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Abstract

Peatlands are vital ecosystems that store up to a third of terrestrial carbon despite
covering 3 % of the land surface; it is therefore important to improve our under-
standing of these landscapes to enable continuous carbon sequestration as the cli-
mate changes. AVIRIS-NG hyperspectral data has the potential to add detail to
current understanding from analysis of Peatland Surface Motion (PSM) from In-
SAR data. PSM is directly linked to vegetation assemblage, erosion rates and land
use. Therefore four sites were chosen; one near natural, two undergoing restoration
(starting a decade apart) and one that has been eroded. Machine learning was used
to predict Plant Functional Types (PFTs) at each site using fieldwork, satellite im-
agery and expert knowledge. Exploratory analysis demonstrated that the random
forest classifier was better at predicting PFTs in the Flow Country than SVM analysis
(using either linear or RBF kernels). The fieldwork was mainly focused on the first
restoration site as this site overlapped most with the others and ten PFTs were de-
termined for this location, with an additional three added from fieldwork at the ero-
sion site. Train-test data was created for these 13 PFTs and random forest classifiers
applied to the data, the first restoration site underwent additional analysis using
the fieldwork-focused specific train-test data to classify the data. The fieldwork-
focused classification was the most successful with a mean accuracy score of 0.789,
with the other mean accuracies ranging from 0.722-0.728, demonstrating the bene-
fits of conducting fieldwork. Within this analysis, the whole dataset was utilised as
well as smaller spectral ranges to determine whether all hyperspectral bands (post
pre-processing) need to be used; it was found that the outcomes using the whole
dataset were more accurate than the smaller spectral ranges. Additionally, the data
was transformed with the original wavelengths, first and second derivatives and
continuum removal used to classify the data, with the original and derivative out-
comes proving more accurate than continuum removal. Supervised machine learn-
ing was much more successful at locating PFTs than the unsupervised k-means clus-
ter analysis; it was concluded that k-means is unsuitable to predict PFT locations.
The Peatland Surface Motion (PSM) data was analysed in conjunction with the PFT
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predictions for the first restoration site using a range of machine learning classifi-
cation techniques (logistic regression, decision tree, random forest and SVM). Out-
comes suggest that there is potential to use the hyperspectral analysis to increase
understanding based on PSM outputs, however, further refinement of methods is
required to achieve this.
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Introduction

1.1 Blanket Bogs

A blanket bog is a distinctive biome where peat covers the entire landscape, only
broken where there are steep slopes (Gallego-Sala and Prentice 2013). They are om-
brotrophic peatlands that develop in landscapes with a high number of rainfall days,
low temperature range (maximum 15°C (Gallego-Sala and Prentice 2013)), low wa-
ter pH and shallow slope gradients (Lindsay et al. 1988). These factors cause the
peat to be anoxic and have slow rates of decomposition, enabling the build up of
organic matter, resulting in low nutrient availability and plant productivity exceed-
ing decomposition rates (Gallego-Sala and Prentice 2013, Hambley 2016, Levy and
Gray 2015). The peatland is composed of two layers; the acrotelm (active layer) and
catotelm (inert layer) (Lindsay et al. 1988, Marsden and Ebmeier 2012). The catotelm
is a saturated layer comprised of compressed peat which is protected from external
influences by the acrotelm, which is subject to changes in water table fluctuations,
atmospheric exchange of gases and moisture, and is affected by vegetation, which
helps to bind this layer together (Lindsay et al. 1988). These landscapes are typically
composed of Sphagnum mosses and vascular plants (such as Calluna Vulgaris) with
a range of microtopes including pools, hollows and hummocks (Gallego-Sala and
Prentice 2013).

These landscapes provide a range of ecosystem services including climate regula-
tion (they sequester and store carbon), water regulation and habitat provision for
a range of wildlife, especially upland breeding birds (Bonn et al. 2014). Carbon se-
questration only occurs in healthy peatlands (with low decomposition rates), with
up to 2.8 tCO2/ha/yr added to the peat (Lunt et al. 2019). As a result peatlands
store about 30 % of terrestrial carbon, despite only covering 3 % of the land surface
and are now recognised as vital ecosystems (Lunt et al. 2019, Marsden and Ebmeier
2012, Ratcliffe et al. 2018). Therefore, it is essential to monitor and restore these
landscapes, as they are increasingly vulnerable to erosion and oxidation, because of
human activity and climatic changes which enhance microbial activity, increasing
the release of carbon (Gallego-Sala and Prentice 2013, Hambley 2016, Humpenöder
et al. 2020, Marsden and Ebmeier 2012). As a result, the Kyoto Protocol recognises
the importance of peatlands under Article 3.4, with wetland drainage and rewetting
a recent addition (Bonn et al. 2014). Vegetation assemblage is a key area to study as
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Sphagnum mosses are much more resistant to decay than grasses and sedges, mean-
ing Sphagnum-based peat sequesters more carbon (Marsden and Ebmeier 2012). It
is, therefore, important to research peatlands, especially factors, such as peatland
management and vegetation assemblage, which affect the direction of carbon flow
(Hambley 2016, Marsden and Ebmeier 2012).

About 20 % of Scotland is blanket bog, which equates to about 15 % of the global
ecosystem (Marsden and Ebmeier 2012). The peatland of focus is the Flow Country,
located in the northeast of the country (Figure 1.1); it is largest contiguous blan-
ket bog in the UK covering over 4,000 km2 and a proposed World Heritage Site
(Alshammari et al. 2020, Alshammari et al. 2018, Lindsay et al. 1988, Marshall et
al. 2022). This peatland started to form at the start of the Holocene (Hambley 2016,
Levy and Gray 2015), ultimately extending to contain over four million tonnes of
carbon. There is confidence that the Flow Country remains a carbon sink (Hamb-
ley et al. 2018, Levy and Gray 2015). However, due to human activity this peatland
is increasingly at risk of becoming a carbon source, which would greatly increase
Scotland’s greenhouse gas emissions, potentially becoming responsible for up to 15
% of national emissions (Ferretto et al. 2021, Ferretto et al. 2019, Ratcliffe et al. 2018).
This is further exacerbated by historical views, when peatlands were perceived as a
wasted resource, which needed to be converted to agricultural land or woodland to
increase their usefulness. As a result, some parts of the Flow Country were drained
and forested prior to 1990, but more recently, there have been restoration projects to
block drains and remove trees to improve their resilience to change and increase
their carbon absorption potential (Alshammari et al. 2018, Hambley et al. 2018,
Marsden and Ebmeier 2012). Restoration projects typically take between five and
fifty years for degraded peatlands to return to bogs with a net carbon absorption
(Hambley et al. 2018). Restoration began in 1998 and, with initial restoration sites
showing rapid change toward bog-like conditions in the first six years, however,
the rate stalled, especially in driers areas, in the following eight years (Hancock et
al. 2018). Whereas, more recent restoration has shown faster rates of change (Mar-
shall et al. 2021). The current restoration rate is 21,000 ha/yr and is driven by the
Scottish government being committed to reduce carbon emissions by 80 % by 2050
(compared to the 1990-1995 baseline); something that will not be achieved if the
peatland becomes a net carbon emitter (Ferretto et al. 2021).
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FIGURE 1.1: The Flow Country is located in northeast Scotland
(Cameron 2019)

1.2 Earth Observation

1.2.1 Hyperspectral Data

Hyperspectral data is a type of remotely sensed imagery which measures the re-
flected spectrum at wavelengths from 350-2,500 nm and a minimum of 21 channels
(Kozma-Bognár and Berke 2010, He et al. 2011). The imagery can be collected us-
ing a range of technology, typically airborne (using planes or drones) or satellite,
however, more recently there have also been developments regarding the collection
of hyperspectral data using smart phones (Stuart et al. 2021). The hyperspectral im-
agery used in this study is AVIRIS-NG airborne data collected in July 2021. This data
is three dimensional, with two spatial dimensions and one spectral (Hati et al. 2021,
Jia et al. 2020, Luo et al. 2016), meaning it can provide details which are not visible
to human eyes (in the infrared part of the electromagnetic spectrum). This enables
better understanding of natural processes and the identification of specific aspects
of the environment including land use and plant type (Figure 1.2) (GISG 2021, He et
al. 2011, Zhong et al. 2018). This understanding is also due to the nature of the data
collected; the wavelengths are narrow (0.01 µm) and continuous (Kale et al. 2017,
Kozma-Bognár and Berke 2010), enabling spectral signatures to be identified and
intricate information about the land surface (Kozma-Bognár and Berke 2010). This
detail means it has the potential to be used to build on analysis from other data
sources.
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FIGURE 1.2: Spectral signatures of mosses (He et al. 2011)

1.2.2 InSAR Data and Peat Surface Motion

Interferometric Synthetic Aperture Radar (InSAR) is a radar technique that has been
used to study the surface motion of peatlands (Alshammari et al. 2020, Alshammari
et al. 2018, Bradley et al. 2021, Marshall et al. 2022, Zhou et al. 2019). As this tech-
nique uses radar, it is not limited by scale or cloud cover (Alshammari et al. 2018,
Bradley et al. 2021) and as Sentinel-1 maps the globe every six days (previously 12
until the addition of a second satellite in 2016 ESA) there is the potential to perform
detailed time-series analysis of Peat Surface Motion (PSM) using this data. This data
has been used in preference to ground data as InSAR be used over much larger ar-
eas, is less expensive, and unaffected by weather conditions and accessibility issues
(Alshammari et al. 2018 Bradley et al. 2021 Marshall et al. 2022), although this can
come at the expense of accuracy (Marshall et al. 2022).

The research already undertaken focuses on PSM as this has been shown to be a
good proxy for peatland condition linked to vegetation assemblage, water balance
and erosion rates over the short-term, which helps to warn of long-term ecological
changes and carbon losses (Alshammari et al. 2020, Kennedy and Price 2005, Mar-
shall et al. 2022). Although PSM has been shown to be a representative indicator
of peatland condition, it has been recognised that being used in combination with
other Earth Observation techniques, a more holistic view of peatland condition can
be developed (Marshall et al. 2021). In addition to this, InSAR data can be vali-
dated using ground data, however, uncertainty remains, especially in areas with
pronounced variations in microtopography and stiffer peat (Marshall et al. 2022)
(Figure 1.3) and, therefore, there is a need to compare outcomes to other data sources
such as hyperspectral imagery.
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FIGURE 1.3: Comparison of InSAR and ground PSM data for low lying
peat at the Munsary Site. Drought caused issues, meaning that there
was increased variation from summer 2018, however, prior to that the
accuracy of the InSAR was affected by microtopography (Marshall et

al. 2022)

1.3 Motivations and Research Purpose

This research has the potential to improve understanding of peatland health and
therefore policies which will aid carbon sequestration and storage. This has wider
societal benefits as degraded peatlands contribute disproportionately to greenhouse
gas emissions (Bonn et al. 2014) and healthy peats have the highest storage capacity
per unit area of all terrestrial ecosystems (Lunt et al. 2019, Marsden and Ebmeier
2012, Ratcliffe et al. 2018).

The Centre for Doctoral Training themes that this project links to are ’spatial anal-
ysis and modelling’ and ’visualisation and decision support’. The first through
analysing and modelling a peatland environment and the second by comparing
outcomes to InSAR data relating to peatland health; this research could be used to
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support decision making in the Flow Country regarding peatland restoration. This
study falls under the EPSRC programme of ’Living with Environmental Change’,
developing more environmentally harmonious strategies to restore peatland in the
Flow Country and links to EPSRC’s priorities regarding curiosity-driven discovery
and decarbonising society. This research also relates to the 13th (Climate Action)
and 15th (Life on Land) Sustainable Development Goals and the Geospatial Com-
mission’s aim to improve social and environmental outcomes.

The purpose of this research is to determine whether hyperspectral data can be used
to improve understanding of PSM data in the Flow Country.
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Literature Review

The academic fields of Geography/Space Science (remote sensing journals), Sci-
ence (conservation and vegetation science journals) and Computer Science (machine
learning) provide the main foundation of this research, with methods coming from
machine learning mathematical models and GIS-based analysis.

2.1 Remote Sensing Background

Remote sensing has increased over the past few decades, expanding the amount of
information available for analysis and used to improve understanding of a range of
interrelated social, economic and environmental systems (Chi et al. 2016). As a re-
sult of increased Earth observation, the amount of new data has grown to the point
where in 2016, 90 % of the data in the world had been generated within the previous
two years with the data being more diverse and efficiently gathered than previously
(Chi et al. 2016). The data collected has a range of different spatial, temporal and
spectral resolutions, giving different insights into the world such as refugee settle-
ment mapping (Quinn et al. 2018), the impact of urbanisation on ecological environ-
ments Shao et al. 2020 and Arctic sea ice extent (Kumar et al. 2020).

Remotely sensed data is increasingly being used in nature conservation manage-
ment of a range of biomes, including peatlands (Kopeć et al. 2020). This includes
the mapping of Plant Functional Types (PFTs) which were historically based on the
properties of different plants, but increasingly focused on the plants’ response to en-
vironmental conditions, with LiDAR and spectrometers being key to new observa-
tions (Ustin and Gamon 2010). Many datasets are openly available for for ecosystem
monitoring, with a range of resolutions. These can be used to classify landscapes ac-
cording to vegetation type, soil moisture, fire detection and a variety of vegetation
indices (Kerr and Ostrovsky 2003).

Specific landscapes such as woodland and farmland have been the focus of vari-
ous hyperspectral studies. For instance, Spiraea tomentosa (steeplebush) threatens
peatland plant communities and coniferous woodlands in Central Europe (Kopeć et
al. 2020). Kopeć et al. (2020) focused their study on a Polish forest which is protected
as a Natura 2000 site. They were able to demonstrate that the use of hyperspectral
data alone could be used to accurately map the invasive species in both summer
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and autumn when more than 70 % of a polygon contained steeplebush, with better
results in autumn when the invasive species could be more easily identified based
on reflectance when 30-70 % of the polygon contained the plant. Additionally, Hati
et al. (2021) demonstrated that AVIRIS-NG data is more accurate than other data
sources (Landsat 8 OLI, Sentinel-2 and Hyperion) when identifying species due to
the low sampling interval and high spatial resolution. Whereas a hyperspectral
study in northwest Indiana, USA, used hyperspectral data to classify extended mor-
phological profiles for 16 different land uses, predominantly farm-based (Anand et
al. 2021). They achieved this using machine learning and tested a range of meth-
ods including Support Vector Machines (SVM), random forest and decision trees.
They also compared outcomes using confusion matrices to assess the accuracy, find-
ing that random forests produced the most accurate outcomes, with 80 % accuracy,
with other accuracies ranging from 70-78 %. With high levels of accuracy, there is
the potential to apply these machine learning methods to peatlands such as the Flow
Country.

2.2 Remote Sensing and Peatlands

Zhou et al. (2019) used satellite data to demonstrate changes in PSM in abandoned
peatlands that have not undergone restoration in Central Kalimantan, Indonesia.
They used InSAR data collected between 2006 and 2010 with a spatial resolution of
80 m2. They demonstrated that 47 % of the peat is subsiding at rates reaching more
than 5 cm/yr. This data could then be used to investigate the impact of restora-
tion and assess damages to peatlands due to drainage and fires (Zhou et al. 2019).
Whereas, Zhou et al. (2013) found that Sumatran peatland height can decrease by
15 cm in areas with palm oil plantations, demonstrating the extent to which land
use and human activity impacts PSM. Alternatively, a range of studies have used
bioclimatic envelope models to predict future distributions of blanket bog globally
(Gallego-Sala and Prentice 2013) and in Scotland (Ferretto et al. 2021). These stud-
ies used climatic data from Climate 2.2 (Gallego-Sala and Prentice 2013) or the Met
Office (Ferretto et al. 2021) with both outcomes anticipating reductions in the size of
current blanket bogs as temperatures increase (especially in the summer) and pre-
cipitation reduces. Similar outcomes were found in studies using eddy covariance
analysis. Artz et al. (2021) used eddy covariance to demonstrate that periods with
drought and higher temperatures double the rate of carbon loss in blanket bogs in
the Cairngorms, especially in areas with eroded peat as they are less resilient to
change. The current carbon flux can also be compared to past carbon measurements
collected using peat cores (Lunt et al. 2019). Lunt et al. (2019) demonstrated that
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there has been a slight reduction in carbon sequestration in a blanket bog in south-
west England by about 2 tCO2eq/ha/yr since 1850. They concluded that many
studies may underestimate the sequestration potential for peatlands, and they may
be more resilient than thought by many (Lunt et al. 2019). Other peatland studies
have focused more on restoration (Humpenöder et al. 2020, Bonn et al. 2014, Parry
et al. 2014) and the impact of burning (Garnett et al. 2000, Whitehead et al. 2021).

Hyperspectral data collected remotely can be used to monitor and analyse peat-
lands in a non-destructive manner (J. M. McMorrow et al. 2004). Hyperspectral
data collected using Unmanned Aerial Vehicles (UAVs) over a Finnish peatland has
the potential to significantly improve the efficiency of peat production (Honkavaara
et al. 2016). This is because Honkavaara et al. (2016) were able to estimate mois-
ture content more accurately when using the hyperspectral data than when using
other data types. The use of miniaturised hyperspectral imagery sensors on small
UAVs enabled enhanced processing and interpretation potential when compared to
traditional pushbroom scanners (Honkavaara et al. 2016). This was due to the devel-
opment of 3-dimensional geometry and multiple object views with the reflectance
signatures. Once the images were collected, lab calibration corrections were applied
to the images and reflectance data generated from transformed digital numbers to
form hyperspectral image mosaics and the estimation of surface moisture. Whereas
other Finnish hyperspectral studies collected field data from transects of peat cores,
which were then analysed in the laboratory to classify peat and estimate humifica-
tion (Granlund, Keinänen, et al. 2021, Granlund, Vesakoski, et al. 2021). In tropi-
cal peat swamp forests, hyperspectral data can detect changes in the biochemical
and biophysical characteristics which impact tree crown segmentation (Nordin et
al. 2019, Tochon et al. 2015). This is better achieved with hyperspectral data than
other data types due to the high spatial and spectral resolution, enabling the iden-
tification of specific species despite the dense heterogeneous woodland. However,
the addition of other data sources, such as LiDAR, were found to improve accuracy
further (Nordin et al. 2019), demonstrating the benefits of including more than one
data type in analysis.

HyMap images (from the SHAC) were used by J. M. McMorrow et al. (2004) to
test candidate indices of peat composition for eroded blanket peat in the south-
ern Pennines. Analysis used 35 sites of field data, lab work regarding peat prop-
erties in addition to the HyMap data. They found strong correlations between the
Shortwave Infrared (SWIR) reflectance and transmission, along with strong positive
correlations between cellulose absorption and transmission, ultimately suggesting
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that hyperspectral data has the potential to provide information on the composi-
tion of peatland surfaces across large areas. An alternative approach to map eroded
peatland was used by Carless et al. (2019) where a combination of data were used,
composed of airborne LiDAR, CASI (visible and Near Infrared (NIR) hyperspectral
data), and aerial images, to identify and quantify areas with peatland degradation
in Dartmoor National Park. They determined that using an amalgamation of data
increased outcome accuracy in addition to being robust and cost effective (Carless
et al. 2019). Their analysis was 94 % and 87 % accurate when identifying peat drains
and peat cuttings respectively, however, much lower when identifying bare peat by
digitised data compared to ground data (Carless et al. 2019).

Cole et al. (2014) focused on a range of species in functional groups (graminoids,
bryophytes and shrubs), collecting data monthly from spring to autumn in 2009
and 2010. They assessed the spectra and a range of vegetation indicies to anal-
yse changes over time, finding that the vegetation was most spectrally separable in
July (when chlorophyll pigments and leaf area index are highest), but optimal time
varies depending on the species. As a result of this Cole et al. (2014) concluded that
there is not one suitable optimal recommended temporal window for monitoring
the peatland. This study did, however, improve their understanding of the pheno-
logical cycle of peatland species. Cole et al. (2013) also used hyperspectral data in
the Peak District, however, they focused on PFTs in areas undergoing restoration.
They used SPSS software to extract information from the hyperspectral data (vege-
tation indices) and the cover type (PFTs) and determined that partial least squares
regression models could be used to map PFTs over large areas of peatland to judge
the effectiveness of restoration, but only with high spatial resolution data (0.7 m pix-
els). Other studies using hyperspectral data have focused on different attributes of
peatlands (Table 2.1).

TABLE 2.1: Alternative uses of hyperspectral data to analyse peatlands

Peatland
attribute(s) Project description Location Reference

Hydrology and
flood risk

Discusses a range of restoration
projects aiming to keep more
moisture on the bog

Kinder Scout,
Peak District Shuttleworth et al 2018

Water table depth
and ecosystem
exchange

Assesses the ability of satellite
and airborne data to estimate
peatland water table depth and
ecosystem exchange using SWIR
hyperspectral data over time.

Mer Bleue,
Ottawa,
Canada

Kalacska et al 2018
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2.3 Flow Country Review

Various studies have been conducted in the Flow Country, however, there has been
little hyperspectral analysis in this area.

One key method used in recent years to assess carbon accumulation rates is eddy
covariance (Hambley et al. 2018, Levy and Gray 2015, Ratcliffe et al. 2018, Ratcliffe
2015). This technique uses peat cores collected in the field in conjunction with multi-
sensor scanners which combines x-ray fluorescence and x-radiography to precisely
date the peat in the cores at a spatial resolution of 0.2-2 mm (Ratcliffe et al. 2018).
Outcomes of eddy covariance analysis have varied with Ratcliffe et al. (2018) esti-
mating long-term accumulation rates of 15.4 gC/m2/yr for a site in which the Levy
and Gray (2015) study suggested carbon was accumulating in the same place at a
rate of 99.37 gC/m2/yr. However, other sites were found to give comparable results
(Ratcliffe et al. 2018), suggesting that additional research is required at the conflict-
ing site. Other key findings are in line with other research linked to the Flow Coun-
try (and other peatlands) regarding carbon exchange, suggesting that the current
carbon sink strength will change over time due to changes in ecological drivers, such
as fires, and feedback loops linked to changes in ecology and hydrology (Ratcliffe
et al. 2018). Hambley et al. (2018) increased the temporal resolution of eddy covari-
ance data to assess seasonal variations with other studies missing spring ‘greening’
and autumn senescence, which increase rates of microbial activity and therefore car-
bon output. Similar to the other studies they demonstrated that the Flow Country
is a net carbon sink, regarding CO2, however, demonstrated that methane under-
standing needs to be improved, suggesting that emissions could increase following
restoration. This could reduce the accuracy of carbon accumulation rates discussed
in other eddy covariance studies including Levy and Gray (2015) and Ratcliffe et
al. (2018), although Levy and Gray did recognise that methane emissions equate to
the majority of non-CO2 carbon losses.

An alternative method to measure carbon stocks uses a combination of large-scale
remote sensing and spatial covariates, including topography and climate, rather
than local scale field data (Aitkenhead and Coull 2020). This enabled mapping of
carbon stores across the whole of Scotland and suggested peat covered a greater area
than previously thought, linked to soil depth. This has potential to be used in con-
junction with eddy covariance, but would require higher resolution data; spatially
(the 100 m2 pixels used could miss local variations; Aitkenhead and Coull 2020) and
temporally.
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Other studies in the Flow Country have focused on water chemistry, especially dis-
solved organic carbon (DOC; Muller and Tankéré-Muller 2012, Vinjili 2012). Muller
and Tankéré-Muller (2012) focused on the impact of felling and seasonal changes
on DOC and metals in streams within the catchment of the River Thurso. Whereas
Vinjili (2012) focused on the River Dyke catchment assessing the impact of afforesta-
tion in addition to felling for restoration. Muller and Tankéré-Muller (2012) found
that seasonal changes impacted all sites (near recently felled areas as well as more
natural sites), with felled areas only affecting dissolved aluminium and manganese
levels with high levels of leaching. The limited changes in DOC, iron and potassium
were associated with a buffer zone between the felled forest and the water (Muller
and Tankéré-Muller 2012). Similarly, Linden et al. (2015) found that climatic changes
were much more important factors in DOC concentrations than land use change.

2.3.1 PSM Analysis

The InSAR studies have demonstrated changes in PSM over time (Alshammari et
al. 2018, Alshammari et al. 2020, Bradley et al. 2021, Marshall et al. 2022). The PSM
is likely to be underestimated (1-2 mm/yr), especially in the most dynamic parts of
the peatland; however, if these areas are under drought conditions, underestimation
can increase to 15-42 mm/yr (Marshall et al. 2022). As the least dynamic parts of the
ecosystem are dominated by shrubs (dynamism decreases with height above the
water table) and the more dynamic dominated by Sphagnum (Marshall et al. 2022), it
is worth assessing the rate of transition between these communities. PSM has been
shown to be a sensitive indicator of peatland function at a large scale due to a range
of factors including mechanical deformation, vegetation composition, water level
changes and land management, meaning it has the potential to give a holistic view
of the landscape (Marshall et al. 2021). Surface motion is especially affected by accu-
mulation which causes growth of peat, drainage, compression and decay of organic
matter which cause irreversible subsidence and seasonal variation in water and gas
storage which cause reversible peat deformation (Alshammari et al. 2020). These
changes in PSM over time are directly related to precipitation rate, water level and
vegetation composition (Marshall et al. 2021). Measurements need to be taken over
long timescales to determine whether peat is accumulating, indicative of healthy,
wetter, peat which sequesters carbon, or subsiding, characteristic of unhealthy, drier
peat with carbon loss (Alshammari et al. 2020, Bradley et al. 2021).

Monitoring of a range of peatlands undergoing restoration enables improved un-
derstanding of the impact of re-wetting strategies and expectations regarding the
potential for peatland stability and carbon absorption (Bradley et al. 2021). It also
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improves estimations of the distribution of peatland and their carbon inventories,
potentially on a national scale, whilst helping to identify areas that are at risk of
becoming unstable, eroded or affected by fire (Marshall et al. 2021). This can only
be achieved by analysing PSM data over long time-scales, with analysis of 600 man-
agement blocks demonstrating a clear restoration trajectory over the past 20 years,
especially since 2010, with changes in restoration techniques causing sites to recover
up to eight years more quickly than earlier sites (Marshall et al. 2021). However, ar-
eas of woodland that have been felled recently record the highest rates of subsidence
as they undergo a period of instability and change (Bradley et al. 2021, Marshall et
al. 2021), with them becoming more stable over time, reaching equilibrium (Mar-
shall et al. 2021).

Peatland monitoring has also lead to improved understanding of peatland dynam-
ics throughout the year, with two maxima observed annually. The first occurs in
areas with steeper gradients, at peatland margins, in areas with degraded peat and
in communities dominated with shrubs (Bradley et al. 2021). Whereas the second
maximum is associated with flatter areas with pool systems and Sphagnum domi-
nated communities (Bradley et al. 2021). These maxima occur between August and
November, whereas maximum subsidence occurs between April and June (Alsham-
mari et al. 2018). The amplitude of the swelling and the average annual motion was
strongly linked to which species dominated the landscape (Bradley et al. 2021).

2.3.2 Hyperspectral Analysis in the Flow Country

There has been very limited analysis in the Flow Country using hyperspectral im-
agery. Lees (2019) used a handheld SVC HR-1024 spectroradiometer to assess the re-
lationship between spectral indices and the moisture content of Gross Primary Pro-
ductivity (GPP) of the blanket bog vegetation species (especially) Sphagnum species
under a range of conditions. They used the hyperspectral data to find the rela-
tionship between a range of vegetation indices, including Normalised Difference
vegetation Index (NDVI) and Photochemical Reflectance Index (PRI) and GPP, and
water indices and moisture content, in both in the field and in the laboratory. They
found that all vegetation indices had significant relationships both in the laboratory
and field, but the water indices only demonstrated significant relationships in the
laboratory.
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2.4 Machine Learning

2.4.1 Supervised Machine Learning

Supervised machine learning algorithms are used to predict patterns by categoris-
ing data from inputted information (Singh et al. 2016). All data is required to be
split into training and testing data. Each class is determined from the combination
of features and seeking patterns common to each class in the training data and val-
idated using the testing data (Singh et al. 2016). Cross validation can be used to
compare the accuracies of different machine learning outputs, however, outcomes
can be misleading; overestimating the applicability of the model (Granlund, Keinä-
nen, et al. 2021).

Decision tree classifiers are non-parametric and build a tree until the inputted thresh-
old is reached, preventing any more splitting of leaf nodes (Pal 2005). They are easy
to understand, flexible, robust to noise and require little data cleansing, however,
they are prone to overfitting and can be unstable with small data variations pro-
ducing very different trees (Pal 2005, Provost and Fawcett 2013). They can also be
biased towards the more dominant classes (Provost and Fawcett 2013). Additionally,
they can find it difficult to handle data with many dimensions (Pal 2005). Pradhan et
al. (2014) found the decision tree classified land use from remotely sensed data more
successfully than more conventional prediction methods such as the maximum like-
lihood classification, whereas the decision tree used in the Anand et al. (2021) study
had the lowest accuracy of the supervised learning classifications applied.

Random forest classifiers are a combination of tree classifiers with each classifier
generated using a random vector sampled independently from the input vector (Pal
2005, Provost and Fawcett 2013). Each tree ultimately casts a vote for the most pop-
ular class to determine the assigned class (Pal 2005). They are robust to outliers
and scalable, however take time to build and can miss important interactions be-
tween features (Mather and Tso 2009, Provost and Fawcett 2013). The development
of random forests removes the overfitting and bias issues of decision trees due to
the combination approach (Provost and Fawcett 2013). Random forest classifica-
tion was found to be the most accurate method (80 %) in the Anand et al. (2021)
study based on farmland classification in the USA, with a similar accuracy of 83 %
achieved in the Poland study (Kopeć et al. 2020). Whereas in the Erudel et al. (2017)
study, accuracies ranged significantly from 65.10-81.60 % (when classifying vege-
tation types using different indices), with the highest accuracies when the training
size was greater than or equal to 40 %. Generally, in the Erudel et al. (2017) study,
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the random forest outcomes were weakest, which is surprising when compared to
other studies.

Support vector machines aim to determine the location of decision boundaries that
produce optimal class separation (Provost and Fawcett 2013). They look to max-
imise the minimum distance from the hyperplane to the nearest sample point en-
abling them to be robust to highly dimensional data (Provost and Fawcett 2013).
They can also deal with overfitting issues and minimise classification errors (Mather
and Tso 2009). The key issues with SVMs are slow training speed and performance
is heavily dependent on parameter choice (Provost and Fawcett 2013). The Anand
et al. (2021) study found that SVMs were almost as accurate as random forests (accu-
racy of 78 %), whereas Erudel et al. (2017) generally found that SVM outcomes were
better than random forest accuracies for both the linear and Radial Basis Function
(RBF) kernels, with both kernel outcomes exceeding the random forest in 67 % of
cases and one of them exceeding the random forest accuracy in the remaining 33 %.
Whereas, the SVM accuracies were about 50 % in the more complex classification
involving humification in the Granlund, Keinänen, et al. (2021) study, but higher
when classifying peat types. This suggests that all three need to be assessed for the
classification of PFTs in the Flow Country.

Logistic regression is a statistical model which fits a logistic curve to the dataset and
can be updated easily with new data (Singh et al. 2016). Additionally, they are quick
and the outputs have a probabilistic interpretation, they can be regularised to reduce
the potential for overfitting (Provost and Fawcett 2013). However, they are often
too simple and are unable to handle multinomial problems (Provost and Fawcett
2013). As a result, Erudel et al. (2017) applied a regularised logistic regression to the
species classification with accuracies ranging from 69.42 to 83.55 % depending on
the training size and data preparation prior to analysis.

2.4.2 Unsupervised Machine Learning

K-means clustering is very robust, fast and flexible, however, as it always searches
for globular clusters can form poor clusters when they are not spherical (Provost
and Fawcett 2013). Additionally, ‘k’ must be specified in advance, which can often
be difficult to know (Provost and Fawcett 2013). This clustering technique was used
in relation to hyperspectral data analysis of peat cores in the Granlund, Keinänen, et
al. (2021) study, using eight clusters to analyse stratigraphic patterns of peat cores.
These clusters were generally linked to vegetation type and level of humification,
suggesting that k-means clusters could be applied to data to find PFT classes.
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Principal Component Analysis (PCA) analysis spectrally reduces the number of
bands in a dataset with the aim to extract the most useful information from an im-
age (Nordin et al. 2019). This removes noise from the dataset, however, can lead to
the removal of relevant information from the image (Tochon et al. 2015). As well
as being used to reduce hyperspectral data, it can also be used to suggest whether
predictions made using the dataset will be strong (Patil and Dwivedi 2021). It can
therefore be applied to the train-test dataset to assess the strength of predictions
made using the hyperspectral data to determine PFTs.

2.5 Gaps in the Literature

The research in this study fills two key research gaps. Firstly, the analysis of air
borne hyperspectral data in the Flow Country as previously only handheld spec-
trometers have been used (e.g. Lees 2019). This is primarily due to the lack of avail-
able data, with the hyperspectral data in northeast Scotland only being collected in
July 2021.

The second gap is the use of hyperspectral data in conjunction with InSAR PSM
data to add more details to the data outcomes. Additional understanding should
come from higher spatial resolution and the large number of bands covering a larger
part of the spectrum. However, this difference in spatial resolution, and the lack of
temporal hyperspectral data may affect the potential of hyperspectral analysis to
add to the understanding of PSM outcomes.
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Aim and objectives

3.1 Aim

To determine whether hyperspectral data can be used to understand the association
between peatland surface motion (as measured by InSAR data) and land cover in
the Flow Country.

3.2 Objectives

1. Assess the extent to which supervised and unsupervised machine learning
algorithms can be used to classify plant functional types.

2. Determine whether machine learning can be used to show a relationship be-
tween plant functional types and peat surface motion.
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Methodology

4.1 Data Sources and Software

The hyperspectral sensor used in this study is Airborne Visible/Near-Infrared Imag-
ing Spectrometer-Next Generation (AVIRIS-NG) which was developed by NASA/JPL
and has a spectral range of 0.38-2.52 µm, up to 430 bands and a spectral sampling in-
terval of 5 nm (Jia et al. 2020). AVIRIS-NG instruments utilise the pushbroom imag-
ing mode outlined in Figure 4.1. As there is no mechanical scanning mechanism,
the weight and volume are lower than the alternative whiskbroom technique and
the signal-to-noise ratio is also better (Jia et al. 2020). Whereas, the main disadvan-
tage of this image is the challenge of balancing the field of view and instantaneous
field of view, although this can be compensated for by detector technology (Jia et
al. 2020).

FIGURE 4.1: Pushbroom imaging mode, where FPA stands for focal
plan array Jia et al. 2020

Hyperspectral data has the potential to improve understanding of landscapes due
to the level of detail that can be acquired from images with many wavebands. The
AVIRIS-NG data was collected 15th July 2021 during a collaborative mission con-
ducted by ESA, NASA/JPL and UZH; the Flow Country was one of 17 flights con-
ducted over sites across western Europe (Figure 4.2) between May and July 2021
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(ARES 2021). This data ranged from 377-2500 nm with each pixel having a spatial
resolution of 5x5 m for three of the sites, but slightly over 5 m for the erosion site.
This resolution is finer than that used in studies using InSAR PSM data (80x90 m)
in the Flow Country (Marshall et al. 2022 Alshammari et al. 2018 Bradley et al. 2021
Marshall et al. 2021) meaning that there is potential to not only add to their findings,
but also add detail to current knowledge about this blanket bog.

FIGURE 4.2: The locations of the AVIRIS-NG Europe 2021 campaign
sites (ARES 2021)

The two datasets used in this study are summarised in Table 4.1, with initial data in-
vestigation conducted in QGIS, using the EnMAP Box and AVHYAS plugins which
can visualise hyperspectral data. All analysis was undertaken in Python (https://
github.com/rachelzwalker/Flow_Country_HSI_and_PSM), with some data trans-
formations and data joins based on location carried out in GIS. The majority of GIS
work was completed in QGIS as this is an open-source software, however, some pro-
cesses, such as matching different data projections were more accurate in ArcMap.
Results were visualised in Python, QGIS and Microsoft Excel.

TABLE 4.1: A summary of the hyperspectral and InSAR data

Data Type Spatial
Resolution

Temporal
Range Data Source Data Collection Data

Description

Hyperspectral 5 x 5 m
Collected in
one day
(15/07/2021)

https://ares-observatory.ch/esa_
chime_mission_2021/ JPL/NASA

AVIRIR-NG data
containing 425
bands

InSAR 80 x 90 m
Timeseries
data from
2015-2019

https://catalogue.ceh.ac.uk
/documents/7c2778bf-b498-
4ba2-b8cb-60a2081e5ba7

Terra Motion PSM vector data

https://github.com/rachelzwalker/Flow_Country_HSI_and_PSM
https://github.com/rachelzwalker/Flow_Country_HSI_and_PSM
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4.2 Site Selection

The overall study area was determined by the NASA/JPL flight paths predomi-
nantly covering the Forsinard Flows Nature Reserve (Figure 4.3); InSAR data had
already been processed for this area, but only analysed in localised areas.

FIGURE 4.3: The flight paths used to collect the hyperspectral data, July
2021 ((NASA JPL 2022)

Specific sites were identified based on their characteristics (Figure 4.4). Due to the
scope and scale of this study, four sites were studied, as these areas cover a range
of environments which have been focal points of previous PSM studies. However,
had the scope been larger, additional sites with active peat cutting and active drains
could also have been analysed. Cross Lochs was one of the locations studied in de-
tail by Alshammari et al. (2020) and Bradley et al. (2021), and was used as the control
site and area of initial exploration due to its near-natural characteristics and as a re-
sult had fewer plant functional types. Sites undergoing restoration become more
stable over time, progressing faster where restoration began after 2010 (Marshall
et al. 2021), therefore two restoration sites were analysed to determine the tempo-
ral impact of restoration on peat surface motion. The first restoration site was be-
ing converted in the 2000s, with the second restoration site conversion occurring a
decade later. Trees and timber were removed and the main collector drains blocked;
some brash was removed, however, some was left which can been seen as white
lines on the satellite images. Furrows were then ploughed to reduce microtopogra-
phy and flatten the site, and the peat was then left to recover. The erosion site was
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affected by peat cutting in the past and still contains some vegetation, such as Sitka,
pine and agricultural grasses, which have been planted by humans to replace the
native species, and are only separated from the rest of the peatland by a wire fence.
As a result, each site will have different vegetation assemblages which interrelate
with the PSM measures of peat condition and link directly to this study’s aim. Each
site consists of an area approximately 1 km2 as InSAR measurement sites were this
size (Marshall et al. 2022).

FIGURE 4.4: Four 1km2 site locations within the Flow Country. Cross
Lochs (A) is a near-natural site (control site) with central coordinates
of -3.937388, 58.386329, there are two restoration sites (B and C) at dif-
ferent stages of transition from plantation to peat with central coordi-
nates of -3.975073, 58.385097 and -3.973670, 58.411235, and an erosion
site (D) with area of bare peat and cuttings with central coordinates of

-3.879604,58.469920.
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4.3 Data Preparation for Machine Learning

4.3.1 Pre-processing

The hyperspectral data was already radiometrically and geometrically corrected
(Priyadarshini et al. 2019) using the World Geodetic System 84, projection, how-
ever, the erosion site required further geometric correction (when the data was com-
pared to Google satellite imagery). which was undertaken in GIS. Although the data
had undergone atmospheric corrections (NASA 2022), removal of bands associated
with atmospheric water vapour are encouraged (Priyadarshini et al. 2019, Erudel
et al. 2017), therefore the bands with wavelengths 1350-1450 nm, 1810-1940 nm and
2400-2500 nm were removed. Additional pre-processing, such as the application of
the Savitzky-Golay filter, could have been undertaken (Erudel et al. 2017), however,
when attempted the outcomes were not as usable as the data without the filter. The
InSAR data was already pre-processed when received for use in this study with only
small changes to the attribute table required.

4.3.2 Data Transformations

Different transformations (first derivative, second derivative and continuum removal)
are linked to the absorption features of vegetation, and these have the potential to
differ between PFTs (Erudel et al. 2017):

first derivative =
ρλj − ρλi

∆λ
. (4.1)

second derivative =
ρλj − 2ρλi + ρλk

∆λ2 . (4.2)

continuum removal =
ρλ

Cλ
. (4.3)

As a result, they may be able to predict the PFTs to a higher degree of accuracy
than the original dataset. Other potential transformations to be used include the
brightness-normalised spectral signature and continuum removal derivative reflectance
(Erudel et al. 2017), but the scope of this study did not include these transformations
due to the complexity of these signatures and performance of the normalised signa-
ture.
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4.3.3 Spectral Ranges

It may not be necessary to use the whole dataset to accurately predict the different
PFT classes, which would save processing power and time, especially if a larger
sample of the original hyperspectral data were to be analysed. Therefore, spectral
sub-ranges were analysed in addition to the full dataset (Table 4.2, Figure 4.5).

TABLE 4.2: The full sepctral range and five sub-ranges of the electro-
magnetic spectrum used to analyse the reflectance of green vegetation

(Erudel et al. 2017)

Wavelength
Range (nm) Bands Spectral

Range Spectral Reflectance of Vegetation References

377-2500 0-358 Full
Includes all of the of the wavelengths included
in the dataset, with variations in absorption
and transmission throughout.

400-700 6-65 Visible

Chlorophyll and carotene (a biological pigment)
absorptions cause low reflectance and
transmittance of radiation (Section one of
Figure 8).

Salisbury and Ross 1992
Erudel et al. 2017

680-750 62-75 Red-edge
Plant biochemical and physical parameters are
correlated with reflectance (Red edge in Figure
8)

Mutanga and Skidmore 2007
Erudel et al. 2017

700-1300 66-185 NIR

Scattering of photons in the spongy mesophyll
in the leaves causes high reflectance and
transmittance, with low absorption (Second
main section in Figure 8)

Woolley 1971
Erudel et al. 2017

1300-2500 186-358 SWIR

Water content of vegetation causes strong
absorption of radiation, with some absorption
by lignin and other biochemical components.
There is low reflectance. (Final section of
Figure 8)

Woolley 1971
Erudel et al. 2017

4.4 Machine Learning for PFT Prediction

The machine learning analysis included in the investigation is summarised in Fig-
ure 4.6.

4.4.1 Supervised Learning

Due to the lack of spectral libraries for peatland vegetation species and the dynamic
nature of the signatures depending on the conditions, as Harris et al. (2005) demon-
strated with changes in water stress, fieldwork was planned. However, permissions
could not be attained until the latter stages of the project due to the time of year
(breeding season). Therefore, expert knowledge was used to develop site descrip-
tions and identify potential vegetation assemblages in the landscape from Google
satellite imagery. This enabled the development of a spectral library of PFTs for
Cross Lochs (this was the site where the PFTs were easiest to distinguish without
fieldwork, using only satellite images). This resulted in six classes for the Cross
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FIGURE 4.5: Reflectance spectra of green, stressed and drying vegeta-
tion (EO College 2021)

FIGURE 4.6: Summary of machine learning methods used for each ob-
jective
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Lochs area (as shown in the spectral library for Cross Lochs Figure 4.7 with equa-
tion 4 (Mather and Tso 2009) determining that 98 samples of each PFT should be
recorded to generate the training and testing data for the supervised learning anal-
ysis.

n =
BΠ(i)(1˘Π(i))

b(i)2 . (4.4)

Small sample sizes meant that only 588 of the 42,021 pixels needed allocating to dif-
ferent PFTs, saving time and processing power when training the data. As fieldwork
could not be conducted until less than a month before the end of the project, initial
analysis was conducted for Cross Lochs to determine which machine learning tech-
niques were better at predicting PFTs. The plant-based PFTs were focused on the
dominant species and there were two water-based groups, ’water’ and ’pool bog-
bean’. ’Water’ is open water with a greater depth than ’pool bogbean’, which is also
contains bogbean (Menyanthes trifoliata), changing the spectral signature. Prior to
running the machine learning analysis, a PCA test was performed to judge the po-
tential strength of predictions (Figure 4.8). Some PFTs, such as the ’calluna mix’ had
a clear cluster, however, others, such as ’water’ did not, suggesting that predictions
could be made, but their strength would vary.

FIGURE 4.7: Spectral library for Cross Lochs developed from expert
descriptors and satellite imagery to generate mean spectral signatures

for each PFT
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FIGURE 4.8: Scatter plot for the two dominant PCA bands regarding
the train-test data for the exploratory analysis of Cross Lochs

The Scikit-learn Python package was used to perform Random Forest, SVM and k-
means clustering analysis on the data prior to comparison. Other machine learning
algorithms could also have been used, such as the partial least squares regression
(used by Cole et al. 2013), however, due to the coarser nature of the hyperspec-
tral data used in this study, it was not included. The Random Forest depths tested
ranged from 2-5 to prevent over- and under-fitting of data, with those with the high-
est accuracy used in the comparative analysis. A range of training-testing ratios
were also used to determine which gave the best performance for the data. This
was conducted for each of the data transformations and spectral ranges. Each su-
pervised learning outcome included classification accuracy and standard deviation,
with those with the highest accuracy compared to the k-means cluster analysis. The
outputs from the Random Forest classifier, SVM and k-mean cluster were PFT maps
illustrating the potential distribution of the different vegetation groups (key outputs
in Appendix D. Confusion matrices with overall, producer’s and user’s accuracies
were outputted to assess the difference between the outcomes. These demonstrated
that random forest analysis was more successful than both SVMs at predicting PFTs,
with a tree depth of five and training size of 70-75 % as the most effective (Figure
4.9). This code was then combined in PyCharm to improve efficiency and repeata-
bility, with map outcomes automatically generated for the best predictions.
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FIGURE 4.9: Supervised learning PFT identification accuracies for ex-
ploratory analysis of Cross Lochs. The machine learning classifications
were run for a range of train-test ratio, with better outcomes for the

random forest classifier than SVM classification

The first restoration site interlinks most with the other sites so has the potential to be
used to predict most of the PFTs across the locations. Immediately following field-
work, the annotated satellite images (especially the first restored site) were added
to (Figure 4.10) and a spectral library developed for this site (Figure 4.11). The field-
work and satellite images were then used to create the PFT training and testing data,
which were added to the attribute table in GIS. This was then combined to train all
four sites and predict the PFT clusters, however, analysis was also undertaken us-
ing the first restoration site data alone to predict for this site as the training data
for this site was the most accurate as most of the fieldwork was carried out there.
These were then inputted with the various data transformation and sub-samples
into PyCharm for analysis. The number of points required for the different PFTS
was determined using the fourth equation, resulting in 1,117 training and testing
points compared to more than 160,000 pixels in total. The majority of the PFTs had
90 sets of training and testing data, however, the agricultural grasses did not visibly
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cover a large area so only had 55 points and the rushes and sedges were more spo-
radic and difficult to identify from the satellite image so only had 67 samples from
the fieldwork site. 51 % of the training data was from the first restoration site (where
most of the field data was collected) and 24 % from the erosion site (the rest of the
field data). However, additional points were required from the Cross Lochs site (13
%) for the water and pool-bogbean PFTs as these were much more frequent in this
landscape, similarly with the second restoration site (12 %) and the brash and bare
peat PFTs.

FIGURE 4.10: Annotated satellite image; blue annotations were from
expert description of the area with yellow additions post fieldwork

The top outcomes for each of the first restoration site analysis were compared with
the training and testing data using confusion matrices, with overall, producer’s and
user’s accuracy to assess the difference between outcomes. The matrices were then
compared to each other using the McNemar test equation (Agresti 2006, G.M Foody
2004).

z =
FN − FP√
FN + FP

. (4.5)
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FIGURE 4.11: Spectral library for the first restoration site based on data
collected on fieldwork with signatures of each PFT identified

4.4.2 Unsupervised Learning

K-means clustering was undertaken for each site base on the number of predicted
PFTs (from the machine learning) and the number of expected PFTs from expert de-
scriptions and fieldwork to see if there was a direct relationship between the spectral
signature and the PFTs. Alternative clustering methods could have been applied to
the data, such as hierarchical clustering, however, k-means is usually the most effi-
cient and often the most accurate clustering technique (Provost and Fawcett 2013).

4.4.3 Field Sites

Due to visiting restrictions during the breeding season, permission from the RSPB
could not be attained meaning fieldwork could not be undertaken until the end of
July. This in addition to Covid-19 recovery meant that more limited fieldwork could
be conducted than initially intended; the first restoration site was used as the focus
as this had the most overlap with the other sites. Prior to visiting the Flow Coun-
try, a risk assessment was developed (Appendix G) and field sites were determined.
Stratified random sampling was used to collect measurements with plant functional
types predicted using expert knowledge of the site and Google satellite images. Ar-
eas with these PFTs were selected in a GIS and ten random points from each PFT
selected using Python code (Figure 4.12). Due to limited time and accessibility is-
sues, data was not collected from every point (Figure 4.13), however all potential
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PFT categories were included in data collection. When in the field, these were lo-
cated using GPS and a GNSS receiver used to record location (these locations were
checked, once out of the field, and compared to the pixel locations from the hyper-
spectral data). The GNSS receiver typically had access to over 20 satellites and was
set to record measurements when within 20 cm accuracy of the receiver’s location.
However, in some sub-sites, especially to the northwest of the site near the river, the
internet connection was lost and the accuracy reduced to over 5 m at times. There
will also be some additional errors due to the movement of tectonic plates since 1984
(Mesibov 2012). Whilst in the Flow Country, the Cross Lochs and Erosion sites were
also visited with notes taken and some measurements recorded at the Erosion site
of features that had not been seen at the restoration site.

FIGURE 4.12: Clusters of areas containing different potential PFTs
based on analysis of satellite imagery and expert descriptions with ran-

dom sites selected for data collection in the field

Once a sub-site had been located using GPS and Google Earth, the GNSS receiver
was used to record the location (Figure 4.14) and four tape measures used to create
a 5 m2 quadrat with the receiver as the central point. The receiver was placed in a
globular foot to reduce the impact on the peat surface and ensure consistency as the
surface area of the foot prevented the receiver from sinking into the ground. The
quadrat was 5 m2 to reflect the size of the hyperspectral pixels. For each quadrat the
approximate proportion of the different plant types was recorded (Figure 4.15), with
the key species made up of different types of moss, heather and grass. This could
have been improved with the use of additional lines within the quadrat, splitting it
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FIGURE 4.13: The field sites where data was ultimately collected from

into a 10x10 grid to more accurately determine the proportion of different species,
however, due to time constraints, this was not feasible. An example recording sheet
can be found in Appendix A with the proportion of species at ten of the sub-sites
which are named based on the random points generated in Python, GPS number,
and the time of recording to ensure pictures of vegetation could be linked to each
sub-site. Additional notes were made for some sub-sites if there were unexpected
features or there was layering of the mosses, shrubs and grasses.

The conditions when recording the data were mainly sunny, however, there was
rain for a couple of hours. The main weather factor which affected data collection
was the wind which made it more difficult to keep the GNSS receiver perpendicular
to the ground, which reduces its accuracy. A key issue with this fieldwork was time
related. As the sites were challenging to access, time in the field was limited. In ad-
dition to this, Covid-19 recovery meant that fieldwork could not occur at an optimal
rate, resulting in less data collected than planned. Despite this, the data gathered
was valuable and seeing the sites on the ground improved my understanding of the
landscape, enabling better interpretation of the satellite images.

4.5 Peatland Surface Motion and PFT Comparison

The peatland surface motion data required geometric correction in relation to the
PFT prediction data and spatial reduction to the size of the first restoration site.
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FIGURE 4.14: Locating sites using the GNSS receiver in the first
restoration site, with the quadrat then build centred around the receiver

FIGURE 4.15: Species identification and proportioning in a quadrat at
the erosion site

This site was chosen as most of the fieldwork was conducted there. To determine
whether there is potential to add to the understanding gleaned from PSM data
and PFTs generated from the hyperspectral data, analysis was undertaken to assess
whether there is a relationship between the velocity, and mean amplitude, peaks
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and troughs of ground movements and the PFT. The vector points were then con-
verted to a raster dataset for each of these PSM attributes. The raster pixels were
then enlarged to meet each other using the r.neighbor function in QGIS and saved
as a GDAL virtual format with one pixel every five metres to allow spatial joins with
the PFT dataset using k-nearest neighbour, creating a new upscaled vector file. This
was then used to perform various classifications: logistic regressions, random for-
est, decision tree and SVM. The SVM analysis was conducted using the ‘RBF’ kernel
as this has been more successful during exploratory analysis than the linear kernel
(Figure 4.5).

Descriptive statistics and histograms (such as those in Appendix C.1 and C.2) were
looked at to see initial relationships between the PFTs and PSM attributes. As
some histograms looked reasonably similar, correlation matrices were used to as-
sess whether PFT classes were highly correlated with each other. If they were, they
would be merged to create a new category for the machine learning classifications.
As the classes varied in size, the results were iterated through with random values
chosen for those with larger proportions (e.g. Appendix C.3).
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Results

5.1 PFT Classifications

5.1.1 Random Forest PFT Predictions

The random forest results were variable depending on the site, whether the whole
dataset was used and which data transformation was classified. All of the highest
random forest outcomes used the full dataset, with 17 of the 40 highest outputs from
the original data, 11 and 10 from the first and second derivative transformations
respectively and just two from the continuum removal transformation. The first
restoration site, using focused train-test data, random forest accuracies were greater
than all other sites in five of the eight scenarios, reaching 78.91 % in the best case
(Figure 5.1), when the training and testing data only from this site was applied.
However, when all the training and testing data was applied to this site, the accuracy
declined, resulting in lower accuracies than other sites, especially when the cross
validation was three, depth 4 and testing size 0.3 (Figure 5.1).

FIGURE 5.1: The highest outcomes for each site and for each train-test
ration, maximum depth and internal cross validation

The highest five outputs were recorded and outputted for each site. These were
combined for the first restoration site (highest ten outputs summarised in Table 5.1
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(full table found in Appendix C)) and used to assess in more depth which spec-
tral ranges and data transformations were more useful (Figure 5.2). This confirmed
that the full dataset was required for determining PFTs using random forests, with
limited benefits of assessing the smaller spectral ranges, other than potentially the
visible part of the spectrum. In terms of the data transformations, overall for this
site, the most accurate predictions used the second derivative transformation with
the full dataset, (87.5 % of the highest outcomes). The standard deviation was low
across all outcomes, suggesting the data is reliable due to close clustering around
the mean.

TABLE 5.1: Highest ten outputs for the first restoration site using the
fieldwork focused train-test data

Spectral
range Data transformation Mean

accuracy
Standard
deviation

Training
size

Max
depth

Number of cross
validation folds

Full Original 0.77 0.05 0.25 5 3
Full Second derivative 0.76 0.03 0.25 4 3
Visible Second derivative 0.76 0.06 0.25 4 3
Full First derivative 0.75 0.04 0.30 4 3
Red edge Second derivative 0.74 0.03 0.25 4 3
Full First derivative 0.74 0.08 0.30 5 5
Full Second derivative 0.73 0.06 0.25 4 5
Full Original 0.73 0.05 0.30 4 3
Visible Original 0.73 0.04 0.25 5 3
Full First derivative 0.72 0.08 0.25 4 5

FIGURE 5.2: A summary of the highest five random forest classification
outcomes for each iteration through the first restoration site using the

fieldwork-focused train-test data
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The map outcomes for the first restoration site vary significantly as demonstrated in
Figures 5.3 and 5.4a. This suggests that the spectral signatures of shrub and Sphag-
num, and grass and Sphagnum are very similar. This is further reflected by the confu-
sion matrices (Table 5.2 and Table 5.3). With an overall accuracy of 86 %, it is much
more likely that the map output associated with the more focused train-test data
was closer to the actual PFTs, compared to an accuracy of 72 % for the site when the
full train-test data was used in the random forest classification. This is reflected by
the McNemar z scores from the comparison of confusion matrices. When comparing
the outcomes with the best accuracies from the first restoration site (based on the fo-
cused train-test data), there were consistent outcomes with a z score of 2.708 which
is less than the critical value of 3.841 (Table 5.6, therefore there is similarity between
the predictions. However, there is a significant difference between outcomes when
comparing the first restoration site outcomes when using the full train-test dataset
compared to the focused one, with a z score of 5.196 (Table 5.5).

FIGURE 5.3: Random forest classification map of predicted PFTs for
the first restoration site with 10 classes using fieldwork-based train-test

data (accuracy 0.770.05

The other sites, which relied more on training and testing data from the first restora-
tion site had similar accuracies of 0.722, 0.728 and 0.727 (Figures 5.4b, 5.4c, 5.4d).
When comparing the initial training and testing outlined in the methodology for
Cross Lochs using satellite imagery and expert knowledge to develop PFTs, had
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(A) Predicted PFTs for the first restoration site (ac-
curacy: 0.720.03

(B) Predicted PFTs for the erosion site (accuracy:
0.7220.03

(C) Predicted PFTs for the second restoration site
(accuracy: 0.7280.03

(D) Predicted PFTs for the Cross Lochs site (accu-
racy: 0.7270.03

FIGURE 5.4: Random forest classification map of predicted PFTs for the
four sites using the whole train-test dataset which was applied across

the sites

better random forest accuracies, with highest outcomes of 73 % and 79 %, which are
slightly higher than the outputs with the full train-test dataset, but less consistent.
This is likely to be linked to 13 PFTs being included rather than six. The domi-
nant PFT is shrub and Sphagnum with the location of water and pools being very
clear. Other PFTs are less dominant with agricultural grasses and Sitka and pine
(which were not found in this location) making up a small number of points (20
and 72 pixels respectively, compared to the 26,114 shrub and Sphagnum pixels). The
second restoration site outcomes are similar to what was expected from the expert
knowledge and satellite imagery and the erosion site outputs mainly reflected what
was observed in the field. However, the erosion site prediction did contain more
brash and dead grass mix than expected. The overall accuracy of the combined sites
compared to the train-test data was 75 %, with most PFTs being correctly identified
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much of the time. The shrub and Sphagnum, and water PFTs were the classes most
likely to be misidentified as reflected by the producer’s accuracies of 0.36 and 0.21
respectively, whereas, all other PFT producer accuracies were aver 65 % with Sitka
and pine and short grass highest performing with producer’s accuracies of 91 %
and 90 % respectively. This suggests that their spectral signatures are more consis-
tent across the sites, with little variation in the conditions of the areas containing
these species.

TABLE 5.2: Confusion matrices for the first restoration site predictions
compared to the full train-test dataset, with an overall accuracy of 0.72.

Predicted PFT

Sample PFT Bare
mix Brash Calluna Dead

grass mix
Grass and
Sphagnum

Long
grass Pool bogbean Rushes and

sedges
Short
grass

Shrub and
Sphagnum

Sitka and
pine Water Row total Producer’s

accuracy
Bare mix 1 0 4 8 4 0 0 0 2 3 0 0 22 1.00
Brash 0 5 2 1 2 0 0 0 0 10 0 0 20 1.00
Calluna 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00
Dead grass
mix 0 0 0 75 5 0 1 3 5 1 0 0 90 0.68

Grass and
Sphagnum 0 0 1 2 61 0 7 0 0 0 0 0 71 0.56

Long grass 0 0 1 3 0 83 2 0 4 0 2 0 95 0.95
Pool bogbean 0 0 0 0 3 0 10 0 0 0 0 0 13 0.40
Rushes and
sedges 0 0 3 5 1 1 0 56 1 0 0 0 67 0.92

Short grass 0 0 3 2 0 2 1 0 82 0 0 1 91 0.80
Shrub and
Sphagnum 0 0 4 13 33 1 0 2 8 29 0 0 90 0.67

Sitka and pine 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00
Water 0 0 1 1 0 0 4 0 0 0 1 12 19 0.92
Column total 1 5 19 110 109 87 25 61 102 43 3 13 578
User’s
accuracy 0.05 0.25 0.00 0.83 0.86 0.87 0.77 0.84 0.90 0.32 0.00 0.00

TABLE 5.3: Confusion matrices for the first restoration site predictions
compared to the site-specific train-test dataset (from fieldwork) with an

overall accuracy of 0.86

Predicted PFT

Sample PFT Bare
mix Brash Dead

grass mix
Grass and
Sphagnum

Long
grass Pool bogbean Rushes and

sedges
Short
grass

Shrub and
Sphagnum Water Row total Producer’s

accuracy
Bare mix 5 0 0 0 0 0 0 0 0 0 5 0.23
Brash 1 14 0 0 0 0 0 0 2 0 17 0.70
Dead grass
mix 7 2 81 3 2 0 3 1 7 0 106 0.90

Grass and
Sphagnum 1 0 0 65 0 1 0 0 0 0 67 0.92

Long grass 2 0 1 0 84 0 1 6 1 0 95 0.88
Pool bogbean 0 0 1 0 0 9 0 0 2 0 12 0.69
Rushes and
sedges 1 0 6 0 0 0 61 0 0 0 68 0.91

Short grass 0 0 0 0 6 0 1 82 1 2 92 0.90
Shrub and
Sphagnum 5 4 1 3 0 3 1 1 77 0 95 0.86

Water 0 0 0 0 3 0 0 1 0 17 21 0.89
Column total 22 20 90 71 95 13 67 91 90 19 578
User’s
accuracy 1.00 0.82 0.76 0.97 0.88 0.75 0.90 0.89 0.81 0.81

5.1.2 K-means Cluster Outputs

K-means analysis maps were outputted using the same number of clusters as PFTs
to demonstrate whether unsupervised learning techniques could be used to esti-
mate the location of different PFTs. The maps (Figure 5.5) demonstrate that with a



39

TABLE 5.4: Confusion matrices for the predictions from all four sites
compared to the full train-test dataset, with an overall accuracy of 0.75

Predicted PFT

Sample PFT Agricultural
grasses

Bare
mix Brash Calluna Dead

grass mix
Grass and
Sphagnum

Long
grass Pool bogbean Rushes and

sedges
Short
grass

Shrub and
Sphagnum

Sitka and
pine Water Row total Producer’s

accuracy
Agricultural
grasses 46 1 0 2 0 0 0 0 0 0 0 1 0 50 0.84

Bare mix 0 59 5 0 0 0 0 0 0 0 0 0 0 64 0.66
Brash 2 3 90 0 0 0 0 0 0 0 0 0 0 95 0.82
Calluna 0 5 2 59 0 1 1 0 3 3 4 1 1 80 0.65
Dead grass
mix 0 8 1 8 75 11 3 0 5 2 13 0 1 127 0.83

Grass and
Sphagnum 0 4 2 0 5 62 0 8 1 0 33 0 1 116 0.69

Long grass 0 0 0 0 0 0 83 0 1 2 1 0 0 87 0.87
Pool bogbean 0 2 0 0 1 7 2 67 0 1 0 3 8 91 0.74
Rushes and
sedges 2 0 0 1 3 2 0 0 56 0 2 3 0 69 0.84

Short grass 5 2 0 0 5 0 4 0 1 82 8 0 0 107 0.90
Shrub and
Sphagnum 0 6 10 21 1 7 0 15 0 0 34 0 19 113 0.36

Sitka and pine 0 0 0 0 0 0 2 0 0 0 0 82 1 85 0.91
Water 0 0 0 0 0 0 0 0 0 1 0 0 59 60 0.21
Column total 55 90 110 91 90 90 95 90 67 91 95 90 90 1144
User’s
accuracy 0.92 0.92 0.95 0.74 0.59 0.53 0.95 0.74 0.81 0.77 0.30 0.96 0.98

TABLE 5.5: The comparison of the classifications derived from the con-
fusion matrices (Tables 5.2 and 5.3, generated from the predictions from
the first restoration site using the focused train-test dataset and the full

train-test dataset. z = 5.196

10 classes First Restoration Site
Allocation Correct Incorrect

13 classes
First
Restoration
Site

Correct 333 (TP)
58 %

81 (FN)
14 %

Incorrect 162 (FP)
28 %

2 (TN)
0.35 %

TABLE 5.6: The comparison of the classifications derived from the high-
est two confusion matrices for the first restoration site with a testing
size of 0.25 and maximum depth of 5, generated from the predictions
from the first restoration site using the focused train-test dataset. z =

2.708

Full spectral range,
original transformation

Allocation Correct Incorrect

Visible range,
original
transformation

Correct 451 (TP)
78 %

22 (FN)
3.8 %

Incorrect 44 (FP)
7.6 %

61 (TN)
11 %

large number of PFTs, it is only possible to discern larger bodies of water with other
groups being less easily classified. However, the second restoration site much better
reflects the PFTs than the other k-means clustering outcomes.
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(A) A ten k-means cluster for the first restoration
site

(B) A 13 k-means cluster for the first restoration
site

(C) A 13 k-means cluster for the erosion site
(D) A 13 k-means cluster for the second restoration

site

(E) A 13 k-means cluster for the Cross Lochs site

FIGURE 5.5: K-means clustering for the four sites with ’k’ detemined
by the number of PFTs

5.2 PSM Relationship With PFTs

When conducting similarity tests using correlation matrices for each PSM attribute,
relationships were not strong (e.g. Appendix C.3), therefore no PFTs were combined
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prior to machine learning classifications. The accuracy of the PSM machine learn-
ing classification for the first restoration site was much lower than when creating
the PFTs (highest accuracy 53 %). The random forest classifications outperformed
the others (Figure 5.6) for both sets of PFTs (with 10 and 13 PFT classes). Machine
learning was not as effective in this case requiring improvements to be made to the
method prior to analysis. The low resolution of the PSM data makes it more chal-
lenging to compare the different attributes to the PFTs, as reflected by the k-means
clusters for this site (Figure 5.7).

FIGURE 5.6: Mean accuracy of difference machine learning classifica-
tions when using PSM to predict PFTs. ’Fw’ relates to the predictions
determined from the fieldwork-focused train-test data and ’all’ refers

to predictions determined using the full train-test dataset
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(A) Cluster for the velocity PSM attribute (B) Cluster for the amplitude PSM attribute

(C) Cluster for the velocity, amplitude, peak and
trough timings

FIGURE 5.7: K-means clustering, with ten clusters, for a range of PSM
attributes in the first restoration site
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Discussion

6.1 Machine Learning PFT predictions

6.1.1 Random Forest PFT Predictions

The results demonstrate that a random forest classier can be used to determine likely
PFTs in an area, however, accuracy is higher when there are fewer classes and when
more fieldwork is undertaken. This is reflected by the first restoration site where the
majority of field data was collected and suggested there were ten PFTs at this site
which had a higher accuracy than when trained with data from additional sites, with
less fieldwork (Figures 5.3 and 5.4). When in the field, some of the 5 m2 sites con-
tained a large range of species, making it more difficult to assign a specific category,
with the most dominant vegetation determining the group. However, some vege-
tation may dominate the spectral signature due to the layering of vegetation with
mosses often covered by grasses, shrubs and rushes/sedges. Some of the spectral
signatures are similar for different PFTs (Figure 4.11) which could affect accuracy,
especially where pixels included areas of transition between different vegetation
groups. When in the field, it was observed that there were strong transitions be-
tween some PFTs, such as transitioning from 100 % long grass to 100 % short grass
with a sharp boundary. However, other transitions occurred more gradually, such
as from areas with predominantly shrubs and Sphagnum to mainly grass and Sphag-
num. Additionally, in areas with pool bogbean, it is very likely that part of the pixel
would contain shrubs and Sphagnum in addition to the pool. The spectral similarity
between the shrub and Sphagnum, and grass and Sphagnum PFTs could be why the
fieldwork-focused and full training-testing maps for the first restoration site differ
so much and that is reflected in the McNemar similarity score of 5.196 (Table 5.2),
which is greater than the critical value of 3.841 meaning there is a statistically sig-
nificant difference between the two confusion matrices for the site at the 0.05 level.
Whereas, when the highest two outputs from the fieldwork focused training and
testing data were compared, there was not a significant difference (similarity value
of 2.708; Table 5.3). This demonstrates that the additional data from the erosion site
probably had a different spectral signature, thereby changing the machine learn-
ing prediction. The shrub and Sphagnum PFT is a category which contains several
species (see data collection sheet Appendix B) and if some were less dominant in
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the first restoration site, but more frequent in other sites, it is more likely that they
would be misidentified. The potential of this issue was reduced by including sam-
ples from other sites and from two different parts of the first restoration site as the
firebreak and pool systems were both dominated by shrub-Sphagnum mixes. This
demonstrates that there are challenges when applying data collected from one site
to others, especially when the species within the PFTs could vary depending on the
land use.

The conditions across the sites could also vary, affecting the application from one
area to another. Microtopography, wetness and stresses caused by restoration rate,
consumers and human activity could affect the spectral reflectance of different species.
This is why there are no large scale spectral libraries for peatland species; the spec-
tral reflectance can vary significantly for each species, especially Sphagnum due to
their capacity to store water (with some species able to store 20 times their own
weight in water due to the fibrous structure of the moss Marsden and Ebmeier 2012).
Grazing would have affected species growing at the erosion site where there were
no deer fences, increasing the damage to vegetation, especially mosses which are
less able to recover (Marsden and Ebmeier 2012). This in addition to changes in
water table reduce the stability of the moss, making it more vulnerable to invasion
from other species (Hambley 2016).

This is also reflected in the Cross Lochs site where the initial exploration took place
and it was the site with the best classification accuracy after the first restoration
site. In the initial exploration, only six PFTs were identified, these had much more
distinctive spectral signatures than those from the restoration site. This increased
the likelihood of more accurate allocation, with some of the PFTs barely registering
in this location (agricultural grasses and Sitka and pine, with likely misidentification
for these species due to the near-natural nature of the site). Additionally, as this area
was in a near natural state, pool systems dominated the landscape, with little impact
from human activity or large herbivores, fewer stresses are put on the vegetation.
This is in strong contrast to the second restoration site where brash and bare peat
still dominate the landscape following the felling of trees over the past seven years.
It takes time for succession to occur and the landscape will be less stable with less
developed peat limiting the resilience of the landscape to small changes in climate.

Although field data were collected in July 2022 (therefore at approximately the same
time of year as the hyperspectral data was collected), weather conditions were dif-
ferent in 2021, meaning that different vegetation could dominate. In the Forsinard
area, from January to July 2021 there was 29 mm less precipitation than in the same
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period in 2022 and 105 mm less from April to July (Figure 6.1). Whereas the tem-
perature was likely to be more than 1°C higher in 2022 as reflected by the nearest
Met Office monitoring station in Wick where maximum and minimum tempera-
tures were more than 1.1°C for the maximum temperature ranges from January to
July and April to July 2022 than 2021, with minimum temperatures averaging over
1.3°C more (Figure 6.1). A warmer, wetter 2022 could lead to difference vegetation
mixes compared to a cooler, drier 2021 as more precipitation increases the likelihood
of pools systems growing with more extensive Sphagnum mosses, however, higher
temperatures could affect evaporation rates, limiting their growth. Higher temper-
atures would also increase the rate of oxidation and decomposition, decreasing the
chance of peat build up and reducing the amount of dead grass in 2022 compared to
2021. This could cause slight changes in PFTs at all sites, however, additional annual
changes are more likely to occur at sites that have been subject to restoration or ero-
sion (Hancock et al. 2018). The more recent the restoration, the more change there
should be (Hancock et al. 2018, Marshall et al. 2021) meaning that that PFTs at the
second restoration site may not reflect ground data. Similarly, areas that have been
eroded and are vulnerable to further degradation are likely to change more rapidly
than more natural sites.

FIGURE 6.1: Precipitation (at Forsinain) and temperature (at Wick air-
port) each month from August 2020 to July 2022 (Met Office 2022, SEPA

2022)

High accuracy does not necessarily reflect reality, in both map outcomes for the
first restoration site, there were large areas of rushes and sedges, however, it was
observed in the field that although there were some clusters of rushes and sedges
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covering over 5 m2, the majority of were a small part (less than 10 %) of other 5x5
m subsites. It could be that once rushes and sedges make up a certain proportion
of the pixel (whether or not the dominant species), it dominates the spectral signa-
ture, causing it to be over represented. This is further reflected by the PCA analysis
(Figure 6.2) which demonstrates that the different PFT clusters are not distinct and
interrelate with each other. However, it could be that in these locations, which con-
tained no specific field sites but were observed during movement between points,
there were younger rushes and sedges which did not visually dominate the land-
scape, but did register spectrally. The analysis using the full train-test data, returned
some values with agricultural grasses, Sitka and pine, and calluna. Although, there
was calluna present at this site it did not dominate the landscape, however, it was
unsurprising that this PFT was included in the prediction as concentrations in some
areas which were not measured specifically could have included relatively high con-
centrations of this species. There were few agricultural grasses outputs and these
were all to the east of the site where there was less data collection and observation,
therefore it is possible that there were some of these grasses sporadically located in
that area. More fieldwork is required to determine the accuracy of this prediction.
Conversely, there were no trees at the site suggesting spectral similarity with some
vegetation mixes causing an incorrect prediction. Overall, however, most of the
outcomes were as expected based on fieldwork, satellite image analysis and expert
descriptions across the sites.

Comparisons with Other Studies

Erudel et al. (2017) used machine learning to identify specific species (rather than
PFTs) in a French pine peat-bog and found machine learning accuracies of over 80
%, which was higher than the mean accuracies for all sites with the highest outcome
of 78.91 % for the classification using the fieldwork-focused data. This difference
is likely to be due to the high spatial resolution of the French study data (1 m res-
olution using a handheld spectroradiometer). Their data was also collected under
cloudless conditions, however some parts of the complete Flow Country data (prior
to spatial reduction) contained cloud. Whereas the Hati et al. (2021) study focusing
on mangrove forest classification also used 5 m spatial resolution AVIRIS-NG data
with a classification accuracy of 87.61 % classifying 24 groups using SVM, mainly
at species level. This is likely to have been more accurate than this study due to
the clustering of species and more pre-processing of data prior to use. Therefore, fu-
ture use of the Flow Country AVIRIS-NG data should convert top of the atmosphere
radiance to surface reflectance and use a radiative transfer model to improve atmo-
spheric correction in addition to the band removal applied in the methods. Erudel
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FIGURE 6.2: Scatter plot for the two dominant PCA bands regarding
the fieldwork-focused train-test data.

et al. (2017) also advise using a Savitzky-Golay filter to reduce noise.

As discussed by Räsänen et al. (2019) it makes more sense to create PFTs based on
a community species mix more likely to be found in the field (as undertaken in
this study), than just on a specific collection of biologically related species (shrubs,
graminoids and mosses) as most of the time they do not occur in isolation. In their
study on a Finnish peatland, the overall accuracy of random forest classification was
only 72 %, compared to the overall accuracy of 86 % in this analysis when comparing
the predictions to the training and testing data of the fieldwork-focused site. This
could be due to the number of classes; they only created five general classes, which
may need to be broken down into smaller groups. Similarly, the overall accuracy
from the confusion matrices was higher in this study than the best outcome of 77.21
% in the Erudel et al. (2017) study. Whereas, the overall accuracy was much higher
in the Polish study focused on the invasive species, steeplebush (Spiraea tomentosa),
which affects central European peatlands, using random forest to predict its location
in a woodland (Kopeć et al. 2020). Their overall accuracies ranged from 92.73 to
98.57 %, which were probably due to the high spatial (1 m) and spectral resolution
(400-2,500 nm) of the data used to identify the species and that data outputs were
split into two categories; Spiraea tomentosa and ’background’. Locating one species in
the Flow Country dataset would only be viable if it were a dominant species and due
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to the coarse resolution, it is likely much would be missed due to the heterogeneous
nature of the landscape. Whereas the Polish study site was not complex in terms
of the species variety and Spiraea tomentosa grows in large single-species patches
(Kopeć et al. 2020), so was more identifiable.

Producer’s accuracies in the higher scoring confusion matrix generated by Erudel
et al. (2017), ranged from 36.61 to 96.36 %, however, these were generally lower for
the restoration site ranging from 23 to 92 %. The species/group with the lowest pro-
ducer’s accuracy both sites were not common to the other location (butterworts in
Bernadouze, France (Erudel et al. 2017), compared to bare peat in the first restora-
tion site). However, the species (spike sedge) producer’s accuracies was the highest
(Erudel et al. 2017) as was the rushes and sedges PFT, suggesting they can be more
easily identified using spectral signatures. It is generally more useful to focus on
producer’s accuracy rather than user’s accuracy or overall accuracy as it helps de-
termine whether the data is suitable for making predictions (Foody 2008). Although
difficult to compare outcomes with the Finnish study, similarly, the producer’s ac-
curacies were variable, ranging from 32 % (Tussock flark) to 80 % (Wet flark), sug-
gesting that either more groups needed to be created or data with a higher spectral
resolution used for analysis as they only included five PFTs and the full spectral
range was not used. This suggests that the poorer spatial resolution, but higher
spectral resolution used in this study was more valuable than the sub 3 m spatial
resolution with less spectral range used by Räsänen et al. (2019). However, the Pol-
ish study had both high spatial and spectral resolution and although the producer’s
accuracy for Spiraea tomentosa was generally high (ranging from 68.18 to 84.33 %)
there were probably errors when predicting the location of the species.

Compared to other studies the mean accuracy is not as high, mainly due to the
coarse resolution of the hyperspectral in this study. Other studies that used hand-
held spectrometers and UAV data, typically had a high spatial resolution up to 2.5
cm accuracy (Honkavaara et al. 2016). This increases the probability of heteroge-
neous sites with more mixed vegetation and more boundaries between different
vegetation types, especially for those affected by changes in topography and water
levels. However, this reduces the clarity of the PFTs and increases spatial confusion.
The use of fieldwork improved clarity for the first restoration site, but the use of
satellite images and site descriptions exacerbates these issues, as does the number
of PFTs and different conditions at different locations.

Erudel et al. (2017) found that the first derivative transformation produced the most
accurate predictions, however, this not the case in this study, with 17/40 (42.5 %) of



49

the highest outcomes from the original data and 11/40 (27.5 %) from the first deriva-
tive which was similar to the second derivative (25 %). This could have been due to
sensitivity originating from the atmospheric correction of the airborne data, which
was not required by studies using handheld spectrometers (Erudel et al. 2017).

6.1.2 K-means Clustering

The k-means cluster analysis demonstrates that the higher the number of clusters
the less linked it is with the vegetation as other influences from the environment
such as water content, soil properties and geology impact the spectral signature in
addition to vegetation properties. The k-means cluster analysis in the exploratory
phase of the research found 50 % accuracy with the train-test data (Appendix D,
however, the maps outputs were much less accurate with the higher number of
classes based on fieldwork.

6.2 Using PSM to Predict PFTs

As the whole random forest prediction from the first objective was used as the train-
ing and testing data, the chances of higher accuracy should have been increased.
However, maximum accuracy (random forest classification using the velocity, and
mean amplitude, peak timing and trough timing with a training size of 70 %) of 53
% with a high standard deviation of 0.52. This accuracy is low, but high enough
to encourage further refinement of the methodology of this novel analysis, which
was pretty crude due to the timescale of this project. The other machine learning
classifications were less successful, as with the PFT analysis, suggesting that ran-
dom forests are the best classification method for this data. Key issues to overcome
are differences in spatial resolution, how to scale the data, projection issues and the
number of classes.

The resolution of the PSM data was much coarser than the PFT data, causing scale-
associated vulnerability (Marshall et al. 2022), meaning that scaling was required.
In this study, the PSM data upscaled to 5 m, with each new pixel being allocated
the same value as the others in the larger 80x90 m area. This could be improved by
taking considering other nearby values as it is likely that the boundaries between the
initial pixels are much starker than in reality where there would be gradual change.
An alternative approach potential approach is to degrade the PFT information to
the larger pixel size. This would require either the dominant PFT within that area
to be chosen, or new broader PFTs created. To develop this, it would be better to
use larger sites, otherwise there would be limited train-test data. The resolution
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difference affects the ability to analyse the boundaries between PFTs. Many of the
PFTs appeared to have distinct boundaries between them in the field, especially
those that do not contain Sphagnum, although most of these boundaries could not be
assessed within the 80 x 90 m pixel. This is further exacerbated by the less distinctive
boundaries between shrub and Sphagnum dominated landscapes, which is a key
area to focus on (Marshall et al. 2022), therefore a finer spatial resolution is required
for both the PSM and hyperspectral data.

The two datasets used different coordinate reference systems (WGS 84 and OSGB36)
causing projection issues. Although this was improved by using ArcGIS to project
the data and perform geometric corrections on the PSM data, it was challenging to
line up the points correctly, especially due to the different spatial resolutions. This
could have reduced the accuracy and would need to be improved in future analysis.

To improve accuracy, it would be worth focusing on sites with less variation, such as
Cross Lochs, to demonstrate whether it is feasible to relate the two datasets, trialling
different methods to test for accuracy, then retrying for sites with more complex veg-
etation systems, before extending across the Flow Country. It would also be worth
analysing the PSM data in more depth to extract the key attributes that are more
likely to link to vegetation types and then defining PFTs based on broader categories
(shrub-based, Sphagnum-based and grass-based, however this would be challeng-
ing due to the layering of the species). The PSM analysis undertaken by Marshall
et al. (2022) demonstrates that PSM varies at multiple scales with hummocks be-
ing more dynamic than lawns which are more dynamic than hollows, however, the
coarseness of the data prevents detailed analysis of this. If the PFT data could be
related to the PSM data more accurately, this would enable additional analysis, es-
pecially in areas where there is poorer understanding (in the less dynamic parts of
the peatland) (Marshall et al. 2022). The microtopographies also affect the timing
of maximum seasonal swelling (Alshammari et al. 2020, Bradley et al. 2021). There-
fore, hyperspectral data could be used to assess areas more prone to swelling in
the summer, although there would be limitations with this as most swelling occurs
from August to November (Alshammari et al. 2018). One aspect of this is the impact
of drought; it would be worth removing these values from the dataset (especially in
pool areas) as the PSM was underpredicted by up to 42 mm/yr (Marshall et al. 2022),
which would affect the machine learning accuracies and outcomes. More fieldwork
would also be beneficial, recording temporal changes in PFTs (with the same tim-
ings as the PSM data) and other factors such as water level, microtopography and
erosion rates as the combination of these factors affect PSM (Marshall et al. 2022,
Marshall et al. 2021). Water level directly corresponds to carbon accumulation/loss
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and is strongly affected by erosion rates and microtopographic changes, which also
affect vegetation assemblage (Bradley et al. 2021).

The use of higher spatial resolution hyperspectral data (less than 1 m) would create
species-specific spectral libraries, enabling more detailed analysis of the landscape.
This would enable better understanding of which species dominate the landscape
and how they interact with each other, including the sharpness of boundaries be-
tween different species and at this scale, the relationship of vegetation with micro-
topography could be analysed. However, if UAVs are used, they need to be suitable
for the task; they should not contain reflectance panels, otherwise part of the vege-
tation signature will be missed (Honkavaara et al. 2016).

The accuracy of the PSM varies depending on the topography and as the InSAR data
has a spatial resolution of 80 x 90 m, the impact of microtopography cannot be as-
sessed, although it does have an impact, especially where there microtopographies
are more variable (Marshall et al. 2022). These microtopographies also (objective
two). Landscape management also affects PSM (Marshall et al. 2021), with peatland
affected to different extents by erosion. InSAR analysis has demonstrated that sub-
sidence rates are high in areas with plantations, clear felled forest and areas of bare
peat (Alshammari et al. 2018).

6.3 Applications

The PFT data can not only be used in conjunction with aiming to improve under-
standing of PSM outputs, but also peat health and to compare with other peatlands
in terms of vegetation assemblage for sites under a range of conditions. If time-
series PFT data is generated, then there is the potential to assess how the sites are
responding to climatic changes and restoration projects (Lavorel et al. 2007). It is
likely that if temperatures increase and precipitation reduces, ’shrubification’ of the
landscape will occur as species with longer, finer root systems extending their range
(Malhotra et al. 2020). In turn each PFT affects carbon fluxes in the peatland, with
emissions from shrubs, grasses and mosses increasing with higher temperatures,
however, lower levels of precipitation, and therefore water table, cause reductions
in methane emissions, but higher carbon dioxide emissions (Whitaker et al. 2021).
Peat under graminoids (grasses) emit more methane than bryophytes (mosses) or
ericoid (shrub) PFTs (Whitaker et al. 2021), therefore monitoring localised extent of
grasses is key to improving understanding carbon fluxes in the Flow Country.

Currently, the PFT-PSM analysis has little application, however, with improvements
to the method, could be used in conjunction with PSM analysis undertaken in the
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Flow Country by Alshammari et al. (2020), Alshammari et al. (2018), Bradley et
al. (2021), Marshall et al. (2022), and Marshall et al. (2021). The vegetation assem-
blage is a key factor which affects PSM and although there is understanding about
the impact in pool systems dominated by Sphagnum species, the limitations of InSAR
data mean that shrub dominated environments are less well understood (Marshall
et al. 2022). Therefore, improvements in accuracy could lead to better understanding
of the less dynamic parts of the landscape and the rate of change between different
PFTs.

6.4 Future Research

6.4.1 PFT-focused

When developing the machine learning predictions for the PFTs, rather than focus-
ing on random forest (or the highest accuracy outcomes), outputs can be combined
into an ensemble (Goos et al. 1998) and with each prediction from each classifier
considered as a vote for a specific class (Khurram Shahzad and Lavesson 2012).
This could be tested using the majority, conservative, comparative and veto voting
rules to determine which generates the most accurate outputs, with the majority
strategy generally considered to be the most effective with the class with the most
votes producing the outcome (Lam and Suen 1997). An alternative option would
be Bayesian formulation which determines the probabilities of an outcome using
notions of control (Huys and Dayan 2009). In addition to the supervised machine
learning classifiers used, a partial least-squares regression could be applied to the
data, if higher spatial resolution were collected. These outcomes could then be com-
pared to other studies such as Cole et al. (2013).

To improve accuracy, more pre-processing should be undertaken of the hyperspec-
tral data and additional fieldwork carried out across all sites, with more quadrats at
each to gain a greater clarity of PFTs and how they vary between sites. This would
be improved through the use of higher spatial resolution data which would enable
the mapping of specific species. This should increase the accuracy of the train-test
data, increasing accuracy of the predictions, both within and between sites.

When collecting field data in the future, accuracy regarding the location of field sites
could be improved by considering tectonic movement when using a GNSS receiver.
This is becomes increasingly important the higher the spatial resolution.
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6.4.2 PFT and PSM

There is the potential to develop new methods as discussed above regarding the
use of PFT data to add more understanding to the PSM outcomes, with a range of
strategies to increase accuracy of outcomes and relate to more aspects of the envi-
ronment including microtopography, water abundance and erosion rates. These can
be measured using hyperspectral data collected with a handheld spectroradiometer
or UAV with a high spatial resolution. In addition to PFTs, vegetation indices such
as NDVI, PRI and cellulose absorption index to determine which spectral indices
are most important spatially and potentially temporally (Cole et al. 2014).

With drought conditions expected to increase in the future, the impact of this could
be analysed by collecting timeseries hyperspectral data to assess the relationship
between drought, PFTs (or specific species extent) and PSM attributes. Time series
hyperspectral data would also be valuable in when comparing with PSM outcomes
generally to assess seasonal impacts of changes in vegetation on motion. However,
it would also be worth taking the 2018 drought into account, as the underestimation
of the PSM would reduce the accuracy of the data. Therefore, the removal of drought
data from the PSM timeseries could improve the accuracies of the PSM-PFT analysis.

6.4.3 Wider Reaching Research

Other research could be undertaken to compare hyperspectral outcomes with other
analysis, such as DOC outcomes in the Flow Country or compare with hyperspectral
analysis in other peatlands. DOC The hyperspectral data could be used to retrieve
DOC and compare with current results (Muller and Tankéré-Muller 2012, Vinjili
2012), before being extended over a larger area to assess the extent of leaching. Peat
properties such as moisture content and humification could be compared with stud-
ies by Cole et al. (2013), Lees et al. (2020), J. McMorrow et al. (2014) and J. McMorrow
et al. (2005). The hyperspectral data could also be compared to Sentinel 2 10 m res-
olution data to assess whether the higher 5 m resolution hyperspectral data gives
a significant advantage or whether the multitemporal Sentinel data is better (how-
ever, there are issues with high levels of cloud cover in the Flow Country, reducing
the frequency of useful data). The hyperspectral data could be degraded to 10 m
and then classified and Sentinel 2 data upscaled.



54

Conclusions

Random forests can be used to classify plant functional types using AVIRIS-NG data
collected over the Flow Country. Accuracy of random forest classifications are com-
parable to other studies, especially in the analysis conducted on the first restoration
site with the fieldwork-focused train-test data. Accuracies were comparable to other
studies classifying data into PFTs or vegetation species in terms of both overall ac-
curacy and producer’s accuracy. Differences in overall accuracy could be attributed
to differences in spatial resolution, the number of classes and the complexity of the
vegetation assemblages, with differences in producer’s accuracy linked to the spec-
tral signatures of different species/PFTs and the clarity of the classes. A key limiting
factor of this study was the spatial resolution of 5 m, with better accuracies found
when data with a resolution of 1 m or better were used. This coarse resolution es-
pecially affects the prediction of PFTs which interlink with others and can take up
small amounts of space, such as pools. Whereas, spatial resolution was much less of
an issue for PFTs which dominated a larger area such as the long and short grasses.

Accuracies could also be affected by changes in PFTs between July 2021 and July
2022 due to different precipitation levels and temperature maxima/minima between
the two years, meaning that the fieldwork and satellite images would not reflect the
conditions found in 2021 when the hyperspectral data was collected. These are un-
likely to have a significant impact on predictions, especially at Cross Lochs which is
unlikely to undergo much change year to year. However, it is expected that restora-
tion sites change year-to-year, especially the second restoration site as tree felling
has only occurred within the past ten years, increasing the potential impact on pre-
dictions.

Despite accuracy being high, there could be issues regarding over- and under-estimation
of PFTs and confusion between PFTs with similar spectral signatures such as those
containing Sphagnum mosses, meaning that high accuracy values does not necessar-
ily mean that reality is reflected. This is supported by the outcome of the McNemar
similarity test which demonstrated that there was a statistically significant differ-
ence between the focused and general train-test predictions for the first restoration
site. More fieldwork needs to be undertaken across the sites to improve this issue,
with new confusion matrices and McNemar similarity tests to improve PFT identi-
fication. The PFTs across the sites were mainly as anticipated, however, either from
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observations in the field, satellite image interpretation or from expert description of
the sites.

The data used to train all four sites resulted in slightly lower accuracies than the
focused training data. This demonstrates that PFTs may be slightly different across
the sites, for instance the Shrub and Sphagnum PFT will exist at all sites, however, the
species composition of this class could vary at different locations. This is likely due
to different conditions linked to human activity (whether the site is near-natural,
undergoing restoration or eroded), the presence of large herbivores and the local
physical conditions (topography, geology and water levels).

Unlike random forest classification, k-means clusters cannot be used to determine
PFTs, especially with a high number of classes, due to the complexity of the environ-
ment. Therefore, although supervised learning classifications can be used to predict
PFTs, unsupervised learning cannot.

To ameliorate the classification outcomes, improvements in the pre-processing of
the hyperspectral data are required, as well as more time spent collecting field data
across all four sites. It would also be worth reviewing the PFTs and performing
machine learning analysis using a range of classes, potentially merging groups that
are more likely to be confused, such as the grass and Sphagnum, and shrub and
Sphagnum PFTs.

Machine learning has the potential to be used to classify PFTs using PSM attributes,
however, improvements need to be made to the method to increase accuracy and re-
duce standard deviation. Increased pre-processing and processing is required prior
to prediction with more predictions generated to determine the best strategy. It is es-
sential to improve projection matching between the two datasets so that they match
and trial different ways of scaling the data - both degrading the PFT data and upscal-
ing the PSM data, whilst using a combination of values to determine the PSM rather
than just taking the value of the 80x90 m pixel. Different numbers of PFTs should be
trialled with similar PFTs grouped together, in terms of spectral signature and the
nature of the bog (how dynamic it is). More fieldwork is also required to improve
PFT accuracy prior to analysis with the PSM data and measurements should also
be collected regarding the water level in the peat. It would also be worth collecting
higher resolution spectral data to develop more accurate spectral libraries regarding
the vegetation assemblage, ensuring that the dominant species across the sites can
be determined. This links specifically to the water content of the peat, erosion rates
and microtopography, which interrelate with the PSM to add to understanding from
previous studies.
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Once improvements have been made to the methods, the application of this re-
search will increase, enabling analysis to be undertaken in conjunction with current
research on PSM in the Flow Country, especially in areas less understood by out-
comes of this research. Further research should, therefore, focus on the vegetation
assemblage of the less dynamic parts of the ecosystem (shrub-based environments).

Regarding the overall aim, hyperspectral data has the potential to be used to under-
stand the association between peatland surface motion (as measured by InSAR data)
and land cover in the Flow Country. However, further work is required to achieve
this, with the use of higher spatial resolution data, better scaling and projections and
improvements made to pre-processing.
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Kopeć, D, A Sabat-Tomala, D Michalska-Hejduk, A Jarocińska, and J Niedzielko.
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Appendix C: Histograms and correlation matrix

FIGURE C.1: Velocity histogram for the ’dead grass mix’ PFT
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FIGURE C.2: Velocity histogram for the ’grass Sphagnum’ PFT
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FIGURE C.3: Example correlation matrix, iterating through the PFTs
(random points chosen from larger classes when a smaller class is the
used as the basis of the matrix - smallest class removed with each iter-

ation and determines the number of points for correlation)
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Appendix D: Complete table of highest outcomes

TABLE D.1: Full table of all the first restoration site top outcomes (high-
est five for each iteration) using the focused train-test dataset

Ratio/max depth/cv Spectral Range Data Transformation Mean Accuracy Standard Deviation Order
0.25-5-3 Full Original 0.768707483 0.053564679 1
0.25-4-3 Full Second derivative 0.761904762 0.034687208 1
0.25-4-3 Visible Second derivative 0.755102041 0.060080006 2
0.3-4-3 Full First derivative 0.745762712 0.036614354 1
0.25-4-3 Red edge Second derivative 0.741496599 0.025453452 3
0.3-5-5 Full First derivative 0.740952381 0.075335146 1
0.25-4-5 Full Second derivative 0.734482759 0.060008367 1
0.3-4-3 Full Original 0.734463277 0.052393325 2
0.25-5-3 Visible Original 0.727891156 0.041934789 2
0.25-4-5 Full First derivative 0.721609195 0.081115228 2
0.25-5-3 Full First derivative 0.721088435 0.053564679 4
0.25-5-3 Red edge Original 0.721088435 0.025453452 3
0.3-5-3 Full Second derivative 0.717514124 0.076218856 1
0.25-4-5 Full Continuum Red edgemoval 0.714712644 0.052594968 3
0.25-5-3 Full Second derivative 0.714285714 0.066652782 5
0.25-4-3 Full Original 0.714285714 0.016663196 4
0.3-5-3 Full Original 0.711864407 0.013838925 2
0.3-5-5 Full Original 0.711587302 0.052586418 2
0.25-4-5 NIR First derivative 0.707126437 0.037120565 4
0.3-5-5 NIR Second derivative 0.706507937 0.1047696 3
0.3-5-3 Full Continuum Red edgemoval 0.706214689 0.015979814 3
0.3-5-5 Full Second derivative 0.700952381 0.039313843 4
0.3-5-3 Full First derivative 0.700564972 0.034827198 4
0.25-4-5 Visible Original 0.699770115 0.081631533 5
0.3-4-3 NIR Original 0.694915254 0.013838925 3
0.3-4-5 Full Continuum Red edgemoval 0.694603175 0.047245626 1
0.3-5-5 Full Continuum Red edgemoval 0.694603175 0.035643316 5
0.3-4-3 Full Continuum Red edgemoval 0.689265537 0.042278615 5
0.3-4-3 Visible Second derivative 0.689265537 0.021139307 4
0.3-4-5 Full Original 0.689206349 0.059485914 2
0.25-5-5 Full Continuum Red edgemoval 0.688275862 0.076349531 1
0.25-5-5 Full Original 0.687586207 0.08871419 2
0.25-4-3 NIR Original 0.68707483 0.019241001 5
0.25-5-5 Full First derivative 0.686896552 0.051185445 3
0.25-5-5 Full Second derivative 0.686666667 0.056989243 4
0.25-5-5 NIR First derivative 0.680229885 0.076134655 5
0.3-5-3 Visible Second derivative 0.677966102 0.0553557 5
0.3-4-5 NIR Second derivative 0.677936508 0.048671957 3
0.3-4-5 Full Second derivative 0.677301587 0.077767411 4
0.3-4-5 Full First derivative 0.661269841 0.027736477 5
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Appendix E: Cross Lochs maps from intial analysis

FIGURE E.1: K-means map with 6 clusters; cluster names based on
location and similarities with the random forest maps.

FIGURE E.2: Random forest map using the original spectra, focusing
on the SWIR bands with 75% training data and 25% testing.
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FIGURE E.3: Random forest map using the first derivative, using all
358 bands with 70% training data and 30% testing.



75

Appendix F: Data Management Plan

1) Provide the title and briefly describe the aim and objectives of your MRes
project.

Project title: A hyperspectral approach to understand the association between PSM
(as measured by InSAR data) and vegetation assemblage for a Scottish peatland

Research Aim: To determine whether hyperspectral data can be used to understand
the association between peatland surface motion (as measured by InSAR data) and
land cover in the Flow Country.

Objectives:

1. Assess the extent to which supervised and unsupervised machine learning
algorithms can be used to classify plant functional types.

2. Determine whether machine learning can be used to show a relationship be-
tween plant functional types and peat surface motion.

2) What data will be produced? (Data types, format, standards, scale and method)

Fieldwork was be undertaken for this project to validate the predictions and add to
the train-test data. The majority of the input data was digital and from open sources.
It was analysed in QGIS and Python.

Secondary data includes:

• AVIRIS-NG data collected 15th July 2021, 425 bands, pixel size of 5 x 5 m, re-
quiring 28 GB storage in total (4 sites with a total of 8 images), accessible from
https://ares-observatory.ch/esa_chime_mission_2021/. This data required pre-
processing.

• InSAR timeseries data collected 2015-2019, pixel size 90 x 70 m, requiring 32
MB storage, accessible from
https://catalogue.ceh.ac.uk/documents/7c2778bf-b498-4ba2-b8cb-60a2081e5ba7.
This data was pre-processed prior to use.

None of the data used has any special requirements.

The hyperspectral data had already undergone some atmospheric, geometric and
radiometric corrections, however, the number of dimensions were reduced to re-
move atmsopheric water vapour. The data was cropped spatially to four 1 km2 sites

https://ares-observatory.ch/esa_chime_mission_2021/
https://catalogue.ceh.ac.uk/documents/7c2778bf-b498-4ba2-b8cb-60a2081e5ba7
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(to reflect the size of sites used in InSAR PSM studies) and the locations openly
shared. It was be analysed in QGIS and Python with some use of plugins such as
EnMAP-Box. The Cross Lochs (near-natural) site was used as a control site with
which to compare the outcomes from the other three sites. Python code produced
will made openly available on GitHub.

The hyperspectral data is being used to add detail to InSAR PSM outcomes. The
data generated in the project through fieldwork will be made available with an Open
Data license in the University of Nottingham Research Data Repository.

Data outputs included:

• Random forest classification maps of PFT predictions (Geotif)

• k-means cluster maps with ’k’ equating to the number of clusters (Geotif)

• Graphs of the top outputs and their accuracies

• Confusion matrices regarding the predictions compared to the train-test data

• Classification comparisons and associated McNemar scores

3) What metadata standards will you use? (Metadata content and format)

The metadata was initially documented using the Data Tree template, as were the
data dictionaries. Each dataset had its own metadata and data dictionary, saved
in a separate ‘docs’ folder. They were named clearly, using the following format:
‘datasetname-metadata.txt’ and ‘datasetname-datadict.txt’. Any other documenta-
tion was be stored in the ‘docs’ folder including a summary of any methods and
issues.

The generated data complied with the following ISO metadata standards:

• Geographical data will comply with ISO19115 (focused on geographic infor-
mation and services)

• Ecological data will comply with the Ecological Metadata Language (EML)

Some metadata can be automatically generated in QGIS, however, there are limita-
tions and the metadata needed to be checked and added to.

4) How will your data be structured and stored? (Project storage)

The data was stored on my University of Nottingham OneDrive and back ups were
regularly made on the Newcastle University OneDrive. Analysis code was be stored
on GitHub in addition to within saved files in Jupyter Notebook/PyCharm. As
both OneDrive accounts hold over 1TB of data, there was enough storage space for
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my project. Outputs were also stored locally, however, due to the size of files, not
all of the input and processed data can be stored on my university laptop. Cloud
storage is beneficial as files could be synchronised to use on different devices, there
was protection against hardware failures and no server maintenance was required,
however, there were security concerns, which is why regular backups were made.

The data was be structured in a logical manner using clearly named folders, subfold-
ers and files. There were separate folders for ‘input data’, data undergoing process-
ing/change (‘processing’), and ‘output data’. All data was be clearly labelled. There
were also be folders for data documentation (‘docs’) for each data output. Each
folder contained a README file which summarised the folder’s contents. Other
folders were created as required.

5) How will the data be shared during and after the project? (Access, data sharing
and reuse)

There was not the need to share data with supervisors during the project, however,
if this had been the case, I would have shared data folders from my OneDrive with
them. GitHub was be used for code storage, version control and to share code and
associated analysis to facilitate its reuse once the project was finished. All code, data
and associated documents (including the final data management plan) will be made
available 12 months after the end of the project and stored within the University of
Nottingham’s Research Data Repository. A DOI and URL will be created for my
deposits in the data repository so that it can be accessed and reused in the future.

6) Outline the approach to data selection and long-term preservation?

All of the research data is open and, therefore, can be shared. The data was be pre-
pared in line with the requirements of the University of Nottingham Data Repos-
itory and will be stored there for a minimum of 10 years. This will include all
data generated, code scripts and additional files (including metadata, data dictio-
naries and README files). Copies of the data will also be kept on personal Univer-
sity OneDrive accounts. Versions of code will also be available on GitHub (https:
//github.com/rachelzwalker/Flow_Country_HSI_and_PSM).

7) Who has responsibility for implementing the DMP and are resources required?

The researcher was primarily responsible for implementing the DMP as well as
making reflections and updating it. Once the data is in the repository, the Univer-
sity of Nottingham is responsible for maintaining data access following the project.
Data validation is the responsibility of the principal researcher. Guidance will be

https://github.com/rachelzwalker/Flow_Country_HSI_and_PSM
https://github.com/rachelzwalker/Flow_Country_HSI_and_PSM
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requested as required from supervisors and IT Services at the University of Not-
tingham.
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