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Abstract

Explorations of visual hallucinations, and in particular those of Billock and

Tsou [V. A. Billock and B. H. Tsou, Proceedings of the National Academy

of Sciences USA, 104 (2007), pp. 8490–8495], show that annular rings with

a background flicker can induce visual hallucinations in humans that take

the form of radial fan shapes. The well-known retinocortical map tells us

that the corresponding patterns of neural activity in the primary visual

cortex for rings and arms in the retina are orthogonal stripe patterns. The

implication is that cortical forcing by spatially periodic input can excite

orthogonal modes of neural activity. Here we show that a simple scalar

neural field model of primary visual cortex with state-dependent spatial

forcing is capable of modelling this phenomenon. Moreover, we show that

this occurs most robustly when the spatial forcing has a 2:1 resonance with

modes that would otherwise be excited by a Turing instability. By utilising

a weakly nonlinear multiple-scales analysis we determine the relevant

amplitude equations for uncovering the parameter regimes which favour

the excitation of patterns orthogonal to sensory drive. In combination with

direct numerical simulations we use this approach to shed further light on

the original psychophysical observations of Billock and Tsou.

Homogeneous connectivity profiles are commonly used as standard

in neural field models. However, connectivity is known to be patchy

and organised by a roughly hexagonal periodicity. We use a periodically

modulated connectivity profile in the neural field model to explore this

patchiness. Turing analysis and direct numerical simulations allow us to

determine the consequences of this on pattern formation. The orientation

preference map in primary visual cortex also has roughly periodic structure

organised around pinwheels. We show that a multi-layered neural

field model with patchy connectivity is capable of generating a realistic

orientation preference map.
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1
I N T R O D U C T I O N

Despite the large amount of study involving the brain, the most complex

organ in the body, there is still so much about the brain that is not

understood. The complexity and ethical implications of performing

experiments on the human brain emphasises the need for mathematical

neuroscience for understanding the brain at microscopic, mesoscopic and

macroscopic levels and to provide insight into mechanisms underlying

natural computation. With the rapid growth of technology and computing

power, we are able to collect vast quantities of data and also analyse

and simulate brain activity in such a way that was not an option before.

Close collaboration between the many fields that involve neuroscience, both

theoretical and experimental, will allow further groundbreaking discoveries

to be made.

The story of spontaneous pattern formation in models of visual cortex

is one that has attracted much attention since it was developed in the

1970s by Ermentrout and Cowan to explain drug induced geometric visual

hallucinations [38]. These often take the form of lattice (a.k.a. honeycomb,

grating, or chessboard), cobweb-like, tunnel (a.k.a. funnel, cone, or vessel),

and spiral patterns, as described in the experiments of Klüver [67] in

which participants were given mescaline. When transformed from the

retinocentric coordinates of the eye to the coordinates of the primary visual

cortex (V1), these so-called Klüver form constants manifest as simple

1



introduction 2

geometric planforms such as rolls, hexagons, squares, etc. [106].

Neural field models are used to represent the activity in the brain at

the tissue level and we will use these to model activity in V1. They

are formulated as a type of continuum neural mass model that use

spatial-temporal coarse grained scales to model population activity. Neural

field models are either activity or voltage based and we will be focusing

on the latter. Neural fields are essentially descriptions of cortical neural

activity described by integro-differential equations. They are specified

by a set of nonlocal spatial interaction kernels and nonlinear firing rate

functions to describe the coarse-grained activity of interacting excitatory

and inhibitory neuronal populations.

It was the great insight of Ermentrout and Cowan that some of the

geometries of the Klüver form constants could be generated via a Turing

instability in a simple neural field model of V1. Despite the difference

in their mathematical form from many other pattern forming systems

that arise in the modelling of physical systems, and in particular partial

differential equations of reaction-diffusion type, they can be analysed using

many of the same techniques. For example, a weakly nonlinear analysis

can be used to derive the amplitude equations for patterns emerging

beyond the point of a Turing instability [37, 116]. Cells in V1 are selective

to certain features for example orientation, meaning they respond strongly

to a particular orientation. More recently, an extension of the original

work by Ermentrout and Cowan was developed by Bressloff et al. [21] to

describe the dynamics of orientation selective cells. This more biologically

realistic neural field model includes anisotropic lateral connections that

only connect distal elements with the same orientation selectivity along the

direction of their (common) orientation preference. Interestingly this model

can generate representations of all the Klüver form constants. Nevertheless,

both this and the original model of Ermentrout and Cowan have a focus on
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spontaneous pattern formation that is induced by changes of parameters

intrinsic to the models, rather than by external drive. However, it is

particularly important to address this when trying to understand the

mechanisms of sensory induced illusions and hallucinations in response to

the presentation of either static or dynamic visual input.

The focus of the theoretical study presented in the first part of this

thesis, is on the type of visual hallucinations reported in the work of

Billock and Tsou [10]. These authors tried to induce certain geometric

hallucinations by biasing them with appropriate visual stimuli from a

flickering monitor. For example, a set of centrally presented concentric

rings was expected to induce a hallucination of circle in the surround.

Instead, and to their surprise, they found that fan-shaped patterns were

perceived in the surround (and a complementary pattern of concentric ring

circles in the surround for radial patterns in the center). The retinocortical

map, mentioned above, tells us that the corresponding patterns of neural

activity in the primary visual cortex for rings and arms in the retina

are orthogonal stripe patterns. The implication of the psychophysical

experiments of Billock and Tsou is that cortical forcing by spatially periodic

input can excite orthogonal modes of neural activity. By using a neural

field model with spatial forcing, we can use analysis techniques such as

Turing analysis and deriving amplitude equations find parameter regimes

for the model to simulate these psychophysical experiments.

Standard neural field models have focused on using connectivity

profiles that are homogeneous and isotropic; however,this is a significant

simplification of complex biological details. The focus of this work in the

second half of the thesis is to explore neural field models incorporating

the patchy connectivity that is observed biologically in visual cortex.

Furthermore, this is now known to be approximately hexagonal in nature

[42, 129], and can be incorporated into the model using modulation by a
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hexagonal lattice, as a first approximation. Again, by performing Turing

analysis on the model, the system can be positioned past bifurcation to

allow for spontaneous pattern formation to observe the resultant neural

activity patterns when patchy connections with a hexagonal geometry

are imposed. The cells in V1 have an orientation selectivity, that is, they

respond strongly to lines or edges of a particular orientation, and the

layout of orientation preference is described by an orientation preference

map (OPM). The OPM has a pinwheel structure where all orientations

converge and linear regions in which orientations are parallel to each other.

The same structure of the patchy connections is seen in the orientation

preference map in visual cortex, with the pinwheel structure and linear

regions of orientation appearing in a similar manner. By using the patchy

connectivity in a multi-layer model with different orientations we show

that this can create an orientation preference map. The work of Rankin and

Chavane in [96] on a multi-layered model including orientation preference

is used as a starting point for a multi-layered neural field model. It also

provides methods for converting layers of neural activity into one optical

imaging signal to obtain the orientation preference map.

The structure of the thesis is as follows. We start by covering the

background of the visual system and neural field models including a

literature review in chapter 2. This gives an overview of the biology of

vision and the mechanisms and mappings required for the first section of

the visual pathway, from the eye to primary visual cortex. Also, neural

field models will be introduced and explained to show how these fit into

modelling activity in V1.

Chapter 3, 4 and 5 focus on modelling the visual hallucinations described by

Billock and Tsou [10]. Firstly in chapter 3, the psychophysical experiments

that we are interested in modelling are introduced. Next, there is an

overview of other pattern-forming dynamical systems that have similar
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properties to the ones that we desire, to aid us in developing a model. We

then explore the linear stability of the neural field model using Turing

analysis. In chapter 4, we then explore the neural field model with spatial

forcing to derive amplitude equations using weakly nonlinear analysis

to give parameters for pattern formation. Details of the calculations are

provided in Appendix A. Simulations for the model are computed giving

stationary results of neural activity showing the desired pattern formation

in two dimensions for the Billock and Tsou hallucinations. Then, a model

with adaptation to allow for the development of travelling waves and time

varying percepts is analysed in chapter 5, thus giving us the ability to model

the spatial phase changes with time in the hallucinations. Firstly, the model

with adaption is introduced in one dimension and the linear stability of the

new model is explored. Amplitude equations for this model are derived

and parameter regimes for the existence and stability of time varying

percepts are found. Again, further details of the calculations are provided

in Appendix B. The theoretical work highlights patterns of activity which

occur due to global forcing. The numerical simulations confirm that the

phenomena of orthogonal response to forcing and movement of patterns

also occur when forcing is applied on the cortical half space, more closely

matching the experiments of Billock and Tsou who provided stimulation

on only part of the visual field. Details on coding tools required for the

simulations can be found in Appendix C.

Chapter 6 investigates the presence of patchy connectivity in the visual

cortex as reported from biological studies. Whilst many current standard

connectivity models are homogeneous and isotropic, incorporating

patchiness requires this homogeneity to be abandoned. A new model of

connectivity is introduced; firstly, to help introduce and develop the relevant

methodology, we implement a square lattice model of patchy connections

and perform Turing analysis to find the conditions for spontaneous pattern

formation. Next, due to the patchy connections actually being hexagonal in
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nature [42, 129], we alter the lattice to hexagonal instead of square. Turing

analysis is performed and numerical simulations are provided that are

shown to agree well with the theory. Finally, we introduce a new parameter,

ε, to control the strength of the patchy connections and again perform

Turing analysis and provide simulations for this revised model. The code

required to compute all of the simulations in this chapter is provided in

Appendix D.

Finally, the focus of chapter 7 is to define a simple connectivity rule

that can lead to spontaneous pattern formation of a realistic orientation

preference map via a Turing instability. The work of chapter 6 underpins

the development of the patchy connectivity model. This is developed and

merged with the work of Rankin and Chavane [96] to create the required

model and resultant orientation preference map. This chapter starts with

a brief overview of the models and techniques explored in [96]. Further

details of the model are provided in Appendix E. Next, a multi-layered

model with patchy connectivity is explored and Turing analysis presented.

Simulations of this model with different parameters are performed to find

the best options to create a realistic OPM. Finally, orientation preference

maps are computed from the network model, and shown to be robust with

parameter variation. The code to create these simulations is provided in

Appendix F.

We end this thesis with a summary of the main results provided in

chapter 8. Then, we provide a discussion of the ways in which the work

can be extended in the future.



2
B A C K G R O U N D

2.1 the visual world - biological background

The brain is the most complex organ in the body. Despite the extent to

which it has been studied by scientist for years, there are still many parts

of the brain whose function and purpose are not yet understood. Due to

the nature of how the brain has evolved, there appears to be a purpose for

every area. The brain has around 1014 − 1015 highly organised synaptic

connections [53]. Every area of the brain is connected to other specific areas

of the brain, whether this is by short or long range connections. This means

that activity in one area of the brain can affect any other region of the brain

it is connected to. However, particular areas that perform certain tasks are

more connected than others such as the visual cortex and auditory cortex.

There are areas of the brain that are more studied than others due to

their interesting features and complexity, with the visual system being the

most highly studied. This is aided by the first part of the visual system

being located close to the surface of the brain and therefore making it easier

to access. Yet there is still a vast amount to learn in this area and most of

the knowledge is limited to the first visual processing areas. Vision is a

complicated phenomena and the process of how it works is only partially

understood; therefore, there is still a lot about how we see that is not

7



2.1 the visual world - biological background 8

known. In this chapter, we will focus on the visual pathway from the retina

to the primary visual cortex, the first part of the visual system.

2.1.1 Neurons

The brain is composed of approximately 1012 neurons and every neuron

has roughly 104 synapses [53]. These receive signals from sensory inputs

to the brain, in our case the retina, and also signals from the intra-cortical

connections between neurons. The neuron is a nerve cell that is comprised

of an axon, a cell body and dendrites, which are all encased in a membrane,

shown in Fig. 1. The cell body and dendrites receive electric impulses

from other cells. The axon is able to transmit impulses to other neurons,

a spike train of activity, to send a signal through the brain. Dendrites are

on a micrometre scale, however, axons can range from <1 mm to 1 m [33].

The axon splits into many branches at its end, telodendria, to be able to

reach other neurons to transmit this information to. Short axons are more

efficient as the signal can be sent in less time; this is why cells that need to

be more interconnected are grouped together. The axon is positioned close

to, but doesn’t touch, the cell bodies or dendrites of other neurons, this

junction is called a neuronal synapse.

Information is sent from the presynaptic cell, the neuron transmitting

the impulse, to the postsynaptic cell, the neuron receiving the impulse

unidirectionally. A synapse has a membrane voltage potential that can be

modified by activity from an input. Before the input it is at a dynamic

equilibrium or resting potential which is approximately -65mV. The input

causes the release of a neurotransmitter that causes the ion channels to

open. The presynaptic and postsynaptic neurons then have different

concentrations of ions that causes a difference in voltage. If the membrane

voltage potential of a neuron at the cell body exceeds a threshold then

an action potential is produced and this in turn then propagates along its
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Figure 1.: A representation of a neuron, showing the cell body, axon and

dendrites and how these synapse onto other neurons. Image

reproduced from Wikipedia, Neuron.

axon to induce synaptic activity at sites across the entire brain. An action

potential has a typical duration of approximately 1 ms [5], and after this

the neuron is typically refractory, (cannot fire again), for another few ms.

2.1.2 The Visual System

The visual system is an extremely important part of the brain and allows

us to process light signals to give a representation of our surroundings in

the form of vision. It is also responsible for non-image producing processes

such as circadian rhythms and pupilary light reflex. Humans have around

30 visual areas in the brain and approximately 50% of the surface area of

the brain processes visual information [47].

Light rays are reflected off of an object and enter the eyes, refracted

through the cornea, the pupil (which is controlled by the iris) and then the

lens. A diagram of the parts of the eye is shown in Fig. 2. The refraction of

the light results in an inverted image of the visual field being projected onto

the retina, the back of the eye. The retina is comprised of photoreceptor
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cells which contain light sensitive proteins called opsins; in humans these

are either rod opsins or cone opsins for visual processing. Rod opsins

are used in low-level light and are mostly in the periphery of the retina.

Cone opsins are used in normal light levels and distinguish colour by

absorbing different wavelengths of light. The centre of the retina, the fovea,

is solely comprised of cones. The fovea is only 1% of the retina, around

half a millimetre in diameter, however it is densely packed and responsible

for sharp, focused visual acuity [53]. It is the only area of the retina that

is able to distinguish fine detail and can have 20/20 vision, a standard

measure of normal vision describing the ability to seen an object clearly

from 20 feet away. The rest of the retina is responsible for peripheral vision.

Figure 2.: A diagram of the parts of the eye. Image reproduced from [4].

The photoreceptor cells, rods and cones, form a synapse onto ganglion

cells and then the axons of the ganglion cells form the optic nerve and

can conduct spike trains to the next area of the visual system. There are

approximately 130 million photoreceptors, yet around 1.2 million axons

of ganglion cells that transmit signals from the retina to the brain [61].

The ratio of photoreceptors to ganglion cells is not uniform across the

retina, at the fovea there is a 1:1 ratio whereas the edge of the retina has

hundreds if not thousands of photoreceptors to one ganglion cell, meaning

the information is not as highly retained. The point at which the optic
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nerve joins the eye is a natural blind spot as it is not possible to have

photoreceptor cells there.

Figure 3.: A diagram of the initial part of the Visual System showing the

pathway of the connections from the eye to the primary visual

cortex (V1). Image reproduced from Wikipedia, Magnocellular Cell.

The signals from the left and right retina pass through their respective

optic nerve’s fibres to join together at the optic chasm, as shown in Fig. 3.

The nerves sending information from the left visual field from both eyes

are sent to the right side of the brain and vice versa. Thus, the visual

fields are mapped onto the contralateral visual hemisphere of the brain.

These signals then arrives at the lateral geniculate nucleus (LGN), this

is a relay centre that splits the information received from the retina into

different layers. The LGN is topographically organised, with a systematic

mapping where the information of neighbouring cells on the retina are

also neighbouring in the LGN. Organisation of cells by location provides

the ability for cells to be connected to their neighbours with a lot of short

range connections. Finally, the LGN is connected to the primary visual

cortex (V1) by the optic radiation. The topological structure of the LGN is



2.1 the visual world - biological background 12

inherited in V1.

Figure 4.: A diagram of the brain showing the locations of the visual

processing areas in the brain. Image reproduced from [39].

Signals from the retina to the visual cortex take approximately 40-60

ms to be transmitted. In humans, the visual cortex varies between 2-4 mm

in thickness with surface area of around 200 cm2 and the average number

of neurons being 5 billion [123]. This is a lot more than the number of

photoreceptors and ganglion cells, therefore the information is divided up

and different parts are analysed together, this is discussed further in section

2.1.3. We will focus on V1, a large part of which is located at the back of

the brain, see Fig. 4, in the calcarine fissure. The calcarine fissure is located

at the back of the brain in the middle of the occipital lobe and divides the

visual cortex, the location of which is shown in Fig. 5. V1 is composed of

100 million neurons and in comparison the input from the optical nerve

only consists of 1 million fibres.

V1 is the first visual processing system in the brain and is one of the

most studied. V1 has two very unique mappings that we will study, the

retinocortical map and the orientation preference map. The retinocortical

map is a well defined map of the position of stimuli on the retina to the

position in V1. The orientation preference map shows which neurons

in the cortex respond to certain orientations in the visual field. V1 is
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Figure 5.: A diagram of the parts of the brain, showing the location of

the calcarine fissure (red). Image reproduced from Wikipedia,

Calcarine Sulcus.

incredibly important in visual processing and does not just involve bottom

up processes, only processing the information it is receiving [74]; but rather

also top down processes that involve perception and filling in of images

using past experiences. Furthermore, it is not limited to only basic visual

processing, and is for example, involved in highly specific processes such

as fine resolution of images. There are two types of connections in the

primary visual cortex, retino-geniculo-cortical (vertical) connections and

cortico-cortical (horizontal) connections; we will be focusing on the former

when looking at activity in the tissue. The vertical connections are within

the layers of V1 and the horizontal connections are between to the layers

of V1, due to the hypercolumn structure between the layers, which will be

outlined in section 2.1.4. V1 of a Macaque monkey is 50% of the surface

area of its brain, so from that and their close genetic relation to humans is

why they are predominately used in vision studies.

The visual system then continues after V1, with signals being sent

onto V2, V3, V4 etc. seen in Fig. 4. Secondary visual cortex (V2) is the

second area in the visual cortex. It receives strong feed forward signals

from V1 but also sends strong feedback connections to V1. It has more

attention modulation than V1 and its response is more complex. Following
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on from V2 is the third visual cortex, which includes V3; controversy still

exists regarding the exact extent of area V3. The top of V3 receives input

from V1 and V2; whereas, the lower regions have weaker connections to

V1. Visual area V4 receives strong feed forward input from V2. V4 is

known as the colour centre of the brain. However, no one has defined a full

parametric description of V4 and all of these higher visual areas have lots

of unknowns. Also these areas send information directly to a multitude of

other areas in the brain to assist with both visual and non-visual specific

tasks.

2.1.3 Retinocortical Mapping

We will use multiple coordinate systems throughout this work. The position

of the stimulus in the real world is modelled by a 2D vector as only position,

not depth, is required,

rw = (xw, yw). (1)

This position is then transformed to a 2D position vector on the retina,

rr = (xr, yr). (2)

The most interesting mapping for this work is the one from the retina to

the visual cortex, the retinocortical mapping. The coordinate system for the

visual cortex is denoted by,

rc = (xc, yc). (3)

The transformation of the retinal coordinate system to the cortical

coordinate system, Ψ : rr → rc, is nonlinear. A representation of the human

visual cortex, Fig. 6, shows that the distribution of cells are not arranged

linearly and a large portion of the visual cortex is comprised of the first

few degrees of the visual field. The reconstruction of the human V1 using

fMRI recordings has been completed in [34, 104, 123]; before these fMRI

reconstructions there had only been reconstructions of macaque visual
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cortex [119]. The retina has fovea to periphery gradients horizontally and

vertically from the lower vertical meridian (LVM) to the upper vertical

meridian (UVM). However, the fovea to periphery gradient in the primary

visual cortex is nonlinear and there is a huge magnification of input from

the fovea. This nonlinearity is extremely important in visual processing

and for us, how hallucinations occur.

One of the main structures of the visual cortex is this retinotopy structure, a

neurophysiological projection of the retina to the visual cortex, a mapping

in a mathematical sense. The complex-log mapping [107] is the most

common representation of the mapping of points from the retina to the

visual cortex. The cross section of the right visual field is mapped to the

left visual cortex. The visual fields are contralaterally projected onto the

opposite primary visual cortex’s. These are both identical; therefore, we

only need to consider one of the visual fields as the other one is identically

translated to the other hemisphere of the brain. The fovea is only 1% of the

area of the retina; however, is magnified to be responsible for 50% of the

area of V1.

(a) Visual Field (b) Actual right V1

Figure 6.: Retinocortical mapping reproduced from [118]. The visual field

(a) is mapped to primary visual cortex in a complex logarithmic

like manner (b).
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The first retinocortical mapping, proposed by Schwartz in 1980 [107],

was the monopole mapping,

Ψ(z) = log(z + a), z, a ∈ C, (4)

where z is the position on the retina represented as a complex number,

z = ρeiθ, and a < Re(z) gives a linear mapping and for larger z this is closer

to a logarithmic mapping. This was then extended to the dipole model [104],

Ψ(z) = k log
z + a
z + b

, a, b, k, z ∈ C, (5)

with b helping shape the boundary for periphery vision and k being a

scaling constant. There are many different versions of this model that can

be found in the literature as this is the most widely accepted model for

the retinotopical mapping. By using the different values for a and b given

in [3], [92] and [104], this gives generic models for the retinocortical map;

examples of which can be seen in Fig. 7. The fovea massively expanded

and is mapped to around half of the left side of these models and then

the right side is the mapping of the rest of the retina. These are simplistic

mathematical models of Fig. 6, with (b) being a more realistic looking

model.

However, these basic dipole models are not a good representation of

the visual cortex, especially at the fovea [104]. This is due to neither of them

showing topographical anisotropy, shear, at the vertical meridians, which

represent peripheral vision. In [12] results show that there is indeed a

diminution at the vertical edges of V1 and therefore, this has to be included

in the model. A new model is proposed in [104], the Double-Sech model,

which introduces a shear term fγ, γ ∈ {a, b};

Ψ(z(ρ, θ)) = k log
ρeiθ fa + a
ρeiθ fb + b

, a, b, k ∈ C, (6)

where ρ = |z|, z ∈ C, and θ = arg z, z ∈ C, and

fγ = sech(θ)0.1821sech(0.76 log(ρ/γ)). (7)
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(a) The dipole model from (5)

with a = 0.333, b = 6.66 and

k = 1.

(b) The dipole model from (5)

with a = 1.5, b = 170 and

k = 1.

Figure 7.: Two models of the dipole mapping redrawn from [92] and [3]

respectively.

However, whilst this is an entirely new geometric principle, the model is

not a lot more computationally expensive. The Double-Sech model shows

that the mapping is no longer as uniformly curved, this can be seen in Fig. 8.

Comparing the actual visual cortex, Fig. 6, to these models that have

been presented, Fig. 7 and 8; whilst these are the standard mappings

used, none of these retinocortical mappings are a completely accurate

representation of the visual cortex. The Double-Sech model perhaps

being the closest to the true shape. Some more complex models of the

retinocortical mapping have also been proposed, such as [59, 60], using a

spatial density model and fitting it to magnification data.

2.1.4 Orientation Preference Map

There are three types of structures that occur in V1; these are the layered,

retinotopic and hypercolumn structures. Firstly, the layered structure is

comprised of approximately the depth of V1, 1.8 mm, and is constructed

of six horizontal layers parallel to the surface of the cortex. Most of the
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(a) The dipole model from (5)

where a = 1.05, b = 90 and

k = 19.3.

(b) The Double-Sech model from

(6) with a = 0.96, b = 90 and

k = 17.6.

Figure 8.: A comparison of the dipole and Double-Sech model from [104],

emphasising the shear at the top and bottom edges in the Double

Sech model.

input from the LGN arrives at layer 4, specifically to the sub-layer 4C. This

then relays input to layers 2 and 3 and projects to layer 5, layer 6, the spinal

cord and thalamus respectively. Secondly, the retinotopic structure means

that input from the retina is globally mapped to layer 4C of the visual

cortex to preserve the retinal topography. There is a local mapping of the

retinotopical mapping to the other layers of the visual cortex from layer 4C

that is also topologically preserving.

Finally, the hypercolumn structure is the splitting of V1 into columns

that are perpendicular to the surface of the cortex. This also keeps

the retinal position and orientation preference roughly constant. V1 is

comprised of simple neurons which are sensitive to orientation, ocular

dominance and colour. Orientation columns are approximately 20µm apart

and are a horizontal grouping of columns whose input are from retinal

cells with a preferred orientation varying from 0 to π. These three types

of structure allows the brain to process images at a higher resolution than

just receiving this information from a single neuron. This early orientation
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selectivity is crucial for all higher forms of visual processing and is a

fundamental part of the visual cortex [6]. A representation of this structure

can be seen in Fig. 9.

Figure 9.: Hypercolumn in primary visual cortex showing the orientation

columns arranged in pinwheels and how the ocular dominance

stripes from the ipsilateral (I) and the contralateral (C) eye

alternate. The connections between the layers of the cortex 1-6

are shown and how this corresponds to the input received from

the lateral geniculate nucleus (LGN). Reproduced from [7].

The variation of orientations of the hypercolumns across V1 is not

monotonic and it was not until the 1990s when in vivo optical imaging

determined the structure of this orientation preference map (OPM) [14].

The orientation preferences rotate over V1 and approximately every 300 µm

the same orientation preference reappears. The orientation of the stimuli

is represented as its acute angle; therefore, only range from 0 to π. The

work of [54, 55, 56] and then [13, 46] showed that the OPM has a pinwheel

structure. The OPM is covered in singular points, where all the orientations

converge, which are approximately 600µm apart in primates. These are

then connected with all of the orientations from 0 to π to make a global
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map. These pinwheel structures are bounded by areas of linear zones,

see Fig. 10. Therefore, the OPM is comprised of three main structures;

regular lines that are approximately parallel to each other, singular points

at the centre of the pinwheels where the orientations converge and saddle

points where bifurcations of orientations occur, two orientations leave

one pinwheel and diverge to two separate pinwheels. These features can

be seen in Fig. 10b, with the linear areas and pinwheels being shown

specifically.

The map is globally homogeneous; however, at the pinwheels it appears to

be inhomogeneous. This is due to the perception of the colours representing

the different orientations, see Fig. 10, at the pinwheel. When a pinwheel

occurs, all the colours converge which results in a colour wheel. When

a continuous colour wheel is used this causes the primary colours to

dominate and the secondary colours appear to not be as prominent. This

makes some orientations appear to occur more than others when in fact

they are all equally distributed. When the orientation preference map

is discretised, the work of [53, 56] shows that the neurons responding

to a certain orientation preference changed every 10 degrees on average,

therefore, ideally would be modelled as roughly 18 different orientations.

When discretised, the colour map will look homogeneous as the colour

wheel will show a higher contrast between colours.

We can synthetically model the orientation preference map, θ, using a

random field model adapted from [91];

T(xc, yc) =
k=N

∑
k=1

cke2iπ
(

xc cos
(

2πk
N

)
+yc sin

(
2πk
N

))
, (8)

θ(xc, yc) =
1
2

(
tan−1

(
Re(T(xc, yc)), Im(T(xc, yc))

)
+ π

)
, (9)

where ck are random complex coefficients, with the real and imaginary

parts of each ck variable being generated separately using a normal
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distribution of µ = 0 and σ = 2. The choice of µ and σ gives a sufficient

distribution of coefficients to give arctan values from ±π which is then

shifted to the domain [0, π]. N is a parameter chosen here to be 28

following [91]. An illustration of this model, Fig 10a, in comparison to a

real OPM is shown in Fig. 10.

(a) A synthetic orientation

preference map computed

using (9).

(b) Modified figure reproduced

from [15] of a tree shrew’s

visual cortex with the colour

coded orientations shown

below. Sections of the

orientation preference map

have been highlighted, the

left showing linear areas

and the right showing

two examples of pinwheel

structures.

Figure 10.: A comparison of a synthetic OPM model from equation (9) and

real data.

Neurons in the visual cortex have intra-cortical connections which are

both local and long range. These are recurrent connections and the

synaptically connected neurons constantly encode the changes in their

firing pattern as the visual input changes. When a neuron fires due to a

stimulus in the visual field, it also induces activity in nearby neurons, this

is caused by the local connections. The local connections are independent

of orientation and so, on average homogeneous. Activity is induced in
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neurons of a similar orientation preference all over the cortex via the long

range connections. These long range connections are patchy [122] and are

not homogeneous; they can link neurons of similar orientation preferences

up to ±30 degrees difference in orientation.

2.1.5 Hallucinations

In the 1990s, mathematical neuroscientists such as Jean Petitot [91, 92]

first developed the concept of ‘neurogeometry of vision’. Originally this

referred to the geometrical models of functional architecture of primary

visual areas [25]. It is the internal and inherent geometric algorithms

present in our visual system that allow the brain to build the external and

transcendent geometry of our surrounding world [92]. The complicated

structure and functions of the visual system are what we can use to explain

why and how we perceive visual stimuli.

There are two aspects to neurogeometry, firstly the geometry of perception,

the psychology of vision that has been researched for centuries by

philosophers, psychophysicists and psychologists. This is known as

perceptual geometry and it was only in the 1960s that mathematics was first

used to understand this. Secondly, the stricter definition of neurogeometry

is in fact the mathematical models for these neural algorithms that process

perceptual geometry [25]. The mathematical models are geometric, yet

in a completely different way to the perceptual geometry. Hallucinations

are the result of differences between stimuli and visual perception. For

example, the Kanizsa triangles in Fig. 11 are a type of sensory induced

hallucination. They have been studied on a perceptual geometry level for

centuries by psychophysicists, however they have only been modelled on a

neurogeometry level in recent decades. These hallucinations are a result of

the functional architecture of V1, the retinocortical mapping and OPM.
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Figure 11.: Examples of curved Kanizsa triangles, with three ways of

determining the position of the illusory curve. The most effective

is the single lines parallel to the ‘edges’ of the triangle as seen in

the middle. Reproduced from [25].

Geometric visual hallucinations can occur due to many different types of

stimulations, this includes, flickering lights [49, 95, 110], administering

certain types of anaesthetics [127], just before or after sleep [35], applying

deep binocular pressure onto the eyeballs [121] and drug induced [88, 108].

Hallucinations have even been shown to be seen by blind subjects and

also subjects in sealed dark rooms [70]. Furthermore, they are difficult to

precisely locate in space and move with respect to eye movement, yet the

actual position of the hallucinations relative to each other remains the same

[67]. These behaviours have lead to the conclusion that hallucinations are

not generated in the eye but in the way the brain processes this information.

It has been proposed that the first areas of the visual cortex, V1 and

V2, are where hallucinations occur, especially if the stimuli requires precise

inspection for the hallucination to be observed [68]. The topological

representation of V1 has been suggested to support the occurrence of these

hallucinations. The hallucinatory images are generated in V1 and then

the mechanisms of V2 stabilise the image with respect to eye movements.
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There are feedback mechanisms between the V1 and V2, so the image

stabilising information is fed back to V1 [74].

2.1.6 Summary of Vision and its Application

This section has introduced how the visual system works from the eye to

the visual cortex and the mechanisms present in V1 for how the stimuli

is mapped from the eye to V1 and orientation is processed. V1 is an

important part of the visual system and is responsible for many aspects

of vision. The retinocortical mapping is vital for us to be able to understand

the activity in V1, due to its unintuitive nature and nonlinearity. It allows

us to see how stimuli are mapped to neurons in V1 and how that can affect

visual perception. The retinocortical mapping underpins how and what

hallucinations can occur. The OPM is an extremely sophisticated aspect of

V1. In the next section we will introduce neural field models and how these

can be used to model V1 at the tissue level.

2.2 neural field models

Before the 1900s very little was known about activity in the brain. The

first EEG recording was done by Hans Berger in 1924 [103]. This sparked

interest in developing models on how this activity could be generated. The

earliest work on neural fields was by Beurle [9] in the 1950s. Beurle’s model

was a continuum approximation, instead of looking at a single neuron, he

modelled the active neurons over the entire tissue per unit time. However,

his work only took into consideration the neurons that were exactly at

the firing rate threshold and these models really needed to incorporate all

neurons that are at or above the threshold excitation. Furthermore, there

were no inhibitory neurons in this model. There were also single neuron

models developed around this time. However, these consider brain activity
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at the microscopic scale, whereas we wish to model macroscopic dynamics

which requires models of neuronal tissue and therefore, a population of

neurons.

The modern incarnation of neural field models were first published

by Wilson and Cowan [125, 126], Nunez [86] and Amari [1] in the 1970s.

Wilson and Cowan constructed an activity based neural field model that

distinguishes between excitatory and inhibitory sub-populations. Their

equations can be written in continuum or network form and are mean field

equations. Nunez and Amari focused their single population voltage-based

models on local excitation and distal inhibition. All neural field models

represent a continuous network of interacting populations across the cortex

at the tissue level. Furthermore, neuronal densities are considered to create

spikes of activity per unit time, modelled by a mean firing rate. The spatial

distribution of neuronal connections is modelled using an anatomical

weight kernel.

The predominant model for voltage-based neural fields is the Amari

equation, for a position r in the domain Ω,

∂u(r, t)
∂t

= −u(r, t) +
∫

Ω
w(r, r′) f (u(r′), t) dr′, (10)

where u(r, t) is the activity of the cortex at position r = (x, y), evolving over

time t. The kernel w represents the connection between neurons and can

include excitatory interactions as positive values and inhibitory interactions

as negative values. The firing rate of the neurons is represented by f and

this is modelled using a sigmoidal function.

The kernel, or weight function, is often represented by a function of

the distance between neurons, so that it is translationally invariant,

w(r, r′) = w(|r− r′|). (11)
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This can then be used to write the integral as a spatial convolution.

When this is combined with Fourier transforms, the model is easy to

computationally simulate in the case where Ω = R2. One of the simplest

choices for w is the decaying exponential function,

w(r) =
e−|r|

2
. (12)

However, this is only a representation of short range excitatory connections

and has no inhibition. Therefore, usually a second exponential is added to

give a Wizard-hat shaped connectivity model, examples of these include

w(r) = e−|r| − e−|r|/2

2
, (13)

w(r) = (1− |r|)e−|r|, (14)

and

w(r) = Ae−r/σ − e−r, A > 1, σ < 1. (15)

Sometimes it is useful to work with a ’balanced’ kernel with the property∫
R2 w(r)dr = 0. For equation (15) this is achieved in two-dimensions when,

A = 1/σ2. (16)

Equation (15) is a good representation of typical cortical connections which

includes the excitation and inhibition. A Mexican-Hat shape is also often

chosen, this is a difference of Gaussians,

w(r) = e−|r|
2 − e−|r|

2/2

2
, (17)

which is similar to the Wizard-hat formula (13) but the square allows it to

be differentiable at the origin which may be useful in analysis. An example

of a mathematical connectivity kernel can be seen in Fig. 12.

The simplest model of the firing rate is the Heaviside function,

f (u) = H(u− h) (18)
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where H is the Heaviside step-function, a piecewise function,

H(x) =

1 x > 0,

0 x ≤ 0,
(19)

and h ∈ R is a threshold parameter to move the step of the function. This is

often used in analysis due its tractability. In this work, we shall take another

commonly used sigmoidal function for the firing rate,

f (u) =
1

1 + e−µ(u−h)
, (20)

where µ ∈ R+ is used to control the steepness of the sigmoid around the

threshold value h ∈ R [27]. This tends to the Heaviside function as µ → ∞.

An example of this can be seen in Fig. 12

(a) Example of sigmoidal firing

rate.

(b) Example of a connectivity

function with short range

excitation and long range

inhibition.

Figure 12.: Examples of the functions used in the neural field equation to

model neuronal activity across a tissue.

Obviously, there are both advantages and disadvantages to using any

of these models as they are only approximate representations of brain

activity. The neural field models have the advantage of having fewer
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parameters than spiking neural networks and do not resolve single neurons.

Therefore, they are lower dimensional than other models. However, this

is only the most simplistic version of this model, as then it can also

be extended in multiple different ways; this can be by adding more

populations, external activity or orientation preference to name just a few

examples.

2.3 extending the neural field model

The model (10) is the basic neural field models that can initially be built

upon to incorporate other factors that need to be included such as input

and adaptation. Input can be added as an extra term,

∂u(r, t)
∂t

= −u(r, t) +
∫

Ω
w(r, r′) f (u(r′), t) dr′ + I(r, t), (21)

with I(r, t) representing an external input. If the input I is set to zero then

the system is unforced. However, adding this forcing term can lead to

different types of pattern formation. The input can incorporate both time

and space. It can also be used as a bifurcation parameter of the system

[126]. Furthermore, the input can be inhomogeneous [22, 40]. The forcing

term can represent interaction between neurons but also external stimuli

that the brain receives. It is an adaptable term that can help model many of

the brain’s intricacies.

The neural field model can also be extended by adding the concept

of negative feedback, often referred to as spike-frequency adaptation, that

the spiking rate of neurons drops after sustained activation due to the high

metabolic demand of spiking activity [94]. This implementation aims to

capture this effect at the population level. From the biological description

of a neuron in section 2.1.1, it is known that a neuron must require a certain

level of activity for it to spike, which is implemented by the firing rate.

However, it also must return back to the resting potential after periods of
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high activity and this makes it harder for the neuron to fire again. This

model is based on work by Hansel and Sompolinsky [48], where they

consider a network in which the excitatory cells are given spike-frequency

adaptation. Spike frequency adaptation was then extended by several

authors such as [32, 94] to be often modelled with the use of a negative

feedback term that couples to a field a with dynamics of a simple linear

form,

1
τ

∂u(r, t)
∂t

= −u(r, t) +
∫

Ω
w(r, r′) f (u(r′), t) dr′ − ga(r, t), (22)

∂a(r, t)
∂t

= u(r, t)− a(r, t), (23)

where a(r, t) is a field that describes the local feedback mechanisms that

modulate synaptic currents in the tissue. The parameter g ∈ R the strength

of the negative feedback and τ > 0 sets the relative time scale of the two

processes. Adaptation can be used with only excitatory kernels to include

inhibition in the model as seen in [22, 40]; more uses of adaptation are seen

in [26].

More extensions of the neural field model can be including two populations,

one of excitatory neurons and one of inhibitory to have more control over

the types of connections in the model for interesting pattern formation

[125, 126]. Also, delays can be added to the model as the transfer of

activity across the cortex is not instantaneous especially for longer range

connections and these have an affect on neural activity [26, 57, 58].

2.3.1 Neural Field Models for Vision

‘. . . the hallucination is . . . not a static process but a dynamic process, the

instability of which reflects an instability in its conditions of origin’ [67, 21].

Many neurobiological phenomena have been modelled using integro-

differential neural field equations such as: wave propagation in cortical
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slices [94, 98], in vivo experiments of spiral waves in rat neocortex [52],

EEG rhythms [77, 87, 99, 113], geometric visual hallucinations [21, 38],

orientation tuning in V1 [8, 20, 111], short term working memory [24, 73],

control of head direction [131], motion perception [43], binocular rivalry

[23, 124] and the aperture effect in motion vision [97].

The first mathematical theory of visual hallucinations appeared in

1979 by Ermentrout and Cowan [38], developing a possible mechanism

for spontaneous patterns of neural activity for hallucinations from

hallucinogenic drugs. This was modelled using the Wilson and Cowan

equations; a model of excitatory and inhibitory populations of neurons on

a two-dimensional cortical sheet. The spatially periodic activity patterns

occurred because of a bifurcation from a homogeneous low activity state

due to a Turing-like instability [120]. Their model was also able to support

hexagon and square patterns.

This was then explored further by Bressloff et al in 2001 [21], where

they studied the relationship between geometric visual hallucinations

and the functional architecture of the striate cortex. The large-scale

dynamics of spatially structured networks of neurons required to model

the hallucinatory activity on the cortex is easy to see using such models.

However, this only works providing that the firing rate incorporates

short-range excitation and long-range inhibition interactions. These

models can exhibit a considerable number of spatiotemporal dynamical

properties, such as travelling fronts, pulses, spiral waves and Turing

patterns [19, 26, 37].

2.3.2 Orientation Preference Models

Using standard neural field models is an oversimplification of the cortex

and is just a projection of the activity on the retina. For more complex



2.3 extending the neural field model 31

hallucinations other than stripes and squares, the OPM needs to be

incorporated. The OPM being included in the neural field model is seen in

the work done by Bressloff in [21]. Thus, by writing the connectivity kernel

as,

w(r, r′) = W(|θ(r)− θ(r′)|), (24)

where, as well as having r, (the position on the cortex), θ(r), (the

orientation preference of a neuron at position r), is also incorporated,.

Here W(|θ(r)− θ(r′)|) is the weight of the connections between neurons at

position r tuned to the orientation θ and r′ tuned to the orientation θ′. Due

to features of the OPM now being incorporated into the model, we can no

longer treat the anatomical connectivity w in the neural field equation as

homogeneous.

The model can also be adapted to incorporate other features of the

functional architecture of V1 such as ocular dominance and spatial

frequency [18, 100]. Furthermore, Bressloff also looks at working on planar

Cartesian lattices in 2D to be able to produce all of the pattern types and

there are a range of planforms in [21], that are able to achieve spirals,

hexagons, rhombus’ etc.

2.3.3 Summary of Neural Field Models

This section has introduced neural field equations and how they are used

to model brain activity. In particular, we have discussed the Amari model

(10), a nonlinear single population integro-differential equation, and how

it can be extended. We use the connectivity kernel to model short range

excitation and long range inhibition across the cortical tissue. This is a basic

model that can then be adapted to incorporate more complex aspects of

brain activity. This is the standard model used in a wide range of recent



2.3 extending the neural field model 32

research, especially in visual neuroscience modelling. The rest of this thesis

will use neural field equations to model neural activity in V1.



3
U N D E R S TA N D I N G S E N S O RY I N D U C E D

H A L L U C I N AT I O N S

The aim of the next three chapters is to be able to use mathematical

neuroscience to explain the visual hallucinatory phenomena shown by

Billock and Tsou in [10]. There is little known about the interactions

between sensory driven and self organised cortical activity. Therefore, we

are going to use mathematical models to help understand more about the

hallucinations presented in [10], first discussed in chapter 1 and expanded

on later in this chapter. A standard way to model brain activity is to

use neural field equations to model activity in the brain at a tissue level,

see discussion in chapter 2. We will use such models and analyse them

to understand the types of pattern formation that can occur in response

to spatially structured visual drive. Pattern formation can occur when a

dynamical system is driven past the point of a Turing bifurcation and a

spatially homogeneous steady state becomes unstable, for example. Thus

small perturbations can grow exponentially to create patterns of activity.

Amplitude equations are a quantitative description of patterns that evolve

in time and space after a bifurcation. We can use these to analyse the type

of pattern formation that arise and to understand how sensory induced

hallucinations occur. The same properties that govern natural vision are

also expected to govern natural self-organised hallucinations. Therefore, we

can also use the retinocortical mapping and other know aspects of visual

33
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processing to model hallucinations.

Recall from chapter 1 that, the implication of the psychophysical

experiments of Billock and Tsou is that cortical forcing by spatially

periodic input can excite orthogonal modes. For instance, cortical forcing

with spatially periodic vertical stripes can result in an emergent activity

pattern of horizontal stripes, orthogonal to the stimulus. Thus, a natural

question arises as to whether there is a minimal model of visual cortex with

external drive capable of supporting this observed orthogonal response and

whether it requires a departure from existing neural field models. In short

the answer is that standard neural field models with a state-dependent

drive are sufficient and we will demonstrate this in this chapter and the

next. Although the orthogonal response property may seem somewhat

surprising from an experimental perspective, relatively recent theoretical

studies of the spatially forced Swift-Hohenberg equation have shown that

under certain mild conditions orthogonal responses are robust [81]. Here

we adapt and develop the techniques originally used for analyzing spatially

forced partial differential equation models to nonlocal neural fields and

use these to uncover the parameter windows that robustly reproduce

orthogonal responses to spatially periodic forcing. In doing so we highlight

the potential mechanisms that can underpin the original psychophysical

observations of Billock and Tsou.

Firstly, in section 3.1 we will introduce the psychological experiments

of Billock and Tsou that we are interested in modelling. Next, in section 3.2

we give an overview of the work on the spatially forced Swift-Hohenberg

equation [81] which revealed a mechanism by which orthogonal response to

forcing can be achieved. This will aid us in developing and describing the

analytical methodology for our extension of this work to nonlocal systems.

The key mechanism for the success of the model is the combination of a

Turing instability and a 2:1 resonance arising between the spatial scale of
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the periodic forcing and that of the emergent Turing pattern. An important

parameter of the model is then the spatial frequency mismatch between

these two scales. In section 3.3, Turing analysis of the standard neural field

model is explored. Next in chapter 4 we introduce the neural field model

with spatial forcing in one and two dimensions. For both of these models,

we develop a weakly nonlinear analysis, valid for weak forcing in the

neighborhood of a Turing instability, and derive equations governing the

amplitude of emergent planforms. This is concluded with the simulations

produced from this stationary two-dimensional model using parameters

obtained from the analysis to explain the psychophysics. This work will

then be extended again in chapter 5 to included the movement present in

the hallucinations reported by Billock and Tsou [10]. This work is published

in [85].

3.1 psychophysical observations

The first mathematical theory of visual hallucinations appeared in

1979 by Ermentrout and Cowan [38], developing a possible mechanism

for spontaneous patterns of neural activity for hallucinations from

hallucinogenic drugs. This was then explored further by Bressloff et al

in 2001 [21]. They investigated geometric visual hallucinations and the

functional architecture of the striate cortex using orientation preference

of the neuron in the neural field model. Geometric hallucinations, most

commonly lattices, spirals, circles and fan shapes, are thought to occur from

autonomous activity in the visual cortex. These hallucinations are seen as

spontaneous states of activity as they arise due to the natural organisation

of the visual cortex and can even occur without any presented stimuli on

the retina. The hallucinations are governed by the orientation preference

map and the retinocortical mapping as these are the key components of

how the visual cortex processes information. In humans, hallucinations

have been seen to arise from migraines, drug intoxication, and empty-field
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flicker [102].

Surprisingly little is known about the interactions between sensory-driven

and self-organized cortical activity. Billock and Tsou have worked to

address this deficit by probing the link between natural visual perception

and the geometric hallucinations that can be induced by the presentation

of certain regular spatio-temporal patterns. In [10], Billock and Tsou

investigate whether these sensory induced patterns arise in humans (as

they had previously only been seen in animal studies such as [64]) and

if these interact with the neural activity to alter perception of a physical

stimuli. They proposed a study where annular and radial patterns were

used as a physical stimuli to create flicker induced hallucinations. These

shapes are used as they can arise without any visual stimulation and

are self organised by the visual cortex, in the sense that annular rings

and radial arms are percepts on the retina corresponding to patterns

of activity that arise through spontaneous pattern formation in visual

cortex. It was expected that introducing these physical stimuli would evoke

hallucinations of the same type as the stimuli. For example, concentric

circles in the centre of the visual field would cause a bias to hallucinate

more concentric circles. Yet it was radial fan arms that were hallucinated

instead. This is considered an orthogonal response since the corresponding

patterns of activity in V1 are stripes of activity oriented at right angles to

each other. This latter result stems from the well-known retinocortical map

that maps radial arms in the visual field to horizontal stripes of activity in

V1, and concentric rings to vertical stripes (with respect to a ventral-dorsal

axis). To a first approximation this map (away from the fovea) is often

approximated by a quasi-conformal dipole map [3] as discussed in section

2.1.3 that would map spiral arms in retinal coordinates to oblique stripes

in cortical coordinates, as illustrated in Fig. 13. The cortical map can also

be thought of as a spherical map in the eye stretched along the optical

axis and viewed from the side [59]. One might say that if the image of a
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circle opposed by a radial arm is considered on the retina, then it is locally

orthogonal, whereas if the corresponding cortical activity is considered,

then it is globally orthogonal.

Billock and Tsou also reported similar orthogonal responses in three

other scenarios: (i) if the area around a circular pattern is flickered, an

illusory rotating fan shape is perceived (and if the circles are flickering too,

the rotating fan shape extends through the physical circles), (ii) if a biasing

pattern of peripheral radial arms is presented, then central (tightly packed)

rings are perceived, and (iii) a rotating petal-like pattern often appears

in the flickering central area in response to a peripheral set of biasing

concentric rings. These types of hallucinatory percepts are all illustrated in

Fig. 14. In all cases of perceived rotation (typically between 0.75 and 1.3

revolutions per second) the direction of rotation is arbitrary and subject to

reversal.

The experiment was conducted using the principles of MacKay’s effect [80].

The physical stimuli are presented on a white background and a strobe is

used to back-illuminate this. The best results were seen when the flicker

was 10-15 Hz, the experiment was completed in a dark room and the stimuli

was 1/10th to 1/3rd of the flickered area. Empty-field flicker-induced

patterns are not usually seen very quickly and generally can take up to 30

seconds to appear; however, these stimuli driven hallucinations are more

stable and appear within a few seconds. The experiment showed that it

was easier to see hallucinatory fans than circles.

All participants had orthogonal induced hallucinations to both the

centre and surround stimuli. The physical image is seen on the flash

of the flicker and the hallucination is seen on the off phase, similar to a

negative after image, this is consistent with the MacKay effect. The radial

fan patterns induce illusory circle patterns and similarly, the circle patterns
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Figure 13.: An illustration of the retinocortical map that takes points of

stimuli on the retina to points in V1 (left and right primary visual

cortex), showing how radial arms, rings, and spirals on the retina

transform to oriented stripes on V1.
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Figure 14.: An illustration of the biasing stimuli (black) and hallucinatory

percepts (grey) as reported by Billock and Tsou and redrawn

from [10]. (a) If the area around a small fan shape is flickered,

subjects report seeing illusory circular patterns, (b) if the area

around a circular pattern is flickered, an illusory rotating fan

shape is perceived, (c) if a biasing pattern of peripheral radial

arms is presented then central rings are perceived, and (d) a

rotating petal-like pattern often appears in the flickering central

area in response to a peripheral set of biasing concentric rings.

The arrows indicate perceived rotation.
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induce illusory radial fan patterns. Furthermore, the concentric circle

hallucinations are seen to pulse or wobble and the illusory fan shapes are

seen to rotate.

We now turn to the perception of patterns of activity in V1. One of the main

structures of the visual cortex is that of retinotopy, a neurophysiological

projection of the retina to the visual cortex. The log-polar mapping (seen

in chapter 2) is perhaps the most common representation of the mapping

of points from the retina to the visual cortex and see Fig. 13. The action

of the retinocortical map turns a circle of radius r in the visual field into

a vertical stripe at x = ln(r) in the cortex, and also turns a ray emanating

from the origin with an angle θ into a horizontal stripe at y = θ. Simply

put, if a point on the visual field is described by (r, θ) in polar coordinates,

the corresponding point in V1 has Cartesian coordinates (x, y) = (ln(r), θ).

Thus to answer how a pattern would be perceived we need only apply the

inverse (conformal) log-polar mapping.

A major conclusion of Billock and Tsou is that the pattern of sensory

induced hallucinations in their psychophysical experiments reflects the

same cortical properties, including local connectivity and lateral inhibition

within a retinotopic map in V1, that shape routine visual processing.

Given the success of neural field models in describing drug induced

(spontaneous) hallucinations in V1, it is thus natural to see if they are also

capable of explaining the orthogonal response in these flicker induced

visual phenomena. To this end we will consider a minimal model of V1

with the inclusion of a forcing term to mimic sensory input to the system.

From a biological perspective cells in V1 would be driven by synaptic

currents, and these in turn would be mediated by conductance changes

arising from afferent inputs. These currents have a simple ohmic form

that multiplies the voltage of the postsynaptic neuron with that of the

conductance change. Thus the input signal is mixed with the state of the
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neuron. We shall be careful to carry this important effect over into our

phenomenological model of drive.

3.2 pattern formation in spatially forced systems

Patterns are found in a wide range of natural contexts, for example a zebra’s

stripes, spots on a leopard, ripples in sand. The pioneering work of Turing

on morphogenesis [120] spurred on extensive research into explaining

the appearance and evolution of spontaneous patterns in biological and

physical systems [31, 84]. This was considered in a neural context in [125]

and in a visual context for orientation tuning [8, 20, 111], hallucinations

[17, 38, 117] and developmental models of cortical maps [115].

Pattern formation via a Turing instability starts with a stable steady

state of the system that is driven past the point of a bifurcation. The

system then becomes unstable due to the exponential growth of small

perturbations, thus causing patterns, in time, space, or both. We can use

linear stability analysis to find the characteristic length and time scales of

these emergent solutions near bifurcation. This is the analytical approach

to predicting the types of pattern formation that we will use here. This

can then be tested by computing numerical simulations of the system in

different parameter regimes and also to probe the behaviour of the system

away from bifurcation.

Pattern forming systems can be controlled and new patterns can be

found by adding a periodic forcing term to the system. It is possible,

perhaps unintuitively, for forcing in planar systems to be applied in

the x-direction to generate patterns in the y-direction, thus evoking an

orthogonal response as seen in the psychophysical observations. This

can be done by using frequency and wavenumber locking following the

approach and parameterisation from [81]. A frequency being of the scale
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n : 1 means that the forcing frequency, k f , is n times larger than the

emergent frequency of the unforced system, k0. We assume that the wave

number k f is approximately a multiple of k0, wavenumber locking,

k f ≈ nk0, n ∈ Z. (25)

At the Turing instability all wavevectors k = (kx, ky) of magnitude |k| =

k0 are excited. We investigate solutions which are locked to the forcing

wavevector k = (k f , 0). Here, n : 1 resonant solutions have

kx =
k f

n
+ ν1 = k0 − ν2 (26)

(see Fig. 15), where the mismatch parameters ν1, ν2 satisfy |ν1 + k f /n| ≤ k0

and equivalently 0 ≤ ν2 ≤ 2k0. When working in one spatial dimension,

for example in sections 4.1 and 5.2, we set ν2 = 0. In two dimensions,

we can set ν1 = 0 (as in [81]), as it is not needed because all of the

information about frequency mismatch can be carried by ν2 by fixing kx.

Fig. 15 visualises this relationship between the mismatch, wavenumber and

wavenumber locking parameters.

Plotting the regions of existence between parameters at different

resonances is useful to visualize them. This is described as Arnol’d

tongues, a representation of the phase-locked region around integer values

in a driven system [16]. The resonance n = 2 most commonly has the

widest Arnol’d tongue, as seen from the one dimensional Swift-Hohenberg

model [82] and our model in one dimension, see Fig. 22. Therefore, this

is usually the region in which parameters are chosen [82]. In the analysis,

when k f = 2kx, this allows additional terms to appear in the amplitude

equations that are not present for other resonances. Note, when working in

one dimension we set kx = k0.

For pattern forming dynamical systems, we can look for two dimensional

solutions of the type,

u(x, y, t) ∼= a(x, y, t)ei(kxx+kyy) + b(x, y, t)ei(kxx−kyy) + c.c., (27)



3.2 pattern formation in spatially forced systems 43

Figure 15.: The circle indicates the ring of fastest growing wavenumbers

with critical value |k| = k0, for k = (kx, ky). The forcing

wavevector is kf = (k f , 0). We take kx = k f /n + ν1 = k0 −

ν2 for mismatch parameters ν1 and ν2, with n ∈ Z. The

wavevector component ky satisfies k2
y = k2

0 − k2
x to achieve

the total wavenumber k0. The unforced system can support

a spatially periodic Turing pattern with |k| = k0. With the

introduction of forcing there are wide regions in parameter space

that support a resonance with n = 2 leading to the formation of

rectangular and oblique solutions.

where a and b are complex valued two-dimensional amplitudes. When

a = b and kx = ky the system produces rectangular patterns and when a 6= b

and kx 6= ky then oblique patterns emerge, this can be seen graphically in

Fig. 16. The spatial structure of the two-dimensional patterns that form

are, to leading order, a superposition of the modes exp(ikxx± ikyy), which

can lead to rectangular (equal amplitude) and oblique (unequal amplitude)

patterns. These are n : 1 resonant patterns that respond to the spatial forcing

by locking the wavevector components in the forcing direction kx = k f /n

and creating a wavevector component in the orthogonal direction, ky, to
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compensate for the unfavorable forcing wave number, so that ky =
√

k2
0 − k2

x

to achieve the total wavenumber k0 .

Figure 16.: Changing the relationship between kx and ky alters the type of

pattern formation. With a = b and kx = ky giving rectangular

patterns (left) and a 6= b and kx 6= ky giving oblique patterns

(right).

3.2.1 Amplitude Equations

Amplitude equations can be derived for a dynamical system, they describe

the emerging patterns that occur after the bifurcation point. They define

the normal form of the bifurcation, contain the systems resonant terms and

show how the system develops near the instability of a steady state. The

growth of a mode, different types of pattern formation, can be expressed

in terms of a complex-valued amplitude. They are a method that allows

us to describe spatial and temporal distortions of a steady state close to

bifurcation, this is very useful when looking at hallucinations as these are

not the standard visual pattern that occurs but a distortion of reality. They

are widely used in pattern formation and dynamics in nonequilibrium

systems [45].

The theory for ordinary differential equation (ODE) dynamical systems

was developed in the early 1900s; however, for partial differential equations
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(PDE) and integro-differential equations, such as our model, these equations

are more complex and there are less generic methods to solve them. We

use weakly non-linear analysis with multiple scale perturbation theory to

derive them. By deriving them close to the instability, we can use expansion

techniques to treat the evolution of perturbations in time and space. We

use this to show the existence and stability of solutions. This can help

us predict what parameters are needed to control the system to produce

the patterns we are looking for. This analysis is valid only close to the

bifurcation and for small amplitudes. Far away from bifurcation, pattern

states are best studied numerically. All amplitude equations are broadly

composed of the same three components: the growth of the perturbation

after the spatially uniform state, the saturation of this growth due to the

non-linearity and the effect of spatial distortions.

3.2.2 Pattern Formation in the Spatially Periodically Forced Swift-Hohenberg

Model

The Swift-Hohenberg equation is a PDE that was derived from the

equations for thermal convection and is known for its pattern forming

behaviour. It was named after Jack B. Swift and Pierre Hohenburg [114].

The work of Meron et al [81] derives the amplitude equations for the driven

Swift-Hohenberg equation, which we will review before adapting and

extending the theory for the neural field model. In [81], the authors use

the Swift-Hohenberg equation to examine systems that undergo stationary

finite wave-number instability to stripe patterns and they do this by

subjecting the system to time independent, spatial periodic forcing in one

dimension. Without the forcing, the solutions are non-oscillatory in space

and time. The instability can create a stationary orthogonal stripe pattern

solution; similar to what we want to see across the visual cortex for the
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hallucinatory patterns.

The Swift-Hohenberg equation is

ut = εu− (∇2 + k2
0)

2u− u3, u = u(x, y, t), (28)

where ε is the distance from the pattern-forming instability of the steady

state, u = 0, of the unforced system. The wave number of the first mode

to grow past the instability is k0, this is found using the following Turing

analysis. By linearising about this state u + δv for a small δ. Then v satisfies

the linearised equation,

vt = εv− (∇2 + k2
0)

2v. (29)

Assuming that v(r, t) ∼ eik·reλt. Then by writing r = (x, y) and k = (kx, ky),

we obtain

λeik·r = εeik·r −
(

∂2

∂x2 +
∂2

∂y2 + k2
0

)2

ei(kxx+kyy) (30)

Expanding (30) and writing k = |k| and k2 = k2
x + k2

y, gives

λ(k) = ε− (k2 − k2
0)

2 (31)

Therefore, a Turing instability occurs when ε = 0 and beyond the instability

there is a band of growing wavenumbers around k0. The growing

wavenumbers are k with k1 < k < k2 where k1 < k2 are the roots of

λ(k) = 0 which occurs when k =
√

k2
0 ±
√

ε. If the band of wavenumbers is

narrow, when k ∼ k0, then k− k0 ≈ ±
√

ε/2k0. All wavenumbers (kx, ky) of

magnitude k0 are excited beyond the instability.

Now we turn to the work of the Swift-Hohenberg equation with [81]

including forcing. The forced Swift-Hohenberg equation is,

ut = εu− (∇2 + k2
0)

2u− u3 + γu cos(k f x), u = u(x, y, t). (32)

The forcing is added with strength γ and wave number k f in the x-direction.

The relationship between k0 and k f is vital to the type of pattern formation
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after the instability, as seen earlier in Fig. 15.

Meron et al [81] investigate resonance with these locked to the forcing

wavevector (k f , 0) in a 2 : 1 resonance with kx = k f /2 = k0 + ν (where

ν = ν2 from (26) and ν1 = 0) where −2k0 < ν < 0 and ky =
√

k2
0 − k2

x.

Using weakly nonlinear analysis the equations are computed governing the

dynamics of the amplitudes a(x, y, t) and b(x, y, t), where,

u = ε
(

a(x, y, t)ei(kxx+kyy) + b(x, y, t)ei(kxx−kyy) + c.c.
)

. (33)

The Swift-Hohenberg amplitude equations are derived to be,

at = εa + (kx∂x + ky∂y)
2a +

γ

2
b∗ − (|a|2a + 2|b|2a), (34)

bt = εb + (kx∂x + ky∂y)
2b +

γ

2
a∗ − (|b|2b + 2|a|2b). (35)

A full derivation can be seen in [81]. Note that the mismatch ν enters only

through the spatially dependent terms and therefore, when we consider

spatially homogeneous solutions, their existence and stability do not

depend on ν beyond requiring −2k0 < ν < 0. However, ν does determine

the planform of the patterned state (i.e. aspect ratio of rectangles and angle

of obliques to horizontal). Then bifurcation analysis is completed to find

the parameter regimes for oblique and rectangular patterns. Stationary

homogeneous solutions of the amplitude equations are derived, by looking

for solutions using the polar form,

a = ρa exp(iα), b = ρb exp(iβ). (36)

For rectangular patterns, there is a constant solution when ρa = ρb = ρ0,

where

ρ0 =

√
ε + γ/2

3
. (37)

Thus, this gives a one-parameter family of solutions,

α0 = ρ0eiα, β0 = ρ0e−iα. (38)

This solution exists for ε > −γ/2 and −2k0 < ν < 0.
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For oblique patterns, there is a constant solution when ρa = ρ± and

ρb = ρ∓, where

ρ± =

√
ε±

√
ε2 − γ2

2
. (39)

Thus, this gives a one-parameter family of solutions,

α± = ρ±eiα, β∓ = ρ∓e−iα. (40)

This solution exists for ε > γ and −2k0 < ν < 0.

The linear stability of these solutions are then examined to uniform

perturbations It was found that linearising around the constant solution

ρa = ρa0 and ρb = ρb0 gives the eigenvalues to be,

Λ± = ε− 5
2

(
ρ2

a0 + ρ2
b0

)
±
√

1
4
(
ρ2

a0 − ρ2
b0

)2
+
(γ

2
− 4ρa0ρb0

)2
. (41)

The stability of the rectangular and oblique patterns can be found from

these. The bifurcation diagram using (37) & (39) can be seen in Fig. 17. The

phase diagram to show the parameter regimes for obliques and rectangles

for a given γ, is shown in Fig. 18, using the derived existence regimes.

The planforms to the equation showing how the variation in υ and ε

affects the type of pattern formation are seen in Fig. 19. This shows how

horizontal or vertical stripes of activity can be forced to orthogonal stripes

of activity by varying υ, either through oblique or rectangular patterns by

changing the value of ε. This is exactly the forcing of patterns that we will

replicate in our model. We want to model the vertical stripes of activity in

V1 that, after applying the retinocortical map, represent circle patterns that

force horizontal stripes of activity in the remainder of V1 to induced fan

shape hallucinations.
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3.2.3 Summary

The work of Meron et al in [81] on the driven Swift-Hohenberg equation will

play a large part in helping us model the sensory induced hallucinations.

From right to left in Fig. 19, it is shown that patterns in the same direction

of the drive are forced to oblique or rectangular patterns until they become

orthogonal to the drive. This is what we desire to represent for the

psycho-physical observations. In the next section, we will show how we

performed similar calculations for our integro-differential forced neural

field model.

Figure 17.: Bifurcation diagram for the solutions for the amplitude

equations for the forced Swift-Hohenberg equation with γ =

0.1. Rectangular patterns (ρ0) appear at ε = −γ/2 and become

unstable to oblique patterns (ρ±) at ε = γ. Solutions exist for

−2k0 < ν < 0.



3.2 pattern formation in spatially forced systems 50

Figure 18.: Phase diagram for the amplitude equations for the forced

Swift-Hohenberg equation in the υ− ε parameter plane showing

the regions of stable resonant patterns with γ = 0.1 and k0 = 1.

Figure 19.: The analytical planforms for the spatially forced Swift

Hohenberg Equation, showing oblique, rectangular and stripe

patterns as υ is increased from -k0 to 0 (left to right) and as ε

is increased from less than γ to more than γ. The left column

shows patterns orthogonal to the drive. Redrawn from [81].
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3.3 neural field model

In this section and continuing in chapter 4, we adapt the analysis used

for the forced Swift-Hohenberg equation in section 3.2 to a simple neural

field model with spatial forcing. The predominant model for voltage-based

neural fields is the Amari equation [1], for a position r in the domain Ω,

∂u(r, t)
∂t

= −u(r, t) +
∫

Ω
w(r, r′) f (u(r′), t) dr′, (42)

where u(r, t) is the activity of the cortex at position r evolving over time t,

w is an anatomical kernel representing the connection between neurons and

can include excitatory and inhibitory interactions. As discussed in section

2.2, this is often represented by a Mexican or Wizard hat function as this

is a good representation of typical cortical connections as it includes short

range excitation and long range inhibition. The firing rate of the neurons is

represented by f and this is modelled using a sigmoidal function. We use

the standard sigmoidal firing rate function,

f (u) =
1

1 + e−µ(u−h)
, (43)

and note that

f ′(u) = µ f (u)(1− f (u)). (44)

We use a rotationally symmetric kernel, with w(r, r′) = w(|rc − r′c|), that

is the difference of two exponentials to model the short and long range

connectivity,

w(r) = Ae−r/σ − e−r. (45)

For computational simplicity, we use a balanced kernel, as defined by (16).

We used the balanced kernel to control the steady state of the system, as a

balanced kernel gives a steady state of (42) at zero, u0 = 0.
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3.3.1 Linear Stability Analysis

By defining the steady state of the system as ū = u(x, t),

0 = −ū + f (ū)
∫

Ω
w(r) dr. (46)

where Ω is the two-dimensional cortical domain. This gives,

ū = ŵ(0) f (ū). (47)

where ŵ(k) =
∫

Ω w(r)e−ik·rdr is the Fourier transform of the connectivity

kernel.

The stability of the steady state can be found by writing u(r, t) as the

steady state ū plus a perturbation,

u(r, t) = ū + q(r, t). (48)

This gives,

∂q(r, t)
∂t

= −q(r, t) + f ′(ū)
∫

Ω
w(|r− r′|)q(r′, t) dr′. (49)

We look for solutions of the form q(r, t) = eλteik·r. Therefore the spectrum

of the Turing instability is, defined by E(λ, k) = 0, where

E(λ, k) = λ + 1− f ′(ū)ŵ(k). (50)

Note that all roots of E(λ, k) = 0 are real. Given λ = −1 + f ′(ū)ŵ(k), since

f ′(ū) and ŵ(k) are real then λ is real. However, ŵ(k) is only real if w is

even, which is the case for all of our choices. Therefore, we have a static

Turing instability.
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3.3.2 Fourier Transform of Kernel

For our choice of connectivity kernel, w(r) = Ae−|r|/σ − e−|r|, as in (45),

since w(|r|), the Fourier transform ŵ(k) = ŵ(k) where k = |k|. The Fourier

transform can be calculated as,

ŵ(k) =
∫ ∞

−∞

∫ ∞

−∞
Ae−|r|/σe−ik·rdr−

∫ ∞

−∞

∫ ∞

−∞
e−|r|e−ik·rdr,

=

[∫ 2π

0

∫ ∞

0
Ae−Sre−ikr cos θrdrdθ −

∫ 2π

0

∫ ∞

0
e−re−ikr cos θrdrdθ,

]∣∣∣∣
S=1/σ

=

[
∂

∂S

∫ 2π

0

A
S + ik cos θ

dθ − ∂

∂S

∫ 2π

0

1
1 + ik cos θ

dθ

]∣∣∣∣
S=1/σ

= 2π

[
AS

(S2 + k2)3/2 −
1

(1 + k2)3/2

]∣∣∣∣
S=1/σ

. (51)

Therefore, the formula for ŵ(k) is,

ŵ(k) = 2π

[
A

σ(σ−2 + k2)3/2 −
1

(1 + k2)3/2

]
. (52)

The maximum of this occurs at k0 (which depends on the value of σ), as

shown in Fig. 20.

The homogeneous steady state u0 becomes unstable to patterns with

wavenumber k0 for values of µ beyond the bifurcation which occurs when

(from (50)) µ = µc where

f ′(u0) =
1

ŵ(k0)
=⇒ µc f (u0)(1− f (u0)) =

1
ŵ(k0)

. (53)

Since we have u0 = 0, the bifurcation condition is,

µc f (0)(1− f (0)) =
1

ŵ(k0)
, (54)

where from (50) f (0) = 1/(1 + eµch). Equation (54) can typically be solved

(e.g. using Matlab fsolve) to determine the value of µc for a given choice of

h. In the particular case that h = 0, f (0) = 1/2 and therefore,

µc =
4

ŵ(k0)
. (55)



3.3 neural field model 54

Figure 20.: The Fourier transform of ŵ(k) from (52) showing the relationship

between k0 and 1/ f ′(0) using σ = 0.8.

3.3.3 Simulations

The neural field equation (42) produces patterns for certain parameters after

the bifurcation point at µ = µc without any forcing required. We carried

out simulations and this produces spots of activity across the cortex, shown

in Fig. 21. Brief details of the numerical methods used to implement the

model are presented in Appendix C.

Figure 21.: Simulations of the neural field model (42) with random initial

conditions (left) giving spots (right) with firing rate (43) and

connectivity (45) with σ = 0.8, h = 0.1 and using (55) to calculate

µ past the bifurcation point. Plotted using 256× 256 mesh points

on the domain [−10π, 10π]× [−10π, 10π].
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3.4 summary

In this chapter, we have introduced the psychophysical phenomena

presented by Billock and Tsou in [10] and the underlying neural phenomena

that occurs for these hallucinations to occur in V1 once the activity has been

mapped to the cortex using the retinocortical mapping. We presented the

work of Manor et al [81] on the spatially forced Swift-Hohenburg equation,

the derivation of amplitude equations for the 2:1 resonance leads to

parameter regimes to be found to force vertical stripes to horizontal stripes

by adding a spatial drive term to the model. Finally, we also performed

Turing analysis on the standard neural field model as background for

further Turing analysis we will perform within this thesis, and to determine

the wavenumber k0 of the spontaneous patterned solutions of (42) beyond

the static Turing instability. In the next chapter, we will add the spatial

forcing term to the neural field model (42) to uncover our own parameter

regimes in which we can force stripes of activity in the orthogonal direction.



4
N E U R A L F I E L D M O D E L W I T H S PAT I A L F O R C I N G

After introducing the work of Billock and Tsou in the previous chapter

and then exploring a driven PDE system that produced an orthogonal

response like the one we want to model, we will now turn to adding a

similar spatial forcing term to the neural field equation (42). This will

enable us to find parameter regimes in which we can replicate the neural

activity occurring during the psychophysical phenomena. In section 4.1

we introduce the neural field model with spatial forcing in one dimension.

This is extended in section 4.2 to two dimensions to drive hallucinations.

In these sections, we develop a weakly nonlinear analysis, valid for weak

forcing in the neighborhood of a Turing instability, and derive equations

governing the amplitude of emergent planforms. These in turn are analysed

using bifurcation theory to uncover appropriate parameter choices (in the

strength of forcing, the frequency mismatch, and shape of the nonlinear

firing rate) to generate an orthogonal response. This is concluded in

section 4.3 with simulations of the stationary patterns produced from

this two-dimensional model using parameters obtained from the analysis

to explain the psychophysics. In chapter 5, we will complete the story

by introducing adaptation to the neural field model to invoke parameter

regimes that allow for travelling waves to form and thus, creating the

movement that occurs in the hallucinations.

56
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4.1 neural field model in one dimension with spatial

forcing

Since we are primarily interested in the mechanisms that underlie an

orthogonal response, we shall develop theory for the case that this is a

simple spatial pattern of stripes in the x-direction with a spatial forcing

wavenumber k f . Our interest is in the development of striped patterns

in neural activity along the y-direction requiring analysis of the model in

two spatial dimensions. For the PDE case (Swift-Hohenberg), Manor et al

[81] showed that resonances (and in particular a 2:1 resonance) between

the wavenumber k0 of the spontaneous patterns and forcing wavenumber

are required for the observation of orthogonal response to forcing. We

first investigate whether resonances arise naturally in a neural field model

with forcing and note that this question does not require a treatment

in two spatial dimensions. We therefore begin by exploring resonances

in the neural field model (42) posed on the real line. As seen for the

Swift-Hohenburg equation [81], the 2 : 1 resonance is the most dominant

and whilst we predict this is the same for our model, we first show this

with the one dimensional model. We can apply similar spatial forcing used

in the Swift-Hohenberg equation (32) [81] to our neural field model (42),

∂u(x, t)
∂t

= −u(x, t) +
∫

Ω
w(|x− x′|) f (u(x′), t) dx′ + γu(x, t) cos(k f x), (56)

where the forcing is added with strength γ and wave number k f in the

x-direction and we allow for a simple form of mixing by including a

multiplication with the state u. The wave number of the first mode to grow

past the instability is again denoted k0. However, now the value of k0 is

determined by the Turing bifurcation condition f ′(u0, µc) = 1/ŵ(k0) where
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in one dimension the Fourier transform of the kernel (45) is given by,

ŵ(k) = 2
∫ ∞

0
w(x)e−ikx dx = 2

[
1

1 + σ2k2 −
1

1 + k2

]
. (57)

and for balance we take A = 1/σ. This ensures the homogeneous steady

state remains at u0. The relationship between k0 and k f determines the type

of pattern formation after the instability.

From a biological perspective cells in V1 would be driven by synaptic

currents, and these in turn would be mediated by conductance changes

arising from afferent inputs. These currents have a simple ohmic form

that multiplies the voltage of the postsynaptic neuron with that of the

conductance change. Thus the input signal is mixed with the state of the

neuron. Hence in the forcing term γu(x, t) cos(k f x), the u term represents

this state dependence, the cos(k f x) term represents the sensory input

pattern and γ controls the strength of this forcing (always very small to

ensure weak forcing). The sensory input patterns are lines of activity which

have been represented here by a cos wave, other trigonometric functions or

sums of exponential functions that give similar waves of activity could be

used; however, this is the most simplistic whilst being realistic which will

help when deriving the equations.

4.1.1 Multiple Scale Analysis

We also look for solutions of the type,

u ∼= A(χ, τ)ei(k0x) + A∗(χ, τ)e−i(k0x), (58)

where A is a complex valued amplitude that has been extended in one

spatial dimension, χ = εx and once in time, τ = ε2t. Using multiple scale

analysis, we consider weak forcing γ � 1 near the instability ε � 1. The
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equations which describe the dynamics of the amplitude A(χ, τ) can be

derived using the following methods.

4.1.2 Hierarchy of Equations

From now on we will assume that the forcing wavenumber k f is

approximately a multiple of k0, so that k f ≈ nk0, n ∈ Z and introduce the

mismatch parameter ν1

ν = k0 − k f /n, (59)

by taking ν = ν1 from (26). The value of n can be used to describe an n:1

resonance. If the system is poised at a static Turing instability to a pattern

with wavenumber k0 and the forcing is weak (|γ| � 1) then it is natural

to consider a multiple-scales analysis to understand the response properties

of the driven system. We assume that the small detuning can be scaled as

ν = εc for a small parameter ε where c ≈ O(1). We consider power series

expansions for u and γ as

u = u0 + εu1 + ε2u2 + ε3u3 + . . . , (60)

γ = εγ1 + ε2γ2 + ε3γ3 + . . . , (61)

with, as yet, unknown functions uα = uα(x, t, χ, τ), α = 1, 2, 3, . . .. Further,

we substitute the firing rate function f by its Taylor series expansion

f (u) = f (u0) + β1(u − u0) + β2(u − u0)
2 + β3(u − u0)

3 + . . . , where

β2 = f ′′(u0)/2, β3 = f ′′′(u0)/6, and we treat β1 as a bifurcation parameter

and write β1 = βc + ε2δ where βc = f ′(u0) subject to βc = 1/ŵ(k0) (the

static Turing bifurcation condition). This choice of scaling was following

the work of [81, 82, 85]. This can be justified by balancing the dispersion

relation λ = −1 + f ′(ū)ŵ(k). All of the scaling is set by the choice ν = εac.

We need νx = cX and so take X = εax and then T = ε2at to balance terms
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in the dispersion relation. If we want β1 = βc + ε2δ then we must have a=1.

This gives, the expansion of the left hand side of (56) as,

∂(ε2u0 + ε3u1 + ε4u2 + ε5u3 + . . . )
∂τ

. (62)

Therefore, the expansion of the right hand side is,

− (u0 + εu1 + ε2u2 + ε3u3 + . . . ) + w⊗ [ f (u0) + (βc + ε2δ)(εu1 + ε2u2

+ ε3u3 + . . . ) + β2(εu1 + ε2u2 + ε3u3 + . . . )2 + β3(εu1 + ε2u2 + ε3u3

+ . . . )3 + . . . ] + (εγ1 + ε2γ2 + ε3γ3 + . . . )(u0 + εu1 + ε2u2 + ε3u3

+ . . . ) cos k f x. (63)

A further Taylor series expansion of the functions uα as

uα(x′, t′, εx′, ε2t′) = uα(x′, t′, χ + ε(x′ − x), ε2t′)

' uα(x′, t′, χ, τ) + ε(x′ − x)
∂

∂χ
uα(x′, t′, χ, τ)

+
1
2

ε2(x′ − x)2 ∂2

∂χ2 uα(x′, t′, χ, τ) + O(ε3), (64)

facilitates an evaluation of the spatial convolution in (56).

By using the multiscale expansion of u (58) that has been extended in

one spatial dimensions, χ, and once in time, τ, and using the multiple scale

expansion (62) and (63), this gives the fully expanded model. Taking the

terms for each order of epsilon gives,

u0 =M0( f (u0)) (65)

u1 =M0(βcu1) + γ1u0 cos(k f x) (66)

u2 =M0(βcu2 + β2u2
1) + M1(βcu1) + (γ1u1 + γ2u0) cos(k f x), (67)

∂u1

∂τ
+ u3 =M0(βcu3 + δu1 + 2β2u1u2 + β3u3

1) + M1(βcu2 + 2β2u2
1)

+ M2(βcu1) + (γ1u2 + γ2u1 + γ3u0) cos k f x, (68)
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where the linear operators Mα are given by

M0 = w⊗, (69)

M1 = Wx ⊗ ∂χ, (70)

M2 =
1
2

Wxx ⊗ ∂χχ, (71)

and the symbol ⊗ denotes spatial convolution,

[w⊗ u](x) =
∫ ∞

−∞
w(|x− x′|)u(x′)dx′. (72)

Furthermore, here we have introduced the new kernels,

Wx = −w(|x|)x (73)

and

Wxx = w(|x|)x2. (74)

However, we note that,

Ŵx(k) = −
∫ ∞

−∞
xw(|x|)eikx dx

= −i
∂

∂k
ŵ(k). (75)

Therefore, note as ŵ(k0) is a maximum, its derivative is zero and this can

be to eliminate terms further on in our derivation; Ŵx(k0) = 0.

4.1.3 Solving the equations

One can see that each equation in the hierarchy (65-68) above contains

terms of the asymptotic expansion of u only of the same order or lower.

This means that we can start from the first equation and systematically

solve for uα. In fact, if we set L = −1 + βcw⊗ the system (66)-(68) has the

general form Luα = gα(u1, u2, . . . , uα−1) and the right-hand side gα will

always contain known quantities.

The first equation (65) in the hierarchy fixes the steady state u0. By
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choosing a balanced kernel we have u0 = 0. The second equation

(66) is linear with solutions u1 = A(χ, τ)eik0x + c.c. (where k0 is the

critical wavenumber at the static bifurcation). A dynamical equation for

the complex amplitude A(χ, τ) can be obtained by deriving solvability

conditions for the higher-order equations, a method known as the Fredholm

alternative [41, 51]. The inner product of two periodic functions, with

periodicity 2π/k0 is defined as,

〈U, V〉 = k0

2π

∫ 2π
k0

0
U∗(x)V(x) dx. (76)

For all u ∈ ker L † then,

〈u, gα〉 = 〈u, L uα〉 = 〈L †u, uα〉 = 0, (77)

where L † is the adjoint of L . It is easy to establish that L is self-adjoint

so that the set of solvability conditions is 〈e±ik0x, gα〉 = 0. To evaluate the

solvability condition at α = 2 we note the useful results

〈eik0x,Lu2〉 = 0, 〈eik0x, β2w⊗ u2
1〉 = 0, 〈eik0x, βcWx ⊗ ∂χu1〉 = 0, (78)

〈eik0x, γ1u1 cos k f x〉 =

0 n 6= 2

γ1
2 A∗e−2ivx n = 2

.

Hence to avoid secular terms we must set γ1 = 0 for the 2:1 resonance (with

the solvability condition automatically guaranteed for all n 6= 2). We write

γ1 = (1− δn,2)γ1. A particular solution of u2 can be found by assuming that

it is a linear combination of terms involving ei(±k f±k0) and terms present in

u2
1. Substitution into (67) and balancing terms gives, for our balanced kernel

(ŵ(0) = 0),

u2 = d0A2e2ik0x + (1− δn,2)
γ1

2

[
d+Aei(k f +k0)x + d−A∗ei(k f−k0)x

]
+ c.c., (79)

where

d0 =
β2ŵ(2k0)

1− βcŵ(2k0)
, d± =

1
1− βcŵ(k f ± k0)

. (80)
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4.1.4 Amplitude Equations

A similar analysis of the solvability condition at α = 3, and using the results

in Appendix A.1, gives the evolution of the amplitude A as

∂A
∂τ

= δŵ(k0)A + [2β2ŵ(k0)d0 + 3β3ŵ(k0)] A|A|2 − 1
2

βcŵ′′(k0)
∂2A
∂χ2

+
γ2

2
A∗e−2icχδn,2 + (1− δn,2)

(
γ1

2

)2 [
(d+ + d−)A + A∗d−e−2icχδn,1

]
. (81)

If we now introduce the amplitude variable a = εeicχ A then to leading order

the solution for u is of the form

u− u0 ' aeik f x/n + c.c. . (82)

After rescaling back to the original time and space variables the amplitude

a evolves according to

βc
∂a
∂t

= ε2δa−Φ|a|2a +
1
2

ŵ′′(k0)[βc(ν + i∂x)]
2a + δn,2

ε2γ2

2
βca∗

+ (1− δn,2)βc

(
εγ1

2

)2

[(d+ + d−)a + a∗d−δn,1] . (83)

where Φ = −3β3 − 2β2d0. Thus, from the solution form of (82), constant

solutions of the amplitude equation (83) generate n:1 resonant stationary

stripe patterns. We next investigate the existence of such solutions for

different values of n.

4.1.5 Existence of Solutions

Using the derived equation (83), we consider the case n 6= 2 and n = 2. For

n 6= 2, this becomes,

βc
∂a
∂t

= ε2δa−Φa|a|2 + 1
2

ŵ′′(k0) [βc(ν + i∂x)]
2 a

+ βc

(γ

2

)2
[(d+ + d−) a + d1a∗δn,1] , (84)
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where γ = εγ1. This has solutions of the form,

a = ρneiφ, ρn =

√
4ε2δ + 2ŵ′′(k0)(βcν)2 + βcγ2[d+ + d−(1 + δn,1)]

4Φ
. (85)

For Φ > 0, resonant stripe solutions exist for

γ >

√
−2ŵ′′(k0)(βcν)2 − 4ε2δ

βc[d+ + d−(1 + δn,1)]
. (86)

For n = 2 for the rich diversity of pattern formation, (83) becomes,

βc
∂a
∂t

= ε2δa−Φa|a|2 + 1
2

ŵ′′(k0) [βc(ν + i∂x)]
2 a +

ε2γ2

2
βca∗. (87)

This has constant solutions of the form a = ρ2eiφ where,

ρ2 =

√
2ε2δ + ŵ′′(k0)(βcν)2 + (−1)mγβc

2Φ
, φ =

mπ

2
, m ∈ Z, (88)

where γ = ε2γ2. The solutions with m odd are unstable, so do not need to

be considered any further. Assuming that m is even and also that Φ > 0,

the resonant stripe solutions exist for

γ > −ŵ′′(k0)βcν2 − 2ε2 δ

βc
. (89)

The tongue shaped existence ranges for n:1 resonant stripe patterns for

n = 1, . . . 4 are shown in Figure 22. The parameter values are such that

Φ > 0. We take ε2δ > 0 so that we are beyond the pattern forming

instability. Notice that in this case the existence regions have finite width,

even at γ = 0 so the unforced system also supports bands of stripe solutions

beyond the pattern forming instability.

The 2:1 resonance tongue is noticeably wider than those for other

resonances and we also note that narrow bands of the tongues for the

n:1 resonance patterns exists around k f /k0 = 2 for all values of n 6= 2.

This is due to the fact that the tongue for n = 2 has a different form to

those for other values of n. For n = 2, the forcing strength coefficient γ
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appears linearly in the amplitude equation and therefore forcing has a

stronger effect in this case than when n 6= 2 where γ appears squared. This

difference in the power to which γ is raised in the amplitude equation

occurs as a direct result of the forcing function being applied to a linear

term in u in (56). If for instance we were to add forcing via a cubic order

term in u we would expect to see a prominent 4:1 resonance.

Figure 22.: Existence tongues for resonant stripe patterns in a

one-dimensional neural field model with spatially periodic

forcing. The kernel is chosen as in (45) with σ = 0.8. Other

parameters are h = 0 and ε2δ = 10−4. The tongue with a 2:1

resonance is dominant.

4.2 neural field model with spatial forcing in two

dimensions

Next, we calculate the amplitude equations and pattern formation regions

for (56) in two dimensions; therefore this time with r = (x, y),

∂u(r, t)
∂t

= −u(r, t) +
∫

Ω
w(|r− r′|) f (u(r′), t) dr′ + γu(x, t) cos(k f x), (90)
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We are modelling V1 using a tissue level model and thus require two

dimensions for a complete model of the hallucinations.

4.2.1 Multiple Scale Analysis

Using multiple scale analysis, again we consider weak forcing γ � 1 near

the instability ε � 1. Now in two dimensions, we look for solutions of the

type,

u ∼= A(χ, Υ, τ)ei(kxx+kyy) + B(χ, Υ, τ)ei(kxx−kyy) + c.c., (91)

where A and B are complex valued amplitudes that have been extending

in two spatial dimensions, χ = εx and Υ = εy and once in time, τ = ε2t.

These amplitudes can be derived using the following methods.

In two dimensions, a further Taylor series expansion of the function

uα as

uα(x′, y′, t′, εx′, εy′, ε2t′) = uα(x′, y′, t′, χ + ε(x′ − x), Υ + ε(y′ − y), ε2t′)

' uα(x′, y′, t′, χ, Υ, τ) + ε

[
(x′ − x)

∂

∂χ
+ (y′ − y)

∂

∂Υ

]
uα(x′, y′, t′, χ, Υ, τ)

+
1
2

ε2
[
(x′ − x)

∂

∂χ
+ (y′ − y)

∂

∂Υ

]2

uα(x′, y′, t′, χ, Υ, τ) + O(ε3), (92)

facilitates an evaluation of the spatial convolution of (90).

Note that since we are now working in two spatial dimensions we

use wavenumber mismatch parameter ν2 = k0 − kx where kx = k f /2 + ν1

and ky =
√

k2
0 − k2

x to compensate for the unfavorable forcing wavenumber

and achieve the total wavenumber k0. For the calculations we retain ν1,

however we can later set ν1 = 0 without loss of generality.



4.2 neural field model with spatial forcing in two dimensions 67

4.2.2 Hierarchy of Equations

The expansion of (90) in two dimensions is the same as before (62 - 63)

as the space was defined as u without defining the dimension. By using

the multiscale expansion of u (92) this is now extended in two spatial

dimensions, χ and Υ and in once in time, τ, and using the multiple scale

expansion (62) and (63), this gives the fully expanded model. Taking the

terms for each order of epsilon gives the same as before (65 - 68), whereas

now we have two dimensional operators,

M0 = w⊗, (93)

M1 = Wx ⊗ ∂χ + Wy ⊗ ∂Υ, (94)

M2 =
1
2
[
Wxx ⊗ ∂χχ + Wyy ⊗ ∂ΥΥ + 2Wxy ⊗ ∂χΥ

]
. (95)

where we now introduce the two dimensional kernels as Wx(r) = −w(|r|)x

and Wxy(r) = w(|r|)xy analogously to the scalar case (73-74). Similarly to

the one dimensional case, the two dimensional Fourier transforms of these

kernels satisfy Ŵxy(k) = Ŵxx(k) = Ŵyy(k) = −ŵ′′(k) where k = |k| and

also Ŵx(k) = Ŵy(k) = −iŵ′(k) and so Ŵx(k0) = Ŵy(k0) = 0.

4.2.3 Solving the equations

Once again, we can see that each equation in the hierarchy above contains

terms of the asymptotic expansion of u only of the same order or lower.

This means that we can start from the first equation and systematically

solve for uα. The first equation (65) in the hierarchy again fixes the steady

state u0. By choosing a balanced kernel we have u0 = 0.

The null space of the linear operator L is spanned by
{

e±i(kxx±kyy)
}

where k2
x + k2

y = k2
0 and therefore u1 has solution

u1 = A(χ, Υ, τ)ei(kxx+kyy) + B(χ, Υ, τ)ei(kxx−kyy) + c.c., (96)
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4.2.4 Amplitude Equations

By using the Fredholm Alternative, we find a particular solution to (67)

and use a solvability condition for (68) to derive the evolution of the

amplitudes A(χ, Υ, τ) and B(χ, Υ, τ). The calculations of these can be

found in Appendix. A.2 and the resulting amplitude equations, rescaled

back to the original time and space variables, are

βc
∂a
∂t

= ε2δa−Φ1|a|2a−Φ2|b|2a +
β2

c
2

ŵ′′(k0)
(
(i∂x + v1)

2 − ∂yy

)
a

+
ε2γ2

2
b∗δn,2 +

(
εγ1

2

)2

(1− δn,2) [(z+ + z−)a + z−b∗δn,1] , (97)

βc
∂b
∂t

= ε2δb−Φ1|b|2b−Φ2|a|2b +
β2

c
2

ŵ′′(k0)
(
(i∂x + v1)

2 − ∂yy

)
b

+
ε2γ2

2
a∗δn,2 +

(
εγ1

2

)2

(1− δn,2) [(z+ + z−)b + z−a∗δn,1] , (98)

All new parameters created in this derivation are defined as they arise in

Appendix A.2.

4.2.5 Existence of Solutions

Using the derived equations (97 - 98), for n = 2 for the rich diversity of

pattern formation, we have,

βc
∂a
∂t

= ε2δa−Φ1|a|2a−Φ2|b|2a +
β2

c
2

ŵ′′(k0)
(
(i∂x + v1)

2 − ∂yy

)
a +

γ

2
b∗

(99)

βc
∂a
∂t

= ε2δb−Φ1|b|2b−Φ2|a|2a +
β2

c
2

ŵ′′(k0)
(
(i∂x + v1)

2 − ∂yy

)
b +

γ

2
a∗.

(100)

where γ = ε2γ2. We look for stationary homogeneous solutions of (99 - 100).

We also choose to set ν1 = 0 so that kx = k f /2 = k0 − ν2 and dependence

on the mismatch between k f and k0 enters the amplitude equations through



4.2 neural field model with spatial forcing in two dimensions 69

kx and ky, noting that Φ2 depends on these parameters. By looking for

solutions using the polar form,

a = ρa exp(iα), b = ρb exp(iβ). (101)

By substituting (101) into (99 & 100), we obtain,

βc

[
ρaeiα

(
i
∂α

∂t

)
+

∂ρa

∂t
eiα
]
= ε2δρaeiα −

(
Φ1ρ2

a + Φ2ρ2
b

)
ρaeiα +

γ

2
βcρbe−iβ,

(102)

βc

[
ρbeiβ

(
i
∂β

∂t

)
+

∂ρb
∂t

eiβ
]
= ε2δρbeiβ −

(
Φ1ρ2

b + Φ2ρ2
a

)
ρbeiβ +

γ

2
βcρae−iα.

(103)

By balancing the real and imaginary parts of these equations and

manipulating them, we derive the equations for space independent

solutions,

βcρat =δε2ρa −
(

Φ1ρ2
a + Φ2ρ2

b

)
ρa +

γ

2
βcρb cos(φ), (104)

βcρbt =δε2ρb −
(

Φ1ρ2
b + Φ2ρ2

a

)
ρb +

γ

2
βcρa cos(φ), (105)

φt =−
γ

2

(
ρb
ρa

+
ρa

ρb

)
sin(φ), (106)

ψt =−
γ

2

(
ρb
ρa
− ρa

ρb

)
sin(φ), (107)

where φ = α + β and ψ = α− β.

Therefore the steady states are,

0 =δε2ρa −
(

Φ1ρ2
a + Φ2ρ2

b

)
ρa +

γ

2
βcρb cos(φ), (108)

0 =δε2ρb −
(

Φ1ρ2
b + Φ2ρ2

a

)
ρb +

γ

2
βcρa cos(φ), (109)

0 =− γ

2

(
ρb
ρa

+
ρa

ρb

)
sin(φ), (110)

0 =− γ

2

(
ρb
ρa
− ρa

ρb

)
sin(φ), (111)

By looking at (111 & 110) we either have the trivial solution ρa = ρb = 0 or

constant solutions of the form,

ρa = ρa0, ρb = ρb0, φ = nπ, n = 0, 1.
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By linearising (106) around this solution we obtain,

∂

∂t
[φ0 + ∆φ] =− γ

2

(
ρb0 + ∆ρb
ρa0 + ∆ρa

+
ρa0 + ∆ρa

ρb0 + ∆ρb

)
sin(φ0 + ∆φ)

=− γ

2

(
ρb0 + ∆ρb

ρa0 (1 + ∆ρa/ρa0)
+

ρa0 + ∆ρa

ρb0 (1 + ∆ρb/ρb0)

)
sin(φ0)

+ cos(φ0)∆φ

=− γ

2

(
(ρb0 + ∆ρb) (1− ∆ρa/ρa0)

ρa0

+
(ρa0 + ∆ρa) (1− ∆ρb/ρb0)

ρb0

)
sin(φ0) + cos(φ0)∆φ,

∂ψ0

∂t
=(−1)n+1 γ

2

(
ρb0

ρa0
+

ρa0

ρb0

)
∆φ0.

When n = 1, φ = π which is unstable, therefore we will not consider this.

When n = 0, φ = 0, ψ is constant and therefore we have α and β = −α

being independent of time, Thus,

βcρat =δε2ρa −
(

Φ1ρ2
a + Φ2ρ2

b

)
ρa +

γ

2
βcρb, (112)

βcρbt =δε2ρb −
(

Φ1ρ2
b + Φ2ρ2

a

)
ρb +

γ

2
βcρa, (113)

is now a three-dimensional dynamical system for (ρa, ρb, ψ).

4.2.6 Existence of Patterns

From (112 & 113), we look for a constant solution of the form, ρa = ρb = ρ0.

This gives,

0 =δε2ρ0 −
(

Φ1ρ2
0 + Φ2ρ2

0

)
ρ0 +

γ

2
βcρ0, (114)

=ρ0

(
δε2 − (Φ1 + Φ2) ρ2

0 +
γ

2
βc

)
, (115)

which has roots ρ0 = 0 (the trivial solution again) or

ρ0 =

√
δε2 + γ

2 βc

Φ1 + Φ2
. (116)

These are constant rectangular patterns

u(x, y, t) = ρ0eik f x/2
(

ei(kyy+φa) + e−i(kyy+φa)
)
+ c.c.

= 4ρ0 cos(k f x/2) cos(kyy + φa), (117)
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where ky =
√

k2
0 − k2

x, kx = k f /2 = k0 − v2. The undetermined phase

φa arises due to the continuous translational symmetry in the y-direction

which is not broken by the forcing. These solutions exist for 0 < v2 < 2k0

(to ensure that ky ∈ R) and where also 2ε2δ + γβc and Φ1 + Φ2 have the

same sign, noting that Φ2 = Φ2(v2).

From (112 & 113), we can also look for a constant solution of the

form, ρa = ρ±, ρb = ρ∓. We can manipulate the steady states of (112 &

113) to give,

δε2 = Φ1(ρ
2
a + ρ2

b), (118)

γβc

2
= −ρaρb(Φ1 −Φ2). (119)

Thus, giving,

ρ± =

√√√√ δε2

2Φ1
±
√

δ2ε4

4Φ2
1
− βcγ2

4(Φ1 −Φ2)2 . (120)

Hence, this gives a one-parameter family of solutions,

a± = ρ± exp(iα), b∓ = ρ∓ exp (−iα). (121)

These are constant oblique patterns

u(x, y, t) = eik f x/2
(

ρ±ei(kyy+φa) + ρ∓e−i(kyy+φa)
)
+ c.c.

= 2ρ± cos(k f x/2 + kyy + φa) + 2ρ∓ cos(k f x/2− kyy− φa), (122)

where φa is again undetermined and ky =
√

k2
0 − k2

x, kx = k f /2 = k0 − v2.

These solutions exist for 0 < v2 < 2k0 (to ensure that ky ∈ R) and where

also
ε2δ

2Φ1
> 0 and |γ| < ε2δ

βcΦ1
|Φ1 −Φ2| .

The values of v2 and γ for which resonant rectangle and oblique patterns

exist depend on the values of σ (the spatial scale of interaction) and h (the

firing rate threshold).
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The existence regions for a range of values of h for σ = 0.5 are illustrated

in Fig. 23. Regions where rectangle patterns exist are shaded blue,

while red shading indicates existence of oblique patterns under the

additional assumption that ε2δ/Φ1 > 0. Outside of these regions, solutions

do not exist so were not considered. For h = 0 we observe similar

existence regions for these patterned states as observed in [81] for the

Swift-Hohenberg equation under periodic spatial forcing. For nonzero

choices of h we observe more complex existence regions. We note that the

existence regions for −h are identical to those for h. This is due to the fact

that f ′(u0) is an even function of h. The values of β2 and β3 depend on µ

where µ is fixed once h and σ are specified. Since for given a given value of

h, µ satisfies βc = 1/ŵ(k0) = f ′(u0), then −h gives the same values of µ as

h.

4.2.7 Linear Stability of Patterns

We can also consider the linear stability of the two-dimensional constant

resonance patterns to uniform perturbations. Making perturbations ∆ρa

and ∆ρb to the constant solution ρa, ρb and linearising we find that the

perturbations satisfy

∂

∂t

 ∆ρa

∆ρb

 =
1
βc

 ε2δ− 3Φ1ρ2
a −Φ2ρ2

b −2Φ2ρaρb +
γβc

2

−2Φ2ρaρb +
γβc

2 ε2δ− 3Φ1ρ2
b −Φ2ρ2

a

 ∆ρa

∆ρb

 .

(123)

The Jacobian, J, in (123) has eigenvalues

λ± =
Tr(J)

2
± 1

2

√
(Tr(J))2 − 4Det(J).

The zero state (ρa = ρb = 0) has eigenvalues (ε2δ/βc)±γ/2 and is therefore

stable for 2ε2δ± γβc < 0 since βc > 0. Rectangular patterns have ρa = ρb =

ρ0 and eigenvalues

λ+ = −2
(

ε2δ

βc
+

γ

2

)
, λ− =

−2(Φ1 −Φ2)ε
2δ− 2Φ1γβc

βc(Φ1 + Φ2)
.
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Therefore rectangles are stable when 2ε2δ + γβc > 0 (and we need Φ1 +

Φ2 > 0 so that the solutions exist here) and also (Φ1−Φ2)ε
2δ+Φ1γβc > 0.

(a) h = 0 (b) |h| = 0.15

(c) |h| = 0.3 (d) |h| = 0.5

Figure 23.: Existence regions for patterned states in a two-dimensional

neural field model with spatially periodic forcing. Blue shaded

regions indicate where stationary rectangle patterns exist and

red shading indicates existence of oblique patterns. The kernel

is chosen as in (45) with σ = 0.5 and the firing rate is given by

(43) with (a) h = 0, (b) |h| = 0.15, (c) |h| = 0.3, (d) |h| = 0.5.

Other parameters are ε2δ = 0.3 for (a)–(c) and ε2δ = −0.3 for

(d). Note that existence of oblique patterns also requires that

ε2δ/Φ1 > 0. Here γc = −2ε2δ/βc.

For oblique patterns, where ρa 6= ρb, we note from (116) that the

constant solutions satisfy

ε2δ = Φ1(ρ
2
a + ρ2

b) and γβc = −2ρaρb(Φ1 −Φ2),

and therefore the Jacobian matrix J in (123) has
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Tr(J) = −(Φ1 + Φ2)
ε2δ

βcΦ1
, (124)

Det(J) = −2
(

ε2δ

βcΦ1

)2

Φ1(Φ1 −Φ2) +

(
3Φ1 −Φ2

Φ1 −Φ2

)2 (γ

2

)2
. (125)

The oblique patterns are stable when Tr(J) < 0 and Det(J) > 0. The first of

these conditions is satisfied when the patterns exist and Φ1 + Φ2 > 0. Note

then that all stable constant resonant two-dimensional patterns exist within

the upper blue shaded regions in Figure 23a–23d. Stability regions in the

(v2, γ) plane are indicated for rectangle and oblique patterns in Figure 24

for ε2δ = 0.3 and |h| = 0.15. Stability results for |h| = 0.15 are illustrated

in the bifurcation diagrams in Figure 25. There is a change in stability

between rectangles and obliques at γ = γc = (Φ2 − Φ1)ε
2δ/(Φ1βc) for

fixed ε2δ or at (ε2δ)c = γΦ1βc/(Φ2 −Φ1) for fixed γ.

The stable two-dimensional leading order pattern for values of v2

increasing from 0 to k0 (corresponding to kx decreasing from k0 to 0) and

a range of values of forcing strength γ are shown in Figure 26. Here we

choose h = 0 so that stable two-dimensional leading order patterns exist

for all values of v2. As v2 is increased from 0 to k0 the pattern changes

from vertical stripes to rectangles (when γ > γc) or oblique patterns (when

γ < γc) to horizontal stripes which are orthogonal to the forcing. At

v2 = k0/4 the rectangular patterns are square and the oblique patterns

are precisely diagonal. Direct numerical simulations confirm that using

the mismatch parameter v2 to control the forcing can indeed lead to

stripe patterns along the x-direction changing to stripe patterns along the

y-direction. Thus, a simple neural field model can support an orthogonal

response to patterned input.

The two-dimensional resonant patterns exist and are stable for a range of

values of the detuning v2 and these lie in 1, 3 or 5 bands whose widths
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depend on the value of the firing rate threshold h. The width of these

bands does not depend on γ and hence the resonant patterns exist even in

the limit of weak forcing γ → 0. We also note in particular that a band of

stable resonant orthogonal response patterns exists around v2 = k0 for all

|h| < hc where hc ≈ 0.4196 for σ = 0.5.

Figure 24.: Stability tongues for constant two-dimensional 2:1 resonant

solution patterns for the forced neural field equation (90). The

top (bottom) diagram show the existence and stability tongues

for rectangles (obliques). Darker shading indicates where the

pattern is stable. Here σ = 0.5, |h| = 0.15, ε2δ = 0.3 and

γc = −2ε2δ/βc.
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Figure 25.: Bifurcation diagrams for constant two-dimensional pattern

solutions for the forced neural field equation (90). Solid

lines indicate stable states while dotted lines indicate unstable

solutions. In both diagrams parameter values are σ = 0.5,

|h| = 0.15 and v2 = 0.75k0. In diagram (a) we fix forcing strength

γ = 1 and range over values of ε2δ. Here the Turing bifurcation

occurs at ε2δc = −γβc/2 and the bifurcation of rectangles to

stable obliques occurs at ε2δp = γβcΦ1/(Φ2 −Φ1). In diagram

(b) we hold the distance from Turing instability, ε2δ = 0.3, and

range over values of γ with the bifurcation between patterned

states at γp = (Φ2 −Φ1)ε
2δ/(βcΦ1).
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Figure 26.: Planforms of the stable leading order solution demonstrating

pattern diversity and orthogonal response. Choosing h = 0

(so that existence and stability of solutions does not depend

on v2) we see that as v2 is increased from 0 to k0 the pattern

changes from vertical stripes to rectangles (when γ > γc) or

oblique patterns (when γ < γc) to horizontal stripes which

are orthogonal to the forcing. This corresponds to varying kx

from k0 (with a response in the direction of forcing) to 0 (with

a response orthogonal to the direction of forcing). Note that

if we choose h differently then for some values of v2 these

leading order solution patterns do not exist. Other parameter

values are σ = 0.5, ε2δ = 0.3, v2 = [0, 0.05, 0.25, 0.75, 1]k0,

γ = [0.1, 0.4, 0.65, 1.1]. Planforms are plotted for x, y ∈ [0, 10π].
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4.3 simulations

The analytical work in previous sections has established that an orthogonal

response to global spatially periodic forcing can be robustly supported in

a standard neural field model. If the conditions for a resonant response

are met, then a visual stimulus in the form of a set of concentric rings may

give rise to a percept of a set of radial arms (one for each ring). Similarly,

a visual stimulus in the form of a set of radial arms may give rise to a

percept of a set of concentric rings. This is consistent with the observations

of Billock and Tsou described in section 3.1, albeit these are more accurately

described by drive on the cortical half-space (since the stimuli do not cover

the whole visual field). To complement our results for forcing on the whole

cortical space we now turn to direct numerical simulations. By forcing with

striped patterns on the cortical half-space we recover the two dimensional

stationary features reported in Fig. 14, once the inverse retinocortical map

is applied. We show the corresponding plots for cortical activity in Fig. 27

and the cortical activity mapped to the retina in Fig. 28.
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Figure 27.: Simulation results from a neural field model with spatially

periodic striped forcing on the half-space. (a) Horizontal stripes

forcing the left half-space give rise to stationary vertical stripes

on the right. (b) Vertical stripes forcing the left half-space give

rise to stationary horizontal stripes on the right. (c) Horizontal

stripes forcing the right half-space give rise to stationary vertical

stripes on the left. (d) Vertical stripes forcing the right half-space

give rise to stationary horizontal stripes on the left. Parameter

values are σ = 0.8, µ = 7.1974, h = 0, γ = 0.05 and ν2 = 0 for (a)

and (c) and ν2 = k0 for (b) and (d). The plots are on the domain

x, y ∈ [0, 10π] with periodic boundary conditions.
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Figure 28.: Simulation results from a neural field model with spatially

periodic striped forcing on the half-space mapped back onto the

retina using a simple log mapping. (a) Horizontal stripes forcing

the left half-space give rise to stationary vertical stripes on the

right. (b) Vertical stripes forcing the left half-space give rise to

stationary horizontal stripes on the right. (c) Horizontal stripes

forcing the right half-space give rise to stationary vertical stripes

on the left. (d) Vertical stripes forcing the right half-space give

rise to stationary horizontal stripes on the left. Parameter values

are σ = 0.8, µ = 7.1974, h = 0, γ = 0.05 and ν2 = 0 for (a) and (c)

and ν2 = k0 for (b) and (d). The plots are on the cortical domain

x, y ∈ [0, 10π] with periodic boundary conditions.
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4.4 summary

In summary, in this chapter, we were able to derive the amplitude equations

for the neural field model with spatial forcing and conduct analysis for the

existence and stability of solutions to find parameter regimes for spatially

periodic patterns in both one and two dimensions. Direct numerical

simulations were produced to show the resultant activity of the model in

chosen parameter regimes to replicate the neural activity of interest in the

hallucination context. By mapping this cortical activity back to the retina

using an inverse log mapping, we showed that these simulation were in

fact a good likeness for the hallucinations that occurred in the work of

Billock and Tsou, albeit stationary. In the next chapter, we extend this work

to treat a form of of spike frequency adaptation that can underlie pattern

movement to introduce travelling waves and hence, the movement in the

hallucinations. In conclusion, we have all of the underlying analytical work

to be able to find parameter regimes for interesting pattern formation in

numerical simulations relevant to the psychophysical observations with

movement.



5
A D A P TAT I O N M O D E L

The simulations of the two dimensional neural field model with spatial

forcing paint a picture showing how to recreate the Billock and Tsou

hallucinations in Fig. 14. The patterns of activity in Fig. 27 are stationary

corresponding to the stationary hallucination patterns. However, the

hallucinations reported by Billock and Tsou [10] also include rotational

movement so a mechanism for the creation of patterns which move (i.e.

travelling or standing wave patterns) now needs to be incorporated into

our model. The inclusion of adaptation means that the model is more

realistic, in the sense that this gives a phenomenological description of

metabolic processes that lead to fatigue. It also provides a well-known

route to dynamic instabilities leading to the formation of travelling periodic

waves. The latter are expected to be a key requirement for illusory motion.

5.1 adaption model

The neural field model can be extended to the adaptation model, introduced

by [94] and analysed in [28, 65], this includes negative feedback of the firing

of neurons,

∂u(r, t)
∂t

= −u(r, t) +
∫

R
w(r, r′) f (u(r′, t)) dr′ − ga(r, t), (126)

τa
∂a(r, t)

∂t
= u(r, t)− a(r, t). (127)

82
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Here a is a scalar field that represents a negative feedback adaptation

variable that describes the local feedback mechanisms that modulate

synaptic currents in the tissue. Also, the parameter g > 0 ∈ R controls the

strength of the negative feedback and τa determines the relative time-scale.

In this chapter, we will first consider r = x ∈ R and then r = (x, y) ∈ R2,

both with t > 0. Again, we will work with the rotationally symmetric

Wizard hat function (45) and firing rate function (43) from chapter 4.

5.1.1 Change of Formula

All of the previous work in chapter 4 was completed on one nonlinear

equation and this is useful for performing analysis. The adaption model has

been stated in (126-127) as two equations; however, these can be combined

to give the model as one equation. As (127) is linear we can solve this

equation and therefore condense (126 & 127) into one equation,

τa
∂a(r, t)

∂t
= −a(r, t) + u(r, t), (128)

∂

∂t
[aet/τa ] =

u
τa

et/τa , (129)

aes/τa

∣∣∣∣t
0
=

1
τa

∫ t

0
es/τa u(·, s)ds, (130)

a(t) =
∫ t

0
η(t− s)u(·, s)ds, (131)

assuming a(0) = 0, where

η(t) =


1
τa

e−t/τa if t ≥ 0

0 if t < 0.
(132)

Furthermore, (131) can be written as,

a(t) =
∫ t

−∞
η(t− s)u(·, s)ds, (133)

=
∫ ∞

0
η(s)u(·, t− s)ds ≡ η ∗ u. (134)

Therefore, the adaptation model can be written as one equation,

∂u(r, t)
∂t

= −u(r, t) + w⊗ f (u(r, t))− gη ∗ u(r, t). (135)
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where ⊗ denotes a spatial convolution and ∗ a temporal convolution.

5.1.2 Linear Stability Analysis

Note that the Laplace transform of η is given by,

η̃(λ) =
∫ ∞

0
η(t)e−λtdt =

1
1 + λτa

. (136)

The homogeneous steady state (u(r, t), a(r, t)) = (u0, a0) of the neural field

model is then given by a0 = u0 with

u0 = ŵ(0) f (u0)/(1 + gη̃(0)). (137)

For a balanced kernel ŵ(0) = 0 and we have that (u0, a0) = (0, 0) for all

model parameter choices. Linearising around the homogeneous steady state

by writing

u(r, t) = u0 + εδu(r, t), (138)

for some small amplitude |ε| � 1, and expanding to first order gives the

evolution for the perturbations as

∂

∂t
δu = −δu + f ′(u0)w⊗ δu− gη ∗ δu. (139)

Equation (139) has separable solutions of the form δu(r, t) = eλteik·r where

the dispersion relation between λ and |k| can be written implicitly in the

form E(λ, k) = 0 with

E(λ, k) = 1 + λ + gη̃(λ)− f ′(u0)ŵ(k). (140)

To obtain the above we have used the result that w⊗ eik·r = ŵ(k)eik·r and

η ∗ eλt = η̃(λ)eλt. When g = 0, we observed in section 3.3.1 that all roots of

140 are real. However, in general the values of λ in E(λ, k) = 0 are complex.

After decomposing λ = ν + iω, and then equating real and imaginary parts

of (140) it can be shown that the spectrum lies on the curve given by

τ2
a (ν

2 + ω2) + 2τaν = τag− 1, (141)
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and to the left of the line,

ν =
−(1 + τa − τa f ′(u0)ŵ(k0))

2τa
. (142)

Thus for g > 0 a Turing instability to a dynamic (time-dependent) pattern

(ω 6= 0) will occur when ν = 0 to give,

ŵ(k0) = (1 + τa)/(τa f ′(u0)), (143)

for τag > 1 and

g > f ′(u0)ŵ(k0)− 1, (144)

which excludes the possibility of a static bifurcation. The emergent

frequency of oscillation is

ωc =
√

τag− 1/τa. (145)

We note that the conditions for static and dynamic Turing instabilities given

here agree with those in [32] since the model equations only differ in the

placement of the nonlinear firing rate.

5.2 adaptation model with spatial forcing in one dimension

We next take the adaptation model (135) and as in Chapter 4, add the same

spatial forcing term from [81],

∂u(x, t)
∂t

= −u(x, t) + w⊗ f (u(y, t))− gη ∗ u(x, t) + γu(x, t) cos k f x, (146)

We look for travelling wave and standing solutions near the dynamic

Turing instability using multiple scale analysis. We carry out the analysis

in one spatial dimension since out aim is to demonstrate for the model

with adaptation (135) that spatial forcing of dynamic patterns can give

dynamic resonant patterns which travel; this does not require analysis

in two dimensions. Note that the amplitude equations for (135) in two

spatial dimensions are developed in [85], but due to their high dimension

(four complex amplitudes), they are reduced to one spatial dimension
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equations which we will find in this section for analysis of the travelling

and standing wave solutions. Since we again work in one spatial dimension,

the mismatch parameter ν2 of (26) is set to zero and the Fourier transform

of the connectivity kernel is given by (57).

5.2.1 Hierarchy of Equations

Using multiple scale analysis, we consider weak forcing γ � 1 near the

instability ε � 1. The multiple scale perturbation theory is shown in

Appendix B.1, using the same multiple scale expansion from Section 4.1.2.

Now βc = f ′(u0) subject to

βc =


1 + g
ŵ(k0)

at a static Turing bifurcation,

τa + 1
τaŵ(k0)

at a dynamic Turing instability.
(147)

Furthermore, the expansion of the right hand side is,

− (u0 + εu1 + ε2u2 + ε3u3 + . . . ) + w⊗ [ f (ū) + (βc + ε2δ)(εu1 + ε2u2

+ ε3u3 + . . . ) + β2(εu1 + ε2u2 + ε3u3 + . . . )2 + β3(εu1 + ε2u2 + ε3u3 + . . . )3

+ . . . ]− gη ∗ (u0 + εu1 + ε2u2 + ε3u3 + . . . )

+ (εγ1 + ε2γ2 + ε3γ3 + . . . )(u0 + εu1 + ε2u2 + ε3u3 + . . . ) cos k f x. (148)

To fully expand the convolution w⊗ f (u) this time, we need to expand uα

in one spatial and one temporal direction to include the other terms from

this. The Taylor expansion of the spatial convolution in one dimension is

given by (64) and the temporal convolution is,

uα(x′, t′, εx′, ε2t′) = uα(x′, t′, εx′, τ + ε2(t′ − t))

' uα(x′, t′, χ, τ) + ε2(t′ − t)
∂

∂τ
uα(x′, t′, χ, τ) + O(ε4). (149)

Balancing the O(1) terms in (146) fixes the steady state u0 = 0 since we

again choose the kernel as in (45) with A = σ−1 which is balanced in one

spatial dimension and has Fourier transform (52). By using the multiscale
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expansion of u (149) and using the expansion of the right hand side (148),

this gives the fully expanded model. Taking the terms for each order of

epsilon gives,

Lgu1 =0, (150)

Lgu2 =−M0(β2u2
1)−M1(βcu1)− γ1u1 cos(k f x), (151)

Lgu3 =
∂u1

∂τ
−M0(δu1 + 2β2u1u2 + β3u3

1)−M1(βcu2 + β2u2
1) (152)

−M2 (βcu1) + N1(gu1)− (γ2u1 + γ1u2) cos k f x, (153)

where

Lg = −1− ∂

∂t
+ βcw⊗−gη∗,

M0, M1 and M2 are defined by (69 - 71), and

N1 = ηt ∗ ∂τ. (154)

Note that L †
g 6= Lg so L is not self adjoint, but Ker(L †

g ) = Ker(Lg). The

null space of the linear operator Lg is spanned by
{

e±i(k0x±ωct)
}

where

ωc =
√

τag− 1/τa, and therefore (150) has solution of the form

u1 = A(χ, τ)ei(k0x+ωct) + B(χ, τ)ei(k0x−ωct) + c.c.. (155)

5.2.2 Amplitude Equations

Using the Fredholm alternative, we find a particular solution to (151) and

use a solvability condition for (153) to derive amplitude equations for the

evolution of the complex amplitudes A(χ, Υ, τ) and B(χ, Υ, τ). Details

of these calculations can be found in Appendix B.1, and the resulting

amplitude equations, rescaled back to the original time and space variables,

are

(1 + gη̃′(iωc))
∂a
∂t

=ŵ(k0)δε2a− ŵ(k0)
[
Φ1|a|2 + Φ2|b|2

]
a

+
1
2

βcŵ
′′
(k0)(i∂x + ν1)

2a +
ε2γ2

2
b∗δn,2

+

(
εγ1

2

)2

(1− δn,2) [(ζ4 + ζ5)a + ζ5b∗δn,1] , (156)
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and similarly,

(1 + gη̃′(−iωc))
∂b
∂t

=ŵ(k0)δε2b− ŵ(k0)
[
Φ∗1 |b|2 + Φ∗2 |a|2

]
b

+
1
2

βcŵ
′′
(k0)(i∂x + ν1)

2b +
ε2γ2

2
a∗δn,2

+

(
εγ1

2

)2

(1− δn,2) [(ζ
∗
4 + ζ∗5)b + ζ5a∗δn,1] , (157)

where all new parameters are defined in Appendix B.1. Note that Φ1 ∈ C,

Φ2 ∈ R and ζ4, ζ5 ∈ C.

5.2.3 Existence of Solutions

We now consider the 2:1 resonance patterns that exist in the model with

adaptation (146) with g 6= 0, as shown in Fig. 22 to be the widest existence

tongue, so we take n = 2. Here, beyond the dynamic Turing instability at

βc = (τa + 1)/(τaŵ(k0)), the unforced system, γ = 0, supports periodic

travelling waves. We then have the following amplitude equations:

(1 + gη̃′(iωc))
∂a
∂t

= Λa− ŵ(k0)
(

Φ1|a|2 + Φ2|b|2
)

a +
γ

2
b∗, (158)

(1 + gη̃′(−iωc))
∂b
∂t

= Λb− ŵ(k0)
(

Φ∗1 |b|2 + Φ∗2 |a|2
)

b +
γ

2
a∗, (159)

where Λ = ŵ(k0)ε
2δ + βcŵ′′(k0) (i∂x + v1)

2 /2 and γ = ε2γ2. Using the

definition of η̃ as in (136), and also the relationship between g, τa and the

emergent frequency, ωc, of the dynamic pattern, the amplitude equations

can be written in the form

∂a
∂t

=
1
2

(
1− i

τaωc

)(
Λa− ŵ(k0)

(
Φ1|a|2 + Φ2|b|2

)
a +

γ

2
b∗
)

, (160)

∂b
∂t

=
1
2

(
1 +

i
τaωc

)(
Λb− ŵ(k0)

(
Φ∗1 |b|2 + Φ2|a|2

)
b +

γ

2
a∗
)

. (161)
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We now look for spatially homogeneous solutions of (160)–(161), so take

Λ = ŵ(k0)ε
2δ + βcŵ′′(k0)v2

1/2 which is now real-valued. Writing a = ρaeiφa

and b = ρbeiφb we find that the phases and amplitudes satisfy

∂ρa

∂t
=

1
2

(
Λρa − ŵ(k0)ρa

(
Φr

1ρ2
a + Φ2ρ2

b

)
+

γ

2
ρb cos(ψ)

)
(162)

− 1
2τaωc

(γ

2
ρb sin(ψ) + ŵ(k0)Φi

1ρ3
a

)
,

∂ρb
∂t

=
1
2

(
Λρb − ŵ(k0)ρb

(
Φr

1ρ2
b + Φ2ρ2

a

)
+

γ

2
ρa cos(ψ)

)
(163)

+
1

2τaωc

(γ

2
ρa sin(ψ)− ŵ(k0)Φi

1ρ3
b

)
,

∂ψ

∂t
= − 1

2τaωc

(
γ

2
cos(ψ)

(
ρb
ρa
− ρa

ρb

)
− ŵ(k0)(ρ

2
a − ρ2

b)(Φ
r
1 −Φ2)

)
(164)

− γ

4
sin(ψ)

(
ρb
ρa

+
ρa

ρb

)
− 1

2
ŵ(k0)Φi

1(ρ
2
a − ρ2

b),

∂θ

∂t
= − 1

2τaωc

(
2Λ +

γ

2
cos(ψ)

(
ρb
ρa

+
ρa

ρb

)
− ŵ(k0)(ρ

2
a + ρ2

b)(Φ
r
1 + Φ2)

)
(165)

− γ

4
sin(ψ)

(
ρb
ρa
− ρa

ρb

)
− 1

2
ŵ(k0)Φi

1(ρ
2
a + ρ2

b),

where ψ = φa + φb, θ = φa − φb and Φr
1, Φi

1 denote the real and imaginary

parts of Φ1 respectively.

Looking for solutions with constant and equal amplitudes ρa = ρb = ρ0 we

see that ψ is constant when it takes the values ψ = mπ for m = 0, 1. Then

ρ0 =

√
τaωc (2Λ + (−1)mγ)

2ŵ(k0)(τaωc
(
Φr

1 + Φ2
)
+ Φi

1)
, (166)

and we observe that

∂θ

∂t
= − 1

2τaωc

(
2Λ + (−1)mγ− 2ŵ(k0)

(
Φr

1 + Φ2 − τaωcΦi
1

)
ρ2

0

)
= − 1

2τaωc
(2Λ + (−1)mγ)

(
1 + τ2

a ω2
c

)
Φi

1. (167)

Therefore θ is constant when Φi
1 = 0 corresponding to periodic standing

wave solutions, and otherwise θ is a linear function of time, corresponding

to amplitude modulated standing waves. Assuming that τaωc
(
Φr

1 + Φ2
)
+
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Φi
1 > 0, the solution with m = 0 exists when γ > −2Λ and the solution with

m = 1 exists for γ < 2Λ. Linear stability analysis shows that the solution

with ψ = mπ is stable when

(−1)mγ > max

{
0,
−2Λτaωc(Φr

1 −Φ2)

2τaωcΦr
1 + Φi

1
,
−2Λ(τaω(Φr

1 −Φ2) + Φi
1)

τaωc(3Φr
1 + Φ2) + 3Φi

1

}
.

We note that Φi
1 = 0 only when h = 0 so that β2 = 0 and in this case

Φ2 = 2Φr
1. Therefore, in the case where Φi

1 = 0, the solution with ψ = mπ

is stable for (−1)mγ > 2Λ.

We can also find stable solutions of (162)–(165) with unequal constant

amplitudes. Suppose that ψ takes the constant values mπ for m = 0, 1.

Then from (164) we observe that either ρa = ρb or

ρaρb =
(−1)mγ

2ŵ(k0)(τaωcΦi
1 −Φr

1 + Φ2)
:= Pm.

In the latter case, substitution into (162) multiplied by ρa reveals that the

constant amplitudes have values ρa = ρ±, ρb = ρ∓ where (ρ±)2 are the two

roots of

ŵ(k0)Φr
1ρ4 −

(
Λ−

ŵ(k0)Φi
1Pm

τaωc

)
ρ2 − Pm

(
(−1)mγ

2
− ŵ(k0)Φ2Pm

)
= 0.

Such solutions exist when the roots are real and positive. When Φi
1 = 0

the solutions have constant θ = 2φa − mπ and therefore the solutions are

periodic travelling waves. They exist when ΛΦr
1 > 0 and for |γ| < |Λ|

and can also be shown to be stable in this parameter range (see Fig. 29(a)).

When Φi
1 6= 0 the solutions have θ(t) = 2φa(t) − mπ and correspond to

resonant amplitude modulated travelling waves. Numerical investigation

with XPPAUT [36] for the parameter choices as in Fig. 29(a) indicates that

the solutions are stable wherever they exist. The stability region covers the

range of values of forcing strength γ where the modulated standing waves

are unstable and there are also regions of bistability of the modulated

standing and travelling waves. These solutions are indicated in Fig. 29(b) in

red (m = 0) and magenta (m = 1). We also find stable modulated travelling



5.2 adaptation model with spatial forcing in one dimension 91

waves with constant ρa 6= ρb and constant ψ 6= 0 as indicated in green in

Fig. 29(b). Fig. 29 summarises the solution branches and their stability

for Φi
1 = 0 and Φi

1 6= 0 respectively where other parameter values are as

given in the caption. This indicates that travelling waves dominate for weak

forcing, and there is an exchange of stability to standing waves for stronger

forcing γ.

The significant outcome of this investigation is that when adaptation is

included, there are stable 2:1 resonant solutions which travel. Investigating

the fully two-dimensional model with adaptation numerically reveals the

same qualitative behaviour as predicted in the one dimensional model.

Moreover, when the unforced system supports traveling waves, resonant

rectangular patterns remain stationary but oblique patterns travel in an

orthogonal direction, namely along the axis for which the continuous

translational symmetry is not broken by the forcing. Thus, if spatial forcing

is by a striped pattern along the x-direction then the tissue response

could be a striped pattern in the orthogonal y-direction. Moreover, the

presence of adaptation would allow for a dynamic instability so that this

could propagate as a plane wave. Although the theory above has only

been developed with spatially periodic forcing over the whole space, it

has uncovered a mechanism for the generation of orthogonal responses

that we expect to hold in the presence of more structured forcing. We

explore this further in section 5.3 and provide support for this claim using

direct numerical simulations of forcing on the half-space relevant to the

psychophysical experiments of Billock and Tsou [10].
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Figure 29.: Bifurcation diagrams for resonant stripe pattern solutions for

the forced neural field equation (146) in one spatial dimension

with adaptation (g 6= 0) under variation of the forcing strength

γ. In (a) we take the threshold for the firing rate h = 0

which gives Φi
1 = 0 and therefore we observe periodic standing

waves (blue) and travelling waves (red). Dashed lines indicate

unstable solutions while solid lines indicate stable waves. In

(b) we choose |h| = 0.05 and therefore Φi
1 6= 0 and we observe

modulated (quasiperiodic) standing (blue) and various travelling

(red, magenta and green) waves. Other parameter values for

both diagrams are σ = 0.5, τa = 1, g = 5. These give βc = 3,

ŵ(k0) = 2/3 and ŵ′′(k0) = −16/27 and here we take ε2δ = 0.3

and v1 = 0.1 so that Λ = ŵ(k0)ε
2δ + βcŵ′′(k0)v2

1/2 = 43/225.
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5.3 simulations

By forcing with striped patterns on the cortical half-space we recover all

of the features reported in Fig. 14, once the inverse retinocortical map is

applied. We show the corresponding plots for cortical activity in Fig. 30.

The presence of the adaptation current allows the formation of travelling

striped patterns, and these correspond to rotating waves in the retinal

space with blinking versions associated to standing waves. Although the

psychophysical experiments of Billock and Tsou involve a component of

temporal flicker we have found that it is not strictly necessary to include

this within the model to generate results consistent with their observations.

Nonetheless, direct numerical simulations with flicker do show that the

phenomenon is robust to this inclusion. We posit that in the psychophysical

experiments the background flicker helps put the primary visual cortex in a

state conducive to a 2:1 resonance, whereas in our model we tune intrinsic

parameters to reach this condition.

Brief details of the numerical methods used to implement the model

are presented in appendix C.
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Figure 30.: Simulation results from a neural field model with spatially

periodic striped forcing on the half-space. (a) Horizontal stripes

forcing the left half-space give rise to stationary vertical stripes

on the right. (b) Vertical stripes forcing the left half-space

give rise to travelling horizontal stripes on the right. (c)

Horizontal stripes forcing the right half-space give rise to

stationary vertical stripes on the left. (d) Vertical stripes forcing

the right half-space give rise to travelling horizontal stripes

on the left. An application of the inverse retinocortical map

to (a), . . . , (d) generates patterns consistent with (a), . . . , (d)

shown in Fig. 14. Parameter values are σ = 0.8, µ = 2,

h = 0.05, γ = 0.5 and for b) and d) τa = 10, g = 0.14.

The domain sizes are a) [−16.53, 16.53] × [−15.71, 15.71], b)

[−31.42, 31.42]× [−3.10, 3.10], c) [−22.73, 22.73]× [−22.00, 22.00]

and d) [−31.42, 31.42] × [−2.07, 2.07] with periodic boundary

conditions. Movies available in Supplementary Materials of [85].
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5.4 summary

In this chapter we have shown that the psychophysical observations

of Billock and Tsou [10] can be explained with a parsimonious neural

field model that does not require any exotic extension compared to

standard approaches. It was originally suggested in [10, Supporting

Information] that a neural field with some form of anisotropic coupling

would be necessary to explain the observed spatial opponency between

rings and radial arms. Rather we find, perhaps non-intuitively, that the

pattern forming properties of a spatially forced isotropic model with a 2:1

resonance provide a sufficient mechanism for the observed phenomena.

Importantly, when the unforced model is poised near a Turing instability,

we have shown that there are reasonably large windows of parameter

space that allow for such a resonance between a spatial Turing pattern

and a spatially periodic pattern of forcing. To establish this we have made

use of perturbation arguments valid only for weak forcing. Nonetheless,

this amplitude equation approach has proven especially useful for gaining

insight into the main control parameters that can encourage an orthogonal

response to the forcing of a two-dimensional neural field with a simple

periodic stripe pattern. A key parameter in this regard is the deviation

between k0, the spatial frequency excited by the Turing instability, and k f /2,

where k f is the spatial frequency of the forcing. An orthogonal response

is promoted as this deviation becomes closer to k0. As well as using

mathematical arguments, strictly only valid for global periodic forcing, we

have used direct numerical simulations to show that the model responds

similarly when patterns are presented only on the half-space (which is

more consistent with the psychophysical experiments). Moreover, we have

shown that some form of negative feedback or adaptation is useful for

promoting travelling Turing patterns, which (via the inverse retinocortical

map) generate rotating percepts. These would also be expected in a

more refined two-population neural field model without adaptation that
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distinguishes between excitatory and inhibitory sub-populations [38, 116].

We have opted for the study of an effective single population model with

adaptation solely to keep the mathematical analysis manageable.



6
PAT C H Y C O N N E C T I O N S

6.1 introduction

Neural connectivity in neocortex, including the visual cortex, has a

crystalline microstructure [75] that has a length scale of millimetres. In

primary visual cortex (V1) there are long range lateral connections of

several millimetres in length which link neurons that have common

functional properties, such as orientation preference. The neural field

model considered so far has been based on the assumption that interactions

between neurons are homogeneous, isotropic and invariant. Exploiting

Euclidean symmetry, the author in [37] used equivariant bifurcation theory

to predict the type of patterns that may form beyond Turing instabilities

for homogeneous models [38, 125]. Amplitude equations have been used to

determine pattern formation [21, 38] in neural field models along the lines

described in chapters 3, 4 and 5. However, in V1 the crystalline structure is

approximately periodic and organises patchy long range connections that

break continuous rotational symmetry (isotropy), though not necessarily

continuous translational symmetry (homogeneity). Therefore, our previous

neural field models that have used isotropic connectivity should be

adapted to incorporate this. We model these patchy connections by taking

a homogeneous and isotropic neural field model and modulating it by a

spatially periodic function to reflect this underlying microstructure.

97
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A crystalline structure is demonstrated by both the pinwheel structure of

the orientation preference map (OPM) and also cytochrome oxidase (CO)

blobs in the primary visual cortex of cats and primates. Pinwheels are

areas of high rates of change of orientation preference and are separated

by approximately linear regions of orientation. The linear regions are

perpendicular to the ocular dominance region borders but the pinwheels

align with the centre of ocular dominance stripes. The CO blobs are

approximately 0.2 mm in diameter and 0.6 mm apart and they align

with cells that are very metabolically active when responding to visual

stimuli [50]. This distribution shows correlation with visual sites of high

functionality such as the OPM, spatial frequency and ocular dominance

[78, 109]. These features and the relationship between them can be seen

in Fig. 31. CO blobs are aligned with approximately half of pinwheel

structures [18]. It has been shown in [130] that some neurons halfway

between two CO blobs have no or little horizontal connections; therefore,

the location of CO blobs correlates with the strength and range of

horizontal connections. We believe that as the patchy connection structure

is underpinned by the same principles as the OPM structure, we can exploit

this to use neural activity with patchy connections to create an orientation

preference map. This will provide the basis for the work completed in the

next chapter.

6.2 patchy model

We start with the standard two-dimensional scalar neural field model, as

previously described in chapter 3,

∂u(r, t)
∂t

= −u(r, t) +
∫

R2
w(r, r′) f (u(r′, t))dr. (168)

In general w(r, r′) is inhomogeneous. However, to be able to mathematically

analyse the model, there are usually two special cases that are considered.

When w(r, r′) = w(|r− r′|), this is homogeneous (translationally invariant),
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Figure 31.: Example of iso-orientation contours (light grey lines) and ocular

dominance boundaries (black lines) in relation to CO blob

regions (light shaded areas) of a macaque primary visual cortex,

figure adapted from [18] which was redrawn from [11].

and isotropic (rotationally invariant). Secondly, when w(r, r′) = w(r− r′),

this is homogeneous but not isotropic.

We now introduce the periodically modulated spatial connectivity

required to model the patchy connections, this is homogeneous but not

isotropic and denoted wp(r, r′), where

wp(r, r′) = w(|r− r′|)M(r− r′). (169)

Here w(|r− r′|) is a standard kernel, for example a Mexican hat or Wizard

hat function, and M(r− r′) is a periodic function that we will use to model

patchy connectivity. M is a simple model of patchiness, we require this to

be of the (approximate) periodicity seen in OPMs with a spatial scale d.



6.3 two dimensional model with square lattice 100

6.3 two dimensional model with square lattice

Firstly, we will consider a regular square lattice L with generators l1 =

d(0, 1) and l2 = d(1, 0) as basis vectors, an example shown in Fig. 32. This

has reciprocal lattice L † with reciprocal lattice generators,

q1 =
2π

d
(1, 0), q2 =

2π

d
(0, 1), (170)

satisfying qi · lj = 2πδij.

Figure 32.: An example of a regular square lattice with distance d between

grid points

We will model the patchy connections via the function, M. This is

chosen to vary periodically with respect to the regular planar lattice L ,

and can be represented in the form of,

M(r) = ∑
q∈L †

Mqeiq·r, L † = {mq1 + pq2 : m, p ∈ Z}. (171)

Since M ∈ R then Mq = (M−q)∗ where ∗ is the complex conjugate. We

can exploit the periodicity of M to represent it as a Fourier series. Mq are

Fourier coefficients given by

Mq =
1

(2π)2

∫
R2

M(r)e−iq·rdr. (172)
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6.3.1 Turing Analysis of the Patchy Two Dimensional Model with a Square

Lattice

Following standard Turing Analysis, see section 3.3.1, we take the

homogeneous steady state represented by u(r, t) = u0 as,

u0 = ( f ◦ u0)
∫

R2
w(|r|)M(r)dr. (173)

Introducing the two dimensional Fourier transform of the kernel,

Ŵ(k) =
∫

R2
w(|r|)M(r)e−ik·rdr, (174)

then the steady state can be written as,

u0 = Ŵ(k = 0)( f ◦ u0). (175)

The Fourier transform (174) with our choice of M is,

Ŵ(k) = ∑
q

Mq

∫
R2

w(|r|)e−i(k−q)·rdr = ∑
q

Mqŵ(k− q), (176)

where

ŵ(k) =
∫

R2
w(|r|)e−ik·r dr. (177)

Now as ŵ(k) = ŵ(|k|), we have that,

Ŵ(k) = ∑
q

Mqŵ(|k− q|). (178)

Taking the steady state with a small perturbation u = u0 + εeλteik·r, for

ε� 1, gives the characteristic equation,

λ(k) = −1 + f ′(u0)Ŵ(k),

= −1 + f ′(u0)∑
q

Mqŵ(|k− q|). (179)

We will consider the choice of periodic model of patchiness to be,

M(r) =
1
2
[cos(q1 · r) + cos(q2 · r)] , (180)
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which has Fourier coefficients,

Mq =
1

(2π)2

∫
R2

1
2

[
eiq1·r + e−iq1·r

2
+

eiq2·r + e−iq2·r

2

]
e−iq·rdr. (181)

After noting,
1

(2π)2

∫
R2

e−i(q−k)·rdr = δq,k, (182)

this gives the Fourier coefficients as,

Mq =
1
4
[
δq,q1 + δq,−q1 + δq,q2 + δq,−q2

]
. (183)

Therefore, using this definition of the Fourier coefficients (183), the

eigenvalues of the square lattice system (179) can be written as,

λ(k) = −1 +
1
4

f ′(u0) [ŵ(|k− q1|) + ŵ(|k + q1|)

+ŵ(|k− q2|) + ŵ(|k + q2|)] . (184)

The steady state u0 is stable when Re(λ(k)) < 0 for all k. For our model

of patchy connections, the eigenvalues λ(k) depend on the direction of k

as well as its magnitude. Previously, when considering the neural field

model in the isotropic case, as considered in section 3.3.1, λ = λ(|k|) is

only dependent on the magnitude of k.

The steady state was defined earlier in (175); now with our choice of

M the Fourier transform at k = 0 is,

Ŵ(k = 0) =
1
2
[ŵ(|q1|) + ŵ(|q2|)] .

For a square lattice, |q1| = |q2| = 2π/d,

Ŵ(k = 0) = ŵ(2π/d).

Therefore, to find the steady state, we need to solve, G(u0) = 0 where,

G(u) = u− f (u)ŵ(2π/d). (185)

This can be achieved numerically using Matlab’s inbuilt function fsolve.
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6.3.2 Simulations of the Patchy Model with a Square Lattice

To complete the theory, we will show computational examples to highlight

the effects of the patchy connectivity on a square lattice using M as given

by (180). We choose the kernel to again be a Wizard hat function,

w(r) = Ae−r/σ − e−r, (186)

with σ = 0.6 and A = 1/σ2 to give a balanced kernel. We also make the

choice of firing rate as,

f (u, µ, h) =
1

1 + e−µ(u−h)
. (187)

where µ is the steepness of the slope and has threshold h. Fig. 33 shows

the patchy connections kernel wp(r, r′) for the square periodic patchiness

with this Wizard hat kernel.

Figure 33.: The patchy connections kernel wp(r, r′) = w(|r − r′|)M(r − r′)

where the standard kernel w(r) is defined by (186) and the

square periodic patchiness M(r) by (180). Here, µ = 11 and

d = 2, plotted on the domain [−2π, 2π]× [−2π, 2π].

To calculate the critical wave vector kc at bifurcation, we need to find

the maximum of Ŵ(k). Namely, for the square lattice we need to calculate

∂ŵ
∂kα

(|k± qβ|) for α = 1, 2 with β = 1, 2 and k = (k1, k2). (188)
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We have,
∂ŵ
∂kα

(|k± qβ|) = ŵ′(|k± qβ|). (189)

Now,

|k± qβ| =
[(

k1 ± q1
β

)2
+
(

k2 ± q2
β

)2
] 1

2

(190)

where qβ = (q1
β, q2

β). Hence,

∂

∂kα
(|k± qβ|) =

1
2

[(
k1 ± qx

β

)2
+
(

k2 ± qy
β

)2
]− 1

2 (
2(k1 ± qx

β)δ1,α

+2(k2 ± qy
β)δ2,α

)
=

1
|k± qβ|

(
(k1 ± qx

β)δ1,α + (k2 ± qy
β)δ2,α

)
. (191)

Therefore, we have,

∂

∂k1
[ŵ(|k− q1|) + ŵ(|k + q1|) + ŵ(|k− q2|) + ŵ(|k + q2|)]

= ŵ′(|k− q1|)
1

|k− q1|

(
k1 −

2π

d

)
+ ŵ′(|k + q1|)

1
|k + q1|

(
k1 +

2π

d

)
+ ŵ′(|k− q2|)

1
|k− q2|

(k1) + ŵ′(|k + q2|)
1

|k + q2|
(k1) , (192)

and

∂

∂k2
[ŵ(|k− q1|) + ŵ(|k + q1|) + ŵ(|k− q2|) + ŵ(|k + q2|)]

= ŵ′(|k− q1|)
1

|k− q1|
(k2) + ŵ′(|k + q1|)

1
|k + q1|

(k2)

+ ŵ′(|k− q2|)
1

|k− q2|

(
k2 −

2π

d

)
+ ŵ′(|k + q2|)

1
|k + q2|

(
k2 +

2π

d

)
.

(193)

Hence, by acquiring the maximum critical wave vector value of the

connectivity portion of the eigenvalue equation, the bifurcation condition

can be solved. This occurs when λ(k) = 0 and therefore, is determined by

∂ŵ/∂kα = 0 and the discriminant being greater than zero. Now, to find the

bifurcation point, we need to solve H(u0) = 0 where,

H(u) = −1 + f ′(u)Ŵ(kc). (194)
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Again this can be computed using fsolve in MATLAB. Therefore, by setting

the value of µ, the steady state condition and the bifurcation condition can

be used to find the critical values of u0 and hc for the system. For µ = 11,

the values of u0 and hc are calculated as 0.0829 and 0.2233 respectively,

as shown by the highlighted point in Fig. 34. Two steady state points

are found. We consider the highlighted point with the smaller values

of u0 and h. Similar analysis could be applied to the other steady state.

However, these values for u0 and hc are right at the point of bifurcation

and therefore to push the system into the pattern formation regime, we

alter the value of h to be 0.95hc to be able to readily observe the activity

away from the stable state. The Fourier transform of the patchy connection

kernel Ŵ is shown in Fig. 35 after writing k = (k1, k2), with one of the four

degenerate maximum points, Ŵ(kc) highlighted; furthermore, the plane

of 4/ f ′(u0, µ, h) is emphasised to show where it intercepts the Fourier

transform using h = 0.95hc. This shows that the system is close to but past

the bifurcation point and that there are four maximum points, occurring

from the structure of the square lattice. In consequence, we expect to excite

patterns with wave-vectors determined by the four maxima.

An example of the cortical activity from using the two dimensional

neural field model with a patchy square lattice applied to the connectivity

can be seen in Fig. 36. This shows horizontal and vertical lines of excitatory

and inhibitory cortical activity. This is expected since the four directions

in k-space predicted to be unstable are at right-angles to each other. Thus

predicting the excitation of patterns (stripes) that are orthogonal. The

simulations are started at the steady state u0 with random noise added and

due to being unstable past bifurcation, this results in different patterns of

activity with every simulation. This is reproducible for different values of

µ, with Fig. 37 showing another example of the cortical activity with patchy

connections on a square lattice with µ = 9. The MATLAB code to produce

these simulations is provided in Appendix D.
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Figure 34.: The steady state condition of the square lattice system (red) and

the bifurcation condition (green) plotted for a range of values

for u0 and h to show the values at which the conditions are

satisfied, circled in blue. For the example here where µ = 11,

the conditions are met at u0 = 0.0829 and h = 0.2233.

6.4 two dimensional model with hexagonal lattice

Studies have shown that the excitatory connections in the primary visual

cortex are hexagonal in nature [42, 129]. Therefore, as we are modelling

these patchy connections in V1, we now want to extend this model from a

square lattice to a hexagonal one. Now we will introduce a hexagonal lattice

that is generated by lattice vectors,

l1 = d

(√
3

2
,

1
2

)
, l2 = d(0, 1). (195)

The dual (or reciprocal) hexagonal lattice is generated by the vectors

q1, q2 where qi · lj = 2πδij. (196)

Therefore, we have

q1 =
4π√

3d
(1, 0), q2 = R 2π

3
q1 =

4π√
3d

(
−1

2
,

√
3

2

)
(197)



6.4 two dimensional model with hexagonal lattice 107

Figure 35.: The Fourier transform of the patchy connections kernel

wp(r, r′) = w(|r− r′|)M(r− r′) where the standard kernel w(r)

is defined by (186) and the square periodic patchiness M(r) by

(180). The red dot shows one of the four maximum points of

the Fourier transform. This is used to position the system at

bifurcation, namely where the plane 4/ f ′(u0, µ, h) tangentially

touches it. The plane used in the simulation is with h = 0.95hc

to enable pattern formation past the bifurcation point, this is

highlighted in blue. Here, µ = 11 and d = 2, plotted on the

domain [−5π, 5π]× [−5π, 5π].

and

q3 = −q1 − q2 = R 4π
3

q1 =
4π√

3d

(
−1

2
,−
√

3
2

)
, (198)

where Rθ is the rotation matrix,

Rθ =

cos θ − sin θ

sin θ cos θ

 . (199)

Another useful results is that the magnitude of these hexagonal lattice

vectors is

|q| = 4π√
3d

. (200)
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Figure 36.: An example of cortical activity for the two dimensional regular

square lattice model defined by the neural field model (168), with

kernel wp(r, r′) = w(|r− r′|)M(r− r′) where the standard kernel

w(r) is defined by (186), the periodic patchiness M(r) by (180)

and the firing rate f by (187). This example is using µ = 11,

d = 2, plotted on the domain [−5π, 5π]× [−5π, 5π].

We will introduce the patchy connections for a hexagonal lattice, M, to vary

periodically with respect to the regular hexagonal planar lattice L in the

form of,

Mh(r) = ∑
q∈L †

Mh
qe−iq·r, L † = {mq1 + pq2 + sq3 : m, p, s ∈ Z}.
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Figure 37.: Another example of cortical activity for the two dimensional

regular square lattice model defined by the neural field model

(168), with kernel wp(r, r′) = w(|r − r′|)M(r − r′) where the

standard kernel w(r) is defined by (186), the periodic patchiness

M(r) by (180) and the firing rate f by (187). This example

is using µ = 9, d = 2, plotted on the domain [−5π, 5π] ×

[−5π, 5π].

6.4.1 Turing Analysis of 2D Model with Hexagonal Lattice

The analysis for the hexagonal lattice follows along closely with similar

analysis to the square lattice in the previous section. Now, we consider the

choice of periodic model of patchiness for the hexagonal lattice to be,

Mh(r) =
1
3
[cos(q1 · r) + cos(q2 · r) + cos(q3 · r)] , (201)

this has Fourier coefficients,

Mh
q =

1
(2π)2

∫
R2

1
3

[
eiq1·r + e−iq1·r

2
+

eiq2·r + e−iq2·r

2

+
eiq3·r + e−iq3·r

2

]
e−iq·rdr. (202)
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Figure 38.: An example of a regular hexagonal lattice with distance d

between grid points.

Again by using the orthogonality (182), this gives the Fourier coefficients as,

Mh
q =

1
6
[
δq,q1 + δq,−q1 + δq,q2 + δq,−q2 + δq,q3 + δq,−q3

]
. (203)

Therefore, using this definition of the Fourier coefficients (203), the

eigenvalues of the hexagonal lattice system (179) can be written as,

λ(k) = −1 +
1
6

f ′(u0)
[
ŵ(|k− q1|) + ŵ(|k + q1|) + ŵ(|k− q2|)

+ ŵ(|k + q2|) + ŵ(|k− q3|) + ŵ(|k + q3|)
]
.

The steady state of the model was defined earlier as (175). Now, the

hexagonal lattice has a steady state at

Ŵ(k = 0) =
1
3
[ŵ(|q1|) + ŵ(|q2|) + ŵ(|q3|)]

Therefore,

Ŵ(k = 0) = ŵ
(

4π√
3d

)
.

So again to find the steady state, we need to solve, G(u0) = 0 where this

time,

G(u) = u− f (u)ŵ
(

4π√
3d

)
. (204)
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6.4.2 Simulations of the Patchy Model with a Hexagonal Lattice

To complete the theory, a computational example will be shown again, this

to highlight the effects of patchy connections on a hexagonal lattice using

Mh as given by (201). The choice of formula for the connectivity kernel w(r)

and firing rate f (u, µ, h) are the same as the square lattice example, (186)

and (187) respectively.Fig. 39 shows the patchy connections kernel wp(r, r′)

for the hexagonal periodic patchiness with this Wizard hat kernel.

Figure 39.: The patchy connections kernel wp(r, r′) = w(|r− r′|)Mh(r− r′)

where the standard kernel w(r) is defined by (186) and the

hexagonal periodic patchiness Mh(r) by (201). Here, µ = 15

and d = 2, plotted on the domain [−2π, 2π]× [−2π, 2π].

To calculate the critical wave vector kc at bifurcation, we now need to

find the maximum of ŵ(k) for the hexagonal lattice. The derivative of

Ŵ(k) is very similar to the square lattice with the extra basis vector q3;

namely, we need to calculate,

∂ŵ
∂kα

(|k± qβ|) for α = 1, 2 with β = 1, 2, 3 and k = (k1, k2). (205)

which can be expanded using,

∂ŵ
∂kα

(|k± qβ|) = ŵ(|k± qβ|)
1

|k± qβ|

(
(k1 ± qx

β)δ1,α + (k2 ± qy
β)δ2,α

)
. (206)

Therefore, by setting the value of µ, the steady state condition and the
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Figure 40.: The steady state condition of the hexagonal patchy connections

system (red) and the bifurcation condition (green) plotted for a

range of values for u0 and h to show when the values at which

the conditions are satisfied, circled in blue. For the example

here where µ = 15, the conditions are met at u0 = 0.0543 and

h = 0.1648.

bifurcation condition can be used to find the critical values of u0 and hc for

the hexagonal system. For µ = 15, the values of u0 and hc are calculated

as 0.0543 and 0.1648 respectively, as shown by the highlighted point in Fig.

40. Again, we choose to focus on the stability of one of the steady states

and anticipate similar behaviour for the other. The Fourier transform of the

hexagonal patchy connection kernel Ŵ is shown in Fig. 41, with one of the

six maximum points, Ŵ(kc) highlighted; again, the plane of 6/ f ′(u0, µ, h)

is emphasised to show where it intercepts the Fourier transform using

h = 0.95hc. This shows that the system is close to but past the bifurcation

point and that there are six maximum points, created from the structure

of the hexagonal lattice. Thus, patterns orientated along three different
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Figure 41.: The Fourier transform of the patchy connections kernel

wp(r, r′) = w(|r− r′|)Mh(r− r′) where the standard kernel w(r)

is defined by (186) and the hexagonal periodic patchiness Mh(r)

by (201). The red dot shows one of the six maximum points of

the Fourier transform. This is used to position the system at

bifurcation, namely where the plane 6/ f ′(u0, µ, h) tangentially

touches it. The plane used in the simulation is with h = 0.95hc

to enable pattern formation past the bifurcation point, this is

highlighted in blue. On the right plot, the 6 maximum points

of the Fourier transform for the hexagonal lattice can be clearly

identified. Here, µ = 15 and d = 2, plotted on the domain

[−5π, 5π]× [−5π, 5π].

directions can be simultaneously excited at bifurcation.

An example of the cortical activity from using the two dimensional neural

field model with a patchy hexagonal lattice applied to the connectivity

can be seen in Fig. 42. This shows stripes of excitatory and inhibitory

cortical activity with similar angles to hexagons, horizontal lines and lines

at approximately 60◦ and 120◦. This is expected since the six directions in

k-space predicted to be unstable are hexagonal in nature. The simulations

are started at the steady state u0 with random noise added and due to being

unstable past bifurcation, this results in different patterns of activity with

every simulation. This is reproducible for different values of µ, with Fig. 43
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Figure 42.: An example of cortical activity for the two dimensional regular

hexagonal lattice model defined by the neural field model (168),

with kernel wp(r, r′) = w(|r− r′|)Mh(r− r′) where the standard

kernel w(r) is defined by (186), the periodic patchiness Mh(r) by

(201) and the firing rate f by (187). This example is using µ = 15,

d = 2, plotted on the domain [−5π, 5π]× [−5π, 5π].

showing another example of the cortical activity with patchy connections

on a hexagonal lattice with µ = 12. The hexagonal patterns are a lot closer

to what is expected of the patchy neural connections. The MATLAB code

to produce these simulations is similar to the code provided in Appendix

D but with the equations adapted to the hexagonal equivalents, more of

which is also provided in the Appendix F for the next chapter.

6.5 model with hexagonal lattice : introducing ε

Now we will slightly adjust the patchy formula to include the parameter ε

to modulate the strength of the patchiness with the hexagonal lattice. This is

useful as it enables us to have more control over the strength of the patchy

connections. Furthermore, the isotropic model is recoverable as ε → 0,
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Figure 43.: Another example of cortical activity for the two dimensional

regular hexagonal lattice model defined by the neural field

model (168), with kernel wp(r, r′) = w(|r− r′|)Mh(r− r′) where

the standard kernel w(r) is defined by (186), the periodic

patchiness Mh(r) by (201) and the firing rate f by (187). This

example is using µ = 12, d = 2, plotted on the domain

[−5π, 5π]× [−5π, 5π].

hence this can be used to validate the analysis and compare against the

standard neural field model. Therefore, we will now consider the formula

of patchiness and the lattice to be,

Mε(r) = 1 + ε

 ∑
q∈L †

Mε
qe−iq·r

 , L † = {mq1 + pq2 + sq3 : m, p, s ∈ Z}.

(207)

using the same hexagonal generational vectors as previously, given by

(197)-(198).
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6.5.1 Turing Analysis of Model with Hexagonal Lattice introducing ε

The hexagonal lattice is used again with this model and so the analysis

follows from previously in section 6.4.1. Hence, we now consider the choice

of periodic model of patchiness to be similarly,

Mε(r) = 1 + ε

[
1
3
[cos(q1 · r) + cos(q2 · r) + cos(q3 · r)]

]
, (208)

The eigenvalues of this model are,

λ(k) = −1 + f ′(u0)
[
ŵ(|k|) + ε

6
[
ŵ(|k− q1|) + ŵ(|k + q1|) + ŵ(|k− q2|)

+ ŵ(|k + q2|) + ŵ(|k− q3|) + ŵ(|k + q3|)
]]

.

The steady state of the model was defined earlier as (175). Now, the

hexagonal lattice including the parameter ε has a steady state at

Ŵ(k = 0) = ŵ(0) +
ε

3
[ŵ(|q1|) + ŵ(|q2|) + ŵ(|q3|)] .

So again to find the steady state, we need to solve, G(u0) = 0, where this

time, in the case where the kernel is balanced, (ŵ(0) = 0),

G(u) = u− f (u)εŵ
(

4π√
3d

)
. (209)

6.5.2 Computational Example

To complete the theory, a computational example will be given to show the

effects of varying the strength of an isotropic connectivity kernel with a

hexagonal lattice using Mε as given by (208). Again, the choice of formula

for the connectivity kernel w(r) and firing rate f (u, µ, h) for this example

are (186) and (187) respectively. Fig. 44 shows the patchy connections

kernel wp(r, r′) for the hexagonal periodic patchiness with epsilon with this

Wizard hat kernel.

To calculate the critical wave vector kc at bifurcation, we now need to
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Figure 44.: The patchy connections kernel wp(r, r′) = w(|r − r′|)M(r − r′)

where the standard kernel w(r) is defined by (186) and the

hexagonal periodic patchiness Mε(r) by (208). Here, µ = 1.1,

ε = 15 and d = 2, plotted on the domain [−2π, 2π]× [−2π, 2π].

find the maximum of ŵ(k) for the hexagonal lattice with ε. Following

equations (188-191) we have,

∂

∂k1

[
ŵ(|k|) + ε

6
[
ŵ(|k− q1|) + ŵ(|k + q1|) + ŵ(|k− q2|)

+ ŵ(|k + q2|) + ŵ(|k− q3|) + ŵ(|k + q3|)
]]

= ŵ′(|k|) k1

|k| +
ε

6

[
ŵ′(|k− q1|)

1
|k− q1|

(
k1 −

4π√
3d

)
+ ŵ′(|k + q1|)

1
|k + q1|

(
k1 +

4π√
3d

)
+ ŵ′(|k− q2|)

1
|k− q2|

(
k1 +

2π√
3d

)
+ ŵ′(|k + q2|)

1
|k + q2|

(
k1 −

2π√
3d

)
+ ŵ′(|k− q3|)

1
|k− q3|

(
k1 +

2π√
3d

)
+ ŵ′(|k + q3|)

1
|k + q3|

(
k1 −

2π√
3d

) ]
(210)
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and

∂

∂k2

[
ŵ(|k|) + ε

6
[
ŵ(|k− q1|) + ŵ(|k + q1|) + ŵ(|k− q2|)

+ ŵ(|k + q2|) + ŵ(|k− q3|) + ŵ(|k + q3|)
]]

= ŵ′(|k|) k2

|k| +
ε

6

[
ŵ′(|k− q1|)

1
|k− q1|

(k2) + ŵ′(|k + q1|)
1

|k + q1|
(k2)

+ ŵ′(|k− q2|)
1

|k− q2|

(
k2 −

2π

d

)
+ ŵ′(|k + q2|)

1
|k + q2|

(
k2 +

2π

d

)
+ ŵ′(|k− q3|)

1
|k− q3|

(
k2 +

2π

d

)
+ ŵ′(|k + q3|)

1
|k + q3|

(
k2 −

2π

d

) ]
(211)

Figure 45.: The steady state condition of the hexagonal patchy connections

system (red) and the bifurcation condition (green) plotted for a

range of values for u0 and h to show when the values at which

the conditions are satisfied, circled in blue. For the example here

where µ = 1.1 and ε = 15, the conditions are met at u0 = 0.6453

and h = 2.3995.
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Figure 46.: The Fourier transform of the patchy connections kernel

wp(r, r′) = w(|r − r′|)Mε(r − r′) where the standard kernel

w(r) is defined by (186) and the hexagonal periodic patchiness

Mε(r) by (208) and the strength of the patchiness is controlled

by ε. The red dot shows one of the six maximum points of

the Fourier transform. This is used to position the system at

bifurcation, namely where the plane 6/ f ′(u0, µ, h) tangentially

touches it. The plane used in the simulation is with h = 0.95hc

to enable pattern formation past the bifurcation point, this is

highlighted in blue. On the right plot, the 6 maximum points

of the Fourier transform for the hexagonal lattice can be clearly

identified. Here, µ = 1.1, ε = 15 and d = 2, plotted on the

domain [−5π, 5π]× [−5π, 5π].

Therefore, by setting the value of µ, the steady state condition and

the bifurcation condition can be used to find the critical values of u0 and hc

for the hexagonal lattice controlled by ε. For µ = 1.1 and ε = 15, the values

of u0 and hc are calculated as 0.6453 and 2.3995 respectively, as shown by

the highlighted point in Fig. 45. Again, there is another steady state just

outside the domain of the diagram which we do not consider, but for which

we anticipate similar stability results and pattern forming behaviour. The

Fourier transform of the hexagonal patchy connection kernel Ŵ with ε is

shown in Fig. 46, with one of the six maximum points, Ŵ(kc) highlighted;

again, the plane of 6/ f ′(u0, µ, h) is emphasised to show where it intercepts
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Figure 47.: An example of cortical activity for the two dimensional regular

hexagonal lattice model defined by the neural field model (168),

with kernel wp(r, r′) = w(|r− r′|)Mε(r− r′) where the standard

kernel w(r) is defined by (186), the periodic patchiness Mε(r) by

(208) and the strength of the patchiness is controlled by ε, and

the firing rate f by (187). This example is using µ = 1.1, ε = 15

and d = 2, plotted on the domain [−5π, 5π]× [−5π, 5π].

the Fourier transform using h = 0.95hc. This shows that the system is close

to but past the bifurcation point and that there are six maximum points,

occurring from the structure of the hexagonal lattice.

An example of the cortical activity from using the two dimensional

neural field model with a patchy hexagonal lattice controlled by ε applied

to the connectivity can be seen in Fig. 47. This again shows lines of

excitatory and inhibitory cortical activity with similar angles to hexagons,

horizontal lines and lines at approximately 60◦ and 120◦ due to the six

directions in k-space predicted to be unstable are hexagonal in nature. The

simulations are started at the steady state u0 with random noise added

and due to being unstable past bifurcation, this results in different patterns
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of activity with every simulation. The model with ε results in patchier

connections than without, the lines are not as connected. The MATLAB

code to produce these simulations is similar to the code provided in

Appendix D but with the equations adapted to the equivalent ones for the

hexagonal model with ε.

6.6 summary

In this chapter, we set out to incorporate the long range patchy connections

that are seen in the crystalline microstructure of V1 cortex. The standard

connectivity model that we have previously used (186) included short

range inhibition and long range excitation; however, this was homogeneous

and isotropic, the same across the cortex. To model the patchiness in the

connectivity, we included modulation by a periodic function M(r − r′).

This was firstly shown using a square lattice. However, it has been shown

that the connections in V1 are approximately hexagonal in structure.

Consequently, we used a hexagonal lattice. Finally, we added the ε

coefficient to be able to control the strength of the patchiness. In conclusion,

the hexagonal patchy model is a better representation of the neuronal

connections in V1 as it is more realistic of the activity than the previous

standard neural field models. Furthermore, we have managed to augment

standard Turing analysis in neural fields to incorporate a form of patchy

connections in a model that is consistent with the microstructure of V1.

We believe that the relationship between the microstructure of patchy

connectivity and orientation preference will allow us to create a model of

the orientation preference by using the patchy connections to help create

the pinwheel and linear structure. This will be explored in the next chapter,

using a multi-layered neural field model.



7
U S I N G PAT C H Y C O N N E C T I O N S T O G E N E R AT E A N

O R I E N TAT I O N P R E F E R E N C E M A P

7.1 introduction

The aim of this chapter is to explore how patchy connections between

neurons in primary visual cortex can allow us to create an orientation

preference map (OPM). Primary visual cortex has a lattice-like pattern

of connectivity that is similar to the OPM, with short range connections

between the orientations, similar to the pinwheel structure of the OPM, as

well as long range connections to the same orientation, the linear regions

of the OPM. First, we will review the layered neural field model of Rankin

and Chavane in [96] that generates orientation preference. Their work on

this model looks at replicating voltage sensitive dye (VSD) experiments that

show a stable orientation selective response in activity to local, orientated

visual stimuli in V1. They present a layered model of four sub-populations

incorporating orientation preference to model these voltage-sensitive dye

experiments; with connectivity that is split into inhibition, and long and

short range excitation, along with an input term to replicate the stimulus

driven input in the experiments. The orientation preference weights

used in their model were generated using spatial Hebbian-like learning.

Orientation preference has previously been added to neural field models

before in the work of Bressloff in [21], discussed in Chapter 2. Techniques

used in the layered model from [96] to combine multi-layer activity into one

122
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signal and also computing the orientation preference of the activity will

then allow us to build our own layered model with patchy connections for

OPM generation. We start with the patchy connections model from Chapter

6, the homogeneous and isotropic neural field model that is modulated by

a spatially periodic function. Turing analysis of our layered model with

linear coupling between the state variables in each layer allows us to find

the bifurcation point at which pattern formation occurs and then in turn

will use this in our studies of OPM generation.

The artificial generation of orientation preference maps have been

modelled in a variety of different ways previously. The work in [2],

investigates how the crystalline microstructure can be used to model

spatial hallucinations and how it affects long range connections such as

orientation. This work develops this by creating an orientation preference

map from the properties of the crystalline microstructure. In [96], the OPM

is created using a spatial Hebbian-like learning rule. A Hebbian learning

method using adaptation and normalisation is also investigated by [112].

In [128], long range connections are shown to be important for creating

key map features having quasi-periodic repetition. Orientation preference

maps that are normalised by the regular length scale can give a constant

pinwheel density, shown by [62, 63, 105]. The receptive fields of ganglion

cells is used to model an OPM in [89] and also investigates the hexagonal

symmetry of OPMs. In [93], the relationship between specialised glial cells

and orientation preference is explored to create a computational OPM.

7.2 layered neural field model with learned orientation

preference

In [96], Rankin and Chavane use a a planar neural field model to describe

neural activity in V1. Average membrane potential ui(x, y, t), which

represents the neural activity, is split into four orientation sub-populations,
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i = {0◦, 45◦, 90◦, 135◦}. This results in a dynamical model giving a coarse

grained evolution of the average membrane potential on a continuous

domain in two-dimensional cortical space with a discrete representation of

the orientations. Unlike the standard neural field model by [1] and [86],

this model splits the connectivity profile into inhibition, local excitation and

lateral excitation. This allows more control over the effects of the different

types of connections in the model. There are far more parameters and

intricacies to the model than the standard neural field model. Furthermore,

a lot of the parameters and parameter ranges were chosen to be consistent

with anatomical data.

7.2.1 Description of the Rankin-Chavane Model

The Rankin-Chavane neural field equation model calculates the neural

activity on a mesoscopic scale on a continuous two-dimensional plane

(x, y). It consists of four interacting layers, each representing the

average membrane potential coding for a quantised orientation. An

integro-differential equation models the dynamics of each subpopulation

as,

τ
∂

∂t
ui(x, y, t) =−∑

j
ρijuj(x, y, t) (212)

+ ∑
j

kij Ij(x, y)(1 + βinp Jj(x, y)) (213)

+ S(ui(x, y, t))⊗
[

gexwloc
E (x, y)− ginwI(x, y)

]
(214)

+ (1 + βrec Ji(x, y))S(ui(x, y, t))⊗gexwlat
E (x, y). (215)

with timescale τ = 10ms and the symbol ⊗ denotes a spatial convolution.
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Term (212) is the decay of the population activity to resting potential

and the sub-population decay term coefficient is,

ρij = δij + 0.1(1− δij) (216)

giving local, linear cross inhibition. Term (213) being the stimulus driven

input, Ij and the sub-population active orientations are weighted by kij,

where

kij = k2(1 + δij). (217)

The orientation input Jj(x, y) is learned in this model and modulated by

βinp and this is given strength βinp = 0.25. Term (214) is the local excitation

and inhibition connectivity convolved with a sigmoidal firing rate functions.

The orientation selective excitatory connections are modulated by βrec and

this is a free parameter in [0, 1]. Furthermore, term (215) models the

orientation-selective interactions of the excitatory lateral connections.

The formula for connectivity, firing rate, conversion to VSD signal and

parameters used are described in Appendix E and are all taken from [96].

7.2.2 Orientation Preference Map

In [96], the weights Ji were learned using a spatial Hebbian-like learning

method for connections. A spatial Hebbian-like rule was applied using the

converged model output ufin
i,n computed using a series of localised inputs

Ii with random orientations and at random locations. In more detail, this

learning rule takes the form,

Ji,n+1 = Ji,n + Ha Ii(1− 〈|Ji,n| ? G〉[0,1])u
fin
i,n (218)

Ji,n+1 = 〈|Ji,n+1|〉[−1,1], (219)

where Ha is the learning rate, G is a smoothing kernel. The density of

pinwheels stabilised after 1600 steps of learning; however, the simulation

carried on for 6400 steps. The result of this is shown in Fig. 48. In the

paper, they suggest that maps J obtained experimentally or synthetically
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could also be used to replicate the results as long as the same pinwheel

structures and the quasi-periodic organisation is preserved.

The von Mises distribution is a circular normal distribution from 0 to

2π, making it useful to extract orientations. The von Mises distribution is

modelled with tuning coefficient κ and a preferred orientation µ ∈ [0, 180◦],

f (x; µ, κ) =
eκ cos(x−µ)

2π I0(κ)
(220)

with I0(κ) being the modified Bessel function of order 0. This distribution is

used to explore properties of the connectivity profile, which is modulated by

the OPM in Fig 48, and is dependent on the connectivity parameters; it was

used to visualise the orientation tuning produced by the OPM-modulated

connectivity. By choosing κ ∈ [0.7, 1.2], computed as a best fit-value to the

connectivity, each orientation’s connectivity Ji for i = {0◦, 45◦, 90◦, 135◦}

can then be computed using µ = i. These four sub-population maps are

shown in Fig. 48, in comparison to the entire OPM they created from

[96]. These sub-population maps look patchy and have a roughly periodic

structure, prompting us to try to use patchy connections to create an OPM.

We recreated an orientation preference map using a random field model,

as described by Petitot in [91] and defined in Chapter 2 by (9). We used

the approach from [96] in reverse and applied the von Mises distribution

to this OPM for each orientation layer to reverse engineer this into the four

sub-population maps, by choosing κ ∈ [0.7, 1.2], each orientation preference

input Ji for i = {0◦, 45◦, 90◦, 135◦} can then be computed using µ = i.

These four sub-population inputs are shown in Fig. 49, in comparison

to the entire OPM they were extracted from, using the OPM from Petitot

described by (9).
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Figure 48.: The four component orientation preference inputs for angles

i = {0◦, 45◦, 90◦, 135◦} with the lighter regions corresponding

to higher selectivity for that orientation and darker regions

to lower selectivity correspondingly. These are obtained from

learned orientation preference (9) (right) by applying the von

Mises distribution (220) four times for u = i respectively. Figure

reproduced from [96].

7.2.3 Conversion to One Signal

Once the activity has been converted to a VSD-like signal, as described

in Appendix E, there are now four components of the neural activity, the

optical image signal at each of the orientations i = {0◦, 45◦, 90◦, 135◦}, OIi.

The general activation of these four signals can then be computed as,

Act(x, y, t) =
1
4 ∑

i
OIi(x, y, t), i = {0◦, 45◦, 90◦, 135◦}. (221)

The optical image signal is then normalised by a scaling factor using the

max of all of the signals,

OIi =

(
1−OImax

i + ∑
i

1
4

OImax
i

)
OIi (222)
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Figure 49.: The four component orientation preference map for angles i =

{0◦, 45◦, 90◦, 135◦} (left) with the lighter regions corresponding

to higher selectivity for that orientation and darker regions to

lower selectivity correspondingly. These are obtained from the

random field model (219) (right) by applying the von Mises

distribution (220) four times for u = i respectively.

Difference maps can be computed as the difference between orthogonal

optical image signals,

D1(x, y, t) = OI0(x, y, t)−OI90(x, y, t), (223)

D2(x, y, t) = OI45(x, y, t)−OI135(x, y, t). (224)

The orientation preference of the optical image signal is the angular

coordinate, argument, of the OI signal difference maps, thus computed as,

Pref(x, y, t) = arctan(D1(x, y, t), D2(x, y, t)), (225)

and the selectivity strength is the radial coordinate, the magnitude,

Sel(x, y, t) =
√

D1(x, y, t)2 + D2(x, y, t)2. (226)

This same method will be used for our model to calculate the orientation

preference of the layers of activity.
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7.2.4 Summary of Rankin and Chavane Model

In conclusion, the work of [96] has produced an in depth model that can

be manipulated to model an orientation preference map. The results from

[96] were reproduced to check the understanding of the model with both

the Hebbian-learned orientation weights Ji and also the orientation weights

that we generated using (9). By creating an OPM using a different approach,

linear stability analysis and pattern formation prediction are able to be

performed. This will allow for further mathematical analysis.

7.3 multi-layered model with hexagonal lattice

The orientation preference map can be created using Hebbian-learning as

seen in [96] and also using models such as (9). However, they have a similar

structure as the patchy connections, as seen in chapter 6 and now with

the patchy connectivity model and techniques from chapter 6 and model

from [96], we can create a layered model inspired by the work in [96] and

analyse the resultant pattern formation using Turing analysis.

We will now introduce a multi-layer two dimensional scalar neural

field model, based on the work in chapter 6 and the model from [96],

∂

∂t
uj(r, t) = −∑

i
ρijui(r, t) +

∫
R

w(|r− r′|)[1 + εMj(r− r′)] f (uj(r′, t)) dr′

(227)

for j = [1, 2, 3, 4], where ε ∈ R and

ρii = 1

ρij = ρ; i 6= j.

The choice to use four layers is motivated by the work in [96] meaning we

are also able to use the same methods to combine the four layers of activity

into one for the OPM. Furthermore, the four layers are used to keep the
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analysis relatively easy to compute; however, this could be extended. The

choice of ρii = 1 is to maintain the standard neural field model for the layer

and then ρij = ρ for i 6= j allows for the strength of the interaction between

the layers to be controlled.

Now, as each layer represents a different orientation, multiple patchy

connectivity formulas are required for each layer, otherwise all of the

activity would be in the same location for each orientation. Ideally, the

patchy connectivity will overlap as little as possible for the four layers. We

will achieve this by using the previous model of patchy connectivity and

adding parameters to allow the option to rotate, R, or shift, a, the patchy

lattice for each layer of the model. Therefore, we require one formula for

Mj, the simple model of patchiness as previously seen in chapter 6 with

Mj(r) = ∑
q

J j
qeiq·Rj(r−aj), (228)

here

Rj =

cos θj − sin θj

sin θj cos θj

 , (229)

with θj being the angle of rotation and |aj| < d for each layer j = [1, 2, 3, 4].

The Fourier coefficients are given explicitly by,

J j
q =

1
(2π)2

∫
R2

Mj(r)e−iq·Rj(r−aj) dr. (230)

In matrix form, we may rewrite (227), using u = (u1, u2, u3, u4),

∂

∂t
u = −Au + W ⊗ f (u); Wj = w[1 + εMj] (231)

with Wij = δijWj, Aij = δij + (1− δij)ρ, and ⊗ denotes spatial convolution.

7.3.1 Turing Analysis

Following standard Turing Analysis, as seen in chapter 3, we consider the

homogeneous steady state with

u0 = (u0
1, u0

2, u0
3, u0

4), (232)
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given by

Au0 =
∫

R
W(r) dr · f (u0). (233)

Introduce the 2D Fourier Transform,

Ŵj(k) =
∫

R2
w(|r|)[1 + εMj(r)]e−ik·rdr, (234)

then,

Au0 = Ŵ(k = 0) · f (u0), (235)

with Ŵij = δijŴj and [ f (u0)]j = f (u0
j ). The Fourier Transform of Wj is,

Ŵj(k) =
∫

R2
w(r)e−ik·rdr + ε ∑

q
J j
q

∫
R2

w(|r|)e−i(k·r−q·Rj(r−aj))dr

= ŵ(k) + ε ∑
q

J j
qŵ(k− RT

j q)e−iq·Rjaj . (236)

Now ŵ(k) = ŵ(|k|), so

Ŵj(k) = ŵ(|k|) + ε ∑
q

J j
qŵ(|k− RT

j q|)e−iq·Rjaj . (237)

Taking the steady state with a small perturbation uj = u0
j + cjeλteik·r, for

|cj| � 1, to find the eigensystem,

(−λI − A + ΓŴ(k))c = 0, (238)

where Γij = δij f ′(u0
j ) and c = (c1, c2, c3, c4) . Therefore, for non-trivial

solutions of c, we need

| − λI − A + ΓŴ(k)| = 0. (239)

We shall take the model for patchiness to be,

Mi(r) =
1
3
[cos(q1 · Ri(r− ai)) + cos(q2 · Ri(r− ai)) + cos(q3 · Ri(r− ai))] ,

(240)

with hexagonal patchiness where q1, q2, q3 are as in (197-198). This can also

be written as,

Mj(r) =
1
6

3

∑
l=1

[
eiql ·Rj(r−aj) + e−iql ·Rj(r−aj)

]
, (241)
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with Fourier coefficients,

J j
q =

1
(2π)2

1
6

3

∑
l=1

∫
R2

[
eiql ·Rj(r−aj) + e−iql ·Rj(r−aj)

]
e−iq·Rj(r−aj) dr (242)

=
1
6

3

∑
l=1

1
(2π)2

∫
R2

[
e−i(q−ql)·Rj(r−aj) + e−i(q+ql)·Rj(r−aj)

]
dr (243)

=
1
6

3

∑
l=1

[
ei(q−ql)·Rjaj δ(RT

j (q− ql)) + ei(q+ql)·Rjaj δ(RT
j (q + ql)

]
. (244)

Where we have used the fact that

1
(2π)2

∫
R2

e−i(q−ql)·Rj(r−aj)dr = ei(q−ql)·Rjaj δ(RT
j (q− ql)). (245)

This gives the Fourier transform of the patchy connectivity as,

Ŵj(k) = ŵ(|k|) + ε

6

3

∑
l=1

[
e−iql ·Rjaj ŵ(|k− RT

j ql|) + eiql ·Rjaj ŵ(|k + RT
j ql|)

]
,

(246)

for shifts aj and rotations Rj of the patchiness in each layer.

7.3.2 Steady State

From the Turing Analysis, we have a steady state (235). Now, we have,

Ŵj(k = 0) =
ε

6

3

∑
l=1

[
e−iql ·Rjaj ŵ(|RT

j ql|) + eiql ·Rjaj ŵ(|RT
j ql|)

]
(247)

=
ε

6

3

∑
l=1

[
e−iql ·Rjaj + eiql ·Rjaj

]
ŵ(|RT

j ql|) (248)

=
ε

3

3

∑
l=1

ŵ(|RT
j ql|) cos(ql · Rjaj). (249)

In our case, ŵ(|RT
j ql|) = ŵ

(
4π√

3d

)
for all j and l, as |ql| = 4π√

3d
and

|RT
j ql| = |ql| .

We have,

Ŵ1(k = 0) =
ε

3
ŵ
(

4π√
3d

) [
cos (2π) + cos (−π) + cos (−π)

]
= −ε

3
ŵ
(

4π√
3d

)
,
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Ŵ2(k = 0) =
ε

3
ŵ
(

4π√
3d

) [
cos (−π) + cos (2π) + cos (−π)

]
= −ε

3
ŵ
(

4π√
3d

)
,

Ŵ3(k = 0) =
ε

3
ŵ
(

4π√
3d

) [
cos (−π) + cos (−π) + cos (2π)

]
= −ε

3
ŵ
(

4π√
3d

)
,

and

Ŵ4(k = 0) =
ε

3
ŵ
(

4π√
3d

) [
cos (0) + cos (0) + cos (0)

]
= εŵ

(
4π√

3d

)
.

Therefore, for the steady state we need to solve G(u0) = 0 where,

G(u) = Au− Ŵ f (u), u ∈ R4. (250)

7.3.3 Computational Examples

Firstly, we considered using the shifts aj to make ∑4
j=1 Mj(r) = 0 with no

rotation θj so that the patchy connections of each layer overlap as little as

possible and the inhibitory and excitatory connections cancel each other

out for simplicity. However, when we started to explore the simulations, we

found that whilst we expected these shifts to ultimately produce accurate

looking OPM’s, this was not the case. We then considered no shifts aj = 0

and just rotation Rj. The hexagonal patchy connections has a rotational

symmetry of order 6 and therefore rotations of the form, θj = 2π j/3 or

θj = 2π j/4 would result in two of the profiles to be identical. Therefore,

we then tried the orientation of each layer to be θj = [2π/5, 4π/5, 6π/5, 0]

and aj = 0. The patchy connectivity profiles for each of the following

computational plots are shown in Fig. 50.

We will now simulate the multi-layered neural field model (227) with
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Figure 50.: The choice of patchy connectivity for each layer of the four layer

model (227) with the choice of θj = [2π/5, 4π/5, 6π/5, 0] and

no shifts, namely aj = 0, ∀j. These are each computed on the

domain [−5π, 5π]× [−5π, 5π] .

the patchy connections Mj as in Fig. 50. Firstly, we explore the case when

ρ = 0 to test the theory and code for (227), as this recovers the single layer

model that is reproduced four times as there is no connectivity between the

layers. Therefore, the four layers of neural activity should be the similar to

the activity profiles with patchy hexagonal connectivity seen in Chapter 6.

Again, the choice of formula for the connectivity kernel w(r) and firing rate

f (u, µ, h) for this example are (186) and (187) respectively. In general (when

ρ 6= 0), due to the analysis of the four layer model being more complex,

we don’t have the same bifurcation calculations as the single layer model

and hence have to vary parameters to push the system past bifurcation.

The simulation when ρ = 0 can be seen in Fig. 52. The code for these

computations is provided in Appendix F. The eigenvalues of the system

are shown in Fig. 51, this highlights that there are eigenvalues greater than

zero to induce pattern formation and the six peaks can be identified due to
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the patchy hexagonal connectivity.

Figure 51.: A computational plot of the eigenvalues of the multi-layer patchy

connections model (227) and its zero contour with µ = 0.8,

ε = 12, h = 2.1, σ = 0.6, d = 2, ρ = 0 and the patchy

connectivity profile is shown in Fig. 50, with the choice of θj

= [2π/5, 4π/5, 6π/5, 0] and no shifts, namely aj = 0, ∀j. These

are computed on the domain [−5π, 5π]× [−5π, 5π].

The resultant neural activity in each layer is shown in Fig. 52. This

again shows lines of excitatory and inhibitory cortical activity with similar

angles to hexagons, horizontal lines and lines at approximately 60◦ and

120◦. The simulations are started at the steady state u0 with random noise

added and due to being unstable past bifurcation, this results in different

patterns of activity with every simulation.

Next, we look at different cases when ρ 6= 0 to introduce the connectivity

between the layers. For the following plots, the choice of formula for

the connectivity kernel w(r) and firing rate f (u, µ, h) are (186) and (187)

respectively. Moreover, the simulations are started at the steady state u0

with random noise added and due to being unstable past bifurcation, this

results in different patterns of activity with every simulation. For the

eigenvalues of the system, ρ 6= 0 so A is no longer diagonal. Though as ρ

is still relatively small and all the other parameters remain the same, the
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Figure 52.: The neural activity for the four layer patchy connectivity model

(227). Computed using the following parameters µ = 0.8, ε = 12,

h = 2.1, σ = 0.6, d = 2, ρ = 0 and the patchy connectivity profile

is shown in Fig. 50, with the choice of θj = [2π/5, 4π/5, 6π/5, 0]

and no shifts, namely aj = 0, ∀j. These are computed on

the domain [−5π, 5π] × [−5π, 5π], using the steady state with

added random noise as the initial condition for each layer.

spectrum for ρ = 0.2 has a similar shape as seen in Fig. 53.

Biologically, there is only weak connection between the layers, so we

start at ρ = 0.01, Fig. 54. This still looks very similar to ρ = 0. To see

changes in the patchiness, we look at ρ = 0.1 in Fig. 55 and ρ = 0.2 in

Fig. 56.Activity patterns for increasing ρ show similar features of stripes of

activity orientated at 60◦ and 120◦ but with decreasing distinction between

areas of stripes of each orientation as ρ increases. When using this model

to create the OPM, there needs to be the right balance between short and

long range connections, as the pinwheels in the OPM need to have a certain

density.
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Figure 53.: A computational plot of the eigenvalues of the multi-layer patchy

connections model (227) and its zero contour with µ = 0.8,

ε = 12, h = 2.1, σ = 0.6, d = 2, ρ = 0.2 and the patchy

connectivity profile is shown in Fig. 50, with the choice of θj

= [2π/5, 4π/5, 6π/5, 0] and no shifts, namely aj = 0, ∀j. These

are computed on the domain [−5π, 5π]× [−5π, 5π].

7.4 orientation preference map simulations

The methods from [96] to convert four signals of neural activity into one

are outlined in section 7.2.3, we will be focusing on using the orientation

preference equation (225) to compute the OPM. The code for the activity

of the multi-layered patchy neural model being converted to an OPM is

provided in Appendix F. Firstly, we compute the OPM using the neural

activity with ρ = 0 and 0.01 that are presented in Fig. 52 and 54 respectively.

The resultant OPMs can be seen in Fig. 57, the neural activity for these

plots were highly connected over a long range and this is highlighted with

a greater amount of linear regions in the OPM than normally biologically

seen. Therefore, we would like to create an OPM from neural activity that

has less long range connectivity to highlight the pinwheel structure. The

neural activity plots with ρ = 0.1 and 0.2 that are presented in Fig. 55 and

56, show a lot of small patches of neural activity and therefore are better

suited to create an OPM that has a better pinwheel density. The resultant

OPMs for these are seen in Fig. 58 and from visual inspection look a lot
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Figure 54.: The neural activity for the four layer patchy connectivity model

(227). Computed using the following parameters µ = 0.8,

ε = 12, h = 2.1, σ = 0.6, d = 2, ρ = 0.01 and the patchy

connectivity profile is shown in Fig. 50, with the choice of θj =

[2π/5, 4π/5, 6π/5, 0] and no shifts, namely aj = 0, ∀j. These

are computed on the domain [−5π, 5π] × [−5π, 5π], using the

steady state with added random noise as the initial condition for

each layer.

more like a biological OPM with pinwheel structures and linear regions.

The computations were also repeated with the system closer to bifurcation

by altering the value of the bifurcation parameter h, using ρ = 0.2 and

h = 2.3. This resulted in the OPM forming similar to the previous example,

the pattern formation takes longer to appear but results in the same style

of OPM, the neural activity and OPM are shown in Fig. 59. Finally, the

computations were repeated with the system far from bifurcation, using

ρ = 0.2 again and h = 1.5. The pattern formation of the neural activity

far from bifurcation results in more areas of activity, similar to when ρ is

very small or turned off and hence, this again produces an OPM that has
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Figure 55.: The neural activity for the four layer patchy connectivity model

(227). Computed using the following parameters µ = 0.8,

ε = 12, h = 2.1, σ = 0.6, d = 2, ρ = 0.1 and the patchy

connectivity profile is shown in Fig. 50, with the choice of θj

= [2π/5, 4π/5, 6π/5, 0] and no shifts, namely aj = 0, ∀j. These

are computed on the domain [−5π, 5π] × [−5π, 5π], using the

steady state with added random noise as the initial condition for

each layer.

a sparser pinwheel density. The neural activity and OPM for ρ = 0.2 and

h = 1.5, far from bifurcation, is shown in Fig. 60. Therefore, the parameters

for the most realistic OPM are ρ ≥ 0.1 and close to bifurcation, 2 < h < 2.3.

7.5 summary

In this chapter, we set out to draw on the patchy connections model

we had analysed in the previous chapter, along with the work of a
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Figure 56.: The neural activity for the four layer patchy connectivity model

(227). Computed using the following parameters µ = 0.8,

ε = 12, h = 2.1, σ = 0.6, d = 2, ρ = 0.2 and the patchy

connectivity profile is shown in Fig. 50, with the choice of θj

= [2π/5, 4π/5, 6π/5, 0] and no shifts, namely aj = 0, ∀j. These

are computed on the domain [−5π, 5π] × [−5π, 5π], using the

steady state with added random noise as the initial condition for

each layer.

multi-layered neural field mode by [96], to create our own multi-layered

patchy connections model. In turn, we used this model to create an OPM

as the structure of an OPM is patchy as well. Having outlined the model of

[96] and understood the multi-layered model and also methods used in this

paper to combine neural activity for orientation preference; this allowed

us to create a multi-layered neural field model for which we performed

Turing analysis and which we also computationally simulated. We started

with turning off the coupling between the layers to reproduce the patchy

connectivity neural activity in four separate layers and confirm our analysis

and code. Slowly the connectivity between the layers was turned on to
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create a patchier neural activity to replicate the OPM pinwheel structure.

The patchier activity created an OPM with a higher pinwheel density

giving a more biologically sound OPM. The parameter regions in which

the OPM can be computed are not tuned and therefore this can be seen as

a robust model.

This work has shown a good proof of concept for this model, especially

as this is the first known work to extend the patch connectivity model.

However, there are limitations to the work. The choice of a Wizard’s hat (or

Mexican hat) connectivity function for (169), whilst analytically tractable,

this is choice is a little limiting and unrealistic. Long-range (beyond a

pinwheel’s distance away) patchy connections in visual cortex are solely

excitatory. But all of the long-range interactions from these choices of

connectivity function are through inhibition in the tail of w(r), albeit

modulated by M. To extend this work, different choices of connectivity

function could be used with excitatory long range connections to create a

more realistic model, for example the oscillatory connectivity model from

[71]. The change in connectivity may make the analysis either more difficult

or unable to be completed so direct simulations and parameter searches

may be implemented instead.
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Figure 57.: Orientation preference maps created using the neural activity

from the multi-layered patchy connection model (227) for ρ = 0

(top) and ρ = 0.01 (bottom). Computed using the following

parameters µ = 0.8, ε = 12, h = 2.1, σ = 0.6, d = 2 and the

patchy connectivity profile is shown in Fig. 50, with the choice

of θj = [2π/5, 4π/5, 6π/5, 0] and no shifts, namely aj = 0, ∀j.

These are computed on the domain [−5π, 5π]× [−5π, 5π].
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Figure 58.: Orientation preference maps created using the neural activity

from the multi-layered patchy connection model (227) for ρ =

0.1 (top) and ρ = 0.2 (bottom). Computed using the following

parameters µ = 0.8, ε = 12, h = 2.1, σ = 0.6, d = 2 and the

patchy connectivity profile is shown in Fig. 50, with the choice

of θj = [2π/5, 4π/5, 6π/5, 0] and no shifts, namely aj = 0, ∀j.

These are computed on the domain [−5π, 5π]× [−5π, 5π].
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Figure 59.: Neural activity computed by the multi-layered patchy

connection model (227) and the resultant orientation preference

map for ρ = 0.2 and h = 2.3, close to bifurcation. Computed

using the following parameters µ = 0.8, ε = 12, σ = 0.6, d = 2

and the patchy connectivity profile is shown in Fig. 50, with the

choice of θj = [2π/5, 4π/5, 6π/5, 0] and no shifts, namely aj = 0,

∀j. These are computed on the domain [−5π, 5π]× [−5π, 5π].
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Figure 60.: Neural activity computed by the multi-layered patchy

connection model (227) and the resultant orientation preference

map for ρ = 0.2 and h = 1.5 , far from bifurcation. Computed

using the following parameters µ = 0.8, ε = 12, σ = 0.6, d = 2

and the patchy connectivity profile is shown in Fig. 50, with the

choice of θj = [2π/5, 4π/5, 6π/5, 0] and no shifts, namely aj = 0,

∀j. These are computed on the domain [−5π, 5π]× [−5π, 5π].



8
C O N C L U S I O N

To conclude the work in this thesis, we first start by reviewing the main

results presented. Finally, we provide ideas for future exploration based on

this work.

8.1 summary of thesis

There were two main aims of this thesis; the first was to create a neural

field model to replicate the phenomena of the hallucinations observed by

Billock and Tsou in [10]. The second was to introduce patchy connectivity

into a neural field model and generate an orientation preference map.

After an overview of the thesis, we started by exploring the biological

background of vision in chapter 2, this was accompanied by an

introduction to neural field models, first exploring the standard neural

field model and then looking at different approaches to extend it. In

chapter 3, we introduced the work of Billock and Tsou [10] on sensory

induced hallucinations that observed a counter-intuitive psychophysical

phenomena. After explored this psychological study, we then introduced

the Swift-Hohenburg equation that could be driven to give an orthogonal

response of activity. We wanted to utilize similar analysis techniques

used by [81] on the Swift-Hohenburg model with spatial forcing to create

our own driven system. This then brought us to the point at which we

146
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could introduce a forced neural field model in chapter 4. We analysed this

model, firstly in one dimension and then two, by deriving the amplitude

equations for pattern formation past bifurcation. This provided us with

parameter regimes in which we could position the system to model the

induced perpendicular activity seen in the neural activity induced by

the psychophysical observations. Whilst the work in chapter 4 provided

stationary models of the hallucinations, the observed psychophysical

phenomena included movement. We did this by extending the neural

field to include adaptation as this allows for travelling waves to form

past bifurcation. This made the derivation of amplitude equations more

complex, so we only calculated them in one dimension and used this

as a starting point for the two dimensional simulations. The numerical

simulations of the full nonlinear model were shown to be consistent with

the psychophysical observations.

Having concluded the first aim of the thesis in chapter 5, we moved

onto the second. In chapter 6, we introduced the concept of patchy

connectivity, breaking the homogeneity of the standard model used to

create a connectivity profile that is more biologically accurate. After starting

with a square lattice, we then changed to a hexagonal one, which again

is more in tune with the actual structure of visual cortex. Furthermore,

by including a parameter to control the strength of the patchiness, this

gave us more control over the model. For all of these versions of the

model, we performed Turing analysis and simulate neural activity using

the patchy connectivity. The aim of the work in chapter 7 is to define a

simple connectivity rule that can lead to spontaneous pattern formation of

a realistic orientation preference map via a Turing instability. We reviewed

the work performed by Rankin and Chavane in [96] on a multi-layered

model with orientation preference which also provides methods for

combining multiple layers into one VSD-like signal. After summarising

of their work, we used similar principles in our multi-layer model. We
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performed simulations of the multi-layer model, beyond Turing instability,

using different strengths of coupling between layers and using patchy

connectivity in preference to the learned connectivity used in [96]. Once the

activity of the four layers had been combined into one signal the orientation

preference map was generated. This was completed again with different

strengths of coupling and also close and far away from bifurcation. The

orientation preference map was observed to be biologically plausible for

multiple parameters indicating that the model is robust. This completed

the second aim of the thesis in creating an orientation preference map from

a neural field model.

8.2 discussion of extensions to this thesis

The work in this thesis provided interesting results for modelling illusory

phenomena and patchy connectivity especially with respect to orientation

preference. There are many directions in which this could be extended and

we will discuss a few of these in this last section, focusing mainly on other

types of illusory phenomena that could be modelled, direct extensions of the

generation of the orientation preference map and a transcranial magnetic

stimulation experiment that could involve patchy connections.

8.2.1 Illusory phenomena

In chapter 4 and 5, we focused on the analysis of simple spatially repetitive

and time-independent stimuli. Interestingly, since the work of MacKay

in the 1950s, it has been well known that relatively simple patterns of

regular stimuli, such as radial lines or concentric rings, are enough to

induce illusory motion at right angles to those of the stimulus pattern

[80]. Many of these phenomena are amenable to further study using the

tools of psychophysics. Even simple variants of such patterns, such as the
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Enigma, created by pop-artist Isia Léviant [79], consisting of concentric

annuli on top of a pattern of radial spokes, can lead to very striking

illusory motion percepts; this illusion is shown in Fig. 61. It is a similar

concept to the hallucinations seen by Billock and Tsou in [10] and the work

performed on these could be extended to cover this illusion too. Future

work could consider input patterns with more spatial structure and explore

the conditions for the emergence of global illusory percepts from local

interactions, such as the Barber pole, Fig. 62, Rotating snakes, Fig. 63, Café

wall, Fig. 64, and Fraser Wilcox spiral, Fig. 65, in which local orientation

differences lead to the appearance of the global rotation of contours (see

[66] for further examples). All of these illusions are based on similar

concepts to the hallucinations we studied and the work presented here

could be extended to model these too.

Figure 61.: A gray-scale image based on Enigma adapted from [76], the

hallucinatory effect perceived is rotatory movement in the grey

circles bound by fan arms. An example of a visual hallucination

that could be modelled using an extension of chapter 4 and 5.
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Figure 62.: The Barber pole illusion adapted from [66], when moved up and

down the stripes appear to move laterally. An example of a

visual hallucination that could be modelled using an extension

of chapter 4 and 5.

Figure 63.: The rotating snakes illusion adapted from [66], the perception

being rotatory movement of the outer parts of the circles in

the periphery of the visual field. An example of a visual

hallucination that could be modelled using an extension of

chapter 4 and 5.
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Figure 64.: The Café wall illusion adapted from [66], this illusion is created

from superimposing fans and results in grey lines appearing to

form spirals. An example of a visual hallucination that could be

modelled using an extension of chapter 4 and 5.

Figure 65.: The Fraiser Wilcox illusion adapted from [66], a combination of

spirals and fans to illicit illusory movement. An example of a

visual hallucination that could be modelled using an extension

of chapter 4 and 5.

Moreover, given that periodic and quasi-crystal patterns in physical

(Faraday) systems can be excited by periodic temporal forcing [101],



8.2 discussion of extensions to this thesis 152

this motivates a further study of associated behavior in neural models.

It is known that fullfield flickering visual stimulation in humans can

produce geometric hallucinations in the form of radial or spiral arms (and

conversely that brain rhythms at the flicker frequency can be enhanced

with the presentation of static radial or spiral arms) [83]. Indeed, flicker

induced hallucinations have previously been studied from a theoretical

perspective in neural fields with time periodic forcing by Rule, Stoffregen,

and Ermentrout [102], and it would be very natural to extend the work

here to include models of spatio-temporal sensory drive, and in particular

to further understand visual hallucinations induced by flicker constrained

to a thin annulus centered on the fovea [90]. Another natural extension

is to extend very recent work on undriven neural fields that shows how

quasi-crystal patterns can arise via a Turing instability [44] to further

include spatio-temporal forcing.

8.2.2 Direct Extensions to the Generation of the Orientation Preference Map

For the orientation preference generated in chapter 7, we only appraised

how realistic they were visually. However, there are methods that one

could do to extend this work to confirm whether these are realistic OPM’s

numerically as well. These methods are seen in [96], which have been

taken from the Supplementary Material of [62], here the spectral power

as a function of the radial wave number of a synthetic OPM is plotted

to show the length scale. Also, properties like pinwheel density, polarity

etc which would be important in determining how realistic the OPM plots

are. Finally there are also many other parameters that can be explored, for

the patchy model that includes ε, this had to be made quite large for the

same patterns as the previous models to appear. Perhaps, altering other

parameters such as d and σ could mean that this does not have to be made

quite so large. Furthermore, different choices of connectivity function could

be used with excitatory long range connections to create a more realistic
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model, for example the oscillatory connectivity model from [71]. Finally,

we have only considered a four layer model, the work of [56] shows that

the neurons responding to a certain orientation preference changed every

10 degrees on average. Therefore, ideally would be modelled as roughly 18

different orientations; however, this may be computationally heavy so the

number of layers could be extended incrementally up to 18.

8.2.3 Transcranial Magnetic Stimulation Effects on the Orientation Preference

Map

Transcranial magnetic stimulation (TMS) is a clinical method that has the

ability to modify cortical processing. Unspecific TMS stimulation can result

in specific neuronal reorganisation; this includes large-scale remodelling

of primary visual cortex (V1), a mature functional architecture that is

usually fixed. The cause of the functional changes that are induced by TMS

are still quite unknown as the current recording methods such as fMRI,

MEG and EEG are either incompatible with the magnetic field required

for TMS or do not have the necessary spatiotemporal resolution to be

able to show the changes. The work of [69] studies how TMS-induced

neuronal plasticity allows temporary orientation specific remodelling of

visual cortical maps. The study [69] uses voltage sensitive dye (VSD) to

give real-time optical imaging to track the functional changes that occur in

the OPM after high frequency TMS is applied to the V1 on a mm2 scale.

This creates a temporary increase in excitability of the cortex which gives a

time window of several hours for enhanced plasticity for the architecture of

the visual feature maps to be remodelled or trained. The overall outcome

of the study shows that if visual stimulation of a single orientation occurs

after high frequency TMS, this leads to enlarged imprinting of the chosen

stimuli orientation on the OPM in V1.

First, summarising the approach in [69], VSD imaging is used to
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acquire the OPM before the procedure. The experiment starts with 30

minutes of 10 Hz TMS situated 5 to 10 mm over the occipital cortex. The

OPM is then evaluated directly after TMS again. Visual stimulation of

prolonged overexposure to a single orientation grating with counterphase

flickering occurs for the next 30 minutes. After waiting over 60 minutes

from the end of the visual stimulation, to ensure that the adaptation

effects stabilise, the OPM is acquired a final time using VSD. This was

repeated for 8 different orientations in 22.5◦ steps. Placebo experiments

involving no TMS were also carried out to ensure the results were due to

the TMS and not the VSD or visual stimulation alone. The VSD imaging

acquired the OPMs by computing the vector sum of the responses at each

pixel. Before the experiment the OPMs had a typical layout of regular

representation of orientations around pinwheel centres, see left OPMs in

Fig. 66. Immediately after the TMS the OPMs show the same structure;

however, the reproducibility of the OPM was strongly reduced, with

neurons not responding as strongly to their preferred orientation. The

excited cortical state with weakened inhibition and decreased orientation

selectivity is grounds for the plastic remodelling of the OPM. After the 30

minutes of visual stimulation and at least 60 minutes of waiting for the

changes to stabilise, the OPM acquired is dominated by the stimulated

orientation. Across all of the experiments, there was a 19.0% increase in

the orientation of the stimuli (± 4.0% standard error of the mean). The

increase in orientation was from a systematic shift in orientation preference

with a larger shift in neighbouring orientation domains of ±45◦ and is not

random. Furthermore, after the remodelling the neurons, especially those

with a new orientation preference, show consistent orientation tuning.

These results were stable for up to 6 hours after the visual stimulation. The

sham experiments showed no change. The experiment was also repeated

using 1 Hz TMS; in previous literature this has shown to be dominantly

suppressive and therefore should not result in any remodelling, it should

in fact stabilise the OPM. There was no shift in the OPM, thus proving that
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the remodelling is specifically facilitated by high frequency TMS.

There is still debate in the literature on how the TMS induced remodelling

of the OPM is facilitated. The first proposal is that it promotes existing

essential connectivity by unmasking undeveloped inhibitory connections;

the other being that it incorporates plastic changes across thalamic afferents.

Therefore, one could use the work in chapter 6 and 7 to try and produce

the overexposure results of the TMS experiment by developing plasticity

rules that act on the firing threshold, to mimic the known effects of the

TMS on excitability. Furthermore, this work could be used to explore how

patchy connections between the neurons would be a key principle into

how the TMS-remodelling occurs. By changing parameters and completing

parameter searches, the parameters required to show the phenomena could

be found. By using insight from anatomical behaviour and the behaviour

occurring due to TMS, this could decide which parameters are best to

change. However, whilst we have some insight, this may not always give

the desired results so working with a multitude of different parameter

changes could be required to get the best result. Our initial ideas are to

change the firing rate threshold of the model both globally and for the

individual orientations. From there we could also look at only allowing

one orientation in the input and also changing the strength of connectivity

to give the model net excitation or for it to be balanced with regards to

inhibition and excitation.
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Figure 66.: Remodelling of the orientation preference map after 30 minutes

of 10Hz TMS, then passive visual stimulation for 30 minutes.

The coloured pixels represent the orientation tuning of the

neuron > 60 minutes after the stimulation. The top part

of the figure shows the experimental process. Two different

orientations are used for the stimulation, i) 0◦ and ii) 90◦. The

bottom part shows the orientation preference map averaged over

8-17 trials pre and post experiment. Examples of pinwheel

structures are circled in black. The axis is P and L, posterior

and lateral. Figure adapted from [69].
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a.1 derivation of one dimensional amplitude equations

〈eik0x,Lu3〉 = 0, (251)

〈eik0x,
∂u
∂τ
〉 = ∂A

∂τ
, (252)

〈eik0x, 2β2w⊗ u1u2〉 = 2β2ŵ(k0)d0A|A|2, (253)

〈eik0x, β3w⊗ u3
1〉 = 3β3ŵ(k0)A|A|2, (254)

〈eik0x, δw⊗ u1〉 = δŵ(k0)A, (255)

〈eik0x,
1
2

βcWxx ⊗ ∂χχu1〉 =
1
2

βcŴxx(k0)
∂2A
∂χ2 , (256)

〈eik0x, β2Wx ⊗ ∂χu2
1〉 = 0, (257)

〈eik0x, βcWx ⊗ ∂χu2〉 = (1− δn,2)
γ1

2
βcŴx(k0)α−e−2ivx∂χ A∗δn,2 = 0, (258)

〈eik0x, γ2u1 cos k f x〉 = γ2

2
A∗e−2iνxδn,2 =

γ2

2
A∗e−2icχδn,2, (259)

〈eik0x, γ1u2 cos k f x〉 = (1− δn,2)

(
γ1

2

)2 [
(d+ + d−)A + δn,1d−A∗e−2iνx

]
= (1− δn,2)

(
γ1

2

)2 [
(d+ + d−)A + δn,1d−A∗e−2icχ

]
.

(260)
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a.2 derivation of two dimensional amplitude equations

a.2.1 Solving the equations

We note that

〈ei(kxx+kyy),Lgu2〉 = 0, 〈ei(kxx+kyy), β2w⊗ u2
1〉 = 0, (261)

〈ei(kxx+kyy), βc(Wx ⊗ ∂χ + Wy ⊗ ∂Υ)u1〉 = 0, (262)

〈ei(kxx+kyy), γ1u1 cos k f x〉 =

0 n 6= 2

γ1
2 B∗e−2iν1x n = 2

, (263)

and hence the solvability condition is automatically satisfied for all

n 6= 2 and for n = 2 we must set γ1 = 0. We write γ1 = (1 − δn,2)γ1.

We find a particular solution u2 by assuming that it has the form of

u2
1 + (1− δn,2)γ1u1 cos(k f x), substituting into (67) and balancing terms. For

our balanced kernel where ŵ(0) = 0 we find that the particular solution of

u2, therefore is,

u2 = z1
(

A2e2i(kxx+kyy)+ A∗2e−2i(kxx+kyy)+ B2e2i(kxx−kyy)+ B∗2e−2i(kxx−kyy))
+ z2

(
ABe2ikxx + A∗B∗e−2ikxx

)
+ z3

(
AB∗e2ikyy + A∗Be−2ikyy

)
+

γ1

2
(1− δn,2)

[
z+
(

Aei(kxx+kyy+k f x) + Bei(kxx−kyy+k f x)

+ A∗e−i(kxx+kyy+k f x) + B∗e−i(kxx−kyy+k f x)
)

+ z−
(

Aei(kxx+kyy−k f x) + Bei(kxx−kyy−k fx)

+A∗e−i(kxx+kyy−k f x) + B∗e−i(kxx−kyy−k f x)
) ]

, (264)

where

z1 =
β2ŵ(2k0)

1− βcŵ(2k0)
, z2 =

2β2ŵ(2kx)

1− βcŵ(2kx)
, z3 =

2β2ŵ(2ky)

1− βcŵ(2ky)
,

k± =
√
(kx ± k f )2 + k2

y, z± =
1

1− βcŵ(k±)
.
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We now use this in the solvability conditions for u3 where we find the

following projections:

〈ei(kxx+kyy), L u3〉 = 0, (265)

〈ei(kxx+kyy),
∂u
∂τ
〉 = ∂A

∂τ
, (266)

〈ei(kxx+kyy), δw⊗ u1〉 = δŵ(k0)A, (267)

〈ei(kxx+kyy), 2β2w⊗ u1u2〉 = 2β2ŵ(k0)[z1|A|2A + (z2 + z3)|B|2A], (268)

〈ei(kxx+kyy), β3w⊗ u3
1〉 = 3β3ŵ(k0)

[
|A|2A + 2|B|2A

]
, (269)

〈ei(kxx+kyy),
1
2

βcWxx ⊗ ∂χχu1〉 = −
1
2

βcŵ′′(k0)
∂2A
∂χ2 , (270)

〈ei(kxx+kyy),
1
2

βcWyy ⊗ ∂ΥΥu1〉 = −
1
2

βcŵ′′(k0)
∂2A
∂Υ2 , (271)

〈ei(kxx+kyy), γ2u1 cos k f x〉 = γ2

2
B∗e−2iν1xδn,2, (272)

〈ei(kxx+kyy), γ1(1− δn,2)u2 cos k f x〉 =(
γ1

2

)2

(1− δn,2)
[
(z+ + z−)A + z−B∗e−2iν1xδn,1

]
. (273)

and similarly for the other mode.

Therefore, with the scaling ν1 = εc1, so e−2iν1x = e−2ic1χ, the projections

give the evolution of the amplitude as,

∂A
∂τ

= ŵ(k0)
(

δA−Φ1|A|2A−Φ2|B|2A
)
− βc

2
ŵ′′(k0)

(
∂2A
∂χ2 +

∂2A
∂Υ2

)
+

γ2

2
B∗e−2ic1xδn,2 +

(
γ1

2

)2

(1− δn,2)
[
(z+ + z−)A + z−B∗e−2iν1xδn,1

]
,

(274)

and

∂B
∂τ

= ŵ(k0)
(

δB−Φ1|B|2B−Φ2|A|2B
)
− βc

2
ŵ′′(k0)

(
∂2B
∂χ2 +

∂2B
∂Υ2

)
+

γ2

2
A∗e−2ic1xδn,2 +

(
γ1

2

)2

(1− δn,2)
[
(z+ + z−)B + z−A∗e−2iν1xδn,1

]
,

(275)

where

Φ1 = −2β2z1 − 3β3 and Φ2 = −2β2(z2 + z3)− 6β3. (276)
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These now needs to be rescaled back to the original time and space variables.

We take,

a = εAeic1χ, b = εBeic1χb, (277)

and
∂

∂τ
=

1
ε2

∂

∂t
,

∂

∂χ
=

1
ε

∂

∂x
,

∂

∂χ2 =
1
ε2

∂

∂x2 ,
∂

∂Υ
=

1
ε

∂

∂y
,

and
∂

∂Υ2 =
1
ε2

∂

∂y2 . (278)

This rescaling gives the amplitude equations (97 - 98).



B
U S E F U L R E S U LT S A N D D E R I VAT I O N S F O R C H A P T E R 5

b.1 forced adaptation model in one dimension

The hierarchy consists of equations of the form Lguα = gα(u1, . . . , uα)

for the linear operator Lg = − ∂
∂t − 1 + βcw ⊗ −gη∗. The adjoint of this

operator is L†
g = ∂

∂t − 1 + βcw ⊗ −gη−∗ where η−(t) = η(−t). For all

u ∈ kerL†
g then 〈u, gα〉 = 〈u,Lguα〉 = 〈L†

gu, uα〉 = 0. It is straightforward

to establish that kerL†
g = kerLg so that the set of solvability conditions are

〈e±i(k0x±ωct), gα〉 = 0. By using the Fredholm Alternative, equation (151)

gives,

〈ei(k0x+ωct), Lgu2〉 = 0, (279)

〈ei(k0x+ωct), β2w⊗ u2
1〉 = 0, (280)

〈ei(k0+ωct), βc(Wx ⊗ ∂χ)u1〉 = 0, (281)

〈ei(k0x+ωct), γ1u1 cos k f x〉 =

0 n 6= 2

γ1
2 B∗e−2iνx n = 2

(282)
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and similarly for the other mode.

The particular solution of u2, therefore is,

u2 = 2ζ0

(
|A|2 + |B|2

)
+ ζ1

(
A2e2i(k0x+ωct) + B∗2e−2i(kcx−ωct))

+ ζ2

(
ABe2ikcx

)
+ ζ3

(
AB∗e2iωct

)
+ (1− δn,2)

γ1

2

[
ζ4

(
A1ei(kcx+ωct+k f x) + B∗e−i(kcx−ωct−k f x)

)
+ζ5

(
Aei(kcx+ωct−k f x) + B∗e−i(kcx−ωct+k f x)

)]
+ c.c., (283)

where

ζ0 =
β2ŵ(0)

1− βcŵ(0) + gη̃(0)
,

ζ1 =
β2ŵ(2k0)

1 + 2iωc − βcŵ(2k0) + gη̃(2iωc)
,

ζ2 =
2β2ŵ(2k0)

1− βcŵ(2k0) + gη̃(0)
,

ζ3 =
2β2ŵ(0)

1 + 2iωc − βcŵ(0) + gη̃(2iωc)
,

ζ4 =
1

1 + iωc − βcŵ
(
k0 + k f

)
+ gη̃ (iωc)

ζ5 =
1

1 + iωc − βcŵ
(
k0 − k f

)
+ gη̃ (iωc)

.

However, we note that ŵ(0) = 0 so this gives ζ0 = ζ3 = 0. Also note that

η̃(0) = 1.
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Equation (153) gives the derivation of the amplitude equation by using the

Fredholm Alternative again,

〈ei(k0x+ωct), L u3〉 = 0, (284)

〈ei(k0x+ωct),
∂u1

∂τ
〉 = ∂A

∂τ
, (285)

〈ei(k0x+ωct), 2β2w⊗ u1u2〉 = 2β2ŵ(k0)[(2ζ0 + ζ1)|A|2 + (ζ0 + ζ2 + ζ3)|AB|2]A,

(286)

〈ei(k0x+ωct), β3w⊗ u3
1〉 = β3ŵ(k0)

[
3|A|2 + 6|B|2

]
A, (287)

〈ei(kcx+ωct), δw⊗ u1〉 = δŵ(k0)A, (288)

〈ei(k0x+ωct),
1
2

βcWxx ⊗ ∂χχu1〉 =
1
2

βcŴxx(k0)
∂2A
∂χ2 , (289)

〈ei(k0x+ωct), gηt ∗ u1〉 = g
∂A
∂τ

η̃′(iωc), (290)

〈ei(k0x+ωct), γ2u1 cos k f x〉 = γ2

2
B∗e−2iνxδn,2, (291)

〈ei(k0x+ωct), γ1u2 cos k f x〉 =
(

γ1
2

)2

(1− δn,2)
[
(ζ4 + ζ5)A + ζ5B∗e−2iνxδn,1

]
.

(292)

and similarly for the other mode.

Here, we note that

η̃t(λ) = −
∫ ∞

0
tη(t)e−λtdt =

d
dλ

∫ ∞

0
η(t)e−λtdt =

d
dλ

η̃(λ) =
−τa

(1 + λτa)2 .

(293)

We also have the scaling v = εc so e−2ivx = e−2icχ. The projections give the

evolution of the amplitude A as

(
1 + gη̃′(iωc)

) ∂A
∂τ

= ŵ(k0)
(

δ−Φ1|A|2 −Φ2|B|2
)

A

− βc

2
ŵ′′(k0)

∂2A
∂χ2 +

γ2

2
B∗e−2icχδn,2

+

(
γ1
2

)2

(1− δn,2)
[
(ζ4 + ζ5)A + ζ5B∗e−2icχδn,1

]
, (294)
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where

Φ1 = −3β3 − 2β2 [2ζ0 + ζ1] = −3β3 − 2β2ζ1,

Φ2 = −6β3 − 2β2 [2ζ0 + ζ2 + ζ3] = −6β3 − 2β2ζ2.

and we note that η̃′(−iωc) = (η̃′(iωc))∗. Similarly, by considering the

projections 〈ei(k0−ωct), ·〉, we obtain the evolution of the amplitude B as

(
1 + gη̃′(−iωc)

) ∂B
∂τ

= ŵ(k0)
(

δ−Φ∗1 |B|2 −Φ∗2 |A|2
)

B

− βc

2
ŵ′′(k0)

∂2B
∂χ2 +

γ2

2
A∗e−2icχδn,2

+

(
γ1
2

)2

(1− δn,2)
[
(ζ∗4 + ζ∗5)B + ζ∗5 A∗e−2icχδn,1

]
. (295)

These now need to be rescaled back to the original time and space variables.

Note that away from the bifurcation the solution will have a (temporal)

frequency ω = ωc + ξ where ξ is a frequency detuning parameter which we

can assume is order ε2. Recall also that we also have the spatial frequency

detuning parameter v1 = kx − k f /n. When we rescale back to the original

length and timescales we also let a = εAeic1χeiξ1t and b = εBeic1χeiξ2t where

ξ1 = −ξ and ξ2 = ξ. Upon rescaling

∂A
∂τ
→ e−iν1x

ε3
∂

∂t

(
ae−iξ1t

)
=

e−iν1xe−iξ1t

ε3

(
∂a
∂t
− iξ1a

)
, (296)

and similarly for the other mode. The parameters ξ1 and ξ2 can be removed

from the amplitude equations by noting that the factor outside the bracket

in (296) is also a factor on the right hand side of the rescaled amplitude

equation and by making a transformation a → aeiξ1t and b → beiξ2t. The

transformation removes the imaginary term inside the bracket and is

equivalent to changing the carrier wave frequency to ω = ωc + ξ. This

rescaling gives the amplitude equations (156) and (157).



C
T O O L S F O R C O D I N G

The numerical simulations were performed in the plane by discretising in

space on a regular square mesh, and solving the resultant set of ordinary

differential equations using Matlab’s in-built ode45 algorithm to evolve

the system forward in time. We use the Fast Fourier Transform Method to

numerically solving the model, and this provides substantial computational

speed-up over quadrature-based numerical methods for calculating w ⊗

f (u). This is also the method used in work of [29, 30, 72]. We are able to use

this method as the integral,
∫

Ω w(|r − r′|) f (u(r′, t)) dr′, has a convolution

structure and can be written as the inverse Fourier Transform of ŵ× f̂ to

give a solution of the integral.The discrete Fourier Transform, Y, of a m by

n matrix is,

Yp+1,q+1 =
m−1

∑
j=0

n−1

∑
k=0

ω
jp
m ω

kq
n Xj+1,k+1 (297)

where ωm and ωn are the complex roots of unity, ωm = e−2πi/m and ωn =

e−2πi/n. The discrete inverse Fourier Transform, X, of a m by n matrix Y is,

Xp,q =
1
m

m

∑
j=1

1
n

n

∑
k=1

ω
jp
m ω

kq
n Yj,k. (298)
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C O D E F O R PAT C H Y C O N N E C T I O N S

The following Matlab code follows the model and analysis in section 6.3.

The code produced the figures highlighting the results of the Turing analysis

and also the figure showing the resulting activity for the neural field model

with square patchy connections.

d = 2; P.d = d;

mu = 11; P.mu = mu;

sigma = 0.6; A = 1/sigma^2;

w = @(r) A.*exp(-r./sigma)-exp(-r);

q1 = (2.*pi./P.d); q2 = q1;

M = @(X,Y) 1/2*(cos(q1.*X)+cos(q2.*Y));

wp = @(X,Y) w(sqrt(X.^2+Y.^2)).*M(X,Y);

wHat = @(k) 2.*pi.*(A./(sigma.*(sigma.^(-2)+k.^2).^(3/2))

- 1./((1+k.^2).^(3/2)));

wpHat = @(k1,k2) (wHat(sqrt((k1-q1).^2+k2.^2))

+ wHat(sqrt((k1+q1).^2+k2.^2)) + wHat(sqrt(k1.^2+(k2-q2).^2))

+ wHat(sqrt(k1.^2+(k2+q2).^2)))/4;

dwHat = @(k) 6*pi*k*(1/((1+k^2)^(5/2))

- A/(sigma*(sigma^(-2)+k^2)^(5/2)));

DwpHat = @(k) [1/4.*(dwHat(sqrt((k(1)-q1)^2+k(2)^2))
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*(k(1)-2*pi/d)/(sqrt((k(1)-q1)^2+k(2)^2))

+ dwHat(sqrt((k(1)+q1)^2+k(2)^2))*(k(1)+2*pi/d)/

(sqrt((k(1)+q1)^2+k(2)^2))

+ dwHat(sqrt((k(2)-q2)^2+k(1)^2))*k(1)/(sqrt((k(2)-q2)^2+k(1)^2))

+ dwHat(sqrt((k(2)+q2)^2+k(1)^2))*k(1)/(sqrt((k(2)+q2)^2+k(1)^2))),

1/4.*(dwHat(sqrt((k(2)-q2)^2+k(1)^2))*(k(2)-2*pi/d)/

(sqrt((k(2)-q2)^2+k(1)^2))

+ dwHat(sqrt((k(2)+q2)^2+k(1)^2))*(k(2)+2*pi/d)/

(sqrt((k(2)+q2)^2+k(1)^2))

+ dwHat(sqrt((k(1)-q1)^2+k(2)^2))*k(2)/(sqrt((k(1)-q1)^2+k(2)^2))

+ dwHat(sqrt((k(1)+q1)^2+k(2)^2))*k(2)/(sqrt((k(1)+q1)^2+k(2)^2)))];

kc = [2,0];

kc = fsolve(DwpHat,kc);

kc1 = kc(1); kc2 = kc(2);

P.wHatd = wHat(2*pi/d);

P.wpHatMax = wpHat(kc(1),kc(2));

h = linspace(-0.5,1,1000); u0 = linspace(-0.5,1,1000);

bif1 = @(u0,h) u0 - f(u0,P.mu,h)*P.wHatd;

bif2 = @(u0,h) -1+fd(u0,P.mu,h)*P.wpHatMax;

x = [0.1, 0.3];

x = fsolve(@(x) BifurcationCondition(x,P),x);

u0 = x(1);P.h = x(2);

[U0, H] = meshgrid(u0,h);

figure(1); hold on

contour(U0,H,bif1(U0,H), [0 0], 'r-', 'linewidth', 2)

contour(U0,H,bif2(U0,H), [0 0], 'g-', 'linewidth', 2)



code for patchy connections 168

plot(u0,P.h,'bo','MarkerSize',10)

hold off

kx = linspace(-5*pi,5*pi,200); ky = linspace(-5*pi,5*pi,200);

[Kx, Ky] = meshgrid(kx,ky);

P.h = P.h*0.95;

figure(2); hold on

surf(Kx,Ky,wpHat(Kx,Ky)), view(3)

plot3(kc(1),kc(2),wpHat(kc(1),kc(2)),'r.','MarkerSize',30);

sheet = surf(Kx,Ky,0*Kx+1/fd(u0,P.mu,P.h),'FaceAlpha',0.5);

set(sheet, 'cdata',zeros(200)); shading interp;view(3);

hold off

P.Lx = 5*pi; P.Ly = 5*pi; P.N=2^9;

x = linspace(-P.Lx,P.Lx,P.N); y = linspace(-P.Ly,P.Ly,P.N);

[X,Y] = meshgrid(x,y); R = sqrt(X.^2+Y.^2);

U0 = u0*ones(P.N)+0.1*rand(P.N,P.N);

tspan = linspace(0,150,151);

P.wHat = real(fft2(wp(X,Y)));

[t,u] = ode45(@RHS,tspan,U0,[],P);

figure(3)

for i = 1:length(t)

surf(X,Y,reshape(u(i,:),[P.N,P.N]));

shading interp; colorbar; view(2);

drawnow;

end

function BifCondition = BifurcationCondition(x, P)

u0 = x(1); h = x(2);
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BifCondition = [u0 - f(u0,P.mu,h)*P.wHatd;

-1+fd(u0,P.mu,h)*P.wpHatMax];

end

function fr = f(u,mu,h)

fr = 1./(1+exp(-mu*(u-h)));

end

function frd = fd(u,mu,h)

frd = mu*f(u,mu,h).*(1-f(u,mu,h));

end

function NF = RHS(t,u,P)

u = reshape(u,P.N,P.N);

fHat = fft2(f(u,P.mu,P.h));

psi = (2.*P.Lx/P.N)*(2.*P.Ly/P.N)

.*ifftshift(real(ifft2(fHat.*P.wHat)));

NF = -u + psi; NF = NF(:);

end

This Matlab code was very similarly reproduced for the hexagonal lattice

and the hexagonal lattice with ε. These models require for the basis vectors

and the M, wpHat and dwHat equations to be altered; see section 6.4 and

section 6.5 for the relevant versions of the equations.



E
R A N K I N A N D C H AVA N E L AY E R E D M O D E L

e.1 connectivity

The connectivity for the Rankin and Chavane model is made up of three

different types of neuron connections, local excitation, lateral excitation

and inhibition. These are separated in peaks of excitation by Λ, the hyper

column separation, taking Λ = 2π. The model is written using radial

coordinates r =
√

x2 + y2, x, y ∈ R.

Peaks of excitatory connections are centered at distances {0, Λ, 2Λ}

and decay within an exponential envelope

χ(r, ζ) = e
r
ξ , (299)

where ζ = 0.625Λ. This is used in defining the lateral excitation connectivity

profile.

Rankin and Chavane define a radially shifted Gaussian that is maximal at

radius r = r0 and decays with spatial scale σ to define the bumps at Λ and

2Λ,

h(r, r0, σ) = e

(
− (r−r0)

2

2σ2

)
. (300)

The connectivity components are,

wI(r) = g(r, RWin), (301)
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wloc
E (r) = h(r, 0, RWex), (302)

and

wlat
E (r) = χ(Λ, ζ)h(r, Λ, RWex) + χ(2Λ, ζ)h(r, 2Λ, RWex), (303)

where RWin = 0.55Λ and RWex is a free parameter in [0.1,0.4].

Furthermore, to normalise the connectivity profile, a coefficient BE

needs to be found such that,∫
Ω

BEwE(r) = BE

∫
Ω

wloc
E (r) + wlat

E (r) = 1. (304)

To do this we need to use the zero-mode of the Fourier Transform of

h(r, r0, σ). This can be calculated as,

H(0, r0, σ) = 2πσ2e−
r2
0

2σ2 + πσr0
√

2π

(
1 + erf

r2
0

2σ2

)
. (305)

Therefore,

BE = 1/
[
2πRW2

ex + χ(Λ, ζ)H(0, Λ, RWex) + χ(2Λ, ζ)H(0, 2Λ, RWex)
]

.

(306)

The complete connectivity function is,

w(r) = P
[

BE

(
wloc

E (r) + wlat
E (r)

)
+ (C− 1)wI(r)

]
, (307)

where P is the largest Fourier mode of w. Here, C is the global balance

between inhibition and excitation. When C = 0, they are balanced, when

C is negative/positive this gives net inhibition/excitation. We choose

C = ±0.4 depending on the type of connectivity required as this is large

enough to give excitatory/inhibitory connectivity but when C is larger

then localised patterns of activity are more likely to destabilise and hence

spread across the cortex.

Two coefficients required for (214 - 215) are,

gex = BEP and gin = P(C− 1), (308)

thus, giving a normalised connectivity profile.
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Figure 67.: Cross-section of the connectivity profiles for excitation and

inhibition. There are regular peaks in excitation, Λ-distance,

black bar, from the origin; the width controlled byRWex. Figure

redrawn from [96].

e.2 firing rate and input

The firing rate function, S is given by the sigmoid,

S(u, µ, θ) =
1

1 + e−µu+θ
− 1

1 + eθ
, θ, µ > 0, (309)

where µ is the steepness of the slope and θ is the threshold. The firing rate

relates to the input strengths k1 and k2. These are set so that µk1 > θ so that

the sub-population with the same orientation is above threshold and that

µk2 < θ so that the other sub-populations are below threshold. Therefore,

the only neurons that are firing are those responding to that orientation.

The radial inputs Ij(r) are,

Ij(r) =

1, r < 0.7Λ,

h(r, 0.725Λ, 0.3Λ), r ≥ 0.7Λ,
(310)



E.3 conversion to vsd like signal 173

There is a linear ramp up of amplitude of the input from 0 to 1 over t ∈

[20, 120] ms using (t − 20)/120 for the required time points meaning that

the input strength is greatest at the end of the simulation.

e.3 conversion to vsd like signal

There are four solutions, one for each of the four orientations over the

entire domain. To combine these, in [96] a VSD-like signal is computed and

then the orientation preference, activation and selectivity can be computed

from this.

Firstly the sub-population membrane potential ui for each orientation

is computed. The pre-synaptic firing rate is then convolved with a

connectivity profile to give a postsynaptic population response. The

optical image (OI) signal is the postsynaptic response convolved with a 2D

Gaussian distribution with spatial decay rate σ,

g(r, σ) = A(σ)e
(

r2

2σ2

)
, (311)

where A(σ) = 1/(2πσ2) normalises the area under the curve. Therefore,

the OI signal for each orientation is

OI(x, y, t) = (∑
i

S(ui(x, y, t))
(x,y)
⊗
[
wloc

E (x, y)− pIwI(x, y)

+ (1− e−t/τlat)wlat
E (x, y)(1 + βrec Ji)

]
)⊗ g(x, y, σOI) (312)

where pI = 0.177 and σOI = 0.075Λ for i = {0◦, 45◦, 90◦, 135◦}. The

assumption that the activity from long range connection will propagate

across the cortex instantaneously is not biologically correct. To incorporate

this but not have to include delays in the original model, as this extremely

computationally heavy, but still have a slower temporal scale for the

long range connections, the parameter τlat = 240ms is introduced. This

transforms the four activities which include the four orientations that are
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linked, to give only an optical image signal for each orientation OI0, OI45,

OI90 and OI135.

e.4 parameters

A table of all the parameter values used in the model,

Parameter Value

Λ 2π

βrec 0.6

C -0.4

RWex 0.225Λ

P 58.82

L 30

t 550 ms

θ 5.6

µ 2.3

Parameter Value

βinp 0.25

k1 2.8

ρij 0.2

τ 10 ms

RWin 0.55Λ

ζ 0.625Λ

pI 0.177

σOI 0.075Λ

τlat 240 ms



F
C O D E F O R M U LT I L AY E R E D PAT C H Y C O N N E C T I O N S

M O D E L

The following Matlab code realises the multi layered patchy connection

model (227) and Turing analysis. The code produces the figures

highlighting the results of the Turing analysis and also the figure

showing the resulting activity for the neural field model with hexagonal

patchy connections.

function Patchy(rho, epsilon, mu0, h)

% Define w

sigma = 0.6; A = 1/sigma^2;

w = @(r) A.*exp(-r./sigma)-exp(-r);

wHat = @(k) 2.*pi.*(A./(sigma.*(sigma.^(-2)+k.^2).^(3/2))

- 1./((1+k.^2).^(3/2)));

% Define parameters

d = 2; P.d = d;

P.rho1 = rho; P.rho2 = rho; P.rho3 = rho; P.rho4 = rho;

P.HSSw = wHat(4*pi/(sqrt(3)*d));

P.h = [h h h h]; P.mu = mu0;

% Define basis vectors and shifts
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q = [1 -0.5 -0.5 0; 0 sqrt(3)/2 -sqrt(3)/2 0] ;

q = q.*(4*pi/(sqrt(3)*d));

%% Compute grid

P.N=2^9; L =4*pi;

x = linspace(-L,L,P.N); y = x; [X,Y] = meshgrid(x,y);

P.Lx = L; P.Ly = L; P.X = X; P.Y = Y;

%% Define patchy equation eq 38

a = [0 0 0 0]; epsilon = [epsilon epsilon epsilon epsilon];

theta = [2*pi/5 4*pi/5 6*pi/5 0];

M = @(X,Y,i) 1/3*(cos(q(1,1).*(cos(theta(i)).*(X-a(i).*q(1,i))

-sin(theta(i)).*(Y-a(i).*q(2,i)))+q(2,1).*(sin(theta(i)).*(X-a(i)

.*q(1,i))+cos(theta(i)).*(Y-a(i).*q(2,i))))+cos(q(1,2).*(cos(theta(i))

.*(X-a(i).*q(1,i)) - sin(theta(i)).*(Y-a(i).*q(2,i)))

+q(2,2).*(sin(theta(i)).*(X-a(i).*q(1,i)) +cos(theta(i)).*(Y-a(i)

.*q(2,i)))) +cos(q(1,3).*(cos(theta(i)).*(X-a(i).*q(1,i))

- sin(theta(i)).*(Y-a(i).*q(2,i)))+q(2,3).*(sin(theta(i)).*(X-a(i)

.*q(1,i))+cos(theta(i)).*(Y-a(i).*q(2,i)))));

J = @(X,Y,i) 1+epsilon(i)*M(X,Y,i);

wp = @(X,Y,i) w(sqrt(X.^2+Y.^2)).*J(X,Y,i);

figure;

subplot(2,2,1); surf(X,Y,J(X,Y,1)); shading interp; view(2); colorbar;

subplot(2,2,2); surf(X,Y,J(X,Y,2)); shading interp; view(2); colorbar;

subplot(2,2,3); surf(X,Y,J(X,Y,3)); shading interp; view(2); colorbar;

subplot(2,2,4); surf(X,Y,J(X,Y,4)); shading interp; view(2); colorbar;

%Define WpHat

Sum = @(k1,k2,i) 0;

for l = 1:3
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term = @(k1,k2,i) exp(-1i*(q(1,l)*a(i)*q(1,i) + q(2,l)*a(i)*q(2,i)))

.*wHat(sqrt((k1-q(1,l)).^2+(k2-q(2,l)).^2)) + exp(1i*(q(1,l)

*a(i)*q(1,i) + q(2,l)*a(i)*q(2,i))).*wHat(sqrt((k1+q(1,l)).^2

+(k2+q(2,l)).^2));

Sum = @(k1,k2,i) Sum(k1,k2,i) + term(k1,k2,i);

end

WpHat = @(k1,k2,i) wHat(sqrt(k1.^2+k2.^2)) + epsilon(i)/6.*Sum(k1,k2,i);

%% Solve for u0

U0 = [1 1 1 1];

U = fsolve(@(x) SteadyStateCondition(x,P),U0)

u0_1 = U(1); u0_2 = U(2); u0_3 = U(3); u0_4 = U(4);

%% Eigenvalues and plot eq 42

matrix = @(k1,k2)

[-1+fd(u0_1,P,1).*WpHat(k1,k2,1) -P.rho2 -P.rho3 -P.rho4;...

-P.rho1 -1+fd(u0_2,P,2).*WpHat(k1,k2,2) -P.rho3 -P.rho4;...

-P.rho1 -P.rho2 -1+fd(u0_3,P,3).*WpHat(k1,k2,3) -P.rho4;...

-P.rho1 -P.rho2 -P.rho3 -1+fd(u0_4,P,4).*WpHat(k1,k2,4)];

k1 = linspace(-P.Lx,P.Lx,2^9); k2 = linspace(-P.Ly,P.Ly,2^9);

alleigs = [];

for i=1:length(k2)

allk1eigs = [];

for j = 1:length(k1)

myeigs = eig(matrix(k1(j),k2(i)));

allk1eigs=[allk1eigs max(real(myeigs))];

end

alleigs = [alleigs; allk1eigs];
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end

%% Compute NF equation

noise = 0.1*rand(P.N);

U0_1 = u0_1*ones(P.N)+noise; U0_2 = u0_2*ones(P.N)+noise;

U0_3 = u0_3*ones(P.N)+noise; U0_4 = u0_4*ones(P.N)+noise;

U0 = [U0_1(:); U0_2(:); U0_3(:); U0_4(:)];

T = 1000; tsave = T/10+1; tspan = linspace(0,T,tsave);

P.wHat1 = (fft2(wp(X,Y,1))); P.wHat2 = (fft2(wp(X,Y,2)));

P.wHat3 = (fft2(wp(X,Y,3))); P.wHat4 = (fft2(wp(X,Y,4)));

[t,u] = ode45(@RHS,tspan,U0,[],P);

%% Plots

Idx1=1:P.N*P.N; Idx2=P.N*P.N+1:2*P.N*P.N;

Idx3=2*P.N*P.N+1:3*P.N*P.N; Idx4=3*P.N*P.N+1:4*P.N*P.N;

figure;

for i=1:tsave

U1=reshape(u(i,Idx1),P.N,P.N);

U2=reshape(u(i,Idx2),P.N,P.N);

U3=reshape(u(i,Idx3),P.N,P.N);

U4=reshape(u(i,Idx4),P.N,P.N);

subplot(2,2,1)

surf(X,Y,U1); shading interp; view(2); colorbar;

subplot(2,2,2)

surf(X,Y,U2); shading interp; view(2); colorbar;

subplot(2,2,3)

surf(X,Y,U3); shading interp; view(2); colorbar;
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subplot(2,2,4)

surf(X,Y,U4); shading interp; view(2); colorbar;

drawnow;

end

figure;

surf(k1,k2,real(alleigs)); shading interp;

figure;

contour(k1,k2,real(alleigs), [0 0], 'r-', 'linewidth', 2);

%% Change to OPM

maxAct = max(u(tsave,:));

uend = u(tsave,:)/maxAct;

U1final=reshape(uend(Idx1),P.N,P.N);

U2final=reshape(uend(Idx2),P.N,P.N);

U3final=reshape(uend(Idx3),P.N,P.N);

U4final=reshape(uend(Idx4),P.N,P.N);

Act = (U1final + U2final + U3final + U4final)./4;

maxUfinal = [max(uend(Idx1)) max(uend(Idx2))

max(uend(Idx3)) max(uend(Idx4))];

scalefac1 = 1+mean(maxUfinal)-maxUfinal(1);

scalefac2 = 1+mean(maxUfinal)-maxUfinal(2);

scalefac3 = 1+mean(maxUfinal)-maxUfinal(3);

scalefac4 = 1+mean(maxUfinal)-maxUfinal(4);

U1scale = U1final.*scalefac1; U2scale = U2final.*scalefac2;

U3scale = U3final.*scalefac3; U4scale = U4final.*scalefac4;



code for multi layered patchy connections model 180

D1 = U1scale - U3scale; D2 = U2scale - U4scale;

Pref=atan2(D2,D1);

figure;

surf(X,Y,Pref); shading interp; colormap hsv; view(2);

end

function SteadyState = SteadyStateCondition(U, P)

u0_1 = U(1); u0_2 = U(2); u0_3 = U(3); u0_4 = U(4);

SteadyState = [u0_1+P.rho2*u0_2+P.rho3*u0_3+P.rho4*u0_4

- P.epsilon1*P.HSSw*f(u0_1,P,1);...

u0_2+P.rho1*u0_1+P.rho3*u0_3+P.rho4*u0_4

- P.epsilon2*P.HSSw*f(u0_2,P,2);...

u0_3+P.rho1*u0_1+P.rho2*u0_2+P.rho4*u0_4

- P.epsilon3*P.HSSw*f(u0_3,P,3);...

u0_4+P.rho1*u0_1+P.rho2*u0_2+P.rho3*u0_3

- P.epsilon4*P.HSSw*f(u0_4,P,4)];

end

function fr = f(u,P,i)

fr = 1./(1+exp(-P.mu*(u-P.h(i))));

end

function frd = fd(u,P,i)

frd = P.mu*f(u,P,i).*(1-f(u,P,i));

end

function NF = RHS(t,u,P)
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Idx1 = 1:P.N*P.N; u1 = reshape(u(Idx1),P.N,P.N);

Idx2 = P.N*P.N+1:2*P.N*P.N; u2 = reshape(u(Idx2),P.N,P.N);

Idx3 = 2*P.N*P.N+1:3*P.N*P.N; u3 = reshape(u(Idx3),P.N,P.N);

Idx4 = 3*P.N*P.N+1:4*P.N*P.N; u4 = reshape(u(Idx4),P.N,P.N);

fHat1 = fft2(f(u1,P,1)); fHat2 = fft2(f(u2,P,2));

fHat3 = fft2(f(u3,P,3)); fHat4 = fft2(f(u4,P,4));

F1 = -u1 - P.rho2.*u2 - P.rho3.*u3 - P.rho4.*u4 + (2.*P.Lx/P.N)

*(2.*P.Ly/P.N).*ifftshift(real(ifft2(fHat1.*P.wHat1)));

F2 = -u2 - P.rho1.*u1 - P.rho3.*u3 - P.rho4.*u4 + (2.*P.Lx/P.N)

*(2.*P.Ly/P.N).*ifftshift(real(ifft2(fHat2.*P.wHat2)));

F3 = -u3 - P.rho1.*u1 - P.rho2.*u2 - P.rho4.*u4 + (2.*P.Lx/P.N)

*(2.*P.Ly/P.N).*ifftshift(real(ifft2(fHat3.*P.wHat3)));

F4 = -u4 - P.rho1.*u1 - P.rho2.*u2 - P.rho3.*u3 + (2.*P.Lx/P.N)

*(2.*P.Ly/P.N).*ifftshift(real(ifft2(fHat4.*P.wHat4)));

NF = [F1(:); F2(:); F3(:); F4(:)];

end



B I B L I O G R A P H Y

[1] S. Amari. Dynamics of pattern formation in lateral-inhibition type

neural fields. Biological Cybernetics, 27(2):77–87, 06 1977.

[2] T. I. Baker and J. D. Cowan. Spontaneous pattern formation and

pinning in the primary visual cortex. Journal of Physiology-Paris,

103(1):52–68, 2009. Neuromathematics of Vision.

[3] M. Balasubramanian, J. Polimeni, and E. L. Schwartz. The V1-V2-V3

complex: Quasiconformal dipole maps in primate striate and

extra-striate cortex. Neural Networks, 15(10):1157–1163, 2002.

[4] N. Barbosa, L. Rosa, A. Menezes, J. Reis, A. Facure, and D. Braz.

Assessment of ocular beta radiation dose distribution due to

106ru/106rh brachytherapy applicators using mcnpx monte carlo

code. International Journal of Cancer Therapy and Oncology, 3:12, 05 2014.

[5] J. Beatty. Principles of behavioral neuroscience. Brown and Benchmark

Publishers, 1995.

[6] W. H. Beaudot and K. T. Mullen. Orientation selectivity in luminance

and color vision assessed using 2-d band-pass filtered spatial noise.

Vision Research, 45(6):687–696, 2005.

[7] S. Behnke. Neurobiological Background, pages 17–33. Springer Berlin

Heidelberg, 2003.

[8] R. Ben-Yishai, R. L. Bar-Or, and H. Sompolinsky. Theory of orientation

tuning in visual cortex. Proceedings of the National Academy of Sciences,

USA, 92:3844–3848, 1995.

182



Bibliography 183

[9] R. L. Beurle. Properties of a mass of cells capable of regenerating

pulses. Philosophical Transactions of the Royal Society of London B:

Biological Sciences, 240(669):55–94, 1956.

[10] V. A. Billock and B. H. Tsou. Neural interactions between

flicker-induced self-organized visual hallucinations and physical

stimuli. Proceedings of the National Academy of Sciences,

104(20):8490–8495, 2007.

[11] G. Blasdel. Orientation selectivity, preference, and continuity in

monkey striate cortex. Journal of Neuroscience, 12(8):3139–3161, 1992.

[12] G. G. Blasdel and D. Campbell. Functional retinotopy of monkey

visual cortex. Journal of Neuroscience, 21(20):8286–8301, 2001.

[13] G. G. Blasdel and G. Salama. Voltage-sensitive dyes reveal a modular

organization in monkey striate cortex. Nature, 321(6070):579–585,

1986.

[14] T. Bonhoeffer and A. Grinvald. Iso-orientation domains in cat

visual cortex are arranged in pinwheel-like patterns. Nature,

353(6343):429–431, 1991.

[15] W. H. Bosking, Y. Zhang, B. Schofield, and D. Fitzpatrick. Orientation

selectivity and the arrangement of horizontal connections in tree

shrew striate cortex. The Journal of Neuroscience, 17(6):2112–2127, 1997.

[16] P. L. Boyland. Bifurcations of circle maps: Arnol’d tongues,

bistability and rotation intervals. Communications in Mathematical

Physics, 106:353–381, 1986.

[17] P. C. Bressloff. Travelling fronts and wave propagation failure in an

inhomogeneous neural network. Physica D, 155:83–100, 2001.

[18] P. C. Bressloff. Spatially periodic modulation of cortical patterns by

long-range horizontal connections. Physica D, 185:131–157, 2003.



Bibliography 184

[19] P. C. Bressloff. Spatiotemporal dynamics of continuum neural fields.

Journal of Physics A: Mathematical and Theoretical, 45(3), 2012.

[20] P. C. Bressloff and J. D. Cowan. Amplitude equation approach to

contextual effects in visual cortex. Neural Computation, 14:493–525,

2002.

[21] P. C. Bressloff, J. D. Cowan, M. Golubitsky, P. J. Thomas, and M. C.

Wiener. Geometric visual hallucinations, Euclidean symmetry and

the functional architecture of striate cortex. Philosophical Transactions

of the Royal Society B: Biological Sciences, 356(1407):299–330, 2001.

[22] P. C. Bressloff, S. E. Folias, A. Prat, and Y.-X. Li. Oscillatory waves in

inhomogeneous neural media. Physical Review Letters, 91:178101, Oct

2003.

[23] P. C. Bressloff and M. Webber. Neural field model of binocular rivalry

waves. Journal of Computational Neuroscience, 32:233–252, 2012.

[24] M. Camperi and X.-J. Wang. A model of visuospatial short-term

memory in prefrontal cortex: Recurrent network and cellular

bistability. Journal of Computational Neuroscience, 5:383–405, 1998.

[25] G. Citti and A. Sarti. Neuromathematics of Vision, volume 10. Springer,

01 2010.

[26] S. Coombes. Waves, bumps and patterns in neural field theories.

Biological Cybernetics, 93:91–108, 2005.

[27] S. Coombes, P. Beim Graben, R. Potthast, and J. Wright. Neural Fields:

Theory and Applications. Springer, 07 2014.

[28] S. Coombes and M. R. Owen. Bumps, breathers, and waves in a neural

network with spike frequency adaptation. Physical Review Letters,

94:148102, 2005.



Bibliography 185

[29] S. Coombes, H. Schmidt, and D. Avitabile. Spots: Breathing, drifting

and scattering in a neural field model. Neural Fields: Theory and

Applications, 9783642545931:187–211, 2014.

[30] S. Coombes, H. Schmidt, and I. Bojak. Interface dynamics in planar

neural field models. Journal of Mathematical Neuroscience, 2(1):1–46,

2012.

[31] M. C. Cross and P. C. Hohenberg. Pattern formation outside of

equilibrium. Reviews of Modern Physics, 65:851–1111, 2003.

[32] R. Curtu and B. Ermentrout. Pattern formation in a network of

excitatory and inhibitory cells with adaptation. Society for Industrial

and Applied Mathematics, 3:191–231, 01 2004.

[33] D. Debanne, E. Campanac, A. Bialowas, E. Carlier, and G. Alcaraz.

Axon physiology. Physiological reviews, 91(2):555–602, 2011.

[34] S. O. Dumoulin and B. A. Wandell. Population receptive field

estimates in human visual cortex. NeuroImage, 39(2):647–60, 2008.

[35] M. Dybowski. Conditions for the appearance of hypnagogic visions.

Kwartalnik Psychologiczny, 11:68–94, 1939.

[36] B. Ermentrout. Simulating, analyzing, and animating dynamical

systems: A guide to xppaut for researchers and students. Applied

Mechanics Reviews, 56, 07 2003.

[37] G. B. Ermentrout. Neural networks as spatio-temporal

pattern-forming systems. Reports on Progress in Physics, 61:353–430,

1998.

[38] G. B. Ermentrout and J. D. Cowan. A mathematical theory of visual

hallucination patterns. Biological Cybernetics, 34(3):137–150, 1979.

[39] J. Ferreira and M. Castelo-Branco. 3D structure and motion multimodal

perception (State-of-the-Art Report). Institute of Systems and Robotics



Bibliography 186

and Institute of Biomedical Research in Light and Image, University of

Coimbra. (Bayesian Approach to Cognitive Systems (BACS) European

Project), 2007.

[40] S. E. Folias and P. C. Bressloff. Breathing Pulses in an Excitatory

Neural Network. SIAM Journal on Applied Dynamical Systems,

3(3):378–407, 2004.

[41] I. Fredholm. Sur une classe d’équations fonctionnelles. Acta

Mathematica, 27:365 – 390, 1903.

[42] A. Garliauskas. The visual cortex modeling by the hexagonal

topology. Neurocomputing, 38-40:1229–1238, 2001.

[43] M. A. Geise. Neural Field Theory for Motion Perception. Kluwer

Academic, Dordrecht, 1999.

[44] A. Gökçe, D. Avitabile, and S. Coombes. Quasicrystal patterns in a

neural field model. Physical Review Research, 2:013234, 2020.

[45] H. Greenside and M. Cross. Pattern Formation and Dynamics in

Nonequilibrium Systems. Cambridge University Press, 2009.

[46] A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel.

Functional architecture of cortex revealed by optical imaging of

intrinsic signals. Nature, 324(6095):361–364, 1986.

[47] S. Hagen. The mind’s eye. Rochester Review, 74(4):32–37, 2012.

[48] D. Hansel and H. Sompolinsky. Modeling feature selectivity in local

cortical circuits. Methods in neuronal modeling : from synapses to networks,

01 1989.

[49] H. Helmholtz. Physiological Optics, volume 2. Rochester, NY: Optical

Society of America, 1924.



Bibliography 187

[50] J. C. Horton. Cytochrome oxidase patches: a new cytoarchitectonic

feature of monkey visual cortex. Philosophical transactions of the Royal

Society of London. Series B, Biological sciences, 304(1119):199–253, 1984.

[51] R. Hoyle. Pattern Formation: An Introduction to Methods. Cambridge

University Press, 2006.

[52] W. Huang, C. Troy, Q. Yang, H. Ma, C. R. Laing, S. J. Schiff, and

J. Wu. Spiral waves in disinhibited mammalian neocortex. Journal of

Neuroscience, 24:9897–9902, 2004.

[53] D. Hubel. Eye, Brain, and Vision. Scientific American Library series.

Scientific American Library, 1988.

[54] D. Hubel and T. Wiesel. Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex. Journal of Physiology,

160(1):106–154.2, 1962.

[55] D. Hubel and T. Wiesel. Receptive field and functional architechture

in two nonstriate visual areas (18 and 19) of the cat. Journal of

Neurophysiology, 28:229–289, 1965.

[56] D. Hubel and T. Wiesel. Functional architecture of macaque

monkey visual cortex. Proceedings of the Royal Society, London [B],,

198(1130):1–59, 1977.

[57] A. Hutt, M. Bestehorn, and T. Wennekers. Pattern formation in

intracortical neuronal fields. Network: Computation in Neural Systems,

14(2):351–368, 2003. PMID: 12790189.

[58] V. Jirsa and H. Haken. A derivation of a macroscopic field theory

of the brain from the quasi-microscopic neural dynamics. Physica D:

Nonlinear Phenomena, 99(4):503–526, 1997.

[59] A. Johnston. A spatial property of the retino-cortical mapping. Spatial

Vision, 1(4):319–331, 1986.



Bibliography 188

[60] A. Johnston. The geometry of the topographic map in striate cortex.

Vision Research, 29(11):1493–1500, 1989.

[61] M. Joukal. Anatomy of the human visual pathway. In Homonymous

visual field defects, pages 1–16. Springer, 2017.

[62] M. Kaschube, M. Schnabel, S. Löwel, D. M. Coppola, L. E. White, and

F. Wolf. Universality in the evolution of orientation columns in the

visual cortex. Science, 330(6007):1113–1116, 2010.

[63] W. Keil, M. Kaschube, M. Schnabel, Z. F. Kisvarday, S. Löwel, D. M.

Coppola, L. E. White, and F. Wolf. Response to comment on

universality in the evolution of orientation columns in the visual

cortex. Science, 336(6080):413–413, 2012.

[64] T. Kenet, D. Bibitchkov, M. Tsodyks, A. Grinvald, and A. Arieli.

Spontaneously emerging cortical representations of visual attributes.

Nature, 425(6961):954–956, 2003.

[65] Z. P. Kilpatrick and P. C. Bressloff. Effects of synaptic depression

and adaptation on spatiotemporal dynamics of an excitatory neuronal

network. Physica D, 239:547–60, 2010.

[66] A. Kitaoka. Akiyoshi’s Illusion Pages. http://www.ritsumei.ac.jp/

~akitaoka/index-e.html. Accessed: 02/05/2022.

[67] H. Kluver. Mescal, and Mechanisms of hallucinations. University of

Chicago Press, 1966.

[68] S. M. Kosslyn. Image and Brain. Cambridge, MA: MIT Press, 1994.

[69] V. Kozyrev, R. Staadt, U. T. Eysel, and D. Jancke. TMS-induced

neuronal plasticity enables targeted remodeling of visual

cortical maps. Proceedings of the National Academy of Sciences,

115(25):6476–6481, 2018.

http://www.ritsumei.ac.jp/~akitaoka/index-e.html
http://www.ritsumei.ac.jp/~akitaoka/index-e.html


Bibliography 189

[70] A. E. Krill, H. J. Alpert, and A. M. Ostfield. Effects of a hallucinogenic

agent in totally blind subjects. Archives of Ophthalmology., 69:180–185,

1963.

[71] C. R. Laing and A. Longtin. Dynamics of deterministic and stochastic

paired excitatory—inhibitory delayed feedback. Neural Computation,

15(12):2779–2822, 12 2003.

[72] C. R. Laing and W. C. Troy. PDE Methods for Nonlocal Models. SIAM

Journal on Applied Dynamical Systems, 2(3):487–516, 2003.

[73] C. R. Laing, W. C. Troy, B. Gutkin, and G. B. Ermentrout. Multiple

bumps in a neuronal model of working memory. SIAM Journal on

Applied Mathematics, 63:62–97, 2002.

[74] T. S. Lee, D. Mumford, R. Romero, and V. a. Lamme. The role

of the primary visual cortex in higher level vision. Vision Research,

38(15-16):2429–2454, 1998.

[75] S. LeVay and S. B. Nelson. Columnar organization of the visual cortex.

In A. G. Leventhal, editor, The Neural Basis of Visual Function, pages

266–315, Boca Raton, 1991. CRC Press.

[76] I. Leviant. Does brain-power make Enigma spin? Proceedings of the

Royal Society of London. Series B: Biological Sciences, 263(1373):997–1001,

1996.

[77] D. J. T. Liley, P. J. Cadusch, and M. P. Dafilis. A spatially continuous

mean field theory of electrocortical activity. Network, 13:67–113, 2002.

[78] M. Livingstone and D. Hubel. Specificity of intrinsic connections in

primate primary visual cortex. Journal of Neuroscience, 4(11):2830–2835,

1984.

[79] I. Léviant. Illusory motion within still pictures: The l-effect. Leonardo,

15(3):222–223, 1982.



Bibliography 190

[80] D. M. MacKay. Moving Visual Images Produced by Regular Stationary

Patterns. Nature, 180:849–850, 1957.

[81] R. Manor, A. Hagberg, and E. Meron. Wavenumber locking and

pattern formation in spatially forced systems. New Journal of Physics,

11(6):63016, 2009.

[82] Y. Mau, L. Haim, A. Hagberg, and E. Meron. Competing resonances in

spatially forced pattern-forming systems. Physical Review E, 88(3):1–9,

2013.

[83] F. Mauro, A. Raffone, and R. VanRullen. A bidirectional link between

brain oscillations and geometric patterns. Journal of Neuroscience,

35:7921–7926, 2015.

[84] J. D. Murray. Mathematical Biology, volume 1 and 2. Berlin: Springer,

2002.

[85] R. Nicks, A. Cocks, D. Avitabile, A. Johnston, and S. Coombes.

Understanding Sensory Induced Hallucinations : From Neural Fields

to Amplitude Equations. SIAM Journal on Applied Dynamical Systems,

20(4):1683–1714, 2021.

[86] P. L. Nunez. The brain wave equation: a model for the EEG.

Mathematical Biosciences, 21(3-4):279–297, 1974.

[87] P. L. Nunez. Neocortical Dynamics and Human EEG Rhythms. Oxford

University Press, New York, 1995.

[88] G. Oster. Phosphenes. Scientific American, 222:83–87, 1970.

[89] S.-B. Paik and D. Ringach. Retinal origin of orientation maps in visual

cortex. Nature neuroscience, 14:919–25, 05 2011.

[90] J. Pearson, R. Chiou, S. Rogers, M. Wicken, S. Heitmann, and

B. Ermentrout. Sensory dynamics of visual hallucinations in the

normal population. eLife, 5:e17072, 2016.



Bibliography 191

[91] J. Petitot. The neurogeometry of pinwheels as a sub-Riemannian

contact structure. Journal of Physiology Paris, 97(2-3):265–309, 2003.

[92] J. Petitot. Elements of Neurogeometry: Functional Architectures of Vision,

volume 1. Springer, 2017.

[93] R. Philips, M. Sur, and V. Chakravarthy. The influence of astrocytes

on the width of orientation hypercolumns in visual cortex: A

computational perspective. PLoS Computational Biology, 13(10), 10

2017.

[94] D. Pinto and G. B. Ermentrout. Spatially structured activity in

synaptically coupled neuronal networks: I. travelling fronts and

pulses. SIAM Journal on Applied Mathematics, 62:206–225, 2001.

[95] J. E. Purkinje. Opera Omnia, volume 1. Prague: Society for Czech

Physicians, 1918.

[96] J. Rankin and F. Chavane. Neural field model to reconcile structure

with function in primary visual cortex. PLOS Computational Biology,

13(10):1–30, 2017.

[97] J. Rankin, A. I. Meso, G. S. Masson, O. Fuageras, and P. Kornprobst.

Bifurcation study of a neural field competition model with an

application to perceptual switching in motion integration. Journal of

Computational Neuroscience, 36:193–213, 2014.

[98] K. A. Richardson, S. J. Schiff, and B. J. Gluckman. Control of traveling

waves in the mammalian cortex. Physical Review Letters, 94:028103,

2005.

[99] P. A. Robinson, C. J. Rennie, J. J. Wright, H. Bahramali, E. Gordon,

and D. I. Rowe. Prediction of electroencephalographic spectra from

neurophysiology. Physical Review E, 63:021903, 2001.



Bibliography 192

[100] A. Romagnoni, J. Ribot, D. Bennequin, and J. Touboul. Parsimony,

exhaustivity and balanced detection in neocortex. PLOS Computational

Biology, 11(11):e1004623, Nov 2015.

[101] A. M. Rucklidge and M. Silber. Quasipatterns in parametrically forced

systems. Physical Review E, 75:055203, 2007.

[102] M. Rule, M. Stoffregen, and B. Ermentrout. A model for the

origin and properties of flicker-induced geometric phosphenes. PLOS

Computational Biology, 7:1–14, 2011.

[103] I. Rümeysa, S. Seda, and F. Sevmez. The inventor of

electroencephalography ( EEG ): Hans. Child’s Nervous System, 2020.

[104] M. M. Schira, C. W. Tyler, B. Spehar, and M. Breakspear. Modeling

magnification and anisotropy in the primate foveal confluence. PLoS

Computational Biology, 6(1):1–10, 2010.

[105] M. Schottdorf, W. Keil, D. Coppola, L. White, and F. Wolf. Random

wiring, ganglion cell mosaics, and the functional architecture of the

visual cortex. PLOS Computational Biology, 11, 10 2015.

[106] E. Schwartz. Spatial mapping in the primate sensory projection:

Analytic structure and relevance to perception. Biological cybernetics,

25:181–94, 03 1977.

[107] E. L. Schwartz. Computational anatomy and functional architecture

of striate cortex: A spatial mapping approach to perceptual coding.

Vision Research, 20(8):645–669, 1980.

[108] R. K. Siegel. Hallucinations. Scientific American, 237:132–140, 1977.

[109] L. C. Sincich and J. C. Horton. Divided by cytochrome oxidase:

A map of the projections from v1 to v2 in macaques. Science,

295(5560):1734–1737, 2002.



Bibliography 193

[110] J. R. Smythies. The stroboscopic patterns. iii. further experiments and

discussion. British Journal of Psychology, 51:247–255, 1960.

[111] D. C. Somers, S. Nelson, and M. Sur. An emergent model of

orientation selectivity in cat visual cortical simple cells. Journal of

Neuroscience, 15:5448–5465, 1995.

[112] J.-L. R. Stevens, J. S. Law, J. Antolík, and J. A. Bednar. Mechanisms

for stable, robust, and adaptive development of orientation maps in

the primary visual cortex. Journal of Neuroscience, 33(40):15747–15766,

2013.

[113] M. L. Steyn-Ross, D. A. Steyn-Ross, J. W. Sleigh, and D. R.

Whiting. Theoretical predictions for spatial covariance of the

electroencephalographic signal during the anesthetic-induced phase

transition: Increased correlation length and emergence of spatial

self-organization. Physical Review E, 68:021902, 2003.

[114] J. Swift and P. C. Hohenberg. Hydrodynamic fluctuations at the

convective instability. Physical Review A, 15:319–328, Jan 1977.

[115] N. V. Swindale. The development of topography in the visual cortex:

a review of models. Network, 7:161–274, 1996.

[116] P. Tass. Oscillatory cortical activity during visual hallucinations.

Journal of Biological Physics, 23:21–66, 03 1997.

[117] P. Tass. Oscillatory cortical activity during visual hallucinations.

Journal of Biological Physics, 23:21–66, 2007.

[118] R. B. Tootell, M. S. Silverman, E. Switkes, and R. L. De Valois.

Deoxyglucose analysis of retinotopic organization in primate striate

cortex. Science, 218(4575):902–904, 1982.

[119] R. B. Tootell, E. Switkes, M. S. Silverman, and S. L. Hamilton.

Functional anatomy of macaque striate cortex. II. Retinotopic

organization. Journal of Neuroscience, 8(5):1531–1568, 1988.



Bibliography 194

[120] A. M. Turing. The chemical basis of morphogenesis. Philosophical

Transactions of the Royal Society of London B, 237:32–72, 1952.

[121] C. W. Tyler. Do grating stimuli interact with the hyper- column

spacing in the cortex? Investigative Ophthalmology and Visual Sciences,

222(254), 1982.

[122] N. A. Venkov, S. Coombes, and P. C Matthews. Dynamic instabilities

in scalar neural field equations with space-dependent delays. Physica

D, 232:1–15, 08 207.

[123] B. A. Wandell, S. O. Dumoulin, and A. A. Brewer. Visual field maps

in human cortex. Neuron, 56(2):366–83, 2007.

[124] M. A. Webber and P. C. Bressloff. The effects of noise on binocular

rivalry waves: A stochastic neural field model. Journal of Statistical

Mechanics, 3:P03001, 2013.

[125] H. Wilson and J. Cowan. A mathematical theory of the functional

dynamics of cortical and thalamic nervous tissue. Kybernetik, 13:55–80,

10 1973.

[126] H. R. Wilson and J. D. Cowan. Excitatory and inhibitory interactions

in localized populations of model neurons. Biophysical Journal, 12:1–24,

1972.

[127] W. D. Winters, L. J. West, and R. K. Siegel. Hallucinations : behavior,

experience, and theory. New York : John Wiley, 1975.

[128] F. Wolf. Symmetry, multistability, and long-range interactions in brain

development. Phys. Rev. Lett., 95:208701, Nov 2005.

[129] J. J. Wright and P. D. Bourke. On the dynamics of cortical

development: synchrony and synaptic self-organization. Frontiers in

Computational Neuroscience, 7(4), 2013.



Bibliography 195

[130] N. H. Yabuta and E. M. Callaway. Cytochrome-oxidase blobs and

intrinsic horizontal connections of layer 2/3 pyramidal neurons in

primate v1. Visual Neuroscience, 15(6):1007–1027, 1998.

[131] K. Zhang. Representation of spatial orientation by the intrinsic

dynamics of the head-direction cell ensemble: A theory. Journal of

Neuroscience, 16:2112–2126, 1996.


	Introduction
	Background
	The Visual World - Biological Background
	Neurons
	The Visual System
	Retinocortical Mapping
	Orientation Preference Map
	Hallucinations
	Summary of Vision and its Application

	Neural Field Models
	Extending the Neural Field Model
	Neural Field Models for Vision
	Orientation Preference Models
	Summary of Neural Field Models


	Understanding Sensory Induced Hallucinations
	Psychophysical Observations
	Pattern Formation in Spatially Forced Systems
	Amplitude Equations
	Pattern Formation in the Spatially Periodically Forced Swift-Hohenberg Model
	Summary

	Neural Field Model
	Linear Stability Analysis
	Fourier Transform of Kernel
	Simulations

	Summary

	Neural Field Model with Spatial Forcing
	Neural Field Model in One Dimension with Spatial Forcing 
	Multiple Scale Analysis
	Hierarchy of Equations
	Solving the equations
	Amplitude Equations
	Existence of Solutions

	Neural Field Model with Spatial Forcing in Two Dimensions
	Multiple Scale Analysis
	Hierarchy of Equations
	Solving the equations
	Amplitude Equations
	Existence of Solutions
	Existence of Patterns
	Linear Stability of Patterns

	Simulations
	Summary

	Adaptation Model
	Adaption Model
	Change of Formula
	Linear Stability Analysis

	Adaptation Model with Spatial Forcing in One Dimension
	Hierarchy of Equations
	Amplitude Equations
	Existence of Solutions

	Simulations
	Summary

	Patchy Connections
	Introduction
	Patchy Model
	Two Dimensional Model with Square Lattice
	Turing Analysis of the Patchy Two Dimensional Model with a Square Lattice
	Simulations of the Patchy Model with a Square Lattice

	Two Dimensional Model with Hexagonal Lattice
	Turing Analysis of 2D Model with Hexagonal Lattice
	Simulations of the Patchy Model with a Hexagonal Lattice

	Model with Hexagonal Lattice: introducing 
	Turing Analysis of Model with Hexagonal Lattice introducing 
	Computational Example

	Summary

	Using Patchy Connections to generate an Orientation Preference Map
	Introduction
	Layered Neural Field Model with Learned Orientation Preference
	Description of the Rankin-Chavane Model
	Orientation Preference Map
	Conversion to One Signal
	Summary of Rankin and Chavane Model

	Multi-Layered Model with Hexagonal Lattice
	Turing Analysis
	Steady State
	Computational Examples

	Orientation Preference Map Simulations
	Summary

	Conclusion
	Summary of Thesis
	Discussion of Extensions to this Thesis
	Illusory phenomena
	Direct Extensions to the Generation of the Orientation Preference Map
	Transcranial Magnetic Stimulation Effects on the Orientation Preference Map


	Useful Results and Derivations for Chapter 4
	Derivation of one dimensional Amplitude Equations
	Derivation of two dimensional Amplitude Equations
	Solving the equations


	Useful Results and Derivations for Chapter 5
	Forced Adaptation Model in One Dimension

	Tools for Coding
	Code For Patchy Connections
	Rankin and Chavane Layered Model
	Connectivity
	Firing Rate and Input
	Conversion to VSD like signal
	Parameters

	Code For Multi Layered Patchy Connections Model

