/Ua+1,L to

Ua,F/Ua+1,F is θ → g1(θ
pn2

). Please note that we get the same map for the

homomorphism from Ua,L/Ua+1,L to Ua,F/Ua+1,F and the homomorphism from

Ua,L̂/Ua+1,L̂ → Ua,F̂/Ua+1,F̂ .

This means that we are left trying to prove that g1(Fp
n2

) ∩ g1(F̂
pn2

) ∩ F =

g1(F
pn2

). Obviously, we have that g1(F
pn2

) ⊆ g1(Fp
n2

)∩g1(F̂
pn2

)∩F , and thus

we are trying to prove the opposite inclusion.

Now, the first thing to note is that F is perfect and thus Fp
n2

= F , giving

us that g1(Fp
n2

) = g1(F). We also know that g1(X) is a F -decomposable

polynomial. This means that it is a separable polynomial and, as F/F is a

purely inseparable extension, we have that g1(F) ∩ F = g1(F ).

So, let γ be in g1(Fp
n2

) ∩ g1(F̂
pn2

) ∩ F , which equals g1(F ) ∩ g1(F̂
pn2

). So

there is a ρ1 ∈ F and a ρ2 ∈ F̂ such that g1(ρ1) = g1(ρp
n2

2 ) = γ. Now g1(X)

is an additive polynomial and thus we have that ρ1 − ρp
n2

2 is a root of g1(X).

However, g1(X) is F -decomposable and thus ρ1 − ρp
n2

2 ∈ F . Since ρ1 is also in

F , we have that ρp
n2

2 ∈ F . It is also true that ρ2 ∈ F̂ and F̂ /F is a separable

extension, and thus we have that ρ2 ∈ F . As γ was arbitrary, this shows us

that:

g1(Fp
n2

) ∩ g1(F̂
pn2

) ∩ F ⊆ g1(F
pn2

)

Which is precisely the inclusion that we wanted in order to finish the proof.
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3.9 The Final Values of i

We have reduced our work on Aim 3.8.1 to case when we are dealing with

λi(Ui,F ∩NL/F (U1,L)) and a < i ≤ b.

If |M : F | = pn1 , then we know, from Proposition (5.7) Chapter I of [5], that,

for r > 0, we have that the map induced fromNM/F sends Ua+rpn1 ,M/Ua+rpn1+1.M

surjectively onto Ua+r,F/Ua+r+1,F . The induced map from Ua+rpt,M/Ua+rpt+1,M

to Ua+r,F/Ua+r+1,F sends t to ηt for some non-zero fixed η ∈ F . We also have

that, if pn1 - r, then NM/F (Ua+r,M) = NM/F (Ua+r+1,M). Note, that this also

holds if we replace the F and M by F̂ and M̂ , or by F and M, respectively.

Meanwhile, if |L : M | = pn2 , for r < hM/F (b) − a we have that NL/M in-

duces the injective map from Ua+r,L/Ua+r+1,L to Ua+r,M/Ua+r+1,M that sends

t to t
pn2

. We also have that NL/M induces a map from UhM/F (b),L/UhM/F (b)+1,L

to UhM/F (b),M/UhM/F (b)+1,M via the map that sends t to g2(t), for some F -

decomposable polynomial g2(X). Note, that this also holds if we replace the

M and L by M̂ and L̂, or by M and L, respectively.

We should point out that, by definition, hM/F (b) = a + (b − a)pn1 , which

means thatNM/F induces a map from UhM/F (b),M/Ua+rhM/F (b)+1,M to Ub,F/Ub+1,F

which sends t to ηt. We also have that hL/M(hM/F (b)) = hM/F (b) and thus

hL/F (b) = hM/F (b).

Lemma 3.9.1. Let j be such that a < j < hM/F (b), and let t be in F̂
pn2

,

and not be equal to 0. Finally, pick α ∈ ker(NM̂/F̂ : U1,M̂ → U1,F̂ ), such that

α ∈ Uj,M̂ and λj(α) = t.

Now suppose we have the following property: For all j between a and hM/F (b),

and all choices of t and α derived from j, there is β ∈ NL̂/M̂(U1,L̂)∩Uj,M̂ , such

that λj(β) = t and β ∈ ker(NM̂/F̂ : U1,M̂ → U1,F̂ ).

If the above property holds then we get the equality (∗) for λi(NL/F (U1,L) ∩
Ui,F ), with all i such that a < i ≤ b. This gives us that in this case ΨL/F is an

isomorphism.

Proof. Suppose the property is true and let pn1 - r, with 0 < r ≤ hL/F (b)−a. As

hL/F (b) = hM/F = a+(b−a)pn1 we have that r is strictly less than hL/F (b)−a.

As pn1 - r, we have NM̂/F̂ (Ua+r,M̂) = NM̂/F̂ (Ua+r+1,M̂).

As such for all t in F̂
pn2

, not equal to 0, there is an α ∈ ker(NM̂/F̂ : U1,M̂ →
U1,F̂ ), such that α ∈ Ua+r,M̂ and λa+r(α) = t. From the statement of the lemma.

we must have that there is a β ∈ NL̂/M̂(U1,L̂) ∩ Ua+r,M̂ , such that λa+r(β) = t

and β ∈ ker(NM̂/F̂ : U1,M̂ → U1,F̂ ).
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Now, we know that NL̂/M̂(U1,L̂) ∩ Ua+r,M̂ = NL̂/M̂(U1,M̂) and NL̂/M̂ induces

the injective map from Ua+r,L̂/Ua+r+1,L̂ to Ua+r,M̂/Ua+r+1,M̂ that sends t′ to

t′
pn2

. Let γ′ be in Ua+r,L̂, but not in Ua+r+1,L̂; as such that there is t ∈ F̂
pn2

,

not equal to 0, such that λa+r(NL̂/M̂(γ′)) = t. Denote NL̂/M̂(γ′) by γ.

The considerations that we had previously in this proof means that there

is a β ∈ NL̂/M̂(U1,L̂) ∩ Ua+r,M̂ , such that λa+r(β) = t and β ∈ ker(NM̂/F̂ :

U1,M̂ → U1,F̂ ). Let β′ ∈ U1,L̂ be such that NL̂/M̂(β′) = β. We have, since

β ∈ ker(NM̂/F̂ : U1,M̂ → U1,F̂ ), that:

NM̂/F̂ (γβ−1) = NM̂/F̂ (γ)NM̂/F̂ (β−1) = NM̂/F̂ (γ)

We also get that γβ−1 ∈ Ua+r+1,M̂ and thus, by the fact that the map NL̂/M̂

induced on Ua+r,L̂/Ua+r+1,L̂ is injective, γ′(β′)−1 ∈ Ua+r+1,L̂. So, by the arbi-

trariness of the values chosen, then we get that NL̂/F̂ (Ua+r,L̂) = NL̂/F̂ (Ua+r+1,L̂)

for all r such that pn1 - r and r ≤ hL/F (b)− a.

If it is necessary we can iterate the above. After only a finite number

of iterations we are left with only needing to look at NL̂/F̂ (UhL/F (b),L̂) and

NL̂/F̂ (Ua+rpn1 ,L̂), the latter when 0 < rpn1 < hL/F (b)− a.

Please note that F has perfect residue field, and thus Fp
n2

= F . This means

that the property of the lemma automatically holds if we replace F̂ , M̂ and L̂

by F , M and L respectively. We, therefore, get that we only need to look at

groups of the same sort as the above when looking at the norm maps between

these fields; it should be emphasised that the result of this paragraph requires

no assumptions, beyond the basics of F having characteristic p and L/F being

a finite abelian totally ramified p-extension with two ramification jumps, as it

will always hold.

With NL̂/F̂ (Ua+rpn1 ,L̂), we get that:

λa+r(NL̂/F̂ (Ua+rpn1 ,L̂)) = λa+r(NL̂/F̂ (U1,L̂) ∩ Ua+r,F̂ ) = ηF̂
pn2

for the η ∈ F̂ mentioned at the beginning of this section.

Because η ∈ F and F̂
pn2

∩ F = F
pn2

, the above gives us that:

λa+r(NL̂/F̂ (U1,L̂) ∩ Ua+r,F ) = ηF
pn2

The previous group is equal to λa+r(NL/F (U1,L) ∩ Ua+r,F ).

We also have that:

λa+r(NL/F(Ua+rpn1 ,L)) = ηFp
n2

= F
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as F is perfect, so Fp
n2

= F . So then λa+r(NL/F(Ua+rpn1 ,L) ∩ Ua+r,F ) = F .

This result gives us that:

λa+r(NL̂/F̂ (U1,L̂) ∩NL/F(U1,L) ∩ Ua+r,F ) = λa+r(NL̂/F̂ (U1,L̂) ∩ Ua+r,F )

From the induced maps we have λa+r(NL/F (U1,L) ∩ Ua+r,F ) = ηF
pn2

.

Combining the results obtained above yields:

λa+r(NL/F (U1,L) ∩ Ua+r,F ) = λa+r(NL̂/F̂ (U1,L̂) ∩NL/F(U1,L) ∩ Ua+r,F )

which is what we need to get the equality (∗).
Next, let us look at NL̂/F̂ (UhL/F (b),L̂). This gives us:

λb(NL̂/F̂ (UhL/F (b),L̂)) = λb(NL̂/F̂ (U1,L̂) ∩ Ub,F̂ ) = ηg2(F̂ )

for the F -decomposable polynomial g2(X) and η we have seen before. We also

have that:

λb(NL/F(UhL/F (b),L)) = ηg2(F)

and

λb(NL/F (UhL/F (b),L)) = ηg2(F )

Consider, since η ∈ F is non-zero, (ηg2)(X) as its own F -decomposable

polynomial. We can use the same mathematics as in the proof of Theorem

3.7.1 to get the equality (∗) in this case.

Combining the cases we considered gives the equality (∗) for λi(NL/F (U1,L)∩
Ui,F ), with all i such that a < i ≤ b

Using the information of this proof, and the previous considerations of the

other values of i we see that, in the case where L/F has two ramification jumps

and has the property of the lemma, ΨL/F is an isomorphism.

Note 3.9.1. If we can verify the hypothesis of Lemma 3.9.1 then I think it is

just a matter of tweaking them and applying that repeatedly to get that ΨL/F

is an isomorphism for all finite abelian totally ramified p-extensions; though

this is just speculation at this point.
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3.10 An Alternate Proof of Theorem 3.4.1

In this section we are going to prove something that was already shown to be

true in section 3.3. Namely Theorem 3.4.1, which shows that ΨL/F is always

an isomorphism if Gal (L/F ) ∼= (Z/pZ)2. This time, however, we will be using

a different method which I hope can be expanded to more general extensions.

However, first we must establish a new result that does hold in general.

Lemma 3.10.1. Let M/F be a totally ramified extension of degree p, and set

s = s(M/F ). Let πM be a fixed prime element of M and σ be a generator of

Gal (M/F ). Now, we know from section (1.4) Chapter III of [5], that πσ−1
M =

1 + ηπsM , for some η ∈ UM such that η is a non-zero element of M = F .

Let L/M be an extension such that L/F is a finite abelian totally ramified

p-extension. We shall assume that all of the ramification jumps of L/M are

greater than s. Finally, set |L : M | equal to pt. We have that η ∈ F pt

.

Proof. Since p ≥ 2, we have λs+1(NL/M(U1,L)∩Us+1,M) = F
pt

. This statement

is because all the ramification jumps of L/M are of the form s + pa for some

a > 0. Therefore s + 1 is less than all the ramification jumps of L/M , which

means that we get that λs+1(NL/M(U1,L)∩Us+1,M) = F
pt

from the work we did

on the structure of norm groups in the proof of Theorem 3.6.1.

Let α ∈ U1,M ∩ NL/M(U1,L) be such that α 6∈ U2,M . This means that

λ1(α) = γ ∈ F pt

, for γ 6= 0.

We can extend σ to Gal (L/F ), we call the extension σ as well, and in

doing so we can see that since α ∈ NL/M(U1,L), then so is ασ−1. Now, p - 1 so

ασ−1 ≡ 1 + ηγπs+1
M mod πs+2

M . Here γ is some element of UF such that γ is the

same as before.

Now, both η and γ are non-zero elements of F and thus so is ηγ. Therefore

ασ−1 6∈ Us+2,M and, since ασ−1 ∈ NL/M(U1,L), we have that ηγ ∈ F pt

. We have

already established that γ ∈ F pt

, and therefore η ∈ F pt

as well.

Now it is time to prove, by a different method, Theorem 3.4.1 again.

Theorem 3.10.1. Let L/F be a abelian totally ramified extension whose Galois

group is isomorphic to (Z/pZ)2. Then ΨL/F is an isomorphism.
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Proof. Since Gal (L/F ) ∼= (Z/pZ)2 it has either one or two ramification jumps.

If L/F has one ramification jump, then Theorem 3.7.1 tells us that ΨL/F is an

isomorphism so let us assume that L/F has two ramification jumps.

By the notation that we have using in the last few sections we know there

exists a subextension of L/F , that we can call M/F , such that both L/M

and M/F have degree p. We also have that s(L/M) = b while s(M/F ) = a,

with b > a. The work of section 3.7 tells us that the only things we need to

investigate are λi(NL/F (UhL/F (i),L)) for i such that a < i ≤ b.

Let σ be a generator of Gal (M/F ) and denote an extension of σ to Gal (L/F )

as σ as well. Finally, let πM be a prime element of M , with πσ−1
M = 1 + ηπaM ,

for some η ∈ UM .

We know from Proposition (4.1) Chapter III of [5] that, since M/F is

cyclic, the kernel of the norm map NM̂/F̂ : U1,M̂ → U1,F̂ is equal to εσ−1 for

ε ∈ U1,M̂ . We also have, by the diagrams of Proposition (1.5) Chapter III of

[5], that λa+k : NM̂/F̂ (Ua+pk,M̂)→ F̂ is injective for all positive integers k. This

injectivity means that we have trivially fulfilled the property of Lemma 3.9.1

for the case of a+ pk.

Now, fix γ ∈ F̂
p

, with γ not being equal to 0. Next, let j be an integer

such that p - j and 0 < j < hM/F (b)− a. We have j < hM/F (b), and thus there

exists an α ∈ NL̂/M̂(U1,L̂) ∩ Uj,M̂ such that α ≡ γ(ηj)−1 mod Uj+1,M̂ . This

holds because we established, in Lemma 3.10.1, that in this case η ∈ F p ⊆ F̂
p

,

so γ(ηj)−1 ∈ F̂
p

.

As α ∈ NL̂/M̂(U1,L̂), then so is ασ−1; we shall now label ασ−1 as β. We

have that β is in the kernel of NM̂/F̂ : U1,M̂ → U1,F̂ and is in Ua+j,M̂ , with

β ≡ γ(ηj)−1(ηj) ≡ γ mod Ua+j+1,M̂ . We should remember that j was an

arbitrary positive integer less than hM/F (b)− a, so a < a+ j < hM/F (b), and j

is not divisible by p. We also made γ an arbitrary element of F̂
p

.

What we have therefore shown is that for all such 0 < j < hM/F (b) − a

such that λa+j(ker (NM̂/F̂ (U1,M̂ → U1,F̂ ) ∩ Ua+j.M̂) 6= 0 and for all γ ∈ F̂
p

there exists a β ∈ NL̂/M̂(U1,L̂) ∩ Ua+j,M̂ such that λa+j(β) = γ and β ∈
ker (NM̂/F̂ : U1,M̂ → U1,F̂ ). This gives us the required property of Lemma 3.9.1

for a+ j, with p - j and 0 < j < hM/F (b)− a. This combined with the work on

a+pk means that we have the property for all a+ j, with 0 < j < hM/F (b)−a.

This means that the equality (∗) for λi(NL/F (U1,L ∩ Ui,F ) for all a < i ≤ b.

This was the last thing we needed to prove to get that ΨL/F is an isomorphism.
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3.10.1 This Method for Greater Extensions

The following subsections will be talking about applying the method used in

Theorem 3.10.1 to the case of finite abelian totally ramified extensions L/F

of degree p3. We will also be assuming that there exists a subextension M/F

of degree p2, with M/F having a single ramification jump at a ≥ 1 and L/M

having a ramification jump at b, with b > a.

We want to know whether the method of the previous subsection can be

extended in order to prove ΨL/F is an isomorphism.

Let M = M2 and make M1/F a subextension of M2/F such that M2/M1

and M1/F both have degree p. Let σ1 and σ2 be generators of Gal (M1/F )

and Gal (M2/M1) respectively, and we will use the same notation to denote any

extensions of those automorphisms.

We need to recall that:

s(M1/F ) = s(M2/M1) = a

and that NM̂2/M̂1
(Ua+pj,M̂2

) = Ua+j,M̂1
and NM̂2/M̂1

(Ua+pj+1,M̂2
) = Ua+j+1,M̂1

for

any non-negative integer j.

If p - j, then we know:

λa+j(ker(NM̂1/F̂
) ∩ Ua+j,M̂1

) = F̂ = λa+j(ker(NM̂2/M̂1
) ∩ Ua+j,M̂2

)

As such, since NM̂2/F̂
= NM̂2/F̂

◦NM̂2/M̂1
, we get that:

λa+pj(ker(NM̂2/F̂
) ∩ Ua+pj,M̂2

) = F̂ = λa+j(ker(NM̂2/F̂
) ∩ Ua+j,M̂2

)

as well.

Now look at a+ i, with 0 < i < hM2/F (b)− a and p - i. Let πM2 be a prime

element of M2, and thus a prime element of M̂2. We can use Lemma 3.10.1 on

L/M1, since s(L/M2) = b > a = s(M2/M1), to get that πσ2−1
M2

= 1 + η2π
a
M2

for

some η2 ∈ UM2 such that η2 ∈M
p

= F
p
.

We can now use the same method in the proof of Theorem 3.10.1 on L/M2,

since it is an extension whose Galois group is isomorphic to (Z/pZ)2. We end up

getting that for all γ ∈ F̂
p

there exists a β ∈ NL̂/M̂2
(U1,L̂) ∩ Ua+i,M̂2

, such that

λa+i(β) = γ and β is in the kernel of NM̂2/M̂1
. Now, NM̂2/F̂

= NM̂2/F̂
◦NM̂2/M̂1

,

so β is also in the kernel of NM̂2/F̂
.

We have therefore shown the property of Lemma 3.9.1, with Ua+i,M̂2
for

0 < i < hM2/F (b)− a and p - i.
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We do not need to worry about when the case of where a+ i is of the form

a+p2j, for some non-negative integer j such that 0 < p2j < hM2/F (b)−a, since

we have that:

λa+p2j(ker(NM̂2/F̂
) ∩ Ua+p2j,M̂2

) = 0

This means that we are left with trying to show the property of Lemma

3.9.1, with a+ i for 0 < i < hM2/F (b)− a, where p2 - i but p | i.
With that in mind, let p - j and let α1 ∈ Uj,M̂1

∩NL̂/M̂1
(U1,L̂) be such that

α1 6∈ Uj+1,M̂1
. Let β ∈ U1,L̂, be such that NL̂/M̂1

(β) = α1 and let α2 ∈ U1,M̂2

equal NL̂/M̂2
(β).

Next, we know that ασ1−1
1 ∈ Ua+j,M̂1

and that ασ1−1
1 = NL̂/M̂1

(βσ1−1). We

also see that NM̂2/M̂1
(ασ1−1

2 ) = ασ1−1
1 and NL̂/M̂2

(βσ1−1) = ασ1−1
2 . Since we have

ασ1−1
1 ∈ Ua+j,M̂1

and not in Ua+j+1,M̂1
, as we know that α1 6∈ Uj+1,M̂1

. we get

that there exists a 0 ≤ t < p such that ασ1−1
2 ∈ Ua+pj−t,M̂2

, while ασ1−1
2 is not

in Ua+pj−t+1,M̂2
.

If t = 0, and thus we have that ασ1−1
2 ∈ Ua+pj,M̂2

, we can skip the next part.

If, however t > 0 then we need to do a bit more work.

Since 0 < t < p, we have that p - (pj − t). Likewise, since ασ−1
2 ∈

NL̂/M̂2
(U1,L̂)∩Ua+pj−t,M̂2

, we know that there is a γ ∈ NL̂/M̂2
(U1,L̂)∩Ua+pj−t,M̂2

,

such that λa+pj−t(γ) = λa+pj−t(α
σ1−1
2 ). We also have that γ ∈ ker(NM̂2/M̂1

).

The aforementioned properties shows us that:

ασ−1
2 γ−1 ∈ NL̂/M̂2

(U1,L̂) ∩ Ua+pj−t+1,M̂2

Likewise, the fact that γ is contained in the kernel of NM̂2/M̂1
means that

NM̂2/M̂1
(ασ1−1

2 γ−1) = ασ1−1
1 . This gives us that ασ−1

2 γ−1 6∈ Ua+pj+1,M̂2
.

If ασ−1
2 γ−1 is still not in Ua+pj,M̂2

then we can iterate the method we have

just done with ασ−1
2 γ−1. After only a finite number of iterations we will end up

with an α ∈ Ua+pj,M̂2
∩NL̂/M̂2

(U1,L̂) such that NM̂2/M̂1
(α) = ασ1−1

1 .

Now, NM̂1/F̂
(ασ1−1

1 ) = 1, and thus α ∈ Im (NL̂/M̂2
) ∩ ker(NM̂2F̂

). We also

have that α ∈ Ua+pj,M̂2
while also having α 6∈ Ua+pj+1,M̂2

, which is precisely

what we wanted.

Unfortunately, the mathematics that we have just done has a problem with

the value of α; which means that it does not showcase the property of Lemma

3.9.1, like we wanted.

Let πM1 be a fixed prime element of M1 and η1 ∈ UF be the element such

that πσ1−1
M1

= 1 + η1π
a
M1

Next, fix a prime element, πM2 , of M2 and let η2 ∈ UF
be the element such that πσ2−1

M2
= 1 + η2π

a
M2

.
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By looking at L/M2, we know that η2 ∈ F
p ⊆ F̂

p

. We also know that

the map induced by NM̂2/M̂1
on Ua+pj,M̂2

/Ua+pj+1,M̂2
to Ua+j,M̂1

/Ua+j+1,M̂1
is

θ 7→ −η2
p−1θ.

If we also have λj(α1) = c ∈ F̂ , then λa+j(α
σ1−1
1 ) = jaη1. This means if

α ∈ Ua+pj,M2
is such that NM2/M1

(α) = ασ1−1
1 , then λa+pj(α) = −jη1(η2

1−p)c.

Let j < a, therefore, as NL̂/M̂1
= NM̂2/M̂1

◦ NL̂/M̂1
, we have c ∈ F̂

p2

. Now

−jη1(η2
1−p)c ∈ F̂

p

and thus −jη1(η2
1−p) ∈ F̂

p

. This problem is that c ∈ F̂
p2

and −jη1(η2
1−p)F̂

p2

6= F̂
p

.

This means that we fail to have the property we desire when dealing with

a + i = a + pj, for 0 < j < a and p - j. This is because we need to be able

to construct such an α the correlates to every value over F̂
p

in order fit the

requirements of the property of Lemma 3.9.1.

The problem that we have identified comes about from requiring that α2 ∈
NL̂/M̂2

(U1,L̂). If j < a, this forces for us to have that λj(α2) ∈ F̂
p

. Since

NM̂2/M̂1
(α2) = α1 and remembering the definition of c, we have end up with

c ∈ F̂
p2

.

3.10.2 A Possible Way Forward

There is a possible result, that if we could prove would deal with the problem

of the method of the previous subsection.

Proposition 3.10.1. Keeping the notation and mathematics of the last sub-

section. Suppose we could allow α2 to be any element of N−1

M̂2/M̂1
(α1), for α1 ∈

Uj,M̂1
and j < a; this is instead of requiring that α2 must be in NL̂/M̂2

(U1,L̂).

Then we would get equality (∗) for all cases like we wanted.

Proof. If we could let α2 be any element of N−1

M̂2/M̂1
(α1) we would have that

c could be any value in F̂
p

. Keeping with the mathematics of the previous

subsection would therefore mean that we could work over all of −jη1(η2
1−p)F̂

p

,

which does equal F̂
p

, rather than −jη1(η2
1−p)F̂

p2

. This will let us fulfil the

property of Lemma 3.9.1 for the final values of a+ i, and thus get the equality

(∗) like we wanted.

Unfortunately, it is not obvious how the acquire the requirements of the

above lemma at the moment and it is probably time to move on to a slightly

different topic.
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3.11 Kummer Extensions of Degree p

In the following sections we will be looking at the next simplest type of abelian

p-extensions after those of degree (Z/pZ)2. We will suppose F contains a prim-

itive p’th-root of unity and let L = F (α
1/p
1 , α

1/p
2 , α

1/p
3 ). Here the αi are three

members of F that are linearly independent in the Z/pZ space F ∗/F ∗p. This

will mean that L/F is a abelian totally ramified p-extension with Galois group

isomorphic to (Z/pZ)3.

However, while we will eventually be combining Kummer Extensions we

will do so only in the next section. For the rest of this section we shall be only

looking at L = F (α1/p), for α ∈ F ∗, such that L/F is a totally ramified Galois

extension of degree p.

We will note that several of the upcoming results, namely Lemmas 3.11.2,

3.11.3 and 3.11.5, are also proved in Professor Emeritus Bostwick F. Wyman’s

paper “Wildly Ramified Gamma Extensions” [16]. However, that paper makes

the general assumption that we are only dealing with complete discrete valua-

tion fields with perfect residue fields. As we are dealing with imperfect residue

fields we are doing different proofs, for very similar results, here.

3.11.1 Basics of Such Extensions

Lemma 3.11.1. Let F and the α be as described at the beginning of the section.

We get that L = F (α1/p) is also equal to F (α′1/p), where α′ = β′πn
′

F ; here

β′ ∈ UF , the integer n′ is equal to 0 or 1 and πF is a prime element of F .

Proof. Assume that α = βπnF , where β ∈ UF and n ∈ Z. By multiplying by

powers of πpF , we can also assume that α mod F ∗p ≡ βπn
′

F , where β ∈ UF and

0 ≤ n′ ≤ p− 1. We therefore get that L = F ((βπnF )1/p).

Let n′ > 0 and assume that β 6∈ Un′
F . Since 0 < n′ < p, then there exists

a t > 0 such that n′ | tp + 1. This gives us F ((βπn
′

F )1/p) = F ((βtp+1πn
′

F )1/p),

and the same holds if F is replaced by an extension of F , and thus we may

substitute β with β′ ∈ Un′
F .

So then β′ = γn
′

and thus L = L(((γπF )n
′
)1/p). We have (β′πn

′
F )1/p ∈

F ((γπF )1/p) and as such F ((β′πn
′

F )1/p) ⊆ F ((γπF )1/p). We have that the field

extension F ((β′πn
′

F )1/p)/F has degree p, while F ((γπF )1/p)/F has degree at

most p. From that we get that F ((β′πn
′

F )1/p) = F ((γπF )1/p).

If we let n′ = 0 we cover the other option brought up in the lemma’s

statement.
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From now on we will be assuming that α is of the form βπnF with β ∈ UF
and n equal to 0 or 1.

Note 3.11.1. For any extension L′/F , as long as (βπnF )1/p 6∈ L′ and n > 0, we

have that L′((βπnF )1/p) = L′((γ)πF )1/p). This means that we can keep making

the assumption of the above lemma when we get to the composition of Kummer

Extensions in the next section.

3.11.2 p’th-root of Prime Element Extensions

Lemma 3.11.2. Let n, as defined in the previous subsection, be equal to 1.

This means that α is a prime element of F . Then if we let L = F (α1/p) we

have that s(L/F ) = ep/(p− 1), here e = e(F ) = νF (p).

Proof. From the restrictions we have that α = βπF is a prime element of F .

So if we let L = F (α1/p) we have that α1/p = πL is a prime element of L.

If σ is a generator of Gal (L/F ), we know that there is a primitive

p’th-root of unity ε such that σ(πL) = επL. This gives us that s = s(L/F ) is

equal to the valuation in L of επL/πL = ε. Now νF (ε − 1) = e/(p − 1), where

e = e(F ), so, as L/F is a totally ramified extension of degree p, we have that

νL(ε− 1) = ep/(p− 1).

This means that if n = 1 we have that s = ep/(p− 1). This is the result we

were after.

3.11.3 p’th-root of Unit Extensions

Let F , α, L and n be the same as in the rest of this section.

Lemma 3.11.3. Suppose that n = 0, this means that α ∈ UF ; we then may

assume that α ∈ U1,F .

Proof. Assume that α 6∈ U1,F , then α 6= 1 in F . We have α ∈ F p
, as otherwise

the field L = F (α1/p) would have a larger residue field than F which would

contradict that L/F is totally ramified. Let γ ∈ F be such that γ = α1/p,

then γp = α. This means that α/γp ∈ U1,F and as γp ∈ F ∗p we have that

F (α1/p) = F ((α/γp)1/p). This means that we may relabel α/γp as α and state

that α ∈ U1,F .
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Lemma 3.11.4. Keeping the notation of the previous lemma, let L = F (α1/p).

We can always find a γ ∈ L such that F (γ) = L, with γp ∈ U1,F and p -
νL(γ − 1).

Proof. Let γ = 1 + t′πn
′

L with γp = α, here πL is a prime element of L and t is

in UL. Suppose that p | n′.
As νL(πF ) = p, we can write γ as 1 + t′πmF , with m ≥ 1 and t′ being a unit

of L. We have that L/F is totally ramified so there is a k ∈ F such that k = t′.

We then get that γ = (1 + kπmF )(1 + k′πm
′

L ), with k′ ∈ UL and m′ > n′. Then

we may take γ to be 1 + k′πm
′

L , instead, and iterate if we still have that p | m′.
Eventually we will end up with L = F (γ′), with γ′ ∈ Um′′,L but not in Um′′+1,L

and p - m′′, if we do not then as F is a complete field, then by taking the limit,

we will get that the original γ was in F giving us that L = F which contradicts

the fact that L/F has degree p.

What the above means is that we may take γ = 1 + tpin
′
L and assume p - n′

from now on without losing anything.

Lemma 3.11.5. Still keeping the notation that we have been using, let L =

F (α1/p), here α1/p = γ = 1 + tπn
′

L , with t ∈ UL, and p - n′. Let σ be a

generator of Gal (L/F ) and e = e(F ). Then we have that n′ < ep/(p− 1) and

s(L/F ) = ep/(p− 1)− n′.

Proof. As γp = α we have that σ(γ) = εγ, here ε is a primitive p’th-root of 1.

n′ = νL(γ−1) and p - n′ and so, by section (1.4) Chapter III in [5], we have

that:

s(L/F ) = νL

(
σ(γ − 1)

γ − 1
− 1

)
We know that νL(ε− 1) = ep/(p− 1), with νL(γ) = 1, and that:

s(L/F ) = νL

(
σ(γ − 1)

γ − 1
− 1

)
= νL

(
γ · (ε− 1)

γ − 1

)
= νL(ε− 1)− νL(γ − 1)

since νL(a · b) = νL(a) + νL(b). This gives us that:

s(L/F ) = ep/(p− 1)− νL(γ − 1) = ep/(p− 1)− n′

We have that s(L/F ) ≥ 1, and thus n′ < ep/(p− 1).
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Theorem 3.11.1. Keeping the notation of the previous lemma we can also

assume that the α, such that L = F (α1/p), has the property that νF (α−1) = n′.

Proof. We are keeping ε as a primitive p’th-root of unity. This means that

εi, for 1 ≤ i < p, is also a primitive p’th-root of unity and thus νL(εi − 1) =

νL(ε − 1) = ep/(p − 1). This gives us that n′ = νL(γ − 1) < ν(εi − 1) for

1 ≤ i < p. This means that for all 1 ≤ i < p we have, from how the valuation

on L works, that:

νL(γ − εi) = νL((γ − 1)− (εi − 1)) = νL(γ − 1)

As a reminder, we have that νL(a ·b) = νL(a)+νL(b) and, that for all β ∈ F ,

we get νL(β) = pνF (β). We also have that the polynomial Xp − 1 ∈ L[X] is

equal to
∏p

i=1(X − εi). Taking all this in mind we get that:

νF (α− 1) =
1

p
νL(γp − 1)

= νL

(
p∏
i=1

γ − εi
)

=
1

p

p∑
i=1

νL(γ − εi) =
1

p
· p · νL(γ − 1) = n′

just like we wanted.

3.12 Combining p’th-root Extensions

Use e to denote e(F ) again, let α1 and α2 be in F . Makes Li = F (α
1/p
i ) a

totally ramified extension of F of degree p for i = 1 and 2. Finally, set L/F

to be a abelian totally ramified extension of degree p2 where L = L1L2. Let

α1 = πF , a prime element of F . From the work we did in the previous section

we may assume that either α2 = kπF , for some k ∈ UF , or that α2 ∈ Un,F for

some n < ep/(p− 1), where p - n.

Please note, that we do not need the two options for α2. If α1 = πF and

α2 = k ∈ Un,F , for some n < ep/(p− 1) and where p - n, then we can see that

F ((kπF )1/p)/F is an extension of degree p that is a subextension of L1L2/F =

L/F . Assuming that L/F is totally ramified then so is F ((kπF )1/p)/F and

since k1/p ∈ L(π
1/p
F )F ((kπF )1/p), we can see that L1F ((kπF )1/p) = L as well.

This means that we can relabel kπF as α2 and F ((kαF )1/p) as L2 to get that

both α1 and α2 are prime elements of F .
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Theorem 3.12.1. Assume that the α1 and α2 above are both prime elements

of F . Then we have that s(L/L1) = ep2/(p− 1)− (n+ ep), here n is a positive

integer less than ep/(p− 1) which is not divisible by p.

Proof. Note that L = L1(α
1/p
2 ); so if α2 = kπF , then L = L1(k1/pπ

1/p
F ). This

means that L = L1(k1/p), and π
1/p
F ∈ L1. Let L3 = F (k1/p), here L3/F is a

subextension of L/F and is thus totally ramified. k ∈ UF and thus L3/F has

degree 1 or p. However as L = L1L3 and L 6= L1 we conclude that L3/F is a

non-trivial extension and thus a totally ramified extension of degree p. Since

L = L1L3 and L3 = F (k1/p), we may therefore replace α2 = kπF by k and

relabel k as α2 and L3 as L2 without changing L. This means, using the results

of the previous subsection, that without changing L2 we can always assume

that νF (α2 − 1) = n for some n < ep/(p− 1) and that p - n.

Using Lemmas 3.11.2 and 3.11.5, we have that s1 = s(L1/F ) = ep/(p − 1)

and s2 = s(L2/F ) = ep/(p − 1) − n. We have that s1 > s2 and that L/F is

a totally ramified Galois Extension. Since L1/F and L2/F has degree p while

L1L2/F has degree p2, we also have that L1 ∩L2 = F . Using Lemma 3.4.3, we

have s(L/L1) = s2 = ep/(p− 1)− n. Now L = L1(α
1/p
2 ) and L1/F is a totally

ramified extension of degree p, which gives us that e(L1) = pe(F ) = pe. Since

α2 ∈ Un,F , we have α2 ∈ Upn,L1 . As p | pn, we know there is a β2 ∈ Um,L1

but not in Um+1,L1 , where m < ep2/(p− 1) and p - m. This β has the gives us

L = L1(β
1/p
2 ). We have s(L/L1) is equal to ep2/(p − 1) −m but is also equal

to s2 = ep/(p− 1)− n. This gives us that:

m = n+ ep2/(p− 1)− ep/(p− 1) = n+ ep

Note that as p - n we have that p - (n+ ep) as well.

3.12.1 Applying these Two Sections to the Map ΨL/F

There is a problem with using the mathematics of these last two sections to

deal with the issue of the map ΨL/F . Please note that since we do not actually

prove anything concrete the following mathematics shall be in the form of a

note, rather than a lemma or something like that.

Note 3.12.1. Let L/F be a totally ramified extension with Galois group iso-

morphic to (Z/pZ)3, such that L = L1L2L3. Here Li = F ((kiπF )1/p), where

ki ∈ UF and πF is a prime element of F . This means that L is F extended by

three p’th-roots of prime elements of F .
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We know, from Lemma 3.11.2, that si = s(Li/F ) = e(F )p/(p− 1), for all i.

Let σi be a generator of Gal (Li/F ) and label σi extension to Gal (L/F ) with

σ′i. Label the fixed field of σ′i in L as L′i. Let πL be a prime element of L.

The work we have done on whether ΨL/F is isomorphic or not has depended

on s′i = s(L/L′i), this is dependent on σ′i(πL)/πL. We have shown that if the s′i
are all equal then ΨL/F is an isomorphism.

However, despite the fact that the si are all equal and they are dependent

on σi(πLi)/πLi = σ′i(πLi)/πLi , where πLi is a prime element of Li, this tells us

nothing about the nature of the s′i and whether they are equal or not.

We can relabel k1πF as πF and assume that L2 = F ((k2πF )1/p), with k2 ∈
Un3,F and n3 < e(F )p/(p − 1). From the mathematics we have done before,

and Lemma 3.4.3, we can look at L1L2 = L′3. What we have, since s(L1/F ) =

s(L2/F ) == e(F )p/(p− 1), is that:

s(L′3/L1) = s(L′3/L2) = e(F )p/(p− 1)− n3

By the same reasoning that exists positive integers n1 and n2, less than

e(F )p/(p− 1), such that:

s(L′1/L2) = s(L′1/L3) = e(F )p/(p− 1)− n1

and:

s(L′2/L1) = s(L′2/L3) = e(F )p/(p− 1)− n2

Now, L/L′i is a totally ramified extension of degree p, and so is L′i/Lj for

j 6= i. We have L′2L
′
3 = L, so to work out s′2 and s′3 we need to apply Lemma

3.4.3 to the extension L/L1. We have s(L′2/L1) = e(F )p/(p − 1) − n2 and

s(L′3/L1) = e(F )p/(p− 1)− n3.

However, despite the fact that we started with three prime elements of F ,

and thus the s(Li/F ) were all equal to each other, we will notice that that tells

us nothing about the values of the ni. We do not know anything, other than

the most generic facts, about e(F )p/(p−1)−n2 and e(F )p/(p−1)−n3 or how

they relate to each other. This means that we cannot use them and Lemma

3.4.3 to work out the value of s(L/L′2) or s(L/L′3). Likewise, since we do not

know enough information pertaining to e(F )p/(p− 1)− n1 we cannot use it to

work out s(L/L′1).

Since Theorem 3.7.1 tells us that ΨL/F is an isomorphism if s(L/L′1) =

s(L/L′2) = s(L/L′3), and we have failed to conclude on the veracity of the

statement otherwise, we can see that with what we have found out we cannot

tell whether ΨL/F is an isomorphism or not in this case.
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It is not clear how working only with such extensions can be applied to

the mathematics that we have done early in this chapter. This means that we

probably cannot use it to expand the collection of extensions L/F for which

we know whether ΨL/F is an isomorphism, or even to tell us more about the

nature of ΨL/F .

This is all we are going to discuss about this topic at the moment. Please

check the chapter named “Conclusion” for further directions one could take in

their study of whether ΨL/F is an isomorphism in the case when you are dealing

with extensions over complete discrete valuation fields with imperfect residue

fields.



Chapter 4

Abelian Varieties over Local

Fields

This chapter is about the norm map for abelian varieties with ordinary good

reduction over complete discrete valuation fields. It is related to and is an

attempt to further extend Jonathan Lubin and Michael I. Rosen’s 1977 paper

“The Norm Map for Ordinary Abelian Varieties” [7]. We will endeavour to

generalise the main result of that paper, which is Lubin and Rosen reproving

Mazur’s Proposition 4.39, from the paper “Rational Points of Abelian Varieties

with Values in Towers of Number Fields” [8], to a wider collection of complete

discrete valuation fields.

We have briefly gone over the results of [7] in section 4 of the “Literature

Review”. We are attempting to prove a related result that does not build

directly on the results of that paper, instead it uses a very similar proof, so it

is not actually necessary to be familiar with [7] or its results to understand this

chapter.

In the original paper Lubin and Rosen did not reference local class field

theory; this is despite the fact that the topic involves Galois extensions of

complete discrete valuation fields, and one of the results they get can be seen

as an analogue to a major result of local class field theory, as we mention

in the “Conclusion”. We, however, shall be burrowing ideas from the topic, in

particular from Professors Fesenko and Vostokov’s book “Local Fields and their

Extensions”; in which the first three parts of Chapter 5 has a brief introduction

to local class field theory when the complete discrete valuation field has a quasi-

finite residue field [5], as described in section 1 of the “Literature Review”. We

will also be utilising Fesenko’s paper “Local Class Field Theory: Perfect Residue

Field Case”, which we discussed in section 2 of the “Literature Review”.

As a reminder, this is the result that we want to generalise [7]:

89
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Theorem 4.0.1. Fix a prime number p and let F be a finite extension of Qp.

Next, let A be a d-dimensional abelian variety with good ordinary reduction over

F and let u be a twist matrix of A, as explained in Definition 2.5.3. Denote by

A(F )p the group of p-torsion points of A(F ), so the elements of A(F ) whose

order is a finite power of p. Meanwhile, A(F ) is the group of the F -valued

points of the reduced abelian variety A, which is defined over F .

If L/F is a totally ramified Zp-extension of F with:

NL/F (A(L)) =
⋂

NLn/F (A(Ln))

where L/Ln/F and [Ln : F ] = pn, then the following exact sequence can be

constructed:

Zdp/((I − u)Zdp)→ A(F )/NL/F (A(L))→ A(F )p → 1

Now that we have established the result that we want to generalise we shall

being by note that we will from now on be talking F being a complete discrete

valuation field of characteristic 0, such that F is a perfect field of characteristic

p > 0. This is instead of assuming that F/Qp is a finite extension, which would

force F to be finite.

Note 4.0.1. We should observe that as we are trying to generalise the main

result of [7] we shall be following the steps, and trying to adapt each of them,

that that paper uses on the way to its principle conclusion.

4.1 Notation and Definitions

Before we can start generalising Theorem 4.0.1 we first must define more of the

notation, and a couple of definitions, that we will be using. Despite this being

connected to [7], we will not necessarily be using the same notation that Lubin

and Rosen uses, since they unfortunately differ from the symbols we have been

using in this regard and it is better for this document to be internally consistent.

Notation 4.1.1. As mentioned previously, we will let F be a complete discrete

valuation field with a perfect residue field of positive characteristic p. Like

in the previous chapters we will define F̂ /F be the maximal unramified p-

extension of F . Next, let A be a d-dimensional abelian variety with good

ordinary reduction over F such that the formal goup associated to A, denoted

by Â, has an isomorphism to Ĝd
m over OF̂ .
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Similar to when we were dealing with local class field theory over fields with

perfect residue fields, instead of using Gal (L/F ) we shall be using Gal (L/F )∧ =

HomZp(Gal (F̂ /F ),Gal (L/F )).

Next, we will let E/F be either an arbitrary algebraic extension of F or the

completion of one, either way E is a discrete valuation ring.

Next, let H be a d-dimensional formal group over OF and suppose there

exists an isomorphism over OF̂ written as k : H → Ĝd
m, as explained in Note

4.1.1.

Finally, if L/F is a totally ramified Galois extension then we may extend

any of the φ ∈ Gal (F̂ /F ), to LF̂ by having φ act trivially on elements of L.

This extension shall also be labelled φ.

The use of Gal (L/F )∧, mentioned above, leads to our first major problem

when it comes to generalising Theorem 4.0.1.

Note 4.1.1. We should point out that Lemma 4.27 from [8], which Theorem

4.0.1 relies on, states that there is definitely an isomorphism from Â to Ĝd
m

only if we are over OFur , where F ur is the maximal unramified extension of F .

We are only dealing with F̂ and F̂ may not be algebraically closed and thus

Lemma 4.27 cannot be used. This unfortunately leads us to have to restrict

the type of abelian varieties over F that we can talk about rather than all of

them that have good ordinary reduction, like Lubin and Rosen could do.

Definition 4.1.1. Keep the notation that we have defined above and choose

a φ ∈ Gal (F̂ /F ). We have that k can be described by d power series and by

applying φ to the coefficients of all the power series we end up with the new

isomorphism of formal groups kφ : H → Ĝd
m. The automoprhism group of Ĝd

m

is isomorphic to GLd(Zp) and so fix an isomorphism between the two groups.

Next, Let uφ be the invertible d × d matrix over Zp that corresponds to the

automorphism of Ĝd
m, which is kφ ◦ k−1. The uφ is called a twist matrix of H.

4.1.1 The Module V (L)

The following set is an adaptation of the set, Vu(L), we saw in Definition 2.5.4.

Definition 4.1.2. Keeping the notation and assumptions of Definition 4.1.1,

let L/F be a totally ramified Galois extension, and denote Gal (L/F ) by G. By

having the elements of G fix the elements of F̂ we may extend them to LF̂ and



CHAPTER 4. ABELIAN VARIETIES OVER LOCAL FIELDS 92

see that G ∼= Gal (LF̂/F̂ ), we will also refer to the latter group as G. Next,

extend the φ ∈ Gal (F̂ /F ) also to to LF̂ , by having them fix elements of L. We

may define the group:

V (L) = Vu(L) = {α ∈ Ud
1,LF̂

: αφ = αuφ ,∀φ ∈ Gal (F̂ /F )}

For the sake of notation, we shall denote Vu(L) as V (L) when the uφ we are

using is obvious.

We have that φ acts diagonally on α and uφ acts in the obvious way.

Lemma 4.1.1. Keeping the notation of the above definition we have that V (L)

is a G-module. What is more H(OL) ∼= V (L) as G-modules.

Proof. The actions of the φ commute with the elements of G, which gives us

that V (L) is a G-module.

Let k : H → Ĝd
m be an isomorphism over OF̂ such that uφ = kφ ◦ k−1 for

all φ ∈ Gal (F̂ /F ); we know such an k exists from the definition of the uφ. We

have that k induces a group isomorphism between H(OLF̂ ) and Ud
1,LF̂

. The d

power series that represent k all have coefficients in F̂ which are, by definition,

fixed by the elements of G; this means k is a G-module isomorphism.

Now, let α be in H(OLF̂ ) and suppose k(α) ∈ V (L); we have that for all

φ ∈ Gal (F̂ /F ):

k(α)φ = k(α)uφ = kφ ◦ k−1 ◦ k(α) = kφ(α)

By definition, k(α)φ = kφ(αφ). Since kφ is an isomorphism then the fact we

have kφ(αφ) = kφ(α) means that αφ = α. So k(α) ∈ V (L) tells us that αφ = α

for all φ ∈ Gal (F̂ /F ).

Conversely, if α ∈ H(OLF̂ ) is such that αφ = α, for all φ ∈ Gal (F̂ /F ), we

have:

k(α)φ = kφ(α)φ = kφ(α) = kφ ◦ k−1 ◦ k(α) = k(α)uφ

and thus k(α) ∈ V (L).

To finish the proof we note that α ∈ H(OL) if and only if αφ = α, for

all φ ∈ Gal (F̂ /F ). We, therefore, have that k(α) ∈ V (L) if and only if α ∈
H(OL).
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4.2 Generalising “Theorem 1”

Readers who are familiar with [7] will know that the authors of that paper

utilise the following theorem, which they call “Theorem 1”, as a major stepping

stone for the proof of Theorem 4.0.1. This has already been explained in the

“Literature Review”, as Lemma 2.5.3, but we shall reiterate the result here as

it is very important to the work we are about to do.

Theorem 4.2.1. Let F be a finite extension of Qp and let A be a d-dimensional

abelian variety over F with good ordinary reduction. Denote by Â the formal

group over OF that relates to A. As per Note 4.1.1 we know that Â is toroidal,

and let u be a twist matrix of Â. Finally, fix Ln/F as a finite totally ramified

p-extension and denote by G the Galois group of Ln/F , with Vu(F ) and Vu(Ln)

being as described in Definition 2.5.4, rather than using Definition 4.1.2 above.

We then have the following isomorphism:

Vu(F )/NLn/F (Vu(Ln) ∼= (Gab
n )d/((I − u)(Gab

n )d)

As talked about in Note 4.0.1, we will be following the proof that [7] uses

to prove its main result. As such the aim of this section will be attempting to

generalise Theorem 4.2.1 to the case where F is perfect.

We should state that, for the sake of simplicity, Ln/F will not be used.

Instead, we will be using L/F , as a finite abelian totally ramified p-extension

with Galois group G = Gal (L/F ).

If we let E = LF̂ , then we get that Gal (E/F̂ ) ∼= G and Gal (E/L) ∼=
Gal (F̂ /F ), with Gal (E/L) being generated by the modified versions of the φ

that we saw when discussing V (L) in section 4.1. Finally, it should be noted

that, E/L is the completion of the maximal unramified p-extension of L.

To continue the generalisation of Theorem 4.2.1 we first need to deal with

a few lemmas.

Lemma 4.2.1. Keeping the notation that we have defined earlier in this chapter

we get that the G-module E∗ is cohomologically trivial.

Proof. Firstly, as E and F̂ have algebraically p-closed residue fields then the

norm map NE/F̂ is surjective, from Remark (1.6) Chapter IV of [5]. This

means that for any subgroup H ⊆ G, we have, using Tate cohomology, that

Ĥ0(H,E∗) = 1. Likewise, by Hilbert’s Theorem 90, we have Ĥ1(H,E∗) =

H1(H,E∗) = 1. So, the Tate cohomology groups Ĥn(H,E∗), for any subgroup
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H of G, vanish in the successive dimensions n = 0 and n = 1; thus E∗ is a

chomologically trivial G-module.

Before we get to the next lemma there is some more notation that needs to

be defined.

Notation 4.2.1. Using the same notation as earlier in this chapter, define IG

as the kernel of the augmentation map from Z[G] to Z that sends
∑

g∈G ngg ∈
Z[G], with ng ∈ Z, to

∑
g∈G ng ∈ Z.

For the map NE/F̂ : UE → UF̂ , denote its kernel by NUE.

Lemma 4.2.2. Using the same notation as before there is an exact sequence:

1→ ((Gab)d)∧ → (Ud
1,E/(IGU

d
1,E))∧ → (Ud

1,F̂
)∧

Proof. The main part of this proof of to show that we have the exact sequence:

1→ (Gab)d → Ud
1,E/(IGU

d
1,E)→ Ud

1,F̂
→ 1

To start proving the above exact sequence exists, use Lemma 4.2.1 and the

exact sequence:

1→ UE → E∗ → Z→ 1

to get the isomorphisms:

Gab ∼= Ĥ−2(G,Z) ∼= Ĥ−1(G,U1,E) ∼= NUE/(IGUE)

This gives us, by acting term by term, that:

(Gab)d ∼= (NUE/(IGUE))d ∼= (NUE)d/(IGU
d
E)

From the surjectivity of the norm map, we have NE/F̂ (UE) = UF̂ . This

means, by the above isomorphisms, that (Gab)d maps isomorphically into the

kernel of the map NE/F : Ud
E/(IGU

d
E)→ Ud

F̂
. Thus we get the exact sequence:

1→ (Gab)d → Ud
E/(IGU

d
E)→ Ud

F̂
→ 1

This is nearly the exact sequence that we are after.

F̂ is the separable p-closure of F . As E = LF̂ and L/F is totally ramified

so, by Corollary 3.2.1, we get E = F̂ . We also have that E has characteristic p,
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and thus E
∗

is uniquely p-divisible. So for all m ∈ Z, we get Ĥm(G,E
∗
) = 0.

This, when combined with the exact sequence:

1→ U1,E → UE → E
∗ → 1

means that for all m ∈ Z, we have Ĥm(G,U1,E) ∼= Ĥm(G,UE).

Set m = −1 to get UE/(IGUE) ∼= U1,E/(IGU1,E). Then, if we let m = 0,

we observe that Ĥ0(G,U1,E) ∼= Ĥ0(G,UE). The latter group is isomorphic to

UG
E /NE/F̂ (UE) = 1, from the surjectivity of the norm map and the fact that

the elements of UE that G acts trivially on are precisely those in UF̂ . This,

alongside with UG
1,E = U1,F̂ and NE/F̂ (U1,E) ⊆ U1,F̂ , shows that the norm map

NE/F̂ maps U1,E surjectively onto U1,F̂ .

Using the above term by term and combining the previous results with the

intermediate exact sequence we got before gives us the exact sequence:

1→ (Gab)d → Ud
1,E/(IGU

d
1,E)→ Ud

1,F̂
→ 1

From this we can then take the functor B 7→ B∧ = Homcont(G,B) on the

above to get the exact sequence:

1→ ((Gab)d)∧ → (Ud
1,E/(IGU

d
1,E))∧ → (Ud

1,F̂
)∧

that we were trying to prove.

Before we begin the next lemma we must first define a pair of maps:

Definition 4.2.1. Let φ an element of Gal (F̂ /F ), we define ια(φ) to be equal

to αφ−uφ = φ(α)/uφ(α). We can now create a map from Ud
1,F̂

to (Ud
1,F̂

)∧. This

will send α ∈ Ud
1,F̂

to the map ια.

Define a similar map from Ud
1,E to (Ud

1,E)∧.

Lemma 4.2.3. Keeping the notation that we have been using previously we

have the following exact sequence:

1 // V (F ) // Ud
1,F̂

// (Ud
1,F̂

)∧

Here the map from Ud
1,F̂

to (Ud
1,F̂

)∧ sends α ∈ Ud
1,F̂

to ια ∈ (Ud
1,F̂

)∧.

Proof. This is obvious from the G-module isomorphism between V (F ) and

Â(OF ), this was shown in Lemma 4.1.1.
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Note 4.2.1. The workings of the above lemma also gives us the exact sequence:

1 // V (L) // Ud
1,Ê

// (Ud
1,Ê

)∧

4.2.1 A Commutative Diagram

before we can finish off the generalisation of Theorem 4.2.1, we need to define

a couple of maps.

Definition 4.2.2. We will let ω : Gab → (Gab)∧ be the map that sends g ∈ Gab

to the element of (Gab)∧ that sends φ ∈ Gal (F̂ /F ) to g1−uφ ∈ Gab.

Meanwhile, the map χ : Ud
1,E/IGU

d
1,E → (Ud

1,E/IGU
d
1,E)∧ will send sends

α ∈ Ud
1,E/IGU

d
1,E to ια, with ια described in Definition 4.2.1.

Theorem 4.2.2. Using the notation and definitions that we have previously

seen in this chapter, there is an isomorphism:

V (F )/NL/K(V (L)) ∼= ker (coker (ω)→ coker (χ))

Proof. Using the previous lemmas we can form the square:

(Gab)d //

ω

��

Ud
1,E/IGU

d
1,E

χ

��

((Gab)d)∧ // (Ud
1,E/IGU

d
1,E)∧

which we want to show is commutative. Here the maps in the two rows are

derived from the exact sequences created in the statement and proof of Lemma

4.2.2. For the sake of simplicity we will assume that d = 1 as the more general

case uses nearly the exact same method.

Now, E/L is unramified; so let π be a fixed prime element of L, it is also a

prime element of E. We may use this π in the homomorphism between Gab and

U1,E/IGU1,E and the homomorphism between (Gab)∧ and (U1,E/IGU1,E)∧. The

former homomorphism sends α ∈ Gab to πα−1IGU1,E, while the latter sends

f ∈ (Gab)∧ to the element of (U1,E/IGU1,E)∧ that sends φ ∈ Gal (F̂ /F ) to

πf(φ)−1IGU1,E.

Finally, we have that the map from Gab to U1,E/IGU1,E sends α ∈ Gab to

πα−1IGU1,E. In order to show that the square is commutative we therefore
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want that, for all α ∈ Gab, the image of ω(α) under the map from (Gab)∧ to

(U1,E/IGU1,E)∧ is the same as χ(πα−1IGU1,E).

From how the bottom row of the square acts on (Gab)∧ we may pick an

arbitrary φ ∈ Gal (F̂ /F ), and a uφ., and just look at what happens with that.

We, therefore, want to show that, for f ∈ (Gab)∧, we have:

(πf(φ)−1)φ−uφ ≡ πf(φ)
1−uφ−1 mod IGU1,E

The map from (Gab)∧ to (U1,E/IGU1,E)∧ is a homomorphism, so for every

n ∈ Z, φ ∈ Gal (F̂ /F ) and f ∈ (Gab)∧ we have:

(πf(φ)−1)n ≡ πf(φ)n−1 mod IGU1,E

We also have π ∈ L, which means φ(πf(φ)−1) = πf(φ)−1; this gives us

(πf(φ)−1)φ−uφ = (πf(φ)−1)1−uφ .

As d = 1, we have u is a unit of Zp. Now, Gab is a finite abelian p-group

and thus uφ acts as the integer u′φ when acting on Gab. The map from (Gab)∧

to (U1,E/IGU1,E)∧ is a homomorphism, so:

(πf(φ)−1)1−uφ ≡ (πf(φ)−1)1−u′φ ≡ πf(φ)
1−u′φ−1 ≡ πf(φ)

1−uφ−1 mod IGU1,E

which is precisely what we wanted to show.

To finish off the proof of the generalisation Theorem 4.2.1 observe the dia-

gram below:

1

��

1

��

V (L)/(V (L) ∩ IGU1,E) N //

��

V (F ) //

��

1

1 // Gab //

ω

��

U1,E/IGU1,E

χ

��

N // U1,F̂
//

��

1

1 // (Gab)∧ // (U1,E/IGU1,E)∧ N // (U1,F̂ )∧

Lemmas 2 and 3 tell us that the bottom two rows and right two columns are

exact. Meanwhile, the work we did earlier this section combined with the fact

that χ commutes with the elements of G, thus with the norm maps labelled N ,

tells us the diagram is commutative.
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We now use the Snake Lemma to get the exact sequence:

V (L)/(V (L) ∩ IGU1,E) N // V (F ) // coker (ω) // coker (χ)

This is achieved by taking into account the information shown on the diagram.

We have so far been assuming that d = 1. When d > 1 the mathematics

is formally the same as before. we just have to adjust the maps to take into

account that we are now dealing with groups that are the direct product of d

copies of the previous groups; for instance uφ is a d× d invertible matrix over

Zp rather than a unit of Zp. Taking into account all values of d ≥ 1, we get the

exact sequence:

V (L)/(V (L) ∩ IGUd
1,E) N // V (F ) // coker (ω) // coker (χ)

This gives us:

V (F )/NL/K(V (L)) ∼= ker (coker (ω)→ coker (χ))

This leaves us with trying to work out the kernel of the map from coker (ω) to

coker (χ).

Notation 4.2.2. Keep everything from above. We will, for simplicity, denote

ker (coker (ω)→ coker (χ)) as Q.

This gives us that V (F )/NL/F (V (L)) ∼= Q. This is the generalistion of

Theorem 4.2.1 that we were trying to find, at least up to explicit calculation of

Q.

Note 4.2.2. By Lemma 4.1.1 we see that both V (F ) and V (L) are G-modules

and are isomorphic, as G-modules, to Â(OF ) and Â(OL) respectively.

This means that we can rewrite the above isomorphism as:

Â(OF )/NL/F (Â(OL)) ∼= Q
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4.3 Finishing the Generalisation of Theorem

4.0.1

This is the point, unfortunately, where we have to stop being concrete with the

mathematics we produce on this subject; working out the exact answer to what

Q equals is beyond the scope of this thesis. However, we will provide a brief

overview of what finishing the generalisation of Theorem 4.0.1 will probably

look like.

Notation 4.3.1. Before we get to the sketch of completing the generalisation we

need to do some relabelling of the notation that we have been using so far, this

is to make our work closer to Theorem 4.0.1. Keeping F the same , we shall

now let L/F be a totally ramified Zp-extension of F such that L =
⋃
Ln, where

Ln/F is an extension of fields for every positive integer n such that L/Ln and

[Ln : F ] = pn. We shall let En be equal to LnF̂ and E be equal to LF̂ .

From the above we can see that Ln/F is a finite abelian totally ramified

p-extension. We also have, using the same abelian variety as before, that

NL/F (A(L)) =
⋂
NLn/F (A(Ln)). Next, we shall denote Gal (Ln/F ) by Gn,

the group Â(OF )/NLn/F (Â(OLn)) by Qn and the ω and χ maps, of Definition

4.2.2, will be ωn and χn respectively. Finally, we now let Gal (L/F ) be Γ and

label Â(OF )/NL/F (Â(OL)) as Q.

Note 4.3.1. We should briefly point out that as L/F is a Zp-extension it is

abelian, and thus so are all the Ln/F . This means that we no longer need to

bother with abelianisation of the Galois groups.

Proposition 4.3.1. Keeping the notation outlined in Notation 4.3.1 we have

the exact sequence:

Q→ A(F )/NL/F (A(L))→ A(F )p

Proof. By the theory of inverse limits, as each Qn is a Gn-module, we have

that lim←−
n

Qn = Q. The homomorphisms involved in this case are the norm maps

between the Ln. We likewise can construct the maps ω : Γd → (Γd)∧ and χ :

Ud
1,E/IΓU

d
1,E → (Ud

1,E/IΓU
d
1,E)∧, as the inverse limits of the maps ωn : Gn → G∧n

and χn : Ud
1,En

/IGnU
d
1,En
→ (Ud

1,En
/IGnU

d
1,En

)∧, respectively.

Taking into account that A(OLn) = A(Ln), we have the exact sequence:

1→ Â(OLn)→ A(Ln)→ A(F )→ 1
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since Ln/F is totally ramified, we have Ln = F .

Using the norm map NLn/F , and noting that the induced map on A(F ) is

multiplication by pn, we get the new exact sequence:

Â(OF )/NL/F (Â(OLn))→ A(F )/NLn/F (A(Ln))→ A(F )/pnA(F )→ 1

This can be simplified to:

Qn → A(F )/NLn/F (A(Ln))→ A(F )/pnA(F )→ 1

Using inverse limits, and taking into account that lim←−
n

Qn = Q, we therefore

get the exact sequence:

Q→ A(F )/NL/F (A(L))→ A(F )p

like we wanted.

This is the generalisation of Theorem 4.0.1 that we were looking for, up to

computing what the group Q is and whether the last map is surjective.

4.4 Some ideas that we can Explore

While explicitly constructing the Qn, and thus Q, will not be covered in this

thesis; there are some observations and reasonable guesses that we can make

about them.

Notation 4.4.1. Let F̂ /F still be as the maximal unramified p-extension of F .

Fix a topological basis of Gal (F̂ /F ), and denote by J an index such that the

set of of φj ∈ Gal (F̂ /F ), with j ∈ J forms the basis. Label a twist matrix

associated with φj with uj.

As they are homomorphism groups it is clear, by the definition of a topo-

logical basis, that the elements of (Gd
n)∧ and (Ud

1,En
/IGnU

d
1,En

)∧ are uniquely

determined by how the maps act on the φj, with j ∈ J . The same holds for

elements (Γd)∧ and (Ud
1,E/IΓU

d
1,E)∧.

Let us assume that |J | is finite. Taking into account the above para-

graph we get, for all finite n, that (Gd
n)∧ ∼= ⊕j∈JGd

n and (Ud
1,En

/IGnU
d
1,En

)∧ ∼=
⊕j∈J(Ud

1,En
/IGnU

d
1,En

); we also get (Γd)∧ ∼= ⊕j∈JΓd and (Ud
1,E/IΓU

d
1,E)∧

∼= ⊕j∈J(Ud
1,E/IΓU

d
1,E). As we have fixed the topological basis beforehand, we can
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see that the maps we have defined earlier between the homomorphism groups

now act on a term by term basis on the direct sums.

Now, taking the maps from Definition ?? the image of the ωn is all elements

of ⊕j∈JGd
n of the form ⊕j∈Jg1−uj , as g varies in Gd

n. If |J | > 1, as Gn is a finite

group, we have ωn : Gn → ⊕j∈JGn cannot be surjective and thus coker (ωn) 6= 1.

Now as |J | tends to infinity it is clear that | coker (ωn)| must tend to infin-

ity as well. Let |J | be infinite. We can create subextensions of F̂ /F that are

topologically generated by a finite subset of the topological basis of Gal (F̂ /F ).

Redefining the groups and homomorphisms to instead be based on such subex-

tensions, and tending the cardinality of the finite subsets to infinity, we can see

that if |J | is infinite then so is | coker (ωn)|.
Since ω is the inverse limits of the ωn we get that if |J | > 1, then coker (ω)

is non-trivial. Likewise, if |J | is not finite then neither is coker (ω). If |J | > 1

but finite then more work is required to see whether coker (ω) is finite or not.

Meanwhile, χn will always map from an infinite group to an infinite group, no

matter the cardinality of J . it is therefore difficult to tell, for any cardinality

of J , if coker (χn) is finite or not, or even trivial, and thus difficult to make a

definitive statement about the cardinality of coker (χ).

While this is all we are going to talk about on the topic of Q at the moment,

we will also be briefly going over how to take this topic further in the next

chapter, “Conclusion”.

4.5 Quasi-Finite Residue Fields

We will finish off this chapter reintroducing the concept of a quasi-finite fields,

which were talked about in the first section of the “Literature Review”.

As a reminder, a field k is quasi-finite if it is perfect and if its absolute

Galois group is isomorphic to Ẑ. In other words, if every finite extension of k

is a Galois cyclic extension and for every finite cyclic group, H, we have that k

has a unique extension whose Galois group is isomorphic to H. If k is a finite

field then it is obviously quasi-finite, but k is also quasi-finite if it is a separable,

but not necessarily finite, extension of a finite field. We should note that those

two cases does not cover all examples of quasi-finite fields.

We saw that when working with the mathematics of local class field theory,

dealing with a complete discrete valuation field F that has a quasi-finite residue

field is not much harder than if we required F to be finite. It is, however, much

simpler than if F is only required to be perfect and have positive characteristic.

This means that, when generalising classical local class field theory, it is good
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to first consider the case where F is quasi-finite before dealing with arbitrary

perfect residue fields.

If we were to restrict F to being quasi-finite we would have Gal (F̂ /F ) ∼= Zp,
we could then use Notation 4.4.1 to get that the set J would consist of a single

element. This would mean that we would only need to use one automorphism,

which we could denote φ, and one corresponding twist matrix, denote this by

u. However, we would still be required to use different mathematics than Lubin

and Rosen. This is because that by assuming F is quasi-finite we are still not

requiring F is finite, something that seems necessary for the method Lubin and

Rosen employ. They make use of the Frobenius automorphism to prove their

version Lemma 4.2.3, they call their version “Lemma 3”, which by Note 2.2.5

only exists when F is finite [7].

However, some simplifications may emerge. As noted before, we have that

Gal (F̂ /F ) ∼= Zp,; as such for any abelian p-group T we have that T∧ =

HomZp (Gal (F̂ /F ), T ) ∼= T . As such, keeping the notation that we used in

the previous section, we have that ω is now a map between Γd and itself, while

χ is map between Ud
1,E/(IGU

d
1,E) and itself.

Likewise, if we look at the finite field extension Ln/F we see that Gn is a

finite group and thus ωn is now a map between a finite group and itself. We

should note that we do still have, as we pointed out at the end of the last

section, Ud
1,En

/(IGnU
d
1,En

) being infinite, so χn does not have the simplicity of

ωn.

This all means that it may be easier to compute coker (ω) and coker (χ) in

this case. However, it is currently unknown what results we do actually have.

For instance, despite the ωn being maps from a finite group to itself we

should still not expect them to be always surjective. If such maps were always

surjective, we would have that coker (ωn) = 1 and thus so both Qn and Q must

be equal to 1 as well. This result would give us that A(F )/NL/F (A(L)) is always

isomorphic to A(F )p; which would lead to a serious issue with our work since

it is a generalisation of the main result of [7]. A finite field is quasi-finite, and

thus we would have that A(F )/NL/F (A(L)) ∼= A(F )p for all finite extensions

F/Qp.

Despite the above caveats, quasi-finite residue fields is another avenue that

it may be fruitful to explore at a later date.
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Conclusion

We have extensively talked about two topics on the issue of complete discrete

valuation fields in this document. Those two being the map ΨL/F relating to

certain extensions of discrete valuation fields with imperfect residue fields and

abelian varieties over complete discrete valuation fields. However, there is still

a lot more research that could be done on the pair of them in the future.

The first thing we should talk about is the topic of Chapter 3, which is

focused on ΨL/F when dealing with finite abelian totally ramified p-extensions

of complete discrete valuation fields with imperfect residue fields. The obvious

point to note is that while we have made strides in trying to prove whether

ΨL/F is always an isomorphism; the question unfortunately remains open.

There are a few avenues a person could take to further what we have written

about in Chapter 3. The one that appeals to me the most is solving the problem

we established in section 8 of Chapter 3, “The Final Values of i”.

As a reminder this is showing that the following statement is true:

Let F is a complete discrete valuation field with residue field, that may

be imperfect, of characteristic p. We also have that L/F is a abelian totally

ramified p-extension with two ramification jumps with M being the fixed field

of Gb, where Gb 6= 1 and Gb+1 = 1, and we say that |L : M | = pn2 and

|M : F | = pn1.

Let j be such that a < j < hM/F (b), and let t be in F̂
pn2

, and not be equal

to 0. Finally, pick α ∈ ker(NM̂/F̂ : U1,M̂ → U1,F̂ ), such that α ∈ Uj,M̂ and

λj(α) = t. Then, for all j between a and hM/F (b), and all choices of t and

α derived from j, there is β ∈ NL̂/M̂(U1,L̂) ∩ Uj,M̂ , such that λj(β) = t and

β ∈ ker(NM̂/F̂ : U1,M̂ → U1,F̂ ).

If this problem could be solved positively one would have proved that ΨL/F is

103
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an isomorphism for all finite abelian p-extensions with two or less ramification

jumps over all complete discrete valuation fields with, perfect or imperfect,

residue field of characteristic p. Since I believe that such a proof would be

relatively easy to extend to field extensions with higher number of ramification

jumps it could be rather easy to close the entire line of inquiry about whether

the maps are an isomorphism.

Of course one may try to be less ambitious and just try to extend the set of

abelian p-extensions we know have isomorphic ΨL/F . The obvious first step in

this is to try to answer the problem we ended Chapter 3 with. This was trying

to see whether the ΨL/F are isomorphic for certain extensions with Galois group

(Z/pZ)3.

As a reminder from the “Introduction”, one idea that we did not have the

time to look at here is higher local fields. These are complete discrete valuation

rings whose residue field is another complete discrete valuation field, and in fact

forms a chain of such fields with the inner most discrete valuation field having

a finite residue field. More details can be found in “Geometry and Topology

Monographs, Volume 3: An Invitation to Higher Local Fields” [2].

This is important because higher local fields are a well studied type of com-

plete discrete valuation field that may have an imperfect residue field. For in-

stance, a two dimensional local field of characteristic 0 with residue field, which

is a complete discrete valuation field with finite residue field, of characteristic

p has an understood local class field theory about them that relates abelian

extensions to the 2-dimensional Milnor K-group of the field. It also could have

an imperfect residue field, as the residue field has characteristic p and infinite

cardinality. We could then use this theory to try to answer open questions

about extensions of the form (Z/pZ)3, and then possibly other extensions after

that,; at least on this particular type of field.

We should note that a brief introduction to the idea of the Milnor K-groups

of a field is gone over in Chapter IX of [5].

Of course the other method someone could take, that is not talked about

earlier in this thesis, is to find an example of a finite abelian p-extension where

ΨL/F ia not an isomorphism. This is different from the aim in Chapter 3, where

we were trying to extend the set of extensions where we know that the ΨL/F is

an isomorphism, but such a counter-example would also give a definitive answer

as to whether the ΨL/F is always an isomorphism.

If such an example could be found the work on the subject would be far from

over though. The first line on enquiry could be for what subset of finite abelian

p-extensions is ΨL/F always an isomorphism. Ironically, in this hypothetical
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scenario, despite the question we were trying to tackle in this document being

answered by a different method than the one we used; this thesis, and any

further extension to it, could still be useful for dealing with the further problems

that would then arise.

The other way a person may take this new hypothetical answer is whether

there is a particular property of this complete discrete valuation field that

causes it to have such an extension. Is it something in addition to the imperfect

residue field? We know that all complete discrete valuation fields with perfect

residue fields must not have this hypothetical property. Is there a subset of

complete discrete valuation fields with imperfect residue fields in which ΨL/F

is an isomorphism for all finite abelian totally ramified p-extensions, or at the

very least this particular counter-example does not work. It could be that this

type of extension has non-isomorphic ΨL/F for all such fields complete discrete

valuation fields with imperfect?

The above paragraph may be getting a bit ahead of ourselves. Such an

extension has not been found and, has been made abundantly clear, we do not

even know whether one exists or not. This was merely to demonstrate that

even if such a construct could were to be discovered the topic of ΨL/F would

be far from closed.

Next, we can talk about Chapter 4, “Abelian Varieties over Local Fields”,

and how we can expand on that topic. Naturally, the first thing we can look at

is trying to find more information about the group Q, if not explicity compute

Q, and thus get further in the generalisation that we started.

We had some notations that we briefly went over in section 4.4, “Some

Ideas that we can Explore”, which could be a good place to start. For instance

finding out more about Im (χ), and thus coker (χ), could be very useful. For

example, proving that χ is surjective, at least in some cases, would simplify Q

to be coker(ω).

Section 4.8, “Quasi-finite Residue Fields”, brings up a way to simplify the

mathematics, while still keeping our assumptions more general that those Lubin

and Rosen have. Admittedly, all assuming that F is quasi-finite does is make it

that |J | = 1, though it may yield results which we can then try to extrapolate

to cases where the cardinality of J is greater than 1. The best way to tackle

this problem would probably be to combine the ideas and both this paragraph

and the last.

Other than trying to work out the properties of Q; there is another intrigu-

ing thought that may be worth looking at more closely. This is to relate the

mathematics of Chapter 4, and [7], back to the topic of local class field theory.
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For instance, Theorem 1 of [7] gives a result showing an isomorphism between

Â(OF )/NL/F (Â(OL) and Gal (L/F )ab/((I −u) Gal (L/F )ab), which seems very

similar to the isomorphism between F ∗/NL/F (L∗) and Gal (L/F )ab that is an

important result in classical local class field theory.

We should note that interpreting mathematics of [7] through a local class

field theory lens was an idea briefly brought up and explored in the last section

of Chapter V in Professors Ivan Fesenko and Sergei Vostokov’s book “Local

Fields and their Extensions” [5]. Here the isomorphism of Theorem 1 is labelled

the “Twisted Reciprocity Homomorphism”. If we want to look at the work of

Chapter 4 as a variation of local class field theory a good way to do it is to

start with the ideas expressed in [5], and look at the works referenced in that

section, and see what can be extrapolated to more general base fields F .

While the above can be done before we get more concrete information on Q

it is recommend to do it afterwards; explicitly calculating Q would significantly

help us in this matter. This would allow us to go into the topic with more

information about the isomorphism between Â(OF )/NL/F (Â(OL)) and Q, and

thus make it easier to see if we can relate it back to the more complicated forms

of local class field theory that we saw in the “Literature Review”.

Of course those are just a few ideas of how to take the subjects of this

document further. There are likely many more, a lot of them using mathematics

not touched upon in the previous chapters, but what we have here is at least a

place to start further investigations into these mysteries.
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