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Abstract 

Many disasters that have happened in the last decades have caused a shortage of 

healthcare resources and change in healthcare activities.  Coordination of 

healthcare facilities is one of the emergency medical response strategies to 

ensure the continued provision of medical services during disasters.   The 

importance of coordination in healthcare systems during disasters is well 

recognised in the literature, but to the best of our knowledge there has been no 

review of the published research in this area.  In this thesis, a focused literature 

review of models for the coordination in the healthcare system is provided. 

Additionally, measures of coordination effectiveness that denote resilience are 

discussed.  In the field of medical management, there are two types of 

coordination including integrative care and collaborative care.  Both types of 

coordination aim to improve the emergency medical response by ensuring the 

continuity of medical services and improving healthcare capability during 

disasters.  Integrative care mainly investigates the resource allocation within a 

common governance, whereas collaborative care is mainly focused on the 

sharing of healthcare resources across governances.  Thus, integrative care is 

mainly implemented within a healthcare provider setting, while collaborative 

care is mainly implemented between the settings. However, resilience is usually 

perceived at community level rather than at an individual institution when 

responding to disasters.  Improving resilience during disasters requires the 

capability of different healthcare providers, which can be achieved by 

collaborative care, rather than integrative care.  In addition, the literature has 

commonly addressed collaborative care using optimisation approach, not 

simulation approach.  In this regard, this study presents simulation models for 

resilience of the healthcare network during disasters.  In collaboration with the 

health authorities and medical staff in Thailand who experienced a number of 

disasters we investigated real- world activities that took place in emergency 

medical responses.  We developed novel discrete event simulation models of 

collaboration in an emergency medical response in a healthcare network during 

disasters with the aim to improve the resilience of the healthcare network. Three 

strategies for collaboration in the healthcare network were defined including 

non-collaborative care, semi-collaborative care, and a new proposed 
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collaborative care.  Non- collaborative care strategy was in place in response to 

Tsunami in Phuket in 2004, while semi-collaborative care strategy is the current 

strategy which was implemented during the boat capsizing in Phuket in 2018. 

We propose a new collaborative care strategy which is defined by considering 

the disadvantages of the current semi-collaborative care strategy. It addresses a 

new collaboration in the network that enables information sharing and the 

classification of healthcare providers.  The strategies differ with respect to the 

first treatment provision of patients, sharing of resources, and patient 

transportation The simulation models were validated and verified by using the 

boat capsizing real- world event.  The model validations were in line with the 

available system outputs including the number of patients in different categories, 

resource allocation, patient allocation and average patient waiting times at 

healthcare providers.  A generic metric of resilience proposed in the literature 

was adapted to be used in healthcare context.  Our analysis yielded managerial 

insights into the emergency planning as follows.  In all defined scenarios, the 

new collaborative care strategy had a considerable impact on improving the 

resilience and enabled faster return to the pre-disaster state of healthcare network 

than other strategies.  The semi- collaborative care strategy frequently provided 

the worst resilience in almost all the defined scenarios.  However, it provided 

better resilience than the non- collaborative care strategy when the number of 

affected patients was relatively small.  Even though simulation enabled 

investigation of the impact of different strategies for collaboration in the network 

on the resilience, the patient allocation might not be optimal.  We developed a 

mixed integer programming model to address the allocation of patients in 

collaborative care in which ambulances transport multiple patients to healthcare 

providers in one trip. The developed model will provide further insights into the 

collaborative care in disasters management. 
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Chapter 1 Introduction 

According to records from the UN Office for Disaster Risk Reduction, 7,255 

disaster events took place between 1998 and 2017 (Wallemacq, 2018) 

worldwide. Natural disasters, technology-related incidents, terrorism events and 

epidemics formed the majority of these disasters.  These disasters caused more 

than 1. 3 million deaths and affected 2. 5 billion people.  Some of the world’ s 

disaster events include the World Trade Centre attack in 2001, the Indian Ocean 

Tsunami in 2004, the earthquake in Haiti in 2010, and the latest SARS- CoV-2 

pandemic in 2020, to mention just a few. 

1.1 Terminology 

The concept and terminology used in the thesis are presented.  Terms include 

disasters, disaster operations management (DOM), emergency medical response, 

coordination, and resilience.  A part of this terminology, which originated in a 

medical field, is defined to be used in the operational research (OR) field. 

1.1.1 Disasters 

We adopt the term disasters defined by Galindo and Batta ( 2013) .  Their 

definition encompasses other definitions.  They define disasters as “ a shocking 

event that seriously disrupt the functioning of a community or society, by causing 

human, material, economic or environmental damage that cannot be handled by 

local agencies through standard procedures”. 

1.1.2 Stages of DOM 

There are four stages of DOM, including mitigation, preparedness, response, and 

recovery (Altay & Green, 2006).  The mitigation stage aims to predict potential 

dangers as well as to develop necessary action plans in order to alleviate the 

effects of upcoming disaster events.  The goal of the preparedness stage is to 

reduce the potential economic, social and physical impacts of a disaster as well 

as to facilitate the use of resources for response and disaster relief.  In the 

response stage, available resources are allocated, coordinated and managed, with 

the efforts to enhance the post-disaster survival rates and economic growth. The 

recovery stage aims to restore some resemblance of normality after a disaster. 
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Interested readers can refer to Altay and Green ( 2006)  for more details about 

objectives and activities of different stages. 

1.1.3 Emergency medical response 

Altay and Green ( 2006)  define the term emergency response as “ response to 

catastrophic and disaster events and do not consider daily response of 

ambulance, police, or fire departments” .  They claim that the emergency 

response is needed when the event is more harmful; for example, when resources 

are in shortage, when non- standard procedures have to be implemented to save 

lives, or when special authorities have to be appealed to manage the event. 

Therefore, we adapt their definition and define the term emergency medical 

response to refer to either non- standard activities of medical services that are 

implemented, or standard activities of medical services that need to be adjusted 

to save victims in the events where healthcare resources become stressed due to 

a disaster. 

1.1.4 Coordination 

According to the World Health Organisation, healthcare system consists of 

organisations, people and actions whose main aim is to promote, restore or 

maintain the health of individuals and communitites (WHO.int, 2022) The term 

coordination in the healthcare system is defined by Boon et al.  ( 2009)  who 

examine the coordination of interdisciplinary healthcare teams for the good of 

patients. They define two different terms, namely integrative care and 

collaborative care, to describe the corresponding coordination by considering 

the characteristics of workforce sharing and work dependency.  Both terms are 

originally described as an interaction among medical staff working together in 

order to deliver medical services. Integrative care emphasises a closer interaction 

on a regular basis, which is subsumed into a single entity.  Medical staff from 

different disciplines work dependently under a common governance structure 

resulting in less autonomy.  In contrast, collaborative care allows medical staff 

to work together for a specific purpose during a period of time in order to deliver 

medical services.  However, medical staff under collaborative care still work 

independently because they have their own administrative structures. 

Consequently, they maintain their autonomy while working together. 



3 

Collaborative care is perceived as a precondition for integrative care. We believe 

that a strong collaboration is likely to be a steppingstone towards an integration 

because an integration requires greater inter- dependency.  However, the 

difference remains unclear since only workforce sharing, and work dependency 

are considered.  The sharing of other healthcare resources including medical 

equipment and beds as well as the decision-making processes in integrative care 

and collaborative care are not defined.  Thus, we introduce additional 

characteristics as follows.  The sharing of medical equipment and beds in 

integrative care normally occurs under a common governance structure to enable 

better medical service quality. In contrast, in collaborative care these are usually 

implemented across governance structures.  Such sharing will only be 

implemented for a period of time, especially during disasters, in order to improve 

the healthcare capability of the whole healthcare network.  The healthcare 

network refers to a group of healthcare providers offering medical services to 

their target population. The decision about the medical service provision during 

disasters should be made in a timely manner. All members under integrative care 

generally design both practice guidelines and treatment plans in advance since 

they work dependently under a common governance structure.  Consequently, 

such guidelines and plans are perceived as a common agreement among 

members when decision making on provision of medical services is required. 

Conversely, the decision on provision of medical services under collaborative 

care is made on demand basis since medical staff only work together for a 

specific purpose. It requires a sharing of information among medical staff in the 

decision making in order to provide proper medical services. The characteristics 

of integrative and collaborative care are summarised in Table 1.1. 
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Table 1.1 Characteristics of integrative care versus collaborative care 

Characteristics Integrative care Collaborative care 

Sharing of 

healthcare 

resources 

Interdisciplinary team of medical staff 

working together on a regular basis as 

part of a single entity 

Interdisciplinary team of medical staff 

working together for a specific issue/goal 

during a period of time 

Sharing of medical equipment and beds 

for a better allocation within the common 

governance structure 

Sharing of medical equipment and beds to 

increase the healthcare capability across 

governance structures 

Dependency 

Common governance structure Independent administrative structure 

Work dependency Work independency  

Less autonomous while working together  Maintain autonomy while working together  

Requires collaboration Precondition for integration 

Decision 

making 

Cooperative sharing of information Cooperative sharing of information 

Decision on medical services is planned 

in advance 

Decision on medical services is made on a 

demand basis 

Decision making follows common 

practice guidelines and treatment plans 

Requires a sharing of information in the 

decision making  

Note: Adapted from Boon et al. (2009) 

1.1.5 Resilience 

A concept of resilience is introduced by Bruneau et al.  ( 2003) .  They define 

resilience as “the ability of system to reduce the opportunities of shock, to absorb 

impact of earthquake if it occurs, and to recover quickly after such an 

earthquake.  Resilience is perceived as the feature of a system allowing to 

respond to disasters, and then to resume normal operations as quickly as 

possible” .  Although their definition relates to earthquake, it can be applied to 

other types of disasters because all types of disasters often adversely affect the 

community.  Figure 1.1 presents a concept of resilience in an earthquake. The 

resilience is expressed in a prespective of the quality of infrastructure of a 

community. The graph gives an illustrative example of how the quality of the 

infrastructure of a community (𝑄𝑡)  varies over time during an earthquake, with 

𝑄𝑡 ranging from 0 – 100%. The value of 0% means the total loss of infrastructure 

and 100% means no damage in the infrastructure quality. If an earthquake occurs 

at time 𝑡0 , it can cause a damage to the infrastructure; 𝑄𝑡 is then immediately 

reduced from 100% to 50%. The restoration of infrastructure is expected to occur 

over time until time 𝑡1 when it is completely repaired and functional.  At this 

point, 𝑄𝑡 is improved to 100%.  



5 

Figure 1.1 Concept of resilience in an earthquake (Bruneau et al., 2003) 

Bruneau et al.  ( 2003)  state that four dimensions of resilience including 

robustness, redundancy, resourcefulness, and rapidity are required in response 

to an earthquake.  Robustness considers the ability to carry out the designated 

functions and to withstand the disasters without a loss of functions. Redundancy 

considers the ability to provide the backup resources to sustain activities such as 

alternative plans.  Resourcefulness considers the ability to measure the impact 

during disasters, as well as the ability to manage both material and human 

resources to cope with any damage.  Rapidity considers the ability to meet the 

prioritised goals in a timely manner.  

In the field of medical management, some studies use the term resilience to 

describe the coordination effectiveness in the healthcare system and address 

different stages of DOM in their definitions.  For instance, Crowe et al.  ( 2014) 

define resilience as the ability of the healthcare system to reduce the potential 

impact of disasters and to meet the needs of population.  These measures of 

resilience served as objectives in the preparedness stage.  Liu and Zhao ( 2015) 

define resilience as the ability of multi- HPs in the network to recover its 

operational state, as well as the ability of sustaining its medical services to save 

people during disasters using available healthcare resources of the network.  A 

coordination of HPs and the management of available resources in the network 

are the activities carried out in the response stage.  Kruk et al.  ( 2015)  define 

resilience as the capacity of healthcare organisations to prepare for and 

effectively respond to disasters; to maintain core functions during disasters, and 

to reorganise functions if required.  This definition includes both preparedness 

and response stage of DOM. It is apparent that resilience is commonly perceived 

at the network level where the coordination of HPs is required during disasters.  

𝑸𝒕  
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We define resilience as the ability of a healthcare network to respond to the 

impact of disasters and to adapt its emergency medical activities in order to meet 

better the patient demands during disasters. 

The primary concern of resilience is to maximise the provision of emergency 

medical services as well as to minimise negative healthcare outcomes (Bruneau 

et al. , 2003) .  It is advocated that the resilience measures should be outcome-

based describing the reduction in morbidity and mortality of the survivors 

( Rådestad et al. , 2013) .  The measures are sometimes referred to as patient 

outcome because they are used to evaluate the improvement of population’ s 

health during disasters (Fries et al., 1980; Fitzpatrick et al., 1998).  

We define the characteristics of resilience measures based on the framework 

proposed by Kruk et al.  ( 2017) .  The framework includes a set of resilience 

indices for the healthcare system during disasters. The framework specifies that 

the resilience measures should reveal the population health, reveal the quality of 

healthcare- network performance, serve as a benchmark for resilience that is 

comparable across different strategies of emergency medical response, and 

provide the information for decision makers on the required actions to improve 

emergency medical response.  Berg et al.  ( 2018)  suggest that the resilience 

measures should concern the system performance as a whole rather than the 

performance of individual components.  The characteristics of resilience 

measures are summarised in Table 1.2.  These characteristics aid to define the 

adapted resilience metrics to be used in disasters.  

Table 1.2 Characteristics of resilience measures 

Characteristics Description 

Population health  Reveal the health conditions of population in the affected area. 

Quality of 

healthcare-network 

performance 

Reveal the quality of medical services during a particular time. 

Evaluate the effectiveness of collective medical response during 

disasters. 

Concern the system performance as a whole rather than performance 

of individual components. 

Benchmark 
Enable the comparison of different strategies for medical response 

during a particular disaster. 

Information for  

decision maker 

Provide information for the decision maker or policy maker on 

patients’ outcome as well as the required actions of collective medical 

response to improve it during disasters. 
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1.2 Challenge of healthcare system during disasters  

One of the most prominent systems in disaster response is the healthcare system. 

Healthcare systems have encountered extreme pressures from disasters (Yi et al., 

2010) .  One of the vital organisations in the healthcare system are healthcare 

providers (HPs), which are generally recognised as a centre of medical services 

during disasters ( Cimellaro et al. , 2010; Vanvactor, 2011; Achour et al. , 2014; 

Kruk et al. , 2015) .  Their roles in providing timely and good quality treatments 

to both existing and new patients affected by a disaster are critical during 

disasters (McDaniels et al., 2008). Disasters have an impact on both healthcare 

resources and healthcare activities as follows.  First, in many situations, such as 

Tsunami in 2004, HPs allocate some medical staff to the shelters set up at the 

disaster scene in order to provide the initial treatments (Lodree et al., 2017). HPs, 

thus, need to ensure a sufficiency of medical staff at their settings in order to 

maintain healthcare capability during disasters ( Yi et al. , 2010; Becker et al. , 

2018) .  Healthcare capability refers to the ability to provide medical services. 

Second, HPs often provide a patient transportation, especially during natural 

disasters.  Due to a limited number of available ambulances, they need to make 

multiple trips during such events (Repoussis et al., 2016). Third, a sudden surge 

of emergency patients causes a shortage of healthcare resources, resulting in a 

lower healthcare capability for a period of time ( Achour & Price, 2010) .  In 

particular, a shortage of emergency beds can result in higher waiting time for 

severe- injured patients ( Xiang & Zhuang, 2016) .  Lastly, disasters change 

healthcare activities.  The admission and discharge protocols are modified in 

order to increase the ability to accept new patients who require emergency 

medical services (Zhang & Howard, 2015). To better respond to future disasters, 

HPs and institutions for social care, in both private and public sectors, need to 

prepare contingency plans for medical response ( Boyd et al. , 2012; Starr & 

Matinrad, 2016) .  For instance, after the Indian Ocean Tsunami in 2004 with 

more than 225,000 casualties, HPs around the world started planning the 

emergency medical response for natural disasters (Altay & Green, 2006).  
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1.3 Importance of coordination in healthcare system during disasters 

The importance of coordination in healthcare systems during disasters is well 

recognised in the literature. Coordination allows pooling of healthcare resources 

to ensure the continued provision of medical services in the healthcare network 

during disasters ( Rolland et al. , 2010; Kruk et al. , 2015) .  The lack of 

coordination of multiple healthcare facilities for emergency medical response 

can result in managerial confusions and ambiguity of authority in the collective 

response during disasters (Espíndola et al., 2018). The practice of coordination 

in healthcare systems, for example, has proved to be very useful during the 

SARS- CoV- 2 outbreak.  When the medical supplies at Wuhan Red Cross were 

in shortage, Red Cross in other cities in China shared with them respirator masks, 

medical protective suits, and some medicine in order to enhance the healthcare 

capability in the city and to reduce the spread of COVID-19 in China (CNN.com, 

2020). The HPs in Italy shared their testing kits, beds, and ventilators in response 

to a surge of infected patients and coordinated the development of protocols and 

procedures of healthcare activities and medical treatments in order to mitigate 

the impacts of COVID-19 on the healthcare system (Carenzo et al., 2020). When 

the United States experienced an increase in the number of infected patients, 

there was a need to manage the ventilator allocation at the national level, 

resulting in a sharing of ventilators between states ( covidanalytics. io, 2020). 

States which had available ventilators were required to allocate some ventilators 

to the states that were expected to have ventilator shortages in the upcoming 

weeks.  The higher- income countries shared COVID- 19 vaccines and syringes 

with medium-  and low- income countries through the COVAX scheme in order 

to achieve global herd immunity ( BBC. com, 2021; UNICEF. org, 2021; 

WHO.int, 2021).  

Studies on disaster management claim that a highly proactive and functioning 

healthcare network is needed. Disaster response plans require a collective effort 

from multiple HPs rather than an individual effort from a single HP (Rolland et 

al., 2010; Vanvactor, 2011; Kruk et al., 2015; Ogawa et al., 2016). The National 

Health Service in the UK advocates that coordination with other agencies to 

provide emergency medical response enhances the ability to respond to disasters 

(GOV.uk, 2019). There is a limit to what any individual institution can achieve 
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without support from other institutions.  For instance, disaster responses that 

assess each healthcare facility in isolation fail to account for patient reallocation 

from one facility to another, and ultimately affect the ability of the healthcare 

system to admit new patients ( Zhang & Howard, 2015) . For example, 

independent participation of different organisations during two major floods in 

Mexico and their independent decision- making caused an ineffective response 

and an inefficient use of resources ( Espíndola et al. , 2018) .  The lack of 

coordination among humanitarian organisations during natural disasters can 

cause higher operational costs, response times, and inefficient emergency 

resource allocation (Pazirandeh & Maghsoudi, 2018). 

1.4 Research motivations 

In the field of medical management, there are two types of coordination: 

integrative care and collaborative care ( Boon et al. , 2009) .  The focus of 

integrative care is on resource sharing under a common governance structure, 

thereby being commonly implemented within a HP.  In contrast, collaborative 

care is mainly focused on resource sharing across different governance 

structures. It is commonly implemented between HPs (Tippong et al., 2022) 

Although integrative care has been developed to enhance the healthcare 

capability in a HP when responding to a disaster, it may not improve resilience 

at the healthcare-network level because the resilience improvement requires the 

joint capabilities of different HPs (Holling, 1996; Bruneau et al. , 2003) .  When 

responding to disasters, the resilience is perceived at community level rather than 

at an individual institution (Kruk et al., 2015; Rohova & Koeva, 2021). 

Several studies have addressed collaborative care between HPs in response to 

disasters.  However, the research about the effectiveness of collaborative care 

remains unclear.  From the methodological perspective to the best of our 

knowledge, there have been no attempts to use simulation approach to quantify 

the potential impact of collaborative care.  From the application perspective, the 

literature has not taken into consideration some real- world aspects of 

collaborative care as follows. 

- The literature has not addressed the healthcare resources in the facilities 

which are not affected by a disaster from external network. We use the term 
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internal to refer to the affected areas, whereas external refers to outside the 

affected areas.  In real- world, the external medical staff and ambulances 

from outside the affected area are generally allocated to the affected 

healthcare network in order to enhance the healthcare capability during 

disasters, especially natural disasters. 

- The literature has not paid attention to the ambulance sharing for multiple 

patient transportation.  The literature on patient transportation so far has 

always assumed that only one patient could be carried in one ambulance 

trip, but has not considered sharing of an ambulance between multiple 

patients. However, this would increase the utilisation of ambulances during 

disasters.  There has been a recognition of the importance of ambulance 

sharing in real- word disaster operations management.  For instance, 

WHO. int ( 2008)  reports that one of ambulance types, called patient 

transport ambulances, is suitable for transportation of one or more patient(s) 

on stretcher( s)  and/or chair( s) , particularly in post-disaster logistics when 

fast transportation of patients to healthcare facilities is of utmost 

importance.  Boness & Mayes ( 2018)  state that Australia developed a plan 

for sharing an ambulance to carry out the transportation requests.  An 

ambulance picks up all the patients for the common route before dropping 

them off.  BBC. com ( 2018)  reported that an increase in demand for 

ambulances requires the ambulance sharing.  However, the constraints that 

an ambulance could stop for an additional patient only if it is clinically safe 

for the patient on board should be carefully modelled.  

Although simulation enables investigation of the impact of different strategies 

for collaboration in the network on the resilience, the allocation of patients may 

not be optimal as the simulation itself is not the optimisation tool.  An 

optimisation model is required to address patient allocation in collaborative care 

in which an ambulance transports multiple patients to one of the HPs in one trip.  

Furthermore, the interviews that we conducted with the health authorities and 

medical staff in Thailand, who experienced the Tsunami disaster in 2004, proved 

the importance of collaborative care between HPs in such event.  HPs in the 

affected areas were disorganised while allocating the disaster victims because 
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there was no collaboration agreement in response to Tsunami.  This provided 

further motivation for our study.  

1.5 Research aim, objectives and questions 

The study aims to develop discrete event simulation (DES)  models of different 

strategies for collaboration in an emergency medical response in a healthcare 

network.  The DES models include relevant real- world aspects of collaborative 

care missing in the literature including external resource sharing, and ambulance 

sharing for multiple patient transportation. In addition, the study aims to present 

the resilience metric in healthcare context and to perform the quantitative 

analysis to reveal the impact of different strategies on resilience improvement 

during a disaster.  Furthermore, the study aims to develop a mixed integer 

programming (MIP) model for multiple patient allocation in collaborative care. 

The MIP model addresses the ambulance sharing for multiple patient 

transportation in one trip.   

The research objectives of this thesis are  

1. To develop simulation models to investigate the impact of different 

strategies for collaboration in the network on the resilience. The models 

will include relevant real- world aspects of collaborative care missing in 

the literature.  

2. To develop metrics of resilience in healthcare context that can be used in 

the quantitative analysis of different strategies.  

3. Apart from the simulation models, to develop an optimisation model to 

address the allocation of multiple patients using ambulance sharing. 

In particular, we seek to address the following questions.  

1. How can DES models be used to develop strategies for effective 

collaboration in a healthcare network in response to disasters?  

2. How can we measure the resilience of a healthcare network during disasters?  

3. How can the resilience of healthcare network be improved by using strategies 

during disasters? 

4. How can an MIP model be used to optimally allocate multiple patients to 

HPs using ambulance sharing? 
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1.6 Research contributions 

In our study, three strategies for collaboration are defined.  These strategies 

include non- collaborative care strategy, semi- collaborative care strategy, and a 

new proposed collaborative care strategy.  The strategies differ with respect to 

the first treatment provision of patients, sharing of healthcare resources, and 

patient transportation. We compare the effect of these strategies on the resilience 

of the healthcare network. We collaborate with the health authorities and medical 

staff in Thailand who experienced the Tsunami disaster in 2004 to investigate 

real- world activities that take place in an emergency medical response.  These 

activities include treatment provision of patients, healthcare resource sharing, 

and patient transportation.  The healthcare authorities were involved in model 

validation and verification as well as the design of disaster scenarios. 

The contributions of our study are as follows.  

- This is the first example of developing and using DES models to investigate 

different strategies for collaboration in the healthcare network.  Our DES 

models simulate the strategies following the real- world activities of 

collaboration in an emergency medical response and cover relevant real-

world aspects which are missing in the literature.  These aspects include 

external resource sharing and ambulance sharing for multiple patient 

transportation.  

- A generic metric of resilience proposed in the literature on system safety is 

adapted for use in the healthcare context.  

- Insights about the resilience of a healthcare network under different 

strategies for collaboration are generated. Ultimately, the study provides an 

important opportunity to advance the understanding of collaborative care 

development and resilience improvement.  These can support emergency 

planners in the development of a more effective strategy for collaboration 

in response to disasters. 

- We develop a first MIP model to optimally allocate of multiple patients to 

HPs using ambulance sharing.  The model considers the ambulance 

capacities and the possible combinations of different patient categories in 

one-trip ambulance which are missing in the literature.  
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- Apart from the models, we provide the first focused review of OR articles 

that discuss the coordination of integrative and collaborative care in 

healthcare network during disasters. We classify the articles by the research 

problems they addressed, disaster types, and the methodologies they 

developed/ used.  The main characteristics of mathematical models for 

integrative and collaborative care which have been developed and published 

so far are analysed.  We also define the characteristics of measures for the 

resilience of a healthcare network based on a framework proposed in the 

literature.  These characteristics aid to review the resilience measures 

proposed in the literature and are used to define adapted resilience metrics 

to be used during disasters. 

1.7 Thesis overview 

The thesis is organised as follows. Chapter 2 provides a focused literature review 

of OR contributions on the topic of coordination in healthcare systems.  It 

presents the literature search, reviews the literature on coordination and 

resilience measure in healthcare system, and highlights the gaps in the literature. 

Chapter 3 sets out the research methods used in the thesis, including interviews, 

simulation and optimisation. Chapter 4 presents the description of strategies for 

collaboration in the healthcare network and their activities. The development of 

DES models is described in Chapter 5. The design of different disaster scenarios 

and the resilience of a healthcare network using different strategies obtained in 

these scenarios are given in Chapter 6.  Also discussed in Chapter 6 are the 

managerial insights into collaborative care.  The MIP model of multiple patient 

allocation in collaborative care is presented in Chapter 7. Chapter 8 provides the 

conclusions and suggests future research. 

1.8 Dissemination of the research 

The dissemination of this research includes the following publications and 

presentations: 

- Tippong, D. , Petrovic, S. , & Akbari, V.  (2022) .  A Review of 

Applications of Operational Research in Healthcare Coordination in 

Disaster Management.  European Journal of Operational Research, 

301(1), 1-17. 
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- Tippong, D. , Petrovic, S. , & Akbari, V.  (2022) .  Collaboration in 

healthcare for resilience improvement during disasters, paper reviewed 

and presented at the 48th EURO Working Group on Operational Research 

Applied to Health Services (ORAHS), Bergamo, Italy, 17 – 22 July. 

- Tippong, D., Petrovic, S., & Akbari, V. (2022). Collaborative response 

for healthcare resilience improvement in disasters, paper reviewed and 

presented at the 32nd EURO Conference, Espoo, Finland, 3 – 6 July.  

- Tippong, D. , Petrovic, S. , & Akbari, V.  ( 2019) .  Healthcare resilience 

improvement using collaborative care during disruption, paper reviewed 

and presented at Health Challenge Thailand 2019, London, United 

Kingdom, 28 – 30 June. 

Under review: 

- Tippong, D. , Petrovic, S. , & Akbari, V.  (R&R) .  A simulation study of 

healthcare resilience improvement using collaborative care in response 

to disasters. European Journal of Operational Research. 
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Chapter 2 Literature review 

This chapter presents a focused literature review of OR contributions on the topic 

of coordination in healthcare systems during disasters.  

2.1 Current reviews of disaster management 

OR has been employed to a variety of problems to support decision making in 

healthcare systems during disasters.  A reasonably large number of literature 

reviews of disaster management have been offered by numerous OR scholars. 

Table 2.1 presents a summary of exiting reviews of OR applications in disaster 

management and positions our review with respect to these. The columns in the 

table show the authors, the review focus, the stages of DOM, the disaster types, 

and the time period of articles covered in the review. The last column shows the 

level of details presented in the review. The existing reviews covered only some 

parts of disaster management. 

Altay and Green (2006) reviewed the articles on DOM which covered all stages 

of DOM.  Simpson and Hancock ( 2009)  reviewed the articles on emergency 

responses in both urban and disaster services.  They defined urban services as 

municipal services that can be provided by a single organisation, whereas 

disaster services referred to large- scale emergency services.  Caunhye et al. 

( 2012)  reviewed the optimisation models proposed for emergency logistics 

problems, which included the facility location, stock pre- positioning, relief 

distribution and casualty transportation.  Galindo and Batta (2013)  analysed the 

trend of articles in DOM and compared them with the review by Altay and Green 

(2006). Their review also identified the most frequent assumptions presented in 

the reviewed articles.  Anaya- Arenas et al.  ( 2014)  reviewed the articles in the 

relief distribution network focusing on logistics perspectives.  Gul & Guneri 

( 2015)  reviewed the application of simulation methods in an emergency 

department in their normal functioning and during disaster events.  The review 

mainly presented the frequency of use of simulation methods. Key performance 

indices and simulation software used in the reviewed articles were presented. 

Özdamar and Ertem (2015) provided a comprehensive review of amathematical 

models for mass evacuation, casualty transportation, and relief distribution. 
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Table 2.1 Literature reviews of OR applications in disaster management 

Author(s) Focus of literature review 

Scope of study 
Review 

includes Stages of DOM Types of 

disaster 

Period 

surveyed 

Altay and Green (2006) - Disaster operations management Mit, Pre, Res, Rec Nat, Man 1980 – 2004 Sol 

Simpson and Hancock (2009) - Emergency response in urban services and disaster services Res Nat, Man 1965 – 2007 Sol 

Caunhye et al. (2012) - Optimisation models for emergency logistics  Mit, Pre, Res Nat, Man 1980 – 2010 Par, Var, Obj, 

Cons 

Galindo and Batta (2013) - Evaluation of the trend of articles on DOM and comparison with 

the review by Altay and Green (2006) 

Mit, Pre, Res, Rec Nat, Man 2005 – 2010 Assump, Sol 

Anaya-Arenas et al. (2014) - Relief distribution network focusing on logistics perspective  

- Models for location-network design and humanitarian aid 

transportation 

Res Nat, Man 1990 – 2013 Obj, Cons, Sol 

Gul & Guneri (2015) - Simulation models in an emergency department N/A Nat, Man 1968 – 2013 Obj 

Özdamar and Ertem (2015) - Models for mass evacuation, casualty transportation, and relief 

distribution 

Res, Rec N/A 1998 – 2014 Obj, Cons, Sol 

Gutjahr and Nolz (2016) - Multicriteria optimisation in humanitarian aid 

- Optimisation criteria in humanitarian aid  

Mit, Pre, Res, Rec Nat 2007 – 2015 Par, Obj, Sol 

Ahmadi-Javid et al. (2017) - Healthcare facility location in both non-emergency and 

emergency situations 

- Models for healthcare facility location 

N/A N/A 2004 – 2015 Par, Var, Obj, 

Cons, Sol 

Esposito Amideo et al. (2019) - Optimisation models developed for shelter location and 

evacuation routing  

- Challenges in developing applicable optimisation models for 

these problems  

Res Nat, Man 1980 – 2016 Par, Obj, Cons, 

Sol 

Mishra (2019) - Simulation models in disaster management  Mit, Pre, Res, Rec Nat, Man 2000 – 2016 Sol 

Farahani et al. (2020) - Casualty management  Res Nat, Man 1977 – 2019 Assump, Par, 

Var, Obj, 

Cons, Sol 

Sabbaghtorkan et al. (2020) - Prepositioning and allocation of healthcare supplies Mit, Pre Nat 2000 – 2018 Var, Obj, Cons 

Our review - Coordination in the healthcare systems 

- Measures of healthcare resilience 

Res Nat, Man 2005 – 2022 Par, Var, Obj, 

Cons 

Note: Mit - Mitigation, Pre - Preparedness, Res - Response, Rec - Recovery, Nat - Natural, Man - Man-made, Assump - Main assumptions, Par - Parameters, Var - Key decision 

variables, Obj - Objective functions, Cons - Main constraints, Sol - Solution approach, N/A - Not applicable 
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Gutjahr and Nolz (2016) provided an in-depth review of articles which addressed 

multi-criteria optimisation for humanitarian aid.  The multicriteria deterministic 

and stochastic optimisation models for different stages of DOM were presented. 

Ahmadi- Javid et al.  ( 2017)  reviewed articles on healthcare facility location in 

both non- emergency and emergency situations, presenting the main 

characteristics of the models and optimisation methods.  Esposito Amideo et al. 

( 2019)  reviewed optimisation models developed for shelter locations and 

evacuation routing.  The review also discussed the challenges in developing 

realistic optimisation models by considering the applicability of models in real-

world cases.  Mishra et al.  ( 2019)  reviewed the applications of simulation 

methods in disaster management. The review mainly presented a broad analysis 

of different simulation methods in the context of disaster management. Farahani 

et al.  ( 2020)  reviewed articles about casualty management in humanitarian 

activities which included resource dispatching, search and rescue, on- site 

medical activities and patient transportation.  Sabbaghtorkan et al.  ( 2020) 

reviewed articles which investigated prepositioning and allocations of healthcare 

supplies.  

Most of them consider logistics management in their review including facility 

locations, stock pre-positioning, relief distribution network, evacuation routing, 

and casualty transportation.  Only a few of them considered the operations 

management of entire activities in different stages of DOM ( Altay and Green, 

2006; Galindo and Batta, 2013; Gutjahr and Nolz, 2016; Mishra 2019). Most of 

them covered all types of disasters, whereas a few reviews covered only natural 

disasters.  

Although the existing literature reviews of OR approaches have included the 

perspective of healthcare management, they focused mostly on the application 

of OR in disaster operations and logistics management. The importance of 

coordination in healthcare systems during disasters is well recognised in the 

literature, but to the best of our knowledge there has been no review of the 

published research in this area. Therefore, a focused literature review of OR 

applied to the problem of coordination in healthcare systems during disasters 

was undertaken. 
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2.2 Scope of the focused literature review 

The terminology defined in Section 0 helps in highlighting precisely the scope 

of the review as follows.  

2.2.1 Disasters 

The review is not limited to any particular type of disasters because healthcare 

systems have encountered extreme pressures from different types of disasters, 

including natural disasters and man- made disasters ( Yi et al. , 2010) .  All these 

disasters have created a surge of demands for medical services and caused a 

shortage of healthcare resources in the affected areas.  

2.2.2 Stages of DOM 

Our review is focused on the response stage of DOM.  When disasters happen 

there is often a shortage of healthcare resources even if some emergency medical 

plans have been developed in advance.  The healthcare environment during 

disasters is characterised by high level of variations which drive the need for 

adaptation plans (Fairbanks et al., 2014). For instance, a surge of patient demand, 

and an inappropriate staffing are common variations in the conditions of work 

and require adaptation.  The changes in clinical pathway to meet a surge of 

demands as well as the flexible medical staff assignment to perform medical 

services have to be implemented for a better disaster response (GOV.uk, 2019). 

Therefore, devastating impacts of disasters on the healthcare systems require an 

efficient emergency medical response and the adaptation of healthcare activities 

to meet a surge of disaster victims. 

2.2.3 Emergency medical response  

According to the definition of emergency medical response presented in Section 

0, daily responses to routine emergency calls are excluded. 

2.3 Literature search and selection of articles 

Our review focuses on articles published in OR and OR- related journals, which 

presented research into coordination in the healthcare system during disasters. 

We refer to OR- related journals as the journals that do not focus on OR in their 

scope, but they present articles describing OR approaches. The utilised databases 
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include Web of Science, Scopus, and Google Scholar. Conference proceedings, 

book chapters, books, working papers, theses, conceptual frameworks, and 

practitioner magazines are not included in our review. To the best of our 

knowledge, none of book chapters publishes the coordination in the healthcare 

system during disasters. In addition, the review aims to identify, evaluate, and 

integrate what have been investigated by individual studies on the same subjects. 

The review requires the detailed research problems, methodologies and new 

findings/knowledge of the individual studies, which are available in articles, but 

not in book chapters. Book chapters are likely a collection of knowledge arising 

from many studies on the same subjects. They are often in the informative format 

and may be a repetition of findings from articles published in journal. Thus, book 

chapters are not included in the review. Only publications in English are 

considered. Our study covers the timeframe 2005 – 2022, because prior to 2005, 

OR articles address mostly the mitigation phase of disaster management.  Only 

after 2005, there have been more research interests and advancements in the 

response phase of disaster management. We believe that Tsunami in 2004 caused 

an increase in OR articles in the medical management. In the initial stage of our 

article selection, we considered articles where the following keywords were used 

anywhere in the articles:  “ integrated” , “ collaboration” , “ coordination” , 

“ sharing” , “ allocation” , “ resilience”  or “ resiliency” , together with one of the 

terms “ emergency” , “ disasters” , “ COVID” , “ hospital”  or “ healthcare” .  We 

proceed to select the candidate articles, which fit into our scope.  Our screening 

process is divided into three stages, which is similar to the review by Gutjahr 

and Nolz (2016); and Mishra et al. (2019). First, the titles and their abstracts are 

checked if they present an OR approach to the coordination in the healthcare 

system during disasters. Second, the articles that pass the first screening test are 

kept if they address the coordination for activities of medical services ( not 

physical space sharing)  in their abstracts.  Third, the last filtering is done based 

on the introduction and the problem description of articles, which have to address 

the coordination in emergency medical response (not in the collapse of buildings 

and the failure of information technology network). The steps taken in the review 

methodology are given in Figure 2.1. 
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Figure 2.1 Literature search and selection of articles 

Our search reveals that it is not always straightforward to determine whether the 

subject of an article should be classified as a disaster.  For instance, the terms 

“ disruption” , “ overcrowding events” , and “ crowded demand”  are used in the 

literature to address different issues. In these situations, the following questions 

are considered: (1) Does the event cause a surge in patient demands? (2) Are the 

healthcare resources of multiple departments or organisations in shortage during 

the event? The articles are retained if research problems address the surge in 

patient demand and the shortage of healthcare resources.  In addition, the focus 

of this thesis is on the collaboration in an emergency medical response in a 

healthcare network. The goal of the preparedness stage in DOM is to reduce the 

potential economic, social, and physical impacts of a disasters as well as to 

facilitate the use of resources for response and disaster relief. The outcome of 

preparedness stage is likely an emergency medical plan for upcoming disasters. 

However, these plans that have been prepared in advance are often adjusted to 

the situations during disasters in order to enhance the post-disaster survival rates. 

For example, clinical pathway is typically changed in order to relieve 

overcrowding in emergency departments. Ambulances, which normally carry 

one patient in non-disaster environment, transport multiple patients in one trip 

due to a shortage of ambulances during disasters. Thus, articles have to address 
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the medical management of the response stage of DOM. However, this aspect is 

sometimes difficult to evaluate precisely because some models presented in the 

articles could be applied in either the preparedness stage or the response stage of 

DOM. In the latter case, they are included in the review. 

The first stage resulted in 82 articles. Figure 2.2 shows the number of published 

articles based on the year of the publication.  It can be noticed that research 

interests in coordination in the healthcare system during disasters have increased 

gradually in the last decade. The number of articles published between 2014 and 

2019 almost doubled.  However, the number is still relatively small considering 

the breadth and depth of research potentials in this topic as well as the 

complexity of the healthcare system. 

 

 

 

 

 

Figure 2.2 Number of articles published between 2005 and 2022 

Only 40 of the retrieved articles address the activities of medical services in the 

abstract.  They are published in European Journal of Operational Research 

( EJOR) , Journal of the Operational Research Society ( JORS) , Operations 

Research for Health Care ( ORHC) , Annals of Operations Research, Health 

Systems, Journal of Simulation, Production and Operations Management 

Journal ( POM) , Computers and Operations Research ( COR) , Health Care 

Management Science (HCMS) , Artificial Intelligence in Medicine, Operations 

and Logistics, Decision Support Systems, Naval Research Logistics ( NRL) , 

Journal of Healthcare Informatics Research, Computers & Industrial 

Engineering (CAIE), Operations Management Research (OMS), and Journal of 

Scheduling.  Figure 2.3 illustrates the distribution of published articles across 

these journals.  There are 42 articles published in non- OR journals, mostly in 
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medicine and engineering related journals, including Journal of Prehospital, 

Disaster Medicine and Earthquake Spectra.  Their focus is on physical space 

sharing.  In all of them, the research into how the undamaged hospitals can 

support the damaged ones by allocating their free space during disasters was 

reported. These articles do not fit into our scope, i.e., do not address the activities 

of medical services. Thus, we exclude these 42 articles.  

In total, 21 articles in which the introduction and research problem address the 

coordination of emergency medical response are kept being reviewed. Figure 2.3 

shows the number of reviewed articles across journals.  EJOR and ORHC 

published the largest number of papers followed by Annals of OR.  In the third 

stage, we exclude 19 articles because all of them investigate the provision of 

medical services under the coordination of healthcare infrastructure during the 

collapse of buildings and the failure of information technology network. 

Collapsed buildings and failed information technology network are out of the 

scope of our study, which address insufficient healthcare resources where the 

resources include medical staff, beds, medical equipment, and medical supplies. 

 

 

 

  

 

 

Figure 2.3 Distribution of articles across journals 

2.4 OR approaches to coordination in the healthcare system 

The characteristics of the reviewed articles are given in Table 2.2 and are 

discussed in detail in the remainder of this section. 



23 

Table 2.2 Reviewed articles and their characteristics 

Article Journal Type Boundary Resource Disaster Model/Method 

Yi and Özdamar 

(2007) 

EJOR CC Across Staff Nat, Man DeterOpt (MIP) /  

Simple split algorithm 

 Lameris et al. 

(2008) 

AI in Med. IC Within Staff, Bed, 

Equip 

Nat, Man Sim (MCS) and  

DynOpt (IP) 

Arora et al. (2010) 

 

Decision 

Support 

CC Across Equip Nat DeterOpt (IP) 

Konrad et al. 

(2013) 

ORHC IC Within Staff Nat, Man Sim (DES) 

Crowe et al. (2014)  JORS IC Within Staff, Equip Nat DeterOpt (IP) and 

heuristics   

Sun et al. (2014) COR CC Across Pat Nat DeterOpt (MIP) 

Lei et al. (2015) 

 

Annals of 

OR 

CC Across Staff Nat, Man DeterOpt (MIP) /  

Greedy heuristic 

Liu and Zhao 

(2015) 

Ope. and 

Logis. 

CC Across Equip Nat, Man DeterOpt (MIP) 

Zhang and Howard 

(2015)  

Health Sys. CC Across Pat Nat DeterOpt (MIP) 

Chen and Wang 

(2016) 

 

Simulation IC Within Staff, Equip Nat, Man Sim (DES) and StochOpt 

(IP) / Multiobjective 

swarm optimisation 

El-Rifai et al. 

(2016) 

ORHC IC Within Staff Nat StochOpt (MIP)  

Repoussis et al. 

(2016) 

EJOR CC Across Pat Nat, Man DeterOpt (MIP) / Hybrid 

multi-start local search 

Sung and Lee 

(2016)  

EJOR CC Across Pat Nat, Man DeterOpt (MIP) / Column 

generation 

Yang et al. (2016) ORHC IC Within Staff Nat, Man Sim (DES) 

Lodree et al. (2017) Annals of 

OR 

IC Within Staff Nat, Man Sim (MCS) 

Becker et al. (2018) HCMS IC Within Staff Nat, Man DeterOpt (IP)  

Niessner et al. 

(2018) 

ORHC CC Across Staff Nat, Man Sim (DES) and  

DynOpt (IP)  

Mehrotra et al. 

(2020) 

NRL CC Across Equip Nat StochOpt (MIP) 

Buhat et al. (2021) J of Health. 

Infor. 

CC Across Equip Nat DeterOpt (NLP) 

Sarkar et al. (2021) CAIE CC Across Pat Nat DeterOpt (MIP) 

Thul & Powell 

(2021) 

EJOR CC Across Equip Nat StochOpt (IP) 

Note:  IC -  integrative care, CC -  collaborative care, Within -  within a hospital, Across -  across hospitals,  

Staff -   Medical staff allocation/ scheduling, Bed -  emergency bed allocation, Equip –  medical equipment/ supplies 

allocation, Pat - patient flow/allocation, Nat - natural disasters, Man - man-made disasters, DeterOpt - deterministic 

optimisation, DynOpt - dynamic optimisation, StochOpt - stochastic optimisation, MIP - mixed integer programming,  

IP -  integer programming, NLP -  nonlinear programming, Sim -  simulation method, MCS -  Monte Carlo simulation,  

DES - discrete event simulation 
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2.4.1 Research problem 

The reviewed articles are classified into groups based on their research problems. 

Each article is presented in some detail.  Overall, the integrative care literature 

mainly examines the sharing of healthcare resources within a HP setting, 

whereas the collaborative care literature primarily investigates the sharing of 

healthcare resources between HPs to address a surge of demands for emergency 

medical services in the network.  The common purpose of coordination is to 

ensure the continuity of medical services and to improve healthcare capability 

during disasters.  The healthcare resources that are commonly found in the 

reviewed articles include medical staff, emergency beds, medical equipment, 

and medical supplies such as syringes, antibiotics, surgical blades, vaccines, and 

bandages. 

Integrative care  

The literature on integrative care dealt with workforce allocation to ensure 

sufficient staff within a HP.  Some articles proposed models for workforce 

scheduling with on- call duty to respond to disasters.  Becker et al.  ( 2018) 

developed an integer programming (IP) model of a cyclic workforce scheduling 

with on- call duties for emergency events.  Two sets of medical staff were 

allocated for the period of time.  The first set of medical staff was assigned to 

provide medical services on a regular basis, while the second set was assigned 

to perform on- call duties.  When patient demand reached the usually available 

healthcare capability, the second set of medical staff was called in order to 

increase the healthcare capability during disasters.  El- Rifai et al.  ( 2016)  also 

optimised workforce scheduling with on- call duty during a seasonal epidemic. 

They concluded that such scheduling could save 10%  of the total wage cost 

compared to workforce scheduling without on-calls. Additionally, some articles 

presented the allocation of extra staff to respond to disasters. Lodree et al. (2017) 

developed a Monte Carlo simulation (MCS) model to allocate separate medical 

staff teams to serve different patient categories, for example, severe- and minor-

injured patients simultaneously, in contrast to the normal approach where 

medical staff treated all patients.  They found that this strategy can minimise 

waiting time and patients’  queue in an emergency department during mass 

casualty incidents.  Yang et al.  ( 2016)  also presented the allocation of extra 
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nurses to the triage station in order to improve the emergency department 

performance during a demand peak while considering the utilisation rate of 

medical staff.  Konrad et al.  ( 2013)  investigated a HP which has encountered 

emergency department crowding caused by a surge of patient volume.  They 

introduced the concept of split patient flow with an addition of medical staff to 

improve the Door- to- Doctor time.  The split- flow concept classified patients 

considering their severity and created parallel processes.  The severe- injured 

patients were treated using a normal emergency department process flow, 

whereas the minor- injured patients were treated in an intake area where 

emergency beds were not required. This study addressed coordination by sharing 

the medical staff in a HP setting and the emergency medical response by 

adjusting the patient flow process. The usual staff were responsible for doing the 

normal ED patient flow for severe- injured patients, while the additional staff 

working in a medical response team served minor- injured patients in an intake 

area.  This research is useful in disaster management when the healthcare 

resources become stressed and HPs in the affected areas need to adjust the 

emergency department activities in response to a surge of victims affected by a 

disaster.  Both Konrad et al.  ( 2013)  and Yang et al.  ( 2016)  developed DES 

models to examine the patient flows under integrative care strategy in an 

emergency department during the higher patient demands. 

Some integrative care studies developed models for resource integration within 

a HP in order to improve healthcare capability during disasters.  Crowe et al. 

( 2014)  investigated the reallocation of medical staff and medical equipment 

within a HP in order to minimise unmet demand and improve resilience during 

flooding.  To improve resilience, the availability of care service levels for 

different patient categories was determined within a HP in order to estimate the 

shortage levels.  Both medical staff and medical equipment were allocated 

between departments subject to their availability of resources and the shortage 

levels.  A few studies developed a dynamic allocation approach to improve 

healthcare capability when responding to disasters.  In general, dynamic 

allocation refers to the adaptive allocation of healthcare resources considering 

the current situations such as patient demands. Lameris et al. (2008) proposed a 

model of dynamic resource allocation in order to achieve high service levels for 
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all patient categories during disasters. They claimed that such allocation should 

be adjusted considering patient arrivals, the current and expected events.  Chen 

and Wang (2016) also investigated the allocation of healthcare resources in order 

to improve an average length of stay and costs related to wasted healthcare 

resources in an emergency department during overcrowding events.  The costs 

related to wasted healthcare resources were measured by a surplus of healthcare 

resources in the department.  

Collaborative care 

The main focus of collaborative care literature was on the sharing of medical 

staff between HPs.  Lei et al.  ( 2015)  developed an MIP model to allocate the 

teams of internal medical staff to the different HPs in the healthcare network. 

Medical teams from home hospitals were allocated to carry out treatments at 

affected HPs.  Once the treatment activities were completed, the medical teams 

could proceed to the next assigned HPs. The model considered the travel time in 

order to minimise the total tardiness of the service activities.  Medical supplies 

were included in the model.  However, the medical supplies were shipped from 

multiple distribution centres to HPs to support medical treatments, rather than 

being shared between HPs in the network.  In addition, a dynamic allocation of 

medical staff to affected areas was proposed in a number of studies.  Such 

allocation aimed to enable fast- relief access and improve survivor rates in the 

affected areas (Altay & Green, 2006), as well as to reduce congestion at the HPs 

(Galindo & Batta, 2013). Niessner et al. (2018) developed a DES model for the 

activities of medical treatments at the site after mass casualty incidents.  They 

developed an IP model to allocate physicians to the treatment stations at the site. 

The physician reallocation was made based on the demand and the current staff 

capacity at the treatment stations in order to minimise the total rescue time and 

number of deaths. Yi and Özdamar (2007) developed an MIP model to allocate 

the internal medical staff to the shelters during an earthquake. The objective was 

to maximise the response service level and to reduce congestion in the HPs. The 

medical staff allocation took into consideration a trade- off between patient 

demands at the shelters and healthcare capacity at the HPs.  Medical staff can 

also be shifted from shelter to shelter considering the patient demand at the 

shelters. 
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Apart from sharing of staff, some of the collaborative care literature included 

sharing of medical supplies to enable resource collaboration between HPs. Liu 

and Zhao ( 2015)  examined a collaborative scheduling strategy with the aim to 

improve resilience in the healthcare network. They developed an MIP model for 

medical supplies sharing between HPs in the healthcare network. They assumed 

that one HP had a role of the main HP providing medical services, whereas others 

transferred their medical supplies to it. Arora et al. (2010) examined regional aid 

by sharing antiviral drugs during a pandemic flu. An IP model was developed to 

allocate the antiviral drugs for the treatments of the expected infected population 

to each region in the healthcare network.  The objective was to minimise the 

negative healthcare outcomes such as the number of deaths and infected patients. 

It was assumed that the pandemic might affect one region more than others, 

thereby leaving some regions with a shortage of antiviral drugs, and others with 

an excess.  The regions with a shortage could therefore receive aid from regions 

with surplus. Costs of transferring antiviral drugs between regions and the delay 

in transfer were also minimised. Mehrotra et al. (2020) developed a multi-period 

planning model to optimally allocate and reallocate ventilators that were 

available in the national stockpile to different regions during the SARS- CoV-2 

pandemic.  The allocation and reallocation of ventilators between regions were 

implemented by a central agency that acted as a coordinator for ventilator 

sharing among regions. The aim was to meet patient demands, while minimising 

total shortfall of ventilators under different expected demand scenarios.  The 

model incorporated the demands for ventilators at each planning period in 

regions, the initial inventory of ventilators in regions and in the central agency, 

the availability of additional ventilators through planned production, and the lead 

time for the ventilator production.  Thul & Powell ( 2021)  examined the 

collaboration between a test centre and a vaccination centre to allocate test kits 

and vaccines in response to the SARS-CoV-2 pandemic in the United States and 

Nevada.  The test centre allocated the tests kits and received samples of 

suspected/ infected patients.  The information about the infection and 

transmission rate was sent to the vaccination centre for implementing the vaccine 

allocation.  The model took into account the information flow between these 

centres in order to minimise the cumulative number of new infections. Buhat et 

al. (2021) also investigated the collaboration between test centres in response to 
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the SARS- CoV- 2 pandemic.  They developed a nonlinear programming model 

to allocate COVID- 19 test kits among test centres in Philippines.  The aim was 

to give an equal chance for all people in the country to have an initial test for the 

virus infection. The objective was to maximise the number of suspected patients 

in getting tested.  The model incorporated distance between test centres and 

patients’ community, number of suspected patients in cities, and capacity of test 

facilities. Their results served as a guide to healthcare authorities in distributing 

the test kits in response to the SARS-CoV-2 pandemic.  

Another purpose of collaborative care is to allocate patients to HPs during 

disasters.  Zhang and Howard ( 2015)  investigated collaborative responses for 

creating a healthcare surge capacity in the healthcare network during disasters. 

They assumed that the skilled nursing facilities were used to expand the 

healthcare system and they were used to create a surge capacity in the healthcare 

network.  They developed an MIP model to allocate patients to either skilled 

nursing facilities or HPs in the healthcare network with the aim to relieve 

overcrowding in the HPs and improve the ability of a healthcare network to 

admit new severe- injured patients during disasters.  Sung and Lee ( 2016) 

examined a resource- constrained triage for patient allocation in the healthcare 

network.  An MIP model was developed to allocate patients to the HPs.  The 

model took into account the priority of patients and the change in the patients’ 

chance of survival in order to maximise the number of expected survivals.  Sun 

et al. (2014) developed an MIP model to allocate patients to HPs by considering 

the shortest total travel distance to the HPs. Repoussis et al. (2016) argued that 

the patient allocation to the nearest HP might cause a congestion at the HPs, 

resulting in long waiting time.  They thus developed an MIP model to allocate 

patients to remote HPs in the healthcare network. The objectives were to improve 

the balance of patient allocation between the HPs and the efficient use of 

healthcare network capacity.  Sarkar et al.  ( 2021)  developed a data- driven 

optimisation model for patient allocation to hospitals in other cities in India with 

the aim to minimise the transportation cost during the SARS- CoV- 2 pandemic. 

Pareto analysis was conducted using the information on the number of infected 

patients in the cities.  The cities where there were higher number of infected 

patients were placed in the higher rank.  The cities that were in top 80% ranked 
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of all cities were only considered.  The information related to these cities 

including a cooperation level between cities, distances between cities, and 

number of beds per city was used in patient allocation.  The cooperation level 

was estimated based on a COVID- related governmental policy for patient 

allocation in different cities.  Some cities in India did not accept patients from 

other cities, while some did. 

Types of Disaster 

The reviewed articles presented in Table 2.2 are concerned with all types of 

disasters. Several disasters including Spanish influenza pandemic in 1918, Asian 

influenza pandemic in 1957, and in Hong Kong in 1968, Swine influenza in 

1976, the World Trade Centre bombing in 2001, Tsunami in Indonesia in 2004, 

Hurricane Katrina in 2005, Haiti earthquake in 2010, and SARS- CoV- 2 

pandemic in 2019 have drawn OR scholars’  attention to use and/ or develop 

models and methods for disaster management.  Articles that developed general 

models/ methods and evaluated them on a specific real- world disaster are of 

particular interest to the OR community.  For instance, Repoussis et al.  ( 2016) 

developed a response model for ambulance dispatching and patient assignment 

for all disaster situations.  They then illustrated the application of the proposed 

model in the terror attack on the New York Stock Exchange in Lower Manhattan 

in 2001.  The response efficiency was examined by varying the availability of 

resources including ambulances and emergency beds.  The models were 

developed to support decision making responding to events with many 

causalities.  

2.4.2 Methodology and model development 

Table 2.2 shows that development of deterministic optimisation models together 

with heuristic algorithms to solve larger problems is the dominant approach in 

the reviewed articles ( Yi & Özdamar, 2007; Arora et al. , 2010; Crowe et al. , 

2014; Sun et al. , 2014; Zhang & Howard, 2015; Lei et al. , 2015; Liu & Zhao, 

2015; Repoussis et al., 2016; Sung & Lee, 2016; Becker et al., 2018). We would 

like to emphasise that a classification of an article to deterministic optimisation 

does not imply that the underlying problem itself is fully deterministic.  Several 

reviewed articles included the components in the model to handle uncertainties, 
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then solved the problem using a deterministic optimisation approach.  This is 

mainly because, in general, deterministic optimisation methods consume less 

computational time and hence are able to handle larger instances.  Crowe et al. 

( 2014)  advised that a simple model must be built in the first instance to reduce 

the computational burden.  Then a more complex model with more realistic 

assumptions and input data to address stochastic behaviour of the problems in 

disasters management should be developed.  

Due to the nature of the problems, developing an MIP model was a common 

approach to find the optimal solutions.  In these problems, decisions often 

involved the selection of hospitals for patient allocation and patient assignment 

to ambulances. Some reviewed articles presenting the MIP models provided the 

computational costs associated with the approaches used to solve the problems. 

Yi and Özdamar (2007) developed an MIP model to allocate medical staff to the 

shelters during an earthquake. They included 20 shelters and solved the problem 

using a two- stage procedure.  In the first stage, they treated vehicles as integer 

commodity flows rather than binary variables.  In the second stage, they used a 

simple vehicle splitting algorithm to generate detailed vehicle routes and pick 

up/ delivery locations.  All instances were solved in the MIP solver CPLEX 7. 5 

within 2 seconds. They also illustrated the applicability of a two-stage procedure 

in larger size scenarios with up to 60 nodes for which optimal solutions were 

obtained within 140 seconds.  Sun et al.  ( 2014)  developed an MIP model to 

allocate patients to hospitals during the pandemic influenza.  They divided the 

long planning horizon into several short planning horizons in order to shorten 

the run time.  For example, a 2-month pandemic outbreak was divided into 

consecutive weekly planning horizons.  The output from the previous planning 

horizon was used as input to the next planning horizon. Specifically, the number 

of patients who were admitted and the available resources from the previous 

planning horizon were fed in the new planning horizon as the starting condition. 

This approach allowed decision makers to update the system state in each weekly 

planning horizons. The model was solved using LINGO 11.0. Unfortunately, no 

data about runtime was reported. Lei et al. (2015) developed an MIP model for 

the allocation of medical staff to different hospitals. They used a rolling-horizon 

based greedy heuristic to find near optimal solutions. The search process started 
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with a hospital sequence in which hospitals were sorted based on the starting 

time of their services.  In each iteration, a sub-problem focused on the hospitals 

on the top of the list that needed the additional medical staff was solved, which 

in turn reduced the size of the problem. This heuristic allowed them to solve the 

problem with a short time horizon and to quickly obtain a solution for a given 

group of waiting hospitals.  The best feasible solution was obtained within 2 

minutes for 40 hospitals and within 12 minutes for 80 hospitals. Repoussis et al. 

( 2016)  developed an MIP model for ambulance dispatching and patient 

assignment during disasters and solved the model using a hybrid multi-start local 

search. They initially used a greedy randomised algorithm to generate the upper 

bound of initial solutions.  Then, these initial solutions served as the starting 

points for an iterated Tabu search algorithm.  The application of the proposed 

model was illustrated on large scale problem instances with up to 150 patients. 

The conclusion was that the iterated Tabu search algorithm considerably 

improved the initial solutions. Unfortunately, no CPU time required for solving 

the large- scale instances was given.  Sung and Lee ( 2016)  developed an MIP 

model for patient allocation in the network. They modelled the defined problems 

as a set- partitioning problem and evaluated the model on 900 instances.  A 

column generation approach was developed which obtained near optimal 

solutions within a short computation time (but the exact time was not reported).  

Simulation was used relatively frequently as well.  Simulation was used to 

investigate the outcomes of a change in strategy, and to evaluate the 

implementation of alternative plans ( Katsaliaki & Mustafee, 2011) .  DES was 

most widely used. Konrad et al. (2013) and Yang et al. (2016) developed DES 

models to examine the patient flows under integrative care strategy in an 

emergency department during the higher patient demands. In addition, Lodree et 

al. (2017) developed a MCS model to simultaneously allocate different teams of 

medical staff to serve different patient classes in an emergency department 

during mass casualty incidents. 

There were two articles which employed a combination of simulation and 

optimisation methods.  Lameris et al.  ( 2008)  implemented patient scheduling 

using MCS, then used optimisation to allocate healthcare resources to patients. 

These methods were employed sequentially. Chen and Wang (2016) developed 
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a multi- objective stochastic optimisation model to identify the optimal number 

of healthcare resources at emergency departments. This served as input to a DES 

model to examine potential solutions to healthcare resource allocation problems. 

Different resource allocations obtained by DES were analysed by comparing 

performance indicators including the average patient length of stay and the costs 

related to wasted healthcare resources. 

More details of the developed models for integrative care and collaborative care 

are given in Table 2.3.  In the medical management field, coordination has been 

implemented for two main purposes:  clinical integration /  collaboration, and 

resource integration / collaboration. The former can be achieved by sharing of 

medical staff, the latter by sharing of key resources such as medical staff, 

emergency beds, medical equipment and medical supplies ( Gould et al. , 2000; 

Lockhart- Wood, 2000; Bender et al. , 2013; Chong et al. , 2013; Karam et al. , 

2018; Johnson & Mahan, 2019). Therefore, the models proposed in the literature 

are classified into two categories considering the purpose of coordination: 

sharing of medical staff for clinical integration and clinical collaboration (second 

and fourth column respectively); and sharing of healthcare resources for resource 

integration and resource collaboration (third and fifth column respectively). The 

table shows the relevant objectives, parameters, decision variables, and model 

constraints.  

The models for clinical integration in integrative care (second column) aimed to 

improve the healthcare performance in an emergency department by sharing 

staff within a HP.  Objectives used in integrative care for clinical integration 

included minimisation of waiting time (Konrad et al., 2013; Yang et al., 2016),  

and minimisation of total costs (El- Rifai et al. , 2016)  in an emergency 

department. Treatment processes in an emergency department, service times for 

different processes, and patient arrival rates were taken into account in the 

models.  Service time was defined as the total estimated time for each treatment 

process.  The decision variables included the number of staff allocated to a 

particular time period.  The required number of staff for a shift or a treatment 

process, the number of available staff and total available working times were 

normally perceived as model constraints for the allocation of staff. 
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Table 2.3 Main characteristics of the models for integrative care and collaborative care 

 Integrative care (within a HP) Collaborative care (in the network) 

 Sharing of medical staff 

for clinical integration  

Sharing of healthcare resources 

for resource integration  

Sharing of medical staff  

for clinical collaboration  

Sharing of healthcare resources  

for resource collaboration  

Objectives - Minimisation of the waiting time in an 

ED (Konrad et al., 2013; Yang et al., 

2016) 

- Minimisation of total cost in an ED (El-

Rifai et al., 2016; Lodree et al., 2017) 

- Minimisation of the length of stay in an 

ED (Chen and Wang, 2016) 

- Minimisation of total cost in an ED 

(Lameris et al., 2008; Li et al., 2009; 

Güneş & Yaman, 2010; Chen & Wang, 

2016)  

- Minimisation of untreated patients in 

different departments  (Crowe et al., 

2014)  

- Minimisation of the times of service 

activities across healthcare facilitates in 

the network (Lei et al., 2015) 

- Minimisation of number of patients 

waiting for medical services in the 

network (Yi & Özdamar, 2007) 

- Maximisation of number of treated 

patients in the network (Niessner et al., 

2018) 

- Minimisation of maximum completion 

times of treatment (Repoussis et al., 

2016) 

- Minimisation of travel times of all 

patients (Sun et al., 2014; Sung & Lee, 

2016; Sarkar et al., 2021) 

Main 

parameters 
- Treatment processes in an ED (Konrad 

et al., 2013; Yang et al., 2016) 

- Service times for different treatment 

processes in an ED (Konrad et al., 2013) 

- Patient arrival rate (Yang et al., 2016; 

Lodree et al., 2017) 

- Treatment processes in an ED (Chen 

and Wang, 2016)  

- Amount of resources required to serve 

different patient categories (Lameris et 

al., 2008; Chen & Wang, 2016) 

- Number of patients (Crowe et al., 2014; 

Chen & Wang, 2016) 

- Number of healthcare facilities in the 

network (Lei et al., 2015) 

- Travel times between healthcare facilities 

(Lei et al., 2015) 

- Number of patients (Yi & Özdamar, 

2007; Niessner et al., 2018) 

- Number of healthcare facilities in the 

network (Liu & Zhao, 2015) 

- Travel times between healthcare 

facilities or incident scene-healthcare 

facilities (Sun et al., 2014; Liu & 

Zhao, 2015; Repoussis et al., 2016; 

Sung & Lee, 2016; Buhat et al., 2021; 

Sarkar et al., 2021) 

- Number of patients (Sun et al., 2014; 

Repoussis et al., 2016; Sung & Lee, 

2016; Mehrotra et al., 2020; Buhat et 

al., 2021) 

Decision 

variables 
- Number of medical staff allocated to a 

particular period of time (Konrad et al., 

2013; El-Rifai et al., 2016; Yang et al., 

2016; Lodree et al., 2017)  

- Number of healthcare resources 

allocated to different departments 

(Lameris et al., 2008; Crowe et al., 

2014; Chen & Wang, 2016) 

- Number of medical staff allocated to 

different facilities in the network (Lei et 

al., 2015; Niessner et al., 2018) 

- Number of patients assigned to facilities 

in the network (Yi & Özdamar, 2007) 

- Number of healthcare resources 

transferred from one facility to other 

(Liu & Zhao, 2015; Repoussis et al., 

2016; Mehrotra et al., 2020; Buhat et 

al., 2021; Thul & Powell, 2021) 

- Number of patients assigned to 

facilities (Sun et al., 2014; Repoussis 

et al., 2016; Sung & Lee, 2016; Sarkar 

et al., 2021) 
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 Integrative care (within a HP) Collaborative care (in the network) 

 Sharing of medical staff 

for clinical integration  

Sharing of healthcare resources 

for resource integration  

Sharing of medical staff  

for clinical collaboration  

Sharing of healthcare resources  

for resource collaboration  

Main 

constraints 
- Medical staff capacity in an ED (Konrad 

et al., 2013; El-Rifai et al., 2016; Yang 

et al., 2016; Lodree et al., 2017)  

- Total working times in an ED (El-Rifai 

et al., 2016; Becker et al., 2018) 

- Staff requirement for a shift or a 

treatment process in an ED (Becker et 

al., 2018) 

- Healthcare resource availability in 

different departments (Crowe et al., 

2014; Chen & Wang, 2016) 

- Minimum number of healthcare 

resources required in an ED (Lameris et 

al., 2008; Chen & Wang, 2016) 

- Medical staff capacity in different 

facilities (Lei et al., 2015; Niessner et al., 

2018) 

- Total number of vehicles available in the 

network (Yi & Özdamar, 2007) 

- Load vehicle capacity (Yi & Özdamar, 

2007) 

- Healthcare capacity in different 

facilities (Sun et al., 2014; Liu & 

Zhao, 2015; Repoussis et al., 2016; 

Sung & Lee, 2016; Mehrotra et al., 

2020; Buhat et al., 2021; Sarkar et al., 

2021; Thul & Powell, 2021) 

- Patient demand (Sun et al., 2014; Liu 

& Zhao, 2015) 

- Load vehicle capacity (Repoussis et 

al., 2016) 

Note: ED – emergency department 

In contrast, the models for clinical collaboration in collaborative care ( fourth column)  aimed to improve performance of healthcare facilities as a whole 

by sharing staff across HPs.  The examples of objectives included the minimisation of response times across facilities in the network ( Lei et al. , 2015) , 

minimisation of number of patients waiting for medical services in the network ( Yi & Özdamar, 2007) , as well as the maximisation of number of treated 

patients in the network (Niessner et al., 2018). Characteristics of healthcare facilities in the network, travel times between healthcare facilities, and patient 

demands in the network were typically considered as model parameters. The decision variables included the number of staff allocated to different facilities, 

and the number of patients assigned to facilities after implementing the clinical collaboration. The number of staff available in different facilities, the total 

number of vehicles available and their load capacities were normally modelled constraints. 
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Similarly, to the models for clinical integration, the models for resource 

integration in integrative care ( third column)  aimed to improve the healthcare 

performance in some departments of HPs, for example, an emergency 

department by sharing healthcare resources within a HP.  These models usually 

considered emergency beds, medical equipment, and also medical staff.  The 

examples of objectives were the minimisation of length of stay and costs in an 

emergency department ( Chen & Wang, 2016)  and minimisation of unmet 

demands in different HP services ( Crowe et al. , 2014) .  Again, the models had 

treatment processes in an emergency department, the resources required to serve 

different patient categories, and patient demands as model parameters. Decision 

variables included the number of healthcare resources ( staff, emergency beds, 

medical equipment, and medical supplies)  allocated to different departments in 

a HP.  These models mainly took into consideration healthcare resource 

availability in different departments as model constraints. On the other hand, the 

models for resource collaboration in collaborative care ( fifth column)  were 

concerned with the minimisation of time by sharing of healthcare resources in 

the whole network.  Healthcare resources in different HPs were pooled together 

in order to allocate patients to HPs where healthcare resources were available, 

instead of assessing the resources in isolation. The examples of objectives were 

the minimisation of maximum completion time of treatments ( Repoussis et al. , 

2016) , and of total travel times between incident scene and healthcare facilities 

( Sun et al. , 2014; Sung & Lee, 2016; Sarkar et al. , 2021) .  The number of 

healthcare facilities, travel times between healthcare facilities or incident scene-

healthcare facilities, and patient demands in the network were usually considered 

as model parameters.  The optimal solution usually showed the number of 

healthcare resources transferred from one facility to other; or the number of 

patients assigned to facilities.  The models generally considered the healthcare 

capacity in different facilities, demand, and vehicle load capacity as model 

constraints. 

To summarise, the models for clinical integration/collaboration include staff 

only, whereas the models for resource integration/collaboration include the key 

resources such as staff, beds, medical equipment, and medical supplies. The 

main difference between integrative care and collaborative care models is that 
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the former are mainly concerned with the allocation and resource sharing within 

a HP to accomplish treatment tasks, ensure the continuity of medical services 

and provide the required capacity in a HP, while the latter deal with the sharing 

of healthcare resources across HPs, and take into account the capacity of 

healthcare resources in different healthcare facilities, and travel times between 

facilities to enable an efficient use of healthcare resources in the whole network. 

2.4.3 Research gap 

The focus of this thesis is on collaborative care between HPs in response to 

disasters because resilience is usually perceived at community level rather than 

at an individual institution when responding to disasters ( Kruk et al. , 2015; 

Rohova & Koeva, 2021) .  Improving resilience at healthcare-network level 

typically requires the collaborative care between multiple HPs ( Holling, 1996; 

Bruneau et al. , 2003) , rather than an individual effort from a single HP (Deo & 

Gurvich, 2011; He et al., 2019). 

From the overview of the focused literature review, it can be inferred that the 

current research contributes to the knowledge of collaborative care from both 

methodological and application perspectives.  From the methodological 

perspective, collaborative care problems are commonly solved using an 

optimisation approach.  From an application perspective, the literature provides 

the understanding of the internal resource sharing and the patient allocation in 

the healthcare network.  The addressed internal resources include medical staff 

and supplies.  The patient allocation is made under the assumption that one 

ambulance can transport one patient to a HP in one trip.  

Although a substantial body of research work has appeared in the literature, the 

collaborative care remains overlooked. From the methodological perspective to 

the best of our knowledge, no effort has been made to address collaborative care 

using simulation approach.  Although one study by Niessner et al.  ( 2018) 

employed simulation approach to investigate the physician allocation after mass 

casualty incidents, their DES models addressed treatment activities at the 

incident site, while the allocation of resources was handled using optimisation. 

From the application perspective, the literature does not take into consideration 

some real- world aspects of collaborative care.  First, the literature has not 
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addressed the sharing of external resources, whilse in reality HPs outside a 

particular healthcare network often allocate their resources to the affected 

healthcare network in order to enhance the healthcare capability during disasters. 

Second, the literature on patient transportation has always assumed that an 

ambulance carries one patient in a trip.  However, due to a limited number of 

available ambulances during mass casualty incidents or disasters, one ambulance 

often transports multiple patients to a HP in one trip.  

2.5 Resilience measures in healthcare context  

The measures found in the literature can be classified into four different 

categories: time-based, based on number of patients, costs, and utilisation rate.  

2.5.1 Time-based 

A considerable volume of literature has measured resilience considering time 

including waiting time, Door- to- doctor time, and length of stay.  Rolland et al. 

(2010) claim that time is becoming a critical factor during disasters.  

Waiting time is usually identified as the measure of medical service quality 

related to the availability of healthcare resources ( Dansky & Miles, 1997) . 

Waiting time is generally defined as the time elapsed between the received 

demand for medical service by the HP and the provision of medical service to 

the patient.  Some studies measured resilience during disasters using average 

patients’  waiting time.  For example, Cimellaro and Piqué ( 2016)  assigned 

weights to different patient categories where higher weight was assigned to 

severe- injured patients.  The sum of average weighted waiting time was then 

used to measure the resilience in an emergency department after an earthquake 

event. In contrast, Yang et al. (2016) measured resilience using average waiting 

time for different categories, where all patient categories were assigned equal 

weights. 

The waiting time is sometimes measured in terms of Door- to- Doctor time in 

order to assess the effectiveness of medical staff allocation. The Door-to-Doctor 

time is the duration of time from a patient arriving at the HP until the patient is 

seen by medical staff (Konrad et al., 2013). The Door-to-Doctor time is affected 

by the availability of medical staff, whereas the waiting time is affected by the 

availability of healthcare resources such as emergency beds, laboratory rooms, 



38 

and medical staff. The length of stay measures the total time that patient spent in 

the healthcare system and indicates the effectiveness of healthcare resource 

allocation ( Chen & Wang, 2016) .  The length of stay includes waiting time for 

healthcare resources and times spent for treatments at all stations.   

The time- based measures associated with the emergency medical response 

during disasters are illustrated in Figure 2.4. Patients are moved from shelters to 

HPs through a series of ordered medical services.  The ordered services are 

defined in the boxes. In some disasters such as earthquakes or Tsunami, patients 

might go through all or part of the series of ordered medical services.  In other 

types of disasters that are less severe it might be more common for patients to 

only go through patient transportation and patient treatment provision. 

2.5.2 Based on number of patients 

Several studies measured the number of patients rather than the waiting time. 

Ogawa et al. (2016) and Anderson et al. (2016) claimed that the goal of medical 

services during disasters is altered from providing the best medical services to 

each patient, to providing medical services to the maximum number of patients. 

Both number of treated patients and untreated patients were used in the literature. 

The number of treated patients ( Bruneau & Reinhorn, 2007; Jerić & Figueira 

2012)  and the minimum service level ( Lameris et al. , 2008)  were used to 

represent the effectiveness of healthcare resource allocation during disasters. 

The minimum service level is measured as a minimum percentage of patients 

who received allocated healthcare resources within an acceptable waiting time. 

In contrast, the number of untreated patients can indicate the shortage level of 

healthcare resources during disasters and can be used in the capacity planning of 

the emergency medical response.  This measure was evaluated in terms of 

expected death rate (Arora et al., 2010; Xiang and Zhuang, 2016), unmet demand 

level (Crowe et al., 2014), and loss level (Cimellaro et al., 2010). The expected 

death rate is the estimated number of deaths when healthcare resources become 

stressed. The unmet demand level is measured as a number of patients who wait 

for a treatment due to a shortage of healthcare resources until the healthcare 

resources are available.  The loss level is measured as the ratio of the number of 

untreated patients to treated patients.   
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Figure 2.4 Time-based measures during disasters
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2.5.3 Cost-based 

Studies by Chen and Wang ( 2016) , El- Rifai et al.  ( 2016) , and Lodree et al. 

(2017) measured resilience using costs. Deprivation cost represents the shortage 

level of healthcare resources during disasters.  The deprivation cost can occur 

when the patient demands exceed the availability of healthcare resources. 

Patients need to wait until the resources are available, resulting in a delay in the 

treatments.  The deprivation cost is thus measured as the total cost of delay for 

the treatments for untreated patients.  The planning of resource allocation takes 

into account the deprivation cost when all resources are almost utilised ( i.e. , 

utilised up to a pre-determined level), especially in mass casualty incidents. The 

limited resources should be effectively allocated to patient categories in order to 

minimise the delay in treatments, so that the deprivation cost could be 

minimised.  In addition, the deprivation cost and labour cost were sometimes 

simultaneously considered when staff were assigned to the shifts while trying to 

meet the expected patient demands.  

2.5.4 Utilisation rate 

A few studies have measured resilience in terms of the utilisation rate.  These 

studies stated that the utilisation rate reflected the effective use of healthcare 

resources during disasters.  The nurse utilisation was measured when additional 

nurses were allocated to the treatment activities while considering the total wage 

cost for nurses ( Griffiths, 2005) .  The utilisation rate was also measured as the 

shortage level of healthcare resources during disasters. For instance, Harper and 

Shahani ( 2007)  used the refusal rate to reflect the bed utilisation.  The refusal 

occurred when no bed was available for an arriving patient.  An increase in 

patient demand caused the higher refusal rate.  This implied that the bed 

utilisation was higher because more beds were efficiently allocated to patients.  

Table 2.4 presents a list of resilience measures proposed in the literature.  The 

columns in the table show the characteristics of the resilience measures.  These 

Characteristics are explained in Table 1.2. 

We found that the time-based measures, measures based on number of patients, 

and costs are the comprehensive resilience measures since they can be used to 

evaluate the health conditions of population in the affected area, to reveal the 
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quality of healthcare-network performance during disasters, and to compare the 

effectiveness of different strategies for emergency medical response.  The 

information on the patients’  health conditions at the network level reveals the 

effectiveness of current medical response, which is useful for the decisions on 

the required actions during disasters.  

We note that the nurse utilisation rate can be used to evaluate the effectiveness 

of collaborative response when nurses are shared between HPs during disasters. 

However, this measure mainly assesses the efficient use of medical staff and is 

therefore of interest for staff allocation, but it does not reveal the patients’ health 

conditions during disasters. In contrast, the refusal rate can reflect the population 

health when healthcare resources are in shortage. However, in the literature, the 

refusal rate refers only to the use of beds, although in practice the refusal occurs 

when other resource such as medical staff, medical equipment, and medical 

supplies is not available for an arriving patient.
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Table 2.4 Resilience measures in healthcare context 

Category 
Quantitative measures  

found in literature 

Characteristics of resilience measurement 

Population  

health 

Quality of healthcare-

network performance 

Benchmark Information for 

decision maker 

Time-

based 

Waiting time for different patient categories 

(Cimellaro & Piqué, 2016; Yang et al., 2016) 

    

Door-to-Doctor time (Konrad et al., 2013)      

Expected length of stay (Chen and Wang, 2016)     

Based on 

number of 

patients 

Number of treated patients (Bruneau & 

Reinhorn, 2007; Jerić & Figueira, 2012) 

    

Minimum service level (Lameris et al., 2008)     

Number of expected deaths (Arora et al., 2010; 

Xiang and Zhuang, 2016) 

    

Unmet demand level (Crowe et al., 2014)     

Loss level (Cimellaro et al., 2010)     

Cost-based 
Deprivation cost (Chen & Wang, 2016; El-Rifai 

et al., 2016; Lodree et al., 2017) 

    

Utilisation 

rate 

Nurse utilisation (Griffiths et al., 2005) Ignores patient’s  

health condition 

 Limited to the medical 

staff allocation 

Only concerns with  

the use of resources 

Refusal rate (Harper & Shahani, 2007)     
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2.6 Summary 

This chapter provides a focused review of the literature on coordination in 

healthcare systems during disasters.  Definitions of the terms in use in this field 

are provided.  An overall descriptive statistic of the reviewed articles is given, 

followed by the review of the presented research problems, disaster types, and 

developed methodologies.  The main characteristics of models for coordination 

in the healthcare system are described. The reviewed articles are categorised into 

two different types of coordination, namely integrative care and collaborative 

care.  Integrative care mainly investigates resource allocation within a common 

governance, whereas collaborative care is mainly focused on the sharing of 

healthcare resources across governances.  Both types of coordination aim to 

improve the emergency medical response by ensuring the continuity of medical 

services and improving healthcare capability during disasters. 

In addition, measures of coordination effectiveness that denote resilience are 

discussed. Measures based on time and number of patients (treated or untreated) 

are commonly used. Resilience is often perceived at community level rather than 

at an individual institution when responding to disasters. Improving resilience at 

healthcare- network level requires collaboration between HPs, rather than an 

individual effort from a single HP. 

Although the literature has made a substantial contribution in the area of 

collaborative care in response to disasters, the research about the effectiveness 

of collaborative care remains unclear. From the methodological perspective, the 

literature has not addressed collaborative care problems using a simulation 

approach.  From an application perspective, the literature has not considered 

some real- world aspects of collaborative care that take place in an emergency 

medical response.  These aspects include external resource sharing, and 

ambulance sharing for multiple patient transportation.  
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Chapter 3 Research methodology  

This study employed sequential mixed methods to collect the relevant real-world 

data from HPs and gain understanding of the issues that arise in real- world 

activities of collaboration across a healthcare network in an emergency medical 

response to a disaster.  The study commenced with interviews followed by the 

development of DES models and an MIP model.  

3.1 Interviews 

Semi- structured interviews were conducted to explore and explain the practice 

of collaboration across a healthcare network in an emergency medical response 

to a disaster.  The interview questions covered areas such as the duties and 

practices of different healthcare facilities; flow of patients, sharing of internal 

and external healthcare resources; integrated ambulance system; staff 

assignment to ambulance trip; differences in clinical practices; and medical 

treatments. The list of interview questions is given in Appendix 1.  

3.1.1 Sample selection 

Our study utilised the data about the activities of emergency medical response 

in Thailand.  These activities are elaborately planned by the Ministry of Public 

Health. Provincial Public Health Office in every province is informed about the 

plan of the activities. Thus, the selection of province does not matter since every 

province follows the same plan of the activities. However, we preferred to collect 

the data in Phuket because we had personal contact with some participants who 

could provide us with the data required.  

To gain an understanding of how the activities of emergency medical response 

are implemented, the key participants were interviewed included head of 

emergency medical service ( EMS)  centres, emergency departments, nursing, 

and evacuation services from all healthcare facilities in Phuket, Thailand.  We 

also selected a former and current director of Phuket Provincial Public Health 

who could provide the details of the past and current activities of emergency 

medical response, respectively. The past activities were implemented during the 

Tsunami in 2004, while the current ones were in place in response to boat 
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capsizing in 2018 and will be implemented in response to future mass casualty 

incidents and disasters. 

The interviews were conducted based on participant’ s experiences.  The 

participants, who have the experience of providing medical services during 

Tsunami in 2004, were asked about the past activities of emergency medical 

response.  On the other hand, participants who had experience during boat 

capsizing in 2018 were asked about the current activities.  

3.1.2 Sampling technique 

We employed the technique of snowball sampling for data collection because it 

was sometimes difficult to approach some participants.  Known potential 

participants were invited first using our personal contact. Once these participants 

accepted to be involved in our study, they used their personal contacts to 

approach other potential participants.  The snowball sampling technique helped 

us to include all participants required in our study.  

3.1.3 Interview arrangement 

The requesting letters for data collection were sent to the director of healthcare 

facilities in Phuket and Phuket Provincial Public Health Office. The letter stated 

the research aim, a list of potential participants, the areas of interview questions, 

the length of time required, as well as the request for conducting interview and 

the use of data.  The permission letter for data collection and use of data needed 

to be signed before the interview appointments were made.  The examples of 

these letters are given in Appendix 2 and Appendix 3, respectively. 

3.1.4 Sample size 

We acknowledged that the interviews always involve subjectivity. However, we 

aim to understand the “fact” of the activities of emergency medical response, not 

“ opinion”  relevant to the activities.  Thus, the data quality depends on the 

information given by healthcare authorities who are responsible for the activities 

of emergency medical response. 

All healthcare facilities in Phuket accepted to be involved in our study; the 

respondent rate is 100% , in total 8 HPs ( 2 EMS centres and 6 hospitals) , 3 

charity/municipal organisations (CMOs) and 1 Phuket Provincial Public Health 



46 

Office participated in our study.  There were 2 participants from each HP, 1 

participant from each CMO, and 2 participants from the Office. This allowed us 

to understand the sharing of healthcare resources between healthcare facilities as 

well as the flow of patients and resources during mass casualty incidents and 

disasters.  

There are some potential limitations of interviews when the aim is to gain the 

“ fact” .  Participants will be reporting their subjective view on what happened 

during the previous mass casualty incidents and disasters, which may be 

impaired by memory.  Thus, the participants, who were in the same event 

(Tsunami and/or boat capsizing), were asked the same set of questions to ensure 

the credibility of data collected from the interviews.  It aided to crosscheck the 

interview data. Data obtained from interviews were useful in providing insights 

into building a realistic simulation model. 

3.1.5 Ethical review 

Our study followed the University of Nottingham's Code of Practice on Ethical 

Standards.  This included appropriate information sheets (see Appendix 4)  and 

consent forms which ensured confidentiality in the storage and use of data ( see 

Appendix 5). The ethics approval confirmation letter was given in Appendix 6. 

Interviews were conducted on a one- to- one basis by meeting participants face-

to- face at their workplaces.  Before the interviews, the participants were given 

the information sheet, the consent form, and the ethics approval confirmation 

letter. Also, the participants were asked permission to audio record the interview. 

The interviews were anonymous and could be conducted when the consent form 

was voluntarily signed by both interviewer and interviewee.  Different forms of 

bias were considered during the interviews. For example, the interviewer 

conveyed approval or disapproval of responses through facial expressions and/or 

nonverbal behaviour of interviewees. Interviewee’s expressions may influence 

what they said or did not say during the interview. 

3.2 Simulation method 

Simulation methods have been developed in 1950s and usually employed to 

develop logical models imitating the real-world system’s behaviour (Robinson, 

2005) .  Also, simulation methods are commonly used to evaluate alternative 
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policies, strategies, plans, or programmes without any disruption of the real-

world system (Katsaliaki & Mustafee, 2011).  

3.2.1 Application of simulation methods in healthcare problems 

For several decades, simulation has been applied to address real-world problems 

in healthcare systems.  Simulation methods are popular for healthcare studies in 

the areas of healthcare planning and resource management ( Crowe et al. , 2015; 

Uriarte et al. , 2017) .  The most commonly used simulation methods are DES, 

MCS, system dynamics (SD), and agent-based simulation (ABS) (Katsaliaki & 

Mustafee, 2011; Gul & Guneri, 2015; Mishra et al. , 2019; Brailsford et al. , 

2019) .  The following paragraphs present a brief description of these methods 

and examples of their applications in the healthcare context.  

DES is a process-based simulation where state changes occur at discrete points 

of time and the logical activities of the real-world system can be simulated (Jun 

et al. 1999; Viana et al 2014). The focus of DES is on the detailed rules 

controlling the interaction of the individual entities through the defined 

processes in the system. A key aspect of DES is the system-state description. In 

the healthcare context, DES has lately been often applied in emergency 

departments with the aim to improve time-  and efficiency- related metrics 

( Vázquez- Serrano et al.  2021) .  For example, DES models were developed to 

improve the bed capacity planning and the management of emergency and 

elective patient admissions in an emergency department ( Landa et al.  2016) . 

DES models were also used to reduce the overcrowding and patient waiting 

times (Bal et al.  2017; Maull et al.  2009) , and to improve patient flow (Vile et 

al. 2017) in an emergency department.  

MCS is a random-process modelling tool for an unknown-event decision making 

based on probabilistic distributions often derived from historical data 

(Rubinstein, 1981). MCS simulates a set of potential scenarios and provides the 

expected value of outputs associated with the scenarios. The applications of 

MCS in the healthcare context often evaluate the impact of health policy changes 

(Mielczarek, 2016). For example, MCS models were developed to determine the 

optimal vial size and the stock level in order to ensure adequate vaccine supply 

(Dhamodharan & Proano, 2012). MCS models were also used to determine the 
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cost efficiency for combined vaccines for paediatric immunisation against six 

diseases including hepatitis B, diphtheria, tetanus, pertussis, haemophilus 

influenza type b, and polio (Jacobson et al. 2001) 

SD is grounded in the theory of feedback control and takes a holistic approach 

to understand the cause- effect relationships among variables and the effects of 

system structure ( referred to as stocks and flows)  on system behaviour 

( Dangerfield, 1999; Sterman, 2001; Dong et al. , 2012)  The feedback loop 

mechanism is used to describe the relationships and effects.  In the healthcare 

context, SD has been applied to support health policies related to prevention, 

health promotion, and healthcare delivery (Atkinson et al. 2015). For example, 

SD models were developed to investigate the strategic planning for 

cardiovascular disease prevention ( Loyo et al.  2013) , the long- term effects of 

smoking cessation interventions ( Tobias et al.  2010) , and the availability, 

accessibility and affordability of opioid (Chalmers et al. 2009). 

ABS is a macro- scale simulation using bottom- up approach for modelling the 

actions of independent individuals (agents)  in the system (Grimm et al.  2005). 

The agents can be individual entities such as customers or collective entities such 

as organisations. The system state (macro-scale) is changed by the interactions 

of these agents (micro-scale). ABS models are commonly used to gain insights 

into the collective behaviour constructed by the interactions among agents, and 

the effects of collective behaviour on the system state. In the healthcare context, 

ABS models were developed to examine the impact of several physician staffing 

configurations on time- related metrics in an emergency department ( Jones & 

Evans, 2008; Cabrera et al., 2012). ABS models were also used to dynamically 

adjust the outpatient scheduling to the real- time situations in the orthopaedic 

department (Lu et al. 2014). They assumed that patients and medical staff were 

autonomous, and their behaviour changed according to the real- time situation 

which required the adjustment of patient scheduling in order to reduce patient 

waiting time and to improve hospital efficacy. 

3.2.2 Use of discrete event simulation 

For the research presented in this thesis we used DES for the following reasons. 

First, DES can be used to model the queuing system (Pidd, 2004). In our study, 
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patients are perceived as customers and will be in a queue waiting to be served 

by available servers which are healthcare resources.  Patients are served 

according to the priority scheme and First Come First Serve ( FCFS)  discipline 

within the triage category.  The details of priority scheme and FCFS discipline 

will be described in Chapter 4.  Second, DES is more concerned with process 

details than other simulation methods. Use of DES allows us to imitate sequential 

processes in the real- world activities of the emergency medical response.  The 

ordered processes include medical triage, first- aid treatments at the sites ( if 

provided) , patient transportation, and treatments at the HPs.  Also, the logical 

activities of the emergency medical response can be simulated using DES. Some 

activities can be undertaken only if the pre- defined conditions are met.  For 

example, patients can be transported to HPs only when an ambulance is 

available.  Third, DES allows us to track the behaviour of individual entities 

through a series of defined processes (Gul & Guneri, 2015). Individual patients 

need to be tracked in order to estimate the time when they are in a queue waiting 

for available resources.  The data on patient waiting time are used in resilience 

metrics of different strategies for collaboration in the network.  The resilience 

metrics will be described in Chapter 5. 

3.3 Optimisation method 

The problems of multiple patient allocation in collaborative care include patient 

assignment to ambulances for patient transportation and patient assignment to 

HPs for treatments.  These problems can be modelled as a Flexible Job Shop 

Scheduling Problem ( FJSP)  with unrelated parallel machines that consists of a 

set of jobs and unrelated machines. Each job is assigned to an allowable machine 

for the duration of processing. The processing times of each job depends on the 

machine.  For such FJSP problems, the order in which each machine processes 

its jobs should be considered ( Rocha et al. , 2008) .  In our context, patients can 

be perceived as a set of jobs, whereas ambulances and required resources for 

treatments in HPs are perceived as a set of machines.  Each job consists of two 

sequential activities:  transportation to a HP and treatment at the HP.  In 

particular, each patient is loaded onto one of the available ambulances taking 

account of the ambulance capacities for multiple patient transportation, then 

transported to one of the HPs, and treated by appropriate available resources. 
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Please note that we define the roles of healthcare facilities and patient pathway 

addressed in the optimisation model based on the strategy for collaboration that 

has the biggest impact on resilience improvement observed in the simulation 

experiments.  

The nature of the problems requires the development of MIP model, instead of 

IP model.  Decisions involve the patient assignment to ambulances for patient 

transportation and the selection of HPs for patient treatments. A set of constraints 

addresses an assignment of multiple patients to one- trip ambulance considering 

ambulance capacities. The optimisation problem is to determine the sequence of 

patients to be assigned to each ambulance for patient transportation and to 

required resource for treatment at HPs.  The objective is to minimise response 

times of all patients which is a common measure for the performance of 

emergency medical responses during disasters ( Abir et al. , 2013; Luscombe & 

Kozan, 2016; Repoussis et al. , 2016) .  The definition of response time is 

presented in Chapter 7. 

3.4 Summary 

The interviews were conducted to understand the practice of collaboration in an 

emergency medical response in the healthcare network in Phuket, Thailand. 

These activities are developed by the Ministry of Public Health and implemented 

by Provincial Public Health Office.  All healthcare facilities in Phuket were 

voluntarily involved in our study.  The representatives of different healthcare 

facilities were asked about the sharing of healthcare resources and the allocation 

of patients in response to mass casualty incidents and disasters.  We employed 

DES method to simulate the sequential processes in the real- world activities of 

emergency medical response.  The behaviour of individual patients could be 

tracked which allowed us to investigate the resilience metrics of different 

strategies for collaboration in the network.  An MIP model is then developed to 

address multiple patient allocation using ambulance sharing.  The roles of 

healthcare facilities and patient pathway during disasters follow the strategy that 

the simulation suggest is superior in terms of resilience metrics. 
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Chapter 4 Strategies for collaboration in response to disasters 

This chapter describes strategies for collaboration in the healthcare network in 

response to disasters.  Based on the interviews, three strategies are defined 

including include a non- collaborative care strategy ( Strategy 1) , a semi-

collaborative care strategy ( Strategy 2) , and a new collaborative care strategy 

(Strategy 3). Strategy 1 was in place in response to Tsunami in Phuket in 2004, 

while Strategy 2 is the current strategy in use which was implemented during the 

boat capsizing in Phuket in 2018. Strategy 3 is the strategy we propose which is 

defined by considering the disadvantages of the current strategy (Strategy 2). 

One of the pitfalls found in Strategy 2 is the improper TMU roles (details will 

be discussed in Chapter 6). Thus, the TMU roles are modified in Strategy 3. 

Strategy 3 also addresses a new collaboration in a healthcare network that 

enables information sharing and the classification of HPs.  HPs share the 

information about their resource availability when allocating the remaining 

patients from TMUs to nearest available resource HPs.  By proposing this 

strategy, we would like to highlight the impact of information sharing and how 

it might improve the overall performance of the healthcare system in response 

to a disaster. In addition, in Strategy 3, some HPs needs to allocate their staff to 

other HPs in order to enhance the healthcare capacity for severe injuries.  Such 

sharing is not addressed in other strategies. 

4. 1 Common characteristics of strategies for collaboration in healthcare 

network  

By analysing the interviews, we have established the common characteristics 

among two strategies that was also in place in the proposed one. The 

characteristics include duties and practices of healthcare facilities in response to 

disasters, patient flow, and vital healthcare resources relating specifically to 

disaster responses in Phuket, Thailand. 

Duties and practices of healthcare facilities in response to disasters 

According to the interviews conducted, with in the context of Phuket, Thailand, 

the vital healthcare facilities in disasters typically include patient assembly 

points (PAPs)/temporary medical units (TMUs), internal and external HPs, and 
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charity/municipal organisations (CMOs). PAPs/TMUs are normally located in 

safe places and set for assembling affected patients for the transportation.  The 

main difference between PAP and TMU lies in a first- aid treatment that is 

provided in the TMUs, but not in the PAPs.  Internal HPs include emergency 

medical service (EMS)  centres and hospitals offering ambulances, doctors, and 

nurses.  EMS centres usually have larger healthcare resource capacity and 

capability to provide the emergency medical services than the hospitals.  Some 

external HPs allocate some of their resources including ambulances, doctors, and 

nurses to the affected areas while being able to maintain their medical services. 

CMOs are humanitarian organisations offering ambulances and first responders 

(FRs) who are trained in the emergency rescue and emergency medical services. 

CMOs also provide an evacuation during disasters and a search of decrease after 

disasters. 

Flow of patients  

Patients enter the system at PAPs/ TMUs and pass through the sequential 

processes including medical triage, first- aid treatments at the TMUs ( if 

provided), patient transportation, and treatments at the HPs.  

In the medical triage, FRs evaluate the medical condition of patients.  Alive-

patients are triaged into three categories, which are commonly used in the 

disaster response (Farahani et al., 2020): severe-, moderate-, and minor-injured 

patients.  In the remaining part of the thesis, they will be referred to as Reds, 

Yellows, and Greens, respectively. Multiple patients, including potentially from 

different patient categories, are loaded onto ambulances considering the 

ambulance capacity, and are then transported to the assigned HP. In a provision 

of medical treatments, patients are served according to FCFS within patient 

categories and a priority scheme of Reds first, Yellows second, and Greens third.  

Healthcare resources 

There are three types of ambulances including patient transport ambulances, 

basic life support ambulances, and advanced life support ambulances.  The 

difference lies in the resources on the ambulance and the main use of the 

ambulance, which is presented in Table 4.1. 
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Table 4.1 Different types of ambulance 

Ambulance type Resources on ambulance Main purpose 

Patient transport 

ambulance 

- Need either one nurse or two FRs 

- Low equipped with first aid and 

medical equipment 

- Transport patients who are 

not expected to become 

emergency patients 

Basic life support 

ambulances 

- Need either two nurses or three FRs  

- Fully equipped with first aid and 

standard medical equipment 

- Transport and monitor 

patients who need basic 

treatments  

Advanced life 

support ambulance 
- Need one doctor and two nurses 

- Fully equipped with first aid and 

advanced medical equipment  

- Transport and monitor 

patients who need advanced 

treatments 

In non- disaster environment, the patient transport ambulances are used for 

transporting Greens only, while the basic life support ambulances are for either 

one Yellow or three Greens. The advanced life support ambulances can serve all 

patient categories but are commonly used just for one Red.  Table 4.2 presents 

the number of patients that can be loaded onto a one- trip ambulance in a non-

disaster environment.  Please note that a one- trip ambulance is a trip that an 

ambulance traverses from one of PAPs/TMUs to one of any HPs. 

Table 4.2 Number of patients in a one-trip ambulance in non-disaster environment 

Ambulance type Red Yellow Greens 

Patient transport ambulance 0 0 3 

Basic life support ambulances 0 1 or 3 

Advanced life support ambulance 1 or 1 or 3 

During disasters, these ambulances are used for staff and patient transportation. 

Ambulances transport staff to TMUs for the provision of first-aid treatments and 

transport patients to HPs for advanced treatment.  Internal ambulances are used 

for multiple patient transportation in the internal network, whereas external 

ambulances are reserved only for transportation of one Red to the external HPs. 

All external ambulances are advanced life support ambulances.  Table 4.3 

presents the combination of different patient categories in a one-trip ambulance 

during disasters and applies only to the internal ambulances. 
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Table 4.3 Combination of different patient categories in one-trip ambulance in disaster events 

Ambulance types Red Yellow(s) Green(s) 

Patient transport ambulance   4 

Basic life support ambulances 1 and  1 

 2  

 1 and 2 

  4 

Advanced life support ambulances  1 and 1  

1 and  3 

 2  

 1 and 3 

  4 

Please note that the basic life support ambulances need one doctor if they  

transport a Red to a HP. 

Noticeably, a Red can be combined with a small number of other- category 

patients on the same ambulance.  The medical services for a Red require more 

medical staff and medical equipment compared to other patient categories. As a 

result, there are not many resources are available for other patient categories.  

Medical staff and ambulances are allocated to at most one of the following 

healthcare facilities including PAPs/TMUs, EMS centres, and internal hospitals. 

Staff includes doctors, nurses, and FRs who are key personnel providing medical 

treatments during disasters.  Field beds and field mattresses are used in medical 

treatments at TMUs, whereas emergency beds and chairs are used in medical 

treatments at HPs. Field beds are reserved for Reds and Yellows, field mattresses 

are for Greens, emergency beds are for Reds, while chairs are for Yellows and 

Greens.  The resource allocation is implemented according to the First In First 

Out (FIFO) policy.   
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4.2 Activities undertaken under different strategies 

The characetristics of colloaboration under different strategies are presented in 

Table 4.4. The strategies differ with respect to the first treatment provision, 

sharing of staff and ambulances, and patient transportation. The first treatment 

provision is the first treatment a patient receives. The patient pathways in a 

disaster event in the context of disaster responses in Phuket Thailand are 

illustrated in Figure 4.1. The red, yellow, and green lines represent the flow of 

Reds, Yellows, and Greens, respectively. The relationship between different HPs 

in Strategy 1, 2, and 3 are illustrated in Figure 4.2, Figure 4.3, and Figure 4.4 

respectively.  In these figures, the black solid lines denote the initial patient 

transportation/staff allocation, whereas the dash lines show (1)  the re-

transportation of Reds when the first assigned HPs are short on resources for 

severe injuries, or ( 2)  the reallocation of external staff when other healthcare 

facilities need additional staff.  The grey solid lines show the alternative patient 

transportation.  
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Table 4.4 Strategies for collaboration in the healthcare network 

Issues Non-collaborative care strategy (Strategy 1) Semi-collaborative care strategy (Strategy 2) Collaborative care strategy (Strategy 3) 

PAP/TMU 

setting and 

their roles 

- PAP; No TMU - No PAP; Relief supplies are prepared for TMU setting - Same as Strategy 2 

- Medical triage is implemented at the PAPs.  - Medical triage is implemented at the TMUs.  - Same as Strategy 2 

- No first aid provided. All patients must be treated at the 

HPs.  

- Reds and Yellows receive first aid before being transported 

to the HPs. 

- Greens can receive first aid at one of facilties (TMUs/HPs). 

They are discharged at the facility where they recive first 

aid. 

- Reds and Yellows do not receive first aid before 

being transported to the HPs. 

- All Greens must receive first aid and be discharged 

at the TMUs.  

Sharing of 

staff 

- Internal doctors and nurses are required to work at their 

facilities. 

- Same as Strategy 1 - HL2 need to allocate at least one doctor and one 

nurse to HL1 in order to enhance the healthcare 

capacity for severe injuries.  

- CMOs need to allocate FRs to the nearest PAP for a 

medical triage.  

- EMS centres and internal hospitals need to allocate at least 

one doctor and one nurse, and CMOs need to allocate at least 

one FR to the nearest TMU for providing the first- aid 

treatments. 

- HL1 and HL2 need to allocate at least one doctor 

and one nurse, and CMOs need to allocate at least 

one FR to the nearest TMU for providing the Green 

treatments. 

- External staff are allocated to EMS centres first, then are 

reallocated to internal hospitals based on their 

capabilities to handle severe and moderate injuries.  

- External staff are allocated to EMS centres first, then 

reallocated to internal hospitals and TMUs respectively 

based on their capabilities to handle severe and moderate 

injuries.  

- External staff are allocated to HL1, HL2, and TMUs 

by simultaneously considering their capabilities to 

handle severe and moderate injuries.  

- HL1 is the highest priority; and TMU is the relative 

lowest  

- No further reallocation of external staff 

Sharing of 

ambulances 

 

- Internal ambulances are responsible for patient 

transportation from PAPs to the assigned internal HPs. 

- Internal ambulances are responsible for staff transportation 

to TMUs for first-aid treatments and patient transportation 

from TMUs to the assigned internal HPs. 

- Same as Strategy 2 

- External ambulances are allocated to EMS centres 

equally and are responsible for re- transporting Reds 

from EMS centres to the external HPs. 

- Same as Strategy 1 - External ambulances are allocated to TMUs equally 

and are responsible for transporting Reds from 

TMUs to the external HPs.  
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Issues Non-collaborative care strategy (Strategy 1) Semi-collaborative care strategy (Strategy 2) Collaborative care strategy (Strategy 3) 

Patient 

transportation 

- Multiple patients are loaded onto ambulances 

considering the ambulance capacity. 

- Same as Strategy 1 - Same as Strategy 1 

Case 1: A Red is on ambulance. 

- All patients on the ambulance are transported to the 

nearest internal HP.  

 

 

Case 1: A Red is on ambulance.  

- Same as Strategy 1. 

 

Case 1: A Red is on ambulance.  

- Initially, all patients on the ambulance are transported 

to the nearest HL1 where the capacity for severe injuries 

is available. 

- Alternatively, when no HL1 has capacity to admit Reds, 

all patients on the ambulance are transported to the 

nearest HL2 where the capacity for severe injuries is 

available. 

- When the first assigned HP (not EMS centre)  is short 

on resources for severe injuries, Red is re- transported 

to the nearest EMS centre. 

- Same as Strategy 1. - No re-transportation of Red 

Case 2: Red is not on ambulance. 

- All patients on the ambulance are transported to the 

nearest internal HP except EMS centres. 

 

Case 2: Red is not on ambulance. 

- All patients on the ambulance are transported to any 

internal HPs except EMS centres. 

Case 2: Red is not on ambulance. 

- Initially, all patients on the ambulance are transported 

to the nearest HL2 where the upper-bound capacity is 

available. 

- Alternatively, when the upper-bound capacity is fully 

utilised, all patients on the ambulance are transported 

to the nearest HL1. 

Case 3: No internal HP has capacity to admit Reds 

- Reds are re-transported from EMS centre to the nearest 

external HP where capacity for severe injuries is 

available. 

Case 3: No internal HP has capacity to admit Reds 

- Same as Strategy 1. 

Case 3: No internal HP has capacity to admit Reds 

- Reds are transported from TMU to the nearest external 

HP where the capacity for severe injuries is available.  

Note:  Multiple patients are loaded onto one ambulance considering the ambulance capacity.  The combination of different patient categories in a one- trip ambulance, as given in Table 4.3, 

can be classified into two cases including a Red and no Red on the ambulance.  
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Figure 4.1 Patient pathways through the healthcare system during disasters
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In Strategy 1, there is no preparedness for collaboration across a healthcare 

network in emergency medical response to a disaster.  Alive patients are 

evacuated to PAPs which do not provide first- aid treatments.  Patients are 

transported from PAPs to the HP that requires minimal travel time.  All internal 

HPs work completely independently with no sharing of internal staff.  They are 

required to provide medical services at their own facilities. Only CMOs need to 

allocate their FRs to PAPs for a medical triage.  The external staff are allocated 

to EMS centres first, then reallocated to internal hospitals to increase their 

capabilities.  The external ambulances are allocated to EMS centres and 

responsible for re-transporting Reds from EMS centres to the external HPs when 

the internal network is short on resources for severe injuries. 

 

 

 

 

 

 

 

Figure 4.2 Non-collaborative care strategy (Strategy 1) 

The main difference between Strategy 1 and 2 is that Strategy 2 introduces 

TMUs. In Strategy 2, all internal HPs need to allocate some of their doctors and 

nurses to the TMUs. Both Reds and Yellows must receive the first-aid treatments 

at the TMUs before being transported to the internal HPs.  When no Red and 

Yellow are in the queue, Greens can receive the treatments and be discharged at 

the TMUs.  Some Greens, who do not receive the treatments at the TMUs, can 

receive the treatments at the internal HPs.  
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Figure 4.3 Semi-collaborative care strategy (Strategy 2) 

In Strategy 3, Greens receive the treatments at the TMUs only. Reds and Yellows 

are immediately transported to the nearest HPs with available capacity.  They 

are transported from the TMUs to the closest HPs with available capacity. 

Strategy 3 introduces a new network structure. Internal HPs are categorised into 

two groups, namely layer 1 and 2, by considering their healthcare capacities. 

These capacities can be measured by availability of healthcare resources and 

capability to provide emergency medical services.  HPs in layer 1 ( HL1)  have 

high capacity due to the high availability of staff, emergency beds, and high-

technologically advanced medical equipment for severe injuries. These HPs also 

have high capability to provide the emergency medical services and are initially 

responsible for Reds.  EMS centres normally fall into this category.  In contrast, 

HPs in layer 2 (HL2)  have lower availability of healthcare resources and lower 

capability to respond to demand for emergency medical services.  The HL2 are 

initially responsible for Yellows during disasters.  In addition, HL2 create surge 

capacity by using their free areas to admit Yellows who do not need either 

emergency beds or urgent treatments.  In this sense, these areas have the upper-

bound capacity which can be measured by the maximum number of chairs for 

Yellows waiting for medical services.  The characteristics of HPs in different 

layers are summarised in Table 4.5. 
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Table 4.5 Characteristics of HPs in different layers 

Characteristics HL1 HL2 

Healthcare  

resource 

availability 

- High availability of staff  

- High availability of beds 

- Lower availability of chairs 

- High-technologically advanced 

medical equipment  

- Lower availability of staff 

- Lower availability of beds 

- High availability of chairs 

- Standard-quality medical 

equipment 

Capability to  

respond to 

disasters 

- High capability to provide 

emergency medical services for 

severe injuries 

- High capability to provide 

emergency medical services for 

moderate injuries 

The external staff are allocated to HL1, HL2, and TMUs by simultaneously 

considering their capabilities to handle severe and moderate injuries.  The 

external ambulances are allocated to the TMUs and responsible for transporting 

Red from the TMUs to the external HPs when the internal network is short on 

resources for severe injuries. 

 

 

 

 

 

 

 

 

Figure 4.4 Collaborative care strategy (Strategy 3) 
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4.3 Summary 

Strategies for collaboration in the healthcare network are defined based on 

interviews and defined for investigating real- world options in emergency 

medical response during disasters.  These strategies are non- collaborative 

( Strategy 1) , semi- collaborative ( Strategy 2) , and collaborative care ( Strategy 

3) .  All strategies include PAPs/ TMUs, internal and external HPs, and CMOs; 

follow the same sequence of processes in the activities of emergency medical 

response; and provide medical treatments to patients according to the priority 

scheme and FCFS within the patient category.  In the context of Phuket and as 

modelled in the work in this thesis, ambulances, staff, and beds/mattresses/chairs 

are the vital healthcare resources in emergency medical services.  All strategies 

allocate these resources according to FIFO policy. However, the strategies differ 

with respect to the provision of first treatments, patient transportation, and 

resource sharing. Strategy 1 provides first treatments to all patients at the nearest 

HPs, and requires internal staff to work at their facilities.  Strategy 2 introduces 

TMUs where Reds and Yellows must receive the first- aid treatments before 

being transported to HPs, discharges some Greens who receive treatment at the 

TMUs, and implements sharing of internal staff for providing the treatments at 

the TMUs.  On the other hand, Strategy 3 transports Reds and Yellows to the 

nearest HPs with available capacity for their first treatments, requires all Greens 

to be treated at the TMUs, and shares internal staff according to the defined 

network structure.  
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Chapter 5 Development of simulation models 

Our DES models simulate the strategies for collaboration in healthcare network 

in response to disasters. This chapter presents model development including the 

assumptions that were made, the system objects that were defined, flowchart 

diagrams of strategies, input parameters, computation setup, validation and 

verification of the models, and definitions of the resilience metrics used. 

5.1 Assumptions 

In order to specify the model scope and to manage the inherent system 

complexity without compromising the applicability of the models, some 

assumptions have been defined and set with the healthcare professionals and the 

director of Phuket Provincial Public Health. 

- PAPs/ TMUs are in a safe and known locations.  FRs are at PAPs/ TMUs for 

implementing medical triage. The opened TMUs are equipped with the relief 

supplies. Thus, the PAPs/TMUs are ready to accept patients.  

- Patients are evacuated to the nearest PAPs/TMUs. The number of patients is 

known.  Only alive patients are included in the models.  The patient category 

remains static through the simulation run time.  

- There is no patient transportation between PAPs/ TMUs as ambulances are 

limited and solely used for patient transportation from PAPs/TMUs to HPs.  

- There is no pandemic during a disaster.  

- Both HPs and CMOs have limited capacity of resources in response to 

disasters. Resources at HPs include doctors, nurses, basic life support 

ambulances, advanced life support ambulances, emergency beds, and chairs. 

CMOs have FRs and basic life support ambulances. They are identical in the 

corresponding category. These resources are not affected by the disaster and 

are available at their facilities before the simulation starts. These assumptions 

are based on the fact that when disaster/mass casualty incident occurs, staff 

and ambulances are at their facilities before patient arrivals at PAPs/TMUs. 

We do not include in the study staff who are allocated to existing patients 

admitted before the events, in which they are approximately 20% of total 
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staff. The staff availability for taking care of the causalities of the disaster is 

set to 80% of staff in each HP as advised by the healthcare professionals. 

- Staff are always present on their ambulances for monitoring patients and 

providing medical treatments during the patient transportation.  In each trip, 

ambulances carry patients and visit one HP.  Ambulances are not required to 

transport patients to the HPs where the ambulances belong to. 

- Roads are not affected by the disaster; thus, the travel time between 

PAPs/TMUs and HPs and between the HPs are known and fixed.  

5.2 Queuing structure and system objects 

The queuing structure and system objects used in the DES models in our study 

are presented in Table 5.1.  Customers are patients affected by disasters and 

categorised into Reds, Yellows, and Greens, while servers include ambulances, 

staff, and beds/ mattresses/ chairs.  We define patients, ambulances, and staff as 

entities, while beds/mattresses/chairs are defined as resources in the models.  

In the literature, staff are grouped and assigned to one of three zones in the 

healthcare facilities including red, yellow, and green zone, so that staff are 

commonly defined as resources for different zones ( Konrad et al. , 2013; Yang 

et al. , 2016; Niessner et al. , 2018).  Different groups of staff are responsible for 

different patient category, which is against the collaboration in the healthcare 

network during disasters.  For the collaboration, staff are shared between HPs 

and perceived as the network resources to ensure the continued provision of 

medical services in the network during disasters.  Staff are assigned to any 

patients awaiting available staff (not a particular patient category) and allocated 

to any healthcare facilities that need additional staff.  These can be done by 

treating staff as entity, rather than resources. 

Table 5.1 Queuing structure and system objects 

Queuing structure Objects of the system Queuing discipline 

Customer Patient (defined as entities) 

- Reds 

- Yellows 

- Greens 

- Priority scheme based 

on patient category  

- FCFS in the patient 

category 

Server Ambulance (defined as entities) 

- Internal ambulances:  

patient transport, basic life support, and 

advanced life support ambulances 

- FIFO policy 
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Queuing structure Objects of the system Queuing discipline 

- External ambulances: 

advanced life support ambulances 

Staff (defined as entities) 

- Internal staff: doctors, nurses, and FRs 

- External staff: doctors, and nurses 

- FIFO policy 

At TMUs (defined as resources) 

- Field beds for Reds and Yellows  

- Field mattresses for Greens 

At HPs  

- Emergency beds for Reds 

- Chairs for Yellows and Greens 

- FIFO policy 

5.3 Flowchart diagrams 

The flowchart diagrams of strategies are divided into four parts including the 

activities of collaboration in an emergency medical response to a disaster at 

CMOs, PAPs/ TMUs, internal HPs, and external HPs.  Table 5.2 shows the 

symbols used in the flowchart diagrams.    

Table 5.2 Flowchart symbols 

Symbols Description 

 
A start symbol represents “creating entities” to the models. 

 
An end symbol represents “terminating entities” from the models. 

 
A process symbol represents a process or an action. 

 A decision symbol indicates a question to be answered (Yes/No). The 

flowchart path is then spilt into two branches depending on the answer. 

 
A data symbol represents the input parameters of the simulation models. 

 A data symbol represents the data occurred through simulation time. 

These data are always changed depending on the system state.  

 Some sequential processes are spilt into different flowchart diagrams. 

These symbols represent the next processes.  

 

The process after                                  is                     . 

 These symbols represent the data flow between different flowchart 

diagrams.  

 

The data occurred in                          is the input data of                       . 

See ① 

① See ① ① 

See 

③ 

③ See 

③ 
③ 
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5.3.1 Flowchart diagrams of non-collaborative care strategy (Strategy 1) 

Activities of collaboration in an emergency medical response at CMOs      

 

 

 

 

 



67 

Activities of collaboration in an emergency medical response at PAPs 
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Activities of collaboration in an emergency medical response at internal HPs   
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Activities of collaboration in an emergency medical response at external HPs  
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5.3.2 Flowchart diagrams of semi-collaborative care strategy (Strategy 2)  

Activities of collaboration in an emergency medical response at CMOs 
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Activities of collaboration in an emergency medical response at TMUs   

  

 In first 3 hrs after  
first patient arrived 

at TMUs 

Yes 

No 
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Activities of collaboration in an emergency medical response at internal HPs    
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Activities of collaboration in an emergency medical response at external HPs  
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5.3.3 Flowchart diagrams of collaborative care strategy (Strategy 3)  

Activities of collaboration in an emergency medical response at CMOs  
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Activities of collaboration in an emergency medical response at TMUs  

 

 In first 3 hrs after  
first patient arrived 

at TMUs 

Yes 

No 
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Activities of collaboration in an emergency medical response at internal HPs  
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Activities of collaboration in an emergency medical response at external HPs    
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5.4 Input parameters  

The values of input parameters in our models are set using the two real- world 

disaster events in Thailand. We use a case study of boat capsizing on 5th of July 

2018, which is a recent mass casualty incident that has occurred in Phuket, for 

the model validation and verification. Strategy 2 was in place in response to that 

incident. During the event, there were no external resources because the internal 

HPs could handle the affected patients. 

The case of Tsunami in Phuket in 2004 is used to investigate the effectiveness 

of strategies for collaboration in terms of resilience. Tsunami 2004 disaster was 

not used for the validation and verification because none of measures were 

recorded in that event.  During the event, external HPs allocated their resources 

to Phuket, while keeping the required resources to maintain their day- to- day 

services.  Unfortunately, the data on their original facilities were not available. 

For the provision of medical treatments at the external HPs, we only include beds 

in our models because the data on staff capacity at the external HPs are not 

available. 

Table 5.3 and Table 5.4 present a list of input parameters and their values in two 

case studies.  Overall, there are at most three TMUs/PAPs, two EMS centres in 

layer 1 ( HL1) , six internal hospitals in layer 2 ( HL2)  and three CMOs.  The 

internal HPs and CMOs are located in Phuket, while the external HPs are located 

in Phang- nga, Krabi, and Surat Thani.  The healthcare authorities provided the 

average time between patient arrivals, the average number of affected patients, 

the average treatment time, the number of healthcare resources at TMUs, the 

number of resources required for treatments, and the ambulance capacity for 

multiple patient transportation and for staff transportation.  Normal distribution 

is commonly used to incorporate the uncertainties associated with patient 

demands and activity durations in healthcare and disaster management; (see for 

example Brailsford et al., 2007; Viana et al., 2014; Farahani et al., 2020; Lin et 

al., 2022; Ridler et al., 2022). We have the average values that were provided by 

the stakeholders. However, we do not have sample data, so variances have to be 

set arbitrarily. The normal distribution is in the form of 𝑁(𝜇, 𝜎2).  The 

percentage of patients in different categories and the number of allocated 
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external resources follow historical data recorded during the event.  The travel 

times are asymmetric based on the shortest route obtained by the Google map. 

Table 5.3 Input values for simulation parameters (Boat capsizing for validation and verification) 

Note:  TMU -  temporary medical unit, EMS -  emergency medical service centre, H -  internal hospital,  

CMO - charity/municipal organisation, R - Reds, Y - Yellows, G - Greens, dr - doctor, nr - nurse, fr - first 

responder, fb -  field bed, fm –  field mattress, eb -  emergency bed, ch -  chair, pa -  patient transport 

ambulance, ba -  basic life support ambulance, ad -  advanced life support ambulance, pc -  private car,  

N/A - Not applicable, / - or, Normal distribution is in the form of 𝑁(𝜇, 𝜎2) 

Input parameters Input values 

Demand  

Time between patient arrivals  Exponential distribution: λ = 5 minutes 

Total number of patients 𝑁(46, 3.25) 

Total number of patients at TMU A 𝑁(10, 1) 

Total number of patients at TMU B 𝑁(36, 2.25) 

Patient category For TMU A, R - 0%; Y - 30%; G - 70% 

For TMU B, R - 9%; Y - 12%; G - 79% 

Internal resources  

Healthcare resources at each TMU 10 fb, 30 fm 

Resource requirement for running all TMUs ≥ 10 dr, ≥ 30 nr, ≥ 15 fr, ≥ 1 ba, ≥ 1 ad 

Healthcare resources at EMS 1  110 dr, 395 nr, 2 ba, 7 ad, 20 eb, 150 ch,  

Healthcare resources at EMS 2    96 dr, 312 nr, 4 ba, 7 ad, 14 eb, 130 ch,  

Healthcare resources at H 1   17 dr,   74 nr,          6 ad, 10 eb,   85 ch 

Healthcare resources at H 2    23 dr,   68 nr, 1 ba, 2 ad,   7 eb, 110 ch 

Healthcare resources at H 3    51 dr, 157 nr, 3 ba, 2 ad,   8 eb,   55 ch 

Healthcare resources at H 4    16 dr,    27 nr,          1 ad,  3 eb,   40 ch  

Healthcare resources at H 5    19 dr,    86 nr, 3 ba, 3 ad,  5 eb,    45 ch 

Healthcare resources at H 6    19 dr,    64 nr, 2 ba, 3 ad,  7 eb,    50 ch 

Healthcare resources at CMO 1   50 fr,               2 ba 

Healthcare resources at CMO 2 138 fr,             18 ba 

Healthcare resources at CMO 3   51 fr,             17 ba 

External resources  

Number of allocated external resources N/A 

Healthcare resources at external HPs N/A 

Medical services  

Resources required for treatments at TMUs R - 1 fb, 1 dr, 4 nr, 2 fr; Y - 1fb, 1 dr, 2 nr, 1 fr;  

G - 1 fm, 1 dr, 1 nr, 1 fr 

Resources required for treatments at HPs R - 1 eb, 1 dr, 4 nr; Y - 1 ch, 1 dr, 2 nr; G - 1 ch, 1 dr, 1 nr 

Treatment time at TMUs (minutes) R - 𝑁(32.5, 6.25);  Y - 𝑁(22.5, 6.25); G - 𝑁(12.5, 6.25) 

Treatment time at HPs (minutes) R - 𝑁(65, 6.25);     Y - 𝑁(30, 6.25);    G - 𝑁(12.5, 6.25) 

Transportation  

Ambulance capacity for multiple patient 

transportation  

pa/pc - 4 G 

ba - 1 R & 1 G / 2 Y / 1 Y & 2 G / 4 G 

ad - 1 R & 1 Y / 1 R & 3 G / 2 Y / 1 Y & 3 G / 4 G 

Ambulance capacity for staff transportation 1 dr & 3 nr / 3 fr 

Travel time Asymmetric travel time 
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Table 5.4 Input values for simulation parameters (Tsunami for experiments) 

Note: PAP - patient assembling point, TMU - temporary medical unit, EMS - emergency medical service 

centre, H -  internal hospital, HL1 – healthcare provider in layer 1, HL2 – healthcare provider in layer 2, 

EH -  external HP, CMO -  charity/ municipal organisation, R -  Reds, Y -  Yellows,  

G - Greens, dr - doctor, nr - nurse, fr - first responder, fb - field bed, fm – field mattress, eb - emergency 

bed, ch -  chair, ach -  additional chair for the upper-bound capacity, pa -  patient transport ambulance,  

ba -  basic life support ambulance, ad -  advanced life support ambulance, pc -  private car,  

N/A - Not applicable, / - or, Normal distribution is in the form of 𝑁(𝜇, 𝜎2) 

 

 

Input parameters Input values 

Demand  

Time between patient arrivals  Exponential distribution: λ = 5 minutes 

Total number of patients 𝑁(2000, 3600) 

Total number of patients at PAP/TMU A 𝑁(900, 2025) 

Total number of patients at PAP/TMU B 𝑁(700, 1225) 

Total number of patients at PAP/TMU C 𝑁(400, 400) 

Patient category For all PAPs/TMUs,  

R - 55%; Y - 14%; G - 31% 

Internal resources  

Healthcare resources at each TMU 10 fb, 30 fm 

Resource requirement for running all TMUs ≥ 10 dr, ≥ 30 nr, ≥ 15 fr, ≥ 1 ba, ≥ 1 ad 

Healthcare resources at EMS 1 (HL1) 110 dr, 395 nr, 2 ba, 7 ad, 20 eb, 150 ch,  

Healthcare resources at EMS 2 (HL1)   96 dr, 312 nr, 4 ba, 7 ad, 14 eb, 130 ch,  

Healthcare resources at H 1 (HL2)   17 dr,   74 nr,          6 ad, 10 eb,   85 ch,   30 ach 

Healthcare resources at H 2 (HL2)   23 dr,   68 nr, 1 ba, 2 ad,   7 eb, 110 ch,   60 ach 

Healthcare resources at H 3 (HL2)   51 dr, 157 nr, 3 ba, 2 ad,   8 eb,   55 ch, 105 ach 

Healthcare resources at H 4 (HL2)   16 dr,    27 nr,          1 ad,  3 eb,   40 ch,   30 ach  

Healthcare resources at H 5 (HL2)   19 dr,    86 nr, 3 ba, 3 ad,  5 eb,    45 ch,  60 ach 

Healthcare resources at H 6 (HL2)   19 dr,    64 nr, 2 ba, 3 ad,  7 eb,    50 ch,  60 ach 

Healthcare resources at CMO 1   50 fr,               2 ba 

Healthcare resources at CMO 2 138 fr,             18 ba 

Healthcare resources at CMO 3   51 fr,             17 ba 

External resources  

Number of allocated external resources 129 dr, 176 nr, 15 ad 

Healthcare resources at external HPs EH 1 - 6 eb, EH 2 - 5 eb,  

EH 3 - 6 eb, EH 4 - 4 eb,  

EH 5 - 8 eb, EH 6 - 8 eb,  

EH 7 - 8 eb, EH 9 - 8 eb,  

EH 9 - 6 eb, EH 10 - 12 eb,  

EH 11 - 10 eb, EH 12 - 6 eb  

Medical services  

Resources required for treatments at TMUs R - 1 fb, 1 dr, 4 nr, 2 fr; Y - 1fb, 1 dr, 2 nr, 1 fr;  

G - 1 fm, 1 dr, 1 nr, 1 fr 

Resources required for treatments at HPs R - 1 eb, 1 dr, 4 nr; Y - 1 ch, 1 dr, 2 nr; G - 1 ch, 1 dr, 1 nr 

Treatment time at TMUs (minutes) R - 𝑁(32.5, 6.25);  Y - 𝑁(22.5, 6.25); G - 𝑁(12.5, 6.25) 

Treatment time at HPs (minutes) R - 𝑁(65, 6.25);     Y - 𝑁(30, 6.25);    G - 𝑁(12.5, 6.25) 

Transportation  

Ambulance capacity for multiple patient 

transportation  

pa/pc - 4 G 

ba - 1 R & 1 G / 2 Y / 1 Y & 2 G / 4 G 

ad - 1 R & 1 Y / 1 R & 3 G / 2 Y / 1 Y & 3 G / 4 G 

Ambulance capacity for staff transportation 1 dr & 3 nr / 3 fr 

Travel time Asymmetric travel time 
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5.5 Computation setup 

The simulation models were developed in Arena Simulation Enterprise Suite 

version 14. 0.  All experiments were conducted on a computer with a 3GHz 

processor, Intel Core i5- 9500E, 8 GB RAM, and 64- bit Windows 10 

Professional operating system.  The number of replications performed per 

experimental condition was 1,000 with 95%  confidence intervals following the 

suggestions by Robinson ( 2005)  and Karnon et al.  ( 2012)  that at least 100 

replications are required to provide performance accuracy of the models. In each 

replication, the models were run until all patients were treated.  There was no 

warm-up period included because the real-world activities of collaboration in an 

emergency medical response start from an empty and idle state.  Before the 

disasters, there is no affected patients, and also none of resources is allocated to 

the PAPs/TMUs.  

5.6 Validation and verification 

The model validation and verification are essential to demonstrate the model’ s 

credibility and require the data from the real-world system. So far, there have 

been two events in Phuket that affect many victims and need emergency medical 

response. These events are Tsunami in 2004 and boat capsizing in 2018. We 

cannot use Tsunami 2004 disaster for the model validation and verification 

because none of measures were recorded in that event. Thus, the event of boat 

capsizing in 2018 was used to validate and verify the models. Strategy 2 was in 

place in response to that event.  The allocation of resources and patients were 

carried out as presented in Figure 4.3. 

Unfortunately, we cannot validate and verify the models of Strategy 1 and 3 as 

the required data were not available.  Specifically, Strategy 1 was implemented 

in response to Tsunami in Phuket, while Strategy 3 is a collaborative care 

strategy that we propose and that has not been implemented yet. However, 

validating Strategy 2 allows us to validate some activities of Strategy 1 and 3 

including resource assignment and treatment provision of patients. The resources 

are assigned to patients according to priority scheme and FCFS within the 

category. 
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We use two techniques for validating the models including expert intuition and 

a statistical approach, which are widely used in simulation studies ( Kleindorfer 

et al., 1998; Brailsford et al., 2019).  

During the model development, the healthcare authorities who were interviewed 

in the stage of data collection validated the components and input parameters 

which are listed in Table 5.1, Table 5.3, and Table 5.4 in the computerised 

models for accuracy. They were checked against the data collected in interviews. 

The model is further validated by using the paired t- test analysis.  This method 

involves comparing the model outputs of selected measures with the system 

outputs.  

Several measures can be used for the model validation such as the average 

waiting time at the TMUs, length of stay, transportation and treatment time. 

Unfortunately, such data were not recorded during the event.  We thus validate 

four available measures including the number of patients in different categories 

at TMUs, resource allocation, patient allocation, and average waiting time at 

HPs.  Table 5.5, Table 5.6, Table 5.7, and Table 5.8 present the observed 

historical data and results from the simulation model and the results of statistical 

analysis.  

Table 5.5 Comparative analysis of number of patients in different categories at TMU 

Measures Observed Simulated Half width 

Number of Yellows at TMU A 3 2.80 0.09 

Number of Greens at TMU A 7 6.69 0.09 

Number of Reds at TMU B 3 3.23 0.11 

Number of Yellows at TMU B 4 4.29 0.13 

Number of Greens at TMU B 29 27.95 0.15 

P-value (α = 0.05) 0.42   

Table 5.6 Comparative analysis of resource allocation 

Measures Observed Simulated Half width 

Number of doctors allocated to TMU A 5 5.00 0.00 

Number of nurses allocated to TMU A 15 15.00 0.00 

Number of FRs allocated to TMU A 12 12.00 0.00 

Number of basic ambulances allocated to TMU A 6 6.00 0.00 

Number of advanced ambulances allocated to TMU A 3 3.00 0.00 

Number of doctors allocated to TMU B 5 5.61 0.03 

Number of nurses allocated to TMU B 15 16.82 0.09 

Number of FRs allocated to TMU B 12 12.00 0.00 
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Measures Observed Simulated Half width 

Number of basic ambulances allocated to TMU B 6 6.00 0.00 

Number of advanced ambulances allocated to TMU B 3 3.00 0.00 

P-value (α = 0.05) 0.22   

Table 5.7 Comparative analysis of patient allocation 

Measures Observed Simulated Half width 

Number of Reds transported to EMS 2 0 0.01 0.00 

Number of Yellows transported to H 2 3 2.29 0.09 

Number of Greens transported to H 2 3 2.64 0.19 

Number of Yellows transported to H 3 2 2.29 0.09 

Number of Greens transported to H 3 3 2.59 0.19 

Number of Reds transported to H 6 3 3.23 0.11 

Number of Yellows transported to H 6 2 2.34 0.09 

Number of Greens transported to H 6 8 5.58 0.20 

Number of Reds re-transported to EMS 0 0.01 0.00 

P-value (α = 0.05) 0.27   

Table 5.8 Comparative analysis of average waiting time at HPs 

Measures Observed Simulated Half width 

Average waiting time of Reds (hours) 0.53 0.54 0.03 

Average waiting time of Yellows (hours) 0.35 0.37 0.02 

Average waiting time of Greens (hours) 0.90 0.83 0.03 

P-value (α = 0.05) 0.74   

In all cases, the statistical results show that the simulated outputs fall within the 

95%  confidence interval.  These is no significant difference between the 

simulated and observed data.  Therefore, from the statistical perspective, the 

baseline simulation model is considered to adequately represent the real- world 

system under the assumptions which were made. 

In addition, the model logic is verified to ensure that the allocation of resources 

and patients follows the real- world activities of emergency medical response. 

The model verification is achieved by using both visual confirmation of the 

model through Arena’s interactive animation environment, as well as inspection 

of the source code of the simulation.  These techniques are widely used in 

simulation studies ( Abo- Hamad & Arisha, 2013; Glasgow et al. , 2018; Gul et 

al. , 2020) .  The healthcare authorities also verified the visual inspection of the 

model, which ensures the accuracy of the flow of patients, staff, and ambulances.  
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Figure 5.1, Figure 5.2, and Figure 5.3 illustrate the screenshots of simulation 

animation developed in Arena’ s interactive animation environment.  In these 

figures, the flow of patients is from left-to-right. The doctors, nurse, and FRs at 

the top of the figures are the available staff waiting for upcoming patients.  The 

circles represent the queue of the corresponding patient categories waiting to be 

allocated to resources.  The white boxes represent the idle state of 

bed/mattress/chair which turn to green when such resources are busy.  

 

Figure 5.1 The screenshot of TMU activities 

 

Figure 5.2 The screenshot of HP activities
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Figure 5.3 The screenshot of network-level activities



92 

5.7 Resilience metrics 

The studies by Bruneau & Reinhorn (2007), Cimellaro et al. (2010), and Henry 

& Ramirez- Marquez ( 2012)  provide different resilience metrics developed for 

disasters.  The consensus among them is that resilience metrics should 

incorporate two components:  an estimation of the loss and an estimation of the 

recovery.  In the field of medical management, the loss estimation includes the 

deterioration of healthcare performance, and counts of deaths and untreated 

patients.  These measures are based on the fact that the healthcare resources are 

often short during disasters even if some emergency medical plans have been 

developed in advance.  The recovery estimation includes the recovery rate and 

recovery time.  These measures are in agreement with the classic definition of 

resilience ( Bruneau et al. , 2003)  as the ability of a system to recover to the 

normal condition or the acceptable levels as quickly as possible. 

Although Section 2. 5 presents the metrics of resilience used in healthcare 

disaster context, these metrics only show the state of healthcare network during 

disasters without comparison to the non-disaster state of healthcare network. As 

such, these metrics cannot be used to show the restoration of resilience.  In this 

regard, we adapt the generic metric of resilience proposed by Henry & Ramirez-

Marquez ( 2012)  to suit the healthcare context, whereas Bruneau & Reinhorn 

( 2007)  and Cimellaro et al.  ( 2010)  provide metrics for infrastructure and 

facilities. The metric by Henry & Ramirez-Marquez (2012) is formulated as time 

dependent function and is in agreement with the concept of resilience that is the 

ability of a system to “bounce back” (Bruneau et al., 2003). The adapted metric 

describes the ratio of recovery rate at time 𝑡 to maximum loss rate most by the 

system and incorporates the state of healthcare network during the disaster event 

and the non-disaster environment. In such a way, the adapted metric can be used 

to show the resilience curve through the simulated time period.  Furthermore, 

Henry & Ramirez- Marquez ( 2012)  demonstrated the applicability of the 

proposed metric of resilience in the road network during the defined disruptive 

events causing the blockage of roads.  They illustrated the impact of different 

strategies on the restoration of resilience in the events. 
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Let us denote the resilience at time 𝑡 by 𝑅(𝑡), which is measured by the ratio of 

recovery rate at time 𝑡 to maximum loss rate at 𝑡 > 0 suffered by the system and 

is calculated using the following formula.  

𝑅(𝑡) =  
𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 (𝑡)

𝐿𝑜𝑠𝑠 𝑟𝑎𝑡𝑒
=  

ℎ(𝑡) −  ℎ−

ℎ(0) − ℎ−                                        (5.1) 

In this formula, ℎ(𝑡) is the state of the healthcare network at time 𝑡, where 𝑡 = 0 

is the time before a disaster occurs, and 𝑡 ≥  1 is the time in a disaster event; ℎ
−

 

is the worst possible state of the healthcare network in a disaster event. 

Based on formula (5.1), 𝑅(𝑡)  [0,1], and 𝑅(𝑡) = 1 implies that the healthcare 

network has been fully recovered from the disrupted state to the normal state i.e., 

ℎ(𝑡) = ℎ(0).  

According to formula ( 5. 1) , we define two resilience metrics based on the 

average weighted patient waiting time at time 𝑡 (𝑊(𝑡)), denoted by 𝑅𝑊(𝑡), and 

the weighted number of patients at time 𝑡 whose waiting time exceeds the 

clinically appropriate timeframe (𝑄(𝑡)) denoted by 𝑅𝑄(𝑡). The timeframe is the 

target waiting time which is defined in the Australasian Triage Scale and is 

widely used to ensure that patients presenting to an emergency department are 

treated within their threshold (Acem.org.au, 2000). These two metrics are then 

calculated using the following formulas, which are adopted from (5.1).  

𝑅𝑊(𝑡) =  
𝑊(𝑡) − 𝑊−

𝑊(0) −  𝑊−
                                                      (5.2) 

𝑅𝑄(𝑡) =  
𝑄(𝑡) −  𝑄−

𝑄(0) −  𝑄−
                                                         (5.3) 

We calculate 𝑊(𝑡) and 𝑄(𝑡) using the following formulas. 

𝑊(𝑡) = ∑ 𝛽𝑝�̅�𝑝(𝑡)

𝑃

𝑝=1 

, 𝑤ℎ𝑒𝑟𝑒 �̅�𝑝(𝑡) =
∑ 𝑤𝑝

𝑛(𝑡)
𝑁𝑃(𝑡)
𝑛=1

𝑁𝑃(𝑡)
 𝑎𝑛𝑑 ∑ 𝛽𝑝 = 1          (5.4) 

𝑃

𝑝=1

 

𝑄(𝑡) = ∑ ∑ 𝛽𝑝𝑞𝑝
𝑛(𝑡)

𝑁𝑝(𝑡)

𝑛=1

𝑃

𝑝=1

, 𝑤ℎ𝑒𝑟𝑒 𝑞𝑝
𝑛(𝑡) =  {

1 𝑖𝑓  𝑤𝑝
𝑛(𝑡) > 𝑤𝑝

′  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        
𝑎𝑛𝑑 ∑ 𝛽𝑝 = 1 (5.5)

𝑃

𝑝=1

 

In formula (5.4)  and (5.5) , 𝛽𝑝 and �̅�𝑝(𝑡) are the priority level and the average 

waiting time at time 𝑡 of the patients with triage level 𝑝 , respectively.  We 

indicate the Reds, Yellows and Greens, by 𝑝 values of 1, 2 and 3, respectively. 
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Throughout the thesis, we use the priority levels as follws; a 𝛽1 = 0.8, 𝛽2 =

0.15 and 𝛽3 = 0.05.  Please note that the values of 𝛽𝑝 are defined based on the 

fact that Reds are the first priority, Yellows are the second priority, and Greens 

are the third priority. Thus, the highest value is given to 𝛽1, whereas the lowest 

value is given to 𝛽3. To the best of my knowledge, no literature investigates the 

appropriateness of defining these values. It is difficult to justify these values. 

Thus, these values are subjective and estimated based on intuition. A measure of 

�̅�𝑝(𝑡)  incorporates a waiting time of patient 𝑛  from triage level 𝑝  at time 𝑡 

(𝑤𝑝
𝑛(𝑡)) and the total number of patients in triage level 𝑝 at time  (𝑁𝑝(𝑡)).  A 

binary parameter 𝑞𝑝
𝑛(𝑡) equals to 1 if patient 𝑛 from triage level 𝑝 at time 𝑡 has 

a waiting time that exceed the defined threshold 𝑤𝑝
′ , which denotes the target 

waiting time for the medical treatments of patients in triage level 𝑝. The values 

of 𝑤1
′ , 𝑤2

′  and 𝑤3
′  are 0, 30, and 60 minutes, respectively, which are defined in 

the Australasian Triage Scale.  

To estimate the state of the healthcare network at time  𝑡  in a disaster event 

(ℎ(𝑡), 𝑡 ≥ 1)) in the simulation models, we measure both 𝑊(𝑡) and 𝑄(𝑡) when 

patients are in the queue waiting for available staff and bed/ mattress/ chair at 

TMUs, and internal and external HPs.  In each scenario to be defined in our 

experiments, we consider all values of 𝑊(𝑡) and 𝑄(𝑡) from three strategies in 

order to estimate the worst possible state of healthcare network in a disaster event 

( ℎ
−).  The highest values of 𝑊(𝑡) and 𝑄(𝑡) , denoted by 𝑊− and 𝑄− 

respectively, show the worst 𝑊(𝑡) and 𝑄(𝑡) in that scenario.  

The state of healthcare network in a pre- disaster event ( ℎ(0))  is determined by 

the average weighted patient waiting time in no- disaster environment ( 𝑊(0)) 

and the weighted number of patients in no- disaster environment whose waiting 

time exceeds their threshold ( 𝑄(0)) .  We use the data in the real- world 

emergency departments in Phuket, Thailand to calculate the values for 𝑊(0) 

and 𝑄(0).  All emergency departments in Phuket, which are located in 2 EMS 

centres and 6 hospitals, are included.  The data on waiting time for medical 

treatments in a one- year period, between 1st of January and 31st of December 

2019, were collected to cover all seasons. There was no mass casualty incident, 

and it was before the SARS- CoV- 2 pandemic started in Thailand.  The waiting 
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time for medical treatments included the time when a patient was in the queue 

waiting for available staff and bed.  The data which represent the state of 

healthcare network in no- disaster environment are given in Table 5.9.  We 

indicate the Reds, Yellows and Greens, by 𝑝 values of 1, 2 and 3, respectively. 

Table 5.9 State of healthcare network in the pre-disaster condition (ℎ(0)) 

Measures 𝒑 = 𝟏 𝒑 = 𝟐 𝒑 = 𝟑 Value 

�̅�𝑝(0) (hours) 0 0.56 1.11 𝑊(0) = 0.14 

∑ 𝑞𝑝
𝑛𝑁𝑝(0)

𝑛=1
(0) (patients) 0 116 280 𝑄(0) = 31.4 

5.8 Summary 

This chapter presents the development of DES models of strategies for 

collaboration in healthcare network. A list of modelling assumptions is defined, 

which were agreed in discussions with the healthcare authorities in Phuket.  In 

the models, patients, ambulances, and staff are defined as entities, while beds, 

mattresses, and chairs are resources at TMUs and HPs. The flowchart diagrams 

of different strategies are presented. These diagrams show how initial treatment 

is provided to patients, how internal and external resources are allocated, and 

how patient transportation operates in each of the strategies for collaboration in 

healthcare network. Some input parameters are set by the healthcare authorities, 

while some of them are based on the historical data recorded during the disaster 

events.  For computation setup, the models are run for 1,000 replications with 

95%  confidence intervals per experimental condition.  No warm- up period is 

included as the practice of collaboration in an emergency medical response starts 

from an idle state. We utilise the data in the boat capsizing in Phuket in 2018 for 

model validation and verification and use the case of the Tsunami in Phuket in 

2004 for the experiments on the effectiveness of strategies in response to a 

disaster.  Both expert opinion and a statistical approach are used to validate the 

model. Model verification is achieved by using the visual inspection of the model 

which ensures the accuracy of the flow of patients, staff, and ambulances, and 

by using the inspection of the source code of the simulation.  For the simulation 

experiments, the focus was understanding the impact on resilience of using 

different strategies for collaboration in healthcare network.  We adapt a generic 

resilience metric proposed in the literature to suit the healthcare context.  The 

resilience metric is a function of time and incorporates the recovery and loss rate. 
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The resilience metric is a function of time and incorporates the recovery and loss 

rate, which are estimated by determining the state of the healthcare network 

during and before a disaster.  We measure resilience based on the average 

weighted patient waiting time at time 𝑡 and the weighted number of patients at 

time 𝑡 whose waiting time exceeds the target waiting time.  The waiting time 

includes the time when a patient is in the queue waiting for available resources.  
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Chapter 6 Simulation experiments  

Data on the 2004 Tsunami are used to investigate the impacts of non-

collaborative and two collaborative care strategies on resilience metrics. We then 

compare resilience across different defined disaster scenarios.  

6.1 Resilience in base case 

The base case refers to the model setting with the input parameters given in Table 

5.4.  

Figure 6.1 illustrates 𝑅𝑊(𝑡) and 𝑅𝑄(𝑡) of different strategies in the base case. 

The vertical axis shows resilience level, while the horizontal axis is time 𝑡, where 

𝑡 =  0 is the time in a pre- disaster event, and 𝑡 ≥  1 is the time since a disaster 

event has occurred. The discretisation step is 1 day; S1, S2, S3 refer to Strategy 

1 (non-collaborative care), 2 (semi-collaborative care) and 3 (new collaborative 

care) , respectively; the values of 𝑊−
 and 𝑄−

 are positioned next to the strategy 

that yields the worst 𝑊(𝑡) and 𝑄(𝑡), respectively in the base case. 

It is evident that Strategy 3 is superior in both metrics, followed by Strategy 1 

and 2.  Particularly, 𝑅𝑊(𝑡) and 𝑅𝑄(𝑡) of Strategy 3 drop to 0. 92 and 0. 63, 

respectively on day 1, then reach 1 on day 2.  The base case causes the lowest 

resilience in Strategy 2 for both metrics.  Both 𝑅𝑊(𝑡) and 𝑅𝑄(𝑡) of Strategy 2 

decrease considerably to 0 on day 1 and take 7 days to reach the pre- disaster 

condition.  Similarly, these metrics of Strategy 1 fall sharply on day 1, then rise 

gradually to 1 by day 5.  However, Strategy 1 seems to provide better resilience 

compared to Strategy 2.  Strategy 1 spends fewer days to recover from the 

disruptive condition and provides higher resilience level in both metrics.     

 

 

 

 

 

 

Figure 6.1 Resilience metrics in base case 
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To gain insights into the impact of strategies on resilience improvement, we also 

investigate how 𝑅𝑊(𝑡) and 𝑅𝑄(𝑡) of different strategies change in the first 24 

hours (see Figure 6.2).  

In the first hour of the disaster event, some patients are evacuated to the nearest 

PAPs/ TMUs, while the internal resources including staff and ambulances are 

still on the way to the opened PAPs/ TMUs.  These patients need to wait for the 

medical services at the PAPs/ TMUs.  Consequently, in the first hour, both 

𝑅𝑊(𝑡) and 𝑅𝑄(𝑡) sharply drop to 0.46 and 0.35, respectively. 

After 1 hour, the allocated resources arrive at the PAPs/ TMUs.  Different 

strategies yield resilience differently.  In the first 10 hours, Strategy 2 performs 

well.  Both 𝑅𝑊(𝑡) and 𝑅𝑄(𝑡) of Strategy 2 are higher than the ones of other 

strategies.  One reason is that Strategy 2 provides the treatments to Reds and 

Yellows at the TMUs, whereas Strategy 1 and 3 need to transport them to the 

HPs for treatment. In addition, Strategy 1 outperforms Strategy 3 in both 𝑅𝑊(𝑡) 

and 𝑅𝑄(𝑡) because Strategy 1 transports patients to the HPs with the shortest 

travel time, while Strategy 3 transports them to the HPs considering both 

resource availability and shortest travel time. It is possible that the assigned HP 

is not the nearest HP one. For example, it may happen that Reds are transported 

to the second nearest HL1 where the resources to treat severe injuries are 

available. Thus, in the first 10 hours, patients can be treated within a shorter time 

when they are transported to the nearest HPs.   

However, after 10 hours, both 𝑅𝑊(𝑡) and 𝑅𝑄(𝑡) of Strategy 1 and 2 continually 

drop, while they gradually rise in Strategy 3.  For Strategy 1, we found that the 

patient transportation to the nearest HPs, regardless of the resource availability, 

causes the congestion at that HPs later. Patients experience a high waiting time, 

as presented in Table 6.1, because they are stuck in the queue waiting for 

available resources.  In Strategy 1, �̅�1(7) is 3. 39 hours, �̅�2(7) is 1. 91 hours, 

while �̅�3(7) is 10. 13 hours, where �̅�1(𝑡), �̅�2(𝑡), �̅�3(𝑡) are the average waiting 

time at time 𝑡 of Reds, Yellows, and Greens, respectively.  These waiting times 

are measured until all patients are treated and that is on day 7.  For Strategy 2, 

we found that the TMU role defined in the current emergency medical response, 

that is a provision of treatments to Reds and Yellows, causes the congestion at 
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the TMUs.  Reds and Yellows are in the queue for available staff at the TMUs. 

The number of staff at the TMUs is much lower than at the HPs. Approximately 

10 doctors and 30 nurses are allocated to the TMUs, whereas the number of these 

resources at the HPs is at least doubled as shown in Table 5.4.  Consequently, 

Reds and Yellows encounter the highest waiting time if they are required to be 

treated at the TMUs.  In Strategy 2, �̅�1(7) and �̅�2(7) is 5. 17 and 8. 43 hours, 

respectively, which are higher values compared to Strategy 1.  However, �̅�3(7) 

of Strategy 2 is 4.86 hours which is lower than the one of Strategy 1. The reason 

is that Strategy 2 provides the treatments to Greens at either TMUs or HPs and 

discharges them, whereas Strategy 1 requires all Greens to be treated at the HPs 

only.  In Strategy 3, TMUs are used to provide the treatments to Greens only, 

thereby improving both 𝑅𝑊(𝑡) and 𝑅𝑄(𝑡) in long term. Particularly, when Reds 

and Yellows arrive at the TMUs, they are transported to the HPs immediately, 

they do not need to wait to receive the treatments.  The decision on patient 

transportation is made considering both resource availability and shortest travel 

time. Thus, they are treated at the first assigned HP (with no re-transportation of 

Red) .  In Strategy 3, �̅�1(7), �̅�2(7), �̅�3(7) are 0. 32, 0. 11, and 1. 31 hours, 

respectively, and these are the smallest values across the strategies.  

Table 6.1 �̅�𝑝(𝑡) of strategies 

Strategy (hours) 

�̅�𝟏(𝟕) �̅�𝟐(𝟕) �̅�𝟑(𝟕) 

1 3.39 1.91 10.13 

2 5.17 8.43 4.86 

3 0.32 0.11 1.31 
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Figure 6.2 Resilience metrics in base case in the first 24 hours
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6.2 Disaster scenarios 

We have discussed with the healthcare authorities how to define the simulation 

scenarios. These scenaios reflect the possible characteristics of real-world 

disasters. We consider the definitions of disruption levels adopted from the study 

by Crowe et al.  (2014)  including mild, moderate and severe disruption. 

Simulation scenarios are defined to examine the impact of variation in demand, 

healthcare capacity, and patient transportation on the strategy performance in the 

perspective of resilience. The scenarios to be simulated are given in Table 6.2. 

Table 6.2 Simulation scenarios 

Scenarios Mild Moderate Severe 

1. Time between patient arrivals  30 minutes 15 minutes 5 minutes 

2. Probability of patient category1  40 : 30 : 30 60 : 30 : 10 80 : 15 : 5 

3. Total number of patients2 𝑁(500, 625) 𝑁(2000, 3600) 𝑁(3500, 9025) 

4. Percentage of resource availability  80 70 60 

5. Probability of Greens transported using cars 40 50 60 

Note: 1 - Reds : Yellows : Greens, 2 - Normal distribution is in the form of 𝑁(𝜇, 𝜎2) 

In each scenario, one of the input parameters is changed with a value given in 

Table 6.2, while the remaining ones have the values given in Table 5.4.  For 

example, in Scenario 1, the time between patient arrivals is changed to 30, 15, 

and 5 minutes, while other input parameters remain the same as given in Table 

5.4. The values given in Table 6.2 are used in the simulation experiments to 

compare the performance of different strategies for collaboration in a healthcare 

network, not to compare them with the base case. 

The following subsections present the effects of disaster scenarios on resilience. 

The chart titles denote the resilience metric in different disruption levels.  For 

example, the chart entitled “ 𝑅𝑊(𝑡) –  mild”  shows the 𝑅𝑊(𝑡) in the mild 

disruption. The vertical axis shows the resilience level, while the horizontal axis 

shows time 𝑡, where 𝑡 = 0 is the time before the disaster event, and 𝑡 ≥  1 is the 

time since the event has occurred.  The discretisation step is 1 day; and S1, S2, 

S3 refer to Strategy 1, 2, 3, respectively.  The values of 𝑊−
 and 𝑄− are 

positioned next to the strategy that yields the worst 𝑊(𝑡) and 𝑄(𝑡), respectively 

in each scenario. 
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Scenario 1: Time between patient arrivals 

Disasters creat a surge of demand for emergency medical services.  Using 

simulation allows us to model the surge of demand in several aspects.  One of 

them is changes in the time between patient arrivals. We set 30, 15, and 5 minutes 

of time between patient arrivals in mild, moderate, and severe disruptions, 

respectively. The effects are illustrated in Figure 6.3. 

As expected, when the disruption is more severe, resilience of all strategies 

decreases.  Strategy 3 is superior in both 𝑅𝑊(𝑡) and 𝑅𝑄(𝑡) , followed by 

Strategy 1 and 2.  These metrics in Strategy 3 are not only superior to other 

strategies, but they also regain 1 in a shorter time. These effects can be found in 

all scenarios. For instance, in Figure 6.3, 𝑅𝑊(1) of Strategy 3 slightly decreases 

to 0.98, 0.96, and 0.92 when the disaster disruption is mild, moderate, and severe, 

respectively.  Then, this measure reaches the pre- disaster condition on day 2 in 

all disruption levels. In contrast, 𝑅𝑊(1) of other strategies fall sharply to below 

0.7 and take at least 3 days to reach the pre-disaster conditions, i.e., 1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Effect of different time between patient arrivals on resilience metrics 
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Scenario 2: Probability of patient category 

Another aspect of the surge of demand is changes in the probability of patient 

category.  We simulate different probabilities of patient category as listed in 

Table 6.2. Figure 6.4 illustrates their effects on 𝑅𝑊(𝑡) and 𝑅𝑄(𝑡).  

This form of demand surge also adversely affects the resilience.  Especially, 

𝑅𝑊(1) and 𝑅𝑄(1) of Strategy 1 suddenly fall to 0. 13 and 0. 38, respectively, 

even if the disruption is mild. These metrics of Strategy 1 are getting worse when 

the disruption is severe, in which 𝑅𝑊(1) and 𝑅𝑄(1) drop to 0. 05 and 0. 34, 

respectively. On the other hand, 𝑅𝑊(1) and 𝑅𝑄(1) of Strategy 2 drop to 0 in all 

disruption level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Effect of different probability of patient category on resilience metrics 
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Scenario 3: Total number of patients 

In this scenario, we investigate the impact of different number of patients, 

including 500, 2,000, and 3,500 patients, on the strategy performance (see Figure 

6.5). 

Compared to other scenarios, the high number of patients in severe disruption 

causes the highest values of the worst average patient waiting time (𝑊−
) and of 

the worst number of patients whose waiting time exceeds their threshold ( 𝑄−
) , 

which are 2. 59 and 305. 85, respectively.  The severe disruption also causes the 

lowest 𝑅𝑄(1) in Strategy 3, which equals 0. 47.  Interestingly, when the total 

number of patients is small as in mild disruption, 𝑅𝑊(𝑡) and 𝑅𝑄(𝑡) of Strategy 

2 are better than the ones of Strategy 1. These metrics of Strategy 1 equal to 0 as 

shown in Figure 6.5.  One reason is that the TMU capacities in Strategy 2 are 

enough to provide the medical services to the small number of patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Effect of different number of patients on resilience metrics 
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To highlight the effectiveness of Strategy 2, we further investigate the impact of 

small number of patients on resilience, when there are 200 patients. This number 

is smaller than the number defined in the mild disruption described by 

𝑁(500, 625) and is still considered as a disaster ( Ritchie & Roser, 2021) .  As 

Figure 6.6 shown, Strategy 2 yields more resilience than Strategy 1. Particularly, 

𝑅𝑊(1) and 𝑅𝑄(1) of Strategy 2 is 0. 42 and 0. 41, respectively, while these 

metrics drop to 0 in Strategy 1.  However, Strategy 3 still performs well in this 

case.  

 

 

 

 

 

Figure 6.6 Effect of small number of patients on resilience metrics 

Scenario 4: Percentage of resource availability 

In real- world, the HPs cannot discharge all existing patients admitted before 

disasters. The HPs need to assign some staff and beds to existing patients. Such 

circumstance affects the availability of staff and beds for new patients affected 

by disasters.  Thus, in this scenario, we simulate different levels of resource 

availability in the HPs, which is between 60 –  80%  of the full capacity of staff 

and beds.  

As shown in Figure 6.7, the resource availability adversely affects resilience in 

all strategies.  The lower availability of resources, the lower resilience, and the 

longer time is required to regain the state of the network before the disaster. 

Especially, 𝑅𝑊(1) and 𝑅𝑄(1) of Strategy 2 suddenly drop to 0 and take at least 

a week to regain 1.  

Compared to other scenarios, the severe disruption in the resource availability 

causes the second highest 𝑊−
 and 𝑄− which are 2. 25 and 262. 70, respectively. 

This scenario also causes the lowest 𝑅𝑊(1) in Strategy 3, which is 0. 64 and 

takes 3 days to regain 1. One reason is that Strategy 3 benefits from the resource 

availability for collaborative responses. 
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Figure 6.7 Effect of different percentage of resource availability on resilience metrics 

Scenario 5: Probability of Greens transported using private cars 

In the base case, private cars are not included in the model because Greens are 

transported to HPs by ambulances only.  As such, the probability of Greens 

transported using cars is not in Table 5. 4.  According to the interviews, apart 

from ambulances, patients can be transported by taxi, private car, police car, 

helicopter, or even walk. Volunteers who lived nearby the affected areas offered 

their private cars for patient transportation during Tsunami in 2004. 

Approximately 50% of the Greens were transported to the HPs by private cars. 

Thus, we investigate the impact of different percentage of Greens, 40 –  60% , 

being transported to the HPs by private cars on resilience. However, only Greens 

can be transported to the HPs by private cars.  Both Reds and Yellows need 

medical staff during the transportation since their health condition may change.  
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In Figure 6.8, we observe that an increase in the number of Greens being 

transported to the HPs causes a decrease in resilience in all strategies.  For 

example, 𝑅𝑊(1) of Strategy 1 falls to 0.23, 0.20, and 0.15 in the mild, moderate, 

and severe disruption, respectively.  One reason is that the healthcare resources 

are limited in response to a disaster.  These resources are usually allocated to 

patients regarding the patient priority and patient arrival time. Greens may arrive 

at the HPs before patients in other categories.  At the time of Green arrivals, the 

limited resources may be allocated to Greens immediately if no higher-category 

patient is waiting in the queue. However, this can cause a longer waiting time of 

higher- category patients when no resource is available at the time of their 

arrivals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 Effect of different probability of Greens transported using cars on resilience metrics
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In real- world, several scenarios can happen simultaneously.  Disasters affect a 

large number of patients in which the majority of them are Reds.  Some Greens 

are transported to the HPs by private cars.  The roles of HPs in providing 

treatments become even more critical during disasters because their resources 

need to be allocated to both existing and new patients affected by a disaster.  In 

this regard, we investigate the impact of extremely severe disruption on 

resilience of different strategies.  Input parameters as given in Table 5.4 are 

changed as follows. There are 3,500 affected patients in which 80% of them are 

Reds, 15%  of them are Yellows, and 5%  of them are Greens.  Also, 60%  of 

Greens are transported to the HPs by volunteers using their own cars; 60%  of 

healthcare resources are available for the affected patients because the HPs need 

to allocate the rest of resources to the existing patients admitted before disasters.  

The extremely severe disruption causes the worse resilience in all strategies as 

shown in Figure 6.9.  Both 𝑊−
 and 𝑄− are much higher than the ones in the 

previous scenarios.  The former metric rises to 10. 33 and the latter rises to 

1,343.80. Strategy 1, 2, and 3 experience a plunge in 𝑅𝑊(1) which rapidly drops 

to 0. 03, 0, and 0. 59, respectively.  Also, this effect can be found in 𝑅𝑄(𝑡). 

Especially, 𝑅𝑄(1) of Strategy 3 sharply falls to 0.42.  All strategies take longer 

time to reach the pre-disaster conditions, i.e., a resilience value of 1. Strategy 1, 

2, and 3 take 9, 12, and 7 days, respectively.  

 

 

 

 

 

Figure 6.9 Effect of extremely severe disruption on resilience metrics 

6.3 Managerial insights 
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healthcare network in a shorter time in all defined scenarios.  Especially, it can 

regain the pre-disaster state of the network within 3 days in almost all scenarios, 

except in the severe level of disruption caused by the high number of affected 

patients and the low availability of healthcare resources; and in the extremely 

severe level of disruption described by mixed disaster scenarios.  In contrast, 

Strategy 1 and 2 often yield a low resilience even in the case of mild disaster. 

Strategy 2 is more sensitive to disruption scenarios compared to Strategy 1. 

Strategy 1 generally takes between 2 and 9 days to reach the pre- disaster state, 

whereas Strategy 2 needs 4 - 12 days. However, when there are small number of 

affected patients, the resilience of Strategy 2 is better than the one of Strategy 1.  

The simulation experiments in this study show how different strategies for the 

collaboration in a healthcare network can impact on resilience in the context of 

Phuket, Thailand. Strategy 3 includes the concept of collaboration which are HP 

categorisation, patient transportation considering resource availability and the 

shortest travel time, staff sharing across HPs, and TMU roles for minor treatment 

yield the highest resilience compared to other strategies in long term. Strategy 3 

yields the highest resilience compared to other strategies in long term, but not 

always in the short term (first 10 hours). Therefore, we can conclude that 

improving the resilience during disasters requires collaborative response in the 

healthcare network. The response strategies should consider the following 

points: 

 ( 1)  HPs should be categorised into groups by considering their availability of 

healthcare resources and their capabilities to provide emergency medical 

services.  The HPs with higher capacity should be mainly responsible for high 

severe injuries, whereas the less severe-injured patients should be transported to 

the lower- capacity HPs.  However, this can be only implemented in an urban 

area, e.g. Phuket, where HPs are not far apart. 

(2)  The information sharing is essential for patient allocation.  The information 

on the resource availability should be shared between HPs in order to allocate 

the remaining affected patients effectively.  By doing these, patients are 

transported to the HP that is the closest but also has the resources available.  
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( 3)  The decision on staff sharing should be made by taking into consideration 

the HP capabilities to handle severe and moderate injuries.  Based on the 

performance of Strategy 3, we observe that the lower- capacity HPs should 

allocate their staff to the higher-capacity HPs in order to enhance the healthcare 

capacity for severe injuries in the network. However, this finding is based on the 

specific simulated scenarios in the context of Phuket, Thailand. 

( 4)  Given the set of scenarios explored in this thesis and within the specific 

context of the health network in Phuket, the simulation experiments suggest that 

the design of TMU roles has an impact on the resilience improvement.  The 

healthcare authorities state that the TMUs are set with the aim to provide the 

medical services to patients in a timely manner.  To achieve the aim, Greens 

should be treated and discharged at the TMUs in order to reduce the 

overcrowding in the HPs.  This has been observed in Scenario 5: Probability of 

Greens transported using private cars The resilience levels of all strategies are 

getting worse when more Greens are at the HPs.  In addition, Reds and Yellows 

should be transported to the HPs as soon as possible in order to avoid a crowd 

of patients at the TMUs.  Treating Reds and Yellows at the TMUs causes very 

high waiting time and ultimately causes the low level of resilience.  This effect 

can be found in Strategy 2 in which these patients need to be treated at the TMUs 

before the patient transportation.  Consequently, Strategy 2 provides the highest 

waiting time of Reds and Yellows as shown in Table 6.1 and the worst resilience 

level as shown in the defined scenarios.  

We notice that even for the same disruption levels the resilience with respect to 

the average waiting time, 𝑅𝑊(𝑡) , and the number of patients with late 

treatments, 𝑅𝑄(𝑡), can behave differently.  For example, in Figure 6.8, 𝑅𝑊(1) 

of Strategy 3 slightly decreases to 0.89, whereas its 𝑅𝑄(1) sharply falls to 0.53 

in the severe disruption. This phenomenon can also be found in other strategies. 

One reason can be that 𝑄(𝑡) considers the number of patients whose waiting 

time exceed the threshold, while 𝑊(𝑡) considers the total waiting time.  Even a 

small delay in providing treatment ( 0. 00001 hour)  exceeds the target waiting 

time causes an increase in 𝑄(𝑡). On the other hand, such exceeding hour have a 

very low impact on the total waiting time which is one of components in 𝑊(𝑡). 

Thus, 𝑅𝑄(𝑡) is likely to be lower than or equal to 𝑅𝑊(𝑡) in the same scenario. 



111 

To support this assumption, we found that the relation (𝑅𝑄(𝑡) ≤ 𝑅𝑊(𝑡)) holds 

in 375 out of 450 cases (3 strategies × 5 scenarios × 3 disruption levels for each 

scenario × 10 days), which is 83% of the total number of cases. Please note that, 

10 days are the longest period that the resilience takes to regain 1 in 5 scenarios. 

However, both 𝑅𝑊(𝑡) and 𝑅𝑄(𝑡) reach 1 on the same day in all cases.  

6.4 Discussion 

Although the simulation experiments suggest that a new collaborative care 

strategy that we propose provide better resilience of the healthcare network 

during disasters, in practice it might take time to implement it and a trade-off 

between collaboration and how a quick response is may be required. We 

presented the findings to the executive board of Phuket Provincial Public Health 

and EMS centres in Phuket, Thailand.  They acknowledged that the findings 

provided an important opportunity to advance the understanding of collaborative 

response and could directly contribute to the plan for the collaboration in an 

emergency medical response across a healthcare network. So far, the healthcare 

authorities categorised HPs in Phuket into two groups by considering their 

healthcare capacity.  The categorisation of HPs was done in the annual meeting 

for the emergency medical response plan, which is regularly held in Phuket to 

revise the current strategy in response to future disasters. However, the allocation 

of staff and patients for collective response during disasters is still under 

discussion.  

The study sets a basis of the simulation models for collaboration in an emergency 

medical response across a healthcare network duing disasters.  The study has 

investigated the collaboration in an emergency medical response in a healthcare 

network during the Tsunami and the mass casualty incident in the context of 

Thailand.  However, the models remain applicable in other countries and other 

types of disaster. Even if the activities of collaboration in an emergency medical 

response may be slightly different between countries, the focus of the 

collaboration in an emergency medial response in a healthcare network is still 

on the sharing of resources and information.  Some of resource sharing can be 

adapted to countries that are frequently affected by disasters.  The models may 

be adjusted to suit the characteristics of disasters and the severity of disaster 
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impact. For example, the drug/vaccine sharing is essential for pandemic response 

in order to reduce the number of infected patients, or the ambulance sharing is 

required in response to earthquakes in order to transport multiple patients to 

hospitals as soon as possible, etc.  

In addition, the resilience metrics adopted in this thesis are primarily defined to 

assess the ability of a system to “bounce back”. We demonstrate the applicability 

of the adopted metrics of resilience during Tsunami and illustrate the impact of 

different strategies on the restoration of resilience in the event. However, the 

resilience metrics are not specifically designed for the Tsunami. These metrics 

can be applicable to other types of disasters that cause the deterioration of 

healthcare performance. However, the resilience metrics adopted in this thesis 

are the ratio of the recovery rate to the maximum loss rate of the system. An 

estimation of the loss rate requires the real-world data, which may be 

challenging.  

6.5 Summary 

This chapter presents the impacts of strategies on resilience metrics in the case 

study of Tsunami in Phuket in 2004. The simulation results show that in the first 

hours of the disaster event, Strategy 2 is more effective in response to disasters, 

followed by Strategy 1 and 3.  After 10 hours, the resilience metrics of Strategy 

1 and 2 gradually decrease, while they steadily increase in Strategy 3. However, 

we do not advocate for a mixed strategy, i. e.  starting with Strategy 2 and then 

switch to Strategy 3, because this is out of the study scope.  

In addition, the simulation results reveal the impacts of variation in patient 

demands, healthcare resource availability, and patient transportation on 

resilience metrics of strategies. Overall, Strategy 3 yields a higher resilience and 

reaches the pre- disaster state of healthcare network in a shorter time than other 

strategies.  
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Chapter 7 A Mixed Integer Programming model for allocation 

of multiple patients in collaborative care 

This chapter deals with the optimal allocation of patients in the collaborative 

care strategy. It presents a first step in the research that follows the development 

of the simulation models for strategies for collaboration in a healthcare network. 

The focus of the simulation models was on investigating of the impact of 

different strategies on the resilience. However, the simulation models were not 

developed with the aim to obtain the optimal allocation of patients. In addition, 

the problems of patient allocation in collaborative care include patient 

assignment to ambulances for multiple patient transportation and patient 

assignment to HPs for treatments. The nature of the problems requires the 

development of a mixed integer programming (MIP) model, instead of integer 

programming (IP) model. A set of binary decision variables involve the patient 

assignment to ambulances for multiple patient transportation, the selection of 

HPs, and the patient assignment to the required healthcare resources for patient 

treatments. Time-based decision variables including travel time and waiting time 

have fractional values. Thus, the MIP model for patient allocation under 

collaborative care strategy in response to disasters is presented. The model 

addresses the ambulance sharing for multiple patient transportation in one trip. 

The literature in patient allocation for disaster response is reviewed. The research 

problems and the MIP model are presented accordingly. 

7.1 Introduction 

During disasters, HPs in the networks are required to work together in order to 

provide emergency medical responses which mainly deal with patient allocation 

in the network (Tippong et al., 2022). Patients who are affected by disasters are 

evacuated to the nearest opened TMUs.  HPs in the network share their 

ambulances for transporting these patients from the TMUs to the assigned HPs 

for treatments.  Due to a limited number of available ambulances, they need to 

make multiple trips during the events ( Repoussis et al. , 2016) .  In addition, 

according to the interviews with the healthcare authorities, multiple patients can 
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be loaded onto the same ambulance when responding to disasters which has been 

presented in Table 4.3.  

Performance of the emergency medical responses during disasters is often 

measured through time-based targets such as response time, defined as the time 

between a patient’s arrival and the beginning of treatment provision (Abir et al., 

2013; Luscombe & Kozan, 2016; Repoussis et al. , 2016) .  The ultimate goal of 

the emergency medical responses is to treat all patients as early as possible in 

order to reduce the mortality rate ( Holguín- Veras et al. , 2013) .  The patients’ 

chance of survival could be changed over time until patients receive medical 

treatments.  Thus, the aim of emergency medical responses is often to minimise 

the response time.  

We present an MIP model in which the focus is on the allocation of multiple 

patients to HPs in collaborative response.  The goal is to transport multiple 

patients in one-trip ambulance so as to improve patient outcomes. The objective 

is to minimise the overall response time. 

7.2 Relevant literature 

Problems of patient allocation in response to disasters have been widely studied 

in the literature.  Several models considered patient allocation/ transportation in 

disasters.  The focus was on allocating/ transporting all affected patients to 

healthcare facilities.  For example, Christie & Levary ( 1998)  developed a DES 

model for patient allocation to HPs in mass casualty incidents.  The HPs were 

perceived as multiple servers.  Na & Banerjee ( 2015)  proposed an MIP model 

for allocating patients to healthcare facilities located in nearby area in which 

these facilities could be HPs or shelters.  The model aimed to simultaneously 

optimise the number of survivors and the transportation cost with respect to 

ambulance and facility capacities. Apart from allocating patients, the model was 

also developed to determine the number of ambulances and resources at 

healthcare facilities that were required for a large-scale disaster response. Kamali 

et al. (2017) studied a problem of resource-based triage for patient transportation. 

They developed an MIP model to transport patients to the HPs. The model took 

into account the ambulance availability, the disaster scale, and the change in the 

patients’  chance of survival in the triage process.  They aimed to maximise the 
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number of expected survivals. Wilson et al., (2013) presented a response model 

for the entire activities of emergency medical services in the aftermath of a mass 

casualty incident.  They developed an MIP model for the combined patient 

allocation in the network and treatment ordering problem.  They modelled the 

entire activities as Flexible Job Shop Scheduling Problem (FJSP).  Each patient 

was considered as a job and each medical staff as a machine.  The processing of 

jobs was represented by a sequence of activities including transportation to the 

HP, and treatment.  Each patient was assigned to a HP, and each staff was 

assigned to the activities.  The objectives were to minimise the overall response 

time and the length of stay.  

Some studies considered the problems of dispatching ambulances to clusters of 

patients and transporting some affected patients to the HPs.  Patient assembly 

points were grouped into clusters.  The focus was on dispatching ambulances to 

clusters in order to perform patient pickup and/or to provide medical treatments. 

The information on patient demands, road and traffic conditions, and distance 

were used to dispatch ambulances to clusters.  These studies assumed that high-

severe injured patients must be treated at the HPs.  Low- severe injured patients 

could be treated at the assembly points. An ambulance could visit the next patient 

after having served a low- severe injured patient.  Each ambulance could carry 

one high-severe injured patient at a time and that patient was directly transported 

to a HP after having been picked up.  For example, Gong & Batta ( 2007) 

proposed two models for ambulance allocation and reallocation to clusters in an 

earthquake.  The first model attempted to allocate ambulances to clusters and to 

determine the initial completion time for each cluster.  The second model 

considered the reallocation of ambulances with the aim to enhance the 

ambulance utilisation.  The distance between clusters was taken into account 

when making an ambulance reallocation decision.  The objective was to 

minimise the makespan and weighted total flow time in which the weights were 

assigned to clusters.  Talarico et al.  ( 2015)  developed a model for ambulance 

routing in which a route started from a HP, visited one or more patients in a 

specified sequence, and ended at either the starting HP or other HP.  The 

optimisation problem was to determine the ambulance routes to serve different 

patient categories with the aim to minimise the latest service completion time. 
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Some literature investigated relief supply distribution and patient transportation 

using the same vehicles.  In these studies, the focus was on the transportation of 

relief supplies to affected areas and of patients to HPs.  The main effort was to 

determine the vehicle routing and the flows of relief supplies and patients in the 

network. For example, Yi & Kumar (2007) presented an ant colony optimisation 

model for transporting relief supplies to distribution centres and patients to HPs 

during disasters. The objective aimed at minimising the service delay which was 

measured in perspective of the unmet demands for relief supplies and the number 

of untreated patients.  Najafi et al.  ( 2013, 2014)  developed multi- objective 

dynamic models for dispatching and routing vehicles in response to earthquakes. 

The aims were to minimise the total lead time to fulfil the needs of relief supplies 

and the total times until patient arrival at the HP.  The proposed models were 

capable of adjusting the vehicle routing plans according to the updated 

information.  

On the other hand, some literature simultaneously examined facility location and 

patient transportation.  For example, Salman & Gül (2014)  and Caunhye & Nie 

( 2018)  assumed that patient demands affected by disasters always overwhelm 

the capacities of existing healthcare facilities.  The response plan for such 

circumstances requires a surge capacity to be established.  They developed an 

MIP model to determine the location and capacity of new healthcare facilities to 

be established together with the patient transportation to the existing and newly-

located healthcare facilities after an earthquake.  The objective aimed at 

minimising the total travel and waiting times of patients and the total cost of 

establishing new facilities.  

The current literature has proposed several models to solve the problems of 

patient allocation in the network with the aim to minimise response time. 

However, the literature has not addressed the ambulance sharing for multiple 

patient transportation. The models always assume that one ambulance carry one 

patient in one trip.  One main difference of our study compared to the existing 

works is that a group of patients is assigned to one- trip ambulance considering 

ambulance capacities and allocated to one of the HPs in the network under the 

collaborative care strategy. 
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7.3 Problem description and mathematical model 

This section presents the problem of the allocation of multiple patients in 

collaborative response and an MIP model developed for the problem.  

7.3.1 Problem description  

In the simulation experiments, the results show that the collaborative care 

strategy ( Strategy 3)  has a greater impact on the resilience improvement than 

other strategies.  It can regain the pre- disaster state of healthcare network in a 

shorter time in all defined scenarios. Thus, in the optimisation model, we adopt 

the roles of TMUs and HPs as well as patient pathways defined in Strategy 3. 

Please note that we do not classify HPs into groups, i.e. HL1 and HL2. Although 

the classification of HPs is a part of Strategy 3, such classification is for defining 

the patient flow in simulation model when allocating patients to HPs. DES 

requires the detailed rules for controlling the individual entities (patients) 

through the defined activities in the system. In the optimisation model, the 

decision making on patient allocation can be defined as an optimisation problem 

for which a mathematical model can be developed. 

Specifically, patients are evacuated to the TMUs over time. They are triaged into 

three categories including Reds, Yellows, and Greens. A fixed-priority ordering 

scheme is adopted among different patient categories, so that the patient category 

is static, i. e.  does not change over time.  The number of patients in different 

categories are known which are based on historical data.  TMUs are set for 

assembling Reds and Yellows for transportations to HPs and providing 

treatments for Greens.  Reds and Yellows receive the treatments at one of the 

HPs, while Greens are treated at the TMUs and discharged. In this regard, Greens 

are not included in the model because the focus of the study is on patient 

allocation to HPs. 

The TMU locations are known.  The humanitarian activities including patient 

evacuation and facility location are fixed in advance and thus are not covered in 

the model.  In addition, the resources required at the TMUs including staff, first 

aid equipment, field beds, field mattresses, and ambulances are assumed to be 

present at the opened TMUs in the immediate aftermath of a disaster.  The 

resource assignment to the opened TMUs is out of the scope of this model.  
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On arrival of Reds and Yellows at TMUs, they are immediately loaded onto 

ambulances and transported to HPs.  The number of available ambulances is 

usually limited during disasters.  Therefore, they need to carry multiple patients 

in one trip and need to make multiple trips from the TMUs to the HPs. Different 

types of ambulances have different capacity for patient transportation. Basic life 

support ambulances are equipped with first aid and standard medical equipment, 

while advanced life support ambulances are equipped with first aid and advanced 

medical equipment ( Reuter- Oppermann et al. , 2017) .  The former can carry at 

most one Red, or two Yellows in one trip.  The latter can carry at most one Red 

and one Yellow, or two Yellows in one trip.  These possible combinations of 

patients in a one- trip ambulance are defined by the healthcare authorities who 

have experience of providing medical services during mass casualty incidents 

and/or disasters. However, these combinations are only implemented when there 

is a surge of emergency medical service demands. 

Healthcare authorities state that it may increase overall response time when 

ambulances need to visit multiple HPs for dropping patients off.  Thus, we 

assume that ambulances visit one HP in one trip, then travel to the TMU for the 

next trip.  The assumption is that the roads are not affected by disasters.  The 

travel time between the TMUs and the HPs are known and fixed. Travel time is 

asymmetric based on the shortest route obtained by Google map. 

Due to limited resources in the network in reality, some Reds may be transported 

to the external HPs that are located outside the affected network.  However, the 

healthcare authorities state that majority of patients were generally treated in the 

network during Tsunami in 2004.  Less than 1% of patients were transported to 

the external HPs.  In addition, the simple model should be built in the first 

instance to reduce the computational burden.  We thus exclude the external 

network in order to reduce the complexity of the model.  We assume that all 

patients must be treated in the network.  

In a provision of treatment, each patient category needs different medical 

treatment.  Reds require highly specialised equipment, more medical staff, and 

advanced life support for their treatments, while Yellows need fewer medical 

staff and lower complexity care.  For simplicity, resources including medical 

equipment, staff, beds/chairs are organised into resource groups with respect to 
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the medical treatment required for each patient category ( Luscombe & Kozan, 

2016) .  We assume that these resources are not affected by disasters and are 

available at their facilities immediately after disasters.  We do not include in the 

model the resources that are allocated to existing patients admitted before the 

events, in which they are approximately 20% of total resources. The resource 

availability for taking care of the causalities of the disaster is set to 80% of total 

staff in each HP as advised by the healthcare professionals. The data about the 

number of resource groups and ambulances are known in advance. 

Each patient that arrives at the HPs is assigned immediately to a resource group 

if one is available.  One resource group can be occupied by a patient at a time. 

The resource group becomes available for the next patient when the treatment 

for the assigned patient are completed. The treatment times for different patient 

categories are known which are based on historical data.  

We model the problems of multiple patient allocation in collaborative response 

as a FJSP with unrelated parallel machines.  Reds and Yellows are perceived as 

job sets, whereas ambulances and resource groups in HPs are perceived as 

machine sets.  Each job consists of a sequence of activities:  transportation to a 

HP and treatment at the HP.  The optimisation problem is to determine the 

sequence of Reds and Yellows to be assigned to ambulances and resource groups 

at the HPs. The objective is to minimise the sum of weighted response times of 

all the jobs (patients) because the long delays lead to a higher mortality rate. The 

higher weight is given to Reds.  

7.3.2 An MIP model for optimal patient allocation 

In this section we introduce the notation required to describe the MIP model, and 

then present the MIP model for the multiple patient allocation in collaborative 

care. Our MIP model is based on the model suggested by Repoussis et al. (2016) 

who studied the patient allocation to HPs and assumed that an ambulance carries 

one patient in one trip.  They considered one ambulance type and one patient 

category in the model.  However, the information about what ambulance type 

was used and what patient catogory was addressed was not provided. 
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Sets: 

𝐻 Set of HP locations, 𝐻 = {1, … , |𝐻|}, indexed by ℎ 

𝐼 Set of TMU locations, 𝐼 = {1, … , |𝐼|}, indexed by 𝑖 and 𝑗 

𝑅 Set of Reds, 𝑅 = {1, … , |𝑅|}, indexed by 𝑟 

𝑌 Set of Yellows, 𝑌 = {1, … , |𝑌|}, indexed by 𝑦 

𝑀 Set of basic life support ambulances, 𝑀 = {1, … , |𝑀|}, indexed by 𝑚 

𝑁 Set of advanced life support ambulances, 𝑁 = {1, … , |𝑁|}, indexed by 𝑛  

𝑃 Set of resource groups for Reds, 𝑃 = {1, … , |𝑃|}, indexed by 𝑝 

𝑄 Set of resource groups for Yellows, 𝑄 = {1, … , |𝑄|}, indexed by 𝑞 

Parameters:  

𝑎𝑟𝑖
′  Arrival time of patient 𝑟 ∈ 𝑅 at TMU 𝑖 ∈ 𝐼 

𝑎𝑦𝑖
′′  Arrival time of patient 𝑦 ∈ 𝑌 at TMU 𝑖 ∈ 𝐼 

𝑡𝑟
′  Treatment time for patient 𝑟 ∈ 𝑅 

𝑡𝑦
′′  Treatment time for patient 𝑦 ∈ 𝑌 

𝛼  Weight assigned to Reds, 0 ≤  𝛼 ≤ 1 

1 − 𝛼 Weight assigned to Yellows, 0 ≤  𝛼 ≤ 1 

Binary decision variables: 

A solution of the examined problem is a schedule of patient transportation by an 

ambulance and treatment provision by a resource group at the HP. For the patient 

transportation, ambulance 𝑚 ∈ 𝑀 provides transportation on trip 𝑓 = (𝑖, ℎ, 𝑗), 

where 𝑖, 𝑗 ∈ 𝐼, ℎ ∈ 𝐻; whereas ambulance 𝑛 ∈ 𝑁 provides services on trip 𝑔 =

(𝑖, ℎ, 𝑗), where 𝑖, 𝑗 ∈ 𝐼, ℎ ∈ 𝐻.  Let 𝑓 ∈ 𝐹𝑚 and 𝑔 ∈ 𝐺𝑛, where 𝐹𝑚 and 𝐺𝑛 are the 

total maximum trips performed by ambulance 𝑚 ∈ 𝑀 and 𝑛 ∈ 𝑁, respectively. 

For the treatment provision at the HP, resource group 𝑝 ∈ 𝑃 serves one Red in 

treatment 𝑘, while resource group 𝑞 ∈ 𝑄 treats one Yellow in treatment 𝑙.  We 

let 𝑘 ∈ 𝐾𝑝  and 𝑙 ∈ 𝐿𝑞 , where 𝐾𝑝  and 𝐿𝑞  are the total maximum treatments 

served by resource group 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄, respectively.  The following binary 

decision variables are defined to identify the positions of patients in the 

processing sequence for each ambulance and resource group. 
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𝑢𝑟𝑚𝑓
′  equal to 1 if patient 𝑟 ∈ 𝑅 is assigned to ambulance 𝑚 ∈ 𝑀 on trip 𝑓;  

0 otherwise 

𝑢𝑦𝑚𝑓
′′  equal to 1 if patient 𝑦 ∈ 𝑌 is assigned to ambulance 𝑚 ∈ 𝑀 on trip 𝑓;  

0 otherwise 

𝑣𝑟𝑛𝑔
′   equal to 1 if patient 𝑟 ∈ 𝑅 is assigned to ambulance 𝑛 ∈ 𝑁 on trip 𝑔;  

0 otherwise 

𝑣𝑦𝑛𝑔
′′   equal to 1 if patient 𝑦 ∈ 𝑌 is assigned to ambulance 𝑛 ∈ 𝑁 on trip 𝑔;  

0 otherwise 

𝑢𝑚𝑖ℎ
(𝑓)

 equal to 1 if ambulance 𝑚 ∈ 𝑀 travels from TMU 𝑖 ∈ 𝐼 to HP ℎ ∈ 𝐻 on 

trip 𝑓; 0 otherwise 

𝑣𝑛𝑖ℎ
(𝑔)

 equal to 1 if ambulance 𝑛 ∈ 𝑁 travels from TMU 𝑖 ∈ 𝐼 to HP ℎ ∈ 𝐻 on 

trip 𝑔; 0 otherwise 

𝑥𝑟𝑝ℎ

(𝑘)
  equal to 1 if patient 𝑟 ∈ 𝑅  is assigned to resource group 𝑝 ∈ 𝑃 and 

treated in treatment 𝑘 at HP ℎ ∈ 𝐻; 0 otherwise 

𝑧𝑦𝑞ℎ

(𝑙)
  equal to 1 if patient 𝑦 ∈ 𝑌  is assigned to resource group 𝑞 ∈ 𝑄 and 

treated in treatment 𝑙 at HP ℎ ∈ 𝐻; 0 otherwise 

Non-negative decision variables: 

𝑎𝑚𝑓
  Travel time of ambulance 𝑚 ∈ 𝑀 on trip 𝑓 

𝑏𝑛𝑔
  Travel time of ambulance 𝑛 ∈ 𝑁 on trip 𝑔 

𝑐𝑚𝑓
  Arrival time of ambulance 𝑚 ∈ 𝑀 at the TMU for doing trip 𝑓 

𝑑𝑛𝑔
  Arrival time of ambulance 𝑛 ∈ 𝑁 at the TMU for doing trip 𝑔 

𝑤𝑚𝑓
  Waiting time of ambulance 𝑚 ∈ 𝑀 at the TMU for doing trip 𝑓 

𝑥𝑛𝑔
  Waiting time of ambulance 𝑛 ∈ 𝑁 at the TMU for doing trip 𝑔 

𝑒𝑟ℎ
′  Arrival time of patient 𝑟 ∈ 𝑅 at HP ℎ ∈ 𝐻  

𝑒𝑦ℎ
′′  Arrival time of patient 𝑦 ∈ 𝑌 at HP ℎ ∈ 𝐻 

𝑡𝑝𝑘ℎ
′  Treatment start time of the patient assigned to resource group 𝑝 ∈ 𝑃 and 

treated in treatment 𝑘 at HP ℎ ∈ 𝐻 

𝑡𝑞𝑙ℎ
′′  Treatment start time of the patient assigned to resource group 𝑞 ∈ 𝑄 and 

treated in treatment 𝑙 at HP ℎ ∈ 𝐻 

𝑠𝑟𝑖
′  Response time of patient 𝑟 ∈ 𝑅 who is evacuated to TMU 𝑖 ∈ 𝐼 
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𝑠𝑦𝑖
′′  Response time of patient 𝑦 ∈ 𝑌 who is evacuated to TMU 𝑖 ∈ 𝐼 

These decision variables are defined to capture the time stamps for the model 

during the transportation and treatment.  The objective is to minimise the total 

weighted response time of all patients in Eq. (7.1).  

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ∑ ∑ 𝛼𝑠𝑟𝑖
′

𝑖∈𝐼𝑟∈𝑅

+ ∑ ∑(1 − 𝛼)𝑠𝑦𝑖
′′

𝑖∈𝐼𝑦∈𝑌

                             (7.1) 

The following constraints are defined:  

Patient assignment to ambulance and multiple patient transportation 

∑ ∑ 𝑢𝑟𝑚𝑓
′

𝑓∈𝐹𝑚𝑚∈𝑀

+ ∑ ∑ 𝑣𝑟𝑛𝑔
′

𝑔∈𝐺𝑛

= 1          ∀𝑟 ∈ 𝑅

𝑛∈𝑁

                                                        (7.2) 

∑ ∑ 𝑢𝑦𝑚𝑓
′′

𝑓∈𝐹𝑚𝑚∈𝑀

+ ∑ ∑ 𝑣𝑦𝑛𝑔
′′

𝑔∈𝐺𝑛

= 1

𝑛∈𝑁

          ∀𝑦 ∈ 𝑌                                                        (7.3) 

∑ 𝑢𝑚𝑖ℎ
(𝑓)

ℎ∈𝐻

≤ ∑ 𝑢𝑟𝑚𝑓
′

𝑟∈𝑅

+ ∑ 𝑢𝑦𝑚𝑓
′′

𝑦∈𝑌

          ∀𝑚 ∈ 𝑀, 𝑓 ∈ 𝐹𝑚, 𝑖 ∈ 𝐼                                  (7.4) 

∑ 𝑢𝑟𝑚𝑓
′

𝑟∈𝑅

≤ 1          ∀𝑚 ∈ 𝑀, 𝑓 ∈ 𝐹𝑚                                                                                  (7.5) 

∑ 𝑢𝑦𝑚𝑓
′′

𝑦∈𝑌

≤ 2          ∀𝑚 ∈ 𝑀, 𝑓 ∈ 𝐹𝑚                                                                                 (7.6) 

∑ 𝑢𝑟𝑚𝑓
′

𝑟∈𝑅

+ ∑ 𝑢𝑦𝑚𝑓
′′

𝑦∈𝑌

≤ 2          ∀𝑚 ∈ 𝑀, 𝑓 ∈ 𝐹𝑚                                                           (7.7) 

∑ 𝑢𝑟𝑚𝑓
′

𝑟∈𝑅

− ∑ 𝑢𝑦𝑚𝑓
′′

𝑦∈𝑌

≠ 0          ∀𝑚 ∈ 𝑀, 𝑓 ∈ 𝐹𝑚                                                           (7.8) 

∑ 𝑣𝑛𝑖ℎ
(𝑔)

ℎ∈𝐻

≤ ∑ 𝑣𝑟𝑛𝑔
′

𝑟∈𝑅

+ ∑ 𝑣𝑦𝑛𝑔
′′

𝑦∈𝑌

          ∀𝑛 ∈ 𝑁, 𝑔 ∈ 𝐺𝑛, 𝑖 ∈ 𝐼                                       (7.9) 

∑ 𝑣𝑟𝑛𝑔
′

𝑟∈𝑅

≤ 1          ∀𝑛 ∈ 𝑁, 𝑔 ∈ 𝐺𝑛                                                                                  (7.10) 

∑ 𝑣𝑦𝑛𝑔
′′

𝑦∈𝑌

≤ 2          ∀𝑛 ∈ 𝑁, 𝑔 ∈ 𝐺𝑛                                                                                  (7.11) 

∑ 𝑣𝑟𝑛𝑔
′

𝑟∈𝑅

+ ∑ 𝑣𝑦𝑛𝑔
′′

𝑦∈𝑌

≤ 2          ∀𝑛 ∈ 𝑁, 𝑔 ∈ 𝐺𝑛                                                             (7.12) 
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∑ 𝑢𝑚𝑖ℎ
(𝑓)

ℎ∈𝐻

= 1           ∀𝑚 ∈ 𝑀, 𝑓 ∈ 𝐹𝑚, 𝑖 ∈ 𝐼                                                                    (7.13) 

∑ 𝑣𝑛𝑖ℎ
(𝑔)

ℎ∈𝐻

= 1           ∀𝑛 ∈ 𝑁, 𝑔 ∈ 𝐺𝑛, 𝑖 ∈ 𝐼                                                                       (7.14) 

Constraint (7.2) and (7.3) ensure that each patient is assigned to one ambulance 

only.  Constraint (7.4) – (7.8) dictate basic life support ambulance sharing for 

multiple patient transportation.  Constraint ( 7. 4)  links the basic life support 

ambulance dispatching with the patient assignment to the ambulance.  Patients 

can be assigned to the ambulance that is used for the trip. The basic one can carry 

at most one Red (constraint 7.5) or two Yellows (constraint 7.6) in one trip. At 

most two patients can be loaded onto the same ambulance ( constraint 7. 7) . 

However, they must be from the same categories (constraint 7.8). 

Constraint ( 7. 9)  –  ( 7. 12)  are multiple patient transportation for advanced life 

support ambulances. Constraint (7.9) links the advanced life support ambulance 

dispatching with the patient assignment to the ambulance.  At most one Red 

( constraint 7. 10)  or two Yellows ( constraint 7. 11)  can be assigned to the 

advanced one.  At most two patients can be loaded onto the same ambulance 

(constraint 7.12). Constraint (7.13) and (7.14) ensure that the ambulance visits 

exactly one HP in one trip.  

Time stamps for ambulance 

∑ 𝑢𝑚𝑖ℎ
(1)

𝑐𝑚1
 =

ℎ∈𝐻

min
𝑟∈𝑅,𝑦∈𝑌

(𝑢𝑟𝑚1
′ 𝑎𝑟𝑖

′ , 𝑢𝑦𝑚1
′′ 𝑎𝑦𝑖

′′ )          ∀𝑚 ∈ 𝑀, 𝑖 ∈ 𝐼                             (7.15) 

∑ 𝑣𝑛𝑖ℎ
(1)

𝑑𝑛1
 = min

𝑟∈𝑅,𝑦∈𝑌
(𝑣𝑟𝑛1

′ 𝑎𝑟𝑖
′ , 𝑣𝑦𝑛1

′′ 𝑎𝑦𝑖
′′ )          ∀𝑛 ∈ 𝑁, 𝑖 ∈ 𝐼                                  (7.16)

ℎ∈𝐻

 

∑ 𝑢𝑚𝑖ℎ
(𝑓)

𝑐𝑚𝑓
 ≥ ∑ 𝑢𝑚𝑖ℎ

(𝑓−1)
(𝑐𝑚(𝑓−1)

 + 𝑎𝑚(𝑓−1)
 )

ℎ∈𝐻

 ∀𝑚 ∈ 𝑀, 𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹𝑚 ∖ {1}   (7.17)

ℎ∈𝐻

 

∑ 𝑣𝑛𝑖ℎ
(𝑔)

𝑑𝑛𝑔
 ≥

ℎ∈𝐻

∑ 𝑣𝑛𝑖ℎ
(𝑔−1)

(𝑑𝑛(𝑔−1)
 + 𝑏𝑛(𝑔−1)

 )     ∀𝑛 ∈ 𝑁, 𝑖 ∈ 𝐼, 𝑔 ∈ 𝐺𝑛 ∖ {1}   (7.18) 

ℎ∈𝐻

 

𝑤𝑚𝑓
  = max

𝑟∈𝑅,𝑦∈𝑌,𝑚∈𝑀,𝑖∈𝐼,ℎ∈𝐻
(𝑢𝑟𝑚𝑓

′ 𝑎𝑟𝑖
′ − 𝑢𝑚𝑖ℎ

(𝑓)
𝑐𝑚𝑓

 , 𝑢𝑦𝑚𝑓
′′ 𝑎𝑦𝑖

′′ − 𝑢𝑚𝑖ℎ
(𝑓)

𝑐𝑚𝑓
 )             (7.19)  

 𝑥𝑛𝑔
  = max

𝑟∈𝑅,𝑦∈𝑌,𝑛∈𝑁,𝑖∈𝐼,ℎ∈𝐻
(𝑣𝑟𝑛𝑔

′ 𝑎𝑟𝑖
′ −  𝑣𝑛𝑖ℎ

(𝑔)
𝑑𝑛𝑔

 , 𝑣𝑦𝑛𝑔
′′ 𝑎𝑦𝑖

′′ − 𝑣𝑛𝑖ℎ
(𝑔)

𝑑𝑛𝑔
 )                   (7.20)  

Constraint (7.15) and (7.16) initialise the arrival time of ambulance at TMU for 

its first trip.  These constraints are based on the assumption in which the 
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ambulances are already at the opened TMUs, so that the arrival time of the 

ambulance for its first trip ( 𝑓 =  1 or 𝑔 =  1)  equals to the arrival time of the 

patient at TMU who is assigned to that ambulance. Constraint (7.17) and (7.18) 

dictate the arrival time of ambulance at TMU for doing the next trips. Its arrival 

time equals to the arrival time of the previous trip adding the travel time on the 

trip. Constraint (7.19) and (7.20) dictate the ambulance waiting time for arriving 

patients at TMU. 

Patient assignment to treatment  

∑ ∑ ∑ 𝑥𝑟𝑝ℎ

(𝑘)

𝑘∈𝐾𝑝𝑝∈𝑃ℎ∈𝐻

= 1          ∀𝑟 ∈ 𝑅                                                                                 (7.21) 

∑ ∑ ∑ 𝑧𝑦𝑞ℎ

(𝑙)

𝑙∈𝐿𝑞𝑞∈𝑄ℎ∈𝐻

= 1          ∀𝑦 ∈ 𝑌                                                                                  (7.22) 

∑ 𝑥𝑟𝑝ℎ

(𝑘)

𝑟∈𝑅

≤ 1          ∀𝑝 ∈ 𝑃, 𝑘 ∈ 𝐾𝑝, ℎ ∈ 𝐻                                                                      (7.23) 

∑ 𝑧𝑦𝑞ℎ

(𝑙)

𝑦∈𝑌

≤ 1          ∀𝑞 ∈ 𝑄, 𝑙 ∈ 𝐿𝑞 , ℎ ∈ 𝐻                                                                       (7.24) 

Constraint (7.21) and (7.22) ensure that each patient is treated at exactly one HP. 

Constraint (7.23) and (7.24) dictate at most one patient can occupy one treatment 

which is served by one resource group.  

Time stamps for patient and patient waiting times 

∑ 𝑥𝑟𝑝ℎ

(1)
𝑡𝑝1ℎ

′

𝑟∈𝑅

= ∑ 𝑥𝑟𝑝ℎ

(1)
𝑒𝑟ℎ

′

𝑟∈𝑅

          ∀𝑝 ∈ 𝑃, ℎ ∈ 𝐻                                                         (7.25) 

∑ 𝑧𝑦𝑞ℎ

(1)

𝑦∈𝑌

𝑡𝑞1ℎ
′′ = ∑ 𝑧𝑦𝑞ℎ

(1)
𝑒𝑦ℎ

′′

𝑦∈𝑌

          ∀𝑞 ∈ 𝑄, ℎ ∈ 𝐻                                                       (7.26) 

𝑒𝑟ℎ
′ ≥ 𝑢𝑟𝑚𝑓

′ 𝑢𝑚𝑖ℎ
(𝑓)

(𝑐𝑚𝑓
 + 𝑎𝑚𝑓

 + 𝑤𝑚𝑓
 ) + 𝑣𝑟𝑛𝑔

′ 𝑣𝑛𝑖ℎ
(𝑔)

(𝑑𝑛𝑔
 + 𝑏𝑛𝑔

 +   𝑥𝑛𝑔
  ) 

∀𝑟 ∈ 𝑅, 𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁, 𝑖 ∈ 𝐼, ℎ ∈ 𝐻, 𝑓 ∈ 𝐹𝑚, 𝑔 ∈ 𝐺𝑛                                                  (7.27) 

𝑒𝑦ℎ
′′ ≥ 𝑢𝑦𝑚𝑓

′′ 𝑢𝑚𝑖ℎ
(𝑓)

(𝑐𝑚𝑓
 + 𝑎𝑚𝑓

 + 𝑤𝑚𝑓
 ) + 𝑣𝑦𝑛𝑔

′′ 𝑣𝑛𝑖ℎ
(𝑔)

(𝑑𝑛𝑔
 + 𝑏𝑛𝑔

 + 𝑥𝑛𝑔
 ) 

∀𝑦 ∈ 𝑌, 𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁, 𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹𝑚, 𝑔 ∈ 𝐺𝑛                                                               (7.28) 

𝑡𝑝(𝑘+1)ℎ
′ ≥ 𝑡𝑝𝑘ℎ

′ + ∑ 𝑥𝑟𝑝ℎ

(𝑘)
𝑡𝑟

′           ∀𝑝 ∈ 𝑃, ℎ ∈ 𝐻, 𝑘 ∈ 𝐾𝑝 ∖ {|𝐾𝑝|}                         (7.29)

𝑟∈𝑅
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𝑡𝑞(𝑙+1)ℎ
′′ ≥ 𝑡𝑞𝑙ℎ

′′ + ∑ 𝑧𝑦𝑞ℎ

(𝑙)
𝑡𝑦

′′           ∀𝑞 ∈ 𝑄, ℎ ∈ 𝐻, 𝐿 ∈ 𝐿𝑞 ∖ {|𝐿𝑞|}                           (7.30)

𝑦∈𝑌

 

𝑠𝑟𝑖
′ ≥ ∑ ∑ ∑ 𝑥𝑟𝑝ℎ

(𝑘)
𝑡𝑝𝑘ℎ

′

𝑘∈𝐾𝑃𝑝∈𝑃ℎ∈𝐻

− 𝑎𝑟𝑖
′            ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼                                                 (7.31) 

𝑠𝑦𝑖
′′ ≥ ∑ ∑ ∑ 𝑧𝑦𝑞ℎ

(𝑙)
𝑡𝑞𝑙ℎ

′′

𝑙∈𝐿𝑞𝑞∈𝑄ℎ∈𝐻

− 𝑎𝑦𝑖
′′            ∀𝑦 ∈ 𝑌, 𝑖 ∈ 𝐼                                                  (7.32) 

Constraint (7.25) and (7.26) initialise the treatment start time of the patients of 

the first treatment in the sequence.  The patients being first in the treatment 

sequence can be treated immediately as no patient is in the queue. This is based 

on the assumption in which the healthcare resources are available at their 

facilities immediately after disasters.  So, the start time of the first treatment in 

the sequence ( 𝑘 = 1 or 𝑙 = 1)  equals to the arrival time of patients at HPs who 

are assigned to the first treatment in the sequence. Constraint (7.27) and (7.28) 

indicate the arrival time of patient at the assigned HP.  It is estimated by the 

arrival time of the ambulance at TMU that carries the patient adding the travel 

time on the trip. Constraint (7.29) and (7.30) indicate the treatment start time of 

each patient according to the treatment time of the previous treatment sequence. 

Constraint (7.31) and (7.32) carry the information about the patient’s response 

time.  These constraints incorporate the patient’ s treatment start time at HP and 

the patient’s arrival time at TMU. 

Value range of decision variables 

𝑎𝑚𝑓
 , 𝑐𝑚𝑓

 ≥ 0          ∀𝑚 ∈ 𝑀, 𝑓 ∈ 𝐹𝑚                                                                               (7.33) 

𝑏𝑛𝑔
 , 𝑑𝑛𝑔

 ≥ 0          ∀𝑛 ∈ 𝑁, 𝑔 ∈ 𝑁𝑔                                                                                  (7.34) 

𝑒𝑟ℎ
′ , 𝑒𝑦ℎ

′′  ≥ 0          ∀𝑟 ∈ 𝑅, 𝑦 ∈ 𝑌, ℎ ∈ 𝐻                                                                          (7.35) 

𝑠𝑟𝑖
′ , 𝑠𝑦𝑖

′′ ≥ 0          ∀𝑟 ∈ 𝑅, 𝑦 ∈ 𝑌, 𝑖 ∈ 𝐼                                                                              (7.36) 

𝑡𝑝𝑘ℎ
′ , 𝑡𝑞𝑙ℎ

′′ ≥ 0          ∀𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄, 𝑘 ∈ 𝐾𝑝, 𝑙 ∈ 𝐿𝑞 , ℎ ∈ 𝐻                                          (7.37) 

𝑢𝑟𝑚𝑓
′ , 𝑢𝑦𝑚𝑓

′′ , 𝑣𝑟𝑛𝑔
′ , 𝑣𝑦𝑛𝑔

′′ , 𝑢𝑚𝑖ℎ
(𝑓)

, 𝑣𝑛𝑖ℎ
(𝑔)

, 𝑥𝑟𝑝ℎ

(𝑘)
, 𝑧𝑦𝑞ℎ

(𝑙)
∈ {0,1}  

∀𝑟 ∈ 𝑅, 𝑦 ∈ 𝑌, 𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁, ℎ ∈ 𝐻, 𝑓 ∈ 𝐹𝑚, 𝑔 ∈ 𝐺𝑛, 𝑘 ∈ 𝐾𝑝, 𝑙 ∈ 𝐿𝑞                    (7.38) 

Constraint ( 7. 33)  -  ( 7. 38)  impose the binary restrictions and non- negative 

bounds.  
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7.4 Summary 

The MIP model is developed to allocate patients to HPs under the collaborative 

care strategy.  The optimisation problem is to determine the sequence of Reds 

and Yellows to be assigned to ambulances and resource groups at HPs with the 

aim to minimise the response time. The model incorporates different ambulance 

types and different patient categories and introduces some constraints for an 

assignment of patient groups to one- trip ambulance, which is missing in the 

literature. A set of decision variables are defined to identify the patient positions 

in the sequentially processing activities and to determine the times related to 

transportation and treatment services.  

However, the presented MIP model can serve as a basis and the next steps would 

be to implement it using a software package for Linear programming e.g. Gurobi. 

The model parameters may be adopted from the literature that are most relevant 

for the defined problem. The potential challenges might be the time consuming 

when solving the defined problem as two ambulance types and two patient 

categories are included in the model. The obtained results in the optimisation 

model can be added in the simulation models and can provide additional insights 

into the resilience improvement during disasters.  
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Chapter 8 Conclusions and implications 

This chapter is dedicated to addressing the responses to the research questions 

and suggesting the future research works in the coordination in the healthcare 

systems in response to disasters. 

8.1 Conclusions 

DES models have been developed to simulate strategies for collaboration in a 

healthcare network following the real- world activities of emergency medical 

response.  The models include treatment provision of patients, internal and 

external resource sharing and allocation, and multiple patient transportation. 

Patients, ambulances, and staff are treated as entities, while 

beds/mattresses/chairs are defined as resources in the models. The computerised 

models are developed in Arena Simulation Enterprise Suite version 14. 0 based 

on the presented flowchart diagrams. We utilise the data from the two real-world 

events in Thailand. We use a case study of boat capsizing in 2018 for the model 

validation and verification. Expert opinion and a statistical approach are used for 

validating the models, while a visual confirmation of the models and an 

inspection of source code of the simulation are used for the model verification. 

The case of the Tsunami in 2004 is used to investigate the impact of the strategies 

on resilience.  The majority of input parameters in both case studies were 

provided by the healthcare authorities in Thailand.  These parameters include 

average time between patient arrivals, the average number of affected patients, 

the average treatment time, the number of healthcare resources at TMUs, the 

number of resources required for treatments, and the ambulance capacity for 

multiple patient transportation and for staff transportation.  Both percentage of 

patients in different categories and the number of allocated external resources 

follow historical data recorded during the event. 

We adapt a generic resilience metric proposed in the literature to suit the 

healthcare context.  The resilience is measured by the ratio of recovery rate 

during a disaster to maximum loss rate suffered by the system.  The ratio 

incorporates the state of the healthcare network before a disaster occurs and 

during a disaster, and the worst state of the healthcare network over the course 
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of the disaster event. A higher ratio implies that the healthcare network recovered 

better from the disrupted state to the normal state.  

We define two resilience metrics based on defining the system state either as the 

average weighted patient waiting time, or the weighted number of patients whose 

waiting time exceeds the clinically appropriate time frame. 

- To estimate the state of the healthcare network before a disaster event, 

we measure the average weighted patient waiting time in the no-disaster 

environment and the weighted number of patients in the no-disaster 

environment whose waiting time exceeds their threshold.  The data on 

waiting time is between 1st of January and 31st of December 2019 which 

cover all seasons and is before the SARS- CoV- 2 pandemic started in 

Thailand.  These data are from all emergency departments in Phuket, 

Thailand.  

- The state of the healthcare network in a disaster event is obtained using 

the simulation.  The waiting time is measured when patients are in the 

queue waiting for available staff and bed/ mattress/ chair at TMUs, and 

internal and external HPs. 

- The worst state of the healthcare network during the event is estimated 

by comparing all values of average weighted patient waiting time and of 

the weighted number of patients with a treatment delay from three 

strategies for collaboration. The highest values denote the worst state of 

the healthcare network in that scenario.  

The simulation experiments conducted in this thesis show how different 

strategies for the collaboration in a healthcare network can impact on resilience 

in a particular disaster in Phuket, Thailand. The 'new collaborative care' strategy 

we proposed improves resilience more than the 'non-collaborative care' and 

'semi-collaborative care' strategies. Based on the performance of the new 

collaborative care strategy, authorities considering how to incorporate 

collaboration in their response strategies should consider the following points: 

(1) The categorisation of HPs. The HPs should be categorised into the groups by 

considering their capacities which are measured by their availability of 

healthcare resources and their capabilities to provide emergency medical 
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services. The HPs with higher capacity should be likely responsible for high 

severe injuries, whereas the less severe-injured patients should be likely 

transported to the lower-capacity HPs. However, this can be only implemented 

in the urban area, e.g. Phuket, where HPs are not far apart.   

(2) Patients can be allocated to HPs more effectively if the resource availability 

in the network, i.e. at different HPs, is known at the point of deciding which HP 

to take the patient to. 

(3) The lower-capacity HPs should allocate their staff to the higher-capacity HPs 

in order to enhance the healthcare capacity for severe injuries in the network. 

However, this finding is based on the specific experimented scenarios in the 

context of Phuket, Thailand.  

(4)  Given the set of scenarios explored in this thesis and within the specific 

context of the health network in Phuket, the simulation experiments suggest that 

greater resilience could be achieved if TMUs assemble Reds and Yellows for 

transportation to HPs (without administering treatments) and providing 

treatments only for Greens. Please note that this finding is based on the model 

assumption in which patient category remains static through the simulation run 

time. Change in triage level is out of the study scope.  

We have faced a number of challenges during the process of gathering the data 

in the development of the simulation models. The unwillingness of healthcare 

provider authorities to provide the data on staff capacity at the external HPs 

(outside the network) may affect the quality of simulation results. However, the 

healthcare authorities stated that during Tsunami in 2004 the capacity of the 

external HPs did not matter to the overall provision of medical services because 

most of the patients were treated within the network, while less than 1% of 

patients were transported to the external network. Additionally, the lack of real-

world data on medical services during disasters such as average waiting time at 

the TMUs, length of stay, transportation time, and treatment time limited, to 

some extent, the validation of simulation models. 

While simulation allows us to investigate the impact of the strategies on the 

resilience, the optimisation allows us to addresses problems of patient allocation 

including patient assignment to ambulances for patient transportation given 
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ambulance sharing of multiple patients, and patient assignment to HPs for 

treatments.  These problems are modelled as a Flexible Job Shop Scheduling 

Problem with unrelated parallel machines. Patients are perceived as a set of jobs, 

while ambulances and resource groups in HPs are perceived as a set of machines. 

In the MIP model, deterministic parameters include patient arrival time and 

treatment time. A set of binary decision variables involve the patient assignment 

to ambulances, the HP selection, and the patient assignment to resource groups. 

The optimisation problem is to determine the sequence of Reds (severe-injured 

patients) and Yellows (moderate-injured pateints) to be assigned to each 

ambulance and resource group at the assigned HPs. The objective is to minimise 

overall response times of all patients.  The model incorporates different 

ambulance types and introduces constraints that incorporate the possibility of 

multiple patients sharing an ambulance in their transportation to a HP, depending 

on their severity category and ambulance capacities. In these constraints, at most 

one Red, or two Yellows can be assigned to a basic life support ambulance, 

whereas an advanced life support ambulance can carry at most one Red and one 

Yellow, or two Yellows in one trip. 

8.2 Future research 

8.2.1 Extensions of the current models 

There are still some research avenues to be explored by the OR community to 

increase the applicability of OR methodologies and methods to exploring how 

healthcare systems can best coordinate to enhance resilience within real-world 

disaster management. 

Integrative care across HP setting 

According to the focused literature review presented in Chapter 2, studies that 

have used models for 'integrative care' have tended to focus on only one hospital, 

and so there is scope to extend the literature to explore integrative care acting 

over a healthcare network. For instance, models for integrative care between 

different hospital branches operating under a common governance structure 

could be developed to investigate the impact of integrative care on the response 

to the surge of patient demands during disasters.  Please note that if the current 

integrative care studies that focus on a single hospital setting are extended to 
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cover multiple hospital branches operating under the common governance 

structure, they would still fall into the category of integrative care by the 

definition given in Table 1.1. Whilst, the extended models may cause a 

considerably heavier computational burden, but would be very beneficial to the 

real-world disaster management. Studies on the integrative care across HP 

setting may offer the knowledge of how a group of hospitals under common 

governance structure can better coordinate to enhance resilience during disasters. 

Extensions of the application of the models presented in thesis to other health 

system 

Although the simulation study demonstrates the advantages of collaborative care 

strategy compared to other strategies under the circumstances considered in the 

Tsunami in the context of Phuket, Thailand, there is still room for future work. 

For example, this study has incorporated EMS centres and hospitals into the 

models.  The extensions of the collaborative care response to other agencies in 

the healthcare system are possible, such as the skilled nursing facilities and 

health promoting hospitals.  Their roles and responsibilities in the collaborative 

care response would need to be specified.  The engagement of these agencies 

may provide further insights into the advantages of collaborative care in response 

to disasters. 

Improvement of the models of the proposed strategy for collaboration  

The models of the proposed strategy for collaboration (Strategy 3) in an 

emergency medical response across a healthcare network works best in the 

context of Phuket where HPs are not far apart. The future study may look at how 

effective proposed strategy is when there is longer travel time, especially in the 

rural setting where HPs are very far apart. 

In addition, there are the events that can occur during disasters which are not 

included in the models. For example, patient category can change over time, and 

there can be pandemics.  Consequently, the further study may incorporate a 

probability of patient survival as a function of time 

According to the interviews, collaborative care in response to biological 

disasters (e.g., pandemics) is not the same as the one in response to geophysical 

disasters ( e. g. ,  Tsunami) .  The main difference lies in the re- transportation of 
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patients and the decisions on medical staff sharing.  Specifically, although the 

medical services remain insufficient, patients are not re- transported to other 

healthcare networks in order to control the spread of disease.  The medical staff 

are the key resources providing medical treatments during pandemics. They are 

required to work at their facilities in order to reduce the potential infection that 

may happen during the transportation and from other areas. The infected medical 

staff can cause an adverse impact on the healthcare resource availability. 

However, the sharing of medical staff can be implemented once the pandemics 

are under control in their areas. This can be found in the SARS-CoV-2 pandemic. 

When China managed to reduce the daily number of newly infected patients, 

they allocated some medical staff to other countries to respond to a surge of 

patient demands (TheGuardian.com, 2020). In this respect, it would be of value 

to adapt the proposed collaborative care strategies in response to pandemics.   

Responses to pandemic may not succeed without pandemic preparedness. Plans 

for resource sharing during pandemic should be developed in advance and 

revised annually. These plans should be adjusted before being implemented in 

response to pandemic. Some characteristics of collaboration presented in this 

thesis can be applied to pandemic preparedness and response. These 

characteristics include sharing of medical equipment, vaccines, drugs, and staff. 

The future research may investigate a collaboration in a healthcare network for 

pandemic preparedness and response, for example, the prepositioning and 

allocations of vaccines and drugs. 

The focus of simulation study was on the activities of collaboration in an 

emergency medical response and therefore excluded the decisions on facility 

location planning, relief supplies distribution, and evacuation routing. It is to be 

expected that a holistic model that also included these aspects would improve 

the network resilience.  

Implementation of the proposed MIP model and analysis of the results 

The focus of this thesis was on simulation models. However, we understood that 

allocating patients using simulation method might not be optimal. So, the final 

stage of this PhD research study was to develop a mathematical model for 

optimal allocation of patients in collaborative care. The next step is to implement 
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this model using available software package for Linear programming such as 

Gurobi and analyse results. This can be another piece of the research.  

8.2.2 Methodologies and models 

Although many OR methods have been applied to address the coordination of 

healthcare resources in disaster management, there are still methodologies and 

models to be investigated. Particularly, we identify mixed models/methods, data-

driven optimisation, and online optimisation to be of great interest.  

Mixed models/methods 

In many complex real- world problems, decisions at the strategic level have an 

impact on the decisions at the operational level, and vice versa.  Modelling 

approaches traditionally cover only some aspects of decision making at a certain 

level.  The benefits of combining different modelling approaches and 

consequently different methods have been discussed in the OR community for 

more than a decade (Morgan et al., 2017). Particularly, the mixing of DES, which 

is often employed in healthcare, and SD has attracted the most interest in the 

healthcare simulation community, because these two modelling approaches offer 

complementary views of the system.  SD methodology provides a macro 

perspective of the system, aiming at capturing dynamic ( causal)  relationships 

between entities in a system.  On the other hand, DES provides a picture of the 

system at a micro level, usually sampling arrivals of entities in the system and 

their required service time from probability distributions.  Changes of the state 

of the system occur at discrete points of time.  There have been studies of 

combining SD and DES in healthcare in different healthcare settings (Brailsford 

et al. , 2010; Ahmad et al. , 2012; Viana et al. , 2014) .  However, in spite of the 

growing number of publications, it seems that this approach to modelling has 

still not reach its momentum. As pointed out by Brailsford et al. (2019) there is 

a need for the development of a new rigorous methodology, which should focus 

on the modelling of links between different models. So far, the research into the 

healthcare coordination in disaster management has resorted mostly to DES but 

not to SD.  We argue that the combination of these two complementary 

approaches would considerably strengthen the healthcare coordination in 

disaster management.  DES would provide insights into detailed interactions of 
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individual entities ( such as patients, ambulance, staff, etc. ) , which affect the 

overall behaviour of the system and determines its performance.  SD would 

interact with DES and would be particularly useful in the investigation of 

relations between separate components in the healthcare network and how they 

affect each other.  It would enable the identification of potential bottlenecks in 

the network.  Ultimately, it would give a tool to the policy makers to evaluate 

different policies and choose appropriate one to implement in disaster 

management. We recommend that future research combining DES and SD in the 

context of disaster management would benefit from using the framework for 

assisting in the design of mixed methods by Morgan et al. (2017). Based on the 

insights from practice, the authors introduced a framework consisting of a series 

of questions to assist in OR modelling in choosing suitable methods and 

suggesting the design of mixed methods.  

Data-driven optimisation 

It is very difficult to define uncertain parameters and variables in OR models 

because their accurate probabilistic descriptions of randomness is often 

unavailable in practice ( Mandelbaum et al. , 2020) .  Recent years have seen an 

increased interest in application of data- driven optimisation to resource 

allocation problems in healthcare, especially to real-time epidemic control (Han 

et al., 2015; Du et al., 2020). In these applications, data-driven optimisation aims 

to use analysis of data collected periodically ( progressively)  in order to refine 

the decisions over time. This is opposite to classical approaches to dealing with 

uncertainty, which assume that all probability distributions are known at the 

beginning of the planning horizon. There has been a study by Sarkar et al. (2021) 

into data- driven optimisation in healthcare coordination.  We strongly believe 

that data- driven optimisation could serve as an excellent tool for handling 

uncertainties that arise in the context of healthcare coordination during disasters 

such as the routing of ambulances for patient transportation with uncertain travel 

times, the calculation of healthcare resources capacity with uncertain time of 

treatment durations, etc. As more and more data about the type and scale of 

disaster gradually become available, decision making process could be improved 

over time leading to better i.e. often called fact-based decisions.  
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Online optimisation 

Online optimisation is a rather overlooked method to address real- world 

uncertainties in healthcare coordination in disaster management.  Online 

algorithms receive their input piece by piece upon making certain actions and 

must react with respect to each piece of input.  The goal of online algorithms is 

to guarantee a performance which is as close as possible to the optimal 

performance achievable if the entire input is known in advance.  Different from 

stochastic optimisation, in online optimisation, no prior probabilistic knowledge 

is required. In a real-world disaster setting, some information might be revealed 

over time and upon taking particular actions.  Online optimisation has been 

successfully used in some post- disaster DOM problems.  Shiri et al.  ( 2020)  is 

one of these studies in which routing and allocation of search-and-rescue teams 

to areas with trapped victims was addressed.  In that study, the number of 

casualties in a post- disaster emergency assembly location and the status of the 

roads that were damaged after a disaster could only be revealed by close 

observation of the search-and-rescue teams on the scene. In another recent study, 

Akbari and Shiri (2021) , addressed the post-disaster relief distribution problem 

in which some of the road segments were blocked.  The blockage of these roads 

was not known in advance and had an online nature.  It could only be revealed 

when the relief distribution team observed them.  Online optimisation would 

provide a robust tool for handling uncertainties and providing algorithms that 

can address real aspects of coordination in healthcare systems of disaster 

management.  An example of online parameters in our context is the triage 

categories for each patient.  While in most of the studies, the triage category of 

each patient is determined by either a stochastic or deterministic approach, it is 

plausible to identify it after a nurse or doctor observes the conditions of a patient 

for the first time. Another example of online information is the required time for 

emergency treatment of a patient. This time can only be assessed after an initial 

monitoring of the patient by the medical staff on the scene.  These online 

parameters have a direct impact on the obtained input information and hence can 

have a direct influence on the performance of a solution approach.  
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8.2.3 Resilience measures 

In this section, we propose the future research directions related to resilience 

measures including standardisation of measures and additional cost- based 

measures.  

Standardisation of measures 

Different resilience measures have been proposed in the OR literature.  It has to 

be further investigated which of these can best reflect resilience in the healthcare 

system during disasters under different circumstances, and whether it is feasible 

and desirable to standardise resilience measures. One benefit of doing so would 

be to enable OR researchers to compare and evaluate their models and 

algorithms. 

Additional cost-based measures 

In disaster management the aim is usually to minimise the response time, rather 

than to minimise costs ( Rolland et al. , 2010) .  Considering only the cost 

minimisation may be a threat to resilience because the resilient healthcare system 

requires the redundant capacity of healthcare resources to respond to a surge of 

demand during disasters (Fairbanks et al., 2014). The redundant capacity can be 

perceived as unnecessary healthcare resources when the total cost has to be 

minimised.  However, we argue that costs, e.g. deprivation cost, could be 

measured in terms of a probability of deaths and social disturbances due to the 

time delay which is caused by the shortage of healthcare resources.  Future 

research may investigate how to quantify deprivation costs in resilience metrics. 

Also, instead of using only cost- based measures a trade- off between cost and 

other healthcare performances must be made, such as the number of treated 

patients.  Multi- objective decision making methods could be a useful tool to 

provide insights into such a trade- off that reflect the effectiveness of the 

healthcare network.
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Appendices 

Appendix 1 Interview questions and quantitative data 

Topic Interview questions Interviewee(s) Quantitative data Data sources 

Flow of  

patients 

Patient flow: To PAPs/TMUs 

Past activities1 Current activities2 

- What were the criteria used to allocate 

patients to PAPs?  

- How did you allocate patients to PAPs? 

(Vehicles?) 

- Did you reallocate the patients among 

PAPs? If so, why? And where did you 

re-transport them to?  

- Were PAPs affected by disasters? 

- What are the criteria used to allocate 

patients to TMUs?  

- How do you allocate patients to TMUs? 

(Vehicles?) 

- Do you reallocate the patients among 

TMUs? If so, what is the plan?  

- Do you increase a number of TMUs 

during disasters? If so, how? 
 

 

- Director of 

Phuket 

Provincial 

Public Health 

Office 

 

 

- Resource requirement for TMU 

setting 

- Number of patients (each 

category) and time between 

patient arrivals during Tsunami 

and boat capsizing  

- Waiting time and treatment time 

at TMUs during Tsunami and 

boat capsizing 

- Number of resources allocated to 

TMUs during Tsunami and boat 

capsizing 

 

- Phuket Provincial 

Public Health Office 

 Patient flow: To HPs 

Past activities Current activities 

- What were patient categories? 

- What were the criteria used to allocate 

patients from the PAPs to the HPs?  

- What are the criteria used to allocate 

patients from TMUs to the HPs?  

- Do you reallocate the patients to other 

HPs? If so, how? 

 

- Director of 

Phuket 

Provincial 

Public Health 

Office 

 

 

- Number of emergency 

beds/chairs in internal HPs 

- Capacity of external HPs (beds 

and staff)  

- Number of patients who were 

treated at internal/external HPs 

 

- Internal HPs 

- Phuket Provincial 

Public Health Office 

 

 

                                                 
1 It is the activities of collaboration in an emergency medical response that was implemented during Tsunami in 2004. 
2 It is the current activities of collaboration in an emergency medical response that were in place in boat capsizing in 2018 and will be implemented in future mass casualty 

incidents/disasters. 
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Topic Interview questions Interviewee(s) Quantitative data Data sources 

- Did you reallocate the patients after they 

being transported to one HP? If so, 

why? And where did you re-transport 

them to?  

- Did you move the existing patients to 

nearby HPs? If so, how? Criteria used to 

select the HPs? 

- Were patients transported to external 

HPs? 

- Do you move the existing patients to 

other HPs during disasters? If so, how? 

 

 

 

 

 

during Tsunami and boat 

capsizing 

 Integrated ambulance system 

Past activities Current activities 

- What organisations could provide the 

ambulances for patient transportation?  

- Could you request the additional 

ambulances? 

- Were the ambulances from HPs 

required to transport patients to the HPs 

where the ambulances belong to? 

- Did the ambulances transport patients to 

one HP each trip? Or multiple HPs for 

one trip? 

- Were patients transported to HPs by 

other modes of transport? (i.e. private 

care, taxi, etc.) 

- What organisations can provide the 

ambulances for patient transportation?  

- Can you request the additional 

ambulances? 

- Are the ambulances from HPs required 

to transport patients to the HPs where 

the ambulances belong to? 

- Do you make multiple visits for a one-

trip ambulance? 

 

 

- Director of 

Phuket 

Provincial 

Public Health 

Office 
- Head of 

evacuation 

services  

 

 

 

- Number of ambulances 

- Percentage of other modes of 

transport during Tsunami and 

boat capsizing   

- Actual transportation time 

during Tsunami and boat 

capsizing   

 

- Travel time between 

PAPs/TMUs and HPs as well as 

among HPs 

 

 

 

- Internal HPs 

- CMOs  

- Phuket Provincial 

Public Health Office 

 

 

 

 

- Google map 

 

 

 Combination of patient categories in one ambulance 

Past activities Current activities 

- Did you combine the different patient 

categories in one ambulance? If so, 

How? 

- Do you combine the different patient 

categories in one ambulance? If so, 

How? 
 

 

- Director of 

Phuket 

Provincial 

Public Health 

 

- Number of (multiple category) 

patients for a one-trip ambulance 

 

- Phuket Provincial 

Public Health Office 

- CMOs 
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Topic Interview questions Interviewee(s) Quantitative data Data sources 
- Head of 

evacuation 

services  

Flow of  

medical staff 

Flow of internal medical staff 

Past activities Current activities 

- How many facilities were the internal 

medical staff assigned to? 

- What were the criteria used to allocate 

the internal medical staff to each 

facility?  

- Did you reallocate the medical staff 

after they being transported to one 

facility? If so, why? And where did you 

re-allocate them to?  

- How many facilities are the internal 

medical staff assigned? 

- What are the criteria used to allocate the 

internal medical staff to each facility? 

- Do you reallocate the medical staff to 

other facilities? If so, how? 

- In general, how do you transport the 

internal medical staff to each facility? 

(by ambulances?) 
 

 

- Head of EMS 

centres 

- Head of 

nursing 

- Director of 

Phuket 

Provincial 

Public Health 

Office 

  

 

 

 

 

- Number of medical staff in 

internal HPs 

- Minimum number of internal 

medical staff from hospitals are 

required to be allocated to 

EMS/TMUs during disasters 

- Minimum number of internal 

medical staff from EMS are 

required to be allocated to TMUs 

- Number of internal staff 

allocated to each internal HPs 

during Tsunami and boat 

capsizing   

 

- Internal HPs 

- Phuket Provincial 

Public Health Office 

 

 

 

 Flow of external medical staff 

Past activities Current activities 

- When did the external medical staff 

arrive the affected network? 

- What were the criteria used to allocate 

the external medical staff to each 

facility?  

- What are the criteria used to allocate the 

external medical staff to each facility?  

- In general, please prioritise the facility 

locations for the allocation of external 

medical staff? (to EMS centres, TMUs, 

hospitals)  
 

 

- Director of 

Phuket 

Provincial 

Public Health 

Office 

 

 

- Number of external medical staff 

from other healthcare networks 

during Tsunami and boat 

capsizing 

- Maximum number of external 

medical staff can be allocated to 

each facility  

- Number of external medical staff 

allocated to each internal HPs 

during Tsunami and boat 

capsizing 

 

- Phuket Provincial 

Public Health Office 
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Topic Interview questions Interviewee(s) Quantitative data Data sources 

Flow of other 

healthcare 

resources 

Flow of field beds for PAPs/TMUs setting 

Past activities Current activities 

- Did you prepare the field beds for PAP 

setting before an occurrence of 

disasters? If so, what was the plan? 

- Where did the field beds come from? 

- What were the criteria used to allocate 

the field beds to PAPs? 

- Were you supplied the additional beds 

by other healthcare network during 

disasters? If so, when did they arrive the 

affected network?  

- Did you reallocate the field beds among 

PAPs during disasters? If so, why? And 

where did you re-allocate them to? 

- Do you prepare the field beds for the 

TMU setting before an occurrence of 

disasters? If so, what is the plan? 

- Where do the field beds come from? 

- What are the criteria used to allocate the 

field beds to TMUs? 

- Do you have any contingency plans to 

increase the field beds during disasters? 

If so, what is the plan? 

- Do you reallocate the field beds among 

TMUs during disasters? If so, how? 

 

 

- Director of 

Phuket 

Provincial 

Public Health 

Office 

 

 

- Number of field beds/mattresses 

prepared for mass casualty 

incidents/disasters 

- Number of additional field 

beds/mattresses 

 

 

- Phuket Provincial 

Public Health Office 

 

 

 Sharing of other healthcare resources 

Past activities Current activities 

- Did EMS centres share any things 

among them? Or completely worked 

independently? 

- Did internal HPs share other resources 

during disasters? If so, what were they? 

How to share? 

- Did other healthcare networks share 

other resources? If so, what were they?  

- What were the criteria used to allocate 

the other resources to each facility? 

- Do EMS centres share any things 

among them during disasters? 

- Are other resources shared among 

internal HPs? If so, how? 

- Do you have any contingency plans to 

increase other resources during 

disasters? 

 

 

- Head of EMS 

centres 

- Director of 

Phuket 

Provincial 

Public Health 

Office 

 

 

 

 

 

- Number of ... (regarding the 

data obtained in the interview) 

shared in the network during 

Tsunami and boat capsizing     

 

- EMS centres 

- Phuket Provincial 

Public Health Office 
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Topic Interview questions Interviewee(s) Quantitative data Data sources 

 

Deviation in 

clinical 

practices 

- What are duties and practices of PAPs/TMUs/HPs (EMS centres and hospitals)/CMOs? 

- Can medical staff from different HPs work interchangeably? 

- Are the ambulances among HPs / between HPs and CMOs different in terms of 

evacuation services/quality? 

- Head of EMS 

centres 

- Head of 

evacuation 

services 

- Director of 

Phuket 

Provincial 

Public Health 

Office 

- None - None 

Staff assignment 

to ambulance 

trip 

- How many medical staff are presenting on the ambulance? 

- Are the medical staff presenting on the ambulance necessary to be the staff in which the 

ambulance belong to? 

- Head of EMS 

centres 

- Head of 

emergency 

departments 

 

- Number of required staff for a 

one-trip ambulance 

- Ambulance capacity for staff 

transportation  

- Number of FRs from CMOs 

 

- Internal HPs 

- CMOs 

Treatments - How many resources are required for a treatment of different patient categories?  

- How long does the treatment take for different patient categories? 

- Are the field beds or emergency beds reserved for severe-injured patients only? 

- Head of EMS 

centres 

- Head of 

emergency 

departments 

- Head of 

nursing 

- Director of 

Phuket 

Provincial 

Public Health 

Office 

- Number of resources required 

for a treatment of different 

categories 

- Treatment time required for 

different patient categories 

- Waiting time, treatment time at 

internal and external HPs during 

Tsunami and boat capsizing     

- Length of stay during Tsunami 

and boat capsizing     

- Waiting time at HPs between 1st  

of January and 31st of December 

2019 

- Internal HPs 
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Appendix 2 Requesting letter for data collection 

 

 

 

November 11, 2019  

Vachira Phuket Hospital 

353 Yaowarat Rd, Talat Yai 

Mueang Phuket District 

Phuket 83000, Thailand 

Dear Director of Vachira Phuket Hospital 

I am writing to request the permission to conduct a research study in your hospital.  I am a PhD 

student in Activities Management and Information System at Nottingham University Business 

School.  I have granted the scholarship from Thai government.  My research looks at the 

healthcare resilience improvement using collaborative care during disasters in Thailand.  The 

study intends to examine the improvement of emergency medical response among hospitals 

when disasters attack. This doctoral research is being supervised by Prof. Sanja Petrovic and Dr. 

Vahid Akbarighadikolaei, Nottingham University Business School. 

This request includes an access to following data by interviewing head of emergency department, 

head of outward patient department, head of inward patient department, and/ or others who 

experienced an emergency medical response during Tsunami 2004 and/or boat capsizing on 5th 

of July 2018.  The areas of interview questions are the flow of patients and resources; staff 

assignment to an ambulance trip; integrated ambulance system; medical services for treatment 

during disasters; and differences in clinical practices.  The interview should take no longer than 

one hours for an individual and to be done on your convenience.  Furthermore, this request also 

includes the use of numerical data during Tsunami in 2004, boat capsizing in 2018, and during 

2019; as well as the capacity of healthcare resources in your hospital. The data collection will be 

in January 2020 where the appointment with interviewees and coordinators are made in advance.  

This research has been reviewed and given favourable opinion by the Nottingham University 

Business School Research Ethics Committee.  The data will be collected and treated 

confidentially and to be used on educational purpose only. Only my supervisors and I will have 

access to the raw data. All information collected while carrying out the study will be stored in a 

password protected folder on a University of Nottingham server.  All data will be anonymised 

and no individual will be identifiable from any published findings. 

If you have any questions about this research, please do not hesitate to contact me or my main 

supervisor via the contact details at the end of this letter.  Your approval to conduct this study 

will be greatly appreciated. 

Yours Sincerely 

 

Danuphon Tippong  

PhD Student at Nottingham University Business School  

Email: danuphon.tippong@nottingham.ac.uk 

Tel: +44 (0) 7727 155463 

Line number: 094 595 1561, Line ID: keng_danuphon 

Professor Sanja Petrovic 

Main supervisor 

Divisional Research Director (Operations Management and Information Systems) 

Nottingham University Business School 

Email: sanja.petrovic@nottingham.ac.uk 

Tel: +44 (0) 115 8467764 

mailto:sanja.petrovic@nottingham.ac.uk
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Appendix 3 Letter of permission for data collection and use of data 

 

Vachira Phuket Hospital 

353 Yaowarat Rd 

Talat Yai, Mueang Phuket District 

Phuket 83000, Thailand 

Date: ……………………………… 

Nottingham University Business School 

Jubilee Campus, University of Nottingham 

Nottingham. England, United Kingdom NG81BB 

Dear Nottingham University Business School Research Ethics Committee 

I am writing to permit Mr.Danuphon Tippong to collect data using interviews and to analyse the 

data collected during his research project.  I understand that his research has been reviewed and 

given favourable opinion by the Nottingham University Business School Research Ethics 

Committee.  Also, I am informed that the data collected will be treated confidentially and be 

anonymised, as well as to be used on educational purpose only.  

Please contact (name) …………....……… (as a coordinator) Phone number ……….………… 

who can contact the interviewees and provide some key information during the data collection 

in the organisation.  

 

Yours Sincerely, 

 
 

(……………………………………………….) 

Position:………………………………….. 

Email:…………………………………….. 

Tel:.............................................
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Appendix 4 Information for research participants 

 

Your participation in this research should be voluntary, and you may change your mind about 

being involved in the research at any time, and without giving a reason. 

This information sheet is designed to give you full details of the research project, its goals, the 

research team, the research funder, and what you will be asked to do as part of the research.  If 

you have any questions that are not answered by this information sheet, please ask the researcher 

or the supervisors via the contact details at the end of this information sheet. 

This research has been reviewed and given favourable opinion by the Nottingham University 

Business School Research Ethics Committee. 

My name is Danuphon Tippong, a PhD student in Operations Management and Information 

System at Nottingham University Business School.  My research project is titled as Healthcare 

resilience improvement using collaborative care during disasters. The doctoral research is being 

supervised by Prof.  Sanja Petrovic and Dr.  Vahid Akbarighadikolaei, Nottingham University 

Business School.  I would like to develop simulation models for strategy for collaboration in 

healthcare to improve healthcare resilience during disasters.  More specifically, I would like to 

perform quantitative analysis to improve healthcare resilience by using collaborative care 

strategies. 

I am inviting heads of EMS centres, heads of emergency department, heads of inward patient 

department, heads of outward patient department, heads of nursing, and heads of evacuation 

services from all healthcare facilities in Phuket, Thailand. I am also inviting a former and current 

director of Phuket Provincial Public Health.  

You will be asked about duties and practices of different healthcare facilities; flow of patients 

and resources; sharing of healthcare resources; integrated ambulance system; staff assignment to 

ambulance trip; deviation in clinical practices; and medical services for treatment during 

Tsunami in 2004, and/ or boat capsizing in 2018.  Furthermore, you will be asked about the 

relevant numerical data during Tsunami in 2004, boat capsizing in 2018, and during 2019; as 

well as the capacity of healthcare resources in your hospital. 

The data will be collected and treated confidentially and the name of your institution will not be 

asked for. At the end of the interview you will be asked whether you are willing for us to contact 

you to either discuss your responses or to research further the experiences relate to the strategy 

of collaborative care across hospitals during a disruption.  

I am committed to carrying out my research according to The University of Nottingham Code of 

Research Conduct and Research Ethics (2016) and the ethical guidelines provided by the British 

Educational Research Association ( online at https: / / www. bera. ac. uk/ researchers-

resources/publications/ethical-guidelines-for-educational-research-2018). I will also conform to 

General Data Protection Regulations. 

Only my supervisors and I will have access to the raw data.  All information collected while 

carrying out the study will be stored in a password protected folder on a University of 

Nottingham server. All data will be anonymised and no individual will be identifiable from any 

published findings. 

Primarily, the data will inform my PhD thesis.  Additionally, it is intended that my research 

findings will be disseminated through academic publications such as peer reviewed journal 

articles, book chapters, conference papers etc. 

Contact details 

Researcher:  Danuphon Tippong  

Tel: +44 (0) 7427155463  

E-mail: danuphon.tippong@nottingham.ac.uk 

Postal Address: BSS, Jubilee Campus, University of Nottingham, Nottingham. England, UK 

Supervisor 1: Prof. Sanja Petrovic   

Tel: +44 (0) 115 8467764  

E-mail: sanja.Petrovic@nottingham.ac.uk 
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Postal Address: Si Yuan Building, Jubilee Campus, University of Nottingham, Nottingham. 

England, UK NG8 1BB 

Supervisor 2: Dr. Vahid Akbarighadikolaei  

Tel: +44 (0) 115 9514021  

E-mail: vahid.Akbarighadikolaei@nottingham.ac.uk 

Postal Address: Si Yuan Building, Jubilee Campus, University of Nottingham, Nottingham. 

England, UK NG8 1BB 

Complaint procedure 

If you wish to complain about the way in which the research is being conducted or have any 

concerns about the research, then in the first instance please contact the supervisors or contact 

the School’s Research Ethics Officer:  

Davide Pero 

Nottingham University Business School 

Jubilee Campus 

Nottingham, UK NG8 1BB 

Phone: +44 (0) 115 84 67763   

Email:  davide.pero@nottingham.ac.uk 
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Appendix 5 Consent form 

 

Interviewer’s agreement 

I understand that it is my responsibility as the interviewing researcher to maintain the 

confidentiality of the participant, to respect the requests of the participant and to gather and use 

the data obtained in an ethical manner.  I understand that it is my responsibility to use the data 

collected from the interview for the educational purpose only, and to store the data securely. 

Only my supervisors and I can access to the data.  

Researcher: Danuphon Tippong 

Date……………………………………….. 

Participant’s statement of consent 

I understand the purpose of this interview.  I understand that any information that the researcher 

gathers from the interview for use in thesis or published findings will not contain names or 

identifying features. I understand that all information will be kept confidential. I also have right 

to review the final submission. 

I understand my participation in this interview in voluntary. I may choose not to answer some or 

all of the questions with no consequences.  I understand that I have the option to revoke my 

consent for any or all of my information to be used in this research.  

I am willing for researcher to contact me to either discuss my responses or to research further 

the experiences relate to the strategy of collaborative care across hospitals during disasters. 

I grant permission for audio recording. 

 Yes   No 

Participant……………………….……………… 

Date……………………………………….………..
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Appendix 6 Ethics approval confirmation letter 
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