

A MODULAR CO-SIMULATION

APPROACH

FOR URBAN ENERGY SYSTEMS

KUNPENG WANG, MEng, MSc

Thesis submitted to The University of Nottingham

for the degree of Doctor of Philosophy

October 2022

ii

The copyright of this thesis belongs to the author under the terms of the United Kingdom

Copyright Acts as qualified by University of Nottingham. Due acknowledgement must

always be made of the use of any material contained in, or derived from, this thesis.

© Kunpeng Wang 2022

 iii

ABSTRACT

Cities are the main site of energy consumption, which result in approximately 71% of

global CO2 emissions. Therefore, energy planning in cities can play a critical role in

climate change mitigation by improving the efficiency of urban energy usage. The energy

characteristics of cities are complex as they involve interactions of multiple domains,

such as energy resources, distribution networks, storage and demands from various

consumers. Such complexity makes urban energy planning a challenging task, which

requires an accurate simulation of the interactions and flows between different urban

energy subsystems. Co-simulation has been adopted by a number of researchers to

simulate dynamic interactions between subsystems. However, the research has been

domain specific and could only be used in limited areas. There was no generic approach

to tackle the interoperability challenge of a comprehensive simulation for urban energy

systems.

To address such a gap, the aim of this thesis is to develop a generic and scalable urban

energy co-simulation approach to comprehensively model the dynamic, complex and

interactive nature of urban energy systems. This was achieved through the development

of a generic and scalable urban energy co-simulation architecture and approach for the

integration and orchestration of urban energy simulation tools, also called simulators,

from different domains.

Nine requirements were identified through a literature review of co-simulation, its

approaches, standards, middleware and simulation tools. A conceptual co-simulation

architecture was proposed that can address the requirements. The architecture has a

modular design with four layers. The simulator layer wraps the simulation tools; the

interconnection layer enables the communication between tools programmed in different

programming languages; the interoperability layer provides a mechanism for the tool

composition and orchestration; and the control layer controls the overall simulation

sequence and how data is exchanged.

Based on the architecture, a Co-simulation Platform for Ecological-urban (COPE) was

developed. Suitable co-simulation software libraries were adopted and mapped together

to fulfil the requirements of each layer of COPE to achieve the research objectives. For

different simulation purposes, subsystem simulation tools from different domains could

be selected and integrated into the platform. A master algorithm could then be developed

iv

to orchestrate and synchronise the tools by controlling how the tools are run and how data

are exchanged among the tools.

In order to evaluate COPE’s fundamental functionality and demonstrate its application,

two case studies are presented in the thesis: simulating multiple application domains for

a single building and multiple (interacting) buildings respectively. From the case studies,

it was observed that COPE can successfully synchronise and manage interactions

between the co-simulation platform and integrated simulation tools. The simulation

results are validated by comparing the results obtained from the direct coupling approach.

The applicability of COPE is demonstrated by simulating energy flows in urban energy

systems in a neighbourhood context. Computing performance diagnostics also showed

that this functionality is achieved with modest overhead.

The layered modular co-simulation approach and COPE presented in this thesis provide

a generic and scalable approach to simulating urban energy systems. It could be used for

decision making to improve urban energy efficiency.

 v

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisors Professor Darren Robinson,

Professor Peer-olaf Siebers and Professor Yong Mao for their constant guidance,

encouragement and tremendous support throughout my PhD. This has led me to

establish a fundamental framework for my PhD and future research.

My thanks are due to European Commission FP7 funded CI-NERGY (Smart Cities

with Sustainable Energy Systems) project for sponsoring the first three years of my

research. The Marie Curie workshops around Europe and beyond helped access

relevant insights and perspectives related to energy systems through lectures and

informative presentations on many aspects. There have been some very interesting

discussions that helped me along the way.

In the final stage of my PhD, I had to start a long and sometimes problematic recovery

journey after my aneurysm rupture operation. During the most difficult time of my

life, the support of my family and my mentors Prof. Yong Mao and Dr Neal Wade

saved me from a jungle in which I blamed and complained about myself quite often.

Without their support and encouragement, I could never overcome the hardship and

depression and complete the case studies and thesis writing. I am grateful for Dr Neal

Wade offered me the job at Newcastle University. The job not only solved my

financial and visa pressure, more importantly, it helped me rebuild my confidence,

recover physically, mentally and emotionally. To my mom and sisters, thank you for

your encouragement, help and prayers. To my wife and my son, I owe you for your

caring, patience, gentleness and forbearance. It was love saved me and pulled me out

of the darkness and I truly thank you all. Over this journey, I especially thank God for

the unconditional love, for the experience I had, which helped me see my weakness

and value of life.

This thesis is specially dedicated to my beloved father, Chuncai WANG, who has

always been my mental model.

vi

 vii

CONTENTS

1 INTRODUCTION ... 1

1.1 MOTIVATION AND RESEARCH CONTEXT .. 1

1.1.1 Motivation ... 1

1.1.2 Research context ... 2

1.2 RESEARCH AIM AND OBJECTIVES ... 10

1.3 RESEARCH METHODS ... 11

1.4 THESIS OVERVIEW ... 12

2 URBAN ENERGY CO-SIMULATION REVIEW .. 15

2.1 URBAN ENERGY SIMULATION TOOLS ... 15

2.1.1 Building energy modelling and simulation ... 16

2.1.2 Occupant simulation ... 17

2.1.3 Simulation tools summary ... 18

2.2 CO-SIMULATION .. 19

2.3 CO-SIMULATION STANDARDS .. 27

2.3.1 Functional Mockup Interface (FMI) ... 27

2.3.2 High Level Architecture (HLA) ... 30

2.4 CO-SIMULATION MIDDLEWARE ... 33

2.4.1 Building Controls Virtual Test Bed (BCVTB) ... 34

2.4.2 Mosaik ... 36

2.5 CO-SIMULATION SOFTWARE ARCHITECTURE REQUIREMENT 37

2.6 SUMMARY OF URBAN ENERGY CO-SIMULATION REQUIREMENTS 39

3 CONCEPTUAL CO-SIMULATION ARCHITECTURE DESIGN 41

3.1 CONCEPTUAL CO-SIMULATION ARCHITECTURE ... 41

3.2 CO-SIMULATION ARCHITECTURE LAYER DESCRIPTION 42

4 URBAN ENERGY CO-SIMULATION PLATFORM DEVELOPMENT 45

4.1 SIMULATOR LAYER .. 45

4.2 INTERCONNECTION LAYER .. 54

4.3 INTEROPERABILITY LAYER .. 56

4.4 CONTROL LAYER ... 63

4.5 THE DEVELOPED PLATFORM - COPE ... 67

4.6 COPE APPLICATION PROCESS .. 69

5 CASE STUDIES OF THE CO-SIMULATION APPROACH 73

viii

5.1 CASE 1: SINGLE BUILDING CO-SIMULATION .. 74

5.1.1 Chapman’s FMU import approach .. 77

5.1.2 COPE approach .. 80

5.1.3 Coupling system design .. 82

5.1.4 Model development ... 85

5.1.5 Co-simulation setup .. 88

5.1.6 Simulation ... 90

5.1.7 Results analysis ... 91

5.2 CASE 2: MULTIPLE BUILDINGS CO-SIMULATION .. 93

5.2.1 Coupling system design .. 95

5.2.2 Model development ... 97

5.2.3 Co-simulation setup .. 98

5.2.4 Simulation ... 100

5.2.5 Results analysis ... 101

5.3 OUTCOME.. 104

6 CONCLUSION ... 107

6.1 GENERIC AND SCALABLE URBAN ENERGY CO-SIMULATION APPROACH 107

6.1.1 Conceptual co-simulation architecture .. 108

6.1.2 COPE .. 109

6.2 RESEARCH METHODS ... 111

6.3 OUTLOOK AND FUTURE WORK ... 113

7 REFERENCES .. 119

8 APPENDICES ... 131

 ix

LIST OF TABLES

TABLE 2.1: A SUMMARY OF URBAN ENERGY SIMULATION TOOLS 18

TABLE 2.2: URBAN ENERGY SYSTEMS CO-SIMULATION REQUIREMENTS 39

TABLE 4.1: FMI FUNCTIONS.. 48

TABLE 4.2: KEY FMI FUNCTIONS INVOLVED IN THE CALLING SEQUENCE OF CO-

SIMULATION .. 49

TABLE 4.3: NEW FMI CO-SIMULATION FUNCTIONS ... 50

TABLE 4.4: STRUCTURE OF A NO-MASS FMU ZIP-FILE ... 53

TABLE 4.5: FMI LIBRARIES FOR INTERACTING FMUS ... 55

TABLE 4.6: MOSAIK SIMULATOR API ... 57

TABLE 4.7: MOSAIK SCENARIO API .. 58

TABLE 5.1: SIMULATION INPUT FILES FOR ENERGYPLUS AND NO-MASS (FMU IMPORT

APPROACH - BASED ON (CHAPMAN, SIEBERS ET AL. 2018)) 77

TABLE 5.2: ENERGYPLUS OUTPUT VARIABLES (NO-MASS INPUT VARIABLES) 82

TABLE 5.3: NO-MASS OUTPUT VARIABLES (ENERGYPLUS INPUT VARIABLES) 83

TABLE 5.4: SHOE BOX BUILDING ZONE DETAILS .. 85

TABLE 5.5: SHOE BOX BUILDING CONSTRUCTION MATERIALS 85

TABLE 5.6: SHOE BOX OFFICE SCHEDULES .. 87

x

 xi

LIST OF FIGURES

FIGURE 1.1: RESEARCH APPROACH ... 12

FIGURE 1.2: THESIS STRUCTURE ... 13

FIGURE 2.1: COMPOSITION OF A SIMULATOR ... 19

FIGURE 2.2: CO-SIMULATION ENVIRONMENT .. 20

FIGURE 2.3: CLASSIFICATION OF CO-SIMULATION STRATEGIES 21

FIGURE 2.4: COMMUNICATION AND DATA EXCHANGE SEQUENCES FOR STRONG

COUPLING CO-SIMULATION ... 21

FIGURE 2.5: COMMUNICATION AND DATA EXCHANGE SEQUENCES FOR WEAK COUPLING

CO-SIMULATION .. 22

FIGURE 2.6: DATA EXCHANGE OF JACOBI AND GAUSS-SEIDEL TYPE OF WEAK COUPLING

 .. 25

FIGURE 2.7: STATE MACHINE OF CALLING SEQUENCE.. 28

FIGURE 2.8: FMI COMPLIANT CO-SIMULATION ... 29

FIGURE 2.9: HLA COMPLIANT SIMULATION .. 31

FIGURE 2.10: REQUIREMENTS, SOFTWARE ARCHITECTURE AND IMPLEMENTATION

WORKFLOW ... 35

FIGURE 2.11: REQUIREMENTS, SOFTWARE ARCHITECTURE AND IMPLEMENTATION

WORKFLOW ... 38

FIGURE 3.1: CONCEPTUAL ARCHITECTURE OF THE URBAN ENERGY SYSTEMS CO-

SIMULATION .. 42

FIGURE 4.1: FMU ZIP ARCHIVE ... 46

FIGURE 4.2: COPE – DETAIL OF THE SIMULATOR LAYER .. 46

FIGURE 4.3: STATE-MACHINE FOR THE CALLING SEQUENCE OF CO-SIMULATION

FUNCTIONS .. 49

FIGURE 4.4: COPE – DETAIL OF THE INTERCONNECTION LAYER 56

FIGURE 4.5: FMI ADAPTER ... 60

xii

FIGURE 4.6: INTEROPERABILITY LAYER IMPLEMENTATION ... 62

FIGURE 4.7: COPE – DETAIL OF THE INTEROPERABILITY LAYER 63

FIGURE 4.8: GAUSS-SEIDEL TYPE OF WEAK COUPLING OF TWO SIMULATORS 64

FIGURE 4.9: CONTROL LAYER IMPLEMENTATION .. 67

FIGURE 4.10: THE CO-SIMULATION PLATFORM FOR ECOLOGICAL-URBAN - COPE 68

FIGURE 4.11: COPE APPLICATION PROCESS FOR A CO-SIMULATION 69

FIGURE 4.12: CO-SIMULATION PROCESS ... 71

FIGURE 5.1: SHOE BOX OFFICE ENERGY SYSTEM ... 74

FIGURE 5.2: SINGLE SHOE BOX BUILDING CO-SIMULATION CASE STUDY PROCESS 76

FIGURE 5.3: ENERGYPLUS AND NO-MASS ORCHESTRATION DIAGRAM (FMU IMPORT

APPROACH - BASED ON (CHAPMAN, SIEBERS ET AL. 2018)) 77

FIGURE 5.4: ENERGYPLUS AND NO-MASS CO-SIMULATION PROCESS (FMU IMPORT

APPROACH) ... 79

FIGURE 5.5: ENERGYPLUS AND NO-MASS ORCHESTRATION DIAGRAM (COPE

APPROACH) ... 80

FIGURE 5.6: ENERGYPLUS AND NO-MASS CO-SIMULATION PROCESS (COPE

APPROACH) ... 81

FIGURE 5.7: COUPLING SYSTEM DESIGN .. 82

FIGURE 5.8: DATA FLOW BETWEEN ENERGYPLUS AND NO-MASS DURING CO-

SIMULATION .. 84

FIGURE 5.9: SHOE BOX BUILDING .. 85

FIGURE 5.10: ENERGYPLUS AND NO-MASS SINGLE BUILDING CO-SIMULATION 88

FIGURE 5.11: ENERGYPLUS AND NO-MASS SINGLE BUILDING CO-SIMULATION FLOW

DIAGRAM (CHAPMAN’S FMU IMPORT APPROACH) ... 90

FIGURE 5.12: ENERGYPLUS AND NO-MASS SINGLE BUILDING CO-SIMULATION FLOW

DIAGRAM (COPE APPROACH) ... 91

 xiii

FIGURE 5.13: MONTHLY HEATING DEMAND OF THE SHOE BOX OFFICE IN GENEVA

(CHAPMAN’S APPROACH). (BOXPLOT) STOCHASTIC AGENT PLATFORM 50

REPLICATES, (GREEN POINT) SINGLE DETERMINISTIC SIMULATION 92

FIGURE 5.14: MONTHLY HEATING DEMAND OF THE SHOE BOX OFFICE IN GENEVA

(COPE). (BOXPLOT) STOCHASTIC AGENT PLATFORM 50 REPLICATES, (GREEN

POINT) SINGLE DETERMINISTIC SIMULATION ... 92

FIGURE 5.15: MULTIPLE SHOE BOX OFFICE BUILDINGS ENERGY SYSTEM 94

FIGURE 5.16: MULTIPLE SHOE BOX BUILDINGS CO-SIMULATION CASE STUDY PROCESS

 .. 94

FIGURE 5.17: COUPLING SYSTEM DESIGN .. 95

FIGURE 5.18: DATA FLOW OF MULTIPLE ENERGYPLUS BUILDING SIMULATORS AND

CORRESPONDING NO-MASS SIMULATOR ASSOCIATED WITH THE BUILDINGS

DURING CO-SIMULATION ... 96

FIGURE 5.19: THREE SHOE BOX BUILDINGS LAYOUT ... 97

FIGURE 5.20: THREE SHOE BOX BUILDING DESIGNBUILDER MODELS 98

FIGURE 5.21: ENERGYPLUS AND NO-MASS THREE BUILDINGS CO-SIMULATION........ 99

FIGURE 5.22: MONTHLY HEATING DEMAND OF THE SHOE BOX OFFICE 1 IN FINNINGLEY

(COPE). (BOXPLOT) STOCHASTIC AGENT PLATFORM 20 REPLICATES, (GREEN

POINT) SINGLE DETERMINISTIC SIMULATION ... 101

FIGURE 5.23: MONTHLY HEATING DEMAND OF THE SHOE BOX OFFICE 2 IN FINNINGLEY

(COPE). (BOXPLOT) STOCHASTIC AGENT PLATFORM 20 REPLICATES, (GREEN

POINT) SINGLE DETERMINISTIC SIMULATION ... 102

FIGURE 5.24: MONTHLY HEATING DEMAND OF THE SHOE BOX OFFICE 3 IN FINNINGLEY

(COPE). (BOXPLOT) STOCHASTIC AGENT PLATFORM 20 REPLICATES, (GREEN

POINT) SINGLE DETERMINISTIC SIMULATION ... 102

FIGURE 5.25: PROCESS TO CONDUCT CO-SIMULATION BASED ON THE URBAN ENERGY CO-

SIMULATION PLATFORM .. 105

FIGURE 6.1: CO-SIMULATION OF URBAN ENERGY SYSTEMS 114

xiv

 xv

LIST OF ABBREVIATIONS AND ACRONYMS

ADE Application Domain Extension

API Application Programming Interface

DSM Demand-Side-Management

DLL Dynamic-Link Library

FMI Functional Mock-Up Interface

FMU Functional Mock-Up Unit

HLA High Level Architecture

HPC High Performance Computing

IEA International Energy Agency

RTI Run-Time Infrastructure

No-MASS Nottingham Multi-Agent Stochastic Simulation

PV Photovoltiac

XML Extensible Markup Language

xvi

LIST OF APPENDICES

APPENDIX 1 ESSENTIAL FMI CO-SIMULATION API .. 132

APPENDIX 2 FMI CO-SIMULATION FUNCTIONS DEVELOPED FOR SIMULATION TOOLS

DEMONSTRATED IN CASES ... 137

APPENDIX 3 URBAN ENERGY SIMULATION TOOLS WITH FMU EXPORT SUPPORT....... 139

APPENDIX 4 CASES CO-SIMULATION VARIABLES .. 140

APPENDIX 5 MOSAIK SIMULATOR API .. 143

APPENDIX 6 MOSAIK SCENARIO API ... 145

APPENDIX 7 MASTER ALGORITHM EXAMPLE ... 146

APPENDIX 8 GLOSSARY .. 147

Chapter 1: Introduction

 1

1 INTRODUCTION

1.1 Motivation and research context

1.1.1 Motivation

Compared to 1950 when only 30% of the world’s population lived in urban areas,

nowadays, 55% of the world’s population live in urban areas. This is predicted to

increase to over 68% by 2050 (UNDESA 2018). Cities are the main site of energy

consumption in many industrial and high population countries. The International

Energy Agency (IEA) estimates that more than two-thirds of primary energy in the

world is consumed in cities (IEA 2021). This energy consumption correspondingly

results in approximately 71% of global CO2 emissions (IEA 2021). Therefore, by

improving the efficiency of urban energy usage and using more low-carbon energy

resources, cities can play a critical role in climate change mitigation.

To improve the urban energy usage efficiency and promote low-carbon energy

resources requires effective planning and decision making. The energy characteristics

of cities are complex as they involve interactions of multiple domains. For example,

the dynamic balance of energy supply and demand in urban area is influenced by many

factors involving the availability and capacity of diverse energy resources (fossil fuel,

hydropower, biomass, solar, wind, and other renewable resources), combination of

multiple energy distribution networks (electricity, gas, and heating), and a variety of

types of energy storage (Pump Hydro Storage (PHS), Thermal Energy Storage (TES),

batteries, and Adiabatic Compressed Air Energy Storage (A-CAES)). This is further

Chapter 1: Introduction

2

complicated by distinctive energy demand behaviours from various consumers

(citizens, private and public companies, local authority, government bodies, and

manufacturers/traders). In addition, different evaluation criteria (economic, technical,

political, environmental and social) are also adopted by various stakeholders, which

might create conflicts of interest in urban energy planning and decision-making

process.

Such complexity makes urban energy planning a challenging task, which requires not

only comprehensive understanding of different energy resources, distribution

networks, energy storage systems and various consumers, but also an accurate

simulation that captures the complex interaction among different urban energy

subsystems. To do this, urban energy modelling tools that can analyse urban energy

usage quantitatively are needed to assist decision making either individually or

collectively for improving urban energy efficiency and sustainability.

1.1.2 Research context

Over the last couple of decades, a number of high quality simulation tools have been

developed to simulate dynamic behaviour of urban energy systems. These address

different aspects of urban energy planning with different levels of granularity

(Robinson, Haldi et al. 2009, Connolly, Lund et al. 2010, Manfren, Caputo et al. 2011,

Keirstead, Jennings et al. 2012, Mohammadi, de Vries et al. 2013, Allegrini,

Orehounig et al. 2015, Reinhart and Cerezo Davila 2016, Abbasabadi and Ashayeri

2019, Li, Wang et al. 2020, Deng, Chen et al. 2022).

Top-down and bottom-up modelling techniques are two types of approaches used in

developing these tools. The top-down modelling approach works at a macro level,

which simulates urban energy systems in an aggregated way with large spatial and

temporal resolutions based on historical data of energy use patterns. Top-down models

describe the general characteristics of energy systems, rather than the explicit energy

profile of each individual component (Swan and Ugursal 2009, Ali, Shamsi et al.

2021). They are suitable for a broad and aggregated level large-scale analysis (Ali,

Shamsi et al. 2021). However, these models are less suitable to deal with the high

degree of technological detail for energy analysis of a specific neighbourhood and it

is less suitable for examining potential impacts of more technology-specific policies

influencing energy profile (Kavgic 2013, Ali, Shamsi et al. 2021). The bottom-up

Chapter 1: Introduction

 3

approach uses micro-simulation models, which are based on extensive databases

related to empirical data describing the dynamic behaviour of each component. It

could be used to calculate the energy profile of individual components of the system

and then extrapolate these results to represent energy profile at an urban and regional

level (Shorrock and Dunster 1997, Robinson, Haldi et al. 2009, Mohammadi, de Vries

et al. 2013, Hedegaard, Kristensen et al. 2019). Simulation tools using the bottom-up

approach are also termed micro-simulation tools. In comparison to the top-down

approach, the bottom-up modelling approach can provide a detailed energy profile of

end-use individually, which makes it more suitable to investigate detailed urban

energy design choices.

EnergyPlus and CitySim are two micro-simulation tools using the bottom-up

approach. They use micro-simulation models focusing on energy modelling of

buildings at different scales. EnergyPlus is a building energy simulation tool used by

engineers, architects, and researchers to model not only energy consumption for

heating, cooling, ventilation, lighting and plug loads, but also water use at single-

building level. Some researchers used EnergyPlus as an urban modelling interface for

simulating groups of buildings where multiple EnergyPlus instances were created to

simulate individual buildings one by one (Reinhart, Dogan et al. 2013, Cerezo Davila,

Reinhart et al. 2016, Natanian, Aleksandrowicz et al. 2019, Li, Wang et al. 2020,

Buckley, Mills et al. 2021, Deng, Chen et al. 2022). CitySim simulates building energy

demand considering the stochastic nature of occupants’ presence and behaviour, as

well as a range of commonly used heating, ventilation and air conditioning systems.

Unlike EnergyPlus, CitySim can simulate a cluster of buildings simultaneously within

one instance. The analysis scale of CitySim may vary from a neighbourhood of just a

few buildings and a district of several hundred to an entire city with tens of thousands

of buildings (Robinson 2011, Thomas, Miller et al. 2014).

Apart from these specialised tools for building energy simulation, there are micro-

simulation tools that are used to simulate electrical grids or thermal networks.

Examples of the tools for electrical grids simulation are PowerWorld Simulator

(DIgSILENT 2019), IPSA (TNEI 2019), PowerFactory (DIgSILENT 2019), and

PSCAD (PSCAD 2019), which are widely used to simulate power generation,

transmission and distribution (Zhou and Bialek 2005, Wade, Taylor et al. 2010,

Palensky, Widl et al. 2014, Neaimeh, Wardle et al. 2015, Aprilia, Meng et al. 2019).

Chapter 1: Introduction

4

For district thermal networks, tools like NetSim (Brange, Englund et al. 2016) and

Termis (Vesterlund, Toffolo et al. 2016) can be used to evaluate the network

performances and provide design, operation and optimisation suggestions based on

accurate thermal network calculations considering parameters like pressure, velocity

and temperature (Dalla Rosa, Boulter et al. 2012, Tol and Svendsen 2012, Brand,

Calvén et al. 2014, Tunzi, Boukhanouf et al. 2018).

In addition, there are also specialised tools providing availability and economic

analysis of renewable energy resources. For example, the r.sun module within the

Geographical Resources Analysis Support System (GRASS) can be used to compute

solar radiation on building roofs in a complex landscape area and therefore to identify

where and whether a roof is suitable for installing solar photovoltaic (PV) panels

(Agugiaro, Nex et al. 2012). RETScreen is a decision support tool which can be used

to evaluate the technical and economic feasibility of renewable technologies, such as

PV systems (Mirzahosseini and Taheri 2012).

The energy simulation tools described above were developed for specific and distinct

purposes. Hence, they are able to model, simulate and help to understand specific

problems of particular domains, such as building, electricity network, district heating

network, etc. However, they are not able to model and simulate holistic behaviour of

urban energy systems with subsystems across the borders of their specific domain.

Therefore, integrated modelling for urban energy systems has been proposed (Grubler,

Bai et al. 2012, Keirstead, Jennings et al. 2012, Koppelaar, Kunz et al. 2013). The

objective is to achieve a comprehensive simulation of urban energy systems not only

providing detailed simulation of individual subsystems for specific domains, such as

building and distribution network, but also their dynamic interactions, which could

address different aspects of urban energy planning with different levels of granularity.

However, simulating such complex interactions of urban energy systems faces a

number of challenges. Of those, data quality and uncertainty, subsystem model

complexity and simulation interoperability, e.g. insight into the internal process of

models of a complex system, integration and orchestration of diverse urban energy

subsystem simulation tools with different granularities, are the key challenges that

need to be tackled.

In terms of data processing, data models representing urban concepts and their

interactions have been adopted by some researchers, like van Dam and Keirstead,

Chapter 1: Introduction

 5

(2010), Nouvel et al., (2015) and (Agugiaro, Benner et al. 2018), to solve the

technological challenges related to data processing between different simulation tools

involved in urban energy simulations.

A data model is an abstraction of a system in the real world. It employs the grammar,

vocabulary and content that describe all kinds of information of the system stored in

one format or another. Within the model, the grammar defines the relationships

between individual objects in the system; the vocabulary defines the terminology to

be used to attribute these objects; and content defines what is to be included in the

system (Peng and Law 2010). In essence, a data model is a representation of the data

and their relationship and provides a conceptual or implementation view of the data

(Hamilton, Wang et al. 2005, Diba, Batoulis et al. 2020).

In simulating urban energy systems, multiple domains with different data sources and

models need to be considered, which increases the systemic complexity and

heterogeneity leading to potential data interoperability issues. It is crucial that the

system developers and users share a common understanding of the complex concepts

in the domains in terms of common vocabularies and data models in order to be able

to communicate effectively (Howell, Rezgui et al. 2017). Obviously, developers could

benefit from the interfaces provided by a common data model in order to access

disparate data sources. SynCity UES (Keirstead, Samsatli et al. 2010) and CityGML

(Kruger and Kolbe 2012) are two data models that can be used to assist the

development and sharing of urban energy models, and thus facilitate model

integration.

The SynCity UES data model was initially developed for the SynCity project aiming

to provide consistent class definitions of major objects within an urban energy system

(van Dam and Keirstead 2010). It was designed as a library of domain-specific

components consisting of a number of object classes that describe the main elements

of an urban energy system and specific instances of these classes (Keirstead and Van

Dam 2010). This data model was only used to develop the SynCity toolkit and not

released publicly.

In contrast, CityGML is an international standard that defines the physical layout of a

city according to its semantics, geometry, topology and appearance. It’s an

information and data model for semantic city models, which is intended to support

Chapter 1: Introduction

6

simulation, urban data mining, facility management and thematic inquiries (CityGML

2015).

However, currently CityGML does not define all energy-related attributes and features

of buildings in a systematic and standard way. To address the requirement for building

energy simulation based on CityGML, a growing international consortium of urban

energy simulation developers has started to develop an Energy Application Domain

Extension (ADE) for CityGML (Nouvel, Kaden et al. 2015). ADE is the mechanism

that can be used to extend CityGML classes with application-specific objects and their

attributes that are not explicitly represented in CityGML. The current version of

Energy ADE is 2.0 (Schildt, Behm et al. 2021). With Energy ADE support, CityGML

is extended in a standardised way by representing, storing and exchanging energy-

related features and attributes that are important and necessary for urban energy

models.

The CityGML standard together with its Utility Network ADE and Energy ADE has

the potential to be a common data model for urban energy systems. However,

CityGML was designed as a data model for 3D city modelling initially and Utility

Network ADE and Energy ADE were newly developed. Therefore, researchers now

often use CityGML as a 3D data model; potentially also applying this to evaluate solar

energy or for urban heating energy consumption estimation from building level to city

level through calculations by using the concept of indicators and indexes (Bahu, Koch

et al. 2013, Nouvel, Zirak et al. 2014, Wieland, Nichersu et al. 2015, Agugiaro 2016,

Ledoux, Arroyo Ohori et al. 2019).

The most popular urban energy simulation tools, like EnergyPlus, CitySim, IPSA,

PowerWorld Simulator, PowerFactory, and PSCAD etc., were not developed based

on a common data model. Therefore, to make these tools support a specific data

representation standard such as CityGML, together with Energy ADE, tool developers

have to either redesign their data model or write translators. It means the fundamental

data structure has to be changed, which is a complex task. As a result, developers of

these mature domain specific tools lack motivation on supporting it. Therefore, on the

ground of feasibility, data processing has been dismissed in the research presented in

this thesis. Thus, the focus of the research presented in this thesis is on tackling the

simulation interoperability challenge. The difficulty of it is to orchestrate the

execution of all integrated subsystems and make sure the on-time data exchange

Chapter 1: Introduction

 7

between subsystems is achieved (RJ, A et al. 2014, Gomes, Thule et al. 2017).

Currently, holistic approach and co-simulation (cooperative simulation) approach are

the two main strategies to tackle the simulation interoperability challenge of the

comprehensive simulation for urban energy systems.

The holistic approach aims to develop one multi-disciplinary tool to offer a complete

understanding of energy demand, supply and distribution in cities. Holistic simulation

tools of urban energy systems typically originate from a particular domain and later

have been extended to include other parts of urban energy systems to provide a holistic

view of the systems. SynCity (Keirstead et al., 2010) belongs to this category. It is a

hierarchical modelling framework for integrated assessment and optimisation of urban

energy systems. It aims to bring together different city representations such as layout,

transport, resource flows and energy networks, so that urban energy use at different

stages of a city’s design can be examined within a single platform (Van Dam 2009,

Gea 2012). Currently, SynCity links four submodels, i.e. the urban layout model, the

urban agent-based transport-land use (ABMS) model, the urban resource-technology

network (RTN) optimisation model and the energy service network model, into one

toolkit. However, it does not integrate urban energy supply network models, energy

consumption and supply models. As an initial effort to develop urban energy holistic

simulation tools, SynCity is promising but it was a prototype built with a limited

number of proof-of-concept models (Van Dam 2009, Keirstead, Samsatli et al. 2010,

Grubler, Bai et al. 2012). More importantly, when more models need to be integrated,

the solvers of SynCity need to be modified significantly to adapt to the extension. This

makes it hard to integrate more proof-of-concept models or fully developed urban

energy simulation models developed by other researchers.

A comprehensive simulation of urban energy systems requires the simulation of

multiple urban subsystems, i.e. onsite energy production, buildings and distribution

networks, etc (Koppelaar, Kunz et al. 2013). Without detailed onsite energy

production, building and network models, the energy flows in urban energy system

cannot be captured accurately. The holistic approach is hardly a good choice to fulfil

such requirement. This is because a single holistic tool, such as SynCity, is unlikely

to provide all functionalities and models required for a comprehensive simulation of

urban energy systems, since the developers of the holistic tools are not necessarily

experts in the domains that their tools seek to address. In view of the limitations of the

Chapter 1: Introduction

8

holistic approach, the co-simulation approach provides a solution to this dilemma by

enabling the best available simulation tools from their respective domains and

integrating them into one system.

The co-simulation approach tackles the challenge of comprehensive modelling of

urban energy systems, not by providing a single simulation that addresses a number

of issues, but by coupling existing domain-specific energy simulation tools, each with

its own speciality and was developed by corresponding domain experts with

accumulated years of research and practical experience. In this approach, intermediate

results (variables, status information) can be exchanged between coupled modelling

tools during simulation where data exchange is restricted to discrete communication

points. Between these communication points the subsystems are solved independently

(Bastian, Clauß et al. 2011). Such approach enables a dynamic and comprehensive

simulation of urban energy systems.

The hard-coded co-simulation and standard based co-simulation are two possible ways

to provide functionality like aggregation and enable tools with different granularities

to be coupled. The hard-coded co-simulation approach develops a monolithic mega

tool, which integrates a group of simulation tools directly with each other without

using any co-simulation standard/middleware. Such an approach is straightforward

and requires less development effort. However, the co-simulation system developed

by using this approach is typically only fit for one simulation purpose, hence not

reusable and hard to maintain. In contrast, standard based co-simulation has no such

limitation. It uses a co-simulation standard/middleware to develop a co-simulation

system, which is reusable and extendable. Although this approach requires more effort

to develop, nowadays most researchers prefer this approach of co-simulation system

due to its extendibility and flexibility. A number of researchers adopted the co-

simulation approach in their work. Some researchers focused on smart grid simulation

(Rohjans, Lehnhoff et al. 2013, Stifter, Widl et al. 2013, Kosek, Lünsdorf et al. 2014,

Lévesque, Béchet et al. 2014, Neema, Gohl et al. 2014, Palensky, Widl et al. 2014,

Strasser, Stifter et al. 2014, Lehnhoff, Nannen et al. 2015, Rotger-Griful,

Chatzivasileiadis et al. 2016, Falcone and Garro 2019). Some of them, like Lévesque,

Béchet et al. (2014), Neema, Gohl et al. (2014) and Falcone and Garro (2019), used

both co-simulation standards such as Functional Mockup Interface (FMI) and High

Level Architecture (HLA). FMI is a tool independent industry standard to support both

Chapter 1: Introduction

 9

model exchange and co-simulation of dynamic models (Blochwitz, Otter et al. 2011).

HLA is an industry standard for distributed modelling and simulation (Dahmann,

Fujimoto et al. 1997). There are also some researchers didn’t use either FMI or HLA,

but chose to use mosaik (Schutte, Scherfke et al. 2011), a smart grid co-simulation

middleware (Rohjans, Lehnhoff et al. 2013, Kosek, Lünsdorf et al. 2014, Lehnhoff,

Nannen et al. 2015, Steinbrink, Blank-Babazadeh et al. 2019), or Ptolemy II

(Ptolemaeus 2014), a middleware for design and analysis of heterogeneous systems

(Palensky, Widl et al. 2014, Rotger-Griful, Chatzivasileiadis et al. 2016), or just use

one tool in a tool-sets (Stifter, Widl et al. 2013, Strasser, Stifter et al. 2014) as the

master to couple other simulation tools in the tool-sets in a hard-coded way. In addition

to the smart grid simulation, there are some researchers, Wetter (2011), Pang, Wetter

et al. (2012), Heinzl, Kastner et al. (2014), Nouidui (2014), Thomas, Miller et al.

(2014), Yao (2014) Raad, Reinbold et al. (2015), Pang, Nouidui et al. (2016) and

Chapman, Siebers et al. (2018), that used co-simulation approach to integrate

simulation tools in the building simulation domain. Many of them used the Building

Controls Virtual Test Bed (BCVTB) as co-simulation middleware in their research

(Wetter 2011, Pang, Wetter et al. 2012, Heinzl, Kastner et al. 2014, Yao 2014). Others

either combined BCVTB together with FMI (Nouidui 2014, Pang, Nouidui et al. 2016)

or only used FMI (Thomas, Miller et al. 2014, Raad, Reinbold et al. 2015, Chapman,

Siebers et al. 2018).

The co-simulation approach adopted by the above mentioned researchers does offer

solutions to couple existing domain-specific tools to provide a detailed simulation of

not only individual subsystems but also their dynamic interactions. However, it is

notable that the approaches adopted by above researchers have their own limitations

from different perspectives. For example, some of them, Stifter, Widl et al. (2013) and

Strasser, Stifter et al. (2014), presented the simulation environment by using hard-

coded co-simulation to solve the specific problem they are facing. Some of them, use

standard-based co-simulation but with technique like FMI import which only supports

coupling of two simulation tools (Thomas, Miller et al. 2014, Raad, Reinbold et al.

2015, Chapman, Siebers et al. 2018). Furthermore, they all are very domain focused.

It is observed that none of the above mentioned researchers aimed to develop a generic

model integration approach. Their modelling approaches targeted only a subset of

relevant domains, such as smart grids, buildings, etc. and can only solve particular

Chapter 1: Introduction

10

problems with limited functions in the targeted domain. Therefore, they are not able

to model and simulate urban energy systems with subsystems across the borders of

traditional engineering domains.

To overcome the shortcomings of existing urban energy simulation tools and

integrated modelling methodologies, a generic model integration approach is needed

to tackle the simulation interoperability challenge of a comprehensive simulation for

urban energy systems. The approach needs to provide functionality for integrating and

managing the interaction of diverse urban energy subsystem simulation tools with

different granularities in order to comprehensively simulate multiple domains of urban

energy systems.

The proposed approach could be used by urban energy planners and stakeholders who

collaborate with architects, engineers and researchers closely to propose appropriate

and confident solutions to improve the efficiency of urban energy usage and use more

low-carbon energy resources. The collaboration requires urban energy planners and

stakeholders to propose feasible energy efficiency targets from political, economic,

and technological perspectives. Correspondingly, the engineers, architects, and

researchers could be actively involved in all stages of the proposal, evaluation,

validation and implementation procedure.

1.2 Research aim and objectives

Following the gap identified in the previous section, the aim of the research presented

in this thesis is to develop a generic and scalable urban energy co-simulation approach

for the integration of urban energy simulation tools, in order to comprehensively

model the dynamic, complex and interactive nature of urban energy systems.

By utilising well-known domain specific urban energy simulation tools, the approach

will make the interoperability and reuse of existing implementations possible, and it

can also be easily used by other researchers to integrate simulation tools for their own

purposes. As a result, a flexible and sustainable approach to meet various simulation

requirements can be achieved. The objectives of the research are summarised as

follows:

Obj. I: Identify requirements for the generic and scalable urban energy co-

simulation.

Chapter 1: Introduction

 11

Obj. II: Design a conceptual co-simulation architecture that will be able to integrate

urban energy simulation tools from different domains. The approach will address the

identified requirements.

Obj. III: Develop an urban energy co-simulation platform based on the conceptual

architecture. Explicit process to integrate well known domain specific urban energy

simulation tools with different levels of granularities will also be presented.

Obj. IV: Evaluate the approach and the platform through use cases to demonstrate

synchronisation and interaction between the urban energy co-simulation platform and

coupled co-simulation components.

1.3 Research methods

In order to achieve the above-mentioned research objectives, a more in-depth review

of co-simulation needs to be conducted. The purpose of the review is not only to

identify the co-simulation requirements, but also the technologies that could be

adopted for the co-simulation approach.

Following the review, a conceptual urban energy co-simulation architecture will be

designed through a comprehensive study of co-simulation, related standards and

middleware, and urban energy simulation tools. The architecture will need to address

all requirements identified from the review.

Based on the architecture, a platform will be developed in order to implement the co-

simulation approach. To evaluate the approach and the platform, it is planned to run

the platform with two use cases from single-building level to neighbourhood scale.

The research approach and research methods that will be adopted in the research are

presented in Figure 1.1.

Chapter 1: Introduction

12

Figure 1.1: Research approach

1.4 Thesis overview

The thesis consists of six chapters that are corresponding to the research approach.

Following the Introduction (Chapter 1), which gives an overview of the research

background, research gap, and research aim and objectives, the remainder of the thesis

is structured as below:

Chapter 2: Provides a more detailed review of urban energy simulation tools,

introduction of co-simulation, co-simulation standards, co-simulation middleware and

co-simulation software architecture requirement. Through the review, requirements of

a generic co-simulation approach will be identified in this chapter. (Obj. I)

Chapter 3: The proof-of-concept urban energy conceptual co-simulation architecture

is proposed to address the requirements identified in Chapter 2. (Obj. II)

Chapter 4: Presents the development of each layer of the standard based urban energy

co-simulation platform based on the conceptual architecture and demonstrates steps

involved in the execution of urban energy simulation using the platform. (Obj. III)

Chapter 5: Evaluate the research through case studies from a single building to

neighbourhood scale co-simulation, which tackles simulation interoperability

challenge of the comprehensive simulation for urban energy systems. Thorough result

Chapter 1: Introduction

 13

analysis of the use cases to demonstrate the platform is capable of capturing the

dynamic interaction between various aspects of urban energy subsystems. (Obj. IV)

Chapter 6: Concludes the key findings of the research and recommends how the work

could be extended in the future.

How the thesis structure correlates with the research approach and the research

objectives are illustrated in Figure 1.2.

Figure 1.2: Thesis structure

Chapter 1: Introduction

14

Chapter 2: Urban energy co-simulation review

 15

2 URBAN ENERGY CO-

SIMULATION REVIEW

In this chapter, a number of simulation tools with different functionalities for urban

energy simulation are presented and analysed. Co-simulation as well as its approaches,

standards and middleware are reviewed and presented. How the approach, standard

and middleware were chosen in order to build a conceptual architecture for the urban

energy co-simulation is described. Through the review, nine requirements of generic

urban energy systems co-simulation are identified.

2.1 Urban energy simulation tools

The energy characteristics of cities are complex as they involve interactions of

multiple domains, e.g. energy supplies, energy distribution networks, energy storage

and energy demand from various consumers. Each domain has their tools to simulate

the subsystem behaviours.

To achieve a specific purpose of urban energy systems simulation, it is required to

integrate the most suitable existing simulation tools with different granularities from

different domains. There are a number of simulation tools with different

functionalities in the field of urban energy modelling. To simulate urban energy

systems, suitable simulation tools could be chosen to suit specific simulation purpose.

Different combinations of tools could serve different simulation purposes. Therefore,

it is essential to focus on co-simulation of some domain specific simulation tools to

make sure this co-simulation expertise and experience be capable of being leveraged

into a wide range of simulations of more complex urban energy systems eventually.

In this section, a few available simulation tools that have been developed for building

simulation and stochastic simulation are presented and analysed. The attribute analysis

of the simulation tools helps to define requirements for simulation tools integration in

the urban energy co-simulation approach.

Chapter 2: Urban energy co-simulation review

16

2.1.1 Building energy modelling and simulation

Building energy simulation tools are increasingly used for analysis of energy

consumption of one or multiple buildings. They are often used for design and optimise

buildings. A number of tools have been developed for energy simulation of buildings,

such as BLAST, CitySim, DOE-2, EnergyPlus, and ESP-r.

EnergyPlus was funded by the U.S. Department of Energy Building Technologies

Office. It’s a prominent detailed whole-building energy simulation tool that combines

the best features of the BLAST and DOE–2 programs along with many new

capabilities, which was converted from Fortran to C++ since version 8.0 (Crawley,

Lawrie et al. 2004, New and Adams 2018). It is well-documented, open-source and

cross-platform, and has been extensively tested by engineers and architects (Crawley,

Lawrie et al. 2001, Management Association 2016, Vadiee, Dodoo et al. 2018). It can

simulate energy consumption for heating, cooling, ventilation and lighting. It can also

calculate thermal zone conditions, heat and mass transfer and illumination in buildings

at sub-hourly intervals, accepting user-definable time steps (a minimum time step of

1 minute), taking the ambient weather conditions into account (Crawley, Lawrie et al.

2001, Gervásio, Santos et al. 2010). EnergyPlus determines zone thermal loads and

the energy required from the Heating, Ventilation and Air-Conditioning (HVAC)

systems to maintain thermal control set points (Zhu 2012, Dols, Emmerich et al. 2016).

The ESP-r tool is another building simulation tool for the simulation of heat, inter-

zone air flow, intra-zone air movement, electrical power flow, HVAC systems and

lighting performance of buildings (Clarke 2013). The time simulation of the building

with ESP-r simulation tool can vary in a range from one minute to one hour. It is quite

powerful (Sousa 2012). However, the program is quite complicated and relatively

poorly documented which requires great knowledge and expertise from its users and

requires a long learning process (Sousa 2012).CitySim is an urban energy simulation

tool developed at the Solar Energy and Building Physics Laboratory of EPFL. It was

programmed in C++ and it focuses on simulation of energy demand of buildings

ranging from a few to thousands (Robinson, Haldi et al. 2009, Robinson 2011).

CitySim includes a radiation model based on the simplified radiosity algorithm (SRA)

to compute the irradiation incident on each surface of the building, direct from the sun,

diffuse from the sky and reflected by other surfaces (Robinson and Stone 2004). The

thermal model of CitySim is a simplified resistor-capacitor network as an analogy for

Chapter 2: Urban energy co-simulation review

 17

the thermal representation of building behaviour (Kampf and Robinson 2007,

Robinson 2011). When using CitySim to simulate a building, HVAC systems are

modelled using a set of equations that calculates the energy demands of the HVAC

systems to reach the comfort zone due to changes in the enthalpy of the supplied air

from its intake to its room supply. Considering the interactions within the built

environment, inter-reflections between building surfaces and shading from other

obstacles, CitySim can simulate the heating or cooling energy required to maintain

predefined indoor temperature conditions within an hourly time step (Robinson 2011,

Koppelaar, Kunz et al. 2013, Page, Basciotti et al. 2013, Perez 2014, Mauree, Coccolo

et al. 2017).

2.1.2 Occupant simulation

Occupants interact actively with their built environment. Their behaviours affect

building performance, at the same time, are affected by building design and indoor

environmental conditions (Laaroussi, Bahrar et al. 2020). To improve building design

processes and operating strategies, tools simulating human-building interactions and

occupant behaviour have gained significant interest in recent years (Azar, O'Brien et

al. 2020). Among them, a few examples are Buildings.Occupants obFMU, No-MASS

and Occupancy Simulator (Hong, Sun et al. 2016, Luo, Lam et al. 2017, Chapman,

Siebers et al. 2018, Wang, Hong et al. 2019).

Programmed in C++, Nottingham Multi Agent Stochastic Simulation (No-MASS) is a

multi-agent simulation tool that generates synthetic populations of buildings’

occupants and their energy-related behaviours (e.g. interactions with the building

envelope, lights and electrical appliances). The stochastic models of No-MASS can

be set as a seed value for controlling the randomness of the simulations. No-MASS

can be coupled with a building simulation tool, such as EnergyPlus or CitySim. This

coupling allows for simulated occupants to make changes within the simulated

building environment and to receive responses arising from the effects of their

interactions. Due to the window, shading and location/presence models, a sub-hourly

time step is recommended for using No-MASS. Longer time steps may overestimate

the implication of the occupant interactions (Chapman, Siebers et al. 2018).

Chapter 2: Urban energy co-simulation review

18

2.1.3 Simulation tools summary

The above simulation tools from different subdomains of urban energy systems have

different characteristics. The features of these simulation tools are summarised in

Table 2.1.

Table 2.1: A summary of urban energy simulation tools

Simulation

tool
Function

Simulation

time

progression

Temporal

resolution

Implementation

programming

language

EnergyPlus

building

energy

simulation

discrete time

sub hourly

(5 minute, 15

minute, etc.)

FORTRAN / C++

CitySim

building

energy

simulation

discrete time hourly C++

No-MASS
occupant

simulation
discrete time

sub hourly

(5 minute, 15

minute, etc.)

C++

As shown in the above table, the available simulation tools are all based on discrete-

time simulation. This requires the architecture of the urban energy co-simulation to

provide functionality to integrate simulation tools in a discrete-time simulation

manner with a fixed step size. Hence, requirement R1. Discrete-time simulator

integration support is identified. In addition, the temporal resolutions of these

simulation tools are different. Therefore, another requirement is that simulation tools

with different temporal resolution need to be composed together (Requirement R2.

Different temporal resolution support). As the analysed simulation tools are

developed in different programming languages, e.g. C++ and FORTRAN, the urban

energy co-simulation architecture needs to support the integration of simulators

implemented in different programming languages. This becomes requirement R3.

Simulation tools in various programming language support. If the urban energy co-

Chapter 2: Urban energy co-simulation review

 19

simulation approach can meet the above mentioned requirements, then a broader range

of simulation tools with similar attributes can be integrated.

2.2 Co-simulation

Co-simulation is an approach for joint simulation of a system or a coupled problem by

composing multiple subsystem simulation tools, also called simulators, to achieve a

global simulation of multiple subsystems that have interactions among them (Arnold

2004, Trčka, Hensen et al. 2010, Steinbrink, Lehnhoff et al. 2017, Gomes, Thule et al.

2018, Taveres-Cachat, Favoino et al. 2021). In this approach, coupled tools have their

own simulation model and runtime environment and the simulation is conducted on

the subsystem level, with communications among involved subsystems.

Subsystem simulators coupled in a co-simulation environment are software tools in

various domains that are capable of simulating dynamical system behaviour under

specified conditions. The subsystem could be a building system, an energy

transmission or an energy storage system. As shown in Figure 2.1, a subsystem

simulator normally contains a model of the system and a solver. The model is an

idealised and simplified representation of the system and the solver performs

computations based on the model and the input variables with sufficient numerical

accuracy (Siegfried 2014, Palensky, Meer et al. 2017).

Figure 2.1: Composition of a simulator

A co-simulation environment contains at least two coupled subsystem simulators with

data exchange between them to achieve simulation results. In most cases, it has a

master algorithm that orchestrates the entire co-simulation. During a co-simulation

process, the master algorithm controls the data exchange, coordination and

synchronisation between the coupled simulators.

The data exchange between the coupled simulators is accomplished at user-defined

communication points. The time interval between two communication points is a

Chapter 2: Urban energy co-simulation review

20

global time step (e.g. a macro time step). Within each global time step, each simulator

experiences a transition of the system model, which can be carried out at a series of

local time steps (e.g. micro time steps).

As shown in Figure 2.2, there are two types of co-simulation from the coupling point

of view. One is strong, also called tight coupling co-simulation, where the coupled

subsystem simulators are solved by one solver. The other is weak, also called loose

coupling co-simulation, where each of the coupled subsystem simulators has its own

solver and model. Each simulator is solved independently from each other by its own

solver. A co-simulation can be implemented by using either type (Hensen 1995, De

Sturler, Hoeflinger et al. 2001, Vaculin, Kruger et al. 2004).

Figure 2.2: Co-simulation environment

The weak coupling scheme can be further categorised into Jacobi pattern and Gauss-

Seidel pattern based on communication patterns between subsystems (Busch and

Schweizer 2010, Andersson 2013). Figure 2.3 presents an overview of the co-

simulation strategy classification.

Chapter 2: Urban energy co-simulation review

 21

Figure 2.3: Classification of co-simulation strategies

In a strong coupling co-simulation, the subsystem models are solved by one single

solver. For this approach, model equations of the involved subsystems are exposed to

a co-simulation manager. It’s required an iterative solution among subsystem models

to satisfy a predefined convergence criterion within each global time step of the co-

simulation process (Valasek 2008, Andersson 2013). As illustrated in Figure 2.4, the

strong coupling results in nesting iteration loops, which involves an internal iteration

within individual simulator, and an external iteration to achieve convergence of the

coupled simulators (Trčka, Hensen et al. 2010).

Figure 2.4: Communication and data exchange sequences for strong coupling co-

simulation

In a weak coupling co-simulation, each subsystem is solved by its own solver.

Simulators only exchange data from a preceding global time step. Each simulator can

have their own iterations, and there is no iteration required between the coupled

simulators at each step (Trčka, Hensen et al. 2010, Andersson 2013). Because the

solvers of the coupled subsystem models are independent, the communication among

the coupled subsystems can be either in parallel or sequential. For the parallel (Jacobi)

type, coupled subsystems could run and exchange coupling data simultaneously in

Chapter 2: Urban energy co-simulation review

22

parallel (Arnold 2010, Schierz and Arnold 2012). Alternatively, the sequential (Gauss-

Seidel) type adopts coupled subsystems sequentially and the data is exchanged in a

serial manner (Arnold 2010, Schierz and Arnold 2012). An overview of the

computation and data exchange sequences of the weak coupling co-simulation is

shown in Figure 2.5.

a) Weak coupling – parallel Jacobi type

b) Weak coupling – sequential Gauss-Seidel type

Figure 2.5: Communication and data exchange sequences for weak coupling co-

simulation

Strong coupling requires communication tightly integrated into the numerical solver,

which requires the solver to reverse back in time (including re-initialisation) (Trčka,

Hensen et al. 2010). In contrast, iterations are not necessary for a weak coupling

(Trčka, Hensen et al. 2010, Andersson 2013). This makes it much easier to implement

the co-simulation than strong coupling. Therefore, it became the most commonly used

coupling approach in the co-simulation community.

Chapter 2: Urban energy co-simulation review

 23

The urban energy system is a dynamic and hybrid system. To simulate such a system,

a number of subsystem energy simulation tools are required to be coupled in a way

that enables a dynamic simulation. Each of the tools is domain-specific and has its

own speciality. The solvers of the subsystem simulation tools are more often kept

separate. Therefore, it is more suitable for urban energy co-simulation to adopt the

weak coupling approach. Hence it is chosen in this research to simulate urban energy

system. In the remaining of the thesis, only weak coupling co-simulation will be

discussed. When co-simulation is mentioned, unless otherwise specified, it represents

weak coupling co-simulation.

In a co-simulation environment, a coupled subsystem can be represented in a

mathematical model by ordinary differential equations as follows:

𝑥̇ (t) = 𝑓(𝑥(t), u(t))

𝑦(𝑡) = 𝑔(𝑥(𝑡), 𝑢(𝑡))

2-1

Where x(t) is the state variable, u(t) is the input and y(t) is the output variable of the

subsystem, f is the differential portion, and g is the algebraic portion of the subsystem.

In the co-simulation environment, there are at least two subsystems being involved.

Assuming the total number of the subsystems is N (N ≥ 2), the 𝑖𝑡ℎ subsystem can be

represented by equation 2-2 where i is a positive natural number and 1 ≤ 𝑖 ≤ N.

𝑥̇𝑖(t) = 𝑓𝑖(𝑥𝑖(𝑡), 𝑢𝑖(t))

𝑦𝑖(𝑡) = 𝑔𝑖(𝑥𝑖(𝑡), 𝑢𝑖(t))

2-2

To have a better understanding of the two commonly used communication types of

weak co-simulation, e.g. Jacobi and Gauss-Seidel, it is essential to represent their

mathematical models to show similarities and differences between them. To keep it

simple, a co-simulation environment which contains two subsystems is used here.

Each of the two subsystems are calculated using a separate numerical algorithm.

 Subsystem 1
𝑥̇1(t) = 𝑓1(𝑥1(𝑡), 𝑢1(t))

𝑦1(𝑡) = 𝑔1(𝑥1(𝑡), 𝑢1(t))

2-3

 Subsystem 2
𝑥̇2(t) = 𝑓2(𝑥2(𝑡), 𝑢2(t))

𝑦2(𝑡) = 𝑔2(𝑥2(𝑡), 𝑢2(t))
2-4

Chapter 2: Urban energy co-simulation review

24

In equation 2-3 and 2-4, 𝑢1(t) and 𝑢2(t) are the input variables and 𝑦1(𝑡) and 𝑦2(𝑡)

are the output variables of the subsystem 1 and subsystem 2 respectively. The

interactions between the two subsystems are handled by passing 𝑦1(𝑡) and 𝑦2(𝑡) to

𝑢2(t) and 𝑢1(t), which take place at macro time step points from 𝑇0, 𝑇1, . . ., 𝑇𝑛, . . .,

to 𝑇𝑁. During one macro time step, the two subsystems are solved separately from

each other in parallel.

Micro time steps of the two subsystems can be different. We assume the total micro

time steps between one macro time step is J and K for the subsystem 1 and 2. 𝑡𝑛,𝑗 and

𝑡𝑛,𝑘 are the time step taken by the internal solver of each subsystem from 𝑇𝑛 to 𝑇𝑛+1,

which is from 𝑇𝑛,0, 𝑇𝑛,1, . . ., 𝑇𝑛,𝑗, . . ., 𝑇𝑛,𝐽 = 𝑇𝑛+1 and 𝑇𝑛,0, 𝑇𝑛,1, . . ., 𝑇𝑛,𝑘, . . ., 𝑇𝑛,𝐾 =

𝑇𝑛+1 respectively. 𝛷1and 𝛷2 are used to represent the individual update functions that

compute the values of the state variables 𝑥1(𝑡𝑛,𝑗) and 𝑥2(𝑡𝑛,𝑘) respectively. At the

macro time step the output variables are 𝑦1(𝑡𝑛,𝑗) and 𝑦2(𝑡𝑛,𝑘).

At the micro step points, the update of the inputs of the two subsystems has to be

approximated by extrapolation or interpolation. Using 𝛷1 and 𝛷2 to represent the

individual update functions that compute the values of the state variables, equations

2-3 and 2-4 could be updated to equations 2-5 and 2-6.

𝑥̇̃1(𝑡𝑛,𝑗) = 𝛷1(𝑥̃1(𝑡𝑛,𝑗), 𝑢̃1(𝑡𝑛,𝑗))

𝑦̃1(𝑡𝑛,𝑗) = 𝑔1(𝑥̃1(𝑡𝑛,𝑗), 𝑢̃1(𝑡𝑛,𝑗))

2-5

𝑥̇̃2(𝑡𝑛,𝑘) = 𝛷2(𝑥̃2(𝑡𝑛,k), 𝑢̃2(𝑡𝑛,k))

𝑦̃2(𝑡𝑛,k) = 𝑔2(𝑥̃2(𝑡𝑛,k), 𝑢̃2(𝑡𝑛,k))

2-6

In the Jacobi type of weak coupling, the two subsystems are executed in parallel.

Between two macro communication points, each simulator updates their state

variables and output variables within defined micro time steps according to equation

2-5 and 2-6. At the end of each macro time step, the simulators exchange their new

outputs with each other as follow.

𝑢1(𝑡𝑛) = 𝑦2(𝑡𝑛)

𝑢2(𝑡𝑛) = 𝑦1(𝑡𝑛)
2-7

Chapter 2: Urban energy co-simulation review

 25

As shown in Figure 2.6 a), after data exchange at time point 𝑇𝑛 (①), each subsystem

is executed in parallel and proceed to the next time point 𝑇𝑛+1 (②), and start another

data exchange at 𝑇𝑛+1 (③).

In the Gauss-Seidel type, the two subsystems are executed sequentially. At time point

𝑇𝑛, firstly the output value of subsystem 2 (𝑦2(𝑡𝑛)) is passed to subsystem 1 to be

assigned to 𝑢1(𝑡𝑛) (①). Subsystem 1 then advances from 𝑇𝑛 to 𝑇𝑛+1 based on

equations 2-5 and 2-6 (②). Once it’s done, subsystem 1 feeds its output value 𝑦1(𝑡𝑛+1)

back to subsystem 2 (③), and subsystem 2 then advances from 𝑇𝑛 to 𝑇𝑛+1(④). At the

end of this macro step, it then passes the output value (𝑦2(𝑡𝑛+1)) to subsystem 1 (⑤).

The more detailed illustration of the data exchange of Gauss-Seidel type of weak

coupling could be seen in Figure 2.6 b).

a) Jacobi type of weak coupling

b) Gauss-Seidel type of weak coupling

Figure 2.6: Data exchange of Jacobi and Gauss-Seidel type of weak coupling

②

①

②

③

①

②

⑤

③

④

Chapter 2: Urban energy co-simulation review

26

In the Jacobi type of coupling, all subsystems could run simultaneously. However,

because each coupled simulation tool does extrapolation or interpolation in one macro

step, extrapolation errors could be increased especially for those systems that have

high dependency on each other’s input. In comparison to Jacobi type of coupling,

Gauss-Seidel type of coupling reduces extrapolation errors during co-simulation

because only one simulator runs and it will not run until it receives latest output from

the other simulator. This makes the Gauss-Seidel type of coupling more stable (Busch

and Schweizer 2010, Bastian, Clauß et al. 2011).

Urban energy systems are complex in that it not only involves multiple domains but

also interactions among different domains (Pantaleo, keirstead et al. 2013). Therefore,

developing a single simulation tool that could simulate all aspects of urban energy

systems is not realistic considering its complexity as well as time and human resources

involved. Fortunately, there are a number of specialised domain-specific simulation

tools exist already in the urban energy domain. If they could be integrated through a

weak coupling scheme, this will be more effective. Using a co-simulation approach to

integrate available simulation tools, there are several advantages. Firstly, it provides

more flexibility. Tools could be chosen based on specific simulation purpose.

Secondly, we can reuse existing simulators, middleware and libraries, which minimise

implementation efforts. Thirdly, this can also provide the flexibility to substitute tools

targeting similar domains, to balance computational cost and accuracy depending on

the task in hand, e.g. more approximate methods for early or high uncertainty decisions

and more sophisticated solvers for more complex and later design stage (lower

uncertainty) tasks. Last but not the least, it provides scalability as more simulation

tools could be integrated where needed.

To conduct urban energy systems co-simulation, we can either choose Jacobi or

Gauss-Seidel type of coupling or a combination of both. Domain-specific energy

simulation tools could be coupled based on the communication sequences among the

composed subsystems using fixed macro time steps. Such communication sequences

need to be controlled by a master algorithm regardless coupling approach to use.

Therefore, to achieve overall co-simulation of urban energy systems, an important

requirement is to provide a master algorithm in the urban co-simulation architecture

that orchestrates all the urban energy subsystem simulation tools coupled either in

parallel (Jacobi) type or sequential (Gauss-Seidel) type or a combination of both. This

Chapter 2: Urban energy co-simulation review

 27

introduces requirement 4, R4. Master algorithm orchestrates simulators coupled in

Jacobi or Gauss-Seidel.

2.3 Co-simulation standards

To achieve a generic and scalable urban energy co-simulation by coupling simulators

in a co-simulation platform for the analysis of complex urban energy systems, it is

essential for the integrated urban energy subsystem simulators to be based on

standardised interfaces. The standardised interfaces cover all stages of a co-simulation

process including instantiation, initialisation, configuration, simulation, data exchange

and termination.

Therefore, another important requirement of urban energy systems simulation is that

urban energy subsystem simulators are integrated based on the most suitable co-

simulation standards with well-defined co-simulation interfaces (Requirement R5.

Generic simulator integration based on a co-simulation standard). Urban energy

subsystem simulators that are compliant with the co-simulation standard can be easily

integrated in such a platform.

Currently, Functional Mockup Interface (FMI) and High Level Architecture (HLA)

are the two most popular standards that provide standardised API supporting

simulation interoperability, which helps to reuse existing implementations.

2.3.1 Functional Mockup Interface (FMI)

FMI, developed by Daimler AG within the ITEA2 project MODELISAR, is a tool

independent standard to support both model exchange and co-simulation of dynamic

models using a combination of XML files, binaries and C-code (either compiled in

DLL/shared libraries or in source code) (Blochwitz, Otter et al. 2012). The standard

has been widely adopted by more than 170 software vendors and is broadly used in a

number of domains, including automotive, thermal, fluid and energy etc.

(MODELISAR 2018, Association 2022).

According to the FMI specification, FMI for co-simulation provides support to couple

two or more subsystem simulation tools, which focuses on discrete-time based

simulation in a co-simulation environment. The data exchange between subsystems is

restricted to discrete communication points. In the period between two communication

points, the subsystems are run independently from each other by their individual

Chapter 2: Urban energy co-simulation review

28

solver. Master algorithms control the data exchange between the slave subsystems and

the synchronisation of all subsystems (Blochwitz, Otter et al. 2012).

The FMI specification defines essential interfaces for co-simulation. The interfaces

enable diverse simulation tools to interoperate, covering all stages of the co-simulation

process including instantiation, initialisation, configuration, access, modification,

manipulation and termination in the form of C functions (FMI APIs). The calling

sequences of these functions must follow the state chart shown in Figure 2.7.

Figure 2.7: State Machine of Calling Sequence

In an FMI co-simulation environment, subsystem models, exported by their simulators

together with solvers as runnable code, need to be distributed in one zip file with the

extension “.fmu” called Functional Mockup Unit (FMU). A FMU contains the

following components:

• An FMI model description file in XML format which contains all exposed

variables.

• A model contains physical parameters or geometrical dimensions of a system

(e.g. building system or power network).

• Run-time library of needed functions of a solver and FMI APIs library, which

is implemented as Windows dynamic link libraries (.dll) or Linux shared

object libraries (.so). An FMU can be used by master algorithms to create

instances of the simulation models and perform co-simulation based on the

model and input and output variables.

• Additional FMU data (like tables, maps) in FMU specific file formats.

Chapter 2: Urban energy co-simulation review

 29

In an FMI compliant simulation, a master slave scheme normally is adopted, which is

illustrated in Figure 2.8. The master algorithm is essential for the co-simulation to

provide orchestration of the entire co-simulation though it is not part of the FMI

standard.

Figure 2.8: FMI compliant co-simulation

The strengths and weaknesses of the FMI standard are summarised as below.

Strengths: As FMI is a standard, simulation tools that follow its guidelines have built-

in interoperability. The FMI specification defines interfaces for co-simulation in the

form of C functions. This is a low-level approach. Such an approach makes FMI a

platform independent standard, since C compilers are available for almost any

platform. Although in the FMI standard, all the interfaces are defined in C, there are

many researchers made contribution by defining FMI interfaces in other programming

languages such as Python, C++ and Java. This facilitates coupling simulation tools

programmed in different programming languages. In addition, the FMI specification

does not include simulator-specific functionalities, which also makes it tool

independent. It keeps the intellectual property of the simulation models protected,

while collaborating and sharing such models in the form of FMUs.

Weaknesses: Despite the above-mentioned strengths, FMI does have some

limitations. 1) There is increased robustness and stability issue of co-simulation in

comparison to the monolithic simulation (Taveres-Cachat, Favoino et al. 2021). 2) The

computational performance of co-simulation is degraded in comparison to the

monolithic simulation (Schweiger, Gomes et al. 2018). 3) For large scale systems,

stability and complexity constitute barriers for real-world complex co-simulation

realisation (Schweiger, Gomes et al. 2019).

Chapter 2: Urban energy co-simulation review

30

It needs to be mentioned that there needs development effort to implement a co-

simulation system due to following features of the FMI standard. 1) FMI for Co-

Simulation does not define master algorithms to control the data exchange between

subsystems and the synchronisation of all coupled subsystem simulation tools. 2) FMI

for Co-Simulation does not define communication technology for distributed

scenarios, which means master algorithms need to implement communication layer to

handle data exchange between simulation tools running on different platforms. 3) Co-

simulation APIs need to be developed for simulation tools that do not support FMI

standard.

2.3.2 High Level Architecture (HLA)

HLA (IEEE 2010) was developed by the U.S. Modelling and Simulation Coordination

Office (M&S CO) in the mid-nineties (Dahmann, Salisbury et al. 1999). It is a standard

for distributed simulation with the goal to provide a solution to solve simulation

interoperability problems.

In an HLA based simulation, an interoperable simulation component called federate

can be combined to create a simulation called federation. Federates do not

communicate directly with each other. The communication is conducted through Run-

Time-Infrastructure (RTI) in an event-based manner. The RTI provides various

services for the HLA based simulation, including communication, synchronization,

event passing and data exchange of federates (Dahmann, Fujimoto et al. 1997). Only

with the permission of the RTI, a federate taking an active role in an HLA federation

is able to advance in a simulation process.

HLA standard requests a machine-readable specification of Simulation Object Models

(SOM) for each federate and a Federation Object Model (FOM) for a federation. While

a SOM describes the shared objects, attributes and interactions of a particular federate,

a FOM specifies all shared objects, attributes and interactions that may be used for

data exchange within the federation (Tolk and Rainey 2014). The RTI keeps track of

the subscriptions and publications of participating federates. This enables participating

federates to send and receive data based on declared object attributes and interactions

(Möller 2013). The structure of an HLA compliant simulation is illustrated in Figure

2.9. The publish/subscribe scheme of HLA results in weak coupling between

Chapter 2: Urban energy co-simulation review

 31

simulators, which may be distributed over a local or distributed cluster of computing

nodes.

Figure 2.9: HLA compliant simulation

The strengths and weaknesses of the HLA standard are summarised as below.

Strengths: As HLA is a standard, simulators that follow its guidelines will have a

built-in interoperability. In addition, HLA is programming language- and platform-

independent. Therefore, in an HLA compliant simulation, each federate can be

developed independently and implemented using different programming languages

and different hardware platforms (Fowler and Rose 2004). As a result, it allows the

integration of existing simulators without imposing severe modifications on their

internal structures, provided that they support some basic features (De Mello and

Wagner 2002).

Weaknesses: Similar to FMI, HLA does have some drawbacks. 1) Most RTIs adopt

a central structure. As a result, the central mode of RTI can easily be the bottleneck of

the system, making it difficult to expand the system (Kang 2010, Wang, Zhang et al.

2013). However, for the RTIs adopt a distributed structure, the harmonising algorithm

is very complex, and the running efficiency is low in most situations (Kang 2010). 2)

The RTI only supports distributed applications based on local area network. This

typically yields message latency times on the order of tens, hundreds of microseconds

resulting in performance issue for large simulations (Fujimoto and Hoare 1998). 3)

Chapter 2: Urban energy co-simulation review

32

Federates forward every update to its subscriber. Such communicate mechanism

brings additional overheads to the system (Hopkinson, Xiaoru et al. 2006). 4) The

HLA is very military specific and very complex, which makes it difficult to modify

existing simulation tools to conform to its specification if they are not HLA compliant

(Hopkinson, Xiaoru et al. 2006). 5) In terms of scalability, HLA based software

packages provide the ability of highly parallel simulations of large-scale systems, but

this introduces additional time-synchronisation issues (Müller, Georg et al. 2018).

Conclusion:

Requirement R5 (Generic simulator integration based on a co-simulation standard)

requires the co-simulation platform to be based on a co-simulation standard that

provides interoperability. By providing standardised interfaces to encapsulate existing

simulation tools either in a format such as FMU or federate, both FMI and HLA can

serve as the co-simulation standard for the urban energy conceptual co-simulation

architecture.

Though HLA can serve as a standard that provides weak coupling for simulation tools,

it focuses more on distributed simulation. The network protocol involved typically

yields message latency time and the publish/subscribe scheme brings additional

overheads because of the way federates communicate. Originally from military, HLA

offers too much irrelevant functionality for urban energy systems co-simulation,

which makes it unnecessarily complex, introduces a steep learning curve, and also

brings performance issue.

As mentioned earlier, FMI is the most recently developed standard focusing on co-

simulation. It is platform independent and can support simulation tools developed in

a number of programming languages. It also protects the intellectual properties of the

simulation models. It has been widely adopted by more than 170 tool vendors and is

being broadly used in various domains. As a co-simulation standard, FMI has the

potential to be a de facto standard accepted by co-simulation research community.

Therefore, FMI is chosen as the co-simulation standard in the research presented in

this thesis. Though a master algorithm needs to be developed, this will enable

developers to control how the co-simulation is conducted and optimise the simulation

if needed. In addition, for simulation tools that do not support FMI standard, APIs

could be developed for them as required.

Chapter 2: Urban energy co-simulation review

 33

2.4 Co-simulation middleware

To simulate urban energy systems with a co-simulation approach, the integrated

simulation tools need to communicate with each other in a unified way. In addition, it

is required to provide a scheme for subsystem simulation tools composition and

orchestration. Therefore, there are three additional essential requirements for the urban

energy co-simulation platform to provide such functionality.

1) Variables for data exchange and required parameters of all simulation models to be

integrated need to be defined in a unified way, which enables communication between

different simulation models (R6. Unified scheme for model configuration and data

exchange);

2) A set of clearly defined simulator composition APIs is required to composite

simulators (R7. Simulators composition);

3) A set of clearly defined simulator orchestration API is required to orchestrate

simulators and manage data exchange between the integrated simulators (R8.

Simulators orchestration).

Such scheme could be achieved through a master algorithm. Master algorithm is an

essential component of a co-simulation environment, which is used to not only

composite and orchestrate the execution of coupled simulation tools, but also manage

data exchange of simulation models.

Currently, FMI standard does not specify master algorithms. To develop orchestration

master algorithms for co-simulation from scratch is complicated. However, there are

co-simulation middleware available that could be used to provide functions for

facilitating master algorithms development. This could substantially simplify and

speed up simulators composition and orchestration functionality development. The

middleware mentioned here refers to reusable software that can significantly increase

reuse by providing readily usable, software class libraries to programming tasks

(Schmidt and Buschmann 2003). The co-simulation middleware helps the

composition of simulation tools and management of data exchange and

synchronisation among the integrated simulators. A simulation scenario is defined

based on the given variables for data exchange and parameters of simulation tools.

Chapter 2: Urban energy co-simulation review

34

Therefore, in the co-simulation architecture developed in this thesis, it is intended to

generate master algorithms based on existing co-simulation middleware, such as

Building Controls Virtual Test Bed (BCVTB) and mosaik.

2.4.1 Building Controls Virtual Test Bed (BCVTB)

BCVTB is an open-source middleware based on Ptolemy II (Ptolemaeus 2014) with

additional executable entities (actors) implemented in Java, which was developed by

Lawrence Berkeley National Laboratory (LBNL) at the University of California. It

was designed to couple different simulation tools for co-simulation, which are

commonly used in building simulation domain e.g. linking EnergyPlus, Modelica,

Radiance and MATLAB/Simulink (Wetter 2011).

BCVTB contains its own APIs for co-simulation. These APIs are much more limited

than FMI and are not supported by simulation tools that export FMUs (Nouidui 2014).

In order to allow users to import and couple simulation tools that have been exported

as FMUs, the BCVTB has been extended to support FMUs import by using JFMI

(Brooks, Lee et al. 2012). JFMI is a Java wrapper for FMI to interact with the FMUs

for co-simulation.

A BCVTB based simulation follows a client/server architecture, which is shown in

Figure 2.10. The dotted line in the centre of the figure marks the components of the

BCVTB server. The BCVTB server has a director that calls each actor at fixed

synchronisation time step and manages data exchange between the actors (Wetter

2011). Each actor is responsible for one simulator client and needs a configuration file

that specifies how the simulator can connect to the actor. The data exchange during

runtime is carried out between the client and the BCVTB server via a (Berkeley

Software Distribution) socket for inter-process communication using TCP/IP network

protocol. This enables co-simulation be done either locally on one hosting computer,

or remotely over the internet, possibly using different operating systems (Wetter

2011). The BCVTB director is responsible for passing data received from one client

on to another according to a routing topology specified by the user. The BCVTB based

simulation conducts data exchange between the simulator clients using a fixed

synchronisation time step without iteration results in a weak coupling co-simulation

strategy (Wetter 2011).

Chapter 2: Urban energy co-simulation review

 35

Figure 2.10: Requirements, software architecture and implementation workflow

Strengths: Using Java as the developing programming language makes the BCVTB

middleware platform independent. In addition, as a co-simulation middleware,

BCVTB was originated from building simulation domain. It is capable of coupling

several simulation tools like EnergyPlus, Modelica, Radiance and

MATLAB/Simulink for co-simulation (Wetter 2011). Currently, the BCVTB supports

coupling FMUs, which makes it capable of integrating FMI-compliant simulators.

Moreover, it is an open-source software, which makes it available for other researchers

to modify.

Weaknesses: BCVTB introduces an additional socket-based transaction layer into the

communication between simulators, which typically yields communication latency. In

addition, BCVTB was developed based on Ptolemy II, which was not designed

specifically for co-simulation but for research on signal processing and embedded

systems (Brooks, Lee et al. 2008). This makes it unnecessarily complex for co-

simulation and increases the learning curve for new users. For co-simulation system

with a number of subsystem simulators integrated to simulate complex scenarios, the

run-time performance of BCVTB can be very poor due to the complex design of

Ptolemy II and additional transaction layer between the simulators.

Chapter 2: Urban energy co-simulation review

36

2.4.2 Mosaik

Developed by OFFIS, mosaik is another co-simulation middleware, which aims to

reuse existing simulation models in a common context to simulate complex smart grid

scenarios in order to evaluate control strategies (Schütte 2011).

Basically, mosaik is a Python library that provides a set of APIs, including simulator

API and scenario API. Integrated simulators are wrapped by simulator API. Simulator

API allows the integration of simulators into a co-simulation environment by

providing a model description file that contains variables for data exchange and a set

of interface functions. The simulator API is comparable to the FMI API, but is more

simplified, specifying only the minimal set of functions a simulator needs to provide

in order to participate in a co-simulation. Scenario API facilitates the creation of a

scenario script for a specific simulation purpose. Based on the description of the

scenario script, mosaik simulator manager and scheduler call scenario API to initialise

and configure the integrated simulators. They also connect one simulator with another

based on the variables for data exchange, execute the co-simulation in a discrete-time

manner and coordinate data exchange between integrated simulators (Rohjans,

Lehnhoff et al. 2013).

Mosaik is able to integrate different, existing, technologically heterogeneous

simulation tools (Rohjans, Lehnhoff et al. 2013). This allows an easy reuse of available

simulation tools from various domains implemented in arbitrary programming

language (Lehnhoff, Nannen et al. 2015). In addition, mosaik has its own semantic

and control layer that could facilitate implementing scheduling algorithm (Scherfke

and Schütte 2012).

Strengths: Unlike BCVTB that was developed based on Ptolemy II, and originally

not developed for co-simulation purpose, mosaik was developed as a brand new co-

simulation middleware focusing on smart grid. It is implemented in Python language,

which makes it platform independent and allows easy integration of existing

simulation tools, no matter what programming language they are implemented. The

set of mosaik API, e.g. scenario API and simulator API, help to develop orchestration

master algorithms rapidly. As the mosaik API and scheduler of mosaik were

developed for co-simulation purpose, the run-time performance of mosaik based

simulation is better than BCVTB based simulation.

Chapter 2: Urban energy co-simulation review

 37

Weaknesses: Mosaik currently is only able to couple simulation models wrapped by

its own programming interfaces simulator API. Lacking FMI support makes it

incapable of integrating models exported by FMI-compliant modelling tools.

Moreover, the simulator API provides fewer functions than FMI API. This brings

limitations for advanced co-simulation.

Conclusion:

Both BCVTB and mosaik provide necessary APIs to implement master algorithms to

orchestrate the simulation and data exchange between individual simulation tools.

Hence, they both fulfil the research requirements R6 (Unified scheme for model

configuration and data exchange), R7 (Simulators composition), and R8

(Simulators orchestration). Both of them are open-source software. Therefore,

necessary modification and function enhancement could be done to make it better

serve the co-simulation of urban energy environment. However, in comparison to

BCVTB, mosaik was designed in a layered manner and offers a more complete

solution as a co-simulation middleware. In addition, it has better run-time

performance. Given the complexity of urban energy simulation environment, in the

research presented in this thesis, mosaik is chosen as the co-simulation middleware to

facilitate master algorithm implementation.

2.5 Co-simulation software architecture requirement

If a project has not achieved a system architecture, including its rationale, the project

should not proceed to full-scale system development. Specifying the architecture as a

deliverable enables its use throughout the development and maintenance process.

- Barry Boehm (Boehm 1995)

Software architecture as a concept has its origins in the research of Edsger Dijkstra in

1968 and David Parnas in the early 1970s (Dijkstra 1968, Parnas 1972, Parnas 1976,

Parnas 1979). They pointed out that the structure of a software system matters and it

is critical to get the structure right at the very beginning. This idea laid the conceptual

foundation for what became the study of software architecture today.

In order to develop a platform that meets the requirements raised in the previous

sections, a conceptual architecture needs to be designed that links the requirements

and implementation of the urban energy co-simulation platform (see Figure 2.10). It

Chapter 2: Urban energy co-simulation review

38

can not only ensure the requirements of the urban energy co-simulation are satisfied,

but also help us to study the feasibility of the software systems development. In

addition, it can help to determine which requirements are viable.

Figure 2.11: Requirements, software architecture and implementation workflow

Since the 1990s, the study of software architecture gained in popularity with research

work focusing on architectural styles (patterns), architecture description languages,

architecture documentation and formal methods (Garlan and Shaw 1993). It is

effective to establish a common architectural framework across various domain-

related products, which aids in achieving interoperability (Garlan and Perry 1995).

A good software architecture helps to provide modularity across and among various

components within the software, which means that the components can be readily

combined in different ways to meet different purposes without adding substantial

additional code to make these components work together. With this foundation of

flexible components, additional modules can be easily added (Meyer and Webb 2005).

Therefore, a modular software architecture is a good choice for the design of the urban

energy co-simulation software architecture. Such modular design provides flexibility

as different modules and functions could be added based on requirements of the

simulation.

With a thorough analysis of the requirements mentioned in the above sections and

study of software architecture (Garlan and Shaw 1993, Clements and Northrop 1996,

Bass, Clements et al. 2003, Fairbanks 2010, Medvidovic and Taylor 2010, Brown

2014), another requirement for a good design of the urban energy co-simulation

Chapter 2: Urban energy co-simulation review

 39

software architecture is derived. That is the urban energy co-simulation software

architecture should consist of a set of modules facilitating simulation tools integration.

Each module of the software architecture has its own functionality and provides

disciplined interfaces for other modules to access its functionality. This becomes the

final requirement of the co-simulation architecture, R9. Modular design.

2.6 Summary of urban energy co-simulation requirements

Through a detailed review of urban energy simulation tools, co-simulation approach,

related standards and middleware, requirements of a generic co-simulation approach

have been identified in this chapter, i.e. Obj. I (Identify requirements for the generic

and scalable urban energy co-simulation) is achieved.

To summarise, the nine requirements for co-simulation of the urban energy systems

are listed in Table 2.2.

Table 2.2: Urban energy systems co-simulation requirements

R1. Discrete-time simulator integration support

To integrate simulation tools in discrete-time simulation manner with

fixed step size.

R2. Different temporal resolution support

Simulation tools with different temporal resolution can be composed

and integrated.

R3. Simulation tools in various programming language support

To support integration of simulation tools implemented in different

programming languages.

R4. Master algorithm orchestrates simulators coupled in Jacobi or

Gauss-Seidel

To provide master algorithm in the urban co-simulation platform that

orchestrates the co-simulation of urban energy subsystem simulators

coupled either in parallel (Jacobi) type or sequential (Gauss-Seidel)

type or a combination of both.

Chapter 2: Urban energy co-simulation review

40

R5. Generic simulator integration based on a co-simulation standard

To integrate subsystem simulators based on standardised interfaces, so

that interoperability among different tools could be achieved.

R6. Unified scheme for model configuration and data exchange

Parameters and attributes of simulators and their models to be

integrated need to be defined in a unified way, which enables

communication between simulators and their model integration

through unified model configuration and data exchange scheme.

R7. Simulators composition

A set of clearly defined simulator composition API functions are

required to composite simulators.

R8. Simulators orchestration

A set of clearly defined simulator orchestration API functions are

required to orchestrate simulators and manage data exchange between

the integrated simulators.

R9. Modular design

The conceptual architecture of the urban energy co-simulation

environment needs to consist of a set of modules facilitating simulation

tools integration. Each module of the architecture has its individual

functions and provides interfaces for other modules to access its

functionalities.

Chapter 3: Conceptual co-simulation architecture design

 41

3 CONCEPTUAL CO-

SIMULATION

ARCHITECTURE DESIGN

The urban energy conceptual co-simulation architecture is presented in this chapter,

to address the nine requirements identified through the review presented in Chapter 2.

3.1 Conceptual co-simulation architecture

Considering the nine requirements identified during the review, the urban energy co-

simulation software architecture is designed in a layered modular way, in order to

satisfy requirement R9 (Modular design). Each layer of the architecture consists of a

modular set of components with its own functions and provides disciplined interfaces

for other modules to access its functionalities. The design will ensure that the platform

developed based on this architecture could be extended to include alternative

standards, middleware and integration tools. In addition, each layer satisfies certain

requirements of the urban energy co-simulation presented in Chapter 2.

The architecture is consisted of four layers, i.e. simulator layer, interconnection layer,

interoperability layer and control layer. Figure 3.1 illustrates the conceptual

architecture of the urban energy co-simulation. Individual urban energy simulation

tools could be integrated through the simulator layer and the overall simulation

purpose could be implemented through the control and interoperability layers. There

are no direct control and data exchange between the integrated simulation tools. Rather

they are implemented through the higher layers. The more detailed description of the

functionality of each layer is presented in the next section.

Chapter 3: Conceptual co-simulation architecture design

42

Figure 3.1: Conceptual architecture of the urban energy systems co-simulation

3.2 Co-simulation architecture layer description

More detailed explanation of each layer is given as follows.

▪ Simulator Layer

The simulation tools to be integrated are wrapped in this layer. A co-simulation

process includes multiple stages such as instantiation, initialisation, configuration,

simulation, data exchange and termination. Co-simulation standard provides well

defined API functions to manipulate simulators throughout the co-simulation process.

Therefore, the relevant requirement for simulator layer of the co-simulation platform

to satisfy is R5. Generic simulator integration based on a co-simulation standard.

To integrate into the co-simulation platform in a generic way, the urban energy

subsystem simulation tools are required to be based on standardised interfaces. This

means individual simulators to be integrated should provide required co-simulation

interfaces according to the standard. The integrated simulators do not communicate

with each other directly but through the standardised interfaces to the upper layer of

Co-simulation Platform for Ecological-urban (COPE).

As discussed in Section 2.3, the tool-independent, open-source standard FMI was

chosen as the co-simulation standard for the co-simulation platform. Therefore, this

layer will enable simulators to be integrated into the co-simulation platform to be

compliant with the FMI co-simulation standard, with full support for FMU export.

Chapter 3: Conceptual co-simulation architecture design

 43

▪ Interconnection Layer

The urban energy simulation tools to be integrated into the co-simulation platform

could support different co-simulation standards, and be implemented in different

programming languages such as, C, C++, Java, Python, etc. Therefore, the FMUs in

the simulator layer could provide FMI interfaces in different programming languages.

As a result, it’s a challenge for them to communicate and interconnect with each other.

The interconnection layer aims to solve such technical challenges, hence satisfying

the requirement R3 (Simulation tools in various programming language support).

To meet the requirement R3, the interconnection layer must enable integration of

FMUs with FMI interfaces implemented in different programming languages. This

requires the interconnection layer of the co-simulation platform to use necessary FMI

libraries to facilitate the handling of FMUs with exposed FMI interfaces implemented

in various programming languages.

▪ Interoperability layer

The interoperability layer provides a mechanism to composite and orchestrate FMUs

by calling FMI interfaces provided by the interconnection layer. Composition API and

orchestration API will be implemented in this layer to address five requirements

identified in Chapter 2, which are R1 (Discrete-time simulator integration support),

R2 (Different temporal resolution support), R6 (Unified scheme for model

configuration and data exchange), R7 (Simulators composition), and R8

(Simulators orchestration).

As mentioned in Section 2.3, the interoperability layer utilises modules and APIs

provided by mosaik co-simulation middleware to speed up simulators composition

and orchestration functionality development. The core modules of mosaik are

scenario, simulator manager and scheduler, which provides essential co-simulation

functionality facilitating simulators composition and orchestration.

▪ Control Layer

The purpose of this layer is to control and coordinate the simulation in order to achieve

the overall simulation intentions of the co-simulation scenarios defined by experts,

who have knowledge about urban energy systems that are to be simulated and the

available simulation tools to be integrated. This requires the control layer to provide a

solution to define co-simulation scenarios and execute the co-simulation of urban

Chapter 3: Conceptual co-simulation architecture design

44

energy subsystem simulation tools coupled either in parallel (Jacobi) type or

sequential (Gauss-Seidel) type or a combination of both. The requirement R4 (Master

algorithm orchestrates simulators coupled in Jacobi or Gauss-Seidel) will be

addressed by this layer.

The master algorithm will include a co-simulation scenario and functions to run the

scenario. By calling the composition API and orchestration API provided by the

interoperability layer, the simulators can be composed, connected and synchronised

as intended and data could be exchanged. In doing so, simulators implemented in

different programming languages and modelled with different temporal resolutions

could be orchestrated in a discrete-time manner.

Chapter 3 presented the conceptual co-simulation architecture for urban energy

systems. Obj. II (Design a conceptual co-simulation architecture that will be able to

integrate urban energy simulation tools from different domains) is achieved

correspondingly in this chapter. The implementation of each layer of the urban energy

co-simulation platform based on the architecture will be explained in the next chapter

to achieve Obj. III (Develop an urban energy co-simulation platform based on the

conceptual architecture).

Chapter 4: Urban energy co-simulation platform development

 45

4 URBAN ENERGY CO-

SIMULATION PLATFORM

DEVELOPMENT

In the previous chapter, a conceptual co-simulation architecture was developed to

address the requirements of urban energy co-simulation. Based on the conceptual

architecture, a Co-simulation Platform for Ecological-urban (COPE) was developed

for urban energy systems simulation. The platform follows a layered modular design

in order to achieve a generic and scalable co-simulation.

The implementation of the four main layers of COPE is explained in detail in this

chapter to demonstrate how the requirements are addressed in each layer. In addition,

how the modularity of COPE enables it to integrate different urban energy simulation

tools conforming to the chosen co-simulation standard with minimum effort and cost

will be presented. At the end of the chapter, the process to apply COPE to a specific

simulation scenario is given, in order to facilitate other users of the platform.

4.1 Simulator layer

As discussed in Section 2.3, the tool-independent, open-source standard FMI was

chosen as the co-simulation standard for COPE. Therefore, to meet requirement R5

Generic simulator integration based on a co-simulation standard, this layer will

enable simulators to be integrated into the platform to be compliant with the FMI co-

simulation standard, with full support for FMU export.

The FMI standard specification defines essential interfaces for co-simulation. In order

to be compliant with the FMI co-simulation standard, FMI co-simulation API

Chapter 4: Urban energy co-simulation platform development

46

functions need to be implemented for each integrated simulation tool. These API

functions provide interfaces to instantiate, initialise, configure, execute simulation

tools and conduct data exchange between the integrated tools. Furthermore, FMU

export functionality needs to be provided by these FMI-compliant simulation tools.

This functionality enables an FMU zip archive to be generated, which includes a

model description XML file, a simulation configuration XML file, a simulation model,

a model solver and a run-time library containing compiled FMI co-simulation APIs as

shown in Figure 4.1. A model solver is a software component of the simulation tool

which includes algorithms to solve simulation models. During a co-simulation

process, FMUs act as co-simulation slaves. They are called by a master algorithm to

create instances of the simulation models and orchestrate them by calling the FMI

functions.

Figure 4.1: FMU zip archive

In COPE, the development of the simulator layer is based on integration of simulators

that are compliant with the FMI co-simulation standard with FMU export support,

which is shown in Figure 4.2.

Figure 4.2: COPE – Detail of the simulator layer

Chapter 4: Urban energy co-simulation platform development

 47

To participate as a component of the co-simulation platform, simulation tools to be

integrated are required to support FMU export. In the research presented in this thesis,

we focus on co-simulation by integrating the available time-stepped urban energy

simulation tools, such as EnergyPlus and No-MASS, to the co-simulation platform.

Correspondingly, simulators in Figure 4.2 are instances of EnergyPlus and No-MASS;

meaning for example that we could have multiple instances of EnergyPlus or of No-

MASS to model individual buildings.

As mentioned in Section 2.2, some tools already provide functionality to support FMU

export. For example, EnergyPlus already supports FMU export by offering a software

package named EnergyPlusToFMU to export EnergyPlus together with simulation

model as a FMU for co-simulation. However, there are also tools not supporting the

FMU export yet. Therefore, to enable them to support FMU export, it is required to

implement FMI co-simulation API functions and offer FMU export functionality. It

needs to mention that either source code of the simulation tools needs to be accessed

or libraries are available.

As the source code of No-MASS is accessible, FMI co-simulation API functions have

been implemented in this research in order to integrate it. Depending on the

programming language of the tools, FMI co-simulation API functions can be

implemented in different programming languages like C, C++, Java, Python, etc.

EnergyPlus and No-MASS were developed in C++ and FMI co-simulation API

functions were implemented in C for each of them in this research. To implement FMI

co-simulation APIs for other urban energy simulation tools in other programming

languages, these API functions could be referred to as template in the future.

The approach to make a non-FMI-compliant simulation tool, like No-MASS, with

FMU export is demonstrated in this section through the following three steps. The

same approach can be adopted to make other urban energy simulation tools to be FMI-

compliant with FMU export.

Step 1 – FMI functions development

Firstly, to make No-MASS compliant with the FMI standard, necessary FMI co-

simulation API functions need to be developed. In the research presented in this thesis,

FMI co-simulation API functions are developed based on FMI standard 2.0.1.

Chapter 4: Urban energy co-simulation platform development

48

However, as the co-simulation platform is in a layered modular design, FMI 3.0

support can be implemented as additional modules in the future.

In the FMI 2.0.1 release, there are three common functions, eight data exchange

functions and 28 functions for co-simulation, which cover all stages of a co-simulation

process including instantiation, initialisation, configuration, simulation, data exchange

and termination. In this release, wrapper functions are defined for corresponding FMI

functions. For example, fmi2_import_get_version() is the wrapper for the FMI

function fmiGetVersion(). The FMI common and co-simulation functions are listed in

Table 4.1.

Table 4.1: FMI functions

Common Functions

fmiGetTypesPlatform fmiGetVersion fmiSetDebugLogging

Data Exchange Functions

fmiSetReal fmiSetInteger fmiSetBoolean

fmiSetString fmiGetReal fmiGetInteger

fmiGetBoolean fmiGetString

Co-Simulation Functions

fmiInstantiate fmiTerminate fmiDoStep

fmiReset fmiFreeInstance fmiCancelStep

fmiGetStatus fmiGetRealStatus fmiGetIntegerStatus

fmiGetBooleanStatus fmiGetStringStatus fmiGetTypesPlatform

fmiSetRealInputDerivati

ves
fmiGetOutputDerivatives

In the research presented in this thesis, only key functions were implemented for co-

simulation in C programming language. The key functions were selected based on a

simplified state-machine for the calling sequence of co-simulation functions shown in

Figure 4.3.

Chapter 4: Urban energy co-simulation platform development

 49

Figure 4.3: State-machine for the calling sequence of co-simulation functions

The key co-simulation functions shown in Figure 4.3 are summarised in Table 4.2. A

detailed definition of the key functions can be found in Appendix 1.

Table 4.2: Key FMI functions involved in the calling sequence of co-simulation

FMI functions Description

fmiInstantiate To instantiate the slave FMU

fmiFreeInstance
To dispose the given instance, unload the

loaded model, and free all the allocated memory

instantiateModel To instantiate the model

fmiSetReal To set values of inputs

fmiGetReal
To get values of the variables by providing their

variable references

fmiDoStep To run a computation of a time step

fmiGetStatus
To inform the master about the actual status of

the simulation run.

fmiCancelStep To cancel the current computation.

fmiTerminate To signal the slave the end of the co-simulation.

Chapter 4: Urban energy co-simulation platform development

50

The implementation of the key FMI co-simulation functions for a non-FMI-compliant

simulation tool requires new functions to be developed to fit for their purposes. The

newly developed FMI functions are summarised in Table 4.3. A detailed definition of

the new FMI functions can be found in Appendix 2.

Table 4.3: New FMI co-simulation functions

FMI functions Description

DataStore::addVariable
Store input and out variables in

an associative container

DataStore::addValue Get input values

DataStore::getValue Provide output values

Simulation::preprocess
Necessary pre-processing before

simulation

Simulation::parseConfiguration
Parse simulation configuration

xml file

Simulation::setupSimulationModel Pre-condition building model

Simulation::preTimeStep Process before running timeStep

Simulation::timeStep Run a computation of a time step

Simulation::postprocess
Postprocess a computation of a

time step

Step 2: Generate SimulationConfig.xml and ModelDescription.xml

The SimulationConfig.xml file defines the time step, starting and end date of the

simulation. ModelDescription.xml defines model name, variables and its

implementation.

To support FMU export, the second step is to develop templates of

SimulationConfig.xml and ModelDescription.xml. For certain use cases, if simulation

period and time step need to be different, they can be modified in the

SimulationConfig.xml file. Similarly, exposed variables can be modified in the

Chapter 4: Urban energy co-simulation platform development

 51

ModelDescription.xml. An example of a SimulationConfig.xml and

modelDescription.xml is shown as follows.

SimulationConfig.xml

<simulation>

 <seed>6600</seed>

 <timeStepsPerHour>12</timeStepsPerHour>

 <beginMonth>1</beginMonth>

 <endMonth>12</endMonth>

 <beginDay>1</beginDay>

 <endDay>31</endDay>

 <learn>0</learn>

 <buildings>

…

 </buildings>

<models>

…

</models>

</simulation>

modelDescription.xml

<fmiModelDescription fmiVersion="2.0"

 modelName="FMI"

 modelIdentifier="FMI"

 guid="{fd719ef5-c46e-48c7-ae95-96089a69ee64}"

 generationDateAndTime="2022-04-17T19:12:58Z"

Chapter 4: Urban energy co-simulation platform development

52

…

<ModelVariables>

 <ScalarVariable causality="input"

name="Block1:Zone1ZoneAirRelativeHumidity" valueReference="1">

 <Real declaredType="Modelica.Blocks.Interfaces.RealInput"

start="0.0" />

 </ScalarVariable>

...

 <ScalarVariable causality="output"

name="Block1:Zone1LightState" valueReference="12">

 <Real declaredType="Modelica.Blocks.Interfaces.RealInput"

start="0.0" />

 </ScalarVariable>

 </ModelVariables>

<Implementation>

 <CoSimulation_Tool>

 <Capabilities

 canHandleVariableCommunicationStepSize="true"

 canHandleEvents="true"

 canRejectSteps="false"

 canInterpolateInputs="false"

 maxOutputDerivativeOrder="0"

 canRunAsynchronuously="false"

 canSignalEvents="false"

 canBeInstantiatedOnlyOncePerProcess="true"

Chapter 4: Urban energy co-simulation platform development

 53

 canNotUseMemoryManagementFunctions="true"/>

 </CoSimulation_Tool>

 </Implementation>

</fmiModelDescription>

Step 3: Compile No-MASS and generate FMU zip archive

After the FMI functions are implemented and the XML files are generated, the last

step is to archive FMU. The makefile of No-MASS was modified to compile FMI-

compliant binaries and generate the corresponding FMU zip archive. A schematic

view of the directory structure of a zip archive of a No-MASS FMU is shown as

follows.

Table 4.4: Structure of a No-MASS FMU zip-file

Directory structure of a zip archive of a No-MASS FMU

agentFMU/

|

|-------binaries/

| |-------linux64/ // Target platforms are

specified as: <os><architecture>

| |-------FMI.so // Model code, must export the

FMI-specified functions

|-------modelDescription.xml // Detailed model

information, e.g. all exposed variables, etc.

|-------SimulationConfig.xml // Detailed simulation

information, e.g. simulation period and time step

Chapter 4: Urban energy co-simulation platform development

54

For a co-simulation, the FMU export support serves as the starting point, which

enables individual urban energy subsystem simulators to be integrated into the

simulator layer of COPE.

4.2 Interconnection layer

The urban energy simulation tools to be integrated into the co-simulation platform can

be programmed in different programming languages such as, C, C++, Java, Python,

etc. Therefore, FMUs in the simulator layer could provide FMI interfaces in different

programming languages.

To address the requirement R3. Simulation tools in various programming language

support, the interconnection layer of COPE is responsible to enable integration of

FMUs with FMI interfaces implemented in different programming languages. This

requires the interconnection layer to use necessary available FMI libraries to facilitate

the handling of FMUs with exposed FMI interfaces implemented in various

programming languages. The libraries need to be able to load FMU with FMI API in

its own programming language, and expose the API functions in the same

programming language with exposed interfaces by its upper layer, the interconnection

layer.

Currently, there are several FMI libraries, such as PyFMI, JavaFMI, FMI++, FMI

Library and FMU SDK, available to facilitate the interaction of FMUs with FMI

interfaces in different programming languages. PyFMI is a python library for loading

and interacting with FMUs using Python native calls based on FMILibrary, which is

maintained by Modelon AB (Andersson, Åkesson et al. 2016). JavaFMI is a Java

library for controlling FMUs, developed by SIANI institute at Las Palmas University

(Evora, Hernandez et al. 2014). FMI++ is a C++ library that provides access to handle

FMUs (Widl, Müller et al. 2013). The FMI Library and FMU SDK provide basic

access to FMI functions, which are written in C and C++ respectively (Modelon 2014,

QTronic 2014). The features of these libraries are summarised in Table 4.5.

Chapter 4: Urban energy co-simulation platform development

 55

Table 4.5: FMI libraries for interacting FMUs

Name
FMI co-simulation

support

Programming

language
Version License

PyFMI Yes Python 2.2 LGPLv3

JavaFMI Yes Java 2.6.1 LGPLv3

FMI++ Yes C++ - BSD

FMI

Library
Yes C 2.0.1 BSD

FMU

SDK
Yes C++ 2.0.3 BSD

As discussed in Section 2.4, mosaik was selected as the co-simulation middleware in

this research to speed up the simulators composition and orchestration functionality

development in the upper layer of the interconnection layer, the interoperability layer.

Currently, mosaik co-simulation middleware can composite and orchestrate

simulators by calling API functions written in Python and Java. The available urban

energy simulation tools, like EnergyPlus, CitySim, No-MASS are programmed in

C++ and provide FMI API functions written in C. Therefore, the interconnection layer

needs to provide a solution to load FMUs with C-language FMI API functions and

expose FMI API functions in Python or Java, so that the API interface can be called

by mosaik co-simulation middleware.

Based on the simulation tools planned to be integrated in this research, PyFMI together

with FMI Library were adopted in the interconnection layer to fulfil this task. The

implementation of the interconnection layer of COPE is shown in Figure 4.4.

Chapter 4: Urban energy co-simulation platform development

56

Figure 4.4: COPE – Detail of the interconnection layer

Currently, the FMI library (version 2.0.1) and PyFMI (version 2.2) were already

integrated in the interconnection layer of the platform, which provides Python native

calls to the interoperability layer to load and interact with FMUs within C FMI

functions. It needs to be pointed out that the current version of PyFMI does not support

co-simulation tool coupling. Therefore, in this research, the fmi.py file of PyFMI was

modified by adding FMI model initialisation function to make PyFMI capable of

direct and generic coupling co-simulation tools.

Because COPE is designed in a modular architecture, the interconnection layer could

be extended easily by adding more FMI libraries. In the future, if there are simulation

tools, with FMI interfaces programmed in other programming language such as C++

and Java, need to be integrated into the platform, we can just plug FMI++ and JavaFMI

into the interconnection layer. Such approach enables COPE to integrate urban energy

simulation tools implemented in different programming languages shown in Appendix

3 into the co-simulation platform.

4.3 Interoperability layer

The purpose of the interoperability layer of COPE is to provide a mechanism to

composite and orchestrate FMUs by calling FMI interfaces provided by the PyFMI

and FMI Library of the interconnection layer. This layer will provide relevant

functions to address the following requirements R1. Discrete-time simulator

integration support, R2. Different temporal resolution support, R6. Unified scheme

for model configuration and data exchange, R7. Simulators composition, and R8.

Simulators orchestration.

Chapter 4: Urban energy co-simulation platform development

 57

In the research presented in this thesis, the interoperability layer utilises modules and

APIs provided by mosaik co-simulation middleware to speed up simulators

composition and orchestration functionality development. The core modules of

mosaik are simulator manager, scenario handler and scheduler, which provide

essential co-simulation functionality facilitating simulators composition and

orchestration. Simulator API and scenario API are two set of APIs offered by core

mosaik modules for simulators integration, co-simulation scenarios creation and

simulators orchestration (OFFIS 2017).

The simulator manager module of mosaik is responsible for starting simulator

processes, managing the data exchange between simulators, and shutting them down.

This is achieved by calling mosaik simulator API, which is a set of functions for

advancing simulators in a discrete-time stepped fashion and exchanging data that

simulators receive and provide.

The mosaik simulator API functions can be classified into three categories:

initialisation functions, such as init and create, run-rime functions, such as get_data,

set_data and step, and termination function, such as finalize. The initialisation and

termination functions are called only once during a co-simulation process. After the

initialisation functions are called, the run-rime functions are called repeatedly until the

co-simulation reaches its end. The key mosaik simulator API functions are

summarised in Table 4.6. A detailed definition of the Mosaik simulator API functions

can be found in Appendix 5.

Table 4.6: Mosaik simulator API

Function Description

init
Initialise a simulator by utilising simulator and model

initialisation parameters

create Create model instances

step
Perform a simulation step based on some input data for

a time interval

get_data Get data from a simulator

set_data Set input data for a simulator

Chapter 4: Urban energy co-simulation platform development

58

finalize
Do some clean-up operations after the simulation

finished

The mosaik scenario module handles simulator configuration and composition, as well

as co-simulation execution based on variables specified for a scenario. The specified

variables describe how the simulators and their models are configured and

interconnected with each other. Scenario API is a set of functions provided by the

scenario module to set up and run a co-simulation scenario. The scenario API provides

functionalities to start simulators and instantiate simulation models, connect models

with each other by establishing dataflows between the simulators, and execute

simulation of the connected models. The key mosaik scenario API functions for

flexible simulator coupling and execution are summarised in Table 4.7. A detailed

definition of the mosaik scenario API functions can be found in Appendix 6.

Table 4.7: Mosaik scenario API

Functions Description

start Start a simulator based on the configuration

connect Connect source model to destination model.

run Execute simulation of connected models

The mosaik scenario module provides scenario definition scheme to define variables

of coupled simulators and their models, as well as data exchange between simulators,

in a unified way. Following the scheme, a co-simulation scenario can be defined for

simulators composition and co-simulation execution. Thus, the requirement R6

Unified scheme for model configuration and data exchange is addressed. The

mosaik scenario API provides well defined functions facilitating simulators and their

models composition. Therefore, the requirement R7 Simulators composition is also

satisfied.

When the mosaik scenario API is called, the mosaik scenario module composites

simulators and their models and establishes interconnections between them. A data

flow is automatically generated during this process, which describes the data

Chapter 4: Urban energy co-simulation platform development

 59

dependencies among the simulators involved in the co-simulation. It serves as the

basis for simulators orchestration.

The mosaik scheduler module utilises the data flow generated by the scenario module,

to progress all coupled simulators in a discrete-time stepped fashion, coordinate data

exchange between them during runtime and keep them synchronised. Together with

the scenario module and the simulator manager module, mosaik scheduler is able to

orchestrate discrete-time simulators with different step sizes. Therefore, the

requirements R1. Discrete-time simulator integration, R2. Different temporal

resolution support, and R8. Simulators orchestration are satisfied.

In the research presented in this thesis, simulators to be integrated into the co-

simulation platform need to be encapsulated in FMU format. As mentioned in Section

4.2, the interconnection layer provides FMI co-simulation interfaces to be used by the

interoperability layer to composite and orchestrate integrated FMUs. However,

mosaik co-simulation middleware cannot call FMI interfaces directly to coordinate

FMUs. It can only manipulate simulators via mosaik simulator wrappers, which

contain implementation of the mosaik simulator API functions. Therefore, the

implementation of the interoperability layer requires not only utilising mosaik

middleware but also additional development of an FMI interfaces adapter and mosaik

simulator wrappers for simulators to be integrated into the co-simulation platform. The

adapter allows mosaik simulator API and FMI API to work together in the same

platform and the wrapper contains implementation of the mosaik simulator API

functions.

FMI adapter development

Conceptually, mosaik simulator API and FMI API both are co-simulation API, and

there are overlaps between them. Therefore, technically an interfaces adapter mapping

functions of mosaik simulator API and FMI API is required to make these two

interfaces compatible with each other in the same platform. In this research, an FMI

adapter was developed which allows mosaik co-simulation middleware to interact

with FMUs by calling FMI API functions exposed by the interconnection layer.

Currently, the implemented FMI adapter supports the key FMI functions involved in

the calling sequence of co-simulation that are listed in Table 4.2. The mapping

Chapter 4: Urban energy co-simulation platform development

60

between the mosaik simulator API and the FMI API via the FMI adapter is illustrated

in Figure 4.5.

Figure 4.5: FMI adapter

Mosaik simulator wrapper development

As mentioned earlier, mosaik simulator wrappers, which contain implementation of

simulator APIs are required, to enable the communication between mosaik

middleware and FMI API. In the research presented in this thesis, mosaik simulator

wrappers were implemented for the integrated time-stepped urban energy simulation

tools, including EnergyPlus and No-MASS. These mosaik simulator wrappers were

implemented in Python language, which is not restricted by specific programming

languages used to develop these urban energy simulation tools.

Each mosaik simulator wrapper includes a formal simulator description of each

simulator and its models, as well as implemented mosaik simulator API functions.

Using No-MASS as an example, the approach to develop mosaik simulator wrapper

is demonstrated as follows, which includes two steps. The same approach could be

adopted to develop the mosaik simulator wrappers for other urban energy simulation

tools.

Step 1: Define No-MASS simulator metadata

Describe the models of the simulator by defining a meta data dictionary that tells

which model the simulator implements, along with its parameters that can be received

by the model and attributes that can be accessed.

Chapter 4: Urban energy co-simulation platform development

 61

Meta description for the No-MASS simulator

META = {

 'models': {

 'officeAgent': {

 'public': True,

 'params': [

 'model_name', # Name of the idf file

 'model_path', # Path containing idf file

],

 'attrs': [

 'Block1:Zone1ZoneAirRelativeHumidity',

 'Block1:Zone1ZoneMeanRadiantTemperature',

 'Block1:Zone1ZoneMeanAirTemperature',

 'Block1:Zone1DaylightingReferencePoint1Illuminance',

 'EnvironmentSiteExteriorHorizontalSkyIlluminance',

 'EnvironmentSiteRainStatus',

 'EnvironmentSiteOutdoorAirDrybulbTemperature',

 'Block1:Zone1BlindFraction',

 'Block1:Zone1NumberOfOccupants',

 'Block1:Zone1LightState',

 'Block1:Zone1WindowState0',

 'Block1:Zone1AverageGains',

],

 },

 },

}

Chapter 4: Urban energy co-simulation platform development

62

Step 2: Implement interface functions of mosaik simulator API

Furthermore, essential interface functions of mosaik simulator API have to be

implemented, which are used by mosaik simulator manager to control the simulator.

In the research presented in this thesis, five mosaik simulator API functions init(),

create(), set_data() and get_data(), step() were implemented for No-MASS simulator

wrapper by calling functions exposed by FMI adapter.

In summary, the mosaik core modules and APIs, mosaik simulator wrappers, and FMI

adapter are implemented in the interoperability layer, which address the relevant

requirements of this layer. An overview of the implemented interoperability layer is

illustrated in Figure 4.6.

Figure 4.6: Interoperability layer implementation

Based on the above discussion of the components in the interoperability layer of

COPE, the detail of the interoperability layer developed during the present research is

shown in Figure 4.7.

Chapter 4: Urban energy co-simulation platform development

 63

Figure 4.7: COPE – Detail of the interoperability layer

In the implemented interoperability layer, the mosaik simulator wrapper together with

the FMI adapter facilitate manipulating simulators encapsulated in FMU format by

calling python FMI interfaces exposed by the interconnection layer. The mosaik co-

simulation middleware provides mosaik simulator API and Scenario API, which

serves as the composition API of the co-simulation platform. It facilitates integration

of discrete-time simulators via a meta data description of simulators and a set of

interface functions. Furthermore, the mosaik scenario API serves as the orchestration

API, which provides functions to establish interconnections between simulators and

their models. When the scenario API functions are called, the scenario module of

mosaik establishes a data flow among models, which is used by the mosaik scheduler

and simulator manager to execute the co-simulation of all connected simulators.

4.4 Control layer

The control layer of the co-simulation platform is responsible for coordinating

integrated simulators to achieve the overall simulation intentions of co-simulation

scenarios defined by the users. As mentioned in Chapter 3, requirement to address the

control layer is R4. Master algorithm orchestrates simulators coupled in Jacobi or

Gauss-Seidel.

To define co-simulation scenario and execute the co-simulation, a master algorithm

needs to be implemented to orchestrate the co-simulation and manage the data flow of

simulators involved in the co-simulation. The generic scenario definition scheme,

provided by mosaik scenario module of the interoperability layer, is used by the master

Chapter 4: Urban energy co-simulation platform development

64

algorithm to describe which simulators are to be integrated, how they are configured

and interconnected with each other, and what data are to be exchanged between them.

The orchestration API, e.g. mosaik scenario API, is then called by the master

algorithm to establish interconnections between simulators and their models and

execute the co-simulation in a discrete-time stepped fashion. To develop a master

algorithm, a co-simulation scenario needs to be defined. Functions to run the scenario

will need to be included in the master algorithm as well.

To demonstrate how to develop a master algorithm used in COPE, an example of a

mater algorithm for a Gauss-Seidel type of weak coupling including two simulators is

given below.

Step 1: Define a co-simulation scenario

To define a co-simulation scenario, the topology to connect model instances of the

integrated simulators needs to be defined first. For a Gauss-Seidel type of weak

coupling, the way to connect two simulators and data to be exchanged at each time

step is illustrated in Figure 4.8. The two simulators are executed in sequence. At the

beginning of the co-simulation, simulator 1 passes initial data as input to simulator 2.

Simulator 2 then starts to run simulation and advances one time step. After the first

time step finishes, simulator 2 passes its outputs back to simulator 1 and simulator 1

then starts to run and advances one time step. It then passes output values as input to

simulator 2 again. This process will repeat until the end of the co-simulation.

Figure 4.8: Gauss-Seidel type of weak coupling of two simulators

Based on the simulation sequence, the configuration information of simulator 1 and

simulator 2 and the duration of the simulation are defined in the master algorithm.

Chapter 4: Urban energy co-simulation platform development

 65

The sim_config data structure is used to specify which simulators are available and

how to start them. The definition of simulator configuration of this example is shown

below.

sim_config

sim_config = {

 'simulator1': {

 'python': 'mosaik_simulator1.mosaik:Simulator1',

 },

 'simulator2': {

 'python': 'mosaik_simulator2.mosaik:Simulator2',

 },

}

In the above example, two simulators are listed. For each simulator, the way to start it

is specified. Since the simulators in the example are encapsulated in FMU format and

wrapped with mosaik simulator wrapper, they can be manipulated in pure python calls

as stated in Section 4.2 and 4.3. The mosaik co-simulation middleware can import the

simulators and execute in python processes. This is indicated by the lines 'python':

'mosaik_simulator1.mosaik:Simulator1' and 'python': 'mosaik_simulator2.mosaik:

Simulator2'.

The simulation duration of the integrated simulators needs to be specified before the

implementation of functions to run the co-simulation of the two simulators through

Gauss-Seidel coupling. The duration is specified by starting date and time, and length

of the simulation period.

Simulation duration

START = '2015-01-01 00:00:00'

END = 365 * 24 * 3600 # 1 year

Chapter 4: Urban energy co-simulation platform development

66

After the co-simulation scenario configuration, a world object needs to be instantiated

within the provided simulator configuration information.

 world = mosaik.World(sim_config)

The world object holds simulation state of all integrated simulators, which is used by

functions in the master algorithm to be defined in the next step.

Step 2: Define functions to run the scenario

In this example, we implemented one function create_scenario(world) in the master

algorithm to create executable scenario to conduct co-simulation. This function

includes all essential functions to start the two simulators, instantiate models within

the simulators, connect the model instances of different simulators to establish the data

flow between them, and execute the co-simulation.

Simulation duration

Start simulators

sim1= world.start('Simulator1', step_size=600, tStart=0, tStop=END,

sim_params={}, model_config=[('cid','sim1model', 1, {'model_path':

'/work/fmu_repo/sim1/sim1model/', 'model_name':

'sim1FMU.fmu'})])

sim2= world.start(' Simulator2', step_size=600, tStart=0, tStop=END,

sim_params={}, model_config=[('cid','sim2model', 1, {'model_path':

'/work/fmu_repo/sim2/sim2model/', 'model_name':

'sim2FMU.fmu'})])

Instantiate models

 sim1model = sim1.sim1model.create(1)

sim2model = sim2.sim2model.create(1)

Connect sim1 to sim2

world.connect(sim1model[0], sim2model[0], 'var1', 'var2',

async_requests=True)

Chapter 4: Urban energy co-simulation platform development

 67

Once the executable scenario is created by referring topology to connect model

instances of the two simulators and data flow is established between the model

instances in the co-simulation scenario definition stage, the co-simulation could be

started by calling world.run(). How long the simulation needs to run could be specified

here.

 world.run(until=END)

In this example master algorithm, the two simulators are executed sequentially as the

data flow connection diagram illustrated in Figure 4.8. At each time point, the output

value of simulator 1 is firstly passed to simulator 2. Then simulator 2 advances one

time-step and feeds its output value back to simulator 1. Once it’s done simulator 2

can advance one time-step. This process continues until the end of the simulation. For

co-simulation with different simulation scenarios, similar master algorithms could be

developed by referring to the example master algorithm demonstrated in this section.

Master algorithms could be developed to support co-simulation of simulators coupled

in either Jacobi type or Gauss-Seidel type.

The implementation of the control layer of the co-simulation platform is shown in

Figure 4.9.

Figure 4.9: Control layer implementation

4.5 The developed platform - COPE

The development of each layer of COPE has been presented in the above sections.

Figure 4.10 shows the detailed internal structure of the platform, which was

Chapter 4: Urban energy co-simulation platform development

68

implemented in a layered modular software architecture and addresses all the key

requirements of the urban energy co-simulation identified in Chapter 2.

Figure 4.10: The co-simulation platform for Ecological-Urban - COPE

COPE, as shown in Figure 4.10, requires integrated simulation tools to be compliant

with FMI standard and allows simulation in a discrete-time (fixed-step size) manner.

With FMI support, simulation tools can be exported in FMU format in the simulator

layer.

The interconnection layer of COPE enables it to load and interact FMUs with C FMI

interfaces and provides Python native calls to the interoperability layer. The layered

modular design of the platform allows to add additional FMI software package to the

interconnection layer to support integrating simulation tools with FMI interfaces

programmed in programming language other than C.

For each simulator integrated into the co-simulation platform, mosaik simulator API

functions must be implemented in a mosaik wrapper. The mosaik simulator wrapper

together with FMI adapter in the interoperability layer enable the communication

between mosaik co-simulation middleware and the FMI interfaces of the integrated

simulators exposed by the interconnection layer. The mosaik middleware composite

and orchestrate simulators and build interconnections between simulators and their

models. When the scenario API functions are called, the scenario module of mosaik

Chapter 4: Urban energy co-simulation platform development

 69

establishes a data flow among models, which is used by the mosaik scheduler and

simulator manager to execute the co-simulation.

By calling mosaik scenario API provided by the interoperability layer, the master

algorithm of the control layer is able to establish interconnections between the

integrated simulators and their models and execute the co-simulation in a discrete-

time stepped fashion. Thus, the overall simulation purpose of a co-simulation scenario

designed by urban energy simulation end users could be achieved, and the results

could be used for decision making in urban energy planning to improve energy

efficiency and urban sustainability.

4.6 COPE application process

To facilitate other end users to use COPE to conduct simulation for a specific scenario,

a process is explained in this section with step by step guidance. The application

process of COPE for a co-simulation scenario is illustrated in Figure 4.11. A brief

description of what needs to be done at each step is given below.

Figure 4.11: COPE application process for a co-simulation

▪ Coupling system design

The first step is to design the co-simulation, which includes defining the co-simulation

scenario and simulation purpose. The simulation tools to be integrated into COPE will

Chapter 4: Urban energy co-simulation platform development

70

be selected based on the simulation purpose. The coupling typology is decided based

on relationship between the simulation tools. The coupling scheme is either Jacobi

pattern or Gauss-Seidel pattern based on communication patterns between the

simulation tools. In addition, variables to be exchanged among the integrated tools are

also defined.

▪ Model development

In this step, simulation models for each tool are collected or developed, for the

simulation purpose.

▪ Co-simulation setup

Most co-simulation development work is conducted in this step.

If the integrated simulators do not support FMI, then they need to be made FMI-

compliant by developing FMI co-simulation API functions, generating configuration

and model XML files, and generating FMU zip archive. An example was presented in

Section 4.1.

After the models FMU are generated, an interfaces adapter and mosaik simulator

wrappers will need to be developed. In addition, a master algorithm needs to be

developed by defining co-simulation scenario and functions to run the scenario. The

coupling type is also reflected in the scenario.

▪ Simulation

After all setup is completed, the co-simulation could be started by running the master

algorithm. Depends on the time resolution and duration, area scale, complexity of the

simulation and the computation hardware capability, this process could take up to a

few hours or days.

The co-simulation process orchestrated by the master algorithm is illustrated in Figure

4.12.

Chapter 4: Urban energy co-simulation platform development

 71

Figure 4.12: Co-simulation process

▪ Results analysis

After the simulation is completed, results could be then analysed and used for urban

energy planning or decision making.

The development of COPE, as well as its application for a co-simulation, is presented

in this chapter. Correspondingly, Obj. III (Develop an urban energy co-simulation

platform based on the conceptual architecture) is achieved in this chapter. In the next

chapter, the application of COPE through two case studies will be presented. The

purpose is to evaluate the modular co-simulation architecture as well as COPE in order

to validate the co-simulation approach developed in the research.

Chapter 4: Urban energy co-simulation platform development

72

Chapter 5: Case studies of the co-simulation approach

 73

5 CASE STUDIES OF THE CO-

SIMULATION APPROACH

Chapter 3 introduced a conceptual co-simulation architecture and Chapter 4 presented

the implementation of COPE based on such architecture. The COPE approach

addressed all the research requirements raised in Chapter 2 through a generic and

scalable co-simulation for urban energy modelling.

In this chapter, COPE is applied to two illustrative case studies: single building co-

simulation and multiple buildings co-simulation. The aim of the case studies is

twofold: functional evaluation and validation of the co-simulation architecture; and

application demonstration of the co-simulation platform.

The first case study is presented in Section 5.1 as a proof-of principle demonstration

and functionality evaluation of the platform. The fundamental functionalities, such as

synchronisation and interaction between the co-simulation platform and coupled

simulation tools are evaluated through a single building energy co-simulation.

Through the evaluation, the conceptual co-simulation architecture, on which the

platform was based, is validated.

Furthermore, Section 5.2 presents the second case study to demonstrate the

extendibility and applicability of the co-simulation platform. This case study is used

to demonstrate COPE for a more complex multiple buildings energy modelling with

multiple simulation models.

Chapter 5: Case studies of the co-simulation approach

74

Together the two case studies give an overview of the main capabilities of COPE. A

conclusion of the functional evaluation and application demonstration of the platform

is then given in Section 5.3.

5.1 Case 1: Single building co-simulation

To validate the conceptual co-simulation architecture as well as evaluate the

fundamental functionalities of COPE, such as integration and orchestration, a simple

case with only one shoe box office building was designed. With this building energy

system, the building energy consumption is affected by its occupants’ stochastic

behaviours. Equally, the occupants’ behaviours are impacted by the building

environment such as temperature, shading, etc.

To simulate its energy behaviour as well as impact of its occupants’ stochastic

behaviours on the building performance, two simulation tools were selected and

integrated. They are the detailed whole-building energy simulation tool EnergyPlus

(Crawley, Lawrie et al. 2001) and the multi-agent stochastic simulation tool No-

MASS (Chapman, Siebers et al. 2018). In this case, they are orchestrated to simulate

energy behaviour of the shoe box office and impact of its occupants’ stochastic

behaviours on the building performance (Figure 5.1).

Figure 5.1: Shoe box office energy system

EnergyPlus, on its own, performs energy simulation of a building using deterministic

rules and schedules that represent occupant interactions with the building, such as

window openings, shading, lights and occupants’ presence. When coupled with No-

MASS, EnergyPlus simulates the building’s energy flows and passes environmental

Chapter 5: Case studies of the co-simulation approach

 75

variables to No-MASS. No-MASS then parses the environmental conditions to predict

occupants’ behaviours and interacts with shading devices, windows and lighting. It

then returns the number of occupants in a zone, their metabolic gains, appliance gains,

the window status, the blind shading fraction, and the lighting status to EnergyPlus.

Thus, the impact of stochastic interactions of occupants on building performance

simulation is examined.

In a previous work, Chapman coupled EnergyPlus and No-MASS to conduct co-

simulation by using FMU import feature of EnergyPlus for studying the impact of

multi-agent stochastic behaviours on building performance simulation (Chapman,

Siebers et al. 2018). In such an approach, EnergyPlus acts as the co-simulation master

and No-MASS is imported as a salve. Similar to Chapman, some other researchers

such as Stifter, Schwalbe et al. (2013), Thomas, Miller et al. (2014) and Miller,

Thomas et al. (2017), Gurecky, De Wet et al. (2020) also used FMU import approach

to couple two simulators. There was no integration platform, and the simulation

structure was limited to only two simulators. However, the FMU import method is a

verified coupling technique for conducting co-simulation between two simulators.

Therefore, the simulation results of EnergyPlus and No-MASS in Chapman’s FMU

import approach will be referred to as a baseline simulation in this research.

In this case, the coupling of EnergyPlus and No-MASS to simulate a hypothetical shoe

box office and its occupants’ stochastic behaviours was implemented in both

Chapman’s FMU import approach and the COPE approach. The results will be

examined and compared.

The major steps involved in this case study include coupling system design, model

development, co-simulation setup, simulation and results analysis. They are illustrated

in Figure 5.2.

Chapter 5: Case studies of the co-simulation approach

76

Figure 5.2: Single shoe box building co-simulation case study process

The first step of the single shoe box building co-simulation case study process is the

coupling system design (Section 5.1.3). In this step, the exchanging variables and the

data flow diagram of EnergyPlus and No-MASS, as well as the occupants’ stochastic

behaviours of the shoe box office, will be defined. After that, the shoe box EnergyPlus

model and the corresponding stochastic simulation No-MASS model will be

developed (Section 5.1.4). In the co-simulation setup stage, necessary FMUs will be

generated and then mosaik simulator wrappers and the master algorithm will be

developed (Section 5.1.5). After that, the occupants’ stochastic behaviours of the shoe

box office were simulated through both the Chapman’s FMU import approach and

COPE (Section 5.1.6). In the last step, the simulation results of COPE were compared

with that from Chapman’s FMU import approach to demonstrate that the

synchronisation and interaction between the urban energy co-simulation platform and

coupled co-simulation components could work as expected (Section 5.1.7).

Before presenting the major steps of the case, the orchestration and co-simulation

process of the FMU import approach and COPE will be presented in Sections 5.1.1

and 5.1.2.

Chapter 5: Case studies of the co-simulation approach

 77

5.1.1 Chapman’s FMU import approach

The connection between EnergyPlus and No-MASS of the FMU import approach

adopted by Chapman is shown in Figure 5.3 and simulation input files for EnergyPlus

and No-MASS are described in Table 5.1.

Figure 5.3: EnergyPlus and No-MASS orchestration diagram (FMU import

approach - based on (Chapman, Siebers et al. 2018))

Table 5.1: Simulation input files for EnergyPlus and No-MASS (FMU import

approach - based on (Chapman, Siebers et al. 2018))

Simulation

tool
File Description

EnergyPlus

in.idf

The building configuration file

containing the data describing the

building and environmental variables

need to be exchanged during the co-

simulation process.

in.epw The weather data file

ModelDescription.xml

In Chapman’s approach, for EnergyPlus

the building and environmental

variables need to be exchanged during

the co-simulation process are defined in

the in.idf file. ModelDescription.xml file

Chapter 5: Case studies of the co-simulation approach

78

should not be part of simulation input

files for EnergyPlus shown in Figure 5.3.

No-MASS

SimulationConfig.xml

It contains information about the

occupants that is used to build the agent

population, and the subsequent

processing of an agent activity profile (a

series of parameters defining the socio-

demographic characteristics of the

agent, i.e. gender, age, income level, etc)

that is used to calculate the probability

of an activity taking place at each time

step (Chapman, Siebers et al. 2018). It

also defines the window and shading

model coefficients for each model,

allowing for diversity between

occupants and models to be represented

as needed (Chapman, Siebers et al.

2018).

ModelDescription.xml

It contains occupants’ interactions

variables need to be exchanged during

the co-simulation process.

In Chapman’s FMU import approach, No-MASS FMU is imported as a slave

simulator and EnergyPlus acts as the master simulator, which controls data exchange

and synchronisation between the master simulator and the slave simulator. The co-

simulation process between EnergyPlus and No-MASS in the FMU import approach

is illustrated in Figure 5.4.

Chapter 5: Case studies of the co-simulation approach

 79

Figure 5.4: EnergyPlus and No-MASS co-simulation process (FMU import

approach)

In this FMU import approach, the simulation is started by EnergyPlus. After reading

its building configuration IDF file and weather data EPW file, EnergyPlus locates No-

MASS FMU, extracts it and then instantiates No-MASS to start the co-simulation

process. At each time step, EnergyPlus simulates the single building’s energy flows

and passes its environmental variables as an array of double precision values defined

in the ExternalInterface section of the EnergyPlus in.idf file to No-MASS. Then

fmiDoStep function of No-MASS is called by EnergyPlus to perform a calculation

based on the environmental variables received from EnergyPlus and then returns

results of stochastic interactions of occupants to EnergyPlus, as an array of double

precision values specified in the No-MASS model description XML file. These values

from No-MASS are used by EnergyPlus in the next time step to overwrite

corresponding values defined by the predefined deterministic rules. These include the

number of occupants in a zone, their metabolic gains, appliance gains, the window

status, the blind shading fraction, the lighting status and heating setpoints.

Consequently, the energy consequences of occupants’ interactions are considered

Chapter 5: Case studies of the co-simulation approach

80

during simulation of building's energy flows. This process continues until the end of

the simulation. Once all time steps are completed the No-MASS FMU model instance

is terminated by EnergyPlus and the co-simulation process is ended.

5.1.2 COPE approach

In contrast to Chapman’s approach, the generic and scalable urban energy co-

simulation approach presented in this thesis couples simulators in COPE. In this

approach, simulation tools, such as EnergyPlus and No-MASS, are encapsulated in

FMU format and are integrated into COPE as shown in Figure 5.5.

Figure 5.5: EnergyPlus and No-MASS orchestration diagram (COPE approach)

In the COPE approach, both EnergyPlus FMU and No-MASS FMU can be integrated

as slaves and orchestrated by a master algorithm to control the data exchange between

EnergyPlus and No-MASS and the synchronisation of them. The co-simulation

process of EnergyPlus and No-MASS of this approach is illustrated in Figure 5.6.

Chapter 5: Case studies of the co-simulation approach

 81

Figure 5.6: EnergyPlus and No-MASS co-simulation process (COPE approach)

In the COPE approach, the simulation is started by the master algorithm of the co-

simulation platform. Firstly, the EnergyPlus FMU and No-MASS FMU are located,

extracted, and then instantiated by the master algorithm. During the co-simulation

process, the master algorithm calls fmiDoStep function of EnergyPlus to simulate the

building’s energy flows at each time step. The values of the environmental variables

of EnergyPlus are extracted by the master algorithm and passed to No-MASS. Then

the master algorithm calls fmiDoStep function of the No-MASS to perform a

calculation of stochastic interactions of occupants based on the environmental

variables received from EnergyPlus. These values from No-MASS are then extracted

by the master algorithm and passed to EnergyPlus at the next time step to overwrite

corresponding values based on predefined deterministic rules then resolve the energy

consequences of these interactions when simulating the building's energy flows. This

process continues until the end of the simulation. Once all time steps are completed,

the FMU model instances of EnergyPlus and No-MASS are terminated by the master

algorithm and the co-simulation process is ended.

Chapter 5: Case studies of the co-simulation approach

82

5.1.3 Coupling system design

In the coupling system design step, the environmental variables of the hypothetical

shoe box office and its occupants’ stochastic behaviours are specified, which

constitute the exchanging variables and data flow between the EnergyPlus and No-

MASS as shown in Figure 5.7.

Figure 5.7: Coupling system design

In this case, EnergyPlus provides environmental variables of the building, which

include zone humidity, indoor radiant temperature, zone air temperature, indoor

illuminance, horizontal sky illuminance, rain status, outdoor air temperature. Some of

these variables will be used by No-MASS to simulate occupants’ behaviour, and it

generate variables related to the presence of the occupants, such as the number of

occupants in a zone, the window status, the lighting status and heat gains due to the

occupants’ presence. These variables constitute the input and output variables of the

two simulation tools. The input and output variables of EnergyPlus and No-MASS for

shoe box office simulation are outlined in Table 5.2 and Table 5.3.

Table 5.2: EnergyPlus output variables (No-MASS input variables)

Variables Description

ZoneAirRelativeHumidity [%]
It represents the air relative humidity

after the correct step for each zone.

ZoneMeanRadiantTemperature [°C]

The mean radiant temperature is the

interior wall temperature by the

emittance of the interior surfaces.

Quite often the emittance is assumed

to be 1.

Chapter 5: Case studies of the co-simulation approach

 83

ZoneMeanAirTemperature [°C]

The zone mean air temperature is the

average air temperature of a zone at

the system time step.

DaylightingReferencePoint1Illuminance

[lux]

The total daylight illuminance at the

first reference point from all of the

windows in a daylight zone.

SiteExteriorHorizontalSkyIlluminance

[lux]

Illuminance from sky solar radiation

on an unobstructed horizontal plane at

the earth’s surface.

SiteRainStatus [1 or 0]
This field indicate whether it is raining

outside or not (1=yes, 0=no).

SiteOutdoorAirDrybulbTemperature [°C]
This is the outdoor dry-bulb

temperature.

Table 5.3: No-MASS output variables (EnergyPlus input variables)

Variable Description

NumberOfOccupants The number of occupants in a zone.

AverageGains

[Watt/m2]

The sensible metabolic heat gains due to the

occupants’ presence.

GainsAppliance The appliance gains.

BlindFraction The blind shading fraction.

WindowState [0 or 1] The widows are CLOSE (0) or OPEN (1).

LightState [0 or 1] The lights are OFF (0) or ON (1).

Chapter 5: Case studies of the co-simulation approach

84

The co-simulation exchanging variables defined in Case 1 are listed in Appendix 4.

After the definition of the input and output variables of the shoe box office and its

occupants, the data flow diagram of coupling between EnergyPlus and No-MASS on

the shoe box office and its occupants’ stochastic behaviours are defined as shown in

Figure 5.8.

Figure 5.8: Data flow between EnergyPlus and No-MASS during co-simulation

During the co-simulation process, EnergyPlus simulates the building’s energy flows

and passes environmental variables to No-MASS at each time step (①). Consequently,

No-MASS parses the environmental conditions to predict agents’ behaviours and

interactions with shading devices, windows and lighting (②). It then returns the

number of occupants in a zone, their metabolic gains, appliance gains, the blind

shading fraction, the window status, and the lighting status to EnergyPlus (③). After

receiving outputs from No-MASS, EnergyPlus resolves the energy consequences of

these interactions when simulating the building's energy flows in the next step (④).

This process continues until the end of the simulation. Due to the window, shading

and location/presence models used within No-MASS, 5 minutes time step for co-

simulation is recommended as longer time step may overestimate the implication of

the occupants' window control interactions (e.g. the duration that windows remain

open) (Chapman, Siebers et al. 2018).

Chapter 5: Case studies of the co-simulation approach

 85

5.1.4 Model development

After coupling system design, the EnergyPlus shoe box office building model was

developed. The layout of the shoe box office building modelled by EnergyPlus is

shown in Figure 5.9.

Figure 5.9: Shoe box building

In common with a single zone case studied by Chapman, details such as glazing ratios,

heating set-points, and constructions of the shoe box office are given in Table 5.4 and

Table 5.5. The weather file was taken from EnergyPlus weather data website ((DOE)

2018) giving the location of Geneva, Switzerland (46o 25’ North, 6 o 13’ East).

Table 5.4: Shoe box building zone details

Zone
Area

[m2]

Volume

[m3]

Gross

Wall Area

[m2]

Glazing

ratio %

Lighting

[W/m2]

Setpoint

Temp [oC]

Office 11 39 47 6 20 21

Table 5.5: Shoe box building construction materials

Location Layer
Thickness

(m)
Material

External Wall Outer 0.1 Brick

External Wall 2 0.07 XPS extruded

External Wall 3 0.1 Concrete Block

External Wall Inner 0.01 Gypsum Plaster

Chapter 5: Case studies of the co-simulation approach

86

U-Value 0.37

Internal Partition Outer 0.02 Gypsum Plaster

Internal Partition 2 0.1 Air Gap

Internal Partition Inner 0.02 Gypsum Plaster

U-Value 2.86

Ground Floor Outer 0.13
Urea Formaldehyde

Foam

Ground Floor 2 0.1 Cast Concrete

Ground Floor 3 0.07 Floor Screed

Ground Floor Inner 0.03 Timber Flooring

U-Value 0.26

Floor Outer 0.10 Cast Concrete

U-Value 4.7

Pitched Roof Outer 0.02 Clay Tile

Pitched Roof 2 0.02 Air Gap

Pitched Roof Inner 0.005 Roofing Felt

U-Value 4.97

Just as in Chapman’s approach, the standard deterministic schedules were referred to

as the baseline to judge the stochastic co-simulation of EnergyPlus and No-MASS.

For this case study, as shown in Table 5.6, the deterministic rules that govern

occupancy for the office on weekdays were defined as 00:00 until 07:00, [0%], until

08:00, [25%], until 09:00, [50%], until 12:00, [100%], until 14:00, [75%], until 17:00,

[100%], until 18:00, [50%], until 19:00, [25%], until 24:00, [0%]. The percentage

number in the bracket means the chances of occupants in the buildings. It’s assumed

that the office is vacant during the weekend period. The operation rules of the office

equipment and lighting were defined in a way similar like the occupancy schedule.

Chapter 5: Case studies of the co-simulation approach

 87

For the windows operation, it was defined to be opened when occupants are present

and the indoor temperature exceeds 24 oC.

Table 5.6: Shoe box office schedules

Occupancy Equipment Lighting WindowState

Office_OpenOff_Occ,

Fraction,

Through: 31 Dec,

For: Weekdays

SummerDesignDay,

Until: 07:00, 0,

Until: 08:00, 0.25,

Until: 09:00, 0.5,

Until: 12:00, 1,

Until: 14:00, 0.75,

Until: 17:00, 1,

Until: 18:00, 0.5,

Until: 19:00, 0.25,

Until: 24:00, 0,

For: Weekends,

Until: 24:00, 0,

For: Holidays,

Until: 24:00, 0,

For:

WinterDesignDay

AllOtherDays,

Until: 24:00, 0;

Office_OpenOff_E

quip,Fraction,

Through: 31 Dec,

For: Weekdays

SummerDesignD

ay,

Until: 07:00,

0.05,

Until: 20:00, 1,

Until: 24:00,

0.05,

For: Weekends,

Until: 24:00,

0.05,

For: Holidays,

Until: 24:00,

0.05,

For:

WinterDesignDa

y AllOtherDays,

Until: 24:00, 0;

Office_OpenOff_Li

ght,

Fraction,

Through: 31 Dec,

For: Weekdays

SummerDesignDa

y,

Until: 07:00, 0,

Until: 19:00, 1,

Until: 24:00, 0,

For: Weekends,

Until: 24:00, 0,

For: Holidays,

Until: 24:00, 0,

For:

WinterDesignDay

AllOtherDays,

Until: 24:00, 0;

Schedule:Comp

act, 20001,Any

Number,

Through:

12/31,

For: Weekdays

Weekends

SummerDesign

Days,

Until: 24:00,

24,

For:

WinterDesignD

ays,

Until: 24:00, 0,

For:

AllOtherDays,

Until: 24:00,

24;

Chapter 5: Case studies of the co-simulation approach

88

DesignBuilder, a comprehensive graphical user interface for EnergyPlus, was used to

generate the shoe box office model based on the geometry and construction shoe box

properties shown in Table 5.4 and Table 5.5 and the deterministic rules shown in Table

5.6. Using the EnergyPlus IDF file export function of DesignBuilder, the EnergyPlus

shoe box model was generated. The simulation configuration and the model

description files were defined for the corresponding No-MASS model development.

The simulation configuration file contains information such as the seed number for

controlling the randomness of the simulations, the time step, the simulation period,

buildings, zones, agents and appliances. The model description file was defined to

contain the set of exposed variables that need to be passed between the No-MASS and

EnergyPlus.

5.1.5 Co-simulation setup

Once the simulation models were developed, the co-simulation environment needs to

be set up for coupling and simulating building energy of the shoe box office and its

occupants’ stochastic behaviours. This is shown in Figure 5.10.

Figure 5.10: EnergyPlus and No-MASS single building co-simulation

For this case, EnergyPlusToFMU was used to convert the EnergyPlus shoe box office

building model into an FMU. The corresponding No-MASS FMU was generated by

archiving the compiled library FMI.so with the model description and simulation

configuration files. The layout of the EnergyPlus and No-MASS FMUs are shown as

below.

Chapter 5: Case studies of the co-simulation approach

 89

EnergyPlus shoe box office FMU
in.fmu/

|

|-------binaries/

| |-------linux64/

| |------- in.so

|-------modelDescription.xml

|-------resources/

 |-------Energy+.idd

 |-------idf-to-fmu-export-prep-linux

 |-------in.epw

 |-------in.idf

 |-------variables.cfg

No-MASS FMU
agentFMU.fmu/

|

|-------binaries/

| |-------linux64/

| |-------FMI.so

|-------modelDescription.xml

|-------SimulationConfig.xml

Then mosaik simulator wrappers were developed. To orchestrate co-simulation of

EnergyPlus and No-MASS models, a master algorithm was implemented in this case

according to the data flow diagram defined in Figure 5.8. The master algorithm is

shown in Appendix 7.

Chapter 5: Case studies of the co-simulation approach

90

5.1.6 Simulation

After the models were developed and the master algorithm was implemented, the

simulation is ready to run. As mentioned earlier, simulation results from Chapman’s

FMU import approach were planned to be used as a baseline to verify the fundamental

functionalities of the co-simulation platform COPE.

In order to do so, firstly EnergyPlus heating demand simulation results of the shoe box

office were calculated based on standard deterministic rules and schedules. then from

the stochastic interactions of occupants by coupling EnergyPlus and No-MASS in

Chapman’s FMU import approach. For the stochastic simulation using No-MASS, the

stochastic models of No-MASS can be set a seed value for controlling the randomness

of the simulations, e.g. window opening, shading, occupancy, etc. 50 replicates of the

co-simulation of EnergyPlus and No-MASS with 50 randomly selected seed numbers

were performed to show the impact of stochastic interactions of occupants on building

performance. All simulations were run on an annual basis. The co-simulation flow of

Chapman’s approach is shown in Figure 5.11.

Figure 5.11: EnergyPlus and No-MASS single building co-simulation flow

diagram (Chapman’s FMU import approach)

Following the simulation in Chapman’s FMU import approach, the co-simulation of

EnergyPlus and No-MASS of the same shoe box office was executed in COPE for 50

replicates as well. Both simulations used exactly the same condition and occupants’

behaviours. All simulations were also on an annual basis. The co-simulation flow of

the COPE approach is shown in Figure 5.12.

Chapter 5: Case studies of the co-simulation approach

 91

Figure 5.12: EnergyPlus and No-MASS single building co-simulation flow

diagram (COPE approach)

5.1.7 Results analysis

In order to evaluate whether the synchronisation and interaction between COPE and

the coupled simulation tools work as intended, the simulation results from the COPE

approach were compared with that from Chapman’s coupling approach.

The simulation results of the shoe box office building in Chapman’s FMU import

approach and COPE are shown in monthly box plots in Figure 5.13 and Figure 5.14.

In each of the figures below, the mean and standard deviation of heating demand for

each month are presented.

Chapter 5: Case studies of the co-simulation approach

92

Figure 5.13: Monthly heating demand of the shoe box office in Geneva

(Chapman’s approach). (Boxplot) Stochastic agent platform 50 replicates,

(Green point) Single deterministic simulation

Figure 5.14: Monthly heating demand of the shoe box office in Geneva (COPE).

(Boxplot) Stochastic agent platform 50 replicates, (Green point) Single

deterministic simulation

From the results, it can be observed that COPE achieved the equivalent heating

demand of each month with the interaction of occupants, comparing to the results

Chapter 5: Case studies of the co-simulation approach

 93

obtained from the Chapman’s FMU import approach. By checking the simulation

results step by step, it was verified that the master algorithm and coupled simulation

tools synchronised and interacted as intended. Simulation results of Chapman’s

approach and the COPE approach show that the monthly heating demand results help

us understand the variations in energy demands arising from occupants’ interactions

in one year. The heating demand in months except January and December for the

stochastic simulations is higher than the deterministic simulation. This is due to

occupant’s interaction with the windows to refresh indoor air.

A Debian 10 Linux virtual machine allocated 16.0 GB RAM, which is hosted by a

computer operating on Windows 10 with Intel Core i5-6440HQ CPU @ 2.60GHz and

32.0 GB RAM, was used to run the simulation for case 1. Regarding single building

co-simulation time, the FMU import approach took about 34 minutes for a 50

replicates simulation. In comparison, it took about 55 minutes for COPE to run 50

replicates. The longer time taken by COPE is due to the orchestration process by the

mosaik master algorithm to control the data exchange between the EnergyPlus shoe

box FMU and the corresponding No-MASS FMU through interconnection layer and

interoperability layer.

Though the co-simulation time of COPE is longer than the direct coupling, it provides

a versatile and easy extendable solution. The FMU import approach adopted by

Chapman is limited to coupling EnergyPlus with another simulation tool and only two

simulators can be coupled at the same time. However, the co-simulation platform

presented in this thesis has no such limitation, and can couple multiple simulators

acting as slaves in the platform orchestrated by a master algorithm.

In the next section, a more complex energy system with multiple buildings will be

presented to demonstrate COPE’s capability of coupling multiple simulation models.

5.2 Case 2: Multiple buildings co-simulation

To demonstrate the capability of multiple simulators coupling of the co-simulation

platform for a more complex energy system, the second case was designed to simulate

the energy behaviour of three shoe box office buildings and the impact of their

occupants’ stochastic behaviours on the building performance. The system is shown

in Figure 5.15.

Chapter 5: Case studies of the co-simulation approach

94

Figure 5.15: Multiple shoe box office buildings energy system

Like the first use case, the major steps involved in this case study include coupling

system design, models’ development, co-simulation setup, simulation and results

analysis as shown in Figure 5.16.

Figure 5.16: Multiple shoe box buildings co-simulation case study process

This test case focuses on energy simulation of multiple buildings relates to the

stochastic behaviours of their occupants. Coupling system design is the first step of

Chapter 5: Case studies of the co-simulation approach

 95

this case study. In this step, the exchanging variables and coupling topology of the

three shoe box offices and corresponding occupants’ stochastic behaviours were

defined. In the second step, three EnergyPlus shoe box building models and the

corresponding No-MASS stochastic simulation model which simulates the presence,

activities and related behaviours of occupants of the three shoe box buildings, were

developed. In this case study, the SimulationConfig.xml files of the coupled No-

MASS models contain a series of parameters, e.g. gender, age, income level, etc., to

define agent activity profiles. As a result, there was a discrepancy between the three

buildings which was attributed to differences in the occupants’ characteristics. After

that, necessary FMUs were generated and then mosaik simulator wrappers and the

master algorithm were developed in the co-simulation setup stage. Next, the co-

simulation of the three EnergyPlus shoe box simulators and their occupants’ stochastic

behaviours simulator was executed by using COPE. In the last step, the simulation

results were analysed to show that COPE is capable of coupling multiple simulators.

5.2.1 Coupling system design

The coupling system design is the first phase of the co-simulation case study process.

As shown in Figure 5.17, the environmental variables of the three hypothetical shoe

box offices and corresponding occupants’ stochastic behaviours in each office were

specified in this stage.

Figure 5.17: Coupling system design

For this case study, the environmental variables of the three hypothetical shoe box

offices and their occupants’ stochastic behaviours were specified same as the first use

case. Each EnergyPlus simulator provides environmental variables of the building,

like zone humidity, indoor radiant temperature, zone air temperature, indoor

illuminance, horizontal sky illuminance, rain status, and outdoor air temperature, to

the No-MASS simulator. The No-MASS simulator then simulates occupants’

behaviours in each of the shoe box buildings and returns each EnergyPlus simulator

variables related to the presence of the occupants in the corresponding shoe box office,

Chapter 5: Case studies of the co-simulation approach

96

like the number of occupants in a zone, the window status, the lighting status and heat

gains due to the occupants’ presence. The input and output variables of EnergyPlus

simulators and the No-MASS simulator for this case study were set same as the first

use case which are illustrated in Table 5.2 and Table 5.3. The co-simulation

exchanging variables defined in Case 2 are listed in Appendix 4.

The data flow diagram of the coupled shoe box office buildings and related occupants

was then defined as shown in Figure 5.18, which depicts co-simulation sequence for

the coupled three EnergyPlus simulators and the No-MASS simulators which simulate

occupants’ behaviours in the three buildings.

Figure 5.18: Data flow of multiple EnergyPlus building simulators and

corresponding No-MASS simulator associated with the buildings during co-

simulation

For the multiple simulators co-simulation of EnergyPlus and No-MASS, during the

simulation process each EnergyPlus shoe box building simulator simulates energy

flows within the building then passes environmental variables to the No-MASS

simulator at each time step (①). Subsequently, each No-MASS simulator parses the

environmental conditions of related shoe box office to predict its agents’ behaviours

that interact with shading devices, windows and lighting (②). Then the number of

Chapter 5: Case studies of the co-simulation approach

 97

occupants in a zone, their metabolic gains, appliance gains, the blind shading fraction,

the window status, and the lighting status of each shoe box office are returned to

corresponding EnergyPlus simulator (③). After receiving output from the related No-

MASS simulator, each EnergyPlus simulator resolves the energy consequences of

these interactions during the building's energy flows simulation in the next step (④).

This process carries on till the end of the simulation process. Like the first use case,

the timestep for the co-simulation process was set to 5 minutes.

5.2.2 Model development

Following the coupling system design, the three EnergyPlus shoe box office building

models and corresponding No-MASS models were developed respectively.

For this case study, the distance between shoe box buildings in the 1x3 matrix was set

to 3.5 metres considering the influence of the distance between buildings (Long,

Alalwany et al. 2015). The layout design of the three shoe box office buildings is

shown in Figure 5.19.

Figure 5.19: Three shoe box buildings layout

The shoe box office buildings in the 1x3 matrix were modelled by considering sky

view factor and shading geometry, with same glazing ratios, heating set-points and

constructions of the shoe box office in the first use case presented in Table 5.4 and

Table 5.5. For the three office buildings, the deterministic rules that govern occupancy

on weekdays were all defined as 00:00 until 07:00, [0%], until 08:00, [25%], until

09:00, [50%], until 12:00, [100%], until 14:00, [75%], until 17:00, [100%], until

18:00, [50%], until 19:00, [25%], until 24:00, [0%]. The percentage number in the

bracket means the chances of occupants in the buildings. It’s assumed that all the three

office buildings are vacant during the weekend period. The rules to operate the

equipment and lighting in the three buildings were defined in a way similar like the

occupancy schedule. The windows of the three office buildings were defined to be

opened when occupants are present, and the indoor temperature exceeds 24 oC. The

Chapter 5: Case studies of the co-simulation approach

98

weather file for the shoe box buildings was taken from EnergyPlus weather data

website ((DOE) 2018) giving the location of Finningley (53o 48’ North, 1o 0’ West),

a location about 40 miles from Nottingham, UK.

DesignBuilder was used to create each of the three shoe box office models considering

adjacent buildings as component blocks as shown in Figure 5.20. Then corresponding

EnergyPlus input files (*.idf) were then generated by using the export function of

DesignBuilder to generate EnergyPlus idf files.

Figure 5.20: Three shoe box building DesignBuilder models

After the EnergyPlus shoe box office building models were built, the No-MASS

models for the three shoe box offices were developed. The simulation configuration

file of the No-MASS models includes data such as the seed numbers for controlling

the randomness of the simulations, the time step, the simulation period, buildings,

zones, agents and appliances for the three shoe box buildings. The model description

file contains the set of exposed variables of the three shoe box buildings that need to

be passed to the EnergyPlus models.

5.2.3 Co-simulation setup

When all the simulation models were ready, the multiple simulators co-simulation

environment was then set up in order to co-simulate the three shoe box offices and

their occupants’ stochastic behaviours. The co-simulation environment is illustrated

in Figure 5.21.

Chapter 5: Case studies of the co-simulation approach

 99

Figure 5.21: EnergyPlus and No-MASS three buildings co-simulation

EnergyPlusToFMU was used to convert the three EnergyPlus shoe box office building

models into FMUs. The corresponding No-MASS FMUs containing the No-MASS

models for the three shoe box offices were then created by archiving the compiled

library FMI.so with the model description file and simulation configuration file. The

layout of the EnergyPlus and No-MASS FMUs are shown as follows.

EnergyPlus shoe box
office 1 FMU

EnergyPlus shoe box
office 2 FMU

EnergyPlus shoe box
office 3 FMU

in.fmu/

|

|----binaries/

| |----linux64/

| |----in.so

|----
modelDescription.xml

|----resources/

 |----Energy+.idd

 |----idf-to-fmu-
export-prep-linux

 |----
GBR_FINNINGLEY_IWEC.
epw

in.fmu/

|

|----binaries/

| |----linux64/

| |----in.so

|----
modelDescription.xml

|----resources/

 |----Energy+.idd

 |----idf-to-fmu-
export-prep-linux

 |----
GBR_FINNINGLEY_IWEC.
epw

in.fmu/

|

|----binaries/

| |----linux64/

| |----in.so

|----
modelDescription.xml

|----resources/

 |----Energy+.idd

 |----idf-to-fmu-
export-prep-linux

 |----
GBR_FINNINGLEY_IWEC.
epw

Chapter 5: Case studies of the co-simulation approach

100

 |----id_bdg_1.idf

 |----variables.cfg

 |----id_bdg_2.idf

 |----variables.cfg

 |----id_bdg_3.idf

 |----variables.cfg

No-MASS FMU
agentFMU.fmu/

|

|-------binaries/

| |-------linux64/

| |-------FMI.so

|-------modelDescription.xml

|-------SimulationConfig.xml

Mosaik simulator wrappers for each of the EnergyPlus FMUs and the No-MASS

FMUs were then developed. After that, a master algorithm was developed to

orchestrate the co-simulation of EnergyPlus and No-MASS models by referring to the

data flow diagram defined in Figure 5.18. The master algorithm for this case study is

similar like the single building co-simulation algorithm shown in Appendix 7 with

adjustment to six simulators.

5.2.4 Simulation

Following the models and the master algorithm development, the simulation is ready

to run and demonstrate how COPE orchestrate more complex ecosystems: e.g.

multiple buildings co-simulation.

The co-simulation of multiple EnergyPlus shoe box buildings models and the

corresponding No-MASS model was executed in COPE for 20 replicates on an annual

basis. For each of the replicates, the stochastic models of the No-MASS, e.g. window

opening, shading, occupancy, etc., for the three office buildings were set with a

randomly selected seed number for controlling the randomness of each simulation. All

simulations were performed on an annual basis.

Chapter 5: Case studies of the co-simulation approach

 101

5.2.5 Results analysis

The FMU import approach adopted by Chapman’s is limited to coupling EnergyPlus

with another simulation tool and only two simulators can be coupled directly in this

way. COPE has no such limitation, which can couple as many simulation tools acting

as slaves in the platform and orchestrated by a master algorithm. Therefore, a more

generic co-simulation solution is achieved.

The co-simulation results of the shoe box office building 1, 2 and 3 are shown in

monthly box plots in Figure 5.22, Figure 5.23 and Figure 5.24, which present the mean

and standard deviation of heating demand for each month.

Figure 5.22: Monthly heating demand of the shoe box office 1 in Finningley

(COPE). (Boxplot) Stochastic agent platform 20 replicates, (Green point) Single

deterministic simulation

Chapter 5: Case studies of the co-simulation approach

102

Figure 5.23: Monthly heating demand of the shoe box office 2 in Finningley

(COPE). (Boxplot) Stochastic agent platform 20 replicates, (Green point) Single

deterministic simulation

Figure 5.24: Monthly heating demand of the shoe box office 3 in Finningley

(COPE). (Boxplot) Stochastic agent platform 20 replicates, (Green point) Single

deterministic simulation

These monthly box plots illustrate the possible range of energy demands arising from

occupants’ behaviour and existence in these three shoe box buildings over one year

Chapter 5: Case studies of the co-simulation approach

 103

period. The range of different seed numbers enable us to simulate likely range of

possible energy demands arising from occupants’ behaviour and existence in these

three shoe box buildings, such as window interactions, lighting switching behaviour

and heat gains due to the occupants’ presence.

During winter months, the heating demand is higher for the stochastic simulations, as

occupants can interact with the windows at a range of temperatures (e.g. to refresh the

indoor air). For example, the deterministic heating demand in December is 12.27

kWh/m2, 10.63 kWh/m2, and 7.37 kWh/m2 for shoe box office 1, shoe box office 2

and shoe box office 3 respectively. Correspondingly, the heating demand of shoe box

office 1 considering stochastic behaviours is in the range of 14.76 kWh/m2 and 19.56

kWh/m2, and the median value is 14.98 kWh/m2. The heating demand of shoe box

office 2 is in the range of 12.2 kWh/m2 and 13.86 kWh/m2 considering stochastic

behaviours, and the median value is 12.23 kWh/m2. Furthermore, for shoe box office

3, the heating demand is in the range of 9.51 kWh/m2 and 10.54 kWh/m2, and the

median value is 10 kWh/m2.

During summer time, such as July and August, basically there are no heating both for

the deterministic and stochastic simulations. For June, there is only a short range of

span. The deterministic heating demand is 12.27 kWh/m2, 10.63 kWh/m2, and 7.37

kWh/m2 for shoe box office 1, shoe box office 2 and shoe box office 3 respectively.

In comparison, the heating demand considering stochastic behaviours for shoe box

office 1 is in the range of 1.23 kWh/m2 and 3.51 kWh/m2, and the median value is 0.9

kWh/m2. For shoe box office 2, the heating demand is in a the range of 0.29 kWh/m2

and 0.8 kWh/m2 considering stochastic behaviours, and the median value is 0.6

kWh/m2. Moreover, for shoe box office 3 the heating demand is in the range of 0.19

kWh/m2 and 0.43 kWh/m2, and the median value is 0.33 kWh/m2.

The same Debian virtual machine with the same configuration was used to run case 2.

Regarding co-simulation time, it took about 74 minutes for COPE to run co-simulation

of the three EnergyPlus shoe box buildings models and the corresponding No-MASS

models for 20 replicates on an annual basis. In comparison, it’s about 22 minutes to

run one shoe box co-simulation for 20 replicates on an annual basis. The co-simulation

duration is more than three times greater than the single building co-simulation. This

means the mosaik master algorithm is not designed to support running co-simulation

Chapter 5: Case studies of the co-simulation approach

104

in parallel using multiple threads on multiple processors. This makes the co-simulation

a relatively inexpensive undertaking.

If mosaik provides multithreading functionality, the simulation time for multiple

FMUs co-simulation is expected to be much faster. That will enable more complex

urban scale co-simulation scenarios for an affordable time duration.

5.3 Outcome

The development of use cases follows a verification and validation process. First, Case

1 focuses on the verification of the platform through a single building energy co-

simulation. Through the result analysis of the case study by comparing results between

COPE and the direct coupling approach, the fundamental integration and orchestration

functionality of COPE were verified.

The applicability of COPE is demonstrated in a more complex scenario in Case 2. This

use case focuses on the simulation of energy flows in urban energy systems in a

neighbourhood context by coupling and orchestrating the co-simulation of three

EnergyPlus shoebox models and corresponding No-MASS models. By illustrating a

neighbourhood multiple-buildings co-simulation, the applicability of COPE was

demonstrated. Thus, Obj. IV (Evaluate the approach and the platform through use

cases to demonstrate synchronisation and interaction between the urban energy co-

simulation platform and coupled co-simulation components) of the research is

addressed.

Through the result analysis of the demonstrated cases, it shows the integrated energy

simulation systems based on the platform are capable of capturing the dynamic

interaction between various aspects of urban energy systems and providing an

integrated representation of urban energy use. The modular layered co-simulation

platform is able to integrate and manage the interactions of diverse energy subsystem

simulation tools with different granularities to comprehensively simulate multiple

domains of urban energy systems. Simulation tools which support the FMI co-

simulation standard can be easily attached to COPE to comprehensively model the

complexity of urban energy systems.

By utilising well-known domain specific urban energy simulation tools, the approach

will make the interoperability and reuse of existing implementations possible and it

Chapter 5: Case studies of the co-simulation approach

 105

can also be easily used by other researchers to integrate simulation tools for their own

purposes. As a result, a flexible and sustainable approach to meeting various

simulation requirements can be achieved.

The current use case focuses on neighbourhood simulation, but the approach can be

applied to the city level using suitable simulation tools. In theory, the platform is

capable of coupling and orchestrating simulation models as many as possible, from

single building to urban scale level. The process to conduct COPE based co-simulation

is illustrated in Figure 5.25.

Figure 5.25: Process to conduct co-simulation based on the urban energy co-

simulation platform

Chapter 5: Case studies of the co-simulation approach

106

Chapter 6: Conclusion

 107

6 CONCLUSION

The principal aim of the research presented in this thesis was to develop a generic

integration approach to tackle the simulation interoperability challenge of a

comprehensive simulation for urban energy systems. This was achieved through the

development of a generic and scalable urban energy co-simulation architecture for the

integration of urban energy simulation tools presented in Chapter 3. The co-simulation

platform, COPE, to validate the conceptual architecture was presented in Chapter 4,

and then the evaluation was presented in Chapter 5 through two case studies following

the verification and validation process.

The work presented in this thesis is discussed in this chapter in terms of the strengths

and weaknesses of the conceptual co-simulation architecture as well as its

implementation platform COPE (Section 6.1) and the research methods (Section 6.2).

Section 6.3 outlines a selection of future work based upon the weaknesses and

potential research directions.

6.1 Generic and scalable urban energy co-simulation approach

In this section, the main results of the work are discussed regarding the strengths and

weaknesses of the adopted generic and scalable urban energy co-simulation approach

in this thesis.

Overall, the work presented in this thesis addressed the research gap identified in

Chapter 1 and the requirements raised in Chapter 2. Specifically, the major

contribution of the research presented in this thesis is the generic and scalable urban

Chapter 6: Conclusion

108

energy co-simulation approach providing a solution for urban energy simulation tools

integration, which was achieved by identifying research requirements for the generic

and scalable urban energy co-simulation, designing a conceptual co-simulation

architecture, developing COPE and verifying the functionality and applicability of

COPE.

6.1.1 Conceptual co-simulation architecture

The energy characteristics of cities are complex as they involve interactions of

multiple domains, each has complex energy characteristics among different urban

energy subsystems. In order to facilitate accurate simulation of urban energy systems,

a modularised conceptual co-simulation architecture was proposed in the research

presented in this thesis.

The conceptual urban co-simulation architecture was designed in a layered modular

architecture. Each layer of the architecture consists of a modular set of components

with its own functions and provides disciplined interfaces for other modules to access

its functionalities. The design ensured that the platform developed based on this

architecture could be extended to include alternative standards, middleware and

integration tools.

Specifically, the conceptual co-simulation architecture is consisted of four layers, i.e.

simulator layer, interconnection layer, interoperability layer and control layer.

Individual urban energy simulation tools could be integrated through the simulator

layer and the overall simulation purpose could be implemented through the control

and interoperability layers. There are no direct control and data exchange required

between the integrated simulation tools. The integrated simulators are orchestrated by

a master algorithm in the control layer.

To achieve an accurate and comprehensive simulation of urban energy systems, it is

necessary to integrate the most suitable existing simulation tools, which are capable

of simulating different sub energy systems such as buildings, stochastic occupants’

behaviour, solar radiation, distribution networks and energy storage systems, etc. The

modular design of the architecture ensures that suitable software libraries and

simulators could be selected and integrated in order to obtain the required simulation

task of specific energy systems.

Chapter 6: Conclusion

 109

Strengths

▪ The layered modular design of the architecture makes it extendable and

flexible to add more functionalities and easy to couple simulators together for

a specific scenario.

Weaknesses

▪ Programming expertise and profound knowledge of the FMI standard are

required to develop a co-simulation platform based on this architecture. This

brings complexity and could represent a barrier to the real-world

implementation.

▪ In order to be part of this architecture, simulators need to be FMI-compliant

with FMU export functionality. For some simulators without FMI support, it’s

required to develop FMI co-simulation API functions to be capable of

encapsulating in FMUs for co-simulation. This requires a deep understanding

of the simulators and the FMI standard.

6.1.2 COPE

Based on the conceptual co-simulation architecture, COPE was developed to tackle

simulation interoperability challenge of urban energy systems. The platform addressed

such a challenge through the layered modular design using FMI as the co-simulation

standard. In addition, it uses middleware mosaik to orchestrate the simulation and data

flow of individual simulators programmed in different programming languages by

calling FMI interfaces provided by the FMI adapter through the PyFMI and FMI

Library. They built the basis for the interconnection layer and interoperability layer of

the platform.

In comparison to the direct coupling approach, the COPE approach is able to tackle

co-simulation involving more than two simulators. There is no limitation of the

number of simulators for COPE to couple and orchestrate. The second case presented

in Chapter 5 demonstrated six simulators, e.g. three EnergyPlus shoe box office

simulators and three No-MASS occupants behaviour simulators, coupled and

orchestrated by COPE successfully. However, because communications among

simulators are conducted through the COPE platform in the COPE approach, it took

longer to run a simulation compared to the direct coupling approach. Therefore, for a

Chapter 6: Conclusion

110

simple simulation scenario, if the direct coupling approach is achievable, it will be

more efficient to simulate through direct coupling.

For specific urban energy simulation purposes, a variety of urban energy subsystem

simulation tools could be integrated into the platform in order to obtain required

comprehensive simulation results.

The modularity and extendibility of COPE make it capable of coupling and

orchestrating existing implementations. Simulation tools, which support the de facto

co-simulation standard FMI, can be easily integrated. This enables COPE to easily

couple well-known domain specific urban energy simulation tools, which support

FMI-standard, with minimum effort and cost. Correspondingly, it can also be readily

used by other researchers to couple specialised simulation tools in different domain

sectors, e.g. buildings, occupant behaviours, thermal and electrical energy network,

etc., for their specific purposes. This makes the interoperability and reuse of existing

implementations possible and it can also be used by future research projects to

integrate simulators to fit project purposes.

In this research, co-simulation standard FMI 2.0 was used in the current

implementation. In recent years, the FMI development team revised it by adding more

sophisticated co-simulation features. As a major milestone, the FMI 3.0 was released

in May 2022, with new features that enable the use of FMI in important new use cases,

such as the next generation of Digital Twins, artificial intelligence, and autonomous

driving applications. In the future, it is necessary to upgrade COPE to be compliant

with FMI 3.0 standard. Therefore, more advanced co-simulation can be achieved.

Strengths

▪ Suitable co-simulation software libraries were adopted and mapped together

to fulfil requirements of each layer of COPE to achieve the research objectives.

▪ Able to integrate urban energy simulators from different domains.

▪ Can integrate simulators programmed in different programming languages.

▪ Able to capture the dynamic interaction between various aspects of urban

energy systems and provide an integrated representation of urban energy use.

▪ Easy to be maintained, customised or extended for different applications and

research purposes.

Chapter 6: Conclusion

 111

Weaknesses

▪ It took longer to run a simulation in comparison to the direct coupling

approach.

▪ The COPE platform is required to be set up in order to run a co-simulation

scenario.

▪ It requires end-users to have a programming background in order to generate

FMUs and develop a master algorithm for a co-simulation scenario.

6.2 Research methods

The objectives of the research were identified as:

Obj. I: Identify requirements for the generic and scalable urban energy co-

simulation.

Obj. II: Design a conceptual co-simulation architecture that will be able to integrate

urban energy simulation tools from different domains. The approach will address the

identified requirements.

Obj. III: Develop an urban energy co-simulation platform based on the conceptual

architecture. Explicit process to integrate well known domain specific urban energy

simulation tools with different levels of granularities will also be presented.

Obj. IV: Evaluate the approach and the platform through use cases to demonstrate

synchronisation and interaction between the urban energy co-simulation platform and

coupled co-simulation components.

Through a literature review of simulators, co-simulation standards, co-simulation

middleware, and co-simulation architecture, nine requirements of generic urban

energy systems co-simulation were identified. The nine requirements as well as their

description are listed in Table 2.2. (Obj. I was achieved)

To address the nine requirements, the conceptual urban co-simulation architecture was

designed. (Obj. II was achieved)

Based on the conceptual architecture, the Co-simulation Platform for Ecological-

urban (COPE) was developed for urban energy systems simulation. An application

process using COPE for a co-simulation scenario was presented in Figure 4.11. (Obj.

III was achieved)

Chapter 6: Conclusion

112

In order to validate the conceptual co-simulation architecture, as well as evaluate the

fundamental functionalities of COPE and demonstrate the platform application, two

case studies (single building and multiple buildings simulations) were designed, set

up and simulated. The integration, synchronisation and interaction between the co-

simulation platform and coupled simulation tools were demonstrated. (Obj. IV was

achieved)

The two case studies simulated two different scenarios: one was a single shoe box

office building co-simulation, and the other was multiple buildings co-simulation. The

first case showed COPE achieved equivalent simulation results in comparison with

the results obtained from Chapman’s direct coupling approach. The master algorithm

and coupled simulators integrated into COPE synchronised and interacted as intended.

Therefore, the fundamental integration and orchestration functionality of COPE were

verified. The second case demonstrated the simulation of energy flows in urban energy

systems in a neighbourhood context by coupling and orchestrating the co-simulation

of three EnergyPlus shoebox models and corresponding No-MASS models. This

demonstrated the applicability of COPE for a more complex energy system co-

simulation.

In both case studies, EnergyPlus and No-MASS models were integrated to simulate

shoe box office energy behaviour and the effect of occupants’ stochastic behaviours

on the building energy performance.

The two use cases focus on simulating energy flows in a neighbourhood context.

However, the approach can be applied to the city level using suitable simulators

because the platform is capable of coupling and orchestrating multiple simulation

models, which are from neighbourhood to urban scale level. As a result, a flexible and

sustainable approach to address various simulation requirements can be achieved.

Strengths

▪ A systematic approach was adopted which includes a number of methods from

literature review to evaluation.

▪ The main research contribution was validated through the platform COPE.

▪ The COPE approach was evaluated through two use cases.

Chapter 6: Conclusion

 113

Weaknesses

▪ Only a neighbourhood energy system was simulated in the use cases, though

more complex multiple domains could be included.

▪ Though multiple simulators could be integrated into COPE (two in Case 1 and

six in Case 2), an extensive test of the number of simulators was not conducted,

i.e. the number of simulators that could be integrated with a standard server

configuration without performance compromise.

The approach helps to further explore the subject of urban energy domain to achieve

energy efficiency improvement in new and existing urban areas. To take the most

advantage of this approach in practice, urban designers and planners need to meet

various domain experts to design appropriate plans by utilising COPE and therefore

propose confident a suitable, high-quality and sustainable solution.

Overall, the research aim and objectives listed in Section 1.2 were achieved through

the research methods adopted in the research. The COPE approach is well suited for

decision making in urban energy planning and optimisation processes to improve

energy efficiency and urban sustainability through comprehensively modelling the

dynamic, complex and interactive nature of urban energy systems. This is viewed to

be of great importance with the current global climate crisis and government target for

emission control.

6.3 Outlook and future work

In recent years, the energy transition in the UK has been accelerated with increasing

decarbonisation, decentralisation and digitalisation of local energy systems which

bring challenges, but also opportunities (Wang and Wade 2021). Modelling and

simulation as a state-of-the-art method are expected to play a significant role during

this transition.

The co-simulation approach tackles the challenge of comprehensive modelling of

urban energy systems by coupling existing domain-specific energy simulation tools,

each with its own speciality. The modularity and extendable capability of the COPE

approach facilitate the demonstration of more urban representative cases by coupling

specialised simulators in different domains, sectors and scales as illustrated in Figure

6.1.

Chapter 6: Conclusion

114

Figure 6.1: Co-simulation of urban energy systems

The COPE approach is capable of rapid prototyping and enables the implementation

of complex multi-domain system simulations. This helps to simplify cross-domain

collaborations significantly by allowing collaborators to utilise preferred simulators,

and eventually a holistic collaborative simulation by coupling and orchestrating them

can be achieved.

The implementation of COPE can be facilitated in parallel and distributed computing

by accelerating time-consuming simulations on distributed supercomputer systems.

By running the simulation in real-time experiments, such as in the context of

hardware-in-the-loop, COPE enables the possibility of application opportunities not

only in urban energy systems but also in other fields of industry and research. So

optimised solutions of energy generation, distribution, store and utilisation can be

achieved.

There are a few desirable improvements to COPE identified during the evaluation of

the approach, which are described as follows.

• FMI 3.0 support

There are more features introduced by the current FMI 3.0 release, such as scheduled

execution and clock-based simulation. The scheduled execution is for purely discrete,

RTOS-like, simulation and supports pre-emption (Junghanns, Gomes et al. 2021).

Chapter 6: Conclusion

 115

Furthermore, clocks are introduced to allow precise coordination of global events

between FMUs and the importer (Junghanns, Gomes et al. 2021). More data type

support comes with FMI 3.0, including binary data and arrays (Junghanns, Gomes et

al. 2021). In order to take these advantages, the FMI libraries adopted by COPE need

to be upgraded to the latest version and the FMUs to be imported need to be FMI 3.0

compliant.

• HIL (Hardware-In-The-Loop) simulation

Co-simulation can be used in parallel to hardware-in-the-loop simulations with actual

controller components in real-time simulations using the techniques and tools

(Taveres-Cachat, Favoino et al. 2021). It’s expected that COPE is capable of running

real-time and hardware-in-the-loop simulation, though this needs to be further

evaluated. To gain appropriate performance, proper co-simulation time-step and

necessary optimisation of simulation tools need to be evaluated in order to reduce the

processing time for a realistic proposition. During the optimisation, more impacting

factors might be identified through detailed investigation.

• Optimised control of energy usage for minimal emission and minimal cost

Nowadays, more and more consumers using energy storage systems with a solar PV

system. This offers flexibility to consumers in choosing energy source at right time.

By controlling a smart system with an embedded program with minimal customer cost

and minimal emission options, greenhouse gas emission reduction or cost saving on

electricity bills can be achieved. Therefore, it will be helpful to implement optimal

scheduling solvers in the master algorithm of COPE.

• Unified data format for result store and data analysis workflow

Simulation numerical results normally are encoded in a variety of structured formats

(e.g. JSON, Hive tables, ORC, CSV, HDF5, etc.). Depending on coupled simulation

tools, different datasets could be fetched. This introduces overhead for post simulation

data processing, especially for large scale urban energy simulation. Therefore, if a

unified computationally efficient data result format scheme is adopted, this will help

efficiency of organising simulation results and facilitating data analysis. The unified

results data could be utilised by data visualisation libraries, like Plotly, Matplotlib etc.,

to produce interactive plots and perform basic statistical analyses of data.

Chapter 6: Conclusion

116

• Multiple domain implementation

As the case studies presented in this thesis were both about neighbourhood energy

systems, it will be desirable to see COPE demonstrate more complex cases by

integrating and managing the interactions of diverse energy subsystem simulation

tools simulators with different granularities to comprehensively simulate multiple

domains of urban energy systems. This can be achieved by coupling more well-known

domain specific urban energy simulators, like Dymola, JModelica, OpenModelica,

TRNSYS, MATLAB/Simulink, PowerWorld, and PowerFactory etc., in the future

work.

• Parallel co-simulation on multi-core processors

In order to deal with large scale urban energy simulation involving a large amount of

simulators and much more data interactions, COPE could be enhanced to provide

capability to run co-simulations fully parallel on a High Performance Computing

(HPC) cluster. By doing so, each subsystem simulator will be executed on individual

core and orchestrated by master algorithm over the InfiniBand interconnect. As a

result, the simulation speed will be improved.

• Further adoption in simulation and digital analysis domains

The co-simulation approach presented in this thesis provides a generic and scalable

approach to simulate urban energy systems. The layered modular design of the

conceptual architecture makes it easy to be extended and maintained. The approach

can be adopted in other research domains. For example, it could be adapted to the real-

time data analysis field. The local energy systems in UK nowadays is in a transition

towards increased decentralisation and digitalisation (Wang and Wade 2021). In order

to make the best use of increasing distributed energy generation and storage, maximise

customer engagement and schedule demand-side resources, accurate simulation and

enhanced data analysis are required for providing optimised solution evaluation in this

trend.

Inspired by the methodology adopted by COPE, a modularised multi-layer design of

smart digital energy platform can be formalised providing data analysis function to be

used to evaluate sustainable solutions and propose green, affordable, resilient and

optimal solutions by conducting experimental data analysis as proposed in (Wang and

Wade 2021). Similarly, layered architecture provides functionalities of data fetching,

Chapter 6: Conclusion

 117

processing and comprehensively analysing local energy systems’ data to illustrate

insights and outcomes.

With more functionalities to be implemented in a specific layer of COPE and the

design and implementation of a smart digital energy platform based on the conceptual

architecture proposed in this thesis, a simulation and data analysis ecosystem can be

established and be used to explore and investigate hypothetical and real-time operating

scenarios for future smart local energy systems. This provides new ways of local

energy system monitoring, optimal control and fault detection, which ultimately

ensures demands are satisfied and energy sources are optimised. All this future work

needs to be evaluated through a thorough functionality and performance verification

and evaluation process. In this procedure, the incorporation of domain expertise is

needed in order to fully understand and interpret solutions for different scenarios. By

using such expert knowledge, a better and deeper understanding of the results can be

achieved.

Chapter 6: Conclusion

118

Chapter 7: References

 119

7 REFERENCES

(DOE), D. o. E. (2018). "Weather Data." Retrieved Oct 20, 2018, 2018, from

https://energyplus.net/weather.

Abbasabadi, N. and M. Ashayeri (2019). "Urban energy use modeling methods and

tools: A review and an outlook." Building and Environment 161: 106270.

Agugiaro, G. (2016). "Energy planning tools and CityGML-based 3D virtual city

models: experiences from Trento (Italy)." Applied Geomatics 8(1): 41-56.

Agugiaro, G., J. Benner, P. Cipriano and R. Nouvel (2018). "The Energy Application

Domain Extension for CityGML: enhancing interoperability for urban energy

simulations." Open Geospatial Data, Software and Standards 3(1): 1-30.

Agugiaro, G., F. Nex, F. De Remondino, R. Filippi, S. Droghetti and C. Furlanello

(2012). "Solar radiation estimation on building roofs and web-based solar cadastre."

ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information

Sciences 1(2): 177-182.

Ali, U., M. H. Shamsi, C. Hoare, E. Mangina and J. O’Donnell (2021). "Review of

urban building energy modeling (UBEM) approaches, methods and tools using

qualitative and quantitative analysis." Energy and Buildings 246: 111073.

Allegrini, J., K. Orehounig, G. Mavromatidis, F. Ruesch, V. Dorer and R. Evins

(2015). "A review of modelling approaches and tools for the simulation of district-

scale energy systems." Renewable and Sustainable Energy Reviews 52: 1391-1404.

Andersson, C. (2013). A Software Framework for Implementation and Evaluation of

Co-Simulation Algorithms. 2013.

Andersson, C., J. Åkesson and C. Führer (2016). "PyFMI: A Python Package for

Simulation of Coupled Dynamic Models with the Functional Mock-up Interface."

Technical Report in Mathematical Sciences 2016(2).

Aprilia, E., K. Meng, M. A. Hosani, H. H. Zeineldin and Z. Y. Dong (2019).

"Unified Power Flow Algorithm for Standalone AC/DC Hybrid Microgrids." IEEE

Transactions on Smart Grid 10(1): 639-649.

https://energyplus.net/weather

Chapter 7: References

120

Arnold, M. (2004). Simulation algorithms in vehicle system dynamics, Univ.,

Fachbereich Mathematik und Informatik.

Arnold, M. (2010). "Stability of Sequential Modular Time Integration Methods for

Coupled Multibody System Models." Journal of Computational and Nonlinear

Dynamics 5(3): 031003-031003-031009.

Association, M. (2022). "FMI standard." Retrieved June 29, 2022, 2022, from

https://fmi-standard.org/.

Azar, E., W. O'Brien, S. Carlucci, T. Hong, A. Sonta, J. Kim, M. S. Andargie, T.

Abuimara, M. El Asmar, R. K. Jain, M. M. Ouf, F. Tahmasebi and J. Zhou (2020).

"Simulation-aided occupant-centric building design: A critical review of tools,

methods, and applications." Energy and Buildings 224: 110292.

Bahu, J., A. Koch, E. Kremers and S. Murshed (2013). Towards a 3D spatial urban

energy modelling approach. ISPRS Annals of the Photogrammetry, Remote Sensing

and Spatial Information Sciences. Proceedings of the ISPRS 8th 3D GeoInfo

Conference & WG II/2 Workshop.

Bass, L., P. Clements and R. Kazman (2003). Software architecture in practice,

Addison-Wesley Professional.

Bastian, J., C. Clauß, S. Wolf and P. Schneider (2011). Master for co-simulation

using FMI. 8th International Modelica Conference, Dresden, Citeseer.

Blochwitz, T., M. Otter, J. Åkesson, M. Arnold, C. Clauss, H. Elmqvist, M.

Friedrich, A. Junghanns, J. Mauss and D. Neumerkel (2012). Functional mockup

interface 2.0: The standard for tool independent exchange of simulation models. 9th

International Modelica Conference.

Blochwitz, T., M. Otter, M. Arnold, C. Bausch, C. Clauß, H. Elmqvist, A.

Junghanns, J. Mauss, M. Monteiro and T. Neidhold (2011). The functional mockup

interface for tool independent exchange of simulation models. 8th International

Modelica Conference, Dresden.

Boehm, B. (1995). Engineering Context (for Software Architecture). Invited talk,

First International Workshop on Architecture for Software Systems. Seattle,

Washington.

Brand, L., A. Calvén, J. Englund, H. Landersjö and P. Lauenburg (2014). "Smart

district heating networks – A simulation study of prosumers’ impact on technical

parameters in distribution networks." Applied Energy 129: 39-48.

Brange, L., J. Englund and P. Lauenburg (2016). "Prosumers in district heating

networks – A Swedish case study." Applied Energy 164: 492-500.

Brooks, C., E. Lee, M. Wetter, T. Nouidui, D. Broman and S. Tripakis. (2012).

"JFMI-A Java Wrapper for the Functional Mock-up Interface." from

http://ptolemy.eecs.berkeley.edu/java/jfmi/.

Brooks, C., E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, H. Zheng, S. S.

Bhattacharyya, E. Cheong, I. Davis and M. Goel (2008). Heterogeneous concurrent

modeling and design in java (volume 1: Introduction to ptolemy ii), CALIFORNIA

UNIV BERKELEY DEPT OF ELECTRICAL ENGINEERING AND COMPUTER

SCIENCE.

Brown, S. (2014). Software Architecture for Developers, Barnes & Noble.

https://fmi-standard.org/
http://ptolemy.eecs.berkeley.edu/java/jfmi/

Chapter 7: References

 121

Buckley, N., G. Mills, C. Reinhart and Z. M. Berzolla (2021). "Using urban building

energy modelling (UBEM) to support the new European Union’s Green Deal: Case

study of Dublin Ireland." Energy and Buildings 247: 111115.

Busch, M. and B. Schweizer (2010). Numerical stability and accuracy of different

co-simulation techniques: analytical investigations based on a 2-DOF test model.

Proceedings of The 1st Joint International Conference on Multibody System

Dynamics, IMSD.

Cerezo Davila, C., C. F. Reinhart and J. L. Bemis (2016). "Modeling Boston: A

workflow for the efficient generation and maintenance of urban building energy

models from existing geospatial datasets." Energy 117: 237-250.

Chapman, J., P.-O. Siebers and D. Robinson (2018). "On the multi-agent stochastic

simulation of occupants in buildings." Journal of Building Performance Simulation

11(5): 604-621.

CityGML. (2015). "CityGML Basic Information." Retrieved 18 June 2015, 2015,

from http://www.citygmlwiki.org/index.php/Basic_Information.

Clarke, J. (2013). "Moisture flow modelling within the ESP-r integrated building

performance simulation system." Journal of Building Performance Simulation 6(5):

385-399.

Clements, P. C. and L. M. Northrop (1996). Software Architecture: An Executive

Overview, CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE

ENGINEERING INST.

Connolly, D., H. Lund, B. V. Mathiesen and M. Leahy (2010). "A review of

computer tools for analysing the integration of renewable energy into various energy

systems." Applied Energy 87(4): 1059-1082.

Crawley, D. B., L. K. Lawrie, C. O. Pedersen, F. C. Winkelmann, M. J. Witte, R. K.

Strand, R. J. Liesen, W. F. Buhl, Y. J. Huang and R. H. Henninger (2004).

"EnergyPlus: new, capable, and linked." Journal of Architectural and Planning

Research: 292-302.

Crawley, D. B., L. K. Lawrie, F. C. Winkelmann, W. F. Buhl, Y. J. Huang, C. O.

Pedersen, R. K. Strand, R. J. Liesen, D. E. Fisher, M. J. Witte and J. Glazer (2001).

"EnergyPlus: creating a new-generation building energy simulation program."

Energy and Buildings 33(4): 319-331.

Dahmann, J., M. Salisbury, P. Barry and P. Blemberg (1999). HLA and beyond:

Interoperability challenges. Simulation Interoperability Workshop.

Dahmann, J. S., R. M. Fujimoto and R. M. Weatherly (1997). The Department of

Defense High Level Architecture. Proceedings of the 29th conference on Winter

simulation. Atlanta, Georgia, USA, IEEE Computer Society: 142-149.

Dalla Rosa, A., R. Boulter, K. Church and S. Svendsen (2012). "District heating

(DH) network design and operation toward a system-wide methodology for

optimizing renewable energy solutions (SMORES) in Canada: A case study."

Energy 45(1): 960-974.

De Mello, B. A. and F. R. Wagner (2002). A standardized co-simulation backbone.

SoC Design Methodologies, Springer: 181-192.

http://www.citygmlwiki.org/index.php/Basic_Information

Chapter 7: References

122

De Sturler, E., J. Hoeflinger, L. Kale and M. Bhandarkar (2001). A new approach to

software integration frameworks for multi-physics simulation codes. The

Architecture of Scientific Software, Springer: 87-104.

Deng, Z., Y. Chen, J. Yang and Z. Chen (2022). "Archetype identification and urban

building energy modeling for city-scale buildings based on GIS datasets." Building

Simulation 15(9): 1547-1559.

Diba, K., K. Batoulis, M. Weidlich and M. Weske (2020). "Extraction, correlation,

and abstraction of event data for process mining." WIREs Data Mining and

Knowledge Discovery 10(3): e1346.

DIgSILENT. (2019). "PowerFactory." Retrieved Feb 17, 2019, 2019, from

http://www.digsilent.de.

Dijkstra, E. W. (1968). The structure of the “THE” multiprogramming system. The

origin of concurrent programming, Springer: 139-152.

Dols, W. S., S. J. Emmerich and B. J. Polidoro (2016). Coupling the multizone

airflow and contaminant transport software CONTAM with EnergyPlus using co-

simulation. Building simulation, Tsinghua University Press.

Evora, J., J. Hernandez and O. Roncal (2014). "JavaFmi." URL https://bitbucket.

org/siani/javafmi.

Fairbanks, G. (2010). Just enough software architecture: a risk-driven approach,

Marshall & Brainerd.

Falcone, A. and A. Garro (2019). "Distributed Co-Simulation of Complex

Engineered Systems by Combining the High Level Architecture and Functional

Mock-up Interface." Simulation Modelling Practice and Theory 97: 101967.

Fowler, J. W. and O. Rose (2004). "Grand challenges in modeling and simulation of

complex manufacturing systems." Simulation 80(9): 469-476.

Fujimoto, R. and P. Hoare (1998). HLA RTI performance in high speed LAN

environments. in Proceedings of the Fall Simulation Interoperability Workshop,

Citeseer.

Garlan, D. and D. E. Perry (1995). "Introduction to the special issue on software

architecture." IEEE Trans. Software Eng. 21(4): 269-274.

Garlan, D. and M. Shaw (1993). An introduction to software architecture. Advances

in software engineering and knowledge engineering, World Scientific: 1-39.

Gea (2012). Global Energy Assessment - Toward a Sustainable Future. Cambridge

University Press, Cambridge, UK and New York, NY, USA and the International

Institute for Applied Systems Analysis, Laxenburg, Austria.

Gervásio, H., P. Santos, L. S. da Silva and A. Lopes (2010). "Influence of thermal

insulation on the energy balance for cold-formed buildings." Advanced Steel

Construction 6(2): 742-766.

Gomes, C., C. Thule, D. Broman, P. G. Larsen and H. Vangheluwe (2017). "Co-

simulation: State of the art." arXiv preprint arXiv:1702.00686.

Gomes, C., C. Thule, D. Broman, P. G. Larsen and H. Vangheluwe (2018). "Co-

Simulation: A Survey." ACM Comput. Surv. 51(3): 1-33.

http://www.digsilent.de/
https://bitbucket/

Chapter 7: References

 123

Grubler, A., X. Bai, T. Buettner, S. Dhakal, D. J. Fisk, T. Ichinose, J. E. Keirstead,

G. Sammer, D. Satterthwaite, N. B. Schulz, N. Shah, J. Steinberger and H. Weisz

(2012). Chapter 18 - Urban Energy Systems. Global Energy Assessment - Toward a

Sustainable Future. Cambridge University Press, Cambridge, UK and New York,

NY, USA and the International Institute for Applied Systems Analysis, Laxenburg,

Austria: 1307-1400.

Gurecky, W., D. De Wet, M. S. Greenwood, R. Salko Jr and D. Pointer (2020).

Coupling of CTF and TRANSFORM using the Functional Mockup Interface, Oak

Ridge National Lab.(ORNL), Oak Ridge, TN (United States).

Hamilton, A., H. Wang, A. M. Tanyer, Y. Arayici, X. Zhang and Y. Song (2005).

"Urban information model for city planning." Journal of Information Technology in

Construction (ITCon) 10(6): 55-67.

Hedegaard, R. E., M. H. Kristensen, T. H. Pedersen, A. Brun and S. Petersen (2019).

"Bottom-up modelling methodology for urban-scale analysis of residential space

heating demand response." Applied Energy 242: 181-204.

Heinzl, B., W. Kastner, Du, x, F. r, F. Bleicher, I. Leobner and I. Kovacic (2014).

Using coupled simulation for planning of energy efficient production facilities.

Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES), 2014

Workshop on.

Hensen, J. (1995). Modelling coupled heat and airflow: ping pong vs. onions.

DOCUMENT-AIR INFILTRATION CENTRE AIC PROC, Citeseer.

Hong, T., H. Sun, Y. Chen, S. C. Taylor-Lange and D. Yan (2016). "An occupant

behavior modeling tool for co-simulation." Energy and Buildings 117: 272-281.

Hopkinson, K., W. Xiaoru, R. Giovanini, J. Thorp, K. Birman and D. Coury (2006).

"EPOCHS: a platform for agent-based electric power and communication simulation

built from commercial off-the-shelf components." IEEE Transactions on Power

Systems 21(2): 548-558.

Howell, S., Y. Rezgui, J.-L. Hippolyte, B. Jayan and H. Li (2017). "Towards the

next generation of smart grids: Semantic and holonic multi-agent management of

distributed energy resources." Renewable and Sustainable Energy Reviews 77: 193-

214.

IEA (2021). Empowering Cities for a Net Zero Future: Unlocking Resilient, Smart,

Sustainable Urban Energy Systems, OECD Publishing.

IEEE (2010). "IEEE Standard for Modeling and Simulation (M&amp;S) High

Level Architecture (HLA)-- Framework and Rules." IEEE Std 1516-2010 (Revision

of IEEE Std 1516-2000): 1-38.

Junghanns, A., C. Gomes, C. Schulze, K. Schuch, R. Pierre, M. Blaesken, I.

Zacharias, A. Pillekeit, K. Wernersson and T. Sommer (2021). The Functional

Mock-up Interface 3.0-New Features Enabling New Applications. Modelica

Conferences.

Kampf, J. H. and D. Robinson (2007). "A simplified thermal model to support

analysis of urban resource flows." Energy and Buildings 39(4): 445-453.

Kang, M. (2010). "HLA/RTI and Relative Key Implementation Technologies."

Modern Applied Science 4(5): 143.

Chapter 7: References

124

Kavgic, M. (2013). A city scale physically disaggregated bottom-up energy model:

technical options for decarbonising Belgrade residential stock, UCL (University

College London).

Keirstead, J., M. Jennings and A. Sivakumar (2012). "A review of urban energy

system models: Approaches, challenges and opportunities." Renewable &

Sustainable Energy Reviews 16(6): 3847-3866.

Keirstead, J., N. I. Samsatli and N. Shah (2010). SynCity: An Integrated Tool Kit for

Urban Energy Systems Modeling, WORLD BANK INST: 41-61.

Keirstead, J. and K. H. Van Dam (2010). A comparison of two ontologies for agent-

based modelling of energy systems. ATES 2010: 1st International Workshop on

Agent Technologies for Energy Systems, Toronto, Canada, 11 May 2010. Workshop

of the 9th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2010), 10-14 May 2010, Toronto, Canada.

Koppelaar, R., H. Kunz and T. Ravalde (2013). "Review of Current Advanced

Integrated Models for City Regions." Prepared for UK Technology Strategy Board

Future Cities Catapult, London, under Contract No. REQ010006 by the Institute for

Integrated Economic Research and Imperial College London on behalf of the

Ecological Sequestration Trust.

Kosek, A. M., O. Lünsdorf, S. Scherfke, O. Gehrke and S. Rohjans (2014).

Evaluation of smart grid control strategies in co-simulation-integration of IPSYS and

mosaik. in 18th Power Systems Computation Conference (PSCC2014).

Kruger, A. and T. H. Kolbe (2012). "Building Analysis for Urban Energy Planning

Using Key Indicators on Virtual 3d City Models - the Energy Atlas of Berlin." Xxii

Isprs Congress, Technical Commission Ii 39-B2: 145-150.

Laaroussi, Y., M. Bahrar, M. El Mankibi, A. Draoui and A. Si-Larbi (2020).

"Occupant presence and behavior: A major issue for building energy performance

simulation and assessment." Sustainable Cities and Society 63: 102420.

Ledoux, H., K. Arroyo Ohori, K. Kumar, B. Dukai, A. Labetski and S. Vitalis

(2019). "CityJSON: A compact and easy-to-use encoding of the CityGML data

model." Open Geospatial Data, Software and Standards 4(1): 1-12.

Lehnhoff, S., O. Nannen, S. Rohjans, F. Schlogl, S. Dalhues, L. Robitzky, U. Hager

and C. Rehtanz (2015). Exchangeability of power flow simulators in smart grid co-

simulations with mosaik. Modeling and Simulation of Cyber-Physical Energy

Systems (MSCPES), 2015 Workshop on.

Lévesque, M., C. Béchet, E. Suignard, M. Maier, A. Picault and G. Joós (2014).

"From co-toward multi-simulation of smart grids based on HLA and FMI standards."

arXiv preprint arXiv:1412.5571.

Li, Y., C. Wang, S. Zhu, J. Yang, S. Wei, X. Zhang and X. Shi (2020). "A

comparison of various bottom-up urban energy simulation methods using a case

study in Hangzhou, China." Energies 13(18): 4781.

Long, G., M. Alalwany and D. Robinson (2015). Deliverable D2.1 Building

typologies simulation report. http://www.insmartenergy.com/work-package-2/.

Luo, X., K. P. Lam, Y. Chen and T. Hong (2017). "Performance evaluation of an

agent-based occupancy simulation model." Building and Environment 115: 42-53.

http://www.insmartenergy.com/work-package-2/

Chapter 7: References

 125

Management Association, I. R. (2016). Renewable and Alternative Energy:

Concepts, Methodologies, Tools, and Applications: Concepts, Methodologies, Tools,

and Applications, IGI Global.

Manfren, M., P. Caputo and G. Costa (2011). "Paradigm shift in urban energy

systems through distributed generation: Methods and models." Applied Energy

88(4): 1032-1048.

Mauree, D., S. Coccolo, J. Kaempf and J. L. Scartezzini (2017). "Multi-scale

modelling to evaluate building energy consumption at the neighbourhood scale."

PLoS One 12(9): e0183437.

Medvidovic, N. and R. N. Taylor (2010). Software architecture: foundations, theory,

and practice. Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering-Volume 2, ACM.

Meyer, M. H. and P. H. Webb (2005). "Modular, layered architecture: the necessary

foundation for effective mass customisation in software." International Journal of

Mass Customisation 1(1): 14-36.

Miller, C., D. Thomas, J. Kämpf and A. Schlueter (2017). "Urban and building

multiscale co-simulation: case study implementations on two university campuses."

Journal of Building Performance Simulation: 1-13.

Mirzahosseini, A. H. and T. Taheri (2012). "Environmental, technical and financial

feasibility study of solar power plants by RETScreen, according to the targeting of

energy subsidies in Iran." Renewable and Sustainable Energy Reviews 16(5): 2806-

2811.

MODELISAR. (2018). "fmi-standard." Retrieved Feb 17, 2017, 2017, from

http://www.powerworld.com.

Modelon, A. (2014). FMI library.

Mohammadi, S., B. de Vries and W. Schaefer (2013). A Comprehensive Review of

Existing Urban Energy Models in the Built Environment. Planning Support Systems

for Sustainable Urban Development. S. Geertman, F. Toppen and J. Stillwell,

Springer Berlin Heidelberg. 195: 249-265.

Möller, B. (2013). "The HLA tutorial v1. 0." Pitch Technologies, Sweden.

Müller, S. C., H. Georg, J. J. Nutaro, E. Widl, Y. Deng, P. Palensky, M. U. Awais,

M. Chenine, M. Küch and M. Stifter (2018). "Interfacing power system and ict

simulators: Challenges, state-of-the-art, and case studies." IEEE Transactions on

Smart Grid 9(1): 14-24.

Natanian, J., O. Aleksandrowicz and T. Auer (2019). "A parametric approach to

optimizing urban form, energy balance and environmental quality: The case of

Mediterranean districts." Applied Energy 254: 113637.

Neaimeh, M., R. Wardle, A. M. Jenkins, J. L. Yi, G. Hill, P. F. Lyons, Y. Hubner, P.

T. Blythe and P. C. Taylor (2015). "A probabilistic approach to combining smart

meter and electric vehicle charging data to investigate distribution network impacts."

Applied Energy 157(0): 688-698.

Neema, H., J. Gohl, Z. Lattmann, J. Sztipanovits, G. Karsai, S. Neema, T. Bapty, J.

Batteh, H. Tummescheit and C. Sureshkumar (2014). Model-based integration

http://www.powerworld.com/

Chapter 7: References

126

platform for FMI co-simulation and heterogeneous simulations of cyber-physical

systems. 10th International Modelica Conference.

New, J. and M. Adams (2018). EnergyPlus performance improvements via JSON

input refactoring. 2018 Building Performance Modeling Conference and SimBuild,

Chicago, IL.

Nouidui, T. S. (2014). Tool coupling for the design and operation of building energy

and control systems based on the Functional Mock-up Interface standard. 10th

Modelica conference, Lund, Sweden.

Nouvel, R., K.-H. Brassel, M. Bruse, E. Duminil, V. Coors, U. Eicker and D.

Robinson (2015). SimStadt, a new workflow-driven urban energy simulation

platform for CityGML city models. Proceedings: Conference CISBAT.

Nouvel, R., R. Kaden, J.-M. Bahu, J. Kaempf, P. Cipriano, M. Lauster, J. Benner, E.

Munoz, O. Tournaire and E. Casper (2015). Genesis of the citygml energy ADE.

Proceedings of International Conference CISBAT 2015 Future Buildings and

Districts Sustainability from Nano to Urban Scale, LESO-PB, EPFL.

Nouvel, R., M. Zirak, H. Dastageeri, V. Coors and U. Eicker (2014). Urban energy

analysis based on 3D city model for national scale applications. IBPSA Germany

conference.

OFFIS (2017). "Mosaik." URL https://mosaik.offis.de/.

Page, J., D. Basciotti, O. Pol, J. N. Fidalgo, M. Couto, R. Aron, A. Chiche and L.

Fournié (2013). "A MULTI-ENERGY MODELLING, SIMULATION AND

OPTIMIZATION ENVIRONMENT FOR URBAN ENERGY INFRASTRUCTURE

PLANNING."

Palensky, P., A. A. V. D. Meer, C. D. Lopez, A. Joseph and K. Pan (2017).

"Cosimulation of Intelligent Power Systems: Fundamentals, Software Architecture,

Numerics, and Coupling." IEEE Industrial Electronics Magazine 11(1): 34-50.

Palensky, P., E. Widl and A. Elsheikh (2014). "Simulating Cyber-Physical Energy

Systems: Challenges, Tools and Methods." Ieee Transactions on Systems Man

Cybernetics-Systems 44(3): 318-326.

Pang, X., T. S. Nouidui, M. Wetter, D. Fuller, A. Liao and P. Haves (2016).

"Building energy simulation in real time through an open standard interface." Energy

and Buildings 117: 282-289.

Pang, X. F., M. Wetter, P. Bhattacharya and P. Haves (2012). "A framework for

simulation-based real-time whole building performance assessment." Building and

Environment 54(0): 100-108.

Pantaleo, A., j. keirstead and N. Shah (2013). Urban Energy Systems An Integrated

Approach.

Parnas, D. L. (1972). "On the criteria to be used in decomposing systems into

modules." Commun. ACM 15(12): 1053-1058.

Parnas, D. L. (1976). "On the Design and Development of Program Families." IEEE

Transactions on Software Engineering SE-2(1): 1-9.

Parnas, D. L. (1979). "Designing Software for Ease of Extension and Contraction."

IEEE Transactions on Software Engineering SE-5(2): 128-138.

https://mosaik.offis.de/

Chapter 7: References

 127

Peng, J. and K. H. Law (2010). Brief Review of Data Models for NEESgrid.

Perez, D. (2014). A framework to model and simulate the disaggregated energy

flows supplying buildings in urban areas, ÉCOLE POLYTECHNIQUE FÉDÉRALE

DE LAUSANNE.

PSCAD. (2019). "PSCAD." Retrieved Feb 17, 2019, 2019, from http://pscad.com.

Ptolemaeus, C. (2014). System Design, Modeling, and Simulation: Using Ptolemy II,

Ptolemy. org.

QTronic (2014). FMU SDK.

Raad, A., V. Reinbold, B. Delinchant and F. Wurtz (2015). FMU software

component orchestration strategies for co-simulation of building energy systems.

Technological Advances in Electrical, Electronics and Computer Engineering

(TAEECE), 2015 Third International Conference on.

Reinhart, C., T. Dogan, J. A. Jakubiec, T. Rakha and A. Sang (2013). Umi-an urban

simulation environment for building energy use, daylighting and walkability. 13th

Conference of International Building Performance Simulation Association,

Chambery, France.

Reinhart, C. F. and C. Cerezo Davila (2016). "Urban building energy modeling – A

review of a nascent field." Building and Environment 97: 196-202.

RJ, D., W. A, H. O, K. J, D. S and F. E (2014). Understanding Cities: Advances in

integrated assessment of urban sustainability Centre for Earth Systems Engineering

Research (CESER), Newcastle University

Robinson, D. (2011). Computer modelling for sustainable urban design: Physical

principles, methods and applications, Routledge.

Robinson, D., F. Haldi, J. Kämpf, P. Leroux, D. Perez, A. Rasheed and U. Wilke

(2009). CitySim: Comprehensive micro-simulation of resource flows for sustainable

urban planning. Proc. Building Simulation.

Rohjans, S., S. Lehnhoff, S. Schutte, S. Scherfke and S. Hussain (2013). mosaik - A

modular platform for the evaluation of agent-based Smart Grid control. Innovative

Smart Grid Technologies Europe (ISGT EUROPE), 2013 4th IEEE/PES.

Rotger-Griful, S., S. Chatzivasileiadis, R. H. Jacobsen, E. M. Stewart, J. M.

Domingo and M. Wetter (2016). Hardware-in-the-Loop co-simulation of distribution

Grid for demand response. 2016 Power Systems Computation Conference (PSCC).

Scherfke, S. and S. Schütte (2012). "mosaik–Architecture Whitepaper." OFFIS–

Institute for Information Technology, Tech. Rep.

Schierz, T. and M. Arnold (2012). "Stabilized overlapping modular time integration

of coupled differential-algebraic equations." Applied Numerical Mathematics

62(10): 1491-1502.

Schildt, M., C. Behm, A. Malhotra, S. Weck-Ponten, J. Frisch and C. van Treeck

(2021). "Proposed Integration of Utilities in the Energy ADE 2.0."

Schmidt, D. C. and F. Buschmann (2003). Patterns, frameworks, and middleware:

their synergistic relationships. 25th International Conference on Software

Engineering, 2003. Proceedings.

http://pscad.com/

Chapter 7: References

128

Schütte, S. (2011). Composition of simulations for the analysis of smart grid

scenarios, Energieinformatik.

Schutte, S., S. Scherfke and M. Troschel (2011). Mosaik: A framework for modular

simulation of active components in Smart Grids. Smart Grid Modeling and

Simulation (SGMS), 2011 IEEE First International Workshop on, IEEE.

Schweiger, G., C. Gomes, G. Engel, I. Hafner, J. Schoeggl and T. Nouidui (2018).

Functional Mock-up Interface: An Empirical Survey Identifies Research Challenges

and Current Barriers. The American Modelica Conference, Cambridge, MA, USA.

Schweiger, G., C. Gomes, G. Engel, I. Hafner, J. Schoeggl, A. Posch and T. Nouidui

(2019). "An empirical survey on co-simulation: Promising standards, challenges and

research needs." Simulation Modelling Practice and Theory 95: 148-163.

Shorrock, L. D. and J. E. Dunster (1997). "The physically-based model

BREHOMES and its use in deriving scenarios for the energy use and carbon dioxide

emissions of the UK housing stock." Energy Policy 25(12): 1027-1037.

Siegfried, R. (2014). Modeling and Simulation of Complex Systems: A Framework

for Efficient Agent-Based Modeling and Simulation, Springer.

Sousa, J. (2012). Energy simulation software for buildings: review and comparison.

International Workshop on Information Technology for Energy Applicatons-

IT4Energy, Lisabon, Citeseer.

Steinbrink, C., M. Blank-Babazadeh, A. El-Ama, S. Holly, B. Lüers, M. Nebel-

Wenner, R. Ramirez, T. Raub, J. Schwarz, S. Stark, A. Nieße and S. Lehnhoff

(2019). "CPES Testing with mosaik: Co-Simulation Planning, Execution and

Analysis." Applied Sciences 9: 923.

Steinbrink, C., S. Lehnhoff, S. Rohjans, T. I. Strasser, E. Widl, C. Moyo, G. Lauss,

F. Lehfuss, M. Faschang, P. Palensky, A. A. van der Meer, K. Heussen, O. Gehrke,

E. Guillo-Sansano, M. H. Syed, A. Emhemed, R. Brandl, V. H. Nguyen, A. Khavari,

Q. T. Tran, P. Kotsampopoulos, N. Hatziargyriou, N. Akroud, E. Rikos and M. Z.

Degefa (2017). Simulation-Based Validation of Smart Grids – Status Quo and Future

Research Trends, Cham, Springer International Publishing.

Stifter, M., R. Schwalbe, F. Andren and T. Strasser (2013). Steady-state co-

simulation with PowerFactory. Modeling and Simulation of Cyber-Physical Energy

Systems (MSCPES), 2013 Workshop on.

Stifter, M., E. Widl, F. Andren, A. Elsheikh, T. Strasser and P. Palensky (2013). Co-

simulation of components, controls and power systems based on open source

software. Power and Energy Society General Meeting (PES), 2013 IEEE, IEEE.

Strasser, T., M. Stifter, F. Andren and P. Palensky (2014). "Co-Simulation Training

Platform for Smart Grids." Ieee Transactions on Power Systems 29(4): 1989-1997.

Swan, L. G. and V. I. Ugursal (2009). "Modeling of end-use energy consumption in

the residential sector: A review of modeling techniques." Renewable and Sustainable

Energy Reviews 13(8): 1819-1835.

Taveres-Cachat, E., F. Favoino, R. Loonen and F. Goia (2021). "Ten questions

concerning co-simulation for performance prediction of advanced building

envelopes." Building and Environment 191: 107570.

Chapter 7: References

 129

Thomas, D., C. Miller, J. Kämpf and A. Schlueter (2014). Multiscale co-simulation

of EnergyPlus and CitySim models derived from a building information model.

Bausim 2014: Fifth German-Austrian IBPSA Conference.

TNEI. (2019). "IPSA Power." Retrieved Feb 17, 2019, 2019, from http://www.ipsa-

power.com/.

Tol, H. İ. and S. Svendsen (2012). "Improving the dimensioning of piping networks

and network layouts in low-energy district heating systems connected to low-energy

buildings: A case study in Roskilde, Denmark." Energy 38(1): 276-290.

Tolk, A. and L. Rainey (2014). Modeling and Simulation Support for System of

Systems Engineering Applications.

Trčka, M., J. L. Hensen and M. Wetter (2010). "Co-simulation for performance

prediction of integrated building and HVAC systems–An analysis of solution

characteristics using a two-body system." Simulation Modelling Practice and Theory

18(7): 957-970.

Tunzi, M., R. Boukhanouf, H. Li, S. Svendsen and A. Ianakiev (2018). "Improving

thermal performance of an existing UK district heat network: A case for temperature

optimization." Energy and Buildings 158: 1576-1585.

UNDESA (2018). World Urbanization Prospects: The 2018 Revision, United

Nations Department of Economic Social Affairs New York, NY, USA.

Vaculin, O., W. R. Kruger and M. Valasek (2004). "Overview of coupling of

multibody and control engineering tools." Vehicle System Dynamics 41(5): 415-429.

Vadiee, A., A. Dodoo and L. Gustavsson (2018). A comparison between four

dynamic energy modeling tools for simulation of space heating demand of buildings.

Cold Climate HVAC Conference, Springer.

Valasek, M. (2008). Modeling, simulation and control of mechatronical systems.

Simulation techniques for applied dynamics, Springer: 75-140.

Van Dam, K. H. (2009). Capturing socio-technical systems with agent-based

modelling.

van Dam, K. H. and J. Keirstead (2010). Re-use of an ontology for modelling urban

energy systems. Infrastructure Systems and Services: Next Generation Infrastructure

Systems for Eco-Cities (INFRA), 2010 Third International Conference on.

Vesterlund, M., A. Toffolo and J. Dahl (2016). "Simulation and analysis of a meshed

district heating network." Energy Conversion and Management 122: 63-73.

Wade, N. S., P. C. Taylor, P. D. Lang and P. R. Jones (2010). "Evaluating the

benefits of an electrical energy storage system in a future smart grid." Energy Policy

38(11): 7180-7188.

Wang, K. and N. Wade (2021). An integration platform for optimised design and

real-time control of smart local energy systems. 2021 12th International Renewable

Energy Congress (IREC).

Wang, Z., T. Hong and R. Jia (2019). "Buildings. Occupants: a Modelica package

for modelling occupant behaviour in buildings." Journal of Building Performance

Simulation 12(4): 433-444.

http://www.ipsa-power.com/
http://www.ipsa-power.com/

Chapter 7: References

130

Wang, Z., H. Zhang, R. Zhang, Y. Li and B. Xu (2013). "A Run-time infrastructure

based on service-distributed architecture."

Wetter, M. (2011). "Co-simulation of building energy and control systems with the

Building Controls Virtual Test Bed." Journal of Building Performance Simulation

4(3): 185-203.

Wetter, M. (2011). "Co-simulation of building energy and control systems with the

Building Controls Virtual Test Bed." Journal of Building Performance Simulation 4:

185-203.

Widl, E., W. Müller, A. Elsheikh, M. Hörtenhuber and P. Palensky (2013). The

FMI++ library: A high-level utility package for FMI for model exchange. 2013

Workshop on Modeling and Simulation of Cyber-Physical Energy Systems

(MSCPES), IEEE.

Wieland, M., A. Nichersu, S. M. Murshed and J. Wendel (2015). Computing solar

radiation on CityGML building data. 18th AGILE international conference on

geographic informaton science.

Yao, J. (2014). "Determining the energy performance of manually controlled solar

shades: A stochastic model based co-simulation analysis." Applied Energy 127: 64-

80.

Zhou, Q. and J. W. Bialek (2005). "Approximate Model of European Interconnected

System as a Benchmark System to Study Effects of Cross-Border Trades." IEEE

Transactions on Power Systems 20(2): 782-788.

Zhu, D. (2012). "Comparison of building energy modeling programs: building

loads."

Chapter 8: Appendices

 131

8 APPENDICES

APPENDIX 1 ESSENTIAL FMI CO-SIMULATION API .. 132

APPENDIX 2 FMI CO-SIMULATION FUNCTIONS DEVELOPED FOR SIMULATION TOOLS

DEMONSTRATED IN CASES ... 137

APPENDIX 3 URBAN ENERGY SIMULATION TOOLS WITH FMU EXPORT SUPPORT 139

APPENDIX 4 CASES CO-SIMULATION VARIABLES ... 140

APPENDIX 5 MOSAIK SIMULATOR API .. 143

APPENDIX 6 MOSAIK SCENARIO API ... 145

APPENDIX 7 MASTER ALGORITHM EXAMPLE ... 146

APPENDIX 8 GLOSSARY .. 147

Chapter 8: Appendices

132

APPENDIX 1 ESSENTIAL FMI CO-SIMULATION API

fmiComponent fmiInstantiate(fmiString instanceName, fmiString GUID,
fmiString fmuLocation, fmiString mimeType, fmiReal timeout, fmiBoolean
visible, fmiBoolean interactive, fmiCallbackFunctions
functions,fmiBoolean loggingOn)
Description:

Instantiate the slave FMU. Locate FMU zip archive and then call
instantiateModel. A new instance of a co-simulation slave is returned. If a null
pointer is returned, then instantiation failed. In that case, “functions->logger” is
called and detailed information is logged. A slave can be instantiated many
times. This function must be called successfully, before any of the following
functions can be called.

Parameters:

instanceName is unique identifier for a given FMI Component instance.

GUID is the Globally Unique Identifier used to make sure the XML file and the

DLL match.

fmuLocation is the path to the FMU zip archive.

mimeType represents the MIME type (ietf RFC 2045, 2046, 2047, 2048,

2049) of the ‘simulator’. It’s ignored in my implementation.

timeout is a communication timeout value in milli-seconds to allow inter-
process

communication to take place. A timeout value of 0 indicates an infinite wait

period. It’s ignored in my implementation.

visible indicates whether or not the simulator application window needed to

execute a model should be visible. It’s ignored in my implementation.

interactive indicates whether the simulator application must be manually
started

by the user. It’s ignored in my implementation.

functions provides callback functions to be used from the model functions to

utilise resources from the environment. It holds function pointers either logger,

Chapter 8: Appendices

 133

which is a function that is called usually when the model function encounters
some

problem or functions handle memory allocation and deallocation, e.g.

allocateMemory and freeMemory.

loggingOn is either fmiTrue or fmiFalse which enables/disables debug logging

respectively

void fmiFreeInstance(fmiComponent c)
Description:

Dispose the given instance, unload the loaded model, and free all the allocated

memory and other resources that have been allocated by the functions of the co-

simulation interface.

Parameters:

fmiComponent is a pointer to a co-simulation slave specific data structure. It

contains all information needed by the slave to process the co-simulation.

static fmiComponent instantiateModel(const char* fname, fmiString
instanceName, fmiString GUID, fmiCallbackFunctions functions,
fmiBoolean loggingOn)
Description:

Instantiate the model. Then load and analyse model description file, store model
parameters and variables in an array and do pre-processing before simulation.

Parameters:

fname is fmiInstantiate

instanceName is unique identifier for a given FMI Component instance.

GUID is the Globally Unique Identifier used to make sure the XML file and the

DLL match.

functions provides callback functions to be used from the model functions to

Chapter 8: Appendices

134

utilise resources from the environment. It holds function pointers either logger,

which is a function that is called usually when the model function encounters
some

problem or functions handle memory allocation and deallocation, e.g.

allocateMemory and freeMemory.

loggingOn is either fmiTrue or fmiFalse which enables/disables debug logging

respectively

fmiStatus fmiSetReal(fmiComponent c, const fmiValueReference vr[], size_t
nvr, const fmiReal value[])
Description:

Set values of inputs.

Parameters:

fmiComponent is a pointer to a co-simulation slave specific data structure. It

contains all information needed by the slave to process the co-simulation.

ValueReferences is a handle to a (base type) variable value of the model.

nvr is the number of values.

value is a vector containing the values that shall be set.

fmiStatus fmiGetReal(fmiComponent c, const fmiValueReference vr[],
size_t nvr, fmiReal value[])
Description:

Get values of the variables by providing their variable references.

Parameters:

fmiComponent is a pointer to a co-simulation slave specific data structure. It

contains all information needed by the slave to process the co-simulation.

ValueReferences is a handle to a (base type) variable value of the model.

Chapter 8: Appendices

 135

nvr is the number of values.

value is a vector containing the values that shall be set.

fmiStatus fmiDoStep(fmiComponent c, fmiReal
currentCommunicationPoint,

 fmiReal communicationStepSize, fmiBoolean newStep)
Description:

Run a computation of a time step. It returns fmiOK or fmiError depending on the

internal state of the slave and the last call of the function.

Parameters:

fmiComponent is a pointer to a co-simulation slave specific data structure. It

contains all information needed by the slave to process the co-simulation.

currentCommunicationPoint is the current communication point of the master

communicationStepSize is the communication step size.

newStep is fmiTrue if the last communication step is accepted by the master

and a new communication step is started

fmiStatus fmiGetStatus(fmiComponent c, const fmiStatusKind s, fmiStatus*
value)
Description:

Inform the master about the actual status of the simulation run.

Parameters:

fmiComponent is a pointer to a co-simulation slave specific data structure. It

contains all information needed by the slave to process the co-simulation.

fmiStatusKind isstatus information to be returned.

fmiStatus fmiCancelStep(fmiComponent c)

Chapter 8: Appendices

136

Description:

Called to cancel the current computation.

Parameters:

fmiComponent is a pointer to a co-simulation slave specific data structure. It

contains all information needed by the slave to process the co-simulation.

fmiStatus fmiTerminate (fmiComponent c)
Description:

Called by the master to signal the slave the end of the co-simulation run.

Parameters:

fmiComponent is a pointer to a co-simulation slave specific data structure. It

contains all information needed by the slave to process the co-simulation.

Chapter 8: Appendices

 137

APPENDIX 2 FMI CO-SIMULATION FUNCTIONS

DEVELOPED FOR SIMULATION TOOLS DEMONSTRATED IN

CASES

int DataStore::addVariable(const std::string &name)
Description:

Store input and out variables in an associative container

Parameters:

std::string is a pointer to input and out variables and corresponding

refererence

void DataStore::addValue(const std::string &name, const float value)
Description:

Set input value of the variable by providing their variable reference.

Parameters:

std::string is a pointer to input variable reference

float is the input value

float DataStore::getValue(const std::string & name)
Description:

Provide output value of the variable by providing their variable reference.

Parameters:

std::string is a pointer to output variable reference

float is the output value

void Simulation::preprocess()
Description:

Do pre-processing before simulation by parsing simulation configuration file to
get

simulation period and time step of the simulation and input files for simulation

Chapter 8: Appendices

138

then pre-conditioning building model.

void Simulation::parseConfiguration(const std::string & file)
Description:

Parse the simulation configuration xml file to get all the parameters needed in
the

simulation.

Parameters:

file is the simulation configuration xml file.

void Simulation::setupSimulationModel()
Description:

Pre-condition building model.

void Simulation::preTimeStep()
Description:

Process before timestep by reading current simulation time and counted

TimeStep.

void Simulation::timeStep()
Description:

Run a computation of a time step and increments the timestep for the
simulation.

void Simulation::postprocess()
Description:

Save simulation results before next time step.

Chapter 8: Appendices

 139

APPENDIX 3 URBAN ENERGY SIMULATION TOOLS WITH

FMU EXPORT SUPPORT

Simulation
tool

Description FMU export support

Dymola

It is a proprietary Modelica-
based environment that
supports modelling and
simulation of multi-physics
systems. The open-source
Modelica-based simulation tools
such as and JModelica and
OpenModelica are not as
advanced, functional, and
detailed as Dymola.

Native support the FMU
export for co-simulation

JModelica

It is an open-source Modelica-
based platform for simulation
and analysis of complex dynamic
systems

Native support the FMU
export for co-simulation

OpenModelica.

It is an open-source Modelica-
based platform for simulation
and analysis of complex dynamic
systems

Native support the FMU
export for co-simulation

TRNSYS

It is a popular simulation
software for building and HVAC
system simulation including
solar and geothermal
applications.

Using tool trnsys-fmu to
support the FMU export
for co-simulation

PowerFactory
It is an established tool for the
modelling and simulation of
electrical networks

Using tool powerfactory-
fmu to support the FMU
export for co-simulation

MATLAB/Simu
link

It is a popular software for
modelling, simulating and
analysing dynamical systems

Using the Modelon FMI
toolbox to support FMI
export for co-simulation

Chapter 8: Appendices

140

APPENDIX 4 CASES CO-SIMULATION VARIABLES

Case1: EnergyPlus and No-MASS co-simulation variables

Geneva single shoe box office

Inputs (from EnergyPlus to No-MASS) Outputs (from No-MASS to

EnergyPlus)

EnvironmentSiteExteriorHorizontalSkyIll

uminance

EnvironmentSiteRainStatus

EnvironmentSiteOutdoorAirDrybulbTem

perature

 ZoneMeanAirTemperature

 ZoneAirRelativeHumidity

 ZoneMeanRadiantTemperature

DaylightingReferencePoint1Illuminance

NumberOfOccupants

WindowState0

LightState

AverageGains

BlindFraction

Case2: EnergyPlus and No-MASS co-simulation variables

I. Finningley shoe box office 1

Inputs (from EnergyPlus to No-MASS) Outputs (from No-MASS to

EnergyPlus)

EnvironmentSiteExteriorHorizontalSkyIll

uminance

EnvironmentSiteRainStatus

EnvironmentSiteOutdoorAirDrybulbTem

perature

Building1Block1Zone1ZoneMeanAirTe

mperature

Building1Block1Zone1NumberOfOcc

upants

Building1Block1Zone1WindowState0

Building1Block1Zone1LightState

Building1Block1Zone1AverageGains

Building1Block1Zone1BlindFraction

Chapter 8: Appendices

 141

Building1Block1Zone1ZoneAirRelative

Humidity

Building1Block1Zone1ZoneMeanRadian

tTemperature

Building1Block1Zone1DaylightingRefer

encePoint1Illuminance

II. Finningley shoe box office 2

Inputs (from EnergyPlus to No-MASS) Outputs (from No-MASS to

EnergyPlus)

EnvironmentSiteExteriorHorizontalSkyIll

uminance

EnvironmentSiteRainStatus

EnvironmentSiteOutdoorAirDrybulbTem

perature

Building2Block1Zone1ZoneMeanAirTe

mperature

Building2Block1Zone1ZoneAirRelative

Humidity

Building2Block1Zone1ZoneMeanRadian

tTemperature

Building2Block1Zone1DaylightingRefer

encePoint1Illuminance

Building2Block1Zone1NumberOfOcc

upants

Building2Block1Zone1WindowState0

Building2Block1Zone1LightState

Building2Block1Zone1AverageGains

Building2Block1Zone1BlindFraction

III. Finningley shoe box office 3

Inputs (from EnergyPlus to No-MASS) Outputs (from No-MASS to

EnergyPlus)

EnvironmentSiteExteriorHorizontalSkyIll

uminance

Building3Block1Zone1NumberOfOcc

upants

Chapter 8: Appendices

142

EnvironmentSiteRainStatus

EnvironmentSiteOutdoorAirDrybulbTem

perature

Building3Block1Zone1ZoneMeanAirTe

mperature

Building3Block1Zone1ZoneAirRelative

Humidity

Building3Block1Zone1ZoneMeanRadian

tTemperature

Building3Block1Zone1DaylightingRefer

encePoint1Illuminance

Building3Block1Zone1WindowState0

Building3Block1Zone1LightState

Building3Block1Zone1AverageGains

Building3Block1Zone1BlindFraction

Building1Block1Zone1GainsApplianc

e

Chapter 8: Appendices

 143

APPENDIX 5 MOSAIK SIMULATOR API

init(step_size, sim_params, model_config)

Initialise a simulator. The init call is the first command that mosaik sends to the

simulator and it is sent only once. It is used to configure the simulator and to setup the

model instances.

step_size is an integer defines how many seconds (in simulation time) step() function

will advance on each call.

sim_params is a dict with various additional parameters for the simulation

model_config is a list of tuples describing a certain model configuration:

(cfg_id, model_name, num_instances, params)

Return: The return value meta is a dict that maps model configurations (cfg_id) to a

list of dicts which describe the entities for each model instance.

step()

Advance the simulation by step_size and return the current simulation time. The step

command has no parameters.

Return: The current simulation time should be returned.

create(num, model, init_val)

Initialise a number of simulation model instances within the simulator. It must return

a list with some information about each entity created.

num is an integer for the number of model instances to create.

model needs to be a public entry in the simulator’s meta[’models’].

init_val is the initial value for the model instances.

Return: A list of objects describing the created model instances (entities).

set_data(data)

Set the values of the given attributes for each entity in data.

data is a dict with the key being the entity id for which data is received.

Return: Nothing

Chapter 8: Appendices

144

get_data(model_name, etype, attributes)

Get current values of a number of attributes within a model.

model_name is a string which defines name of the model to query.

etype is a string which defines an entity type within the model. attributes (list) - List

of attribute names to query.

attributes is a list of attribute names to query.

Return: A dict that maps entity IDs to data dictionaries. Each data dictionary maps the

entities’ attribute names to their values.

finalize()

Do some clean-up operations after the simulation finished (e.g. shutting down external

processes).

Chapter 8: Appendices

 145

APPENDIX 6 MOSAIK SCENARIO API

start(sim_name, **sim_params)

Start the simulator named sim_name and pass the parameters of the dict sim_params

to it.

Return: A mosaik_api.Simulator instance.

connect(src, dest, *attr_pairs, async_requests=, time_shifted=, initial_data=)

Connect the src entity to dest entity. Establish a dataflow for each (src_attr, dest_attr)

tuple in attr_pairs. If src_attr and dest_attr have the same name, you can optionally

pass one of them as a single string. If the dest simulator may make asynchronous

requests to mosaik to query data from src (or set data to it), async_requests should be

set to True so that the src simulator stays in sync with dest.

Return:

run(until=)

Start the simulation until the simulation time until is reached.

Return: The current simulation time (>= until).

Chapter 8: Appendices

146

APPENDIX 7 MASTER ALGORITHM EXAMPLE

Case 1 Single building co-simulation master algorithm

Chapter 8: Appendices

 147

APPENDIX 8 GLOSSARY

Term Description

Algorithm
A well-defined procedure that solves a specific

type of problem.

Application programming

interface (API)

A set of functions, procedures, methods or

classes together with type

conventions/declarations (for example C

header files) that an operating system, library

or service provides to support requests made

by computer programs.

Co-simulation

Coupling two or more simulation programs

that share or exchange values to simulate a

system consisting of several subsystems.

Communication points Time grid for data exchange between master

and slaves in a co-simulation environment

(also known as “synchronisation points”).

Communication step size Distance between two subsequent

communication points.

Composition A number of interconnected simulators.

Composition API

It is an interface that a simulator has to

implement for being able to get integrated into

the co-simulation platform.

Functional mock-up interface

(FMI)

A tool-independent standard to support model

exchange and co-simulation. It connects the

master solver component with one or more

slave solvers.

Functional mock-up unit

(FMU)

An FMU is stored in one zip file consisting

basically of one XML file that defines the model

variables and a set of FMI functions, in source

Chapter 8: Appendices

148

or binary form, to execute the model equations

or the simulator slave. In case of tool execution,

additionally, the original simulator is required

to perform the co-simulation

High Level Architecture

(HLA)

An industry standard for distributed modelling

and simulation

Interoperability Interoperability is the ability of two or more

systems or components to exchange

information and to use the information that

has been exchanged.

Master/slave

A method of communication, where one device

or process has unidirectional control over one

or more other devices. Once a master/slave

relationship between devices or processes is

established, the direction of control is always

from the master to the slaves. In some systems

a master is elected from a group of eligible

devices, with the other devices acting in the

role of slaves.

Model

A model is a mathematical or logical

representation of a system. Basically, a model

is a simplified abstract view of the complex

reality. It can be used to compute its expected

behaviour under specified conditions.

Scenario
It refers to the system or situation being

modelled

Set point Temperature limit in a thermal zone

Simulation
The process of executing a (computer-based)

simulation model.

Chapter 8: Appendices

 149

System

A system is set of interrelated elements

considered in a defined context as a whole and

separated from their environment.

Solver

Software component, which includes

algorithms to solve models, e.g. integration

algorithms and event handling methods.

Simulation tool

Software to solve simulation models. The

software includes a solver, may include a user

interface and methods for post processing.

Examples of simulation programs are:

EnergyPlus, No-MASS, etc.

Simulation model

A simulation model is an abstract

representation of a system and is executed by

a simulation environment

Simulator

A simulator is an execution environment for a

simulation model, which adds the solver

functionality to run the model.

Software architecture

The fundamental organisation of a system

embodied in its (software) components, their

relationships to each other, and to the

environment, and the principles guiding its

design and evolution (IEEE 2000).

Software platform

It is collection of subsystems and interfaces

that enables the development of end-user

products

Thermal zone
Combination of structures sharing the same

thermodynamic properties

Chapter 8: Appendices

150

Variable

A value that is used within a simulation that

has the potential to change over the duration

of the simulation.

	1 Introduction
	1.1 Motivation and research context
	1.1.1 Motivation
	1.1.2 Research context

	1.2 Research aim and objectives
	1.3 Research methods
	1.4 Thesis overview

	2 Urban energy co-simulation review
	2.1 Urban energy simulation tools
	2.1.1 Building energy modelling and simulation
	2.1.2 Occupant simulation
	2.1.3 Simulation tools summary

	2.2 Co-simulation
	2.3 Co-simulation standards
	2.3.1 Functional Mockup Interface (FMI)
	2.3.2 High Level Architecture (HLA)

	2.4 Co-simulation middleware
	2.4.1 Building Controls Virtual Test Bed (BCVTB)
	2.4.2 Mosaik

	2.5 Co-simulation software architecture requirement
	2.6 Summary of urban energy co-simulation requirements

	3 Conceptual co-simulation architecture design
	3.1 Conceptual co-simulation architecture
	3.2 Co-simulation architecture layer description

	4 Urban energy co-simulation platform development
	4.1 Simulator layer
	4.2 Interconnection layer
	4.3 Interoperability layer
	4.4 Control layer
	4.5 The developed platform - COPE
	4.6 COPE application process

	5 Case studies of the co-simulation approach
	5.1 Case 1: Single building co-simulation
	5.1.1 Chapman’s FMU import approach
	5.1.2 COPE approach
	5.1.3 Coupling system design
	5.1.4 Model development
	5.1.5 Co-simulation setup
	5.1.6 Simulation
	5.1.7 Results analysis

	5.2 Case 2: Multiple buildings co-simulation
	5.2.1 Coupling system design
	5.2.2 Model development
	5.2.3 Co-simulation setup
	5.2.4 Simulation
	5.2.5 Results analysis

	5.3 Outcome

	6 Conclusion
	6.1 Generic and scalable urban energy co-simulation approach
	6.1.1 Conceptual co-simulation architecture
	6.1.2 COPE

	6.2 Research methods
	6.3 Outlook and future work

	7 References
	8 Appendices
	Appendix 1 Essential FMI Co-Simulation API
	Appendix 2 FMI co-simulation functions developed for simulation tools demonstrated in cases
	Appendix 3 Urban energy simulation tools with FMU export support
	Appendix 4 Cases co-simulation variables
	Appendix 5 Mosaik simulator API
	Appendix 6 Mosaik scenario API
	Appendix 7 Master algorithm example
	Appendix 8 Glossary

